
1995 DRAM DATA BOOK

MICHON TECHNOLOGY, INC.

MICHON TECHNOLOGY, MC.

EDO DRAMs	1
FPM DRAMs	2
SGRAM	3
DRAM SIMMs	4
DRAM DIMMs	5
DRAM CARDS	6
TECHNICAL NOTES	7
PRODUCT RELIABILITY	8
PACKAGE INFORMATION	9
SALES AND SERVICE INFORMATION	10
MICRON DATAFAX INDEX	11

DRAM DATA BOOK

2805 East Columbia Road

P.O. Box 6

Boise, Idaho 83707-0006

Telephone: 208-368-3900

Fax: 208-368-4431

Micron DataFax^{sм}: 208-368-5800

Customer Comment Line:

U.S.A. 800-932-4992

Intl. 01-208-368-3410

Fax 208-368-3342

©1995, Micron Technology, Inc.
Printed in the U.S.A.

Micron Technology, Inc., reserves the right to change products or specifications without notice. Micron is a trademark of Micron Technology, Inc. Micron DataFax is a service mark of Micron Technology, Inc.

ABOUT THE COVER:

Front — A variety of features highlight Micron's DRAM product line. Shown at left, a circuitry backdrop rendered from a scanning electron microscope. Bottom right, the intricate memory of a 4 Meg DRAM wafer, etched in silicon, which reflects the many hues of the natural color spectrum.

Back — Micron's Boise, Idaho, headquarters.

IMPORTANT NOTICE

Micron Technology, Inc. (Micron), reserves the right to change products or specifications without notice. Customers are advised to obtain the latest versions of product specifications, which should be considered in evaluating a product's appropriateness for a particular use. There is no assurance that Micron's semiconductor products are appropriate for any application by a customer.

MICRON MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OTHER THAN COMPLIANCE WITH MICRON'S SPECIFICATION SHEET FOR THE PRODUCT AT THE TIME OF DELIVERY. IN NO EVENT SHALL MICRON BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES AS A RESULT OF THE PERFORMANCE, OR FAILURE TO PERFORM, OF ANY MICRON PRODUCT.

ANY CLAIM AGAINST MICRON MUST BE MADE WITHIN 90 DAYS FROM THE DATE OF SHIPMENT BY MICRON AND MICRON HAS NO LIABILITY THEREAFTER. Micron's

liability is limited to replacement of defective product or either Customer or Micron may elect refund of amounts paid in lieu of replacement. The warranty covers only defects arising under normal use and not malfunctions resulting from misuse, abuse, modification, or repairs by anyone other than Micron.

MICRON'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF MICRON. Life support devices or systems are those which are intended to support or sustain life and whose failure to perform can be reasonably expected to result in a significant injury or death to the user. Critical components are those whose failure to perform can be reasonably expected to cause failure of a life support device or system or affect its safety or effectiveness.

MICRON DOES NOT WARRANT PRODUCT TO BE FREE OF CLAIMS OF PATENT IN-FRINGEMENT BY ANY THIRD PARTY AND DISCLAIMS ANY SUCH WARRANTY OR INDEMNIFICATION AGAINST PATENT IN-FRINGEMENT.

Dear Customer:

Micron Technology, Inc., is dedicated to the design, manufacture and marketing of high-quality, highly reliable memory components. Our corporate mission is:

"To be a world-class team developing advantages for our customers."

At Micron, we are investing time, talent and resources to bring you the finest DRAMs, SRAMs and other specialty memory products. We have developed a unique intelligent burn-in system, AMBYX*, which evaluates and reports the quality level of each and every component we produce.

We are dedicated to continuous improvement of all our products and services. This means continual reduction of electrical and mechanical defect levels. It also means the addition of new services such as "just-in-time" delivery and electronic data interchange programs. And when you have a design or application question, you can get the answers you need from one of Micron's applications engineers.

We're proud of our products, our progress and our performance. And we're pleased that you're choosing Micron as your memory supplier.

The Micron Team

ADVANTAGES

Micron Technology brings quality, productivity and innovation together to provide advantages for our customers. Our products feature some of the industry's fastest speeds. And we establish delivery standards based on customer expectations, including JIT programs, made possible by ever-increasing product reliability.

COMPONENT INTEGRATED CIRCUITS

Micron entered the memory market in 1978, first designing, then manufacturing dynamic random access memory (DRAM). From there, we developed high-performance fast static RAM (SRAM) and a variety of other memory products.

SPECIALTY MEMORY PRODUCTS

Beyond our standard component memory, Micron is introducing many new products, including nonvolatile flash memory, 64 Meg DRAM, and synchronous graphics RAM, and continues to offer the broadest line of 3.3V SRAMs available. Micron is forging ahead into new and exciting frontiers by evaluating 8-inch wafer development and its processing capabilities.

We are pleased to be first to market with our compact, easy-to-install 88-pin DRAM card. Ideal for laptop, note-book and other portable systems, Micron's DRAM Card offers both high density and low power within JEDEC and JEIDA specifications.*

DIE SALES

In addition to our durable packaging, Micron leads the industry in bare die procurement and the testing of Micron's KGD^{Plus®} (known good die). Demand for these is increasing for use in highly specialized applications. Micron's bare die products are available both in 6" wafers and wafflepacks.

CUSTOM MANUFACTURING SERVICES

For total project management, Micron offers value-added services. These include both standard contract manufacturing services for system-level products including design, assembly, customer kitted assembly, comprehensive quality testing or shipping as well as complete turnkey services covering all phases of production. Our component and system-level manufacturing facilities are located in Boise, Idaho, so the component products you need are readily available.

MICRON DATAFAXSM

When you can't afford to wait for critical product information or specifications, Micron offers a convenient solution available 24 hours a day, every day. Micron DataFax enables you to make automated requests for data sheets, product literature, and other information from your fax machine. Just dial 208-368-5800 from your fax machine and Micron DataFax will give you instructions on how to order documents, including an index of documents. Once your order is placed, Micron DataFax will process your order, faxing up to two documents per call to your fax machine.

QUALITY

Quality is the most important thing we provide to every Micron customer with each Micron shipment. That's because we believe that quality must be internalized consistently at each level of our company. We provide every Micron team member with the training and motivation needed to make Micron's quality philosophy a reality.

One way we have measurably improved both productivity and product quality is through our own quality improvement program formed by individuals throughout the company. Micron quality teams get together to address a wide range of issues within their areas. We consistently and regularly perform a company-wide self-assessment based on the Malcolm Baldrige National Quality Award criteria. We've also implemented statistical process controls to evaluate every facet of the memory design, fabrication, assembly and shipping process. And our AMBYX intelligent burn-in and test system** gives Micron a unique edge in product reliability.

These quality programs have resulted in Micron becoming one of the first U.S. semiconductor manufacturers to receive ISO 9001 certification. ISO 9001 is the most comprehensive level of certification in the internationally recognized ISO family of specifications. The certification implies that Micron's systems for accepting orders, reviewing customers' specifications, manufacturing and testing products, and delivering those products to its customers are quality controlled and produce consistent results.

^{*}See NOTE, page v.

^{**}For more information on AMBYX, see Section 8.

ABOUT THIS BOOK

CONTENT

The 1995 DRAM Data Book from Micron Technology provides complete specifications on Micron's standard DRAMs, synchronous graphics RAM (SGRAM), DRAM modules and DRAM cards.

The DRAM Data Book is one of three product data books Micron currently publishes. Its two companion volumes include our SRAM Data Book and Flash Memory Data Book.

SECTION ORGANIZATION

Micron's 1995 DRAM Data Book contains a detailed Table of Contents with sequential and numerical indexes of products as well as a complete product selection guide. The Data Book is organized into twelve sections:

- Sections 1–6: Individual product families. Each contains a product selection guide followed by data sheets.
- Section 7: Technical notes.
- Section 8: Summary of Micron's unique quality and reliability programs and testing operation, including our AMBYX intelligent burn-in and test system.*
- Section 9: Packaging information.
- Section 10: Customer service notes and sales information, including a list of sales representatives and distributors worldwide.
- · Section 11: Micron DataFax index.

DATA SHEET SEQUENCE

Data sheets in this book are ordered first by width and second by depth. For example, the EDO DRAM section begins with the 1 Meg x 4 followed by all other x4 configurations in order of ascending depth. Next come the x8 products, etc., as applicable to the specific product family.

DATA SHEET DESIGNATIONS

As detailed in the table below, each Micron product data sheet is classified as either Advance, Preliminary (indicated on the top of each data sheet) or Final (final data sheets have no marking). In addition, new product data sheets that are new additions are designated with a "New" indicator in the tab area of each page.

SURVEY

We have included a removable, postage-paid survey form in the front of this book. Your time in completing and returning this survey will enhance our efforts to continually improve our product literature.

For more information on Micron product literature, or to order additional copies of this publication, contact:

Micron Technology, Inc. 2805 East Columbia Road P.O. Box 6 Boise, ID 83707-0006 Phone: 208-368-3900

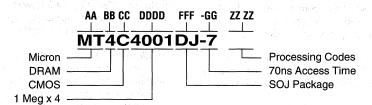
Phone: 208-368-3900 Fax: 208-368-4431

Micron DataFax: 208-368-5800 Customer Comment Line:

U.S.A. 800-932-4992 Intl. 01-208-368-3410 Fax 208-368-3342

DATA SHEET DESIGNATIONS

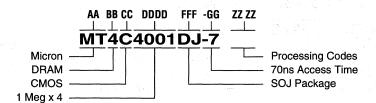
DATA SHEET MARKING	DEFINITION
Advance	This data sheet contains initial descriptions of products still under development.
Preliminary	This data sheet contains initial characterization limits that are subject to change upon full characterization of production devices.
No Marking	This data sheet contains minimum and maximum limits specified over the complete power supply and temperature range for production devices. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.
New	This data sheet (which may be either Advance, Preliminary or Final) is a new addition to the data book.


NOTE: Micron uses acronyms to refer to certain industry-standard-setting bodies. These are defined below: EIA/JEDEC—Electronics Industry Association/Joint Electron Device Engineering Council

JEIDA—Japanese Electronics Industry Development Association PCMCIA—Personal Computer Memory Card International Association

*Micron's Quality/Reliability Handbook is available by calling 208-368-3900.

EXPANDED COMPONENT NUMBERING SYSTEM


	- PRODUCT LINE IDENTIFIER Micron ProductMT
[- PRODUCT FAMILY DRAM
(PROCESS TECHNOLOGY CMOS
)] -	DD – DEVICE NUMBER (Can be modified to indicate variations) DRAM
1 (DEVICE VERSIONS Alphabetic characters only; located between D and F when equired.)
	JEDEC Test Mode (4 Meg DRAM)

FFF - PACKAGE CODES

LASTIC	ad do de greek	100 79 0 1 2 1 02
DIP		Blank
DIP (Wide Body)		W
SOP/SOIC		SG
QFP		LG
TSOP (Type I, Reve	ersed)	XG
TSOP (Type II)		TG
TSOP (Reversed)		RG
SOJ		DJ
SOJ (Reversed)		DR

EXPANDED COMPONENT NUMBERING SYSTEM (continued)

GG - ACCESS TIME 5ns or 50ns -6 6ns or 60ns -7 7ns or 70ns -8 8ns or 80ns -10 10ns or 100ns -12 12ns or 120ns -15 15ns or 150ns -17 17ns -20 20ns -25 25ns -35 35ns

ZZ ZZ - PROCESSING CODES

(Multiple processing codes are separated by a space and are listed in hierarchical order.)

 -45
 45 ns

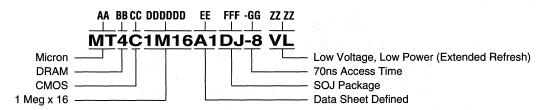
 -53
 53 ns

 -55
 55 ns

Fxamnle

A DRAM supporting low power, extended refresh (L); low voltage (V) and the industrial temperature range (IT) would be indicated as V L IT.

Interim	 		1
Low Voltage	 	 	V


DRAMs

Low Power (Extended Refresh)Low Power (Self Refresh/Extended Refresh)	
SRAMs	
Low Volt Data Retention	L
Low Power	P
Low Power, Low Volt Data Retention	LP
EPI Wafer	
Operating Temperature Range	
0°C to +70°C	Blank
-40°C to +85°C	IT
-40°C to +125°C	AT
-55°C to +125°C	XT
Special Processing	
Engineering Sample	ES
Mechanical Sample	MS
Sample Kit*	SK
Tape-and-Reel*	TR
Tape-and-Reel* Bar Code*	BC

^{*}Used in device order codes; this code is not marked on device.

NEW COMPONENT NUMBERING SYSTEM

AA – PRODUCT LINE IDENTIFIER Micron Product	<u></u>
BB – PRODUCT FAMILY Flash (Dual Supply) DRAM SGRAM Synchronous DRAM SRAM Synchronous SRAM	4 41 48
CC – PROCESS TECHNOLOGY CMOS Low Voltage CMOS BICMOS Low Voltage BICMOS Flash CMOS Low Voltage Flash CMOS AP Flash CMOS	LC
DDDDDD – DEVICE NUMBER Depth, Width	
Example: 1M16 = 1 megabit deep by 16 bits wide = 16 memory.	megabits of total
No Letter	Bits

	Megabits
G	Gigabits
Flash	Density, Configuration
EE – DEVICE VERSIONS (The first character is an alp second character is a numer Specified by individual data	ric character only.)
FFF - PACKAGE CODES	
Plastic	
	Blank
DIP (Wide Body)	W
ZIP	Z
LCC	EJ

 SOP/SOIC
 SG

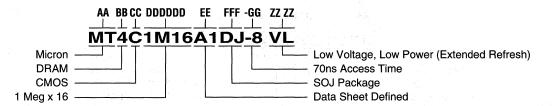
 QFP
 LG

 TSOP (Type II)
 TG

 TSOP (Reversed)
 RG

 TSOP (Longer)
 TL

 SOJ
 DJ

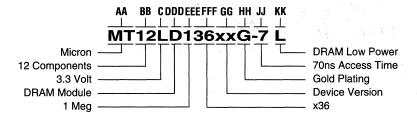

 SOJ (Wide)
 DW

 SOJ (Reversed)
 DR

 SOJ (Longer)
 DL

NEW COMPONENT NUMBERING SYSTEM (continued)

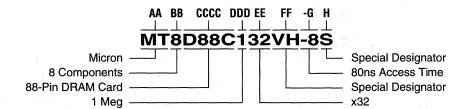
GG – ACCESS TIME	
	5ns or 50
-6	6ns or 60
· 7	7ns or 70
-8	8ns or 80
-9	9ns or 90
-10	10ns or 100
-12	12ns or 120
-15	15ns or 150
-17	17
	20
-25	25
-35	
	45
-53	53
-55	55
Z ZZ – PROCESSING COD (Multiple processing codes a listed in hierarchical order.)	ES re separated by a space and a
	extended refresh (L); low voltage re range (IT) would be indicated a


Low VoltageV

L
S
L
P
LP
V
B
A T
E
Blank
DIATIK IT
AT
XT
ES
MS
SK
TR
TR BC

^{*} Used in device order codes; this code is not marked on device.

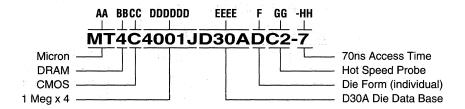
MODULE NUMBERING SYSTEM


AA – PRODUCT LINE IDENTIFIER Micron Product	MT
BB - NUMBER OF MEMORY COMPONENTS	
C – PROCESS TECHNOLOGY LOW VOLTAGE (3.3V)	L
DDD - RAM FAMILY DRAM	DT S ST SY
EEE – DEPTH	
FFF – WIDTH	
GG – DEVICE VERSIONS Specified by individual data sheet (Synchronous SRAM	l only)
HH – PACKAGE CODE Gold Plated SIMM/DIMM ZIP SIP SIMM/DIMM Small Outline DIMM Small Outline Gold DIMM Double-Sided SIMM (1 or 4 Meg x 36 Only) Double-Sided SIMM (Gold 1 or 4 Meg x 36 Only)	Z M H HG DM

JJ - ACCESS TIME	
-10	10ns
-12	12ns
-15	15ns
	17ns
	20ns
	25ns
	35ns
	60ns
	80ns
V	
KK - MODULE SPECIAL DE	ESIGNATOR
KK – MODULE SPECIAL DE SRAM	ESIGNATOR
SRAM	
SRAM 2V data retention	L
SRAM 2V data retention Low Power	L
SRAM 2V data retentionLow PowerLow Power, 2V data retention	L P ionLP
SRAM 2V data retentionLow PowerLow Power Low Power, 2V data retention DRAM	L P
SRAM 2V data retention Low Power Low Power, 2V data retenti DRAM Low Power (Extended Refr	L P
SRAM 2V data retention Low Power Low Power, 2V data retenti DRAM Low Power (Extended Refr	L Pion LP esh) L
SRAM 2V data retention Low Power Low Power, 2V data retenti DRAM Low Power (Extended Refr ECC Extended Data Out	L P ion LP esh) L
SRAM 2V data retention Low Power Low Power, 2V data retenti DRAM Low Power (Extended Refr ECC Extended Data Out Self Refresh	L Pion LP esh) L

AA - Product Line Identifier

DRAM CARD NUMBERING SYSTEM



Micron ProductMT
BB – NUMBER OF MEMORY COMPONENTS
CCCC – DRAM CARD DESIGNATOR AND PIN COUNT 88-Pin DRAM Card D880
DDD – DEPTH
EE – WIDTH
FF – SPECIAL DESIGNATOR 3.3 Volts

,	 		
		1000	
	 	······································	•••••

DIE PRODUCT NUMBERING SYSTEM

	THE ALCOHOLD STREET AND ADMINISTRA
AA – PRODUCT LINE IDENTIFIER Component Product	МТ
BB – PRODUCT FAMILY SRAM DRAM Synchronous SRAM	4
CC – PROCESS TECHNOLOGY CMOS Low Voltage CMOS	
DDDDDD – DEVICE NUMBER When no alpha character appears as pa section is defined as: DRAM	Width, Density Total Bits, Width
When an alpha character occurs as part section is defined as: Depth, Width	t of this section, the
Example: 1M16 = 1 megabit deep by 16 bits wide = 16 memory.	megabits of total
No Letter	Kilobits Megabits

F - FORM Wafer Form (6" Wafer)W **GG - TESTING LEVELS HH - ACCESS TIME** (Applicable for C2 and C3 only) -5 5ns or 50ns -6 6ns or 60ns -7 7ns or 70ns -8 8ns or 80ns -9 9ns or 90ns -10 10ns or 100ns -12 12ns or 120ns -15 15ns or 150ns -17 17ns

-45 45ns

-50 (SRAM only) 50ns

-SS (C2 only) speed sorted

EEEE - DIE DATA BASE REVISION

EDO DRAMs			PAGE
MT4C4007J	1 Meg x 4	5V	1-1
MT4C4007J S		5V, S	
MT4LC4007J	0	3.3V	1-15
MT4LC4007J S		3.3V, S	1-15
MT4LC4M4E8		3.3V, 2KR	
MT4LC4M4E8 S		3.3V, 2KR, S	
MT4LC16M4G3		3.3V, 8KR	
MT4LC16M4H9		3.3V, 4KR	
MT4LC2M8E7		3.3V, 2KR	
MT4LC2M8E7 S		3.3V, 2KR, S	
MT4LC8M8P4	O	3.3V, 8KR	
MT4LC8M8C2		3.3V, 4KR	
MT4C16270	0	5V, DC	
MT4LC16270		3.3V, DC	
MT4LC1M16E5		3.3V, DC, 1KR	
MT4LC1M16E5 S		3.3V, DC, 1KR, S	
DC		1KR	
2KR		4KR	
8KR		S	
5V	5 volt Vcc	3.3V	3.3 volt Vcc
FPM DRAMs			PAGE
MT4C1004J		5V	2-1
MT4C1004J S		5V, S	2-1
MT4C4001J		5V	
MT4C4001J S		5V, S	
MT4LC4001J	Ü	3.3V	
MT4LC4001J S	9	3.3V, S	
MT4C4004J	0	5V, QC	
MT4C4M4B1		5V, 2KR	
MT4LC4M4B1		3.3V, 2KR	
MT4LC4M4B1 S	· ·	3.3V, 2KR, S	and the second s
MT4LC16M4A7	O	3.3V, 8KR	
MT4LC16M4T8	9	3.3V, 4KR	
MT4LC2M8B1	0	3.3V, 2KR	
MT4LC2M8B1 S	J	3.3V, 2KR, S	
MT4LC8M8E1		3.3V, 8KR	
MT4LC8M8B6	9	3.3V, 4KR	
MT4C16257		5V, DC	
MT4LC16257		3.3V, DC	
MT4LC16257 S		3.3V, DC, S	
MT4C1M16C3		5V, DC, 1KR	
MT4LC1M16C3		3.3V, DC, 1KR	
MT4LC1M16C3 S		3.3V, DC, 1KR, S	
DC	0	QC	
1KR	1,024 Refresh	2KR	2,048 Refresh
4KR		8KR	
3.3V		ary English (San Garage)	5 voit vcc

MT41LC256K32D4	256K x 32	3.3V	3-1
MT41LC256K32D4 S	256K x 32	3.3V, S	
S	SELF REFRESH	3.3V	
DRAM SIMMs			
	89 1.34 1.55 1.56 1.56 1.56 1.56 1.56 1.56 1.56		11101
MT2D18		5V	
MT2D48		5V	
MT8D48		5V	
MT3D49		5V	
MT9D49		5V	
MT2D25632		5V	
MT4D51232		5V	
MT8D132		5V	
MT8D132 S		5V, S	
MT8LD(T)132		3.3V	4-77
MT8LD(T)132 S		3.3V, S	
MT8LD(T)132 X		3.3V, EDO	4-77
MT8LD(T)132 XS		3.3V, EDO, S	4-77
MT16D232		5V	
MT16D232 S	2 Meg x 32	5V, S	4-63
MT16LD(T)232	2 Meg x 32	3.3V	4-77
MT16LD(T)232 S	2 Meg x 32	3.3V, S	4-77
MT16LD(T)232 X	2 Meg x 32	3.3V, EDO	4-77
MT16LD(T)232 XS	2 Meg x 32	3.3V, EDO, S	4-77
MT4LD232	2 Meg x 32	3.3V	4-99
MT4LD232 S	2 Meg x 32	3.3V, S	4-99
MT4LD232 X	2 Meg x 32	3.3V, EDO	4-99
MT4LD232 XS	2 Meg x 32	3.3V, EDO, S	4-99
MT8D432	4 Meg x 32	5V	4-119
MT8D432 S	4 Meg x 32	5V, S	
MT8LD432	4 Meg x 32	3.3V	
MT8LD432 S	4 Meg x 32	3.3V, S	4-133
MT8LD432 X	4 Meg x 32	3.3V, EDO	4-133
MT8LD432 XS	4 Meg x 32	3.3V, EDO, S	4-133
MT16D832		5V	4-119
MT16D832 S		5V, S	
MT16LD832		3.3V	
MT16LD832 S		3.3V, S	
MT16LD832 X		3.3V, EDO	
MT16LD832 XS		3.3V, EDO, S	
MT9D136		5V	
MT18D236		5V	
MT12D436		5V	
MT12D436 S		5V, S	
MT24D836		5V	
MT24D836 S		5V, S	
S	U, ,	EDO	
S5V		3.3V	
v •	5 VOIL VCC	0.0 f	3.3 voit VCC

DRAM DIMMs			PAGE
MT2LD(T)132H	1 Meg x 32	3.3V	5-1
	1 Meg x 32	3.3V, S	5-1
MT4LD(T)232H	2 Meg x 32	3.3V	5-1
	2 Meg x 32	3.3V, S	5-1
	4 Meg x 32	3.3V	5-15
	4 Meg x 32	3.3V, S	5-15
MT16D(T)164	1 Meg x 64	5V	5-29
	1 Meg x 64	5V, S	5-29
	1 Meg x 64	3.3V	5-47
	1 Meg x 64	3.3V, S	5-47
	2 Meg x 64	3.3V	5-69
	2 Meg x 64	3.3V, S	
	2 Meg x 64	3.3V, EDO	5-69
	2 Meg x 64	3.3V, EDO, S	
	4 Meg x 64	5V	
	4 Meg x 64	3.3V	
	4 Meg x 64	3.3V, S	
	4 Meg x 64	3.3V, EDO	
	4 Meg x 64	3.3V, EDO, S	
	1 Meg x 72	5V	
	1 Meg x 72	5V, S	
	1 Meg x 72	3.3V	
	1 Meg x 72	3.3V, S	
	2 Meg x 72	3.3V	
	2 Meg x 72	3.3V, S	
	2 Meg x 72	3.3V, EDO	
	2 Meg x 72	3.3V, EDO, S	
	4 Meg x 72	5V	
	4 Meg x 72	3.3V	5-109
	4 Meg x 72	3.3V, S	
	4 Meg x 72	3.3V, EDO	
	4 Meg x 72	3.3V, EDO, S	
S	SELF REFRESH	EDO	Extended Data-Out
	5 volt Vcc	3.3V	3.3 volt Vcc
DRAM CARDS			
MT8D88C132(S)	1 Meg x 32	5V	6-1
	1 Meg x 32	5V	
MT8D88C132V(S)	1 Meg x 32	3.3V	
	1 Meg x 32	3.3V	
	2 Meg x 32	5V	
MT16D88C232H(S)		5V	
MT16D88C232V(S)		3.3V	
	2 Meg x 32	3.3V	
	4 Meg x 32	3.3V	
MT8D88C432VH(S)		3.3V	
MT16D88C832V(S)		3.3V	
	8 Meg x 32	3.3V	
5V	angle section of the contract	3.3V	
57	5 volt Vcc	3.3 V	3.3 volt Vcc

TECHNICA	L NOTES	PAGE
TN-00-01	Moisture Absorption in Plastic Packages	
TN-00-02	Tape-and-Reel Procedures	7-3
TN-00-03	Using Gel-Pak® Packaging With Micron Die	7-9
TN-04-01	DRAM Power-Up and Refresh Constraints	7-11
TN-04-06	OE-Controlled/LATE WRITE Cycles (DRAM)	
TN-04-12	LPDRAM Extended Refresh Current vs. RAS Active Time (4 Meg)	7-15
TN-04-15	DRAM Considerations for PC Memory Design	
TN-04-16	16 Meg DRAM—2K vs. 4K Refresh Comparison	7-23
TN-04-19	Low-Power DRAMs vs. Slow SRAMs for Main Memory	
TN-04-20	SELF REFRESH DRAMs	7-27
TN-04-21	Reduce DRAM Cycle Times with Extended Data-Out	
TN-04-22	256K x 16 DRAM Typical Operating Curves	7-37
TN-04-23	4 Meg DRAM Typical Operating Curves	7-39
TN-04-24	4 Meg DRAM—Access Time vs. Capacitance	
TN-04-26	256K x 16—Access Time vs. Capacitance	
TN-04-28	DRAM Soft Error Rate Calculations	7-49
TN-04-29	Maximizing EDO Advantages at the System Level	
TN-04-30	Various Methods of DRAM Refresh	7-65
TN-04-31	PCB Layout for 4 Meg x 4 300 Mil or 400 Mil SOJ	
TN-04-32	Reduce DRAM Memory Cost with Cache	
TN-41-01	Decrement Bursting with the SGRAM	
TN-88-01	88-Pin DRAM Cards	<i>7-7</i> 9
	w ChartINFORMATION	
Package Dr	INFORMATION awings	9-1
SALES AN	D SERVICE INFORMATION	PAGE
CSN-01	Standard Shipping Bar Code Labels	
CSN-02	Individual Box and Container Bar Code Labels	
CSN-03	Surface-Mount Product Labeling	
CSN-04	Box and Tape-and-Reel Quantity and Weight Chart	
CSN-05	Environmental Programs	
CSN-06	Electronic Data Interchange	
CSN-07	Return Material Authorization (RMA) Procedures	
CSN-08	ISO 9001 Certification	
CSN-09	Micron DataFax	
CSN-10	Customer Comment Line	
CSN-11	Part Marking	
CSN-12	Product Change Notification (PCN) System	
	mbering System	
	formation and Examples	
	rican Sales Representatives and Distributors	
	al Sales Representatives and Distributors	
II.CIIIdilOII	Tours representatives data production	
MICRON I	PATAFAX INDEX	PAGE
Document l	ndex for Micron DataFax	11-1

NUMERICAL INDEX			PAG
Part #, MT:			
12D436	DRAM SIMM		4-167
12D436 S			
16D(T)164			
16D(T)164 S			
16D(T)464			
16D232			
16D232 S			
16D832	DRAM SIMM		4-119
16D832 S			
16D88C232(S)			# 1 m 2 M 2 M 2 M 3 M 3 M 3 M 3 M 3 M 3 M 3 M
16D88C232H(S)			
16D88C232V(S)			
16D88C232VH(S)			
16D88C832V(S)			
16D88C832VH(S)			
16LD(T)164			
16LD(T)164 S			
16LD(T)232			-,
16LD(T)232 S			
16LD(T)232 X			
16LD(T)232 XS			
16LD(T)464			
16LD(T)464 S			
16LD(T)464 X			
16LD(T)464 XS			
16LD832			
16LD832 S			
16LD832 X	DRAM SIMM		4-133
16LD832 XS			4-133
18D(T)172			
18D(T)172 S			5-91
18D(T)472	DRAM DIMM		
18D236	DRAM SIMM		4-155
18LD(T)172	DRAM DIMM		5-109
18LD(T)172 S	DRAM DIMM		5-109
18LD(T)472	DRAM DIMM		5-109
18LD(T)472 S	DRAM DIMM		5-109
18LD(T)472 X			5-109
18LD(T)472 XS	DRAM DIMM	<u> </u>	5-109
24D836	DRAM SIMM		4-167
24D836 S	DRAM SIMM		4-167
2D18	DRAM SIMM		4-1
2D25632	DRAM SIMM		4-51
2D48	DRAM SIMM	· · · · · · · · · · · · · · · · · · ·	4-11
2LD(T)132H	DRAM DIMM		5-1
2LD(T)132H S	DRAM DIMM		5-1
3D49	DRAM SIMM		4-31
41LC256K32D4	SGRAM		3-1
41LC256K32D4 S	SGRAM	region — Agricon	3-1
4C1004J	FPM DRAM		2-1

NUMERICAL INDEX (continued)			PA.	\G
Part #, MT:				
4C1004J S	FPM DRAM	66 <u></u>	2-1	1
4C16257	FPM DRAM		2-1	117
4C16270	EDO DRAM	x	1-9	91
4C1M16C3				147
4C4001J			2-1	15
4C4001J S			2-1	15
4C4004J			2-4	41
4C4007J			1-1	1
4C4007I S			1-1	1
4C4M4B1		a di Kasa	2-5	53
4D51232		447 <u>- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - </u>	4-5	51
4LC16257			2-1	
4LC16257 S				
4LC16270			1-1	107
4LC16M4A7				79
4LC16M4G3			1-4	
4LC16M4H9			1-4	
4LC16M4T8		eri i kanalan .	2-7	79
4LC1M16C3				163
4LC1M16C3 S			2-1	
4LC1M16E5			1-1	
4LC1M16E5 S			1-1	
4LC2M8B1			2-9	
4LC2M8B1 S			2-9	
4LC2M8E7			1-6	
4LC2M8E7 S				
4LC4001J			2-2	
4LC4001J S			2-2	
4LC4007]			1-1	
4LC4007] S			1-1	
4LC4M4B1			2-6	
4LC4M4B1 S			2-6	
4LC4M4E8				
4LC4M4E8 S				-
4LC8M8B6			2-1	
4LC8M8C2			1-7	
4LC8M8E1				105
4LC8M8P4			1-7	77
4LD(T)232H	DRAM DIMM		5-1	
4LD(T)232H S			5-1	
4LD232			4-9	-
4LD232 S			4-9	.99
4LD232 X			4-0	
4LD232 XS			4-9	-
8D132			4-6	
8D132 S			4-6	
8D432				119
8D432 S			4-1	
8D48			4-2	
8D88C132(S)			6-1	

NUMERICAL INDEX (continued)			PAGE
Part #, MT:		tang panganan dan kacamatan dan ka	
8D88C132H(S)	DRAM CARD		6-17
8D88C132V(S)	DRAM CARD		6-33
8D88C132VH(S)	DRAM CARD	 	6-49
8D88C432V(S)	DRAM CARD		6-33
8D88C432VH(S)	DRAM CARD		6-49
8LD(T)132	DRAM SIMM		4-77
8LD(T)132 S	DRAM SIMM		4-77
8LD(T)132 X			4-77
8LD(T)132 XS	DRAM SIMM		4-77
8LD(T)264	DRAM DIMM		5-69
8LD(T)264 S	DRAM DIMM		5-69
8LD(T)264 X	DRAM DIMM	 	5-69
8LD(T)264 XS	DRAM DIMM		5-69
8LD(T)432H	DRAM DIMM		5-15
8LD(T)432H S	DRAM DIMM		5-15
8LD432	DRAM SIMM		4-107
8LD432 S	DRAM SIMM	 	4-107
8LD432 X	DRAM SIMM		4-107
8LD432 XS	DRAM SIMM		4-107
9D136	DRAM SIMM		4-155
9D49	DRAM SIMM		4-41
9LD(T)272			5-131
9LD(T)272 S	DRAM DIMM		5-131
9LD(T)272 X	DRAM DIMM		5-131
9LD(T)272 XS			5-131

EDO DRAM PRODUCT SELECTION GUIDE

Memory	Optional	Part	Access	Typical Powe	er Dissipation	Package/	No. of Pins	
Configuration	Access Cycle	ccess Cycle Number Time (ns) Standby Ac	Active	SOJ	TSOP	Page		
3.3V EDO DRA	Ms		2.2.4.					Salat Ma
1 Meg x 4	EDO	MT4LC4007J	60, 70, 80	1mW	115mW	20/26	1872 0	1-15
1 Meg x 4	EDO, S	MT4LC4007J S	60, 70, 80	0.25mW	115mW	20/26	- 30	1-15
4 Meg x 4	EDO, 2KR	MT4LC4M4E8	60, 70	1mW	150mW	24/26	24/26	1-31
4 Meg x 4	EDO, 2KR, S	MT4LC4M4E8 S	60, 70	0.4mW	150mW	24/26	24/26	1-31
16 Meg x 4	EDO, 8KR	MT4LC16M4G3	50, 60, 70	1mW	165mW	34	34	1-47
16 Meg x 4	EDO, 4KR	MT4LC16M4H9	50, 60, 70	1mW	165mW	34	34	1-47
2 Meg x 8	EDO, 2KR	MT4LC2M8E7	60, 70	1mW	150mW	28	28	1-63
2 Meg x 8	EDO, 2KR, S	MT4LC2M8E7 S	60, 70	0.3mW	150mW	28	28	1-63
8 Meg x 8	EDO, 8KR	MT4LC8M8P4	50, 60, 70	1mW	170mW	34	34	1-77
8 Meg x 8	EDO, 4KR	MT4LC8M8C2	50, 60, 70	1mW	170mW	34	34	1-77
256K x 16	EDO, DC	MT4LC16270	60, 70, 80	1mW	85mW	40	40/44	1-107
1 Meg x 16	EDO, DC, 1KR	MT4LC1M16E5	60, 70	0.9mW	180mW	- :	44/50	1-123
1 Meg x 16	EDO, DC, 1KR, S	MT4LC1M16E5 S	60, 70	0.3mW	180mW	-	44/50	1-123
5V EDO DRAM:	3						3	
1 Meg x 4	EDO	MT4C4007J	60, 70	3mW	175mW	20/26	- 1	1-1
1 Meg x 4	EDO, S	MT4C4007J S	60, 70	0.8mW	175mW	20/26		1-1
256K x 16	EDO, DC	MT4C16270	60, 70, 80	3mW	300mW	40	40/44	1-91

EDO = Extended Data-Out, DC = Dual CAS, 1KR = 1,024 Refresh, 2KR = 2,048 Refresh, 4KR = 4,096 Refresh, 8KR = 8,192 Refresh, S = SELF REFRESH

FPM DRAM PRODUCT SELECTION GUIDE

Memory	Optional	Part	Access	Typical Pow	er Dissipation	Package/	No. of Pins	100
Configuration	Access Cycle	Number	Time (ns)	Standby	Active	SOJ	TSOP	Page
3.3V FPM DRA	Ms							
1 Meg x 4	FPM	MT4LC4001J	60, 70, 80	1mW	100mW	20/26	20/26	2-29
1 Meg x 4	FPM, S	MT4LC4001J S	60, 70, 80	0.3mW	100mW	20/26	20/26	2-29
4 Meg x 4	FPM, 2KR	MT4LC4M4B1	60, 70	1mW	180mW	24/26	24/26	2-65
4 Meg x 4	FPM, 2KR, S	MT4LC4M4B1 S	60, 70	0.3mW	180mW	24/26	24/26	2-65
16 Meg x 4	FPM, 8KR	MT4LC16M4A7	50, 60, 70	1mW	165mW	34	34	2-79
16 Meg x 4	FPM, 4KR	MT4LC16M4T8	50, 60, 70	1mW	225mW	34	34	2-79
2 Meg x 8	FPM, 2KR	MT4LC2M8B1	60, 70	1mW	200mW	28	28	2-91
2 Meg x 8	FPM, 2KR, S	MT4LC2M8B1 S	60, 70	0.3mW	200mW	28	28	2-91
8 Meg x 8	FPM, 8KR	MT4LC8M8E1	50, 60, 70	1mW	170mW	34	34	2-105
8 Meg x 8	FPM, 4KR	MT4LC8M8B6	50, 60, 70	1mW	230mW	34	34	2-105
256K x 16	FPM, DC	MT4LC16257	60, 70, 80	3mW	150mW	40	40/44	2-131
256K x 16	FPM, DC, S	MT4LC16257 S	60, 70, 80	0.3mW	150mW	40	40/44	2-131
1 Meg x 16	FPM, DC, 1KR	MT4LC1M16C3	60, 70	3mW	250mW	_	44/50	2-163
1 Meg x 16	FPM, DC, 1KR, S	MT4LC1M16C3 S	60, 70	0.3mW	250mW	_	44/50	2-163
5V FPM DRAM	S		A Section				en de la companya de	
4 Meg x 1	FPM	MT4C1004J	60, 70	3mW	225mW	20/26	20/26	2-1
4 Meg x 1	FPM, S	MT4C1004J S	60, 70	0.8mW	225mW	20/26	20/26	2-1
1 Meg x 4	FPM	MT4C4001J	60, 70	3mW	225mW	20/26	20/26	2-15
1 Meg x 4	FPM, S	MT4C4001J S	60, 70	0.8mW	225mW	20/26	20/26	2-15
1 Meg x 4	FPM, QC	MT4C4004J	60, 70	3mW	225mW	24/26	-	2-41
4 Meg x 4	FPM, 2KR	MT4C4M4B1	60, 70	3mW	250mW	24/26	24/26	2-53
256K x 16	FPM, DC	MT4C16257	60, 70, 80	3mW	375mW	40	40/44	2-117
1 Meg x 16	FPM, DC, 1KR	MT4C1M16C3	60, 70	1mW	350mW	42		2-147

FPM = FAST PAGE MODE, DC = Dual CAS, QC = Quad CAS, 1KR = 1,024 Refresh, 2KR = 2,048 Refresh, 4KR = 4,096 Refresh, 8KR = 8,192 Refresh, S = SELF REFRESH

SGRAM PRODUCT SELECTION GUIDE

Memory		Part		Power Dis	ssipation	No. of Pins		
Configuration		Number	Grade (ns)	Standby	Active	TQFP	Page	
256K x 32	3.3V	MT41LC256K32D4	10, 12, 15	TBD	TBD	100	3-1	
256K x 32	3.3V	MT41LC256K32D4 S	10, 12, 15	TBD	TBD	100	3-1	

S = SELF REFRESH

DRAM SIMM PRODUCT SELECTION GUIDE

Memory	11.7	Part	Optional	Access	Typical Pow	er Dissipation	No. of Pins	1,231,791,7
Configuration		Number	Access Cycle	Time (ns)	Standby Active		SIMM	Page
3.3V SIMMs						•		
1 Meg x 32	3.3V	MT8LD(T)132		60, 70, 80	9.6mW	800mW	72	4-77
1 Meg x 32	3.3V	MT8LD(T)132 S	S	60, 70, 80	2.4mW	800mW	72	4-77
1 Meg x 32	3.3V	MT8LD(T)132 X	EDO	60, 70, 80	8mW	920mW	72	4-77
1 Meg x 32	3.3V	MT8LD(T)132 XS	EDO, S	60, 70, 80	2mW	920mW	72	4-77
2 Meg x 32	3.3V	MT16LD(T)232		60, 70, 80	19.2mW	810mW	72	4-77
2 Meg x 32	3.3V	MT16LD(T)232 S	S	60, 70, 80	4.8mW	802mW	72	4-77
2 Meg x 32	3.3V	MT16LD(T)232 X	EDO	60, 70, 80	16mW	928mW	72	4-77
2 Meg x 32	3.3V	MT16LD(T)232 XS	EDO, S	60, 70, 80	4mW	922mW	72	4-77
2 Meg x 32	3.3V	MT4LD232	Hay sa	60, 70	4mW	800mW	72	4-99
2 Meg x 32	3.3V	MT4LD232 S	S	60, 70	1.2mW	800mW	72	4-99
2 Meg x 32	3.3V	MT4LD232 X	EDO	60, 70	4mW	600mW	72	4-99
2 Meg x 32	3.3V	MT4LD232 XS	EDO, S	60, 70	1.2mW	600mW	72	4-99
4 Meg x 32	3.3V	MT8LD432		60, 70	8mW	1,440mW	72	4-133
4 Meg x 32	3.3V	MT8LD432 S	S	60, 70	2.4mW	1,440mW	72	4-133
4 Meg x 32	3.3V	MT8LD432 X	EDO	60, 70	8mW	1,200mW	72	4-133
4 Meg x 32	3.3V	MT8LD432 XS	EDO, S	60, 70	3.2mW	1,200mW	72	4-133
8 Meg x 32	3.3V	MT16LD832	8 %	60, 70	16mW	1,408mW	72	4-133
8 Meg x 32	3.3V	MT16LD832 S	S	60, 70	4.8mW	1,442mW	72	4-133
8 Meg x 32	3.3V	MT16LD832 X	EDO	60, 70	16mW	1,208mW	72	4-133
8 Meg x 32	3.3V	MT16LD832 XS	EDO, S	60, 70	6.4mW	1,203mW	72	4-133
5V SIMMs	-		taga a fala a a	The state of the state of				
1 Meg x 8	5V	MT2D18	V/23, 03, 2	60, 70	6mW	450mW	30	4-1
4 Meg x 8	5V	MT2D48	433.5	60, 70	6mW	500mW	30	4-11
4 Meg x 8	5V	MT8D48		60, 70	24mW	1,800mW	30	4-21
4 Meg x 9	5V	MT3D49	17.5	60, 70	9mW	725mW	30	4-31
4 Meg x 9	5V	MT9D49		60, 70	27mW	2,025mW	30	4-41
256K x 32	5V	MT2D25632		60, 70	6mW	750mW	72	4-51
512K x 32	5V	MT4D51232		60, 70	12mW	756mW	72	4-51
1 Meg x 32	5V	MT8D132		60, 70	24mW	1,800mW	72	4-63
1 Meg x 32	5V	MT8D132 S	S	60, 70	24mW	1,800mW	72	4-63
2 Meg x 32	5V	MT16D232	1.5	60, 70	48mW	1,824mW	72	4-63
2 Meg x 32	5V	MT16D232 S	S	60, 70	48mW	1,824mW	72	4-63
4 Meg x 32	5V	MT8D432		60, 70	24mW	2,000mW	72	4-119
4 Meg x 32	5V	MT8D432 S	S	60, 70	2.4mW	1,440mW	72	4-119
8 Meg x 32	5V	MT16D832		60, 70	48mW	2,024mW	72	4-119
8 Meg x 32	5V	MT16D832 S	S	60, 70	4.8mW	1,443mW	72	4-119
1 Meg x 36	5V	MT9D136		60, 70	27mW	2,025mW	72	4-155
2 Meg x 36	5V	MT18D236		60, 70	54mW	2,052mW	72	4-155
4 Meg x 36	5V	MT12D436		60, 70	36mW	2,500mW	72	4-167
4 Meg x 36	5V	MT12D436 S	S	60, 70	3.6mW	2,340mW	72	4-167
8 Meg x 36	5V	MT24D836		60, 70	72mW	2,536mW	72	4-167
8 Meg x 36	5V	MT24D836 S	S	60, 70	7.2mW	2,348mW	72	4-167

S = SELF REFRESH; EDO = Extended Data-Out

DRAM DIMM PRODUCT SELECTION GUIDE

Memory		Part	Optional	Access	Typical Pow	er Dissipation	No. of Pins	
Configuration	941 1 1 2	Number	Access Cycle	Time (ns)	Standby	Active	DIMM	Page
3.3V DIMMs		1						
1 Meg x 32	3.3V	MT2LD(T)132H		60, 70	6mW	500mW	72	5-1
1 Meg x 32	3.3V	MT2LD(T)132H S	S	60, 70	.6mW	500mW	72	5-1
2 Meg x 32	3.3V	MT4LD(T)232H		60, 70	12mW	506mW	72	5-1
2 Meg x 32	3.3V	MT4LD(T)232H S	S	60, 70	1.2mW	501mW	72	5-1
4 Meg x 32	3.3V	MT8LD(T)432H	A Law Tolk Control	60, 70	8mW	1,440mW	72	5-15
4 Meg x 32	3.3V	MT8LD(T)432H S	S	60, 70	2.4mW	1,440mW	72	5-15
1 Meg x 64	3.3V	MT16LD(T)164		60, 70	19.2mW	1,600mW	168	5-47
1 Meg x 64	3.3V	MT16LD(T)164 S	S	60, 70	4.8mW	1,600mW	168	5-47
2 Meg x 64	3.3V	MT8LD(T)264		60, 70	8mW	1,600mW	168	5-69
2 Meg x 64	3.3V	MT8LD(T)264 S	S	60, 70	2.4mW	1,600mW	168	5-69
2 Meg x 64	3.3V	MT8LD(T)264 X	EDO	60, 70	8mW	1,200mW	168	5-69
2 Meg x 64	3.3V	MT8LD(T)264 XS	EDO, S	60, 70	2.4mW	1,200mW	168	5-69
4 Meg x 64	3.3V	MT16LD(T)464		60, 70	16mW	2,880mW	168	5-47
4 Meg x 64	3.3V	MT16LD(T)464 S	S	60, 70	4.8mW	2,880mW	168	5-47
4 Meg x 64	3.3V	MT16LD(T)464 X	EDO	60, 70	16mW	2,400mW	168	5-47
4 Meg x 64	3.3V	MT16LD(T)464 XS	EDO, S	60, 70	6.4mW	2,400mW	168	5-47
1 Meg x 72	3.3V	MT18LD(T)172		60, 70	21.6mW	1,800mW	168	5-109
1 Meg x 72	3.3V	MT18LD(T)172 S	S	60, 70	5.4mW	1,800mW	168	5-109
2 Meg x 72	3.3V	MT9LD(T)272		60, 70	9mW	1,800mW	168	5-131
2 Meg x 72	3.3V	MT9LD(T)272 S	S	60, 70	2.7mW	1,800mW	168	5-131
2 Meg x 72	3.3V	MT9LD(T)272 X	EDO	60, 70	9mW	1,350mW	168	5-131
2 Meg x 72	3.3V	MT9LD(T)272 XS	EDO, S	60, 70	2.7mW	1,350mW	168	5-131
4 Meg x 72	3.3V	MT18LD(T)472	. Take Tv	60, 70	18mW	3,240mW	168	5-109
4 Meg x 72	3.3V	MT18LD(T)472 S	S	60, 70	5.4mW	3,240mW	168	5-109
4 Meg x 72	3.3V	MT18LD(T)472 X	EDO	60, 70	18mW	2,700mW	168	5-109
4 Meg x 72	3.3V	MT18LD(T)472 XS	EDO, S	60, 70	5.4mW	2,700mW	168	5-109
5V DIMMs								
1 Meg x 64	5V	MT16D(T)164		60, 70	48mW	3,600mW	168	5-29
1 Meg x 64	5V	MT16D(T)164 S	S	60, 70	12.8mW	3,600mW	168	5-29
4 Meg x 64	5V	MT16D(T)464		60, 70	48mW	4,000mW	168	5-29
1 Meg x 72	5V	MT18D(T)172		60, 70	54mW	4,050mW	168	5-91
1 Meg x 72	5V	MT18D(T)172 S	S	60, 70	14.4mW	4,050mW	168	5-91
4 Meg x 72	5V	MT18D(T)472		60, 70	54mW	4,500mW	168	5-91

EDO = Extended Data-Out; S = SELF REFRESH

DRAM CARD PRODUCT SELECTION GUIDE

Memory	The State of the S		Part	Access	Number of Pins	ar auti
Configuration			Number	Time (ns)	Card	Page
3.3V DRAM Cards	The state of the s			e e e e e e e e e e e e e e e e e e e		
1 Meg x 32	3.3V	4 Megabytes	MT8D88C132V(S)	60, 70, 80	88	6-33
1 Meg x 32	3.3V	4 Megabytes	MT8D88C132VH(S)	60, 70, 80	88	6-49
2 Meg x 32	3.3V	8 Megabytes	MT16D88C232V(S)	60, 70, 80	88	6-33
2 Meg x 32	3.3V	8 Megabytes	MT16D88C232VH(S)	60, 70, 80	88	6-49
4 Meg x 32	3.3V	16 Megabytes	MT8D88C432V(S)	60, 70, 80	88	6-33
4 Meg x 32	3.3V	16 Megabytes	MT8D88C432VH(S)	60, 70, 80	88	6-49
8 Meg x 32	3.3V	32 Megabytes	MT16D88C832V(S)	60, 70, 80	88	6-33
8 Meg x 32	3.3V	32 Megabytes	MT16D88C832VH(S)	60, 70, 80	88	6-49
5V DRAM Cards						
1 Meg x 32	5V	4 Megabytes	MT8D88C132(S)	60, 70	88	6-1
1 Meg x 32	5V	4 Megabytes	MT8D88C132H(S)	60, 70	88	6-17
2 Meg x 32	5V	8 Megabytes	MT16D88C232(S)	60, 70	88	6-1
2 Meg x 32	5V	8 Megabytes	MT16D88C232H(S)	60, 70	88	6-17

TECHNICAL NOTE SELECTION GUIDE

Technical Note	Title	Page
TN-00-01	Moisture Absorption in Plastic Packages	7-1
TN-00-02	Tape-and-Reel Procedures	7-3
TN-00-03	Using Gel-Pak® Packaging With Micron Die	7-9
TN-04-01	DRAM Power-Up and Refresh Constraints	7-11
TN-04-06	OE-Controlled/LATE WRITE Cycles (DRAM)	7-13
TN-04-12	LPDRAM Extended Refresh Current vs. RAS Active Time (4 Meg)	7-15
TN-04-15	DRAM Considerations for PC Memory Design	7-17
TN-04-16	16 Meg DRAM—2K vs. 4K Refresh Comparison	7-23
TN-04-19	Low-Power DRAMs vs. Slow SRAMs for Main Memory	7-25
TN-04-20	SELF REFRESH DRAMs	7-27
TN-04-21	Reduce DRAM Cycle Times with Extended Data-Out	7-29
TN-04-22	256K x 16 DRAM Typical Operating Curves	7-37
TN-04-23	4 Meg DRAM Typical Operating Curves	7-39
TN-04-24	4 Meg DRAM—Access Time vs. Capacitance	7-45
TN-04-26	256K x 16—Access Time vs. Capacitance	7-47
TN-04-28	DRAM Soft Error Rate Calculations	7-49
TN-04-29	Maximizing EDO Advantages at the System Level	7-53
TN-04-30	Various Methods of DRAM Refresh	7-65
TN-04-31	PCB Layout for 4 Meg x 4 300 Mil or 400 Mil SOJ	7-69
TN-04-32	Reduce DRAM Memory Cost with Cache	7-71
TN-41-01	Decrement Bursting with the SGRAM	7-75
TN-88-01	88-Pin DRAM Cards	7-79

For the latest technical information on Micron products, read our quarterly technical newsletter *Design Line*. Call 208-368-3900 to be added to our mailing list.

MICHON

EDO DRAMs	1
FPM DRAMs	2
SGRAM	3
DRAM SIMMs	4
DRAM DIMMs	5
DRAM CARDS	6
TECHNICAL NOTES	7
PRODUCT RELIABILITY	8
PACKAGE INFORMATION	9
SALES AND SERVICE INFORMATION	1.0
MICRON DATAFAX INDEX	

EDO DRAM PRODUCT SELECTION GUIDE

Memory	Optional	Part	Access	Typical Power Dissipation		Package/	No.of Pins	
Configuration	Access Cycle	Number	Time (ns)	Standby	Active	SOJ	TSOP	Page
3.3V EDO DRA	Ms							1
1 Meg x 4	EDO	MT4LC4007J	60, 70, 80	1mW	115mW	20/26		1-15
1 Meg x 4	EDO, S	MT4LC4007J S	60, 70, 80	0.25mW	115mW	20/26	-	1-15
4 Meg x 4	EDO, 2KR	MT4LC4M4E8	60, 70	1mW	150mW	24/26	24/26	1-31
4 Meg x 4	EDO, 2KR, S	MT4LC4M4E8 S	60, 70	0.4mW	150mW	24/26	24/26	1-31
16 Meg x 4	EDO, 8KR	MT4LC16M4G3	50, 60, 70	1mW	165mW	34	34	1-47
16 Meg x 4	EDO, 4KR	MT4LC16M4H9	50, 60, 70	1mW	165mW	34	34	1-47
2 Meg x 8	EDO, 2KR	MT4LC2M8E7	60, 70	1mW	150mW	28	28	1-63
2 Meg x 8	EDO, 2KR, S	MT4LC2M8E7 S	60, 70	0.3mW	150mW	28	28	1-63
8 Meg x 8	EDO, 8KR	MT4LC8M8P4	50, 60, 70	1mW	170mW	34	34	1-77
8 Meg x 8	EDO, 4KR	MT4LC8M8C2	50, 60, 70	1mW	170mW	34	34	1-77
256K x 16	EDO, DC	MT4LC16270	60, 70, 80	1mW	85mW	40	40/44	1-107
1 Meg x 16	EDO, DC, 1KR	MT4LC1M16E5	60, 70	0.9mW	180mW	-	44/50	1-123
1 Meg x 16	EDO, DC, 1KR, S	MT4LC1M16E5 S	60, 70	0.3mW	180mW	-	44/50	1-123
5V EDO DRAM	3 ¹¹ - 12 2 2 2 2 2 2 2 2 2	Para di Para d	k*1. 6.					
1 Meg x 4	EDO	MT4C4007J	60, 70	3mW	175mW	20/26	-	1-1
1 Meg x 4	EDO, S	MT4C4007J S	60, 70	0.8mW	175mW	20/26	- es	1-1
256K x 16	EDO, DC	MT4C16270	60, 70, 80	3mW	300mW	40	40/44	1-91
						•		

EDO = Extended Data-Out, DC = Dual CAS, 1KR = 1,024 Refresh, 2KR = 2,048 Refresh, 4KR = 4,096 Refresh, 8KR = 8,192 Refresh, S = SELF REFRESH

DRAM

1 MEG x 4 DRAM

5V, EDO PAGE MODE, OPTIONAL SELF REFRESH

FEATURES

- Single +5V ±10% power supply
- JEDEC-standard pinout and packages
- High-performance CMOS silicon-gate process
- · All inputs, outputs and clocks are TTL-compatible
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN; optional Extended and SELF REFRESH modes
- Extended Data-Out (EDO) PAGE MODE access cycle
- 1,024-cycle Extended Refresh distributed across 16ms or 128ms
- EDO PAGE MODE cycle times, 25-35ns

OPTIONS MARKING Timing 60ns access -6 70ns access -7 · Refresh Rate

Standard 16ms period None S SELF REFRESH and 128ms period

 Packages Plastic SOJ (300 mil) DJ

Part Number Example: MT4C4007JDJ-7

KEY TIMING PARAMETERS

SPEED	^t RC	^t RAC	tPC	tAA	tCAC	tCAS
-6	110ns	60ns	25ns	30ns	18ns	10ns
-7	130ns	70ns	33ns	35ns	22ns	15ns

GENERAL DESCRIPTION

The MT4C4007J(S) is a randomly accessed solid-state memory containing 4,194,304 bits organized in a x4 configuration with optional SELF REFRESH. During READ or WRITE cycles, each of the 4 memory bits (1 bit per DQ) is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. RAS latches the first 10 bits and CAS latches the latter 10 bits.

A READ or WRITE cycle is selected with the \overline{WE} input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last, however, only EARLY WRITE cycles are supported. LATEWRITE cycles should not be attempted

PIN ASSIGNMENT (Top View) 20/26-Pin SOJ (DA-1) DQ1 1 DQ2 C 2 WE C 3 RAS C 4 25 DQ4 24 DQ3 23 CAS A9 0 5 22 DE 18 A8 A0 49 A1 [10 A2 [11 16 A6 A3 🗆 12 15 A5 14 A4 Vcc 4 13

as the results are not predictable. When \overline{WE} goes LOW prior to CAS going LOW (EARLY WRITE cycle), the output pins remain open (High-Z) until the next CAS cycle.

The four data inputs and four data outputs are routed through four pins using common I/O, and pin direction is controlled by \overline{WE} and \overline{OE} .

PAGE ACCESS

PAGE operations allow faster data operations (READ or WRITE) within a row-address-defined (A0-A9) page

The PAGE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RAS HIGH terminates PAGE operation.

EDO PAGE MODE

The MT4C4007J provides EDO PAGE MODE, which is an accelerated FAST PAGE MODE cycle. The primary advantage of EDO is the availability of data-out even after CAS goes back HIGH. EDO provides for CAS precharge time (tCP) to occur without the output data going invalid. This elimination of CAS output control provides for pipeline READs.

PAGE MODE DRAMs have traditionally turned the output buffers off (High-Z) with the rising edge of CAS. EDO

EDO PAGE MODE (continued)

operates as any DRAM READ or FAST-PAGE-MODE READ, except data will be held valid after \overline{CAS} goes HIGH, as long as \overline{RAS} and \overline{OE} are held LOW and \overline{WE} is held HIGH. \overline{OE} can be brought LOW or HIGH while \overline{CAS} and \overline{RAS} are LOW, and the DQs will transition between valid data and High-Z. Using \overline{OE} , there are two methods to disable the outputs and keep them disabled during the \overline{CAS} HIGH time. The first method is to have \overline{OE} HIGH when \overline{CAS} transitions HIGH and keep \overline{OE} HIGH for ${}^{\text{t}}$ OEHC. This will tristate the DQs and they will remain tristate, regardless of \overline{OE} , until \overline{CAS} falls again. The second method is to have \overline{OE} LOW when \overline{CAS} transitions HIGH. Then \overline{OE} can pulse

HIGH for a minimum of ${}^{t}OEP$ anytime during the \overline{CAS} HIGH period and the DQs will tristate and remain tristate, regardless of \overline{OE} , until \overline{CAS} falls again (please reference Figure 1 for further detail on the toggling \overline{OE} condition). During cycles other than PAGE-MODE READ, the outputs are disabled at ${}^{t}OFF$ time after \overline{RAS} and \overline{CAS} are HIGH, or ${}^{t}WHZ$ after \overline{WE} transitions LOW. The ${}^{t}OFF$ time is referenced from the rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last. \overline{WE} can also perform the function of turning off the output drivers under certain conditions, as shown in Figure 2.

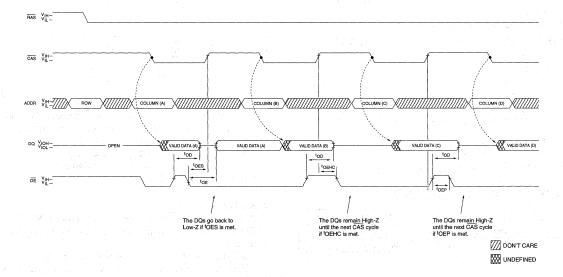


Figure 1
OUTPUT ENABLE AND DISABLE

REFRESH

Preserve correct memory cell data by maintaining power and executing any RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR, or HIDDEN) so that all 1,024 combinations of RAS addresses (A0-A9) are executed within ^tREF max, regardless of sequence. The CBR and SELF REFRESH cycles will invoke the internal refresh counter for automatic RAS addressing.

An optional SELF REFRESH mode is also available on the MT4C4007JS. The "S" version allows the user the choice of a fully static low-power data retention mode, or a dynamic refresh mode at the extended refresh period of 128ms. The optional SELF REFRESH feature is initiated by performing a CBR REFRESH cycle, and holding RAS LOW for the specified ^tRASS. Additionally, the "S" version allows for an extended refresh period of 128ms, or 125µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation, as well as during a standby or BATTERY BACKUP mode.

The SELF REFRESH mode is terminated by driving RAS HIGH for a minimum time of ^tRPS. This delay allows for the completion of any internal refresh cycles that may be in process at the time of the RAS LOW-to-HIGH transition. If the DRAM controller uses a distributed refresh sequence, a burst refresh is not required upon exiting SELF RE-FRESH. However, if the DRAM controller utilizes RAS ONLY or burst refresh sequence, all 1.024 rows must be refreshed within the average internal refresh rate, prior to the resumption of normal operation.

STANDBY

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is preconditioned for the next cycle during the RAS HIGH time.

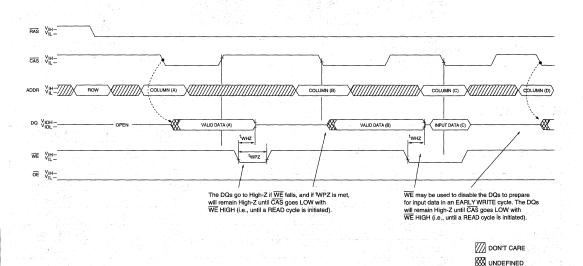
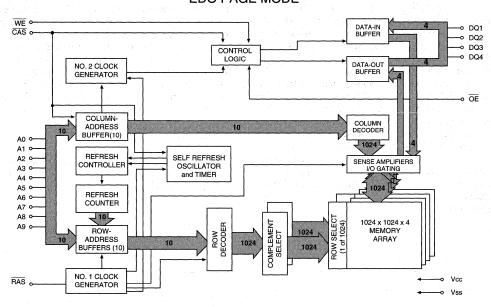



Figure 2 **OUTPUT ENABLE AND DISABLE USING WE**

FUNCTIONAL BLOCK DIAGRAM EDO PAGE MODE

TRUTH TABLE

						ADDRE	SSES	DATA-IN/OUT
FUNCTION		RAS	CAS	WE	ŌE	tR	ç	DQ1-DQ4
Standby		Н	H→X	Х	X	Х	Х	High-Z
READ		L	L	Н	L	ROW	COL	Data-Out
EARLY WRITE	r New Color of the State of the	L	L	L	Х	ROW	COL	Data-In
EDO-PAGE-MODE	1st Cycle	L	H→L	Н	L	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	Н	L	n/a	COL	Data-Out
EDO-PAGE-MODE	1st Cycle	L	H→L	L	X	ROW	COL	Data-In
EARLY-WRITE	2nd Cycle	L	H→L	L	Х	n/a	COL	Data-In
RAS-ONLY REFRESH		L	Н	Х	X	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	X	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	X	Х	X	High-Z
SELF REFRESH		H→L	L	Н	X	X	Х	High-Z

MT4C4007J(S) 1 MEG x 4 DRÀM

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Vss	1.0V to +7V
Operating Temperature, T _A (ambient)	0°C to +70°C
Storage Temperature (plastic)	-55°C to +150°C
Power Dissipation	
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +5V \pm 10\%$)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
PANAMETEN/CONDITION		STWIDUL	IAILIA	IVIMA	UNITO	NUTES
Supply Voltage		Vcc	4.5	5.5	V	
Input High (Logic 1) Voltage	, all inputs	ViH	2.4	Vcc+1	V	
Input Low (Logic 0) Voltage	all inputs	VIL	-1.0	0.8	V	
INPUT LEAKAGE CURREN Any input 0V ≤ VIN ≤ 6.5V (A	T Il other pins not under test = 0V)	li (1)	-2	2	μΑ	
OUTPUT LEAKAGE CURRI	ENT (Q is disabled; 0V ≤ Vo∪т ≤ 5.5V)	loz	-10	10	μΑ	
TTL OUTPUT LEVELS	High Voltage (Iоит = -5mA)	Vон	2.4		V	
and the second s	Low Voltage (Iout = 4.2mA)	Vol		0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

Notes: 1, 6, 7) (Vcc = +5V ±10%)	M	MAX			
PARAMETER/CONDITION	SYMBOL	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = ViH)	Icc1	2	2	mA	1 (12) 1 (12)
STANDBY CURRENT: (CMOS) (RAS = CAS = Other Inputs = Vcc -0.2V)	Icc2 Icc2 (S only)	1 200	1 200	μA μA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, address cycling: ^t RC = ^t RC [MIN])	Іссз	110	100	mA	3, 4, 30
OPERATING CURRENT: EDO PAGE MODE Average power supply current (RAS = VIL, CAS, address cycling: ¹PC = ¹PC [MIN])	Icc4	80	70	mA	3, 4, 30
REFRESH CURRENT: RAS ONLY Average power supply current (RAS cycling, CAS = VIH: 'RC = 'RC [MIN])	lcc5	110	100	mA	3, 30
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, address cycling: ^t RC = ^t RC [MIN])	Icc6	110	100	mA	3, 5
REFRESH CURRENT: Extended (S version only) Average power supply current during Extended Refresh: CAS = 0.2V or CBR cycling; RAS = \text{TRAS (MIN); WE= Vcc -0.2V;} A0-A9 and DIN = Vcc -0.2V or 0.2V (DIN may be left open); \text{TRC} = 125\text{\mu}s (1,024 rows at 125\text{\mu}s = 128ms)	Icc7 (S only)	300	300	μА	3, 5, 28
REFRESH CURRENT: SELF (S version only) Average power supply current during SELF REFRESH: CBR cycle with ¹RAS ≥ ¹RASS (MIN) and CAS held LOW; WE = Vcc -0.2; A0-A9 and DIN = Vcc -0.2V or 0.2V (DIN may be left open)	Iccs (S only)	300	300	μА	5, 29

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A9	Ci1	5	рF	2
Input Capacitance: RAS, CAS, WE, OE	Cı2	7	pF	2
Input/Output Capacitance: DQ	Сю	7	pF	2

MT4C4007J(S) 1 MEG x 4 DRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

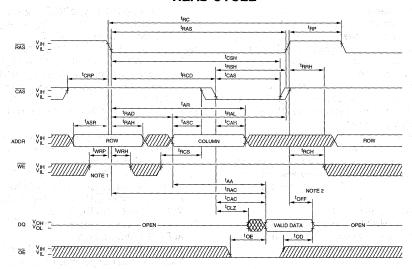
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = +5V \pm 10\%$)

AC CHARACTERISTICS		-6		-7		1988.434	200 ag
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	†AA		30		35	ns	
Column-address setup to CAS precharge during WRITE	†ACH	15		15		ns	
Column-address hold time (referenced to RAS)	tAR .	45		50		ns	ng in a
Column-address setup time	†ASC	0		0	2 3 3 3 3	ns	7 18
Row-address setup time	tASR	0		0		ns	
Access time from CAS	^t CAC		18		22	ns	15
Column-address hold time	^t CAH	10		15		ns	
CAS pulse width	^t CAS	10	10,000	15	10,000	ns	4, 61,
RAS LOW to "don't care" during SELF REFRESH cycle	tCHD	10		10	1 12 14 15	ns	28
CAS hold time (CBR REFRESH)	tCHR	10		10		ns	5
CAS to output in Low-Z	^t CLZ	3		3		ns	4.5
Data output hold after CAS LOW	tCOH .	5	19,50,50	5		ns	
CAS precharge time	^t CP	10		10		ns	16
Access time from CAS precharge	^t CPA		35		40	ns	
CAS to RAS precharge time	^t CRP	10		10		ns	
CAS hold time	^t CSH	50		55		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		ns	5
Write command to CAS lead time	tCWL	15		20		ns	
Data-in hold time	tDH .	10		13		ns	22
Data-in hold time (referenced to RAS)	tDHR :	45		55		ns	(i. s. 76)
Data-in setup time	t _{DS}	0		0	To the first	ns	22
Output disable	^t OD		15	Assetta e	20	ns	26
Output Enable time	^t OE	100	15		20	ns	23
OE HIGH hold time from CAS HIGH	^t OEHC	10		10		ns	
OE HIGH pulse width	^t OEP	10		10		ns	
OE LOW to CAS HIGH setup time	^t OES	5		5		ns	
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	20
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		ns	
EDO-PAGE-MODE READ or WRITE cycle time	^t PC	25		33		ns	
Access time from RAS	^t RAC	370	60		70	ns	14
RAS to column-address delay time	^t RAD	15	30	15	35	ns	18
Row-address hold time	^t RAH	10		10		ns	- 1 P
Column-address to RAS lead time	†RAL	30		35		ns	1.0

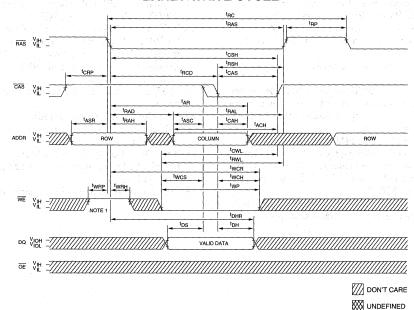
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = +5V \pm 10\%$)

AC CHARACTERISTICS		-6		-7		100	1 1 2 27
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
RAS pulse width	tRAS	60	10,000	70	10,000	ns	34.5
RAS pulse width (EDO PAGE MODE)	†RASP	60	100,000	70	100,000	ns	. 37
RAS pulse width during SELF REFRESH cycle	tRASS	100		100		μs	28
Random READ or WRITE cycle time	tRC tRC	110		130		ns	e fa faire
RAS to CAS delay time	tRCD	20	45	20	50	ns	. 17
Read command hold time (referenced to CAS)	^t RCH	0		0		ns	19
Read command setup time	tRCS	0		0		ns	
Refresh period (1,024 cycles)	tREF		16		16	ms	
Refresh period (1,024 cycles) S version	^t REF		128		128	ms	1 - 5
RAS precharge time	^t RP	40		50		ns	
RAS to CAS precharge time	tRPC	0		0		ns	11.4
RAS precharge time during SELF REFRESH cycle	tRPS	110		130	The Section	ns	28
Read command hold time (referenced to RAS)	^t RRH	. 0		0		ns	19
RAS hold time	tRSH	15		20	1000	ns	10 30 7
Write command to RAS lead time	^t RWL	15		20	1 1 1 1 1	ns	1000
Transition time (rise or fall)	t t	2	50	2	50	ns	9, 10
Write command hold time	tWCH	10		15		ns	
Write command hold time (referenced to RAS)	^t WCR	45		55		ns	17.4
WE command setup time	twcs	0		0		ns	21, 26
Output disable delay from WE (CAS HIGH)	tWHZ	3	15	3	20	ns	N 100
Write command pulse width	tWP	10		15		ns	F 60 1.21 4
WE pulse width for output disable when CAS HIGH	tWPZ	10		10		ns	10.74
WE hold time (CBR REFRESH)	tWRH	10		10		ns	25
WE setup time (CBR REFRESH)	tWRP	10		10		ns	25

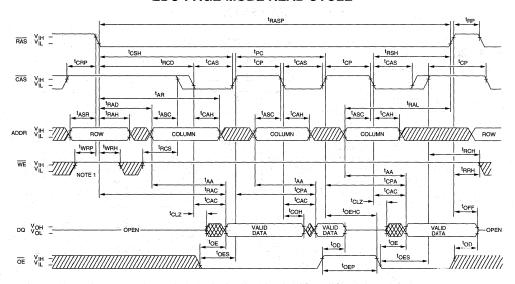

NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = +5V; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 2.5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between V_{IH} and V_{IH} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 11. If $\overline{\text{CAS}}$ and $\overline{\text{RAS}}$ = VIH, data output is High-Z.
- 12. If $\overline{\text{CAS}} = \text{Vil.}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as

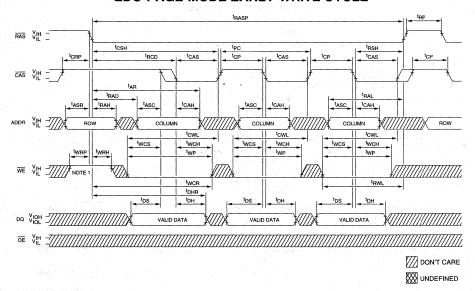

- a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. If the cycle is a READ-MODIFY-WRITE, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle.
- 22. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in EARLY WRITE cycles.
- 23. Even if \overline{OE} is HIGH, LATE WRITE or READ-MODIFY-WRITE operations are not permissible and should not be attempted.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, \overline{WE} =LOW and \overline{OE} =HIGH.
- 25. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.
- The DQs open during READ cycles once OD or OFF occur.
- 27. Extended refresh current is reduced as ^tRAS is reduced from its maximum specification during the extended refresh cycle.
- If the DRAM controller uses a burst refresh, a burst refresh of all rows must be executed upon exiting SELF REFRESH.
- 29. Column-address changed once each cycle.

READ CYCLE

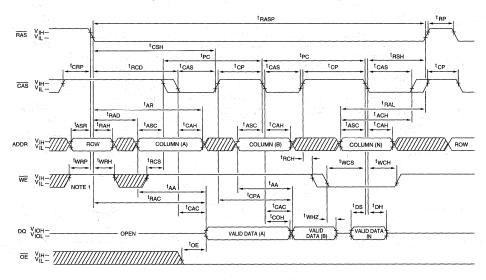
EARLY WRITE CYCLE



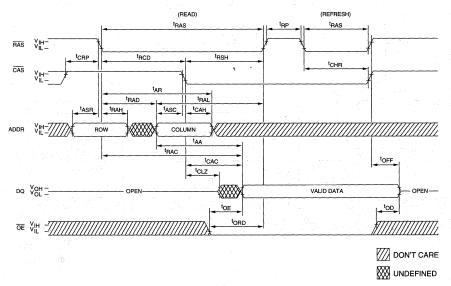
NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.


2. OFF is referenced from rising edge of RAS or CAS, which ever occurs last.

EDO-PAGE-MODE READ CYCLE



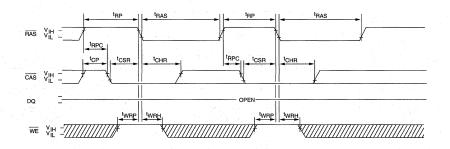
EDO-PAGE-MODE EARLY-WRITE CYCLE



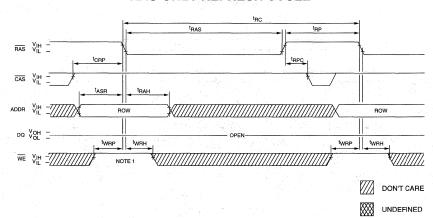
1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer NOTE: should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

EDO-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)

HIDDEN REFRESH CYCLE 24 (WE = HIGH; OE = LOW)

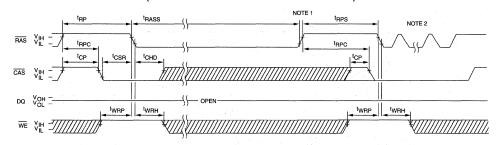

NOTE:

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

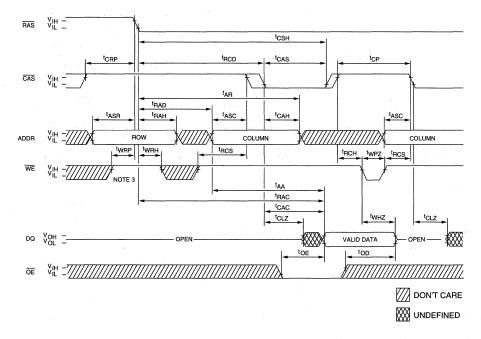


CBR REFRESH CYCLE

(Addresses and $\overline{OE} = DON'T CARE$)



RAS-ONLY REFRESH CYCLE



NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

SELF REFRESH CYCLE (Addresses and OE = DON'T CARE)

READ CYCLE (with WE-controlled disable)

NOTE:

- 1. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.
- 2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.
- Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for ^tWRP and ^tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

DRAM

1 MEG x 4 DRAM

3.3V, EDO PAGE MODE, OPTIONAL SELF REFRESH

FEATURES

- Single $+3.3V \pm 0.3V$ power supply
- Low power, 0.25mW standby; 115mW active, typical
- · JEDEC-standard pinout and packages
- High-performance CMOS silicon-gate process
- All inputs, outputs and clocks are LVTTL-compatible
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN; optional Extended and SELF REFRESH modes
- Extended Data-Out (EDO) PAGE MODE access cycle
- 1,024-cycle Extended Refresh distributed across 16ms or 128ms
- Low SELF REFRESH current, 100μA typical, 150μA (MAX)
- EDO PAGE MODE cycle times, 25-35ns

OPTIONS	MARKING
• Timing 60ns access 70ns access 80ns access	-6 -7 -8
Refresh Rate Standard 16ms period SELF REFRESH and 128ms period	None S
• Packages Plastic SOJ (300 mil) Plastic TSOP (300 mil)	DJ TG

KEY TIMING PARAMETERS

• Part Number Example: MT4LC4007JDJ-7 S

SPEED	tRC	^t RAC	^t PC	†AA	tCAC	tCAS
-6	110ns	60ns	25ns	30ns	18ns	10ns
-7	130ns	70ns	30ns	35ns	22ns	12ns
-8	150ns	80ns	33ns	40ns	22ns	12ns

GENERAL DESCRIPTION

The MT4LC4007J(S) is specially designed to operate from 3.0V to 3.6V for low-voltage memory systems. It is a randomly accessed solid-state memory containing 4,194,304 bits organized in a x4 configuration with optional SELF REFRESH. During READ or WRITE cycles, each of the 4 memory bits (1 bit per DQ) is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a

20/26-Pin SOJ (DA-1)

DQ1 E DQ2 E WE E RAS E	2 3 4	25 24 23	Vss DQ4 DQ3 CAS
A0 [18	□ A8
A1 [10	17	□ A7
A2 [11	16	□ A6
A3 [12	15	□ A5
Vcc [13	14	Þ A4

time. \overline{RAS} latches the first 10 bits and \overline{CAS} latches the latter 10 bits.

A READ or WRITE cycle is selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, which-ever occurs last. If WE goes LOW prior to CAS going LOW, the output pins remain open (High-Z) until the next CAS cycle, which is an EARLY WRITE cycle.

The four data inputs and four data outputs are routed through four pins using common I/O, and pin direction is controlled by WE and OE.

PAGE ACCESS

PAGE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined (A0-A9) page boundary.

The PAGE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RAS HIGH terminates PAGE operation.

EDO PAGE MODE

The MT4LC4007J provides EDO PAGE MODE, which is an accelerated FAST PAGE MODE cycle. The primary advantage of EDO is the availability of data-out even after CAS goes back HIGH. EDO provides for CAS precharge time (^tCP) to occur without the output data going invalid. This elimination of CAS output control provides for pipeline READs.

PAGE MODE DRAMs have traditionally turned the output buffers off (High-Z) with the rising edge of \overline{CAS} . EDO operates as any DRAM READ or FAST-PAGE-MODE READ, except data will be held valid after \overline{CAS} goes HIGH, as long as \overline{RAS} and \overline{OE} are held LOW and \overline{WE} is held HIGH. \overline{OE} can be brought LOW or HIGH while \overline{CAS} and \overline{RAS} are LOW, and the DQs will transition between valid data and High-Z. Using \overline{OE} , there are two methods to disable the outputs and keep them disabled during the \overline{CAS} HIGH

time. The first method is to have \overline{OE} HIGH when \overline{CAS} transitions HIGH and keep OE HIGH for tOEHC. This will tristate the DQs and they will remain tristate, regardless of OE, until CAS falls again. The second method is to have OE LOW when CAS transitions HIGH. Then OE can pulse HIGH for a minimum of tOEP anytime during the CAS HIGH period and the DQs will tristate and remain tristate, regardless of OE, until CAS falls again (please reference Figure 1 for further detail on the toggling OE condition). During cycles other than PAGE-MODE READ, the outputs are disabled at tOFF time after RAS and CAS are HIGH, or tWHZ after WE transitions LOW. The tOFF time is referenced from the rising edge of RAS or CAS, whichever occurs last. WE can also perform the function of turning off the output drivers under certain conditions, as shown in Figure 2.

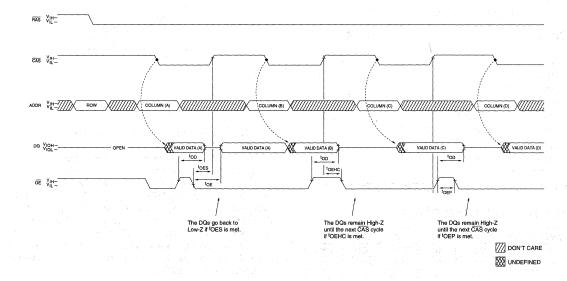
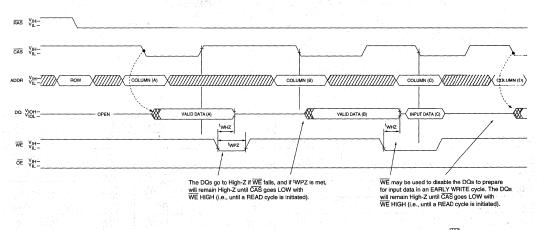


Figure 1
OUTPUT ENABLE AND DISABLE

TECHNOLOGY, INC.

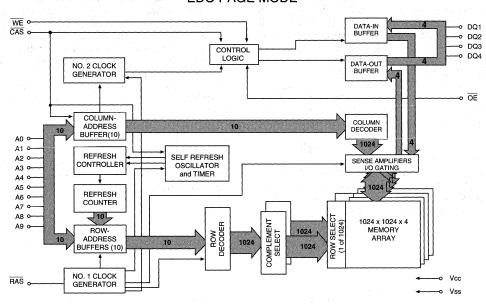
REFRESH


Preserve correct memory cell data by maintaining power and executing any RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR, or HIDDEN) so that all 1,024 combinations of RAS addresses (A0-A9) are executed within ^tREF max, regardless of sequence. The CBR and SELF REFRESH cycles will invoke the internal refresh counter for automatic RAS addressing.

An optional SELF REFRESH mode is also available on the MT4LC4007J S. The "S" version allows the user the choice of a fully static low-power data retention mode, or a dynamic refresh mode at the extended refresh period of 128ms. The optional SELF REFRESH feature is initiated by performing a CBR REFRESH cycle, and holding \overline{RAS} LOW for the specified 'RASS. Additionally, the "S" version allows for an extended refresh period of 128ms, or 125 μ s per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation, as well as during a standby or BATTERY BACKUP mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for a minimum time of ^tRPS. This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed refresh sequence, a burst refresh is not required upon exiting SELF REFRESH. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all 1,024 rows must be refreshed within the average internal refresh rate, prior to the resumption of normal operation.

STANDBY


Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is preconditioned for the next cycle during the \overline{RAS} HIGH time.

DON'T CARE
UNDEFINED

Figure 2
OUTPUT ENABLE AND DISABLE USING WE

FUNCTIONAL BLOCK DIAGRAM EDO PAGE MODE

TRUTH TABLE

						ADDRE	SSES	DATA-IN/OUT
FUNCTION		RAS	CAS	WE	0E	^t R	tC	DQ1-DQ4
Standby		Н	H→X	Х	Х	X	Х	High-Z
READ		L	L	Н	٦	ROW	COL	Data-Out
EARLY WRITE		L	L	L	X	ROW	COL	Data-In
READ WRITE		L	L	H→L	L→H	ROW	COL	Data-Out, Data-In
EDO-PAGE-MODE	1st Cycle	L	H→L	Н	L	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	H	١	n/a	COL	Data-Out
EDO-PAGE-MODE	1st Cycle	L	H→L	L	Х	ROW	COL	Data-In
EARLY WRITE	2nd Cycle	L	H→L	L	Х	n/a	COL	Data-In
EDO-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In
RAS-ONLY REFRESH		L	Н	Х	X	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	X	ROW	COL	Data-In
CBR REFRESH		H→L	L	н	Х	Х	Х	High-Z
SELF REFRESH		H→L	L	Н	Х	X	Х	High-Z

MT4LC4007J(S) 1 MEG x 4 DRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Vss	1.0V to +4.6V
Operating Temperature, T _A (ambient).	0°C to +70°C
Storage Temperature (plastic)	
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	3.0	3.6	V	
Input High (Logic 1) Voltage	, all inputs	Vih	2.0	Vcc+1	V	
Input Low (Logic 0) Voltage,	all inputs	VIL	-1.0	0.8	V	
INPUT LEAKAGE CURREN Any input 0V ≤ VIN ≤ Vcc+0.	T 5V (All other pins not under test = 0V)	.	-2	2	μА	
OUTPUT LEAKAGE CURRI	ENT (Q is disabled; $0V \le V_{OUT} \le V_{CC} + 0.5V$)	loz	-10	10	μΑ	
TTL OUTPUT LEVELS	High Voltage (Ιουτ = -2mA)	Vон	2.4	an g	V	
	Low Voltage (Iout = 2mA)	Vol		0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)	123		MAX	Market I		
PARAMETER/CONDITION	SYM	-6	-7	-8	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = Vih)		lcc1	1	1	1 .	mA
STANDBY CURRENT: (CMOS) (RAS = CAS = Other Inputs = Vcc -0.2V)	Icc2	500 100	500 100	500 100	μ Α μ Α	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, address cycling: ¹RC = ¹RC [MIN])	(S only)	80	70	60	mA	3, 4, 30
OPERATING CURRENT: EDO PAGE MODE Average power supply current (RAS = VIL, CAS, address cycling: ^t PC = ^t PC [MIN])	Icc4	60	50	40	mA	3, 4, 30
REFRESH CURRENT: RAS ONLY Average power supply current (RAS cycling, CAS = Viii: **RC = **RC [MIN])	lcc5	80	70	60	mA	3, 30
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, address cycling: ¹RC = ¹RC [MIN])	Icc6	80	70	60	mA	3, 5
REFRESH CURRENT: Extended (S version only) Average power supply current during Extended Refresh: CAS = 0.2V or CBR cycling; RAS = ¹ RAS (MIN); WE= Vcc -0.2V; A0-A9, OE, and DIN = Vcc -0.2V or 0.2V (DIN may be left open); ¹ RC = 125µs (1,024 rows at 125µs = 128ms)	Icc7 (S only)	150	150	150	μА	3, 5, 28
REFRESH CURRENT: SELF (S version only) Average power supply current during SELF REFRESH: CBR cycle with t RAS \geq t RASS (MIN) and $\overline{\text{CAS}}$ held LOW; $\overline{\text{WE}} = \text{Vcc} - 0.2$; A0-A9, $\overline{\text{OE}}$, and D _{IN} = Vcc -0.2V or 0.2V (D _{IN} may be left open)	Iccs (S only)	150	150	150	μА	5, 29

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A9	Cit	5	pF	2
Input Capacitance: RAS, CAS, WE, OE	Cı2	7	pF	2
Input/Output Capacitance: DQ	Сю	7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

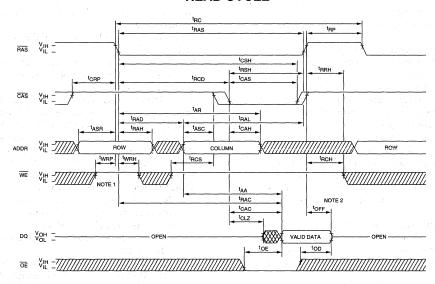
Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS			-6		-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30		35		40	ns	
Column-address setup to CAS precharge during WRITE	tACH	15		15		20		ns	
Column-address hold time (referenced to RAS)	tAR	45		50		55	ut e et	ns	
Column-address setup time	tASC	0		0		0	1.0	ns	
Row-address setup time	tASR	0		0		0		ns	
Column-address to WE delay time	tAWD	55		65		70		ns	21
Access time from CAS	^t CAC		18		22		22	ns	15
Column-address hold time	tCAH	10		15		15	19-21	ns	344
CAS pulse width	^t CAS	10	10,000	15	10,000	15	10,000	ns	1 to 1 to 1
RAS LOW to "don't care" during SELF REFRESH cycle	tCHD.	10		10		10		ns	29
CAS hold time (CBR REFRESH)	tCHR	10		10		10		ns	5
CAS to output in Low-Z	^t CLZ	3		3		3		ns	
Data output hold after CAS LOW	^t COH	5		5		. 5		ns	
CAS precharge time	^t CP	10		10		10		ns	16
Access time from CAS precharge	^t CPA		35		40		45	ns	
CAS to RAS precharge time	^t CRP	10		10		10	120,87	ns	
CAS hold time	^t CSH	50		55		65		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10	The State	10	L. DAVID	ns	5
CAS to WE delay time	tCWD	40		50		50	Table 1	ns	21
Write command to CAS lead time	^t CWL	15		20		20	1000	ns	
Data-in hold time	^t DH	10		15		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	45		55		60	10,44	ns	3 8 A A
Data-in setup time	^t DS	0		0		0		ns	22
Output disable	^t OD		15		20		20	ns	27
Output Enable time	^t OE		15	75.74	20		20	ns	23
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	15		20		20		ns	26
OE HIGH hold time from CAS HIGH	^t OEHC	10		10		10		ns	
OE HIGH pulse width	^t OEP	10		10		10		ns	
OE LOW to CAS HIGH setup time	OES	5		5		5		ns	
Output buffer turn-off delay	^t OFF	3	15	3	20	3	20	ns	20
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		0		ns	
EDO-PAGE-MODE READ or WRITE cycle time	^t PC	25		33		35		ns	
EDO-PAGE-MODE READ-WRITE cycle time	^t PRWC	85		100		105		ns	
Access time from RAS	†RAC		60		70		80	ns	14
RAS to column-address delay time	†RAD	15	30	15	35	15	40	ns	18
Row-address hold time	†RAH	10	 	10		10		ns	
Column-address to RAS lead time	†RAL	30		35		40		ns	
RAS pulse width	†RAS	60	10,000	70	10,000	80	10,000	ns	

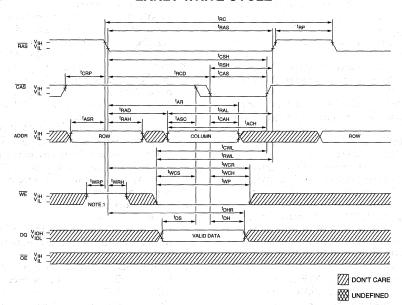
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS			-6		-7	-8			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
RAS pulse width (EDO PAGE MODE)	^t RASP	60	100,000	70	100,000	80	100,000	ns	1.75
RAS pulse width during SELF REFRESH cycle	†RASS	100		100		100		μѕ	29
Random READ or WRITE cycle time	^t RC	110		130	1 2 3 5	150		ns	8-8-3
RAS to CAS delay time	^t RCD	20	45	20	50	20	60	ns	17
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19
Read command setup time	tRCS	0		0		0	1.00	ns	
Refresh period (1,024 cycles)	†REF	3.6	16		16		16	ms	
Refresh period (1,024 cycles) S version	[†] REF		128		128		128	ms	1
RAS precharge time	tRP	40		50		60		ns	100
RAS to CAS precharge time	tRPC	0		. 0		0	Arra Co	ns	100
RAS precharge time during SELF REFRESH cycle	tRPS	110		130		150		ns	29
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
RAS hold time	†RSH	15		20		20		ns	
READ WRITE cycle time	tRWC	150		180		200		ns	
RAS to WE delay time	^t RWD	85		100		110		ns	21
Write command to RAS lead time	^t RWL	15		20		20	ant o	ns	4.50
Transition time (rise or fall)	t _T	2	50	2	50	2	50	ns	9, 10
Write command hold time	tWCH	10		15		15	6.577	ns	
Write command hold time (referenced to RAS)	tWCR	45		55		60		ns	
WE command setup time	twcs	0		0		0	1.5	ns	21, 27
Output disable delay from WE (CAS HIGH)	tWHZ	3	15	3	15	3	15	ns	grafies
Write command pulse width	tWP	10		15		15		ns	8 × 28 / 36
WE pulse width for output disable when CAS HIGH	tWPZ	10		10		10		ns	Service Service
WE hold time (CBR REFRESH)	tWRH	10		10		10		ns	25
WE setup time (CBR REFRESH)	tWRP	10		10		10		ns	25

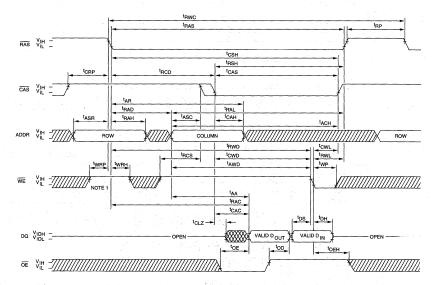

MT4LC4007J(S) 1 MEG x 4 DRAM

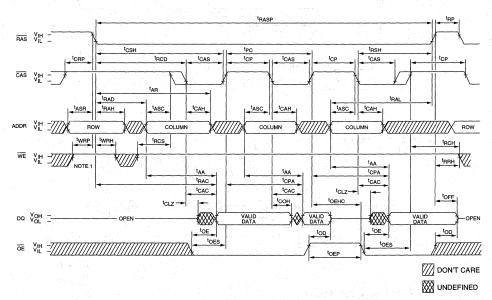
NOTES


- . All voltages referenced to Vss.
- 2. This parameter is sampled. $Vcc = +3.3V \pm 0.3V$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 2.5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between $V_{I\!H}$ and $V_{I\!H}$ (or between $V_{I\!L}$ and $V_{I\!H}$) in a monotonic manner.
- 11. If \overline{CAS} and $\overline{RAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{CAS} = V_{IL}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF. Output reference voltages are 0.8V for a low level and 2.0V for a high level.
- 14. Assumes that \(^tRCD < ^tRCD \) (MAX). If \(^tRCD \) is greater than the maximum recommended value shown in this table, \(^tRAC \) will increase by the amount that \(^tRCD \) exceeds the value shown.</p>
- 15. Assumes that ${}^{t}RCD ≥ {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the

- specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle.
- 22. These parameters are referenced to \overline{CAS} leading edge in EARLY WRITE cycles and \overline{WE} leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. If OE is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not permissible and should not be attempted.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE=LOW and OE=HIGH.
- 25. WTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.
- 26. LATE WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. If OE is taken back LOW while CAS remains LOW, the DQs will remain open.
- 27. The DQs open during READ cycles once ^tOD or ^tOFF occur.
- 28. Extended refresh current is reduced as ^tRAS is reduced from its maximum specification during the extended refresh cycle.
- If the DRAM controller uses a burst refresh, a burst refresh of all rows must be executed upon exiting SELF REFRESH.
- 30. Column-address changed once each cycle.

READ CYCLE


EARLY WRITE CYCLE

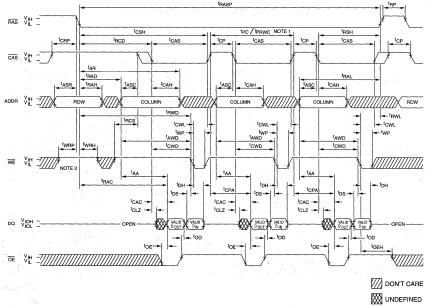

NOTE:

- Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for ^tWRP and ^tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.
- 2. ^tOFF is referenced from rising edge of RAS or CAS, which ever occurs last.

READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)



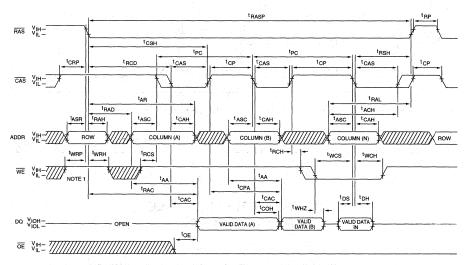
EDO-PAGE-MODE READ CYCLE



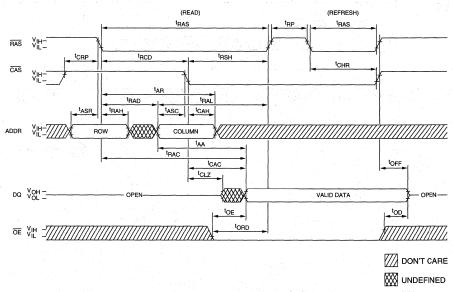
NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for ¹WRP and ¹WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

EDO-PAGE-MODE EARLY-WRITE CYCLE

EDO-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)

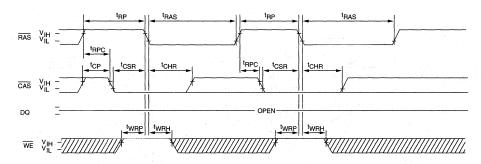


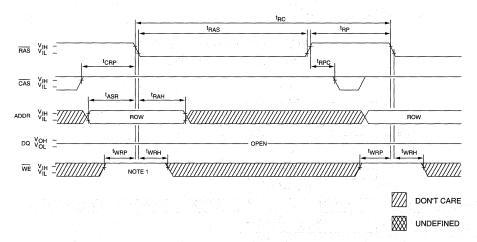
NOTE:


- 1. ^tPC is for LATE WRITE cycles only.
- 2. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

EDO DRAM

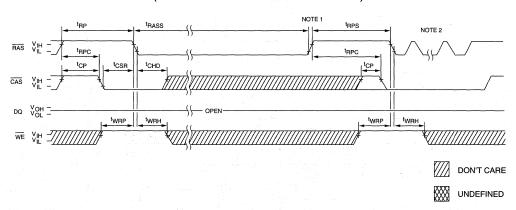
EDO-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)


HIDDEN REFRESH CYCLE 24 $(\overline{WE} = HIGH; \overline{OE} = LOW)$


NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

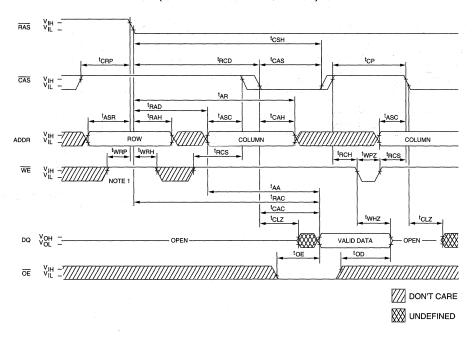
CBR REFRESH CYCLE

(Addresses and OE = DON'T CARE)



RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)

NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.


SELF REFRESH CYCLE (Addresses and \overline{OE} = DON'T CARE)

NOTE: 1. Once tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.

2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

READ CYCLE (with WE-controlled disable)

NOTE:

 Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

DRAM

4 MEG x 4 DRAM

3.3V, EDO PAGE MODE, OPTIONAL SELF REFRESH

FEATURES

- · Industry-standard x4 pinout, timing, functions and packages
- High-performance CMOS silicon-gate process
- Single +3.3V ±0.3V power supply
- Low power, 0.4mW standby; 150mW active, typical
- All inputs, outputs and clocks are TTL-compatible
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN and SELF
- 2,048-cycle (11 row-, 11 column-addresses)
- Optional SELF REFRESH, Extended Refresh rate (4x)
- Extended Data-Out (EDO) PAGE access cycle
- 5V tolerant I/Os (5.5V maximum VIH level)

OPTIONS MARKING Timing 60ns access -6 70ns access -7 Packages Plastic SOJ (300 mil) DI Plastic TSOP (300 mil) TG Refresh Rate Standard 32ms period None

• Part Number Example: MT4LC4M4E8DJ-7 S

KEY TIMING PARAMETERS

SELF REFRESH and 128ms period

SPEED	tRC	†RAC	^t PC	^t AA	†CAC	^t CAS
-6	110ns	60ns	25ns	30ns	15ns	10ns
-7	130ns	70ns	30ns	35ns	20ns	12ns

GENERAL DESCRIPTION

The MT4LC4M4E8(S) is a randomly accessed solid-state memory containing 16,777,216 bits organized in a x4 configuration. The MT4LC4M4E8(S) RAS is used to latch the first 11 bits and CAS the latter 11 bits. READ and WRITE cycles are selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. If WE goes LOW prior to CAS going LOW, the output pins remain open (High- Z) until the next CAS cycle, regardless of OE.

	PIN AS	SIGNME	ENT (To	p View)
24	/26-Pin (DA-2		24/2	6-Pin 1 (DB-2)	
Vcc I DQ1 I DQ2 I WE I RAS I	2 3 4 5	26 Vss 25 DQ4 24 DQ3 23 CAS 22 OE 21 A9	Vcc 1 DQ1 2 DQ2 3 WE 4 RAS 5 NC 6	2 2 2	26
A10 [A0 [A1 [A2 [A3 [Vcc [9 10 11 12	19 A8 18 A7 17 A6 16 A5 15 A4 14 Vss	A10 ::: 8 A0 ::: 9 A1 ::: 10 A2 ::: 11 A3 ::: 12 Vcc ::: 13	1) 1 ! 1 2 1	9 TA8 8 TA7 7 TA6 6 UA5 5 UA4 4 TVss

If WE goes LOW after CAS goes LOW, data-out (Q) is activated and retains the selected cell data as long as \overline{OE} remains LOW and RAS or CAS remains LOW (regardless of $\overline{\text{WE}}$). This late $\overline{\text{WE}}$ pulse results in a READ WRITE cycle. If WE toggles LOW after CAS goes back HIGH, the output pins will open (High-Z) until the next CAS cycle, regardless of OE.

The four data inputs and the four data outputs are routed through four pins using common I/O, and pin direction is controlled by \overline{WE} and \overline{OE} .

PAGE ACCESS

PAGE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-addressdefined page boundary. The PAGE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different columnaddresses, thus executing faster memory cycles. Returning RAS HIGH terminates the PAGE MODE of operation.

EDO PAGE MODE

The MT4LC4M4E8(S) provides EDO PAGE MODE which is an accelerated FAST PAGE MODE cycle. The primary advantage of EDO is the availability of data-out even after CAS returns HIGH. EDO allows CAS precharge time (^tCP) to occur without the output data going invalid. This elimination of CAS output control allows pipeline READs.

FAST-PAGE-MODE DRAMs have traditionally turned the output buffers off (High-Z) with the rising edge of CAS. EDO-PAGE-MODE DRAMs operate similarly to FAST-PAGE-MODE DRAMs, except data will remain valid or become valid after CAS goes HIGH during READs, provided RAS and OE are held LOW. If OE is pulsed while RAS and CAS are LOW, data will toggle from valid data to High-Z and back to the same valid data. If OE is toggled or pulsed after CAS goes HIGH while RAS remains LOW, data will transition to and remain High-Z (refer to Figure 1). WE can also perform the function of disabling the output devices under certain conditions, as shown in Figure 2.

If the DQ outputs are wire OR'd, \overline{OE} must be used to disable idle banks of DRAMs. Alternatively, pulsing \overline{WE} to the idle banks during \overline{CAS} high time will also High-Z the outputs. Independent of \overline{OE} control, the outputs will disable after ${}^t\!OFF$, which is referenced from the rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last.

REFRESH

Preserve correct memory cell data by maintaining power and executing a \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR, or HIDDEN) so that all 2,048 combinations of \overline{RAS} addresses are executed at least every 32ms, regardless of sequence. The CBR REFRESH cycle will invoke the refresh counter for automatic \overline{RAS} addressing.

An optional SELF REFRESH mode is also available on the MT4LC4M4E8S. The "S" version allows the user the choice of a fully static low-power data retention mode, or a dynamic refresh mode at the extended refresh period of 128ms four times longer than the standard 32ms specification.

The optional SELF REFRESH feature is initiated by performing a CBR REFRESH cycle, and holding RAS LOW for the specified [†]RASS. Additionally, the "S" version allows for an extended refresh rate of 62.5µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation or during a standby or BATTERY BACKUP mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for a minimum time of ${}^{t}RPS$ (\approx ${}^{t}RC$). This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all 2,048 rows must be refreshed within 300 μ s prior to the resumption of normal operation.

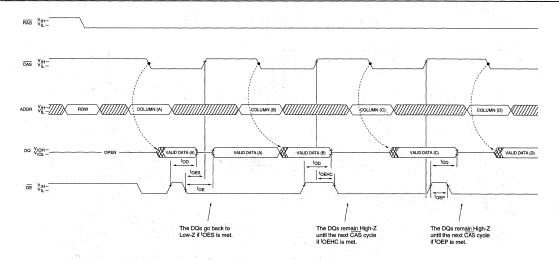


Figure 1 **OUTPUT ENABLE AND DISABLE**

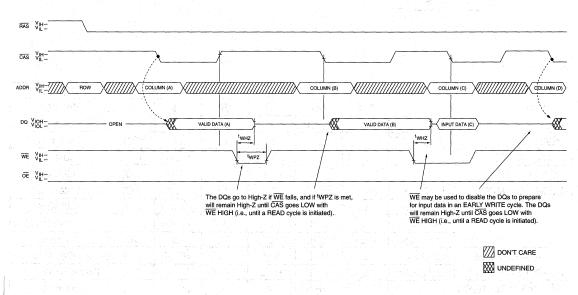
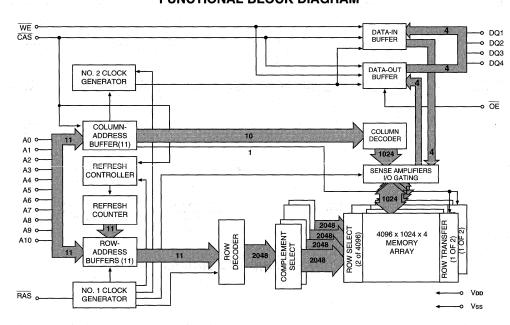



Figure 2 WE CONTROL OF DQs

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

	tiga di Agri			100		ADDR	ESSES	DATA-IN/OUT
FUNCTION		RAS	CAS	WE	0E	^t R	tC	DQ1-DQ4
Standby		Н	H→X	Х	Х	Х	X	High-Z
READ		L	L	Н	L	ROW	COL	Data-Out
EARLY WRITE		L	L	L	Х	ROW	COL	Data-In
READ WRITE		L	L	H→L	L→H	ROW	COL	Data-Out, Data-In
EDO-PAGE-MODE	1st Cycle	L	H→L	Н	L,	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	Н	Lan	n/a	COL	Data-Out
EDO-PAGE-MODE	1st Cycle	L	H→L	L	X *	ROW	COL	Data-In
EARLY-WRITE	2nd Cycle	L	H→L	L	Х	n/a	COL	Data-In
EDO-PAGE-MODE	1st Cycle	L.	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In
RAS-ONLY REFRESH		L	Н	X	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	r L	Χ	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	Х	Х	Х	High-Z
SELF REFRESH		H→L	L	Н	Х	X	Х	High-Z

MT4LC4M4E8(S) 4 MEG x 4 DRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc pin Relative to Vss1V to +4.6V
Voltage on Inputs or I/O pins
Relative to Vss1V to +5.5V
Operating Temperature, T _A (ambient) 0°C to +70°C
Storage Temperature (plastic)55°C to +150°C
Power Dissipation 1W
Short Circuit Output Current 50m A

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	V cc	3.0	3.6	V	
Input High (Logic 1) Voltage, all inputs (including NC pins)	ViH	2.0	5.5	V	
Input Low (Logic 0) Voltage, all inputs (including NC pins)	VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT Any input 0V ≤ V _{IN} ≤ 5.5V (All other pins not under test = 0V)	1 10 (1)	-2	2	μА	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vout ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (Ιουτ = -2mA)	Vон	2.4		V	
Output Low Voltage (lout = 2mA)	V ol		0.4	V	

Average power supply current

REFRESH CURRENT: CBR Average power supply current

(RAS Cycling, CAS = VIH: TRC = TRC [MIN])

OE and Din = Vcc -0.2V or 0.2V(Din may be left open)

MT4LC4M4E8(S) 4 MEG x 4 DRÀM

MAX

120

120

ICC5

Icc6

110

110

mΑ

mΑ

3.12

3, 5

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

PARAMETER/CONDITION	SYMBOL	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = ViH)	lcc1	2	2	mA	e Bahridin Masasas
STANDBY CURRENT: (CMOS)	lcc2	500	500	μΑ	
(RAS = CAS = Other Inputs = Vcc -0.2V)	Icc2 (S only)	150	150	μΑ	4
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ¹RC = ¹RC [MIN])	lcc3	120	110	mA	3, 4, 12
OPERATING CURRENT: EDO PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN])	ICC4	110	100	mA	3, 4, 12
REFRESH CURRENT: RAS ONLY			100	17 Y 1 Y	

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: Address pins	Cıı	5	pF	2
Input Capacitance: RAS, CAS, WE, OE	C ₁₂	7	pF	2
Input/Output Capacitance: DQ	Сю	7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

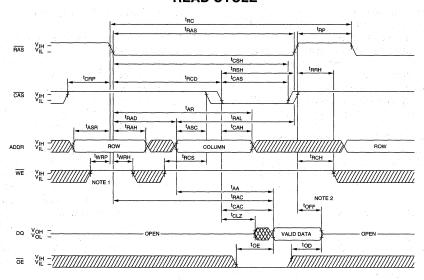
(Notes: 6, 7, 8, 9, 10, 11, 12) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS PARAMETER	SYM	-6		-7		F 3 7 3 3 3	S. 1 6.7
		MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	tAA .	100	30		35	ns	
Column-address set-up to CAS precharge during WRITE	^t ACH	15		15		ns	
Column-address hold time (referenced to RAS)	^t AR	45	200	55		ns	
Column-address setup time	†ASC	0		0		ns	
Row-address setup time	^t ASR	0		0		ns	
Column-address to WE delay time	^t AWD	55		65	1986	ns	20
Access time from CAS	^t CAC		15		20	ns	14
Column-address hold time	^t CAH	10		12	17.55 by 13	ns	
CAS pulse width	tCAS	10	10,000	12	10,000	ns	
CAS LOW to "don't care" during SELF REFRESH cycle	^t CHD	15		15		ns	25
CAS hold time (CBR REFRESH)	tCHR	10		12	i asv -	ns	5
CAS to output in Low-Z	†CLZ	0		0		ns	
Data output hold after next CAS LOW	tCOH	5	\$75	- 5		ns	
CAS precharge time	^t CP	10		10		ns	15
Access time from CAS precharge	^t CPA		35	•	40	ns	1.00
CAS to RAS precharge time	^t CRP	5		5		ns	12.7
CAS hold time	^t CSH	50		55		ns	
CAS setup time (CBR REFRESH)	^t CSR	5		5		ns	5
CAS to WE delay time	tCWD	35		40		ns	20
Write command to CAS lead time	tCWL	15	4	15		ns	
Data-in hold time	^t DH	10		12		ns	21
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	1.00
Data-in setup time	^t DS	0		0		ns	21
Output disable	^t OD	0	15	0	15	ns	2071
Output Enable	^t OE		15		15	ns	22
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	10		12		ns	
OE HIGH hold from CAS HIGH	[†] OEHC	10		10		ns	

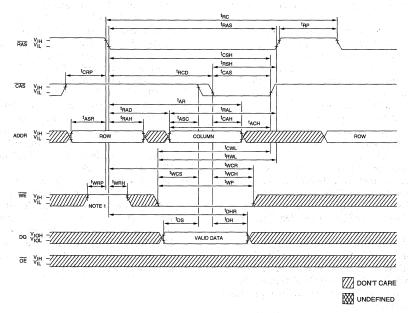
EDO DRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +3.3V \pm 0.3V$)

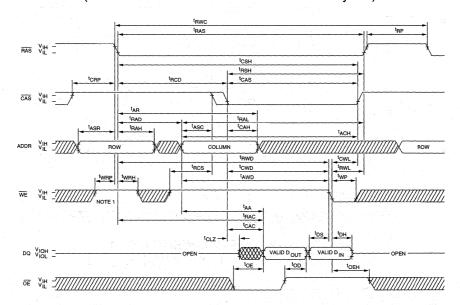

AC CHARACTERISTICS PARAMETER	SYM	-6		-7		1	3.53.5
		MIN	MAX	MIN	MAX	UNITS	NOTES
OE HIGH pulse width	^t OEP	10		10		ns	
OE LOW to CAS HIGH setup time	tOES	5		5		ns	
Output buffer turn-off delay	^t OFF	3	15	3	15	ns	
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		ns	
EDO-PAGE-MODE READ or WRITE cycle time	^t PC	25		30		ns	
EDO-PAGE-MODE READ-WRITE cycle time	^t PRWC	75	1000	85		ns	1.
Access time from RAS	^t RAC		60		70	ns	13
RAS to column-address delay time	†RAD	12	30	12	35	ns	17
Row-address hold time	^t RAH	10		10		ns	
Column-address to RAS lead time	^t RAL	30		35		ns	25
RAS pulse width	tRAS.	60	10,000	70	10,000	ns	
RAS pulse width (EDO PAGE MODE)	tRASP	60	125,000	.70	125,000	ns	111
RAS pulse width during SELF REFRESH cycle	tRASS	100		100		μs	25
Random READ or WRITE cycle time	t _{RC}	110		130		ns	100
RAS to CAS delay time	tRCD	14	45	14	50	ns	16
Read command hold time (referenced to CAS)	tRCH	0		0		ns	18
Read command setup time	tRCS	0		0		ns	May 1
Refresh period (2,048 cycles)	^t REF		32	7	32	ms	
Refresh period (2,048 cycles) S version	^t REF		128		128	ms	1.00
RAS precharge time	tRP	40	1 1 2.1	50		ns	J. 1. 1
RAS to CAS precharge time	^t RPC	0		Ö		ns	
RAS precharge time during SELF REFRESH cycle	tRPS	110		130		ns	25
Read command hold time (referenced to RAS)	tRRH	0		0		ns	18
RAS hold time	tRSH	10		12		ns	
READ WRITE cycle time	tRWC	150		177		ns	14 ye 15
RAS to WE delay time	tRWD	80		90	Talenta Cal	ns	20
Write command to RAS lead time	^t RWL	15		15		ns	
Transition time (rise or fall)	tT.	2	50	2	50	ns	
Write command hold time	tWCH	10		12		ns	
Write command hold time (referenced to RAS)	tWCR	45		55	a Japan Pan	ns	
WE command setup time	twcs	0		0		ns	20
Output disable delay from WE	tWHZ	0	13	0	15	ns	
Write command pulse width	tWP	10		12		ns	
WE pulse to disable at CAS HIGH	tWPZ	10		12		ns	
WE hold time (CBR REFRESH)	^t WRH	10		10		ns	24
WE setup time (CBR REFRESH)	tWRP	10		10		ns	24

NOTES

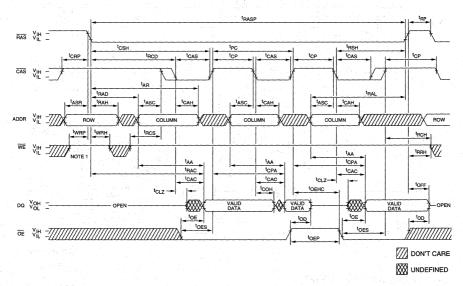

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = +3.3V; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 2.5$ ns.
- 9. Vih (MIN) and Vil (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. Column address changed once each cycle.
- 12. Measured with a load equivalent to two TTL gates, 100pF and VOL = 0.8V and VOH = 2.0V.
- 13. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 14. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 15. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 16. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC, provided ^tRAD is not exceeded.
- 17. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA, provided ^tRCD is not exceeded.

- 18. Either ^tRCH or ^tRRH must be satisfied for a READ
- 19. tOFF (MAX) defines the time at which the output achieves the open circuit condition, and is not referenced to Voh or Vol. It is referenced from the rising edge of RAS or CAS, whichever occurs last.
- 20. tWCS, tRWD, tAWD and tCWD are not restrictive operating parameters. tWCS applies to EARLY WRITE cycles. tRWD, tAWD and tCWD apply to READ-MODIFY-WRITE cycles. If [†]WCS ≥ [†]WCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tWCS < ^tWCS (MIN) and ^tRWD ≥ tRWD (MIN), tAWD ≥ tAWD (MIN) and tCWD ≥ ^tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met. the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. tWCS, tRWD, ^tCWD and ^tAWD are not applicable in a LATE WRITE cycle.
- 21. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 22. If OE is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not permissible and should not be attempted. Additionally, WE must be pulsed during CAS HIGH time in order to place I/O buffers in High-Z.
- 23. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$ and $\overline{OE} = HIGH$.
- 24. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.
- 25. Refresh must be completed within the time of three external refresh rate periods prior to active use of the DRAM (provided distributed CBR REFRESH is used when in the active mode). Alternatively, a complete set of row refreshes must be executed when exiting SELF REFRESH prior to active use of the DRAM if anything other than distributed CBR REFRESH is used in the active mode.

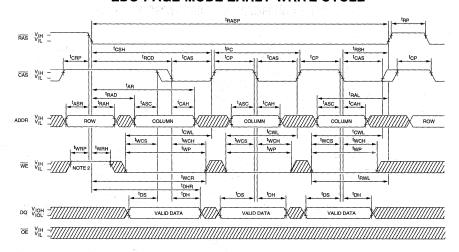
EARLY WRITE CYCLE



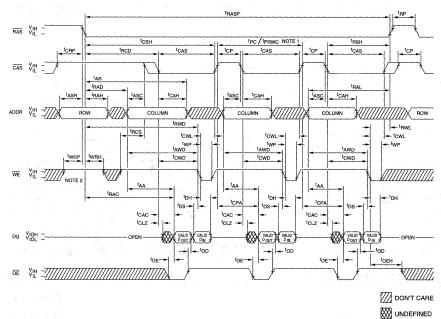
NOTE:


- Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for ^tWRP and ^tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.
- 2. tOFF is referenced from rising edge of RAS or CAS, which ever occurs last.

READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)

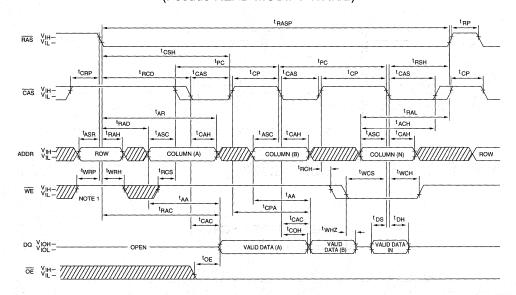


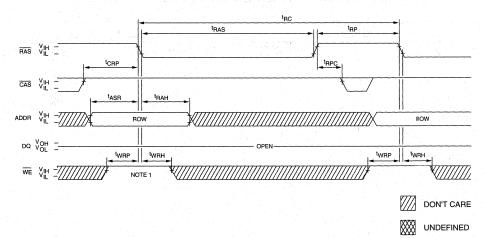
EDO-PAGE-MODE READ CYCLE



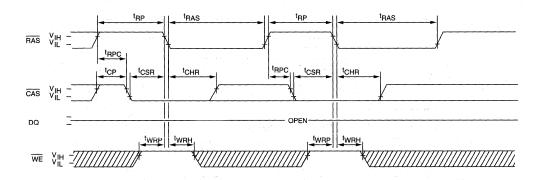
NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

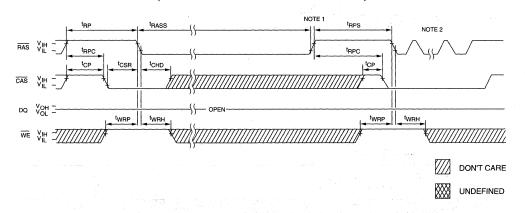
EDO-PAGE-MODE EARLY-WRITE CYCLE


EDO-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)


- 1. ^tPC is for LATE WRITE cycles only.
- 2. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

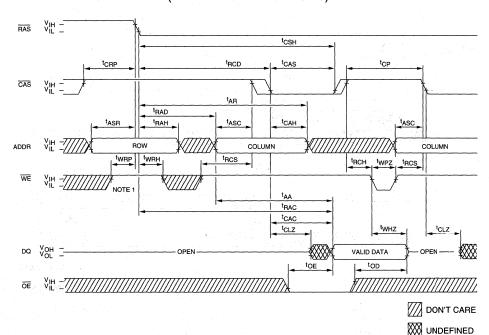
EDO-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)


RAS-ONLY REFRESH CYCLE


1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer NOTE: should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

CBR REFRESH CYCLE (Addresses and OE = DON'T CARE)

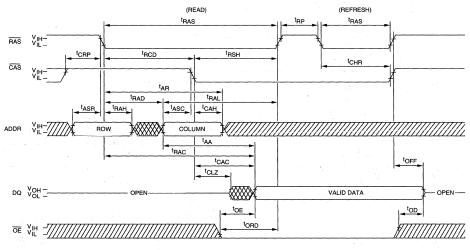
SELF REFRESH CYCLE (Addresses and OE = DON'T CARE)



NOTE: 1. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.

2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

READ CYCLE (with WE-controlled disable)



NOTE:

 Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for ^tWRP and ^tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

HIDDEN REFRESH CYCLE 24 (WE = HIGH; OE = LOW)

DON'T CARE

₩ UNDEFINED

DRAM

16 MEG x 4 DRAM

3.3V, EDO PAGE MODE

FEATURES

- Single $+3.3V \pm 0.3V$ power supply
- Industry-standard x4 pinout, timing, functions and packages
- 13 row-addresses, 11 column-addresses (G3) or 12 row-addresses, 12 column-addresses (H9)
- High-performance CMOS silicon-gate process
- · All inputs and outputs are LVTTL-compatible
- Extended Data-Out (EDO) PAGE MODE access
- 4,096-cycle CAS-BEFORE-RAS (CBR) REFRESH distributed across 64ms

OPTIONS MARKING Timing 50ns access -5 60ns access -6 70ns access -7 Packages Plastic SOI (500 mil) DW Plastic TSOP (500 mil) TW

Part Number Example: MT4LC16M4G3DW-7

KEY TIMING PARAMETERS

SPEED	tRC	^t RAC	^t PC	†AA	1CAC	tCAS
-5	90ns	50ns	20ns	25ns	13ns	8ns
-6	110ns	60ns	25ns	30ns	15ns	10ns
-7	130ns	70ns	30ns	35ns	20ns	12ns

GENERAL DESCRIPTION

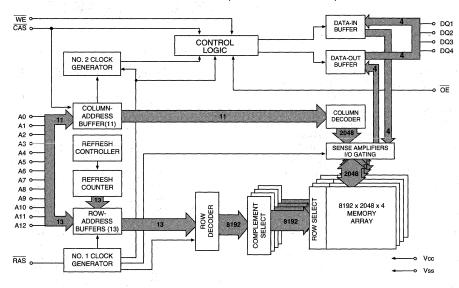
The MT4LC16M4G3 and MT4LC16M4H9 are high-speed CMOS dynamic random access memory devices containing 67,108,864 bits, and designed to operate from 3.0V to 3.6V. The MT4LC16M4G3 and MT4LC16M4H9 are functionally organized as 16,777,216 locations containing 4 bits each. The 16,777,216 memory locations are arranged in 8,192 rows by 2,048 columns for the MT4LC16M4G3 or 4,096 rows by 4,096 columns for the MT4LC16M4H9. During READ or WRITE cycles, each location is uniquely addressed via the address bits. First, the row address is latched by the RAS signal, then the column address by \overline{CAS} . Both devices provide EDO PAGE MODE operation, allowing for fast successive data operations (READ, WRITE or READ-MODIFY-WRITE) within a given row.

The MT4LC16M4G3 and MT4LC16M4H9 must be refreshed periodically in order to retain stored data.

PIN ASSIGNMENT (Top View)

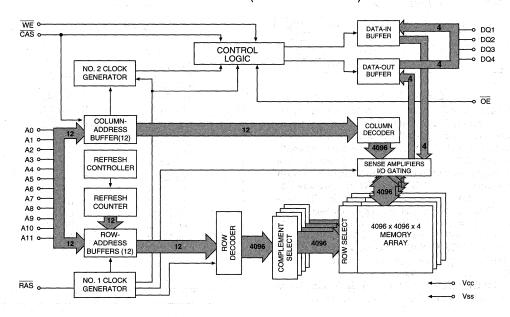
34-Pin SOJ (DA-6)

Vcc		1 •	34	Vss
DQ1		2	33	DQ4
DQ2		3	32	DQ3
NC		4	31	NC
NC		5	30 🗆	NC
NC	Ц	6	29	NC
NC	d	7	28	CAS
WE	Ц	8	27	ŌE
RAS	q	9	26	NC
NC	q	10	25 🛚	A12/NC
A0	q	11	24	A11
A1	q	12	23 🏳	A10
A2	П	13	22	A9
A3	9	14	21	A8
A4	9	15	20 🛭	A7
A5	9	16	19 🛚	A6
Vcc	9	17	18 🖟	Vss


34-Pin TSOP*

Vcc	1 4 ; 4 ; 2 .	34	声	Vss
DQ1 🞞	2	33	Ь	DQ4
DQ2 III	3	32	口	DQ3
NC I	4	31	田	NC
NC I	5	30	田	NC
NC I	6	29	Ш	NC
NC I	7	28	田	CAS
WE I	8	27	田	ŌĒ
RAS III	9	26	ш	NC
NC I	10	25	Ш	A12/NC
A0 □	11	24	ш	A11
A1 🗆	12	23	Ш	A10
A2 🖂	13	22	田	A9
A3 □	14	21	Ш	A8
A4 🖂	15	20	Þ	A7
A5 □□	16	19	ш	A6
Vcc □□	17	18	Ш	Vss

*Consult factory for dimensions and availability.


FUNCTIONAL BLOCK DIAGRAM

MT4LC16M4G3 (13 row-addresses)

FUNCTIONAL BLOCK DIAGRAM

MT4LC16M4H9 (12 row-addresses)

FUNCTIONAL DESCRIPTION

The functional description for the MT4LC16M4G3 and MT4LC16M4H9 is divided into the two areas described below (DRAM access and DRAM refresh). Relevant timing diagrams are included in this data sheet, following the timing specifications tables.

DRAM ACCESS

Each location in the DRAM is uniquely addressable as mentioned in the General Description. The data for each location is accessed via the four I/O pins (DQ1-4). The $\overline{\text{WE}}$ signal must be activated to execute a write operation, otherwise a read operation will be performed. The $\overline{\text{OE}}$ signal must be activated to enable the DQ output drivers for a read access and can be deactivated to disable output data if necessary.

EDO PAGE MODE

DRAM READ cycles have traditionally turned the output buffers off (High-Z) with the rising edge of $\overline{\text{CAS}}$. If $\overline{\text{CAS}}$ went HIGH, and $\overline{\text{OE}}$ was LOW (active), the output buffers would be disabled. The MT4LC16M4G3 and MT4LC16M4H9 offer an accelerated PAGE MODE cycle by eliminating output disable from $\overline{\text{CAS}}$ HIGH. This option is called EDO and it allows $\overline{\text{CAS}}$ precharge time (${}^{\text{t}}\text{CP}$) to occur without the output data going invalid (see READ and EDO-PAGE-MODE READ waveforms).

EDO operates as any DRAM READ or FAST-PAGE-MODE READ, except data will be held valid after \overline{CAS} goes HIGH, as long as \overline{RAS} and \overline{OE} are held LOW and \overline{WE} is held HIGH. \overline{OE} can be brought LOW or HIGH while \overline{CAS} and \overline{RAS} are LOW, and the DQs will transition between valid data and High-Z. Using \overline{OE} , there are two methods to disable the outputs and keep them disabled during the \overline{CAS} HIGH time. The first method is to have \overline{OE} HIGH when \overline{CAS} transitions HIGH and keep \overline{OE} HIGH for tOEHC thereafter. This will disable the DQs and they will remain disabled (regardless of the state of \overline{OE} after that point) until \overline{CAS} falls again. The second method is to

have $\overline{\text{OE}}$ LOW when $\overline{\text{CAS}}$ transitions HIGH. Then bringing $\overline{\text{OE}}$ HIGH for a minimum of ${}^{\text{t}}\text{OEP}$ anytime during the $\overline{\text{CAS}}$ HIGH period will disable the DQs; the DQs will remain disabled (regardless of the state of $\overline{\text{OE}}$ after that point) until $\overline{\text{CAS}}$ falls again (please refer to Figure 1). During other cycles, the outputs are disabled at ${}^{\text{t}}\text{OFF}$ time after $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ are HIGH, or ${}^{\text{t}}\text{WHZ}$ after $\overline{\text{WE}}$ transitions LOW. The ${}^{\text{t}}\text{OFF}$ time is referenced from the rising edge of $\overline{\text{RAS}}$ or $\overline{\text{CAS}}$, whichever occurs last. $\overline{\text{WE}}$ can also perform the function of disabling the output drivers under certain conditions, as shown in Figure 2.

EDO PAGE MODE operations are always initiated with a row-address strobed-in by the \overline{RAS} signal, followed by a column-address strobed-in by \overline{CAS} , just like for single location accesses. However, subsequent column locations within the row may then be accessed at the page mode cycle time. This is accomplished by cycling \overline{CAS} while holding \overline{RAS} LOW, and entering new column addresses with each \overline{CAS} cycle. Returning \overline{RAS} HIGH terminates the EDO PAGE MODE operation.

DRAM REFRESH

The supply voltage must be maintained at the specified levels, and the refresh requirements must be met in order to retain stored data in the DRAM. The refresh requirements are met by refreshing all 8,192 rows (G3) or all 4,096 rows (H9) in the DRAM array at least once every 64ms. The recommended procedure is to execute 4,096 CBR REFRESH cycles, either uniformly spaced or grouped in bursts, every 64ms. The MT4LC16M4G3 internally refreshes two rows for every CBR cycle, whereas the MT4LC16M4H9 refreshes one row for every CBR cycle. So with either device, executing 4,096 CBR cycles covers all rows. Alternatively, RAS-ONLY REFRESH capability is inherently provided. However, with this method only one row is refreshed at a time, so for the MT4LC16M4G3, 8,192 RAS-ONLY REFRESH cycles must be executed every 64ms to cover all rows.

MICHON

MT4LC16M4G3/H9 16 MEG x 4 DRAM

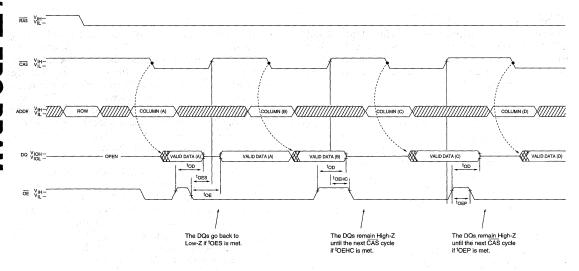


Figure 1
OE CONTROL OF DQs

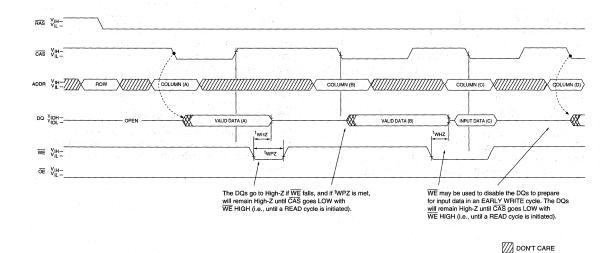


Figure 2
WE CONTROL OF DQs

₩ UNDEFINED

Ш

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	3.0	3.6	V	
Input High (Logic 1) Voltage, all inputs	ViH	2.0	5.5	V	
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le 5.5V$ (All other pins not under test = $0V$)	lı .	-2	2	μА	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vout ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (Iout = -2mA)	Vон	2.4		V	
Output Low Voltage (lout = 2mA)	Vol		0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

Notes: 1, 6, 7) (Vcc = +3.3V ±0.3V)				MAX			
PARAMETER/CONDITION	VERSION	SYMBOL	-5	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL)	MT4LC16M4G3	Icc1	1	1	1	mA	140
(RAS = CAS = VIH)	MT4LC16M4H9	Icc1	1	1	1	1984 B	1.75
STANDBY CURRENT: (CMOS)	MT4LC16M4G3	Icc2	500	500	500		
$(\overline{RAS} = \overline{CAS} \ge Vcc -0.2V$, DQs may be left open, Other inputs: $Vin \ge Vcc -0.2V$ or $Vin \le 0.2V$)	MT4LC16M4H9	Icc2	500	500	500	μΑ	
OPERATING CURRENT: Random READ/WRITE	MT4LC16M4G3	Icc3	130	120	110		3, 4,
Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	MT4LC16M4H9	Icc3	170	160	150	mA	29
OPERATING CURRENT: EDO PAGE MODE	MT4LC16M4G3	ICC4	150	120	100		3, 4,
Average power supply current $(\overline{RAS} = V_{IL}, \overline{CAS}, Address Cycling: {}^{t}PC = {}^{t}PC [MIN])$	MT4LC16M4H9	Icc4	150	120	100	mA	29
REFRESH CURRENT: RAS ONLY	MT4LC16M4G3	Icc5	130	120	110		3, 26
Average power supply current (RAS Cycling, CAS = VIH: ^t RC = ^t RC [MIN])	MT4LC16M4H9	Icc5	170	160	150	mA	
REFRESH CURRENT: CBR	MT4LC16M4G3	Icc6	140	130	120		
Average power supply current (RAS, CAS, Address Cycling: ¹ RC = ¹ RC [MIN])	MT4LC16M4H9	Icc6	170	160	150	mA	3, 5

MT4LC16M4G3/H9 16 MEG x 4 DRAM

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: Address pins	Cıı	5	pF	2
Input Capacitance: RAS, CAS, WE, OE	C ₁₂	7	pF	2
Input/Output Capacitance: DQ	Cıo	9	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = +3.3V ±0.3V)

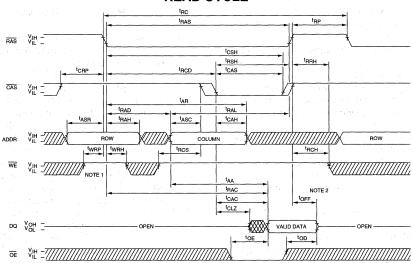
AC CHARACTERISTICS			-5		-6		-7		May and
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA	-	25		30		35	ns	3.4
Column-address set-up to CAS going HIGH during WRITE	^t ACH	15		15		15		ns	
Column-address hold time (referenced to RAS)	^t AR	40		45		55		ns	
Column-address setup time	†ASC	0		0		0		ns	
Row-address setup time	tASR	0		0		0		ns	
Column-address to WE delay time	tAWD	48		55		65		ns	21
Access time from CAS	^t CAC		13		15		20	ns	15
Column-address hold time	^t CAH	8		10		12		ns	4.2. 3.
CAS pulse width	^t CAS	8	10,000	10	10,000	12	10,000	ns	
CAS hold time (CBR REFRESH)	^t CHR	8		10		12	P	ns	5
CAS to output in Low-Z	†CLZ	0	Section 1	0		0	Barrier No. 19	ns	
Data output hold after CAS LOW	tCOH	5		5		5	1 1 1 1 1 1 1 1 1	ns	
CAS precharge time	^t CP	8		10		10		ns	16
Access time from CAS precharge	^t CPA		28		35		40	ns	
CAS to RAS precharge time	^t CRP	5		5		5		ns	
CAS hold time	^t CSH	44		50		55	17	ns	1344
CAS setup time (CBR REFRESH)	^t CSR	5		5		5		ns	5
CAS to WE delay time	tCWD	30		35		40		ns	21
Write command to CAS lead time	^t CWL	8	15	15		15		ns	180
Data-in hold time	tDH .	8		10		12		ns	22
Data-in hold time (referenced to RAS)	tDHR .	40		45		55		ns	34.474
Data-in setup time	tDS	0		0		0		ns	22
Output disable	^t OD	0	13	0	15	0	15	ns	27, 28
Output Enable time	^t OE		13		15		15	ns	1
OE hold time from WE during READ-MODIFY-WRITE cycle	†OEH	8		10		12		ns	28
OE HIGH hold time from CAS HIGH	^t OEHC	7		10		10		ns	
OE HIGH pulse width	^t OEP	7		10		10		ns	
OE LOW to CAS HIGH setup time	^t OES	4		5	4 1 2 2 2	5		ns	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

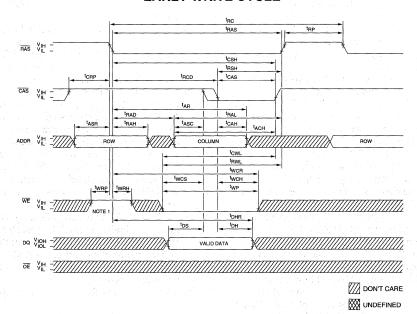
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS			-5		-6	54 J	-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	0	13	0	15	0	15	ns	20, 27
OE setup prior to RAS during HIDDEN REFRESH cycle	tORD	0	* 1:5.1	0		0		ns	1.44
EDO-PAGE-MODE READ or WRITE cycle time	^t PC	20		25		30		ns	
EDO-PAGE-MODE READ-WRITE cycle time	^t PRWC	71		75		85	1 1 192	ns	
Access time from RAS	†RAC		50		60		70	ns	14
RAS to column-address delay time	tRAD	9	25	12	30	12	35	ns	18
Row-address hold time	^t RAH	8		10		10	144 1 4	ns	
Column-address to RAS lead time	^t RAL	25		30		35	A 1 4 4 1	ns	
RAS pulse width	†RAS	50	10,000	60	10,000	70	10,000	ns	
RAS pulse width (EDO PAGE MODE)	tRASP	50	125,000	60	125,000	70	125,000	ns	
Random READ or WRITE cycle time	tRC	90		110		130		ns	
RAS to CAS delay time	tRCD	11	37	14	45	14	50	ns	17
Read command hold time (referenced to CAS)	tRCH	0		0		0		ns	19
Read command setup time	tRCS	0		0		0		ns	14 144
Refresh period	^t REF		64		64		64	ms	26
RAS precharge time	tRP :	30		40		50		ns	
RAS to CAS precharge time	tRPC	0		0		0		ns	
Read command hold time (referenced to RAS)	tRRH	0		0		0		ns	19
RAS hold time	tRSH	8		10		12		ns	
READ WRITE cycle time	^t RWC	126		150		177		ns	11.00
RAS to WE delay time	tRWD	73		80		90		ns	21
Write command to RAS lead time	tRWL	8		15		15		ns	2 1 A
Transition time (rise or fall)	t _T	1	50	2	50	2	50	ns	
Write command hold time	tWCH	8	1.1	10		12	The arms.	ns	V 12.
Write command hold time (referenced to RAS)	tWCR	40		45	Latin Service	55		ns	
WE command setup time	twcs	0		0	1	0	1.50	ns	21
WE to outputs in High-Z	tWHZ		10		13		15	ns	
Write command pulse width	tWP	7		10		12		ns	W 9 (1) 1.11
WE pulse width to disable outputs	tWPZ	7		10		12		ns	1.5
WE hold time (CBR REFRESH)	tWRH	8		10	1	10		ns	25
WE setup time (CBR REFRESH)	tWRP	8		10		10	1	ns	25

MT4LC16M4G3/H9 16 MEG x 4 DRAM

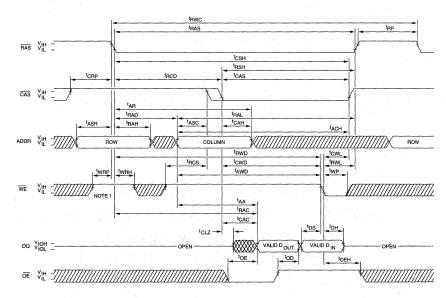

NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. VCC = +3.3V; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- 8. AC characteristics assume ^tTof 2ns for -5 and 2.5ns for -6 and -7.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{\text{CAS}}$ and $\overline{\text{RAS}}$ = ViH, data output is High-Z.
- 12. If $\overline{\text{CAS}} = \text{Vil.}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates, 100pF and Vol = 0.8V and VoH = 2.0V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, output data will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for CP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.

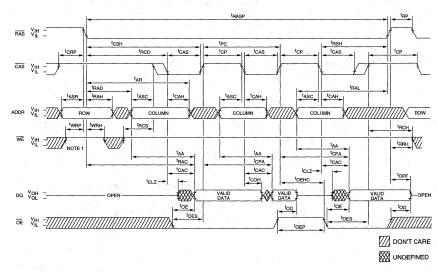

- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition, and is not referenced to Voн or Vol.
- 21. tWCS, tRWD, tAWD and tCWD are not restrictive operating parameters. tWCS applies to EARLY WRITE cycles. If tWCS > tWCS MIN, the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. tRWD, tAWD and tCWD define READ-MODIFY-WRITE cycles. Meeting these limits allows for reading and disabling output data and then applying input data. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. tWCS, tRWD, tCWD and tAWD are not applicable in a LATE WRITE cycle.
- These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. If \overline{OE} is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and \overline{OE} = HIGH.
- 25. WTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.
- 26. RAS-ONLY REFRESH requires that all 8,192 rows of the MT4LC16M4G3, or all 4,096 rows of the MT4LC16M4H9, be refreshed at least once every 64ms. CBR REFRESH, for either device, requires that at least 4,096 cycles be completed every 64ms.
- 27. The DQs open during READ cycles once ^tOFF occur. If \overline{CAS} stays LOW while \overline{OE} is brought HIGH, the DQs will open. If \overline{OE} is brought back LOW (\overline{CAS} still LOW), the DQs will provide the previously read data.
- 28. LATE WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. If OE is taken back LOW while CAS remains LOW, the DQs will remain open.
- 29. Column-address changed once each cycle.

READ CYCLE

EARLY WRITE CYCLE

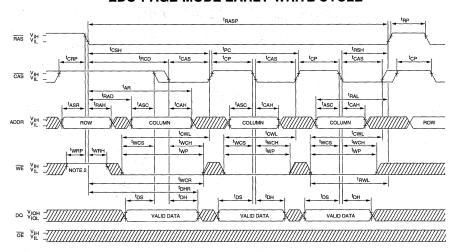


NOTE:

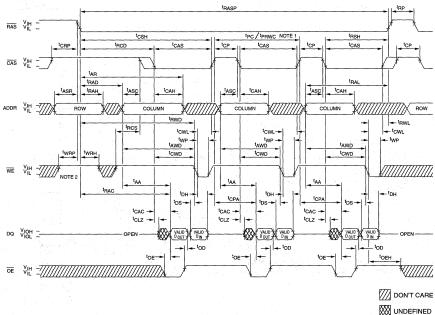

- Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for ^tWRP and ^tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.
- 2. tOFF is referenced from rising edge of RAS or CAS, which ever occurs last.

YICHMOLOGY, INC.

READ WRITE CYCLE(LATE WRITE and READ-MODIFY-WRITE cycles)



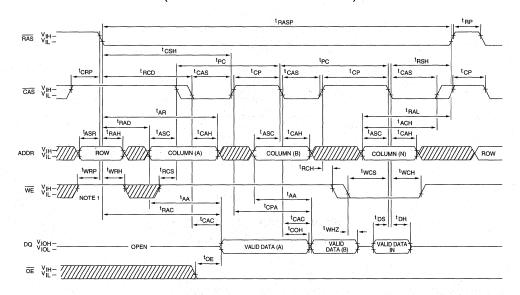
EDO-PAGE-MODE READ CYCLE



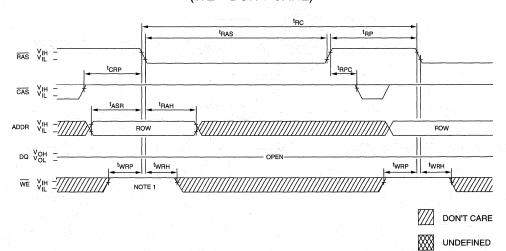
NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for ^tWRP and ^tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

EDO-PAGE-MODE EARLY-WRITE CYCLE

EDO-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)

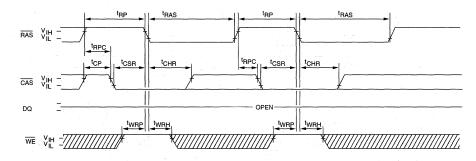


NOTE:

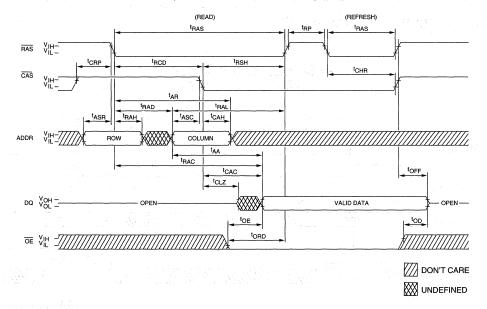

- 1. ^tPC is for LATE WRITE cycles only.
- Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

EDO-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)

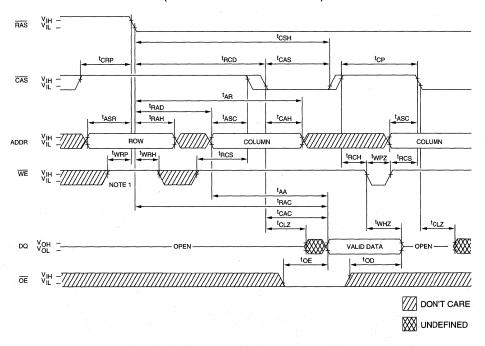
RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)



NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.


CBR REFRESH CYCLE

(Addresses and OE = DON'T CARE)


HIDDEN REFRESH CYCLE 24

 $(\overline{WE} = HIGH; \overline{OE} = LOW)$

READ CYCLE (with WE-controlled disable)

NOTE:

 Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

DRAM

2 MEG x 8 DRAM

3.3V, EDO PAGE MODE, OPTIONAL SELF REFRESH

FEATURES

- Industry-standard x8 pinout, timing, functions and packages
- High-performance CMOS silicon-gate process
- Single +3.3V ±0.3V power supply
- Low power, 0.3mW standby; 150mW active, typical
- All inputs, outputs and clocks are TTL-compatible
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN and SELF
- 2,048-cycle refresh (11 row-, 10 column-addresses)
- Optional SELF REFRESH, Extended Refresh rate (4x)
- Extended Data-Out (EDO) PAGE access cycle
- 5V tolerant I/Os (5.5V maximum VIH level)

OPTIONS MARKING Timing 60ns access -6 -7 70ns access Packages Plastic SOJ (300 mil) DI Plastic TSOP (300 mil) TG Refresh Rate Standard 32ms period None SELF REFRESH and 128ms periods S

KEY TIMING PARAMETERS

• Part Number Example: MT4LC2M8E7DJ-7 S

SPEED	^t RC	tRAC	tPC	tAA .	tCAC	tCAS
-6	110ns	60ns	25ns	30ns	15ns	10ns
-7	130ns	70ns	30ns	35ns	20ns	12ns

GENERAL DESCRIPTION

The MT4LC2M8E7(S) is a randomly accessed solid-state memory containing 16,777,216 bits organized in a x8 configuration. The MT4LC2M8E7(S) RAS is used to latch the first 11 bits and CAS the latter 10 bits (A10 is ignored during CAS falling edge.) READ and WRITE cycles are selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on $\overline{\text{WE}}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. If WE goes LOW prior to CAS going LOW, the output pins remain open (High-Z) until the next \overline{CAS} cycle, regardless of \overline{OE} .

		in SC A-5)	J	28-Pin TSOP (DB-3)					
		والتلوالية			K.				
Vcc [1	28	Vss	Vcc Ⅲ	1	28	₩ Vss		
DQ1	2	27	DQ8	DQ1 Ⅲ	2	27	DQ8		
DQ2	3	26	DQ7	DQ2 III	3	26	DQ7		
DQ3	4	25	DQ6	DQ3 🖂	4	25	DQ6		
DQ4	5	24	DQ5	DQ4 □	5	24	DQ5		
WE	6	23	CAS	WE I	6	23	CAS		
RAS	7	22] OE	RAS I	7	22	⊞ OE		
NC E	8	21	A9	NC I	8	21	□ A9		
A10 [9	20	A8	A10 □			- A8 -		
A0 [10	19] A7	A0 □			□ A7		
A1 [11	18	□ A6	A1 □			□ A6		
A2 [12	17	□ A5	A2 □			□ A5		
A3 [13	16] A4	A3 □			□ A4		
Vcc [14	15] Vss	Vcc □	14	15	□ Vss		
							11000		
		100							

If $\overline{\text{WE}}$ goes LOW after $\overline{\text{CAS}}$ goes LOW, data-out (Q) is activated and retains the selected cell data as long as OE remains LOW and RAS or CAS remains LOW (regardless of $\overline{\text{WE}}$). This late $\overline{\text{WE}}$ pulse results in a READ WRITE cycle.

If WE toggles LOW after CAS goes back HIGH, the output pins will open (High-Z) until the next CAS cycle, regardless of \overline{OE} .

The eight data inputs and the eight data outputs are routed through eight pins using common I/O, and pin direction is controlled by WE and OE.

PAGE ACCESS

PAGE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-addressdefined page boundary. The PAGE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different columnaddresses, thus executing faster memory cycles. Returning RAS HIGH terminates the PAGE MODE of operation.

EDO PAGE MODE

The MT4LC2M8E7(S) provides EDO PAGE MODE, which is an accelerated FAST PAGE MODE cycle. The primary advantage of EDO is the availability of data-out even after $\overline{\text{CAS}}$ returns HIGH. EDO provides for $\overline{\text{CAS}}$ precharge time ($^{\text{t}}\text{CP}$) to occur without the output data going invalid. This elimination of $\overline{\text{CAS}}$ output control provides for pipeline READs.

FAST-PAGE-MODE DRAMs have traditionally turned the output buffers off (High-Z) with the rising edge of $\overline{\text{CAS}}$. EDO-PAGE-MODE DRAMs operate similar to FAST-PAGE-MODE DRAMs, except data will remain valid or become valid after $\overline{\text{CAS}}$ goes HIGH during READs, provided $\overline{\text{RAS}}$ and $\overline{\text{OE}}$ are held LOW. If $\overline{\text{OE}}$ is pulsed while $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ are LOW, data will toggle from valid data to High-Z and back to the same valid data. If $\overline{\text{OE}}$ is toggled or pulsed after $\overline{\text{CAS}}$ goes HIGH while $\overline{\text{RAS}}$ remains LOW, data will transition to and remain High-Z (refer to Figure 1).

If the DQ outputs are wire OR'd, \overline{OE} must be used to disable idle banks of DRAMs. Alternatively, pulsing \overline{WE} to the idle banks during \overline{CAS} HIGH time will also High-Z the outputs. Independent of \overline{OE} control, the outputs will disable after ${}^t\!OFF$, which is referenced from the rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last.

REFRESH

Preserve correct memory cell data by maintaining power and executing a RAS cycle (READ, WRITE) or RAS

refresh cycle (RASONLY, CBR or HIDDEN) so that all 2,048 combinations of RAS addresses are executed at least every 32ms, regardless of sequence. The CBR REFRESH cycle will invoke the refresh counter for automatic RAS addressing.

An optional SELF REFRESH mode is also available on the MT4LC2M8E7 S. The "S" version allows the user the choice of a fully static low-power data retention mode or a dynamic refresh mode at the extended refresh period of 128ms, four times longer than the standard 32ms specification.

The optional SELF REFRESH feature is initiated by performing a CBR REFRESH cycle and holding RAS LOW for the specified ^tRASS. Additionally, the "S" version allows for an extended refresh rate of 62.5µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation or during a standby or BATTERY BACKUP mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for a minimum time of ${}^{t}RPS$ ($\approx^{t}RC$). This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all 2,048 rows must be refreshed within 300µs prior to the resumption of normal operation.

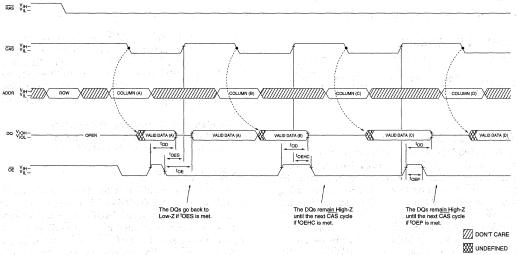
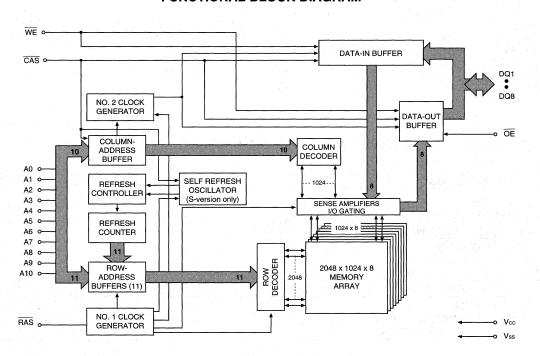



Figure 1
OUTPUT ENABLE AND DISABLE

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

						ADDR	ESSES	DATA-IN/OUT
FUNCTION		RAS	CAS	WE	0E	t _R	tC t	DQ1-DQ4
Standby		Н	H→X	Х	Х	Х	Х	High-Z
READ		L	L	Н	L	ROW	COL	Data-Out
EARLY WRITE		L	L	L	Х	ROW	COL	Data-In
READ WRITE		L	L y	H→L	L→H	ROW	COL	Data-Out, Data-In
EDO-PAGE-MODE	1st Cycle	L	H→L	Н	L	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	Н	L	n/a	COL	Data-Out
EDO-PAGE-MODE	1st Cycle	L	H→L	L	Х	ROW	COL	Data-In
EARLY-WRITE	2nd Cycle	L	H→L	L	Х	n/a	COL	Data-In
EDO-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In
RAS-ONLY REFRESH		L	Н	Х	X	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	Х	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	Х	Х	X	High-Z
SELF REFRESH		H→L	L	Н	X	X	Х	High-Z

ABSOLUTE MAXIMUM RATINGS* Voltage on Vcc pin Relative to Vss-1V to +4.6V

 *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	V cc	3.0	3.6	V	
Input High (Logic 1) Voltage, all inputs (including NC pins)	ViH	2.0	5.5	V	
Input Low (Logic 0) Voltage, all inputs (including NC pins)	VIL	-1.0	0.8	- V	
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le 5.5V$ (All other pins not under test = $0V$)	=	-2	2	μА	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vout ≤ 5.5V)	loz	-10	10	μА	
OUTPUT LEVELS Output High Voltage (Ιουτ = -2mA)	Vон	2.4		V	
Output Low Voltage (lout = 2mA)	Vol		0.4	V	

MT4LC2M8E7(S) 2 MEG x 8 DRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)		MAX		1 1	<u> </u>
PARAMETER/CONDITION	SYMBOL	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	lcc1	2	2	mA	
STANDBY CURRENT: (CMOS)	Icc2	500	500	μΑ	
$(\overline{RAS} = \overline{CAS} = Other Inputs = Vcc -0.2V)$	Icc2 (S only)	150	150	μΑ	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: [†] RC = [†] RC [MIN])	Icc3	130	120	mA	3, 4, 12
OPERATING CURRENT: EDO PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN])	Icc4	120	110	mA	3, 4, 12
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = VIH: ¹RC = ¹RC [MIN])	Iccs	130	120	mA	3, 12
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Icc6	130	120	mA	3, 5
REFRESH CURRENT: Extended (S version only) Average power supply current, $\overline{CAS} = 0.2V$ or CBR cycling; $\overline{RAS} = {}^{t}RAS(MIN); \overline{WE} = Vcc - 0.2V; A0-A10, \overline{OE}$ and $DIN = Vcc - 0.2V$ or $0.2V$ (DIN may be left open); ${}^{t}RC = 62.5\mu s$	lcc7 (S only)	300	300	μА	3, 5
REFRESH CURRENT: SELF (S version only) Average power supply current, CBR cycling with RAS ≥ [†] RASS(MIN) and CAS held LOW; WE = Vcc -0.2V; A0-A10, OE and DIN = Vcc -0.2V or 0.2V (DIN may be left open)	lccs (S only)	300	300	μА	5

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: Address pins	C _{l1}	5	pF	2
Input Capacitance: RAS, CAS, WE, OE	Cı2	7	pF	2
Input/Output Capacitance: DQ	Cio	7	pF	2

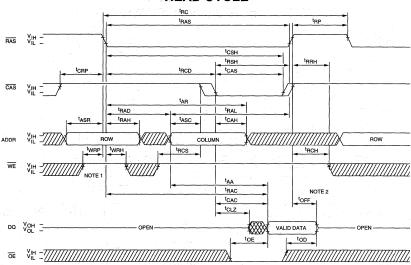
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes: 6, 7, 8, 9, 10, 11, 12) (Vcc = +3.3V \pm 0.3V)

AC CHARACTERISTICS PARAMETER			-6		-7		
	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	†AA		30		35	ns	
Column-address set-up to CAS precharge during WRITE	^t ACH	15		15	12.0	ns	1 14.1.1
Column-address hold time (referenced to RAS)	^t AR	45		55	1 2 2	ns	
Column-address setup time	†ASC	0		0		ns	
Row-address setup time	†ASR	0		0		ns	3 E E
Column-address to WE delay time	tAWD	55		65	F 1 1911	ns	20
Access time from CAS	^t CAC		15		20	ns	14
Column-address hold time	^t CAH	10		12		ns	
CAS pulse width	†CAS	10	10,000	12	10,000	ns	£
CAS LOW to "don't care" during SELF REFRESH cycle	^t CHD	15		15		ns	25
CAS hold time (CBR REFRESH)	tCHR	10		12		ns	5
CAS to output in Low-Z	^t CLZ	0		0		ns	
Data output hold after next CAS LOW	^t COH	5		5		ns	
CAS precharge time	^t CP	10		10		ns	15
Access time from CAS precharge	^t CPA	of Leading 11	35	11.5	40	ns	
CAS to RAS precharge time	^t CRP	5		5	eng ata	ns	
CAS hold time	^t CSH	50		55		ns	
CAS setup time (CBR REFRESH)	tCSR	5		5		ns	5
CAS to WE delay time	tCWD	35		40		ns	20
Write command to CAS lead time	tCWL	15		15		ns	
Data-in hold time	^t DH	10		12		ns	21
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	tDS	0		0		ns	21
Output disable	tOD	0	15	0	15	ns	
Output Enable	^t OE		15		15	ns	22
OE hold time from WE during READ-MODIFY-WRITE cycle	[†] OEH	12		12		ns	
OE HIGH hold from CAS HIGH	†OEHC	10		10		ns	

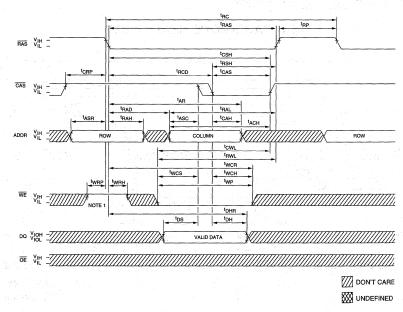
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS PARAMETER	SYM	-6		- 7			
		MIN	MAX	MIN	MAX	UNITS	NOTES
OE HIGH pulse width	^t OEP	10	nor and	10	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ns	
OE LOW to CAS HIGH setup time	tOES	- 5		5		ns	
Output buffer turn-off delay	^t OFF	3	15	3	15	ns	- Florida II
OE setup prior to RAS during HIDDEN REFRESH cycle	tORD	0		0		ns	
EDO-PAGE-MODE READ or WRITE cycle time	^t PC	25		30		ns	
EDO-PAGE-MODE READ-WRITE cycle time	^t PRWC	75		85		ns	
Access time from RAS	^t RAC		60		70	ns	13
RAS to column-address delay time	^t RAD	12	30	12	35	ns	17
Row-address hold time	^t RAH	10		10		ns	()
Column-address to RAS lead time	^t RAL	30		35		ns	
RAS pulse width	†RAS	60	10,000	70	10,000	ns	
RAS pulse width (EDO PAGE MODE)	^t RASP	60	125,000	70	125,000	ns	
RAS pulse width during SELF REFRESH cycle	†RASS	100		100		μs	25
Random READ or WRITE cycle time	^t RC	110		130		ns	
RAS to CAS delay time	^t RCD	14	45	14	50	ns	16
Read command hold time (referenced to CAS)	tRCH	0		0		ns	18
Read command setup time	^t RCS	0	1 2 2 2	0		ns	. 4
Refresh period (2,048 cycles) S version	^t REF		128		128	ms	
Refresh period (2,048 cycles)	tREF		32	12.00	32	ms	
RAS precharge time	^t RP	40		50		ns	
RAS to CAS precharge time	^t RPC	0		0		ns	
RAS precharge time during SELF REFRESH cycle	†RPS	110		130		ns	25
Read command hold time (referenced to RAS)	tRRH	0	2	0		ns	18
RAS hold time	tRSH	10		12	e village to	ns	
READ WRITE cycle time	†RWC	150	Tal Male	177	A water	ns	
RAS to WE delay time	tRWD	80		90	a Alama	ns	20
Write command to RAS lead time	tRWL	15	The Table	15	1 10 15	ns	
Transition time (rise or fall)	т	2	50	2	50	ns	7
Write command hold time	tWCH	10		12		ns	13.80
Write command hold time (referenced to RAS)	tWCR	45	1 174 11	55		ns	
WE command setup time	tWCS	0		0	The state of	ns	20
Output disable delay from WE	^t WHZ	0	13	0	15	ns	ing die
Write command pulse width	†WP	10		12		ns	
WE pulse to disable at CAS HIGH	tWPZ	10	The second	12		ns	
WE hold time (CBR REFRESH)	†WRH	10		10		ns	24
WE setup time (CBR REFRESH)	tWRP	10		10	1.5	ns	24

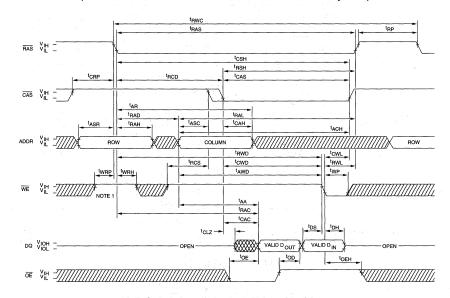

DO DRAM

NOTES

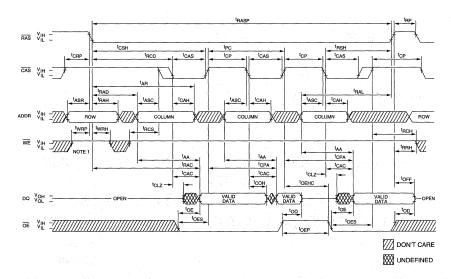

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = +3.3V; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 2.5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIL and VIH) in a monotonic manner.
- 11. Column address changed once each cycle.
- 12. Measured with a load equivalent to two TTL gates, 100pF and Vol = 0.8V and Voh = 2.0V.
- 13. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 14. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 15. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 16. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC, provided ^tRAD is not exceeded.
- 17. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA, provided ^tRCD is not exceeded.

- 18. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 19. OFF (MAX) defines the time at which the output achieves the open circuit condition, and is not referenced to Voh or Vol. It is referenced from the rising edge of RAS or CAS, whichever occurs last.
- 20. tWCS, tRWD, tAWD and tCWD are not restrictive operating parameters. tWCS applies to EARLY WRITE cycles. tRWD, tAWD and tCWD apply to READ-MODIFY-WRITE cycles. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If tWCS < tWCS (MIN) and ${}^{t}RWD \ge {}^{t}RWD (MIN), {}^{t}AWD \ge {}^{t}AWD (MIN) and$ tCWD ≥ tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. tWCS, tRWD, tCWD and tAWD are not applicable in a LATE WRITE cycle.
- These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 22. If \overrightarrow{OE} is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not permissible and should not be attempted. Additionally, WE must be pulsed during \overrightarrow{CAS} HIGH time in order to palce I/O buffers in High-Z.
- 23. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 24. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.
- 25. Refresh must be completed within the time of three external refresh rate periods prior to active use of the DRAM (provided distributed CBR REFRESH is used when in the active mode). Alternatively, a complete set of row refreshes must be executed when exiting SELF REFRESH prior to active use of the DRAM if anything other than distributed CBR REFRESH is used in the active mode.

READ CYCLE

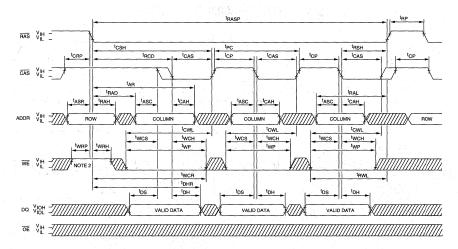


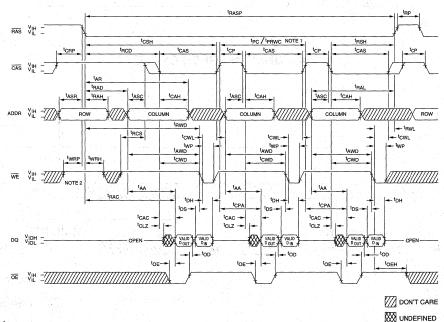
EARLY WRITE CYCLE



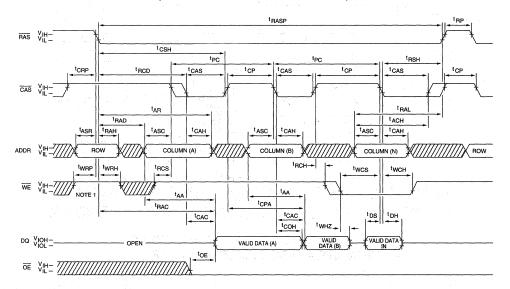
- NOTE:
- Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.
- 2. tOFF is referenced from rising edge of RAS or CAS, which ever occurs last.

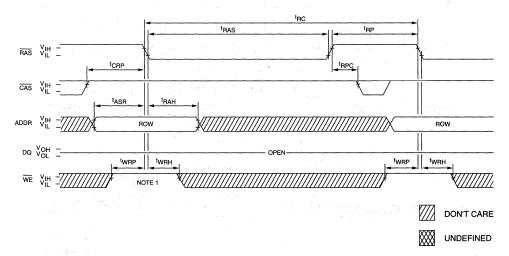
READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)


EDO-PAGE-MODE READ CYCLE


NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

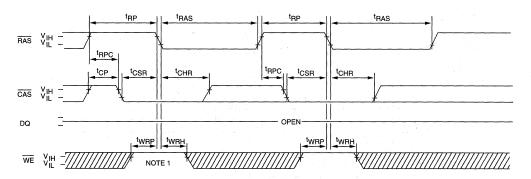
EDO-PAGE-MODE EARLY-WRITE CYCLE


EDO-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)

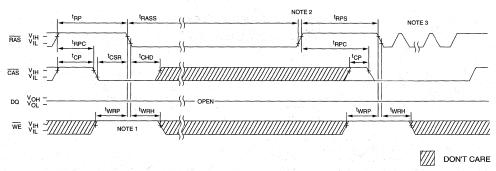

NOTE:

- 1. ^tPC is for LATE WRITE cycles only.
- Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for ^tWRP and ^tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

EDO-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)


RAS-ONLY REFRESH CYCLE

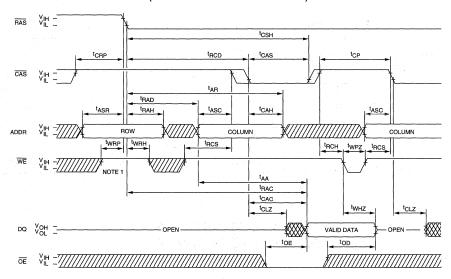
NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for twRP and twRH. This design implementation will facilitate compatibility with future EDO DRAMs.


CBR REFRESH CYCLE

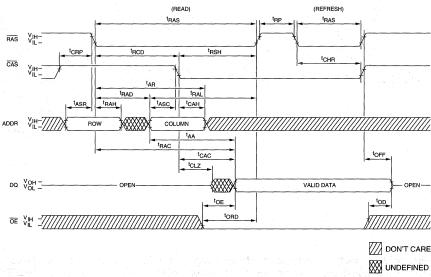
(Addresses and OE = DON'T CARE)

SELF REFRESH CYCLE

(Addresses and $\overline{OE} = DON'T CARE$)


UNDEFINED

NOTE:


- 1. WRP and WRH are for system design reference only. The WE signal is actually a "don't care" at RAS time during a CBR REFRESH. However, WE should be held HIGH at RAS time during a CBR REFRESH to ensure compatibility with other DRAMs that require WE HIGH at RAS time during a CBR REFRESH.
- 2. Once tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.
- 3. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

READ CYCLE

(with WE-controlled disable)

HIDDEN REFRESH CYCLE 24 (WE = HIGH; OE = LOW)

NOTE:

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

DRAM

8 MEG x 8 DRAM

3.3V, EDO PAGE MODE

FEATURES

- Single $+3.3V \pm 0.3V$ power supply
- Industry-standard x8 pinout, timing, functions and packages
- 13 row-addresses, 10 column-addresses (P4) or 12 row-addresses, 11 column-addresses (C2)
- High-performance CMOS silicon-gate process
- All inputs and outputs are LVTTL-compatible
- Extended Data-Out (EDO) PAGE MODE access
- 4,096-cycle CAS-BEFORE-RAS (CBR) REFRESH distributed across 64ms

OPTIONS

MARKING

•	Timing	
	50ns access	-5
	60ns access	-6
	70ns access	-7
•	Packages	
	Plastic SOJ (500 mil)	DW
	Plastic TSOP (500 mil)	TW

• Part Number Example: MT4LC8M8P4DW-7

KEY TIMING PARAMETERS

tRC	†RAC	tPC	tAA	†CAC	tCAS
90ns	50ns	20ns	25ns	13ns	8ns
110ns	60ns	25ns	30ns	15ns	10ns
130ns	70ns	30ns	35ns	20ns	12ns
	90ns 110ns	90ns 50ns 110ns 60ns	90ns 50ns 20ns 110ns 60ns 25ns	90ns 50ns 20ns 25ns 110ns 60ns 25ns 30ns	90ns 50ns 20ns 25ns 13ns 110ns 60ns 25ns 30ns 15ns

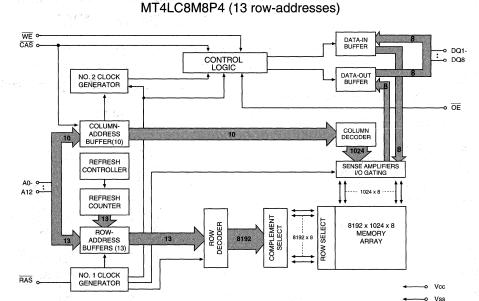
GENERAL DESCRIPTION

The MT4LC8M8P4 and MT4LC8M8C2 are high-speed CMOS dynamic random access memory devices containing 67,108,864 bits, and designed to operate from 3.0V to 3.6V. The MT4LC8M8P4 and MT4LC8M8C2 are functionally organized as 8,388,608 locations containing 8 bits each. The 8,388,608 memory locations are arranged in 8,192 rows by 1,024 columns for the MT4LC8M8P4 or 4,096 rows by 2,048 columns for the MT4LC8M8C2. During READ or WRITE cycles, each location is uniquely addressed via the address bits. First, the row address is latched by the $\overline{\rm RAS}$ signal, then the column address by $\overline{\rm CAS}$. Both devices provide EDO PAGE MODE operation, allowing for fast successive data operations (READ, WRITE or READ-MODIFY-WRITE) within a given row.

The MT4LC8M8P4 and MT4LC8M8C2 must be refreshed periodically in order to retain stored data.

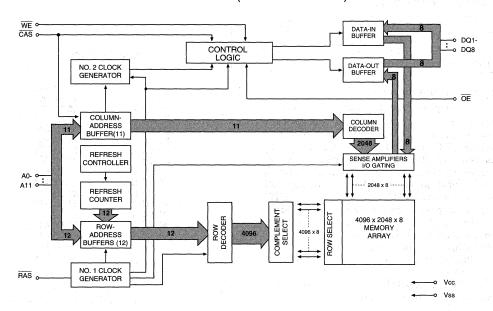
PIN ASSIGNMENT (Top View)

34-Pin SOJ (DA-6)


Vcc	d	1.	34]	Vss
DQ1	d	2	33]	DQ8
DQ2		3	32]	DQ7
DQ3	þ	4	31]	DQ6
DQ4	d	5	30]	DQ5
NC	Ц	6	29]	VSS
Vcc		7	28		CAS
WE	Ц	8	27]	ŌĒ
RAS	Ц	9	26]	NC
NC	4	10	25]	A12/NC
A0	9	11	24		A11
A1	9	12	23]	A10
A2		13	22]	A9
A3	9	14	21		A8
A4	9	15	20]	A7
A5	9	16	19]	A6
Vcc	9	17	18	J	Vss

34-Pin TSOP*

Vcc □	1	34 Ⅲ Vss
DQ1 □	2	33 🞞 DQ8
DQ2 □	3	32 🞞 DQ7
DQ3 II	4	31 🞞 DQ6
DQ4 II	5	30 🞞 DQ5
NC I	6	29 🎞 Vss
Vcc □	7	28 🎞 CAS
WE II	-	27 🎞 ŌE
RAS I	9	26 🖾 NC
NC □	10	25 🖾 A12/NC
A0 □	11	24 🖽 A11
A1 □	12	23 🞞 A10
A2 □	13	22 🞞 A9
A3 □	14	21 🞞 A8
A4 □	15	20 🗀 A7
A5 □	16	19 🖽 A6
Vcc □	(17	18 <u></u> ⊐ Vss


*Consult factory for dimensions and availability.

FUNCTIONAL BLOCK DIAGRAM

FUNCTIONAL BLOCK DIAGRAM

MT4LC8M8C2 (12 row-addresses)

FUNCTIONAL DESCRIPTION

The functional description for the MT4LC8M8P4 and MT4LC8M8C2 is divided into the two areas described below (DRAM access and DRAM refresh). Relevant timing diagrams are included in this data sheet, following the timing specification tables.

DRAM ACCESS

Each location in the DRAM is uniquely addressable as mentioned in the General Description. The data for each location is accessed via the eight I/O pins (DQ1-8). The $\overline{\text{WE}}$ signal must be activated to execute a write operation, otherwise a read operation will be performed. The $\overline{\text{OE}}$ signal must be activated to enable the DQ output drivers for a read access and can be deactivated to disable output data if necessary.

EDO PAGE MODE

DRAM READ cycles have traditionally turned the output buffers off (High-Z) with the rising edge of $\overline{\text{CAS}}$. If $\overline{\text{CAS}}$ went HIGH, and $\overline{\text{OE}}$ was LOW (active), the output buffers would be disabled. The MT4LC8M8P4 and MT4LC8M8C2 offer an accelerated PAGE MODE cycle by eliminating output disable from $\overline{\text{CAS}}$ HIGH. This option is called EDO and it allows $\overline{\text{CAS}}$ precharge time (${}^{\text{t}}\text{CP}$) to occur without the output data going invalid (see READ and EDO-PAGE-MODE READ waveforms in the noted appendix).

EDO operates as any DRAM READ or FAST-PAGE-MODE READ, except data will be held valid after $\overline{\text{CAS}}$ goes HIGH, as long as $\overline{\text{RAS}}$ and $\overline{\text{OE}}$ are held LOW and $\overline{\text{WE}}$ is held HIGH. $\overline{\text{OE}}$ can be brought LOW or HIGH while $\overline{\text{CAS}}$ and $\overline{\text{RAS}}$ are LOW, and the DQs will transition between valid data and High-Z. Using $\overline{\text{OE}}$, there are two methods to disable the outputs and keep them disabled during the $\overline{\text{CAS}}$ HIGH time. The first method is to have $\overline{\text{OE}}$ HIGH when $\overline{\text{CAS}}$ transitions HIGH and keep $\overline{\text{OE}}$ HIGH for $^{\text{OE}}$ OFF thereafter. This will disable the DQs and they will remain disabled (regardless of the state of $\overline{\text{OE}}$ after that point) until $\overline{\text{CAS}}$ falls again. The second method is to

have $\overline{\text{OE}}$ LOW when $\overline{\text{CAS}}$ transitions HIGH. Then bringing $\overline{\text{OE}}$ HIGH for a minimum of $^{\text{t}}$ OEP anytime during the $\overline{\text{CAS}}$ HIGH period will disable the DQs; the DQs will remain disabled (regardless of the state of $\overline{\text{OE}}$ after that point) until $\overline{\text{CAS}}$ falls again (see Figure 1). During other cycles, the outputs are disabled at $^{\text{t}}$ OFF time after $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ are HIGH, or $^{\text{t}}$ WHZ after $\overline{\text{WE}}$ transitions LOW. The $^{\text{t}}$ OFF time is referenced from the rising edge of $\overline{\text{RAS}}$ or $\overline{\text{CAS}}$, whichever occurs last. $\overline{\text{WE}}$ can also perform the function of disabling the output drivers under certain conditions, as shown in Figure 2.

EDO PAGE MODE operations are always initiated with a row-address strobed-in by the \overline{RAS} signal, followed by a column-address strobed-in by \overline{CAS} , just like for single location accesses. However, subsequent column locations within the row may then be accessed at the page mode cycle time. This is accomplished by cycling \overline{CAS} while holding \overline{RAS} LOW, and entering new column addresses with each \overline{CAS} cycle. Returning \overline{RAS} HIGH terminates the EDO PAGE MODE operation.

DRAM REFRESH

The supply voltage must be maintained at the specified levels, and the refresh requirements must be met in order to retain stored data in the DRAM. The refresh requirements are met by refreshing all 8,192 rows (P4) or all 4,096 rows (C2) in the DRAM array at least once every 64ms. The recommended procedure is to execute 4,096 CBR REFRESH cycles, either uniformly spaced or grouped in bursts, every 64ms. The MT4LC8M8P4 internally refreshes two rows for every CBR cycle, whereas the MT4LC8M8C2 refreshes one row for every CBR cycle. So with either device, executing 4,096 CBR cycles covers all rows. Alternatively, RASONLY REFRESH capability is inherently provided. However, with this method only one row is refreshed at a time, so for the MT4LC8M8P4, 8,192 RASONLY REFRESH cycles must be executed every 64ms to cover all rows.

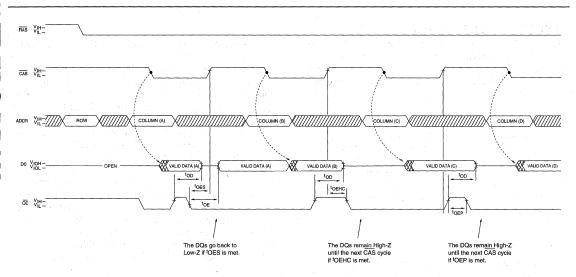


Figure 1
OE CONTROL OF DQs

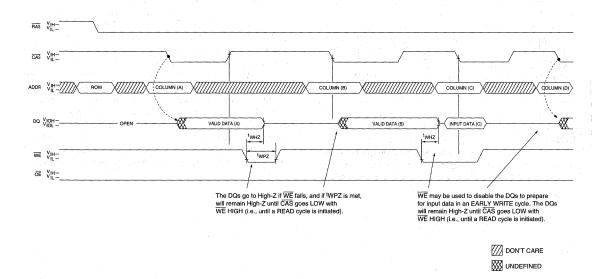


Figure 2
WE CONTROL OF DQs

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Relative to Vss	1.0V to +4.6V
Voltage on Inputs or I/O Pins	
Relative to Vss	1.0V to +5.5V
Operating Temperature, T _A (ambient)	0°C to +70°C
Storage Temperature (plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50m A

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	3.0	3.6	V	14.74
Input High (Logic 1) Voltage, all inputs	ViH	2.0	5.5	V	
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le 5.5V$ (All other pins not under test = $0V$)	lı.	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (lout = -2mA)	Vон	2.4		V	
Output Low Voltage (Iout = 2mA)	Vol		0.4	V	

지수 10 Hand State 1 Hand State 1 즐겁게 되는 사람들은 1 Hand State				MAX			
PARAMETER/CONDITION	VERSION	SYMBOL	-5	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL)	MT4LC8M8P4	Icc1	1	1	1	mA	27.00
(RAS = CAS = VIH)	MT4LC8M8C2	lcc1	1	1	- 1.	1	100
STANDBY CURRENT: (CMOS)	MT4LC8M8P4	Icc2	500	500	500	100	
$(\overline{RAS} = \overline{CAS} \ge Vcc -0.2V, DQs may be left open,$ Other inputs: $Vin \ge Vcc -0.2V$ or $Vin \le 0.2V$)	MT4LC8M8C2	lcc2	500	500	500	μА	
OPERATING CURRENT: Random READ/WRITE	MT4LC8M8P4	Іссз	135	125	115		3, 4,
Average power supply current (RAS, CAS, Address Cycling: ¹RC = ¹RC [MIN])	MT4LC8M8C2	Icc3	175	165	155	mA	29
OPERATING CURRENT: EDO PAGE MODE	MT4LC8M8P4	Icc4	155	125	105		3, 4,
Average power supply current (RAS = VIL, CAS, Address Cycling: [†] PC = [†] PC [MIN])	MT4LC8M8C2	Icc4	155	125	105	mA	29
REFRESH CURRENT: RAS ONLY	MT4LC8M8P4	Icc5	135	125	115		3, 26
Average power supply current (RAS Cycling, CAS = VIH: [†] RC = [†] RC [MIN])	MT4LC8M8C2	Icc5	175	165	155	mA	
REFRESH CURRENT: CBR	MT4LC8M8P4	Icc6	145	135	125		
Average power supply current (RAS, CAS, Address Cycling: ¹RC = ¹RC [MIN])	MT4LC8M8C2	Icc6	175	165	155	mA	3, 5

CAPACITANCE

PARAMETER		SYMBOL	MAX	UNITS	NOTES
Input Capacitance: Address pins	1 18 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ci1	5	pF	2
Input Capacitance: RAS, CAS, WE, OE		Cı2	7	pF	2
Input/Output Capacitance: DQ		Сю	9	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

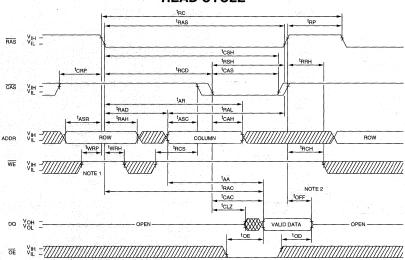
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS			-5	-6		-7		1	1 3 4
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		25		30		- 35	ns	
Column-address set-up to CAS going HIGH during WRITE	^t ACH	15		15		15		ns	
Column-address hold time (referenced to RAS)	^t AR	40		45	1 A	55		ns	
Column-address setup time	tASC	0		0		0	1 4 7 3	ns	
Row-address setup time	†ASR	0		0		0		ns	
Column-address to WE delay time	tAWD	48		55		65	0.000	ns	21
Access time from CAS	†CAC		13		15		20	ns	15
Column-address hold time	^t CAH	8		10		12		ns	
CAS pulse width	†CAS	8	10,000	10	10,000	12	10,000	ns	
CAS hold time (CBR REFRESH)	tCHR	8		10		12		ns	5
CAS to output in Low-Z	tCLZ	0		0		0		ns	
Data output hold after CAS LOW	^t COH	5		5		5		ns	
CAS precharge time	^t CP	8		10		10		ns	16
Access time from CAS precharge	^t CPA		28		35		40	ns	
CAS to RAS precharge time	tCRP	5		5		5		ns	
CAS hold time	^t CSH	44		50		55		ns	
CAS setup time (CBR REFRESH)	tCSR.	5		5		5		ns	5
CAS to WE delay time	tCWD	30		35		40		ns	21
Write command to CAS lead time	tCML	8		15		15	1000	ns	
Data-in hold time	tDH	8		10		12		ns	22
Data-in hold time (referenced to RAS)	^t DHR	40		45		55		ns	
Data-in setup time	tDS	0		0		0		ns	22
Output disable	tOD	0	13	0	15	0	15	ns	27, 28
Output Enable time	^t OE		13		15		15	ns	
OE hold time from WE during READ-MODIFY-WRITE cycle	tOEH	8		10		12		ns	28
OE HIGH hold time from CAS HIGH	[†] OEHC	7		10		10		ns	1
OE HIGH pulse width	[†] OEP	7		10		10		ns	
OE LOW to CAS HIGH setup time	†OES	4		5		5	1	ns	

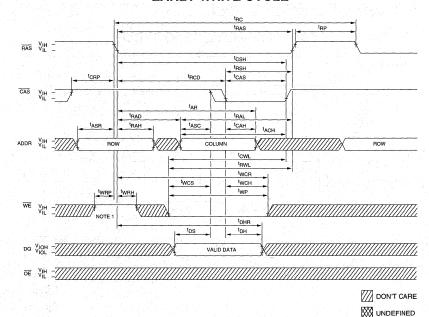
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS		-5		-6		-7		1203 0238	2.0
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	0	13	0	15	0	15	ns	20, 27
OE setup prior to RAS during HIDDEN REFRESH cycle	tORD	0		0		0		ns	de la
EDO-PAGE-MODE READ or WRITE cycle time	^t PC	20		25	(2) (¥ 1.4) 2. (2) (2)	30		ns	
EDO-PAGE-MODE READ-WRITE cycle time	^t PRWC	71		75		85		ns	1.4.
Access time from RAS	tRAC	i	50	N. G	60		70	ns	14
RAS to column-address delay time	†RAD	9	25	12	30	12	35	ns	18
Row-address hold time	^t RAH	8	1 2 7	10	1 1 2 2 2 2 2	10	1333	ns	That is
Column-address to RAS lead time	tRAL	25		30		35		ns	
RAS pulse width	†RAS	50	10,000	60	10,000	70	10,000	ns	
RAS pulse width (EDO PAGE MODE)	tRASP	50	125,000	60	125,000	70	125,000	ns	
Random READ or WRITE cycle time	tRC	90		110		130		ns	
RAS to CAS delay time	tRCD	11	37	14	45	14	50	ns	17
Read command hold time (referenced to CAS)	^t RCH	0		0		0	an Separation of	ns	19
Read command setup time	tRCS	0		0		0		ns	
Refresh period	tREF		64		64		64	ms	26
RAS precharge time	t _{RP}	30		40		50		ns	1 500
RAS to CAS precharge time	^t RPC	0		0		0		ns	
Read command hold time (referenced to RAS)	^t RRH	0		0		0	Ŷį.	ns	19
RAS hold time	†RSH	8		10		12		ns	
READ WRITE cycle time	tRWC	126		150		177		ns	
RAS to WE delay time	tRWD	73	1 3 3 3 3 3	80		90		ns	21
Write command to RAS lead time	†RWL	8	1 1 Sali / 1	15		15		ns	
Transition time (rise or fall)	t _T	1	50	2	50	2	50	ns	
Write command hold time	tWCH	8		10		12		ns	
Write command hold time (referenced to RAS)	tWCR	40		45		55		ns	
WE command setup time	twcs	0		0		0		ns	21
WE to outputs in High-Z	†WHZ		10		13		15	ns	
Write command pulse width	tWP	7		10		12		ns	
WE pulse widths to disable outputs	tWPZ	7		10		12		ns	
WE hold time (CBR REFRESH)	tWRH	8		10	1 1 1 1 1 1 1 1	10		ns	25
WE setup time (CBR REFRESH)	tWRP	8		10		10	District to	ns	25


NOTES

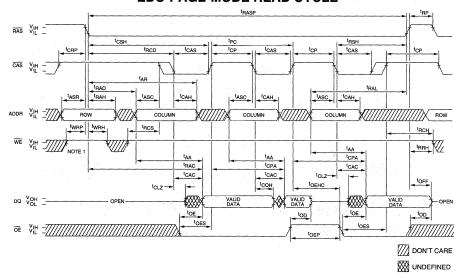
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = +3.3V; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 2ns$ for -5 and 2.5ns for -6 and -7.
- 9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If CAS and RAS = V_{IH} , data output is High-Z.
- 12. If $\overline{CAS} = V_{IL}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates, 100pF and Vol = 0.8V and Voh = 2.0V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, [†]RAC will increase by the amount that [†]RCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If \overline{CAS} is LOW at the falling edge of \overline{RAS} , output data will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that tRAC (MIN) and tCAC (MIN) can be met. tRAD (MAX) is specified as a reference point only; if tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.


- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. tOFF (MAX) defines the time at which the output achieves the open circuit condition, and is not referenced to Voh or Vol.
- 21. tWCS, tRWD, tAWD and tCWD are not restrictive operating parameters. tWCS applies to EARLY WRITE cycles. If tWCS > tWCS MIN, the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. tRWD, tAWD and ^tCWD define READ-MODIFY-WRITE cycles. Meeting these limits allows for reading and disabling output data and then applying input data. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. tWCS, tRWD, tCWD and ^tAWD are not applicable in a LATE WRITE cycle.
- 22. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. If OE is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, \overline{WE} = LOW and \overline{OE} = HIGH.
- 25. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cvcle.
- 26. RAS-ONLY REFRESH requires that all 8,192 rows of the MT4LC8M8P4, or all 4,096 rows of the MT4LC8M8C2, be refreshed at least once every 64ms. CBR REFRESH, for either device, requires that at least 4,096 cycles be completed every 64ms.
- 27. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS stays LOW while OE is brought HIGH, the DQs will open. If OE is brought back LOW (CAS still LOW), the DQs will provide the previously read
- 28. LATE WRITE and READ-MODIFY-WRITE cycles must have both tOD and tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. If \overline{OE} is taken back LOW while CAS remains LOW, the DQs will remain open.
- 29. Column-address changed once each cycle.

READ CYCLE

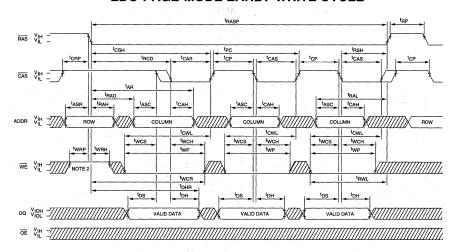
EARLY WRITE CYCLE

NOTE:

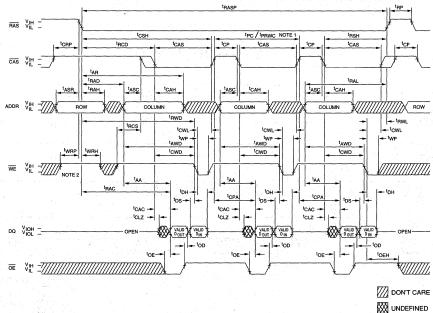

- 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.
- 2. ^tOFF is referenced from rising edge of RAS or CAS, which ever occurs last.

READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)

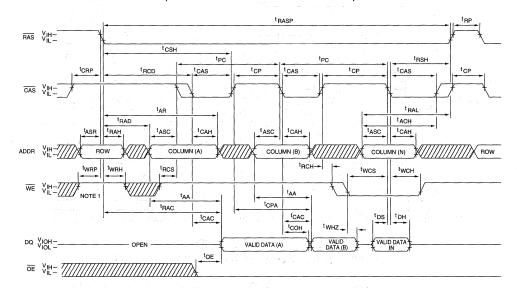
EDO-PAGE-MODE READ CYCLE

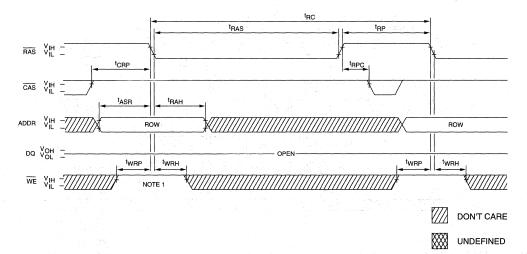


NOTE:


1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

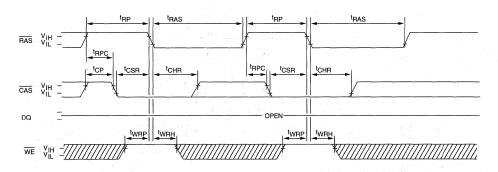
EDO-PAGE-MODE EARLY-WRITE CYCLE

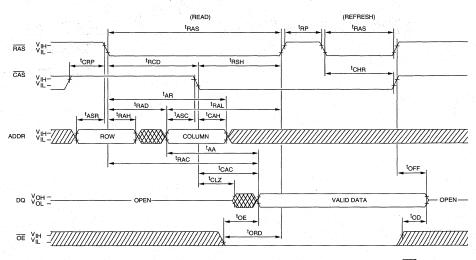

EDO-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)


NOTE:

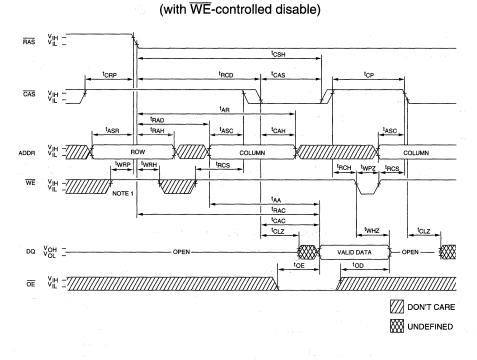
- 1. ^tPC is for LATE WRITE cycles only.
- 2. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

EDO-PAGE-MODE READ-EARLY-WRITE CYCLE(Pseudo READ-MODIFY-WRITE)


RAS-ONLY REFRESH CYCLE


NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

CBR REFRESH CYCLE (Addresses and $\overline{OE} = DON'T CARE$)


HIDDEN REFRESH CYCLE 24 (WE = HIGH; OE = LOW)

DON'T CARE

₩ UNDEFINED

READ CYCLE

NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

DRAM

256K x 16 DRAM

5V. EDO PAGE MODE

FEATURES

- Industry-standard x16 pinouts, timing, functions and packages
- High-performance CMOS silicon-gate process
- Single +5V ±10% power supply*
- Low power, 3mW standby; 300mW active, typical
- All device pins are TTL-compatible
- 512-cycle refresh in 8ms (nine rows and nine columns)
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- Extended Data-Out (EDO) PAGE MODE access cycle
- BYTE WRITE and BYTE READ access cycles

OPTIONS MARKING

•	Timing		
	60ns access		-6*
	70ns access		-7
	80ns access		-8

• Write Cycle Access
BYTE or WORD via CAS 16270

Packages
 Plastic SOJ (400 mil)
 DJ
 Plastic TSOP (400 mil)
 TG

• Part Number Example: MT4C16270DJ-7

*60ns specifications are limited to a VCC range of $\pm 5\%$. Contact factory for availability of 60ns.

KEY TIMING PARAMETERS

SPEED	tRC	tRAC	^t PC	†AA	tCAC	tCAS
-6	110ns	60ns	25ns	30ns	15ns	10ns
-7	130ns	70ns	30ns	35ns	20ns	12ns
-8	150ns	80ns	33ns	40ns	20ns	12ns

GENERAL DESCRIPTION

The MT4C16270 is a randomly accessed solid-state memory containing 4,194,304 bits organized in a x16 configuration. The MT4C16270 has both BYTE WRITE and WORD WRITE access cycles via two CAS pins.

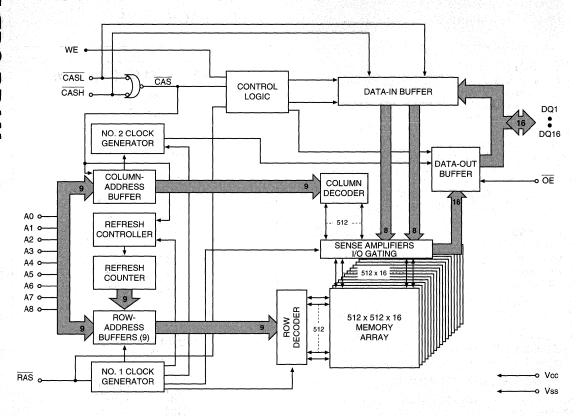
The MT4C16270 offers an accelerated cycle access called EDO PAGE MODE.

The MT4C16270 \overline{CAS} function and timing are determined by the first \overline{CAS} (\overline{CASL} or \overline{CASH}) to transition LOW and by the last to transition back HIGH. \overline{CASL} and \overline{CASH}

PIN ASSIGNMENT (Top View)

40-Pin SOJ (DA-7)

Vcc I	1		40	Ь	Vss
DQ1	2	-	39	þ	DQ16
DQ2	3				DQ15
DQ3	4		37	þ	DQ14
DQ4 I	5		36	þ	DQ13
Vcc	6				Vss
DQ5	7		34	þ	DQ12
DQ6	8		33	þ	DQ11
DQ7 I	9		32	þ	DQ10
DQ8	10		31	þ	DQ9 NC
NC I	111		30	þ	NC
	12				CASL
WE I	13				CASH
RAS	14		27	þ	ŌĒ
NC I	15		26	þ	A8
A0 I	16		25	þ	A7
A1	17		24	þ	A6
A2	18		23	þ	A5
A3 !			22	þ	A4
Vcc I	20		21	h.	Vss


40/44-Pin TSOP (DB-4)

Vcc	1 2 3 4 5 6 7 8 9	44 43 42 41 40 39 38 37 36 35	Vss DQ16 DQ15 DQ14 DQ13 Vss DQ12 DQ11 DQ10 DQ9
NC NC WE RAS NC A0 A1 A2 A3 A3 A5	13 14 15 16 17 18 19 20 21 22	32 31 30 29 28 27 26 25 24 23	III NC CASL CASH OE A8 A7 III A6 III A4 III Vss

function in an identical manner to \overline{CAS} in that either \overline{CASL} or \overline{CASH} will generate an internal \overline{CAS} . Use of only one of the two results in a BYTE WRITE cycle. \overline{CASL} transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) and \overline{CASH} transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16). BYTE READ cycles are achieved through \overline{CASH} or \overline{CASH} in the same manner.

FUNCTIONAL BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 18 address bits during READ or WRITE cycles. These are entered 9 bits (A0-A8) at a time. \overline{RAS} is used to latch the first 9 bits and \overline{CAS} the latter 9 bits.

The $\overline{\text{CAS}}$ control also determines whether the cycle will be a refresh cycle ($\overline{\text{RAS}}$ ONLY) or an active cycle (READ, WRITE or READ WRITE) once $\overline{\text{RAS}}$ goes LOW. The MT4C16270 has two $\overline{\text{CAS}}$ controls, $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$.

The $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$ inputs internally generate a $\overline{\text{CAS}}$ signal functioning in an identical manner to the single $\overline{\text{CAS}}$ input on the other 256K x 16 DRAMs. The key difference is that each $\overline{\text{CAS}}$ controls its corresponding DQ tristate logic (in conjunction with $\overline{\text{OE}}$ and $\overline{\text{WE}}$ and $\overline{\text{RAS}}$). $\overline{\text{CASL}}$ controls DQ1 through DQ8 and $\overline{\text{CASH}}$ controls DQ9 through DQ16.

The MT4C16270 $\overline{\text{CAS}}$ function is determined by the first $\overline{\text{CAS}}$ ($\overline{\text{CASL}}$ or $\overline{\text{CASH}}$) transitioning LOW and the last transitioning back HIGH. The two $\overline{\text{CAS}}$ controls give the MT4C16270 both byte READ and byte WRITE cycle capabilities.

A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle,

data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. Taking \overline{WE} LOW will initiate a WRITE cycle, selecting DQ1 through DQ16. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High- Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after \overline{CAS} goes LOW and data reaches the output pins, data out (Q) is activated and retains the selected cell data as long as \overline{CAS} and \overline{OE} remain LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O, and pin direction is controlled by \overline{OE} , \overline{WE} and \overline{RAS} .

EDO PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined (A0-A8) page boundary. The EDO PAGE MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobed-in by CAS. CAS may be toggled by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the EDO PAGE MODE operation.

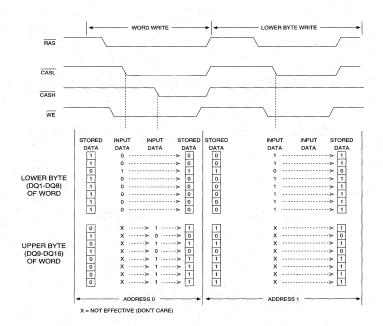


Figure 1
WORD AND BYTE WRITE EXAMPLE

BYTE ACCESS CYCLE

The BYTE WRITE cycle is determined by the use of CASL and CASH. Enabling CASL will select a lower BYTE WRITE cycle (DQ1-DQ8) while enabling CASH will select an upper BYTE WRITE cycle (DQ9-DQ16). Enabling both CASL and CASH selects a WORD WRITE cycle.

The MT4C16270 can be viewed as two 256K x 8 DRAMs which have common input controls. Figure 1 illustrates the MT4C16270 BYTE WRITE and WORD WRITE cycles. The BYTE READ is accomplished in the same manner.

EDO PAGE MODE

DRAM READ cycles have traditionally turned the output buffers off (High-Z) with the rising edge of $\overline{\text{CAS}}$. If $\overline{\text{CAS}}$ goes HIGH, and $\overline{\text{OE}}$ is LOW (active), the output buffers will be disabled. The MT4C16270 offers an accelerated PAGE MODE cycle by eliminating output disable from $\overline{\text{CAS}}$ HIGH. This option is called EDO and it allows $\overline{\text{CAS}}$ precharge time ($^{\text{t}}$ CP) to occur without the output data

going invalid (see READ and EDO-PAGE-MODE READ waveforms).

EDO operates as any DRAM READ or FAST-PAGE-MODE READ, except data will be held valid after CAS goes HIGH, as long as \overline{RAS} and \overline{OE} are held LOW and \overline{WE} is held HIGH. OE can be brought LOW or HIGH while CAS and RAS are LOW, and the DQs will transition between valid data and High-Z. Using OE, there are two methods to disable the outputs and keep them disabled during the CAS HIGH time. The first method is to have OE HIGH when CAS transitions HIGH and keep OE HIGH for tOEHC. This will tristate the DQs and they will remain tristate, regardless of OE, until CAS falls again. The second method is to have OE LOW when CAS transitions HIGH. Then OE can pulse HIGH for a minimum of tOEP anytime during the CAS HIGH period and the DQs will tristate and remain tristate, regardless of OE, until CAS falls again (please reference Figure 2 for further detail on the

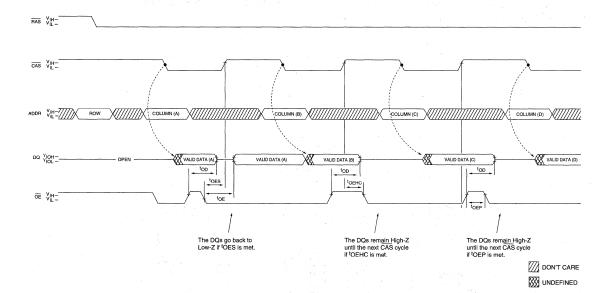


Figure 2
OUTPUT ENABLE AND DISABLE

toggling \overline{OE} condition). During other cycles, the outputs are disabled at ${}^t\!OFF$ time after \overline{RAS} and \overline{CAS} are HIGH, or ${}^t\!WHZ$ after \overline{WE} transitions LOW. The ${}^t\!OFF$ time is referenced from the rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last. \overline{WE} can also perform the function of turning off the output drivers under certain conditions, as shown in Figure 3.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level.

The chip is also preconditioned for the next cycle during the \overline{RAS} HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR, or HIDDEN) so that all 512 combinations of \overline{RAS} addresses (A0-A8) are executed at least every 8ms, regardless of sequence. The CBR REFRESH cycle will also invoke the refresh counter and controller for row-address control.

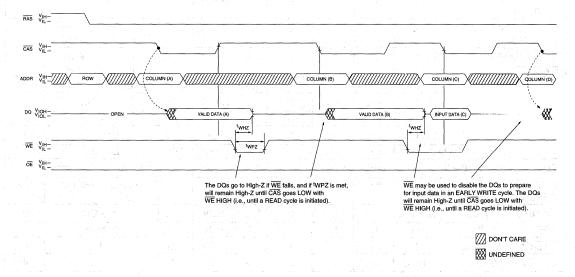


Figure 3
OUTPUT ENABLE AND DISABLE WITH WE

TRUTH TABLE

			gian Suali.			Alexa 3	ADDR	ESSES		A 187 L
FUNCTION		RAS	CASL	CASH	WE	ŌĒ	t _R	tC	DQs	NOTES
Standby		Н	H→X	H→X	Х	Х	Х	Х	High-Z	
READ: WORD		L	L	L	Н	L	ROW	COL	Data-Out	
READ: LOWER	RBYTE	L	L	Н	Н	an L a a saisyan	ROW	COL	Lower Byte, Data-Out Upper Byte, High-Z	er er e. General
READ: UPPER	BYTE	L	Н	L	Н	L	ROW	COL	Lower Byte, High-Z Upper Byte, Data Out	
WRITE: WORD (EARLY WRITE		L	L	L	L	Х	ROW	COL	Data-In	
WRITE: LOWE BYTE (EARLY)		L	L	Н	L	Х	ROW	COL	Lower Byte, Data-In Upper Byte, High-Z	
WRITE: UPPEI BYTE (EARLY)		L	Н	L	L	Х	ROW	COL	Lower Byte, High-Z Upper Byte, Data-In	
READ WRITE		L	L	L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2
EDO-PAGE-	1st Cycle	L	H→L	H→L	Н	L	ROW	COL	Data-Out	2
MODE READ	2nd Cycle	* - L	H→L	H→L	Н	L	n/a	COL	Data-Out	2
EDO-PAGE-	1st Cycle	L	H→L	H→L	L	Х	ROW	COL	Data-In	1
MODE WRITE	2nd Cycle	L	H→L	H→L	L	Х	n/a	COL	Data-In	1
EDO-	1st Cycle	L	H→L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2
PAGE-MODE READ-WRITE	2nd Cycle	100 L V - 1 11	H→L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	1, 2
HIDDEN	READ	L→H→L	L	L	Н	L	ROW	COL	Data-Out	2
REFRESH	WRITE	L→H→L	L	L	L	Х	ROW	COL	Data-In	1, 3
RAS-ONLY RE	FRESH	L	Η	Н	Х	Х	ROW	n/a	High-Z	
CBR REFRESI	1	H→L	L	L	Х	Х	Х	Х	High-Z	4

NOTE:

- 1. These WRITE cycles may also be BYTE WRITE cycles (either CASL or CASH active).
- 2. These READ cycles may also be BYTE READ cycles (either CASL or CASH active).
- 3. EARLY WRITE only.
- 4. At least one of the two CAS signals must be active (CASL or CASH).

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss1V to	o +7V
Operating Temperature, TA (ambient) 0°C to	+70°C
Storage Temperature (plastic)55°C to +	150°C
Power Dissipation	1.2W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) (Vcc = $+5V \pm 10\%$)**

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc**	4.5	5.5	V	1.14
Input High (Logic 1) Voltage, all inputs	ViH	2.4	Vcc+1	V	
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	1000000
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le V_{CC}$ (All other pins not under test = $0V$)	in li	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μА	
OUTPUT LEVELS Output High Voltage (Iout = -2.5mA)	Vон	2.4		V	
Output Low Voltage (lout = 2.5mA)	Vol		0.4	٧	

			MAX		1	
PARAMETER/CONDITION	SYMBOL	-6**	-7	-8	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = ViH)	lcc1	2	2	2	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Vcc -0.2V)	lcc2	1	1	1	mA	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: tRC = tRC [MIN])	lccs	195	175	160	mA	3, 4, 40
OPERATING CURRENT: EDO PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: PC = PC [MIN]; CP, ASC = 10ns)	Icc4	130	125	120	mA	3, 4, 40
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS=VIH: RC = RC [MIN])	lcc5	195	175	160	mA	3
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	lcc6	180	160	140	mA	3, 5

^{**60}ns specifications are limited to a Vcc range of ±5%.

CAPACITANCE

The Alice of the Control of the Cont				
PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A8	C _{I1}	5	рF	2
Input Capacitance: RAS, CASL, CASH, WE, OE	C ₁₂	7	рF	2
Input/Output Capacitance: DQ	Сю	7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5V \pm 10\%$)*

AC CHARACTERISTICS		-	-6* -7				-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30		35		40	ns .	
Column-address setup to CAS precharge during WRITE	^t ACH	15		15		20		ns	
Column-address hold time (referenced to RAS)	^t AR	40		40		55		ns	
Column-address setup time	tASC	0		0		0		ns	29
Row-address setup time	†ASR	0		0		0	120	ns	1
Column-address to WE delay time	tAWD	55	1 3 3 4	60	le de	65		ns	21
Access time from CAS	†CAC		15		20		20	ns	15, 31
Column-address hold time	^t CAH	10		12		15		ns	29
CAS pulse width	†CAS	10	10,000	12	10,000	12	10,000	ns	37
CAS hold time (CBR REFRESH)	tCHR	10		10		10		ns	5, 30
Last CAS going LOW to first CAS returning HIGH	^t CLCH	10		10		10		ns	32
CAS to output in Low-Z	^t CLZ	3		3		3		ns	31, 41
Data output hold after CAS LOW	^t COH	5		5		5	1	ns	
CAS precharge time	^t CP	10		10		10		ns	16, 34
Access time from CAS precharge	^t CPA		35	·	40		45	ns	31
CAS to RAS precharge time	^t CRP	5		5		5	Topic Control	ns	30
CAS hold time	^t CSH	40		40		60	+	ns	30
CAS setup time (CBR REFRESH)	tCSR	10		10		110		ns	5, 29
CAS to WE delay time	tCWD	40		45		45		ns	21, 29
Write command to CAS lead time	tCWL	10		12		12		ns	26, 30
Data-in hold time	^t DH	10		15	1000	15		ns	22, 31
Data-in hold time (referenced to RAS)	^t DHR	40		40		60		ns	1000
Data-in setup time	^t DS	0		0		0		ns	22, 31
Output disable time	^t OD	3	15	3	15	3	15	ns	28, 39, 41
Output Enable time	^t OE		15		20		20	ns	23, 31
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	15		20	After all	20		ns	27
OE HIGH hold time from CAS HIGH	[†] OEHC	10		10		10		ns	
OE HIGH pulse width	^t OEP	10		10		10		ns	24 J. A.
OE LOW to CAS HIGH setup time	^t OES	5		5		5		ns	1 1 1 1 1 1
Output buffer turn-off delay from CAS or RAS	^t OFF	3	15	3	15	3	15	ns	20, 28, 31, 41

^{*60}ns specifications are limited to a Vcc range of ±5%.

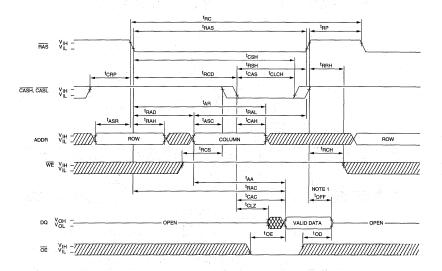
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5V \pm 10\%$)*

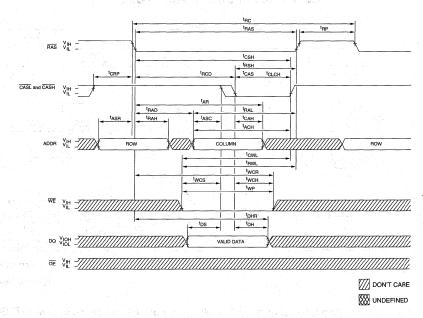
AC CHARACTERISTICS		-6*		-7		-8			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		, · · · · 0		ns	
EDO-PAGE-MODE READ or WRITE cycle time	^t PC	25		30		33		ns	33
EDO-PAGE-MODE READ-WRITE cycle time	^t PRWC	72		79		84		ns	33
Access time from RAS	tRAC		60	- Paleni	70	1 11 1	80	ns	14
RAS to column- address delay time	^t RAD	15	30	15	35	15	40	ns	18
Row-address hold time	^t RAH	10		10	Aller and a	10		ns	A I I
Column-address to RAS lead time	^t RAL	22		27		30		ns	
RAS pulse width	†RAS	60	10,000	70	10,000	80	10,000	ns	
RAS pulse width (EDO PAGE MODE)	^t RASP	60	100,000	70	100,000	80	100,000	ns	
Random READ or WRITE cycle time	^t RC	110	300	130		150		ns	
RAS to CAS delay time	tRCD	20	45	20	50	20	60	ns	17, 29
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19, 26, 30
Read command setup time	tRCS	0	1971	0		0		ns	26, 29
Refresh period (512 cycles)	^t REF		8		8		8	ms	
RAS precharge time	^t RP	35	160	40		60		ns	
RAS to CAS precharge time	tRPC	. 10		10		10		ns	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Read command hold time (referenced to RAS)	tRRH	0		0		0		ns	19
RAS hold time	tRSH	10		15		15		ns	38
READ WRITE cycle time	^t RWC	140		157		187	- 246.0	ns	14/14/19
RAS to WE delay time	tRWD	85		95		105	an Tels	ns	21
Write command to RAS lead time	tRWL	10	24 S	12		12	100 miles	ns	26
Transition time (rise or fall)	ŀΤ	2	50	2	50	2	50	ns	9, 10
Write command hold time	tWCH	10		10		10		ns	26, 38
Write command hold time (referenced to RAS)	tWCR	40		40		60	(ns	26
Write command setup time	twcs	0		0		0	48.00	ns	21, 26, 29
Output disable delay from WE	tWHZ	3	15	3	15	3	15	ns	e o Sami
Write command pulse width	tWP	10		10		10		ns	26

^{*60}ns specifications are limited to a Vcc range of ±5%.

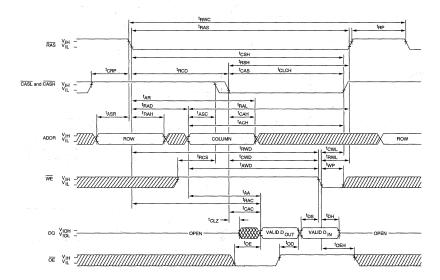
DO DRAM

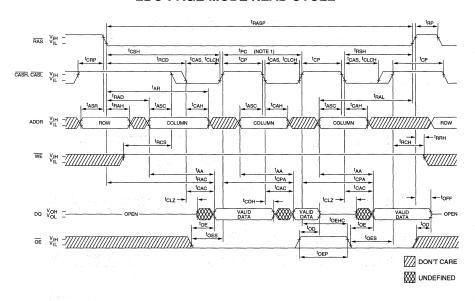

NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
 - 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
 - 5. Enables on-chip refresh and address counters.
 - The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
 - 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
 - 8. AC characteristics assume ${}^{t}T = 2.5 \text{ns}$.
 - VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
 - 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIH and VIH) in a monotonic manner.
 - 11. If \overline{CAS} and $\overline{RAS} = V_{IH}$, data output is High-Z.
 - 12. If $\overline{CAS} = V_{IL}$, data output may contain data from the last valid READ cycle.
 - 13. Measured with a load equivalent to one TTL gate and 50pF, Vol = 0.8V and Voh = 2.0V.
 - 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
 - 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
 - 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS and RAS must be pulsed HIGH for ^tCP.
 - 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
 - 18. Operation within the ^tRAD limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.
 - Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
 - 20. OFF (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to VOH or VOL.

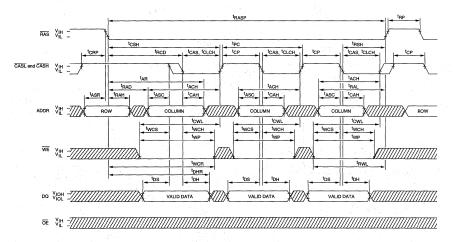

- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of Q (at access time and until CAS and RAS or OE go back to VIH) is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW result in a LATE WRITE (OE-controlled) cycle.
- 22. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in EARLY WRITE cycles and $\overline{\text{WE}}$ leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, Q goes open. If OE is tied permanently LOW, a LATE WRITE or READ-MODIFY-WRITE operation is not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$ and $\overline{OE} = HIGH$.
- 25. All other inputs at Vcc -0.2V.
- 26. Write command is defined as $\overline{\text{WE}}$ going LOW.
- 27. LATE WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously written data if CAS remains LOW and OE is taken back LOW after ^tOEH is met.
- The DQs open during READ cycles once ^tOD or ^tOFF occur.
- 29. The first \overline{CASx} edge to transition LOW.
- 30. The last CASx edge to transition HIGH.
- Output parameter (DQx) is referenced to corresponding CAS input, DQ1-DQ8 by CASL and DQ9-DQ16 by CASH.
- 32. Last falling CASx edge to first rising CASx edge.
- Last rising CASx edge to next cycle's last rising CASx edge.
- 34. Last rising CASx edge to first falling CASx edge.
- 35. First DQs controlled by the first CASx to go LOW.
- 36. Last DQs controlled by the last CASx to go HIGH.
- 37. Each CASx must meet minimum pulse width.
- 38. Last CASx to go LOW.
- 39. All DQs controlled, regardless CASL and CASH.
- 40. Column-address changed once each cycle.
- 41. The 3ns minimum is a parameter guaranteed by design.

READ CYCLE

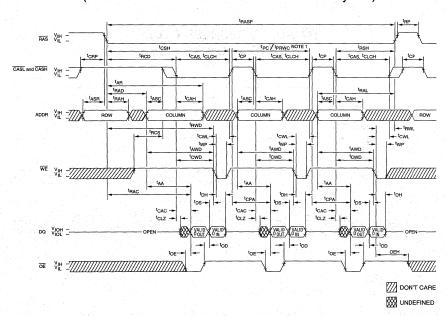

EARLY WRITE CYCLE


NOTE: 1. ^tOFF is referenced from the rising edge of RAS or CAS, whichever occurs last.

READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)

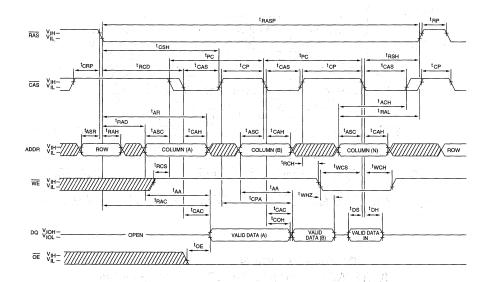


EDO-PAGE-MODE READ CYCLE

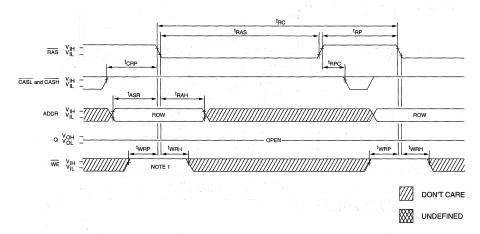


EDO-PAGE-MODE EARLY-WRITE CYCLE

EDO-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)



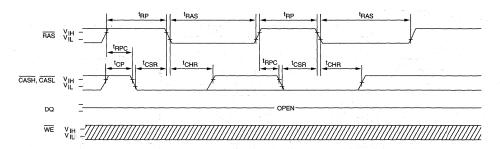
1. ^tPC can be measured from falling edge to falling edge of CAS, or from rising edge to rising edge of CAS. Both measurements must meet the ^tPC specification.


EDO-PAGE-MODE READ-EARLY-WRITE CYCLE

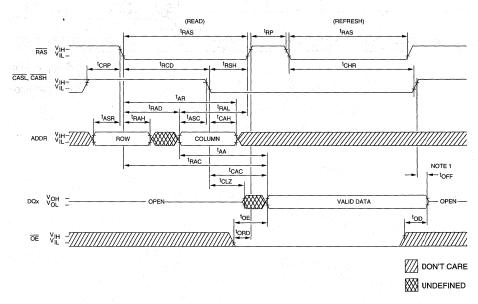
(Psuedo READ-MODIFY-WRITE)

RAS-ONLY REFRESH CYCLE

(OE, WE = DON'T CARE)

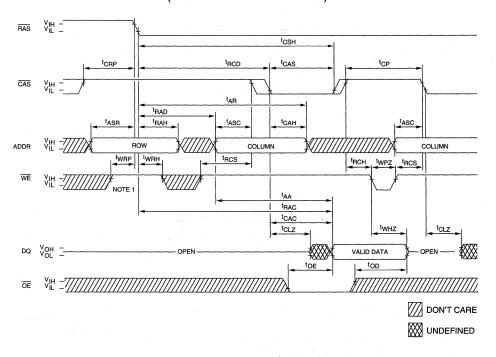


NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.


CBR REFRESH CYCLE

(Addresses; OE = DON'T CARE)

HIDDEN REFRESH CYCLE 24


 $(\overline{WE} = HIGH; \overline{OE} = LOW)$

NOTE: 1. ^tOFF is referenced from the rising edge of RAS or CAS, whichever occurs last.

READ CYCLE (with WE-controlled disable)

NOTE:

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

DRAM

256K x 16 DRAM

3.3V, EDO PAGE MODE

FEATURES

- Single +3.3V ±0.3V power supply*
- Industry-standard x16 pinouts, timing, functions and packages
- · High-performance CMOS silicon-gate process
- Low power, 1mW standby; 85mW active, typical
- All device pins are TTL-compatible
- 512-cycle refresh in 8ms (nine rows and nine columns)
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- Extended Data-Out (EDO) PAGE MODE access cycle
- BYTE WRITE and BYTE READ access cycles

OPTIONS	MARKING
 Timing 	
60ns access	-6*
70ns access	- 7
80ns access	[사용기원] 기업하다 및 대급8 등 1
Packages	
Plastic SOJ (400 mil)	
Plastic TSOP (400 m	il) TG

Part Number Example: MT4LC16270DJ-7

*60ns specifications are limited to a Vcc range of ±0.15V. Contact factory for availability of 60ns.

KEY TIMING PARAMETERS

SPEED	†RC	†RAC	tPC	tAA	†CAC	tCAS
-6	110ns	60ns	25ns	30ns	15ns	10ns
-7	130ns	70ns	30ns	35ns	20ns	12ns
-8	150ns	80ns	33ns	40ns	20ns	12ns

GENERAL DESCRIPTION

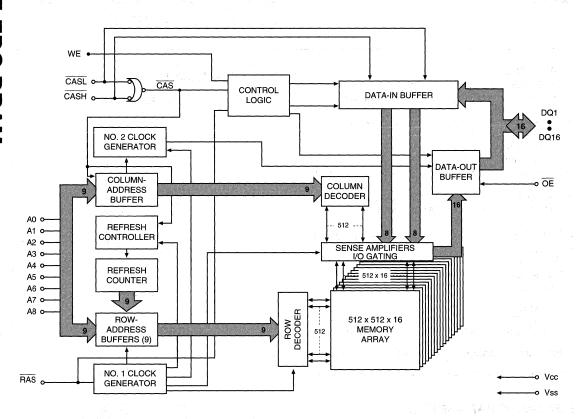
The MT4LC16270 is a randomly accessed solid-state memory containing 4,194,304 bits organized in a x16 configuration. The MT4LC16270 has both BYTE WRITE and WORD WRITE access cycles via two CAS pins.

The MT4LC16270 offers an accelerated access cycle called EDO PAGE MODE.

The MT4LC16270 CAS function and timing are determined by the first CAS (CASL or CASH) to transition LOW and by the last to transition back HIGH. CASL and CASH

PIN ASSIGNMENT (Top View)

40-Pin SOJ (DA-7)


Vcc E	1	40	Vss
DQ1 E	2	39	DQ16
DQ2	3	38	DQ15
DQ3 E	4 -	37	DQ14
DQ4 [5	36	DQ13
Vcc E	6	35	☐ Vss
DQ5 [7	34	DQ12
DQ6 E	8	33	DQ11
DQ7	9	32	DQ10
DQ8	10	31	DQ9
NC E	11	30	□ NC
NC E		29	CASL
WE D		28	CASH
RAS [27	D OE
NC E	15	26	1 A8
A0 E	16	25	A7
A1 E	17	24	□ A6
A2 [18	23	A5
A3 E	19	22	D A4
Vcc E	20	21	☐ Vss

40/44-Pin TSOP (DB-4)

Vcc					
NC □ 14 31 □ CASH WE □ 15 30 □ CASH RAS □ 16 29 □ OE NC □ 17 28 □ AS A1 □ 18 27 □ A7 A1 □ 19 26 □ A6 A2 □ 20 25 □ A5 A3 □ 21 24 □ A4	DQ1	2 3 4 5 6 7 8 9	43 42 41 40 39 38 37 36	H888888	DQ16 DQ15 DQ14 DQ13 Vss DQ12 DQ11 DQ10
	NC HH RAS H H H A2 H A3 H	14 15 16 17 18 19 20 21	31 30 29 28 27 26 25 24		CASL CASH OE A8 A7 A6 A5 A4

function in an identical manner to CAS in that either CASL or CASH will generate an internal CAS. Use of only one of the two results in a BYTE WRITE cycle. CASL transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) and CASH transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16). BYTE READ cycles are achieved through CASL or CASH in the same manner.

FUNCTIONAL BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 18 address bits during READ or WRITE cycles. These are entered 9 bits (A0-A8) at a time. \overline{RAS} is used to latch the first 9 bits and \overline{CAS} the latter 9 bits.

The $\overline{\text{CAS}}$ control also determines whether the cycle will be a refresh cycle ($\overline{\text{RAS}}$ ONLY) or an active cycle (READ, WRITE or READ WRITE) once $\overline{\text{RAS}}$ goes LOW. The MT4LC16270 has two $\overline{\text{CAS}}$ controls, $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$.

The $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$ inputs internally generate a $\overline{\text{CAS}}$ signal functioning in an identical manner to the single $\overline{\text{CAS}}$ input on the other 256K x 16 DRAMs. The key difference is that each $\overline{\text{CAS}}$ controls its corresponding DQ tristate logic (in conjunction with $\overline{\text{OE}}$ and $\overline{\text{WE}}$ and $\overline{\text{RAS}}$). $\overline{\text{CASL}}$ controls DQ1 through DQ8 and $\overline{\text{CASH}}$ controls DQ9 through DQ16.

The MT4LC16270 CAS function is determined by the first CAS (CASL or CASH) transitioning LOW and the last transitioning back HIGH. The two CAS controls give the MT4LC16270 both BYTE READ and BYTE WRITE cycle capabilities.

A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. Taking \overline{WE} LOW will initiate a WRITE cycle, selecting DQ1 through DQ16. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High- Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after \overline{CAS} goes LOW and data reaches the output pins, data out (Q) is activated and retains the selected cell data as long as \overline{CAS} and \overline{OE} remain LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O, and pin direction is controlled by \overline{OE} , \overline{WE} and \overline{RAS} .

EDO PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined (A0-A8) page boundary. The EDO PAGE MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobed-in by CAS. CAS may be toggled by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the EDO PAGE MODE operation.

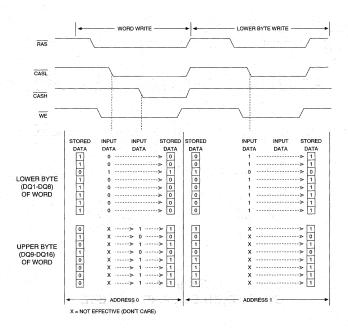


Figure 1
WORD AND BYTE WRITE EXAMPLE

BYTE ACCESS CYCLE

The BYTE WRITE cycle is determined by the use of CASL and CASH. Enabling CASL will select a lower BYTE WRITE cycle (DQ1-DQ8) while enabling CASH will select an upper BYTE WRITE cycle (DQ9-DQ16). Enabling both CASL and CASH selects a WORD WRITE cycle.

The MT4LC16270 can be viewed as two $256 \,\mathrm{K} \times 8$ DRAMs which have common input controls. Figure 1 illustrates the MT4LC16270 BYTE WRITE and WORD WRITE cycles. The BYTE READ is accomplished in the same manner.

EDO PAGE MODE

DRAM READ cycles have traditionally turned the output buffers off (High-Z) with the rising edge of $\overline{\text{CAS}}$. If $\overline{\text{CAS}}$ goes HIGH, and OE is LOW (active), the output buffers will be disabled. The MT4LC16270 offer an accelerated PAGE MODE cycle by eliminating output disable from $\overline{\text{CAS}}$ HIGH. This option is called EDO and it allows $\overline{\text{CAS}}$ precharge time (${}^{\text{t}}\text{CP}$) to occur without the output data

going invalid (see READ and EDO-PAGE-MODE READ waveforms).

Extended data-out operates as any DRAM READ or FAST-PAGE-MODE READ, except data will be held valid after CAS goes HIGH, as long as RAS and OE are held LOW and WE is held HIGH. OE can be brought LOW or HIGH while CAS and RAS are LOW, and the DQs will transition between valid data and High-Z. Using OE, there are two methods to disable the outputs and keep them disabled during the CAS HIGH time. The first method is to have OE HIGH when CAS transitions HIGH and keep OE HIGH for tOEHC. This will tristate the DQs and they will remain tristate, regardless of OE, until CAS falls again. The second method is to have OE LOW when CAS transitions HIGH. Then OE can pulse HIGH for a minimum of tOEP anytime during the CAS HIGH period and the DQs will tristate and remain tristate, regardless of OE, until CAS falls again (please reference Figure 2 for further detail on the

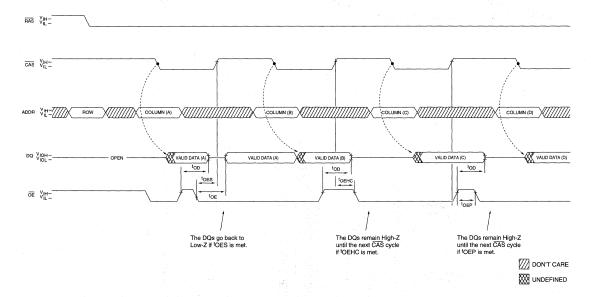


Figure 2
OUTPUT ENABLE AND DISABLE

toggling OE condition). During other cycles, the outputs are disabled at tOFF time after RAS and CAS are HIGH or ^tWHZ after WE transitions LOW. The ^tOFF time is referenced from the rising edge of RAS or CAS, whichever occurs last. WE can also perform the function of turning off the output drivers under certain conditions, as shown in Figure 3.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR, or HIDDEN) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8ms, regardless of sequence. The CBR REFRESH cycle will also invoke the refresh counter and controller for row-address control.

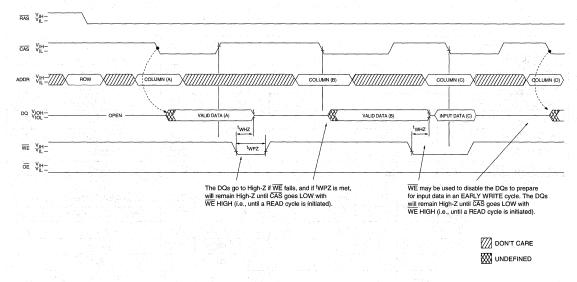


Figure 3 **OUTPUT ENABLE AND DISABLE WITH WE**

TRUTH TABLE

gravetic received			- cyl 3, m				ADDRI	ESSES		
FUNCTION	A SW STEEL	RAS	CASL	CASH	WE	0E	^t R	tC	DQs	NOTES
Standby		Н	H→X	H→X	Х	X	X	Χ	High-Z	
READ: WORD		L	L	L	Н	L	ROW	COL	Data-Out	
READ: LOWER	BYTE	L	L	Н	Н	L	ROW	COL	Lower Byte, Data-Out Upper Byte, High-Z	1 v= 1
READ: UPPER	BYTE	L	Н	L	Н	L	ROW	COL	Lower Byte, High-Z Upper Byte, Data Out	
WRITE: WORD (EARLY-WRITE		L	L	L	L	Х	ROW	COL	Data-In	
WRITE: LOWE BYTE (EARLY)		L	L	Η	L	Х	ROW	COL	Lower Byte, Data-In Upper Byte, High-Z	
WRITE: UPPER BYTE (EARLY)	•	L	Н	L	٦	Х	ROW	COL	Lower Byte, High-Z Upper Byte, Data-In	
READ WRITE		L	L	L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2
EDO-PAGE-	1st Cycle	L	H→L	H→L	Н	L	ROW	COL	Data-Out	2
MODE READ	2nd Cycle	⊕ L	H→L	H→L	Н	L	n/a	COL	Data-Out	2
EDO-PAGE-	1st Cycle	L	H→L	H→L	L	х	ROW	COL	Data-In	1
MODE WRITE	2nd Cycle	L	H→L	H→L	L	Х	n/a	COL	Data-In	1
EDO-PAGE- MODE	1st Cycle	L	H→L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2
READ-WRITE	2nd Cycle	L	H→L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	1, 2
HIDDEN	READ	L→H→L	L	L	Н	L	ROW	COL	Data-Out	2
REFRESH	WRITE	L→H→L	L	L	L	Х	ROW	COL	Data-In	1, 3
RAS-ONLY RE	FRESH	L	Н	Н	Х	Χ	ROW	n/a	High-Z	
CBR REFRESH	1	H→L	L	L	X	Х	Х	Χ	High-Z	4

NOTE:

- 1. These WRITE cycles may also be BYTE WRITE cycles (either CASL or CASH active).
- 2. These READ cycles may also be BYTE READ cycles (either CASL or CASH active).
- 3. EARLY WRITE only.
- 4. At least one of the two CAS signals must be active (CASL or CASH).

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss.	1V to +4.6V
Operating Temperature, TA (ambient).	0°C to +70°C
Storage Temperature (plastic)	55°C to +150°C
Power Dissipation	1.2W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) $(Vcc = +3.3V \pm 0.3V)^{**}$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc**	3.0	3.6	V	
Input High (Logic 1) Voltage, all inputs	ViH	2.0	Vcc+1	V	
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT Any input 0V ≤ Vin ≤ Vcc (All other pins not under test = 0V)	1	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vout ≤ Vcc+.5V)	loz	-10	10	μΑ	WA C
OUTPUT LEVELS Output High Voltage (lout = -2mA)	Vон	2.4		٧	
Output Low Voltage (Iout = 2mA)	Vol		0.4	٧	

			MAX]	
PARAMETER/CONDITION	SYMBOL	-6**	-7	-8	UNITS	NOTES
STANDBY CURRENT: (TTL) $(\overline{RAS} = \overline{CAS} = V_{\text{IH}})$	lcc1	1	1 %	1	mA	
STANDBY CURRENT: (CMOS) $(\overline{RAS} = \overline{CAS} = Vcc - 0.2V)$	lcc2	500	500	500	μА	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	lcc3	120	110	100	mA	3, 4, 40
OPERATING CURRENT: EDO PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: PC = PC [MIN]; CP, ASC = 10ns)	Icc4	70	60	50	mÅ	3, 4, 40
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS=Viн: ¹RC = ¹RC [MIN])	Icc5	120	110	100	mA	3
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	lcc6	120	110	100	mA	3, 5

^{**60}ns specifications are limited to a Vcc range of ± 0.15 V.

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A8	Cii	5	pF	2
Input Capacitance: RAS, CASL, CASH, WE, OE	C ₁₂	7	pF	2
Input/Output Capacitance: DQ	Сю	7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +3.3V \pm 0.3V$)*

AC CHARACTERISTICS		-	6*		-7		-8		T
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30		35		40	ns	
Column-address setup to CAS precharge during WRITE	^t ACH	15		15		20		ns	
Column-address hold time (referenced to RAS)	^t AR	40		40		55		ns	
Column-address setup time	tASC	0		0		0		ns	29
Row-address setup time	tASR	0		0		0		ns	
Column-address to WE delay time	tAWD	55		60		65		ns	21
Access time from CAS	^t CAC		15		20		20	ns	15, 31
Column-address hold time	^t CAH	10		12		15		ns	29
CAS pulse width	^t CAS	10	10,000	12	10,000	12	10,000	ns	37
CAS hold time (CBR REFRESH)	^t CHR	10		10		10		ns	5, 30
Last CAS going LOW to first CAS returning HIGH	^t CLCH	10		10		10		ns	32
CAS to output in Low-Z	^t CLZ	3		3		3		ns	31, 41
Data output hold after CAS LOW	tCOH	5		5	1	5		ns	
CAS precharge time	^t CP	10		10		10		ns	16, 34
Access time from CAS precharge	^t CPA		35		40		45	ns	31
CAS to RAS precharge time	^t CRP	5		5		5	1 1/1 1	ns	30
CAS hold time	^t CSH	40		40		60		ns	30
CAS setup time (CBR REFRESH)	^t CSR	10		10		110		ns	5, 29
CAS to WE delay time	tCWD	40		45		45		ns	21, 29
Write command to CAS lead time	tCWL	10		12		12		ns	26, 30
Data-in hold time	tDH	10		15		15		ns	22, 31
Data-in hold time (referenced to RAS)	^t DHR	40		40		60		ns	
Data-in setup time	tDS	0		0		0		ns	22, 31
Output disable time	^t OD	3	15	3	15	3	15	ns	28, 39, 41
Output Enable time	†OE		15		20		20	ns	23, 31
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	15		20		20		ns	27
OE HIGH hold time from CAS HIGH	^t OEHC	10		10	1	10	er er gelfte.	ns	11.44.47.774.
OE HIGH pulse width	^t OEP	10		10		10	1 1 1 1 1 1	ns	
OE LOW to CAS HIGH setup time	^t OES	5		5		5		ns	The same

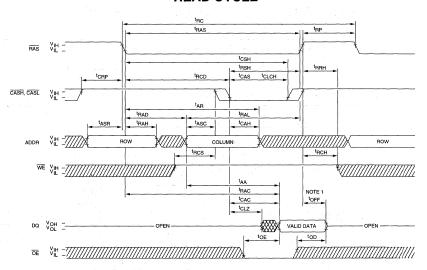
^{*60}ns specifications are limited to a Vcc range of ± 0.15 V.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

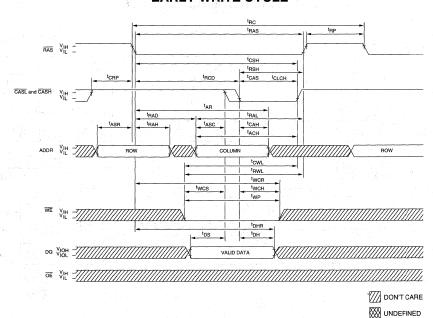
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) $(Vcc = +3.3V \pm 0.3V)^*$

AC CHARACTERISTICS	10	3 W	6*		-7		-8	1.00	
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay from CAS or RAS	†OFF	3	15	3	15	3	15	ns	20, 28, 31, 41
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		0		ns	
EDO-PAGE-MODE READ or WRITE cycle time	^t PC	25	<i>y</i>	30		33		ns	33
EDO-PAGE-MODE READ-WRITE cycle time	^t PRWC	72		79		84		ns	33
Access time from RAS	tRAC	18 To 18	60	70		80	ns	14	
RAS to column-address delay time	tRAD.	15	30	15	35	15	40	ns	18
Row-address hold time	tRAH .	10	- 1	10		10		ns	
Column-address to RAS lead time	^t RAL	22		27		30		ns	
RAS pulse width	^t RAS	60	10,000	70	10,000	80	10,000	ns	
RAS pulse width (EDO PAGE MODE)	†RASP	60	100,000	70	100,000	80	100,000	ns	
Random READ or WRITE cycle time	^t RC	110		130		150		ns	
RAS to CAS delay time	tRCD	20	45	20	50	20	60	ns	17, 29
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19, 26, 30
Read command setup time	tRCS	0		0		0		ns	26, 29
Refresh period (512 cycles)	^t REF		8		8		8	ms	
RAS precharge time	^t RP	35	1,500	40		60		ns	
RAS to CAS precharge time	^t RPC	10		10	7.4	10		ns	
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
RAS hold time	tRSH	10		15		15		ns	38
READ WRITE cycle time	tRWC	140		157		187		ns	
RAS to WE delay time	tRWD	85		95		105	Z 0	ns	21
Write command to RAS lead time	t _{RWL}	10		12		12		ns	26
Transition time (rise or fall)	·Τ	2	50	2	50	2	50	ns	
Write command hold time	tWCH	10		10		10		ns	26, 38
Write command hold time (referenced to RAS)	^t WCR	40		40		60		ns	26
Write command setup time	tWCS	0		0	7.2	0		ns	21, 26, 29
Output disable delay from WE	tWHZ	3	15	3	15	3	15	ns	
Write command pulse width	tWP	10	1	10		10		ns	26

^{*60}ns specifications are limited to a Vcc range of ±0.15V.

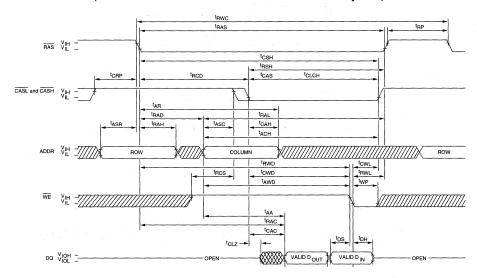

NOTES

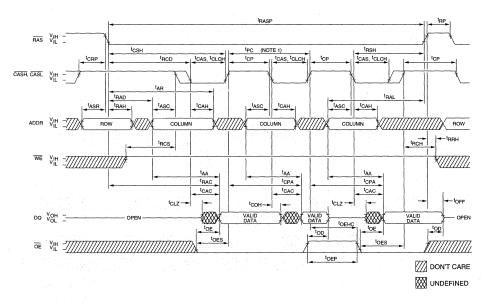
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = +3.3V; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 2.5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If \overline{CAS} and $\overline{RAS} = VIH$, data output is High-Z.
- 12. If $\overline{\text{CAS}} = \text{VIL}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to one TTL gate and 50pF, Vol = 0.8V and Vol = 2.0V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS and RAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. tOFF (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to VOH or VOL.


- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of Q (at access time and until CAS and RAS or OE go back to VIH) is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW result in a LATE WRITE (OE-controlled) cycle
- 22. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, Q goes open. If OE is tied permanently LOW, a LATE WRITE or READ-MODIFY-WRITE operation is not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 25. All other inputs at Vcc -0.2V.
- 26. Write command is defined as WE going LOW.
- 27. LATE WRITE and READ-MODIFY-WRITE cycles must have both tOD and tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously written data if CAS remains LOW and OE is taken back LOW after tOEH is met.
- The DQs open during READ cycles once ^tOD or ^tOFF occur.
- 29. The first CASx edge to transition LOW.
- 30. The last CASx edge to transition HIGH.
- Output parameter (DQx) is referenced to corresponding CAS input, DQ1-DQ8 by CASL and DQ9-DQ16 by CASH.
- 32. Last falling CASx edge to first rising CASx edge.
- Last rising CASx edge to next cycle's last rising CASx edge.
- 34. Last rising CASx edge to first falling CASx edge.
- 35. First DQs controlled by the first CASx to go LOW.
- 36. Last DQs controlled by the last $\overline{CAS}x$ to go HIGH.
- 37. Each CASx must meet minimum pulse width.
- 38. Last $\overline{CAS}x$ to go LOW.
- 39. All DQs controlled, regardless CASL and CASH.
- 40. Column-address changed once each cycle.
- 41. The 3ns minimum is a parameter guaranteed by design.

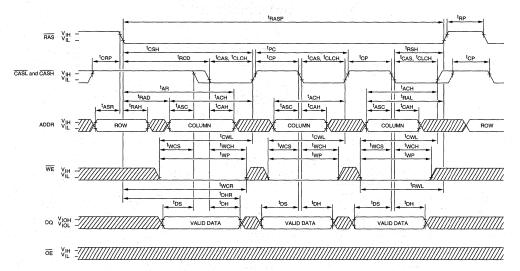
EDO DRAM

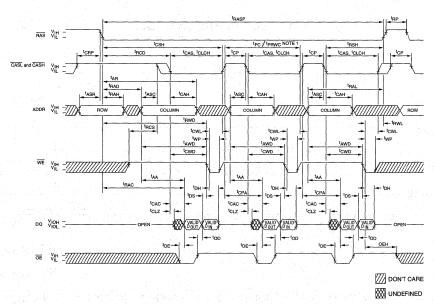
READ CYCLE


EARLY WRITE CYCLE


1. OFF is referenced from the rising edge of RAS or CAS, whichever occurs last. NOTE:

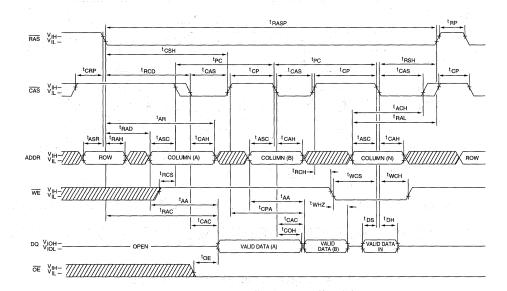
READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)


EDO-PAGE-MODE READ CYCLE


NOTE: 1. ¹PC can be measured from falling edge to falling edge of CAS. The can be measurements must meet the ¹PC specification.

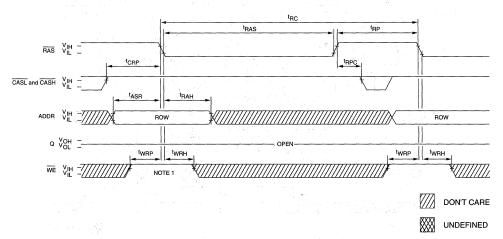
EDO-PAGE-MODE EARLY-WRITE CYCLE

EDO-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)



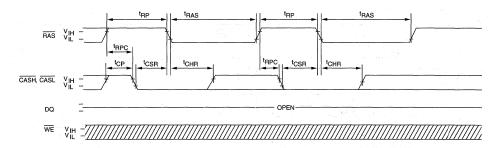
NOTE: 1. ¹PC can be measured from falling edge to falling edge of CAS, or from rising edge to rising edge of CAS.

Both measurements must meet the ¹PC specification.

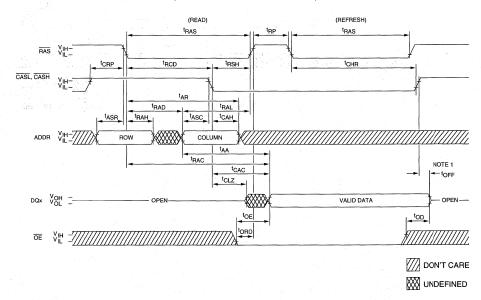


EDO-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)

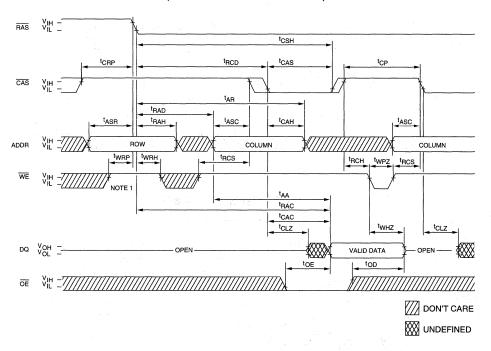
RAS-ONLY REFRESH CYCLE


 $(\overline{OE}, \overline{WE} = DON'T CARE)$

NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.


CBR REFRESH CYCLE

(Addresses; $\overline{OE} = DON'T CARE$)


HIDDEN REFRESH CYCLE 24

 $(\overline{WE} = HIGH; \overline{OE} = LOW)$

NOTE: 1. ^tOFF is referenced from the rising edge of RAS or CAS, whichever occurs last.

READ CYCLE (with WE-controlled disable)

NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

DRAM

1 MEG x 16 DRAM

3.3V, EDO PAGE MODE, OPTIONAL SELF REFRESH

FEATURES

- JEDEC- and industry-standard x16 timing, functions, pinouts and packages
- High-performance CMOS silicon-gate process
- Single +3.3V ±0.3V power supply
- All device pins are TTL-compatible
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN and SELF
- BYTE WRITE and BYTE READ access cycles
- 1,024-cycle refresh (10 row-, 10 column-addresses)
- Low power, 0.3mW standby; 180mW active, typical
- Optional SELF REFRESH mode, with Extended Refresh rate (8x)
- Extended Data-Out (EDO) PAGE access cycle
- 5V tolerant I/Os (5.5V maximum VIH level)

OPTIONS

MARKING

TG

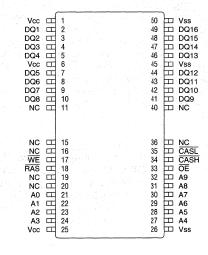
Timing	
60ns access	-6
70ns access	-7
Refresh Rate	
Standard 16ms period	None
SELF REFRESH and 128ms peri-	od S

Packages
 Plastic TSOP (400 mil)

Part Number Example: MT4LC1M16E5TG-7 S

KEY TIMING PARAMETERS

SPEED	tRC	^t RAC	tPC	tAA	tCAC	tCAS
-6	110ns	60ns	25ns	30ns	15ns	10ns
-7	130ns	70ns	30ns	35ns	20ns	12ns


GENERAL DESCRIPTION

The MT4LC1M16E5(S) is a randomly accessed solid-state memory containing 16,777,216 bits organized in a x16 configuration. The MT4LC1M16E5(S) has both BYTE WRITE and WORD WRITE access cycles via two \overline{CAS} pins $\overline{(CASL)}$ and \overline{CASH}). These function in an identical manner to a single \overline{CAS} of other DRAMs in that either \overline{CASL} or \overline{CASH} will generate an internal \overline{CAS} .

The MT4LC1M16E5(S) \overline{CAS} function and timing are determined by the first \overline{CAS} (\overline{CASL} or \overline{CASH}) to transition

PIN ASSIGNMENT (Top View)

44/50-Pin TSOP (DB-5)

LOW and the last \overline{CAS} to transition back HIGH. Use of only one of the two results in a BYTE access cycle. \overline{CASL} transitioning LOW selects an access cycle for the lower byte (DQ1-DQ8) and \overline{CASH} transitioning LOW selects an access cycle for the upper byte (DQ9-DQ16).

Each bit is uniquely addressed through the 20 address bits during READ or WRITE cycles. These are entered 10 bits (A0-A9) at a time. \overline{RAS} is used to latch the first 10 bits and \overline{CAS} the latter 10 bits. The \overline{CAS} function also determines whether the cycle will be a refresh cycle (\overline{RAS} ONLY) or an active cycle (READ, WRITE or READ WRITE) once \overline{RAS} goes LOW.

GENERAL DESCRIPTION (continued)

The CASL and CASH inputs internally generate a CAS signal functioning in an identical manner to the single CAS input of other DRAMs. The key difference is each CAS input (CASL and CASH) controls its corresponding DQ tristate logic (in conjunction with OE and WE). CASL controls DQ1 through DQ8 and CASH controls DQ9 through DQ16. The two CAS controls give the MT4LC1M16E5(S) both BYTE READ and BYTE WRITE cycle capabilities.

A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. Taking WE LOW will initiate a WRITE cycle, selecting DQ1 through DQ16. If WE goes LOW prior to CAS going LOW, the output pin(s) remain open (High-Z) until the next CAS cycle. If WE goes LOW after CAS goes LOW and data reaches the output pins, data-out (Q) is activated and retains the selected cell data as long as CAS and OE remain LOW (regardless of WE or RAS). This late WE pulse results in a READ WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O. Pin direction is controlled by OE and WE.

PAGE ACCESS

PAGE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined page boundary. The PAGE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-

addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the PAGE MODE of operation.

EDO PAGE MODE

The MT4LC1M16E5(S) provides EDO PAGE MODE which is an accelerated FAST PAGE MODE cycle. The primary advantage of EDO is the availability of data-out even after $\overline{\text{CAS}}$ returns HIGH. EDO provides for $\overline{\text{CAS}}$ precharge time (^tCP) to occur without the output data going invalid. This elimination of $\overline{\text{CAS}}$ output control provides for pipeline READs.

FAST-PAGE-MODE DRAMs have traditionally turned the output buffers off (High-Z) with the rising edge of \overline{CAS} . EDO-PAGE-MODE DRAMs operate similar to FAST-PAGE-MODE DRAMs, except data will remain valid or become valid after \overline{CAS} goes HIGH during READs, provided \overline{RAS} and \overline{OE} are held LOW. If \overline{OE} is pulsed while \overline{RAS} and \overline{CAS} are LOW, data will toggle from valid data to High-Z and back to the same valid data. If \overline{OE} is toggled or pulsed after \overline{CAS} goes HIGH while \overline{RAS} remains LOW, data will transition to and remain High-Z (refer to Figure 1). \overline{WE} can also perform the function of disabling the output drivers under certain conditions, as shown in Figure 2.

If the DQ outputs are wire OR'd, \overline{OE} must be used to disable idle banks of DRAMs. Alternatively, pulsing \overline{WE} to the idle banks during \overline{CAS} HIGH time will also High-Z the outputs. Independent of \overline{OE} control, the outputs will disable after ${}^t\!OFF$, which is referenced from the rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last.

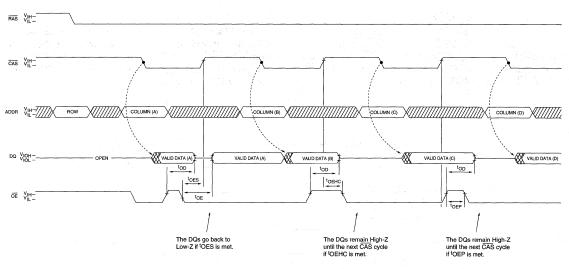


Figure 1
OUTPUT ENABLE AND DISABLE

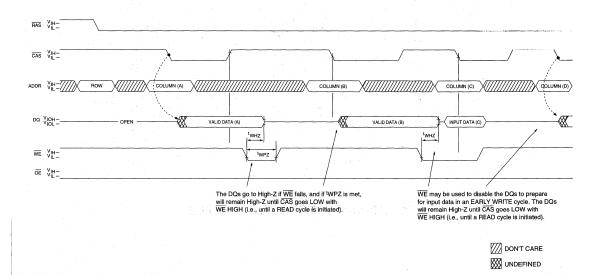


Figure 2
WE CONTROL OF DQs

BYTE ACCESS CYCLE

The BYTE WRITEs and BYTE READs are determined by the use of $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$. Enabling $\overline{\text{CASL}}$ will select a lower BYTE access (DQ1-DQ8). Enabling $\overline{\text{CASH}}$ will select an upper BYTE access (DQ9-DQ16). Enabling both $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$ selects a WORD WRITE cycle.

The MT4LC1M16E5(S) may be viewed as two 1 Meg x 8 DRAMs that have common input controls, with the exception of the CAS inputs. Figure 3 illustrates the BYTE WRITE and WORD WRITE cycles. Figure 4 illustrates BYTE READ and WORD READ cycles.

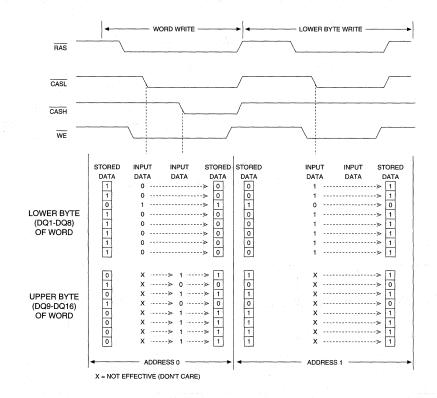


Figure 3
WORD AND BYTE WRITE EXAMPLE

REFRESH

Preserve correct memory cell data by maintaining power and executing a RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR, or HIDDEN) so that all 1,024 combinations of RAS addresses are executed at least every 16ms, regardless of sequence. The CBR REFRESH cycle will invoke the refresh counter for automatic RAS addressing.

An optional SELFREFRESH mode is also available on the MT4LC1M16E5 S. The "S" version allows the user the choice of a fully static low-power data retention mode, or a dynamic refresh mode at the extended refresh period of 128ms four times longer than the standard 16ms specification.

The optional SELF REFRESH feature is initiated by performing a CBR REFRESH cycle, and holding \overline{RAS} LOW for the specified ^tRASS. Additionally, the "S" version al-

lows for an extended refresh rate of 125µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation or during a standby or BATTERY BACKUP mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for a minimum time of ${}^{t}RPS$ (= ${}^{t}RC$). This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all 1,024 rows must be refreshed within 300µs prior to the resumption of normal operation.

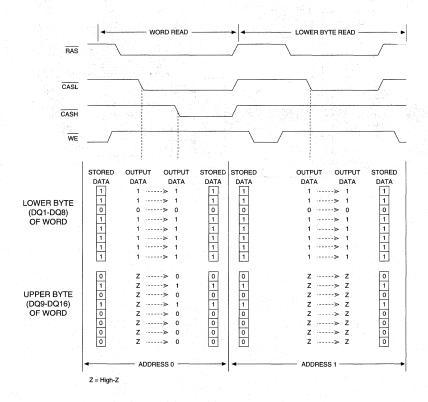
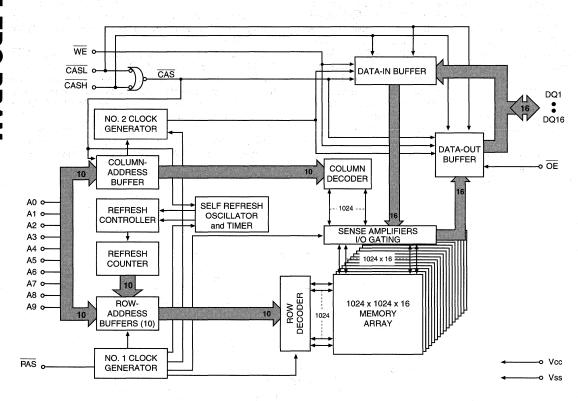



Figure 4
WORD AND BYTE READ EXAMPLE

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

				a/ 5 / 5			ADDR	ESSES		
FUNCTION		RAS	CASL	CASH	WE	0E	t R	tC	DQs	NOTES
Standby		Н	H→X	H→X	Х	Х	Х	X	High-Z	
READ: WORD		L	L	L	Н	L	ROW	COL	Data-Out	
READ: LOWER BY	EAD: LOWER BYTE		L	Н	Н	L	ROW	COL	Lower Byte, Data-Out Upper Byte, High-Z	
READ: UPPER BY	TE	L	Н	L	Н	L	ROW	COL	Lower Byte, High-Z Upper Byte, Data-Out	
WRITE: WORD (EARLY WRITE)			L) L	L	Х	ROW	COL	Data-In	
WRITE: LOWER BYTE (EARLY)		L	L	Н	L	Х	ROW	COL	Lower Byte, Data-In Upper Byte, High-Z	
WRITE: UPPER BYTE (EARLY)		L	Н	L	L	X	ROW	COL	Lower Byte, High-Z Upper Byte, Data-In	
READ WRITE		L	L	L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2
EDO-PAGE-MODE	1st Cycle	L	H→L	H→L	Н	L	ROW	COL	Data-Out	2
READ	2nd Cycle	L	H→L	H→L	Н	L	n/a	COL	Data-Out	2
EDO-PAGE-MODE	1st Cycle	L	H→L	H→L	L	Х	ROW	COL	Data-In	1
WRITE	2nd Cycle	Total Lighter	H→L	H→L	L	Х	n/a	COL	Data-In	1
EDO-PAGE-MODE	1st Cycle	L	H→L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2
READ-WRITE	2nd Cycle	L	H→L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	1, 2
HIDDEN	READ	L→H→L	L.	L	Н	L	ROW	COL	Data-Out	2
REFRESH	WRITE	L→H→L	- L	L	L	Х	ROW	COL	Data-In	1, 3
RAS-ONLY REFRE	SH	L	Н	Н	Х	Х	ROW	n/a	High-Z	
CBR REFRESH		H→L	L	L	Н	Х	Χ	Х	High-Z	4
SELF REFRESH		H→L	L	L	Н	Х	X	Х	High-Z	4

NOTE:

- 1. These WRITE cycles may also be BYTE WRITE cycles (either CASL or CASH active).
- 2. These READ cycles may also be BYTE READ cycles (either CASL or CASH active).
- 3. EARLY WRITE only.
- 4. Only one CAS must be active (CASL or CASH).

MICHON

MT4LC1M16E5(S) 1 MEG x 16 DRAM

ABSOLUTE MAXIMUM RATINGS*

1V to +4.6V
1V to +5.5V
0°C to +70°C
55°C to +150°C
1W
50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	3.0	3.6	V	
Input High (Logic 1) Voltage, all inputs (including NC pins)	ViH	2.0	5.5	V	
Input Low (Logic 0) Voltage, all inputs (including NC pins)	VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le 5.5V$ (All other pins not under test = $0V$)	lı .	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vout ≤ 5.5V)	loz	-10	10	μА	
OUTPUT LEVELS Output High Voltage (Iout = -2.0mA)	Vон	2.4		ν	
Output Low Voltage (lout = 2.0mA)	Vol		0.4	٧	

MT4LC1M16E5(S) 1 MEG x 16 DRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

Notes: 1, 6, 7) (Vcc = +3.3V ±0.3V)	MAX			1.04	
PARAMETER/CONDITION	SYMBOL	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	Icc1	2	2	mA	
STANDBY CURRENT: (CMOS)	Icc2	500	500	μΑ	25
(RAS = CAS = Vcc - 0.2V)	lcc2 (S only)	150	150	μА	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS Address Cycling: ^t RC = ^t RC [MIN])	lcc3	170	155	mA	3, 4, 26
OPERATING CURRENT: EDO PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: [†] PC = [†] PC [MIN]; [†] CP, [†] ASC = 10ns)	Icc4	140	130	mA	3, 4, 26
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS=Viн: ¹RC = ¹RC [MIN])	lcc5	160	145	mA	3, 26
REFRESH CURRENT: CBR Average power supply current (RAS, CAS Address Cycling: ¹RC = ¹RC [MIN])	Icc6	150	140	mA	3, 5
REFRESH CURRENT: Extended (S version only) Average power supply current during BBU REFRESH: CAS = 0.2V or CBR cycling; RAS = tRAS (MIN); WE = Vcc -0.2V; OE, A0-A9 and DIN = Vcc -0.2V or 0.2V (DIN may be left open); tRC = 125µs (1,024 rows at 125µs = 128ms)	Icc7 (S only)	300	300	μΑ	3, 5
REFRESH CURRENT: SELF (S version only) Average power supply current during SELF REFRESH: CBR cycle with RAS ≥ ¹RASS (MIN) and CAS held LOW; WE = Vcc -0.2V; A0-A9, OE, and DIN = Vcc -0.2V or 0.2V (DIN may be left open)	Iccs (S only)	300	300	μА	5, 27

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: Addresses	C _{I1}	5	pF	2
Input Capacitance: RAS, CASL, CASH, WE, OE	Cı2	7	pF	2
Input/Output Capacitance: DQ	Сю	7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS		-6		-7			
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30		35	ns	
Column-address set-up to CAS precharge during WRITE	tACH	15		15	100000000000000000000000000000000000000	ns	
Column-address hold time (referenced to RAS)	tAR	45		55		ns	- 10
Column-address setup time	tASC	0		0		ns	30
Row-address setup time	tASR	0		0		ns	30
Column-address to WE delay time	^t AWD	55		65		ns	21
Access time from CAS	tCAC	1.1	15		20	ns	15, 32
Column-address hold time	^t CAH	10	181 181 181	12	* * 1	ns	30
CAS pulse width	†CAS	10	10,000	12	10,000	ns	38
CAS LOW to "don't care" during SELF REFRESH cycle	tCHD	15		15		ns	
CAS hold time (CBR REFRESH)	^t CHR	10	V 2.5	12		ns	5, 31
Last CAS going LOW to first CAS to return HIGH	^t CLCH	10		10	1	ns	33
CAS to output in Low-Z	tCLZ	0		0		ns	32
Data output hold after next CAS LOW	tCOH	5	1.34	5		ns	
CAS precharge time	^t CP	10	1 14 1 14	10	The first	ns	35
Access time from CAS precharge	^t CPA	-	35		40	ns	32
CAS to RAS precharge time	tCRP	5		5		ns	31
CAS hold time	tCSH	50		55		ns	31
CAS setup time (CBR REFRESH)	tCSR	5		5		ns	5, 30
CAS to WE delay time	tCWD	35		40		ns	21, 30
Write command to CAS lead time	tCWL	15		15		ns	26, 31
Data-in hold time	^t DH	10		12		ns	22, 32
Data-in hold time (referenced to RAS)	tDHR	45		55		ns	
Data-in setup time	tDS	0		0		ns	22, 32
Output disable	^t OD	0	15	0	15	ns	29, 41
Output Enable	^t OE		15		15	ns	32
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	10		12		ns	28
OE HIGH hold from CAS HIGH	^t OEHC	10		10		ns	28

MT4LC1M16E5(S) 1 MEG x 16 DRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

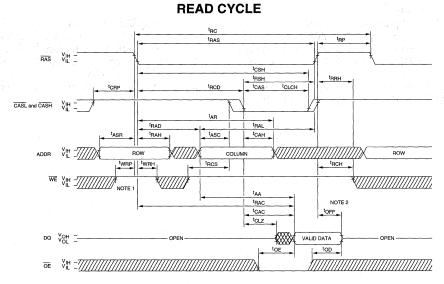
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS			-6	-7			1
PARAMETER	SYM	SYM MIN MAX		MIN	MAX	UNITS	NOTES
OE HIGH pulse width	^t OEP	10		10		ns	100
OE LOW to CAS HIGH setup time	^t OES	5		5		ns	
Output buffer turn-off delay	†OFF	0	15	0	15	ns	20, 32
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		ns	
EDO-PAGE-MODE READ or WRITE cycle time	^t PC	25	Practice And	30		ns	34
EDO-PAGE-MODE READ-WRITE cycle time	^t PRWC	75	794	85		ns	34
Access time from RAS	tRAC	100	60	1000	70	ns	14
RAS to column-address delay time	^t RAD	12	30	12	35	ns	18
Row-address hold time	^t RAH	10	1. 15 10 04	10		ns	
Column-address to RAS lead time	^t RAL	30	4	35		ns	8 9 5
RAS pulse width	tRAS	60	10,000	70	10,000	ns	
RAS pulse width (EDO PAGE MODE)	tRASP	60	125,000	70	125,000	ns	
RAS pulse width during SELF REFRESH cycle	†RASS	100		100		μs	27
Random READ or WRITE cycle time	†RC	110		130		ns	
RAS to CAS delay time	tRCD	14	45	14	50	ns	17, 30
Read command hold time (referenced to CAS)	tRCH	0		0		ns	19, 26, 3
Read command setup time	tRCS	0		0		ns	26, 30
Refresh period (1,024 cycles)	^t REF		16		16	ms	28
Refresh period (1,024 cycles) S version	^t REF		128		128	ms	28
RAS precharge time	†RP	40		50		ns	
RAS to CAS precharge time	tRPC	0		0		ns	
RAS precharge time during SELF REFRESH cycle	tRPS	110		130		ns	27
Read command hold time (referenced to RAS)	^t RRH	0		0	1.	ns	19
RAS hold time	tRSH	10		12		ns	39
READ WRITE cycle time	tRWC	150		177		ns	
RAS to WE delay time	^t RWD	80		90		ns	21
Write command to RAS lead time	^t RWL	15		15		ns	26
Transition time (rise or fall)	^t T	2	50	2	50	ns	411
Write command hold time	tWCH	10		12		ns	26, 39
Write command hold time (referenced to RAS)	tWCR	45	May 2	55		ns	26
WE command setup time	twcs	0		0		ns	21, 26, 30
Output disable delay from WE	tWHZ	0	10	0	15	ns	
Write command pulse width	tWP	10		12	Jan Hall	ns	26
WE pulse width to disable at CAS HIGH	tWPZ	10		12	100000000000000000000000000000000000000	ns	
WE hold time (CBR REFRESH)	tWRH	10		10		ns	26
WE setup time (CBR REFRESH)	tWRP	10	11.17.14.1.1	10		ns	26

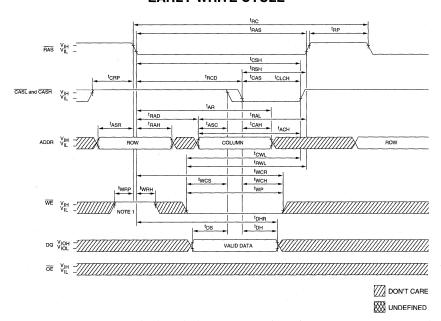
EDO

MCHON

NOTES


- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = +3.3V; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 2.5 \text{ns}$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between $V_{I\!II}$ and $V_{I\!II}$ (or between $V_{I\!IL}$ and $V_{I\!IH}$) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If CAS = VII., data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to one TTL gate, 50pF and Vol = 0.8V and VoH = 2.0V.
- 14. Assumes that ¹RCD < ¹RCD (MAX). If ¹RCD is greater than the maximum recommended value shown in this table, ¹RAC will increase by the amount that ¹RCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.

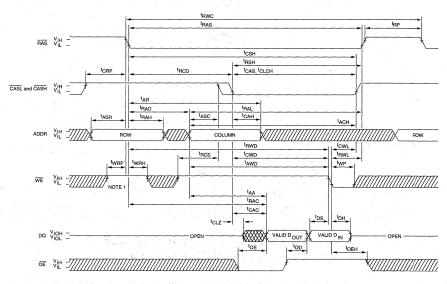
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to Voh or Vol.
- 21. ¹WCS, ¹RWD, ¹AWD and ¹CWD are restrictive operating parameters in LATE WRITE and READ-MODIFY-WRITE cycles only. If ¹WCS ≥ ¹WCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ¹RWD ≥ ¹RWD (MIN), ¹AWD ≥ ¹AWD (MIN) and ¹CWD ≥ ¹CWD (MIN), the cycle is a READ WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of Q (at access time and until CAS or OE goes back to Virl) is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle.
- These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, Q goes open. If OE is tied permanently LOW, LATE WRITE and READ-MODIFY-WRITE operations are not permissible and should not be attempted.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$ and $\overline{OE} = HIGH$.
- 25. All other inputs at 0.2V or Vcc -0.2V.
- 26. Column-address changed once each cycle.
- 27. When exiting the SELF REFRESH mode, a complete set of row refreshes should be executed in order to ensure that the DRAM will be fully refreshed. Alternatively, distributed refreshes may be utilized, provided CBR REFRESH cycles are employed.
- 28. LATE WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 29. The DQs open during READ cycles once ^tOD or ^tOFF occur.


1 MEG x 16 DRAM

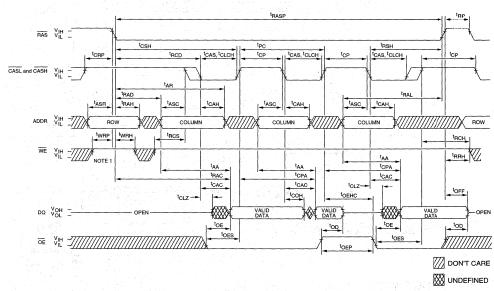
NOTES (continued)

- 30. The first CASx edge to transition LOW.
- 31. The last CASx edge to transition HIGH.
- 32. Output parameter (DQx) is referenced to corresponding CAS input; DQ1-DQ8 by CASL and DQ9-DQ16 by CASH.
- 33. Last falling \overline{CASx} edge to first rising \overline{CASx} edge.
- 34. Last rising \overline{CASx} edge to next cycle's last rising \overline{CASx} edge.
- 35. Last rising CASx edge to first falling CASx edge.
- 36. First DQs controlled by the first CASx to go LOW.
- 37. Last DQs controlled by the last CASx to go HIGH.
- 38. Each CASx must meet minimum pulse width.
- 39. Last \overline{CASx} to go LOW.
- 40. All DQs controlled, regardless CASL and CASH.

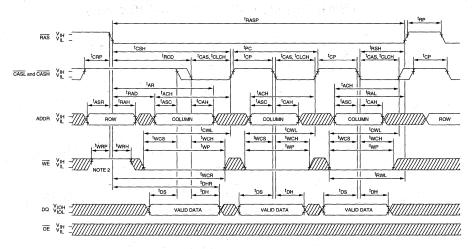
EARLY WRITE CYCLE



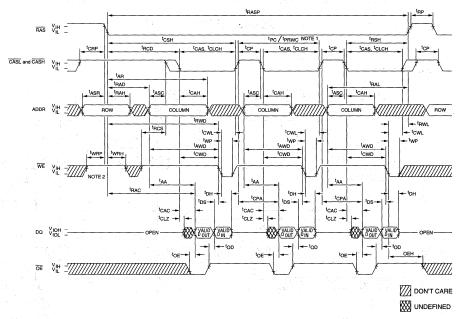
NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.


2. tOFF is referenced from rising edge of RAS or CAS, which ever occurs last.

READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)



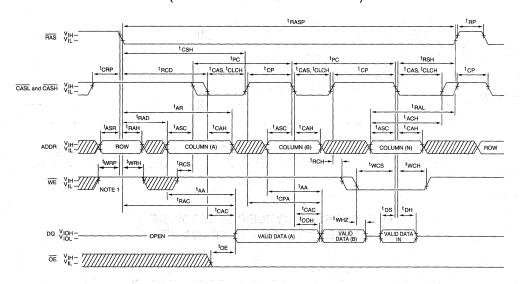
EDO-PAGE-MODE READ CYCLE



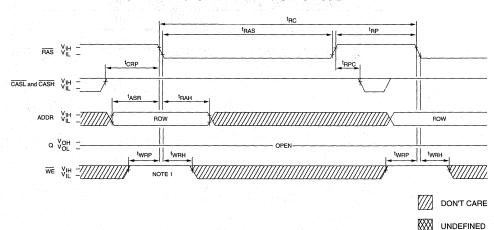
NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

EDO-PAGE-MODE EARLY-WRITE CYCLE

EDO-PAGE-MODE READ-WRITE CYCLE(LATE WRITE and READ-MODIFY-WRITE cycles)

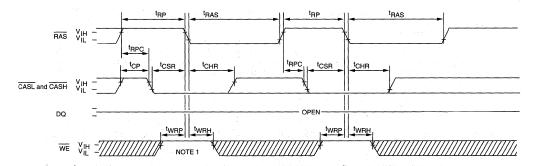


NOTE:

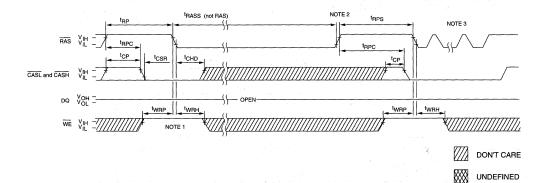

- 1. ^tPC is for LATE WRITE cycles only.
- 2. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

EDO-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)

RAS-ONLY REFRESH CYCLE

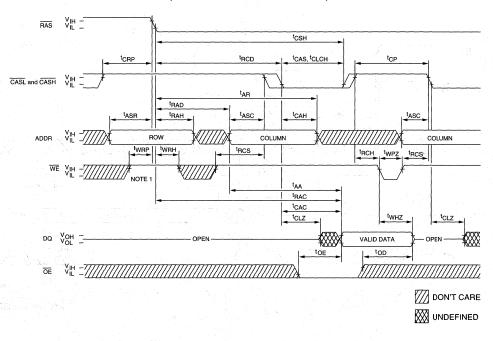


1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer NOTE: should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

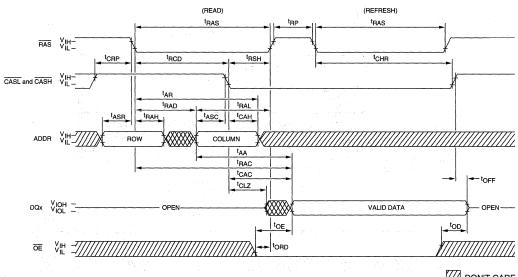

CBR REFRESH CYCLE

(Addresses and OE = DON'T CARE)

SELF REFRESH CYCLE ("SLEEP MODE")


(Addresses and $\overline{OE} = DON'T CARE$)

NOTE:


- 1. WRP and WRH are for system design reference only. The WE signal is actually a "don't care" at RAS time during a CBR REFRESH. However, WE should be held HIGH at RAS time during a CBR REFRESH to ensure compatibility with other DRAMs that require WE HIGH at RAS time during a CBR REFRESH.
- 2. Once trans (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.
- 3. Once ^tRPS is satisfied, a compete burst of all rows should be executed.

READ CYCLE (with WE-controlled disable)

NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

HIDDEN REFRESH CYCLE 24 $(\overline{WE} = HIGH; \overline{OE} = LOW)$

DON'T CARE

MCPON

EDO DRAMs	****		1
FPM DRAMs			2
SGRAM	***		3
DRAM SIMMs	***		4
DRAM DIMMs	**************		5
DRAM CARDS	机硬形料电弧 医电阻 医电阻 医电阻 医电阻		6
TECHNICAL NOTES	医髓液膜 医腹膜 医腹膜 医腹膜 医皮肤 医皮肤	****	7
PRODUCT RELIABILITY	*****	******	8
PACKAGE INFORMATION		器器器幣簡簡單的數	TWO AST
SALES AND SERVICE INFO	RMATION		440
MICRON DATAFAY INDEX			11

FPM DRAM PRODUCT SELECTION GUIDE

Memory	Optional	Part	Access	Typical Powe	er Dissipation	Package/l	No. of Pins	
Configuration	Access Cycle	Number	Time (ns)	Standby	Active	SOJ	TSOP	Page
3.3V FPM DRA	Ms					377		
1 Meg x 4	FPM	MT4LC4001J	60, 70, 80	1mW	100mW	20/26	20/26	2-29
1 Meg x 4	FPM, S	MT4LC4001J S	60, 70, 80	0.3mW	100mW	20/26	20/26	2-29
4 Meg x 4	FPM, 2KR	MT4LC4M4B1	60, 70	1mW	180mW	24/26	24/26	2-65
4 Meg x 4	FPM, 2KR, S	MT4LC4M4B1 S	60, 70	0.3mW	180mW	24/26	24/26	2-65
16 Meg x 4	FPM, 8KR	MT4LC16M4A7	50, 60, 70	1mW	165mW	34	34	2-79
16 Meg x 4	FPM, 4KR	MT4LC16M4T8	50, 60, 70	1mW	225mW	34	34	2-79
2 Meg x 8	FPM, 2KR	MT4LC2M8B1	60, 70	1mW	200mW	28	28	2-91
2 Meg x 8	FPM, 2KR, S	MT4LC2M8B1 S	60, 70	0.3mW	200mW	28	28	2-91
8 Meg x 8	FPM, 8KR	MT4LC8M8E1	50, 60, 70	1mW	170mW	34	34	2-105
8 Meg x 8	FPM, 4KR	MT4LC8M8B6	50, 60, 70	1mW	230mW	34	34	2-105
256K x 16	FPM, DC	MT4LC16257	60, 70, 80	3mW	150mW	40	40/44	2-131
256K x 16	FPM, DC, S	MT4LC16257 S	60, 70, 80	0.3mW	150mW	40	40/44	2-131
1 Meg x 16	FPM, DC, 1KR	MT4LC1M16C3	60, 70	3mW	250mW	-	44/50	2-163
1 Meg x 16	FPM, DC, 1KR, S	MT4LC1M16C3 S	60, 70	0.3mW	250mW	_	44/50	2-163
5V FPM DRAM	S		i i					
4 Meg x 1	FPM	MT4C1004J	60, 70	3mW	225mW	20/26	20/26	2-1
4 Meg x 1	FPM, S	MT4C1004J S	60, 70	0.8mW	225mW	20/26	20/26	2-1
1 Meg x 4	FPM	MT4C4001J	60, 70	3mW	225mW	20/26	20/26	2-15
1 Meg x 4	FPM, S	MT4C4001J S	60, 70	0.8mW	225mW	20/26	20/26	2-15
1 Meg x 4	FPM, QC	MT4C4004J	60, 70	3mW	225mW	24/26	-	2-41
4 Meg x 4	FPM, 2KR	MT4C4M4B1	60, 70	3mW	250mW	24/26	24/26	2-53
256K x 16	FPM, DC	MT4C16257	60, 70, 80	3mW	375mW	40	40/44	2-117
1 Meg x 16	FPM, DC, 1KR	MT4C1M16C3	60, 70	1mW	350mW	42	7 - 1	2-147

FPM = FAST PAGE MODE, DC = Dual CAS, QC = Quad CAS, 1KR = 1,024 Refresh, 2KR = 2,048 Refresh, 4KR = 4,096 Refresh, 8KR = 8,192 Refresh, S = SELF REFRESH

DRAM

4 MEG x 1 DRAM

5V, STANDARD OR SELF REFRESH

DIN ASSIGNMENT (Top View)

FEATURES

OPTIONS

- 1,024-cycle refresh distributed across 16ms (MT4C1004J) or 128ms (MT4C1004J S only)
- Industry-standard pinout, timing, functions and packages
- High-performance CMOS silicon-gate process
- Single $+5V \pm 10\%$ power supply
- All inputs, outputs and clocks are TTL-compatible Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN; optional Extended and SELF REFRESH modes (MT4C1004J S only)

MARKING

- FAST PAGE MODE access cycle
- Low power, 0.8mW standby; 225mW active, typical (MT4C1004J S)

• Timing 60ns access 70ns access	-6 -7
Packages Plastic SOJ (300 mil) Plastic TSOP (300 mil)	DJ TG
Refresh Rate Standard 16ms period SELF REFRESH and 128ms period	None S

KEY TIMING PARAMETERS

• Part Number Example: MT4C1004JDJ-6S

SPEED	tRC	tRAC	^t PC	^t AA	tCAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

GENERAL DESCRIPTION

The MT4C1004J(S) is a randomly accessed solid-state memory containing 4,194,304 bits organized in a x1 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 22 address bits, which are entered 11 bits (A0-A10) at a time. RAS is used to latch the first 11 bits and CAS the latter 11 bits. READ and WRITE cycles are selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. If WE goes LOW prior to CAS going LOW, the output pin remains open (High-Z) until the next CAS cycle. If WE goes LOW after

20/26-Pin SOJ	20/26-Pin TSOP
(DA-1)	(DB-1)
D [1 26] Vss	D □ 1 26 □ Vss
WE [2 25] Q	WE □ 2 25 □ Q
RAS [3 24] CAS	RAS □ 3 24 □ CAS
NC [4 23] NC	NC □ 4 23 □ NC
*A10 [5 22] A9	*A10 □ 5 22 □ A9
A0	A0 = 9

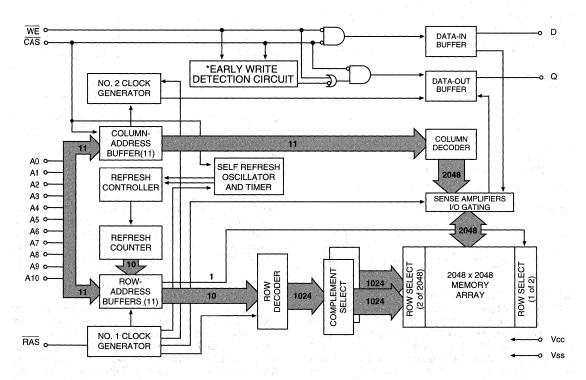
data reaches the output pin, data-out (Q) is activated and retains the selected cell data as long as CAS remains LOW (regardless of WE or RAS). This late WE pulse results in a READ WRITE cycle.

FAST PAGE MODE

*Address not used for RAS-ONLY REFRESH

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined (A0-A10) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR, or HIDDEN) so that all 1,024 combinations of RAS addresses (A0-A9) are executed at least every 16ms for the MT4C1004J and every 128ms for the MT4C1004J S, regardless of sequence. The CBR and extended refresh cycles will invoke the internal refresh counter for automatic RAS addressing.


REFRESH

An optional SELF REFRESH mode is also available. The "S" version allows the user the choice of a fully static low-power data retention mode, or a dynamic refresh mode at the extended refresh period.

The optional SELF REFRESH feature is initiated by performing a CBR REFRESH cycle and holding RAS LOW for the specified ^tRASS. Additionally, the "S" version allows for an extended refresh rate of 125µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation or during a standby mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for a minimum time of ${}^{t}RPS$ ($\approx {}^{t}RC$). This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} -ONLY REFRESH or burst refresh sequence, all rows must be refreshed within 300 μ s prior to the resumption of normal operation.

FAST PAGE MODE

*NOTE: 1. If WE goes LOW prior to CAS going LOW, EW detection circuit output is a HIGH (EARLY WRITE).

2. If CAS goes LOW prior to WE going LOW, EW detection circuit output is a LOW (LATE WRITE).

TRUTH TABLE

FUNCTION					ADDRI	ESSES	, D	DATA	
		RAS	CAS	WE	t _R	tC	D (Data-In)	Q (Data-Out)	
Standby		Н	H→X	Х	X	Х	"don't care"	High-Z	
READ		L	L	Н	ROW	COL	"don't care"	Data-Out	
EARLY WRITE		L	L	L	ROW	COL	Data-In	High-Z	
READ WRITE	-	L	L	H→L	ROW	COL	Data-In	Data-Out	
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	ROW	COL	"don't care"	Data-Out	
READ	2nd Cycle	L	H→L	Н	n/a	COL	"don't care"	Data-Out	
FAST-PAGE-MODE	1st Cycle	L	H→L	L	ROW	COL	Data-In	High-Z	
EARLY-WRITE	2nd Cycle	J. L	H→L	L	n/a	COL	Data-In	High-Z	
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	ROW	COL	Data-In	Data-Out	
READ-WRITE	2nd Cycle	L	H→L	H→L	n/a	COL	Data-In	Data-Out	
RAS-ONLY REFRESH		L	Н	Х	ROW	n/a	"don't care"	High-Z	
HIDDEN	READ	L→H→L	L	Н	ROW	COL	"don't care"	Data-Out	
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Data-In	High-Z	
CBR REFRESH		H→L	L.	Н	X	Х	"don't care"	High-Z	
SELF REFRESH (MT4C1004J S only)		H→L	L.	Н	X	Х	"don't care"	High-Z	

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Vss1V to +7V
Operating Temperature, T _A (ambient)0°C to +70°C
Storage Temperature (plastic)55°C to +150°C
Power Dissipation1W
Short Circuit Output Current50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) ($Vcc = +5V \pm 10\%$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	V cc	4.5	5.5	V	
Input High (Logic 1) Voltage, all inputs	ViH	2.4	Vcc+1	V	1 1 1 2
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	174-1
INPUT LEAKAGE CURRENT Any input 0V ≤ V _I N ≤ 6.5V (All other pins not under test = 0V)	11	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (Ιουτ = -5mA)	Vон	2.4		V	
Output Low Voltage (Iout = -3/IIA)	Vol		0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +5V \pm 10\%$)		M	MAX			
PARAMETER/CONDITION	SYMBOL	-6	-7	UNITS	NOTES	
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	lcc1	2	2	mA		
STANDBY CURRENT: (CMOS)	lcc2	1	1	mA		
$(\overline{RAS} = \overline{CAS} = Vcc - 0.2V)$	Icc2 (S only)	200	200	μΑ		
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Single Address Cycling: ^t RC = ^t RC [MIN])	Іссз	110	100	mA	3, 4, 27	
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN])	Icc4	80	70	mA	3, 4, 27	
REFRESH CURRENT; RAS ONLY Average power supply current (RAS Cycling, CAS = Vih: tRC = tRC [MIN])	lcc5	110	100	mA	3, 27	
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: \textstyle{TRC} = \textstyle{tRC} [MIN])	Icc6	110	100	mA	3, 5	
REFRESH CURRENT: Extended (S version only) Average power supply current during Extended Refresh: CAS = 0.2V or CBR cycling; RAS = ^t RAS (MIN); WE = Vcc -0.2V; A0-A10 and DIN = Vcc -0.2V or 0.2V (DIN may be left open); ^t RC = 125μs (1,024 rows at 125μs = 128ms)	lcc7 (S only)	300	300	μА	3, 5, 7, 25	
REFRESH CURRENT: SELF (S version only) Average power supply current during SELF REFRESH: CBR cycle with ¹RAS ≥ ¹RASS (MIN) and CAS held LOW; WE = Vcc -0.2; A0-A10 and DIN = Vcc -0.2V or 0.2V (DIN may be left open)	lccs (S only)	300	300	μΑ	5, 28	

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A10, D	Cıı	5	pF	2
Input Capacitance: RAS, CAS, WE	C ₁₂	7	pF	2
Output Capacitance: Q	Со	7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

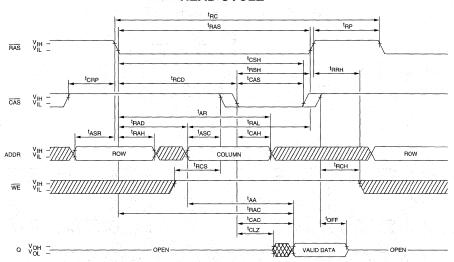
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5V \pm 10\%$)

AC CHARACTERISTICS		-6		-7			11.44
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30		35	ns	
Column-address hold time (referenced to RAS)	tAR	45	1	50		ns	
Column-address setup time	tASC	0		0		ns	
Row-address setup time	tASR	0		0		ns	
Column-address to WE delay time	tAWD	30		35	100	ns	21
Access time from CAS	^t CAC		15		20	ns	15
Column-address hold time	^t CAH	10		15		ns	
CAS pulse width	†CAS	15	10,000	20	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH cycle	tCHD	10	1 - 1 - 2 - 34	10		ns	28
CAS hold time (CBR REFRESH)	^t CHR	10		10		ns	5
CAS to output in Low-Z	tCLZ	0	7 a.a.a.	0		ns	
CAS precharge time	^t CP	10		10		ns	16
Access time from CAS precharge	^t CPA		35		40	ns	1
CAS to RAS precharge time	tCRP	10	100	10		ns	
CAS hold time	^t CSH	60		70		ns	1.51
CAS setup time (CBR REFRESH)	^t CSR	10		10		ns	5
CAS to WE delay time	tCWD	15	- 1 - 20 1 - 1	20		ns	21
Write command to CAS lead time	tCWL	15		20	20.000	ns	
Data-in hold time	^t DH	10		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	tDS	0.		0		ns	22
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	20, 26
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	60		70		ns	
Access time from RAS	^t RAC		60		70	ns	14
RAS to column-address delay time	^t RAD	15	30	15	35	ns	18
Row-address hold time	^t RAH	10		10		ns	
Column-address to RAS lead time	†RAL	30		35		ns	
RAS pulse width	†RAS	60	10,000	70	10,000	ns	25
RAS pulse width (FAST PAGE MODE)	tRASP	60	100,000	70	100,000	ns	25
RAS pulse width during SELF REFRESH cycle	tRASS	100		100		μs	28
Random READ or WRITE cycle time	tRC	110		130		ns	113.3
RAS to CAS delay time	tRCD	20	45	20	50	ns	17
Read command hold time (referenced to CAS)	^t RCH	0		0		ns	19
Read command setup time	tRCS	0		0	2.55	ns	1 12011

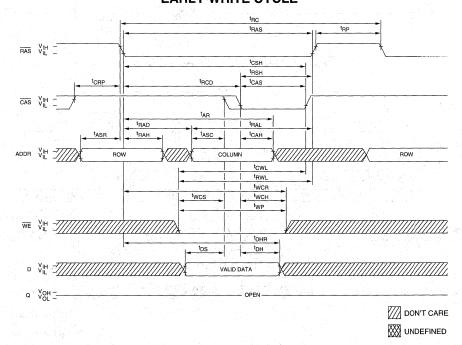
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5V \pm 10\%$)

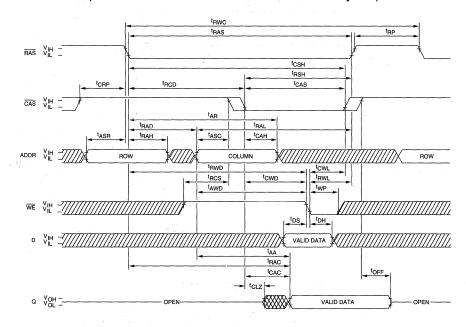
AC CHARACTERISTICS			-6		7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Refresh period (1,024 cycles)	tREF.	1.51	16	0.00	16	ms	
Refresh period (1,024 cycles) S version	†REF		128		128	ms	
RAS precharge time	tRP	40		50		, ns	
RAS to CAS precharge time	tRPC	0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0		ns	0
RAS precharge time during SELF REFRESH cycle	tRPS	110		130	Maria Cara	ns	28
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	19
RAS hold time	^t RSH	15		20		ns	100
READ WRITE cycle time	tRWC -	130		155		ns	
RAS to WE delay time	tRWD	60		70		ns	21
Write command to RAS lead time	^t RWL	15	100	20	RESERVED IN	ns	1.54
Transition time (rise or fall)	t _T	3	50	3	50	ns	JF
WE command setup time	tWCS	0		0		ns	21
Write command hold time	tWCH	10		15		ns	
Write command hold time (referenced to RAS)	tWCR	45	1 228 2	55		ns	
Write command pulse width	tWP	10		15		ns	
WE hold time (CBR REFRESH)	tWRH	10		10		ns	24
WE setup time (CBR REFRESH)	tWRP	10		10		ns	24


NOTES

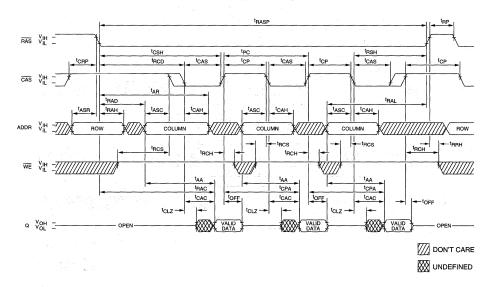
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. $Vcc = 5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VII. and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{\text{CAS}} = \text{V}_{\text{IL}}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.


- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE WRITE, READ WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit through-out the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the cycle is a LATE WRITE and the state of data-out is indeterminate (at access time and until CAS goes back to Vih).
- 22. These parameters are referenced to CAS leading edge in early WRITE cycles and WE leading edge in late WRITE or READ WRITE cycles.
- 23. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$.
- 24. ^tWTS and ^tWTH are set up and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of ^tWRP and ^tWRH in the CBR REFRESH cycle.
- 25. Extended refresh current is reduced as ^tRAS is reduced from its maximum specification during the extended refresh cycle.
- 26. The 3ns minimum is a parameter guaranteed by design.
- 27. Column-address changed once each cycle.
- 28. If the DRAM controller uses a burst refresh, a burst refresh of all rows must be executed upon exiting SELF REFRESH.

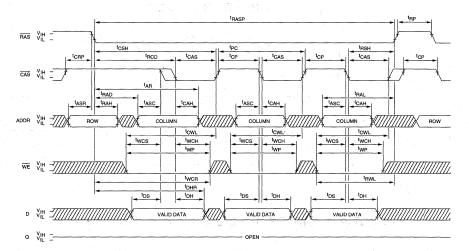
READ CYCLE



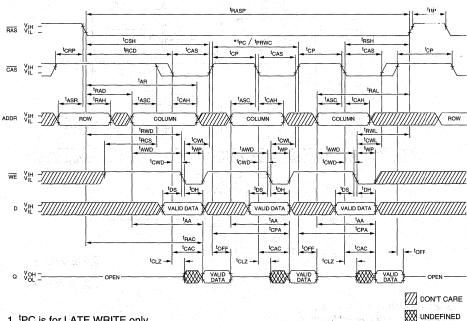
EARLY WRITE CYCLE



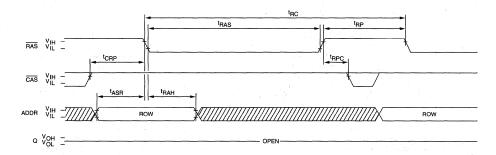
READ WRITE CYCLE(LATE WRITE and READ-MODIFY-WRITE cycles)



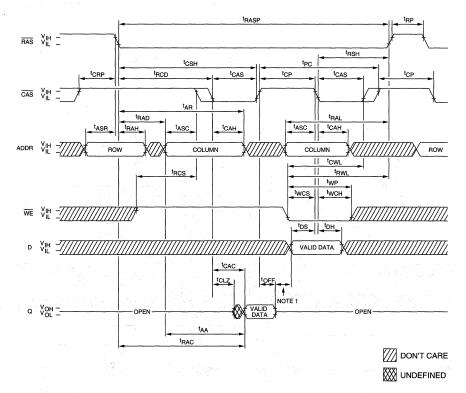
FAST-PAGE-MODE READ CYCLE



FAST-PAGE-MODE EARLY-WRITE CYCLE

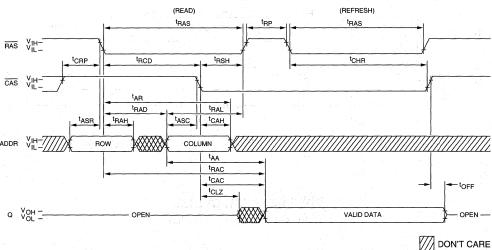


FAST-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)



RAS-ONLY REFRESH CYCLE (WE and A10 = DON'T CARE)

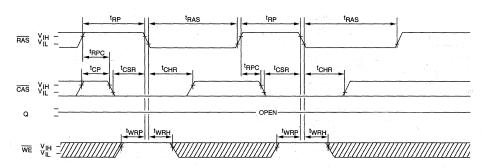
FAST-PAGE-MODE READ-EARLY-WRITE CYCLE



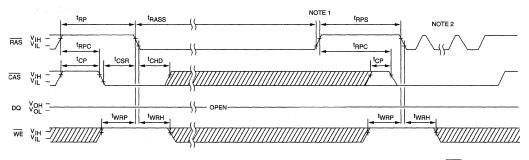
NOTE:

- 1. Do not drive data prior to tristate.
- 2. Assumes D and Q are tied together.

HIDDEN REFRESH CYCLE 23 $(\overline{WE} = HIGH)$



UNDEFINED


CBR REFRESH CYCLE

(Addresses = DON'T CARE)

SELF REFRESH CYCLE

(Addresses = DON'T CARE)

DON'T CARE

UNDEFINED

NOTE: 1. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.

2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

DRAM

1 MEG x 4 DRAM

5V, STANDARD OR SELF REFRESH

FEATURES

- 1,024-cycle refresh distributed across 16ms (MT4C4001J) or 128ms (MT4C4001J S)
- Industry-standard pinout, timing, functions and packages
- High-performance CMOS silicon-gate process
- Single +5V ±10% power supply
- All inputs, outputs and clocks are TTL-compatible
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN; optional Extended and SELF REFRESH modes (MT4C4001J S only)
- FAST PAGE MODE access cycle
- Low power, 0.8mW standby; 225mW active, typical (MT4C4001J S)

OPTIONS • Timing 60ns access 70ns access -6 70ns access -7 • Packages Plastic SOJ (300 mil) Plastic TSOP (300 mil) • Refresh Rate Standard 16ms period SELF REFRESH and 128ms period S

KEY TIMING PARAMETERS

Part Number Example: MT4C4001JDJ-6S

SPEED	tRC	^t RAC	^t PC	^t AA	^t CAC	tRP			
-6	110ns	60ns	35ns	30ns	15ns	40ns			
-7	130ns	70ns	40ns	35ns	20ns	50ns			

GENERAL DESCRIPTION

The MT4C4001J(S) is a randomly accessed solid-state memory containing 4,194,304 bits organized in a x4 configuration. \overline{RAS} is used to latch the first 10 bits and \overline{CAS} the latter 10 bits. READ and WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pins remain open (High-Z) until the next \overline{CAS} cycle.

If \overline{WE} goes LOW after data reaches the output pins, dataout (Q) is activated and retains the selected cell data as long

PIN ASSIGNMENT (Top View)

20/26-Pin SOJ

(DA-1)

	4-1-6				
DQ1	1	19	26	Ь.	Vss
DQ2 E	2		25	þ	DQ4
WE [3		24	þ	DQ3
RAS E			23		CAS
A9 [5		22	Ρ.	ŌĒ
AO E			18	_	۸.
					A8
A1 [17	Þ	A7
A2 [11		16	þ	A6
A3 D	12		15		A5
Voc F	12		11	h	Δ.4

20/26-Pin TSOP

(DB-1)

DQ1 =	1		26	₩ Vss
DQ2 III	2	*****	25	III DQ4
WE =	3		24	III DQ
RAS =	4			□ CAS
A9 🗆	5		22	⊞ Œ
	- 5			A .
A0 □	9		18	- A8 -
A1 ==	10		. 17	□ A7
A2 □	11		16	A6
A3 =	12		15	A5
Vcc □	13		. 14	□ A4

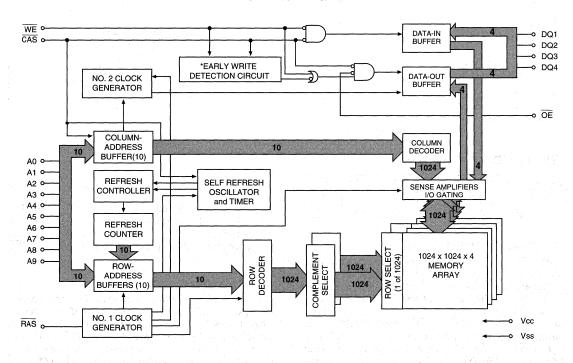
as \overline{CAS} remains LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ WRITE cycle. The four data inputs and four data outputs are routed through four pins using common I/O and pin direction is controlled by \overline{WE} and \overline{OE} .

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobedin by RAS followed by a column-address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

REFRESH

Preserve correct memory cell data by maintaining power and executing a \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR, or HIDDEN) so that all 1,024 combinations of \overline{RAS} addresses are executed at least every 16ms, regardless of sequence. The CBR REFRESH cycle will invoke the refresh counter for automatic \overline{RAS} addressing.


An optional SELF REFRESH mode is also available on the MT4C4001J(S). The "S" version allows the user the choice of a fully static low-power data retention mode, or a dynamic refresh mode at the extended refresh period of 128ms, eight times longer than the standard 16ms specifications.

The optional SELF REFRESH feature is initiated by performing a CBR REFRESH cycle and holding RAS LOW for the specified ^tRASS. Additionally, the "S" version al-

lows for an extended refresh rate of 125µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation or during a standby or extended refresh mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for a minimum time of ${}^{t}RPS$ (\approx ${}^{t}RC$). This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all 1,024 rows must be refreshed within 300µs prior to the resumption of normal operation.

FUNCTIONAL BLOCK DIAGRAM FAST PAGE MODE

*NOTE: 1. If WE goes LOW prior to CAS going LOW, EW detection circuit output is a HIGH (EARLY WRITE).

2. If CAS goes LOW prior to WE going LOW, EW detection circuit output is a LOW (LATE WRITE).

TRUTH TABLE

			3			ADDRE	SSES	DATA-IN/OUT
FUNCTION	a i di si siya	RAS	CAS	WE	ŌĒ	^t R	tC t	DQ1-DQ4
Standby		Н	H→X	Х	Х	Х	Х	High-Z
READ		L	L	Н	L	ROW	COL	Data-Out
EARLY WRITE		L	L	L	Х	ROW	COL	Data-In
READ WRITE		L	L	H→L	L→H	ROW	COL	Data-Out, Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	L	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	Н	L	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	Х	ROW	COL	Data-In
EARLY-WRITE	2nd Cycle	L	H→L	L	Х	n/a	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In
RAS-ONLY REFRESH		L	Н	Х	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	Х	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	Х	Х	Х	High-Z
SELF REFRESH (MT4C4001J S only)		H→L	L	Н	X	X	X	High-Z

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Vss	1V to +7V
Operating Temperature, TA (ambient)	0°C to +70°C
Storage Temperature (plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +5V \pm 10\%$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	
Input High (Logic 1) Voltage, all inputs	ViH	2.4	Vcc+1	V	
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	4 V	
INPUT LEAKAGE CURRENT Any input 0V ≤ VIN ≤ 6.5V (All other pins not under test = 0V)	lı .	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (lout = -5mA)	Vон	2.4	Tar.	V	
Output Low Voltage (IouT = 4.2mA)	Vol		0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +5V \pm 10\%$)		M	MAX		1 12
PARAMETER/CONDITION	SYMBOL	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	lcc1	2	2	mA	
STANDBY CURRENT: (CMOS)	lcc2	1	1	mA	1
$(RAS = \overline{CAS} = Vcc -0.2V)$	Icc2 (S only)	200	200	μA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Single Address Cycling: ^t RC = ^t RC [MIN])	Іссз	110	100	mA	3, 4, 30
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: [†] PC = [†] PC [MIN])	lcc4	80	70	mA	3, 4, 30
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = Vih: tRC = tRC [MIN])	Icc5	110	100	mA	3, 30
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: \textstyle{t}RC = \textstyle{t}RC [MIN])	Icc6	110	100	mA	3, 5
REFRESH CURRENT: Extended (S version only) Average power supply current during Extended Refresh: CAS = 0.2V or CBR cycling; RAS = IRAS (MIN); WE = Vcc -0.2V; OE, A0-A9 and DIN = Vcc -0.2V or 0.2V; (DIN may be left open); IRC = 125µs (1,024 rows at 125µs = 128ms)	lcc7 (S only)	300	300	μΑ	3, 5, 28
REFRESH CURRENT: SELF (S version only) Average power supply current during SELF REFRESH: CBR cycle with ¹RAS ≥ ¹RASS (MIN) and CAS held LOW; WE = Vcc -0.2; A0-A9, OE and DIN = Vcc -0.2V or 0.2V (DIN may be left open)	Iccs (S only)	300	300	μΑ	5, 31

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A9	C ₁₁		5	pF	2
Input Capacitance: RAS, CAS, WE, OE	C ₁₂		7	pF	2
Input/Output Capacitance: DQ	Cio		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

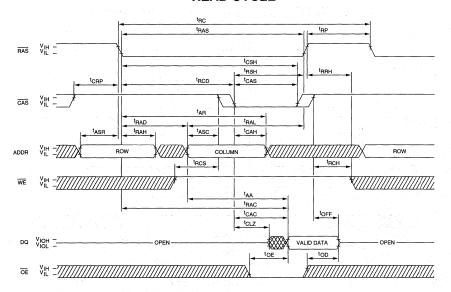
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = +5V \pm 10\%$)

AC CHARACTERISTICS			-6		-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30		35	ns	1.0
Column-address hold time (referenced to RAS)	^t AR	45		50		ns	
Column-address setup time	tASC	0		0		ns	
Row-address setup time	tASR	0		0		ns	
Column-address to WE delay time	tAWD	55		65		ns	21
Access time from CAS	^t CAC		15		20	ns	15
Column-address hold time	^t CAH	10		15		ns	
CAS pulse width	tCAS	15	10,000	20	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH cycle	^t CHD	10		10		ns	31
CAS hold time (CBR REFRESH)	^t CHR	10		10		ns	5
CAS to output in Low-Z	tCLZ	0		0		ns	
CAS precharge time	^t CP	10		10		ns	16
Access time from CAS precharge	^t CPA		35		40	ns	
CAS to RAS precharge time	tCRP .	10		10	1.55	ns	1.5
CAS hold time	tCSH	60		70		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		ns	5
CAS to WE delay time	tCWD	40		50		ns	21
Write command to CAS lead time	tCWL	15	and the same	20	100	ns	
Data-in hold time	tDH	10	Sales 1	15	1. 1.	ns	22
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	1 to 1
Data-in setup time	^t DS	0		0		ns	22
Output disable	tOD		15		20	ns	27
Output Enable	^t OE		15		20	ns	23
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	15	1	20		ns	26
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	20, 29
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		ns	4 1997
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	100
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	85		100		ns	
Access time from RAS	tRAC.		60		70	ns	14

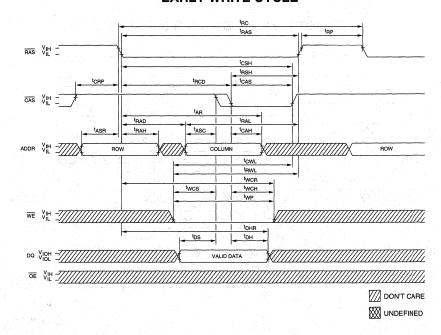
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = +5V \pm 10\%$)

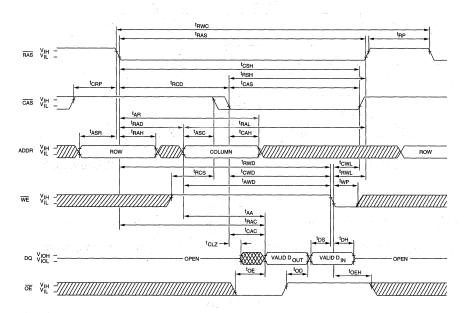
AC CHARACTERISTICS		-6			7	1 1 (2) 3 4	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
RAS to column-address delay time	tRAD	15	30	15	35	ns	18
Row-address hold time	^t RAH	10	1. 7. 1.	10		ns	1 and 1.
Column-address to RAS lead time	^t RAL	30	1.5	35		ns	1973
RAS pulse width	t _{RAS}	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	60	100,000	70	100,000	ns	
RAS pulse width during SELF REFRESH cycle	†RASS	100		100	2.5	μs	31
Random READ or WRITE cycle time	tRC	110		130		ns	
RAS to CAS delay time	tRCD	20	45	20	50	ns	17
Read command hold time (referenced to CAS)	^t RCH	0		0		ns	19
Read command setup time	tRCS	0		0		ns	
Refresh period (1,024 cycles)	^t REF	1	16		16	ms	
Refresh period (1,024 cycles) S version	tREF.		128		128	ms	
RAS precharge time	^t RP	40		50		ns	
RAS to CAS precharge time	tRPC .	0		0		ns	
RAS precharge time during SELF REFRESH cycle	tRPS	110		130		ns	31
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	19
RAS hold time	tRSH	15		20		ns	
READ WRITE cycle time	tRWC	150	se see	180		ns	
RAS to WE delay time	^t RWD	90		100		ns	21
Write command to RAS lead time	^t RWL	15	Dan Brian	20		ns	
Transition time (rise or fall)	ণ	3	50	3	50	ns	
Write command hold time	tWCH	10		15		ns	
Write command hold time (referenced to RAS)	†WCR	45		55		ns	
WE command setup time	twcs	0	A	0		ns	21, 27
Write command pulse width	tWP.	10		15		ns	4,141
WE hold time (CBR REFRESH)	tWRH	10		10		ns	25
WE setup time (CBR REFRESH)	tWRP	10		. 10		ns	25


NOTES

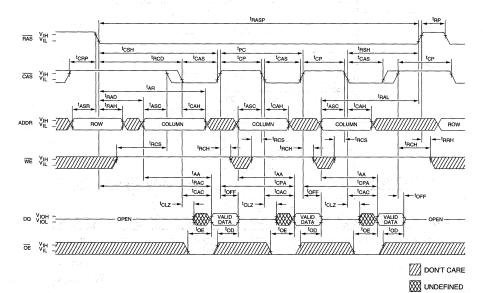
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $+5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIL and VIH) in a monotonic manner.
- 11. If CAS = ViH, data output is High-Z.
- 12. If $\overline{\text{CAS}} = \text{Vii.}$, data output may contain data from the last valid READ cycle.
- Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.


- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition, and is not referenced to VOH or VOL.
- 21. ¹WCS, ¹RWD, ¹AWD and ¹CWD are not restrictive operating parameters. ¹WCS applies to EARLY WRITE cycles. ¹RWD, ¹AWD and ¹CWD apply to READ-MODIFY-WRITE cycles. If ¹WCS ≥ ¹WCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ¹RWD ≥ ¹RWD (MIN), ¹AWD ≥ ¹AWD (MIN) and ¹CWD ≥ ¹CWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. ¹WCS, ¹RWD, ¹CWD and ¹AWD are not applicable in a LATE WRITE cycle.
- These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. If OE is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not permissible and should not be attempted.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 25. WTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.
- 26. LATE WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. If OE is taken back LOW while CAS remains LOW, the DQs will remain open.
- 27. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS goes HIGH before OE, the DQs will open regardless of the state of OE. If CAS stays LOW while OE is brought HIGH, the DQs will open. If OE is brought back LOW (CAS still LOW), the DQs will provide the previously read data.
- 28. Extended refresh current is reduced as ^tRAS is reduced from its maximum specification during the extended refresh cycle.
- 29. The 3ns minimum is a parameter guaranteed by design.
- 30. Column-address changed once each cycle.
- 31. If the DRAM controller uses a burst refresh, a burst refresh of all rows must be executed upon exiting SELF REFRESH.

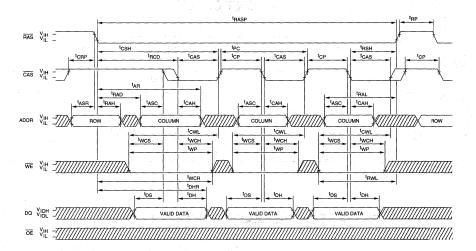
READ CYCLE



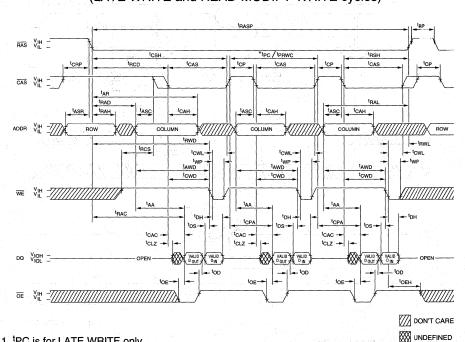
EARLY WRITE CYCLE



READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)

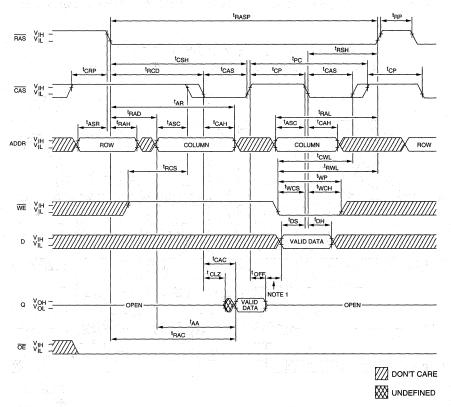


FAST-PAGE-MODE READ CYCLE



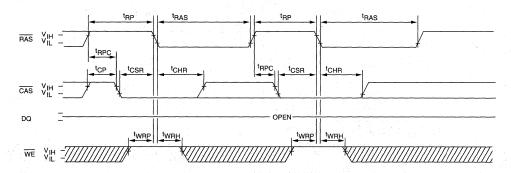
FAST-PAGE-MODE EARLY-WRITE CYCLE

FAST-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)

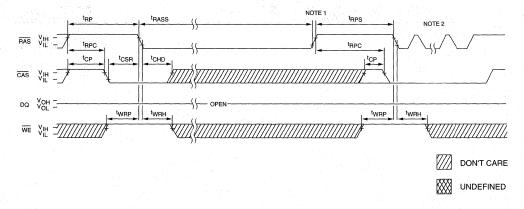

*NOTE: 1. ^tPC is for LATE WRITE only.

RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE



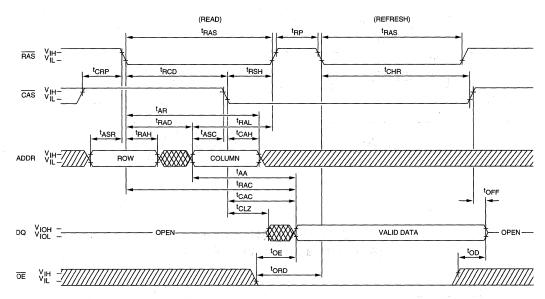
NOTE: 1. Do not drive data prior to tristate.


CBR REFRESH CYCLE

(Addresses and $\overline{OE} = DON'T CARE$)

SELF REFRESH CYCLE

(Addresses and $\overline{OE} = DON'T CARE$)



NOTE:

- 1. Once [†]RASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.
- 2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

HIDDEN REFRESH CYCLE 24 (WE = HIGH; OE = LOW)

DON'T CARE

W UNDEFINED

DRAM

1 MEG x 4 DRAM

3.3V, FAST PAGE MODE OPTIONAL SELF REFRESH

FEATURES

- Single +3.3V ±0.3V power supply
- Low power, 0.3mW standby; 100mW active, typical
- Industry-standard x4 pinout, timing, functions and packages
- High-performance CMOS silicon-gate process
- All inputs, outputs and clocks are LVTTL-compatible
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN; optional Extended and SELF REFRESH modes
- FAST PAGE MODE access cycle
- 1,024-cycle Extended Refresh distributed across 16ms or 128ms
- Low SELF REFRESH current, 100μA typical, 150μA (MAX)

MARKING OPTIONS Timing 60ns access -6 -7 70ns access -8 80ns access Refresh Rate Standard 16ms period None SELF REFRESH and 128ms period S Packages Plastic SOI (300 mil) DI TG Plastic TSOP (300 mil)

KEY TIMING PARAMETERS

• Part Number Example: MT4LC4001JDJ-7 S

SPEED	tRC	tRAC	^t PC	t _{AA}	tCAC	^t RP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns
-8	150ns	80ns	45ns	40ns	20ns	60ns

GENERAL DESCRIPTION

The MT4LC4001J(S) is a randomly accessed solid-state memory containing 4,194,304 bits organized in a x4 configuration. RAS is used to latch the first 10 bits and \overline{CAS} the latter 10 bits. READ and WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or

PIN	A55	IGNI	//ENI	(10p	view

20/26-Pi (DA-			Pin TSOP B-1)
DQ1	26 J Vss 25 J DQ4 24 J DQ3 23 J CAS 22 J OE	DQ1 1 2 2 WE 1 3 RAS 1 4 A9 11 5	26 HD Vss 25 HD DQ4 24 HD DQ3 23 HD CAS 22 HD OE
A0	18	A0 II 9 A1 II 10 A2 II 11 A3 II 12 Vcc II 13	18 11 A8 17 11 A7 16 11 A6 15 22 A5 14 22 A4

 $\overline{\text{CAS}}$, whichever occurs last. If $\overline{\text{WE}}$ goes LOW prior to $\overline{\text{CAS}}$ going LOW, the output pins remain open (High-Z) until the next $\overline{\text{CAS}}$ cycle.

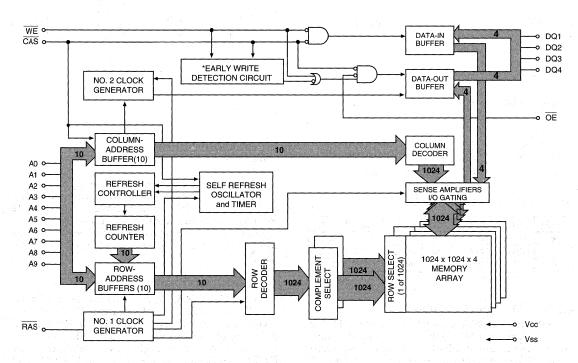
If \overline{WE} goes LOW after data reaches the output pins, dataout (Q) is activated and retains the selected cell data as long as \overline{CAS} remains LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ WRITE cycle. The four data inputs and four data outputs are routed through four pins using common I/O and pin direction is controlled by \overline{WE} and \overline{OE} .

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobedin by $\overline{\text{RAS}}$ followed by a column-address strobed-in by $\overline{\text{CAS}}$. $\overline{\text{CAS}}$ may be toggled-in by holding $\overline{\text{RAS}}$ LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning $\overline{\text{RAS}}$ HIGH terminates the FAST PAGE MODE operation.

REFRESH

Preserve correct memory cell data by maintaining power and executing a \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR, or HIDDEN) so that all 1,024 combinations of \overline{RAS} addresses are executed at least every 16ms, regardless of sequence. The CBR REFRESH cycle will invoke the refresh counter for automatic \overline{RAS} addressing.


An optional SELF REFRESH mode is also available on the MT4C4001 J(S). The "S" version allows the user the choice of a fully static low-power data retention mode, or a dynamic refresh mode at the extended refresh period of 128ms, eight times longer than the standard 16ms specifications.

The optional SELF REFRESH feature is initiated by performing a CBR REFRESH cycle and holding RAS LOW

for the specified ^tRASS. Additionally, the "S" version allows for an extended refresh rate of 125µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation or during a standby or extended refresh mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for a minimum time of ${}^{t}RPS$ (\approx ${}^{t}RC$). This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all 1,024 rows must be refreshed within 300 μ s prior to the resumption of normal operation.

FUNCTIONAL BLOCK DIAGRAM FAST PAGE MODE

*NOTE: 1. If WE goes LOW prior to CAS going LOW, EW detection circuit output is a HIGH (EARLY WRITE).

2. If CAS goes LOW prior to WE going LOW, EW detection circuit output is a LOW (LATE WRITE).

TRUTH TABLE

	g seriote can	1 1 0 1				ADDR	ESSES	DATA-IN/OUT
FUNCTION	en a jakyja	RAS	CAS	WE	ŌĒ	^t R	tC.	DQ1-DQ4
Standby		Н	H→X	Х	Х	Х	Х	High-Z
READ		L	L	Н	L	ROW	COL	Data-Out
EARLY WRITE		L	L	L	Х	ROW	COL	Data-In
READ WRITE		L	_1	H→L	L→H	ROW	COL	Data-Out, Data-In
FAST-PAGE-MODE	1st Cycle	L .	H→L	Н	e a L gar	ROW	COL	Data-Out
READ	2nd Cycle	L. L	H→L	Н	L	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	X	ROW	COL	Data-In
EARLY-WRITE	2nd Cycle	L	H→L	L	Х	n/a	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In
RAS-ONLY REFRESH		L	Н	X	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	X	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	Х	Χ	Χ	High-Z
SELF REFRESH		H→L	L	Н	X	Χ	Χ	High-Z

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Vss	1.0V to +4.6V
Operating Temperature, T_A (ambient)	0°C to +70°C
Storage Temperature (plastic)	
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION	3.01	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		V cc	3.0	3.6	V	
Input High (Logic 1) Voltage	, all inputs	ViH	2.0	Vcc+1	V	
Input Low (Logic 0) Voltage,	all inputs	VIL	-1.0	0.8	V	
INPUT LEAKAGE CURREN Any input 0V ≤ Vin ≤ Vcc+0.	T 5V (All other pins not under test = 0V)	- 1 h-1	-2	2	μА	
OUTPUT LEAKAGE CURRI	ENT (Q is disabled; $0V \le V_{OUT} \le V_{CC} + 0.5V$)	loz	-10	10	μΑ	
TTL OUTPUT LEVELS	High Voltage (Іоит = -2mA)	Vон	2.4		V	
	Low Voltage (Iout = 2mA)	Vol		0.4	V	

		MAX					
PARAMETER/CONDITION	SYM	-6	-7	-8	UNITS	NOTES	
STANDBY CURRENT: (TTL) (RAS = CAS = Vih)	lcc1	1	1	1	mA		
STANDBY CURRENT: (CMOS)	Icc2	500	500	500	μА		
(RAS = CAS = Other Inputs = Vcc -0.2V)	Icc2 (S only)	100	100	100	μА		
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	lcc3	80	70	60	mA	3, 4, 30	
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ¹PC = ¹PC [MIN])	Icc4	60	50	40	mA	3, 4, 30	
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = Vih: tRC = tRC [MIN])	Icc5	80	70	60	mA	3, 30	
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Icc6	80	70	60	mA	3, 5	
REFRESH CURRENT: Extended (S version only) Average power supply current during Extended Refresh: CAS = 0.2V or CBR cycling; †RAS = †RAS (MIN); WE = Vcc - 0.2V; A0-A9, OE, and DIN = Vcc - 0.2V or 0.2V (DIN may be left open); †RC = 125µs (1,024 rows at 125µs = 128ms)	Icc7 (S only)	150	150	150	μА	3, 5, 28	
REFRESH CURRENT: SELF (S version only) Average power supply current during SELF REFRESH: CBR cycle with ¹RAS ≥ ¹RASS (MIN) and CAS held LOW; WE = Vcc - 0.2V; A0-A9,OE, and DIN = Vcc - 0.2V or 0.2V (DIN may be left open)	Iccs (S only)	150	150	150	μΑ	5, 29	

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A9	C _{I1}	5	pF	2
Input Capacitance: RAS, CAS, WE, OE	C ₁₂	7	pF	2
Input/Output Capacitance: DQ	Сю	7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

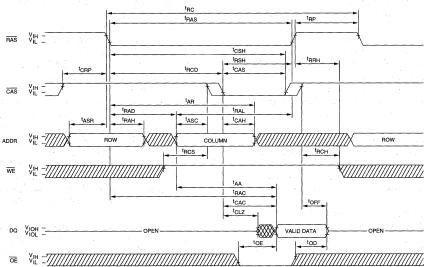
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS PARAMETER	SYM	-6		-7		-8			
		MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30	. 6. 1	35		40	ns	
Column-address hold time (referenced to RAS)	^t AR	45		50		. 55		ns	
Column-address setup time	tASC	0		0		0		ns	
Row-address setup time	†ASR	0		0		0		ns	
Column-address to WE delay time	tAWD	55		65		70		ns	21
Access time from CAS	^t CAC		15		20		20	ns	15
Column-address hold time	^t CAH	10		15		15		ns	
CAS pulse width	tCAS.	15	10,000	20	10,000	20	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH cycle	tCHD	10		10		10		ns	29
CAS hold time (CBR REFRESH)	tCHR	10		10		10		ns	5
CAS to output in Low-Z	†CLZ	3		3		3		ns	7.79
CAS precharge time	^t CP	. 10		10		10		ns	16
Access time from CAS precharge	tCPA.		35		40		45	ns	
CAS to RAS precharge time	^t CRP	10		10		10		ns	
CAS hold time	^t CSH	60		70		80		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		10	\$5.00	ns	5
CAS to WE delay time	^t CWD	40		50		50		ns	21
Write command to CAS lead time	tCWL	15		20		20		ns	
Data-in hold time	^t DH	10		15		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		ns	
Data-in setup time	^t DS	0		0		0		ns	22
Output disable	^t OD		15		20		20	ns	27
Output Enable time	^t OE		15		20	100	20	ns	23
OE hold time from WE during READ-MODIFY-WRITE cycle	†OEH	15		20		20		ns	26
Output buffer turn-off delay	tOFF	3	15	3	20	3	20	ns	20
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		0		ns	
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		45		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	85		100		105		ns	
Access time from RAS	†RAC		60		70		80	ns	14

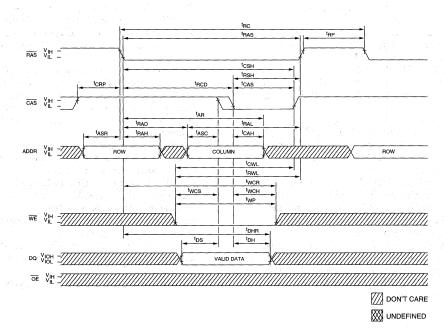
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = +3.3V \pm 0.3V$)

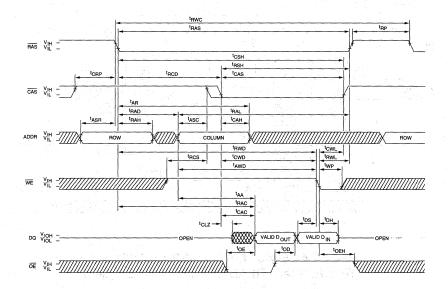
AC CHARACTERISTICS PARAMETER	SYM	-6		-7		-8			
		MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
RAS to column-address delay time	tRAD	15	30	15	35	15	40	ns	18
Row-address hold time	^t RAH	10		10	1	10		ns	
Column-address to RAS lead time	^t RAL	30		35		40		ns	
RAS pulse width	†RAS	60	10,000	70	10,000	80	10,000	ns	
RAS pulse width (FAST PAGE MODE)	^t RASP	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width during SELF REFRESH cycle	†RASS	100	-350	100		100	1.1.1	μs	29
Random READ or WRITE cycle time	tRC	110		130		150		ns	
RAS to CAS delay time	tRCD	20	45	20	50	20	60	ns	17
Read command hold time (referenced to CAS)	[†] RCH	0,		0		0		ns	19
Read command setup time	†RCS	0		0		0	1 1 1	ns	
Refresh period (1,024 cycles)	†REF		16		16	- ", "	16	ms	
Refresh period (1,024 cycles) S version	^t REF		128		128		128	ms	
RAS precharge time	^t RP	40		50		60	6.4	ns	
RAS to CAS precharge time	†RPC	0		0		0	100,200	ns	
RAS precharge time during SELF REFRESH cycle	tRPS	110		130		150		ns	29
Read command hold time (referenced to RAS)	†RRH	0		0		0	1	ns	19
RAS hold time	tRSH	15		20		20		ns	
READ WRITE cycle time	^t RWC	150		180		200		ns	
RAS to WE delay time	^t RWD	85		100		110		ns	21
Write command to RAS lead time	tRWL	15		20		20		ns	
Transition time (rise or fall)	ΨT	3	50	3	50	3	50	ns	
Write command hold time	tWCH	10	7	15	1 11	15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		60	4	ns	
WE command setup time	tWCS	0	1	0		0		ns	21, 27
Write command pulse width	tWP	10		15	1 1 1 1 2 1	15		ns	
WE hold time (CBR REFRESH)	tWRH	10		10		10		ns	25
WE setup time (CBR REFRESH)	tWRP	10		10		10		ns	25


NOTES

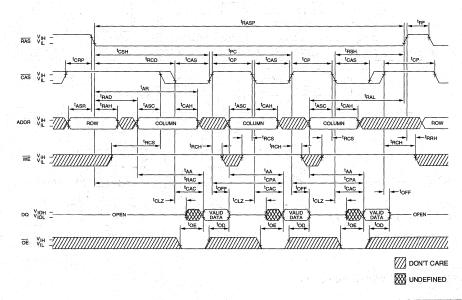
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $+3.3V \pm 0.3V$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between $V_{\rm IL}$ (or between $V_{\rm IL}$ and $V_{\rm IH}$) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{\text{CAS}} = \text{Vil.}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF. Output reference voltages are 0.8V for a low level and 2.0V for a high level.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.


- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. ¹WCS, ¹RWD, ¹AWD and ¹CWD are restrictive operating parameters in LATE WRITE and READ-MODIFY-WRITE cycles only. If ¹WCS ≥ ¹WCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ¹RWD ≥ ¹RWD (MIN), ¹AWD ≥ ¹AWD (MIN) and ¹CWD ≥ ¹CWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle.
- 22. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. If $\overline{\text{OE}}$ is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not permissible and should not be attempted.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and \overline{OE} = HIGH.
- 25. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR refresh cycle.
- 26. LATE WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. If OE is taken back LOW while CAS remains LOW, the DQs will remain open.
- 27. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS goes HIGH before OE, the DQs will open regardless of the state of OE. If CAS stays LOW while OE is brought HIGH, the DQs will open. If OE is brought back LOW (CAS still LOW), the DQs will provide the previously read data.
- 28. Refresh current increases if ^tRAS is extended beyond its minimum specification.
- 29. If the DRAM controller uses a burst refresh, a burst refresh of all rows must be executed upon exiting SELF REFRESH.
- 30. Column-address changed once each cycle.

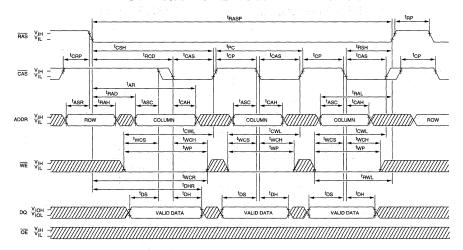
READ CYCLE



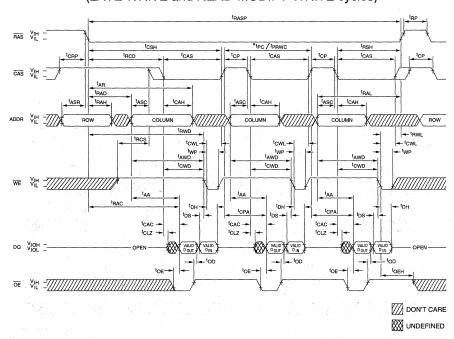
EARLY WRITE CYCLE



READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)

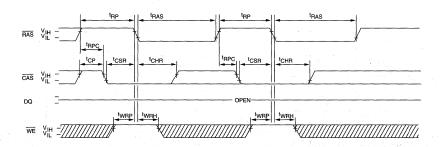


FAST-PAGE-MODE READ CYCLE

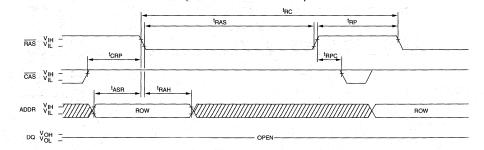


FAST-PAGE-MODE EARLY-WRITE CYCLE

FAST-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)

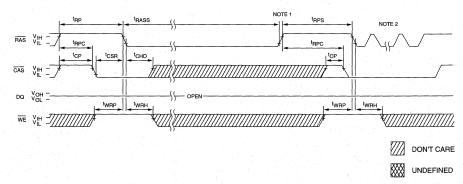


*NOTE: 1. ^tPC is for LATE WRITE cycles only.



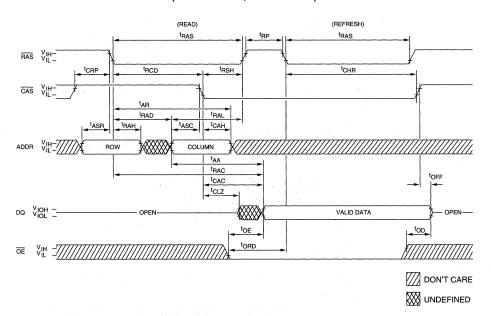
CBR REFRESH CYCLE

(Addresses and $\overline{OE} = DON'T CARE$)



RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)

SELF REFRESH CYCLE


(Addresses and $\overline{OE} = DON'T CARE$)

NOTE: 1. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode. 2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

HIDDEN REFRESH CYCLE 24 (WE = HIGH; OE = LOW)

DRAM

1 MEG x 4 DRAM

5V, QUAD CAS PARITY, FAST PAGE MODE

FEATURES

- Four independent CAS controls, allowing individual manipulation to each of the four data input/output ports (DQ1 through DQ4).
- Offers a single chip solution to byte-level parity for 36-bit words when using 1 Meg x 4 DRAMs for memory
- Emulates WRITE-PER-BIT at design-in level, with simplified timing constraints
- High-performance CMOS silicon-gate process
- Single +5V ±10% power supply
- Low power, 3mW standby; 225mW active, typical
- All inputs, outputs and clocks are TTL-compatible
- 1,024-cycle refresh in 16ms
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN

OPTIONS • Timing 60ns access 70ns access -7 • Packages Plastic SOJ (300 mil) • Part Number Example: MT4C4004JDJ-7

KEY TIMING PARAMETERS

SPEED	tRC	†RAC	^t PC	^t AA	1CAC	†RP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

GENERAL DESCRIPTION

The MT4C4004J is a randomly accessed solid-state memory containing 4,194,304 bits organized in a x4 configuration. This 1 Meg x 4 DRAM is unique in that each CAS (CAS1 through CAS4) controls its corresponding data I/O port in conjunction with OE (that is, CAS1 controls DQ1 I/O port, CAS2 controls DQ2, CAS3 controls DQ3 and CAS4 controls DQ4).

The best way to view the Quad \overline{CAS} function is to imagine the \overline{CAS} inputs going into an OR gate to obtain an internally generated \overline{CAS} signal functioning in an identical manner to the single \overline{CAS} input on a standard 1 Meg x 4 DRAM device. The key difference is that each \overline{CAS} controls

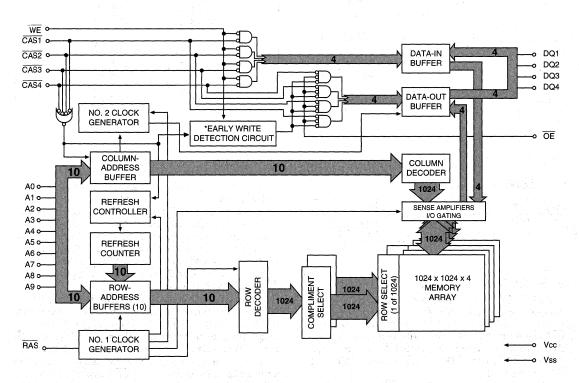
PIN ASSIGNMENT (Top View)

24/26-Pin SOJ (DA-2)

DQ1	1	26	D Vss
DQ2	2	25	DQ4
WE	3	24	DQ3
RAS	4	23	CAS4
CAS1		22	OE
CAS2	6	21	CAS3
			1
A9 [8	19	1 NC
A0 [9	18	□ A8
A1 [10	17	□ A7
A2 [11	16	□ A6
A3 [12	15	□ A5
Vcc [13	14	Þ A 4
			•

its corresponding DQ tristate logic (in conjunction with \overline{OE} and \overline{WE}) on the Quad CAS DRAM.

During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. RAS is used to latch the first 10 bits, and the first CAS is used to latch the latter 10 bits. READ and WRITE cycles are selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode.


During a WRITE cycle, data-in (Dx) is latched by the falling edge of \overline{WE} or the first \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to the first \overline{CAS} going LOW, the output pin(s) remain open until the next \overline{CAS} cycle. If \overline{WE} goes LOW after data reaches the output buffer, data-out (Q) is activated and retains the selected cell data until the trailing edge of its corresponding \overline{CAS} occurs (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-WRITE cycle \overline{OE} switching the device from a READ to a WRITE function). The four data inputs and four data outputs are routed through four pins using common I/O, with pin direction controlled by \overline{WE} and \overline{OE} .

GENERAL DESCRIPTION (continued)

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined (A0-A9) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobedin by the first CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RASHIGH terminates the FAST PAGE MODE operation.

Returning RAS and all four CAS controls HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR, or HIDDEN) so that all 1,024 combinations of RAS addresses (A0-A9) are executed at least every 16ms, regardless of sequence. The CBR RE-FRESH cycle will invoke the internal refresh counter for automatic RAS addressing.

FUNCTIONAL BLOCK DIAGRAM QUAD CAS

1. WE LOW prior to first CAS LOW, EW detection circuit output is a 1.

2. First CAS LOW while WE HIGH, EW detection circuit output is a 0; (OE will now determine I/O).

TRUTH TABLE

			La Telegra			24/11 24/11 24/11	ADDR	ESSES	DQx
FUNCTION		RAS	CASx	CASy	WE	0E	tR tC		(DQy always High-Z)
Standby		Н	H→X	H→X	Х	Х	X	Х	High-Z
READ	ranga kangariyasi.	L .	L	Н	Н	L	ROW	COL	Data-Out
EARLY WRITE		L	L	Н	L	Х	ROW	COL	Data-In
READ-WRITE		L	L	Н	H→L	L→H	ROW	COL	Data-Out, Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	Н	L	ROW	COL	Data-Out
READ	2nd Cycle	TAL S	H→L	Н	Н	· L	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	L	X	ROW	COL	Data-In
EARLY-WRITE	2nd Cycle	L	H→L	Н	L	X	n/a	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	H→L	L→H	ROW	COL	Data-Out, Data-In
READ-WRITE	2nd Cycle	L	H→L	Н	H→L	L→H	n/a	COL	Data-Out, Data-In
RAS-ONLY REFRESH		L	Н	Н	Х	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	Н	L	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	Н	L	Χ	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	Н	Х	Х	Х	High-Z

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Vss	1V to +7V
Operating Temperature, T_A (ambient)	
Storage Temperature (plastic)	
Power Dissipation	1W
Short Circuit Output Current	
하는 사람들은 사람들이 가장 하는 사람들이 들어 보고 있는 것이 없었다. 그 사람들이 얼마나 되었다.	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) (Vcc = 5V ±10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	V cc	4.5	5.5	V	
Input High (Logic 1) Voltage, all inputs	ViH	2.4	Vcc+1	V	
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT Any input $0V \le VIN \le 6.5V$ (All other pins not under test = $0V$)	lı	-2	2	μА	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (lout = -5mA)	Vон	2.4		٧	
Output Low Voltage (Iout = 4.2mA)	Vol		0.4	V	

	M	AX			
PARAMETER/CONDITION	SYMBOL	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) $(\overline{RAS} = \overline{CAS} = V_{IH})$	Icc1	2.5	2.5	mA	
STANDBY CURRENT: (CMOS) $(\overline{RAS} = \overline{CAS} = Vcc - 0.2V)$	lcc2	1	1	26	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Single Address Cycling: [†] RC= [†] RC [MIN])	Іссз	110	100	mA	3, 4, 39
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL; CAS, Address Cycling: [†] PC= [†] PC [MIN])	lcc4	80	70	mA	3, 4, 39
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = VIH: ¹RC= ¹RC [MIN])	Icc5	110	100	mA	3, 39
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC= ^t RC [MIN])	Icc6	110	100	mA	3, 5

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A9	Ci1 .		5	pF	2
Input Capacitance: RAS, CAS1-4, WE, OE	C ₁₂		7	pF	2
Input/Output Capacitance: DQ	Сю		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23, 25) ($Vcc = 5V \pm 10\%$)

AC CHARACTERISTICS			-6	1 12 1 1 1 1	-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	t _{AA}		30	144	35	ns	
Column-address hold time (referenced to RAS)	tAR	45		50		ns	
Column-address setup time	tASC	0		0		ns	27
Row-address setup time	^t ASR	0		0		ns	
Column-address to WE delay time	tAWD	55		65		ns	21
Access time from CAS	†CAC	and the second	15		20	ns	15, 29
Column-address hold time	[†] CAH	10		15		ns	27
CAS pulse width	tCAS	15	10,000	20	10,000	ns	35
CAS hold time (CBR REFRESH)	tCHR	10		10		ns	5, 25, 28
Last CAS going LOW to first CAS to return HIGH	tCLCH	10		10		ns	30
CAS to output in Low-Z	tCLZ	0	12.5	0		ns	29
CAS precharge time	^t CP	10		10		ns	16, 32
Access time from CAS precharge	[†] CPA	The state of the s	35	and of the same	40	ns	29
CAS to RAS precharge time	^t CRP	10		10	4.4	ns	28
CAS hold time	tCSH	60		70		ns	- 28
CAS setup time (CBR REFRESH)	^t CSR	10	4. 1. 1. 1.	10		ns	5, 25, 27
CAS to WE delay time	tCWD	40		50		ns	21, 27
Write command to CAS lead time	tCWL	15		20		ns	28
Data-in hold time	^t DH	10		15		ns	22, 29
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	tDS	0		0		ns	22, 29
Output disable	tOD		15		20	ns	38
Output Enable	^t OE		15		20	ns	23
OE hold time from WE during READ-MODIFY-WRITE cycle	[†] OEH	15		20		ns	37
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	20, 29, 38
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		ns	
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	31

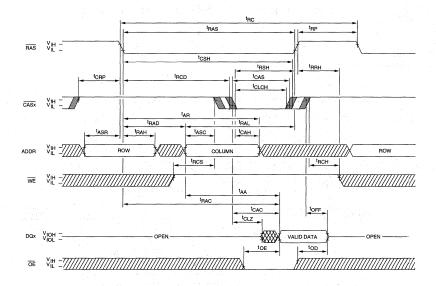
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23, 25) (Vcc = 5V ±10%)

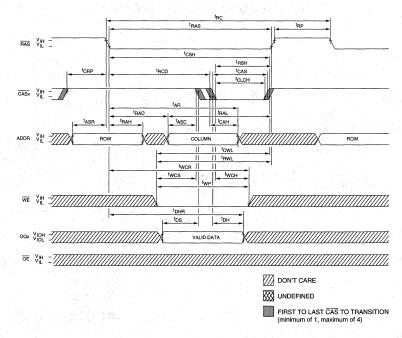
AC CHARACTERISTICS		-(-7			N. 1
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
FAST-PAGE-MODE READ-WRITE cycle time	†PRWC	85		100		ns	31
Access time from RAS	†RAC		60		70	ns	14
RAS to column-address delay time	^t RAD	15	30	15	35	ns	18
Row-address hold time	^t RAH	10		10		ns	
Column-address to RAS lead time	^t RAL	30		35		ns	
RAS pulse width	tRAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	tRASP	60	100,000	70	100,000	ns	
Random READ or WRITE cycle time	†RC	110		130		ns	
RAS to CAS delay time	^t RCD	20	45	20	50	ns	17, 27
Read command hold time (referenced to CAS)	^t RCH	0		0		ns	19, 28
Read command setup time	tRCS	0		0		ns	27
Refresh period (1,024 cycles)	tREF		16		16	ms	
RAS precharge time	^t RP	40		50	100	ns	
RAS to CAS precharge time	^t RPC	0		0		ns	
Read command hold time (referenced to RAS)	tRRH .	0		0		ns	19
RAS hold time	^t RSH	15		20		ns	36.
READ-WRITE cycle time	tRWC	150		180		ns	
RAS to WE delay time	tRWD	90		100		ns	21
Write command to RAS lead time	^t RWL	15		20		ns	
Transition time (rise or fall)	tT	3	50	3	50	ns	1
Write command hold time	tWCH	10		15		ns	36
Write command hold time (referenced to RAS)	tWCR	45		55		ns	
WE command setup time	tWCS	0		0		ns	21, 27
Write command pulse width	tWP	10		15		ns	1
WE hold time (CBR REFRESH)	tWRH	10		10		ns	100
WE setup time (CBR REFRESH)	tWRP	10		10		ns	

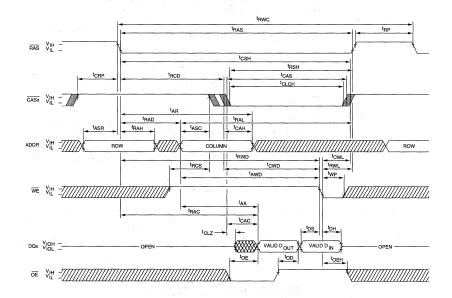
NOTES

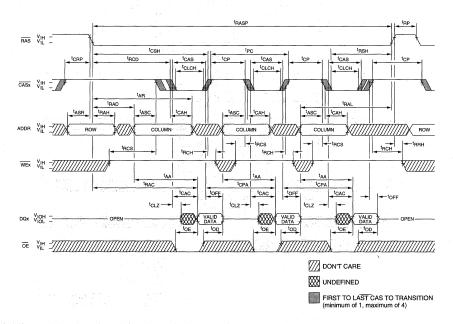
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. $Vcc = 5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial 100µs pause is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 11. If $\overline{CASx} = V_{IH}$, data output is High-Z.
- 12. If CASx = VIL, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If at least one CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, all four CAS controls must be pulsed HIGH for tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.


- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition, and is not referenced to VOH or VOL. The 3ns minimum is a parameter guaranteed by design.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are not restrictive operating parameters. ^tWCS applies to EARLY WRITE cycles. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-MODIFY-WRITE, and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. ^tWCS, ^tRWD, ^tAWD and ^tCWD are not applicable in a LATE WRITE cycle.
- These parameters are referenced to CASx leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. If $\overline{\text{OE}}$ is tied permanently LOW, READ-WRITE or READ-MODIFY-WRITE operations are not permissible and should not be attempted.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 25. One to three CAS controls may be HIGH throughout any given CAS cycle, even though the timing waveforms show all CAS controls going LOW. If one goes LOW, it must meet all the timing requirements listed or the data for that I/O buffer may be invalid. At least one of the four CAS controls must be LOW for a valid CAS cycle to occur.
- 26. All other inputs at Vcc -0.2V.
- 27. The first CASx edge to transition LOW.
- 28. The last \overline{CASx} edge to transition HIGH.
- Output parameters (DQx) are referenced to corresponding CASx input; DQ1 by CAS1, DQ2 by CAS2, etc.
- 30. Last falling \overline{CASx} edge to first rising \overline{CASx} edge.
- 31. Last rising CASx edge to next cycle's last rising CASx edge.
- 32. Last rising CASx edge to first falling CASx edge.
- 33. First DQx controlled by the first \overline{CASx} to go LOW.
- 34. Last DQx controlled by the last CASx to go HIGH.

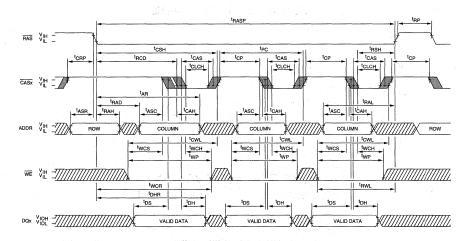
NOTES (continued)


- 35. Each CASx must meet minimum pulse width.
- 36. Last CASx to go LOW.
- 37. LATE WRITE and READ-MODIFY-WRITE cycles must have both 'OD and 'OEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. If OE is taken back LOW while CAS remains LOW, the DQs will remain open.
- 38. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CASx goes HIGH before OE, the DQs will open regardless of the state of OE. If CASx stays LOW while OE is brought HIGH, the DQs will open. IF OE is brought back LOW (CASx still LOW), the DQs will provide the previously read data.
- 39. Column-address changed once each cycle.

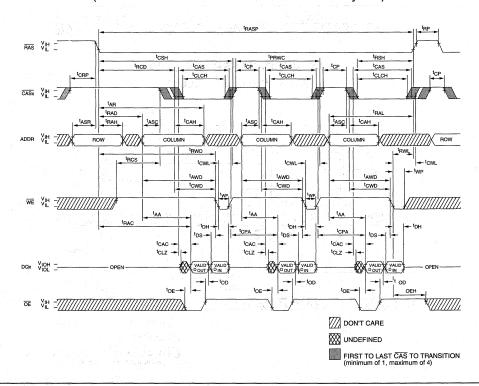

READ CYCLE


EARLY WRITE CYCLE

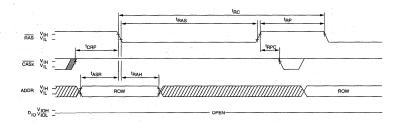
READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE cycles)



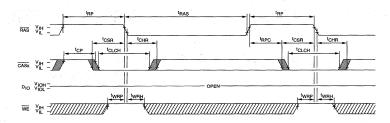
FAST-PAGE-MODE READ CYCLE



FAST-PAGE-MODE EARLY-WRITE CYCLE



FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE cycles)



RAS-ONLY REFRESH CYCLE $(\overline{WE} \text{ and } \overline{OE} = DON'T CARE)$

CBR REFRESH CYCLE 25 (Addresses and $\overline{OE} = DON'T CARE$)

HIDDEN REFRESH CYCLE 24 $(\overline{WE} = HIGH; \overline{OE} = LOW)$

DRAM

4 MEG x 4 DRAM

5V, FAST PAGE MODE

FEATURES

- JEDEC- and industry-standard x4 pinout, timing, functions and packages
- High-performance CMOS silicon-gate process
- Single +5.0V ±10% power supply
- Low power, 3mW standby; 250mW active, typical
- · All inputs, outputs and clocks are TTL-compatible
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- 2,048-cycle (11 row-, 11 column-addresses)

OPTIONS	MARKING
Timing	
60ns access	- 6
70ns access	-7
Packages	
Plastic SOJ (300 mil)	DJ
Plastic TSOP (300 mil)	TG
Refresh Rate	

Standard at 32ms period

None

• Part Number Example: MT4C4M4B1DJ-6

KEY TIMING PARAMETERS

SPEED	^t RC	^t RAC	^t PC	^t AA	^t CAC	^t RP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

GENERAL DESCRIPTION

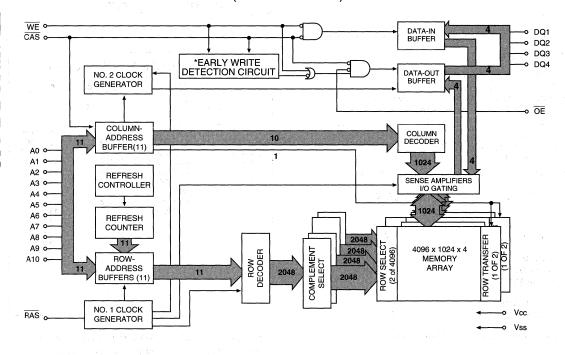
The MT4C4M4B1 is randomly accessed solid-state memories containing 16,777,216 bits organized in a x4 configuration. \overline{RAS} is used to latch the first 11 bits and \overline{CAS} the latter 11 bits. READ and WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pins remain open (High- Z) until the next \overline{CAS} cycle.

If $\overline{\text{WE}}$ goes LOW after data reaches the output pins, dataout (Q) is activated and retains the selected cell data as long as $\overline{\text{CAS}}$ remains LOW (regardless of $\overline{\text{WE}}$ or $\overline{\text{RAS}}$). This late

	P	IN AS	SIGNM	ENT (Top V	iew)			
2	24/26-Pin SOJ (DA-2)			24/26-Pin TSOP (DB-2)					
Vcc C DQ1 C DQ2 C WE C RAS C	2 3 4 5	2 2 2 2	6 D Vss 5 DQ4 4 DQ3 3 DCAS 2 DOE 1 DA9	Vcc III DQ1 III DQ2 III WE III RAS III NC III	2 3 4 5	26			
A10 [A0 [A1 [A2 [A3 [Vcc [9 10 11 12	1 1 1	9 A8 8 A7 7 A6 6 A5 5 A4 4 Vss	A10 III A0 III A1 III A2 III A3 III Vcc III	9 10 11 12	19 A8 18 A7 17 A6 16 A5 15 A4 14 Vss			

WE pulse results in a READ WRITE cycle. The four data inputs and the four data outputs are routed through four pins using common I/O, and pin direction is controlled by WE and OE.

FAST PAGE MODE


FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

REFRESH

Preserve correct memory cell data by maintaining power and executing a \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR, or HIDDEN) so that all 2,048 combinations of \overline{RAS} addresses are executed at least every 32ms, regardless of sequence. The CBR REFRESH cycle will invoke the refresh counter for automatic \overline{RAS} addressing.

FUNCTIONAL BLOCK DIAGRAM

(11 row-addresses)

*NOTE: 1. If WE goes LOW prior to CAS going LOW, EW detection circuit output is a HIGH (EARLY WRITE).

2. If CAS goes LOW prior to WE going LOW, EW detection circuit output is a LOW (LATE WRITE).

TRUTH TABLE

						ADDR	ESSES	DATA-IN/OUT
FUNCTION	1.	RAS	CAS	WE	OE	^t R	tC	DQ1-DQ4
Standby		Н	H→X	Х	Х	×	Х	High-Z
READ		L	L	Н	L	ROW	COL	Data-Out
EARLY WRITE		L	L	L	Х	ROW	COL	Data-In
READ WRITE		L	L	H→L	L→H	ROW	COL	Data-Out, Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	L	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	Н	L	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	Х	ROW	COL	Data-In
EARLY-WRITE	2nd Cycle	L	H→L	L	Х	n/a	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In
RAS-ONLY REFRESH		L	Н	Х	X	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	e L	Legiste	Х	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	Χ	Χ	Х	High-Z

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Vss	1.0V to +7.0V
Operating Temperature, T_{Δ} (ambient)	
Storage Temperature (plastic)	
Power Dissipation	
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +5.0V \pm 10\%$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	
Input High (Logic 1) Voltage, all inputs (including NC pins)	ViH	2.4	Vcc+1	V	
Input Low (Logic 0) Voltage, all inputs (including NC pins)	VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT Any input $0V \le V \le 5.5V$ (All other pins not under test = $0V$)	: 	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (Iout = -5.0mA)	Vон	2.4		V	
Output Low Voltage (Iout = 4.2mA)	Vol		0.4	V	

	+	М	AX		
PARAMETER/CONDITION	SYMBOL	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) $(\overline{RAS} = \overline{CAS} = Vih)$	lcc1	2	2	mA	
STANDBY CURRENT: (CMOS) $(\overline{RAS} = \overline{CAS} = Other Inputs = Vcc - 0.2V)$	lcc2	1	1	mA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Іссз	120	110	mA	3, 4, 28
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ¹PC = ¹PC [MIN])	Icc4	90	80	mA	3, 4, 28
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = VIH: ^t RC = ^t RC [MIN])	lcc5	120	110	mA	3, 28
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Icc6	120	110	mA	3, 5

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: Address pins	CI1	5	pF	2
Input Capacitance: RAS, CAS, WE, OE	C ₁₂	7	pF	2
Input/Output Capacitance: DQ	Сю	7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

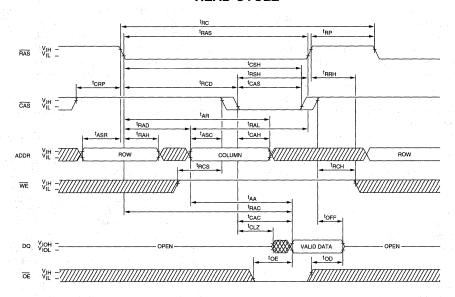
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5.0V \pm 10\%$)

AC CHARACTERISTICS		-6			-7		1 11 11
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30		35	ns	1
Column-address hold time (referenced to RAS)	^t AR	50		55		ns	
Column-address setup time	tASC	0		0		ns	
Row-address setup time	tASR	0		0		ns	
Column-address to WE delay time	^t AWD	55		60		ns	21
Access time from CAS	^t CAC		15		20	ns	15
Column-address hold time	^t CAH	10		15		ns	
CAS pulse width	^t CAS	15	10,000	20	10,000	ns	
CAS hold time (CBR REFRESH)	tCHR	15		15	to Produce parties	ns	5
CAS to output in Low-Z	tCLZ	3		3		ns	7
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		ns	16
Access time from CAS precharge	^t CPA		35	1000	40	ns	1 1 Ta
CAS to RAS precharge time	^t CRP	5		5		ns	
CAS hold time	^t CSH	60		70		ns	
CAS setup time (CBR REFRESH)	^t CSR	5	7 35	5		ns	5
CAS to WE delay time	tCWD	40	1 3 - 3 - 3	45		ns	21
Write command to CAS lead time	tCWL	15		20		ns	
Data-in hold time	tDH	10		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	tDS	0		0		ns	22
Output disable	tOD	3	15	3	20	ns	
Output Enable	^t OE		15		20	ns	23
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	15		15		ns	
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	20, 27
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		ns	
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	85		95		ns	
Access time from RAS	^t RAC		60		70	ns	14
RAS to column-address delay time	tRAD .	15	30	15	35	ns	18

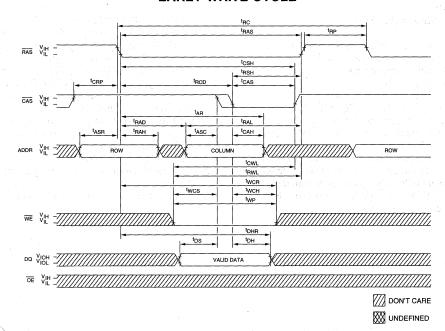
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = +5.0V \pm 10\%$)

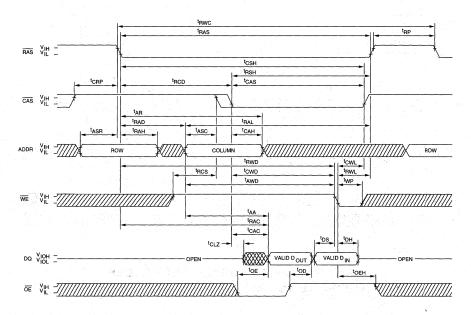
AC CHARACTERISTICS			-6	1 1 1 1	-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Row-address hold time	^t RAH	10		10		ns	
Column-address to RAS lead time	†RAL	. 30		35		ns	
RAS pulse width	tRAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	^t RASP	60	100,000	70	100,000	ns	
Random READ or WRITE cycle time	tRC	110		130		ns	
RAS to CAS delay time	tRCD	20	45	20	50	ns	17
Read command hold time (referenced to CAS)	tRCH	0		0		ns	19
Read command setup time	tRCS	0		0		ns	1
Refresh period (2,048 cycles)	tREF		32		32	ms	26
RAS precharge time	tRP	40	1	50		ns	
RAS to CAS precharge time	tRPC	0		0	e di sale	ns	
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	
RAS hold time	tRSH	15		20	5.3	ns	
READ WRITE cycle time	tRWC	150		180		ns	
RAS to WE delay time	tRWD	85		95	A	ns	21
Write command to RAS lead time	tRWL	15		20		ns	A 4 8
Transistion time (rise or fall)	t _T	3	50	3	50	ns	
Write command hold time	tWCH	10		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55	*	ns	
WE command setup time	tWCS	0		0		. ns	21
Write command pulse width	tWP	10		15		ns	1.0
WE hold time (CBR REFRESH)	tWRH	10		10		ns	25
WE setup time (CBR REFRESH)	tWRP	10		10		ns	25

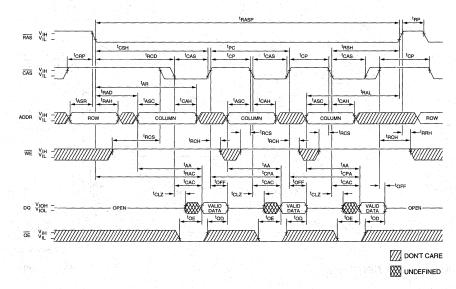

PM DRAM

NOTES

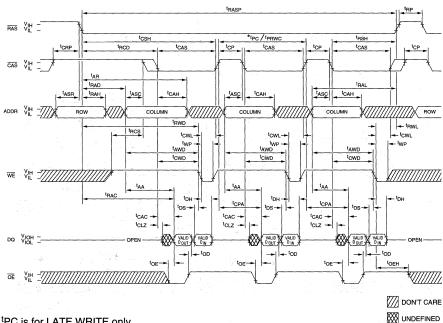

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = 5.0V; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.

- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition, and is not referenced to VOH or VOL.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are not restrictive operating parameters. ^tWCS applies to EARLY WRITE cycles. ^tRWD, ^tAWD and ^tCWD apply to READ-MODIFY-WRITE cycles. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. ^tWCS, ^tRWD, ^tCWD and ^tAWD are not applicable in a LATE WRITE cycle.
- These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. If OE is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not permissible and should not be attempted.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, \overline{WE} = LOW and \overline{OE} = HIGH.
- 25. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.
- 26. 32ms is 2,048-cycle refresh.
- 27. The 3ns minimum is a parameter guaranteed by design
- 28. Column-address changed once each cycle.

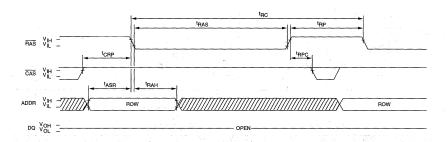

READ CYCLE


EARLY WRITE CYCLE

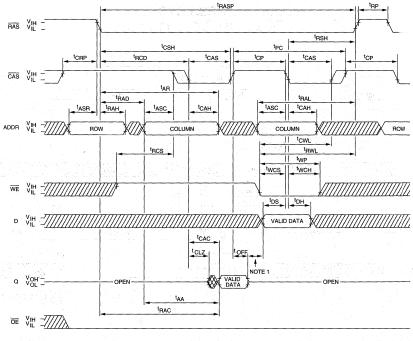

READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)


FAST-PAGE-MODE READ CYCLE

FAST-PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)

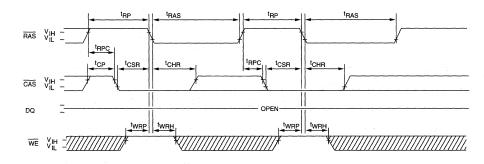
*NOTE: 1. ^tPC is for LATE WRITE only.



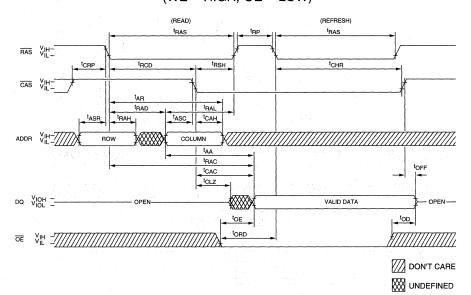
RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE

(Pseudo READ-MODIFY-WRITE)



DON'T CARE


₩ UNDEFINED

NOTE: 1. Do not drive data prior to tristate.

CBR REFRESH CYCLE (Addresses and OE = DON'T CARE)

HIDDEN REFRESH CYCLE 24 (WE = HIGH; OE = LOW)

DRAM

4 MEG x 4 DRAM

DIM ACCICNIMENT (Top View)

3.3V, FAST PAGE MODE, OPTIONAL SELF REFRESH

FEATURES

- JEDEC- and industry-standard x4 pinout, timing, functions and packages
- High-performance CMOS silicon-gate process
- Single +3.3V ±0.3V power supply
- Low power, 0.3mW standby; 180mW active, typical
- All inputs, outputs and clocks are TTL-compatible
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN and SELF
- 2,048-cycle (11 row-, 11 column-addresses)
- Optional SELF REFRESH mode, with Extended Refresh rate (4x)
- 5V tolerant I/Os (5.5V maximum VIH level)

OPTIONS • Timing 60ns access 70ns access -6 70ns access -7 • Packages Plastic SOJ (300 mil) Plastic TSOP (300 mil) TG

Refresh Rate
 Standard 32ms period
 SELF REFRESH and 128ms period
 S

• Part Number Example: MT4LC4M4B1DJ-7 S

KEY TIMING PARAMETERS

					A CONTRACT OF THE	
SPEED	tRC	^t RAC	^t PC	t _{AA}	tCAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

GENERAL DESCRIPTION

The MT4LC4M4B1(S) is a randomly accessed solid-state memory containing 16,777,216 bits organized in a x4 configuration. \overline{RAS} is used to latch the first 11 bits and \overline{CAS} the latter 11 bits. READ and WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pins remain open (High- Z) until the next \overline{CAS} cycle.

PIN	ASSIGNM	ENI (I	op View)	
	Pin SOJ A-2)	24	/ 26-Pin T (DB-2)	SOP
Vcc 1 DQ1 2 DQ2 3 WE 4 RAS 5 NC 6	26 J Vss 25 J DQ4 24 J DQ3 23 J CAS 22 J OE 21 J A9	Vcc III DQ1 III DQ2 III WE III RAS III NC III	2 25 3 24 4 23 5 22	⊞Vss ⊞DQ4 ⊞DQ3 ⊞CAS ⊞OE ⊞A9
A10	19	A10 E A0 E A1 E A2 E A3 E Vcc E	9 18 10 17 11 16 12 15	田 A8 田 A7 田 A6 田 A5 田 A4 田 Vss

If \overline{WE} goes LOW after data reaches the output pins, dataout (Q) is activated and retains the selected cell data as long as \overline{CAS} remains LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ WRITE cycle. The four data inputs and the four data outputs are routed through four pins using common I/O, and pin direction is controlled by \overline{WE} and \overline{OE} .

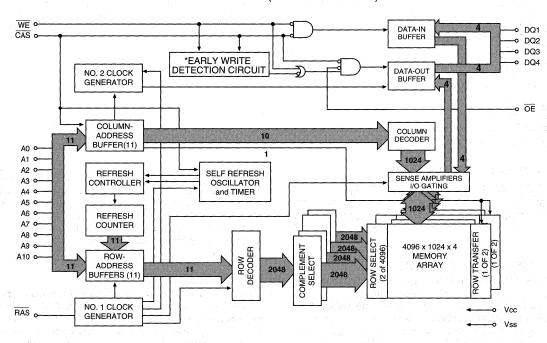
FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobedin by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

REFRESH

Preserve correct memory cell data by maintaining power and executing a \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR, or HIDDEN) so that all 2,048 combinations of \overline{RAS} addresses are executed at least every 32ms, regardless of sequence. The CBR REFRESH cycle will invoke the refresh counter for automatic \overline{RAS} addressing.

An optional SELF REFRESH mode is also available on the MT4LC4M4B1(S). The "S" version allows the user the choice of a fully static low-power data retention mode, or a dynamic refresh mode at the extended refresh period of 128ms four times longer than the standard 32ms specification.


The optional SELF REFRESH feature is initiated by performing a CBR REFRESH cycle and holding RAS LOW for the specified ¹RASS. Additionally, the "S" version al-

lows for an extended refresh rate of 62.5µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation or during a standby or extended refresh mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for a minimum time of ${}^{t}RPS$ ($\approx^{t}RC$). This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all 2,048 rows must be refreshed within 300 μ s prior to the resumption of normal operation.

FUNCTIONAL BLOCK DIAGRAM

MT4LC4M4B1 (11 row-addresses)

*NOTE: 1. If WE goes LOW prior to CAS going LOW, EW detection circuit output is a HIGH (EARLY WRITE).

- 2. If CAS goes LOW prior to WE going LOW, EW detection circuit output is a LOW (LATE WRITE).
- 3. SELF REFRESH oscillator and timer (S version only).

TRUTH TABLE

ego (a Sati o como de		-			18 18 18	ADDR	ESSES	DATA-IN/OUT
FUNCTION		RAS	CAS	WE	ŌĒ	¹R	tC t	DQ1-DQ4
Standby		H	H→X	Х	Х	Х	Х	High-Z
READ	and the	L	L	Н	L	ROW	COL	Data-Out
EARLY WRITE		L	L	L	Х	ROW	COL	Data-In
READ WRITE		L	L	H→L	L→H	ROW	COL	Data-Out, Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	L	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	Н	SelfLa e	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	Х	ROW	COL	Data-In
EARLY-WRITE	2nd Cycle	L	H→L	L	X	n/a	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In
RAS-ONLY REFRESH		L	Н	X	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	Х	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	Х	Х	Х	High-Z
SELF REFRESH		H→L	L	Н	X	Χ	X	High-Z

ABSOLUTE MAXIMUM RATINGS*

 *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	3.0	3.6	V	
Input High (Logic 1) Voltage, all inputs (including NC pins)	VIH	2.0	5.5V	V	1.0
Input Low (Logic 0) Voltage, all inputs (including NC pins)	VıL	-1.0	0.8	ν	
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le 5.5V$ (All other pins not under test = $0V$)	li	-2	2	μА	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μА	
OUTPUT LEVELS Output High Voltage (Iout = -2mA)	Vон	2.4		V	
Output Low Voltage (Iout = 2mA)	Vol		0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

Notes: 1, 6, 7) (Vcc = +3.3V ±0.3V)		M	AX		AL DES
PARAMETER/CONDITION	SYMBOL	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	lcc1	2	2	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Other Inputs = Vcc -0.2V)	lcc2 lcc2 (S only)	500 150	500 150	μΑ	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ¹RC = ¹RC [MIN])	Icc3	120	110	mA	3, 4, 29
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN])	ICC4	90	80	mA	3, 4, 29
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = Vih: tRC = tRC [MIN])	Icc5	120	110	mA	3, 29
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ¹RC = ¹RC [MIN])	Icc6	120	110	mA	3, 5
REFRESH CURRENT: Extended (S version only) Average power supply current, CAS = 0.2V or CBR cycling; RAS = tRAS (MIN); WE = Vcc -0.2V; A0-A10, OE and DIN = Vcc - 0.2V or 0.2V (DIN may be left open); tRC = 62.5μs	lcc7 (S only)	300	300	μΑ	3, 5
REFRESH CURRENT: SELF (S version only) Average power supply current, CBR cycling with RAS ≥ tRASS (MIN) and CAS held LOW; WE = Vcc -0.2V; A0-A10, OE, and DIN = Vcc - 0.2V or 0.2V (DIN may be left open)	lccs (S only)	300	300	μА	5

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: Address pins	Cit	5	pF	2
Input Capacitance: RAS, CAS, WE, OE	C ₁₂	7	pF	2
Input/Output Capacitance: DQ	Сю	7	рF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

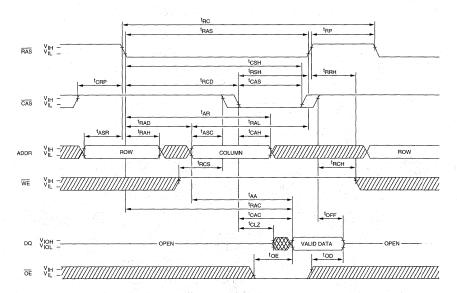
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS PARAMETER	SYM	-6		-7			1 3 3 5
		MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30	1 7 7	35	ns	
Column-address hold time (referenced to RAS)	^t AR	50		55		ns	
Column-address setup time	tASC	0		0		ns	100
Row-address setup time	tASR.	0		0		ns	
Column-address to WE delay time	tAWD	55		60		ns	21
Access time from CAS	^t CAC		15		20	ns	15
Column-address hold time	^t CAH	10		15		ns	
CAS pulse width	tCAS	15	10,000	20	10,000	ns	
CAS hold time entering SELF REFRESH	^t CHD	15		15		ns	28
CAS hold time (CBR REFRESH)	tCHR	15		15		ns	5
CAS to output in Low-Z	†CLZ	3	3 2 7	3	1	ns	28
CAS precharge time	^t CP	10		10		ns	16
Access time from CAS precharge	^t CPA		35	7 7 1,14	40	ns	7
CAS to RAS precharge time	^t CRP	5		5		ns	
CAS hold time	^t CSH	60	1 1 2 2 2	70	1	ns	
CAS setup time (CBR REFRESH)	^t CSR	5		5		ns	5
CAS to WE delay time	tCWD	40		45		ns	21
Write command to CAS lead time	tCWL	15		20		ns	-
Data-in hold time	^t DH	10		15		ns	22
Data-in hold time (referenced to RAS)	tDHR .	45		55		ns	
Data-in setup time	^t DS	0		0		ns	22
Output disable	^t OD	3	15	3	20	ns	28
Output Enable	^t OE		15		20	ns	23
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	15		15		ns	
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	20, 27
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		ns	
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	85		95		ns	
Access time from RAS	^t RAC		60		70	ns	14

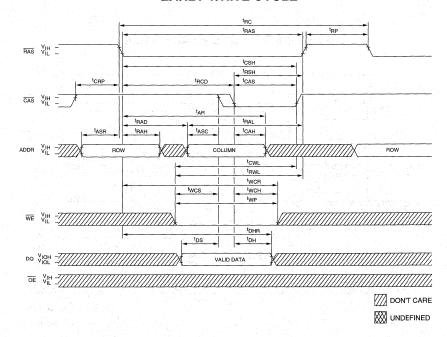
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = +3.3V \pm 0.3V$)

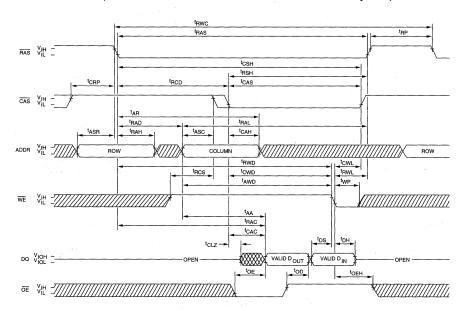
AC CHARACTERISTICS PARAMETER			-6	-7			
	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
RAS to column-address delay time	tRAD	15	30	15	35	ns	18
Row-address hold time	^t RAH	10		10	4	ns	11/2
Column-address to RAS lead time	^t RAL	30		35	of Carriery	ns	
RAS pulse width	^t RAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	tRASP	60	100,000	70	100,000	ns	
RAS pulse width entering SELF REFRESH	tRASS	100		100		μs	28
Random READ or WRITE cycle time	^t RC	110	100000000000000000000000000000000000000	130		ns	11.1.7
RAS to CAS delay time	tRCD	20	45	20	50	ns	17
Read command hold time (referenced to CAS)	^t RCH	0		0		ns	19
Read command setup time	tRCS	0		0		ns	
Refresh period (2,048 cycles)	^t REF		32		32	ms	26
Refresh period (2,048 cycles) S version	^t REF		128		128	ms	
RAS precharge time	^t RP	40	1.7631.3	50		ns	
RAS to CAS precharge time	†RPC	0		0		ns	
RAS precharge time exiting SELF REFRESH	tRPS	110		130		ns	28
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	19
RAS hold time	^t RSH	15		20		ns	
READ WRITE cycle time	^t RWC	150	a kanada a	180		ns	
RAS to WE delay time	^t RWD	85		95	W	ns	21
Write command to RAS lead time	^t RWL	15		20		ns	
Transition time (rise or fall)	^t Τ	3	50	3	50	ns	
Write command hold time	^t WCH	10		15		ns	estar i se di
Write command hold time (referenced to RAS)	tWCR	45	A COLORADO	55	1 2 3	ns	100
WE command setup time	twcs	0		0		ns	21
Write command pulse width	tWP	10		15		ns	a latings
WE hold time (CBR REFRESH)	^t WRH	10	Trungerin.	10		ns	25
WE setup time (CBR REFRESH)	tWRP	10	North Profes	10	4.90 10.44	ns	25


NOTES

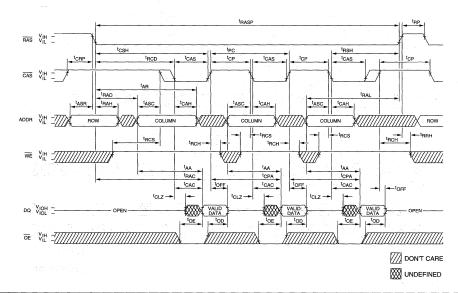
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = +3.3V; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of $100\mu s$ is required after power-up followed by eight \overline{RAS} refresh cycles (\overline{RAS} ONLY or CBR with \overline{WE} HIGH) before proper device operation is assured. The eight \overline{RAS} cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH)
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates, 100pF and Vol = 0.8V and VoH = 2.0V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.


- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. tOFF (MAX) defines the time at which the output achieves the open circuit condition, and is not referenced to VOH or VOL.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are not restrictive operating parameters. ^tWCS applies to EARLY WRITE cycles. ^tRWD, ^tAWD and ^tCWD apply to READ-MODIFY-WRITE cycles. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. ^tWCS, ^tRWD, ^tCWD and ^tAWD are not applicable in a LATE WRITE cycle.
- These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. If OE is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not permissible and should not be attempted.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 25. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.
- 26. 32ms is a 2,048-cycle refresh.
- 27. The 3ns minimum is a parameter guaranteed by design.
- 28. Refresh must be completed within the time of three external refresh rate periods prior to active use of the DRAM (provided distributed CBR REFRESH is used when in the active mode). Alternatively, a complete set of row refreshes must be executed when exiting SELF REFRESH prior to active use of the DRAM if anything other than distributed CBR REFRESH is used in the active mode.
- 29. Column-address changed once each cycle.

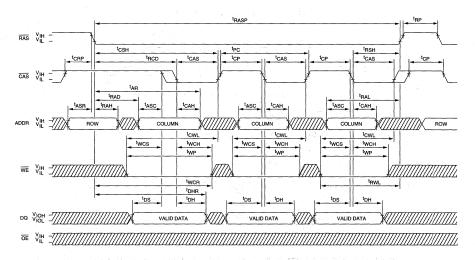
READ CYCLE



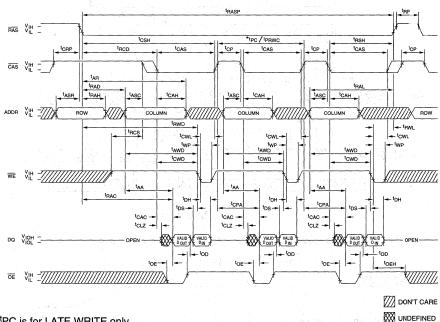
EARLY WRITE CYCLE



READ WRITE CYCLE(LATE WRITE and READ-MODIFY-WRITE cycles)

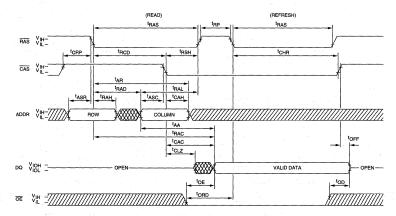


FAST-PAGE-MODE READ CYCLE

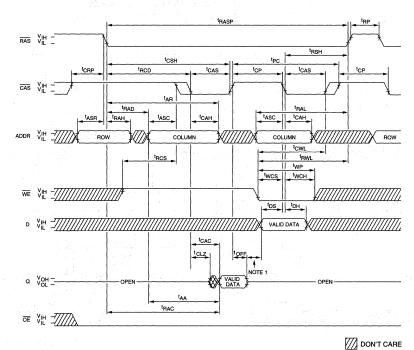


FAST-PAGE-MODE EARLY-WRITE CYCLE

FAST-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)



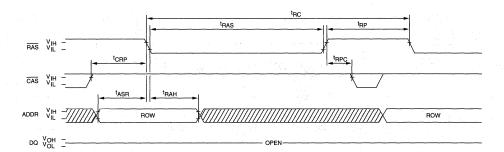
*NOTE: 1. ^tPC is for LATE WRITE only.


HIDDEN REFRESH CYCLE 24

 $(\overline{WE} = HIGH; \overline{OE} = LOW)$

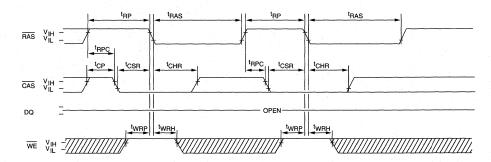
FAST-PAGE-MODE READ-EARLY-WRITE CYCLE

(Pseudo READ-MODIFY-WRITE)

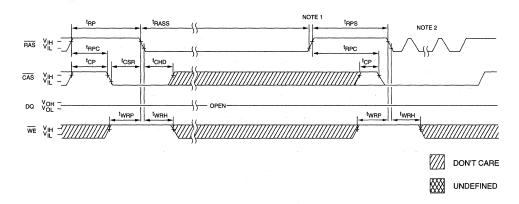


NOTE: 1. Do not drive data prior to tristate.

₩ UNDEFINED



RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)


CBR REFRESH CYCLE

(Addresses and $\overline{OE} = DON'T CARE$)

SELF REFRESH CYCLE (Addresses and \overline{OE} = DON'T CARE)

NOTE: 1. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.

2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

DRAM

16 MEG x 4 DRAM

3.3V, FAST PAGE MODE

FEATURES

- Single $+3.3V \pm 0.3V$ power supply
- Industry-standard x4 pinout, timing, functions and packages
- 13 row-addresses, 11 column-addresses (A7) or 12 row-addresses, 12 column-addresses (T8)
- High-performance CMOS silicon-gate process
- All inputs and outputs are LVTTL-compatible
- **FAST PAGE MODE access**
- 4,096-cycle CAS-BEFORE-RAS (CBR) REFRESH distributed across 64ms

OPTIONS		MARKING
Timing		
50ns access		-5
60ns access		-6
70ns access		-7
 Packages 		
Plastic SOJ (500 m	il)	DW
Plastic TSOP (500	mil)	TW

Part Number Example: MT4LC16M4A7DW-7

KEY TIMING PARAMETERS

SPEED	tRC	^t RAC	tPC	^t AA	tCAC
-5	90ns	50ns	30ns	25ns	13ns
-6	110ns	60ns	35ns	30ns	15ns
-7	130ns	70ns	40ns	35ns	20ns

GENERAL DESCRIPTION

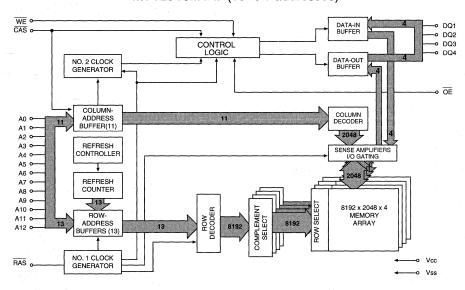
The MT4LC16M4A7 and MT4LC16M4T8 are high-speed CMOS dynamic random access memory devices containing 67,108,864 bits, and designed to operate from 3.0V to 3.6V. The MT4LC16M4A7 and MT4LC16M4T8 are functionally organized as 16,777,216 locations containing 4 bits each. The 16,777,216 memory locations are arranged in 8,192 rows by 2,048 columns for the MT4LC16M4A7 or 4,096 rows by 4,096 columns for the MT4LC16M4T8. During READ or WRITE cycles, each location is uniquely addressed via the address bits. First, the row address is latched by the RAS signal, then the column address by CAS. Both devices provide FAST PAGE MODE operation, allowing for fast successive data operations (READ, WRITE or READ-MODIFY-WRITE) within a given row.

The MT4LC16M4A7 and MT4LC16M4T8 must be refreshed periodically in order to retain stored data.

PIN ASSIGNMENT (Top View)

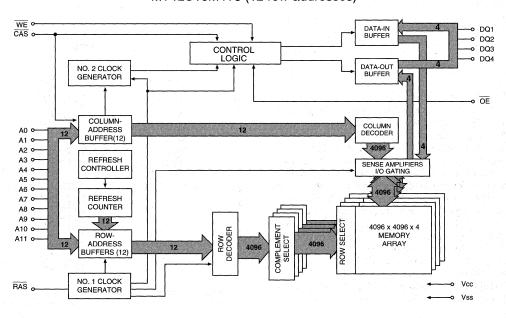
34-Pin SOJ (DA-6)

Vcc	E	1.				34	Ъ	Vss	
DQ1	E	2	1.3			33	Ъ	DQ4	
DQ2	E	3				32	Ь	DQ3	
NC		4				31	þ.	NC	
NC		5				30	Þ	NC	
NC		6			5 4	29	Þ	NC	
NC		7				28	Þ	CAS	
WE		8				27	Þ	ŌĒ	
RAS		9				26	Þ	NC	
NC		10				25	Þ	A12/N	С
A0		11		e de		24	Р	A11	
A1	L	12				23	P	A10	
A2		13				22	Р	A9	
АЗ		14				21	Р.	A8	
A4		15				20	2	A7	
A 5		16				19	E	A6	
Vcc	С	17				18	ዞ	Vss	


34-Pin TSOP*

		1000	12.00			
Vcc	Щ	1		34	百	Vss
DQ1	口	2		33	口	DQ4
DQ2	Щ	3		32	口	DQ3
NC	Щ	4		31	口	NC
NC	Щ	5		30	ш	NC
NC	Щ	6		29	ш	NC -
NC	田	7		28	口	CAS
WE	Ш	8		27	田	ŌĒ
RAS	Ш	9		26	口	NC
NC	Ш	10		25	ш	A12/NC
A0	П	11		24	ш	A11
A1	Щ	12		23	Ы	A10
A2	Щ	13		22	口	A9
A3	Щ	14		21	口	A8
A4	Щ	15		20	中	A7
A5	Щ	16		19	口	A6
Vcc	田	17		18	戸	Vss

*Consult factory for dimensions and availability.


FUNCTIONAL BLOCK DIAGRAM

MT4LC16M4A7 (13 row-addresses)

FUNCTIONAL BLOCK DIAGRAM

MT4LC16M4T8 (12 row-addresses)

FUNCTIONAL DESCRIPTION

The functional description for the MT4LC16M4A7 and MT4LC16M4T8 is divided into the two areas described below (DRAM access and DRAM refresh). Relevant timing diagrams are included in this data sheet following the timing specifications tables.

DRAM ACCESS

Each location in the DRAM is uniquely addressable as mentioned in the General Description. The data for each location is accessed via the four I/O pins (DQ1-4). The $\overline{\text{WE}}$ signal must be activated to execute a write operation, otherwise a read operation will be performed. The \overline{OE} signal must be activated to enable the DQ output drivers for a read access and can be deactivated to disable output data if necessary.

FAST PAGE MODE operations are always initiated with a row-address strobed-in by the RAS signal, followed by a column-address strobed-in by CAS, just like for single location accesses. However, subsequent column locations within the row may then be accessed at the page-mode cycle time. This is accomplished by cycling CAS while holding RAS LOW, and entering new column addresses with each CAS cycle. Returning RAS HIGH terminates the FAST PAGE MODE operation.

DRAM REFRESH

The supply voltage must be maintained at the specified levels, and the refresh requirements must be met in order to retain stored data in the DRAM. The refresh requirements are met by refreshing all 8,192 rows (A7) or all 4,096 rows (T8) in the DRAM array at least once every 64ms. The recommended procedure is to execute 4,096 CBR REFRESH cycles, either uniformly spaced or grouped in bursts, every 64ms. The MT4LC16M4A7 internally refreshes two rows for every CBR cycle, whereas the MT4LC16M4T8 refreshes one row for every CBR cycle. So with either device, executing 4,096 CBR cycles covers all rows. Alternatively, RAS-ONLY REFRESH capability is inherently provided. However, with this method only one row is refreshed at a time, so for the MT4LC16M4A7, 8,192 RAS-ONLY RE-FRESH cycles must be executed every 64ms to cover all

ABSOLUTE MAXIMUM RATINGS*

	11.100
Voltage on Vcc Relative to Vss	1.0V to +4.6V
Voltage on Inputs or I/O Pins	
Relative to Vss	1.0V to +5.5V
Operating Temperature, T_A (ambient) .	0°C to +70°C
Storage Temperature (plastic)	
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	3.0	3.6	V	
Input High (Logic 1) Voltage, all inputs	ViH	2.0	5.5	V	
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le 3.6V$ (All other pins not under test = $0V$)	h h	-2	2	μА	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vouт ≤ 3.6V)	loz	-10	10	μА	
OUTPUT LEVELS Output High Voltage (Iout = -2mA)	Vон	2.4		V	
Output Low Voltage (lout = 2mA)	VoL		0.4	V	

				MAX			
PARAMETER/CONDITION	VERSION	SYMBOL	-5	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL)	MT4LC4M16A7	Icc1	1	1	1	mA	
$\overline{(RAS} = \overline{CAS} = V_{IH})$	MT4LC4M16T8	lcc1	1	1	1		
STANDBY CURRENT: (CMOS)	MT4LC4M16A7	Icc2	500	500	500		
(RAS = CAS ≥ Vcc -0.2V, DQs may be left open, Other inputs: Vin ≥ Vcc -0.2V or Vin ≤ 0.2V)	MT4LC4M16T8	Icc2	500	500	500	μА	
OPERATING CURRENT: Random READ/WRITE	MT4LC4M16A7	lcc3	130	120	110		3, 4,
Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	MT4LC4M16T8	Іссз	170	160	150	mA	29
OPERATING CURRENT: FAST PAGE MODE	MT4LC4M16A7	Icc4	100	90	80		3, 4,
Average power supply current	MT4LC4M16T8	Icc4	100	90	80	mA	29
$(\overline{RAS} = V_{IL}, \overline{CAS}, Address Cycling: {}^{t}PC = {}^{t}PC [MIN])$							
REFRESH CURRENT: RAS ONLY	MT4LC4M16A7	Icc5	130	120	110		3, 26
Average power supply current	MT4LC4M16T8	Icc5	170	160	150	mA	
$\overline{(RAS)}$ Cycling, $\overline{CAS} = V_{IH}$: ${}^{t}RC = {}^{t}RC$ [MIN])							
REFRESH CURRENT: CBR	MT4LC4M16A7	Icc6	140	130	120		
Average power supply current	MT4LC4M16T8	Icc6	170	160	150	mA	3, 5
$(\overline{RAS}, \overline{CAS}, Address Cycling: {}^{t}RC = {}^{t}RC [MIN])$							

CAPACITANCE

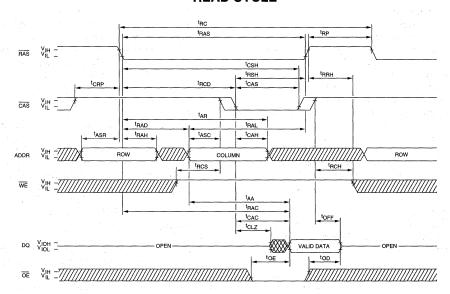
PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: Address pins	C _I 1	5	pF	2
Input Capacitance: RAS, CAS, WE, OE	C ₁₂	7	pF	2
Input/Output Capacitance: DQ	Сю	9	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

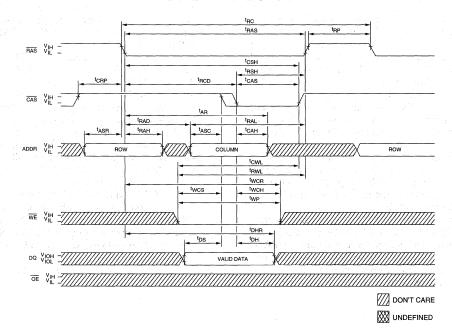
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS			-5		-6	10 J. 10	-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		25		30		35	ns	
Column-address hold time (referenced to RAS)	^t AR	40	3,0	45		55		ns	1 4 4 4
Column-address setup time	tASC	0		0		0		ns	100
Row-address setup time	^t ASR	0	3.	0		0		ns	
Column-address to WE delay time	tAWD	48		55		65		ns	21
Access time from CAS	^t CAC		13		15		20	ns	15
Column-address hold time	^t CAH	8		10		15		ns	
CAS pulse width	^t CAS	13	10,000	15	10,000	20	10,000	ns	
CAS hold time (CBR REFRESH)	^t CHR	15		15		15		ns	5
CAS to output in Low-Z	tCLZ	0	1	0		0	197	ns	
CAS precharge time (FAST PAGE MODE)	^t CP	8		10		10	\$10 mm	ns	16
Access time from CAS precharge	^t CPA	4	30	10.00	35		40	ns	
CAS to RAS precharge time	^t CRP	5		5	1.04.00.00	5		ns	
CAS hold time	^t CSH	50		60		70		ns	
CAS setup time (CBR REFRESH)	tCSR	5		5		5		ns	5
CAS to WE delay time	tCWD	36		40		50	1975	ns	21
Write command to CAS lead time	tCWL	13		15		20		ns	1000
Data-in hold time	tDH .	8		10		15	150 E B	ns	22
Data-in hold time (referenced to RAS)	^t DHR	40		45		55		ns	44.50
Data-in setup time	tDS.	0		0		0		ns	22
Output disable	tOD	0	13	0	15	. 0	20	ns	27, 28
Output Enable time	^t OE		13		15	Societies	20	ns	20 de -
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	13		15		20		ns	28

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = $+3.3V \pm 0.3V$)

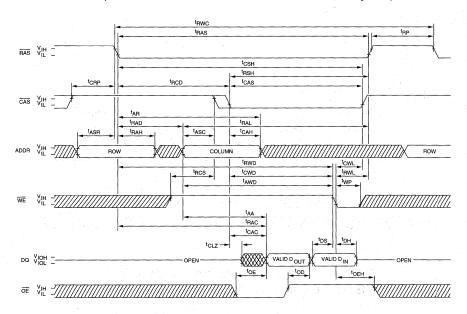

AC CHARACTERISTICS					-6		-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	0	13	0	15	0	20	ns	20, 27
OE setup prior to RAS during HIDDEN REFRESH cycle	†ORD	0		0		0		ns	
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	30		35		40		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	76		85		100		ns	
Access time from RAS	†RAC		50		60		70	ns	14
RAS to column-address delay time	†RAD	13	25	15	30	15	35	ns	18
Row-address hold time	^t RAH	8		10		10		ns	
Column-address to RAS lead time	tRAL	25		30		35		ns	
RAS pulse width	†RAS	50	10,000	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	50	125,000	60	125,000	70	125,000	ns	
Random READ or WRITE cycle time	^t RC	90		110		130	4 6 6	ns	
RAS to CAS delay time	†RCD	18	37	20	45	20	50	ns	17
Read command hold time (referenced to CAS)	tRCH	0		0		0		ns	19
Read command setup time	tRCS	0		0		0		ns	
Refresh period	tREF		64		64		64	ms	26
RAS precharge time	†RP	30		40		50		ns	
RAS to CAS precharge time	tRPC	0		0		0		ns	
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
RAS hold time	tRSH	13		15		20		ns	
READ WRITE cycle time	tRWC	131		155		185		ns	100
RAS to WE delay time	^t RWD	73		85		100		ns	21
Write command to RAS lead time	^t RWL	13		15	7	20		ns	
Transition time (rise or fall)	ŀΤ	1	50	1	50	1	50	ns	2. 17 -
Write command hold time	tWCH	8		10		15		ns	
Write command hold time (referenced to RAS)	tWCR	40		45		55		ns	
WE command setup time	tWCS	0	- W W	0		0	- 1	ns	21
Write command pulse width	tWP	8		10		15		ns	
WE hold time (CBR REFRESH)	tWRH	10		10		10		ns	25
WE setup time (CBR REFRESH)	tWRP	10		10		10		ns	25

NOTES

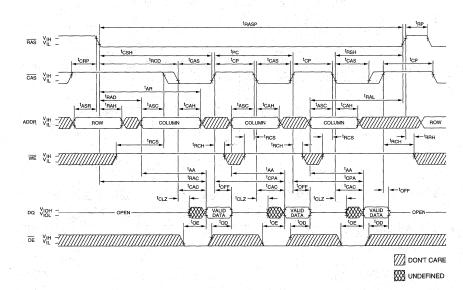

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = +3.3V; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- AC characteristics assume ^tT = 5ns.
- 9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{CAS} = V_{IL}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates, 100pF and VOL = 0.8V and VOH = 2.0V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, tRAC will increase by the amount that tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, output data will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that tRAC (MIN) and tCAC (MIN) can be met. tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified tRAD (MAX) limit, then access time is controlled exclusively by tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.

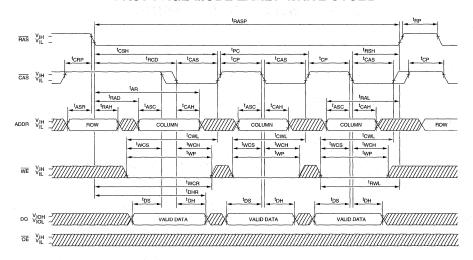
- 20. tOFF (MAX) defines the time at which the output achieves the open circuit condition, and is not referenced to Voh or Vol.
- 21. tWCS, tRWD, tAWD and tCWD are not restrictive operating parameters. tWCS applies to EARLY WRITE cycles. If tWCS > tWCS MIN, the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. tRWD, tAWD and ^tCWD define READ-MODIFY-WRITE cycles. Meeting these limits allows for reading and disabling output data and then applying input data. The values shown were calculated for reference allowing 10ns for the external latching of read data and application of write data. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. tWCS, tRWD, tCWD and tAWD are not applicable in a LATE WRITE cycle.
- 22. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. If OE is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$ and \overline{OE} = HIGH.
- 25. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.
- 26. RAS-ONLY REFRESH requires that all 8,192 rows of the MT4LC16M4A7, or all 4,096 rows of the MT4LC16M4T8, be refreshed at least once every 64ms. CBR REFRESH, for either device, requires that at least 4,096 cycles be completed every 64ms.
- 27. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS goes HIGH before OE, the DQs will open regardless of the state of \overline{OE} . If \overline{CAS} stays LOW while OE is brought HIGH, the DQs will open. If OE is brought back LOW (CAS still LOW), the DQs will provide the previously read data.
- 28. LATE WRITE and READ-MODIFY-WRITE cycles must have both tOD and tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. If \overline{OE} is taken back LOW while CAS remains LOW, the DQs will remain open.
- 29. Column-address changed once each cycle.

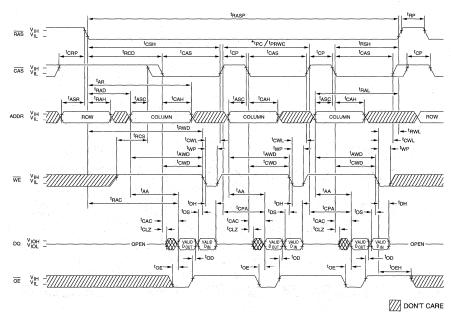
READ CYCLE



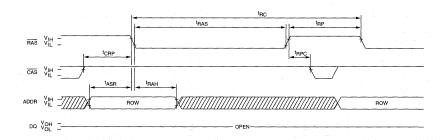
EARLY WRITE CYCLE

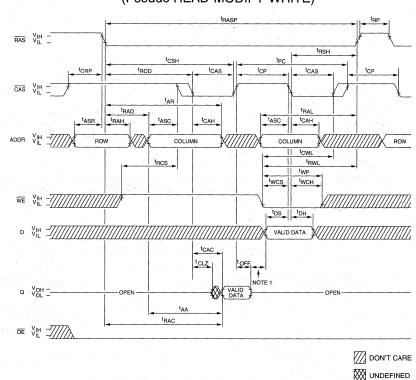



READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)

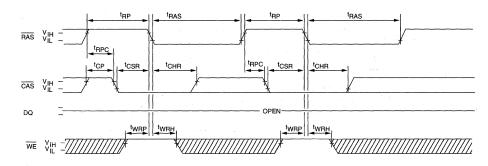

FAST-PAGE-MODE READ CYCLE

FAST-PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)


*NOTE: 1. ^tPC is for LATE WRITE only.

RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)


FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)

NOTE: 1. Do not drive input data prior to output data going High-Z.



(Addresses and OE = DON'T CARE)

HIDDEN REFRESH CYCLE 24

 $(\overline{WE} = HIGH; \overline{OE} = LOW)$

DRAM

2 MEG x 8 DRAM

3.3V, FAST PAGE MODE, OPTIONAL SELF REFRESH

FEATURES

- JEDEC- and industry-standard x8 pinouts, timing, functions and packages
- High-performance CMOS silicon-gate process
- Single $+3.3V \pm 0.3V$ power supply
- Low power, 0.3mW standby; 200mW active, typical
- All device pins are TTL-compatible
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN and SELF
- 2,048-cycle refresh (11 row-, 10 column-addresses)
- Optional SELF REFRESH mode, with Extended Refresh rate (4x)
- 5V tolerant I/Os (5.5V maximum VIH level)

OPTIONS	MARKING
Timing	
60ns access	-6
70ns access	-7
Packages	
Plastic 28-pin SOJ (300 mil)	DJ
Plastic 28-pin TSOP (300 mil)	TG
Refresh Rate	
Standard 32ms period	None

Part Number Example: MT4LC2M8B1DJ-7 S

KEY TIMING PARAMETERS

SELF REFRESH and 128ms period

SPEED	†RC	^t RAC	^t PC	t _{AA}	tCAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

GENERAL DESCRIPTION

The MT4LC2M8B1(S) is a randomly accessed solidstate memory containing 16,777,216 bits organized in a x8 configuration. Each byte is uniquely addressed through the 21 address bits during READ or WRITE cycles. The address is entered first by RAS latching 11 bits (A0-A10) and then CAS latching 10 bits (A0-A9).

The $\overline{\text{CAS}}$ control also determines whether the cycle will be a refresh cycle ($\overline{\text{RAS}}$ ONLY) or an active cycle (READ, WRITE or READ WRITE) once $\overline{\text{RAS}}$ goes LOW.

2		in SC A-4)	J	28	- Pin (DB		OP
Vcc [1	28	Vss	Vcc □	1	28	□ Vss
DQ1 [2	27	DQ8	DQ1 U	2	27	III DQ8
DQ2		26	DQ7	DQ2 III	3	26	DQ7
DQ3			DQ6	DQ3 III	4	25	III DOG
DQ4		24	DQ5	DQ4 III		24	III DQS
WE [CAS	WE C		23	TO CAS
RAS			OE	RAS CE	7	22	□ OE
NC [] A9	NC I	8	21.	□ A9
A10 [□ A8	A10 🗆	9	20	□ A8
A0 [10	19] A7	A0 🗆	10	19	□ A7
A1 [.11] A6	A1 🗆	.11	18	□ A6
A2 [12	17	□ A5	A2 🗆	12	17	□ A5
A3 [A4	A3 □	13	16	□ A4
Vcc [14	15	J Vss	Vcc 🗆	-14	15	□ Vss

READ or WRITE cycles are selected by \overline{WE} . A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. Taking \overline{WE} LOW will initiate a WRITE cycle, selecting DQ1 through DQ8. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after \overline{CAS} goes LOW and data reaches the output pins, data-out (Q) is activated and retains the selected cell data as long as \overline{CAS} and \overline{OE} remain LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ WRITE cycle.

The eight data inputs and eight data outputs are routed through eight pins using common I/O and pin direction is controlled by \overline{OE} and \overline{WE} .

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined (A0-A10) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

FAST PAGE MODE (continued)

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the \overline{RAS} HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR, or HIDDEN) so that all 2,048 combinations of \overline{RAS} addresses (A0-A10) are executed at least every 32ms, regardless of sequence. The CBR REFRESH cycle will also invoke the refresh counter and controller for row-address control.

REFRESH


Preserve correct memory cell data by maintaining power and executing a RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR or HIDDEN) so that all 2,048 combinations of RAS addresses are executed at least every 32ms, regardless of sequence. The CBR REFRESH cycle will invoke the refresh counter for automatic RAS addressing.

An optional SELF REFRESH mode is also available on the MT4LC2M8B1 S. The "S" version allows the user the choice of a fully static low-power data retention mode or a dynamic refresh mode at the extended refresh period of 128ms, four times longer than the standard 32ms specification.

The optional SELF REFRESH feature is initiated by performing a CBR REFRESH cycle and holding RAS LOW for the specified ^tRASS. Additionally, the "S" version allows for an extended refresh rate of 62.5µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation or during a standby or BATTERY BACKUP mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for a minimum time of ${}^{t}RPS$ ($\approx {}^{t}RC$). This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all 2,048 rows must be refreshed within 300µs prior to the resumption of normal operation.

FUNCTIONAL BLOCK DIAGRAM 2.048 ROWS

TRUTH TABLE

						ADDR	ESSES	
FUNCTION		RAS	CAS	WE	0E	^t R	tC	DQs
Standby		Н	H→X	Х	Х	Х	X	High-Z
READ		L L	L	Н	L	ROW	COL	Data-Out
EARLY WRITE		L	L	L	Х	ROW	COL	Data-In
READ WRITE		L	L	H→L	L→H	ROW	COL	Data-Out, Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	L	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	Н	L	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	X	ROW	COL	Data-In
WRITE	2nd Cycle	L	H→L	L	Х	n/a	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	Х	ROW	COL	Data-In
RAS-ONLY REFRES	Н	L	Н	Х	Х	ROW	n/a	High-Z
CBR REFRESH		H→L	L	Н	Х	Х	Χ	High-Z
SELF REFRESH		H→L	L	Н	Х	Х	Х	High-Z

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss1V to +4.6V
/oltage on Inputs or I/O Pins
Relative to Vss1V to +5.5V
Operating Temperature, T _A (ambient) 0°C to +70°C
Storage Temperature (plastic)55°C to +150°C
Power Dissipation1W
Short Circuit Output Current 50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	3.0	3.6	V	to the
Input High (Logic 1) Voltage, all inputs (including NC pins)	ViH	2.0	5.5V	V	1 1
Input Low (Logic 0) Voltage, all inputs (including NC pins)	VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le 5.5V$ (All other pins not under test = $0V$)	li di	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	1774
OUTPUT LEVELS	Vон	2.4		V	
Output High Voltage (Iouт = -2mA) Output Low Voltage (Iouт = 2mA)	Vol		0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

Notes: 1, 6, 7) (Vcc = +3.3V ±0.3V)		M	AX			
PARAMETER/CONDITION	SYMBOL	-6	-7	UNITS	NOTES	
STANDBY CURRENT: TTL $(\overline{RAS} = \overline{CAS} = V_{IH})$	Icc1	2	2	mA	129	
STANDBY CURRENT: CMOS	lcc2	500	500	μΑ	Part of the	
$\overline{RAS} = \overline{CAS} = Vcc - 0.2V$	Icc2 (S only)	150	150	μΑ		
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ¹RC = ¹RC [MIN])	lcc3	130	120	, mA	3, 4, 27	
DPERATING CURRENT: FAST PAGE MODE Average power supply current RAS = VIL, CAS, Address Cycling: ¹PC = ¹PC [MIN]; ¹CP, ¹ASC = 10ns)	Icc4	90	80	mA	3, 4, 27	
REFRESH CURRENT: RAS ONLY Average power supply current RAS Cycling, CAS = Vii: ¹RC = ¹RC [MIN])	Iccs	130	120	mA	3, 27	
REFRESH CURRENT: CBR Average power supply current RAS, CAS, Address Cycling: [†] RC = [†] RC [MIN])	Icc6	130	120	mA	3, 5	
REFRESH CURRENT: Extended (S version only) Average power supply current during BBU REFRESH: CAS = 0.2V or CBR cycling; RAS = [†] RAS (MIN) to 300ns; WE = Vcc -0.2V, OE, A0-A10 and DIN = Vcc -0.2V or 0.2V DIN may be left open), [†] RC = 62.5µs (2,048 rows at 62.5µs = 128ms)	Icc7 (S only)	300	300	μΑ	3, 5	
REFRESH CURRENT: SELF (S version only) Average power supply current during SELF REFRESH: CBR cycle with RAS ≥ ¹RASS (MIN) and CAS held LOW; WE = Vcc - 0.2V; A0-A10,OE and DIN = Vcc - 0.2V or 0.2V (DIN may be left open)	Iccs (S only)	300	300	μΑ	5	

CAPACITANCE

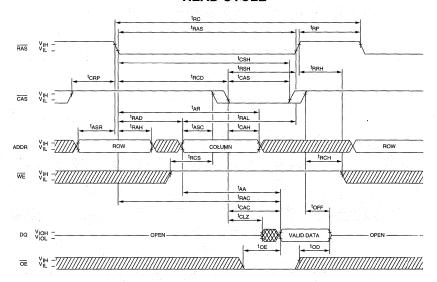
Input Capacitance: Addresses Input Capacitance: RAS, CAS, WE, OE		CI1				
Input Capacitance: RAS, CAS, WE, OE] 011	1	5	pF	2
		C ₁₂	T	7	pF	2
Input/Output Capacitance: DQ		Сю		7	pF	2
ELECTRICAL CHARACTERISTICS AND	MENDE	AC OPE	RAT	ING C	ONDITIO	ONS
ELECTRICAL CHARACTERISTICS AND Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc = +3.3V ±0.3V)	MENDE		RAT	ING C	ONDITIO	SNC

AC CHARACTERISTICS			-6	7.5	-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	tAA .		30		35	ns	
Column-address hold time (referenced to RAS)	^t AR	50		55		ns	
Column-address setup time	tASC	0		0		ns	
Row-address setup time	tASR	0		0		ns	
Column-address to WE delay time	^t AWD	55		60		ns	21
Access time from CAS			15		20	ns	15
Column-address hold time		10		15		ns	
CAS pulse width	†CAS	15	10,000	20	10,000	ns	
CAS hold time entering SELF REFRESH	^t CHD	15		15		ns	26
CAS hold time (CBR REFRESH)		15		15		ns	5
CAS to output in Low-Z	^t CLZ	3		3	1 3 30	ns	28
CAS precharge time	^t CP	10		10		ns	16
Access time from CAS precharge	^t CPA	74. T	35		40	ns	
CAS to RAS precharge time	^t CRP	5		5		ns	
CAS hold time	^t CSH	60		70		ns	
CAS setup time (CBR REFRESH)	tCSR	5		5	1	ns	5
CAS to WE delay time	tCWD	40		45		ns	21
Write command to CAS lead time	tCWL	15		20	1	ns	
Data-in hold time	^t DH	10		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	45		55	1	ns	
Data-in setup time	^t DS	0		0		ns	22
Output disable	^t OD	3	15	3	20	ns	28
Output Enable	^t OE		15		20	ns	23
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	15		15		ns	
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	20, 28
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		ns	
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35	1	40		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	85		95		ns	
Access time from RAS	^t RAC		60		70	ns	14
RAS to column-address delay time	†RAD	15	30	15	35	ns	18

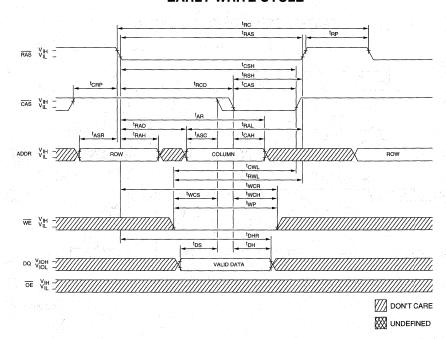
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = +3.3V to 0.3V)

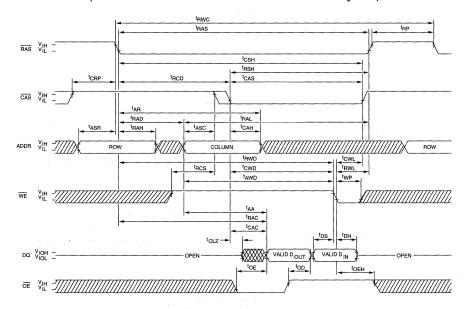
AC CHARACTERISTICS	10 m		-6		-7	1.2	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Row-address hold time	^t RAH	10		10	100000	ns	
Column-address to RAS lead time	^t RAL	30		35		ns	
RAS pulse width	^t RAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	^t RASP	60	100,000	70	100,000	ns	
RAS pulse width entering SELF REFRESH	tRASS	100		100		μs	26
Random READ or WRITE cycle time	t _{RC}	110		130		ns	
RAS to CAS delay time	tRCD	20	45	20	50	ns	17
Read command hold time (referenced to $\overline{\text{CAS}}$)	^t RCH	0		0		ns	19
Read command setup time	tRCS	0		0		ns	War San Y
Refresh period (2,048 cycles)	tREF		32		32	ms	26
Refresh period (2,048 cycles) S version	†REF		128		128	ms	
RAS precharge time	tRP	40		50		ns	
RAS to CAS precharge time	†RPC	0		0		ns	
RAS precharge time exiting SELF REFRESH	†RPS	110		130		ns	26
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	19
RAS hold time	tRSH	15		20		ns	
READ WRITE cycle time	tRWC	150		180		ns	
RAS to WE delay time	^t RWD	85		95		ns	21
Write command to RAS lead time	tRWL	15		20		ns	
Transistion time (rise or fall)	t _T	3	50	3	50	ns	
Write command hold time	tWCH	10		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		ns	
WE command setup time	tWCS	0		0		ns	21
Write command pulse width	tWP	10	1	15	Transaction 1	ns	
WE hold time (CBR REFRESH)	tWRH	10	100 200	10		ns	- 25
WE setup time (CBR REFRESH)	tWRP	10		10		ns	25


NOTES

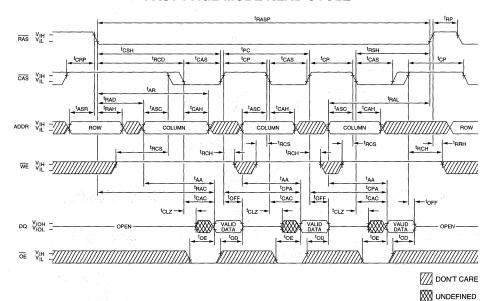
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = +3.3V; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- AC characteristics assume ^tT = 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIH and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{CAS} = V_{IL}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gate, 100pF and Vol = 0.8V and VoH = 2.0V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD


- is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition, and is not referenced to VOH or VOL.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are not restrictive operating parameters. ^tWCS applies to EARLY WRITE cycles. ^tRWD, ^tAWD and ^tCWD apply to READ-MODIFY-WRITE cycles. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. ^tWCS, ^tRWD, ^tCWD and ^tAWD are not applicable in a LATE WRITE cycle.
- 22. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. If OE is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not permissible and should not be attempted.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, \overline{WE} = LOW and \overline{OE} = HIGH.
- 25. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR refresh cycle.
- 26. Refresh must be completed within the time of three external refresh rate periods prior to active use of the DRAM (provided distributed CBR REFRESH is used when in the active mode). Alternatively, a complete set of row refreshes must be executed when exiting SELF REFRESH prior to active use of the DRAM if anything other than distributed CBR REFRESH is used in the active mode.
- 27. Column-address changed once each cycle.
- 28. The 3ns minimum is guaranteed by design.

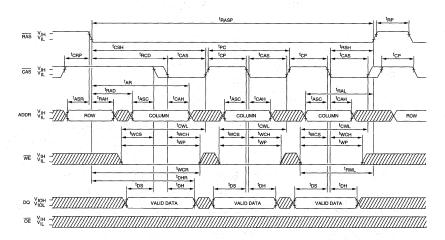
READ CYCLE



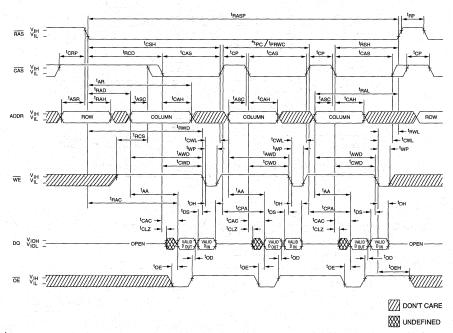
EARLY WRITE CYCLE



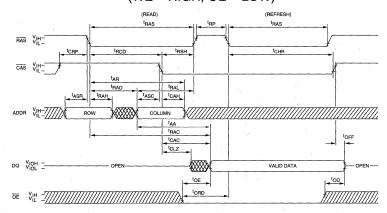
READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)



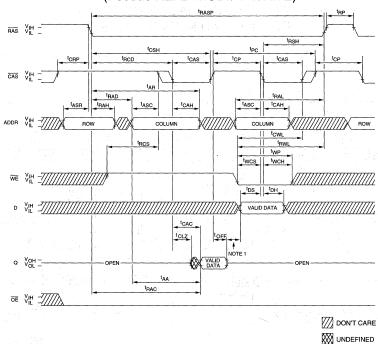
FAST-PAGE-MODE READ CYCLE



FAST-PAGE-MODE EARLY-WRITE CYCLE

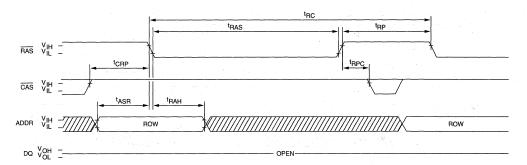


FAST-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)



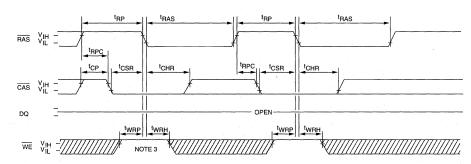
*NOTE: 1. ^tPC is for LATE WRITE only.

HIDDEN REFRESH CYCLE 24 (WE = HIGH; OE = LOW)

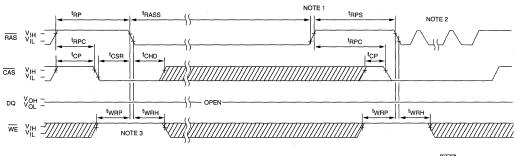

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)

NOTE: 1. Do not drive data prior to High-Z.

RAS-ONLY REFRESH CYCLE (OE and WE = DON'T CARE)


DON'T CARE

₩ UNDEFINED


CBR REFRESH CYCLE

(Addresses and $\overline{OE} = DON'T CARE$)

SELF REFRESH CYCLE ("SLEEP MODE")

(Addresses and $\overline{OE} = \overline{DON'T} CARE$)

DON'T CARE

UNDEFINED

NOTE:

- 1. Once tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.
- 2. Once ^tRPS is satisfied, a compete burst of all rows should be executed.
- 3. tWRP and tWRH are for system design reference only. The WE signal is actually a "don't care" at RAS time during a CBR REFRESH. However, WE should be held HIGH at RAS time during a CBR REFRESH to ensure compatibility with other DRAMs which require WE HIGH at RAS time during a CBR REFRESH.

NEW

DRAM

8 MEG x 8 DRAM

3.3V, FAST PAGE MODE

FEATURES

OPTIONS

- Single $+3.3V \pm 0.3V$ power supply
- Industry-standard x8 pinout, timing, functions and packages
- 13 row-addresses, 10 column-addresses (E1) or 12 row-addresses, 11 column-addresses (B6)
- High-performance CMOS silicon-gate process
- All inputs and outputs are LVTTL-compatible
- FAST PAGE MODE access
- 4,096-cycle CAS-BEFORE-RAS (CBR) REFRESH distributed across 64ms

MARKING

Timing	
50ns access	-5
60ns access	-6
70ns access	-7
Packages	
Plastic SOJ (500 mil)	DW
Plastic TSOP (500 mil)	TW
• Part Number Example: MT4LC8	8M8E1DW-7

KEY TIMING PARAMETERS

SPEED	tRC	tRAC	^t PC	†AA	tCAC
-5	90ns	50ns	30ns	25ns	13ns
-6	110ns	110ns 60ns 35		30ns	15ns
-7	130ns	70ns	40ns	35ns	20ns

GENERAL DESCRIPTION

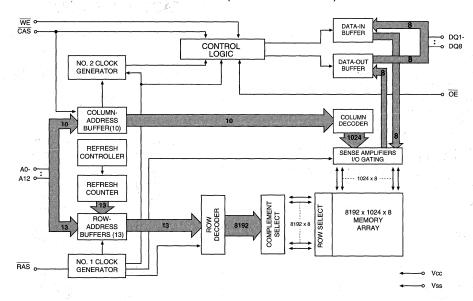
The MT4LC8M8E1 and MT4LC8M8B6 are high-speed CMOS dynamic random access memory devices containing 67,108,864 bits, and designed to operate from 3.0V to 3.6V. The MT4LC8M8E1 and MT4LC8M8B6 are functionally organized as 8,388,608 locations containing 8 bits each. The 8,388,608 memory locations are arranged in 8,192 rows by 1,024 columns for the MT4LC8M8E1 or 4,096 rows by 2,048 columns for the MT4LC8M8B6. During READ or WRITE cycles, each location is uniquely addressed via the address bits. First, the row address is latched by the $\overline{\text{RAS}}$ signal, then the column address by $\overline{\text{CAS}}$. Both devices provide FAST PAGE MODE operation, allowing for fast successive data operations (READ, WRITE or READ-MODIFY-WRITE) within a given row.

The MT4LC8M8E1 and MT4LC8M8B6 must be refreshed periodically in order to retain stored data.

PIN ASSIGNMENT (Top View)

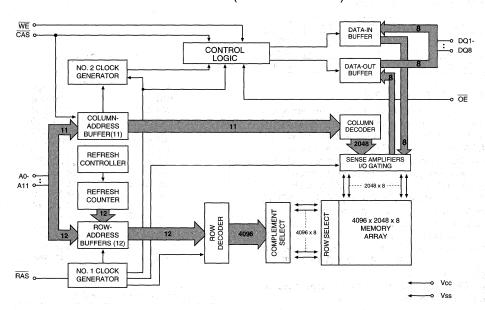
34-Pin SOJ (DA-6)

			- 1	 	 2.5		
Vcc	þ	1 •			34	Ь	Vss
DQ1	d	2		1	33	b	DQ8
DQ2	q	3			32	Ь.	DQ7
DQ3	þ	4			31	Þ	DQ6
DQ4	q	5			30	Þ	DQ5
NC	Ц	6			29	Þ	VSS
Vcc	Ц	7			28	Þ	CAS
WE	Ц	8			27	þ	ŌĒ
RAS	Ц	9			26	Þ	NC
NC	4	10			25	Þ	A12/NC
Α0	q	11			24	Þ	A11
A1	П	12			23	Р	A10
A2	9	13			22	P	A9
А3	9	14			21	P	A8
A4	9	15			20	P	A7
A5	4	16			19	5	A6
Vcc	4	17			18	P	Vss


34-Pin TSOP*

Vcc □	1	34 Ⅲ Vss
DQ1 I	2	33 🎞 DQ8
DQ2 I	3	32 🎞 DQ7
DQ3 🗆	4	31 🗁 DQ6
DQ4 🗆	5	30 🎞 DQ5
NC 🗆	6	29 🎞 Vss
Vcc □	7	28 🎞 CAS
WE 🗆	8	27 🎞 OE
RAS □	9	26 🎞 NC
NC □	10	25 🖽 A12/NC
A0 □	111	24 🎞 A11
A1 □	12	23 🞞 A10
A2 □	13	22 🎞 A9
A3 □	14	21 🎞 A8
A4 □	15	20 🎞 A7
A5 □	16	19 🎞 A6
Vcc □	17	18 垣 Vss

*Consult factory for dimensions and availability.


FUNCTIONAL BLOCK DIAGRAM

MT4LC8M8E1 (13 row-addresses)

FUNCTIONAL BLOCK DIAGRAM

MT4LC8M8B6 (12 row-addresses)

MT4LC8M8E1/B6 8 MEG x 8 DRAM

FUNCTIONAL DESCRIPTION

The functional description for the MT4LC8M8E1 and MT4LC8M8B6 is divided into the two areas described below (DRAM access and DRAM refresh). Relevant timing diagrams are included in this data sheet, following the timing specification tables.

DRAM ACCESS

Each location in the DRAM is uniquely addressable as mentioned in the General Description. The data for each location is accessed via the eight I/O pins (DQ1-8). The $\overline{\text{WE}}$ signal must be activated to execute a write operation, otherwise a read operation will be performed. The $\overline{\text{OE}}$ signal must be activated to enable the DQ output drivers for a read access and can be deactivated to disable output data if necessary.

FAST PAGE MODE operations are always initiated with a row-address strobed-in by the \overline{RAS} signal, followed by a column-address strobed-in by \overline{CAS} , just like for single location accesses. However, subsequent column locations within the row may then be accessed at the page-mode cycle time. This is accomplished by cycling \overline{CAS} while holding \overline{RAS}

LOW, and entering new column addresses with each $\overline{\text{CAS}}$ cycle. Returning $\overline{\text{RAS}}$ HIGH terminates the FAST PAGE MODE operation.

DRAM REFRESH

The supply voltage must be maintained at the specified levels, and the refresh requirements must be met in order to retain stored data in the DRAM. The refresh requirements are met by refreshing all 8,192 rows (E1) or all 4,096 rows (B6) in the DRAM array at least once every 64ms. The recommended procedure is to execute 4,096 CBR REFRESH cycles, either uniformly spaced or grouped in bursts, every 64ms. The MT4LC8M8E1 internally refreshes two rows for every CBR cycle, whereas the MT4LC8M8B6 refreshes one row for every CBR cycle. So with either device, executing 4,096 CBR cycles covers all rows. Alternatively, RAS-ONLY REFRESH capability is inherently provided. However, with this method only one row is refreshed at a time, so for the MT4LC8M8E1, 8,192 RAS-ONLY REFRESH cycles must be executed every 64ms to cover all rows.

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC Relative to Vss	1.0V to +4.6V
Voltage on Inputs or I/O Pins	
Relative to Vss	1.0V to +5.5V
Operating Temperature, T_A (ambient)	0°C to +70°C
Storage Temperature (plastic)	
Power Dissipation	1W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	3.0	3.6	V	
Input High (Logic 1) Voltage, all inputs	ViH	2.0	5.5	V	
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	8.0	V	
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le 3.6V$ (All other pins not under test = $0V$)	i li	-2	2	μΑ	, 200 m
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vout ≤ 3.6V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (Iout = -2mA)	Vон	2.4		V	
Output Low Voltage (lout = 2mA)	Vol		0.4	V	

				MAX		NOTES	
PARAMETER/CONDITION	VERSION	SYMBOL	-5	-5 -6			
STANDBY CURRENT: (TTL)	MT4LC8M8E1	Icc1	1	1	1	mA	
$\overline{(RAS} = \overline{CAS} = V_{IH})$	MT4LC8M8B6	Icc1	1	1	1		
STANDBY CURRENT: (CMOS)	MT4LC8M8E1	Icc2	500	500	500		
$(\overline{RAS} = \overline{CAS} \ge Vcc -0.2V, DQs may be left open, Other inputs: Vin \ge Vcc -0.2V or Vin \le 0.2V)$	MT4LC8M8B6	Icc2	500	500	500	μΑ	
OPERATING CURRENT: Random READ/WRITE	MT4LC8M8E1	Іссз	135	125	115		3, 4,
Average power supply current (RAS, CAS, Address Cycling: ¹RC = ¹RC [MIN])	MT4LC8M8B6	Icc3	175	165	155	mA	29
OPERATING CURRENT: FAST PAGE MODE	MT4LC8M8E1	Icc4	105	95	85		3, 4,
Average power supply current $(\overline{RAS} = V_{IL}, \overline{CAS}, Address Cycling: {}^{t}PC = {}^{t}PC [MIN])$	MT4LC8M8B6	Icc4	105	95	85	mA	29
REFRESH CURRENT: RAS ONLY	MT4LC8M8E1	Icc5	135	125	115		
Average power supply current $(\overline{RAS} \text{ Cycling}, \overline{CAS} = \text{V}_{\text{IH}}: {}^{\text{t}}RC = {}^{\text{t}}RC \text{ [MIN]})$	MT4LC8M8B6	Icc5	175	165	155	mA	3, 26
REFRESH CURRENT: CBR	MT4LC8M8E1	Icce	145	135	125		
Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	MT4LC8M8B6	Icc6	175	165	155	mA	3, 5

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: Address pins	C _{I1}	5	pF	2
Input Capacitance: RAS, CAS, WE, OE	Cı2	7	pF	2
Input/Output Capacitance: DQ	Сю	9	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = +3.3V \pm 0.3V$)

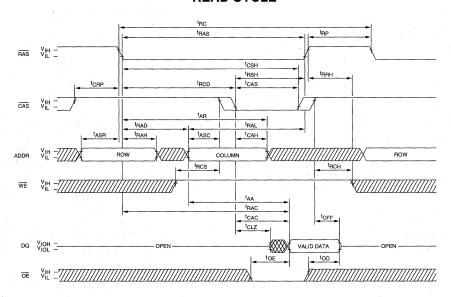
AC CHARACTERISTICS PARAMETER		-5		-6		-7 to 1			. Ref. (1)
	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		25	ing Mark	30		35	ns	
Column-address hold time (referenced to RAS)	^t AR	40		45		55		ns	
Column-address setup time	†ASC	Ó		0		.0		ns	1.1.122
Row-address setup time	†ASR	0		0		0	100	ns	
Column-address to WE delay time	tAWD	48		55		.65		ns	21
Access time from CAS	^t CAC	N.	13		15		20	ns	15
Column-address hold time	^t CAH	8		10		15	2.1.48	ns	
CAS pulse width	^t CAS	13	10,000	15	10,000	20	10,000	ns	1
CAS hold time (CBR REFRESH)	tCHR	15	100	15	Anna Antara	15		ns	5
CAS to output in Low-Z	tCLZ	0	3.5	0		0		ns	
CAS precharge time (FAST PAGE MODE)	^t CP	8		10		.10	S	ns	16
Access time from CAS precharge	^t CPA		30		35	. Milan	40	ns	
CAS to RAS precharge time	tCRP	5		5		5		ns	
CAS hold time	tCSH	50	1000	60		70		ns	
CAS setup time (CBR REFRESH)	tCSR	5		5		5		ns	5
CAS to WE delay time	tCWD	36		40		50	100	ns	21
Write command to CAS lead time	tCWL	13		15	1 2 1 1	20		ns	
Data-in hold time	tDH	8		10		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	40		45		55		ns	
Data-in setup time	†DS	0		0		0		ns	22
Output disable	^t OD	0	13	0	15	0	20	ns	27, 28
Output Enable time	^t OE	13/41	13	V 12 1	15		20	ns	
OE hold time from WE during READ-MODIFY-WRITE cycle	†OEH	13		15		20		ns	28

MICHON TECHNOLOGY, INC.

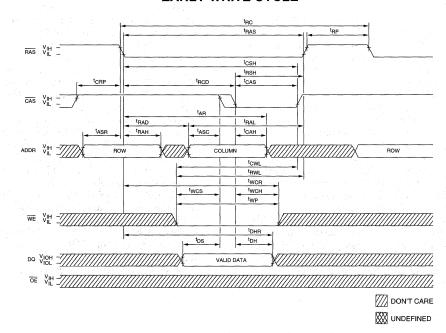
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS		-5		-6		7			1 a 1 1 1 1
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	. 0	13	0	15	0	20	ns	20, 27
OE setup prior to RAS during HIDDEN REFRESH cycle	tORD	0		0		. 0		ns	
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	30		35		40		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	76		85		100		ns	
Access time from RAS	tRAC .	· .	50	1.2	60		70	ns	- 14
RAS to column-address delay time	^t RAD	13	25	15	30	15	35	ns	18
Row-address hold time	^t RAH	8		10		10		ns	
Column-address to RAS lead time	^t RAL	25		30		35		ns	
RAS pulse width	tRAS	50	10,000	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	^t RASP	50	125,000	60	125,000	70	125,000	ns	
Random READ or WRITE cycle time	tRC	90		110		130		ns	
RAS to CAS delay time	†RCD	18	37	20	45	20	50	ns	17.
Read command hold time (referenced to CAS)	^t RCH	0		0		0	1 1/2 1/2	ns	19
Read command setup time	tRCS	0		0		0	100	ns	
Refresh period	tREF		64		64		64	ms	26
RAS precharge time	^t RP	30		40		50	7.45	ns	
RAS to CAS precharge time	tRPC	0		0		0		ns	
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
RAS hold time	^t RSH	13		15		20		ns	
READ WRITE cycle time	^t RWC	131		155		185		ns	
RAS to WE delay time	tRWD	73		85		100		ns	21
Write command to RAS lead time	tRWL	13	1.7	15		20		ns	
Transition time (rise or fall)	Τ [†] Τ	1	50	1	50	1	50	ns	
Write command hold time	tWCH	8	No.	10		15		ns	
Write command hold time (referenced to RAS)	tWCR	40		45		55		ns	
WE command setup time	twcs	0		- 0		0		ns	21
Write command pulse width	^t WP	8		10		15		ns	
WE hold time (CBR REFRESH)	^t WRH	10	allow hy	10	-	10		ns	25
WE setup time (CBR REFRESH)	tWRP	10		10		10		ns	25

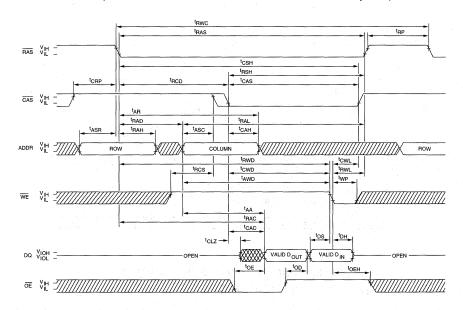


NOTES

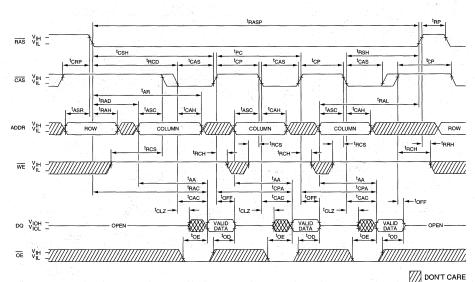

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = +3.3V; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If CAS = V_{IL}, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates, 100pF and Vol = 0.8V and VoH = 2.0V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, output data will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.

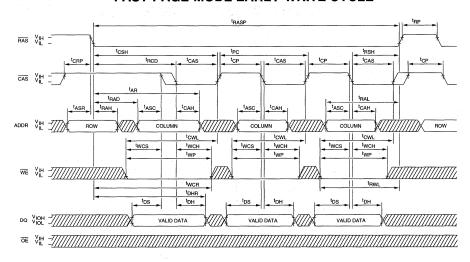
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition, and is not referenced to VOH or VOL.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are not restrictive operating parameters. ^tWCS applies to EARLY WRITE cycles. If ^tWCS > ^tWCS MIN, the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. ^tRWD, ^tAWD and ^tCWD define READ-MODIFY-WRITE cycles. Meeting these limits allows for reading and disabling output data and then applying input data. The values shown were calculated for reference allowing 10ns for the external latching of read data and application of write data. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. ^tWCS, ^tRWD, ^tCWD and ^tAWD are not applicable in a LATE WRITE cycle.
- 22. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. If $\overline{\text{OE}}$ is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 25. WTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.
- 26. RAS-ONLY REFRESH requires that all 8,192 rows of the MT4LC8M8E1, or all 4,096 rows of the MT4LC8M8B6, be refreshed at least once every 64ms. CBR REFRESH, for either device, requires that at least 4,096 cycles be completed every 64ms.
- 27. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS goes HIGH before OE, the DQs will open regardless of the state of OE. If CAS stays LOW while OE is brought HIGH, the DQs will open. If OE is brought back LOW (CAS still LOW), the DQs will provide the previously read data.
- 28. LATE WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. If OE is taken back LOW while CAS remains LOW, the DQs will remain open.
- 30. Column-address changed once each cycle.

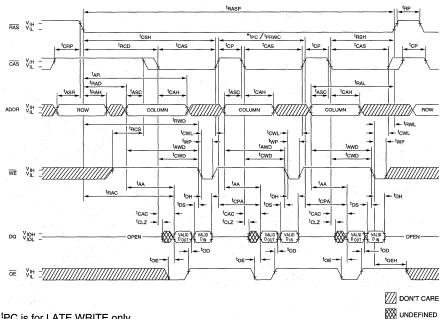
READ CYCLE



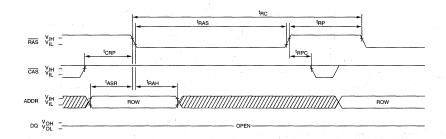
EARLY WRITE CYCLE

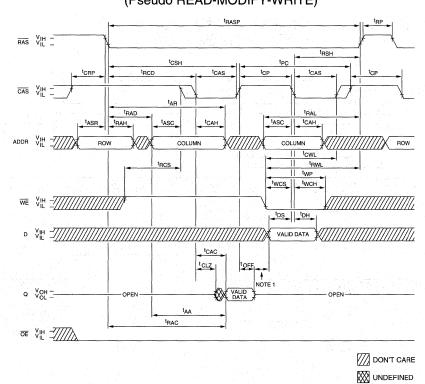



READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)

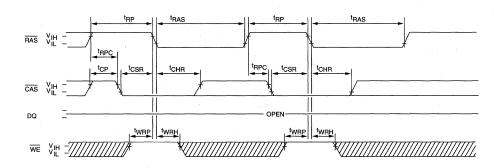

FAST-PAGE-MODE READ CYCLE

FAST-PAGE-MODE EARLY-WRITE CYCLE

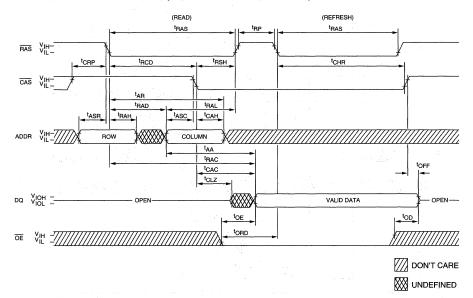

FAST-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)


*NOTE: 1. ^tPC is for LATE WRITE only.

RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)



FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)


NOTE: 1. Do not drive input data prior to output data going High-Z.

CBR REFRESH CYCLE (Addresses and OE = DON'T CARE)

HIDDEN REFRESH CYCLE 24

 $(\overline{WE} = HIGH; \overline{OE} = LOW)$

40/44-Pin TSOP

DRAM

256K x 16 DRAM

5V, FAST PAGE MODE

40-Pin SOJ

FEATURES

- Industry-standard x16 pinouts, timing, functions and packages
- High-performance CMOS silicon-gate process
- Single +5V ±10% power supply*
- Low power, 3mW standby; 375mW active, typical
- All device pins are fully TTL-compatible
- 512-cycle refresh in 8ms (nine rows and nine columns)
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- FAST PAGE MODE access cycle
- BYTE WRITE access cycle
- BYTE READ access cycle

OPTIONS	MARKING
Timing	
60ns access	-6*
70ns access	-7
80ns access	-8
• Packages	
Plastic SOJ (400 mil)	DJ
Plastic TSOP (400 mil)	TĠ

Part Number Example: MT4C16257DJ-7

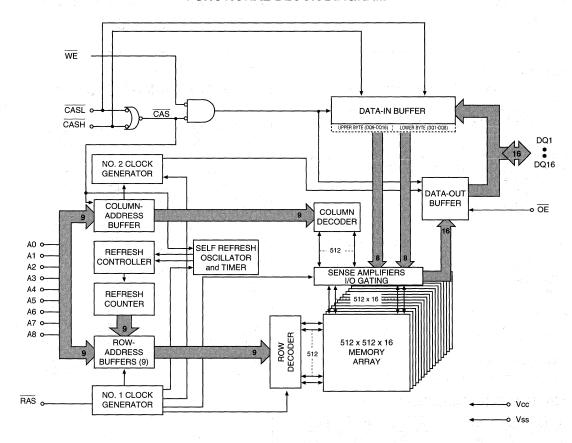
*60ns specifications are limited to a Vcc range of ±5%.

KEY TIMING PARAMETERS

ſ	SPEED	†RC	^t RAC	^t PC	^t AA	^t CAC	tRP
Γ	-6	110ns	60ns	35ns	30ns	15ns	40ns
Γ	-7	130ns	70ns	40ns	35ns	20ns	50ns
Γ	-8	150ns	80ns	45ns	40ns	20ns	60ns

PIN ASSIGNMENT (Top View)

· · ·		A-7)		40	(DB-4	130P 1)
Vcc [] DQ1 [] DQ2 [] DQ3 [] DQ4 [] Vcc [] DQ5 [] DQ6 []	2 3 4 5 6 7 8	39 38 37 36 35 34 33	Vss DQ16 DQ15 DQ14 DQ13 Vss DQ12 DQ11	Vcc	1 2 3 4 4 5 6 6 7 7 8 9 9	44
DQ7 [DQ8 [NC [31] DQ10] DQ9] NC	DQ8 CC	10	35 🎞 DQ9
NC [WE [RAS [NC [12 13 14 15	28	CASL CASH OE A8	NC H NC H WE H RAS H	13 14 15 16	32 NC 31 CASL 30 CASH 29 OE
A0 [A1 [A2 [16 17 18	25 24 23] A7] A6] A5	NC H A0 H A1 H A2 H	17 18 19 20	28
Vcc [19 20	22 21	• • • • • • • • • • • • • • • • • • • •	A3 ☐ Vcc ☐	21 22	24


GENERAL DESCRIPTION

The MT4C16257 is a randomly accessed solid-state memory containing 4,194,304 bits organized in a x16 configuration. The MT4C16257 has both BYTE WRITE and WORD WRITE access cycles via two CAS pins.

The MT4C16257 CAS function and timing are determined by the first CAS (CASL or CASH) to transition LOW and by the last to transition back HIGH. Use of only one of the two results in a BYTE WRITE cycle. CASL transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) and CASH transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16). BYTE READ cycles are achieved through CASL or CASH in the same manner during READ cycles for the MT4C16257.

FUNCTIONAL BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 18 address bits during READ or WRITE cycles. These are entered 9 bits (A0-A8) at a time. RAS is used to latch the first 9 bits and CAS the latter 9 bits.

The $\overline{\text{CAS}}$ control also determines whether the cycle will be a refresh cycle ($\overline{\text{RAS}}$ ONLY) or an active cycle (READ, WRITE or READ WRITE) once $\overline{\text{RAS}}$ goes LOW.

The \overline{CASL} and \overline{CASH} inputs internally generate a \overline{CAS} signal functioning in an identical manner to the single \overline{CAS} input on the other 256K x 16 DRAMs. The key difference is each \overline{CAS} controls its corresponding DQ tristate logic (in conjunction with \overline{OE} and \overline{WE}). \overline{CASL} controls DQ1 through DQ8 and \overline{CASH} controls DQ9 through DQ16.

The MT4C16257 CAS function is determined by the first CAS (CASL or CASH) to transition LOW and the last one to transition back HIGH. The two CAS controls give the MT4C16257 both BYTE READ and BYTE WRITE cycle capabilities.

A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. Taking WE LOW will initiate a WRITE cycle, selecting DQ1 through DQ16. If WE goes LOW prior to CAS going LOW, the output pin(s) remain open (High- Z) until the next CAS cycle. If WE goes LOW after CAS goes LOW and data reaches the output pins, data-out (Q) is activated and retains the selected cell data as long as CAS and OE remain LOW (regardless of WE or RAS). This late WE pulse results in a READ WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O and pin direction is controlled by OE.

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined (A0-A8) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR, or HIDDEN) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8ms, regardless of sequence. The CBR REFRESH cycle will also invoke the refresh counter and controller for row-address control.

BYTE ACCESS CYCLE

The BYTE WRITE mode is determined by the use of CASL and CASH. Enabling CASL will select a lower BYTE WRITE cycle (DQ1-DQ8) while enabling CASH will select an upper BYTE WRITE cycle (DQ9-DQ16). Enabling both CASL and CASH selects a WORD WRITE cycle.

The MT4C16257 can be viewed as two $256K \times 8$ DRAMS which have common input controls, with the exception of the $\overline{\text{CAS}}$ inputs. Figure 1 illustrates the MT4C16257 BYTE WRITE and WORD WRITE cycles.

The MT4C16257 also has BYTE READ and WORD READ cycles. Figure 2 illustrates the MT4C16257 BYTE READ and WORD READ cycles.

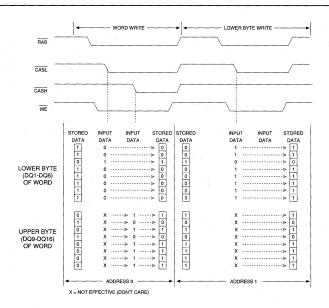


Figure 1
WORD AND BYTE WRITE EXAMPLE

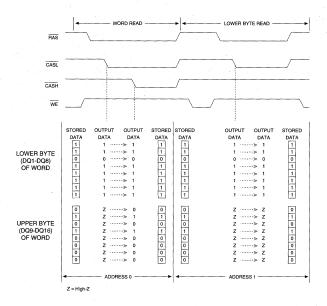


Figure 2
WORD AND BYTE READ EXAMPLE

TRUTH TABLE

							ADDRESSES			
FUNCTION		RAS	CASL	CASH	WE	0E	^t R	tC	DQs	NOTES
Standby		Н	H→X	H→X	Х	×	X	Х	High-Z	
READ: WORD		L	٦	L	Н	L	ROW	COL	Data-Out	
READ: LOWER	RBYTE	L	L	Н	Н	L	ROW	COL	Lower Byte, Data-Out Upper Byte, High-Z	
READ: UPPER	BYTE	L	Η	L Barry	Н	L	ROW	COL	Lower Byte, High-Z Upper Byte, Data-Out	
WRITE: WORD (EARLY WRITE		1 - L	L	L	L	Х	ROW	COL	Data-In	in the
WRITE: LOWE BYTE (EARLY)		L	L	Н	L .	Х	ROW	COL	Lower Byte, Data-In Upper Byte, High-Z	
WRITE: UPPE BYTE (EARLY)		L	Ŧ	L	L	Х	ROW	COL	Lower Byte, High-Z Upper Byte, Data-In	
READ WRITE		L	L	L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2
PAGE-MODE	1st Cycle	L	H→L	H→L	Н	L	ROW	COL	Data-Out	2
READ	2nd Cycle	L	H→L	H→L	Н	e E	n/a	COL	Data-Out	2
PAGE-MODE	1st Cycle	L	H→L	H→L	L	X	ROW	COL	Data-In	1
WRITE	2nd Cycle	L	H→L	H→L	L	Х	n/a	COL	Data-In	1
PAGE-MODE	1st Cycle	L	H→L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2
READ-WRITE	2nd Cycle	L	H→L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	1, 2
HIDDEN	READ	L→H→L	L	L	Н	L	ROW	COL	Data-Out	2
REFRESH	WRITE	L→H→L	L	L	L	Х	ROW	COL	Data-In	1, 3
RAS-ONLY REFRESH		L	H	Н	X	Х	ROW	n/a	High-Z	
CBR REFRESI	H	H→L	L	L	X	X	X	X	High-Z	4

NOTE:

- 1. These WRITE cycles may also be BYTE WRITE cycles (either $\overline{\text{CASL}}$ or $\overline{\text{CASH}}$ active).
- 2. These READ cycles may also be BYTE READ cycles (either CASL or CASH active).
- 3. EARLY WRITE only.
- 4. At least one of the two CAS signals must be active (CASL or CASH).

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	1V to +7V
Operating Temperature, TA (ambient)	0°C to +70°C
Storage Temperature (plastic)	55°C to +150°C
Power Dissipation	1.2W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	100
Input High (Logic 1) Voltage, all inputs	ViH	2.4	Vcc+1	V	
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT Any input 0V ≤ VIN ≤ Vcc (All other pins not under test = 0V)	. li	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (lout = -5mA) Output Low Voltage (lout = 4.2mA)	Voh Vol	2.4	0.4	V	

			MAX		1	
PARAMETER/CONDITION	SYMBOL	-6**	-7	-8	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = V _H)	lcc1	2	2	2	mA	1, 25, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
STANDBY CURRENT: (CMOS) (RAS = CAS = Vcc -0.2V)	ICC2	1	1	1	mA	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: [†] RC = [†] RC [MIN])	lcc3	195	175	160	mA	3, 4, 41
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: tPC = tPC [MIN]; tCP, tASC = 10ns)	Icc4	120	110	100	mA	3, 4, 41
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS=VIH: TRC = TRC [MIN])	lcc5	195	175	160	mA	3, 41
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Icc6	180	160	140	mA	3, 5

^{**60}ns specifications are limited to a Vcc range of ±5%.

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A8	C _{I1}	5	pF	2
Input Capacitance: RAS, CASL, CASH, WE, OE	C _{l2}	7	рF	2
Input/Output Capacitance: DQ (SOJ, TSOP)	Сю	7.	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5V \pm 10\%^*$)

AC CHARACTERISTICS		, in the 2	6*		-7		-8	7,4	la de la company
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30		35		40	ns	
Column-address hold time (referenced to RAS)	^t AR	50		55		60		ns	
Column-address setup time	†ASC	0	100	0		0		ns	29
Row-address setup time	^t ASR	0		0		0		ns	
Column-address to WE delay time	^t AWD	55		60		65		ns	21
Access time from CAS	^t CAC		15	100	20	The Jake	20	ns	15, 31
Column-address hold time	^t CAH	10		15		15		ns	29
CAS pulse width	^t CAS	15	10,000	20	10,000	20	10,000	ns	37
CAS hold time (CBR REFRESH)	^t CHR	10		10		10	166	ns	5, 30
Last CAS going LOW to first CAS returning HIGH	^t CLCH	10		10		10		ns	32
CAS to output in Low-Z	^t CLZ	3		3		3		ns	31
CAS precharge time	^t CP	10		10		10		ns	16, 34
Access time from CAS precharge	^t CPA		35		40	1 1 1	45	ns	31
CAS to RAS precharge time	^t CRP	10		10		10		ns	30
CAS hold time	tCSH	60		70		80		ns	30
CAS setup time (CBR REFRESH)	tCSR	10		10		10		ns	5, 29
CAS to WE delay time	tCWD	40		45		45		ns	21, 29
Write command to CAS lead time	^t CWL	15		20		20		ns	26, 30
Data-in hold time	tDH	10		15		15		ns	22, 31
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		ns	
Data-in setup time	^t DS	0		0		0		ns	22, 31
Output disable time	^t OD	3	15	3	15	3	15	ns	28, 39
Output Enable time	^t OE		15		20		20	ns	31
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	15		20		20	74,116	ns	27
Output buffer turn-off delay	^t OFF	3	15	3	15	3	15	ns	20, 28, 3

^{*60}ns specifications are limited to a Vcc range of $\pm 5\%$.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

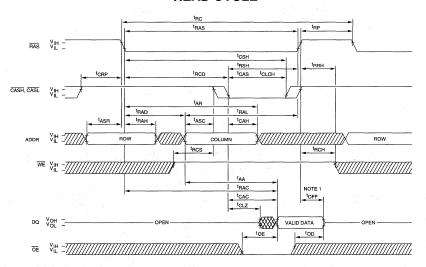
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5V \pm 10\%^*$)

AC CHARACTERISTICS	-		6*	4.	-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		0		ns	
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		45		ns	33
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	85		95		100		ns	33
Access time from RAS	^t RAC		60		70	1, 1	80	ns	14
RAS to column- address delay time	^t RAD	15	30	15	35	15	40	ns	18
Row-address hold time	^t RAH	10		10		10		ns	
Column-address to RAS lead time	^t RAL	30		35		40		ns	
RAS pulse width	^t RAS	60	10,000	70	10,000	80	10,000	ns	
RAS pulse width (PAGE MODE)	^t RASP	60	100,000	70	100,000	80	100,000	ns	
Random READ or WRITE cycle time	^t RC	110		130		150		ns	
RAS to CAS delay time	^t RCD	20	45	20	50	20	60	ns	17, 29
Read command hold time (referenced to CAS)	tRCH	0		0		0		ns	19, 26, 30
Read command setup time	tRCS	0		0		0		ns	26, 29
Refresh period (512 cycles)	^t REF		8		8		8	ms	
RAS precharge time	^t RP	40		50		60		ns	No.
RAS to CAS precharge time	tRPC	10		10		10		ns	
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
RAS hold time	^t RSH	15		20		20		ns	38
READ WRITE cycle time	tRWC	150		175		195		ns	100000
RAS to WE delay time	^t RWD	85		95		105		ns	21
Write command to RAS lead time	tRWL	15		20		20		ns	26
Transition time (rise or fall)	Ţ	3	50	3	50	3	50	ns	
Write command hold time	†WCH	10		10		10		ns	26, 38
Write command hold time (referenced to RAS)	tWCR	45		55		60		ns	26
Write command setup time	tWCS	0		0		0		ns	21, 26, 29
Write command pulse width	tWP	10		10		10		ns	26

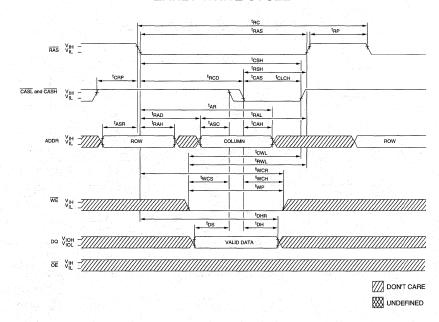
^{*60}ns specifications are limited to a Vcc range of ±5%.

NOTES

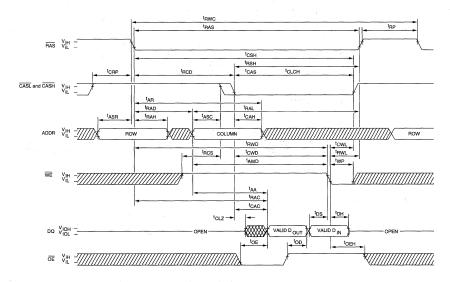
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. $Vcc = 5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C \leq T_A \leq 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- 9. V_{IH} (MIN) and V_{IL} (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF, Vol = 0.80 and Voh = 2.0V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, tRAC will increase by the amount that tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If \overline{CAS} is LOW at the falling edge of \overline{RAS} , Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by tCAC.
- 18. Operation within the ^tRAD limit ensures that ^tRCD (MAX) can be met. tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.


- 19. Either ^tRCH or ^tRRH must be satisfied for a READ
- 20. tOFF (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to Voh or Vol. The 3ns minimum is a parameter guaranteed by design.
- 21. tWCS, tRWD, tAWD and tCWD are restrictive operating parameters in LATE WRITE and READ-MODIFY-WRITE cycles only. If ${}^{t}WCS \ge {}^{t}WCS$ (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ${}^{t}RWD \ge {}^{t}RWD$ (MIN), ${}^{t}AWD \ge {}^{t}AWD$ (MIN) and ${}^{t}CWD \ge {}^{t}CWD$ (MIN), the cycle is a READ WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of Q (at access time and until $\overline{\text{CAS}}$ or $\overline{\text{OE}}$ goes back to VIH) is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle.
- 22. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, Q goes open. If OE is tied permanently LOW, a LATE WRITE or READ-MODIFY-WRITE operation is not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, \overline{WE} = LOW and \overline{OE} = HIGH.
- 25. All other inputs at Vcc -0.2V.
- 26. Write command is defined as $\overline{\text{WE}}$ going LOW.
- 27. LATE WRITE and READ-MODIFY-WRITE cycles must have both tOD and tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously written data if CAS remains LOW and $\overline{\text{OE}}$ is taken back LOW after ${}^{\text{t}}\text{OEH}$ is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 28. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS goes HIGH before OE, the DQs will open regardless of the state of the OE. If CAS stays LOW while \overline{OE} is brought HIGH, the DQs will open. If OE is brought back LOW (CAS still LOW), the DQs will provide the previously read data.

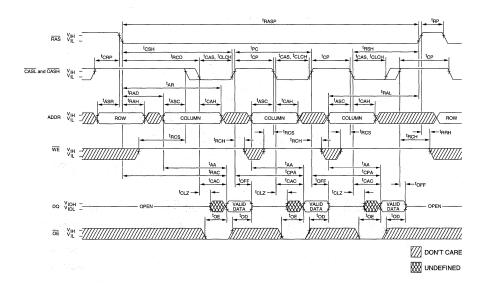
NOTES (continued)


- 29. The first CASx edge to transition LOW.
- 30. The last \overline{CASx} edge to transition HIGH.
- Output parameter (DQx) is referenced to corresponding CAS input, DQ1-DQ8 by CASL and DQ9-DQ16 by CASH.
- 32. Last falling \overline{CASx} edge to first rising \overline{CASx} edge.
- 33. Last rising CASx edge to next cycle's last rising CASx edge.
- 34. Last rising \overline{CASx} edge to first falling \overline{CASx} edge.
- 35. First DQs controlled by the first CASx to go LOW.
- 36. Last DQs controlled by the last CASx to go HIGH.
- 37. Each CASx must meet minimum pulse width.
- 38. Last \overline{CASx} to go LOW.
- 39. All DQs controlled, regardless CASL and CASH.
- 40. Column-address changed once each cycle.

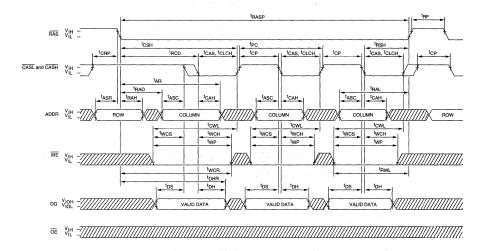
READ CYCLE



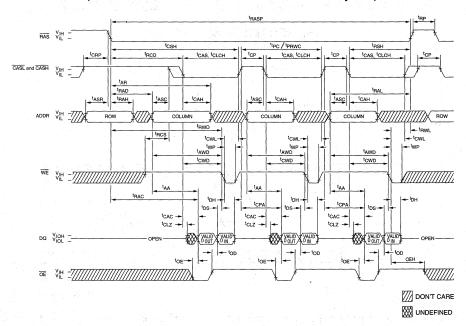
EARLY WRITE CYCLE



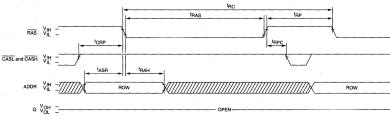
READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)

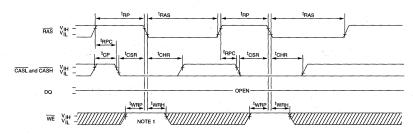


FAST-PAGE-MODE READ CYCLE

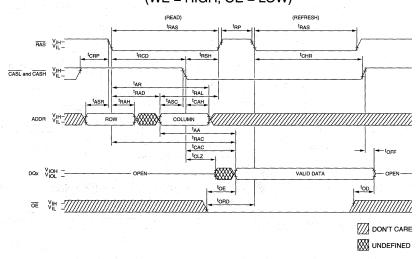


FAST-PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)


*NOTE: ^tPC is for LATE WRITE only.

FPM DRAM


RAS-ONLY REFRESH CYCLE (Addresses; OE, WE = DON'T CARE)

CBR REFRESH CYCLE (Addresses and OE = DON'T CARE)

HIDDEN REFRESH CYCLE 24 (WE = HIGH; OE = LOW)

NOTE: 1. ¹WRP and ¹WRH are for system design reference only. The WE signal is actually a "don't care" at RAS time during a CBR REFRESH. However, WE should be held HIGH at RAS time during a CBR REFRESH to ensure compatibility with other DRAMs which require WE HIGH at RAS time during a CBR REFRESH.

DRAM

256K x 16 DRAM

3.3V, FAST PAGE MODE, OPTIONAL SELF REFRESH

FEATURES

- Industry-standard x16 pinouts, timing, functions and packages
- High-performance CMOS silicon-gate process
- Single +3.3V ±0.3V power supply*
- Low power, 0.3mW standby; 150mW active, typical
- All device pins are fully LVTTL-compatible
- 512-cycle refresh in 8ms (MT4LC16257) or 64ms (MT4LC16257 S)
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN and optional Extended and SELF
- FAST PAGE MODE access cycle
- BYTE WRITE access cycle
- BYTE READ access cycle
- Symmetrical addressing (nine rows, nine columns)

OPTIONS		M	ARKING
 Timing 			

 Timing 	
60ns access	-6*
70ns access	-7
80ns access	-8

Refresh Rate
 512-cycle refresh in 8ms
 512-cycle refresh in 64ms, SELF REFRESH

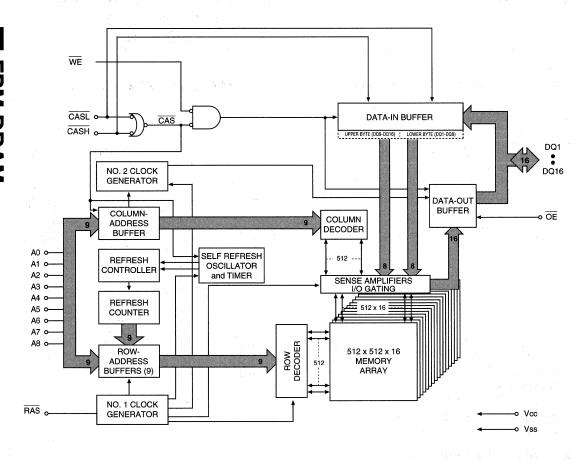
Packages
 Plastic SOJ (400 mil)
 Plastic TSOP (400 mil)
 TG

Part Number Example: MT4LC16257DJ-7 S
 *60ns specifications are limited to a Vcc range of ±0.15V.

KEY TIMING PARAMETERS

SPEED	†RC	^t RAC	tPC	t _{AA}	^t CAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns
-8	150ns	80ns	45ns	40ns	20ns	60ns

GENERAL DESCRIPTION


The MT4LC16257(S) is a randomly accessed solid-state memory containing 4,194,304 bits organized in a x16 configuration. The MT4LC16257(S) has both BYTE WRITE and WORD WRITE access cycles via two $\overline{\text{CAS}}$ pins. $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$ function in an identical manner to $\overline{\text{CAS}}$ in that either $\overline{\text{CASL}}$ or $\overline{\text{CASH}}$ will generate an internal $\overline{\text{CAS}}$.

PIN ASSIGNMENT (Top View)

	40-Pin S (DA-7		40/44-Pin TSOP (DB-4)					
Vcc I DQ1 I DQ2 I DQ3 I Vcc I DQ5 I DQ6 I DQ7 I DQ7 I DQ8 I NC I WE I NC I A0 I A1 I A2 I A3 I	2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17	40 D Vss 39 D Q16 38 D DQ16 37 D DQ14 36 D DQ13 35 D Vss 44 D DQ12 33 D DQ11 32 D DQ10 31 D DQ10 31 D DQ0 30 D NC 29 D CASL 28 D CASH 27 D OE 26 D A8 25 D A7 24 D A6 22 D A4	Vec 1 2 2 2 2 2 3 3 2 3 4 5 5 4 6 6 6 6 6 6 6 6 6	44				
Vcc [20	21 Uss						

The MT4LC16257(S) \overline{CAS} function and timing are determined by the first \overline{CAS} (\overline{CASL} or \overline{CASH}) to transition LOW and by the last to transition back HIGH. Use of only one of the two results in a BYTE WRITE cycle. \overline{CASL} transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) and \overline{CASH} transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16). BYTE READ cycles are achieved through \overline{CASL} or \overline{CASH} in the same manner during READ cycles for the MT4LC16257(S).

FUNCTIONAL BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 18 address bits during READ or WRITE cycles. These are entered 9 bits (A0-A8) at a time. \overline{RAS} is used to latch the first 9 bits and \overline{CAS} the latter 9 bits.

The $\overline{\text{CAS}}$ control also determines whether the cycle will be a refresh cycle ($\overline{\text{RAS}}$ ONLY) or an active cycle (READ, WRITE or READ WRITE) once $\overline{\text{RAS}}$ goes LOW.

The CASL and CASH inputs internally generate a CAS signal functioning in an identical manner to the single CAS input on the other 256K x 16 DRAMs. The key difference is each CAS controls its corresponding DQ tristate logic (in conjunction with OE and WE). CASL controls DQ1 through DQ8 and CASH controls DQ9 through DQ16.

The CAS function is determined by the first CAS (CASL or CASH) to transition LOW and the last one to transition back HIGH. The two CAS controls provide BYTE READ and BYTE WRITE cycle capabilities.

A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. Taking WE LOW will initiate a WRITE cycle, selecting DQ1 through DQ16. If WE goes LOW prior to CAS going LOW, the output pin(s) remain open (High- Z) until the next CAS cycle. If WE goes LOW after CAS goes LOW and data reaches the output pins, data-

out (Q) is activated and retains the selected cell data as long as \overline{CAS} and \overline{OE} remain LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O and pin direction is controlled by OE.

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined (A0-A8) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobed-in by CAS. CAS may be toggled by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the \overline{RAS} high time. Memory cell data is retained in its correct state by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR, or HIDDEN) so that all 512 combinations of \overline{RAS} addresses (A0-A8) are executed at least every 8ms, regardless of sequence. The CBR REFRESH cycle will also invoke the refresh counter and controller for row-address control.

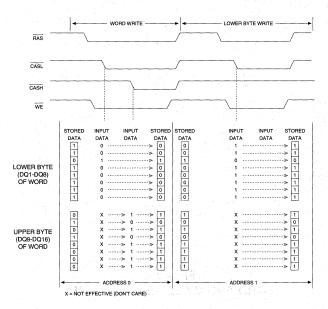


Figure 1
WORD AND BYTE WRITE EXAMPLE

BYTE ACCESS CYCLE

The BYTE WRITE mode is determined by the use of CASL and CASH. Enabling CASL will select a lower BYTE WRITE cycle (DQ1-DQ8) while enabling CASH will select an upper BYTE WRITE cycle (DQ9-DQ16). Enabling both CASL and CASH selects a WORD WRITE cycle.

The MT4LC16257(S) can be viewed as two 256K x 8 DRAMS which have common input controls, with the exception of the CAS inputs. Figure 1 illustrates the MT4LC16257(S) BYTE WRITE and WORD WRITE cycles.

The MT4LC16257(S) also has BYTE READ and WORD READ cycles, since it uses two $\overline{\text{CAS}}$ inputs to control its byte accesses. Figure 2 illustrates the MT4LC16257(S) BYTE READ and WORD READ cycles.

REFRESH

An optional SELF REFRESH mode is also available. The "S" version allows the user the choice of a fully static low-

power data retention mode or a dynamic refresh mode at the extended refresh period.

The optional SELF REFRESH feature is initiated by performing a CBR REFRESH cycle and holding RAS LOW for the specified ¹RASS. Additionally, the "S" version allows for an extended refresh rate of 125µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation or during a standby mode.

The SELF REFRESH mode is terminated by driving RAS HIGH for a minimum time of tRPS (≈tRC). This delay allows for the completion of any internal refresh cycles that may be in process at the time of the RAS LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes RAS ONLY or burst refresh sequence, all rows must be refreshed within 300µs prior to the resumption of normal operation.

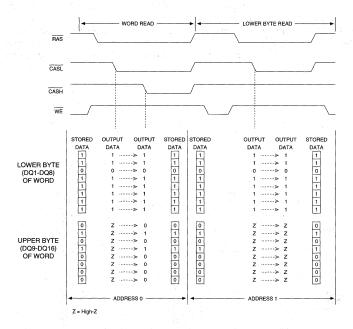


Figure 2
WORD AND BYTE READ EXAMPLE

TRUTH TABLE

						,	ADDR	ESSES		
FUNCTION	UNCTION		CASL	CASH	WE	0E	^t R	t _C	DQs	NOTES
Standby		Н	H→X	H→X	Х	X	X	X	High-Z	
READ: WORD		L	L	AL /	Н	L	ROW	COL	Data-Out	
READ: LOWER	RBYTE	L	L	Н	Н	L	ROW	COL	Lower Byte, Data-Out Upper Byte, High-Z	
READ: UPPER	BYTE	L	Н	L	Н	L	ROW	COL	Lower Byte, High-Z Upper Byte, Data-Out	
WRITE: WORD	-	L	L	L	L	X	ROW	COL	Data-In	
WRITE: LOWE BYTE (EARLY		L	L	Н	L	Х	ROW	COL	Lower Byte, Data-In Upper Byte, High-Z	
WRITE: UPPE BYTE (EARLY		L	Н	L	L	Х	ROW	COL	Lower Byte, High-Z Upper Byte, Data-In	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
READ WRITE		L	L	L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2
PAGE-MODE	1st Cycle	L	H→L	H→L	Н	L	ROW	COL	Data-Out	2
READ	2nd Cycle	L	H→L	H→L	Н	L	n/a	COL	Data-Out	2
PAGE-MODE	1st Cycle	L	H→L	H→L	L	Х	ROW	COL	Data-In	1
WRITE	2nd Cycle	L	H→L	H→L	L	Х	n/a	COL	Data-In	1
PAGE-MODE	1st Cycle	L	H→L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2
READ-WRITE	2nd Cycle	L	H→L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	1, 2
HIDDEN	READ	L→H→L	L	L	Н	L	ROW	COL	Data-Out	2
REFRESH	WRITE	L→H→L	L	L	L	Х	ROW	COL	Data-In	1, 3
RAS-ONLY REFRESH		L	Н	Н	Х	Х	ROW	n/a	High-Z	
CBR REFRESI	1	H→L	L	L	Х	Х	Х	Х	High-Z	4
	SELF REFRESH (MT4C16257 S only)		L	Х	Х	Х	Х	Х	High-Z	

NOTE:

- 1. These WRITE cycles may also be BYTE WRITE cycles (either CASL or CASH active).
- 2. These READ cycles may also be BYTE READ cycles (either CASL or CASH active).
- 3. EARLY WRITE only.
- 4. At least one of the two CAS signals must be active (CASL or CASH).

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	1V to +4.6V
Operating Temperature, T _A (ambient)	
Storage Temperature (plastic)	
Power Dissipation	
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) (0°C \leq T_A \leq 70°C; Vcc = +3.3V \pm 0.3V**)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc**	3.0	3.6	٧.	
Input High (Logic 1) Voltage, all inputs	ViH	2.0	Vcc+1	V	
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le V_{CC}$ (All other pins not under test = $0V$)	. II	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vout ≤ 3.6V)	loz	-10	10	μА	
OUTPUT LEVELS Output High Voltage (Iout = -2mA)	Vон	2.4		٧	
Output Low Voltage (lout = 2mA)	V OL		0.4	V	

^{**60}ns specifications are limited to a Vcc range of ± 0.15 V.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V^{**}$) MAX -6** PARAMETER/CONDITION SYMBOL -7 UNITS -8 NOTES STANDBY CURRENT: (TTL) ICC1 1 1 1 mΑ $(\overline{RAS} = \overline{CAS} = V_{IH})$ STANDBY CURRENT: (CMOS) 500 500 500 25 ICC2 μA $\overline{(RAS)} = \overline{CAS} = Vcc - 0.2V$ Icc2 100 100 100 μΑ 25 (S only) OPERATING CURRENT: Random READ/WRITE Average power supply current Іссз 120 110 100 mΑ 3, 4, 40 (RAS, CAS, Address Cycling: ^tRC = ^tRC [MIN]) OPERATING CURRENT: FAST PAGE MODE Average power supply current ICC4 70 60 50 3, 4, 40 mΑ (RAS = VIL, CAS, Address Cycling: $^{t}PC = ^{t}PC [MIN]; ^{t}CP, ^{t}ASC = 10ns)$ REFRESH CURRENT: RAS ONLY Average power supply current ICC5 120 110 100 3 mΑ $(\overline{RAS} \text{ Cycling}, \overline{CAS} = VIH: {}^{t}RC = {}^{t}RC [MIN])$ REFRESH CURRENT: CBR 110 100 Average power supply current Icc6 120 mA 3, 5 (RAS, CAS, Address Cycling: tRC = tRC [MIN]) REFRESH CURRENT: Extended (S version only) Average power supply current, $\overline{CAS} = 0.2V$ or CBR cycling; μΑ lcc₇ 150 150 150 3, 5 ^tRAS = ^tRAS (MIN); WE, A0-A8 and DiN = Vcc-0.2V or 0.2V (S only) (DIN may be left open) REFRESH CURRENT: SELF (S version only) Average power supply current, CBR cycling with ^tRAS ≥ ^tRASS (MIN) 150 150 μΑ Iccs 150 5, 41 and CAS held LOW; WE = Vcc-0.2V; A0-A8 and (S only) DIN = Vcc-0.2V or 0.2V (DIN may be left open)

^{**60}ns specifications are limited to a Vcc range of ±0.15V.

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A8	C _{I1}	5	рF	2
Input Capacitance: RAS, CASL, CASH, WE, OE	C _{l2}	7	рF	2
Input/Output Capacitance: DQ (SOJ, TSOP)	Сю	7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc = $+3.3V \pm 0.3V^*$)

AC CHARACTERISTICS		-	6*		-7	100	-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30		35	1.1.1	40	ns	
Column-address hold time (referenced to RAS)	^t AR	50		55		60		ns	
Column-address setup time	tASC	0		0		0		ns	29
Row-address setup time	tASR	0		0		0		ns	
Column-address to WE delay time	tAWD	55		60		65		ns	21
Access time from CAS	^t CAC		15		20		20	ns	15, 31
Column-address hold time	^t CAH	10		15		15		ns	29
CAS pulse width	tCAS	15	10,000	20	10,000	20	10,000	ns	37
CAS hold time entering SELF REFRESH	tCHD	10		10		10		ns	41
CAS hold time (CBR REFRESH)	tCHR	10		10		10		ns	5, 30
Last CAS going LOW to first CAS returning HIGH	tCLCH	10		10		10		ns	32
CAS to output in Low-Z	^t CLZ	3		3		3	100	ns	31
CAS precharge time	^t CP	10		10		10		ns	16, 34
Access time from CAS precharge	^t CPA		35		40		45	ns	31
CAS to RAS precharge time	^t CRP	8		10		10		ns	30
CAS hold time	^t CSH	60		70		80		ns	30
CAS setup time (CBR REFRESH)	tCSR	10		10		10		ns	5, 29
CAS to WE delay time	tCWD	40		45		45		ns	21, 29
Write command to CAS lead time	tCWL	15		20		20		ns	26, 30
Data-in hold time	tDH .	10		15		15		ns	22, 31
Data-in hold time (referenced to RAS)	^t DHR	45		55	* .	60		ns	
Data-in setup time	tDS	0		0		0		ns	22, 31
Output disable time	tOD	3	15	3	15	3	15	ns	28, 39
Output Enable time	^t OE		15		20		20	ns	31
OE hold time from WE during READ-MODIFY-WRITE cycle	†OEH	15		20		20		ns	27
Output buffer turn-off delay	^t OFF	3	15	3	15	3	15	ns	20, 28, 31
OE setup prior to RAS during HIDDEN REFRESH cycle	tORD	0		0		0		ns	

^{*60}ns specifications are limited to a Vcc range of ± 0.15 V.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

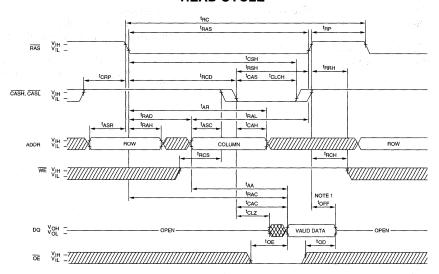
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +3.3V \pm 0.3V^*$)

AC CHARACTERISTICS			6*	-7			-8		Alexandrian
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		45		ns	33
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	85		95		100		ns	33
Access time from RAS	^t RAC		60		70	- 1 8 - 1.3	80	ns	14
RAS to column- address delay time	^t RAD	15	30	15	35	15	40	ns	18
Row-address hold time	^t RAH	10		10		10		ns	
Column-address to RAS lead time	^t RAL	30		35	n de la gradia de la composición della composici	40		ns	
RAS pulse width	tRAS	60	10,000	70	10,000	80	10,000	ns	
RAS pulse width (PAGE MODE)	^t RASP	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width entering SELF REFRESH	^t RASS	100		100		100	And R	μѕ	41
Random READ or WRITE cycle time	tRC	110		130		150	1 1 1 1 7 1	ns	
RAS to CAS delay time	^t RCD	20	45	20	50	20	60	ns	17, 29
Read command hold time (referenced to CAS)	^t RCH	0		0	V H. Vist	0		ns	19, 26, 30
Read command setup time	tRCS	0		0		0		ns	26, 29
Refresh period (512 cycles) MT4LC16257 / MT4LC16257 S	^t REF		8/64		8/64		8/64	ms	
RAS precharge time	^t RP	40		50		60	1 100	ns	
RAS to CAS precharge time	tRPC	10		10		10		ns	
RAS precharge time exiting SELF REFRESH	tRPS	110		130		150		μs	41
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
RAS hold time	†RSH	15		20		20		ns	38
READ WRITE cycle time	tRWC	150		175		195	s services	ns	
RAS to WE delay time	^t RWD	85		95	Garage All	105		ns	21
Write command to RAS lead time	^t RWL	15		20		20		ns	26
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	
Write command hold time	tWCH.	10		10		10		ns	26, 38
Write command hold time (referenced to RAS)	^t WCR	45		55		60		ns	26
Write command setup time	tWCS	0		0		0		ns	21, 26, 29
Write command pulse width	tWP	10		10		10		ns	26

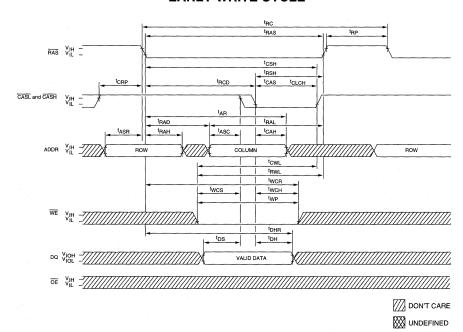
^{*60}ns specifications are limited to a Vcc range of ± 0.15 V.

NOTES

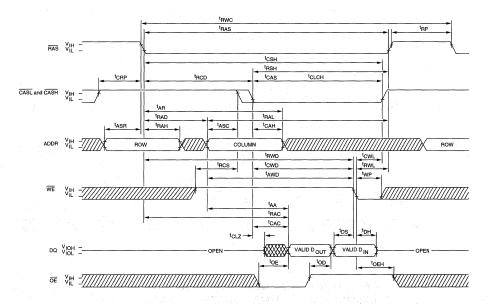
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = +3.3V; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- AC characteristics assume ^tT = 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- Measured with a load equivalent to one TTL gates and 50pF, Vol = 0.80 and Voh = 2.0V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.

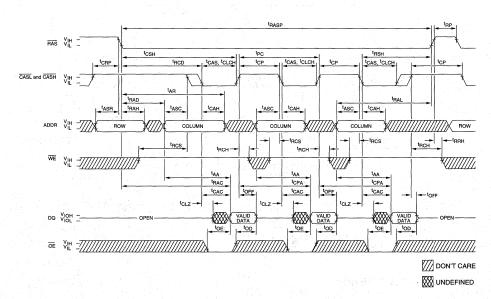

MT4LC16257(S) W04.pm5 - Rev. 2/95

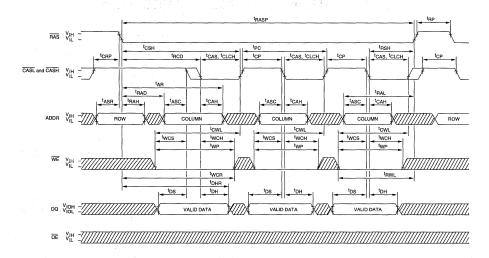
- 20. tOFF (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to Voh or Vol.. The 3ns minimum is a parameter guaranteed by design.
- 21. [†]WCS, [†]RWD, [†]AWD and [†]CWD are restrictive operating parameters in LATE WRITE and READ-MODIFY-WRITE cycles only. If [†]WCS ≥ [†]WCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If [†]RWD ≥ [†]RWD (MIN), [†]AWD ≥ [†]AWD (MIN) and [†]CWD ≥ [†]CWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of Q (at access time and until CAS or OE goes back to V_{IH}) is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle.
- 22. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, Q goes open. If OE is tied permanently LOW, a LATE WRITE or READ-MODIFY-WRITE operation is not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 25. All other inputs at Vcc -0.2V.
- 26. Write command is defined as WE going LOW on the MT4LC16257(S).
- 27. LATE WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously written data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 28. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS goes HIGH before OE, the DQs will open regardless of the state of the OE. If CAS stays LOW while OE is brought HIGH, the DQs will open. If OE is brought back LOW (CAS still LOW), the DQs will provide the previously read data.
- 29. The first CASx edge to transition LOW.
- 30. The last \overline{CASx} edge to transition HIGH.
- Output parameter (DQx) is referenced to corresponding CAS input, DQ1-DQ8 by CASL and DQ9-DQ16 by CASH.

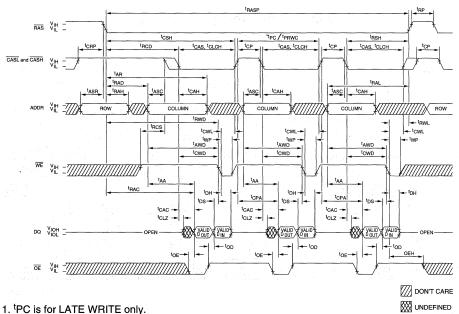

- NOTES (continued)
 32. Last falling CASx edge to first rising CASx edge.
- 33. Last rising CASx edge to next cycle's last rising CASx edge.
- 34. Last rising \overline{CASx} edge to first falling \overline{CASx} edge.
- 35. First DQs controlled by the first \overline{CASx} to go LOW.
- 36. Last DQs controlled by the last CASx to go HIGH.
- 37. Each CASx must meet minimum pulse width.

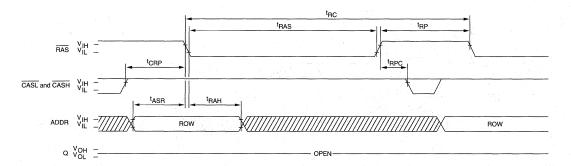
- 38. Last \overline{CASx} to go LOW.
- 39. All DQs controlled, regardless of CASL and CASH.
- 40. Column-address changed once while \overline{RAS} = VIL and \overline{CAS} = VIH.
- 41. If the DRAM controller uses a burst refresh, a burst refresh of all rows must be executed upon exiting SELF REFRESH.


READ CYCLE

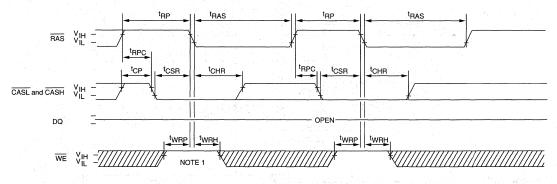

EARLY WRITE CYCLE


READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)


FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY WRITE CYCLE

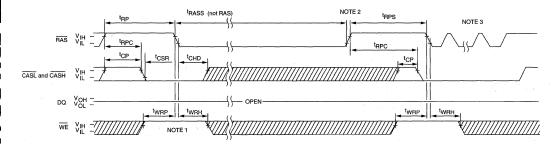
FAST-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)



RAS-ONLY REFRESH CYCLE (OE and WE = DON'T CARE)

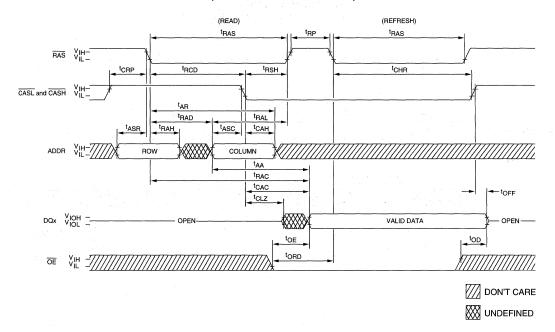
CBR REFRESH CYCLE

(Addresses and $\overline{OE} = DON'T CARE$)



DON'T CARE

₩ UNDEFINED


NOTE: 1. WRP and WRH are for system design reference only. The WE signal is actually a "don't care" at RAS time during a CBR REFRESH. However, WE should be held HIGH at RAS time during a CBR REFRESH to ensure compatibility with other DRAMs which require WE HIGH at RAS time during a CBR REFRESH.

SELF REFRESH CYCLE (Addresses and OE = DON'T CARE)

HIDDEN REFRESH CYCLE 24

 $(\overline{WE} = HIGH; \overline{OE} = LOW)$

NOTE:

- 1. tWRP and tWRH are for system design reference only. The WE signal is actually a "don't care" at RAS time during a CBR REFRESH. However, WE should be held HIGH at RAS time during a CBR REFRESH to ensure compatibility with other DRAMs which require WE HIGH at RAS time during a CBR REFRESH.
- 2. Once TRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.
- 3. Once ^tRPS is satisfied, a compete burst of all rows should be executed.

DRAM

1 MEG x 16 DRAM

5V, FAST PAGE MODE

FEATURES

OPTIONS

- JEDEC- and industry-standard x16 timing, functions, pinouts and packages
- High-performance CMOS silicon-gate process
- Single $+5V \pm 10\%$ power supply
- All device pins are TTL-compatible
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN

MARKING

- BYTE WRITE and BYTE READ access cycles
- 1,024-cycle refresh (10 row-, 10 column-addresses)
- Low power, 1mW standby; 350mW active, typical

Timing 60ns access -6 70ns access -7 · Refresh Rate Standard 16ms period None Packages Plastic SOJ (400 mil) DI

Part Number Example: MT4C1M16C3DJ-7

KEY TIMING PARAMETERS

	1	T 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			T	T
SPEED	^t RC	^t RAC	^t PC	^t AA	^t CAC	^t RP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

GENERAL DESCRIPTION

The MT4C1M16C3 is a randomly accessed solid-state memory containing 16,777,216 bits organized in a x16 configuration. The MT4C1M16C3 has both BYTE WRITE and WORD WRITE access cycles via two CAS pins (CASL and CASH). These function in an identical manner to a single CAS of other DRAMs in that either CASL or CASH will generate an internal CAS.

The MT4C1M16C3 CAS function and timing are determined by the first CAS (CASL or CASH) to transition LOW and the last CAS to transition back HIGH. Use of only one of the two results in a BYTE access cycle. CASL transitioning LOW selects an access cycle for the lower byte (DQ1-DQ8) and CASH transitioning LOW selects an access cycle for the upper byte (DQ9-DQ16).

PIN ASSIGNMENT (Top View)

42-Pin SOJ (DA-8)

Vcc	Q 1	42	j	Vss
DQ1	□ 2	41]	DQ16
DQ2	□ 3	40]	DQ15
DQ3	□ 4	39]	DQ14
DQ4	□ 5	38	١,	DQ13
Vcc	□ 6	37	<u>ו</u>	Vss
DQ5	q 7	36]	DQ12
DQ6	₫ 8	35],	DQ11
DQ7	□ 9	34		DQ10
DQ8	□ 10	33]	DQ9
NC	II 11	32	j	NC
NC	□ 12	31]	CASL
WE	□ 13	30]	CASH
RAS	□ 14	29]	OE
NC	[15	28	3	A9
NC	□ 16	27	ב	A8 .
A0	[17	26]	A7
A1	□ 18	25		A6
A2	□ 19	24]	A5
A3	□ 20	23	J	A4
Vcc	□ 21	22)	Vss

Each bit is uniquely addressed through the 20 address bits during READ or WRITE cycles. These are entered 10 bits (A0-A9) at a time. RAS is used to latch the first 10 bits and CAS the latter 10 bits. The CAS function is determined by the first CAS (CASL or CASH) to transition LOW and the last one to transition back HIGH. The CAS function also determines whether the cycle will be a refresh cycle (RAS ONLY) or an active cycle (READ, WRITE or READ WRITE) once RAS goes LOW.

The CASL and CASH inputs internally generate a CAS signal functioning in an identical manner to the single CAS input of other DRAMs. The key difference is each CAS input (CASL and CASH) controls its corresponding DQ tristate logic (in conjunction with \overline{OE} and \overline{WE}). \overline{CASL} controls DQ1 through DQ8 and CASH controls DQ9 through DQ16. The two CAS controls give the MT4C1M16C3 both BYTE READ and BYTE WRITE cycle capabilities.

A logic HIGH on $\overline{\text{WE}}$ dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{\text{WE}}$ or $\overline{\text{CAS}}$, whichever occurs last. Taking WE LOW will initiate a WRITE cycle, selecting DQ1 through DQ16. If WE goes LOW prior to CAS going LOW, the output pin(s) remain

GENERAL DESCRIPTION (continued)

open (High- Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after \overline{CAS} goes LOW and data reaches the output pins, data-out (Q) is activated and retains the selected cell data as long as \overline{CAS} and \overline{OE} remain LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O. Pin direction is controlled by \overline{OE} and \overline{WE}

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined (A0-A9) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobed-

in by $\overline{\text{CAS}}$. $\overline{\text{CAS}}$ may be toggled-in by holding $\overline{\text{RAS}}$ LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning $\overline{\text{RAS}}$ HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR, or HIDDEN) so that all 1,024 combinations of RAS addresses (A0-A9) are executed at least every 16ms, regardless of sequence. The CBR REFRESH cycle will also invoke the refresh counter and controller for row-address control.

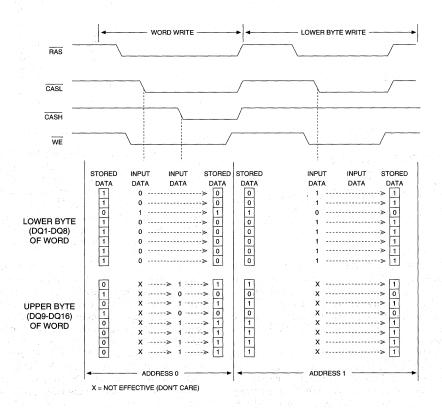


Figure 1
WORD AND BYTE WRITE EXAMPLE

E≪

BYTE ACCESS CYCLE

The BYTE WRITEs and BYTE READs are determined by the use of CASL and CASH. Enabling CASL will select a lower BYTE access (DQ1-DQ8). Enabling CASH will select an upper BYTE access (DQ9-DQ16). Enabling both CASL and CASH selects a WORD WRITE cycle.

The MT4C1M16C3 may be viewed as two 1 Meg x 8 DRAMs that have common input controls, with the exception of the CAS inputs. Figure 1 illustrates the BYTE WRITE and WORD WRITE cycles. Figure 2 illustrates BYTE READ and WORD READ cycles.

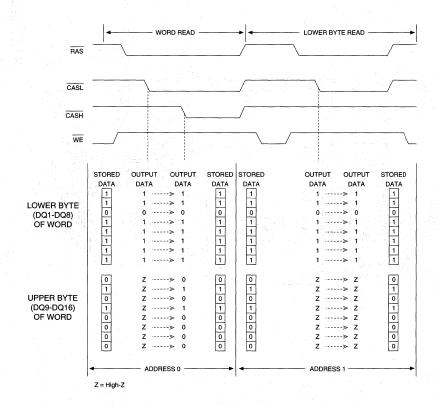
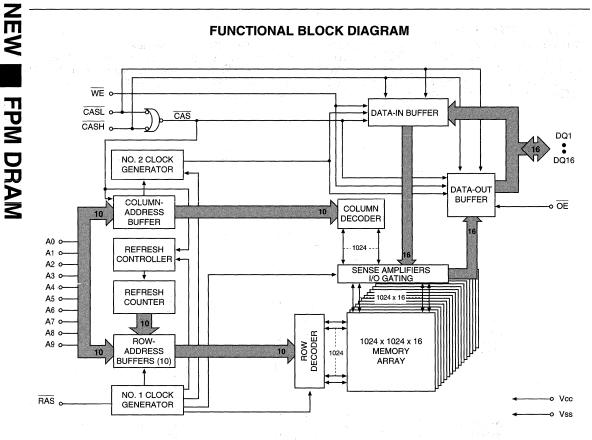



Figure 2 WORD AND BYTE READ EXAMPLE

FUNCTIONAL BLOCK DIAGRAM

MT4C1M16C3 1 MEG x 16 DRAM

TRUTH TABLE

				1142			ADDR	ESSES	substitution and and	
FUNCTION		RAS	CASL	CASH	WE	0E	^t R	tC	DQs	NOTES
Standby	3 to 2018	Н	H→X	H→X	Х	Х	Х	Х	High-Z	
READ: WORD		· L	L	L	Н	L	ROW	COL	Data-Out	
READ: LOWER	RBYTE	L	L	Н	Н	L	ROW	COL	Lower Byte, Data-Out Upper Byte, High-Z	
READ: UPPER	BYTE	L	Н	L	Н	L	ROW	COL	Lower Byte, High-Z Upper Byte, Data-Out	
WRITE: WORD (EARLY WRITE	5	L	L	L	L	Х	ROW	COL	Data-In	
WRITE: LOWE BYTE (EARLY)		L	L	Н	Ľ	Х	ROW	COL	Lower Byte, Data-In Upper Byte, High-Z	
WRITE: UPPE BYTE (EARLY)		L	Н	L	L C	Х	ROW	COL	Lower Byte, High-Z Upper Byte, Data-In	
READ WRITE		L	L	L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2
PAGE-MODE	1st Cycle	L	H→L	H→L	Н	L	ROW	COL	Data-Out	2
READ	2nd Cycle	L	H→L	H→L	Н	L	n/a	COL	Data-Out	2
PAGE-MODE	1st Cycle	L	H→L	H→L	L	Х	ROW	COL	Data-In	1
WRITE	2nd Cycle	L	H→L	H→L	L	Х	n/a	COL	Data-In	1
PAGE-MODE	1st Cycle	L	H→L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2
READ-WRITE	2nd Cycle	L	H→L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	1, 2
HIDDEN	READ	L→H→L	L	L	Н	L	ROW	COL	Data-Out	2
REFRESH	WRITE	L→H→L	L	L	L	Х	ROW	COL	Data-In	1, 3
RAS-ONLY RE	FRESH	L	Н	Н	Х	Х	ROW	n/a	High-Z	
CBR REFRESI	+	H→L	L	L	Н	Х	Х	Х	High-Z	4

NOTE:

- 1. These WRITE cycles may also be BYTE WRITE cycles (either CASL or CASH active).
- 2. These READ cycles may also be BYTE READ cycles (either CASL or CASH active).
- 3. EARLY WRITE only.
- 4. Only one CAS must be active (CASL or CASH).

MT4C1M16C3 1 MEG x 16 DRAM

ABSOLUTE MAXIMUM RATINGS*

Voltage on a Pin Relative to Vss1V to	7.0V
Operating Temperature, TA (ambient) 0°C to +	70°C
Storage Temperature (plastic)55°C to +1	50°C
Power Dissipation	. 1W
Short Circuit Output Current 5	0mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +5.0V \pm 10\%$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	
Input High (Logic 1) Voltage, all inputs (including NC pins)	VIH	2.0	Vcc + 1V	V	
Input Low (Logic 0) Voltage, all inputs (including NC pins)	VIL	-1.0	8.0	V	1
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le V_{CC}$ (All other pins not under test = $0V$)		li '	-2	2	μΑ
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vout > 5V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (Iout = -5.0mA)		V он	2.4		V
Output Low Voltage (lout = 4.2mA)		Vol		0.4	V

		M	AX		
PARAMETER/CONDITION	SYMBOL	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	Icc1	2	2	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Vcc -0.2V)	Icc2	4. 1	1	mA	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS Address Cycling: ^t RC = ^t RC [MIN])	Іссз	180	165	mA	3, 4, 26
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN]; ^t CP, ^t ASC = 10ns)	Icc4	100	90	mA	3, 4, 26
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS=VIH: ^t RC = ^t RC [MIN])	lcc5	160	145	mA	3
REFRESH CURRENT: CBR Average power supply current (RAS, CAS Address Cycling: ^t RC = ^t RC [MIN])	Icc6	150	140	mA	3, 5

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: Addresses	Cıı	5	pF	2
Input Capacitance: RAS, CASL, CASH, WE, OE	Cı2	7	pF	2
Input/Output Capacitance: DQ	Сю	7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5.0V \pm 10\%$)

AC CHARACTERISTICS	100		-6		-7	F 80 V 19	1.00
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30	5.65	35	ns	and the
Column-address hold time (referenced to RAS)	tAR	50		55		ns	1.74
Column-address setup time	tASC	0		0		ns	31
Row-address setup time	^t ASR	0		0	4	ns	
Column-address to WE delay time	tAWD	55	1.44	60		ns	21
Access time from CAS	^t CAC		15		20	ns	15, 33
Column-address hold time	^t CAH	10		15		ns	31
CAS pulse width	†CAS	15	10,000	20	10,000	ns	39
CAS hold time (CBR REFRESH)	^t CHR	15		15	1 2 7 1 2 2	ns	5, 32
Last CAS going LOW to first CAS to return HIGH	†CLCH	10		10		ns	34
CAS to output in Low-Z	^t CLZ	3		3		ns	33, 30
CAS precharge time	^t CP	10		10		ns	16, 36
Access time from CAS precharge	tCPA		35		40	ns	33
CAS to RAS precharge time	^t CRP	5		5		ns	32
CAS hold time	tCSH	60		70	1811	ns	32
CAS setup time (CBR REFRESH)	tCSR	5		5		ns	5, 31
CAS to WE delay time	tCWD	40		45	V ZODE III	ns	21, 31
Write command to CAS lead time	tCWL	15		20		ns	26, 32
Data-in hold time	^t DH	10		15		ns	22, 33
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	^t DS	0		0		ns	22, 33
Output disable	^t OD	3	15	3	15	ns	29, 30, 41
Output Enable	^t OE		15		15	ns	33
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	15	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15		ns	28
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	20, 30, 33
OE setup prior to RAS during HIDDEN REFRESH cycle	[†] ORD	0		0		ns	

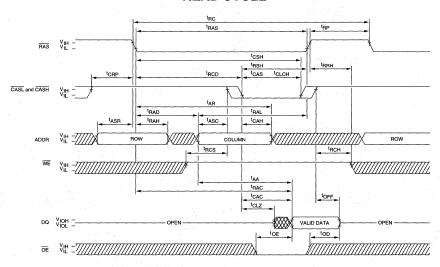
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5.0V \pm 10\%$)

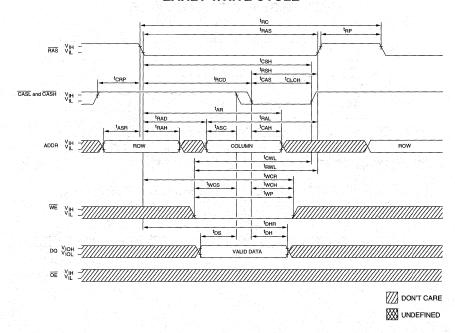
AC CHARACTERISTICS		-6			-7	1	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	35
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	85	Ta t	95	.0	ns	35
Access time from RAS	†RAC		60		70	ns	14
RAS to column-address delay time	†RAD	15	30	15	35	ns	18
Row-address hold time	^t RAH	10		10		ns	
Column-address to RAS lead time	^t RAL	30		35		ns	
RAS pulse width	†RAS	60	10,000	70	10,000	ns	12.5
RAS pulse width (FAST PAGE MODE)	tRASP	60	100,000	70	100,000	ns	
Random READ or WRITE cycle time	tRC	110		130		ns	
RAS to CAS delay time	tRCD	20	45	20	50	ns	17, 31
Read command hold time (referenced to CAS)	^t RCH	0		0		ns	19, 26, 32
Read command setup time	tRCS	0		0		ns	26, 31
Refresh period (1,024 cycles)	tREF		16		16	ms	28
RAS precharge time	t _{RP}	40		50		ns	
RAS to CAS precharge time	^t RPC	0		0 9		ns	
Read command hold time (referenced to RAS)	tRRH .	0		0		ns	19
RAS hold time	tRSH	15	!	20		ns	40
READ WRITE cycle time	tRWC	150		180		ns	1
RAS to WE delay time	tRWD	85		95		ns	21
Write command to RAS lead time	^t RWL	15		20		ns	26
Transition time (rise or fall)	t _T	3	50	3	50	ns	1
Write command hold time	tWCH	10		15		ns	26, 40
Write command hold time (referenced to RAS)	tWCR	45		55	yn er	ns	26
WE command setup time	tWCS	. 0		0		ns	21, 26, 31
Write command pulse width	tWP	10	,	15		ns	
WE hold time (CBR REFRESH)	tWRH	10		10	100	ns	
WE setup time (CBR REFRESH)	tWRP	10		10		ns	

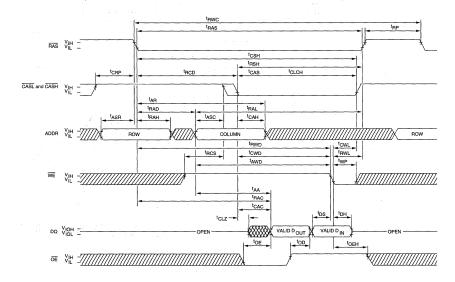
NOTES

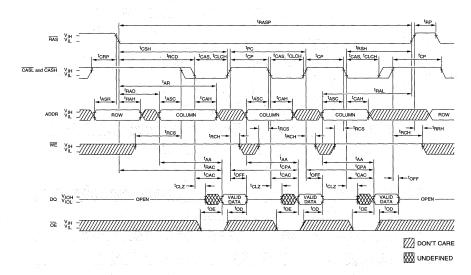
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = +5.0V; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ($0^{\circ}C \le T_A \le 70^{\circ}C$) is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- 9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If CAS = VIL, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gate, 100pF and VOL = 0.8V and VOH = 2.0V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD limit ensures that ^tRCD (MAX) can be met. tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.


- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. tOFF (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to Voh or Vol.
- 21. tWCS, tRWD, tAWD and tCWD are restrictive operating parameters in LATE WRITE and READ-MODIFY-WRITE cycles only. If ${}^{t}WCS \ge {}^{t}WCS$ (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ${}^{t}RWD \ge {}^{t}RWD$ (MIN), ${}^{t}AWD \ge {}^{t}AWD$ (MIN) and ${}^{t}CWD \ge {}^{t}CWD$ (MIN), the cycle is a READ WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of Q (at access time and until CAS or OE goes back to VIH) is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle.
- 22. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. During a READ cycle, if \overline{OE} is LOW then taken HIGH before CAS goes HIGH, O goes open. If OE is tied permanently LOW, LATE WRITE and READ-MODIFY-WRITE operations are not permissible and should not be attempted.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$ and $\overline{OE} = HIGH$.
- 25. All other inputs at 0.2V or Vcc -0.2V.
- 26. Column-address changed once each cycle.
- 27. When exiting the SELF REFRESH mode, a complete set of row refreshes should be executed in order to ensure that the DRAM will be fully refreshed. Alternatively, distributed refreshes may be utilized, provided CBR REFRESH cycles are employed.
- 28. LATE WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS remains LOW and OE is taken back LOW after OEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 29. The DQs open during READ cycles once ^tOD or ^tOFF

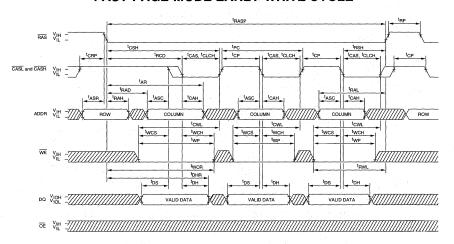
NOTES (continued)


- 30. The 3ns minimum is a parameter guaranteed by design.
- 31. The first \overline{CASx} edge to transition LOW.
- 32. The last \overline{CASx} edge to transition HIGH.
- Output parameter (DQx) is referenced to corresponding CAS input; DQ1-DQ8 by CASL and DQ9-DQ16 by CASH.
- 34. Last falling \overline{CASx} edge to first rising \overline{CASx} edge.
- 35. Last rising CASx edge to next cycle's last rising CASx edge.
- 36. Last rising CASx edge to first falling CASx edge.
- 37. First DQs controlled by the first CASx to go LOW.
- 38. Last DQs controlled by the last CASx to go HIGH.
- 39. Each CASx must meet minimum pulse width.
- 40. Last CASx to go LOW.
- 41. All DQs controlled, regardless CASL and CASH.

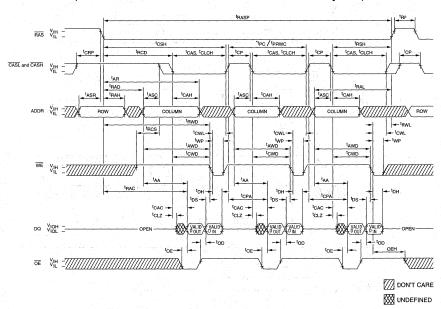

READ CYCLE


EARLY WRITE CYCLE

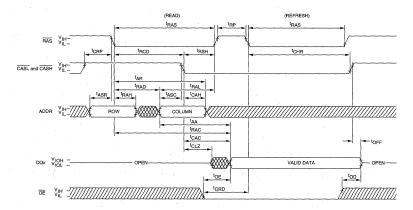
READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)



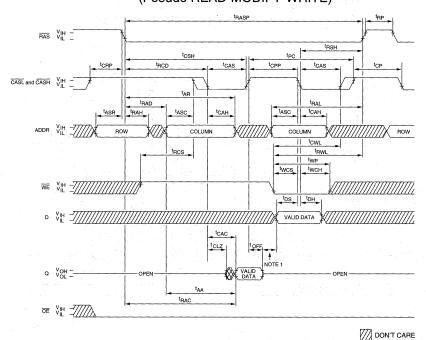
FAST-PAGE-MODE READ CYCLE



FAST-PAGE-MODE EARLY-WRITE CYCLE



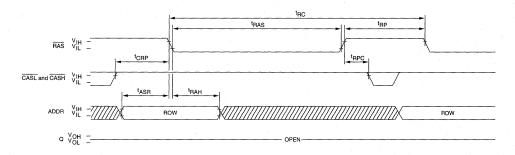
FAST-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)



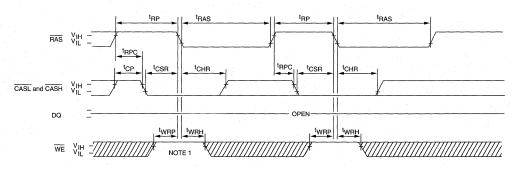
*NOTE: 1. ^tPC is for LATE WRITE only.

HIDDEN REFRESH CYCLE 24 (WE = HIGH; OE = LOW)

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)


UNDEFINED

NOTE: 1. Do not drive data prior to High-Z.


RAS-ONLY REFRESH CYCLE

 $(\overline{OE} \text{ and } \overline{WE} = DON'T CARE)$

CBR REFRESH CYCLE

(Addresses and OE = DON'T CARE)

DON'T CARE

W UNDEFINED

NOTE:

1. WRP and WRH are for system design reference only. The WE signal is actually a "don't care" at RAS time during a CBR REFRESH. However, WE should be held HIGH at RAS time during a CBR REFRESH to ensure compatibility with other DRAMs which require WE HIGH at RAS time during a CBR REFRESH.

DRAM

1 MEG x 16 DRAM

3.3V, FAST PAGE MODE OPTIONAL SELF REFRESH

FEATURES

- JEDEC- and industry-standard x16 timing, functions, pinouts and packages
- High-performance CMOS silicon-gate process
- Single $+3.3V \pm 0.3V$ power supply
- All device pins are TTL-compatible
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN and SELF
- BYTE WRITE and BYTE READ access cycles
- 1,024-cycle refresh (10 row-, 10 column-addresses)
- Low power, 0.3mW standby; 250mW active, typical
- Optional SELF REFRESH mode, with Extended Refresh rate (8x)
- 5V tolerant I/O (5.5V maximum VIH level)

OPTIONS MARKING Timing 60ns access -6 70ns access -7 Refresh Rate Standard 16ms period None

S

SELF REFRESH and 128ms period Packages Plastic TSOP (400 mil) TG

Part Number Example: MT4LC1M16C3TG-7 S

KEY TIMING PARAMETERS

SPEED	tRC	tRAC	^t PC	†AA	tCAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

GENERAL DESCRIPTION

The MT4LC1M16C3(S) is a randomly accessed solid-state memory containing 16,777,216 bits organized in a x16 configuration. The MT4LC1M16C3(S) has both BYTE WRITE and WORD WRITE access cycles via two CAS pins (CASL and CASH). These function in an identical manner to a single CAS of other DRAMs in that either CASL or CASH will generate an internal CAS.

The MT4LC1M16C3(S) CAS function and timing are determined by the first CAS (CASL or CASH) to transition LOW and the last CAS to transition back HIGH. Use of only

PIN ASSIGNMENT (Top View) 44/50-Pin TSOP (DB-5) | Vss | DQ16 | DQ15 | DQ14 | DQ13 | DQ12 | DQ11 | DQ10 | DQ9 | DQ9 | DQ5 50 49 48 47 46 45 44 43 42 41 40 H NC CASL CASH H A9 A8 A7 A6 A5 A4 Vss пининини 36 35 34 33 32 31 30 29 28 27 NC NC A0 A1 A2

one of the two results in a BYTE access cycle. CASL transitioning LOW selects an access cycle for the lower byte (DQ1-DQ8) and CASH transitioning LOW selects an access cycle for the upper byte (DQ9-DQ16).

Each bit is uniquely addressed through the 20 address bits during READ or WRITE cycles. These are entered 10 bits (A0-A9) at a time. \overline{RAS} is used to latch the first 10 bits and CAS the latter 10 bits. The CAS function is determined by the first CAS (CASL or CASH) to transition LOW and the last one to transition back HIGH. The CAS function also determines whether the cycle will be a refresh cycle (RAS ONLY) or an active cycle (READ, WRITE or READ WRITE) once \overline{RAS} goes LOW.

The CASL and CASH inputs internally generate a CAS signal functioning in an identical manner to the single CAS input of other DRAMs. The key difference is each CAS input (CASL and CASH) controls its corresponding DQ tristate logic (in conjunction with \overline{OE} and \overline{WE}). \overline{CASL} controls DQ1 through DQ8 and CASH controls DQ9 through DQ16. The two CAS controls give the MT4LC1M16C3(S) both BYTE READ and BYTE WRITE cycle capabilities.

GENERAL DESCRIPTION (continued)

A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. Taking \overline{WE} LOW will initiate a WRITE cycle, selecting DQ1 through DQ16. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High- Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after \overline{CAS} goes LOW and data reaches the output pins, data-out (Q) is activated and retains the selected cell data as long as \overline{CAS} and \overline{OE} remain LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O. Pin direction is controlled by $\overline{\text{OE}}$ and $\overline{\text{WE}}$.

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row-address-defined (A0-A9) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus execut-

ing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS refresh cycle (REAS ONLY, CBR, or HIDDEN) so that all 1,024 combinations of RAS addresses (A0-A9) are executed at least every 16ms (128ms on the S version), regardless of sequence. The CBR REFRESH cycle will also invoke the refresh counter and controller for row-address control.

BYTE ACCESS CYCLE

The BYTE WRITEs and BYTE READs are determined by the use of $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$. Enabling $\overline{\text{CASL}}$ will select a lower BYTE access (DQ1-DQ8). Enabling $\overline{\text{CASH}}$ will select an upper BYTE access (DQ9-DQ16). Enabling both $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$ selects a WORD WRITE cycle.

The MT4LC1M16C3 may be viewed as two 1 Meg x 8 DRAMs that have common input controls, with the exception of the CAS inputs. Figure 1 illustrates the BYTE WRITE

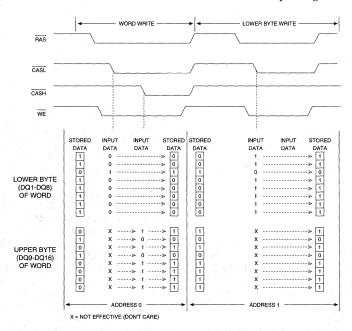


Figure 1
WORD AND BYTE WRITE EXAMPLE

BYTE ACCESS CYCLE (continued)

and WORD WRITE cycles. Figure 2 illustrates BYTE READ and WORD READ cycles.

REFRESH

Preserve correct memory cell data by maintaining power and executing a \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR, or HIDDEN) so that all 1,024 combinations of \overline{RAS} addresses are executed at least every 16ms, regardless of sequence. The CBR REFRESH cycle will invoke the refresh counter for automatic \overline{RAS} addressing.

An optional SELF REFRESH mode is also available on the MT4LC1M16C3 S. The "S" version allows the user the choice of a fully static low-power data retention mode, or a dynamic refresh mode at the extended refresh period of 128ms four times longer than the standard 16ms specification.

The optional SELF REFRESH feature is initiated by performing a CBR REFRESH cycle, and holding \overline{RAS} LOW

for the specified ^tRASS. Additionally, the "S" version allows for an extended refresh rate of 125µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation or during a standby or BATTERY BACKUP mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for a minimum time of ${}^{t}RPS$ (= ${}^{t}RC$). This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all 1,024 rows must be refreshed within 300µs prior to the resumption of normal operation.

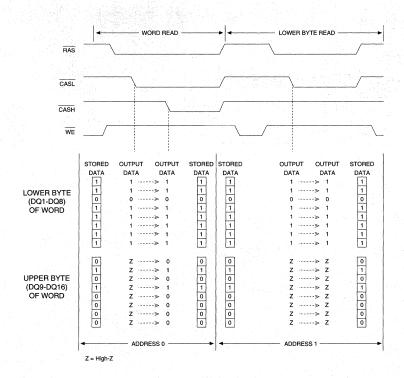
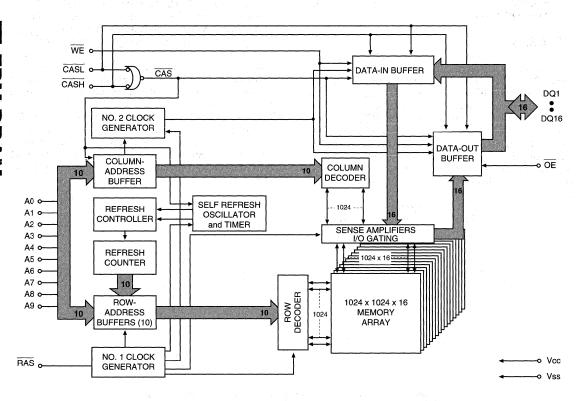



Figure 2
WORD AND BYTE READ EXAMPLE

FUNCTIONAL BLOCK DIAGRAM

IRUTH TABLE

			1				ADDR	ESSES		5/25/
FUNCTION		RAS	CASL	CASH	WE	ŌĒ	^t R	tC	DQs	NOTES
Standby		Н	H→X	H→X	Х	X	Х	Х	High-Z	
READ: WORD		L	Ľ	L	Н	L	ROW	COL	Data-Out	
READ: LOWER	RBYTE	L	L	Н	Н	L	ROW	COL	Lower Byte, Data-Out Upper Byte, High-Z	
READ: UPPER	BYTE	L	Н	L	Н	L	ROW	COL	Lower Byte, High-Z Upper Byte, Data-Out	
WRITE: WORE (EARLY WRITI		L	L	L	L	Х	ROW	COL	Data-In	
WRITE: LOWE BYTE (EARLY)		L	L ,	Н	L	Х	ROW	COL	Lower Byte, Data-In Upper Byte, High-Z	
WRITE: UPPE BYTE (EARLY)		E .	Ξ	L	L n	Х	ROW	COL	Lower Byte, High-Z Upper Byte, Data-In	
READ WRITE		L	L	L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2
PAGE-MODE	1st Cycle	L	H→L	H→L	Н	L	ROW	COL	Data-Out	2
READ	2nd Cycle	L	H→L	H→L	Н	L	n/a	COL	Data-Out	2
PAGE-MODE	1st Cycle	L,	H→L	H→L	L	X	ROW	COL	Data-In	1
WRITE	2nd Cycle	, L	H→L	H→L	L	Х	n/a	COL	Data-In	1
PAGE-MODE	1st Cycle	L	H→L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In	1, 2
READ-WRITE	2nd Cycle	L	H→L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In	1, 2
HIDDEN	READ	L→H→L	L	L	Н	L	ROW	COL	Data-Out	2
REFRESH	WRITE	L→H→L	L	L	L	Х	ROW	COL	Data-In	1, 3
RAS-ONLY RE	FRESH	L	Η	Н	Х	Χ	ROW	n/a	High-Z	
CBR REFRESH	+	H→L	L	L	Н	Х	Х	Х	High-Z	4
SELF REFRES	H	H→L	L	L	Н	X	X	Х	High-Z	4

NOTE:

- 1. These WRITE cycles may also be BYTE WRITE cycles (either $\overline{\text{CASL}}$ or $\overline{\text{CASH}}$ active).
- 2. These READ cycles may also be BYTE READ cycles (either CASL or CASH active).
- 3. EARLY WRITE only.
- 4. Only one CAS must be active (CASL or CASH).

ABSOLUTE MAXIMUM RATINGS*

 *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	3.0	3.6	V	
Input High (Logic 1) Voltage, all inputs (including NC pins)	Vін	2.0	5.5V	V	
Input Low (Logic 0) Voltage, all inputs (including NC pins)	VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le 5.5V$ (All other pins not under test = $0V$)	lı	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vout ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (lout = -2.0mA)	Vон	2.4		V	
Output Low Voltage (IouT = 2.0mA)	Vol		0.4	V	

MT4LC1M16C3(S) 1 MEG x 16 DRAM

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)		MAX				
PARAMETER/CONDITION	SYMBOL	-6	-7	UNITS	NOTES	
STANDBY CURRENT: (TTL) (RAS = CAS = Vih)	Icc1	2	2	mA		
STANDBY CURRENT: (CMOS) (RAS = CAS = Vcc -0.2V)	ICC2 ICC2 (S only)	500 150	500 150	μA μA	25	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS Address Cycling: \text{tRC} = \text{tRC} [MIN])	lccs	170	155	mA	3, 4, 26	
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = V _{IL} , CAS, Address Cycling: ¹ PC = ¹ PC [MIN]; ¹ CP, ¹ ASC = 10ns)	Icc4	100	90	mA	3, 4, 26	
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS=VIH: ¹RC = ¹RC [MIN])	lcc5	160	145	mA	3	
REFRESH CURRENT: CBR Average power supply current (RAS, CAS Address Cycling: ^t RC = ^t RC [MIN])	Icc6	150	140	mA	3, 5	
REFRESH CURRENT: Extended (S version only) Average power supply current during BBU REFRESH: CAS = 0.2V or CBR cycling; RAS = tRAS (MIN); WE = Vcc -0.2V; A0-A9, OE and DIN = Vcc - 0.2V or 0.2V (DIN may be left open); tRC = 125µs (1,024 rows at 125µs = 128ms)	Icc7 (S only)	300	300	μΑ	3, 5	
REFRESH CURRENT: SELF (S version only) Average power supply current during SELF REFRESH: CBR cycle with RAS ≥ ¹RASS (MIN) and CAS held LOW; WE = Vcc - 0.2V; A0-A9, OE and DIN = Vcc - 0.2V or 0.2V (DIN may be left open)	lccs (S only)	300	300	μА	5, 27	

CAPACITANCE

PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: Addresses	C _{I1}	5	pF	2
Input Capacitance: RAS, CASL, CASH, WE, OE	C ₁₂	7	pF	2
Input/Output Capacitance: DQ	Сю	7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS			-6	-7			
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30	447	35	ns	
Column-address hold time (referenced to RAS)	^t AR	50		55		ns	
Column-address setup time	†ASC	0		0		ns	31
Row-address setup time	^t ASR	0		0		ns	
Column-address to WE delay time	tAWD	55		60		ns	21
Access time from CAS	^t CAC		15	1.5	20	ns	15, 33
Column-address hold time	^t CAH	10		15		ns	31,
CAS pulse width	^t CAS	15	10,000	20	10,000	ns	39
CAS LOW to "don't care" during SELF REFRESH cycle	tCHD	15		15		ns	
CAS hold time (CBR REFRESH)	^t CHR	15		15		ns	5, 32
Last CAS going LOW to first CAS to return HIGH	^t CLCH	10		10		ns	34
CAS to output in Low-Z	tCLZ	3		3		ns	33, 30
CAS precharge time	tCP	10		10		ns	16, 36
Access time from CAS precharge	^t CPA		35		40	ns	33
CAS to RAS precharge time	tCRP	5		5		ns	32
CAS hold time	tCSH	60		70	Table 1	ns	32
CAS setup time (CBR REFRESH)	^t CSR	5		5		ns	5, 31
CAS to WE delay time	tCWD	40		45		ns	21, 31
Write command to CAS lead time	tCWL	15		20		ns	26, 32
Data-in hold time	tDH	10		15		ns	22, 33
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	tDS .	0		0		ns	22, 33
Output disable	tOD	3	15	3	15	ns	29, 30, 4
Output Enable	^t OE		15		15	ns	33
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	15		15		ns	28
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	20, 30, 33
OE setup prior to RAS during HIDDEN REFRESH cycle	tORD	0		0		ns	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

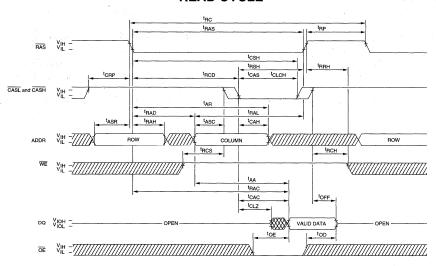
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS	5.5	-6		- -7			
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35	100	40	P. C. S. C.	ns	35
FAST-PAGE-MODE READ-WRITE cycle time	†PRWC	85		95		ns	35
Access time from RAS	^t RAC		60	te de la compa	70	ns	14
RAS to column-address delay time	†RAD	15	30	15	35	ns	18
Row-address hold time	^t RAH	10		10		ns	200
Column-address to RAS lead time	t _{RAL}	30		35		ns	
RAS pulse width	†RAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	tRASP	60	100,000	70	100,000	ns	197
RAS pulse width during SELF REFRESH cycle	tRASS	100		100		μs	27
Random READ or WRITE cycle time	^t RC	110		130		ns	1 1 1
RAS to CAS delay time	tRCD	20	45	20	50	ns	17, 3
Read command hold time (referenced to CAS)	^t RCH	0		0		ns	19, 32
Read command setup time	tRCS	0		0		ns	31
Refresh period (1,024 cycles)	tREF.		16		16	ms	28
Refresh period (1,024 cycles) S version	^t REF	100	128		128	ms	28
RAS precharge time	^t RP	40		50		ns	
RAS to CAS precharge time	tRPC	0		0		ns	
RAS precharge time during SELF REFRESH cycle	tRPS	110		130		ns	27
Read command hold time (referenced to RAS)	tRRH	0		0		ns	19
RAS hold time	^t RSH	15	4.44	20		ns	40
READ WRITE cycle time	^t RWC	150		180		ns	, Nec.
RAS to WE delay time	^t RWD	85	100	95	the first of	ns	21
Write command to RAS lead time	tRWL	15		20		ns	812
Transition time (rise or fall)	t _T	3	50	3	50	ns	Pile 187
Write command hold time	^t WCH	10	1000	15		ns	40
Write command hold time (referenced to RAS)	tWCR	45	1 47 44	55	dig.	ns	
WE command setup time	tWCS	0		0		ns	21, 3
Write command pulse width	tWP	10		15	721 34 (14)	ns	
WE hold time (CBR REFRESH)	tWRH	10	1 7/4	10		ns	Tegranda (
WE setup time (CBR REFRESH)	tWRP	10		10	1 2 170 1 1 0 1	ns	a Macini

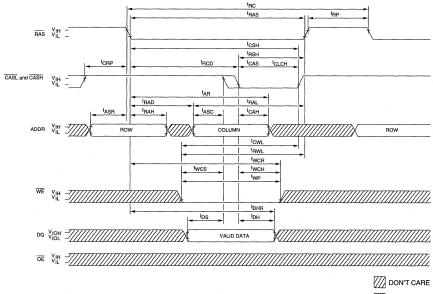
NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = +3.3V; f = 1 MHz.
- Icc is dependent on cycle rates.
- Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- AC characteristics assume ^tT = 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{\text{CAS}} = \text{VIH}$, data output is High-Z.
- 12. If $\overline{\text{CAS}}$ = V_{IL}, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gate, 100pF and Vol = 0.8V and Vol = 2.0V.
- 14. Assumes that ¹RCD < ¹RCD (MAX). If ¹RCD is greater than the maximum recommended value shown in this table, ¹RAC will increase by the amount that ¹RCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.

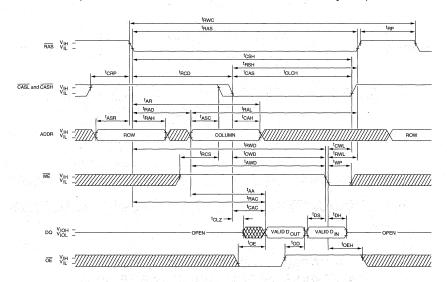
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. [†]OFF (MAX) defines the time at which the output achieves the open circuit condition; it is not a reference to VOH or VOL.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of Q (at access time and until CAS or OE goes back to ViH) is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle.
- These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 23. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, Q goes open. If OE is tied permanently LOW, LATE WRITE and READ-MODIFY-WRITE operations are not permissible and should not be attempted.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 25. All other inputs at 0.2V or Vcc -0.2V.
- 26. Column-address changed once each cycle.
- 27. When exiting the SELF REFRESH mode, a complete set of row refreshes should be executed in order to ensure that the DRAM will be fully refreshed. Alternatively, distributed refreshes may be utilized, provided CBR REFRESH cycles are employed.
- 28. LATE WRITE and READ-MODIFY-WRITE cycles must have both tOD and tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS remains LOW and OE is taken back LOW after tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- The DQs open during READ cycles once ^tOD or ^tOFF occur.

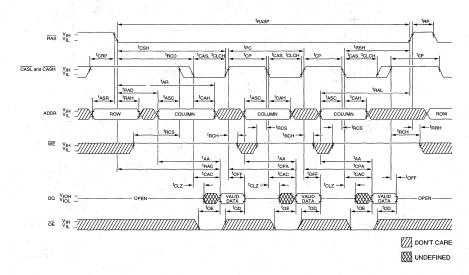


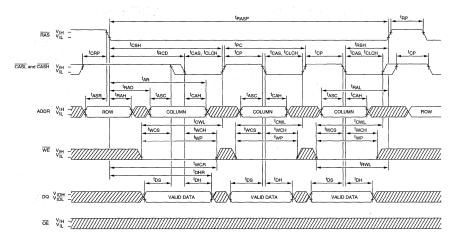
MT4LC1M16C3(S) 1 MEG x 16 DRAM

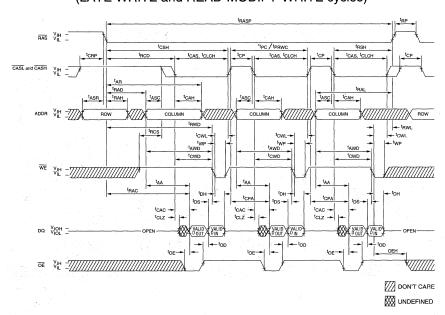

NOTES (continued)

- 30. The 3ns minimum is a parameter guaranteed by design.
- 31. The first $\overline{\text{CAS}}$ x edge to transition LOW.
- 32. The last CASx edge to transition HIGH.
- 33. Output parameter (DQx) is referenced to corresponding CAS input; DQ1-DQ8 by CASL and DQ9-DQ16
- 34. Last falling \overline{CASx} edge to first rising \overline{CASx} edge.
- 35. Last rising \overline{CASx} edge to next cycle's last rising \overline{CASx}
- 36. Last rising \overline{CASx} edge to first falling \overline{CASx} edge.
- 37. First DQs controlled by the first CASx to go LOW.
- 38. Last DQs controlled by the last \overline{CASx} to go HIGH.
- 39. Each CASx must meet minimum pulse width.
- 40. Last \overline{CASx} to go LOW.
- 41. All DQs controlled, regardless CASL and CASH.


READ CYCLE

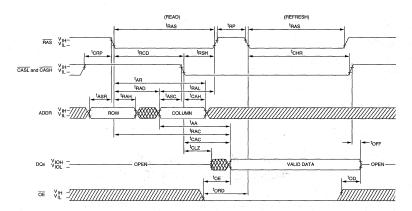

EARLY WRITE CYCLE


READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)


FAST-PAGE-MODE READ CYCLE

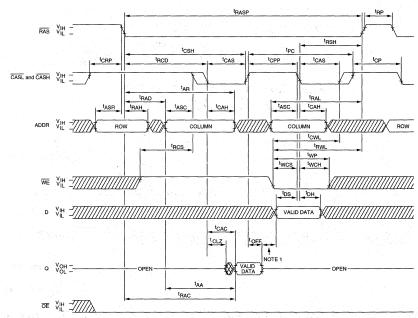
FAST-PAGE-MODE EARLY-WRITE CYCLE

FAST-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)



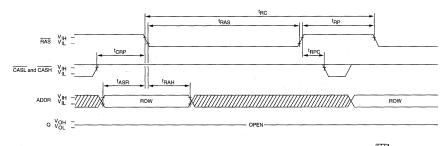
*NOTE: 1. ^tPC is for LATE WRITE only.

FPM DRAM

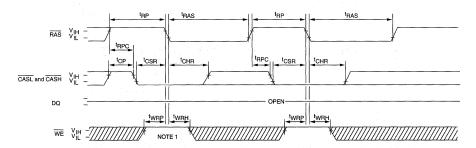

HIDDEN REFRESH CYCLE 24

 $(\overline{WE} = HIGH; \overline{OE} = LOW)$

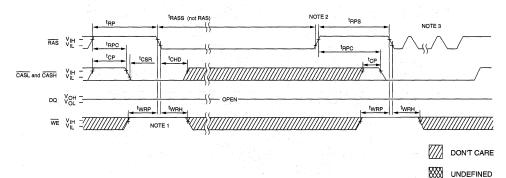
FAST-PAGE-MODE READ-EARLY-WRITE CYCLE


(Pseudo READ-MODIFY-WRITE)

DON'T CARE
UNDEFINED


NOTE: 1. Do not drive data prior to High-Z.

RAS-ONLY REFRESH CYCLE (OE and WE = DON'T CARE)


CBR REFRESH CYCLE

(Addresses and $\overline{OE} = DON'T CARE$)

SELF REFRESH CYCLE ("SLEEP MODE")

(Addresses and $\overline{OE} = DON'T CARE$)

NOTE:

- 1. ¹WRP and ¹WRH are for system design reference only. The WE signal is actually a "don't care" at RAS time during a CBR REFRESH. However, WE should be held HIGH at RAS time during a CBR REFRESH to ensure compatibility with other DRAMs which require WE HIGH at RAS time during a CBR REFRESH.
- 2. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.
- 3. Once ^tRPS is satisfied, a compete burst of all rows should be executed.

MICHON TECHNOLOGY, INC.

EDO DRAMs			1
FPM DRAMs			2
SGRAM			3
DRAM SIMMs	10 M2 100 M2 M2 M2 100 M2		4
DRAM DIMMs			5
DRAM CARDS			6
TECHNICAL NOTES		****	7
PRODUCT RELIABILITY	A AN NO NO NO AN AN AN NO		
PACKAGE INFORMATION	N TOOL SOON SOON TOOK TOOK TOOK TOOK TOOK TOOK TOOK T	***	9
SALES AND SERVICE INFORM	MATION	****	10
MICRON DATAFAX INDEX			11

SGRAM PRODUCT SELECTION GUIDE

Memory		Part	Speed	Power Dissipation		No. of Pins		
Configuration		Number	Grade (ns)	Standby	Active	TQFP	Page	
256K x 32	3.3V	MT41LC256K32D4	10, 12, 15	TBD	TBD	100	3-1	
256K x 32	3.3V	MT41LC256K32D4 S	10, 12, 15	TBD	TBD	100	3-1	

S = SELF REFRESH

SYNCHRONOUS GRAPHICS RAM

256K x 32 SGRAM

PULSED RAS, DUAL BANK, PIPELINED, 3.3V OPERATION

FEATURES

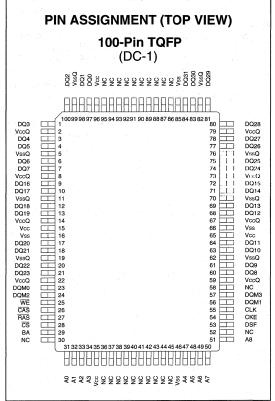
- Fully synchronous; all signals registered on positive edge of system clock
- Internal pipelined operation; column address can be changed every clock cycle
- Dual internal banks for hiding row access/precharge; dual 128K x 32 architecture
- Programmable burst lengths: 2, 4, 8 or full page
- BLOCK WRITE and WRITE-PER-BIT modes
- Independent byte operation via DQM0-3
- AUTO PRECHARGE and AUTO REFRESH modes
- 17ms, 1,024-cycle refresh (16.6µs/row)
- LVTTL-compatible inputs and outputs
- Single $+3.3V \pm 0.3V$ power supply

OPTIONS

MARKING

•	Timing		
	10ns access	(≤100 MHz clock rate)	-10
	12ns access	(≤83 MHz clock rate)	-12
	15ns access	(≤66 MHz clock rate)	-15

Self Refresh
 Plastic Packages
 100-pin TQFP (0.65mm lead pitch)


• Part Number Example: MT41LC256K32D4LG -15

KEY TIMING PARAMETERS

SPEED GRADE	CLOCK FREQUENCY	ACCESS TIME	SET-UP TIMES	HOLD TIMES
-10	100 MHZ	9ns	3ns	1ns
-12	83 MHZ	11ns	3.5ns	1.5ns
-15	66 MHZ	13ns	4ns	2ns

GENERAL DESCRIPTION

The MT41LC256K32D4(S) SGRAM is a high-speed CMOS dynamic random access memory containing 8,388,608 bits. It is internally configured as a dual 128K x 32 DRAM with a synchronous interface (all signals are registered on the positive edge of the clock signal, CLK). Each of the 128K x 32 bit banks is organized as 512 rows by 256 columns by 32 bits. Read and write accesses to the SGRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed

sequence. Accesses begin with the registration of an AC-TIVE command which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BA selects the bank, A0-A8 select the row). Then the address bits registered coincident with the READ or WRITE command are used to select the starting column location for the burst access.

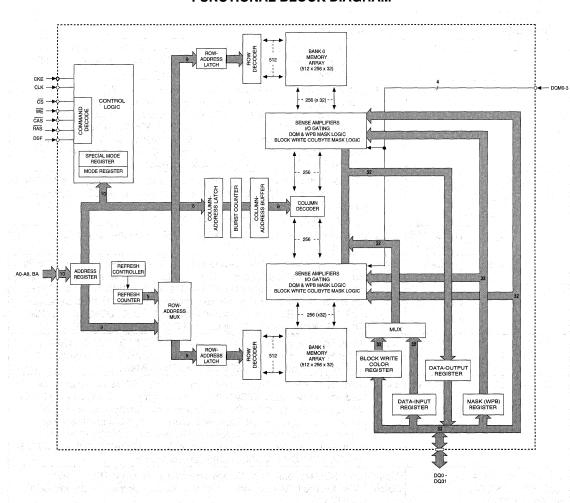
The SGRAM provides for programmable READ or WRITE burst lengths of 2, 4 or 8 locations, or the full page, with burst terminate option. An AUTO PRECHARGE function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst sequence.

GRAM

GENERAL DESCRIPTION (continued)

The MT41LC256K32D4(S) uses an internal pipelined architecture to achieve high-speed operation. This architecture is compatible with the 2n rule of prefetch architectures, but it also allows the column address to be changed on every clock cycle to achieve a high-speed fully random access. Precharging one bank while accessing the alternate bank will hide the precharge cycles, and provide seamless high-speed random access operation.

Synchronous graphics RAMs (SGRAMs) differ from synchronous DRAMs (SDRAMs) by providing an eight-column BLOCK WRITE function and a MASKED WRITE (or WRITE-PER-BIT) function to accommodate high-performance graphics applications. The BLOCK WRITE and MASKED WRITE functions may be combined with individual byte enables (DQ mask, or DQM, pins).


The CMOS dynamic memory structure of the MT41LC256K32D4(S) is designed to operate in 3.3V, low-

power memory systems. An AUTO REFRESH mode is provided along with a powersaving POWER-DOWN mode. All inputs and outputs are LVTTL-compatible.

The two-bank synchronous DRAM and x32 configuration provided by the SGRAM are well suited for applications requiring high memory bandwidth, and when combined with special graphics functions result in a device particularly well suited to high performance graphics applications.

SGRAMs offer substantial advances in dynamic memory operating performance, including the ability to synchronously burst data at a high data rate with automatic columnaddress generation, the ability to interleave between internal banks in order to hide precharge time, the capability to randomly change column addresses on each clock cycle during a burst access, and special functions such as MASKED WRITES and BLOCK WRITES.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

TQFP PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
55	CLK	Input	Clock: CLK is driven by the system clock. All SGRAM input signals are sampled on the positive edge of CLK. CLK also increments the internal burst counter and controls the output registers.
54	CKE	Input	Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CLK signal. Deactivating the clock provides POWER-DOWN mode (all banks idle) and SELF REFRESH mode (all banks idle). CKE is synchronous except after the device enters POWER-DOWN and SELF REFRESH modes, where CKE becomes asynchronous until after exiting the same mode. The input buffers, including CLK, are disabled during POWER-DOWN and SELF REFRESH modes providing low standby power.
28	CS	Input	Chip Select: \overline{CS} enables (registered LOW) and disables (registered HIGH) the command decoder. All commands are masked when \overline{CS} is registered HIGH. \overline{CS} provides for external bank selection on systems with multiple banks. It is considered part of the command code.
27, 26 53, 25	RAS, CAS DSF, WE	Input	Command Inputs: RAS, WE, CAS, and DSF define the command being entered.
23, 56, 24, 57	DQM0 - DQM3	Input	Input/Output Mask: DQM0-DQM3 are byte specific, nonpersistent I/O buffer controls. The I/O buffers are placed in a High-Z state when DQM is sampled HIGH. Input data is masked when DQM is sampled high during a WRITE cycle. Output data is masked (two-clock latency) when DQM is sampled HIGH during a READ cycle. DQM0 masks DQ0-DQ7, DQM1 masks DQ8-DQ15, DQM2 masks DQ16-DQ23, and DQM3 masks DQ24-DQ31.
29	ВА	Input	Bank Address: BA defines to which bank the ACTIVE, READ, WRITE or PRECHARGE command is being applied. BA is also used to program the 10th bit of the MODE and SPECIAL MODE registers.
31-34, 47-50, 51	A0-A8	Input	Address Inputs: A0-A8 are sampled during the ACTIVE command (row-address A0-A8) and READ/WRITE command (column-address A0-A7 with A8 defining AUTO PRECHARGE) to select one location out of the 128K available in the respective bank.A8 is sampled during a precharge command determining if both banks are to be precharged (A8 HIGH). The address inputs also provide the op-code during a LOAD MODE REGISTER or LOAD SPECIAL MODE REGISTER command.
97, 98, 100, 1, 3, 4, 6, 7, 60, 61, 63, 64, 68, 69, 71, 72, 9, 10, 12, 13, 17, 18, 20, 21, 74, 75, 77, 78, 80, 81, 83, 84	DQ0- DQ31	Input/ Output	Data I/O: Data bus. The I/Os are byte-maskable during READs and WRITEs.The DQs also serve as column/byte mask inputs during BLOCK WRITEs.
30, 36-45, 52, 58, 86-95	NC		No Connect: These pins should be left unconnected.
2, 8, 14, 22, 59, 67, 73, 79	VccQ	Supply	DQ Power: Provide isolated power to DQs for improved noise immunity.
5, 11, 19, 62, 70, 76, 82, 99	VssQ	Supply	DQ Ground: Provide isolated ground to DQs for improved noise immunity.
15, 35, 65, 96	Vcc	Supply	Power Supply: +3.3V ±0.3V.
16, 46, 66, 85	Vss	Supply	Ground

FUNCTIONAL DESCRIPTION

In general, the SGRAM is a dual 128K x 32 DRAM with graphics features (BLOCK WRITE and MASKED WRITE) which operates at 3.3V and includes a synchronous interface (all signals are registered on the positive edge of the clock signal, CLK). Each of the 128K x 32 bit banks is organized as 512 rows by 256 columns by 32 bits.

Read and write accesses to the SGRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an ACTIVE command which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BA selects the bank, A0-A8 select the row). Then the address bits (A0-A7) registered coincident with the READ or WRITE command are used to select the starting column location for the burst access.

BLOCK WRITE accesses are performed in a manner similar to WRITEs, except that BLOCK WRITEs are not burst oriented, and always apply to the eight column locations selected by A3-A7.

MASKED WRITES or MASKED BLOCK WRITES are similar to the unmasked versions except that the write-per-bit mask enabled with the ACTIVE command is applied to the data being written.

Prior to normal operation, the SGRAM must be initialized. The following sections provide detailed information covering device initialization, register definition, command descriptions and device operation.

Initialization

SGRAMs must be powered-up and initialized in a predefined manner. Operational procedures other than those specified may result in undefined operation. Once power is applied to Vcc and VccQ (simultaneously) the SGRAM requires a 100µs delay prior to activating CKE. All other inputs should be held HIGH during this phase of power-up.

Once the 100µs delay has been satisfied, the CKE pin must be driven HIGH ^tCKS before a positive clock edge, after meeting ^tCKH from the previous clock edge. The first command will be registered on the clock edge following ^tCKS

Both banks must then be precharged, thereby placing the device in the "all bank idle" state. Once in the idle state, two AUTO REFRESH cycles must be performed. Once the AUTO REFRESH cycles are complete, the SGRAM is ready for mode register programming. Because the mode register will power-up in an unknown state, it should be loaded prior to performing any operational command.

Register Definition MODE REGISTER

The mode register is used to define the specific mode of operation of the SGRAM. This definition includes the selection of a burst length, a burst type, a read latency and an operating mode, as shown in Figure 1. The mode register is programmed via the LOAD MODE REGISTER command, and will retain the stored information until it is programmed again or the device loses power.

Mode register bits M0 through M2 specify the burst length, M3 specifies the type of burst (sequential or interleaved), M4 through M6 specify the READ latency, and M7 through M9 specify the operating mode.

The mode register must be loaded when both banks are idle, and the controller must wait the specified time before initiating the subsequent operation. Violating either of these requirements may result in unknown operation.

Burst Length

Read and write accesses to the SGRAM are burst oriented, with the burst length being programmable, as shown in Figure 1. The burst length determines the maximum number of column locations that can be accessed for a given READ or WRITE command. Burst lengths of 2, 4, or 8 locations are available for both the sequential and the interleaved burst types, and a full-page burst is available for the sequential type. The full-page burst is used in conjunction with the BURST TERMINATE command to generate arbitrary burst lengths.

Reserved states should not be used, as unknown operation or incompatibility with future versions may result.

When a READ or WRITE command is issued, a block of columns equal to the burst length is effectively selected. All accesses for that burst take place within this block, meaning that the burst will wrap within the block if a boundary is reached. The block is defined by A1-A7 when the burst length is set to two, by A2-A7 when the burst length is set to four and by A3-A7 when the burst length is set to eight. The lower order address bit(s) are used to select the starting location within the block. Full page bursts wrap within the page if the boundary is reached.

Burst Type

Accesses within a given burst may be programmed to be either sequential or "interleaved"; this is referred to as the burst type and is selected via bit M3.

The ordering of accesses within a burst is determined by the burst length, the burst type and the starting column address, as shown in Table 1.

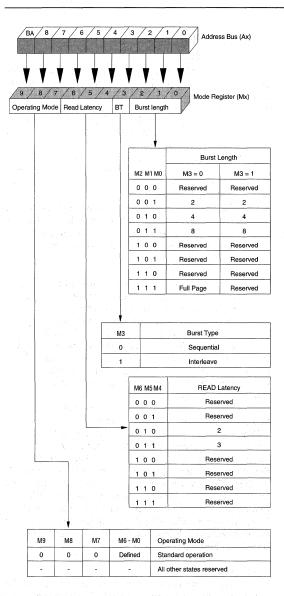


Figure 1
MODE REGISTER DEFINITION

Table 1 BURST DEFINITION

Burst	Starti	na Ca	dumn	Order of Accesse	es within a Burst		
Length	Starting Column Address:					Type = Sequential	Type = Interleaved
			A0		raj et et e		
2			0	0-1	0-1		
_	. 1. 1.		1	1-0	1-0		
	1.1	A1	A0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		0	0	0-1-2-3	0-1-2-3		
4		0	1	1-2-3-0	1-0-3-2		
7		1	0	2-3-0-1	2-3-0-1		
	1 1		1	3-0-1-2	3-2-1-0		
	A2	A1	A0	* * * * * * * * * * * * * * * * * * * *			
1 4 -	0	0	0	0-1-2-3-4-5-6-7	0-1-2-3-4-5-6-7		
	0	0	1	1-2-3-4-5-6-7-0	1-0-3-2-5-4-7-6		
	0	1	0	2-3-4-5-6-7-0-1	2-3-0-1-6-7-4-5		
8	0	1	1	3-4-5-6-7-0-1-2	3-2-1-0-7-6-5-4		
0	1	0	0	4-5-6-7-0-1-2-3	4-5-6-7-0-1-2-3		
	1.	0	1	5-6-7-0-1-2-3-4	5-4-7-6-1-0-3-2		
	1	1	0	6-7-0-1-2-3-4-5	6-7-4-5-2-3-0-1		
	1	1	1	7-0-1-2-3-4-5-6	7-6-5-4-3-2-1-0		
Full	n -	: A0 -	. Δ7	Cn, Cn+1, Cn+2			
Page	''-	. , .0		Cn+3, Cn+4	Not supported		
(256)	(locat	ion O	- 255)	Cn-1 (Cn+256),	Not supported		
(230)	(location 0 - 255)			Cn (Cn+257)	.00%		

NOTE

- 1. For a burst length of two, A1-A7 select the block of two burst; A0 selects the starting column within the block.
 - For a burst length of four, A2-A7 select the block of four burst; A0-A1 select the starting column within the block.
 - For a burst length of eight, A3-A7 select the block of eight burst; A0-A2 select the starting column within the block
 - 4. For a full-page burst, the full row is selected and A0-A7 select the starting column.
 - Whenever a boundary of the block is reached within a given sequence above, the following access wraps within the block.

Read Latency

The READ latency is the delay, in clock cycles, between the registration of a READ command and the availability of the first piece of output data. The latency can be set to 2 or 3 clocks.

If a READ command is registered at clock edge n, and the latency is *m* clocks, the data will be available by clock edge n + m. The DQs will start driving as a result of the clock edge one cycle earlier (n + m - 1) and, provided that the relevant access times are met, the data will be valid by clock edge n + m. For example, assuming that the clock cycle time is such that all relevant access times are met, if a read command is registered at T0, and the latency is programmed to 2 clocks, the DQs will start driving after T1 and the data will be valid by T2, as shown in Figure 2. Table 2 below indicates the operating frequencies at which each READ latency setting can be used.

Reserved states should not be used, as unknown operation or incompatibility with future versions may result.

Operating Mode

In normal operation (M7 - M9 = 0), the programmed burst length applies to both read and write bursts.

M7 = 1 is used for vendor specific testing. Test modes and reserved states should not be used because unknown operation or incompatibility with future versions may result.

SPECIAL MODE REGISTER

The special mode register is used to load the color and mask registers, which are used in BLOCK WRITE and MASKED WRITE cycles. The control information being written to the special mode register is applied to the address inputs and the data to be written to either the color register or the mask register is applied to the DQs. As shown in Figure 3, when input A6 is "1", and all other address inputs are "0" during a LOAD SPECIAL MODE REGISTER cycle, the color register will be loaded with the data on the DQs. Similarly, when input A5 is "1", and all other address inputs are "0" during a LOAD SPECIAL MODE REGISTER cycle, the mask register will be loaded with the data on the DQs. Applying a "1" to both A5 and A6 (when all other address inputs are "0") or applying a "1" to any address input other than A5 or A6, during a LOAD SPECIAL MODE REGISTER cycle is illegal and unknown operation may result.

The special mode register can be loaded when one or both banks are either active or idle. Successive LOAD SPECIAL MODE REGISTER cycles to load the same register can be performed by applying a "1" to either A5 or A6, even if a "1" was previously written to that bit (i.e., the bits do not need to be cleared between loads).

COLOR REGISTER

The color register is a 32-bit register which supplies the data during BLOCK WRITE cycles. The color register is loaded via a LOAD SPECIAL MODE REGISTER cycle (described in the previous section) and will retain data until loaded again or until power is removed from the SGRAM.

MASK REGISTER

The mask register (or write-per-bit mask register) is a 32bit register which acts as a per-DQ mask during MASKED WRITE and MASKED BLOCK WRITE cycles. This operation is described under the respective headings later in this data sheet. The mask register is loaded via a LOAD SPE-CIAL MODE REGISTER cycle (described previously, under the Special Mode Register heading) and will retain data until loaded again or until power is removed from the SGRAM.

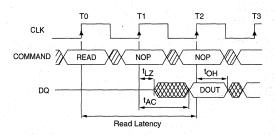


Figure 2 TWO CLOCK READ LATENCY EXAMPLE

Table 2 READ LATENCY

	ALLOWABLE Frequenc	
SPEED	READ Latency = 2	READ Latency = 3
-10	≤ 66	≤ 100
-12	≤ 55	≤ 83
-15	≤ 44	≤ 66

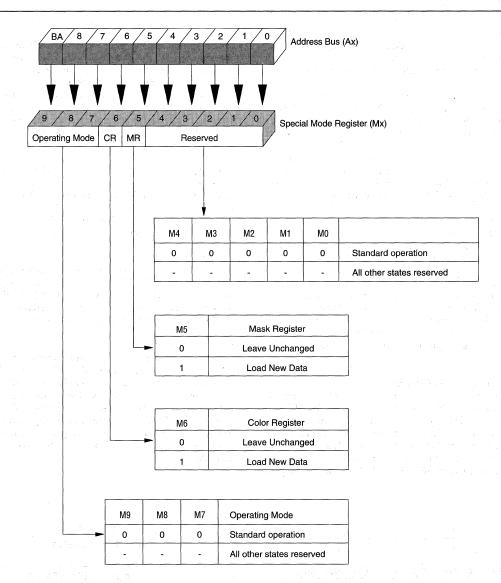


Figure 3
SPECIAL MODE REGISTER DEFINITION

MT41LC256K32D4(S) 256K x 32 SGRAM

Commands

Truth Table 1 provides a quick reference of available commands. This is followed by a verbal description of each command. Two additional Truth Tables appear following

the Operation section; these tables provide current state/ next state information.

TRUTH TABLE 1 – Commands and DQM Operation

NAME (FUNCTION)	CS	RAS	CAS	WE	DSF	DQM	ADDR	DQs	NOTES
COMMAND INHIBIT (NOP)	Н	Х	Х	Х	Х	Х	Х	Х	
NO OPERATION (NOP)	L	Н	Ξ	Н	L	Х	X	Χ	13
ACTIVE (Select bank and activate row)	L	L	Ι	Н	L	Х	bank/row	X	3
ACTIVE with WPB (Select bank, activate row and WPB)	L L	L	Н	Н	, H	Х	bank/row	X	3, 11
READ (Select bank & column and start READ burst)	L	Н	L	Н	- iL	Х	bank/col	Χ	4, 13
WRITE (Select bank & column and start WRITE burst)	L	Н	L	L	L	X	bank/col	VALID	4
BLOCK WRITE (Select bank & column and start BLOCK WRITE access)	L	Н		L	Н	Х	bank/col	MASK	4, 12
PRECHARGE (Deactivate row in bank or banks)	L	L	Н	L	L	Х	Code	Х	5, 13
BURST TERMINATE	L	Н	Н	L	L	Х	X	Active	13
AUTO REFRESH or SELF REFRESH (enter SELF REFRESH mode)	L	L	<u>.</u>	Н	L	Х	X	Х	6, 7, 13
LOAD MODE REGISTER	L	L	L	L	L	Х	OpCode	Χ	2
LOAD SPECIAL MODE REGISTER	L	L	L	L	Н	Х	OpCode	VALID	10
Write enable/output enable	-	-	70. •	-	-	L	-	Active	8
Write inhibit/output High-Z	-	-	-	-	-	Н	i	High-Z	8

NOTE: 1. CKE is HIGH for all commands shown except SELF REFRESH.

- 2. A0 through A8 and BA define the op-code written to the mode register.
- 3. A0 through A8 provide row-address and BA determines which bank is made active (BA LOW = Bank 0 and BA HIGH = Bank 1).
- 4. A0 through A7 provide column-address; A8 HIGH enables the AUTO PRECHARGE feature (nonpersistent) while A8 LOW disables the AUTO PRECHARGE feature; BA determines which bank is being read from or written to (BA LOW = Bank 0 and BA HIGH = Bank 1).
- 5. A8 LOW: BA determines bank being precharged (BA LOW = Bank 0 and BA HIGH = Bank 1). A8 HIGH: both banks precharged and BA is a "don't care."
- 6. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.
- 7. Internal refresh counter controls row addressing; all inputs and I/Os are "don't care" except for CKE.
- 8. Activates or deactivates the DQs during WRITEs (zero-clock delay) and READs (two-clock delay).
- 9. Illegal on non-S version.
- 10. DQs contain either color data or WPB mask data.
- 11. Any WRITE or BLOCK WRITE cycles to the selected bank/row while active will be masked according to the contents of the mask register, in addition to the DQM signals and the column/byte mask information (the latter for BLOCK WRITEs only).
- 12. DQs contain the column/byte mask data for the BLOCK WRITE.
- 13. DSF is actually "don't care", but it is recommended to be LOW for compatibility with future devices.

COMMAND INHIBIT

The COMMAND INHIBIT function prevents commands from being executed by the SGRAM, regardless of whether the CLK signal is enabled. The SGRAM is effectively deactivated, or deselected.

NO OPERATION (NOP)

The NO OPERATION (NOP) command is used to perform a NOP to an SGRAM which is selected $\overline{(CS)}$ is LOW). This prevents unwanted commands from being registered during idle or wait states.

LOAD MODE REGISTER

The mode register is loaded via inputs A0-A8 and BA. See Mode Register heading in Register Definition section. The LOAD MODE REGISTER command can only be issued when both banks are idle, and a subsequent executable command cannot be issued until ¹MTC is met.

LOAD SPECIAL MODE REGISTER

This command is used to load either the color register or mask register by activating the appropriate bit in the special mode register. The control information is provided on inputs A0-A8 and BA, while the data for the color or mask register is provided on the DQs. See Special Mode Register heading in Register Definition section. The LOAD SPECIAL MODE REGISTER command can be issued when both banks are idle, or one or both are active, but with no READ, WRITE or BLOCK WRITE accesses in progress. A subsequent executable command cannot be issued until SML is met.

ACTIVE

The ACTIVE command is used to open (or activate) a row in a particular bank for a subsequent access. The value on the BA input selects the bank, and the address provided on inputs A0-A8 selects the row. This row remains active (or open) for accesses until a precharge command is issued to that bank. A PRECHARGE command must be issued before opening a different row in the same bank.

ACTIVE WITH WPB

This command is similar to the ACTIVE command, except that the write-per-bit mask is activated. Any WRITE or BLOCK WRITE cycles to the selected bank/row while active will be masked according to the contents of the mask register, in addition to the DQM signals, and the column/byte mask information (the latter for BLOCK WRITEs only).

READ

The READ command is used to initiate a burst read access to an active row. The value on the BA input selects the bank, and the address provided on inputs A0-A7 selects the

starting column location. The value on input A8 determines whether or not AUTO PRECHARGE is used. If AUTO PRECHARGE is selected, the row being accessed will be precharged at the end of the read burst; if it is not selected, the row will remain open for subsequent accesses. READ data appears on the DQs subject to the values on the DQM inputs two clocks earlier. If a particular DQM signal was registered HIGH, the corresponding DQs will be High-Z two clocks later; if the DQM signal was registered LOW, the DQs will provide valid data.

WRITE

The WRITE command is used to initiate a burst write access to an active row. The value on the BA input selects the bank, and the address provided on inputs A0-A7 selects the starting column location. The value on input A8 determines whether or not AUTO PRECHARGE is used. If AUTO PRECHARGE is selected, the row being accessed will be precharged at the end of the write burst; if it is not selected, the row will remain open for subsequent accesses. Input data appearing on the DQs is written to the memory array subject to the DQM signals registered coincident with the data. If a particular DQM signal is registered LOW, the corresponding data will be written to memory (subject also to the write-per-bit mask, if activated); if the DQM signal is registered HIGH, the corresponding data inputs will be ignored, and the write will not be executed to that byte location.

BLOCK WRITE

The BLOCK WRITE command is used to write a single data value to the block of eight consecutive column locations addressed by inputs A3-A7. The source of the data is the color register, which must be loaded prior to the BLOCK WRITE. The information on the DQs which is registered coincident with the BLOCK WRITE command is used to mask specific column/byte combinations within the block, as described in the Operation section of this data sheet. The DQM signals operate as for WRITE cycles, but are applied to all eight columns.

PRECHARGE

The PRECHARGE command is used to deactivate the open row in a particular bank, or the open row in both banks. The bank(s) will be available for a subsequent row access some specified time (\text{tRP}) after the precharge command is issued. Input A8 determines whether one or both banks are to be precharged, and in the case where only one bank is to be precharged, input BA selects the bank. Otherwise BA is treated as a "don't care". Once a bank has been precharged, it is in the idle state and must be activated prior to any READ, WRITE or BLOCK WRITE commands being issued to that bank.

MT41LC256K32D4(S) 256K x 32 SGRAM

AUTO PRECHARGE

AUTO PRECHARGE is a nonpersistent feature which performs all of the same individual-bank precharge functions as previously described. The AUTO PRECHARGE feature allows the user to issue a READ, WRITE or BLOCK WRITE command that automatically performs a precharge upon the completion of the BLOCK WRITE access or READ or WRITE burst, except in the full-page burst mode, where it has no effect.

The use of this feature eliminates the need to "manually" issue a PRECHARGE command during the functional operation of the SGRAM. AUTO PRECHARGE ensures that the precharge is initiated at the earliest valid stage within a burst. The user must not issue another command until the precharge time (tRP) is completed. This is determined as if a manual PRECHARGE command was issued at the earliest possible time, as described for each burst type in the Operation section of this data sheet.

BURST TERMINATE

The BURST TERMINATE command is used to truncate either fixed-length or full-page bursts.

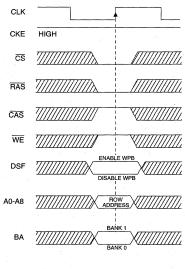
AUTO REFRESH

AUTO REFRESH is used during normal operation of the SGRAM and is analagous to CAS-BEFORE-RAS (CBR) REFRESH in conventional DRAMs. This command is nonpersistent, so it must be issued each time a refresh is required.

The addressing is generated by the internal refresh controller. This makes the address bits a "don't care" during an

AUTO REFRESH command. The MT41LC256K32D4(S) requires all of its 1,024 rows to be refreshed every 17ms (¹REF). Providing a distributed AUTO REFRESH command every 16.6µs will meet the refresh requirement and ensure that each row is refreshed. Alternatively, all 1,024 AUTO REFRESH commands can be issued in a burst at the minimum cycle rate (¹RC) once every 17ms.

SELF REFRESH


The SELF REFRESH command (on the "S" version) can be used to retain data in the SGRAM, even if the rest of the system is powered down. When in the SELF REFRESH mode, the SGRAM retains data without external clocking. The SELF REFRESH command is initiated like an AUTO REFRESH command except CKE is disabled (LOW). Once the SELF REFRESH command is registered, all the inputs to the SGRAM become "don't cares" with the exception of CKE, which must remain LOW.

Once SELF REFRESH mode is engaged, the SGRAM provides its own internal clocking, causing it to perform its own auto refresh cycles. The SGRAM may remain in SELF REFRESH mode for an indefinite period.

The procedure for exiting SELF REFRESH requires a sequence of commands. First, the system clock must be stable prior to CKE going back HIGH. Once CKE is HIGH, the SGRAM must have NOP commands issued for ^tXSR, because time is required for the completion of any bank currently being internally refreshed.

Operation BANK/ROW ACTIVATION

Before any READ or WRITE commands can be issued to a bank within the SGRAM, a row in that bank must be "opened." This is accomplished via the ACTIVE command, which selects both the bank and the row to be activated.

DON'T CARE

Figure 4 ACTIVATING A SPECIFIC ROW IN A SPECIFIC BANK

The ACTIVE command is also used to determine whether or not the write-per-bit mask is to be applied during WRITE and BLOCK WRITE cycles within that row (see Figure 4). If DSF is HIGH at the time the ACTIVE command is registered (ACTIVE with WPB) then the mask will be applied to all WRITE and BLOCK WRITE cycles to that row until the row is "closed" (precharged).

After opening a row (issuing an ACTIVE command) a READ or WRITE command may be issued to that row, subject to the ^tRCD specification. ^tRCD MIN should be divided by the clock period and rounded up to the next whole number to determine the earliest clock edge after the ACTIVE command on which a READ or WRITE command can be entered. For example, a ^tRCD specification of 30ns with a 90 MHz clock (11.11ns period) results in 2.7 clocks rounded to 3. This is reflected in Figure 5, which covers any case where 3 > ^tRCD MIN/^tCK > 2. (The same procedure is used to convert other specification limits from time units to clock cycles).

A subsequent ACTIVE command to a different row in the same bank can only be issued after the previous active row has been "closed" (precharged). The minimum time interval between successive ACTIVE commands to the same bank is defined by ^tRC.

A subsequent ACTIVE command to the other bank can be issued while the first bank is being accessed, which results in a reduction of total row access overhead. The minimum time interval between successive ACTIVE commands to different banks is defined by ^tRRD.

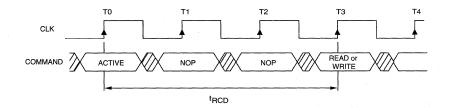


Figure 5
EXAMPLE: MEETING ^tRCD MIN WHEN 2 < ^tRCD MIN/^tCK < 3

READS

READ bursts are initiated with a READ command, as shown in Figure 6.

The starting column and bank addresses are provided with the READ command and AUTO PRECHARGE is either enabled or disabled for that burst access. If AUTO PRECHARGE is enabled, the row being accessed is precharged at the completion of the burst. For the generic READ commands used in the following illustrations, AUTO PRECHARGE is disabled.

During READ bursts, the valid data-out element from the starting column address will be available following the READ latency after the READ command. Each subsequent data-out element will be valid by the next positive clock edge. Figure 7 shows the case where the READ latency is set to two, and Figure 8 shows a READ latency of three.

Upon completion of a burst, assuming no other commands have been initiated, the DQs will go High-Z. A fullpage burst will continue until terminated (at the end of the page it will wrap to column 0 and continue).

A fixed-length READ burst may be followed by, or truncated with, a subsequent READ burst (provided that AUTO PRECHARGE is not activated) and a full-page READ burst can be truncated with a subsequent READ burst. In either case, a continuous flow of data can be maintained. The first data element from the new burst follows either the last element of a completed burst, or the last desired data element of a longer burst which is being truncated. The new READ command should be issued x cycles before the clock edge at which the last desired data element is valid, where

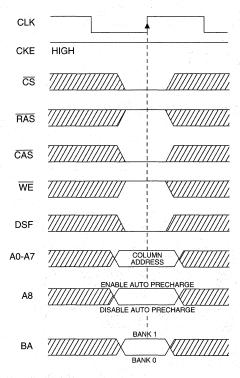
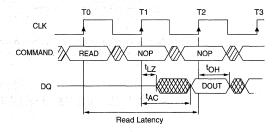



Figure 6 READ COMMAND

Figure 7 **READ BURST WITH READ** LATENCY OF TWO

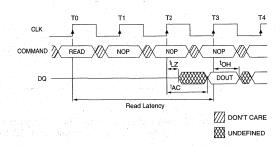
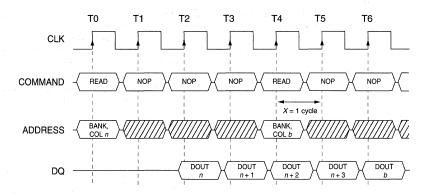
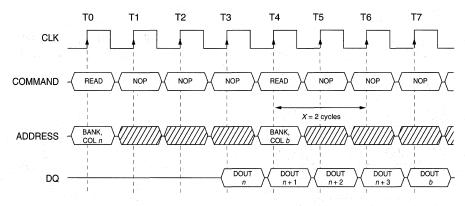
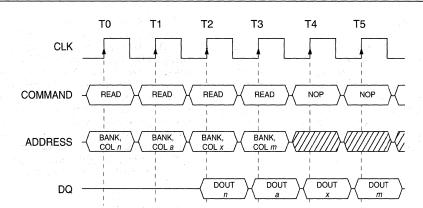



Figure 8 READ BURST WITH READ LATENCY **OF THREE**


x equals the read latency minus one. This is shown in Figure 9 for a read latency of two and Figure 10 for a read latency of three; data element n+3 is either the last of a burst of four, or the last desired of a longer burst. The SGRAM does not require the 2n rule of prefetch architectures, so a

READ command can be initiated on any clock cycle following a previous READ command. Full speed random read accesses within a page can be performed as shown in Figures 11 and 12.

NOTE: Covers either successive READs to the active row in a given bank, or to the active rows in different banks. DQMs are all active (LOW).


Figure 9 CONSECUTIVE READ BURSTS, READ LATENCY OF TWO

NOTE: Covers either successive READs to the active row in a given bank, or to the active rows in different banks. DQMs are all active (LOW).

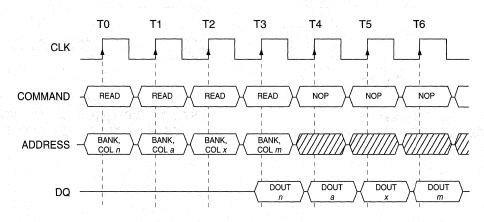
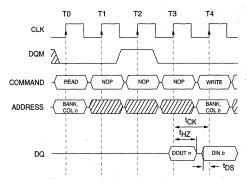

DON'T CARE

Figure 10 CONSECUTIVE READ BURSTS, READ LATENCY OF THREE

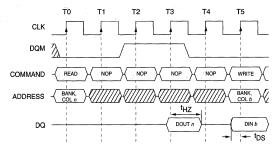
NOTE: Covers either successive READs to the active row in a given bank, or to the active rows in different banks. DQMs are all active (LOW).

Figure 11
RANDOM READ ACCESSES WITHIN A PAGE, READ LATENCY OF TWO


NOTE: Covers either successive READs to the active row in a given bank, or to the active rows in different banks. DQMs are all active (LOW).

DON'T CARE

Figure 12
RANDOM READ ACCESSES WITHIN A PAGE, READ LATENCY OF THREE


A fixed-length READ burst may be followed by, or truncated with, a WRITE burst or BLOCK WRITE command (provided that AUTO PRECHARGE was not activated) and a full page READ burst may be truncated by a WRITE burst or BLOCK WRITE command. The WRITE burst may be initiated on the clock edge immediately following the last (or last desired) data element from the READ burst, provided that I/O contention can be avoided. If the specifications for a given speed grade do not allow for contention to be avoided at a particular operating frequency, a single cycle delay must occur between the last READ data and the WRITE command.

The DQM inputs are used to avoid I/O contention as shown in Figures 13 and 14. The DQMs must be asserted (HIGH) at least two clocks (DQM latency is two clocks for output buffers) prior to the WRITE command to suppress data-out from the READ. Once the WRITE command is registered, the DQs will go High-Z (or remain High-Z) regardless of the state of the DQM signals. The DQM signals must be de-asserted (DQM latency is zero clocks for input buffers) prior to the WRITE command to ensure that the written data is not masked. Figure 13 shows the case where the clock frequency allows for bus contention to be avoided without adding a NOP cycle, and Figure 14 shows the case where the additional NOP is needed.

NOTE: A READ LATENCY of 3 is used for illustration. A BLOCK WRITE can be substituted for the WRITE, in which case column/byte mask data would be applied to the data inputs.

Figure 13 READ TO WRITE (OR BLOCK WRITE)

NOTE: A READ LATENCY of 3 is used for illustration. A BLOCK WRITE can be substituted for the WRITE, in which case column/byte mask data would be applied to the data inputs.

DON'T CARE

Figure 14 READ TO WRITE (OR BLOCK WRITE) WITH EXTRA CLOCK CYCLE

A fixed-length READ burst may be followed by, or truncated with, a PRECHARGE command to the same bank (provided that AUTO PRECHARGE was not activated) and a full-page burst may be truncated with a PRECHARGE command to the same bank. The PRECHARGE command should be issued one cycle before the clock edge at which the last desired data element is valid. This is shown in Figure 15 for a read latency of two and Figure 16 for a read latency of three; data element n + 3 is either the last of a burst of four, or the last desired of a longer burst. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until ^tRP is met. Note that part of the row precharge time is hidden during the access of the last data element.

In the case of a fixed-length burst being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same fixed-length burst

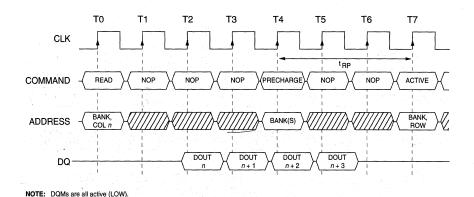


Figure 15 READ TO PRECHARGE, READ LATENCY OF TWO

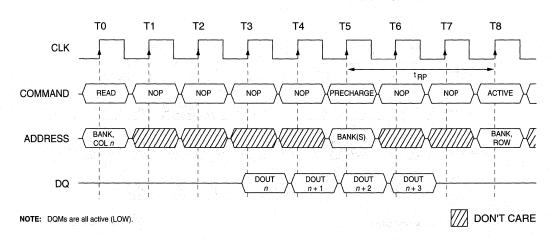
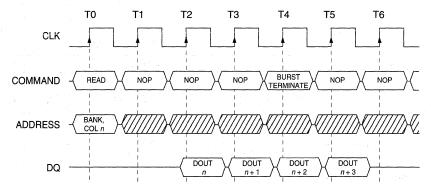



Figure 16 READ TO PRECHARGE, READ LATENCY OF THREE

with AUTO PRECHARGE. The disadvantage of the PRECHARGE command is it requires that the command and address busses be available at the appropriate time to issue the command, but the advantage of the PRECHARGE command is that it can be used to truncate fixed-length or full-page bursts. The AUTO PRECHARGE command does not truncate fixed-length bursts and does not apply to full page bursts.

Full-page READ bursts can be truncated with the BURST TERMINATE command, and fixed-length READ bursts

may be truncated with a BURST TERMINATE command, provided that auto-precharge was not activated. When truncating a READ burst, the BURST TERMINATE command should be issued 1 cycle before the clock edge at which the last desired data element is valid. This is shown in Figure 17 for a read latency of two and Figure 18 for a read latency of three; data element n+3 is either the last of a burst of four, or the last desired of a longer burst.

NOTE: DQMs are all active (LOW).

Figure 17
TERMINATING A READ BURST, READ LATENCY OF TWO

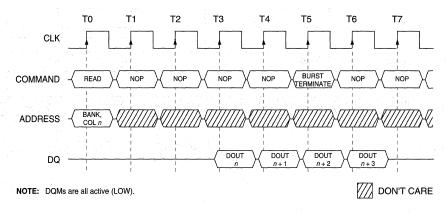


Figure 18
TERMINATING A READ BURST, READ LATENCY OF THREE

Ш

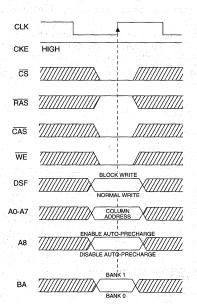
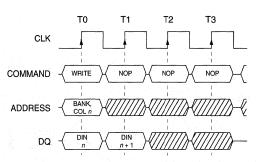
WRITES

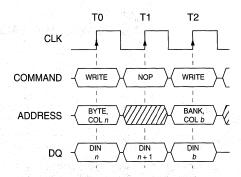
WRITE bursts are initiated with a WRITE command, as shown in Figure 19.

The starting column and bank addresses are provided with the WRITE command, normal or BLOCK WRITE is selected, and AUTO PRECHARGE is either enabled or disabled for that access. If AUTO PRECHARGE is enabled, the row being accessed is precharged at the completion of the burst. BLOCK WRITEs are covered later in this section. For the generic WRITE commands used in the following illustrations, AUTO PRECHARGE is disabled, and all WRITEs are normal WRITEs unless noted.

During WRITE bursts, the first valid data-in element will be registered coincident with the WRITE command. Subsequent data elements will be registered on each successive positive clock edge. Upon completion of a fixed-length burst, assuming no other commands have been initiated, the DQs will remain High-Z, and any additional input data will be ignored (see Figure 20). A full-page burst will continue until terminated (at the end of the page it will wrap to column 0 and continue).

A fixed-length WRITE burst may be followed by, or truncated with, a subsequent WRITE burst or BLOCK WRITE command (provided that AUTO PRECHARGE was not activated) and a full page WRITE burst can be

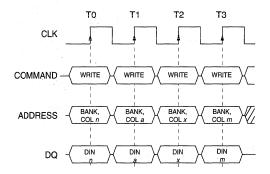




Figure 19 WRITE COMMAND

truncated with a subsequent WRITE burst or BLOCK WRITE command. The new WRITE or BLOCK WRITE command can be issued on any clock following the previous WRITE command, and the data provided coincident with the new command applies to the new command. An example is shown in Figure 21. Data n + 1 is either the last of a burst of two, or the last desired of a longer burst. The SGRAM does

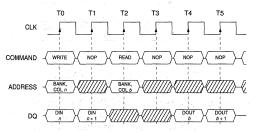
NOTE: Burst Length = 2. DQMs are all active (LOW).

Figure 20 WRITE BURST


NOTE: DQMs are all active (LOW). The second WRITE can be a BLOCK WRITE, in which case column/byte mask data would be applied to the data inputs.

DON'T CARE

Figure 21 WRITE TO WRITE (OR BLOCK WRITE)


not require the 2n rule of prefetch architectures, so a WRITE command can be initiated on any clock cycle following a previous WRITE command. Full speed random write accesses within a page can be performed as shown in Figure 22.

A fixed-length WRITE burst may be followed by, or truncated with, a subsequent READ burst (provided that AUTO PRECHARGE was not activated) and a full-page

NOTE: Covers either successive WRITEs to the active row in a given bank, or to the active rows in different banks. DQMs are all active (LOW).

Figure 22 RANDOM WRITE CYCLES WITHIN A PAGE

NOTE: Covers either a WRITE and READ to the active row in a given bank, or to the active rows in different banks. DQMs are all active (LOW). READ LATENCY = 2 for illustration.

Figure 23 WRITE TO READ

WRITE burst can be truncated with a subsequent READ burst. Once the READ command is registered, the data inputs will be ignored, and writes will not be executed. An example is shown in Figure 23. Data n + 1 is either the last of a burst of two, or the last desired of a longer burst.

A fixed-length WRITE burst may be followed by, or truncated with, a PRECHARGE command to the same bank (provided that AUTO PRECHARGE was not activated) and a full-page WRITE burst may be truncated with a PRECHARGE command to the same bank. The PRECHARGE command should be issued y cycles after the clock edge at which the last desired input data element is registered, where y equals tWR/tCK rounded up to the next whole number. In addition, the DQM signals must be used to mask input data, starting with the clock edge following the last desired data element and ending with the clock edge on which the PRECHARGE command is entered. An example is shown in Figure 24. Data n + 1 is either the last of a burst of two, or the last desired of a longer burst. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until ^tRP is met.

In the case of a fixed-length burst being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same fixed-length burst with AUTO PRECHARGE. The disadvantage of the PRECHARGE command is it requires that the command and address busses be available at the appropriate time to issue the command, but the advantage of the PRECHARGE command is that it can be used to truncate fixed-length or full-page bursts. The AUTO PRECHARGE command does not truncate fixed-length bursts and does not apply to full page bursts.

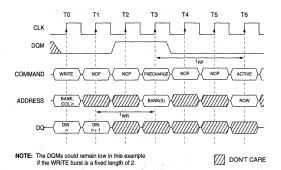


Figure 24
WRITE TO PRECHARGE

IEW

SGRAN

Fixed-length or full-page WRITE bursts can be truncated with the BURST TERMINATE command. When truncating a WRITE burst, the input data applied one clock edge prior to the BURST TERMINATE command will be the last data written. This is shown in Figure 25, where data n+1 is either the last of a burst of two, or the last desired of a longer burst.

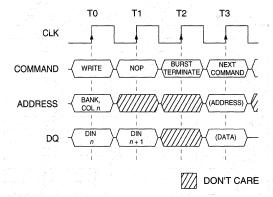


Figure 25
TERMINATING A WRITE BURST

MASKED WRITES

Any WRITE performed to a row that was opened via an ACTIVE with WPB command is a MASKED WRITE (Write-Per-Bit). Data is written to the 32 cells (bits) at the selected column location subject to the mask stored in the WPB mask register. If a particular bit in the WPB mask register is a "0", the data appearing on the corresponding DQ input will be ignored, and the existing data in the corresponding DRAM cell will remain unchanged. If a mask bit is a "1", the data appearing on the corresponding DQ input will be written to the corresponding DRAM cell.

The overall WRITE mask consists of a combination of the DQM inputs, which mask on a per-byte basis, and the WPB mask register, which masks on a per-bit basis. This is shown in Figure 26. If a particular DQM signal was registered HIGH, the corresponding byte will be masked. A given bit is written only if the corresponding DQM signal registered is "0" and the corresponding WPB mask register bit is "1".

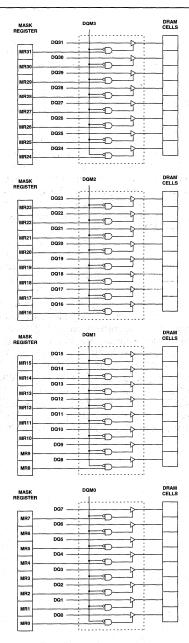


Figure 26
WRITE MASKING – FUNCTIONAL
REPRESENTATION

BLOCK WRITES

BLOCK WRITEs are non-burst accesses that write to eight column locations simultaneously. A single data value, which was previously loaded in the color register, is written to the block of eight consecutive column locations addressed by inputs A3-A7. The information on the DQs which is registered coincident with the BLOCK WRITE command is used to mask specific column/byte combinations within the block. The mapping of the DQ inputs to the column/byte combinations is shown in Table 3.

When a "0" is registered on a particular DQ signal coincident with a BLOCK WRITE command, the write to the corresponding column/byte combination is masked (the existing data in the corresponding DRAM cells will remain unchanged). When a "1" is registered, the color register data will be written to the corresponding DRAM cells, subject to the DQM and WPB masking.

The overall BLOCK WRITE mask consists of a combination of the DQM signals, the WPB mask register and the column/byte mask information, as shown in Figure 27. The DQM and WPB mask register masking operates as for normal WRITEs, with the exception that the mask information is applied simultaneously to all eight columns. Therefore, in a BLOCK WRITE, a given bit is written only if a "0" was registered for the corresponding DQM signal, a "1" was registered for the corresponding DQ signal, and the corresponding bit in the WPB mask register is "1".

A BLOCK WRITE access requires a time period of ^tBWC to execute, so in general, the cycle after the BLOCK WRITE command should be a NOP. However, ACTIVE or PRECHARGE commands to the other bank are allowed. When following a BLOCK WRITE with a PRECHARGE command to the same bank, ^tBPL (instead of ^tBWC) must be met.

Table 3 MAPPING OF DQs TO COLUMN/BYTE LOCATIONS WITHIN A BLOCK

	С	COLUMN ADDRES ONTROLI	DQ PLANES	
DQ INPUTS	A2	A1	A0	CONTROLLED
DQ0	0	0	0	0-7
DQ1	0	0	1	0-7
DQ2	0	1	0	0-7
DQ3	0	1	. 1	0-7
DQ4	1	0	0	0-7
DQ5	1	0	1	0-7
DQ6	1	1	0	0-7
DQ7	1	1	1	0-7
DQ8	0	0	0	8-15
DQ9	0	0	1	8-15
DQ10	0	1	0	8-15
DQ11	0	1	1	8-15
DQ12	1	0	0	8-15
DQ13	1	0	1	8-15
DQ14	1	1	0	8-15
DQ15	1	1	1	8-15
DQ16	0	0	0	16-23
DQ17	0	0	1	16-23
DQ18	0	1	0	16-23
DQ19	0	1	1	16-23
DQ20	1	0	0	16-23
DQ21	1	0	i:1	16-23
DQ22	1	1	0	16-23
DQ23	1	1	1	16-23
DQ24	0	0	0	24-31
DQ25	0	0	1	24-31
DQ26	0	1	0	24-31
DQ27	0	1	1	24-31
DQ28	1	0	0	24-31
DQ29	1 1	0	1	24-31
DQ30	1	1	0	24-31
DQ31	1	1	1	24-31

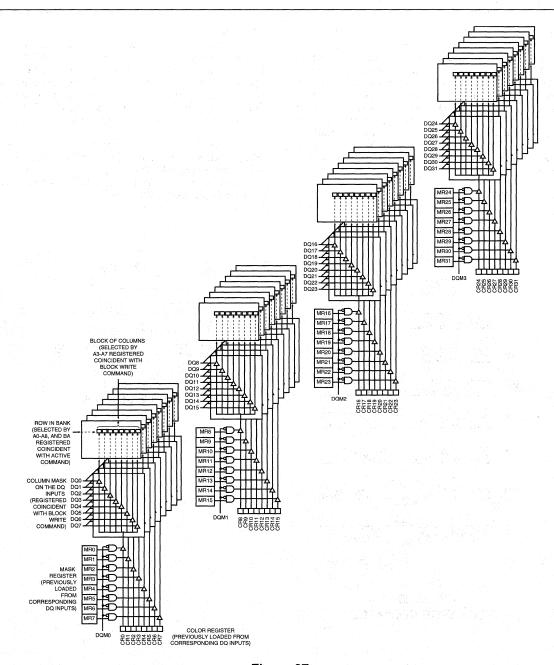


Figure 27
BLOCK WRITE MASKING – FUNCTIONAL REPRESENTATION

PRECHARGE

The PRECHARGE command is used to deactivate the open row in a particular bank, or the open row in both banks. The bank(s) will be available for a subsequent row access some specified time (tRP) after the precharge command is issued. Input A8 determines whether one or both banks are to be precharged, and in the case where only one bank is to be precharged, input BA selects the bank. Otherwise BA is treated as a "don't care". Once a bank has been precharged, it is in the idle state and must be activated prior to any READ, WRITE or BLOCK WRITE commands being issued to that bank.

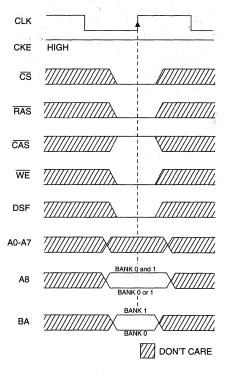


Figure 28
PRECHARGE COMMAND

POWER-DOWN

POWER-DOWN occurs when both banks are in the idle state (precharged) and CKE is registered LOW (see Figure 29). Entering POWER-DOWN deactivates the input and output buffers, excluding CKE, for maximum power savings while in standby. The device may not remain in the POWER-DOWN state longer than the refresh period (17ms) since the command does not perform any refresh operations.

The POWER-DOWN state is exited by taking CKE back HIGH. CKE must go HIGH ^tCKS before a positive clock edge, after meeting ^tCKH from the previous clock edge. The first command after exiting POWER-DOWN will be registered on the clock edge following ^tCKS.

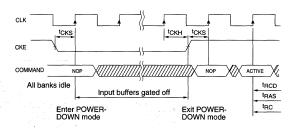


Figure 29 POWER-DOWN

MT41LC256K32D4(S) 256K x 32 SGRAM

TRUTH TABLE 2 - CKE

(Notes 1-4)

CKE _{n-1}	CKEn	CURRENT STATE	COMMANDn	ACTION _n	NOTES
L	L	POWER-DOWN	X	Maintain POWER-DOWN	
		SELF REFRESH	X	Maintain SELF REFRESH	6
L	Н	POWER-DOWN	COMMAND INHIBIT or NOP	Exit POWER-DOWN	7
		SELF REFRESH	COMMAND INHIBIT or NOP	Exit SELF REFRESH	6, 8
Н	L	Both Banks Idle	COMMAND INHIBIT or NOP	POWER-DOWN Entry	
	14 1 14	Both Banks Idle	AUTO REFRESH	SELF REFRESH Entry	5
Н	Н		See Truth Table 3		

- NOTE: 1. CKE_n is the logic state of CKE at clock edge n; CKE_{n-1} was the state of CKE at the previous clock edge.
 - 2. CURRENT STATE is the state of the SGRAM immediately prior to clock edge n.
 - 3. COMMAND_n is the command registered at clock edge n and ACTION_n is a result of COMMAND_n.
 - 4. All states and sequences not shown are illegal or reserved.
 - 5. Illegal on non "S" devices.
 - 6. Not available on non "S" devices.
 - 7. Exiting POWER-DOWN at clock edge n will put the device in the "all banks idle" state in time for clock edge n+1.
 - 8. Exiting SELF REFRESH at clock edge n will put the device in the "all banks idle" state once ^tXSR is met. COMMAND INHIBIT or NOP commands should be issued on any clock edges occuring during the ^tXSR period.

TRUTH TABLE 3 – Current State

(Notes 1-3; notes appear on next page)

CURRENT STATE	CS	RAS	CAS	WE	DSF	COMMAND/ACTION	NOTES
Any	Н	Х	Х	Χ	Х	COMMAND INHIBIT (NOP/ continue previous operation)	-
V	L	Н	Н	Н	L	NO OPERATION (NOP/ continue previous operation)	
	L	L	Н	Н	L	ACTIVE (Select bank and activate row)	
	L	L	Н	Н	Н	ACTIVE w/WPB (Select bank, activate row and WPB)	
Idle	L	L	L	Н	Ļ	AUTO REFRESH	5
	L	L	L	L	L	LOAD MODE REGISTER	5
	L	L	L	L	Н	LOAD SPECIAL MODE REGISTER	6
	L	Н	L	Н	L	READ (Select bank and column and start READ burst)	7
a structure	L	Н	L	L	L	WRITE (Select bank and column and start WRITE burst)	7
Row Active	L	Н	, L	L	Н.	BLOCK WRITE (Select bank & column and start BLOCK WRITE access	7
	L	L	Н	L	L	PRECHARGE (Deactivate row in bank or banks)	8
	L	L	L	L	Н	LOAD SPECIAL MODE REGISTER	6
	L	Н	L	Н	L	READ (Select bank and column and start new READ burst)	7
READ	L	Н	L	L	L	WRITE (Select bank and column and start WRITE burst)	7
(AUTO- PRECHARGE	L	Н	L	L	Н	BLOCK WRITE (Select bank & column and start BLOCK WRITE access)	7
DISABLED)	L	L	Н	L	L	PRECHARGE (Truncate READ burst, start precharge)	8
	L	Н	Н	L	L	BURST TERMINATE	9
	L	Н	L	Н	L	READ (Select bank and column and start READ burst)	7
WRITE	L	Н	L	L	L	WRITE (Select bank and column and start new WRITE burst)	7
(AUTO- PRECHARGE	L	Н	L	L	Н	BLOCK WRITE (Select bank & column and start BLOCK WRITE access)	7
DISABLED)	L	L	Н	L	L	PRECHARGE (Truncate WRITE burst, start precharge)	8
	L	Н	Н	L	L	BURST TERMINATE	9

MT41LC256K32D4(S) 256K x 32 SGRAM

NOTE: 1. This table applies when CKE_{n-1} was HIGH and CKE_n is HIGH (see Truth Table 2) and after ^tXSR has been met (if the previous state was SELF REFRESH).

- This table is bank specific, except where noted; i.e., the CURRENT STATE is for a specific bank and the commands shown are those allowed to be issued to that bank, when in that state. Exceptions are covered in the notes below.
- 3. CURRENT STATE definitions:

Idle: the bank has been precharged and ^tRP has been met.

Row Active: a row in the bank has been activated and [†]RCD has been met. No data bursts/ accesses and no register accesses are in progress.

Read: a READ burst has been initiated, with AUTO PRECHARGE disabled, and has not yet

terminated or been terminated.

Write: a WRITE burst has been initiated, with AUTO PRECHARGE disabled, and has not yet

terminated or been terminated.

4. The following states must not be interrupted by a command issued to the same bank. COMMAND INHIBIT or NOP commands, or allowable commands to the other bank should be issued on any clock edge occurring during these states. Allowable commands to the other bank are determined by it's CURRENT STATE; refer to Truth Table 3 and these notes.

Precharging: Starts with registration of a PRECHARGE command and ends when ^tRP is met. Once

^tRP is met, the bank will be in the Idle state.

Row Activating: Starts with registration of an ACTIVE command and ends when ^tRCD is met. Once

^tRCD is met, the bank will be in the Row Active state.

Read/Precharge: Starts with registration of a READ command with AUTO PRECHARGE enabled, and

ends when ^tRP has been met. Once ^tRP is met, the bank will be in the Idle state.

Write/Precharge: Starts with registration of a WRITE command with AUTO PRECHARGE enabled, and

ends when ^tRP has been met. Once ^tRP is met, the bank will be in the Idle state.

Block Write/

Precharge: Starts with registration of a BLOCK WRITE command with AUTO PRECHARGE

enabled, and ends when ^tRP has been met. Once ^tRP is met, the bank will be in the

Idle state.

Block Write: Starts with registration of a BLOCK WRITE command and ends when either ¹BPL or

¹BWC has been met. ¹BPL applies when the BLOCK WRITE is to be followed by a PRECHARGE and ¹BWC applies when it is to be followed by any other allowable

command. Once ^tBWC is met, the bank will be in the Row Active state.

Refreshing: Starts with registration of an AUTO REFRESH command and ends when ^tRC is met.

Once ^tRC is met, the SGRAM will be in the "all banks idle" state.

Accessing Mode

Register: Starts with registration of a LOAD MODE REGISTER command, and ends when ^tMTC

has been met. Once ^tMTC is met, the SGRAM will be in the "all banks idle" state.

Accessing Special

Mode Register: Starts with registration of a LOAD SPECIAL MODE REGISTER command, and ends

when tSML has been met.

- 5. Requires that both banks are idle.
- 6. Requires that the other bank is either idle or in the Row Active state.
- 7. READ, WRITE and BLOCK WRITE accesses will interact between banks as they do within a bank.
- 8. If both banks are to be precharged, both must be in a valid state for precharging.
- BURST TERMINATE is not bank specific; it affects the most recent READ or WRITE burst, regardless of bank.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc/Vccq supply relative to Vss. -1V to +4.6V Operating Temperature, T_A (ambient) 0°C to +70°C Storage Temperature (plastic)-55°C to +150°C Power Dissipation 1W Short Circuit Output Current 50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Note: 1) $(0^{\circ}C \le T_{\Delta} \le 70^{\circ}C; Vcc/Vccq = +3.3V \pm 0.3V)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc/Vccq	3.0	3.6	V	
Input High (Logic 1) Voltage, all inputs	ViH	2.0	Vcc+1	V	
Input Low (Logic 0) Voltage, all inputs	VIL	-0.5	0.8	V	
INPUT LEAKAGE CURRENT Any input $0V \le V$ IN $\le V$ CC (All other pins not under test = $0V$)	lı.	-1	1,	μΑ	
OUTPUT LEAKAGE CURRENT (DQs are disabled; 0V ≤ Vout ≤ 3.6V)	loz	-2	2	μΑ	
OUTPUT LEVELS Output High Voltage (Iout = -2mA)	Vон	2.4		V	
Output Low Voltage (lout = 2mA)	Vol		0.4	V	

Icc SPECIFICATIONS AND CONDITIONS

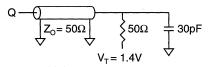
(Note: 1) $(0^{\circ}C \le T_{\Lambda} \le 70^{\circ}C$; $Vcc/Vccq = +3.3V \pm 0.3V$)

11016: 1) (0 0 3 1 A 3 70 0; 100/1000 = 10.01 ±0.01)	4.0		MAX		1	
PARAMETER/CONDITION	SYMBOL	-10	-12	-15	UNITS	NOTES
SELF REFRESH CURRENT: CKE ≤ 0.2V (S version only)	Icc1 (S only)	TBD	TBD	TBD	μΑ	5
STANDBY CURRENT: POWER-DOWN mode,	Icc2	TBD	TBD	TBD	mA	
$CKE \le V_{IL}$ (MAX), both banks idle	Icc2 (S only)	TBD	TBD	TBD	μΑ	
STANDBY CURRENT: $\overline{CS} \ge V_{IH}$ (MIN), ${}^{t}CK \ge {}^{t}CK$ (MIN), CKE $\ge V_{IH}$ (MIN), both banks idle	Іссз	TBD	TBD	TBD	mA	3, 4, 13
STANDBY CURRENT: $\overline{CS} \ge V_{IH}$ (MIN), ${}^{t}CK \ge {}^{t}CK$ (MIN), CKE $\ge V_{IH}$ (MIN), both banks active after ${}^{t}RCD$ met	Icc4	TBD	TBD .	TBD	mA	3, 4, 13
AUTO REFRESH CURRENT (^t RC = 16.6μs)	Icc5	TBD	TBD	TBD	mA	4
OPERATING CURRENT: ACTIVE mode, burst = 2, READ or WRITE, ^t RC ≥ ^t RC (MIN), one bank active	Icc6	TBD	TBD	TBD	mA	3, 4
OPERATING CURRENT: ACTIVE mode, burst = 2, READ or WRITE, ${}^{t}RC \ge {}^{t}RC$ (MIN), two banks active	Icc7	TBD	TBD	TBD	mA	3, 4
OPERATING CURRENT: BURST mode, full-page burst after t RCD met READ or WRITE, t CK \geq t CK (MIN), other bank idle	Icc8	TBD	TBD	TBD	mA	3, 4

CAPACITANCE

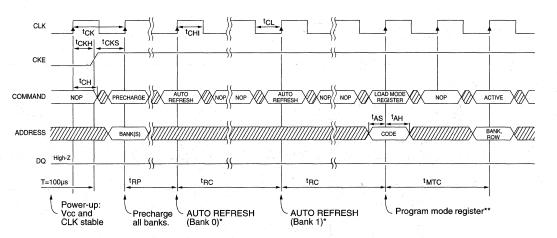
PARAMETER	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A8, BA	Ci1	5	pF	2
Input Capacitance: RAS, CAS, WE, DQM, CLK, CKE, CS, DSF	C ₁₂	5	pF	2
Input/Output Capacitance: DQs	Cio	7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

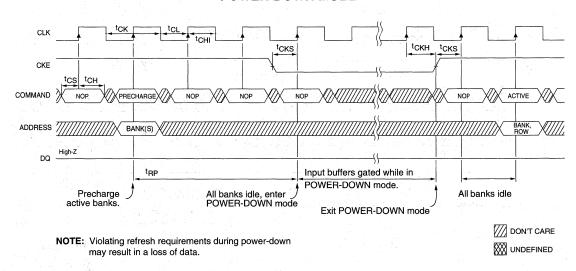

(Notes: 6, 8, 9, 10, 12) (0°C \leq T_A \leq +70°C) Listed alphabetically by symbol subscript.

AC CHARACTERISTICS			10	-	12		15		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from CLK (pos. edge)	†AC		9		11	35	13	ns	
Address hold time	^t AH	. 1		1.5		2		ns	
Address setup time	^t AS	3		3.5		4		ns	
BLOCK WRITE to PRECHARGE delay	^t BPL	30		36		45		ns	
BLOCK WRITE cycle time	tBWC	20	100	24		30		ns	
CS, RAS, CAS, WE, DSF, DQM hold time	^t CH	1		1.5		2		ns	
CLK high level width	^t CHI	3.5		4		5		ns	
System clock cycle time	tCK	10		12		15		ns	
CKE hold time	^t CKH	1		1.5		2		ns	
CKE setup time	tCKS	3		3.5		4		ns	4.1
CLK low level width	^t CL	3.5		4		5		ns	
CS, RAS, CAS, WE, DSF, DQM setup time	¹CS	3		3.5		4		ns	
Data-in hold time	tDH	1		1.5		2	100	ns	
Data-in setup time	†DS	3		3.5		4		ns	
Data-out high-impedance time	^t HZ	4	10	4	10	4	10	ns	11
Data-out low-impedance time	tLZ	3		3		3		ns	
LOAD MODE REGISTER command to command	†MTC	2		2		2		^t CK	
Data-out hold time	^t OH	4		4		4		ns	
ACTIVE to PRECHARGE command period	†RAS	60	120K	72	120K	90	120K	ns	
AUTO REFRESH and ACTIVE to ACTIVE command period	tRC	100		100	11.00	110		ns	
ACTIVE to READ, WRITE or BLOCK WRITE delay	tRCD	30		36		45		ns	
Refresh period (1,024 cycles)	^t REF		17		17		17	ms	7
PRECHARGE command period	^t RP	30		36		45	1 1 1 1	ns	
ACTIVE bank A to ACTIVE bank B command period	tRRD	30		36		45		ns	100
LOAD SPECIAL MODE REGISTER command to command	tSML	2		2		2		†CK	
Transition time	tT	1	30	1	30	1	30	ns	
Write recovery time	tWR	15		15		15		ns	
Exit SELF REFRESH to ACTIVE command	tXSR	100	1	100		110		ns	

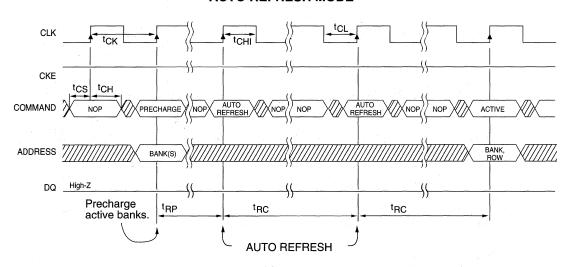
NOTES


- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. $Vcc/Vccq = +3.3V\pm0.3V$; $f=1\,MHz$.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up, followed by two AUTO REFRESH commands before proper device operation is assured. The two AUTO REFRESH command wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 1$ ns.

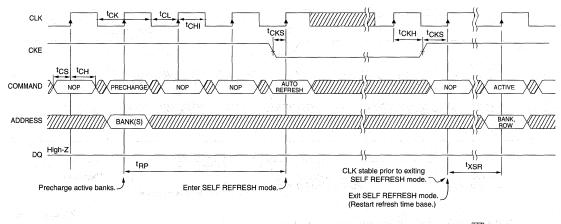
- 9. In addition to meeting the transition rate specification, the clock and CKE must transit between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 10. Outputs measured at 1.4V with equivalent load:


- 11. ^tHZ defines the time at which the output achieves the open circuit condition; it is not a reference to VoH or VoL.
- 12. AC timing tests have $V_{IL} = 0V$ and $V_{IH} = 3.0V$ with timing referenced to 1.4V crossover point.
- 13. All other inputs at CMOS levels.

INITIALIZE AND LOAD MODE REGISTER

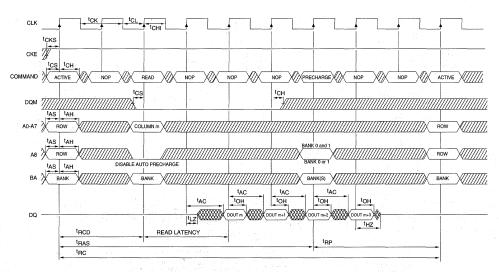

^{*}Starts at Bank 0 and alternates banks.

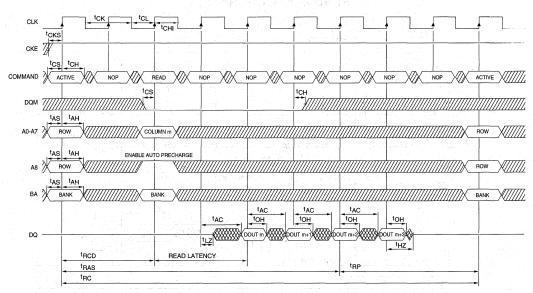
POWER-DOWN MODE



^{**}The mode register may be loaded prior to the AUTO REFRESH cycles if desired.

AUTO REFRESH MODE

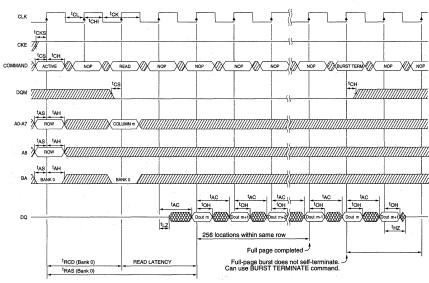

SELF REFRESH MODE



READ – WITHOUT AUTO PRECHARGE

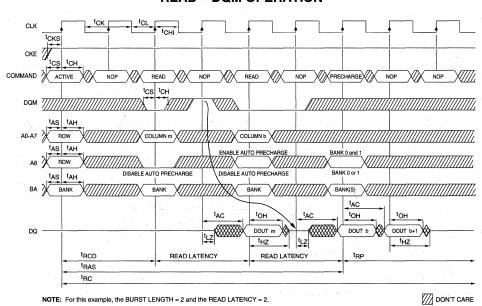
NOTE: For this example, the BURST LENGTH = 4, the READ LATENCY = 2 and the READ burst is followed by a "manual" PRECHARGE.

READ – WITH AUTO PRECHARGE



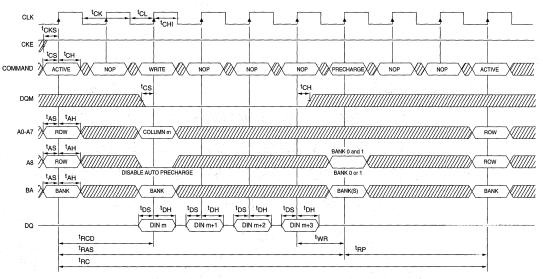
NOTE: For this example, the BURST LENGTH = 4, and the READ LATENCY = 2.

DON'T CARE

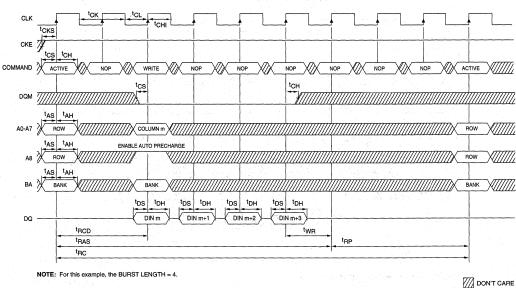

₩ UNDEFINED

READ - FULL-PAGE BURST

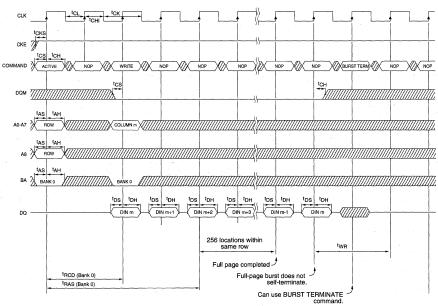
NOTE: For this example, BANK 0 is being accessed and the READ LATENCY = 2.


READ - DQM OPERATION

W UNDEFINED

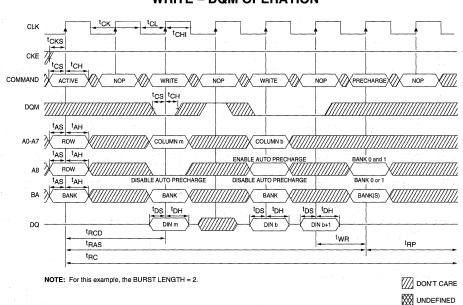


WRITE - WITHOUT AUTO PRECHARGE

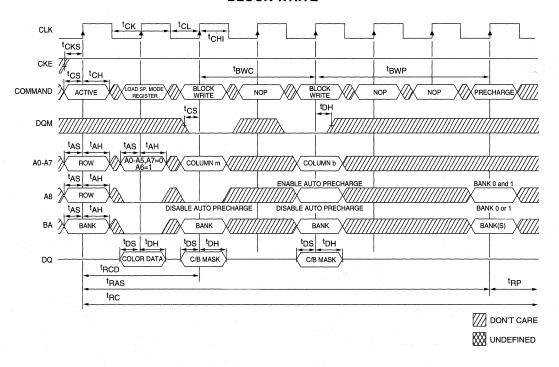


NOTE: For this example, the BURST LENGTH = 4 and the WRITE burst is followed by a "manual" PRECHARGE.

WRITE - WITH AUTO PRECHARGE



WRITE - FULL-PAGE BURST


NOTE: For this example, BANK 0 is being accessed.

WRITE - DQM OPERATION

BLOCK WRITE

MICHON TECHNOLOGY, INC.

EDO DRAMs	
FPM DRAMs	2
SGRAM	3
DRAM SIMMs	4
DRAM DIMMs	5
DRAM CARDS	6
TECHNICAL NOTES	7
PRODUCT RELIABILITY	8
PACKAGE INFORMATION	9
SALES AND SERVICE INFORMATION	::-::10 -
MICRON DATAFAX INDEX	

DRAM SIMM PRODUCT SELECTION GUIDE

Memory		Part	Optional	Access	Typical Pow	er Dissipation	No. of Pins		
Configuration		Number	Access Cycle	Time (ns)	Standby	Active	SIMM	Page	
3.3V SIMMs	:		V	- 1			1.1.1		
1 Meg x 32	3.3V	MT8LD(T)132		60, 70, 80	9.6mW	800mW	72	4-77	
1 Meg x 32	3.3V	MT8LD(T)132 S	S	60, 70, 80	2.4mW	800mW	72	4-77	
1 Meg x 32	3.3V	MT8LD(T)132 X	EDO	60, 70, 80	8mW	920mW	72	4-77	
1 Meg x 32	3.3V	MT8LD(T)132 XS	EDO, S	60, 70, 80	2mW	920mW	72	4-77	
2 Meg x 32	3.3V	MT16LD(T)232		60, 70, 80	19.2mW	810mW s	72	4-77	
2 Meg x 32	3.3V	MT16LD(T)232 S	S	60, 70, 80	4.8mW	802mW	72	4-77	
2 Meg x 32	3.3V	MT16LD(T)232 X	EDO	60, 70, 80	16mW	928mW	72	4-77	
2 Meg x 32	3.3V	MT16LD(T)232 XS	EDO, S	60, 70, 80	4mW	922mW	72	4-77	
2 Meg x 32	3.3V	MT4LD232		60, 70	4mW	800mW	72	4-99	
2 Meg x 32	3.3V	MT4LD232 S	S	60, 70	1.2mW	800mW	72	4-99	
2 Meg x 32	3.3V	MT4LD232 X	EDO	60, 70	4mW	600mW	72	4-99	
2 Meg x 32	3.3V	MT4LD232 XS	EDO, S	60, 70	1.2mW	600mW	72	4-99	
4 Meg x 32	3.3V	MT8LD432		60, 70	8mW	1,440mW	72	4-133	
4 Meg x 32	3.3V	MT8LD432 S	S	60, 70	2.4mW	1,440mW	72	4-133	
4 Meg x 32	3.3V	MT8LD432 X	EDO	60, 70	8mW	1,200mW	72	4-133	
4 Meg x 32	3.3V	MT8LD432 XS	EDO, S	60, 70	3.2mW	1,200mW	72	4-133	
8 Meg x 32	3.3V	MT16LD832		60, 70	16mW	1,408mW	72	4-133	
8 Meg x 32	3.3V	MT16LD832 S	S	60, 70	4.8mW	1,442mW	72	4-133	
8 Meg x 32	3.3V	MT16LD832 X	EDO	60, 70	16mW	1,208mW	72	4-133	
8 Meg x 32	3.3V	MT16LD832 XS	EDO, S	60, 70	6.4mW	1,203mW	72	4-133	
5V SIMMs		# 14 To 15 T							
1 Meg x 8	5V	MT2D18		60, 70	6mW	450mW	30	4-1	
4 Meg x 8	5V	MT2D48		60, 70	6mW	500mW	30	4-11	
4 Meg x 8	5V	MT8D48		60, 70	24mW	1,800mW	30	4-21	
4 Meg x 9	5V	MT3D49		60, 70	9mW	725mW	30	4-31	
4 Meg x 9	5V	MT9D49		60, 70	27mW	2,025mW	30	4-41	
256K x 32	5V	MT2D25632		60, 70	6mW	750mW	72	4-51	
512K x 32	5V	MT4D51232		60, 70	12mW	756mW	72	4-51	
1 Meg x 32	5V	MT8D132		60, 70	24mW	1,800mW	72	4-63	
1 Meg x 32	5V	MT8D132 S	S	60, 70	24mW	1,800mW	72	4-63	
2 Meg x 32	5V	MT16D232		60, 70	48mW	1,824mW	72	4-63	
2 Meg x 32	5V	MT16D232 S	S	60, 70	48mW	1,824mW	72	4-63	
4 Meg x 32	5V	MT8D432		60, 70	24mW	2,000mW	72	4-119	
4 Meg x 32	5V	MT8D432 S	S	60, 70	2.4mW	1,440mW	72	4-119	
8 Meg x 32	5V	MT16D832		60, 70	48mW	2,024mW	72	4-119	
8 Meg x 32	5V	MT16D832 S	S	60, 70	4.8mW	1,443mW	72	4-119	
1 Meg x 36	5V	MT9D136	1.0	60, 70	27mW	2,025mW	72	4-155	
2 Meg x 36	5V	MT18D236		60, 70	54mW	2,052mW	72	4-155	
4 Meg x 36	5V	MT12D436		60, 70	36mW	2,500mW	72	4-167	
4 Meg x 36	5V	MT12D436 S	S	60, 70	3.6mW	2,340mW	72	4-167	
8 Meg x 36	5V	MT24D836		60, 70	72mW	2,536mW	72	4-167	
8 Meg x 36	5V	MT24D836 S	S	60, 70	7.2mW	2,348mW	72	4-167	

DRAM MODULE

MEG x 8

1 MEGABYTE, 5V, FAST PAGE MODE

FEATURES

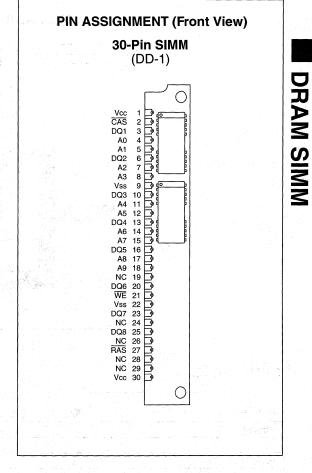
- IEDEC- and industry-standard pinout in a 30-pin, single-in-line memory module (SIMM)
- High-performance CMOS silicon-gate process
- Single 5V ±10% power supply
- Low power, 6mW standby; 450mW active, typical
- All device pins are TTL-compatible
- FAST PAGE MODE (FPM) access cycle
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- Low profile
- 1,024-cycle refresh distributed across 16ms

OPTIONS

MARKING

• Tim	ing			
60ns	access			-6
70ns	access			-7

Packages 30-pin SIMM M


• Part Number Example: MT2D18M-6

KEY TIMING PARAMETERS

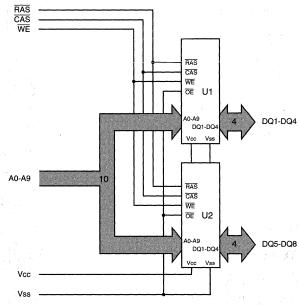
SPEED	tRC	^t RAC	tPC	tAA	tCAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

GENERAL DESCRIPTION

The MT2D18 is a randomly accessed solid-state memory containing 1,048,576 words organized in a x8 configuration. During READ or WRITE cycles, each word is uniquely addressed through 20 address bits, which are entered 10 bits (A0-A9) at a time. RAS is used to latch the first 10 bits and CAS the latter 10 bits. READ or WRITE cycles are selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. Early WRITE occurs when WE goes LOW prior to CAS going LOW, and the output pins remain open (High-Z) until the next CAS cycle.

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined (A0-A9) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles.



REFRESH

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycleand decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any

RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR or HIDDEN) so that all 1,024 combinations of RAS addresses (A0-A9) are executed at least every 16ms regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

U1-U2 = MT4C4001JDJ

TRUTH TABLE

					ADDR	ESSES	DATA-IN/OUT
FUNCTION		RAS	CAS	WE	^t R	tC .	DQ1-DQ8
Standby		Н	H→X	X	X	X	High-Z
READ		L	L	H	ROW	COL	Data-Out
EARLY WRITE		Ļ	L	L L	ROW	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	ROW	COL	Data-Out
READ	2nd Cycle	L to	H→L	Н	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	isa. Li P	H→L	L L	ROW	COL	Data-In
WRITE	2nd Cycle	as diff L ens to	H→L	L and	n/a	COL	Data-In
RAS-ONLY REFRESH		L	Н	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Data-In
CBR REFRESH		H→L	Ļ	Н	X	Х	High-Z

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC Supply Relative to Vss	1V to +7V
Operating Temperature, T _A (ambient)	0°C to +70°C
Storage Temperature	55°C to +125°C
Power Dissipation	2W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 6) ($Vcc = +5V \pm 10\%$)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		V cc	4.5	5.5	V	
Input High (Logic 1) Voltage, all inputs		Vін	2.4	Vcc+1	V	
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	V	
INPUT LEAKAGE Any input $0V \le VIN \le 6.5V$ (All other pins not under test = $0V$)	A0-A9, RAS, CAS, WE	ÎI.	-4	4	μΑ	
OUTPUT LEAKAGE (Q is disabled; 0V ≤ Vout ≤ 5.5V)	DQ1-DQ8	loz	-10	10	μА	
OUTPUT LEVELS Output High (Logic 1) Voltage (lout = -5m/		V он	2.4		٧	ija,
Output Low (Logic 1) Voltage (lout = $4.2m$		Vol	17/3)	0.4	٧	

		NAAV			
		MAX			
PARAMETER/CONDITION	SYMBOL	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = ViH)	lcc1	4	4	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Other Inputs = Vcc -0.2V)	Icc2	2	2	mA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ¹RC = ¹RC [MIN])	Icc3	220	200	mA	2, 26, 28
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN])	Icc4	160	140	mA	2, 26, 28
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = Vih: ^t RC = ^t RC [MIN])	Icc5	220	200	mA	26, 28
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	lcc6	220	200	mA	19, 26

CAPACITANCE

PARAMETER		SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A9		C _{I1}		13	рF	17
Input Capacitance: RAS, CAS, WE	4.000	Cı2		17	рF	17
Input/Output Capacitance: DQ1-DQ8	5 W 1	Сю		10	pF	17

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

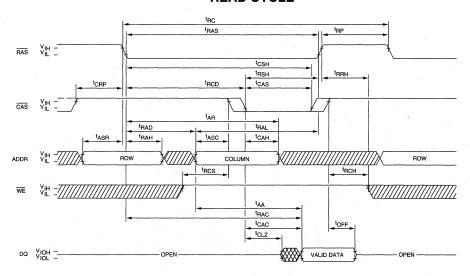
(Notes: 3, 4, 5, 6, 7, 10, 11, 16) ($Vcc = +5V \pm 10\%$)

AC CHARACTERISTICS			-6		-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	tAA		30		35	ns	
Column-address hold time (referenced to RAS)	^t AR	45		50		ns	
Column-address setup time	tASC	0		0		ns	
Row-address setup time	tASR	0		0		ns	
Access time from CAS	^t CAC		15		20	S	9
Column-address hold time	^t CAH	10		15		ns	
CAS pulse width	^t CAS	15	10,000	20	10,000	ns	2.1
CAS hold time (CBR REFRESH)	^t CHR	10		10		ns	19
CAS to output in Low-Z	†CLZ	0		0		ns	
CAS precharge time	^t CP	10		10		ns	18
Access time from CAS precharge	^t CPA		35		40	ns	- 41
CAS to RAS precharge time	^t CRP	10		10		ns	
CAS hold time	tCSH	60		70		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		ns	19
Write command to CAS lead time	^t CWL	15		20		ns	
Data-in hold time	tDH t	10		15		ns	15
Data-in hold time (referenced to RAS)	^t DHR	45		55	1 2 1 14	ns	engal in a
Data-in setup time	t _{DS}	0		0	43	ns	15
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	12, 27
FAST-PAGE-MODE READ or WRITE cycle time	tPC t	35		40		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	n/a		n/a		n/a	21
Access time from RAS	tRAC		60		70	ns	8
RAS to column-address delay time	tRAD	15	30	15	35	ns	22
Row-address hold time	^t RAH	10		10		ns	
Column-address to RAS lead time	†RAL	30		35	FALSE	ns	
RAS pulse width	tRAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	60	100,000	70	100,000	ns	

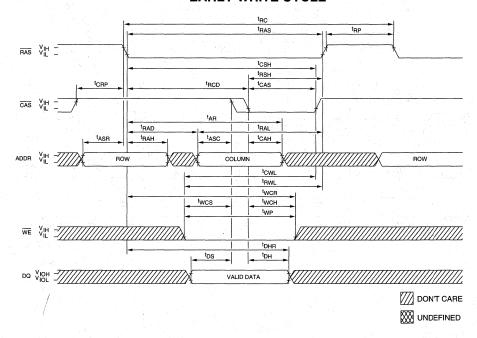
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 6, 7, 10, 11, 16, 21) ($Vcc = +5V \pm 10\%$)

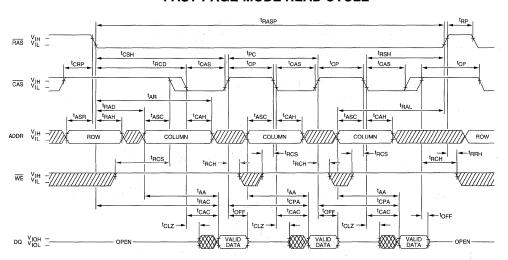
AC CHARACTERISTICS			-6		-7	125	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	110		130		ns	
RAS to CAS delay time	tRCD	20	45	20	50	ns	13
Read command hold time (referenced to CAS)	^t RCH	0	1 2 2 4 4 4	0		ns	24
Read command setup time	tRCS	0		0	1.00	ns	
Refresh period (1,024 cycles)	†REF		16	100	16	ms	100 A 100
RAS precharge time	tRP	40		50		ns	
RAS to CAS precharge time	tRPC	0		0		ns	
Read command hold time (referenced to RAS)	tRRH	0		0		ns	24
RAS hold time	tRSH	15		20		ns	
READ WRITE cycle time	tRWC	n/a	F () F (n/a		n/a	21
Write command to RAS lead time	^t RWL	15		20	13.5	ns	
Transition time (rise or fall)	tT.	3	50	3	50	ns	
Write command hold time	tWCH	10		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		ns	
WE command setup time	twcs	0		0		ns	
Write command pulse width	tWP	10		15		ns	
WE hold time (CBR REFRESH)	tWRH	10		10		ns	23
WE setup time (CBR REFRESH)	†WRP	10	3. 4.3.	10		ns	23


NOTES

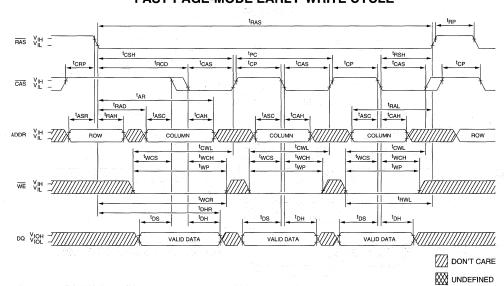
- 1. All voltages referenced to Vss.
- 2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- An initial pause of 100µs is required after power-up followed by any eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- 4. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 11. If CAS = V_{IL} , data output may contain data from the last valid READ cycle.
- tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.


- 14. ^tRCH is referenced to the first rising edge of RAS or CAS.
- 15. These parameters are referenced to CAS leading edge in EARLY WRITE cycles.
- 16. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is measured using MIL-STD-883C, Method 3012.1 (1 MHz AC, Vcc = 5V, DC bias = 2.4V at 15mV RMS).
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCP.
- 19. On-chip refresh and address counters are enabled.
- 20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$.
- 21. LATE WRITE, READ WRITE or READ-MODIFY-WRITE cycles are not available due to \overline{OE} being grounded on U1 and U2.
- 22. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 23. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 25. All other inputs at Vcc -0.2V.
- 26. Icc is dependent on cycle rates.
- The 3ns minimum is a parameter guaranteed by design.
- 28. Column-address changed once each cycle.

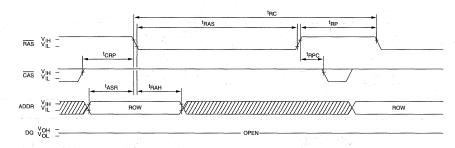
READ CYCLE



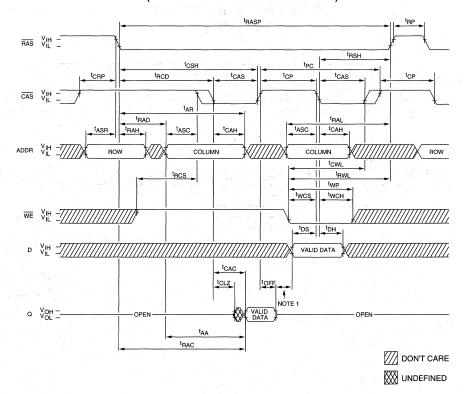
EARLY WRITE CYCLE



FAST-PAGE-MODE READ CYCLE

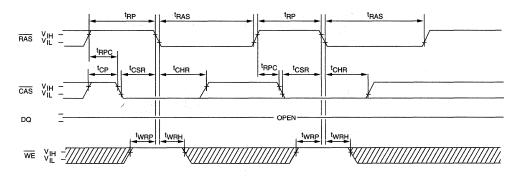


FAST-PAGE-MODE EARLY-WRITE CYCLE

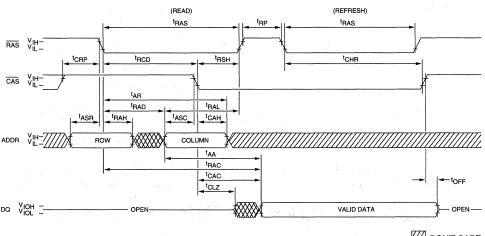


RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)



NOTE: 1. Do not drive data prior to tristate.


CBR REFRESH CYCLE

(Addresses = DON'T CARE)

HIDDEN REFRESH CYCLE 20

 $(\overline{WE} = HIGH)$

DON'T CARE

₩ UNDEFINED

DRAM MODULE

4 MEG x 8

4 MEGABYTE, 5V, FAST PAGE MODE

FEATURES

- JEDEC- and industry-standard pinout in a 30-pin, single-in-line memory module (SIMM)
- High-performance CMOS silicon-gate process
- Single 5V ±10% power supply
- Low power, 6mW standby; 500mW active, typical
- All device pins are TTL-compatible
- FAST PAGE MODE (FPM) access cycle
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- 2,048-cycle refresh distributed across 32ms
- Low profile

O	P	T	Ι	O	N	S

MARKING

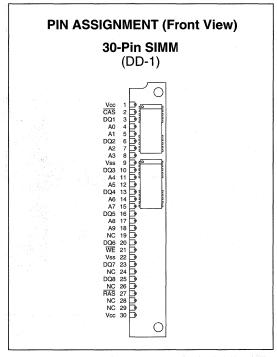
•	Timing			
	60ns access			-6
	70ns access			-7
_	Dealeann			

Packages
 30-pin SIMM

M

• Part Number Example: MT2D48M-6

KEY TIMING PARAMETERS

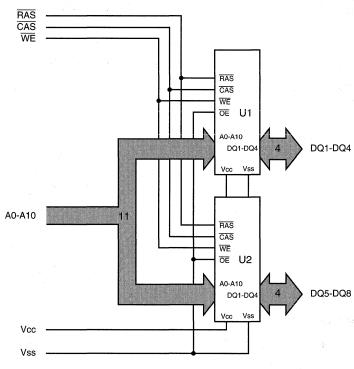

SPEED	tRC	†RAC	^t PC	^t AA	tCAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

GENERAL DESCRIPTION

The MT2D48 is a randomly accessed solid-state memory containing 4,194,304 words organized in a x8 configuration. During READ or WRITE cycles, each word is uniquely addressed through 22 address bits, which are entered 11 bits (A0-A10) at a time. \overline{RAS} is used to latch the first 11 bits and \overline{CAS} the latter 11 bits. READ or WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{CAS} . Since \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pins remain open (High-Z) until the next \overline{CAS} cycle.

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined (A0-A10) page boundary. The FAST PAGE MODE cycle is



always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operations.

REFRESH

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} -ONLY, CBR or HIDDEN) so that all 2,048 combinations of \overline{RAS} addresses (A0-A10) are executed at least every 32ms, regardless of sequence. The CBR REFRESH cycle will invoke the refresh counter for automatic \overline{RAS} addressing.

FUNCTIONAL BLOCK DIAGRAM

U1-U2 = MT4C4M4B1DJ

TRUTH TABLE

					ADDR	ESSES	DATA-IN/OUT
FUNCTION		RAS CAS		WE	^t R	tC	DQ1-DQ8
Standby		- H	H→X	Х	X	Χ	High-Z
READ		CLSS.	N. L	Н	ROW	COL	Data-Out
EARLY WRITE		L	L	L	ROW	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	ROW	COL	Data-Out
READ	2nd Cycle	th Lash.	H→L	Н	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	ROW	COL	Data-In
WRITE	2nd Cycle	L	H→L	L	n/a	COL	Data-In
RAS-ONLY REFRESH		a tal	Н	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	Х	X	High-Z

MT2D48 4 MEG x 8 DRAM MODULE

ABSOLUTE MAXIMUM RATINGS*

 *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +5V \pm 10\%$)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	4.5	5.5	V	
Input High (Logic 1) Voltage, all inputs		ViH	2.4	Vcc+1	V	
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	V	
INPUT LEAKAGE Any input $0V \le V_{IN} \le 5.5V$ (All other pins not under test = $0V$)	A0-A10, RAS, CAS, WE		-4	4	μΑ	
OUTPUT LEAKAGE (Q is disabled; 0V ≤ Vo∪t ≤ 5.5V)	DQ1-DQ8	loz	-10	10	μА	
OUTPUT LEVELS Output High (Logic 1) Voltage (lout = -5mA		Vон	2.4		V	
Output Low (Logic 0) Voltage (lout = 4.2m/		Vol	11.7	0.4	٧	

		М	AX]	
PARAMETER/CONDITION	SYMBOL	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = ViH)	lcc1	4	4	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Other Inputs = Vcc -0.2V)	Icc2	2	2	mA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: [†] RC = [†] RC [MIN])	Іссз	240	220	mA	3, 4, 26
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL; CAS, Address Cycling: PC = PC [MIN])	Icc4	180	160	mA	3, 4, 26
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling; CAS = VIH: \textstyle RC = \textstyle RC [MIN])	lcc5	240	220	mA	3, 26
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: [†] RC = [†] RC [MIN])	Icc6	240	220	mA	3, 5

4-13

MT2D48 4 MEG x 8 DRAM MODULE

CAPACITANCE

PARAMETER	4.4	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A10		Ci1		13	pF	2
Input Capacitance: RAS, CAS, WE		C ₁₂		17	pF	2
Input/Output Capacitance: DQ1-DQ8	100	Сю		10	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5V \pm 10\%$)

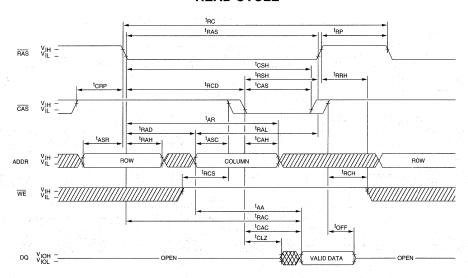
AC CHARACTERISTICS			-6		-7		100
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30		35	ns	
Column-address hold time (referenced to RAS)	tAR t	50		55		ns	
Column-address setup time	tASC .	0		0		ns	
Row-address setup time	tASR	0		0		ns	
Access time from CAS	tCAC	47.1	15		20	ns	15
Column-address hold time	^t CAH	10		15		ns	1.0
CAS pulse width	tCAS	15	10,000	20	10,000	ns	
CAS hold time (CBR REFRESH)	^t CHR	15		15		ns	5
CAS to output in Low-Z	tCLZ	3		3		ns	25
CAS precharge time	^t CP	10		10		ns	16
Access time from CAS precharge	^t CPA		35		40	ns	1
CAS to RAS precharge time	^t CRP	5		5		ns	
CAS hold time	t _{CSH}	60		70		ns	
CAS setup time (CBR REFRESH)	tCSR	5		5		ns	5
Write command to CAS lead time	^t CWL	15		20		ns	
Data-in hold time	^t DH	10		15		ns	21
Data-in hold time (referenced to RAS)	tDHR	45		55		ns	
Data-in setup time	tDS	0		0	65	ns	21
Output buffer turn-off delay	tOFF	3	15	3	20	ns	20, 25
FAST-PAGE-MODEREAD or WRITE cycle time	^t PC	35		40		ns	5.47
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	n/a		n/a		ns	22
Access time from RAS	tRAC		60		70	ns	14
RAS to column-address delay time	tRAD	15	30	15	35	ns	18
Row-address hold time	tRAH .	10	Section 5.	10		ns	
Column-address to RAS lead time	^t RAL	30		35	1.	ns	
RAS pulse width	tRAS .	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	60	100,000	70	100,000	ns	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

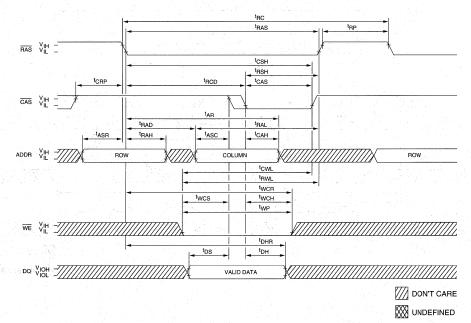
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5V \pm 10\%$)

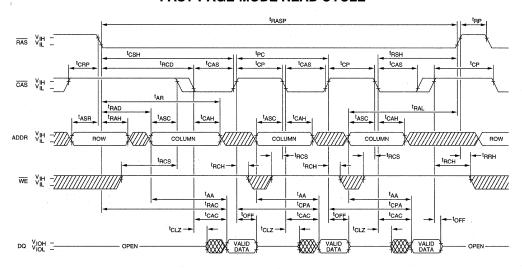
AC CHARACTERISTICS		-(6	-	7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	tRC	110		130		ns	
RAS to CAS delay time	^t RCD	20	45	20	50	ns	17
Read command hold time (referenced to CAS)	^t RCH	0	ar etc.	0	10.04 F 100	- ns	19
Read command setup time	^t RCS	0		0	1.11	ns	1 . 4
Refresh period (2,048 cycles)	^t REF		32		32	ms	The state of
RAS precharge time	^t RP	40	y' '	50	7 4717	ns	
RAS to CAS precharge time	^t RPC	0	1.1	0	10.04	ns	T 200
Read command hold time (referenced to RAS)	^t RRH	0		0	1.	ns	19
RAS hold time	tRSH	15	4.5.	20		ns	
READ WRITE cycle time	tRWC	n/a		n/a		ns	22
Write command to RAS lead time	^t RWL	15		20	100	ns	
Transition time (rise or fall)	t T	3	50	3	50	ns	
Write command hold time	tWCH	10		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		ns	
WE command setup time	tWCS	0		0		ns	
Write command pulse width	tWP	10		15		ns	
WE hold time (CBR REFRESH)	tWRH	10		10		ns	24
WE setup time (CBR REFRESH)	tWRP	10		10		ns	24

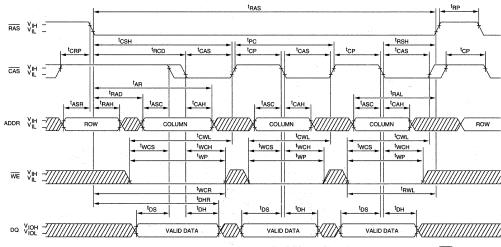
4 MEG x 8 DRAM MODULE


NOTES

- 1. All voltages referenced to Vss.
- This parameter is sampled. Capacitance is measured using MIL-STD-883C, Method 3012.1 (1 MHz AC, Vcc = 5V, DC bias = 2.4V at 15mV RMS).
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between $V_{\rm IL}$ and $V_{\rm IL}$ (or between $V_{\rm IL}$ and $V_{\rm IH}$) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If CAS = VIL, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.


- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in EARLY WRITE cycles.
- 22. OE is tied permanently LOW; LATE WRITE or READ-MODIFY-WRITE operations are not possible.
- 23. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 24. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.
- 25. The 3ns minimum is a parameter guaranteed by design.
- 26. Column-address changed once each cycle.

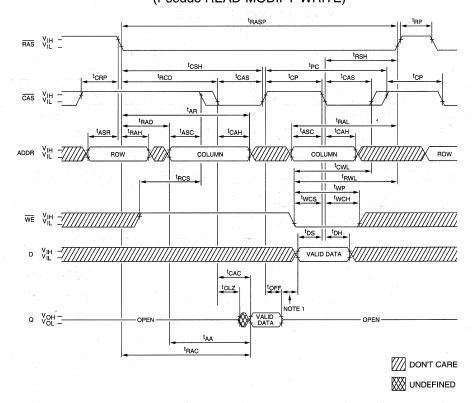

READ CYCLE


EARLY WRITE CYCLE

FAST-PAGE-MODE READ CYCLE

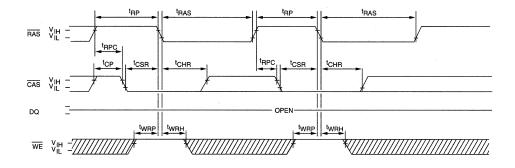


FAST-PAGE-MODE EARLY-WRITE CYCLE

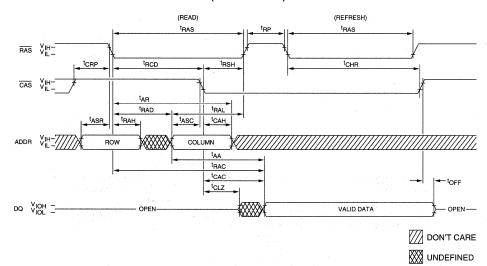


DON'T CARE

RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)



FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)



NOTE: 1. Do not drive data prior to tristate.

CBR REFRESH CYCLE (Addresses = DON'T CARE)

HIDDEN REFRESH CYCLE 23 $(\overline{WE} = HIGH)$

DRAM MODULE

4 MEG x 8

4 MEGABYTE, 5V, FAST PAGE MODE

FEATURES

- JEDEC- and industry-standard pinout in a 30-pin single-in-line memory module (SIMM)
- High-performance CMOS silicon-gate process
- Single 5V ±10% power supply
- All device pins are TTL-compatible
- Low power, 24mW standby; 1,800mW active, typical
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- 1,024-cycle refresh distributed across 16ms
- FAST PAGE MODE (FPM) access cycle

OPTIONS

30-pin SIMM

MARKING

-6

OI LIONS		1.4	4
Timing			
60ns access			
70ns access			
Packages			

-7 M

• Part Number Example: MT8D48M-6

KEY TIMING PARAMETERS

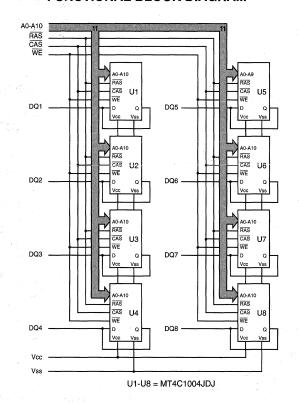
SPEED	tRC	tRAC	^t PC	^t AA	^t CAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

GENERAL DESCRIPTION

The MT8D48 is a randomly accessed solid-state memory containing 4,194,304 words organized in a x8 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 22 address bits which are entered 11 bits (A0-A10) at a time. $\overline{\text{RAS}}$ is used to latch the first 11 bits and $\overline{\text{CAS}}$ the latter 11 bits. A READ or WRITE cycle is selected with the $\overline{\text{WE}}$ input. A logic HIGH on $\overline{\text{WE}}$ dictates READ mode, while a logic LOW on $\overline{\text{WE}}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{\text{WE}}$ or $\overline{\text{CAS}}$, whichever occurs last. If $\overline{\text{WE}}$ goes LOW prior to $\overline{\text{CAS}}$ going LOW, the output pin(s) remain open (High-Z) until the next $\overline{\text{CAS}}$ cycle. EARLY WRITE occurs when $\overline{\text{WE}}$ goes LOW prior to $\overline{\text{CAS}}$ going LOW, and the ouput remains open (High-Z) until the next $\overline{\text{CAS}}$ cycle.

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined


(A0-A10) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

REFRESH

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR or HIDDEN) so that all 1,024 combinations of \overline{RAS} addresses (A0-A9) are executed at least every16ms regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

		1848194		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ADDRI	ESSES	DATA-IN/OUT
FUNCTION		RAS	CAS	WE	^t R	tC	DQ1-DQ8
Standby		Н	H→X	Х	X	Х	High-Z
READ		L	L	Н	ROW	COL	Data-Out
EARLY WRITE		L	L	L,	ROW	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	ROW	COL	Data-Out
READ	2nd Cycle	adi Laga	H→L	Н	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L L	H→L	L	ROW	COL	Data-In
WRITE	2nd Cycle	L	H→L	w L	n/a	COL	Data-In
RAS-ONLY REFRESH		L	Н	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	Х	X	High-Z

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	1V to +7V
Operating Temperature, T _A (ambient)	0°C to +70°C
Storage Temperature (plastic)	
Power Dissipation	8W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +5V \pm 10\%$)

PARAMETER/CONDITION			MIN	MAX	UNITS	NOTES
Supply Voltage			4.5	5.5	V	
Input High (Logic 1) Voltage, all inputs		Vін	2.4	Vcc+1	V	
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le 6.5V$ (All other pins not under test = $0V$)	A0-A10, WE, CAS, RAS		-16	16	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vout ≤ 5.5V)	DQ1-DQ8	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (Iout = -5mA)		Voн	2.4		٧	
Output Low Voltage (Iout = 4.2mA)		Vol		0.4	V	

		M	AX		
PARAMETER/CONDITION	SYMBOL	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) $(RAS = \overline{CAS} = V_{IH})$	lcc1	16	16	mA	
STANDBY CURRENT: (CMOS) $(\overline{RAS} = \overline{CAS} = Vcc - 0.2V)$	lcc2	8	8	mA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Іссз	880	800	mA	3, 4, 26
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ¹PC = ¹PC [MIN])	Icc4	640	560	.mA	3, 4, 26
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = ViH: ¹RC = ¹RC [MIN])	Icc5	880	800	mA	3, 26
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Icc6	880	800	mA	3, 5

CAPACITANCE

DESCRIPTION	SYMBOL	MAX	UNITS	NOTES
Input Capacitance: A0-A10	Cı1	51	pF	2
Input Capacitance: RAS, WE, CAS	Cı2	67	pF	2
Input/Output Capacitance: DQ1-DQ8	Cio	15	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5V \pm 10\%$)

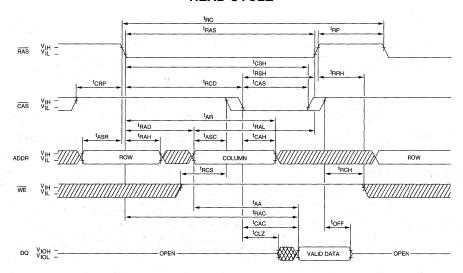
AC CHARACTERISTICS			-6		-7			
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES	
Access time from column-address	t _{AA}		30		35	ns		
Column-address hold time (referenced to RAS)	^t AR	45		50		ns		
Column-address setup time	tASC.	0		0		ns		
Row-address setup time	tASR	0		0		ns		
Access time from CAS	^t CAC		15		20	ns	15	
Column-address hold time	^t CAH	10		15		ns		
CAS pulse width	tCAS .	15	10,000	20	10,000	ns		
CAS hold time (CBR REFRESH)	^t CHR	10		10	1 1 1 1 1 1	ns	5	
CAS to output in Low-Z	tCLZ	0		0		ns		
CAS precharge time	^t CP	10		10	1	ns	16	
Access time from CAS precharge	^t CPA		35		40	ns		
CAS to RAS precharge time	^t CRP	10		10		ns		
CAS hold time	^t CSH	60		70		ns		
CAS setup time (CBR REFRESH)	^t CSR	10		10		ns	. 5	
Write command to CAS lead time	tCWL	15		20		ns		
Data-in hold time	tDH	10		15		ns	21	
Data-in hold time (referenced to RAS)	tDHR	45		55	1.771	ns	Θ'	
Data-in setup time	tDS	7		0		ns	21	
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	20, 25	
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40	And the grade	ns		
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	n/a		n/a		n/a	23	
Access time from RAS	tRAC	1	60		70	ns	14	
RAS to column-address delay time	tRAD	15	30	15	35	nş	18	
Row-address hold time	^t RAH	10		10	W 10 10 10 10 10 10 10 10 10 10 10 10 10	ns	1.5	
Column-address to RAS lead time	†RAL	30		35		ns		
RAS pulse width	tRAS	60	10,000	70	10,000	ns		
RAS pulse width (FAST PAGE MODE)	^t RASP	60	100,000	70	100,000	ns	La Maria	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

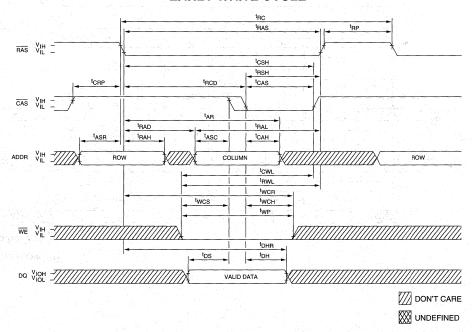
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5V \pm 10\%$)

AC CHARACTERISTICS			-6	•	7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	110		130		ns	
RAS to CAS delay time	^t RCD	20	45	20	50	ns	17
Read command hold time (referenced to CAS)	tRCH	0 -		0	1 1	ns	19
Read command setup time	†RCS	0		0		ns	# (yaa)
Refresh period (1,024 cycles)	†REF		16	200	16	ms	
RAS precharge time	tRP	40		50		ns	* * * * * * * * * * * * * * * * * * * *
RAS to CAS precharge time	tRPC	0	18. V. 1	0		ns	
Read command hold time (referenced to RAS)	[†] RRH	0		0		ns	19
RAS hold time	tRSH	15	N. Carlotte	20		ns	
READ WRITE cycle time	tRWC	n/a	77 1	n/a	100	n/a	23
Write command to RAS lead time	^t RWL	15		20		ns	
Transition time (rise or fall)	tT.	3	50	3	50	ns	
Write command hold time	tWCH	10		15	7	ns	
Write command hold time (referenced to RAS)	tWCR	45		55		ns	
WE command setup time	tWCS	0		0		ns	
Write command pulse width	tWP	10		15		ns	
WE hold time (CBR REFRESH)	tWRH	10		10		ns	24
WE setup time (CBR REFRESH)	tWRP	10		10		ns	24

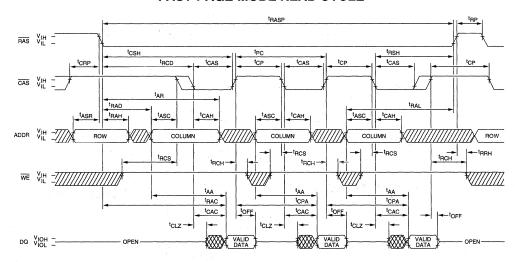
DRAM SIMM


NOTES

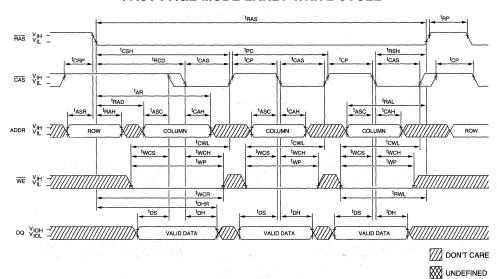
- All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is measured using MIL-STD-883C, Method 3012.1 (1 MHz AC, $V_{CC} = 5V$, DC bias = 2.4V at 15mV RMS).
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C \leq T_A \leq 70°C) is assured.
- An initial pause of 100µs is required after power-up followed by any eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- AC characteristics assume ^tT = 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 11. If $\overline{\text{CAS}} = \text{VIH}$, data output is High-Z.
- 12. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, tRAC will increase by the amount that tRCD exceeds the value shown.


- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If \overline{CAS} is LOW at the falling edge of \overline{RAS} , Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cvcle.
- 20. tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. These parameters are referenced to CAS leading edge in EARLY WRITE cycles.
- 22. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$.
- 23. LATE WRITE, READ WRITE or READ-MODIFY-WRITE cycles are not available due to the common DQ configuration of U1-U8.
- 24. tWTS and tWTH are set up and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of ^tWRP and ^tWRH in the CBR REFRESH cycle.
- 25. The 3ns minimum is a parameter guaranteed by
- 26. Column-address changed once each cycle.

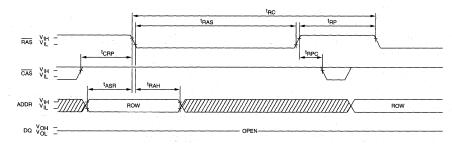
READ CYCLE

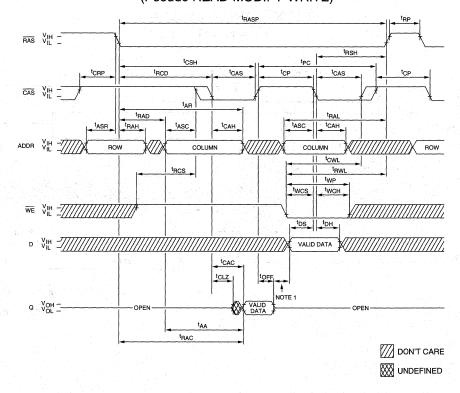


EARLY WRITE CYCLE



FAST-PAGE-MODE READ CYCLE

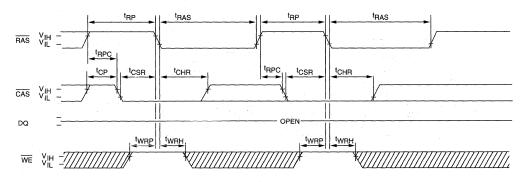

FAST-PAGE-MODE EARLY-WRITE CYCLE



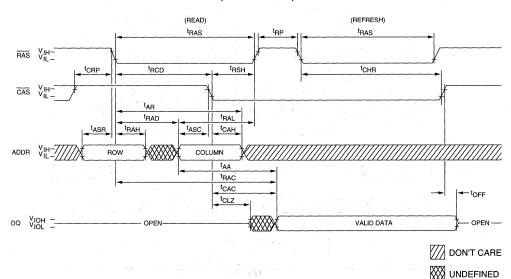
RAS-ONLY REFRESH CYCLE

(ADDR = A0-A9; A10 and WE = DON'T CARE)

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)



NOTE: 1. Do not drive data prior to tristate.


CBR REFRESH CYCLE

(Addresses = DON'T CARE)

HIDDEN REFRESH CYCLE 22

(WE = HIGH)

DRAM MODULE

4 MEG x 9

4 MEGABYTE, 5V, FAST PAGE MODE

FEATURES

- JEDEC- and industry-standard pinout in a 30-pin, single-in-line memory module (SIMM)
- High-performance CMOS silicon-gate process
- Single 5V ±10% power supply
- Low power, 9mW standby; 725mW active, typical
- All device pins are TTL-compatible
- FAST PAGE MODE (FPM) access cycle
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN

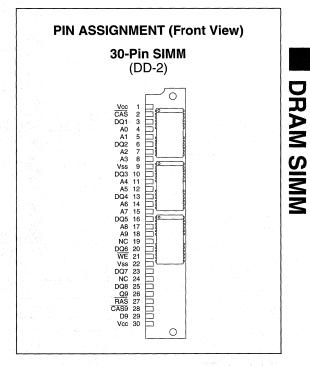
MARKING

- · 2,048-cycle refresh distributed across 32ms
- Low profile **OPTIONS**

Timing		
60ns access		-6
70ns access		-7
 Packages 		
30-pin SIMM		M

Part Number Example: MT3D49M-6

KEY TIMING PARAMETERS

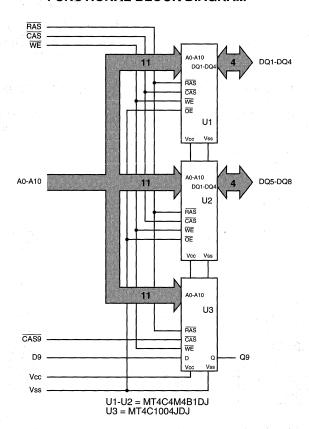

SPEED	tRC	^t RAC	^t PC	t _{AA}	tCAC	†RP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

GENERAL DESCRIPTION

The MT3D49 is a randomly accessed solid-state memory containing 4,194,304 words organized in a x9 configuration. During READ or WRITE cycles, each word is uniquely addressed through 22 address bits, which are entered 11 bits (A0-A10) at a time. $\overline{\text{RAS}}$ is used to latch the first 11 bits and $\overline{\text{CAS}}$ the latter 11 bits. READ or WRITE cycles are selected with the $\overline{\text{WE}}$ input. A logic HIGH on $\overline{\text{WE}}$ dictates READ mode while a logic LOW on $\overline{\text{WE}}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{\text{CAS}}$. Since $\overline{\text{WE}}$ goes LOW prior to $\overline{\text{CAS}}$ going LOW, the output pins remain open (High-Z) until the next $\overline{\text{CAS}}$ cycle.

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined (A0-A10) page boundary. The FAST PAGE MODE cycle is



always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operations.

REFRESH

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR or HIDDEN) so that all 2,048 combinations of \overline{RAS} addresses (A0-A10) are executed at least every 32ms, regardless of sequence. The CBR REFRESH cycle will invoke the refresh counter for automatic \overline{RAS} addressing.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

			et est ve	, · · · · · · · · · · · · · · · · · · ·	21 A 14	ADDRI	SSES	DATA-IN/OUT
FUNCTION	The section of the se	RAS	CAS	CAS9	WE	^t R	Ωį	DQ1-DQ8, D9, Q9
Standby		Н	H→X	H→X	X	Χ	Х	High-Z
READ		L		L	Н	ROW	COL	Data-Out
EARLY WRITE		L	L	٦	L	ROW	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	Н	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	H→L	Н	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L	ROW	COL	Data-In
WRITE	2nd Cycle	L	H→L	H→L	L	n/a	COL	Data-In
RAS-ONLY REFRESI	1	L	Ŧ	Ι	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	٦	LI.	Н	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	L	ROW	COL	Data-In
CBR REFRESH		H→L	L	L	Н	X	Х	High-Z

MT3D49 4 MEG x 9 DRAM MODULE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	1V to +7V
Operating Temperature, TA (ambient)	0°C to +70°C
Storage Temperature	55°C to +125°C
Power Dissipation	3W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +5V \pm 10\%$)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, all inputs		Vih	2.4	Vcc+1	V	14 1 14
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	V	
INPUT LEAKAGE	D9, CAS9	li .	-2	2	μΑ	
Any input $0V \le V_{IN} \le 5.5V$ (All other pins not under test = $0V$)	A0-A10, RAS, WE	11	-6	6	μА	
OUTPUT LEAKAGE (Q is disabled; 0V ≤ Vout ≤ 5.5V)	DQ1-DQ8, Q9	loz	-10	10	μА	
OUTPUT LEVELS		Vон	2.4		٧	
Output High (Logic 1) Voltage (Iout = -5mA) Output Low (Logic 0) Voltage (Iout = 4.2mA)		Vol	1 * 1 To	0.4	V	

		M	AX			
PARAMETER/CONDITION	SYMBOL	-6	-7	UNITS	NOTES	
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	lcc1	6	6	mA		
STANDBY CURRENT: (CMOS) Average power supply current (RAS = CAS = 'Other Inputs = Vcc -0.2V)	Icc2	3	3.	mA		
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS and CAS = Cycling; ¹RC = ¹RC [MIN])	Icc3	350	320	mA	3, 4, 26	
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL; CAS = Cycling; ¹ PC = ¹ PC [MIN])	Icc4	260	230	mA	3, 4, 26	
REFRESH CURRENT: RAS ONLY (RAS = Cycling; CAS = Vih; tRC = tRC [MIN])	Icc5	350	320	mA	3, 26	
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling = ^t RC = ^t RC [MIN])	Icc6	350	320	mA	3, 5	

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A10	C _{I1}		19	pF	2
Input Capacitance: RAS, CAS, WE	C ₁₂		25	pF	2
Input/Output Capacitance: DQ1-DQ8	Сю		10	pF	2
Input Capacitance: DQ9	Сіз		10	pF	2
Output Capacitance: Q9	Co		10	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5V \pm 10\%$)

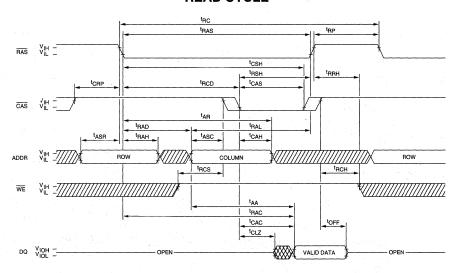
AC CHARACTERISTICS			-6		-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	tAA .		30		35	ns	
Column-address hold time (referenced to RAS)	tAR.	50		55		ns	
Column-address setup time	†ASC	0		0		ns	
Row-address setup time	tASR	0		0		ns	
Access time from CAS	^t CAC		15		20	ns	15
Column-address hold time	^t CAH	10		15		ns	4 7
CAS pulse width	^t CAS	15	10,000	20	10,000	ns	
CAS hold time (CBR REFRESH)	tCHR	15		15		ns	5
CAS to output in Low-Z	^t CLZ	3		3		ns	25
CAS precharge time	^t CP	10		10		ns	16
Access time from CAS precharge	^t CPA		35		40	ns	
CAS to RAS precharge time	^t CRP	5		5		ns	
CAS hold time	^t CSH	60		70		ns	
CAS setup time (CBR REFRESH)	^t CSR	. 5		5	-	ns	5
Write command to CAS lead time	^t CWL	15		20	1 11 1	ns	
Data-in hold time	tDH	10		15		ns	21
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	tDS .	0	No. of the second	0	- 1	ns	21
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	20, 25
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	n/a		n/a		ns	22
Access time from RAS	^t RAC		60		70	ns	14
RAS to column-address delay time	^t RAD	15	30	15	35	ns	18
Row-address hold time	^t RAH	10	1.00	10		ns	
RAS pulse width	^t RAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	^t RASP	60	100,000	70	100,000	ns	200
Column-address to RAS lead time	tRAL.	30	To Bee	35		ns	W. Tall

MT3D49 4 MEG x 9 DRAM MODULE

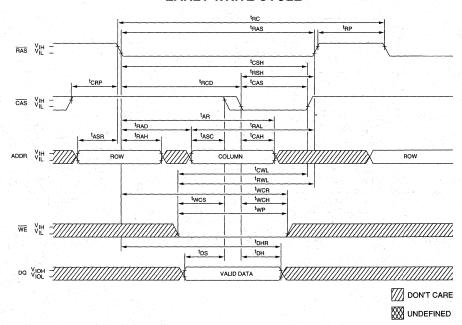
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5V \pm 10\%$)

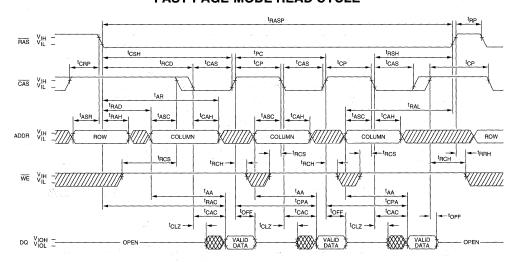
AC CHARACTERISTICS		-6		-7			
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	tRC t	110		130	408(+ 46)	ns	4. 71.
RAS to CAS delay time	tRCD	20	45	20	50	ns	17
Read command setup time	tRCS	0	No.	0		ns	
Read command hold time (referenced to CAS)	tRCH	0		0	1.50	ns	19
Refresh period (2,048 cycles)	^t REF		32		32	ms	
RAS precharge time	t _{RP}	40		50	140° 7 - 14	ns	10.00
RAS to CAS precharge time	^t RPC	0		0		ns	
Read command hold time (referenced to RAS)	†RRH	0		0		ns	19
RAS hold time	^t RSH	15		20		ns	
READ WRITE cycle time	tRWC	n/a		n/a		ns	22
Write command to RAS lead time	^t RWL	15		20		ns	
Transition time (rise or fall)	ŀΤ	3	50	3	50	ns	
Write command hold time	tWCH	10		15		ns	
Write command hold time (referenced to RAS)	^t WCR	45		55		ns	1321
WE command setup time	tWCS	0		0		ns	
Write command pulse width	-tWP	10		15		ns	
WE hold time (CBR REFRESH)	tWRH	10		10		ns	24
WE setup time (CBR REFRESH)	tWRP	10		10		ns	24

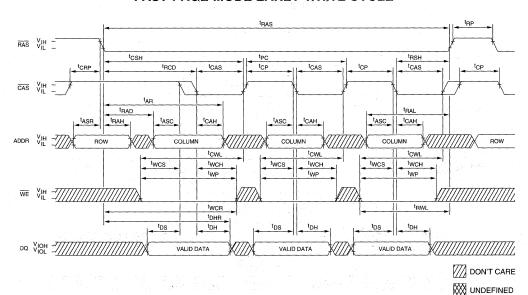

MT3D49 4 MEG x 9 DRAM MODULE

NOTES

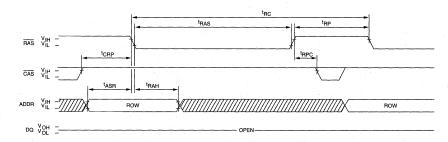

- 1. All voltages referenced to Vss.
- This parameter is sampled. Capacitance is measured using MIL-STD-883C, Method 3012.1 (1 MHz AC, Vcc = 5V, DC bias = 2.4V at 15mV RMS).
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIH and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{CAS} = V_{IL}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.

- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. These parameters are referenced to CAS leading edge in EARLY WRITE cycles.
- 22. OE is tied permanently LOW; LATE WRITE or READ-MODIFY-WRITE operations are not possible.
- A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 24. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.
- 25. The 3ns minimum is a parameter guaranteed by design.
- 26. Column-address changed once each cycle.

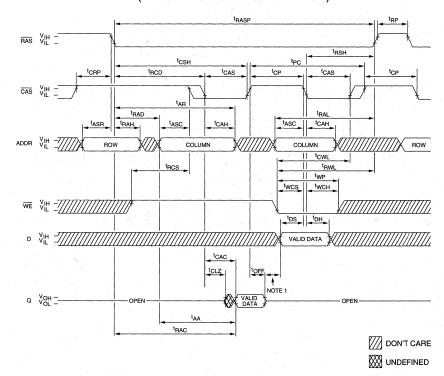

READ CYCLE


EARLY WRITE CYCLE

FAST-PAGE-MODE READ CYCLE

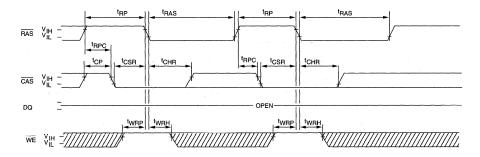


FAST-PAGE-MODE EARLY-WRITE CYCLE

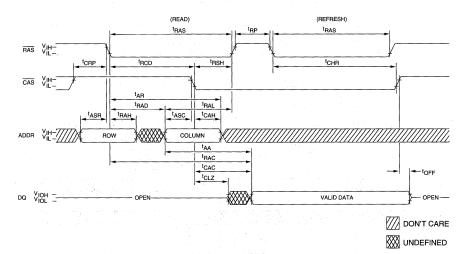


RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE


(Pseudo READ-MODIFY-WRITE)

NOTE: 1. Do not drive data prior to tristate.


CBR REFRESH CYCLE

(Addresses = DON'T CARE)

HIDDEN REFRESH CYCLE 23

(WE = HIGH)

DRAM SIMM

DRAM MODULE

4 MEG x 9

4 MEGABYTE, 5V, FAST PAGE MODE

FEATURES

- JEDEC- and industry-standard pinout in a 30-pin single-in-line memory module (SIMM)
- High-performance CMOS silicon-gate process
- Single 5V ±10% power supply
- All device pins are TTL-compatible
- Low power, 27mW standby; 2,025mW active, typical
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- 1,024-cycle refresh distributed across 16ms
- FAST PAGE MODE (FPM) access cycle

OPTIONS

MARKING

 Timing 	
60ns access	
70ns access	

-6 7

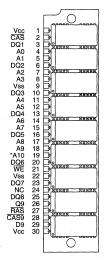
Packages
 30-pin SIMM

М

• Part Number Example: MT9D49M-6

KEY TIMING PARAMETERS

SPEED	¹RC	^t RAC	^t PC	^t AA	†CAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

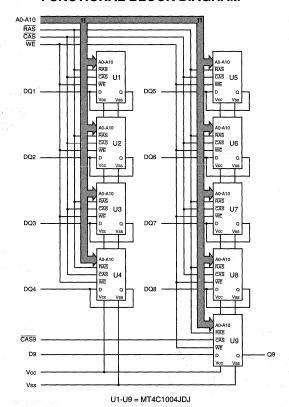

GENERAL DESCRIPTION

The MT9D49 is a randomly accessed solid-state memory containing 4,194,304 words organized in a x9 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 22 address bits which are entered 11 bits (A0-A10) at a time. \overline{RAS} is used to latch the first 11 bits and \overline{CAS} the latter 11 bits. A READ or WRITE cycle is selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle. EARLY WRITE occurs when \overline{WE} goes LOW prior to \overline{CAS} going LOW, and the ouput remains open (High-Z) until the next \overline{CAS} cycle.

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined (A0-

PIN ASSIGNMENT (Front View) 30-Pin SIMM (DD-4)


*Address not used for RAS-ONLY REFRESH

A10) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

REFRESH

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR or HIDDEN) so that all 1,024 combinations of \overline{RAS} addresses (A0-A9) are executed at least every 16ms regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

						ADDRESSES		DATA-IN/OUT
FUNCTION		RAS	CAS	CAS9	WE	^t R	¹C	DQ1-DQ8, D9, Q9
Standby		Н	H→X	H→X	Х	Х	X	High-Z
READ		L	L	L	Н	ROW	COL	Data-Out
EARLY WRITE		L	L	L	L	ROW	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	Н	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	H→L	Н	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L	ROW	COL	Data-In
WRITE	2nd Cycle	L	H→L	H→L	L	n/a	COL	Data-In
RAS-ONLY REFRESH	1	L	н	Н	X	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	L	Н	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	L	ROW	COL	Data-In
CBR REFRESH		H→L	L	L	Н	Х	Х	High-Z

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	1V to +7V
Operating Temperature, T _A (ambient)	0°C to +70°C
Storage Temperature (plastic)	
Power Dissipation	9W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +5V \pm 10\%$)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	4.5	5.5	V	77.6
Input High (Logic 1) Voltage, all inputs		ViH	2.4	Vcc+1	V	
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT	D9, CAS9	lı .	-2	2	μΑ	
Any input $0V \le V_{IN} \le 6.5V$ (All other pins not under test = $0V$)	A0-A10, WE, CAS, RAS	lr	-18	18	μА	
OUTPUT LEAKAGE CURRENT	Q9	loz	-10	10	μΑ	
(Q is disabled; 0V ≤ Voυτ ≤ 5.5V)	DQ1-DQ8	loz	-12	12	μΑ	
OUTPUT LEVELS Output High Voltage (lout = -5mA)		Vон	2.4		٧	
Output Low Voltage (IouT = 4.2mA)		Vol		0.4	٧	

			and the second		
사용하는 경기에 가장 사용하는 사람들이 되었다. 그런 사용하는 사용하는 사용하는 것이다. 기업을 하는 사용하는 사용하는 사용하는 것이다.		M	AX		
PARAMETER/CONDITION	SYMBOL	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	loc1	18	18	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Vcc -0.2V)	Icc2	9	9	mA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ¹ RC = ¹ RC [MIN])	lcc3	990	900	mA	3, 4, 26
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = V _I L, CAS, Address Cycling: [†] PC = [†] PC [MIN])	ICC4	720	630	mA	3, 4, 26
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = VIH: [†] RC = [†] RC [MIN])	Icc5	990	900	mA	3, 26
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: \text{\text{tRC}} = \text{\text{tRC}} [MIN])	Icc6	990	900	mA	3, 5

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A10	Cıı		55	pF	2
Input Capacitance: RAS, WE, CAS	C ₁₂		73	pF	2
Input Capacitance: D9, CAS9	Сіз		10	pF	2
Input/Output Capacitance: DQ1-DQ8	Сю		15	рF	2
Output Capacitance: Q9	Со		10	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

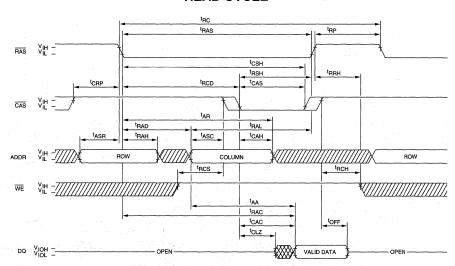
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5V \pm 10\%$)

AC CHARACTERISTICS		-6		-7			
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	tAA .		30		35	ns	
Column-address hold time (referenced to RAS)	tAR.	45		50		ns	
Column-address setup time	tASC	0		0		ns	
Row-address setup time	tASR	0		0		ns	
Column-address hold time	^t CAH	10		15		ns	1,44
Access time from CAS	^t CAC		15		20	ns	. 15
CAS pulse width	^t CAS	15	10,000	20	10,000	ns	
CAS hold time (CBR REFRESH)	^t CHR	10		10		ns	5
CAS to output in Low-Z	^t CLZ	0		0		ns	
CAS precharge time	^t CP	10		10		ns	16
Access time from CAS precharge	^t CPA		35		40	ns	
CAS to RAS precharge time	^t CRP	10		10		ns	
CAS hold time	^t CSH	60		70		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		ns	5
Write command to CAS lead time	tCWL	15	8 8 8 9	20		ns	
Data-in hold time	tDH	10		15		ns	21
Data-in hold time (referenced to RAS)	tDHR	45		55		ns	
Data-in setup time	t _{DS}	0		0		ns	21
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	20, 25
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40	10000	ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	n/a		n/a	10.00	n/a	23
Access time from RAS	tRAC **		60	1.50	70	ns	14
RAS to column-address delay time	tRAD.	15	30	15	35	ns	18
Row-address hold time	^t RAH	10		10		ns	
Column-address to RAS lead time	^t RAL	30		35		ns	
RAS pulse width	tRAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	tRASP	60	100,000	70	100,000	ns	

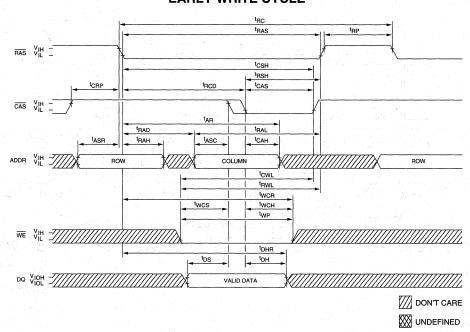
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5V \pm 10\%$)

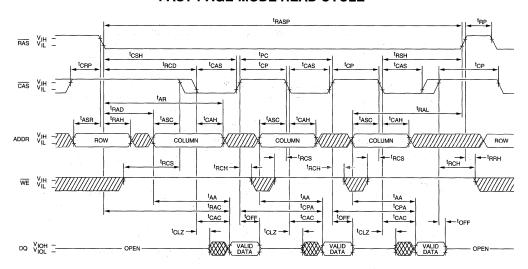
AC CHARACTERISTICS			6		7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	110		130		ns	
RAS to CAS delay time	tRCD	20	45	20	50	ns	17
Read command hold time (referenced to CAS)	tRCH	0		0		ns	19
Read command setup time	^t RCS	0		0	feet of	ns	4.4
Refresh period (1,024 cycles)	^t REF		16		16	ms	1.0
RAS precharge time	tRP	40	1000	50		ns	
RAS to CAS precharge time	^t RPC	0		0		ns	1
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	19
RAS hold time	^t RSH	15		20		ns	
READ WRITE cycle time	tRWC	n/a		n/a		n/a	23
Write command to RAS lead time	^t RWL	15		20		ns	
Transition time (rise or fall)	t _T	3	50	3	50	ns	1440
Write command hold time	tWCH	10	1 1 1 1 1 1 1	15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55	}	ns	
WE command setup time	tWCS	0		0		ns	
Write command pulse width	tWP	10		15		ns	
WE hold time (CBR REFRESH)	tWRH	10		10		ns	24
WE setup time (CBR REFRESH)	tWRP	10		10		ns	24


NOTES

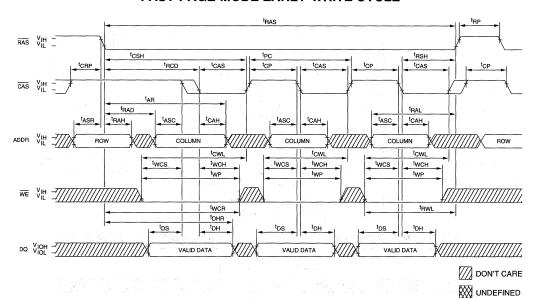
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is measured using MIL-STD-883C, Method 3012.1 (1 MHz AC, Vcc = 5V, DC bias = 2.4V at 15mV RMS).
- Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by any eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{H}$, data output is High-Z.
- 12. If CAS = VIL, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.


- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in EARLY WRITE cycles.
- 22. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- LATE WRITE, READ WRITE or READ-MODIFY-WRITE cycles are not available due to the common DQ configuration of U1-U8.
- 24. tWTS and tWTH are set up and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.
- 25. The 3ns minimum is a parameter guaranteed by design.
- 26. Column-address changed once each cycle.

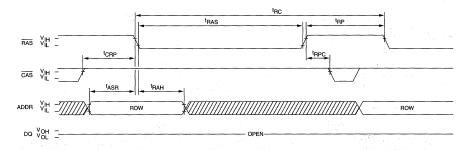
READ CYCLE

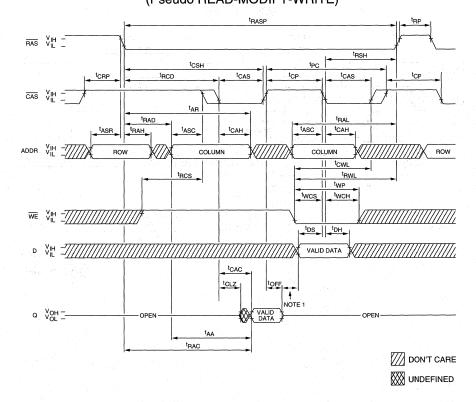


EARLY WRITE CYCLE



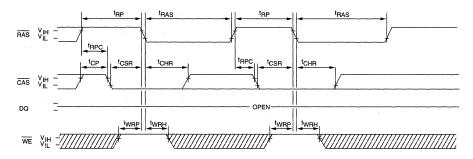
FAST-PAGE-MODE READ CYCLE

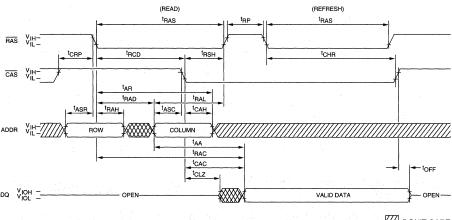

FAST-PAGE-MODE EARLY-WRITE CYCLE



RAS-ONLY REFRESH CYCLE

(A10 and $\overline{WE} = DON'T CARE$)


FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)


NOTE: 1. Do not drive data prior to tristate.

CBR REFRESH CYCLE

(Addresses = DON'T CARE)

HIDDEN REFRESH CYCLE 22 (WE = HIGH)

DON'T CARE

DRAM MODULE

256K, 512K x 32

1, 2 MEGABYTE, 5V, FAST PAGE MODE

FEATURES

- JEDEC- and industry-standard pinout in a 72-pin single-in-line memory module (SIMM)
- High-performance CMOS silicon-gate process
- Single 5V ±10% power supply
- All device pins are TTL-compatible
- Low power, 12mW standby; 756mW active, typical (2MB)
- Multiple \overline{RAS} lines offer x16 or x32 widths
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- 512-cycle refresh distributed across 8ms
- FAST PAGE MODE (FPM) access cycle

OPTIONS

MARKING

٠.	rming		
	60ns access		-6
	70ns access		-7
•	Packages		
	72-pin SIMM		M
	72-pin SIMM (gold)		G

^{**60}ns specifications are limited to a Vcc range of ±5%.

KEY TIMING PARAMETERS

SPEED	tRC	^t RAC	^t PC	^t AA	tCAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

VALID PART NUMBERS

PART NUMBER	DESCRIPTION
MT2D25632G-xx	256K x 32, Gold
MT2D25632M-xx	256K x 32, Tin/Lead
MT4D51232G-xx	512K x 32, Gold
MT4D51232M-xx	512K x 32, Tin/Lead

GENERAL DESCRIPTION

The MT2D25632 and MT4D51232 are randomly accessed 1MB and 2MB solid-state memories organized in a x32 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 18 address bits which are entered 9 bits (A0-A8) at a time. \overline{RAS} is used to latch the first 9 bits and \overline{CAS} the latter 9 bits. READ and WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode, while a logic LOW on \overline{WE}

PIN ASSIGNMENT (Front View)

72-Pin SIMM

(DD-5) 256K x 32 (DD-6) 512K x 32

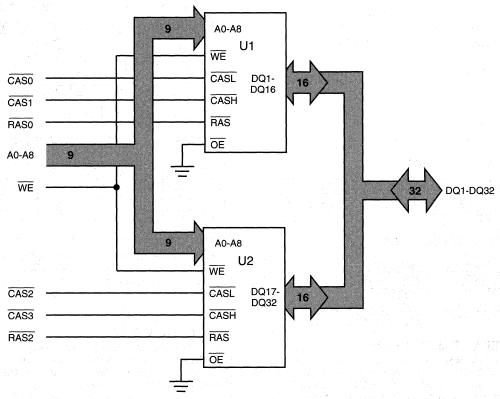
(nerococcoccoccoccoccoccoccoccoccoccoccocco	, , , , , , , , , , , , , , , , , , ,	***************************************	ooooooooooooooooooooooooooooooooooooo	C

PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	19	NC	37	NC	55	DQ12
2	DQ1	20	DQ5	38	NC	56	DQ28
3	DQ17	21	DQ21	39	Vss	57	DQ13
4	DQ2	22	DQ6	40	CAS0	58	DQ29
5	DQ18	23	DQ22	41	CAS2	59	Vcc
6	DQ3	24	DQ7	42	CAS3	60	DQ30
7	DQ19	25	DQ23	43	CAS1	61	DQ14
8	DQ4	26	DQ8	44	RAS0	62	DQ31
9	DQ20	27	DQ24	45	NC/RAS1*	63	DQ15
10	Vcc	28	A7	46	NC	64	DQ32
11	NC	29	NC	47	WE	65	DQ16
12	A0	30	Vcc	48	NC	66	NC
13	A1	31	A8	49.	DQ9	67	PRD1
14	A2	32	NC	50	DQ25	68	PRD2
15	A3	33	NC/RAS3*	51	DQ10	69	PRD3
16	A4	34	RAS2	52	DQ26	70	PRD4
17	A5	35	NC	53	DQ11	71	NC
18	A6	36	NC	54	DQ27	72	Vss

dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle.

FAST PAGE MODE

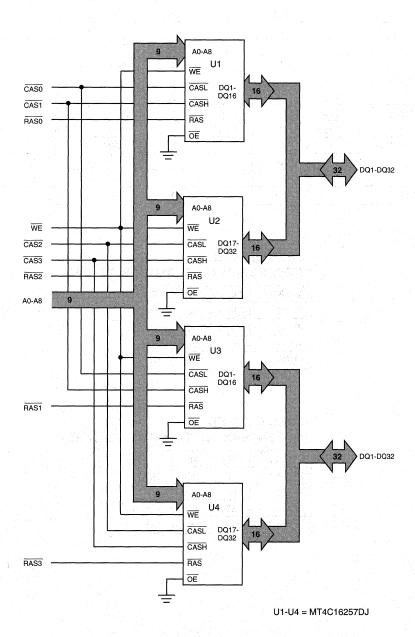
FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined (A0-A8) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.


REFRESH

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} -ONLY, CBR or HIDDEN) so that all 512 combinations of \overline{RAS} addresses (A0-A8) are executed at least every 8ms, regardless of sequence.

x16 CONFIGURATION

For x16 applications, the corresponding DQ and \overline{CAS} pins must be connected together (DQ1 to DQ17, DQ2 to DQ18 and so forth, and $\overline{CAS0}$ to $\overline{CAS2}$ and $\overline{CAS1}$ to $\overline{CAS3}$). Each \overline{RAS} is then a bank select for the x16 memory organization.


FUNCTIONAL BLOCK DIAGRAM MT2D25632 (1MB)

U1-U2 = MT4C16257DJ

FUNCTIONAL BLOCK DIAGRAM MT4D51232 (2MB)

TRUTH TABLE

	· · · · · · · · · · · · · · · · · · ·			7	ADDRESSES		DATA-IN/OUT
FUNCTION		RAS	CAS	WE	^t R	Ĵ	DQ1-DQ32
Standby		Н	H→X	Х	Х	Х	High-Z
READ		L	L	H	ROW	COL	Data-Out
EARLY-WRITE		L	L	L	ROW	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	L→H	Н	ROW	COL	Data-Out
READ	2nd Cycle	L	L→H	Н	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L	L→H	L	ROW	COL	Data-In
WRITE	2nd Cycle	L	L→H	L	n/a	COL	Data-In
RAS-ONLY REFRESH		L	H	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	Ĺ	ROW	COL	Data-In
CBR REFRESH		H→L	L	Х	Χ	Х	High-Z

JEDEC DEFINED PRESENCE-DETECT - MT2D25632 (1MB)

SYMBOL	PIN#	-6	-7
PRD1	67	Vss	Vss
PRD2	68	NC	NC
PRD3	69	NC	Vss
PRD4	70	NC	NC

JEDEC DEFINED PRESENCE-DETECT - MT4D51232 (2MB)

SYMBOL	PIN#	-6	-7
PRD1	67	NC	NC
PRD2	68	Vss	Vss
PRD3	69	NC	Vss
PRD4	70	NC	NC

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	1V to +7V
Operating Temperature, T _A (ambient)	0°C to +70°C
Storage Temperature (plastic)	55°C to +125°C
Power Dissipation	2W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 6) (Vcc = $+5V \pm 10\%^{**}$)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	4.5	5.5	V	300 300
Input High (Logic 1) Voltage, all inputs		ViH	2.4	Vcc+1	٧	
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT	RASO- RAS3	lii	-2	2	μΑ	
Any input 0V ≤ VIN ≤ VCC	A0-A8, WE	lı2	-8	8	μΑ	27
(All other pins not under test = 0V) for each package input	CAS0-CAS3	lıз	-4	4	μΑ	27
OUTPUT LEAKAGE CURRENT	DQ1-DQ32	loz	-20	20	μΑ	27
(Q is disabled; $0V \le V_{OUT} \le 5.5V$) for each package input					·	
OUTPUT LEVELS		Vон	2.4	4.5	٧	
Output High Voltage (IouT = -5mA) Output Low Voltage (IouT = 4.2mA)		Vol		0.4	V	

			M	AX		
PARAMETER/CONDITION	SYMBOL	SIZE	-6**	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = ViH)	lcc1	1MB 2MB	4 8	4 8	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Other Inputs = Vcc -0.2V)	lcc2	1MB 2MB	2 4	2 4	mA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: [†] RC = [†] RC [MIN])	Іссз	1MB 2MB	380 384	340 344	mA	2, 22, 25
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: PC = PC [MIN]; CP, ASC = 10ns)	lcc4	1MB 2MB	240 244	220 224	mA	2, 22, 25
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = V _{IH} : ^t RC = ^t RC [MIN])	lcc5	1MB 2MB	380 384	340 344	mA	22, 25
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling; ¹RC = ¹RC [MIN])	lcc6	1MB 2MB	360 364	320 324	mA	19, 22

^{**60}ns specifications are limited to a Vcc range of ±5%.

CAPACITANCE			MAX		A September 1	
PARAMETER	*	SYMBOL	1MB	2MB	UNITS	NOTES
Input Capacitance: A0-A8	4.5	Cıı	12	24	pF	17
Input Capacitance: WE		C ₁₂	16	32	pF	17
Input Capacitance: RASO, RAS1, RAS2, RAS3		Сіз	10	10	рF	17
Input Capacitance: CAS0, CAS1, CAS2, CAS3		CI4	10	20	pF	17
Input/Output Capacitance: DQ1-DQ32	:	Cioi	10	18	pF	17

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 6, 7, 10, 11, 16) ($Vcc = +5V \pm 10\%^*$)

AC CHARACTERISTICS		-6*			-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	t _{AA}		30		35	ns	. '
Column-address hold time (referenced to RAS)	^t AR	50		55		ns	
Column-address setup time	tASC	0		0		ns	
Row-address setup time	tASR	0		0		ns	
Access time from CAS	^t CAC		15		20	ns	9
Column-address hold time	^t CAH	10		15		ns	
CAS pulse width	^t CAS	15	10,000	20	10,000	ns	
CAS hold time (CBR REFRESH)	^t CHR	10	7	10		ns	19
Last CAS going LOW to first CAS to return HIGH	^t CLCH	10		10		ns	26
CAS to output in Low-Z	^t CLZ	3		3		ns	24
CAS precharge time	^t CP	10		10		ns	18
Access time from CAS precharge	^t CPA		35		40	ns	
CAS to RAS precharge time	tCRP	8	411	10		ns	
CAS hold time	^t CSH	60		70		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		ns	19
Write command to CAS lead time	tCWL	15		20		ns	N. Carlot
Data-in hold time	^t DH	10		15		ns	15
Data-in hold time (referenced to RAS)	tDHR t	45	e taleet	55		ns	J. 10.4
Data-in setup time	tDS	0		0	1.05456	ns	15
Output buffer turn-off delay	^t OFF	3	15	3	15	ns	12, 24
FAST-PAGE-MODE READ or WRITE cycle time	tPC	35	, over the second	40	1 34 3 4	ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	n/a		n/a		ns	21
Access time from RAS	^t RAC	1.00	60		70	ns	8
RAS to column-address delay time	^t RAD	15	30	15	35	ns	23
Row-address hold time	^t RAH	10		10	V 37.5	ns	
Column-address to RAS lead time	tRAL	30		35		ns	
RAS pulse width	tRAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	^t RASP	60	100,000	70	100,000	ns	
Random READ or WRITE cycle time	^t RC	110		130	1 1-41	ns	

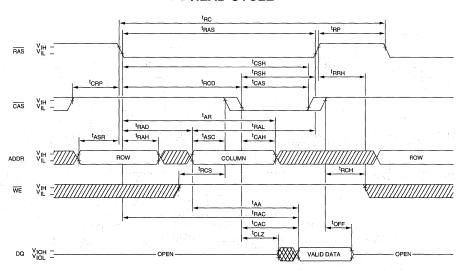
^{*60}ns specifications are limited to a Vcc range of ±5%.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

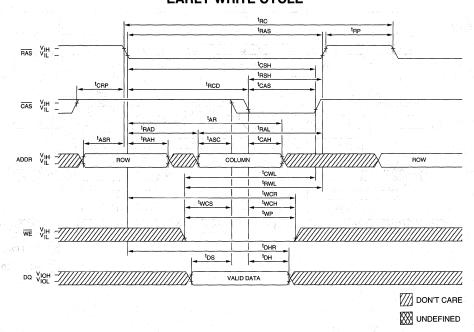
(Notes: 3, 4, 5, 6, 7, 10, 11, 16) ($Vcc = +5V \pm 10\%^*$)

AC CHARACTERISTICS		-	6*	1984 B	-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
RAS to CAS delay time	tRCD	20	45	20	50	ns	13
Read command hold time (referenced to CAS)	tRCH	0		0		ns	14
Read command setup time	tRCS	0		0		ns	
Refresh period (512 cycles)	tREF.		8	200	8	ms	
RAS precharge time	tRP	40		50	100	ns	100
RAS to CAS precharge time	tRPC	10		10		ns	
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	14
RAS hold time	tRSH .	15		20		ns	
READ WRITE cycle time	tRWC	n/a	A 1	n/a		ns	21
Write command to RAS lead time	tRWL	15	5.5.55	20	90.000	ns	
Transition time (rise or fall)	T e	3	50	3	50	ns	in Neith,
Write command hold time	tWCH	10	11 1 14	10		ns	tions by
Write command hold time (referenced to RAS)	tWCR	45		55		ns	
WE command setup time	tWCS	0		0	19.7	ns	
Write command pulse width	†WP	10	A-14	10		ns	14 A

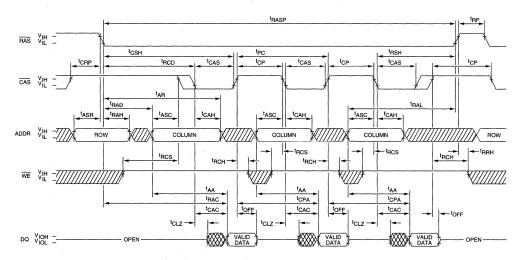
^{*60}ns specifications are limited to a Vcc range of $\pm 5\%$.


NOTES

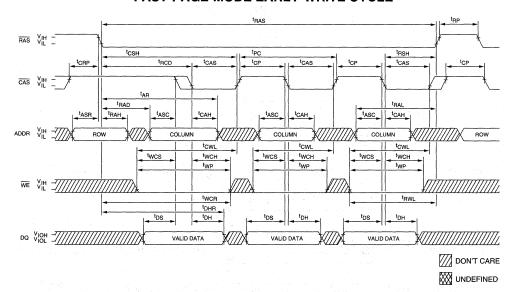
- 1. All voltages referenced to Vss.
- 2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- AC characteristics assume ^tT = 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 11. If $\overline{\text{CAS}} = \text{V}_{\text{IL}}$, data output may contain data from the last valid READ cycle.
- 12. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.


- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 15. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in EARLY-WRITE cycles.
- 16. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIL and VIH) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is measured using MIL-STD-883C, Method 3012.1 (1 MHz AC, Vcc = 5V, DC bias = 2.4V at 15mV RMS).
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 19. On-chip refresh and address counters are enabled.
- 20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- 21. LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to \overline{OE} being grounded on U1-U2/U4.
- 22. Icc is dependent on cycle rates.
- 23. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 24. The 3ns minimum is a parameter guaranteed by design.
- 25. Column-address changed once each cycle.
- 26. Last falling CASx edge to first rising CASx edge.
- 27. 1MB module values will be half of those shown.

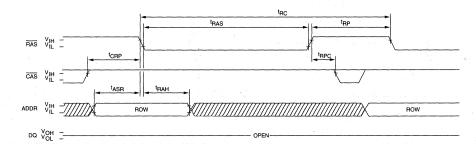
READ CYCLE



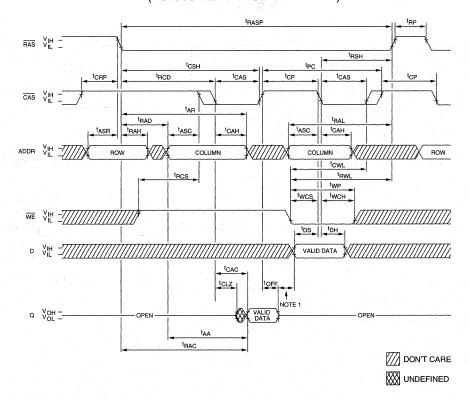
EARLY WRITE CYCLE



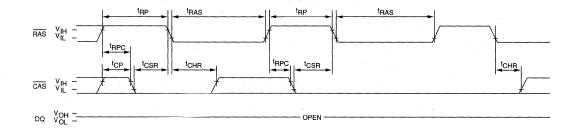
FAST-PAGE-MODE READ CYCLE

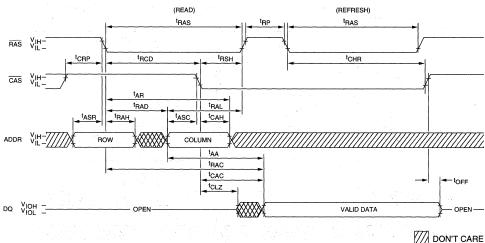


FAST-PAGE-MODE EARLY-WRITE CYCLE



RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)


FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)


NOTE: 1. Do not drive data prior to tristate.

CBR REFRESH CYCLE

(Addresses, $\overline{WE} = DON'T CARE$)

HIDDEN REFRESH CYCLE 20 (WE = HIGH)

DRAM MODULE

1 MEG, 2 MEG x 32

4, 8 MEGABYTES, 5V, FAST PAGE MODE, OPTIONAL SELF REFRESH

FEATURES

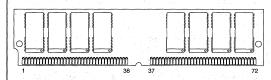
- JEDEC- and industry-standard pinout in a 72-pin, single-in-line memory module (SIMM)
- High-performance CMOS silicon-gate process.
- Single 5V ±10% power supply
- All device pins are TTL-compatible
- Low power, 48mW standby; 1,824mW active, typical (8MB)
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN; optional Extended and SELF Refresh
- Multiple RAS lines allow x16 or x32 width
- 1,024-cycle refresh distributed across 16ms or 1,024-cycle Extended Refresh distributed across 128ms
- FAST PAGE MODE (FPM) access cycle

OPTIONS	MARKIN
• Timing 60ns access 70ns access	-6 -7
• Packages 72-pin SIMM 72-pin SIMM (gold)	M G
Power/Refresh Normal Power/16ms SELF REFRESH/128ms	Blank S

KEY TIMING PARAMETERS

SPEED	tRC	tRAC	tPC	^t AA	tCAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

VALID PART NUMBERS


PART NUMBER	DESCRIPTION
MT8D132G-xx	1 Meg x 32, Gold
MT8D132G-xx S	1 Meg x 32, S**, Gold
MT8D132M-xx	1 Meg x 32, Tin/Lead
MT8D132M-xx S	1 Meg x 32, S**, Tin/Lead
MT16D232G-xx	2 Meg x 32, Gold
MT16D232G-xx S	2 Meg x 32, S**, Gold
MT16D232M-xx	2 Meg x 32, Tin/Lead
MT16D232M-xx S	2 Meg x 32, S**, Tin/Lead

^{**}S = SELF REFRESH

PIN ASSIGNMENT (Front View)

72-Pin SIMM

(DD-7) 1 Meg x 32 (DD-8) 2 Meg x 32

PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	19	NC	37	NC	55	DQ12
2	DQ1	20	DQ5	38	NC	56	DQ28
3	DQ17	21	DQ21	39	Vss	57	DQ13
4	DQ2	22	DQ6	40	CASO	58	DQ29
5	DQ18	23	DQ22	41	CAS2	59	Vcc
6	DQ3	24	DQ7	/ 42	CAS3	60	DQ30
7	DQ19	25	DQ23	43	CAS1	61	DQ14
8	DQ4	26	DQ8	44	RAS0	62	DQ31
9	DQ20	27	DQ24	45	NC/RAS1*	63	DQ15
10	Vcc	28	A7	46	NC	64	DQ32
11.	NC	29	. NC	47	WE	65	DQ16
12	A0	30	Vcc	48	NC	66	NC
13	A1	31	A8	49	DQ9	67	PRD1
14	A2	32	A9	50	DQ25	68	PRD2
15	A3	33	NC/RAS3*	51	DQ10	69	PRD3
16	A4	34	RAS2	52	DQ26	70	PRD4
17	A5	35	NC	53	DQ11	71	NC
18	A6	36	NC	-54	DQ27	72	Vss

GENERAL DESCRIPTION

The MT8D132(S) and MT16D232(S) are randomly accessed 4MB and 8MB solid-state memories organized in a x32 configuration. During READ or WRITE cycles each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. \overline{RAS} is used to latch the first 10 bits and \overline{CAS} the latter 10 bits. A READ or WRITE cycle is selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. EARLY WRITE occurs when \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle.

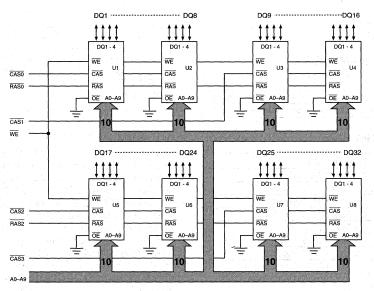
FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined (A0-A9) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

REFRESH

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR or HIDDEN) so that all 1,024 combination of RAS addresses (A0-A9) are executed at least every 16ms (128ms on S version), regardless of sequence.

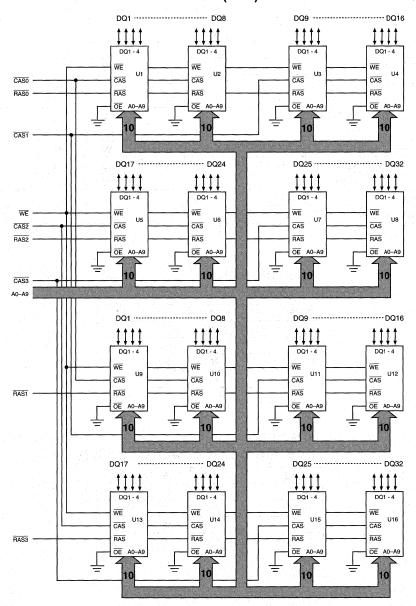
An additional SELF REFRESH mode is also available. The "S" version allows the user the option of a fully static low power data retention mode, or a dynamic refresh mode at the


extended refresh period of 128ms. The module's SELF REFRESH mode is initiated by executing a CBR REFRESH cycle and holding \overline{RAS} LOW for the specified ^tRASS. Additionally, the "S" version allows for an extended refresh period of 128ms, or 125ms per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation, as well as during a standby or extended refresh mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for the time minimum tRPS . This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed refresh sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes burst refresh sequence, all 1,024 rows must be refreshed within 300µs, prior to the resumption of normal operation.

x16 CONFIGURATION

For x16 applications, the corresponding DQ and $\overline{\text{CAS}}$ pins must be connected together (DQ1 to DQ17, DQ2 to DQ18 and so forth, and $\overline{\text{CAS0}}$ to $\overline{\text{CAS2}}$ and $\overline{\text{CAS1}}$ to $\overline{\text{CAS3}}$). Each $\overline{\text{RAS}}$ is then a bank select for the x16 memory organization.


FUNCTIONAL BLOCK DIAGRAM MT8D132 (4MB)

U1-U8 = MT4C4001JDJ U1-U8 = MT4C4001JDJ S (S version)

FUNCTIONAL BLOCK DIAGRAM MT16D232 (8MB)

U1-U16 = MT4C4001J or U1-U16 = MT4C4001J S (S version)

TRUTH TABLE

			and the second	erie i	ADDR	ESSES	DATA-IN/OUT
FUNCTION		RAS	CAS	WE	^t R	tC	DQ1-DQ32
Standby		Н	H→X	Х	Χ	Х	High-Z
READ		L	L	I	ROW	COL	Data-Out
EARLY WRITE	. *	. L	L	L	ROW	COL	Data-In
FAST-PAGE-MODE	1st Cycle	3 L	H→L	Н	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	Η	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L	H→L	٦	ROW	COL	Data-In
WRITE	2nd Cycle	L	H→L	L	n/a	COL	Data-In
RAS-ONLY REFRESH		L	Н	Χ	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Η	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	Х	Х	High-Z
SELF REFRESH (S ver	sion)	H→L	L	Н	Х	Х	High-Z

JEDEC DEFINED PRESENCE-DETECT - MT8D132 (4MB)

SYMBOL	PIN#	-6	-7
PRD1	67	Vss	Vss
PRD2	68	Vss	Vss
PRD3	69	NC.	Vss
PRD4	70	NC	NC

JEDEC DEFINED PRESENCE-DETECT - MT16D232 (8MB)

SYMBOL	PIN#	-6	-7
PRD1	67	NC	NC
PRD2	68	NC	NC
PRD3	69	NC	Vss
PRD4	70	NC	NC

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	-1V to +7V
Operating Temperature, T _A (ambient)	
Storage Temperature (plastic)	
Power Dissipation	
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 6) ($Vcc = +5V \pm 10\%$)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	4.5	5.5	V	No. of the
Input High (Logic 1) Voltage, all inputs	general with	· Vih	2.4	Vcc+1	V	
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	٧	
INPUT LEAKAGE CURRENT	CASO-CAS3	lin .	-8	8	μΑ	
Any input $0V \le V_{IN} \le 6.5V$	A0-A9, WE	lı2	-32	32	μΑ	29
(All other pins not under test = 0V) for each package input	RAS0-RAS3	lı3	-8	8	μΑ	29
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vout ≤ 5.5V) for each package input	DQ1-DQ32	loz	-20	20	μА	29
OUTPUT LEVELS		V он	2.4		٧	
Output High Voltage (Ιουτ = -5mA) Output Low Voltage (Ιουτ = 4.2mA)		V ol		0.4	٧	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

Notes: 1, 3, 6) (Vcc = +5V ±10%)			MAX			
PARAMETER/CONDITION	SYMBOL	SIZE	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	Icc1	4MB 8MB	16 32	16 32	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Other Inputs = Vcc -0.2V)	Icc2	4MB 8MB	8 16	8 16	mA	
	Icc2 (S only)	4MB 8MB	1.6 3.2	1.6 3.2	mA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Іссз	4MB 8MB	880 896	800 816	mA	2, 22, 26
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ¹PC = ¹PC [MIN])	lcc4	4MB 8MB	640 656	560 576	mA	2, 22, 26
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = VIH: [†] RC = [†] RC [MIN])	Icc5	4MB 8MB	880 896	800 816	mA	22, 26
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Icc6	4MB 8MB	880 896	800 816	mA	19, 22
REFRESH CURRENT: Extended (S version only) Average power supply current CAS = 0.2V or CBR cycling; RAS = ^t RAS (MIN); WE = Vcc -0.2V; A0-A9 and DIN = Vcc -0.2V or 0.2V (DIN may be left open); ^t RC = 125µs (1,024 rows at 125µs = 128ms)	Icc7 (S only)	4MB 8MB	2 3.6	2 3.6	mA	19, 22 24
REFRESH CURRENT: SELF (S version only) Average power supply current during SELF REFRESH CBR cycling with RAS ≥ ¹RASS (MIN) and CAS held LOW; WE = Vcc -0.2V; A0-A9 and DIN = Vcc -0.2V or 0.2V (DIN may be left open)	Iccs (S only)	4MB 8MB	2 3.6	2 3.6	mA	19, 27

CAPACITANCE		M	AX	1	
PARAMETER	SYMBOL	4MB	8MB	UNITS	NOTES
Input Capacitance: A0-A9	Cit	48	95	pF	17
Input Capacitance: WE	C ₁₂	64	127	pF	17
Input Capacitance: RAS0-RAS3	Cı4	32	32	pF	17
Input Capacitance: CASO-CAS3	C ₁₅	16	32	pF	17
Input/Output Canacitance: DQ1-DQ32	Cio	10	18	рF	17

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

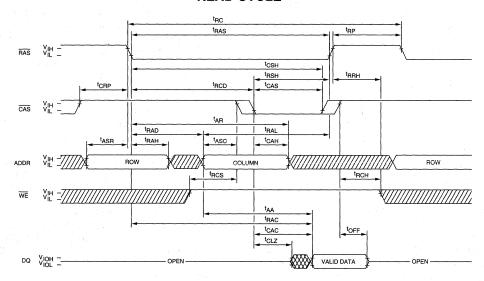
(Notes: 3, 4, 5, 6, 7, 10, 11, 16) ($Vcc = +5V \pm 10\%$)

AC CHARACTERISTICS		-6			-7	N. Salayani	30.78
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30		35	ns	
Column-address hold time (referenced to RAS)	^t AR	45		50		ns	1 1 July 1
Column-address setup time	†ASC	0		0	7 Mins	ns	100
Row-address setup time	†ASR	0		0		ns	1.094.13
Access time from CAS	^t CAC		15		20	ns	9
Column-address hold time	^t CAH	10		15		ns	A STATE
CAS pulse width	†CAS	15	10,000	20	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH cycle	tCHD	10		10		ns	27
CAS hold time (CBR REFRESH)	^t CHR	10		10		ns	19
CAS to output in Low-Z	^t CLZ	0		0	Art of the	ns	t i sejanik
CAS precharge time	^t CP	10		10		ns	18
Access time from CAS precharge	^t CPA		35		40	ns	de la
CAS to RAS precharge time	^t CRP	10		10		ns	
CAS hold time	^t CSH	60		70		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		ns	19
Write command to CAS lead time	tCWL	15		20		ns	
Data-in hold time	^t DH	10		15		ns	15
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	^t DS	0		0		ns	15
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	12, 25
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	n/a		n/a		ns	21
Access time from RAS	^t RAC		60		70	ns	8
RAS to column-address delay time	^t RAD	15	30	15	35	ns	23
Row-address hold time	^t RAH	10		10		ns	
Column-address to RAS lead time	†RAL	30		35	185	ns	
RAS pulse width	^t RAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	60	100,000	70	100,000	ns	
RAS pulse width during SELF REFRESH cycle	^t RASS	100		100		ms	27
Random READ or WRITE cycle time	^t RC	110		130		ns	
RAS to CAS delay time	tRCD	20	45	20	50	ns	13
Read command hold time (referenced to $\overline{\text{CAS}}$)	^t RCH	0		0		ns	14
Read command setup time	tRCS	0		0		ns	
Refresh period (1,024 cycles)	^t REF		16		16	ms	
Refresh period (1,024 cycles) S version	†REF		128		128	ms	

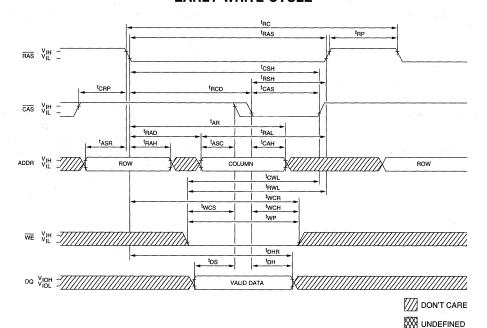
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 6, 7, 10, 11, 16) ($Vcc = +5V \pm 10\%$)

AC CHARACTERISTICS			-6	-	7	William I	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
RAS precharge time	tRP	40		50		ns	. 100
RAS to CAS precharge time	tRPC	0	100	0	100	ns	
RAS precharge time during SELF REFRESH cycle	tRPS	110		130		ns	27
Read command hold time	tRRH	0		0	-	ns	14
RAS hold time	tRSH	15		20		ns	
READ WRITE cycle time	tRWC	n/a		n/a		ns	21
Write command to RAS lead time	^t RWL	15		20		ns	
Transition time (rise or fall)	t _T	3	50	3	50	ns	
Write command hold time	tWCH	10		15		ns	100
Write command hold time (referenced to RAS)	tWCR	45		55		ns	
WE command setup time	tWCS	0		0		ns	
Write command pulse width	tWP	10		15	100	ns	
WE hold time (CBR REFRESH)	tWRH	10		10	7.5	ns	28
WE setup time (CBR REFRESH)	tWRP	10		10		ns	28

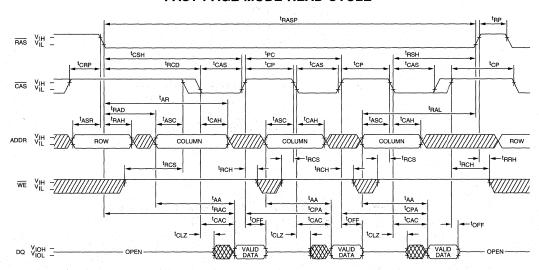


NOTES

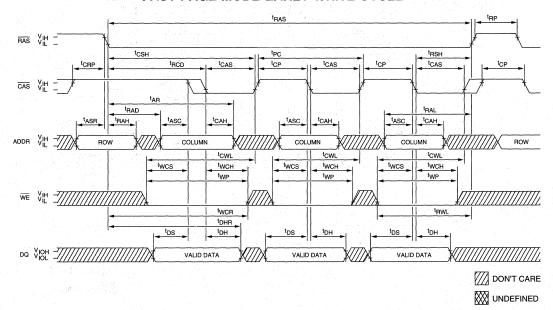

- 1. All voltages referenced to Vss.
- 2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 4. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 11. If $\overline{\text{CAS}} = \text{Vil.}$, data output may contain data from the last valid READ cycle.
- 12. 'OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 15. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in EARLY WRITE cycles.

- 16. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is measured using MIL-STD-883C, Method 3012.1 (1 MHz AC, Vcc = 5V, DC bias = 2.4V at 15mV RMS).
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 19. On-chip refresh and address counters are enabled.
- 20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- 21. LATE WRITE, READ WRITE or READ-MODIFY-WRITE cycles are not available due to \overline{OE} being grounded on U1-U8/U16.
- 22. Icc is dependent on cycle rates.
- 23. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 24. Applies to S version only.
- 25. The 3ns minimum is a parameter guaranteed by design.
- 26. Column-address changed once each cycle.
- 27. Refresh must be completed within the time of three external refresh rate periods prior to active use of the DRAM (provided distributed CBR REFRESH is used when in the active mode). Alternatively, a complete set of row refreshes must be executed when exiting SELF REFRESH prior to active use of the DRAM if anything other than distributed CBR REFRESH is used in the active mode.
- 28. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.
- 29. 4MB module values will be half of those shown.

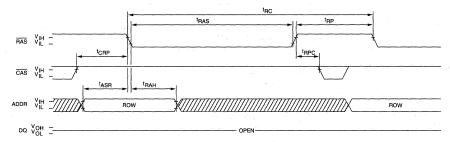
READ CYCLE



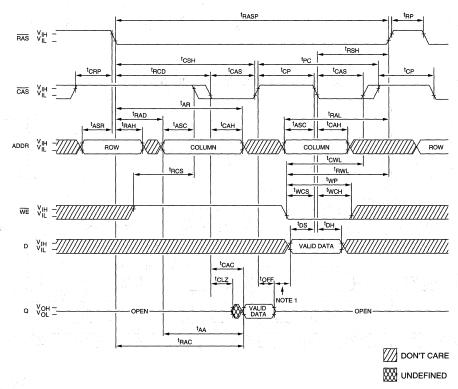
EARLY WRITE CYCLE



FAST-PAGE-MODE READ CYCLE



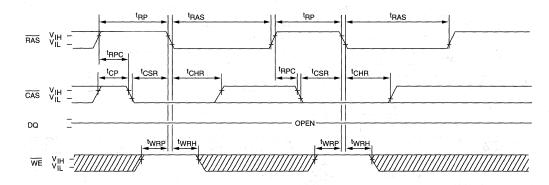
FAST-PAGE-MODE EARLY-WRITE CYCLE


RAS-ONLY REFRESH CYCLE

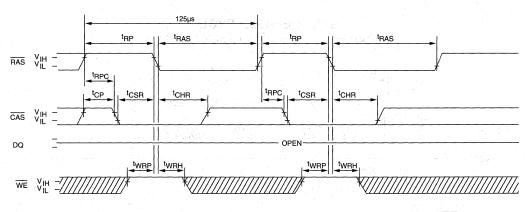
(WE = DON'T CARE)

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE

(Pseudo READ-MODIFY-WRITE)



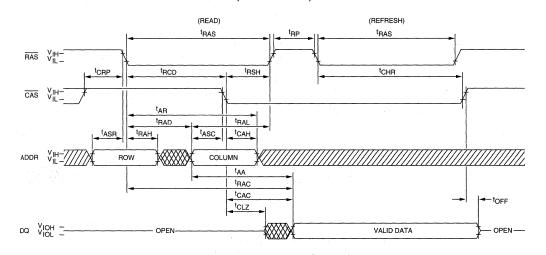
NOTE: 1. Do not drive data prior to tristate.


CBR REFRESH CYCLE

(Addresses = DON'T CARE)

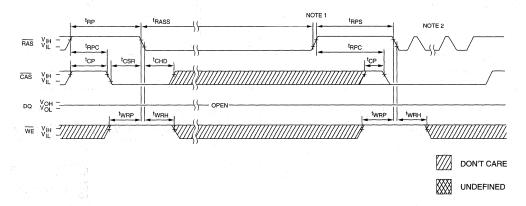
EXTENDED CBR REFRESH CYCLE 24

(Addresses = DON'T CARE)



DON'T CARE

W UNDEFINED



HIDDEN REFRESH CYCLE 20 (WE = HIGH)

SELF REFRESH CYCLE

(Addresses and OE = DON'T CARE)

NOTE: 1. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.

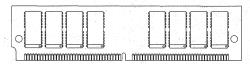
2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

DRAM MODULE

1 MEG, 2 MEG x 32

4, 8 MEGABYTE, 3.3V, OPTIONAL SELF REFRESH, FAST PAGE OR EDO PAGE MODE

FEATURES


- JEDEC-standard pinout in a 72-pin single-in-line memory module (SIMM)
- High-performance CMOS silicon-gate process
- Single +3.3V ±0.3V power supply
- All device pins are TTL-compatible
- Low power, 9.6mW standby; 800mW active, typical
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN; optional Extended and SELF REFRESH
- 1,024-cycle refresh distributed across 16ms or 1,024-cycle Extended Refresh distributed across 128ms
- FAST PAGE MODE (FPM) or Extended Data-Out (EDO) PAGE MODE access cycles
- 5V tolerant I/Os (5.5V maximum VIH level)
- 3.3V mechanical key

OPTIONS	MARKING
Timing	
60ns access	-6
70ns access	-7
80ns access	-8
• Components	
SOJ	D
TSOP	DT
Packages To min SIMM	M
72-pin SIMM 72-pin SIMM (gold)	G MI
72-pin Silvilvi (gold)	
Access Cycle	
FAST PAGE MODE	Blank
EDO PAGE MODE	X
나이 바꿨다. 그렇다 하라 나라의 나라보다.	
Refresh	
Standard/16ms	Blank
SELF REFRESH/128ms	

PIN ASSIGNMENT (Front View)

72-Pin SIMM

(DD-14) TSOP, (DD-16) SOJ - 1 Meg x 32 (DD-15) TSOP, (DD-17) SOJ - 2 Meg x 32

PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	19	NC	37	NC	55	DQ12
2	DQ1	20	DQ5	38	NC	56	DQ28
3	DQ17	21	DQ21	39	Vss	57	DQ13
4	DQ2	22	DQ6	Q6 40 <u>CASO</u> 5		58	DQ29
5	DQ18	23	DQ22	41	CAS2	59	Vcc
6	DQ3	24	DQ7	42	CAS3	60	DQ30
7	DQ19	25	DQ23	43	CAS1	61	DQ14
8	DQ4	26	DQ8	44	RAS0	62	DQ31
9	DQ20	27	DQ24	45	RAS1*	63	DQ15
10	Vcc	28	A7	46	0E	64	DQ32
11	PD5	29	NC	47	WE	65	DQ16
12	A0	30	Vcc	48	PD ECC	66	PD EDO
13	A1	31	A8	49	DQ9	67	PD1
14	A2	32	A9	50	DQ25	68	PD2
15	A3	33	NC	51	DQ10	69	PD3
16	A4	34	NC	52	DQ26	70	PD4
17	A5	35	NC	53	DQ11	71	PD refresh
18	A6	36	NC	54	DQ27	72	Vss

KEY TIMING PARAMETERS

EDO option

SPEED	¹RC	tRAC	tPC	^t AA	^t CAC	tCAS
-6	110ns	60ns	25ns	30ns	18ns	10ns
-7	130ns	70ns	30ns	35ns	22ns	15ns
-8	150ns	80ns	35ns	40ns	22ns	15ns

FPM option

SPEED	tRC	trac tpc		^t AA	tCAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns
-8	150ns	80ns	45ns	40ns	25ns	60ns

VALID PART NUMBERS

PART NUMBER	DESCRIPTION
MT8LDT132G-xx	1 Meg x 32 FPM, TSOP, Gold
MT8LDT132G-xx S	1 Meg x 32 FPM, S*, TSOP, Gold
MT8LD132G-xx X	1 Meg x 32 EDO, SOJ, Gold
MT8LD132G-xx XS	1 Meg x 32 EDO, S*, SOJ, Gold
MT8LDT132M-xx	1 Meg x 32 FPM, TSOP, Tin/Lead
MT8LDT132M-xx S	1 Meg x 32 FPM, S*, TSOP, Tin/Lead
MT8LD132M-xx X	1 Meg x 32 EDO, SOJ, Tin/Lead
MT8LD132M-xx XS	1 Meg x 32 EDO, S*, SOJ, Tin/Lead
MT16LDT232G-xx	2 Meg x 32 FPM, TSOP, Gold
MT16LDT232G-xx S	2 Meg x 32 FPM, S*, TSOP, Gold
MT16LD232G-xx X	2 Meg x 32 EDO, SOJ, Gold
MT16LD232G-xx XS	2 Meg x 32 EDO, S*, SOJ, Gold
MT16LDT232M-xx	2 Meg x 32 FPM, TSOP, Tin/Lead
MT16LDT232M-xx S	2 Meg x 32 FPM, S*, TSOP, Tin/Lead
MT16LD232M-xx X	2 Meg x 32 EDO, SOJ, Tin/Lead
MT16LD232M-xx XS	2 Meg x 32 EDO, S*, SOJ, Tin/Lead

'S = SELF REFRESH

GENERAL DESCRIPTION

The MT8LD(T)132(X)(S) and MT16LD(T)232(X)(S) are randomly accessed 4MB and 8MB solid-state memories organized in a x32 configuration with optional SELF REFRESH. They are specially processed to operate from 3.0V to 3.6V for low voltage memory systems.

During READ or WRITE cycles each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. \overline{RAS} latches the first 10 bits and \overline{CAS} latches the latter 10 bits.

READ and WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. EARLY WRITE occurs when \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle.

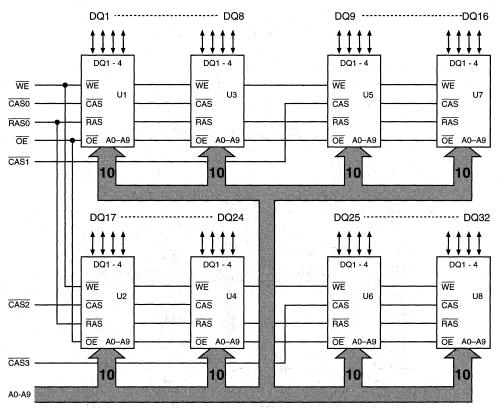
FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

EDO PAGE MODE

EDO PAGE MODE, designated by the "X" option, is an accelerated FAST PAGE MODE cycle. The primary advantage of EDO is the availability of data-out even after $\overline{\text{CAS}}$ goes back HIGH. EDO provides for $\overline{\text{CAS}}$ precharge time (CP) to occur without the output data going invalid. This elimination of $\overline{\text{CAS}}$ output control provides for pipeline READs.

FAST PAGE MODE modules have traditionally turned the output buffers off (High-Z) with the rising edge of $\overline{\text{CAS}}$. EDO operates as any DRAM READ or FAST-PAGE-MODE READ, except data will be held valid after $\overline{\text{CAS}}$ goes HIGH, as long as $\overline{\text{RAS}}$ and $\overline{\text{OE}}$ are held LOW and $\overline{\text{WE}}$ is held HIGH. $\overline{\text{OE}}$ can be brought LOW or HIGH while $\overline{\text{CAS}}$ and $\overline{\text{RAS}}$ are LOW, and the DQs will transition between valid data and High-Z (reference MT4LC4007J(S) DRAM data sheet for additional information on EDO functionality).


REFRESH

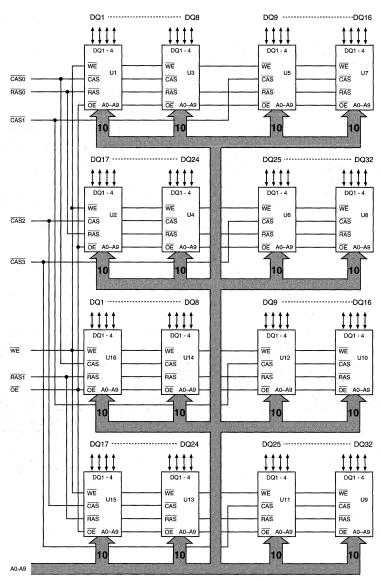
Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time. Preserve correct memory cell data by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR or HIDDEN) so that all 1,024 combinations of \overline{RAS} addresses (A0-A9) are executed at least every 16ms (128ms on "S" version), regardless of sequence. The CBR and SELF REFRESH cycles will invoke the internal refresh counter for automatic \overline{RAS} addressing.

An optional SELF REFRESH mode is also available. The "S" version allows the user the option of a fully static low power data retention mode, or a dynamic refresh mode at the extended refresh period of 128ms. The module's SELF REFRESH mode is initiated by executing a CBR REFRESH cycle and holding RAS LOW for the specified ^tRASS. Additionally, the "S" version allows for an extended refresh period of 128ms, or 125µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation, as well as during a standby or extended refresh mode.

The SELF REFRESH mode is terminated by driving RAS HIGH for the time minimum ^tRPS. This delay allows for the completion of any internal refresh cycles that may be in process at the time of the RAS LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes RAS ONLY or burst refresh sequence, all 1,024 rows must be refreshed within 300µs, prior to the resumption of normal operation.

FUNCTIONAL BLOCK DIAGRAM MT8LD(T)132 (4MB)

1 Meg x 32 EDO PAGE MODE U1-U8 = MT4LC4007J(S)


1 Meg x 32 FAST PAGE MODE U1-U8 = MT4LC4001J(S)

NOTE:

- 1. See package drawing for U1-U8 placement locations.
- 2. OE must be tied to Vss if not required.

DRAM SIMM

FUNCTIONAL BLOCK DIAGRAM MT16LD(T)232 (8MB)

2 Meg x 32 EDO PAGE MODE U1-U16 = MT4LC4007J(S)

NOTE: 1. See package drawing for U1-U16 placement locations.

2. OE must be tied to Vss if not required.

2 Meg x 32 FAST PAGE MODE U1-U16 = MT4LC4001J(S)

TRUTH TABLE

The state of the s						ADDR	ESSES	DATA-IN/OUT
FUNCTION		RAS	CAS	WE	0E	^t R	tC.	DQ1-DQ32
Standby		Н	H→X	X	Х	Х	Х	High-Z
READ		L	· L.	Н	L	ROW	COL	Data-Out
EARLY WRITE		L	L	L	Х	ROW	COL	Data-In
READ WRITE		L	L	H→L	L→H	ROW	COL	Data-Out, Data-In
EDO/FAST-PAGE-MODE	1st Cycle	L	H→L	Н	L	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	Н	L	n/a	COL	Data-Out
EDO/FAST-PAGE-MODE	1st Cycle	L	H→L	L	Х	ROW	COL	Data-In
EARLY WRITE	2nd Cycle	L	H→L	- L	Х	n/a	COL	Data-In
EDO/FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In
READ-WRITE	2nd Cycle	L.	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In
RAS-ONLY REFRESH		L	Н	Х	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L L	Х	ROW	COL	Data-In
CBR REFRESH		H→L	L	H	Х	Х	Χ	High-Z
SELF REFRESH (S version)		H→L	L	Н	Х	X	Х	High-Z

PRESENCE-DETECT TRUTH TABLE

Jan 1	CHARA	CTERISTICS				PRESE	NCE-DE	TECT I	PIN (PE	x)	-
Module Density	Module Organization	Row/Column Addresses			BANKS	1	2	5	3	4	
OMB	No module installed	X X X			Х	NC	NC	NC			
2MB 2MB	512K x 32/36 512K x 32/36	9/9 10/9			2 1	Vss Vss	NC NC	Vss NC			
• 4MB	1 Meg x 32/36	10/10			1	Vss	Vss	NC			
4MB	1 Meg x 32/36	10/9			2	Vss	Vss	Vss			
• 8MB	2 Meg x 32/36	10/10			2	NC	NC	NC			
8MB	2 Meg x 32/36	11/10			1	NC	NC	Vss			
16MB 16MB	4 Meg x 32/36 4 Meg x 32/36	12/11 11/10			1 2	NC Vss	Vss NC	Vss Vss			
32MB 32MB	8 Meg x 32/36 8 Meg x 32/36	12/11 12/11			2	NC NC	Vss Vss	NC Vss			
Access Tim	ning Detect	80ns			4			1960	NC	Vss	
		70ns							Vss	NC	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		60ns							NC	NC	
		50ns							Vss	Vss	
Refresh De	tect	Standard		Vss							
		Self		NC							
Fast Page	Mode/EDO Detect	Fast Page	Vss								
		EDO	NC								
ECC/Parity	Detect	ECC									Vss
		Parity/Non-Parity									NC

NOTE: Vss = ground.

ABSOLUTE MAXIMUM RATINGS*

 *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 2, 3, 6, 22) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	3.0	3.6	V	
Input High (Logic 1) Voltage, all inputs		ViH	2.0	5.5	V	
Input Low (Logic 0) Voltage, all inputs		ViL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT	CASO-CAS3	l in:	-8	8	μΑ	33
Any input $0V \le V_{IN} \le 5.5V$	A0-A9, WE, OE	lı2	-32	32	μΑ	33
(All other pins not under test = 0V) for each package input	RAS0-RAS1	lıз	-16	16	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; $0V \le Vout \le 5.5V$) for each package input	DQ1-DQ32	loz	-20	20	μА	33
OUTPUT LEVELS High Voltage (lout = -2mA)		Vон	2.4		V	
Low Voltage (Iout = 2mA)	The state of the s	Vol		0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 6) ($Vcc = +3.3V \pm 0.3V$)

			en l	MAX			
PARAMETER/CONDITION	SYMBOL	SIZE	-6	-7	-8	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	Icc1	4MB 8MB	8 16	8 16	8 16	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Other Inputs = Vcc -0.2V)	Icc2	4MB 8MB	4 8	4 8	4 8	mA	
	Icc2 (S only)	4MB 8MB	0.8 1.6	0.8 1.6	0.8 1.6	mA	
OPERATING CURRENT: Random READ/WRITE	loon	4MB	640	560	480	mA	2, 22,
Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	lcc3	8MB	648	568	488	IIIA	26
OPERATING CURRENT: FAST PAGE MODE Average power supply current	Icc4	4MB	480	400	320	mA	2, 22,
(RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN])		8MB	488	408	328		26
OPERATING CURRENT: EDO PAGE MODE (X-version only)		4MB	480	400	320	A	2, 22,
Average power supply current $(\overline{RAS} = VIL, \overline{CAS}, Address Cycling: {}^{t}PC = {}^{t}PC [MIN])$	Iccs (X only)	8MB	488	408	328	mA	26
REFRESH CURRENT: RAS ONLY	1	4MB	640	560	480		00.00
Average power supply current (RAS Cycling, CAS = VIH: ^t RC = ^t RC [MIN])	Icc6	8MB	648	568	488	mA	22, 26
REFRESH CURRENT: CBR	1,40	4MB	640	560	480		00.40
Average power supply current (RAS, CAS, Address Cycling: [†] RC = [†] RC [MIN])	Icc7	8MB	648	568	488	mA	22, 19
REFRESH CURRENT: Extended (S-version only) Average power supply current CAS = 0.2V or CBR cycling; RAS = tRAS (MIN); WE = Vcc -0.2V;	lccs (S only)	4MB	1.2	1.2	1.2	mA	19, 22
OE, A0-A9 and Din = Vcc -0.2V or 0.2V (Din may be left open); ^t RC = 125μs (1,024 rows at 125μs = 128ms)	(3 Orliy)	8MB	2.0	2.0	2.0		
REFRESH CURRENT: SELF (S-version only) Average power supply current during SELF REFRESH; CBR cycling	Icc9	4MB	1.2	1.2	1.2	mA	19
with $\overline{\text{RAS}} \ge {}^{\text{t}}$ RASS (MIN) and $\overline{\text{CAS}}$ held LOW; $\overline{\text{WE}} = \text{Vcc}$ -0.2V; $\overline{\text{OE}}$, A0-A9 and D _{IN} = Vcc -0.2V or 0.2V (D _{IN} may be left open)	(S only)	8МВ	2.0	2.0	2.0		

CAPACITANCE

OAI AOITAITOL		M	AX		
PARAMETER	SYMBOL	4MB	8MB	UNITS	NOTES
Input Capacitance: A0-A9	Ci1	48	95	pF	17
Input Capacitance: WE	C ₁₂	64	127	pF	17
Input Capacitance: RAS0-RAS1	Сіз	64	64	pF	17
Input Capacitance: CAS0-CAS3	Cı4	16	32	pF	17
Input/Output Capacitance: DQ1-DQ32	Сю	10	18	pF	17

FAST PAGE MODE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - FAST PAGE MODE OPTION			-6		-7		-8	1 14-1	1999 1998
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30		35		40	ns	1 July 1
Column-address hold time (referenced to RAS)	tAR	, 45		50		55		ns	
Column-address setup time	†ASC	0		0		0	Table 5	ns	5.44
Row-address setup time	tASR	0		0		0		ns	
Column-address to WE delay time	^t AWD	55		65		70	, v	ns	29
Access time from CAS	^t CAC		15		20		20	ns	9
Column-address hold time	^t CAH	10		15		15		ns	1 144
CAS pulse width	^t CAS	15	10,000	20	10,000	20	10,000	ns	e e e Nedi
RAS LOW to "don't care" during SELF REFRESH cycle	tCHD	10		10		10		ns	27
CAS hold time (CBR REFRESH)	tCHR	10		10		10		ns	19
CAS to output in Low-Z	^t CLZ	3		3		3		ns	24
CAS precharge time	^t CP	10	4 4 5	10		10		ns	18
Access time from CAS precharge	^t CPA		35		40		45	ns	
CAS to RAS precharge time	^t CRP	10		10		10		ns	
CAS hold time	^t CSH	60		70		80		ns	
CAS setup time (CBR REFRESH)	tCSR	10		10		10		ns	19
CAS to WE delay time	^t CWD	40		50		50		ns	29
Write command to CAS lead time	tCWL	15		20		20		ns	
Data-in hold time	^t DH	10		15		15	44.1	ns	15
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		ns	
Data-in setup time	^t DS	0		0		0		ns	15
Output disable	^t OD		15		20		20	ns	24, 31
Output Enable Time	^t OE	- 	15	1.00	20		20	ns	21
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	15		20		20		ns	
Output buffer turn-off delay	^t OFF	3	15	3	20	3	20	ns	12, 24, 32
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		0		ns	12
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		45		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	85		100		105		ns	
Access time from RAS	^t RAC		60		70		80	ns	8
RAS to column-address delay time	^t RAD	15	30	15	35	15	40	ns	23
Row-address hold time	^t RAH	10		10		10		ns	

FAST PAGE MODE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - FAST PAGE MODE OPTION			-6		-7	-8		3,44,37	
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Column-address to RAS lead time	^t RAL	30		35		40		ns	
RAS pulse width	^t RAS	60	10,000	70	10,000	80	10,000	ns	
RAS pulse width (FAST PAGE MODE)	tRASP	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width during SELF REFRESH cycle	^t RASS	100		100		100		μs	27
Random READ or WRITE cycle time	^t RC	110		130		150		ns	
RAS to CAS delay time	†RCD	20	45	20	50	20	60	ns	13
Read command hold time (referenced to CAS)	tRCH	0		0		0		ns	14
Read command setup time	tRCS	0	3	0		0		ns	
Refresh period (1,024 cycles)	^t REF		16		16		16	ms	
Refresh period (1,024 cycles) S version	^t REF		128		128		128	ms	
RAS precharge time	tRP	40		50		60		ns	
RAS to CAS precharge time	tRPC	0		0		0		ns	
RAS precharge time during SELF REFRESH cycle	tRPS	110		130		150		ns	27
Read command hold time (referenced to RAS)	^t RRH	0		0		0	11,14	ns	14
RAS hold time	tRSH	15		20		20		ns	
READ WRITE cycle time	^t RWC	150		180		200		ns	
RAS to WE delay time	tRWD	85		100		110		ns	29
Write command to RAS lead time	^t RWL	15		20		20		ns	0.00
Transition time (rise or fall)	tΤ	3	50	3	50	3	50	ns	
Write command hold time	tWCH	10		15		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		60		ns	
WE command setup time	tWCS	0		0		0		ns	29, 31
Write command pulse width	tWP	10		15		15		ns	
WE hold time (CBR REFRESH)	^t WRH	10		10		10	1	ns	28
WE setup time (CBR REFRESH)	tWRP	10		10		10	1	ns	28

EDO PAGE MODE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - EDO PAGE MODE OPTION			-6		-7		-8	5.37	
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30		35		40	ns	5 55 540
Column-address setup to CAS precharge during WRITE	tACH	15		15		20		ns	
Column-address hold time (referenced to RAS)	^t AR	45		50		55		ns	1 1
Column-address setup time	tASC	0		0		0		ns	10. 19.4
Row-address setup time	†ASR	0		0		0		ns	
Column-address to WE delay time	t _{AWD}	55		65	400 10	70		ns	29
Access time from CAS	†CAC		18	14, 24,	22		22	ns	9
Column-address hold time	^t CAH	10		15		15		ns	
CAS pulse width	†CAS	10	10,000	15	10,000	15	10,000	ns	12.40
RAS LOW to "don't care" during SELF REFRESH cycle	tCHD	10		10		10		ns	27
CAS hold time (CBR REFRESH)	^t CHR	10		10		10	100	ns	19
CAS to output in Low-Z	^t CLZ	3		3		3		ns	24
Data output hold after CAS LOW	[†] COH	5		5		5	196	ns	
CAS precharge time	^t CP	10		10		10		ns	18
Access time from CAS precharge	^t CPA		35		40	1 - 7	45	ns	
CAS to RAS precharge time	^t CRP	10		10		10	Service 1	ns	
CAS hold time	^t CSH	50		55		65		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		10	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	ns	19
CAS to WE delay time	tCWD	40		50		50	100	ns	29
Write command to CAS lead time	tCWL	15		20		20	3	ns	
Data-in hold time	^t DH	10		15		15		ns	15
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		ns	
Data-in setup time	^t DS	0		- 1.0		0		ns	15
Output disable	tOD		15		20		20	ns	31
Output Enable Time	^t OE		15	fla.	20		20	ns	21
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	15		20		20		ns	
OE HIGH hold time from CAS HIGH	^t OEHC	10		10		10		ns	
OE HIGH pulse width	†OEP	10	17.59	10		10		ns	
OE LOW to CAS HIGH setup time	†OES	5	100	5		5		ns	ate see
Output buffer turn-off delay	^t OFF	3	15	3	20	3	20	ns	12, 24, 3
OE setup prior to RAS during HIDDEN REFRESH cycle	[†] ORD	0		0		0		ns	
EDO-PAGE-MODE READ or WRITE cycle time	^t PC	25		33		35		ns	
EDO-PAGE-MODE READ-WRITE cycle time	^t PRWC	85		100		105	1 1 W 15	ns	

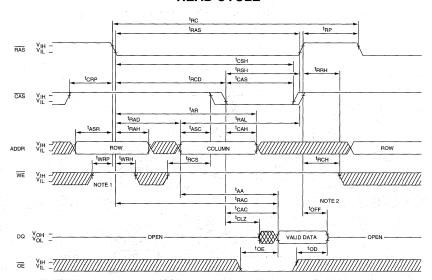
EDO PAGE MODE

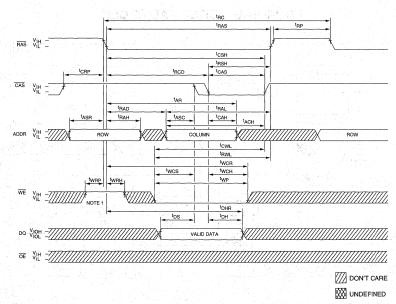
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - EDO PAGE MODE OPTION		-	-6		-7		-8	14.3	
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from RAS	^t RAC		60		70		80	ns	- 8
RAS to column-address delay time	tRAD	. 15	30	15	35	15	40	ns	23
Row-address hold time	^t RAH	10		10		10		ns	
Column-address to RAS lead time	^t RAL	30		35	1 2 2 2	40		ns	
RAS pulse width	†RAS	60	10,000	70	10,000	80	10,000	ns	
RAS pulse width (EDO PAGE MODE)	^t RASP	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width during SELF REFRESH cycle	†RASS	100		100		100	1.1	μs	27
Random READ or WRITE cycle time	^t RC	110		130		150		ns	
RAS to CAS delay time	^t RCD	20	45	20	50	20	60	ns	13
Read command hold time (referenced to CAS)	tRCH	0		0		0		ns	14
Read command setup time	tRCS	0		0		0		ns	
Refresh period (1,024 cycles)	^t REF		16		16		16	ms	
Refresh period (1,024 cycles) S version	^t REF		128		128		128	ms	
RAS precharge time	tRP	40		50		60		ns	1
RAS to CAS precharge time	tRPC	0		0		0		ns	
RAS precharge time during SELF REFRESH cycle	tRPS	110		130		150		ns	27
Read command hold time (referenced to RAS)	^t RRH	0		0		0	13.5	ns	14
RAS hold time	tRSH	15		20		20		ns	74.
READ WRITE cycle time	tRWC	150	1	180		200		ns	
RAS to WE delay time	tRWD	85		100		110		ns	29
Write command to RAS lead time	^t RWL	15		20		20	3 37	ns	
Transition time (rise or fall)	^t T	2	50	2	50	2	50	ns	
Write command hold time	tWCH	10		15		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		60		ns	
WE command setup time	tWCS	0		0		0		ns	29, 31
Output disable delay from WE (CAS HIGH)	tWHZ	3	15	3	15	3	15	ns	
Write command pulse width	tWP	- 10		15		15		ns	
WE pulse width for output disable when CAS HIGH	tWPZ	10		10		10		ns	
WE hold time (CBR REFRESH)	tWRH	10		10		10		ns	28
WE setup time (CBR REFRESH)	tWRP	10		10		10		ns	28

NOTES

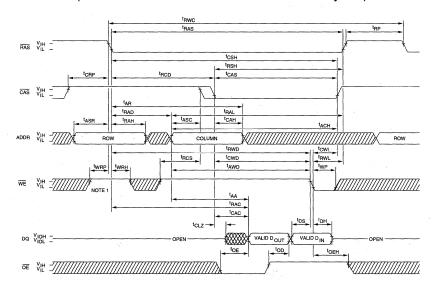
- 1. All voltages referenced to Vss.
- 2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- AC characteristics assume ^tT = 5ns for FPM and 2.5ns for EDO.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. Measured with a load equivalent to two TTL gates and 100pF. Output reference voltages are 0.8V for a low level and 2.0V for a high level.
- Assumes that ¹RCD < ¹RCD (MAX). If ¹RCD is greater than the maximum recommended value shown in this table, ¹RAC will increase by the amount that ¹RCD exceeds the value shown.
- Assumes that ^tRCD ≥ ^tRCD (MAX).
- 10. If \overline{CAS} and $\overline{RAS} = V_{IH}$, data output is High-Z.
- 11. If $\overline{\text{CAS}} = V_{\text{IL}}$, data output may contain data from the last valid READ cycle.
- tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 15. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 16. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 17. This parameter is sampled. Vcc = $+3.3V \pm 0.3V$; f = 1 MHz.

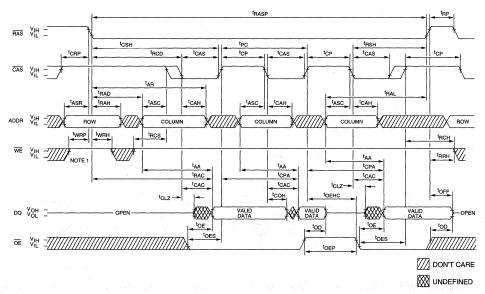

- 18. If $\overline{\text{CAS}}$ is LOW at the falling edge of $\overline{\text{RAS}}$, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, $\overline{\text{CAS}}$ must be pulsed HIGH for ^tCP.
- 19. On-chip refresh and address counters are enabled.
- A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 21. If OE is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not possible.
- 22. Icc is dependent on cycle rates.
- 23. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 24. The 3ns minimum is a parameter guaranteed by design
- 25. Refresh current increases if ^tRAS is extended beyond its minimum specification.
- 26. Column-address changed once each cycle.
- 27. If the DRAM controller uses a burst refresh, a burst refresh of all rows must be executed upon exiting SELF REFRESH.
- 28. ^tWTS and ^tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of ^tWRP and ^tWRH in the CBR REFRESH cycle.
- 29. tWCS, tRWD, tAWD and tCWD are not restrictive operating parameters. tWCS applies to EARLY WRITE cycles. tRWD, tAWD and tCWD apply to READ-MODIFY-WRITE cycles. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If tWCS < tWCS (MIN) and ${}^{t}RWD \ge {}^{t}RWD \text{ (MIN)}, {}^{t}AWD \ge {}^{t}AWD \text{ (MIN)} \text{ and}$ t CWD ≥ t CWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. tWCS, tRWD, tCWD and tAWD are not applicable in a LATE WRITE cycle.


NOTES (continued)

- 30. LATE WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 31. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS goes HIGH before OE, the DQs will open regardless of the state of OE. If CAS stays LOW
- while \overline{OE} is brought HIGH, the DQs will open. If \overline{OE} is brought back LOW (\overline{CAS} still LOW), the DQs will provide the previously read data.
- 32. For FAST-PÂGE-MOĎE option, ^tOFF is determined by the first RAS or CAS signal to transition HIGH. In comparison, ^tOFF on an EDO option is determined by the latter of the RAS and CAS signal to transition HIGH.
- 33. 4MB modules will have values half of those shown.
- 34. Applies to both EDO and FAST PAGE MODEs.

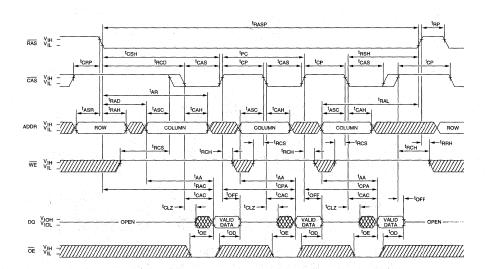
READ CYCLE 34


EARLY WRITE CYCLE 34

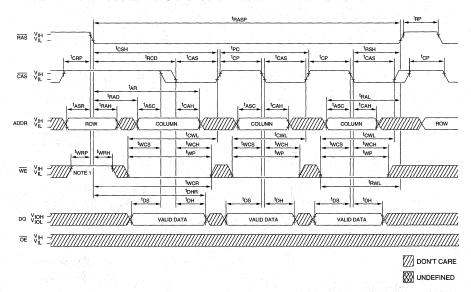

NOTE:

- 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.
- 2. OFF is referenced from rising edge of RAS or CAS, which ever occurs last.

READ WRITE CYCLE 34 (LATE WRITE and READ-MODIFY-WRITE cycles)

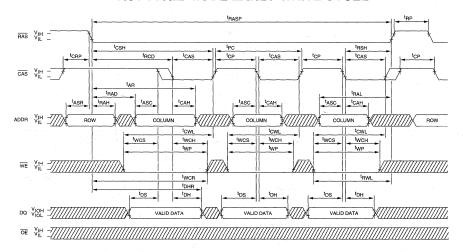


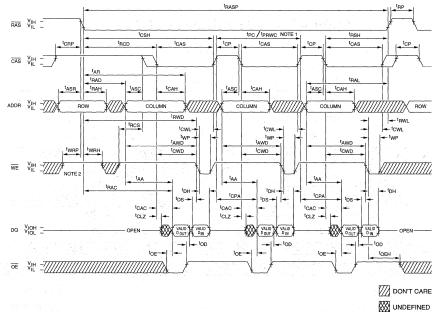
EDO-PAGE-MODE READ CYCLE



NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

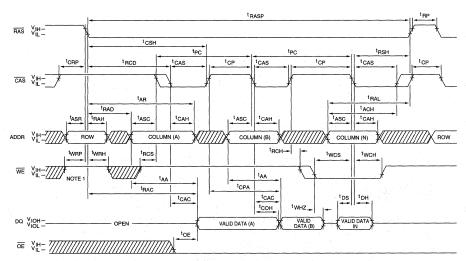
FAST-PAGE-MODE READ CYCLE


EDO-PAGE-MODE EARLY-WRITE CYCLE


NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

FAST-PAGE-MODE EARLY-WRITE CYCLE

EDO/FAST PAGE-MODE READ-WRITE CYCLE 34 (LATE WRITE and READ-MODIFY-WRITE cycles)


NOTE:

- 1. ^tPC is for LATE WRITE cycles only.
- Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for ^tWRP and ^tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

EDO-PAGE-MODE READ-EARLY-WRITE CYCLE

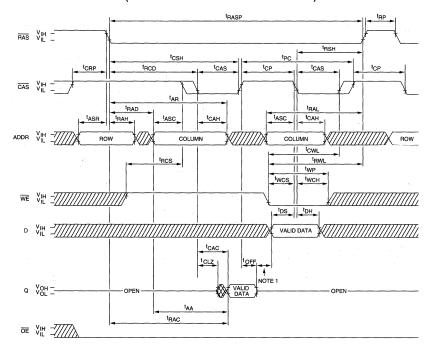
(Pseudo READ-MODIFY-WRITE)

DON'T CARE

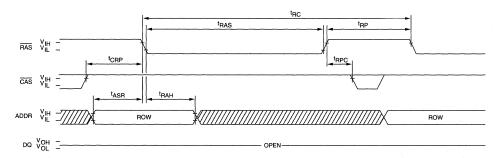
W UNDEFINED

NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with

MT8LD(T)132(X)(S), MT16LD(T)232(X)(S) DM35.pm5 – Rev. 2/95


future EDO DRAMs.

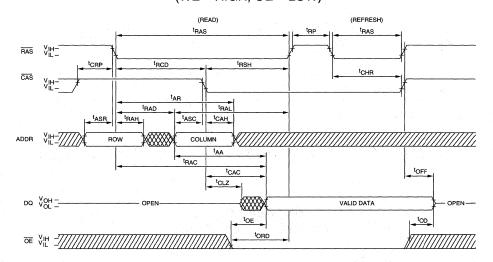
MICHON TECHNOLOGY, INC.


MT8LD(T)132(X)(S), MT16LD(T)232(X)(S) 1 MEG, 2 MEG x 32 DRAM MODULES

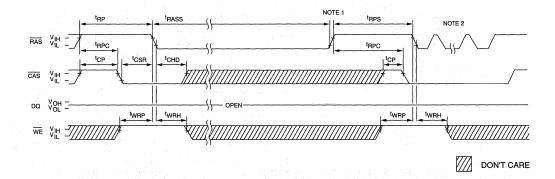
FAST-PAGE-MODE READ-EARLY-WRITE CYCLE

(Pseudo READ-MODIFY-WRITE)

RAS-ONLY REFRESH CYCLE 34 (WE = DON'T CARE)

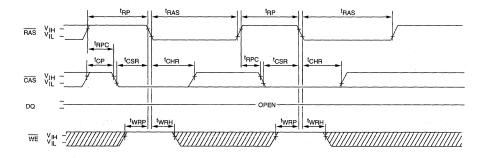

DON'T CARE

₩ undefined


NOTE: 1. Do not drive data prior to tristate.

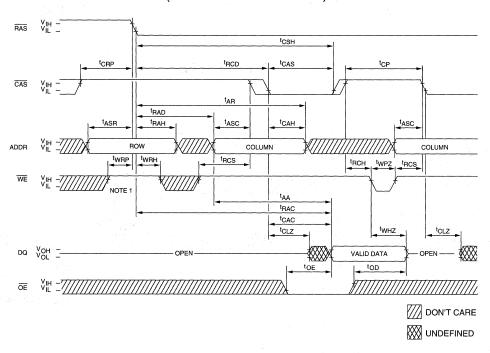
HIDDEN REFRESH CYCLE 20, 34 (WE = HIGH; OE = LOW)

SELF REFRESH CYCLE ³⁴ (Addresses and OE = DON'T CARE)



NOTE: 1. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.

2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.


UNDEFINED

CBR REFRESH CYCLE 34 (Addresses and OE = DON'T CARE)

EDO READ CYCLE

(with WE-controlled disable)

NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

DRAM MODULE

2 MEG x 32

8 MEGABYTE, 3.3V, OPTIONAL SELF REFRESH, FAST PAGE OR EDO PAGE MODE

FEATURES

- JEDEC-standard pinout in a 72-pin single-in-line memory module (SIMM)
- High-performance CMOS silicon-gate process
- Single $+3.3V \pm 0.3V$ power supply
- All device pins are TTL-compatible
- Low power, 4mW standby; 800mW active, typical
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN; optional Extended and SELF REFRESH modes
- 2,048-cycle refresh distributed across 32ms or 2,048-cycle Extended Refresh distributed across 128ms
- FAST PAGE MODE (FPM) or Extended Data-Out (EDO) PAGE MODE access cycles
- 5V tolerant I/Os (5.5V maximum VIH level)
- 3.3V mechanical key

OPTIONS	MARKING
• Timing	
60ns access	-6
70ns access	-7
Packages	
72-pin SIMM	M
72-pin SIMM (gold)	G
Access Cycle	
FAST PAGE MODE	Blank
EDO PAGE MODE	X
. 이 장살이 되었어요 민족은 환경을 잃는다고 있는데	
Refresh	

KEY TIMING PARAMETERS

EDO option

Standard/32ms

SELF REFRESH/128ms

SPEED	tRC	tRAC	tPC	^t AA	tCAC	tCAS
-6	110ns	60ns	25ns	30ns	15ns	10ns
-7	130ns	70ns	30ns	35ns	20ns	12ns

FPM option

SPEED	^t RC	^t RAC	tPC	^t AA	†CAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

PIN ASSIGNMENT (Front View) 72-Pin SIMM

(DD-18)

PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	19	A10	37	NC	55	DQ12
2	DQ1	20	DQ5	38	NC	56	DQ28
3	DQ17	21	DQ21	39	Vss	57	DQ13
4	DQ2	22	DQ6	40	CAS0	-58	DQ29
5	DQ18	23	DQ22	41	CAS2	59	Vcc
6	DQ3	24	DQ7	42	CAS3	60	DQ30
7	DQ19	25	DQ23	43	CAS1	61	DQ14
8	DQ4	26	DQ8	44	RAS0	62	DQ31
9	DQ20	27	DQ24	45	NC	63	DQ15
10	Vcc	28	A7	46	ŌE	64	DQ32
11	PD5	29	NC	47	WE	65	DQ16
12	A0	30	Vcc	48	PD ECC	66	PD EDO
13	A1	31	A8	49	DQ9	67	PD1
14	A2	32	A9	50	DQ25	68	PD2
15	A3	33	NC	51	DQ10	69	PD3
16	A4	34	NC	52	DQ26	70	PD4
17	A5	35	NC	53	DQ11	71	PD refresi
18	A6	36	NC	54	DQ27	72	Vss

VALID PART NUMBERS

PART NUMBER	DESCRIPTION
MT4LD232G-xx	2 Meg x 32 FPM, SOJ, Gold
MT4LD232G-xx S	2 Meg x 32 FPM, S*, SOJ, Gold
MT4LD232G-xx X	2 Meg x 32 EDO, SOJ, Gold
MT4LD232G-xx XS	2 Meg x 32 EDO, S*, SOJ, Gold
MT4LD232M-xx	2 Meg x 32 FPM, SOJ, Tin/Lead
MT4LD232M-xx S	2 Meg x 32 FPM, S*, SOJ, Tin/Lead
MT4LD232M-xx X	2 Meg x 32 EDO, SOJ, Tin/Lead
MT4LD232M-xx XS	2 Meg x 32 EDO, S*, SOJ, Tin/Lead

*S = SELF REFRESH

Blank

MT4LD232(X)(S) 2 MEG x 32 DRAM MODULE

GENERAL DESCRIPTION

The MT4LD232 (X)(S) is a randomly accessed 16MB and 32MB solid-state memory organized in a x32 configuration with optional SELF REFRESH. It is specially processed to operate from 3.0V to 3.6V for low voltage memory systems.

During READ or WRITE cycles each bit is uniquely addressed through the address bits, RAS latches the first 11 bits and CAS latches the latter 10 bits (A10 is ignored during CAS falling edge). READ and WRITE cycles are selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. EARLY WRITE occurs when WE goes LOW prior to CAS going LOW, the output pin(s) remain open (High-Z) until the next CAS cycle.

If WE goes LOW after CAS goes LOW, data-out (Q) is activated and retains the selected cell data as long as $\overline{\text{OE}}$ remains LOW and RAS and CAS remains LOW (regardless of WE). This late WE pulse results in a READ WRITE cycle. If WE toggles LOW after CAS goes back HIGH, the output pins will open (High-Z) until the next CAS cycle, regardless of OE.

FAST PAGE MODE

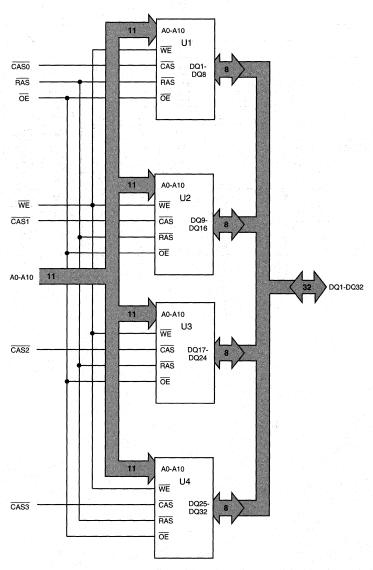
FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different columnaddresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

EDO PAGE MODE

EDO PAGE MODE, designated by the "X" option, is an accelerated FAST PAGE MODE cycle. The primary advantage of EDO is the availability of data-out even after CAS goes back HIGH. EDO provides for CAS precharge time (tCP) to occur without the output data going invalid. This elimination of CAS output control provides for pipeline READs.

FAST PAGE MODE modules have traditionally turned the output buffers off (High-Z) with the rising edge of CAS. EDO operates as any DRAM READ or FAST-PAGE-MODE READ, except data will be held valid after CAS goes HIGH, as long as RAS and OE are held LOW and WE is held HIGH. OE can be brought LOW or HIGH while CAS and RAS are LOW, and the DQs will transition between valid data and High-Z (reference the MT4LC2M8E7(S) DRAM data sheet for additional information on EDO functionality).

REFRESH


Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS HIGH time. Preserve correct memory cell data by maintaining power and executing any RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR or HID-DEN) so that all 2,048 combinations of RAS addresses are executed at least every 32ms (128ms on "S" version), regardless of sequence. The CBR and SELF REFRESH cycles will invoke the internal refresh counter for automatic RAS addressing.

An optional SELF REFRESH mode is also available. The "S" version allows the user the option of a fully static low power data retention mode, or a dynamic refresh mode at the extended refresh period of 128ms. The module's SELF RE-FRESH mode is initiated by executing a CBR REFRESH cycle and holding RAS LOW for the specified tRASS. Additionally, the "S" version allows for an extended refresh rate of 62.5µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation, as well as during a standby or extended refresh mode.

The SELF REFRESH mode is terminated by driving RAS HIGH for the time minimum ^tRPS. This delay allows for the completion of any internal refresh cycles that may be in process at the time of the RAS LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes RAS ONLY or burst refresh sequence, all 2,048 rows must be refreshed within 300µs, prior to the resumption of normal operation.

FUNCTIONAL BLOCK DIAGRAM 8MB

EDO PAGE MODE U1-U4 = MT4LC2M8E7DJ(S)

1. OE must be tied to Vss if not required. NOTE:

FAST PAGE MODE U1-U4 = MT4LC2M8B1DJ(S)

TRUTH TABLE

						ADDRI	ESSES	DATA-IN/OUT
FUNCTION		RAS	CAS	WE	ŌĒ	t _R	t _C	DQ1-DQ32
Standby		Н	H→X	Х	X	Х	Х	High-Z
READ	L	L	Н	L	ROW	COL	Data-Out	
EARLY WRITE	L	L	L	X	ROW	COL	Data-In	
READ WRITE		L	L	H→L	L→H	ROW	COL	Data-Out, Data-In
EDO/FAST-PAGE-MODE	1st Cycle	L	H→L	Н	L	ROW	COL	Data-Out
READ	2nd Cycle	. L	H→L	Н	L	n/a	COL	Data-Out
EDO/FAST-PAGE-MODE	1st Cycle	L	H→L	L	X	ROW	COL	Data-In
EARLY WRITE	2nd Cycle	L	H→L	L	Х	n/a	COL	Data-In
EDO/FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In
RAS-ONLY REFRESH	13.4	L	Н	Х	X	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Data-Out
REFRESH WRITE		L→H→L	L	L	Х	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	X	X	Х	High-Z
SELF REFRESH (S version)		H→L	L	Н	X	X	Х	High-Z

PRESENCE-DETECT TRUTH TABLE

	CHARA	CTERISTICS		: 1		PRESE	ICE-DI	TECT I	PIN (PE	Dx)	
Module Density	Module Organization	Row/Column Addresses			BANKS	1	2	5	3	4	
OMB	No module installed	X	Section 1		Χ	NC	NC	NC			
2MB 2MB	512K x 32/36 512K x 32/36	9/9 10/9			2 1	Vss Vss	NC NC	Vss NC			
4MB 4MB	1 Meg x 32/36 1 Meg x 32/36	10/10 10/9			1 2	Vss Vss	Vss Vss	NC Vss			
8MB ● 8MB	2 Meg x 32/36 2 Meg x 32/36	10/10 11/10			2 1	NC NC	NC NC	NC Vss			
16MB 16MB	4 Meg x 32/36 4 Meg x 32/36	12/11 11/10			1 2	NC Vss	Vss NC	Vss Vss			
32MB 32MB	8 Meg x 32/36 8 Meg x 32/36	12/11 12/11			2	NC NC	Vss Vss	NC Vss			
Access Tin	ning Detect	80ns							NC	Vss	
		70ns							Vss	NC	
		60ns							NC	NC	
		50ns							Vss	Vss	
Refresh De	tect	Standard		Vss							
		Self		NC							
Fast Page	Mode/EDO Detect	Fast Page	Vss								
		EDO	NC								
ECC/Parity	Detect	ECC									Vss
		Parity/Non-Parity									NC

NOTE: Vss = ground.

MT4LD232(X)(S) 2 MEG x 32 DRAM MODULE

ABSOLUTE MAXIMUM RATINGS* Voltage on Vcc Pin Relative to Vss-1V to +4.6V Voltage on Inputs or I/O Pins Relative to Vss-1V to +5.5V Operating Temperature, T_A (ambient)0°C to +70°C Storage Temperature (plastic)-55°C to +125°C Power Dissipation4W

Short Circuit Output Current 50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 2, 3, 6, 22) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
SupplyVoltage		V cc	3.0	3.6	V	
Input High (Logic 1) Voltage, all inputs		Vıн	2.0	5.5	V	
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT	CAS0-CAS3	l _{I1}	-2	2	μА	
Any input $0V \le V_{IN} \le 5.5V$	A0-A9, WE, OE	lı2	-8	8	μА	
(All other pins not under test = 0V) for each package input	RAS0	lıз	-8	8	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; $0V \le Vout \le 5.5V$) for each package input	DQ1-DQ32	loz	-10	10	μА	
TTL OUTPUT LEVELS High Voltage (lout = -2mA))	Vон	2.4		V	
Low Voltage (lout = 2mA)		Vol	-	0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 6) (Vcc = $+3.3V \pm 0.3V$)

	<u> </u>		M	AX		
PARAMETER/CONDITION	SYMBOL	SIZE	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	lcc1	8MB	8	8	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Other Inputs = Vcc -0.2V)	lcc2 lcc2 (S only)	8MB 8MB	.6	.6	mA mA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: [†] RC = [†] RC [MIN])	Іссз	8MB	520	480	mA	2, 22, 26
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = V _I L, CAS, Address Cycling: ¹ PC = ¹ PC [MIN])	lcc4	8MB	360	320	mA	2, 22, 26
OPERATING CURRENT: EDO PAGE MODE (X version only) Average power supply current (RAS = V _I L, CAS, Address Cycling: ^t PC = ^t PC [MIN])	Icc4 (X only)	8MB	480	440	mA	2, 22, 26
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = VIH: †RC = †RC [MIN])	Icc5	8MB	520	480	mA	22, 26
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: [†] RC = [†] RC [MIN])	Icc6	8MB	520	480	mA	22, 19
REFRESH CURRENT: Extended (S version only) Average power supply current CAS = 0.2V or CBR cyclig; RAS = tRAS (MIN); WE = Vcc -0.2V; OE, A0-A10 and DIN = Vcc -0.2V or 0.2V (DIN may be left open); tRC = 62.5µs	Icc7 (S only)	8MB	1.2	1.2	mA	19, 22
REFRESH CURRENT: SELF (S version only) Average power supply current during SELF REFRESH; CBR cycling with RAS ≥ ^t RASS (MIN) and CAS held LOW; WE = Vcc -0.2V; OE,A0-A10 and DIN = Vcc -0.2V or 0.2V (DIN may be left open)	Iccs (S only)	8MB	1.2	1.2	mA	19

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A10	C _{I1}		24	pF	17
Input Capacitance: WE	C ₁₂		32	pF	17
Input Capacitance: RASO	Сіз		32	pF	17
Input Capacitance: CAS0-CAS3	C ₁₄		10	pF	17
Input/Output Capacitance: DQ1-DQ32	Cio		10	pF	17

FAST PAGE MODE ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - FAST PAGE MODE OPTION PARAMETER	SYM	-6		-7			
		MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30		35	ns	
Column-address hold time (referenced to RAS)	^t AR	50		55		ns	
Column-address setup time	†ASC	0		0		ns	
Row-address setup time	tASR	0		0		ns	
Column-address to WE delay time	tAWD	55		60		ns	29
Access time from CAS	^t CAC		15		20	ns	9
Column-address hold time	^t CAH	10		15		ns	
CAS pulse width	tCAS	15	10,000	20	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH cycle	tCHD	15		15		ns	27
CAS hold time (CBR REFRESH)	tCHR	15		15		ns	19
CAS to output in Low-Z	^t CLZ	3 .		3		ns	24
CAS precharge time	^t CP	10		10		ns	18
Access time from CAS precharge	^t CPA		35		40	ns	
CAS to RAS precharge time	^t CRP	5		5	-	ns	
CAS hold time	^t CSH	60		70		ns	14
CAS setup time (CBR REFRESH)	^t CSR	5		5		ns	19
CAS to WE delay time	tCWD	40		45	1	ns	29
Write command to CAS lead time	^t CWL	15		20		ns	
Data-in hold time	†DH	10		15		ns	15
Data-in hold time (referenced to RAS)	^t DHR	45	100	55		ns	
Data-in setup time	^t DS	0		0		ns	15
Output disable	tOD	3	15	3	20	ns	24
Output Enable Time	^t OE		15		20	ns	21
OE hold time from WE during READ-MODIFY-WRITE cycle	[†] OEH	15		15		ns	
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	12, 24, 3
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		ns	12
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	85		95		ns	
Access time from RAS	†RAC		60		70	ns	8
RAS to column-address delay time	^t RAD	15	30	15	35	ns	23
Row-address hold time	^t RAH	10		10	1	ns	

FAST PAGE MODE ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - FAST PAGE MODE OPTION PARAMETER	SYM	-6		-7			
		MIN	MAX	MIN	MAX	UNITS	NOTES
Column-address to RAS lead time	^t RAL	30		35		ns	
RAS pulse width	tRAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	tRASP	60	100,000	70	100,000	ns	
RAS pulse width during SELF REFRESH cycle	tRASS	100		100	1	μs	27
Random READ or WRITE cycle time	^t RC	110		130		ns	
RAS to CAS delay time	tRCD	20	45	20	50	ns	13
Read command hold time (referenced to CAS)	tRCH -	0		0		ns	14
Read command setup time	tRCS	0		0		ns	
Refresh period (2,048 cycles)	tREF		32		32	ms	- A.
Refresh period (2,048 cycles) S version	^t REF		128		128	ms	
RAS precharge time	^t RP	40		50		ns	
RAS to CAS precharge time	^t RPC	0		0		ns	
RAS precharge time during SELF REFRESH cycle	tRPS 1	110		130		ns	27
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	14
RAS hold time	^t RSH	15		20		ns	5 5 4 3
READ WRITE cycle time	^t RWC	150		180	The section	ns	
RAS to WE delay time	tRWD	85		95		ns	29
Write command to RAS lead time	^t RWL	15		20		ns	
Transition time (rise or fall)	t T	3	50	3	50	ns	
Write command hold time	tWCH	10	10.17	15		ns	
Write command hold time (referenced to RAS)	^t WCR	45		55		ns	
WE command setup time	twcs	0		0		ns	29
Write command pulse width	tWP	10		15		ns	
WE pulse width for output disable when CAS HIGH	tWPZ	10		10		ns	
WE hold time (CBR REFRESH)	tWRH	10		10		ns	28
WE setup time (CBR REFRESH)	tWRP	10	P 24 . 1	10		ns	28

EDO PAGE MODE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 6, 7, 10, 11, 16, 21) ($Vcc = +3.3V \pm 0.3V$)

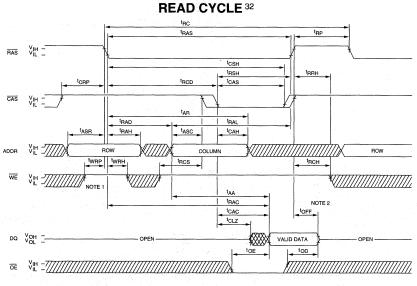
AC CHARACTERISTICS - EDO PAGE MODE OPTION PARAMETER			-6	-7			
		MIN MAX		MIN MAX		UNITS	NOTES
Access time from column-address	t _{AA}		30		35	ns	
Column-address setup to CAS precharge during WRITE	tACH .	15		15		ns	
Column-address hold time (referenced to RAS)	tAR .	45		55		ns	
Column-address setup time	tASC	0		0		ns	177
Row-address setup time	tASR	0		0		ns	
Column-address to WE delay time	tAWD	55		65		ns	29
Access time from CAS	^t CAC		15		20	ns	9
Column-address hold time	tCAH .	10	İ	12		ns	
CAS pulse width	tCAS	10	10,000	12	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH cycle	tCHD	15		15		ns	27
CAS hold time (CBR REFRESH)	tCHR	10		12		ns	19
CAS to output in Low-Z	†CLZ	0		0		ns	100
Data output hold after CAS LOW	^t COH	5		5		ns	1 · · · · · ·
CAS precharge time	^t CP	10		10		ns	18
Access time from CAS precharge	^t CPA		35		40	ns	
CAS to RAS precharge time	^t CRP	5		5		ns	
CAS hold time	tCSH	50		55		ns	
CAS setup time (CBR REFRESH)	tCSR	5		5	N 24 1 1 1	ns	19
CAS to WE delay time	tCWD	35		40		ns	29
Write command to CAS lead time	tCWL	15		15		ns	
Data-in hold time	tDH	10		12		ns	15
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	t _{DS}	0		0		ns	15
Output disable	^t OD	0	15	0	15	ns	
Output Enable Time	^t OE		15		15	ns	21
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	12		12		ns	
OE HIGH hold time from CAS HIGH	^t OEHC	10		10		ns	
OE HIGH pulse width	^t OEP	10		10		ns	
OE LOW to CAS HIGH setup time	^t OES	5		5		ns	
Output buffer turn-off delay	^t OFF	3	15	3	15	ns	12, 24, 3
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		ns	
EDO-PAGE-MODE READ or WRITE cycle time	^t PC	25		30		ns	
EDO-PAGE-MODE READ-WRITE cycle time	^t PRWC	75		85		ns	

EDO PAGE MODE

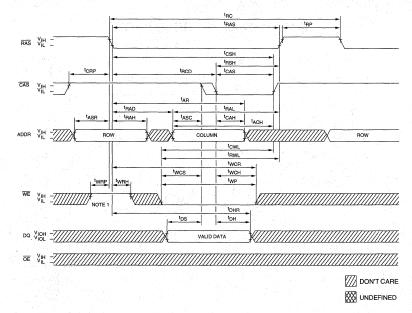
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 6, 7, 10, 11, 16, 21) ($Vcc = +3.3V \pm 0.3V$)

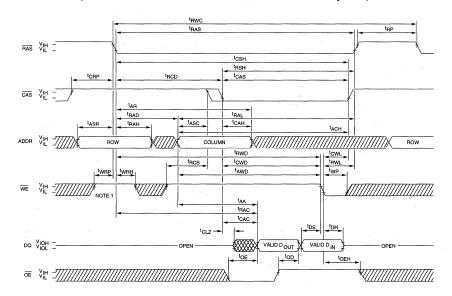
AC CHARACTERISTICS - EDO PAGE MODE OPTION	4		-6	-7			
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from RAS	†RAC		60		70	ns	8
RAS to column-address delay time	tRAD.	12	30	12	35	ns	23
Row-address hold time	^t RAH	10		10		ns	-19-11
Column-address to RAS lead time	†RAL	30		35		ns	13,114,41
RAS pulse width	†RAS	60	10,000	70	10,000	ns	No. 2
RAS pulse width (EDO PAGE MODE)	tRASP	60	125,000	70	125,000	ns	
RAS pulse width during SELF REFRESH cycle	†RASS	100		100		μs	27
Random READ or WRITE cycle time	†RC	110		130		ns	
RAS to CAS delay time	^t RCD	14	45	14	50	ns	13
Read command hold time (referenced to CAS)	^t RCH	0		0		ns	14
Read command setup time	tRCS	0		0		ns	
Refresh period (2,048 cycles)	^t REF		32		32	ms	
Refresh period (2,048 cycles) S version	tREF		128		128	ms	
RAS precharge time	^t RP	40		50		ns	
RAS to CAS precharge time	^t RPC	0		0		ns	
RAS precharge time during SELF REFRESH cycle	tRPS	110		130		ns	27
Read command hold time (referenced to RAS)	^t RRH	0	3 3 0 4 4	0		ns	14
RAS hold time	tRSH	10		12		ns	1 . A . A
READ WRITE cycle time	^t RWC	150		177	6 3 8 8	ns	1.411644
RAS to WE delay time	^t RWD	80		90		ns	29
Write command to RAS lead time	^t RWL	15	of the two	15	4 5 Web 4	ns	
Transition time (rise or fall)	^t T	2	50	2	50	ns	- T.
Write command hold time	tWCH	10		12		ns	
Write command hold time (referenced to RAS)	tWCR	45	L with a	55		ns	
WE command setup time	tWCS	0		0	1. 3.	ns	29
Output disable delay from WE (CAS HIGH)	tWHZ	0	13	0	15	ns	
Write command pulse width	tWP	10		12	- 4 6604	ns	10/4
WE pulse width for output disable when CAS HIGH	tWPZ	10		12	FEAL FE	ns	5-1
WE hold time (CBR REFRESH)	tWRH	10		10	10,2000	ns	28
WE setup time (CBR REFRESH)	tWRP	10		10		ns	28

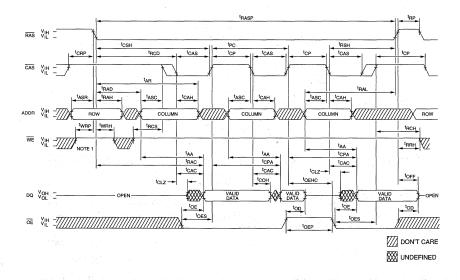

MT4LD232(X)(S) 2 MEG x 32 DRAM MODÚLÉ

NOTES


- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- AC characteristics assume ${}^{t}T = 2.5$ ns for EDO and 5ns for FPM.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- Measured with a load equivalent to two TTL gates and 100pF. Output reference voltages are 0.8V for a low level and 2.0V for a high level.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, tRAC will increase by the amount that tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{\text{CAS}}$ and $\overline{\text{RAS}}$ = V_{IH}, data output is High-Z.
- 11. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- 12. tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by tCAC.
- 14. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 15. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 16. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 17. This parameter is sampled. $Vcc = 3.3V \pm 0.3V$; f = 1 MHz.
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 19. On-chip refresh and address counters are enabled.

- 20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$ and \overline{OE} = HIGH.
- 21. If OE is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not possible.
- Icc is dependent on cycle rates.
- 23. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 24. The 3ns minimum is a parameter guaranteed by design.
- 25. Refresh current increases if ^tRAS is extended beyond its minimum specification.
- 26. Column-address changed once each cycle.
- 27. If the DRAM controller uses a burst refresh, a burst refresh of all rows must be executed upon exiting SELF REFRESH.
- 28. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.
- 29. tWCS, tRWD, tAWD and tCWD are not restrictive operating parameters. tWCS applies to EARLY WRITE cycles. tRWD, tAWD and tCWD apply to READ-MODIFY-WRITE cycles. If tWCS ≥ tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If tWCS < tWCS (MIN) and ${}^{t}RWD \ge {}^{t}RWD (MIN), {}^{t}AWD \ge {}^{t}AWD (MIN)$ and tCWD ≥ tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. tWCS, tRWD, tCWD and tAWD are not applicable in a LATE WRITE cycle.
- 30. LATE WRITE and READ-MODIFY-WRITE cycles must have both tOD and tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. If OE is taken back LOW while CAS remains LOW, the DQs will remain open.
- 31. The maximum current ratings are based with the memory operating or being refreshed in the x72 mode. The stated maximums may be reduced by approximately one-half when used in the x36 mode.
- 32. Applies to both EDO and FAST PAGE MODEs.

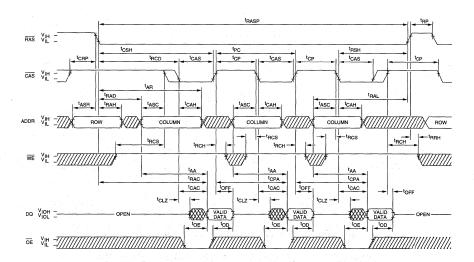

EARLY WRITE CYCLE 32


NOTE:

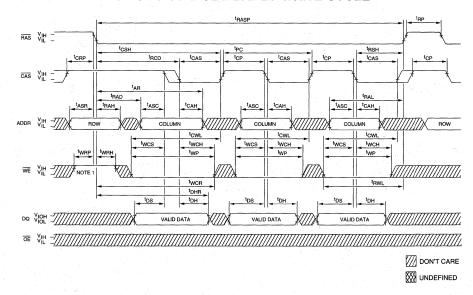
- Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.
- 2. tOFF is referenced from rising edge of RAS or CAS, which ever occurs last.

READ WRITE CYCLE 32 (LATE WRITE and READ-MODIFY-WRITE cycles)

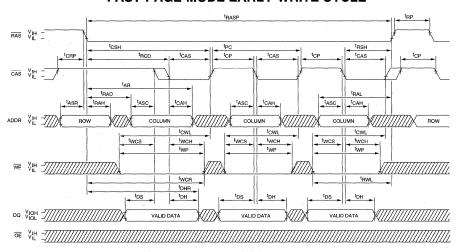
EDO-PAGE-MODE READ CYCLE



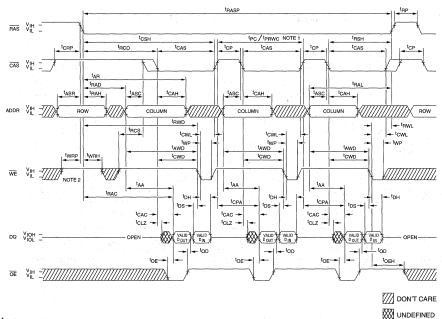
NOTE:


1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for twRP and twRH. This design implementation will facilitate compatibility with future EDO DRAMs.

FAST-PAGE-MODE READ CYCLE

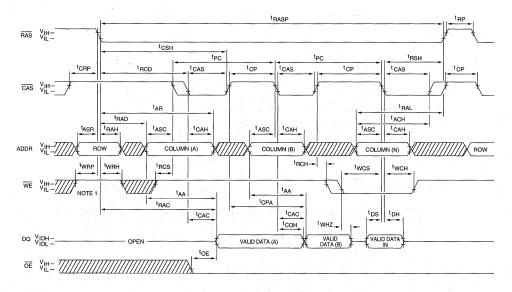


EDO-PAGE-MODE EARLY-WRITE CYCLE



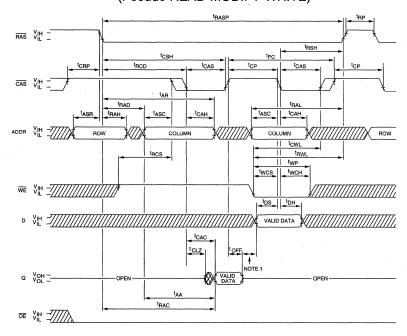
NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

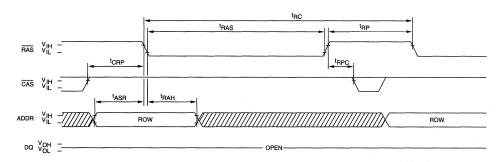
FAST-PAGE-MODE EARLY-WRITE CYCLE


EDO/FAST PAGE-MODE READ-WRITE CYCLE 32 (LATE WRITE and READ-MODIFY-WRITE cycles)

NOTE:

- 1. ^tPC is for LATE WRITE cycles only.
- Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

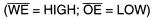

EDO-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)

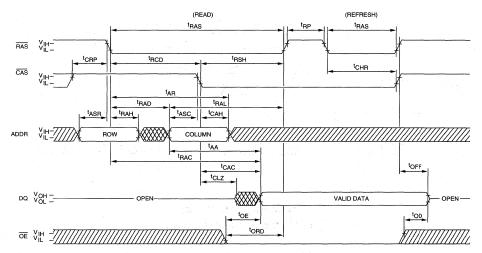

NOTE:

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)

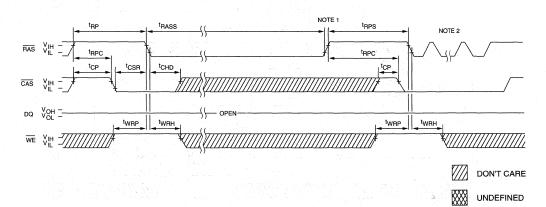
RAS-ONLY REFRESH CYCLE 32 (WE = DON'T CARE)



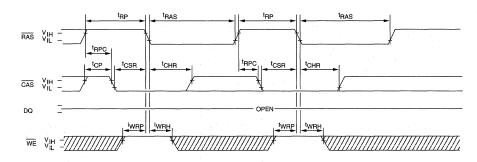

DON'T CARE

₩ UNDEFINED

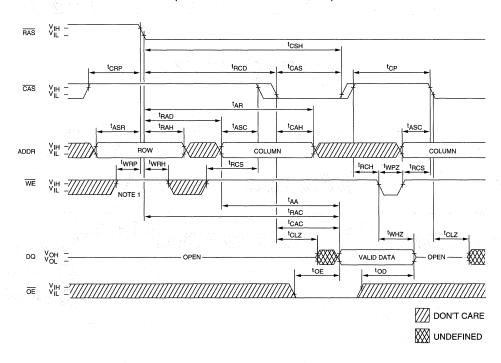
NOTE: 1. Do not drive data prior to tristate.


HIDDEN REFRESH CYCLE 20, 32

SELF REFRESH CYCLE 32


(Addresses and $\overline{OE} = DON'T CARE$)

NOTE:


- 1. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.
- 2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

CBR REFRESH CYCLE 32 (Addresses and OE = DON'T CARE)

EDO READ CYCLE

(with WE-controlled disable)

NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

DRAM MODULE

4 MEG,8 MEG x32

16, 32 MEGABYTE, 5V, FAST PAGE MODE, OPTIONAL SELF REFRESH

FEATURES

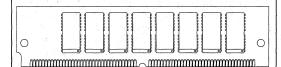
- JEDEC- and industry-standard pinout in a 72-pin, single-in-line memory module (SIMM)
- High-performance CMOS silicon-gate process
- Single 5V ±10% power supply
- All device pins are TTL-compatible
- Low power, 48mW standby; 2,024mW active, typical (32MB)
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN; optional Extended and SELF REFRESH
- 2,048-cycle refresh distributed across 32ms or 2,048-cycle Extended Refresh distributed across 128ms
- FAST PAGE MODE (FPM) access cycle
- Multiple RAS lines allow x16 or x32 width

OPTIONS	MARKING
• Timing 60ns access 70ns access	-6 -7
• Packages 72-pin SIMM 72-pin SIMM (gold)	M G
• Refresh Standard/32ms SELF REFRESH/128ms	Blank S

KEY TIMING PARAMETERS

SPEED	tRC	tRAC	^t PC	t _{AA}	^t CAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

VALID PART NUMBERS


PART NUMBER	DESCRIPTION
MT8D432G-xx	4 Meg x 32, Gold
MT8D432G- xx S	4 Meg x 32, Gold, S**
MT8D432M-xx	4 Meg x 32, Tin/Lead
MT8D432M- xx S	4 Meg x 32, Tin/Lead, S**
MT16D832G-xx	8 Meg x 32, Gold
MT16D832G-xx S	8 Meg x 32, Gold, S**
MT16D832M-xx	8 Meg x 32, Tin/Lead
MT16D832M-xx S	8 Meg x 32, Tin/Lead, S**

^{**}S = SELF REFRESH

PIN ASSIGNMENT (Front View)

72-Pin SIMM

(DD-7) 4 Meg x 32 (DD-8) 8 Meg x 32

PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	19	A10	37	NC	55	DQ12
2	DQ1	20	DQ5	38	NC	56	DQ28
3	DQ17	21	DQ21	39	Vss	57	DQ13
4	DQ2	22	DQ6	40	CAS0	58	DQ29
5	DQ18	23	DQ22	41	CAS2	59	Vcc
6	DQ3	24	DQ7	42	CAS3	60	DQ30
7	DQ19	25	DQ23	43	CAS1	61	DQ14
8	DQ4	26	DQ8	44	RAS0	62	DQ31
9	DQ20	27	DQ24	45	NC/RAS1*	63	DQ15
10	Vcc	28	A7	46	NC	64	DQ32
11	NC	29	NC	47	WE	65	DQ16
12	A0	30	Vcc	48	NC	66	NC
13	A1 ::	31	A8	49	DQ9	67	PRD1
14	A2	32	A9	50	DQ25	68	PRD2
15	A3	33	NC/RAS3*	51	DQ10	69	PRD3
16	A4	34	RAS2	52	DQ26	70	PRD4
17	A5	35	NC	53	DQ11	71	NC
18	A6	36	NC	54	DQ27	72	Vss

GENERAL DESCRIPTION

The MT8D432(S) and MT16D832(S) are randomly accessed 16MB and 32MB solid-state memories organized in a x32 configuration.

During READ or WRITE cycles, each bit is uniquely addressed through the 22 address bits, which are entered 11 bits (A0-A10) at a time. \overline{RAS} is used to latch the first 11 bits and \overline{CAS} the latter 11 bits. READ and WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{CAS} . Since \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle.

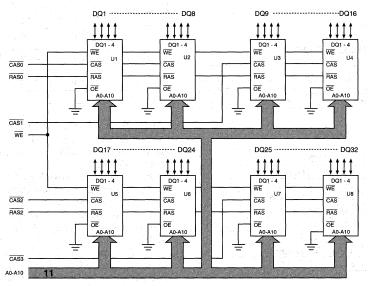
FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

REFRESH

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR or HIDDEN) so that all 2,048 combinations of RAS addresses are executed at least every 32ms, regardless of sequence. The CBR REFRESH cycle will invoke the refresh counter for automatic RAS addressing.

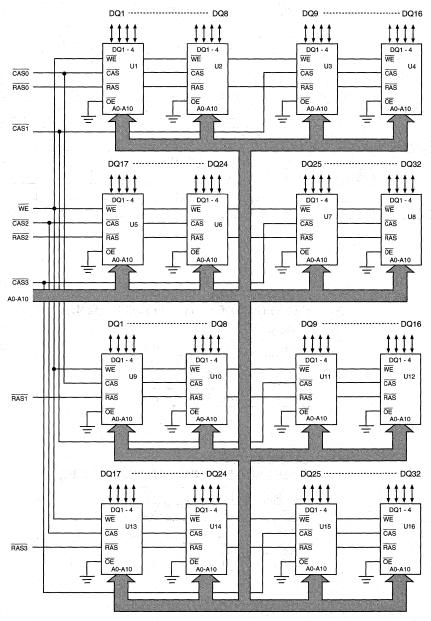
An additional SELF REFRESH mode is also available. The "S" version allows the user the option of a fully static low power data retention mode, or a dynamic refresh mode at the extended refresh period. The module's SELF RE-


FRESH mode is initiated by executing a CBR REFRESH cycle and holding \overline{RAS} LOW for the specified ${}^{t}RASS$. Additionally, the "S" version allows for an extended refresh rate of 62.5µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation, as well as during a standby or extended refresh mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for the time minimum of an operation cycle, typically 'RPS. This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all 2,048 rows must be refreshed within 300 μ s prior to the resumption of normal operation.

x16 CONFIGURATION

For x16 applications, the corresponding DQ and $\overline{\text{CAS}}$ pins must be connected together (DQ1 to DQ17, DQ2 to DQ18 and so forth, and $\overline{\text{CAS0}}$ to $\overline{\text{CAS2}}$ and $\overline{\text{CAS1}}$ to $\overline{\text{CAS3}}$). Each $\overline{\text{RAS}}$ is then a bank select for the x16 memory organization.


FUNCTIONAL BLOCK DIAGRAM MT8D432 (16MB)

U1-U8 = 4 Meg x 4 DRAMs

DRAM SIMM

FUNCTIONAL BLOCK DIAGRAM MT16D832 (32MB)

U1-U16 = 4 Meg x 4 DRAMs

TRUTH TABLE

			1.00	10.03	ADDRESSES		DATA-IN/OUT
FUNCTION		RAS	CAS	WE	^t R	, tC	DQ1-DQ32
Standby	1.4	Ι	H→X	Χ	X	Х	High-Z
READ		L	L	Н	ROW	COL	Data-Out
EARLY WRITE		L	L	î L	ROW	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	Н	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	ROW	COL	Data-In
WRITE	2nd Cycle	L	H→L	L	n/a	COL	Data-In
RAS-ONLY REFRESH		L	Н	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	X	Х	High-Z
SELF REFRESH (S ver	rsion)	H→L	L	Н	X X		High-Z

JEDEC DEFINED PRESENCE-DETECT - MT8D432 (16MB)

SYMBOL	PIN#	-6	-7
PRD1	67	Vss	Vss
PRD2	68	NC	NC
PRD3	69	NC	Vss
PRD4	70	NC	NC

JEDEC DEFINED PRESENCE-DETECT - MT16D832 (32MB)

SYMBOL	PIN#	-6	-7
PRD1	67	NC	NC
PRD2	68	Vss	Vss
PRD3	69	NC	Vss
PRD4	70	NC	NC

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Vss	1V to +7V
Operating Temperature, TA (ambient)	
Storage Temperature (plastic)	-55°C to +125°C
Power Dissipation	8W
Short Circuit Output Current	50m A

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +5V \pm 10\%$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES	
Supply Voltage		Vcc	4.5	5.5	V	Legis State of
Input High (Logic 1) Voltage, all inputs		ViH	2.4	5.5	V	
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT	RAS0-RAS3	lı1	-8	8	μΑ	
Any input $0V \le V_{IN} \le 5.5V$	A0-A10, WE	l 12	-32	32	μА	28
(All other pins not under test = 0V) for each package input	CAS0-CAS3	lıз	-8	8	μΑ	28
OUTPUT LEAKAGE CURRENT (Q is disabled; $0V \le V_{OUT} \le 5.5V$) for each package input	DQ1-DQ32	loz	-20	20	μΑ	28
OUTPUT LEVELS	ALL WHILE LAND	Vон	2.4	100000	V	a v
Output High Voltage (Iout = -5mA) Output Low Voltage (Iout = 4.2mA)		Vol		0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +5V \pm 10\%$) MAX PARAMETER/CONDITION SYMBOL SIZE -6 -7 UNITS NOTES STANDBY CURRENT: (TTL) 26 lcc1 16MB 26 mA $(RAS = \overline{CAS} = V_{IH})$ 32MB 52 52 STANDBY CURRENT: (CMOS) 16MB 14 14 Icc₂ mA $(\overline{RAS} = \overline{CAS} = Other Inputs = Vcc -0.2V)$ 32MB 28 28 Icc2 16MB 12 12 mΑ (S only) 32MB 24 24 OPERATING CURRENT: Random READ/WRITE 16MB 800 960 mA 3.4. Average power supply current Icc₃ 32MB 986 826 26 (RAS, CAS, Address Cycling: ^tRC = ^tRC [MIN]) OPERATING CURRENT: FAST PAGE MODE 3, 4, **16MB** 720 640 mΑ Average power supply current Icc4 32MB 746 666 26 (RAS = VIL, CAS, Address Cycling: ^tPC = ^tPC [MIN]) REFRESH CURRENT: RAS ONLY 16MB 960 800 Average power supply current Icc5 mA 3, 26 32MB 986 826 $(\overline{RAS} \text{ Cycling}, \overline{CAS} = VIH: {}^{t}RC = {}^{t}RC [MIN])$ REFRESH CURRENT: CBR 16MB 960 800 Average power supply current 3.5 Icc6 mA 32MB 986 826 (RAS, CAS, Address Cycling: ^tRC = ^tRC [MIN]) REFRESH CURRENT: Extended (S version only) Average power supply current Icc7 16MB 24 24 mA 3, 5 CAS = 0.2V or CBR cycling; RAS = tRAS (MIN); WE = 0.2V; (S only) **32MB** 4.8 4.8 A0-A10 and DIN = Vcc -0.2V or 0.2V (DIN may be left open); tRC = 62.5µs REFRESH CURRENT: SELF (S version only) Average power supply current during SELF REFRESH ICC8 16MB 2.4 2.4 mΑ 5, 27 CBR cycling with $\overline{RAS} \ge {}^{t}RASS$ (MIN) and \overline{CAS} held LOW; (S only) 32MB 4.8 4.8 WE = Vcc -0.2V: A0-A10 and DIN = Vcc -0.2V or 0.2V

(DIN may be left open)

CAPACITANCE		MAX]	
PARAMETER	SYMBOL	16MB	32MB	UNITS	NOTES
Input Capacitance: A0-A10	C _{l1}	48	95	pF	2
Input Capacitance: WE	C ₁₂	64	127	pF	2
Input Capacitance: RASO, RAS1, RAS2, RAS3	Сіз	32	32	pF	2
Input Capacitance: CAS0, CAS1, CAS2, CAS3	CI4	16	32	pF	2
Input/Output Capacitance: DQ1-DQ32	C _{IO1}	10	16	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5V \pm 10\%$)

AC CHARACTERISTICS			-6		-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	t _{AA}		30		35	ns	
Column-address hold time (referenced to RAS)	t _{AR}	50	10.00	55		ns	
Column-address setup time	tASC	0	1	0		ns	
Row-address setup time	tASR	0		0		ns	
Access time from CAS	†CAC		15		20	ns	15
Column-address hold time	^t CAH	10		15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ns	
CAS pulse width	^t CAS	15	10,000	20	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH cycle	tCHD	15		15		ns	27
CAS hold time (CBR REFRESH)	^t CHR	15		15		ns	5
CAS to output in Low-Z	^t CLZ	3	100	3		ns	25
CAS precharge time	^t CP	10		10		ns	16
Access time from CAS precharge	^t CPA		35		40	ns	
CAS to RAS precharge time	^t CRP	5		5		ns	
CAS hold time	^t CSH	60		70		ns	
CAS setup time (CBR REFRESH)	^t CSR	5		5		ns	5
Write command to CAS lead time	tCWL	15		20		ns	
Data-in hold time	tDH	10		15		ns	21
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	× 1
Data-in setup time	tDS	0		0		ns	21
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	20, 25
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	n/a		n/a		ns	22
Access time from RAS	^t RAC		60		70	ns	14
RAS to column-address delay time	^t RAD	15	30	15	35	ns	18
Row-address hold time	^t RAH	10	100	10		ns	
Column-address to RAS lead time	^t RAL	30		35		ns	
RAS pulse width	tRAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	tRASP	60	100,000	70	100,000	ns	
RAS pulse width during SELF REFRESH cycle	tRASS	100		100		μs	27
Random READ or WRITE cycle time	^t RC	110	1	130		ns	

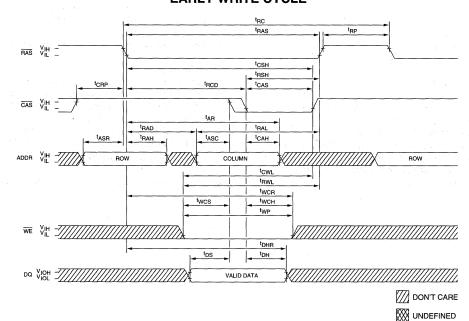
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5V \pm 10\%$)

AC CHARACTERISTICS			-6	-	-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
RAS to CAS delay time	tRCD	20	45	20	50	ns	17
Read command hold time (referenced to CAS)	^t RCH	0		0		ns	19
Read command setup time	tRCS	0		0	,	ns	
Refresh period (2,048 cycles)	tREF		32		32	ms	
Refresh period (2,048 cycles) S version	^t REF		128		128	ms	
RAS precharge time	^t RP	40		50		ns	
RAS to CAS precharge time	†RPC	0		0		ns	
RAS precharge time during SELF REFRESH cycle	tRPS	110		130		ns	27
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	19
RAS hold time	^t RSH	15	1	20		ns	
READ WRITE cycle time	tRWC	n/a		n/a		ns	22
Write command to RAS lead time	^t RWL	15		20		ns	
Transition time (rise or fall)	^t Τ	3	50	3	50	ns	
Write command hold time	tWCH	10		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		ns	
WE command setup time	twcs	0		0		ns	1.4
Write command pulse width	tWP	10		15		ns	
WE hold time (CBR REFRESH)	tWRH	10		10		ns	24
WE setup time (CBR REFRESH)	tWRP	10		10		ns	24

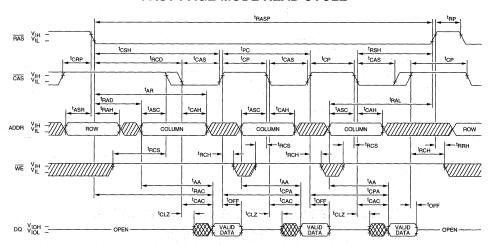

NOTES

- 1. All voltages referenced to Vss.
- This parameter is sampled. Capacitance is measured using MIL-STD-883C, Method 3012.1 (1 MHz AC, Vcc = 5V, DC bias = 2.4V at 15mV RMS).
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{CAS} = V_{IL}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ¹RCD < ¹RCD (MAX). If ¹RCD is greater than the maximum recommended value shown in this table, ¹RAC will increase by the amount that ¹RCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.

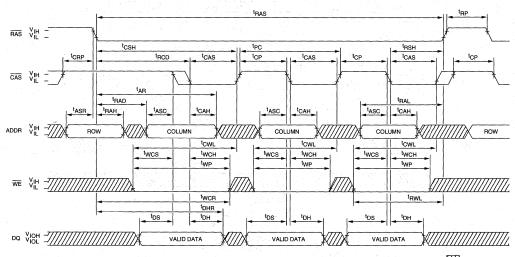

- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VoH or VoL.
- These parameters are referenced to CAS leading edge in EARLY WRITE cycles.
- 22. OE is tied permanently LOW; LATE WRITE or READ-MODIFY-WRITE operations are not permissible and should not be attempted.
- 23. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 24. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.
- 25. The 3ns minimum is a parameter guaranteed by design.
- 26. Column-address changed once each cycle.
- 27. Refresh must be completed within the time of three external refresh rate periods prior to active use of the DRAM (provided distributed CBR REFRESH is used when in the active mode). Alternatively, a complete set of row refreshes must be executed when exiting SELF REFRESH prior to active use of the DRAM if anything other than distributed CBR REFRESH is used in the active mode.
- 28. 16MB module values will be half of those shown.

DRAM SIMM

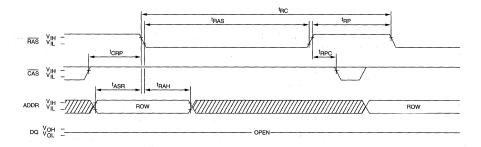
READ CYCLE



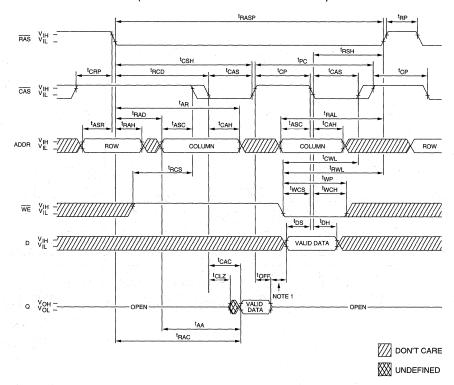
EARLY WRITE CYCLE



FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE

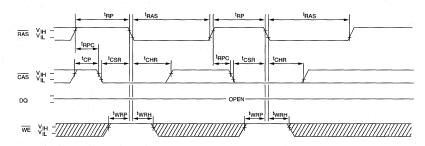
DON'T CARE


W UNDEFINED

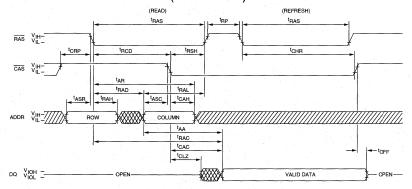
RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE

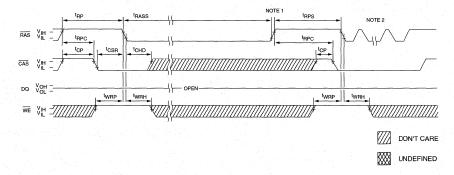
(Pseudo READ-MODIFY-WRITE)



NOTE: 1. Do not drive data prior to tristate.


CBR REFRESH CYCLE

(Addresses = DON'T CARE)


HIDDEN REFRESH CYCLE 23

(WE = HIGH)

SELF REFRESH CYCLE

(Addresses and $\overline{OE} = DON'T CARE$)

NOTE: 1. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode. 2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

DRAM SIMM

DRAM MODULE

4 MEG, 8 MEG x 32

16, 32 MEGABYTE, 3.3V, OPTIONAL SELF REFRESH, FAST PAGE OR EDO PAGE MODE

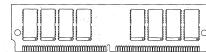
FEATURES

- JEDEC-standard pinout in a 72-pin single-in-line memory module (SIMM)
- High-performance CMOS silicon-gate process
- Single +3.3V ±0.3V power supply
- All device pins are TTL-compatible
- Low power, 16mW standby; 1,408mW active, typical (32MB)
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN; optional Extended and SELF REFRESH
- 2,048-cycle refresh distributed across 32ms or 2,048-cycle Extended Refresh distributed across 128ms
- FAST PAGE MODE (FPM) or Extended Data-Out (EDO) PAGE MODE access cycles
- 5V tolerant I/Os (5.5V maximum VIH level)
- 3.3V mechanical key

OPTIONS	MARKING
• Timing 60ns access 70ns access	-6 -7
Packages 72-pin SIMM 72-pin SIMM (gold)	M G
• Refresh Standard/32ms SELF REFRESH/128ms	Blank S
Access Cycle FAST PAGE MODE EDO PAGE MODE	Blank X

KEY TIMING PARAMETERS

EDO option


SPEED	tRC	^t RAC	^t PC	†AA	†CAC	tCAS
-6	110ns	60ns	25ns	30ns	15ns	10ns
-7	130ns	70ns	30ns	35ns	20ns	12ns

FPM option

	SPEED	^t RC	tRAC	tPC	tAA	tCAC	tRP
Ī	-6	110ns	60ns	35ns	30ns	15ns	40ns
	-7	130ns	70ns	40ns	35ns	20ns	50ns

PIN ASSIGNMENT (Front View) 72-Pin SIMM

(DD-16) 4 Meg x 32, (DD-17) 8 Meg x 32

PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	19	A10	37	NC	55	DQ12
2	DQ1	20	DQ5	38	NC	56	DQ28
3	DQ17	21	DQ21	39	Vss	57	DQ13
4	DQ2	22	DQ6	40	CASO	58	DQ29
5	DQ18	23	DQ22	41	CAS2	59	Vcc
6	DQ3	24	DQ7	42	CAS3	60	0030
7	DQ19	25	DQ23	43	CAST	61	DQ14
8	DQ4	26	DQ8	44	RAS0	62	DQ31
9	DQ20	27	DQ24	45	RAS1*	63	DQ15
10	Vcc	28	A7	46	ŌE	64	DQ32
. 11	PD5	29	NC	47	WE	65	DQ16
12	A0	30	Vcc	48	PD ECC	66	PD EDO
13	A1	31	A8	49	DQ9	67	PD1
14	A2	32	A9	50	DQ25	68	PD2
15	A3	33	NC	-51	DQ10	69	PD3

DQ26

DQ11

DQ27

71

53

54

PD4

PD refresh

Vss

18 A6
*32MB version only

A5

16

17

VALID PART NUMBERS

35

36

NC

NC

PART NUMBER	DESCRIPTION
MT8LD432G-xx X	4 Meg x 32 EDO, SOJ, Gold
MT8LD432G-xx XS	4 Meg x 32 EDO, S**, SOJ, Gold
MT8LD432M-xx X	4 Meg x 32 EDO, SOJ, Tin/Lead
MT8LD432M-xx XS	4 Meg x 32 EDO, S**, SOJ, Tin/Lead
MT8LD432G-xx	4 Meg x 32 FPM, SOJ, Gold
MT8LD432G-xx S	4 Meg x 32 FPM, S**, SOJ, Gold
MT8LD432M-xx	4 Meg x 32 FPM, SOJ, Tin/Lead
MT8LD432M-xx S	4 Meg x 32 FPM, S**, SOJ, Tin/Lead
MT16LD832G-xx X	8 Meg x 32 EDO, SOJ, Gold
MT16LD832G-xx XS	8 Meg x 32 EDO, S**, SOJ, Gold
MT16LD832M-xx X	8 Meg x 32 EDO, SOJ, Tin/Lead
MT16LD832M-xx XS	8 Meg x 32 EDO, S**, SOJ, Tin/Lead
MT16LD832G-xx	8 Meg x 32 FPM, SOJ, Gold
MT16LD832G-xx S	8 Meg x 32 FPM, S**, SOJ, Gold
MT16LD832M-xx	8 Meg x 32 FPM, SOJ, Tin/Lead
MT16LD832M-xx S	8 Meg x 32 FPM, S**, SOJ, Tin/Lead

^{**}S = SELF REFRESH

GENERAL DESCRIPTION

The MT8LD432 (X)(S) and MT16LD832 (X)(S) are randomly accessed 16MB and 32MB solid-state memories organized in a x32 configuration with optional SELF REFRESH. They are specially processed to operate from 3.0V to 3.6V for low voltage memory systems.

During READ or WRITE cycles each bit is uniquely addressed through the address bits, \overline{RAS} latches the first 11 bits and \overline{CAS} latches the latter 11 bits. READ and WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. EARLY WRITE occurs when \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle.

If $\overline{\text{WE}}$ goes LOW after $\overline{\text{CAS}}$ goes LOW, data-out (Q) is activated and retains the selected cell data as long as $\overline{\text{OE}}$ remains LOW and $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ remains LOW (regardless of $\overline{\text{WE}}$). This late $\overline{\text{WE}}$ pulse results in a READ WRITE cycle. If $\overline{\text{WE}}$ toggles LOW after $\overline{\text{CAS}}$ goes back HIGH, the output pins will open (High-Z) until the next $\overline{\text{CAS}}$ cycle, regardless of $\overline{\text{OE}}$.

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

EDO PAGE MODE

EDO PAGE MODE, designated by the "X" option, is an accelerated FAST PAGE MODE cycle. The primary advantage of EDO is the availability of data-out even after CAS goes back HIGH. EDO provides for CAS precharge time (CP) to occur without the output data going invalid. This elimination of CAS output control provides for pipeline READs.

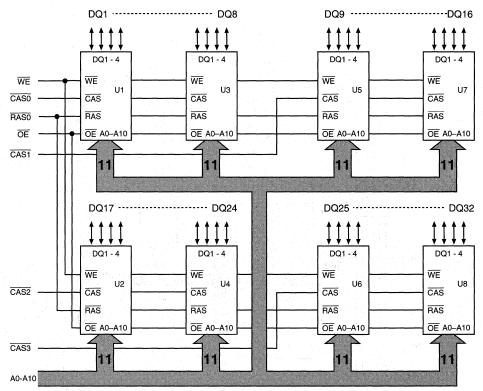
FAST PAGE MODE modules have traditionally turned the output buffers off (High-Z) with the rising edge of CAS. EDO operates as any DRAM READ or FAST-PAGE-

MODE READ, except data will be held valid after $\overline{\text{CAS}}$ goes HIGH, as long as $\overline{\text{RAS}}$ and $\overline{\text{OE}}$ are held LOW and $\overline{\text{WE}}$ is held HIGH. $\overline{\text{OE}}$ can be brought LOW or HIGH while $\overline{\text{CAS}}$ and $\overline{\text{RAS}}$ are LOW, and the DQs will transition between valid data and High-Z (reference the MT4LC4M4E8(S) DRAM data sheet for additional information on EDO functionality).

REFRESH

Preserve correct memory cell data by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR or HIDDEN) so that all 2,048 combinations of \overline{RAS} addresses are executed at least every 32ms (128ms on "S" version), regardless of sequence. The CBR and SELF REFRESH cycles will invoke the internal refresh counter for automatic \overline{RAS} addressing.

An optional SELF REFRESH mode is also available. The "S" version allows the user the option of a fully static low power data retention mode, or a dynamic refresh mode at the extended refresh period of 128ms. The module's SELF REFRESH mode is initiated by executing a CBR REFRESH cycle and holding RAS LOW for the specified ^tRASS. Additionally, the "S" version allows for an extended refresh period of 62.5µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation, as well as during a standby or extended refresh mode.


The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for the time minimum ^tRPS. This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all 2,048 rows must be refreshed 300 μ S, prior to the resumption of normal operation.

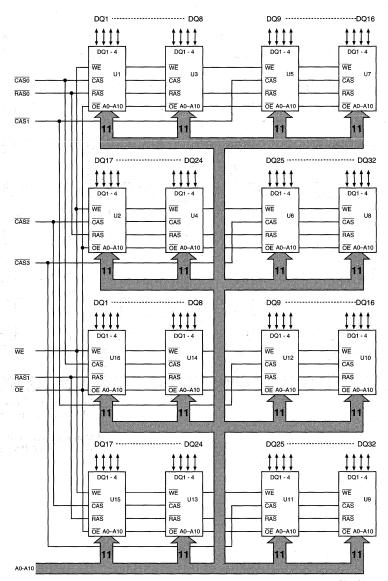
STANDBY

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time.

DRAM SIMM

FUNCTIONAL BLOCK DIAGRAM MT8LD432 (16MB)

1 Meg x 32 EDO PAGE MODE U1-U8 = MT4LC4M4E8DJ(S)


1 Meg x 32 FAST PAGE MODE U1-U8 = MT4LC4M4B1DJ(S)

NOTE:

- 1. See package drawing for U1-U8 placement locations.
- 2. OE must be tied to Vss if not required.

DRAM SIMM

FUNCTIONAL BLOCK DIAGRAM MT16LD832 (32MB)

8 Meg x 32 EDO PAGE MODE U1-U16 = MT4LC4M4E8DJ(S)

NOTE: 1. See package drawing for U1-U16 placement locations.

2. OE must be tied to Vss if not required.

8 Meg x 32 FAST PAGE MODE U1-U16 = MT4LC4M4B1DJ(S)

PRESENCE-DETECT TRUTH TABLE

riga Malah	CHARA	CTERISTICS				PRESE	ICE-DI	TECT	PIN (PE	Dx)	
Module Module Density Organization		Row/Column Addresses			BANKS	1	2	5	3	4	
OMB	No module installed	X			Х	NC	NC	NC.			
2MB 2MB	512K x 32/36 512K x 32/36	9/9 10/9			2	Vss Vss	NC NC	Vss NC			
4MB 4MB	1 Meg x 32/36 1 Meg x 32/36	10/10 10/9			1 2	Vss Vss	Vss Vss	NC Vss			
8MB 8MB	2 Meg x 32/36 2 Meg x 32/36	10/10 11/10	1000		2 1	NC NC	NC NC	NC Vss			
• 16MB 16MB	4 Meg x 32/36 4 Meg x 32/36	12*/11* 11/10			1	NC Vss	Vss NC	Vss Vss			
• 32MB 32MB	8 Meg x 32/36 8 Meg x 32/36	12*/11* 12/11			2	NC NC	Vss	NC Vss		41.4	
Access Tim	•	80ns							NC	Vss	
		70ns			11.00				Vss	NC	
		60ns							NC	NC	1479
		50ns							Vss	Vss	
Refresh De	tect	Standard		Vss	The Parameter is						
		Self		NC							
Fast Page I	Mode/EDO Detect	Fast Page	Vss								
		EDO	NC								
ECC/Parity	Detect	ECC									Vss
		Parity/Non-Parity									NC

NOTE: Vss = ground.

^{*}This addressing includes a redundant address to allow mixing 12/10 and 11/11 DRAMs. The modules in this data sheet use 11/11 DRAMs.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Pin Relative to Vss1V to +4.6V
Voltage on Inputs or I/O Pins
Relative to Vss1V to +5.5V
Operating Temperature, T _A (ambient) 0°C to +70°C
Storage Temperature (plastic)55°C to +125°C
Power Dissipation 8W
Short Circuit Output Current 50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

TRUTH TABLE

						ADDR	ESSES	DATA-IN/OUT
FUNCTION	RAS	CAS	WE	ŌĒ	^t R	t _C	DQ1-DQ32	
Standby	· p'-	Н	H→X	Х	Х	Х	X	High-Z
READ		: L	L	Н	L	ROW	COL	Data-Out
EARLY WRITE		L	L	L	Х	ROW	COL	Data-In
READ WRITE		L	L	H→L	L→H	ROW	COL	Data-Out, Data-In
EDO/FAST-PAGE-MODE	1st Cycle	L	H→L	Н	L	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	Н	L	n/a	COL	Data-Out
EDO/FAST-PAGE-MODE	1st Cycle	L	H→L	L	X	ROW	COL	Data-In
EARLY WRITE	2nd Cycle	L	H→L	L	Х	n/a	COL	Data-In
EDO/FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	ROW	COL	Data-Out, Data-In
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	n/a	COL	Data-Out, Data-In
RAS-ONLY REFRESH		L	Н	Х	X	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	Х	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	X	Х	X	High-Z
SELF REFRESH (S version)		H→L	L	Н	X	Х	X	High-Z

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 2, 3, 6, 22) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES		
Supply Voltage			Vcc	3.0	3.6	V	
Input High (Logic 1) Voltage, a	II inputs		Vін	2.0	5.5	V	
Input Low (Logic 0) Voltage, all	inputs		VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT CASO-CAS3				-8	8	μΑ	32
Any input 0V ≤ VIN ≤ 5.5V		A0-A9, WE, OE	lı2	-32	32	μΑ	32
(All other pins not under test =	0V) for each package input	RAS0-RAS1	lıз	-16	16	μΑ	
OUTPUT LEAKAGE CURREN (Q is disabled; $0V \le Vout \le 5.5$)		DQ1-DQ32	loz	-20	20	μА	32
TTL OUTPUT LEVELS	High Voltage (Iout = -2mA))	V oн	2.4		V	
	Low Voltage (Iout = 2mA)	Vol		0.4	V		

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 6) ($Vcc = +3.3V \pm 0.3V$) MAX PARAMETER/CONDITION SYMBOL SIZE -6 -7 UNITS NOTES STANDBY CURRENT: (TTL) **16MB** Icc1 16 16 mΑ $(\overline{RAS} = \overline{CAS} = VIH)$ 32MB 32 32 STANDBY CURRENT: (CMOS) 16MB lcc2 4 4 mΑ $(\overline{RAS} = \overline{CAS} = Other Inputs = Vcc -0.2V)$ 32MB 8 8 16MB 1.2 1.2 mΑ Icc₂ (S only) 32MB 2.4 2.4 OPERATING CURRENT: Random READ/WRITE 16MB 960 880 2. 22. Average power supply current Іссз mΑ 32MB 976 896 26 (RAS, CAS, Address Cycling: ^tRC = ^tRC [MIN]) OPERATING CURRENT: EDO PAGE MODE (X version only) 16MB 880 800 2, 22, Average power supply current mΑ ICC4 32MB 896 816 26 (RAS = VIL, CAS, Address Cycling: PC = PC [MIN]) (X only) OPERATING CURRENT: FAST PAGE MODE 16MB 720 640 2, 22, Average power supply current mΑ ICC5 32MB 736 656 26 (RAS = VIL, CAS, Address Cycling: PC = PC [MIN]) REFRESH CURRENT: RAS ONLY **16MB** 960 880 Average power supply current mΑ 22, 26 Icc6 32MB 976 896 (RAS Cycling, CAS = VIH: ^tRC = ^tRC [MIN]) REFRESH CURRENT: CBR **16MB** 960 880 Average power supply current mA 22, 19 ICC7 **32MB** 976 896 (RAS, CAS, Address Cycling: ^tRC = ^tRC [MIN]) REFRESH CURRENT: Extended (S version only) Average power supply current **16MB** 2.4 2.4 Icc₈ mΑ 19, 22 CAS = 0.2V or CBR cycling; RAS = tRAS (MIN); WE = Vcc -0.2V; 32MB 3.6 (S only) 3.6 OE, A0-A10 and DIN = Vcc -0.2V or 0.2V (Din may be left open); ^tRC = 62.5µs REFRESH CURRENT: SELF (S version only) Average power supply current during SELF REFRESH; CBR cycling 16MB 2.4 2.4 Icc9 mΑ 19 with RAS ≥ tRASS (MIN) and CAS held LOW; WE = Vcc -0.2V; OE. (S only) 32MB 3.6 3.6

A0-A10 and Din = Vcc -0.2V or 0.2V (Din may be left open)

MAN

CAP	A	CIT	A٨	ICE
-----	---	-----	----	-----

		IWAX				
PARAMETER	SYMBOL	16MB	32MB	UNITS	NOTES	
Input Capacitance: A0-A10	CI1	48	95	pF	17	
Input Capacitance: WE	Cı2	64	127	pF	17	
Input Capacitance: RAS0-RAS1	Сіз	64	64	pF	17	
Input Capacitance: CAS0-CAS3	C14	16	32	pF	17	
Input/Output Capacitance: DQ1-DQ32	Сю	10	18	pF	17	

FAST PAGE MODE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 6, 7, 10, 11, 16, 21) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS - FAST PAGE MODE OPTION		-6		-7			
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30		35	ns	
Column-address hold time (referenced to RAS)	t _{AR}	50		55		ns	11.00
Column-address setup time	tASC	0		0		ns	7.4
Row-address setup time	tASR	0		. 0		ns	
Column-address to WE delay time	^t AWD	55		60		ns	29
Access time from CAS	^t CAC		15		20	ns	9
Column-address hold time	^t CAH	10		15	1 3 1 1 1 1	ns	
CAS pulse width	tCAS	15	10,000	20	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH cycle	tCHD	15		15		ns	27
CAS hold time (CBR REFRESH)	tCHR	15		15		ns	19
CAS to output in Low-Z	^t CLZ	3		3		ns	24
CAS precharge time	^t CP	10		10		ns	18
Access time from CAS precharge	tCPA -		35		40	ns	
CAS to RAS precharge time	^t CRP	5		5		ns	
CAS hold time	^t CSH	60		70		ns	
CAS setup time (CBR REFRESH)	^t CSR	5		5		ns	19
CAS to WE delay time	tCWD	40		45		ns	29
Write command to CAS lead time	tCWL	15		20		ns	
Data-in hold time	tDH	10		15		ns	15
Data-in hold time (referenced to RAS)	tDHR	45		55		ns	
Data-in setup time	tDS	0		0		ns	15
Output disable	tOD	3	15	3	20	ns	24
Output Enable Time	tOE		15		20	ns	21
OE hold time from WE during READ-MODIFY-WRITE cycle	†OEH	15		15		ns	
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	12, 24, 33
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		ns	
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	85		95		ns	

FAST PAGE MODE ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 6, 7, 10, 11, 16, 21) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS - FAST PAGE MODE OPTION		-6		-7			
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from RAS	^t RAC		60		70	ns	8
RAS to column-address delay time	^t RAD	15	30	15	35	ns	23
Row-address hold time	tRAH .	10		10		ns	
Column-address to RAS lead time	†RAL	30		35	1.6	ns	
RAS pulse width	tRAS	60	10,000	70	10,000	ns	1 1 V.
RAS pulse width (FAST PAGE MODE)	tRASP	60	100,000	70	100,000	ns	145.30
RAS pulse width during SELF REFRESH cycle	tRASS	100		100		μs	27
Random READ or WRITE cycle time	^t RC	110		130		ns	
RAS to CAS delay time	tRCD	20	45	20	50	ns	13
Read command hold time (referenced to CAS)	^t RCH	0		0		ns	14
Read command setup time	¹RCS	0	1 1 1 1 1 1 1 1 1 1	0	100	ns	
Refresh period (2,048 cycles)	^t REF		32		32	ms	5 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Refresh period (2,048 cycles) S version	^t REF		128		128	ms	
RAS precharge time	^t RP	40		50		ns	
RAS to CAS precharge time	tRPC	0		0		ns	Lw si
RAS precharge time during SELF REFRESH cycle	^t RPS	110		130		ns	27
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	14
RAS hold time	^t RSH	15		20		ns	
READ WRITE cycle time	^t RWC	150		180		ns	
RAS to WE delay time	^t RWD	85		95		ns	29
Write command to RAS lead time	tRWL	15		20	at rese	ns	
Transition time (rise or fall)	Ψ	3	50	3	50	ns	
Write command hold time	^t WCH	10		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		ns	
WE command setup time	tWCS	0		0		ns	29
Write command pulse width	tWP	10		15		ns	
WE hold time (CBR REFRESH)	^t WRH	10		10	1 1 1 1 1 1 1 1 1	ns	28
WE setup time (CBR REFRESH)	tWRP	10	1	10		ns	28

EDO PAGE MODE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 6, 7, 16, 26) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS - EDO PAGE MODE OPTION		-6		-7			1.0
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30		35	ns	100
Column-address set-up to CAS precharge during WRITE	^t ACH	15		15		ns	
Column-address hold time (referenced to RAS)	tAR .	45		55		ns	
Column-address setup time	^t ASC	0		0		ns	- A1
Row-address setup time	^t ASR	0		0		ns	
Column-address to WE delay time	tAWD	55		65		ns	29
Access time from CAS	^t CAC		15		20	ns	9
Column-address hold time	^t CAH	10		12		ns	100
CAS pulse width	^t CAS	10	10,000	12	10,000	ns	
CAS LOW to "don't care" during SELF REFRESH cycle	^t CHD	15		15		ns	27
CAS hold time (CBR REFRESH)	^t CHR	10		12		ns	19
CAS to output in Low-Z	^t CLZ	0		0	4.1	ns	100
Data output hold after next CAS LOW	^t COH	5		5		ns	
CAS precharge time (EDO PAGE MODE)	^t CP	10		10		ns	18
Access time from CAS precharge	tCPA		35		40	ns	
CAS to RAS precharge time	^t CRP	5		5		ns	
CAS hold time	^t CSH	50		55		ns	18.00
CAS setup time (CBR REFRESH)	tCSR	5		5	100	ns	19
CAS to WE delay time	tCWD	35		40		ns	29
Write command to CAS lead time	^t CWL	15		15	14 - 15 A - 1	ns	
Data-in hold time	^t DH	10		12		ns	15
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	tDS	0		0.	1, VA + 10,7	ns	15
Output disable	tOD	0	15	0	15	ns	
Output Enable	^t OE		15		15	ns	21
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	10		12		ns	
OE HIGH hold from CAS HIGH	^t OEHC	10		10		ns	Care, 1

EDO PAGE MODE ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes: 3, 4, 5, 6, 7, 16, 26) (Vcc = $+3.3V \pm 0.3V$)

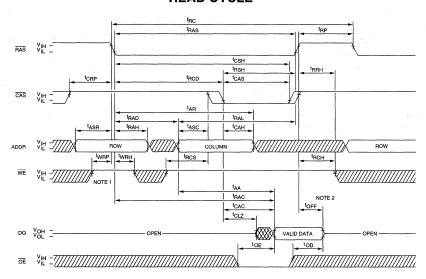
AC CHARACTERISTICS - EDO PAGE MODE OPTION PARAMETER			-6	-7			
	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
OE HIGH pulse width	^t OEP	10	Por exam	10		ns	
OE LOW to CAS HIGH setup time	^t OES	5		5	New York Control	ns	
Output buffer turn-off delay	^t OFF	3	15	3	15	ns	12, 24, 33
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		ns	
EDO-PAGE-MODE READ or WRITE cycle time	^t PC	25		30	1.44	ns	
EDO-PAGE-MODE READ-WRITE cycle time	^t PRWC	75		85		ns	
Access time from RAS	†RAC		60		70	ns	8
RAS to column-address delay time	^t RAD	12	30	12	35	ns	23
Row-address hold time	^t RAH	10		10		ns	
Column-address to RAS lead time	tRAL	30		35		ns	
RAS pulse width	^t RAS	60	10,000	70	10,000	ns	
RAS pulse width (EDO PAGE MODE)	tRASP	60	125,000	70	125,000	ns	
RAS pulse width during SELF REFRESH cycle	tRASS	100		100		μs	27
Random READ or WRITE cycle time	^t RC	110		130		ns	
RAS to CAS delay time	†RCD	14	45	14	50	ns	13
Read command hold time (referenced to CAS)	^t RCH	0		0		ns	14
Read command setup time	tRCS	0		0	S 124 184	ns	
Refresh period (2,048 cycles)	^t REF		32	100	32	ms	
Refresh period (2,048 cycles) S version	tREF		128		128	ms	
RAS precharge time	^t RP	40		50		ns	
RAS to CAS precharge time	^t RPC	0		0	1 100	ns	
RAS precharge time during SELF REFRESH cycle	^t RPS	110		130		ns	27
Read command hold time (referenced to RAS)	^t RRH	0		0	14.	ns	14
RAS hold time	†RSH	10		12		ns	
READ WRITE cycle time	tRWC	150		177		ns	
RAS to WE delay time	^t RWD	80		90		ns	29
Write command to RAS lead time	^t RWL	15		15	12.00	ns	
Transition time (rise or fall)	t _T	2	50	2	50	ns	
Write command hold time	tWCH	10		12		ns	7
Write command hold time (referenced to RAS)	tWCR	45		55		ns	
WE command setup time	tWCS	0		0		ns	29
Output disable delay from WE	†WHZ	0	13	0	15	ns	
Write command pulse width	tWP	10		12		ns	
WE pulse to disable at CAS HIGH	tWPZ	10		12		ns	
WE hold time (CBR REFRESH)	†WRH	10		10		ns	28
WE setup time (CBR REFRESH)	tWRP	10		10		ns	28

MT8LD432(X)(S), MT16LD832(X)(S) 4 MEG, 8 MEG x 32 DRAM MODULE

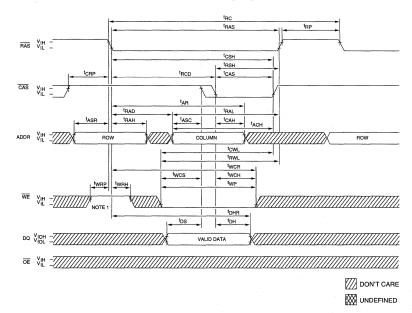
NOTES

- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- An initial pause of 100µs is required after power-up followed by eight RAS REFRESH cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- AC characteristics assume ^tT = 2.5ns for EDO and 5ns for FPM.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. Measured with a load equivalent to two TTL gates and 100pF. Output reference voltages are 0.8V for a low level and 2.0V for a high level.
- Assumes that [†]RCD < [†]RCD (MAX). If [†]RCD is greater than the maximum recommended value shown in this table, [†]RAC will increase by the amount that [†]RCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{\text{CAS}}$ and $\overline{\text{RAS}} = V_{\text{IH}}$, data output is High-Z.
- 11. If $\overline{\text{CAS}} = \text{Vil.}$, data output may contain data from the last valid READ cycle.
- tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 15. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 16. In addition to meeting the transition rate specification, all input signals must transit between $V_{I\!H}$ and $V_{I\!H}$ (or between $V_{I\!L}$ and $V_{I\!H}$) in a monotonic manner.
- 17. This parameter is sampled. Vcc = $3.3V \pm 0.3V$; f = 1 MHz.

- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 19. On-chip refresh and address counters are enabled.
- 20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 21. If $\overline{\text{OE}}$ is tied permanently LOW, LATE WRITE or READ-MODIFY-WRITE operations are not possible.
- 22. Icc is dependent on cycle rates.
- 23. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 24. The 3ns minimum is a parameter guaranteed by design.
- 25. Refresh current increases if ^tRAS is extended beyond its minimum specification.
- 26. Column-address changed once each cycle.
- If the DRAM controller uses a burst refresh, a burst refresh of all rows must be executed upon exiting SELF REFRESH.
- 28. ^tWTS and ^tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of ^tWRP and ^tWRH in the CBR REFRESH cycle.
- 29. tWCS, tRWD, tAWD and tCWD are not restrictive operating parameters. tWCS applies to EARLY WRITE cycles. ^tRWD, ^tAWD and ^tCWD apply to READ-MODIFY-WRITE cycles. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If tWCS < tWCS (MIN) and ${}^{t}RWD \ge {}^{t}RWD (MIN), {}^{t}AWD \ge {}^{t}AWD (MIN)$ and tCWD ≥ tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. tWCS, tRWD, tCWD and tAWD are not applicable in a LATE WRITE cycle.

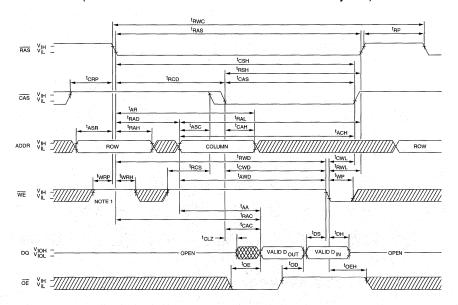


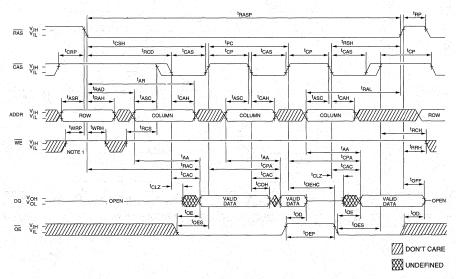
MT8LD432(X)(S), MT16LD832(X)(S) 4 MEG, 8 MEG x 32 DRAM MODULE


NOTES (continued)

- 30. LATE WRITE and READ-MODIFY-WRITE cycles must have both tOD and tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. If \overline{OE} is taken back LOW while CAS remains LOW, the DQs will remain open.
- 31. The maximum current ratings are based with the memory operating or being refreshed in the x72 mode. The stated maximums may be reduced by approximately one-half when used in the x36 mode.
- 32. 16MB module will be half of the values shown.
- 33. For FAST-PAGE-MODE option, ^tOFF is determined by the first RAS or CAS signal to transition HIGH. In comparison, ^tOFF on an EDO option is determined by the latter of the RAS and CAS signal to transition HIGH.
- 34. Applies to both EDO and FAST PAGE MODEs.

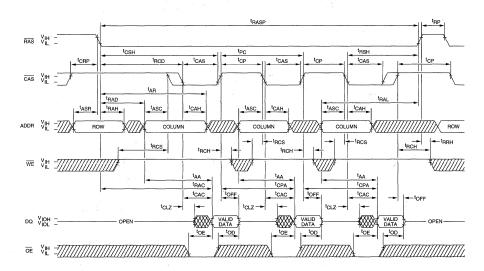
READ CYCLE 34


EARLY WRITE CYCLE 34

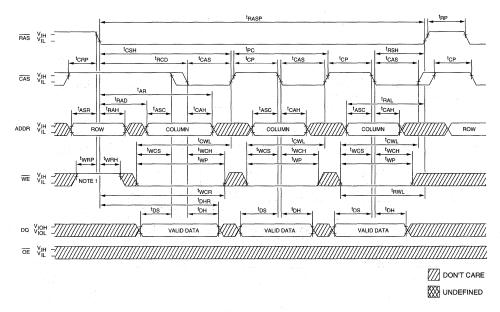

NOTE:

- Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for ^tWRP and ^tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.
- 2. OFF is referenced from rising edge of RAS or CAS, which ever occurs last.

READ WRITE CYCLE 34 (LATE WRITE and READ-MODIFY-WRITE cycles)

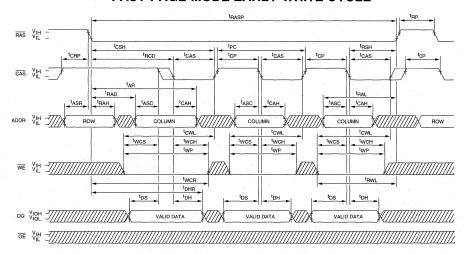


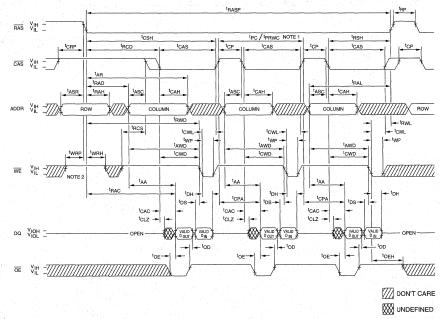
EDO-PAGE-MODE READ CYCLE



1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

FAST-PAGE-MODE READ CYCLE

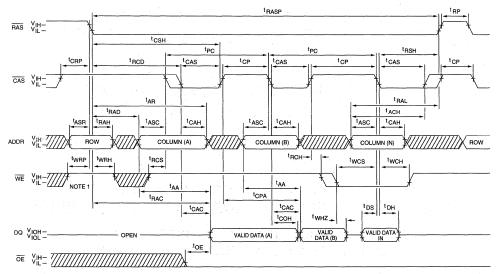

EDO-PAGE-MODE EARLY-WRITE CYCLE


NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

DRAM SIMM

FAST-PAGE-MODE EARLY-WRITE CYCLE

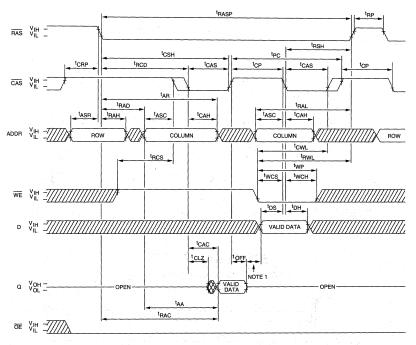
EDO/FASTPAGE-MODE READ-WRITE CYCLE 34 (LATE WRITE and READ-MODIFY-WRITE cycles)


NOTE:

- 1. ^tPC is for LATE WRITE cycles only.
- 2. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

MT8LD432(X)(S), MT16LD832(X)(S) 4 MEG, 8 MEG x 32 DRAM MODULE

EDO-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)

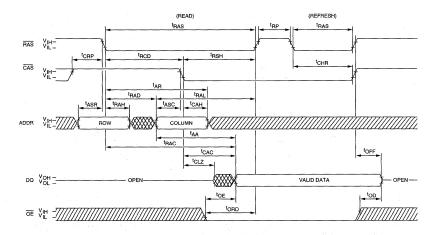


DON'T CARE

W UNDEFINED

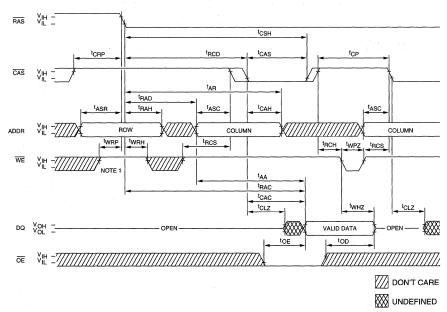
NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)



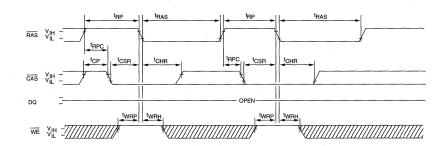
DON'T CARE

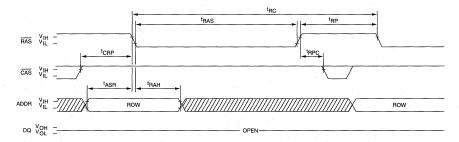
₩ undefined


NOTE: 1. Do not drive data prior to tristate.

HIDDEN REFRESH CYCLE 20, 34 (WE = HIGH; OE = LOW)

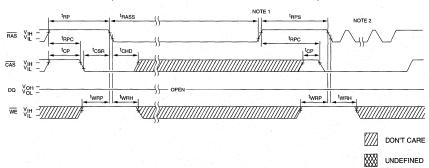
EDO READ CYCLE


(with WE-controlled disable)


NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

DRAM SIMM

CBR REFRESH CYCLE ³⁴ (Addresses and $\overline{OE} = DON'T CARE$)



RAS-ONLY REFRESH CYCLE 34 (WE = DON'T CARE)

SELF REFRESH CYCLE 34

(Addresses and $\overline{OE} = DON'T CARE$)

NOTE: 1. Once tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.

2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

MT8LD432(X)(S), MT16LD832(X)(S) 4 MEG, 8 MEG x 32 DRAM MODULE

DRAM MODULE

1 MEG, 2 MEG x 36

4, 8 MEGABYTE, 5V, FAST PAGE MODE

FEATURES

- Common RAS control per side pinout in a 72-pin, single-in-line memory module (SIMM)
- · High-performance CMOS silicon-gate process.
- Single 5V ±10% power supply
- All device pins are TTL-compatible
- Low power, 54mW standby; 2,052mW active, typical (8MB)
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN
- 1,024-cycle refresh distributed across 16ms
- FAST PAGE MODE (FPM) access cycle

OPTIONS	MARKING
Timing	
60ns access	- 6 - 6 - 6
70ns access	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]
Packages72-pin SIMM	M
72-pin SIMM (gold)	Ğ

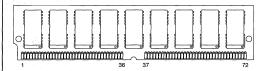
KEY TIMING PARAMETERS

SPEED	tRC	tRAC	^t PC	tAA .	tCAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

PART NUMBER EXAMPLES

VALID PART NUMBERS	DESCRIPTION	
MT9D136G-xx	1 Meg x 36, Gold	
MT9D136M-xx	1 Meg x 36, Tin/Lead	
MT18D236G-xx	2 Meg x 36, Gold	
MT18D236M-xx	2 Meg x 36, Tin/Lead	

GENERAL DESCRIPTION


The MT9D136 and MT18D236 are randomly accessed 4MB and 8MB solid-state memories organized in a x36 configuration. The modules use 1 Meg x 4 Quad $\overline{\text{CAS}}$ DRAM(s) to replace the typical 1 Meg x 1 DRAMs used for parity.

During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits which are entered 10 bits (A0-A9) at a time. \overline{RAS} is used to latch the first 10 bits and \overline{CAS} the latter 10 bits. READ or WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates

PIN ASSIGNMENT (Front View)

72-Pin SIMM

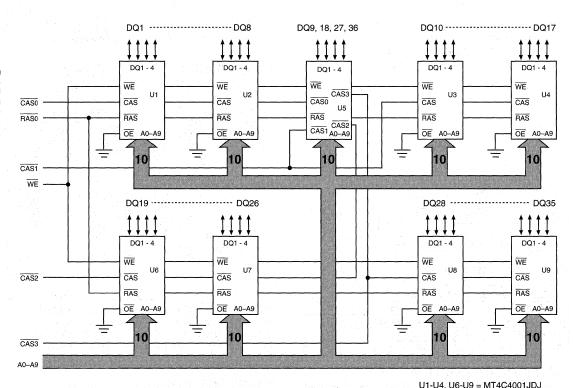
(DD-9) 1 Meg x 36, (DD-10) 2 Meg x 36

PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	19	NC	37	DQ18	55	DQ13
2	DQ1	20	DQ5	38	DQ36	56	DQ31
3	DQ19	21	DQ23	39	Vss	57	DQ14
4	DQ2	22	DQ6	40	CASO	58	DQ32
5	DQ20	23	DQ24	41	CAS2	59	Vcc
6	DQ3	24	DQ7	42	CAS3	60	DQ33
7	DQ21	25	DQ25	43	CAS1	61	DQ15
8	DQ4	26	DQ8	44	RAS0	62	DQ34
9	DQ22	27	DQ26	45	NC/RAS1*	63	DQ16
10	Vcc	28	A7	46	NC	64	DQ35
11	NC	29	NC	47	WE	65	DQ17
12	A0	30	Vcc	48	NC	66	NC
13	A1	31	A8	49	DQ10	67	PRD1
14	A2	32	A9	50	DQ28	68	PRD2
15	A3	33	NC/RAS1*	51	DQ11	69	PRD3
16	A4	34	RAS0	52	DQ29	70	PRD4
17	A5	35	DQ27	53	DQ12	71	NC
18	A6	36	DQ9	54	DQ30	72	Vss

READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. EARLY WRITE occurs when \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle.

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined (A0-A9) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by $\overline{\text{RAS}}$ followed by a column-address strobed-in by $\overline{\text{CAS}}$. $\overline{\text{CAS}}$ may be toggled-in by holding $\overline{\text{RAS}}$ LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning $\overline{\text{RAS}}$ HIGH terminates the FAST PAGE MODE operation.

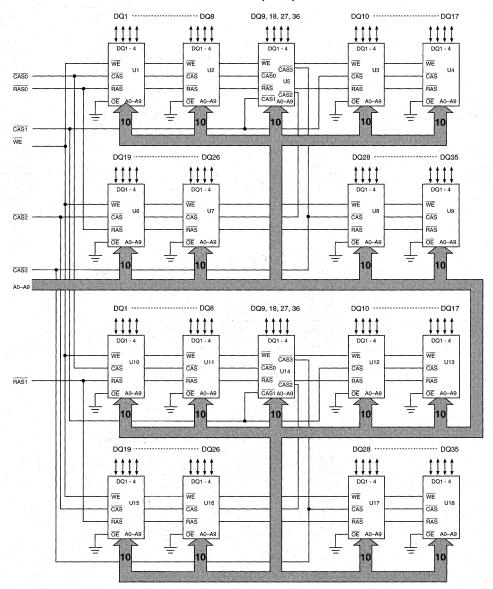


REFRESH

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any

 \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR or HIDDEN) so that all 1,024 combinations of \overline{RAS} addresses (A0-A9) are executed at least every 16ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM MT9D136 (4MB)



U1-U4, U6-U9 = M14C4001JDJU5 = MT4C4004JDJ

NOTE: Due to the use of a Quad \overline{CAS} parity DRAM, \overline{RASO} is common to all DRAMs.

FUNCTIONAL BLOCK DIAGRAM MT18D236 (8MB)

U1-U4, U6-U13, U15-U18 = MT4C4001JDJ U5, U14 = MT4C4004JDJ

NOTE: Due to the use of a Quad CAS parity DRAM, RASO is common to Side 1 and RAST is common to Side 2.

TRUTH TABLE ADDRESSES DATA-IN/OUT **FUNCTION** RAS CAS WE ^tR tC DQ1-DQ36 Н Х Х Standby H→X Х High-Z READ L L Н ROW COL Data-Out **EARLY WRITE** L L L ROW COL Data-In 1st Cycle COL **FAST-PAGE-MODE** L H→L Н ROW Data-Out Н COL READ 2nd Cycle L H→L Data-Out n/a **FAST-PAGE-MODE** 1st Cycle L H→L L ROW COL Data-In WRITE 2nd Cycle L H→L L COL Data-In n/a **RAS-ONLY REFRESH** Х Ĺ Н ROW n/a High-Z HIDDEN READ L→H→L Н COL L ROW Data-Out REFRESH L→H→L WRITE L L ROW COL Data-In **CBR REFRESH** H→L ı Н Х High-Z Х

JEDEC DEFINED PRESENCE-DETECT - MT9D136 (4MB)

SYMBOL	PIN#	-6	-7
PRD1	67	Vss	Vss
PRD2	68	Vss	Vss
PRD3	69	NC	Vss
PRD4	70	NC	NC

JEDEC DEFINED PRESENCE-DETECT - MT18D236 (8MB)

SYMBOL	PIN#	-6	-7
PRD1	67	NC	NC
PRD2	68	NC	NC
PRD3	69	NC	Vss
PRD4	70	NC	NC

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	1V to +7V
Operating Temperature, TA (ambient)	
Storage Temperature (plastic)	55°C to +125°C
Power Dissipation	9W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 6) ($Vcc = +5V \pm 10\%$)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	4.5	5.5	V	
Input High (Logic 1) Voltage, all inputs		ViH	2.4	Vcc+1	V	
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT	CAS0-CAS3	lı1	-12	12	μА	26
Any input $0V \le V$ in $\le 6.5V$	A0-A9, WE	lı2	-36	36	μΑ	26
(All other pins not under test = 0V) for each package input	RAS0, RAS1	lıз	-18	18	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vouт ≤ 5.5V) for each package input	DQ1-DQ36	loz	-20	20	μА	26
OUTPUT LEVELS		Vон	2.4		٧	
Output High Voltage (Iout = -5mA) Output Low Voltage (Iout = 4.2mA)		Vol		0.4	V	

			М	AX		
PARAMETER/CONDITION	SYMBOL	SIZE	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	lcc1	4MB 8MB	18 36	18 36	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Other Inputs = Vcc -0.2V)	lcc2	4MB 8MB	9 18	9 18	mA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ¹RC = ¹RC [MIN])	lcc3	4MB 8MB	990 1,008	900 918	mA	2, 23
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: PC = PC [MIN])	Icc4	4MB 8MB	720 738	630 648	mA	2, 23
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = VIH: ^t RC = ^t RC [MIN])	Icc5	4MB 8MB	990 1,008	900 918	mA	2
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling; WE = Vcc -0.2; tRC = tRC [MIN])	Icce	4MB 8MB	990 1,008	900 918	mA	2, 19

CAPACITANCE		MAX			
PARAMETER	SYMBOL	4MB	8MB	UNITS	NOTES
Input Capacitance: A0-A9	C _{I1}	55	105	рF	17
Input Capacitance: WE	Cı2	70	140	pF	17
Input Capacitance: RASO, RAS2	Сіз	70	70	рF	17
Input Capacitance: CASO, CAS1, CAS2, CAS3	C ₁₄	25	50	pF	17
Input/Output Capacitance: DQ1-DQ36	C _{IO1}	10	16	pF	17

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

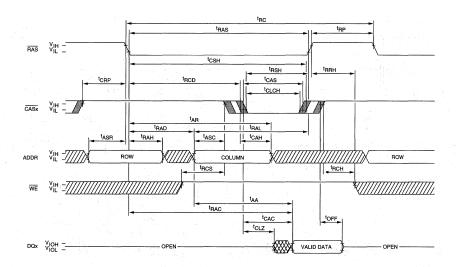
(Notes: 3, 4, 5, 6, 7, 10, 11, 16, 21) ($Vcc = +5V \pm 10\%$)

AC CHARACTERISTICS			-6		-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30		35	ns	
Column-address hold time (referenced to RAS)	tAR .	45		50	1.00	ns	
Column-address setup time	†ASC	0		0		ns	
Row-address setup time	tASR table	0		0		ns	
Access time from CAS	^t CAC		15		20	ns	9
Column-address hold time	^t CAH	10		15		ns	
CAS pulse width	tCAS.	15	10,000	20	10,000	ns	
CAS hold time (CBR REFRESH)	tCHR	10		10		ns	19
Last CAS going LOW to first CAS to return HIGH	tCLCH	10		10		ns	
CAS to output in Low-Z	^t CLZ	0		0		ns	
CAS precharge time	^t CP	10		10		ns	18
Access time from CAS precharge	^t CPA		35		40	ns	
CAS to RAS precharge time	^t CRP	10		10		ns	
CAS hold time	^t CSH	60		70		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		ns	19
Write command to CAS lead time	^t CWL	15		20	10.00	ns	41 / E (1)
Data-in hold time	tDH	10		15		ns	15
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	11.00
Data-in setup time	^t DS	0		0		ns	15
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	12, 25
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	
Access time from RAS	tRAC		60		70	ns	8
RAS to column-address delay time	†RAD	15	30	15	35	ns	24
Row-address hold time	^t RAH	10	13421	10		ns	
Column-address to RAS lead time	^t RAL	30		35		ns	
RAS pulse width	tRAS.	60	10,000	70	10,000	ns	

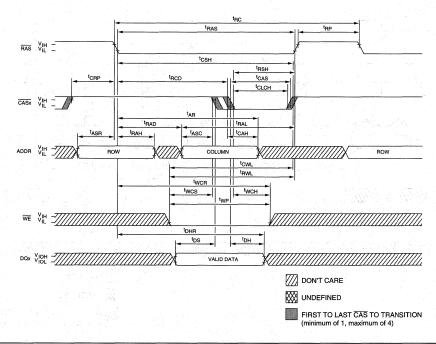
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

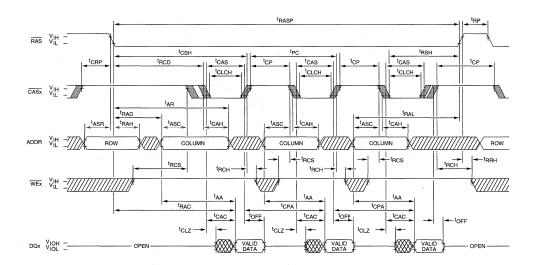
(Notes: 3, 4, 5, 6, 7, 10, 11, 16, 21) ($Vcc = +5V \pm 10\%$)

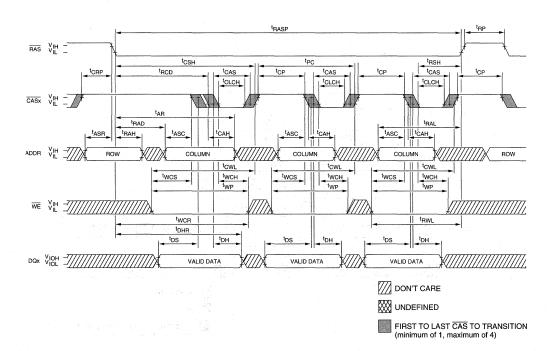
AC CHARACTERISTICS			-6		-7	4.15	100
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
RAS pulse width (FAST PAGE MODE)	tRASP	60	100,000	70	100,000	ns	
Random READ or WRITE cycle time	tRC	110		130		ns	Pr 14 B.
RAS to CAS delay time	tRCD	20	45	20	50	ns	13
Read command hold time (referenced to CAS)	tRCH	0		0		ns	14
Read command setup time	tRCS	0		0		ns	
Refresh period (1,024 cycles)	†REF		16		16	ms	
RAS precharge time	^t RP	40		50		ns	
RAS to CAS precharge time	^t RPC	0		0		ns	
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	14
RAS hold time	^t RSH	15		20		ns	1.114
Write command to RAS lead time	^t RWL	15		20		ns	
Transition time (rise or fall)	t _T	3	50	3	50	ns	
Write command hold time	tWCH	10		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		ns	544
WE command setup time	tWCS	0		0		ns	
Write command pulse width	tWP	10		15		ns	Decision and
WE hold time (CBR REFRESH)	tWRH	10		10	1 40 7 254	ns	
WE setup time (CBR REFRESH)	tWRP	10		10		ns	198


NOTES

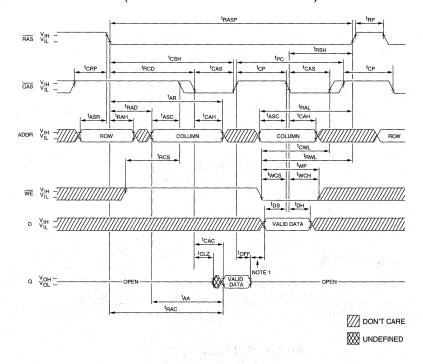
- All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of 100µs is required after power-up followed by any eight RAS refresh cycles (RAS-ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- 4. AC characteristics assume ${}^{t}T = 5$ ns.
- 5. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C \leq T_A \leq 70°C) is assured.
- Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, tRAC will increase by the amount that tRCD exceeds the value shown.
- Assumes that ^tRCD ≥ ^tRCD (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 11. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- 12. tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the


- specified ^tRCD (MAX) limit, then access time is controlled exclusively by tCAC.
- 14. Either ^tRCH or ^tRRH must be satisfied for a READ cvcle.
- 15. These parameters are referenced to CAS leading edge in EARLY WRITE cycles.
- 16. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is measured using MIL-STD-883C, Method 3012.1 (1 MHz AC, $V_{CC} = 5V$, DC bias = 2.4V at 15mV RMS).
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 19. On-chip refresh and address counters are enabled.
- 20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$.
- 21. LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to OE being grounded on U1-U9/U18.
- 22. Last falling CASx edge to first rising CASx edge.
- 23. Icc is dependent on cycle rates.
- 24. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 25. The 3ns minimum is a parameter guaranteed by design.
- 26. 4MB module values will be half of those shown.

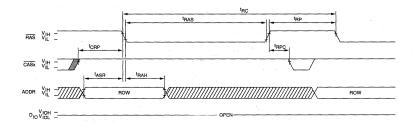

READ CYCLE


EARLY WRITE CYCLE

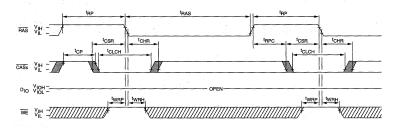
FAST-PAGE-MODE READ CYCLE



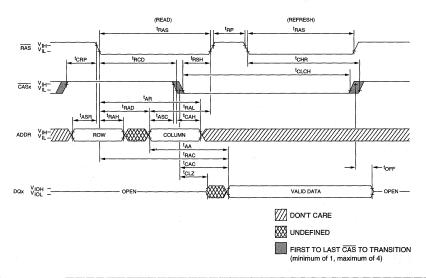
FAST-PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)

NOTE: 1. Do not drive data prior to tristate.



RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)



CBR REFRESH CYCLE

(Addresses = DON'T CARE)

HIDDEN REFRESH CYCLE 20 $(\overline{WE} = HIGH)$

DRAM MODULE

4 MEG, 8 MEG x 36

16, 32 MEGABYTE, 5V, FAST PAGE MODE, OPTIONAL SELF REFRESH

FEATURES

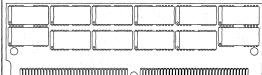
- JEDEC- and industry-standard pinout in a 72-pin, single-in-line memory module (SIMM)
- High-performance CMOS silicon-gate process
- Single 5V ±10% power supply
- All device pins are TTL-compatible
- Low power, 72mW standby; 2,536mW active, typical (32MB)
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN; optional Extended and SELF REFRESH
- · 2,048-cycle refresh distributed across 32ms or 2,048-cycle Extended Refresh distributed across 128ms
- FAST PAGE MODE (FPM) access cycle
- Multiple RAS lines allow x18 or x36 widths

OPTIONS	MARKING
Timing	
60ns access	-6
70ns access	-7
Packages	
72-pin SIMM	M
72-pin SIMM (gold)	$G_{\mathcal{S}_{\mathcal{S}_{\mathcal{S}_{\mathcal{S}}}}}$
72-pin SIMM low profile (1.00")	DM
72-pin SIMM (gold) low profile (1.0	0") DG
Refresh	
Standard/32ms	Blank
SELF REFRESH / 128ms	S

KEY TIMING PARAMETERS

SPEED	tRC	†RAC	tPC	tAA	tCAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

VALID PART NUMBERS


PART NUMBER	DESCRIPTION
MT12D436DG-xx	4 Meg x 36, Gold
MT12D436DG- xx S	4 Meg x 36, Gold, S**
MT12D436DM-xx	4 Meg x 36, Tin/Lead
MT12D436DM- xx S	4 Meg x 36, Tin/Lead, S**
MT24D836G-xx	8 Meg x 36, Gold
MT24D836G-xx S	8 Meg x 36, Gold, S**
MT24D836M-xx	8 Meg x 36, Tin/Lead
MT24D836M-xx S	8 Meg x 36, Tin/Lead, S**

^{**}S = SELF REFRESH

PIN ASSIGNMENT (Front View)

72-Pin SIMM

(DD-11) 4 Meg x 36 (DD-12) 8 Meg x 36 (DD-13) 4 Meg x 36 Low Profile

mmm	m	m	mm	m	\mathbf{m}_{\sim}	mmm	mmm	mm	mmm

PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	19	A10	37	DQ18	55	DQ13
2	DQ1	20	DQ5	38	DQ36	56	DQ31
3	DQ19	21	DQ23	39	Vss	57	DQ14
4	DQ2	22	DQ6	40	CASO	58	DQ32
5	DQ20	23	DQ24	41	CAS2	59	Vcc
6	DQ3	24	DQ7	42	CAS3	60	DQ33
7	DQ21	25	DQ25	43	CAS1	61	DQ15
8	DQ4	26	DQ8	44	RAS0	62	DQ34
9	DQ22	27	DQ26	45	NC/RAS1*	63	DQ16
10	Vcc	28	A7	46	NC	64	DQ35
11	NC	29	NC	47	WE	65	DQ17
12	A0	30	Vcc	48	NC	66	NC
13	A1	31	A8	49	DQ10	67	PRD1
14	A2	32	A9	50	DQ28	68	PRD2
15	A3	33	NC/RAS3*	51	DQ11	69	PRD3
16	A4	34	RAS2	52	DQ29	70	PRD4
17.	A5	35	DQ27	53	DQ12	71	NC
18	A6	36	DQ9	54	DQ30	72	Vss

GENERAL DESCRIPTION

The MT12D436(S) and MT24D836(S) are randomly accessed 16MB and 32MB solid-state memories organized in a x36 configuration.

During READ or WRITE cycles, each bit is uniquely addressed through the 22 address bits, which are entered 11 bits (A0-A10) at a time. \overline{RAS} is used to latch the first 11 bits and CAS the latter 11 bits. A READ or WRITE cycle is selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{\text{CAS}}$. Since $\overline{\text{WE}}$ goes LOW prior to $\overline{\text{CAS}}$ going LOW, the output pin(s) remain open (High-Z) until the next CAS cycle.

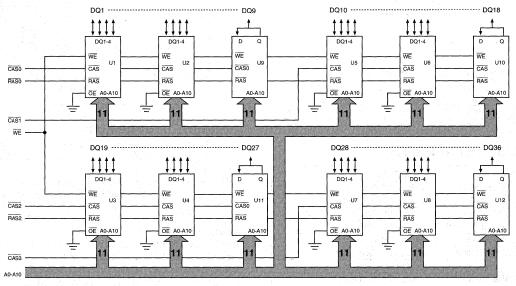
FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined (A0-A10) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

REFRESH

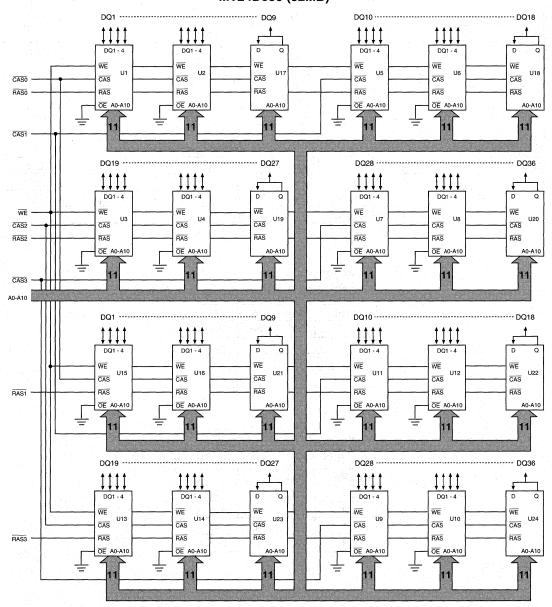
Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR or HIDDEN) so that all 2,048 combinations of RAS addresses (A0-A10) are executed at least every 32ms, regardless of sequence. The CBR REFRESH cycle will invoke the refresh counter for automatic RAS addressing.

An additional SELF REFRESH mode is also available. The "S" version allows the user the option of a fully static low power data retention mode, or a dynamic refresh mode


at the extended refresh period. The module's SELF REFRESH mode is initiated by executing a CBR REFRESH cycle and holding \overline{RAS} LOW for the specified ^tRASS. Additionally, the "S" version allows for an extended refresh rate of 62.5µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation, as well as during a standby or extended refresh mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for the time minimum of an operation cycle, typically ¹RPS. This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all 2,048 rows must be refreshed within 300µs prior to the resumption of normal operation.

x18 CONFIGURATION


For x18 applications, the corresponding DQ and $\overline{\text{CAS}}$ pins must be connected together (DQ1 to DQ19, DQ2 to DQ20 and so forth, and $\overline{\text{CAS0}}$ to $\overline{\text{CAS2}}$ and $\overline{\text{CAS1}}$ to $\overline{\text{CAS3}}$). Each $\overline{\text{RAS}}$ is then a bank select for the x18 memory organization.

FUNCTIONAL BLOCK DIAGRAM MT12D436 (16MB)

U1-U8 = 4 Meg x 4 DRAMs U9-U12 = 4 Meg x 1 DRAMs

FUNCTIONAL BLOCK DIAGRAM MT24D836 (32MB)

U1-U16 = 4 Meg x 4 DRAMs U17-U24 = 4 Meg x 1 DRAMs

TRUTH TABLE

				ADDR	ESSES	DATA-IN/OUT	
FUNCTION		RAS	CAS	WE	t _R	t _C	DQ1-DQ36
Standby		Н	H→X	Х	Х	X	High-Z
READ		L	٦	H	ROW	COL	Data-Out
EARLY WRITE		L	٦	L	ROW	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	Ι	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	Н	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	ROW	COL	Data-In
WRITE	2nd Cycle	L	H→L	L	n/a	COL	Data-In
RAS-ONLY REFRESH		Little Lit	Н	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	Х	Х	High-Z
SELF REFRESH (S ver	rsion)	H→L	L	Н	Х	Х	High-Z

JEDEC DEFINED PRESENCE-DETECT - MT12D436 (16MB)

SYMBOL	PIN#	-6	-7
PRD1	67	Vss	Vss
PRD2	68	NC	NC
PRD3	69	NC	Vss
PRD4	70	NC	NC

JEDEC DEFINED PRESENCE-DETECT - MT24D836 (32MB)

SYMBOL	PIN#	-6	-7
PRD1	67	NC	NC
PRD2	68	Vss	Vss
PRD3	69	NC	Vss
PRD4	70	NC	NC

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Vss	1V to +7V
Operating Temperature, TA (ambient)	0°C to +70°C
Storage Temperature (plastic)	55°C to +125°C
Power Dissipation	12W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) (Vcc = $+5V \pm 10\%$)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	4.5	5.5	V	
Input High (Logic 1) Voltage, all inputs	1.00	Vıн	2.4	5.5	V	
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT	RAS0-RAS3	ln .	-12	12	μА	
Any input 0V ≤ VIN ≤ 5.5V	A0-A10, WE	l ₁₂	-48	48	μΑ	28
(All other pins not under test = 0V) for each package input	CAS0-CAS3	lıз	-12	12	μΑ	28
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vouт ≤ 5.5V) for each package input	DQ1-DQ36	loz	-20	20	μΑ	28
OUTPUT LEVELS		Vон	2.4		V	
Output High Voltage (Iout = -5mA) Output Low Voltage (Iout = 4.2mA)		Vol		0.4	ν	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +5V \pm 10\%$) MAX PARAMETER/CONDITION SYMBOL SIZE -6 -7 UNITS NOTES STANDBY CURRENT: (TTL) 16MB 34 34 lcc₁ mΑ $(\overline{RAS} = \overline{CAS} = V_{IH})$ 32MB 68 68 STANDBY CURRENT: (CMOS) ICC2 **16MB** 18 18 mΑ $\overline{(RAS)} = \overline{CAS} = Other Inputs = Vcc -0.2V$ 32MB 36 36 Icc2 16MB 13 13 mΑ 32MB (S only) 26 26 OPERATING CURRENT: Bandom BEAD/WRITE 16MB 1.400 1.200 mA 3, 4, Average power supply current Icc3 32MB 1.434 1.234 26 (RAS, CAS, Address Cycling: tRC = tRC [MIN]) OPERATING CURRENT: FAST PAGE MODE 920 **16MB** 1.040 3. 4. mΑ Average power supply current Icc4 32MB 1.074 954 26 (RAS = VIL, CAS, Address Cycling: ^tPC = ^tPC [MIN]) REFRESH CURRENT: RAS ONLY **16MB** 1.400 1.200 Average power supply current ICC5 mΑ 3, 26 32MB 1.434 1,234 $(\overline{RAS} \text{ Cycling}, \overline{CAS} = VIH: {}^{t}RC = {}^{t}RC [MIN])$ REFRESH CURRENT: CBR 16MB 1.400 1,200 Average power supply current Icc6 mA 3.5 32MB 1.434 1.234 $(\overline{RAS}, \overline{CAS}, Address Cycling: {}^{t}RC = {}^{t}RC [MIN])$ REFRESH CURRENT: Extended (S version only) Average power supply current 16MB ICC7 3.6 3.6 mΑ 3, 5 $\overline{CAS} = 0.2V$ or CBR cycling; $\overline{RAS} = {}^{t}RAS$ (MIN); $\overline{WE} = 0.2V$: (S only) 32MB 7.2 7.2 A0-A10 and DIN = Vcc -0.2V or 0.2V (DIN may be left open); ^tRC = 62.5µs REFRESH CURRENT: SELF (S version only) Average power supply current during SELF REFRESH; 16MB 3.6 3.6 mΑ 5 ICC8 CBR cycling with $\overline{RAS} \ge {}^{t}RASS$ (MIN) and \overline{CAS} held LOW; 32MB (S only) 7.2 7.2 WE = Vcc -0.2V; A0-A10 and DIN = Vcc -0.2V or 0.2V (DIN may be left open)

CAPACITANCE MAX **PARAMETER** SYMBOL **16MB** 32MB UNITS NOTES Input Capacitance: A0-A10 140 CII 70 pF 2 Input Capacitance: WE C₁₂ 94 188 pΕ 2 Input Capacitance: RASO, RAS1, RAS2, RAS3 Сіз 50 50 pF 2 Input Capacitance: CASO, CAS1, CAS2, CAS3 C₁₄ 25 50 2 pF Input/Output Capacitance: DQ1-DQ8, DQ10-DQ17, DQ19-DQ26, DQ28-DQ35 C₁O₁ 10 18 pF 2 Input/Output Capacitance: DQ9, DQ18, DQ27, DQ36 C102 16 28 pF 2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

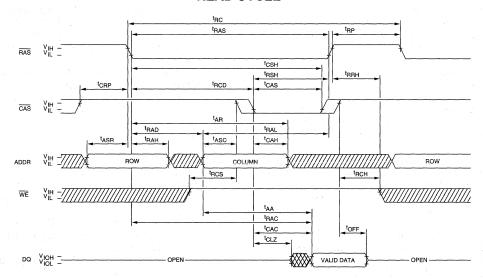
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5V \pm 10\%$)

AC CHARACTERISTICS			-6		-7		11 A
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	†AA		30		35	ns	
Column-address hold time (referenced to RAS)	^t AR	50		55		ns	
Column-address setup time	tASC	0		0		ns	
Row-address setup time	tASR	0	1.35	0		ns	
Access time from CAS	^t CAC		15		20	ns	15
Column-address hold time	^t CAH	10	***	15		ns	
CAS pulse width	^t CAS	15	10,000	20	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH cycle	^t CHD	15		15		ns	27
CAS hold time (CBR REFRESH)	tCHR	15		15		ns	5
CAS to output in Low-Z	^t CLZ	3		3		ns	25
CAS precharge time	^t CP	10		10		ns	16
Access time from CAS precharge	^t CPA		35		40	ns	
CAS to RAS precharge time	^t CRP	5		5		ns	
CAS hold time	^t CSH	60		70		ns	
CAS setup time (CBR REFRESH)	tCSR	5		5		ns	5
Write command to CAS lead time	tCWL	15		20		ns	
Data-in hold time	tDH	10		15		ns	21
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	t _{DS}	0		0		ns	21
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	20, 25
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	
FAST-PAGE-MODE READ-WRITE cycle time	†PRWC	n/a		n/a		ns	22
Access time from RAS	^t RAC		60		70	ns	14
RAS to column-address delay time	^t RAD	15	30	15	35	ns	18
Row-address hold time	^t RAH	10		10		ns	
Column-address to RAS lead time	^t RAL	30		35		ns	
RAS pulse width	^t RAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	60	100,000	70	100,000	ns	
RAS pulse width during SELF REFRESH cycle	†RASS	100		100		μs	27
Random READ or WRITE cycle time	tRC	110		130		ns	

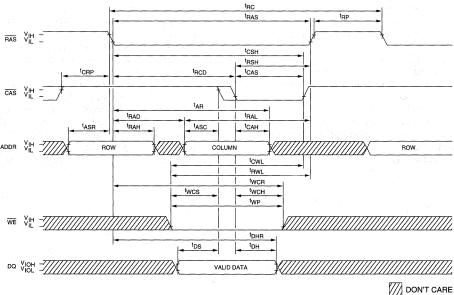
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +5V \pm 10\%$)

AC CHARACTERISTICS			-6		7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
RAS to CAS delay time	tRCD	20	45	20	50	ns	17
Read command hold time (referenced to CAS)	tRCH	0		0		ns	19
Read command setup time	tRCS	0		0		ns	
Refresh period (2,048 cycles)	tREF		32		32	ms	7
Refresh period (2,048 cycles) S version	tREF		128		128	ms	
RAS precharge time	tRP	40		50		ns	
RAS to CAS precharge time	tRPC	0		0		ns	
RAS precharge time during SELF REFRESH cycle	tRPS	110		130		ns	27
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	19
RAS hold time	tRSH	15		20		ns	
READ WRITE cycle time	tRWC	n/a		n/a		ns	22
Write command to RAS lead time	^t RWL	15		20		ns	
Transition time (rise or fall)	t _T	3	50	3	50	ns	
Write command hold time	tWCH	10		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		ns	
WE command setup time	twcs	0		0		ns	
Write command pulse width	tWP	10		15		ns	
WE hold time (CBR REFRESH)	tWRH	10		10		ns	24
WE setup time (CBR REFRESH)	tWRP	10		10		ns	24

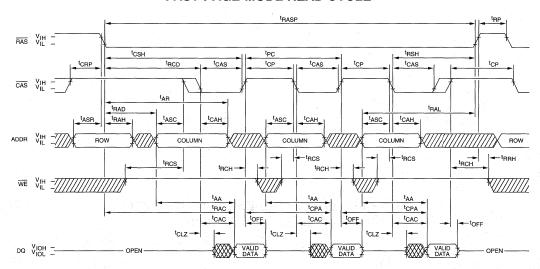


NOTES

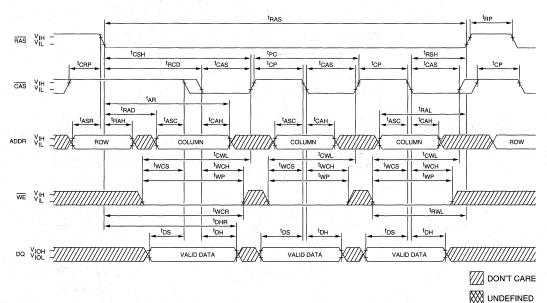

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is measured using MIL-STD-883C, Method 3012.1 (1 MHz AC, Vcc = 5V, DC bias = 2.4V at 15mV RMS).
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- AC characteristics assume ^tT = 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{\text{CAS}} = V_{IL}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ¹RCD < ¹RCD (MAX). If ¹RCD is greater than the maximum recommended value shown in this table, ¹RAC will increase by the amount that ¹RCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.

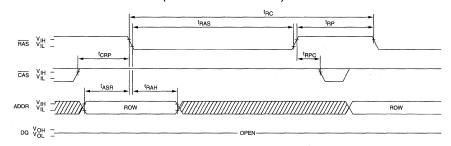
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. These parameters are referenced to CAS leading edge in EARLY WRITE cycles.
- 22. OE is tied permanently LOW; LATE WRITE or READ-MODIFY-WRITE operations are not permissible and should not be attempted.
- 23. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 24. ^tWTS and ^tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of ^tWRP and ^tWRH in the CBR REFRESH cycle.
- 25. The 3ns minimum is a parameter guaranteed by design
- 26. Column-address changed once each cycle.
- 27. Refresh must be completed within the time of three external refresh rate periods prior to active use of the DRAM (provided distributed CBR REFRESH is used when in the active mode). Alternatively, a complete set of row refreshes must be executed when exiting SELF REFRESH prior to active use of the DRAM if anything other than distributed CBR REFRESH is used in the active mode.
- 28. 16MB module values will be half of those shown.

READ CYCLE

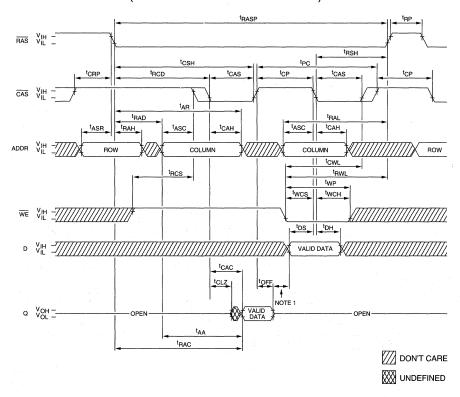


EARLY WRITE CYCLE



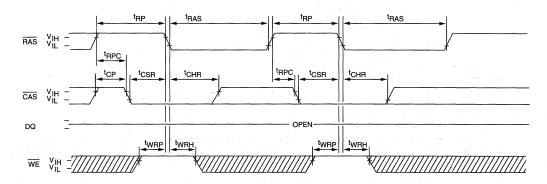

FAST-PAGE-MODE READ CYCLE

FAST-PAGE-MODE EARLY-WRITE CYCLE

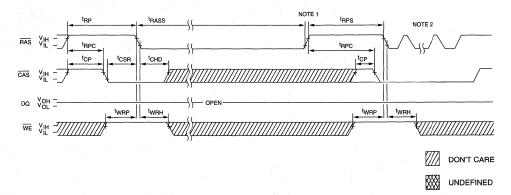


RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE


(Pseudo READ-MODIFY-WRITE)

1. Do not drive data prior to tristate.

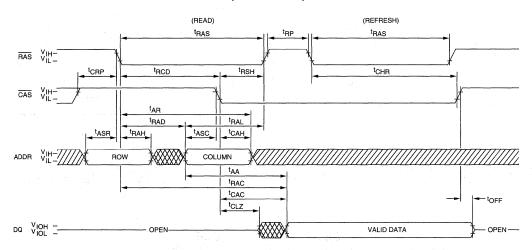

CBR REFRESH CYCLE

(Addresses = DON'T CARE)

SELF REFRESH CYCLE

(Addresses and $\overline{OE} = DON'T CARE$)

NOTE:


- 1. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.
- 2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

MT12D436(S), MT24D836(S) 4 MEG, 8 MEG x 36 DRAM MODULES

HIDDEN REFRESH CYCLE 23

(WE = HIGH)

DON'T CARE

₩ undefined

MICHON

EDO DRAMs	1
FPM DRAMs	2
SGRAM	3
DRAM SIMMs	4
DRAM DIMMs	5
DRAM CARDS	6
TECHNICAL NOTES	18 10° 100
PRODUCT RELIABILITY	85 (M NO
PACKAGE INFORMATION	
SALES AND SERVICE INFORMATION	m = 1410
MICRON DATAFAX INDEX	11

DRAM DIMM PRODUCT SELECTION GUIDE

Memory		Part	Optional	Access	Typical Powe	er Dissipation	No. of Pins	
Configuration		Number	Access Cycle	Time (ns)	Standby	Active	DIMM	Page
3.3V DIMMs								
1 Meg x 32	3.3V	MT2LD(T)132H		60, 70	6mW	500mW	72	5-1
1 Meg x 32	3.3V	MT2LD(T)132H S	S	60, 70	.6mW	500mW	72	5-1
2 Meg x 32	3.3V	MT4LD(T)232H		60, 70	12mW	506mW	72	5-1
2 Meg x 32	3.3V	MT4LD(T)232H S	S	60, 70	1.2mW	501mW	72	5-1
4 Meg x 32	3.3V	MT8LD(T)432H		60, 70	8mW	1,440mW	72	5-15
4 Meg x 32	3.3V	MT8LD(T)432H S	S	60, 70	2.4mW	1,440mW	72	5-15
1 Meg x 64	3.3V	MT16LD(T)164		60, 70	19.2mW	1,600mW	168	5-47
1 Meg x 64	3.3V	MT16LD(T)164 S	S	60, 70	4.8mW	1,600mW	168	5-47
2 Meg x 64	3.3V	MT8LD(T)264		60, 70	8mW	1,600mW	168	5-69
2 Meg x 64	3.3V	MT8LD(T)264 S	S	60, 70	2.4mW	1,600mW	168	5-69
2 Meg x 64	3.3V	MT8LD(T)264 X	EDO	60, 70	8mW	1,200mW	168	5-69
2 Meg x 64	3.3V	MT8LD(T)264 XS	EDO, S	60, 70	2.4mW	1,200mW	168	5-69
4 Meg x 64	3.3V	MT16LD(T)464		60, 70	16mW	2,880mW	168	5-47
4 Meg x 64	3.3V	MT16LD(T)464 S	S	60, 70	4.8mW	2,880mW	168	5-47
4 Meg x 64	3.3V	MT16LD(T)464 X	EDO	60, 70	16mW	2,400mW	168	5-47
4 Meg x 64	3.3V	MT16LD(T)464 XS	EDO, S	60, 70	6.4mW	2,400mW	168	5-47
1 Meg x 72	3.3V	MT18LD(T)172		60, 70	21.6mW	1,800mW	168	5-109
1 Meg x 72	3.3V	MT18LD(T)172 S	S	60, 70	5.4mW	1,800mW	168	5-109
2 Meg x 72	3.3V	MT9LD(T)272		60, 70	9mW	1,800mW	168	5-131
2 Meg x 72	3.3V	MT9LD(T)272 S	S	60, 70	2.7mW	1,800mW	168	5-131
2 Meg x 72	3.3V	MT9LD(T)272 X	EDO	60, 70	9mW	1,350mW	168	5-131
2 Meg x 72	3.3V	MT9LD(T)272 XS	EDO, S	60, 70	2.7mW	1,350mW	168	5-131
4 Meg x 72	3.3V	MT18LD(T)472		60, 70	18mW	3,240mW	168	5-109
4 Meg x 72	3.3V	MT18LD(T)472 S	S	60, 70	5.4mW	3,240mW	168	5-109
4 Meg x 72	3.3V	MT18LD(T)472 X	EDO	60, 70	18mW	2,700mW	168	5-109
4 Meg x 72	3.3V	MT18LD(T)472 XS	EDO, S	60, 70	5.4mW	2,700mW	168	5-109
5V DIMMs								
1 Meg x 64	5V	MT16D(T)164		60, 70	48mW	3,600mW	168	5-29
1 Meg x 64	5V	MT16D(T)164 S	S	60, 70	12.8mW	3,600mW	168	5-29
4 Meg x 64	5V	MT16D(T)464		60, 70	48mW	4,000mW	168	5-29
1 Meg x 72	5V	MT18D(T)172		60, 70	54mW	4,050mW	168	5-91
1 Meg x 72	5V	MT18D(T)172 S	S	60, 70	14.4mW	4,050mW	168	5-91
4 Meg x 72	5V	MT18D(T)472		60, 70	54mW	4,500mW	168	5-91

EDO = Extended Data-Out; S = SELF REFRESH

SMALL-OUTLINE DRAM MODULE

1 MEG, 2 MEG x 32

4, 8 MEGABYTE, 3.3V, FAST PAGE MODE, OPTIONAL SELF REFRESH

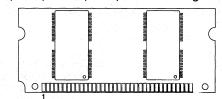
FEATURES

- JEDEC- and industry-standard pinout in a 72-pin, small-outline, dual-in-line memory module (DIMM)
- High-performance CMOS silicon-gate process.
- Single $+3.3V \pm 0.3V$ power supply
- · All device pins are TTL-compatible
- Low power, 12mW standby; 506mW active, typical (8MB)
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN; optional Extended CBR and SELF
- 1,024-cycle refresh distributed across 16ms or 1,024-cycle extended refresh distributed across 128ms
- FAST PAGE MODE (FPM) access cycle

OPTIONS	MARKING
• Timing 60ns access 70ns access	-6 -7
• Components SOJ TSOP	D DT
• Packages 72-pin Small-Outline DIMM (gold)	G
• Refresh Standard/16ms SELF REFRESH/128ms	Blank S

KEY TIMING PARAMETERS

SPEED	^t RC	^t RAC	tPC	†AA	†CAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns


VALID PART NUMBERS

DESCRIPTION
1 Meg x 32, TSOP
1 Meg x 32, SELF REFRESH, TSOP
1 Meg x 32, SOJ
1 Meg x 32, SELF REFRESH, SOJ
2 Meg x 32, TSOP
2 Meg x 32, SELF REFRESH, TSOP
2 Meg x 32, SOJ
2 Meg x 32, SELF REFRESH, SOJ

PIN ASSIGNMENT (Front View)

72-Pin Small-Outline DIMM

(DE-4) SOJ, (DE-1) TSOP 1 Meg x 32 (DE-6) SOJ, (DE-2) TSOP 2 Meg x 32

PIN#	FRONT	PIN#	BACK	PIN#	FRONT	PIN#	BACK
1	Vss	2	DQ0	37	DQ16	38	DQ17
3	DQ1	4	DQ2	39	Vss	40	CAS0
5	DQ3	6	DQ4	41	CAS2	42	CAS3
7	DQ5	8	DQ6	43	CAS1	44	RAS0
9	DQ7	10	Vcc	45	NC/RAS1*	46	NC
11	PRD1	12	A0	47	WE	48	NC
13	A1	14	A2	49	DQ18	50	DQ19
15	A3	16	A4	51	DQ20	52	0021
17	A5	18	A6	53	DQ22	54	DQ23
19	NC	20	NC	55	NC	56	DQ24
21	DQ8	22	DQ9	57	DQ25	58	DQ26
23	DQ10	24	DQ11	59	DQ27	60	DQ28
25	DQ12	26	DQ13	61	Vcc	62	DQ29
27	DQ14	28	A7	63	DQ30	64	DQ31
29	NC	30	Vcc	65	NC	66	PRD2
31	A8	32	A9	67	PRD3	68	PRD4
33	NC/RAS3*	34	RAS2	69	PRD5	70	PRD6
35	DQ15	36	NC	71	PRD7	72	Vss

*8MB version only

GENERAL DESCRIPTION

The MT2LD(T)132H(S) and MT4LD(T)232H(S) are randomly accessed 4MB and 8MB solid-state memories organized in a small outline x32 configuration. They are specially processed to operate from +3.0V to 3.6V for low voltage memory systems. The modules have optional FAST PAGE MODE, which allows faster data operations (READ or WRITE) within a row-address-defined (A0-A9) page boundary.

The wider voltage range on these modules allows them to be used in $+3.3V\pm0.3V$ memory designs. On the SELF REFRESH version, the refresh period is also extended from the standard 16ms to 128ms to provide maximum power

GENERAL DESCRIPTION (continued)

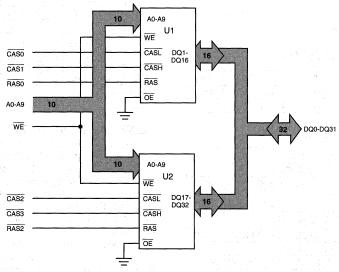
savings. The SELF REFRESH cycle allows the module to perform the extended refresh by itself. This eliminates the need to toggle the \overline{RAS} clock during a sleep mode.

During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits which are entered 10 bits (A0-A9) at a time. RAS is used to latch the first 10 bits and CAS the latter 10 bits.

READ and WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open(High-Z) until the next \overline{CAS} cycle.

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined (A0-A9) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

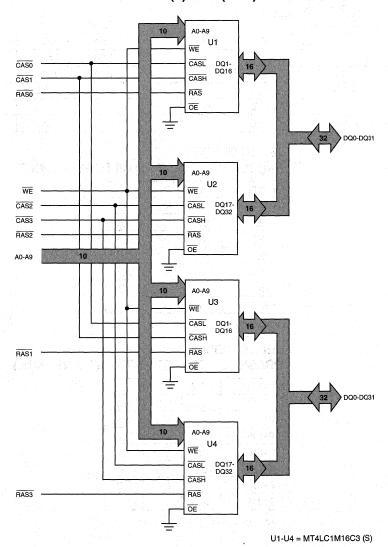

REFRESH

Memory cell data is retained in its correct state by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR or HIDDEN) so that all combinations of \overline{RAS} addresses (A0-A9) are executed at least every ^tREF, regardless of sequence. The CBR REFRESH cycle will invoke the internal refresh counter for automatic \overline{RAS} addressing.

An additional SELF REFRESH mode is also available. The "S" version allows the user the option of a fully static low power data retention mode, or a dynamic refresh mode at the extended refresh period. The module's SELF REFRESH mode is initiated by executing a CBR REFRESH cycle and holding RAS LOW for the specified tRASS.

The SELF REFRESH mode is terminated by driving RAS HIGH for the time minimum of an operation cycle, typically 'RPS. This delay allows for the completion of any internal refresh cycles that may be in process at the time of the RAS LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes burst refresh sequence, all 1,024 rows must be refreshed within 300µs, prior to the resumption of normal operation.

FUNCTIONAL BLOCK DIAGRAM MT2LD(T)132H (4MB)


STANDBY

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time.

x16 CONFIGURATION

For x16 applications, the corresponding DQ and $\overline{\text{CAS}}$ pins must be connected together (DQ0 to DQ16, DQ1 to DQ17 and so forth, and $\overline{\text{CAS0}}$ to $\overline{\text{CAS2}}$ and $\overline{\text{CAS1}}$ to $\overline{\text{CAS3}}$). Each $\overline{\text{RAS}}$ is then a bank select for the x16 memory organization.

FUNCTIONAL BLOCK DIAGRAM MT4LD(T)232H (8MB)

TRUTH TABLE

					ADDRESSES		DATA-IN/OUT
FUNCTION		RAS	CAS	WE	^t R	^t C	DQ0-DQ31
Standby	Facility of the Control	Н	H→X	Х	Х	Х	High-Z
READ		L	L	Н	ROW	COL	Data-Out
EARLY WRITE		L	_	L	ROW	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	Н	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	ROW	COL	Data-In
WRITE	2nd Cycle	L	H→L	L	n/a	COL	Data-In
RAS-ONLY REFRESH		L	Н	X	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L W	L	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	Х	Х	High-Z
SELF REFRESH (S ver	rsion)	H→L	L	Н	Х	Х	High-Z

JEDEC DEFINED PRESENCE-DETECT - MT2LD(T)132H (4MB)

SYMBOL	PIN#	-6	-7
PRD1	11	NC	NC
PRD2	66	Vss	Vss
PRD3	67	Vss	Vss
PRD4	68	NC	NC
PRD5	69	NC	Vss
PRD6	70	NC	NC
PRD7	71	X*	X*

^{*} NC= Normal Refresh / Vss = S version only

JEDEC DEFINED PRESENCE-DETECT - MT4LD(T)232H (8MB)

SYMBOL	PIN#	-6	-7
PRD1	11	NC	NC
PRD2	66	Vss	Vss
PRD3	67	Vss	Vss
PRD4	68	Vss	Vss
PRD5	69	NC	Vss
PRD6	70	NC	NC
PRD7	71	X*	X*

^{*} NC= Normal Refresh / Vss = S version only

ABSOLUTE MAXIMUM RATINGS*

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 6) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	3.0	3.6	V	
Input High (Logic 1) Voltage, all inputs		ViH	2.0	5.5	V	
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT	RASO-RAS3	li1	-2	2	μΑ	
Any input $0V \le V_{IN} \le 5.5V$	A0-A9, WE	l ₁₂	-8	8	μΑ	29
(All other pins not under test = 0V) for each package input	CAS0-CAS3	lıз	-4	4	μΑ	29
OUTPUT LEAKAGE CURRENT (Q is disabled; $0V \le Vout \le 5.5V$) for each package input	DQ0-DQ31	loz	-20	20	μΑ	29
OUTPUT LEVELS		Vон	2.4	rings-in	٧	41.54
Output High Voltage (Iout = -2mA) Output Low Voltage (Iout = 2mA)		Vol		0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 2, 3, 6, 22) ($Vcc = +3.3V \pm 0.3V$) MAX PARAMETER/CONDITION SYMBOL UNITS NOTES SIZE -6 -7 STANDBY CURRENT: (TTL) 4MB 4 4 Icc₁ mΑ 8MB $(\overline{RAS} = \overline{CAS} = V_{IH})$ 8 8 STANDBY CURRENT: (CMOS) lcc2 4MB 1 1 mΑ 30 $(\overline{RAS} = \overline{CAS} = Vcc - 0.2V)$ 8MB 2 2 ICC2 4MB 0.3 0.3 mΑ 8MB 0.6 0.6 (S only) OPERATING CURRENT: Random READ/WRITE 4MR 340 310 mΑ 2, 22, Average power supply current Іссз 8MB 344 314 26 (RAS, CAS, Address Cycling: ^tRC = ^tRC [MIN]) OPERATING CURRENT: FAST PAGE MODE 200 180 2, 22, 4MB mA Average power supply current Icc4 204 8MB 184 26 (RAS = VIL, CAS, Address Cycling: ^tPC = ^tPC [MIN]) REFRESH CURRENT: RAS ONLY 4MB 320 290 Average power supply current ICC5 mΑ 22, 26 8MB 324 294 $(\overline{RAS} \text{ Cycling}, \overline{CAS} = VIH: {}^{t}RC = {}^{t}RC [MIN])$ REFRESH CURRENT: CBR 4MB 300 280 Average power supply current 19.22 Icc6 mΑ 8MR 304 284 (RAS, CAS, Address Cycling: tRC = tRC [MIN]) REFRESH CURRENT: Extended (S version only) Average power supply current; $\overline{CAS} = 0.2V$ or CBR cycling; 19, 22 ICC7 4MB 0.6 0.6 mΑ RAS = tRAS (MIN); WE = Vcc -2V, A0-A9 and DIN = Vcc -0.2V (S only) 8MB 1.2 1.2 (Din may be left open); ^tRC = 125μs REFRESH CURRENT: SELF (S version only) Average power supply current; CBR cycling with RAS ≥ tRASS 4MB 0.6 0.6 19 Icc8 mΑ (MIN) and CAS held LOW: WE = Vcc -0.2V: A0-A9 and 8MB (S only) 1.2 1.2 DIN = Vcc -0.2V or 0.2V (DIN may be left open)

CAPACITANCE

PARAMETER	SYMBOL	4MB	8МВ	UNITS	NOTES
Input Capacitance: A0-A9	Cıı	14	26	pF	17
Input Capacitance: WE	C ₁₂	18	34	pF	17
Input Capacitance: RAS0 - RAS3	Сіз	10	10	pF	17
Input Capacitance: CAS0 - CAS3	C ₁₄	10	20	pF	17
Input/Output Capacitance: DQ0-DQ31	Cıo	10	18	pF	17

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 6, 7, 10, 11, 16) ($Vcc = +3.3V \pm 0.3V$)

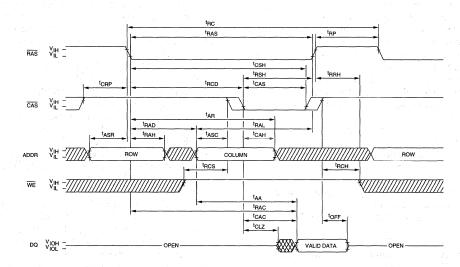
AC CHARACTERISTICS		100	-6	data.	-7		
PARAMETER	SYM	MIN MAX		MIN MAX		UNITS	NOTES
Access time from column-address	t _{AA}		30		35	ns	
Column-address hold time (referenced to RAS)	^t AR	50		55		ns	
Column-address setup time	tASC	0		. 0		ns	
Row-address setup time	tASR	0		0		ns	
Access time from CAS	†CAC		15		20	ns	9
Column-address hold time	^t CAH	10		15		ns	
CAS pulse width	^t CAS	15	10,000	20	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH	tCHD	15		15		ns	27
CAS hold time (CBR REFRESH)	^t CHR	15		15		ns	19
CAS to output in Low-Z	^t CLZ	3		3		ns	25
CAS precharge time	^t CP	10		10		ns	18
Access time from CAS precharge	^t CPA		35		40	ns	
CAS to RAS precharge time	^t CRP	5		5		ns	
CAS hold time	[†] CSH	60		70		ns	
CAS setup time (CBR REFRESH)	^t CSR	5		5		ns	19
Write command to CAS lead time	†CWL	15		20		ns	
Data-in hold time	^t DH	10		15		ns	15
Data-in hold time (referenced to RAS)	†DHR	45		55		ns	
Data-in setup time	tDS	0		0		ns	15
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	12, 25
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	n/a		n/a		ns	21
Access time from RAS	†RAC		60		70	ns	8
RAS to column-address delay time	†RAD	15	30	15	35	ns	23
Row-address hold time	^t RAH	10		10		ns	
Column-address to RAS lead time	tRAL t	30		35		ns	
RAS pulse width	tRAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	^t RASP	60	100,000	70	100,000	ns	
RAS pulse width during SELF REFRESH	†RASS	100		100		μs	27
Random READ or WRITE cycle time	^t RC	110		130		ns	
RAS to CAS delay time	^t RCD	20	45	20	50	ns	13
Read command hold time (referenced to CAS)	^t RCH	0		0		ns	14
Read command setup time	tRCS	0		0		ns	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

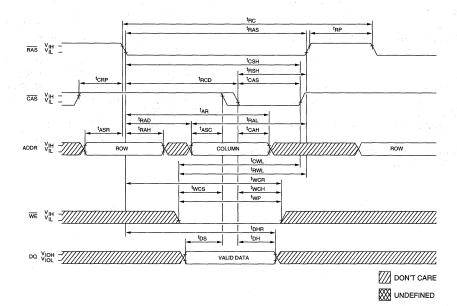
(Notes: 3, 4, 5, 6, 7, 10, 11, 16) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS			-6	-	7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Refresh period (1,024 cycles)	tREF.		16		16	ms	
Refresh period (1,024 cycles) S version	^t REF		128		128	ms	
RAS precharge time	^t RP	40		50		ns	
RAS to CAS precharge time	tRPC	0		0		ns	
RAS precharge time during SELF REFRESH	tRPS	110		130		ns	27
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	14
RAS hold time	^t RSH	15		20	. 4.	ns	
READ-WRITE cycle time	tRWC	n/a	1	n/a		ns	21
Write command to RAS lead time	^t RWL	15		20		ns	
Transition time (rise or fall)	ŀΤ	3	50	3	50	ns	
Write command hold time	†WCH	10		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55	4	ns	
WE command setup time	twcs	0		0		ns	
Write command pulse width	^t WP	10		15		ns	
WE hold time (CBR REFRESH)	tWRH	10		10		ns	28
WE setup time (CBR REFRESH)	†WRP	10		10		ns	28

MICHON

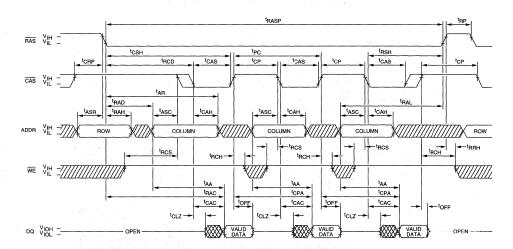

MT2LD(T)132H(S), MT4LD(T)232H(S) 1 MEG, 2 MEG x 32 DRAM MODULE

NOTES

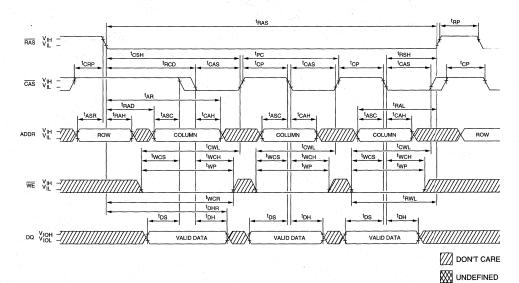

- 1. All voltages referenced to Vss.
- 2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of 100µs is required after power-up followed by any eight RAS refresh ycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- 4. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 11. If $\overline{\text{CAS}} = \text{Vil.}$, data output may contain data from the last valid READ cycle.
- 12. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VoH or VoL.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 15. These parameters are referenced to CAS leading edge in EARLY WRITE cycles.

- 16. In addition to meeting the transition rate specification, all input signals must transit between $V_{\rm IL}$ (or between $V_{\rm IL}$ and $V_{\rm IH}$) in a monotonic manner.
- 17. This parameter is sampled. VCC = $+3.3V \pm 0.3V$; f = 1 MHz.
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 19. On-chip refresh and address counters are enabled.
- 20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- 21. LATE WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to \overline{OE} being grounded on U1-U2/U4.
- 22. Icc is dependent on cycle rates.
- 23. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 24. Applies to S version only.
- 25. The 3ns minimum is a parameter guaranteed by design.
- 26. Column-address changed once each cycle.
- 27. When exiting the SELF REFRESH mode, a complete set of row refreshes should be executed in order to ensure that the DRAM will be fully refreshed. Alternatively, distributed refreshes may be utilized, provided CBR refreshes are employed.
- 28. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.
- 29. 4MB module values will be half of those shown.
- 30. All other inputs at 0.2V or Vcc -0.2V.

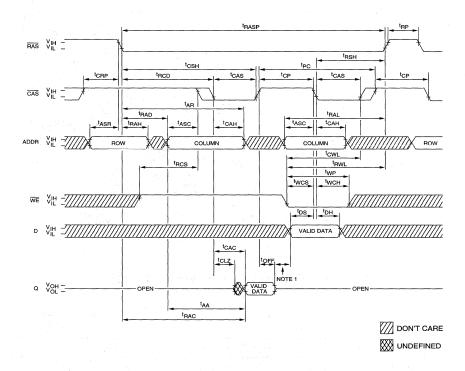
READ CYCLE



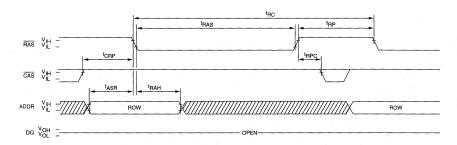
EARLY WRITE CYCLE



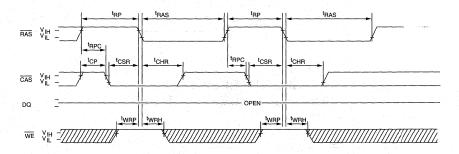
NEW DRAM DIMM


FAST-PAGE-MODE READ CYCLE

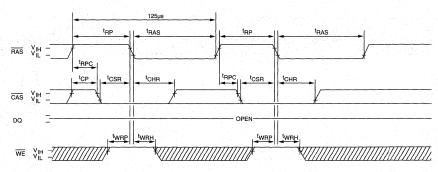
FAST-PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)

NOTE: 1. Do not drive data prior to tristate.



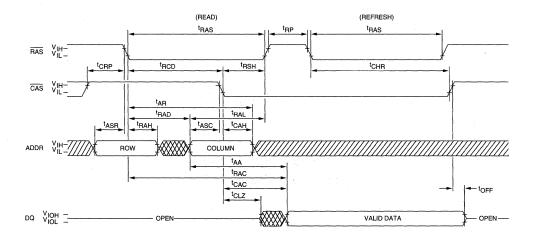
RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)


CBR REFRESH CYCLE

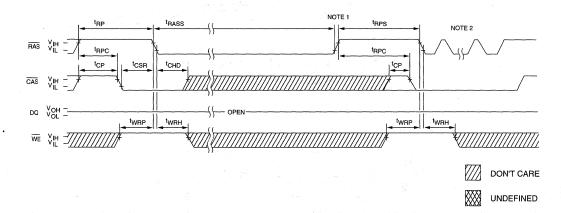
(Addresses = DON'T CARE)

EXTENDED CBR REFRESH CYCLE 24

(Addresses = DON'T CARE)


DON'T CARE

₩ undefined


HIDDEN REFRESH CYCLE 20

 $(\overline{WE} = HIGH)$

SELF REFRESH CYCLE

(Addresses and OE = DON'T CARE)

1. Once tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.

2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

SMALL-OUTLINE DRAM MODULE

4 MEG x 32

16 MEGABYTE, 3.3V, FAST PAGE MODE, OPTIONAL SELF REFRESH

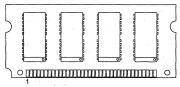
FEATURES

- JEDEC- and industry-standard pinout in a 72-pin, small-outline, dual-in-line memory module (DIMM)
- High-performance CMOS silicon-gate process.
- Single +3.3V ±3V power supply
- All device pins are TTL-compatible
- Low power, 2.4mW standby; 1,440mW active, typical
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN; optional Extended and SELF REFRESH
- 2,048-cycle refresh distributed across 32ms or 2,048-cycle extended refresh distributed across 128ms
- FAST PAGE MODE (FPM) access cycle

OPTIONS	MARKING
• Timing	
60ns access	-6
70ns access	-7
• Components SOJ TSOP	D DT
• Packages 72-pin Small-Outline DIMM (go	old) G
• Refresh Standard/32ms SELF REFRESH/128ms	Blank S

KEY TIMING PARAMETERS

SPEED	^t RC	tRAC	^t PC	†AA	tCAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns


VALID PART NUMBERS

PART NUMBER	DESCRIPTION
MT8LD432HG-xx	4 Meg x 32, SOJ
MT8LD432HG- xx S	4 Meg x 32, S*, SOJ
MT8LDT432HG-xx	4 Meg x 32, TSOP
MT8LDT432HG- xx S	4 Meg x 32, S*, TSOP

^{*}S = SELF REFRESH

PIN ASSIGNMENT (Front View)

72-Pin Small-Outline DIMM(DE-5) SOJ version
(DE-3) TSOP version

PIN#	FRONT	PIN#	BACK	PIN #	FRONT	PIN#	BACK
1	Vss	2	DQ0	37	DQ16	38	DQ17
3	DQ1	4	DQ2	39	Vss	40	CASO
5	DQ3	6	DQ4	41	CAS2	42	CAS3
7	DQ5	8	DQ6	43	CAS1	44	RASO
9	DQ7	10	Vcc	45	NC	46	NC
11	PD1	12	A0	47	WE	48	NC
13	A1	14	A2	49	DQ18	50	DQ19
15	A3	16	A4	51	DQ20	52	DQ21
17	A5	18	A6	53	DQ22	54	DQ23
19	A10	20	NC	55	NC	56	DQ24
21	DQ8	22	DQ9	57	DQ25	58	DQ26
23	DQ10	24	DQ11	59	DQ27	60	DQ28
25	DQ12	26	DQ13	61	Vcc	62	DQ29
27	DQ14	28	A7	63	DQ30	64	DQ31
29	NC	30	Vcc	65	NC	66	PRD2
31	A8	32	A9	67	PRD3	68	PRD4
33	NC	34	RAS2	69	PRD5	70	PRD6
35	DQ15	36	NC	71	PRD7	72	Vss

GENERAL DESCRIPTION

The MT8LD(T)432 is a randomly accessed 16MB solid-state memory organized in a small outline x32 configuration. It is specially processed to operate from 3.0V to 3.6V for low voltage memory systems. The module has an optional FAST PAGE MODE, which allows faster data operations (READ or WRITE) within a row-address-defined (A0-A10) page boundary.

The wider voltage range on this module allows them to be used in $+3.3V \pm 0.3V$ memory designs. On the SELF REFRESH version, the refresh period is also extended from the standard 32ms to 128ms to provide maximum power savings.

During READ or WRITE cycles, each bit is uniquely addressed through the 22 address bits which are entered

MT8LD(T)432H(S) 4 MEG x 32 DRAM MODULE

GENERAL DESCRIPTION (continued)

11 bits (A0-A10) at a time. \overline{RAS} is used to latch the first 11 bits and \overline{CAS} the latter 11 bits.

READ and WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open(High-Z) until the next \overline{CAS} cycle.

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined (A0-A10) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

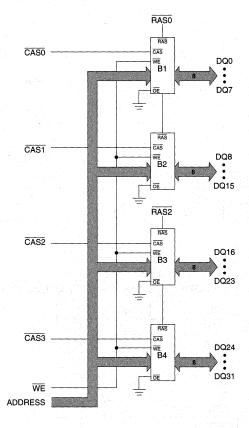
REFRESH

Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR or HIDDEN) so that all combinations of RAS addresses (A0-A10) are executed at least every ^tREF, regardless of sequence. The CBR REFRESH cycle will invoke the internal refresh counter for automatic RAS addressing.

An additional SELF REFRESH mode is also available. The "S" version allows the user the option of a fully static low power data retention mode, or a dynamic refresh mode at the extended refresh period. The module's SELF REFRESH mode is initiated by executing a CBR REFRESH cycle and holding RAS LOW for the specified 'RASS.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for the time minimum of an operation cycle, typically tRPS. This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes burst refresh sequence, all 2,048 rows must be refreshed within 300 μ s, prior to the resumption of normal operation.

STANDBY


Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time.

x16 OPERATION

For x16 applications, the corresponding DQ and $\overline{\text{CAS}}$ pins must be connected together (DQ1 to DQ17, DQ2 to DQ18 and so forth, and $\overline{\text{CAS0}}$ to $\overline{\text{CAS2}}$ and $\overline{\text{CAS1}}$ to $\overline{\text{CAS3}}$). Each $\overline{\text{RAS}}$ is then a bank select for the x16 memory organization.

FUNCTIONAL BLOCK DIAGRAM MT8LD(T)432H (16MB)

NOTE: 1. B1 - B4 are x8 memory blocks consisting of 2-MT4C4M4B1(S) DRAMs each.

TRUTH TABLE

			. 45, .	TO SALEST THE	ADDR	ESSES	DATA-IN/OUT
FUNCTION		RAS	CAS	WE	^t R	tC	DQ0-DQ31
Standby		Н	H→X	Х	Х	Х	High-Z
READ		L	L	I	ROW	COL	Data-Out
EARLY WRITE		L	L	L	ROW	COL	Data-In
FAST-PAGE-MODE	1st Cycle	E	H→L	Τ	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	H	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	ROW	COL	Data-In
WRITE	2nd Cycle	L	H→L	, L	n/a	COL	Data-In
RAS-ONLY REFRESH		L	∌ H	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Ι	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L L	ROW	COL	Data-In
CBR REFRESH		H→L	L	Ħ	Х	Х	High-Z
SELF REFRESH (S ver	sion)	H→L	L	Н	Х	X	High-Z

JEDEC DEFINED PRESENCE-DETECT - MT8LD(T)432H (16MB)

SYMBOL	-6	-7
PRD1	NC	NC
PRD2	NC	NC
PRD3	Vss	Vss
PRD4	NC	NC
PRD5	NC	Vss
PRD6	NC	NC
PRD7	X*	X*

^{*} NC = Normal Refresh / Vss = S version only

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1V to +4.6V
Voltage on Inputs or I/O pins	
relative to Vss	1V to +5.5V
Operating Temperature, T _A (ambient)	0°C to +70°C
Storage Temperature (plastic)	
Power Dissipation	8W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 2, 3, 6, 22) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	3.0	3.6	V	
Input High (Logic 1) Voltage, all inputs		ViH	2.0	5.5	V	
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT	RASO, RAS2	li1	-8	8	μΑ	
Any input $0V \le V N \le 5.5V$	A0-A10, WE	112	-16	16	μΑ	
(All other pins not under test = 0V) for each package input	CAS0-CAS3	li3	-4	4	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vouт ≤ 5.5V) for each package input	DQ1-DQ32	loz	-10	10	μΑ	
OUTPUT LEVELS		Vон	2.4		V	
Output High Voltage (Ιουτ = -2mA) Output Low Voltage (Ιουτ = 2mA)		Vol		0.4	V	

MT8LD(T)432H(S) 4 MEG x 32 DRAM MODULE

MAY

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 6) ($Vcc = +3.3V \pm 0.3V$)

		MAX				
PARAMETER/CONDITION	SYMBOL	SIZE	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	lcc1	16MB	16	16	mA	
STANDBY CURRENT: (CMOS)	Icc2	16MB	4	4	mA	
$(\overline{RAS} = \overline{CAS} = \text{other inputs} = Vcc -0.2V)$	Icc2 (S only)	16MB	1.2	1.2	mA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ¹RC = ¹RC [MIN])	lcc3	16MB	960	880	mA	2, 22, 26
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN])	Icc4	16MB	720	640	mA	2, 22, 26
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = Viii: RC = RC [MIN])	lcc5	16MB	960	880	mA	22, 26
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ¹RC = ¹RC [MIN])	Icc6	16MB	960	880	mA	19, 22
REFRESH CURRENT: EXTENDED (S version only) Average power supply current; $\overline{CAS} = 0.2V$ or CBR cycling; $\overline{RAS} = {}^{t}RAS$ (MIN); $\overline{WE} = Vcc -0.2V$; A0-A10 and DIN = Vcc -0.2V or 0.2V (DIN may be left open); ${}^{t}RC = 62.5\mu s$	lcc7 (S only)	16MB	2.4	2.4	mA	19, 22
REFRESH CURRENT: SELF (S version only) Average power supply current; CBR cycling with $\overline{RAS} \geq {}^{t}RASS$ (MIN) and \overline{CAS} held LOW; $\overline{WE} = Vcc$ -0.2V; A0-A10 and DIN = Vcc -0.2V or 0.2V (Din may be left open)	lcc7 (S only)	16MB	2.4	2.4	mA	19

CAPACITANCE		MAX		
PARAMETER	SYMBOL	16MB	UNITS	NOTES
Input Capacitance: A0-A10	C _{I1}	48	pF	17
Input Capacitance: WE	C ₁₂	64	pF	17
Input Capacitance: RASO, RAS2	Сіз	32	pF	17
Input Capacitance: CASO, CAS1, CAS2, CAS3	C14	16	pF	17
Input/Output Capacitance: DQ0-DQ31	Сю	10	pF	17

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 6, 7, 10, 11, 16, 21) ($Vcc = +3.3V \pm 0.3V$)

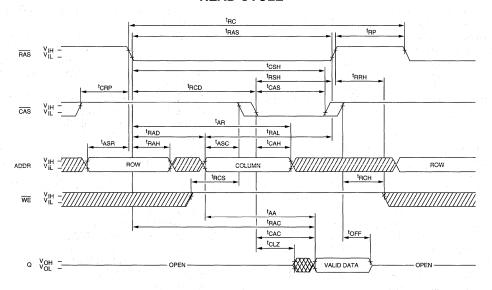
AC CHARACTERISTICS			-6	10 10 10 10	-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	t _{AA}		30		35	ns	
Column-address hold time (referenced to RAS)	t _{AR}	50		55		ns	
Column-address setup time	tASC	0		0		ns	
Row-address setup time	tASR	0		0		ns	
Access time from CAS	^t CAC		15	200 g 200	20	ns	9
Column-address hold time	^t CAH	10		15		ns	
CAS pulse width	^t CAS	15	10,000	20	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH	tCHD	15		15		ns	27
CAS hold time (CBR REFRESH)	^t CHR	15		15		ns	19
CAS to output in Low-Z	^t CLZ	3		3		ns	25
CAS precharge time	^t CP	10		10		ns	18
Access time from CAS precharge	^t CPA		35	4.	40	ns	
CAS to RAS precharge time	^t CRP	5		5		ns	
CAS hold time	^t CSH	60		70		ns	
CAS setup time (CBR REFRESH)	^t CSR	5		5		ns	19
Write command to CAS lead time	tCWL	15		20		ns	
Data-in hold time	tDH	10		15		ns	15
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	tDS	0		0		ns	15
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	12, 25
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	
Access time from RAS	^t RAC		60		70	ns	8
RAS to column-address delay time	^t RAD	15	30	15	35	ns	23
Row-address hold time	^t RAH	10		10		ns	
Column-address to RAS lead time	tRAL.	30		35		ns	
RAS pulse width	tRAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	60	100,000	70	100,000	ns	
RAS pulse width during SELF REFRESH	†RASS	100		100		μs	27
Random READ or WRITE cycle time	^t RC	110		130		ns	
RAS to CAS delay time	^t RCD	20	45	20	50	ns	13
Read command hold time (referenced to CAS)	^t RCH	0		0		ns	14
Read command setup time	tRCS	0		0		ns	

MT8LD(T)432H(S) 4 MEG x 32 DRAM MODULE

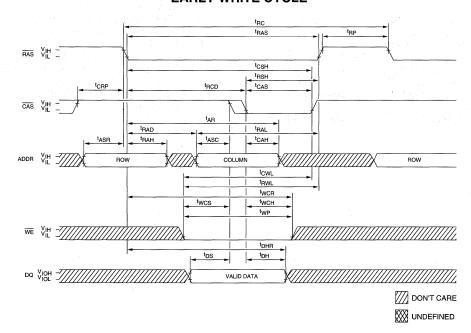
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 6, 7, 10, 11, 16, 21) ($Vcc = +3.3V \pm 0.3V$)

AC CHARACTERISTICS			-6	-	7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Refresh period (2,048 cycles)	^t REF		32		32	ms	
Refresh period (2,048 cycles) S version	tREF		128		128	ms	
RAS precharge time	t _{RP}	40	1 1	50		ns	
RAS to CAS precharge time	tRPC	0		0		ns	
RAS precharge time during SELF REFRESH	tRPS	110		130		ns	27
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	14
RAS hold time	^t RSH	15		20		ns	
Write command to RAS lead time	^t RWL	15		20		ns	
Transition time (rise or fall)	tT	3	50	3	50	ns	
Write command hold time	tWCH	10		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		ns	
WE command setup time	tWCS	0		0		ns	
Write command pulse width	tWP	10		15		ns	
WE hold time (CBR REFRESH)	tWRH	10		10		ns	28
WE setup time (CBR REFRESH)	tWRP	10		10		ns	28

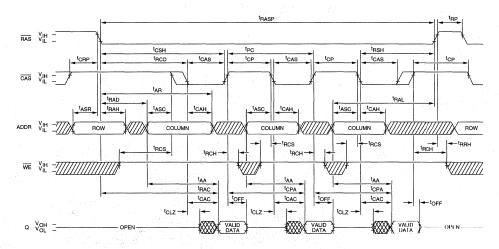


NOTES

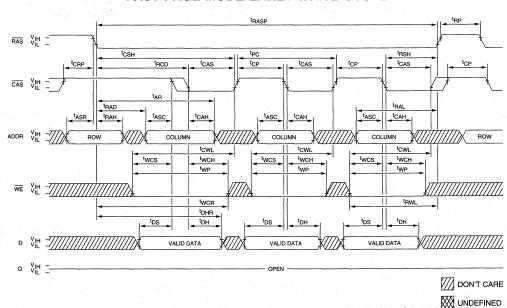

- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of 100µs is required after power-up followed by any eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- 4. AC characteristics assume ^tT = 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. Measured with a load equivalent to two TTL gates and 100pF and Vol = 0.8 and VoH = 2.0V.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 11. If $\overline{\text{CAS}} = V_{\text{IL}}$, data output may contain data from the last valid READ cycle.
- 12. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.

- 15. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in EARLY WRITE cycles.
- In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 17. This parameter is sampled. Vcc = $+3.3V \pm 0.3V$; f = 1 MHz.
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCP.
- 19. On-chip refresh and address counters are enabled.
- A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- LATE WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to OE being grounded on U1-U8.
- 22. Icc is dependent on cycle rates.
- 23. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 24. Applies to S version only.
- The 3ns minimum is a parameter guaranteed by design.
- 26. Column-address changed once each cycle.
- If the DRAM controller uses a burst refresh, a burst refresh must be executed upon exiting SELF RE-FRESH.
- 28. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR REFRESH cycle.

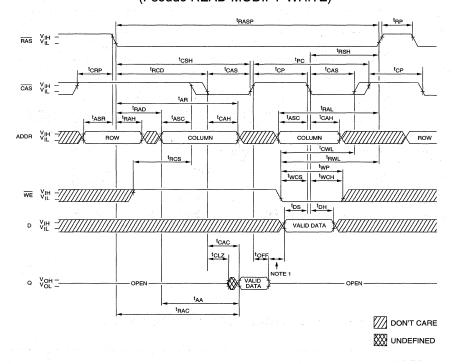
READ CYCLE



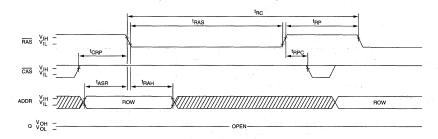
EARLY WRITE CYCLE



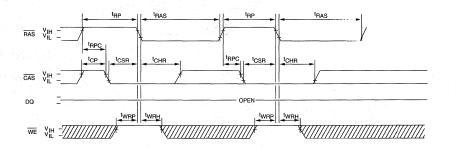
FAST-PAGE-MODE READ CYCLE



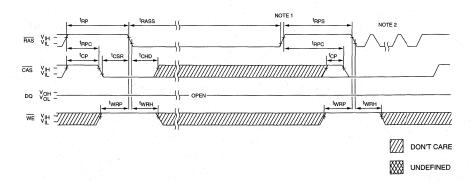
FAST-PAGE-MODE EARLY-WRITE CYCLE



FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)


NOTE: 1. Do not drive data prior to tristate.

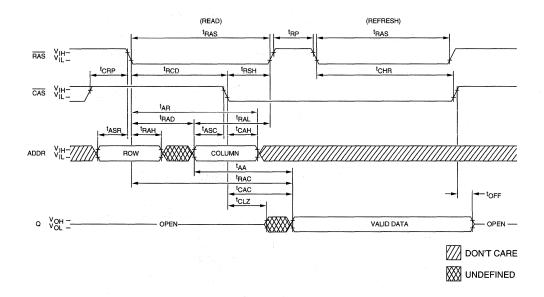
RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)


CBR REFRESH CYCLE

(Addresses = DON'T CARE)

SELF REFRESH CYCLE 24

(Addresses = DON'T CARE)



5-27

NOTE: 1. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.

2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

HIDDEN REFRESH CYCLE 20 (WE = HIGH)

DRAM MODULE

1 MEG, 4 MEG x 64

8, 32 MEGABYTE, 5V, FAST PAGE MODE, OPTIONAL SELF REFRESH

FEATURES

OPETONIC

- JEDEC- and industry-standard pinout in a 168-pin, dual-in-line memory module (DIMM)
- High-performance CMOS silicon-gate process
- Single $+5V \pm 10\%$ power supply
- All device pins are TTL-compatible
- Low power, 12.8mW standby; 3,600mW active, typical
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN; optional Extended and SELF REFRESH
- All inputs are buffered except RAS
- 1,024-cycle refresh distributed across 16ms or 1,024-cycle Extended Refresh distributed across 128ms (1 Meg x 64)
- 2,048-cycle refresh distributed across 32ms (4 Meg x 64)
- FAST PAGE MODE (FPM) access cycle

OPTIONS	MAKKING
• Timing 60ns access 70ns access	-6 -7
• Components SOJ TSOP	D DT
• Packages 168-pin DIMM (gold)	G
• Refresh Standard/16ms or 32 SELFREFRESH/128ms	Blank S

KEY TIMING PARAMETERS

SPEED	tRC	tRAC	tPC	†AA	tCAC	tRP
-6	110ns	60ns	35ns	35ns	20ns	40ns
-7	130ns	70ns	40ns	40ns	25ns	50ns

VALID PART NUMBERS

PART NUMBER	DESCRIPTION
MT16D164G-xx	1 Meg x 64, SOJ
MT16D164G-xx S	1 Meg x 64, S*, SOJ
MT16DT164G-xx	1 Meg x 64, TSOP
MT16DT164G-xx S	1 Meg x 64, S*, TSOP
MT16D464G-xx	4 Meg x 64, SOJ
MT16DT464G-xx	4 Meg x 64, TSOP

^{*}S = SELF REFRESH

PIN ASSIGNMENT (Front View)

168-Pin DIMM

(DE-7) SOJ version (DE-8) TSOP version

					100				_ '
$\supset \prod$				Hereministinin					_
	\mathbf{m}	mmm	mmm	mmo∩mm	mmm	mmm	amman a	mmm _	'

PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	43	Vss	85	Vss	127	Vss
2 .	DQ0	44	OE2	86	DQ32	128	RFU
3	DQ1	45	RAS2	87	DQ33	129	NC
4	DQ2	46	CAS4	88	DQ34	130	CAS5
5	DQ3	47	CAS6	89	DQ35	131	CAS7
6	Vcc	48	WE2	90	Vcc	132	PDE
7	DQ4	49	Vcc	91	DQ36	133	Vcc
8	DQ5	50	NC	92	DQ37	134	NC
9	DQ6	51	NC	93	DQ38	135	NC
10	DQ7	52	DQ16	94	DQ39	136	DQ48
11	NC	53	DQ17	95	NC	137	DQ49
12	Vss	54	Vss	96	Vss	138	Vss
13	DQ8	55	DQ18	97	DQ40	139	DQ50
14	DQ9	56	DQ19	98	DQ41	140	DQ51
15	DQ10	57	DQ20	99	DQ42	141	DQ52
16	DQ11	58	DQ21	100	DQ43	142	DQ53
17	DQ12	59	Vcc	101	DQ44	143	Vcc
18	Vcc	60	DQ22	102	Vcc	144	DQ54
19	DQ13	61	RFU	103	DQ45	145	RFU
20	DQ14	62	RFU	104	DQ46	146	RFU
21	DQ15	63	RFU	105	DQ47	147	RFU
22	NC	64	RFU	106	NC	148	RFU
23	Vss	65	DQ23	107	Vss	149	DQ55
24	NC	66	NC	108	NC	150	NC
25	NC	67	DQ24	109	NC	151	DQ56
26	Vcc	68	Vss	110	Vcc	152	Vss
27	WE0	69	DQ25	111	RFU	153	DQ57
28	CASO	70	DQ26	112	CAS1	154	DQ58
29	CAS2	71	DQ27	113	CAS3	155	DQ59
30	RAS0	72	DQ28	11	NC	156	DQ60
31	OE0	73	Vcc	115	RFU	157	Vcc
32	Vss	74	DQ29	116	Vss	158	DQ61
33	A0	75	DQ30	117	A1	159	DQ62
34	A2	76	DQ31	118	A3	160	DQ63
35	A4	77	NC	119	A5	161	NC
36	A6	78	Vss	120	A7	162	Vss
37	A8	79	PD1	121	A9	163	PD2
38	NC/A10**	80	PD3	122	NC	164	PD4
39	NC	81	PD5	123	NC	165	PD6
40	Vcc	82	PD7	124	Vcc	166	PD8
41	RFU	83	ID0	125	RFU	167	ID1
42	RFU	84	Vcc	126	В0	168	Vcc

GENERAL DESCRIPTION

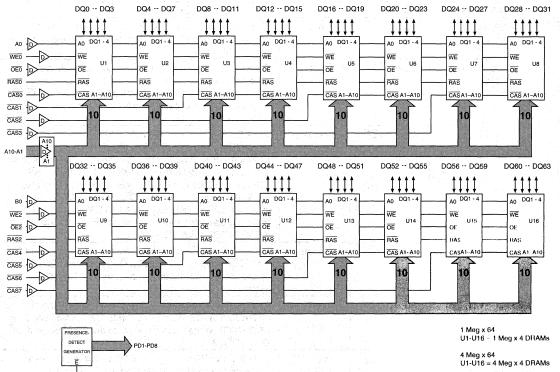
The MT16D(T)164(S) and MT16D(T)464 are randomly accessed 8MB and 32MB solid-state memories organized in a x64 configuration.

During READ or WRITE cycles, each bit is uniquely addressed through the 20/22 address bits, which are entered 10/11 bits (A0/B0-A10) at a time. Two copies of address 0 (A0 and B0) are defined to allow maximum performance for 4-byte applications which interleave between two 4-byte banks. A0 is common to the DRAMs used for DQ0-DQ31, while B0 is common to the DRAMs used for DQ32-DQ63. RAS is used to latch the first 10/11 bits and CAS the latter 10/11 bits.

READ and WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. EARLY WRITE occurs when \overline{WE} goes LOW prior to \overline{CAS} going LOW, and the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle.

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.


REFRESH

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time. Correct memory cell data is preserved by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR or HIDDEN) so that all combinations of \overline{RAS} addresses (A0/B0-A10) are executed at least every ${}^{t}REF$, regardless of sequence. The CBR REFRESH cycle will invoke the internal refresh counter for automatic \overline{RAS} addressing.

An additional SELF REFRESH mode is also available. The "S" version allows the user the option of a fully static low power data retention mode, or a dynamic refresh mode at the extended refresh period. The module's SELF REFRESH mode is initiated by executing a CBR REFRESH cycle and holding RAS LOW for the specified ^tRASS. Additionally, the "S" version allows for extended refresh rates of 125µs (8MB) per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation, as well as during a standby or extended refresh mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for the time minimum of an operation cycle, typically 'RPS. This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all 1,024 rows must be refreshed within 300µs prior to the resumption of normal operation.

FUNCTIONAL BLOCK DIAGRAM

NOTE: 1. All inputs with the exception of \overline{RAS} are redriven.

2. D = line buffers.

PIN DESCRIPTIONS

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
30, 45	RASO, RAS2	Input	Row-Address Strobe: RAS is used to clock-in the 10/11 row-address bits. Two RAS inputs allow for one x64 bank or two x32 banks.
28, 29, 46, 47, 112, 113, 130, 131	CAS0-7	Buffered Input	Column-Address Strobe: CAS is used to clock-in the 10/11 column-address bits, enable the DRAM output buffers and strobe the data inputs on WRITE cycles. Eight CAS inputs allow byte access control for any memory bank configuration.
27,48	WEO, WE2	Buffered Input	Write Enable: WE is the READ/WRITE control for the DQ pins. WE0 controls DQ0-DQ31. WE2 controls DQ32-DQ63. If WE is LOW prior to CAS going LOW, the access is an EARLY WRITE cycle. If WE is HIGH while CAS is LOW, the access is a READ cycle, provided OE is also LOW. If WE goes LOW after CAS goes LOW, then the cycle is a LATE WRITE cycle. A LATE WRITE cycle is generally used in conjunction with a READ cycle to form a READ-MODIFY-WRITE cycle.
31,44	OE0, OE2	Buffered Input	Output Enable: \overline{OE} is the input/output control for the DQ pins. $\overline{OE0}$ controls DQ0-DQ31. $\overline{OE2}$ controls DQ32-DQ63. These signals may be driven, allowing LATE WRITE cycles.
33-38, 117-121, 126	A0-A10, B0	Buffered Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS. A0 is common to the DRAMs used for DQ0-DQ31, while B0 is common to the DRAMs used for DQ32-DQ63.
2-5, 7-10, 13-17, 19-21, 52-53, 55-58, 60, 65, 67, 69-72, 74-76, 86-89, 91-94, 97-101, 103-105, 136-137, 139-142, 144, 149, 151, 153-156, 158-160	DQ0-DQ63	Input/ Output	Data I/O: For WRITE cycles, DQ0-DQ63 act as inputs to the addressed DRAM location. BYTE WRITEs may be performed by using the corresponding CAS select (x64 mode only). For READ access cycles, DQ0-DQ63 act as outputs for the addressed DRAM location.
79-82, 163-166	PD1-PD8	Buffered Output	Presence-Detect: These pins are read by the host system and tell the system the DIMM's personality. They will be either driven to Voh (1) or they will be driven to Vol (0).
41-42, 61-64, 111, 115, 125, 128, 145-148	RFU	-	RFU: These pins should be left unconnected (reserved for future use).
6, 18, 26, 40, 49, 59, 73, 84, 90, 102, 110, 124, 133, 143, 157, 168	Vcc	Supply	Power Supply: +5V ± 10%
1, 12, 23, 32, 43, 54, 68, 78, 85, 96, 107, 116, 127, 138, 152, 162	Vss	Supply	Ground

PIN DESCRIPTIONS (continued)

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION				
83, 167	ID0, ID1	Output	ID bits: ID0 = DIMM type. ID1 = Refresh Mode. These pins will be either left floating (NC) or they will be grounded (Vss).				
132	PDE	Input	Presence-Detect Enable: PDE is the READ control for the buffered presence-detect pins.				
11, 22, 24-25, 38-39, 50-51, 66, 77, 95, 106, 108-109, 114, 122-123, 129, 134-135, 150, 161	NC		No connect.				

TRUTH TABLE

FUNCTION							ADDRE	SSES	DATA-IN/OUT	
		RAS	CAS	WE	ŌĒ	PDE	^t R	tC	DQ0-63	
Standby		Н	H→X	X	Х	Х	Χ	X	High-Z	
READ		L	L	Н	L	Х	ROW	COL	Data-Out	
EARLY WRITE		L	L	L	Х	Х	ROW	COL	Data-In	
READ WRITE		L	L	H→L	L→H	Х	ROW	COL	Data-Out, Data-In	
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	L	Х	ROW	COL	Data-Out	
READ	2nd Cycle	L	H→L	Н	L	Х	n/a	COL	Data-Out	
FAST-PAGE-MODE	1st Cycle	L	H→L	L	Х	X	ROW	COL	Data-In	
EARLY-WRITE	2nd Cycle	L	H→L	L	Х	X	n/a	COL	Data-In	
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	X	ROW	COL	Data-Out, Data-In	
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	X	n/a	COL	Data-Out, Data-In	
RAS-ONLY REFRES	Н	Н	X	х	Х	Х	ROW	n/a	High-Z	
HIDDEN	READ	L→H→L	L	Н	L	Х	ROW	COL	Data-Out	
REFRESH	WRITE	L→H→L	L,	, L	X	Х	ROW	COL	Data-In	
CBR REFRESH		H→L	L	Н	Х	X	Х	Х	High-Z	
SELF REFRESH (S version)		H→L	L	Н	X	Х	Х	X	High-Z	
READ PRESENCE-D	ETECTS	Х	Х	Х	X	L	Х	Х	Not Affected	

PRESENCE-DETECT TRUTH TABLE

	CHARAC	CTERISTICS			l	Р	RESE	ICE-DE	TECT	PIN (PE	Dx)	
Module Density	Module Organization	Row/Column Addresses	ID0	ID1	1	2	3	4	5	6	7	8
OMB	No module installed	X			1	1	1	1				
2MB 4MB	256K x 64/72 512K x 64/72	9/9 9/9			0	0	0	0				
4MB 8MB	512K x 64/72/80 1 Meg x 64/72/80	10/9 10/9			0	1	0	0				
● 8MB	1 Meg x 64/72/80	10/10			0	0	1	0				
16MB	2 Meg x 64/72/80	10/10			1	0	1	0				
16MB 32MB	2 Meg x 64/72/80 4 Meg x 64/72/80	11/10 11/10			1	0 1	0	1 1				
● 32MB	4 Meg x 64/72/80	12*/11*			1	1	0	1				
64MB	8 Meg x 64/72/80	12/10	S. Marian		0	0	1	0				
Page Mode		Fast Page Mode							0			
		EDO Page Mode							1			
Access Timi	ng	80ns								1	0	
44		70ns								0	1	
*****		60ns								1	1	
		50ns								0	0	
Refresh Con	trol	Standard		Vss								
		Self		NC								
Data Width, I	Parity	x64, No Parity	Vss									, 1 ·
		x72, Parity	NC									1
10 mg - 1		x72, ECC	Vss									0
		x80, ECC	NC									0

NOTE: Vss = ground; 0 = Vol; 1 = Voh.

^{*} This addressing includes a redundant address to allow mixing of 12/10 and 11/11 DRAMs with the same presence-detect setting. The MT16D(T)464 uses 11/11 DRAMs.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +5V \pm 10\%$)

PARAMETER/CONDITION		SYM	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	4.5	5.5	٧	
Input High (Logic 1) Voltage, all inputs	ViH	2.0	Vcc+0.5	٧		
Input Low (Logic 0) Voltage, all inputs		VIL	-0.5	8.0	٧	
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le 5.5V$ (All other pins not under test = 0V) for each package input	CAS0-CAS7 A0-A10, B0, PDE WE0,2,OE0,2 RAS0,2	lı1	-2 -16	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vout ≤ 5.5V) for each package input	DQ0-DQ63 PD1-PD8	loz	-10	10	μA	
OUTPUT LEVELS Output High Voltage (IouT = -5mA) Output Low Voltage (IouT = 4.2mA)		Voh Vol	2.4	0.4	V	

			M	MAX		
PARAMETER/CONDITION	SYMBOL	SIZE	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = ViH)		8MB 32MB	32 52	32 52	mA	28
STANDBY CURRENT: (CMOS) (RAS = CAS = Vcc -0.2V)		8MB 32MB 8MB	16 28 3.2	16 28 3.2	mA	28
	(S only)	32MB				
OPERATING CURRENT: Random READ/WRITE		8МВ	1,760	1,600	mA	3, 4,
Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Icc3	32MB	1,920	1,760		28, 32
OPERATING CURRENT: FAST PAGE MODE		8МВ	1,280	1,120	mA	3, 4,
Average power supply current (RAS = VIL, CAS, Address Cycling: ¹PC = ¹PC [MIN])	Icc4	32MB	1,440	1,280		28, 32
REFRESH CURRENT: RAS ONLY	Icc5	8МВ	1,760	1,600	mA	3, 28, 32
Average power supply current (RAS Cycling, CAS = VIH: ^t RC = ^t RC [MIN])		32MB	1,920	1,760		
REFRESH CURRENT: CBR		8МВ	1,760	1,600	mA	3, 5,
Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Icc6	32MB	1,920	1,760		28
REFRESH CURRENT: Extended (S version only) Average power supply current; CAS = 0.2V or CBR cycling;	Icc7	8МВ	4.8	4.8	mA	3, 5,
RAS = ^t RAS (MIN); WE= Vcc -0.2V; A0/B0-A10 and DiN = Vcc -0.2V or 0.2V (DiN may be left open); ^t RC = 125μs (8MB)		32MB		-		31
REFRESH CURRENT: SELF (S version only) Average power supply current; CBR cycling with RAS ≥ RASS (MIN)		8МВ	4.8	4.8	mA	5, 36
and CAS held LOW; WE = Vcc -0.2V; A0/B0-A10 and DIN = Vcc -0.2V (DIN may be left open)	(S only)	32MB		-		5,55

ABSOLUTE MAXIMUM RATINGS*

 $\label{eq:Voltage} \begin{tabular}{lll} Voltage on Vcc Supply Relative to Vss & -1V to +7V \\ Operating Temperature, T_A (ambient) & 0^{\circ}C to +70^{\circ}C \\ Storage Temperature (plastic) & -55^{\circ}C to +125^{\circ}C \\ Power Dissipation & 16W \\ Short Circuit Output Current & 50mA \\ \end{tabular}$

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A10, B0	C ₁₁		9	pF	2
Input Capacitance: WEO, WE2, OEO, OE2	C ₁₂		9	pF	2
Input Capacitance: RASO, RAS2	Сіз		64	pF	2
Input Capacitance: CASO - CAS7	C ₁₄		9	pF	2
Input/Output Capacitance: DQ0-DQ63	Сю		10	pF	2
Output Capacitance: PD1-PD8	Co		10	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

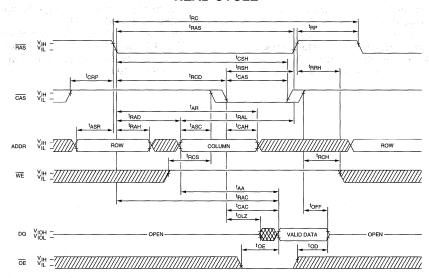
AC CHARACTERISTICS			-6		-7	1.0	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		35		40	ns	25
Column-address hold time (referenced to RAS)	^t AR	48		53		ns	24
Column-address setup time		2		2		ns	23
Row-address setup time	^t ASR	5		5		ns	25
Column-address to WE delay time	tAWD	57		67		ns	23, 30
Access time from CAS	^t CAC		20		25	ns	15, 25
Column-address hold time	^t CAH	15		20		ns	25
CAS pulse width		15	10,000	20	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH		15		15		ns	36
CAS hold time (CBR REFRESH)		13		13		ns	5, 24
CAS to output in Low-Z		5		5		ns	23, 33
CAS precharge time		10		10		ns	16
Access time from CAS precharge	tCPA		40		45	ns	25
CAS to RAS precharge time	tCRP	15		15		ns	25
CAS hold time	^t CSH	58		68		ns	24
CAS setup time (CBR REFRESH)	tCSR	12		12		ns	5, 23
CAS to WE delay time	tCWD	42	W	52		ns	23, 30
Write command to CAS lead time	tCWL	15		20		ns	
Data-in hold time	^t DH	15	1	20		ns	25, 29
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	^t DS	-2		-2	Jan And	ns	24, 29
Output disable	tOD		15		20	ns	
Output enable	^t OE		15		20	ns	
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	15		20		ns	24
Output buffer turn-off delay	^t OFF	5	20	5	25	ns	20, 27

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS			-6		-7	1.5	(X) = 2	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES	
OE setup prior to RAS during HIDDEN REFRESH cycle	tORD	0	1 1 1 1 1 1	0	1000	ns	20	
FAST-PAGE-MODE READ or WRITE cycle time	tPC t	35	- Mark	40	2000	ns		
PDE to valid presence-detect data	^t PD		10		10	ns	35	
PDE inactive to presence-detects inactive	^t PDOFF	2	31.135.1.13	2		ns	34	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	87	A Section	97		ns	23	
Access time from RAS	^t RAC		60		70	ns	14	
RAS to column-address delay time	^t RAD	13	25	13	30	ns	18, 26	
Row-address hold time	^t RAH	8		8	1 - 40	ns	24	
Column-address to RAS lead time	^t RAL	35		40	1 2 5 6 7 5	ns	25	
RAS pulse width	^t RAS	60	10,000	70	10,000	ns		
RAS pulse width (FAST PAGE MODE)	†RASP	60	100,000	70	100,000	ns		
RAS pulse width during SELF REFRESH	tRASS	100		100		μs	36	
Random READ or WRITE cycle time	tRC	110		130		ns		
RAS to CAS delay time	tRCD	18	40	18	45	ns	17, 26	
Read command hold time (referenced to CAS)	tRCH	2		2		ns	19, 23	
Read command setup time	tRCS	2		2		ns	23	
Refresh period (1,024 cycles) - 1 Meg x 64	tREF		16		16	ms		
Refresh period (2,048 cycles) - 4 Meg x 64	tREF	47,140,117	32		32	ms		
Refresh period (2,048 or 1,024 cycles) S version	tREF	4111	128		128	ms		
RAS precharge time	^t RP	40	1 3 3 3 3	50		ns		
RAS to CAS precharge time	^t RPC	0		0	The second	ns		
RAS precharge time during SELF REFRESH	tRPS	110		130	100	ns	36	
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	19	
RAS hold time	†RSH	20	3.377 (2.1	25	J. Jan 1	ns	25	
READ WRITE cycle time	^t RWC	155		185		ns	25	
RAS to WE delay time	tRWD	92	44.5	102		ns	23, 30	
Write command to RAS lead time	†RWL	20	10 K 10 K	25	n colon ga	ns	25	
Transition time (rise or fall)	·Τ	3	50	3	50	ns	100	
Write command hold time	tWCH	15		20	1 - 10 - 10 - 10	ns	25	
Write command hold time (referenced to RAS)	tWCR	43		53		ns	24	
WE command setup time	tWCS	2	12.5	2		ns	23	
Write command pulse width	tWP	10	H BOWLER	15		ns		
WE hold time (CBR REFRESH)	tWRH	8		8		ns	22, 24	
WE setup time (CBR REFRESH)	tWRP	12		12		ns	22, 23	

NOTES

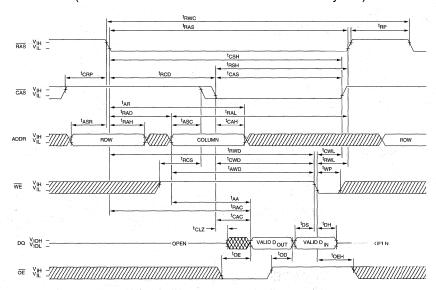
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $+5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that [†]RCD < [†]RCD (MAX). If [†]RCD is greater than the maximum recommended value shown in this table, [†]RAC will increase by the amount that [†]RCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.


- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 22. ^tWTS and ^tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverse of ^tWRP and ^tWRH in the CBR REFRESH cycle.
- 23. A +2ns timing skew from the DRAM to the module resulted from the addition of line drivers.
- 24. A -2ns timing skew from the DRAM to the module resulted from the addition of line drivers.
- 25. A +5ns timing skew from the DRAM to the module resulted from the addition of line drivers.
- 26. A -2ns (MIN) and a -5ns (MAX) timing skew from the DRAM to the module resulted from the addition of line drivers.
- 27. A +2ns (MIN) and a +5ns (MAX) timing skew from the DRAM to the module resulted from the addition of line drivers.
- 28. The maximum current ratings are based with the memory operating or being refreshed in the x64 mode. The stated maximums may be reduced by approximately one-half when used in the x32 mode.
- 29. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 30. ^tWCS, ^tRWD, ^tAWD and ^tCWD are not restrictive operating parameters. ^tWCS applies to EARLY WRITE cycles. ^tRWD, ^tAWD and ^tCWD apply to READ-MODIFY-WRITE cycles. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. ^tWCS, ^tRWD, ^tCWD and ^tAWD are not applicable in a LATE WRITE cycle.

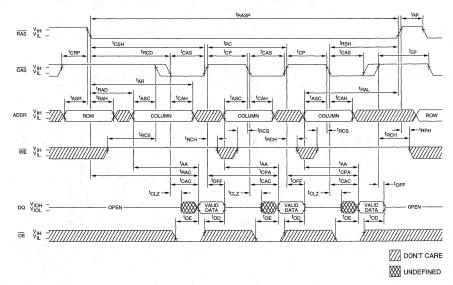
NOTES (continued)

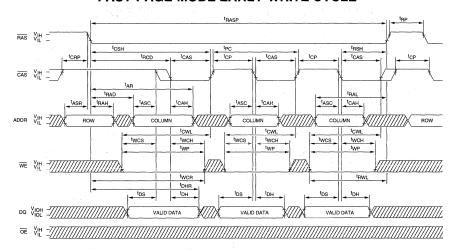
- 31. Refresh current increases if ^tRAS is extended beyond its minimum specification.
- 32. Column-address changed once each cycle.
- 33. The 3ns minimum parameter guaranteed by design.
- 34. PDOFF MAX is determined by the pull-up resistor value. Care must be taken to ensure adequate
- recovery time prior to reading valid up-level on subsequent DIMM position.
- 35. Measured with the specified current load and 100pf.
- 36. If the DRAM controller uses a burst refresh, a burst refresh of all rows must be executed upon exiting SELF REFRESH.

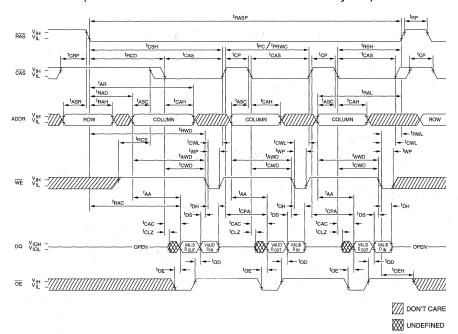
READ CYCLE



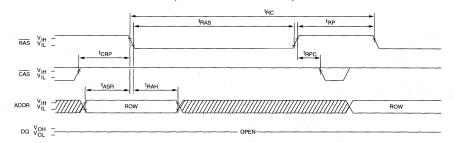
EARLY WRITE CYCLE



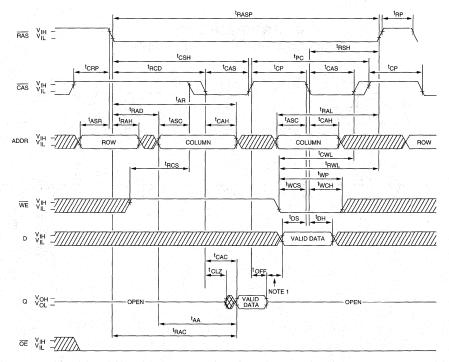

READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)


FAST-PAGE-MODE READ CYCLE

FAST-PAGE-MODE EARLY-WRITE CYCLE



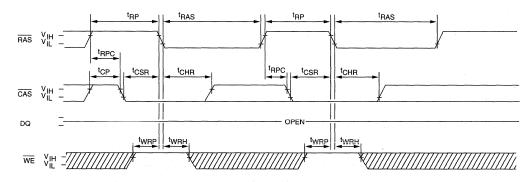
FAST-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)



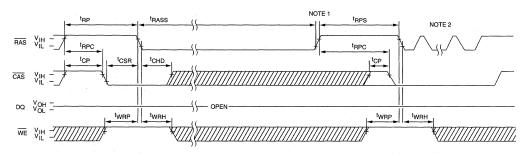
RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)

DON'T CARE


W UNDEFINED

NOTE: 1. Do not drive data prior to tristate.


CBR REFRESH CYCLE

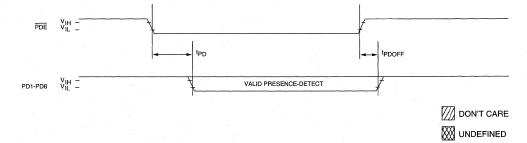
(Addresses and $\overline{OE} = DON'T CARE$)

SELF REFRESH CYCLE

(Addresses and $\overline{OE} = DON'T CARE$)

DON'T CARE

W UNDEFINED


NOTE: 1. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.

2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

(READ) (REFRESH) t_{RAS} t_{RAS} RAS VIHtRCD tRSH tCHR t_{CRP} CAS VIH tAR t_{RAD} t_{RAL} t_{ASR} t_{RAH} tASC_ t_{CAH} COLUMN t_{AA} ^tRAC ^tOFF tCAC tCLZ DQ VIOH -VALID DATA OPEN-OPEN-TOD ^tOE

HIDDEN REFRESH CYCLE²¹ (WE = HIGH; OE = LOW)

PRESENCE-DETECT READ CYCLE

NOTE: 1. PD pins must be pulled HIGH at next level of assembly.

DRAM MODULE

1 MEG, 4 MEG x 64

8, 32 MEGABYTE, 3.3V, OPTIONAL SELF REFRESH, FAST PAGE OR EDO PAGE MODE

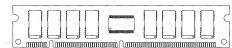
FEATURES

- JEDEC- and industry-standard pinout in a 168-pin, dual-in-line memory module (DIMM)
- High-performance CMOS silicon-gate process
- Single +3.3V ±0.3V power supply
- All device pins are TTL-compatible
- Low power, 16mW standby; 2,880mW active, typical (32MB)
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN; optional Extended and SELF REFRESH
- All inputs are buffered except RAS
- 1,024-cycle refresh distributed across 16ms or 1,024-cycle Extended Refresh distributed across 128ms (1 Meg x 64)
- 2,048-cycle refresh distributed across 32ms or 2,048-cycle Extended Refresh distributed across 128ms (4 Meg x 64)
- FAST PAGE MODE (FPM) or Extended Data-Out (EDO) PAGE MODE access cycles
- 5V tolerant I/Os (5.5V maximum VIH level)

OPTIONS	MARKING
Timing	
60ns access	-6
70ns access	-7
• Components	groupe, de 14 pë
SOJ Î	D
TSOP	DT
Packages	
168-pin DIMM (gold)	G
Access Cycle	
FAST PAGE MODE	Blank
EDO PAGE MODE (4 Meg x 64 only)	X
Refresh	
Standard/16ms or 32ms	Blank
SELFREFRESH/128ms	S

KEY TIMING PARAMETERS

EDO option


SPEED	tRC	tRAC	tPC	tAA .	tCAC	tCAS
-6	110ns	60ns	25ns	35ns	20ns	10ns
-7	130ns	70ns	30ns	40ns	25ns	12ns

FPM option

SPEED	tRC	^t RAC	^t PC	^t AA	†CAC	tRP
-6	110ns	60ns	35ns	35ns	20ns	40ns
-7	130ns	70ns	40ns	40ns	25ns	50ns

PIN ASSIGNMENT (Front View) 168-Pin DIMM

(DE-9) SOJ Version (DE-10) TSOP Version

PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	43	Vss	85	Vss	127	Vss
2	DQ0	44	OE2	86	DQ32	128	RFU
3	DQ1	45	RAS2	87	DQ33	129	NC
4	DQ2	46	CAS4	88	DQ34	130	CAS5
5	DQ3	47	CAS6	89	DQ35	131	CAS7
6	Vcc	48	WE2	90	Vcc	132	PDF
7	DQ4	49	Vcc	91	DQ36	133	Vcc
8	DQ5	50	NC	92	DQ37	134	NC
9	DQ6	51	NC	93	DQ38	135	NC
10	DQ7	52	DQ16	94	DQ39	136	DQ48
11	NC	53	DQ17	95	NC	137	DQ49
12	Vss	54	Vss	96	Vss	138	Vss
13	DQ8	55	DQ18	97	DQ40	139	DQ50
14	DQ9	56	DQ19	98	DQ41	140	DQ51
15	DQ10	57	DQ20	99	DQ42	141	DQ52
16	DQ11	58	DQ21	100	DQ43	142	DQ53
17	DQ12	59	Vcc	101	DQ44	143	Vcc
18	Vcc	60	DQ22	102	Vcc	144	DQ54
19	DQ13	61	RFU	103	DQ45	145	RFU
20	DQ14	62	RFU	104	DQ46	146	RFU
21	DQ15	63	RFU	105	DQ47	147	RFU
22	NC	64	RFU	106	NC	148	RFU
23	Vss	65	DQ23	107	Vss	149	DQ55
24	NC	66	NC	108	NC	150	NC
25	NC	67	DQ24	109	NC	151	DQ56
26	Vcc	68	Vss	110	Vcc	152	Vss
27	WEO	69	DQ25	111	RFU	153	DQ57
28	CAS0	70	DQ26	112	CAS1	154	DQ58
29	CAS2	71	DQ27	113	CAS3	155	DQ59
30	RAS0	72	DQ28	11	NC	156	DQ60
31	OE0	73	Vcc	115	RFU	157	Vcc
32	Vss	74	DQ29	116	Vss	158	DQ61
33	A0	75	DQ30	117	A1	159	DQ62
34	A2	76	DQ31	118	A3	160	DQ63
35	A4	77	NC	119	A5	161	NC
36	A6	78	Vss	120	A7	162	Vss
37	A8	79	PD1	121	A9	163	PD2
38	NC/A10*	80	PD3	122	NC	164	PD4
39	NC	81	PD5	123	NC	165	PD6
40	Vcc	82	PD7	124	Vcc	166	PD8
41	RFU	83	ID0	125	RFU	167	ID1
42	RFU	84	Vcc	126	B0	168	Vcc

VALID PART NUMBERS

PART NUMBER	DESCRIPTION
MT16LD164G-xx	1 Meg x 64 FPM, SOJ
MT16LD164G-xx S	1 Meg x 64 FPM, SOJ, S*
MT16LDT164G-xx	1 Meg x 64 FPM, TSOP
MT16LDT164G-xx S	1 Meg x 64 FPM, TSOP, S*
MT16LDT464G-xx	4 Meg x 64 FPM, TSOP
MT16LDT464G-xx X	4 Meg x 64 EDO, ŢSOP
MT16LDT464G-xx S	4 Meg x 64 FPM, TSOP, S*
MT16LDT464G-xx XS	4 Meg x 64 EDO, TSOP, S*
MT16LD464G-xx	4 Meg x 64 FPM, SOJ
MT16LD464G-xx X	4 Meg x 64 EDO, SOJ
MT16LD464G-xx S	4 Meg x 64 FPM, SOJ, S*
MT16LD464G-xx XS	4 Meg x 64 EDO, SOJ, S*

*S = SELF REFRESH

GENERAL DESCRIPTION

The MT16LD(T)164(S) and MT16LD(T)464(X)(S) are randomly accessed 8MB and 32MB solid-state memories organized in a x64 configuration. They are specially processed to operate from 3.0V to 3.6V for low voltage memory systems.

During READ or WRITE cycles, each bit is uniquely addressed through the 20/22 address bits, which are entered 10/11 bits (A0/B0-A10) at a time. Two copies of address 0 (A0 and B0) are defined to allow maximum performance for 4-byte applications which interleave between two 4-byte banks. A0 is common to the DRAMs used for DQ0-DQ31, while B0 is common to the DRAMs used for DQ32-DQ63. RAS is used to latch the first 10/11 bits and CAS the latter 10/11 bits.

READ and WRITE cycles are selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. EARLY WRITE occurs when WE goes LOW prior to CAS going LOW, and the output pin(s) remain open (High-Z) until the next CAS cycle.

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

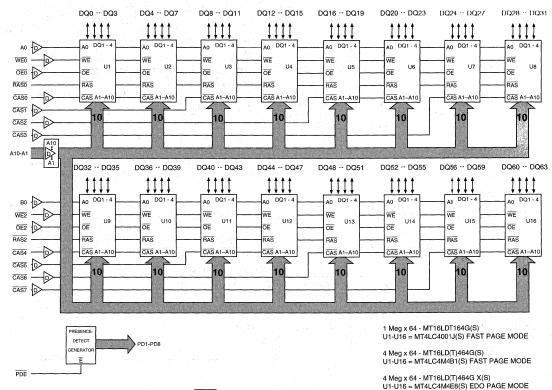
EDO PAGE MODE - 4 Meg x 64 only

EDO PAGE MODE, designated by the "X" version, is an accelerated FAST PAGE MODE cycle. The primary advantage of EDO is the availability of data-out even after $\overline{\text{CAS}}$ goes back HIGH. EDO provides for $\overline{\text{CAS}}$ precharge time (\text{\text{'CP}}) to occur without the output data going invalid. This elimination of $\overline{\text{CAS}}$ output control provides for pipeline READs.

FAST-PAGE-MODE modules have traditionally turned the output buffers off (High-Z) with the rising edge of \overline{CAS} . EDO-PAGE-MODE DRAMs operate similar to FAST-PAGE-MODE DRAMs, except data will remain valid or become valid after \overline{CAS} goes HIGH during READs, provided \overline{RAS} and \overline{OE} are held LOW. If \overline{OE} is pulsed while \overline{RAS} and \overline{CAS} are LOW, data will toggle from valid data to High-Z and back to the same valid data. If \overline{OE} is toggled or pulsed after \overline{CAS} goes HIGH while \overline{RAS} remains LOW, data will transition to and remain High-Z.

If the DQ outputs are wire OR'd, \overline{OE} must be used to disable idle banks of DRAMs. Alternatively, pulsing \overline{WE} to the idle banks during \overline{CAS} HIGH time will also High-Z the outputs. Independent of \overline{OE} control, the outputs will disable after ${}^t\!OFF$, which is referenced from the rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last (reference the MT4LC4M4E8(S) DRAM data sheet for additional information on EDO functionality).

REFRESH


Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle, and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time. Correct memory cell data is perserved by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR or HIDDEN) so that all combinations of \overline{RAS} addresses (A0/B0-A10) are executed at least every ${}^{1}\!REF$, regardless of sequence. The CBR REFRESH cycle will invoke the internal refresh counter for automatic \overline{RAS} addressing.

An optional SELF REFRESH mode is also available. The "S" version allows the user the option of a fully static, low-power, data-retention mode, or a dynamic refresh mode at the extended refresh period. The module's SELF REFRESH mode is initiated by executing a CBR REFRESH cycle and holding RAS LOW for the specified 'RASS. Additionally,

the "S" version allows for extended refresh rates of 62.5µs (32MB) and 125µs (8MB) per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation, as well as during a standby or extended refresh mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for the time minimum of an operation cycle, typically 'RPS. This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all 1,024/2,048 rows must be refreshed within 300µs prior to the resumption of normal operation.

FUNCTIONAL BLOCK DIAGRAM

NOTE: 1. All inputs with the exception of \overline{RAS} are redriven.

2. D = line buffers.

PIN DESCRIPTIONS

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION	
30, 45	RASO, RAS2	Input	Row-Address Strobe: \overline{RAS} is used to clock-in the 10/11 row-address bits. Two \overline{RAS} inputs allow for one x64 bank or two x32 banks.	
28, 29, 46, 47, 112, 113, 130, 131	CASO-7	Buffered Input	Column-Address Strobe: CAS is used to clock-in the 10/11 column-address bits, enable the DRAM output buffers and strobe the data inputs on WRITE cycles. Eight CAS inputs allow byte access control for any memory bank configuration.	
27,48	WEO, WE2	Buffered Input	Write Enable: WE is the READ/WRITE control for the pins. WE0 controls DQ0-DQ31. WE2 controls DQ32-DQ63. If WE is LOW prior to CAS going LOW, the a is an EARLY WRITE cycle. If WE is HIGH while CALOW, the access is a READ cycle, provided OE is a LOW. If WE goes LOW after CAS goes LOW, then cycle is a LATE WRITE cycle. A LATE WRITE cycle generally used in conjunction with a READ cycle to fe READ-MODIFY-WRITE cycle.	
31,44	OE0, OE2	Buffered Input	Output Enable: OE is the input/output control for the DQ pins. OE0 controls DQ0-DQ31. OE2 controls DQ32-DQ63 These signals may be driven, allowing LATE WRITE cycles.	
33-38, 117-121, 126	A0-A10, B0	Buffered Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS. A0 is common to the DRAMs used for DQ0-DQ31, while B0 is common to the DRAMs used for DQ32-DQ63.	
2-5, 7-10, 13-17, 19-21, 52-53, 55-58, 60, 65, 67, 69-72, 74-76, 86-89, 91-94, 97-101, 103-105, 136-137, 139-142, 144, 149, 151, 153-156, 158-160	DQ0-DQ63	Input/ Output	Data I/O: For WRITE cycles, DQ0-DQ63 act as inputs to the addressed DRAM location. BYTE WRITEs may be performed by using the corresponding CAS select (x64 mode only). For READ access cycles, DQ0-DQ63 act as outputs for the addressed DRAM location.	
79-82, 163-166	PD1-PD8	Buffered Output	Presence-Detect: These pins are read by the host system and tell the system the DIMM's personality. They will be either driven to Vo _H (1) or they will be driven to Vo _L (0).	
41-42, 61-64, 111, 115, 125, 128, 145-148	RFU		RFU: These pins should be left unconnected (reserved for future use).	
6, 18, 26, 40, 49, 59, 73, 84, 90, 102, 110, 124, 133, 143, 157, 168	Vcc	Supply	Power Supply: +3.3V ± 0.3V	
1, 12, 23, 32, 43, 54, 68, 78, 85, 96, 107, 116, 127, 138, 152, 162	Vss	Supply	Ground	

PIN DESCRIPTIONS (continued)

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
83, 167	ID0, ID1	Output	ID bits: ID0 = DIMM type. ID1 = Refresh Mode. These pins will be either left floating (NC) or they will be grounded (Vss).
132	PDE	Input	Presence-Detect Enable: PDE is the READ control for the buffered presence-detect pins.
11, 22, 24-25, 38-39, 50-51, 66, 77, 95, 106, 108-109, 114, 122-123, 129, 134-135, 150, 161	NC		No connect.

TRUTH TABLE

							ADDRE	SSES	DATA-IN/OUT
FUNCTION		RAS	CAS	WE	0E	PDE	t _R	t _C	DQ0-63
Standby		Н	H→X	Х	Х	Х	Х	Х	High-Z
READ		L	L	Н	L	Х	ROW	COL	Data-Out
EARLY WRITE		L	L	L	Х	X	ROW	COL	Data-In
READ WRITE		L	Ŀ	H→L	L→H	Х	ROW	COL	Data-Out, Data-In
EDO/FAST-PAGE-	1st Cycle	L	H→L	Н	L	X	ROW	COL	Data-Out
MODE READ	2nd Cycle	L	H→L	Н	L	Х	n/a	COL	Data-Out
EDO/FAST-PAGE-	1st Cycle	L	H→L	L	Х	Х	ROW	COL	Data-In
MODE EARLY-WRITE	2nd Cycle	L	H→L	L	Х	Х	n/a	COL	Data-In
EDO/FAST-PAGE-	1st Cycle	L	H→L	H→L	L→H	Х	ROW	COL	Data-Out, Data-In
MODE READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	Х	n/a	COL	Data-Out, Data-In
RAS-ONLY REFRESH		н	Х	Х	Х	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	L a	Х	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	Х	Х	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	Х	Х	Х	Х	High-Z
SELF REFRESH (S ve	rsion)	H→L	L	Н	Х	Х	Х	Х	High-Z
READ PRESENCE-DE	TECTS	Х	Х	Х	Х	L	Х	Х	Not Affected

PRESENCE-DETECT TRUTH TABLE

	CHARAC	CTERISTICS				Р	RESE	NCE-DE	TECT I	PIN (PI)x)	
Module Density	Module Organization	Row/Column Addresses	ID0	ID1	1	2	3	4	5	6	7	8
OMB	No module installed	12 14 14 X 14 1 1 1 2 1			1	1	1	1				
2MB 4MB	256K x 64/72 512K x 64/72	9/9 9/9			0	0	0	0				
4MB 8MB	512K x 64/72/80 1 Meg x 64/72/80	10/9 10/9			0	1	0	0				
• 8MB	1 Meg x 64/72/80	10/10			0	0	1	0				
16MB	2 Meg x 64/72/80	10/10			1	0	1	0				
16MB 32MB	2 Meg x 64/72/80 4 Meg x 64/72/80	11/10 11/10			1 0	0	0	1				
• 32MB	4 Meg x 64/72/80	12*/11*			1	1	0	1		100		
64MB	8 Meg x 64/72/80	12/10			-0	0	1	0				
Page Mode		Fast Page Mode							0			
		EDO Page Mode							1			
Access Timi	ng	80ns								1	0	
		70ns								0 -	1	
		60ns								1	1	
		50ns								0	0	
Refresh Con	trol	Standard		Vss								
		Self		NC								
Data Width,	Parity	x64, No Parity	Vss									1
		x72, Parity	NC									1
		x72, ECC	Vss									0
		x80, ECC	NC									0

NOTE: Vss = ground; 0 = Vol; 1 = Voh.

^{*} This addressing includes a redundant address to allow mixing of 12/10 and 11/11 DRAMs with the same presence-detect setting. The MT16LD(T)464 uses 11/11 DRAMs.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION	100	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	3.0	3.6	V	
Input High (Logic 1) Voltage, all inputs		ViH	2.0	5.5	V	
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	8.0	V	
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le 5.5V$ (All other pins not under test = 0V) for each package input	CASO-CAS7 A0-A10, B0 WE0,2,OE0,2	lii	-2	2	μΑ	
	RAS0,2	lı2	-16	16	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; $0V \le V_{OUT} \le 5.5V$) for each package input	DQ0-DQ63	loz	-10	10	μА	
OUTPUT LEVELS Output High Voltage (lout = -2mA) Output Low Voltage (lout = 2mA)		Vон Vol	2.4	0.4	V	

			M	AX		
PARAMETER/CONDITION	SYMBOL	SIZE	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	Icc1	8MB 32MB	16 32	16 32	mA	28
STANDBY CURRENT: (CMOS)	lcc2	ALL	8	8	mA	28
$\overline{(RAS)} = \overline{CAS} = Vcc - 0.2V$	Icc2 (S only)	8MB 32MB	1.6 2.4	1.6 2.4		
OPERATING CURRENT: Random READ/WRITE	Іссз	8МВ	1,280	1,120	mA	3, 4,
Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])		32MB	1,920	1,760		28,32
OPERATING CURRENT: FAST PAGE MODE		8МВ	960	800	mA	3, 4,
Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN])	Icc4	32MB	1,440	1,280		28,32
OPERATING CURRENT: EDO PAGE MODE (X version only)	lcc5	8МВ			mA	3, 4, 28,32
Average power supply current (RAS = VIL, CAS, Address Cycling: tPC = tPC [MIN])	(X only)	32MB	1,760	1,600		
REFRESH CURRENT: RAS ONLY		8MB	1,280	1,120	mA	3, 28, 32
Average power supply current (RAS Cycling, CAS = ViH: ^t RC = ^t RC [MIN])	Icc6	32MB	1,920	1,760		
REFRESH CURRENT: CBR		8MB	1,280	1,120	mA	3, 5,
Average power supply current (RAS, CAS, Address Cycling: [†] RC = [†] RC [MIN])	Icc7	32MB	1,920	1,760		28
REFRESH CURRENT: Extended (S version only) Average power supply current; CAS = 0.2V or CBR cycling; RAS =	Icc8	8МВ	2.4	2.4	mA	3, 5,
^t RAS (MIN); $\overline{\text{WE}}$ = Vcc -0.2V; A0/B0-A10, $\overline{\text{OE}}$ and DiN = Vcc -0.2V or 0.2V (DiN may be left open); $^{\text{t}}$ RC = 62.5 μ s (32MB)/125 μ s (8MB)	(S only)	32MB	4.8	4.8		31
REFRESH CURRENT: SELF (S version only) Average power supply current; CBR cycling with RAS ≥ ^t RASS		8МВ	2.4	2.4	mA	5, 36
(MIN) and $\overline{\text{CAS}}$ held LOW; $\overline{\text{WE}}$ = Vcc -0.2V; A0/B0-A10, $\overline{\text{OE}}$ and DIN = Vcc -0.2V or 0.2V (DIN may be left open)	(S only)	32MB	4.8	4.8		

ABSOLUTE MAXIMUM RATINGS*

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A10, B0	C _{I1}		9	pF	2
Input Capacitance: WEO, WE2, OEO, OE2	C ₁₂	1	9	pF	2
Input Capacitance: RASO, RAS2	Сіз		64	pF	2
Input Capacitance: CASO - CAS7	C14		9	pF	2
Input/Output Capacitance: DQ0-DQ63	Сю		10	pF	2
Output Capacitance: PD1-PD8	Со		10	pF	2

FAST PAGE MODE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - FAST PAGE MODE OPTION			6		-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	t _{AA}		35		40	ns	25
Column-address hold time (referenced to RAS)	tAR.	48		53	100	ns	24
Column-address setup time	tASC .	2		2	1.49	ns	23
Row-address setup time	tASR	5		5		ns	25
Column-address to WE delay time	tAWD	57		67		ns	23, 30
Access time from CAS	^t CAC		20		25	ns	15, 25
Column-address hold time	^t CAH	15		20		ns	25
CAS pulse width	^t CAS	15	10,000	20	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH	tCHD	15		15		ns	36
CAS hold time (CBR REFRESH)	tCHR	.8		8		ns	5, 24
CAS to output in Low-Z	tCLZ	5		5		ns	23
CAS precharge time	^t CP	10		10		ns	16
Access time from CAS precharge	^t CPA		40	787	45	ns	25
CAS to RAS precharge time	^t CRP	15		15		ns	25
CAS hold time	^t CSH	58		68		ns	24
CAS setup time (CBR REFRESH)	tCSR	12		12		ns	5, 23
CAS to WE delay time	tCWD	42	18 8 2 2 1 3 4 1	47		ns	23, 30
Write command to CAS lead time	tCWL	15	315000	20		ns	1 1 1 1
Data-in hold time	tDH	15		20	Las Jac.	ns	25, 29
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	t _{DS}	-2	1 10000	-2	100	ns	24, 29
Output disable	^t OD		15	1 1 91	20	ns	34344 14
Output enable	^t OE	18.	15	S 4 24	20	ns	
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	13	.0-10	18		ns	24
Output buffer turn-off delay	^t OFF	5	20	5	25	ns	20,27,3

FAST PAGE MODE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - FAST PAGE MODE OPTION		-6		1.0	-7		gang 75
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0	4.5.75	ns	20
FAST-PAGE-MODE READ or WRITE cycle time	tPC t	35	1	40	1 1 1 1	ns	13.25
PDE to Valid Presence-Detect Data	^t PD		10	Table 1	10	ns	35
PDE Inactive to Presence-Detects Inactive	^t PDOFF	2		2		ns	34
FAST-PAGE-MODE READ-WRITE cycle time	†PRWC	87		97		ns	23
Access time from RAS	†RAC		60		70	ns	14
RAS to column-address delay time	^t RAD	13	25	13	30	ns	18, 26
Row-address hold time	^t RAH	8		8		ns	24
Column-address to RAS lead time	^t RAL	35		40		ns	25
RAS pulse width	^t RAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	60	100,000	70	100,000	ns	
RAS pulse width during SELF REFRESH	†RASS	100		100		μs	36
Random READ or WRITE cycle time	tRC tRC	110		130		ns	
RAS to CAS delay time	†RCD	18	40	18	45	ns	17, 26
Read command hold time (referenced to CAS)	^t RCH	2	7.54	2		ns	19, 23
Read command setup time	†RCS	2		2		ns	23
Refresh period (2,048 cycles) - 4 Meg x 64	tREF		32		32	ms	
Refresh period (1,024 cycles) - 1 Meg x 64	[†] REF	20.0%	16	10.000	16	ms	
Refresh period (1,024 or 2,048 cycles) S version	^t REF		128		128	ms	in the
RAS precharge time	^t RP	40		50	14 16 15	ns	e e Pergo
RAS to CAS precharge time	†RPC	0		0		ns	
RAS precharge time during SELF REFRESH	tRPS	110		130		ns	36
Read command hold time (referenced to RAS)	^t RRH	0	10.00	0		ns	19
RAS hold time	^t RSH	20		25		ns	25
READ WRITE cycle time	tRWC	155		185		ns	25
RAS to WE delay time	^t RWD	87		97		ns	23, 30
Write command to RAS lead time	tRWL	20		25	1 1 2 136	ns	25
Transition time (rise or fall)	t _T	3	50	3	50	ns	
Write command hold time	tWCH	15		20	1.0	ns	25
Write command hold time (referenced to RAS)	†WCR	43		53		ns	24
WE command setup time	tWCS	2		2		ns	23, 30
Write command pulse width	tWP	10		15	48 39 9	ns	3,111
WE hold time (CBR REFRESH)	^t WRH	8		8		ns	22, 24
WE setup time (CBR REFRESH)	tWRP	12		12		ns	22, 23

EDO PAGE MODE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - EDO PAGE MODE OPTION			-6		-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	tAA	. 19	35		40	ns	25
Column-address setup to CAS precharge during writes	t _{ACH}	15		15		ns -	
Column-address hold time (referenced to RAS)	^t AR	43		53		ns	24
Column-address setup time	tASC	2	0	2	5.0	ns	23
Row-address setup time	tASR .	5		5		ns	25
Column-address to WE delay time	tAWD	57		67		ns	23, 30
Access time from CAS	^t CAC		20	1.87	25	ns	15, 25
Column-address hold time	^t CAH	15		17		ns	25
CAS pulse width	tCAS	10	10,000	12	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH	^t CHD	15		15		ns	36
CAS hold time (CBR REFRESH)	tCHR	8		10		ns	5, 24
CAS to output in Low-Z	†CLZ	2	F.	2		ns	23
Data output hold after CAS LOW	tCOH	7		7.	1 47	ns	23
CAS precharge time	^t CP	10		10		ns	16
Access time from CAS precharge	^t CPA		40		45	ns	25, 37
CAS to RAS precharge time	^t CRP	10		10	7000	ns	25
CAS hold time	tCSH	48		53		ns	24
CAS setup time (CBR REFRESH)	^t CSR	7		7		ns	5, 23
CAS to WE delay time	tCWD	37	1	42		ns	23, 30
Write command to CAS lead time	tCWL	15		15		ns	1 3 1
Data-in hold time	tDH	15		17		ns	25, 29
Data-in hold time (referenced to RAS)	tDHR	45		55		ns	
Data-in setup time	tDS	-2		-2		ns	24, 29
Output disable	tOD	0	15	0	15	ns	
Output enable	†OE		15		15	ns	1
OE hold time from WE during READ-MODIFY-WRITE cycle	†OEH	8	177	10		ns	24
OE HIGH hold time from CAS HIGH	†OEHC	10		10	1 5 5 5 4	ns	
OE HIGH pulse width	†OEP	10		10		ns	14.5
OE LOW to CAS HIGH setup time	†OES	5		5		ns	- 151 mg
Output buffer turn-off delay	^t OFF	5	20	5	20	ns	20,27,3
OE setup prior to RAS during HIDDEN REFRESH cycle	tORD	0		0	1.20	ns	20
EDO-PAGE-MODE READ or WRITE cycle time	t _{PC}	25		30		ns	
PDE to valid presence-detect data	†PD		10	7 100	10	ns	35
PDE inactive to presence-detects inactive	^t PDOFF	2		2	1 14 1 14	ns	34
EDO-PAGE-MODE READ-WRITE cycle time	^t PRWC	77		87		ns	23
Access time from RAS	tRAC		60		70	ns	14
RAS to column-address delay time	tRAD	10	25	10	30	ns	18, 26
Row-address hold time	†RAH	8		8	+	ns	24
Column-address to RAS lead time	†RAL	35		40	1	ns	25
RAS pulse width	tRAS	60	10,000	70	10,000	ns	
RAS pulse width (EDO PAGE MODE)	†RASP	60	125,000	70	125,000	ns	+
RAS pulse width during SELF REFRESH	tRASS	100	1,000	100	1.25,000	μs	36
Random READ or WRITE cycle time	tRC	110		130	1	ns	+ 55
RAS to CAS delay time	tRCD	12	40	12	45	ns	17, 26

EDO PAGE MODE

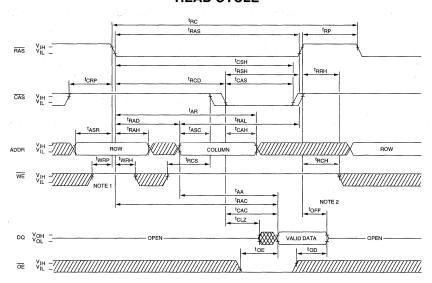
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - EDO PAGE MODE OPTION			6		-7	7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES	
Read command hold time (referenced to CAS)	^t RCH	2		2		ns	19, 23	
Read command setup time	tRCS	2		2		ns	23	
Refresh period (2,048 cycles) - 4 Meg x 64	†REF		32		32	ms	1 2 7	
Refresh period (2,048 cycles) S version	tREF		128		128	ms		
RAS precharge time	^t RP	40		50	1 2 2	ns		
RAS to CAS precharge time	tRPC	0		0		ns		
RAS precharge time during SELF REFRESH	tRPS	110		130		ns	36	
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	19	
RAS hold time	tRSH	15	100	17		ns	25	
READ WRITE cycle time	tRWC	155	200	182		ns	25	
RAS to WE delay time	^t RWD	82		92		ns	23, 30	
Write command to RAS lead time	^t RWL	20		20		ns	25	
Transition time (rise or fall)	·т	2	50	2	50	ns		
Write command hold time	tWCH	15		17		ns	25	
Write command hold time (referenced to RAS)	tWCR	43		53		ns	24	
WE command setup time	twcs	2		2		ns	23	
Output disable delay from WE (CAS HIGH)	tWHZ	2	18	2	20	ns	27	
Write command pulse width	tWP	10	rui sais	12		ns		
WE pulse width for output disable when CAS HIGH	tWPZ	10		12	0.835 (0.5)	ns		
WE hold time (CBR REFRESH)	tWRH	8		8		ns	22, 24	
WE setup time (CBR REFRESH)	tWRP	12		12	1414	ns	22, 23	

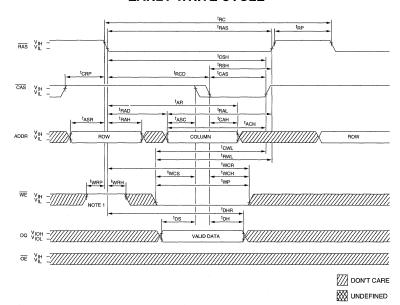
NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $+3.3V \pm 0.3V$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ^tT = 5ns for FPM and 2.5ns for EDO.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between $V_{\rm IH}$ and $V_{\rm IL}$ (or between $V_{\rm IL}$ and $V_{\rm IH}$) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{\text{CAS}} = \text{VIL}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.

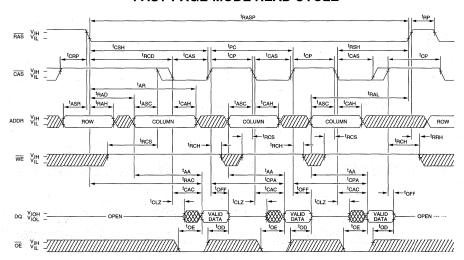
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 22. WTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverse of tWRP and tWRH in the CBR REFRESH cycle.
- 23. A +2ns timing skew from the DRAM to the module resulted from the addition of line drivers.
- 24. A -2ns timing skew from the DRAM to the module resulted from the addition of line drivers.
- 25. A +5ns timing skew from the DRAM to the module resulted from the addition of line drivers.
- 26. A -2ns (MIN) and a -5ns (MAX) timing skew from the DRAM to the module resulted from the addition of line drivers.
- 27. A +2ns (MIN) and a +5ns (MAX) timing skew from the DRAM to the module resulted from the addition of line drivers.
- 28. The maximum current ratings are based with the memory operating or being refreshed in the x64 mode. The stated maximums may be reduced by approximately one-half when used in the x32 mode.
- These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 30. ^tWCS, ^tRWD, ^tAWD and ^tCWD are not restrictive operating parameters. ^tWCS applies to EARLY WRITE cycles. ^tRWD, ^tAWD and ^tCWD apply to READ-MODIFY-WRITE cycles. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. ^tWCS, ^tRWD, ^tCWD and ^tAWD are not applicable in a LATE WRITE cycle.

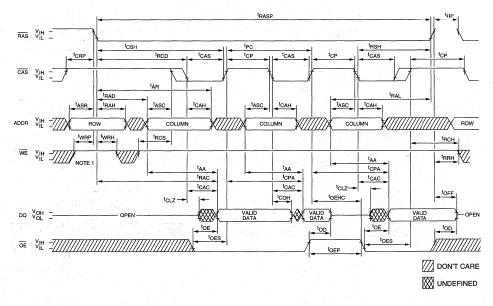


NOTES (continued)


- 31. Refresh current increases if ^tRAS is extended beyond its minimum specification.
- 32. Column-address changed once each cycle.
- 33. The 3ns minimum parameter guaranteed by design.
- 34. [†]PDOFF MAX is determined by the pull-up resistor value. Care must be taken to ensure adequate recovery time prior to reading valid up-level on subsequent DIMM position.
- 35. Measured with the specified current load and 100pf.
- If the DRAM controller uses a burst refresh, a burst refresh of all rows must be executed upon exiting SELF REFRESH.
- 37. ^tCAC (MIN), ^tCPA (MIN) and ^tAA (MIN) are for reference only to help aid the user as to when to expect the earliest data to be accessed. Only ^tCAC (MAX), ^tCPA (MAX) and ^tAA (MAX) are guaranteed.
- 38. For FAST PAGE MODE option, 'OFF is determined by the first RAS or CAS signal to transition HIGH. In comparison, 'OFF on an EDO option is determined by the latter of the RAS and CAS signal to transition HIGH.
- 39. Applies to both EDO and FAST PAGE MODEs.

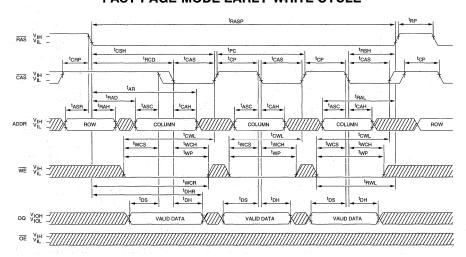
READ CYCLE 39


EARLY WRITE CYCLE 39

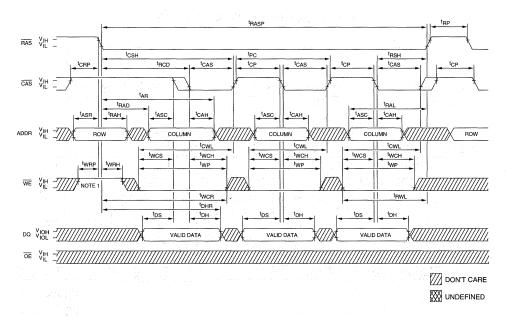

NOTE:

- Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.
- 2. tOFF is referenced from rising edge of RAS or CAS, which ever occurs last.

FAST-PAGE-MODE READ CYCLE

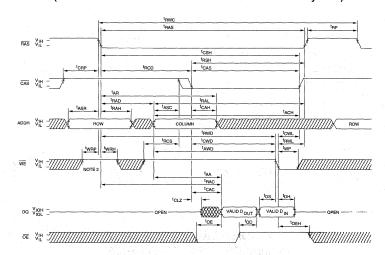


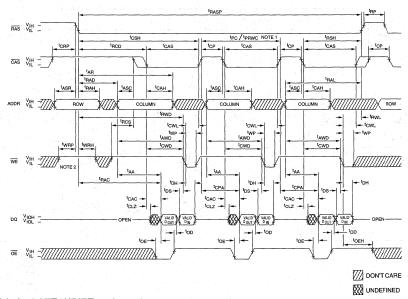
EDO-PAGE-MODE READ CYCLE



NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for twRP and twRH. This design implementation will facilitate compatibility with future EDO DRAMs.

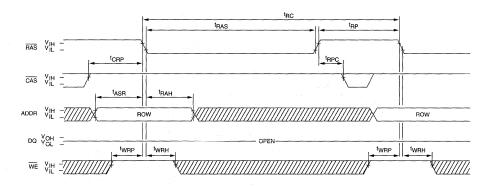
FAST-PAGE-MODE EARLY-WRITE CYCLE


EDO-PAGE-MODE EARLY-WRITE CYCLE


NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for twRP and twRH. This design implementation will facilitate compatibility with future EDO DRAMs.

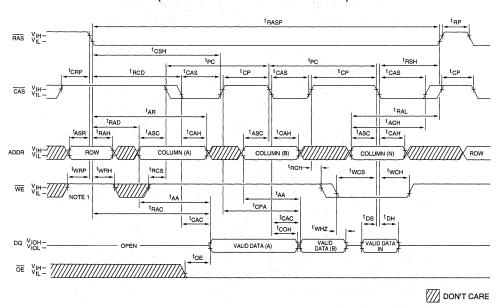
READ WRITE CYCLE 39 (LATE WRITE and READ-MODIFY-WRITE cycles)

EDO/PAGE-MODE READ-WRITE CYCLE 39 (LATE WRITE and READ-MODIFY-WRITE cycles)



NOTE:

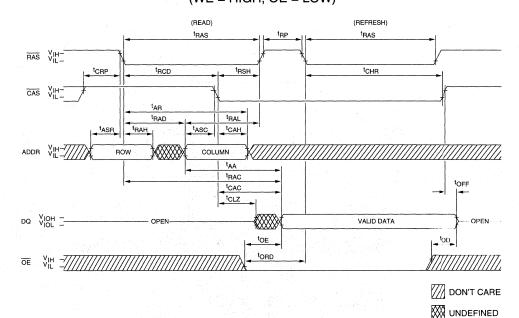
- 1. ^tPC is for LATE WRITE cycles only.
- 2. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.



RAS-ONLY REFRESH CYCLE 39 (WE = DON'T CARE)

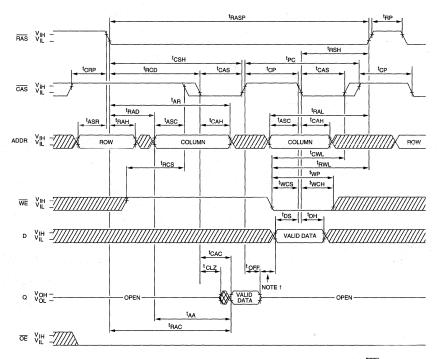
EDO-PAGE-MODE READ-EARLY-WRITE CYCLE

(Pseudo READ-MODIFY-WRITE)



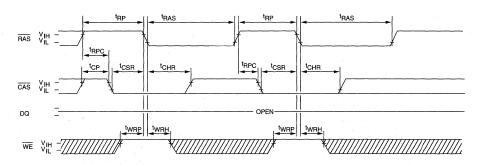
NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

W UNDEFINED

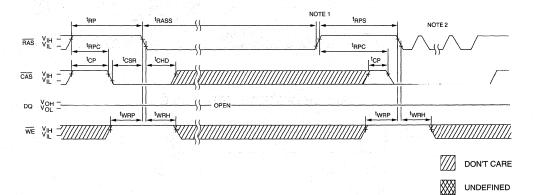


HIDDEN REFRESH CYCLE^{21, 39} (WE = HIGH; OE = LOW)

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)



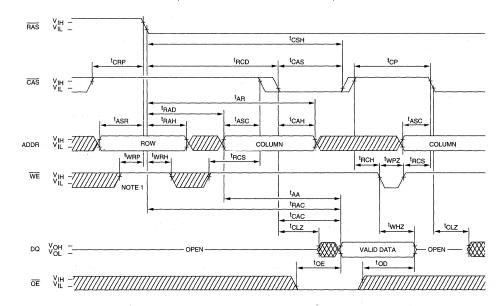
DON'T CARE


₩ UNDEFINED

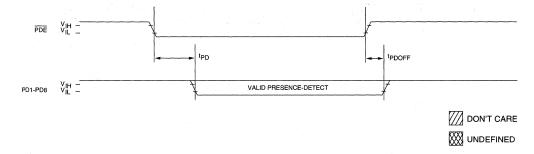
NOTE: 1. Do not drive data prior to tristate.

CBR REFRESH CYCLE 39 (Addresses, OE = DON'T CARE)

SELF REFRESH CYCLE ³⁹ (Addresses and OE = DON'T CARE)


NOTE: 1. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.

2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.



EDO READ CYCLE

(with WE-controlled disable)

PRESENCE-DETECT READ CYCLE 39

NOTE:

- Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for ^tWRP and ^tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.
- 2. PD pins must be pulled HIGH at next level.

DRAM MODULE

2 MEG x 64

16 MEGABYTE, 3.3V, FAST PAGE OR EDO PAGE MODE, OPTIONAL SELF REFRESH

FEATURES

- JEDEC- and industry-standard pinout in a 168-pin, dual-in-line memory module (DIMM)
- High-performance CMOS silicon-gate process
- Single $+3.3V \pm 0.3V$ power supply
- All device pins are TTL-compatible
- Low power, 8mW standby; 1,600mW active, typical
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN; Extended and SELF REFRESH
- All inputs are buffered except RAS
- 2,048-cycle refresh distributed across 32ms or 2,048-cycle Extended Refresh distributed across 128ms
- FAST PAGE MODE (FPM) or Extended Data-Out (EDO) PAGE MODE access cycles
- 5V tolerant I/Os (5.5V maximum VIH level)

OPTIONS	MAKKIN
• Timing 60ns access 70ns access	-6 -7
• Components SOJ TSOP	D DT
Packages 168-pin DIMM (gold)	G
• Refresh Standard/32ms SELF REFRESH/128ms	Blank S

KEY TIMING PARAMETERS

EDO option

SPEED	tRC	^t RAC	^t PC	tAA .	tCAC	tCAS
-6	110ns	60ns	25ns	35ns	20ns	10ns
-7	130ns	70ns	30ns	40ns	25ns	12ns

FPM option

SPEED	tRC	^t RAC	tPC	t _{AA}	^t CAC	tRP
-6	110ns	60ns	35ns	35ns	20ns	40ns
-7	130ns	70ns	40ns	40ns	25ns	50ns

PIN ASSIGNMENT (Front View) 168-Pin DIMM

(DE-11) SOJ Version (DE-12) TSOP Version

		***************************************		0		***************************************				
PIN#	SYMBOL	PIN#	SYMBOL	PIN #	SYMBOL	PIN#	SYMBOL			
1	Vss	43	Vss	85	Vss	127	Vss			
2	DQ0	44	0E2	86	DQ32	128	RFU			
3	DQ1	45	RAS2 CAS4	87	DQ33	129	NC CAS5			
4	DQ2 DQ3	46	CAS4	88 89	DQ34	130	CAS5			
5		48	WE2	90		131	PDE			
6 7	Vcc DQ4	49		90	Vcc DQ36	132				
			Vcc				Vcc			
8	DQ5	50 51	NC NC	92 93	DQ37	134	NC NC			
	DQ6				DQ38	135				
10	DQ7	52	DQ16	94	DQ39	136	DQ48			
11	NC	53	DQ17	95	NC	137	DQ49			
12	Vss	54	Vss	96	Vss	138	Vss			
13	DQ8	55	DQ18	97	DQ40	139	DQ50			
14	DQ9	56	DQ19	98	DQ41	140	DQ51			
15	DQ10	57	DQ20	99	DQ42	141	0052			
16	DQ11	58	DQ21	100	DQ43	142	DQ53			
17	DQ12	59	Vcc	101	DQ44	143	Vcc			
18	Vcc	60	DQ22	102	Vcc	144	DQ54			
19	DQ13	61	RFU	103	DQ45	145	RFU RFU			
20	DQ14	62	RFU	104	DQ46	146				
21	DQ15	63	RFU	105	DQ47	147	RFU			
22	NC	64	RFU	106	NC	148	RFU			
23	Vss	65	DQ23	107	Vss	149	DQ55			
24	NC	66	NC	108	NC	150	NC			
25	NC	67	DQ24	109	NC.	151	DQ56			
26	Vcc	68	Vss	110	Vcc	152	Vss			
27	WE0	69	DQ25	111	RFU	153	DQ57			
28	CASO CASO	70	DQ26	112	CAS1	154	DQ58			
29	CAS2	71	DQ27	113	CAS3	155	DQ59			
30	RAS0	72	DQ28	11	NC	156	DQ60			
31	OE0	73	Vcc	115	RFU	157	Vcc			
32	Vss	74	DQ29	116	Vss	158	DQ61			
33	A0	75	DQ30	117	A1	159	DQ62			
34	A2	76	DQ31	118	A3	160	DQ63			
35	A4	77	NC	119	A5	161	NC			
36	A6	78	Vss	120	A7	162	Vss			
37	A8	79	PD1	121	A9	163	PD2			
38	A10	80	PD3	122	NC	164	PD4			
39	NC	81	PD5	123	NC	165	PD6			
40	Vcc	82	PD7	124	Vcc	166	PD8			
41	RFU RFU	83	ID0 Vcc	125 126	RFU B0	167 168	ID1 Vcc			

VALID PART NUMBERS

PART NUMBER	DESCRIPTION
MT8LDT264G-xx	2 Meg x 64, FPM, TSOP
MT8LDT264G-xx S	2 Meg x 64, FPM, S*, TSOP
MT8LDT264G-xx X	2 Meg x 64, EDO, TSOP
MT8LDT264G-xx XS	2 Meg x 64, EDO, S*, TSOP
MT8LD264G-xx	2 Meg x 64, FPM, SOJ
MT8LD264G-xx S	2 Meg x 64, FPM, S*, SOJ
MT8LD264G-xx X	2 Meg x 64, EDO, SOJ
MT8LD264G-xx XS	2 Meg x 64, EDO, S*, SOJ

'S = SELF REFRESH

GENERAL DESCRIPTION

The MT8LD(T)264(X)(S) is a randomly accessed solidstate memory containing 2,097,152 words organized in a x64 configuration. It is specially processed to operate from 3.0V to 3.6V for low voltage memory systems.

During READ or WRITE cycles, each bit is uniquely addressed through the 21 address bits. The address is entered first by RAS latching 11 bits and then CAS latching 10 bits. Two copies of address 0 (A0 and B0) are defined to allow maximum performance for 4-byte applications which interleave between two 4-byte banks. A0 is common to the DRAMs used for DQ0-DQ31, while B0 is common to the DRAMs used for DQ32-DQ63.

READ and WRITE cycles are selected with the $\overline{\text{WE}}$ input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. EARLY WRITE occurs when WE goes LOW prior to CAS going LOW, and the output pin(s) remain open (High-Z) until the next CAS cycle.

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobed-in by CAS. CAS may be toggledin by holding RAS LOW and strobing-in different columnaddresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

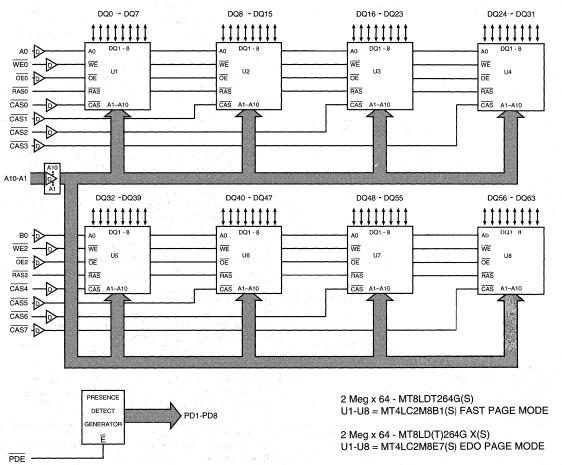
EDO PAGE MODE

EDO PAGE MODE, designated by the "X" version, is an accelerated FAST PAGE MODE cycle. The primary advantage of EDO is the availability of data-out even after CAS goes back HIGH. EDO provides for CAS precharge time (tCP) to occur without the output data going invalid. This elimination of CAS output control provides for pipeline READs.

FAST-PAGE-MODE modules have traditionally turned the output buffers off (High-Z) with the rising edge of CAS. EDO-PAGE-MODE DRAMs operate similar to FAST-PAGE-MODE DRAMs, except data will remain valid or become valid after CAS goes HIGH during READs, provided RAS and OE are held LOW. If OE is pulsed while RAS and CAS are LOW, data will toggle from valid data to High-Z and back to the same valid data. If \overline{OE} is toggled or pulsed after CAS goes HIGH while RAS remains LOW, data will transition to and remain High-Z.

If the DQ outputs are wire OR'd, \overline{OE} must be used to disable idle banks of DRAMs. Alternatively, pulsing WE to the idle banks during CAS HIGH time will also High-Z the outputs. Independent of OE control, the outputs will disable after tOFF, which is referenced from the rising edge of RAS or CAS, whichever occurs last (reference the MT4LC2M8E7(S) DRAM data sheet for additional information on EDO functionality).

REFRESH


Returning RAS and CAS HIGH terminates a memory cycle, and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS HIGH time. Correct memory cell data is preserved by maintaining power and executing any RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR or HIDDEN) so that all 2,048 combinations of RAS addresses (A0-A10) are executed at least every 32ms (128ms "S" version), regardless of sequence. The CBR REFRESH cycle will invoke the internal refresh counter for automatic RAS addressing.

An additional SELF REFRESH mode is also available. The "S" version allows the user the choice of a fully static, low-power, data-retention mode, or a dynamic refresh mode at the extended refresh period of 128ms, four times longer than the standard 32ms specifications. The module's SELF REFRESH mode is initiated by performing a CBR REFRESH cycle and holding RAS LOW for the specified tRASS. Additionally, the "S" version allows for an extended refresh rate of 62.5µs per row if using distributed CBR refresh. This refresh rate can be applied during normal operation, as well as during a standby or extended refresh mode.

The SELF REFRESH mode is terminated by driving RAS HIGH for the time minimum of an operation cycle, typically ^tRPS. This delay allows for the completion of any internal refresh cycles that may be in process at the time of the RAS LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes RAS ONLY or burst refresh sequence, all 2,048 rows must be refreshed within 300µs prior to the resumption of normal operation.

FUNCTIONAL BLOCK DIAGRAM

NOTE:

1. All inputs with the exception of RAS are redriven.

2. D = line buffers.

PIN DESCRIPTIONS

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
30, 45	RAS0, RAS2	Input	Row-Address Strobe: RAS is used to clock-in the 11 row-address bits. Two RAS inputs allow for one x64 bank or two x32 banks.
28, 29, 46, 47, 112, 113, 130, 131	CASO-7	Buffered Input	Column-Address Strobe: CAS is used to clock-in the 10 column-address bits, enable the DRAM output buffers and strobe the data inputs on WRITE cycles. Eight CAS inputs allow byte access control for any memory bank configuration.
27, 48	WEO, WE2	Buffered Input	Write Enable: WE is the READ/WRITE control for the DQ pins. WE0 controls DQ0-DQ31. WE2 controls DQ32-DQ63. If WE is LOW prior to CAS going LOW, the access is an EARLY WRITE cycle. If WE is HIGH while CAS is LOW, the access is a READ cycle, provided OE is also LOW. If WE goes LOW after CAS goes LOW, then the cycle is a LATE WRITE cycle. A LATE WRITE cycle is generally used in conjunction with a READ cycle to form a READ-MODIFY-WRITE cycle.
31, 44	OE0, OE2	Buffered Input	Output Enable: OE is the input/output control for the DQ pins. OE0 controls DQ0-DQ31. OE2 controls DQ32-DQ63. These signals may be driven, allowing LATE WRITE cycles.
33-38, 117-121, 126	A0-A10, B0	Buffered Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS. A0 is common to the DRAMs used for DQ0-DQ31, while B0 is common to the DRAMs used for DQ32-DQ63.
2-5, 7-10, 13-17, 19-21, 52-53, 55-58, 60, 65, 67, 69-72, 74-76, 86-89, 91-94, 97-101, 103-105, 136-137, 139-142, 144, 149,151,153-156,158-160	DQ0-DQ63	Input/ Output	Data I/O: For WRITE cycles, DQ0-DQ63 act as inputs to the addressed DRAM location. BYTE WRITEs may be performed by using the corresponding CAS select (x64 mode only). For READ access cycles, DQ0-DQ63 act as outputs for the addressed DRAM location.
79-82, 163-166	PD1-PD8	Buffered Output	Presence-Detect: These pins are read by the host system and tell the system the DIMM's personality. They will be either driven to VoH (1) or they will be driven to VoL (0).
41-42, 61-64, 111, 115, 125, 128, 145-148	RFU	_	RFU: These pins should be left unconnected (reserved for future use).
6, 18, 26, 40, 49, 59, 73, 84, 90, 102, 110, 124, 133, 143, 157, 168	Vcc	Supply	Power Supply: +3.3V ± 0.3V
1, 12, 23, 32, 43, 54, 68, 78, 85, 96, 107, 116, 127, 138, 152,162	Vss	Supply	Ground

PIN DESCRIPTIONS (continued)

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
83, 167	ID0, ID1	Output	ID bits: ID0 = DIMM type. ID1 = Refresh Mode. These pins will be either left floating (NC) or they will be grounded (Vss).
132	PDE	Input	Presence-Detect Enable: PDE is the READ control for the buffered presence-detect pins.
11, 22, 24-25, 38-39, 50-51, 66, 77, 95, 106, 108-109, 114, 122-123, 129, 134-135, 150,161	NC		No connect.

TRUTH TABLE

							ADDRE	SSES	DATA-IN/OUT	
FUNCTION		RAS	CAS	WE	ŌĒ	PDE	t _R	tC	DQ0-63	
Standby		Н	H→X	Х	Х	Х	Х	Х	High-Z	
READ		L	L	Н	L	Х	ROW	COL	Data-Out	
EARLY WRITE		L	L	L	Х	Х	ROW	COL	Data-In	
READ WRITE		L	L	H→L	L→H	Х	ROW	COL	Data-Out, Data-In	
EDO/FAST-PAGE-	1st Cycle	L	H→L	Н	L	Х	ROW	COL	Data-Out	
MODE READ	2nd Cycle	L	H→L	Н	L	Х	n/a	COL	Data-Out	
EDO/FAST-PAGE-	1st Cycle	L	H→L	L	Х	Х	ROW	COL	Data-In	
MODE EARLY-WRITE	2nd Cycle	L	H→L	L	Х	Х	n/a	COL	Data-In	
EDO/FAST-PAGE-	1st Cycle	L	H→L	H→L	L→H	Х	ROW	COL	Data-Out, Data-In	
MODE READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	Х	n/a	COL	Data-Out, Data-In	
RAS-ONLY REFRESH		Н	Х	Х	Х	Х	ROW	n/a	High-Z	
HIDDEN	READ	L→H→L	L	Н	L	X	ROW	COL	Data-Out	
REFRESH	WRITE	L→H→L	L	L	Х	Х	ROW	COL	Data-In	
CBR REFRESH		H→L	L	Н	Х	Х	Х	Х	High-Z	
SELF REFRESH (S ve	ersion)	H→L	L	Н	Х	X	Х	Х	High-Z	
READ PRESENCE-DE	TECTS	Х	X	Х	Х	L	Х	Х	Not Affected	

PRESENCE-DETECT TRUTH TABLE

	Density Organization Addresses 0MB No module installed X 2MB 256K x 64/72 9/9 4MB 512K x 64/72 9/9 4MB 512K x 64/72/80 10/9 8MB 1 Meg x 64/72/80 10/10 16MB 2 Meg x 64/72/80 10/10 16MB 2 Meg x 64/72/80 11/10 32MB 4 Meg x 64/72/80 11/10 32MB 4 Meg x 64/72/80 12*/11* 64MB 8 Meg x 64/72/80 12/10 Fast Page Mode EDO Page Mode EDO Page Mode Cess Timing			1.46		PRESENCE-DETECT PIN (PDx)						
Module Density			ID0	ID1	1	2	3	4	5	6	7	8
0MB	No module installed	X	20 10 100		. 1	1	1	1				
					0	0	0	0 0				
					0	1	0 0	0				
8MB 16MB					0	0	1	0				
• 16MB	2 Meg x 64/72/80	11/10			i	0	0	1				
32MB	4 Meg x 64/72/80	11/10			0	1	0	1				
32MB 64MB					1 0	1	0	1 0				
Page Mode		Fast Page Mode							0			
	. As	EDO Page Mode							1			
Access Timi	ng	80ns								1	0	
		70ns								0	1	
		60ns							100000	1	1	
		50ns								0	0	
Refresh Con	trol	Standard		Vss								
		Self		NC								
Data Width,	Parity	x64, No Parity	Vss							1		1
() () () () () () () () () ()		x72, Parity	NC							2		1 1
		x72, ECC	Vss					<u> </u>				0
100		x80, ECC	NC									0

NOTE: Vss = ground; 0 = Vol; 1 = Voh.

^{*} This addressing includes a redundant address to allow mixing of 12/10 and 11/11 DRAMs with the same presence-detect setting.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Pin Relative to Vss	1V to +4.6V
Voltage on Inputs or I/O Pins	
Relative to Vss	1V to +5.5V
Operating Temperature, T _A (ambient)	0°C to +70°C
Storage Temperature (plastic)	55°C to +125°C
Power Dissipation	8W
Short Circuit Output Current	50m A

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION	ing dia mengangkan pengangkan pengangkan pengangkan pengangkan pengangkan pengangkan pengangkan pengangkan pen Pengangkan pengangkan pengangkan pengangkan pengangkan pengangkan pengangkan pengangkan pengangkan pengangkan	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	3.0	3.6	V	1 10
Input High (Logic 1) Voltage, all inputs		Vін	2.0	5.5	V	
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le 5.5V$ (All other pins not under test = 0V) for each package input	CASO - CAS7 A0-A10, B0 WE0,2, OE0,2		-2	2	μА	
	RAS0,2	lı2	-8	8	μА	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vouт ≤ 5.5V) for each package input	DQ0 - DQ63	loz	-10	10	μА	
OUTPUT LEVELS		Vон	2.4		٧	
Output High Voltage (IouT = -2mA) Output Low Voltage (IouT = 2mA)		Vol		0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$) MAX PARAMETER/CONDITION SYMBOL SIZE -6 -7 UNITS NOTES STANDBY CURRENT: (TTL) lcc1 **16MB** 16 16 mΑ 28 $(\overline{RAS} = \overline{CAS} = V_{IH})$ STANDBY CURRENT: (CMOS) lcc2 16MB 4 4 mΑ 28 16MB $(\overline{RAS} = \overline{CAS} = Vcc - 0.2V)$ 1.2 1.2 lcc2 mΑ (S only) OPERATING CURRENT: Random READ/WRITE 3, 4, Average power supply current Іссз 16MB 1.040 960 mΑ 28.32 (RAS, CAS, Address Cycling: ^tRC = ^tRC [MIN]) OPERATING CURRENT: FAST PAGE MODE 3. 4. Average power supply current **16MB** 720 640 ICC4 mΑ 28, 32 (RAS = VIL, CAS, Address Cycling: tPC = tPC [MIN]) OPERATING CURRENT: EDO PAGE MODE (X version only) 3, 4, Average power supply current Icc5 **16MB** 960 880 mΑ 28, 32 (RAS = VIL, CAS, Address Cycling: tPC = tPC [MIN]) (X only) REFRESH CURRENT: RAS ONLY 3, 32, Average power supply current **16MB** 1.040 960 mΑ Icc6 28 (RAS Cycling, CAS = VIH: ^tRC = ^tRC [MIN]) REFRESH CURRENT: CBR 3, 5, Average power supply current ICC7 **16MB** 1.040 960 mΑ 28 (RAS, CAS, Address Cycling: tRC = tRC [MIN]) REFRESH CURRENT: Extended CBR (S version only) 16MB Average power supply current 2.4 2.4 3, 5, Icc8 mΑ CAS = 0.2V or CBR cycling; RAS = tRAS (MIN); (S only) 28 WE = Vcc -0.2V; A0-A10, OE and DIN = Vcc -0.2V or 0.2V (DIN may be left open); ${}^{t}RC = 62.5 \mu s$ (2.048 rows at 62.5 $\mu s = 128 ms$) REFRESH CURRENT: SELF (S version only) Average power supply current during SELF REFRESH; CBR cycling 16MB 2.4 2.4 mΑ 5, 28 Icc9 with RAS ≥ tRASS (MIN) and CAS held LOW; WE = Vcc -0.2V; (S only) A0-A10, OE and DIN = Vcc -0.2V or 0.2V (DIN may be left open)

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A10, B0	Cıı		9	pF	2
Input Capacitance: WEO, WE2, OEO, OE2	C ₁₂		9	pF	2
Input Capacitance: RASO, RAS2	Сіз		40	pF	2
Input Capacitance: CASO - CAS7	C14	1	9	pF	2
Input/Output Capacitance: DQ0 - DQ63	Сю		10	pF	2
Output Capacitance: PD1-PD8	Со		10	pF	2

FAST PAGE MODE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - FAST PAGE MODE OPTION			-6		-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	tAA .		35		40	ns	25
Column-address hold time (referenced to RAS)	tAR	48		53		ns	24
Column-address setup time	†ASC	2		2		ns	23
Row-address setup time	†ASR	5	1.00	5	The state of the	ns	25
Column-address to WE delay time	tAWD	57		62		ns	23, 30
Access time from CAS	^t CAC		20		25	ns	15, 25
Column-address hold time	^t CAH	15		20	10 000,00	ns	25
CAS pulse width	^t CAS	15	10,000	20	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH	tCHD	15	1444	15		ns	31
CAS hold time (CBR REFRESH)	tCHR	13		13		ns	5, 24
CAS to output in Low-Z	^t CLZ	5		5		ns	23, 33
CAS precharge time	^t CP	10		10		ns	16
Access time from CAS precharge	^t CPA		40		45	ns	25
CAS to RAS precharge time	tCRP	10		10		ns	25
CAS hold time	^t CSH	58		68		ns	24
CAS setup time (CBR REFRESH)	^t CSR	7		7		ns	5, 23
CAS to WE delay time	tCWD	42		47		ns	23, 30
Write command to CAS lead time	^t CWL	15		20		ns	
Data-in hold time	^t DH	15		20		ns	25, 29
Data-in hold time (referenced to RAS)	tDHR	45		55	Asta Sala	ns	
Data-in setup time	t _{DS}	-2		-2		ns	24, 29
Output disable	^t OD	3	15	3	20	ns	33
Output enable	^t OE		15		20	ns	
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	13		13		ns	24

FAST PAGE MODE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - FAST PAGE MODE OPTION			-6		-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	5	20	5	25	ns	20, 27, 3
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		ns	20
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	
PDE to valid presence-detect data	^t PD		10		10	ns	35
PDE inactive to presence-detects inactive	^t PDOFF	2		2		ns	34
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	87		97		ns	23
Access time from RAS	^t RAC		60		70	ns	14
RAS to column-address delay time	^t RAD	13	25	13	30	ns	18, 26
Row-address hold time	^t RAH	8		8		ns	24
Column-address to RAS lead time	tRAL	35		40	1	ns	25
RAS pulse width	tRAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	60	100,000	70	100,000	ns	1
RAS pulse width during SELF REFRESH	†RASS	100		100	31	μs	31
Random READ or WRITE cycle time	tRC	110		130		ns	
RAS to CAS delay time	tRCD	18	40	18	45	ns	17, 26
Read command hold time (referenced to CAS)	^t RCH	2		2		ns	19, 23
Read command setup time	tRCS	2		2		ns	23
Refresh period (2,048 cycles) - 2 Meg x 64	^t REF		32		32	ms	
Refresh period (2,048 cycles) - 2 Meg x 64 S version	tREF		128		128	ms	1.1
RAS precharge time	tRP	40		50		ns	
RAS to CAS precharge time	tRPC	0		0		ns	
RAS precharge time during SELF REFRESH	tRPS	110		130		ns	31
Read command hold time (referenced to RAS)	^t RRH	0	14.	0		ns	19
RAS hold time	tRSH	20		25		ns	25
READ WRITE cycle time	tRWC	155		185		ns	25
RAS to WE delay time	tRWD	87		97		ns	23, 30
Write command to RAS lead time	tRWL	20		25	1	ns	25
Transition time (rise or fall)	tT .	3	50	3	50	ns	
Write command hold time	tWCH	15		20		ns	25
Write command hold time (referenced to RAS)	tWCR	43		53		ns	24
WE command setup time	twcs	2		2		ns	23, 30
Write command pulse width	tWP	10	1	15	1 197 (7)	ns	6.30
WE hold time (CBR REFRESH)	tWRH	8		8		ns	22, 24
WE setup time (CBR REFRESH)	tWRP	12	1	12	Market J. S.	ns	22, 23

EDO PAGE MODE ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - EDO PAGE MODE OPTION	01/04		-6		-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	tAA .		35		40	ns	25
Column-address setup to CAS precharge during writes	tACH	15		15		ns	
Column-address hold time (referenced to RAS)	^t AR	43		53	100	ns	24
Column-address setup time	†ASC	2	ļ	2	interview	ns	23
Row-address setup time	^t ASR	5	1,1427	5		ns	25
Column-address to WE delay time	tAWD	57		67		ns	23, 30
Access time from CAS	^t CAC	· ·	20		25	ns	15, 25
Column-address hold time	^t CAH	15		17	Tarataya	ns	25
CAS pulse width	^t CAS	10	10,000	12	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH	tCHD	15		15		ns	31
CAS hold time (CBR REFRESH)	tCHR	8		10	$\mathcal{A}_{i} \leftarrow$	ns	5, 24
CAS to output in Low-Z	tCLZ	2		2		ns	23
Data output hold after CAS LOW	tCOH /	7		7		ns	23
CAS precharge time	^t CP	10		10		ns	16
Access time from CAS precharge	^t CPA		40		45	ns	25
CAS to RAS precharge time	^t CRP	10		10		ns	25
CAS hold time	^t CSH	48		53		ns	24
CAS setup time (CBR REFRESH)	tCSR	7		7		ns	5, 23
CAS to WE delay time	tCWD	37		42	100	ns	23, 30
Write command to CAS lead time	tCWL	15		15		ns	
Data-in hold time	tDH	15		17		ns	25, 29
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	^t DS	-2		-2		ns	24, 29
Output disable	^t OD	0	15	0	15	ns	
Output enable	†OE	To 1754	15		15	ns	100
OE hold time from WE during READ-MODIFY-WRITE cycle	†OEH	10		10		ns	24
OE HIGH hold time from CAS HIGH	^t OEHC	10		10		ns	
OE HIGH pulse width	^t OEP	10		10		ns	
OE LOW to CAS HIGH setup time	^t OES	5		5	N	ns	
Output buffer turn-off delay	^t OFF	5	20	5	20	ns	20, 27, 36
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		ns	20
EDO-PAGE-MODE READ or WRITE cycle time	^t PC	25		30		ns	
PDE to Valid Presence-Detect Data	t _{PD}		10		10	ns	35
PDE Inactive to Presence-Detects Inactive	^t PDOFF	2		2		ns	34
EDO-PAGE-MODE READ-WRITE cycle time	^t PRWC	77		87		ns	23
Access time from RAS	tRAC .		60		70	ns	14
RAS to column-address delay time	^t RAD	10	25	10	30	ns	18, 26
Row-address hold time	^t RAH	8		8		ns	24
Column-address to RAS lead time	^t RAL	35		40		ns	25
RAS pulse width	tRAS .	60	10,000	70	10,000	ns	
RAS pulse width (EDO PAGE MODE)	†RASP	60	125,000	70	125,000	ns	
RAS pulse width during SELF REFRESH	tRASS	100		100		μs	31
Random READ or WRITE cycle time	^t RC	110		130		ns	

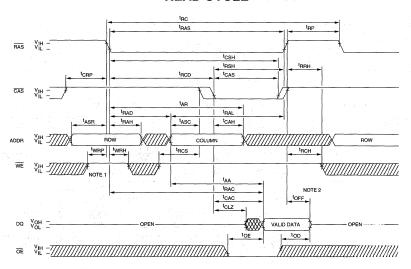
EDO PAGE MODE ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - EDO PAGE MODE OPTION			-6		-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
RAS to CAS delay time	tRCD	12	40	12	45	ns	17, 26
Read command hold time (referenced to CAS)	^t RCH	2		2		ns	19, 23
Read command setup time	†RCS	2		2		ns	23
Refresh period (2,048 cycles) - 2 Meg x 64	tREF -		32		32	ms	
Refresh period (2,048 cycles) - 2 Meg x 64 S version	tREF.		128		128	ms	
RAS precharge time	tRP	40		50		ns	
RAS to CAS precharge time	tRPC	0		0		ns	The state of the
RAS precharge time during SELF REFRESH	^t RPS	110		130		ns	31
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	19
RAS hold time	^t RSH	15		17		ns	25
READ WRITE cycle time	tRWC	155		182		ns	25
RAS to WE delay time	tRWD	82		92		ns	23, 30
Write command to RAS lead time	tRWL	20		20	1	ns	25
Transition time (rise or fall)	t _T	2	50	2	50	ns	
Write command hold time	tWCH	15		17		ns	25
Write command hold time (referenced to RAS)	tWCR	43		53		ns	24
WE command setup time	tWCS	2		2		ns	23, 30
Output disable delay from WE (CAS HIGH)	tWHZ	2	18	2	20	ns	27
Write command pulse width	tWP	10		12		ns	
WE pulse width for output disable when CAS HIGH	tWPZ	10		12		ns	
WE hold time (CBR REFRESH)	tWRH	8		8		ns	22, 24
WE setup time (CBR REFRESH)	tWRP	12	1	12	1	ns	22, 23

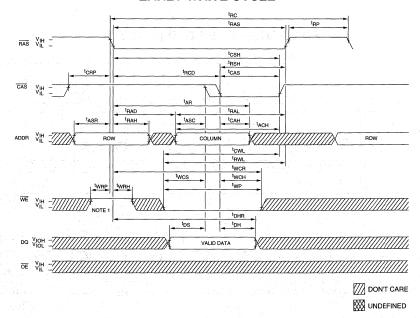
NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = +3.3V; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- 8. AC characteristics assume ^tT = 5ns for FPM and 2.5ns for EDO.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF and Vol. = 0.8V and Voh = 2.0V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than thespecified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.

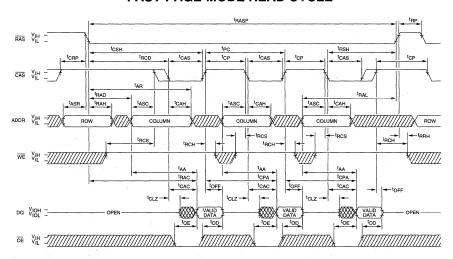
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 22. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverse of tWRP and tWRH in the CBR REFRESH cycle.
- 23. A +2ns timing skew from the DRAM to the module resulted from the addition of line drivers.
- 24. A -2ns timing skew from the DRAM to the module resulted from the addition of line drivers.
- 25. A +5ns timing skew from the DRAM to the module resulted from the addition of line drivers.
- 26. A -2ns (MIN) and a -5ns (MAX) timing skew from the DRAM to the module resulted from the addition of line drivers.
- 27. A +2ns (MIN) and a +5ns (MAX) timing skew from the DRAM to the module resulted from the addition of line drivers.
- 28. The maximum current ratings are based with the memory operating or being refreshed in the x64 mode. The stated maximums may be reduced by onehalf when used in the x32 mode.
- 29. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 30. ^tWCS, ^tRWD, ^tAWD and ^tCWD are not restrictive operating parameters. ^tWCS applies to EARLY WRITE cycles. ^tRWD, ^tAWD and ^tCWD apply to READ-MODIFY-WRITE cycles. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. ^tWCS, ^tRWD, ^tCWD and ^tAWD are not applicable in a LATE WRITE cycle.

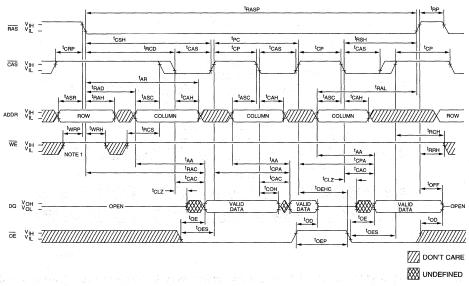


NOTES (continued)


- 31. Refresh must be completed within the time of three external refresh rate periods prior to active use of the DRAM (provided distributed CBR REFRESH is used when in the active mode.) Alternatively, a complete set of row refreshes must be executed when exiting SELF REFRESH prior to active use of the DRAM if anything other than distributed CBR REFRESH is used in the active mode.
- 32. Column-address changed once each cycle.
- 33. The 3ns minimum is a parameter guaranteed by design.
- 34. [†]PDOFF MAX is determined by the pullup resistor value. Care must be taken to ensure adequate recovery time prior to reading valid up-level on subsequent DIMM position.
- 35. Measured with the specified current load and 100pf.
- 36. For FAST PAGE MODE option, tOFF is determined by the first RAS or CAS signal to transition HIGH. In comparison, tOFF on an EDO option is determined by the latter of the RAS and CAS signal to transition HIGH.
- 37. Applies to both EDO and FAST PAGE MODEs.

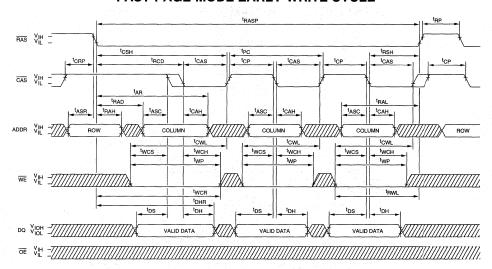
READ CYCLE 37

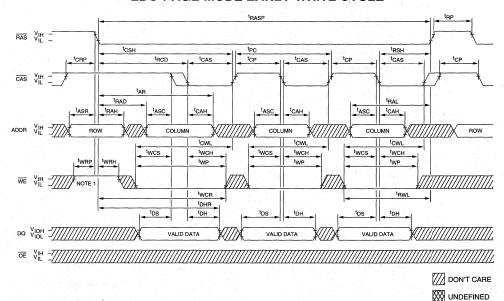

EARLY WRITE CYCLE 37


- 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.
- 2. OFF is referenced from rising edge of RAS or CAS, which ever occurs last.

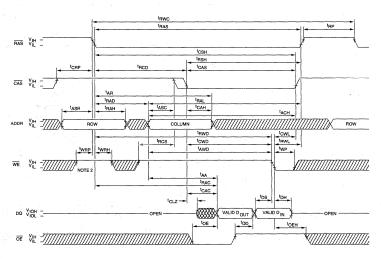
MICRON

FAST-PAGE-MODE READ CYCLE

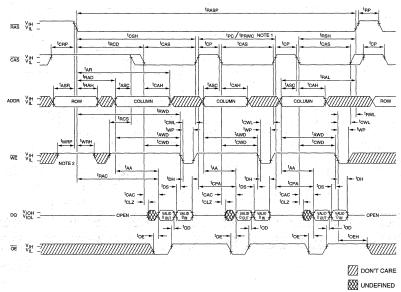

EDO-PAGE-MODE READ CYCLE 37


NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

FAST-PAGE-MODE EARLY-WRITE CYCLE



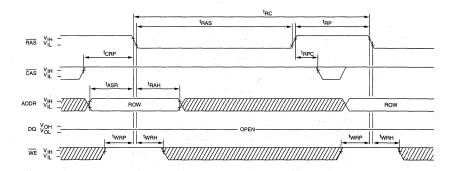
EDO-PAGE-MODE EARLY-WRITE CYCLE



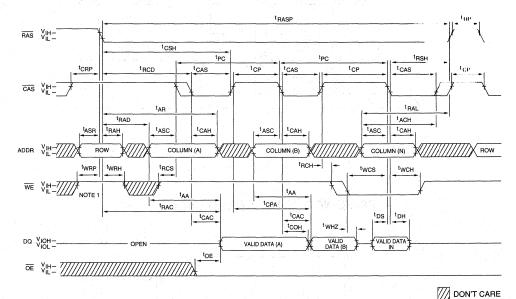
NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

READ WRITE CYCLE 37 (LATE WRITE and READ-MODIFY-WRITE cycles)

EDO/FAST-PAGE-MODE READ-WRITE CYCLE 37 (LATE WRITE and READ-MODIFY-WRITE cycles)



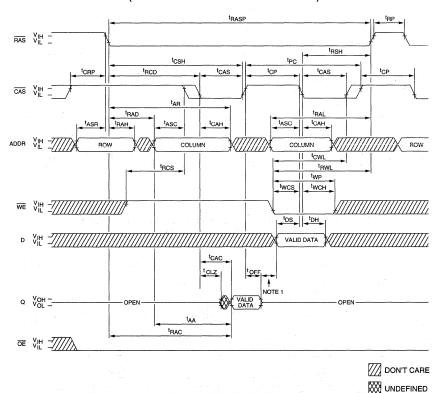
NOTE:


- 1. PC is for LATE WRITE cycles only.
- 2. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

W DRAM DIMM

RAS-ONLY REFRESH CYCLE 37 (WE = DON'T CARE)

EDO-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)



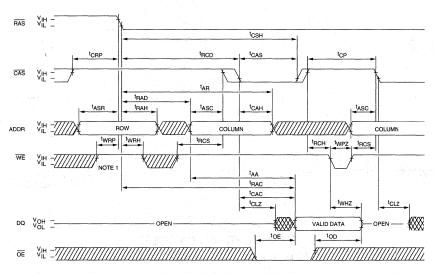
NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.


UNDEFINED

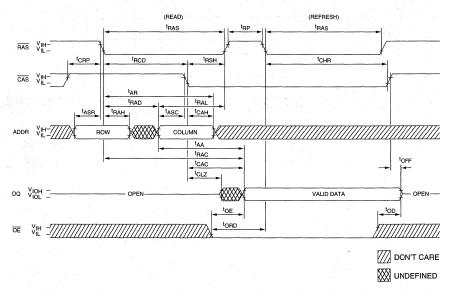
FAST-PAGE-MODE READ-EARLY-WRITE CYCLE

(Pseudo READ-MODIFY-WRITE)

PRESENCE-DETECT READ CYCLE 37

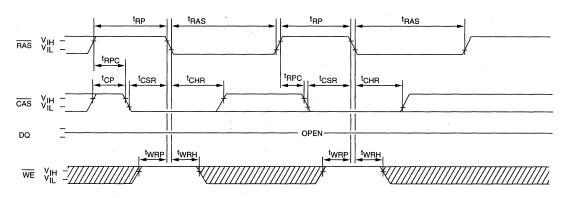


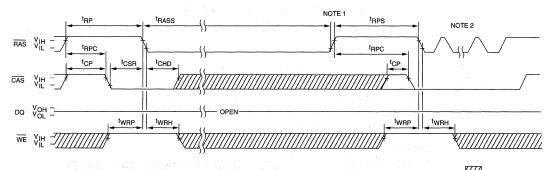
NOTE: 1. Do not drive data prior to tristate.


2. PD pins must be pulled HIGH at next level.

EDO READ CYCLE

(with WE-controlled disable)


HIDDEN REFRESH CYCLE 21,37 (WE = HIGH; OE = LOW)


NOTE:

1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

CBR REFRESH CYCLE³⁷ (Addresses, OE = DON'T CARE)

SELF REFRESH CYCLE³⁷ (Addresses and OE = DON'T CARE)

DON'T CARE

UNDEFINED

NOTE:

- 1. Once ^tRASS (MIN) is met and \overline{RAS} remains LOW, the DRAM will enter SELF REFRESH mode.
- 2. Once ^tRPS is satisfied, a compete burst of all rows should be executed.

DRAM MODULE

1 MEG, 4 MEG x 72

8, 32 MEGABYTE, ECC, 5V, FAST PAGE MODE, OPTIONAL SELF REFRESH

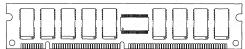
FEATURES

- JEDEC- and industry-standard ECC pinout in a 168pin, dual-in-line memory module (DIMM)
- High-performance CMOS silicon-gate process
- Single +5V ±10% power supply
- All device pins are TTL-compatible
- Low power, 54mW standby; 4,050mW active, typical (8MB)
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN; optional Extended and SELF REFRESH
- All inputs are buffered except RAS
- 1,024-cycle refresh distributed across 16ms or 1,024-cycle Extended Refresh distributed across 128ms (1 Meg x 72)
- 2,048-cycle refresh distributed across 32ms (4 Meg x 72)
- FAST PAGE MODE (FPM) access cycle

OPTIONS	MARKING
• Timing 60ns access 70ns access	-6 -7
• Components SOJ TSOP	D DT
• Packages 168-pin DIMM (gold)	
Refresh Standard Refresh/16ms or 32ms SELF REFRESH/128ms	Blank S

KEY TIMING PARAMETERS

SPEED	tRC	^t RAC	^t PC	†AA	^t CAC	tRP		
-6	110ns	60ns	35ns	35ns	20ns	40ns		
-7	130ns	70ns	40ns	40ns	25ns	50ns		


VALID PART NUMBERS

PART NUMBER	DESCRIPTION
MT18DT172G-xx	1 Meg x 72 ECC, TSOP
MT18DT172G-xx S	1 Meg x 72 ECC, S**, TSOP
MT18D172G-xx	1 Meg x 72 ECC, SOJ
MT18D172G-xx S	1 Meg x 72 ECC, S**, SOJ
MT18DT472G-xx	4 Meg x 72 ECC, TSOP
MT18D472G-xx	4 Meg x 72 ECC, SOJ

^{**}S = SELF REFRESH /

PIN ASSIGNMENT (Front View) 168-Pin DIMM

(DE-13) SOJ version (DE-14) TSOP version

PIN#	SYMBOL	PIN#	SYMBOL			PIN#	SYMBOL
1	Vss	43	Vss	85	Vss	127	Vss
2	DQ0	44	OE2	- 86	DQ36	128	RFU
3	DQ1	45	RAS2	87	DQ37	129	NC
4	DQ2	46	CAS4	88	DQ38	130	NC
5	DQ3	47	RFU	89	DQ39	131	RFU
6	Vcc	48	WE2	90	Vcc	132	PDE
7	DQ4	49	Vcc	91	DQ40	133	Vcc
8	DQ5	50	NC	92	DQ41	134	NC
9	DQ6	51	NC	93	DQ42	135	NC
10	DQ7	52	DQ18	94	DQ43	136	DQ54
11	DQ8	53	DQ19	95	DQ44	137	DQ55
12	Vss	54	Vss	96	Vss	138	Vss
13	DQ9	55	DQ20	97	DQ45	139	DQ56
14	DQ10	56	DQ21	98	DQ46	140	DQ57
15	DQ11	57	DQ22	99	DQ47	141	DQ58
16	DQ12	58	DQ23	100	DQ48	142	DQ59
17	DQ13	59	Vcc	101	DQ49	143	Vcc
18	Vcc	60	DQ24	102	Vcc	144	DQ60
19	DQ14	61	RFU	103	DQ50	145	RFU
20	DQ15	62	RFU	104	DQ51	146	RFU
21	DQ16	63	RFU	105	DQ52	147	RFU
22	DQ17	64	RFU	106	DQ53	148	RFU
23	Vss	65	DQ25	107	Vss	149	DQ61
24	NC	66	DQ26	108	NC	150	DQ62
25	NC	67	DQ27	109	NC	151	DQ63
26	Vcc	68	Vss	110	Vcc	152	Vss
27	WE0	69	DQ28	111	RFU	153	DQ64
28	CASO	70	DQ29	112	NC	154	DQ65
29	RFU	71	DQ30	113	RFU	155	DQ66
30	RAS0	72	DQ31	114	NC	156	DQ67
31	OE0	73	Vcc	115	RFU	157	Vcc
32	Vss	74	DQ32	116	Vss	158	DQ68
33	A0	75	DQ33	117	. A1	159	DQ69
34	A2	76	DQ34	118	A3	160	DQ70
35	A4	77	DQ35	119	A5	161	DQ71
36	A6	78	Vss	120	A7	162	Vss
37	A8	79	PD1	121	A9	163	PD2
38	NC/A10*	80	PD3	122	NC	164	PD4
39	NC	81	PD5	123	NC	165	PD6
40	Vcc	82	PD7	124	Vcc	166	PD8
41	RFU	83	ID0	125	RFU	167	ID1
42	RFU	84	Vcc	126	В0	168	Vcc

*4 Meg x 72 version only

GENERAL DESCRIPTION

The MT18D(T)172(S) and MT18D(T)472 are randomly accessed 8MB and 32MB solid-state memories organized in a x72 configuration.

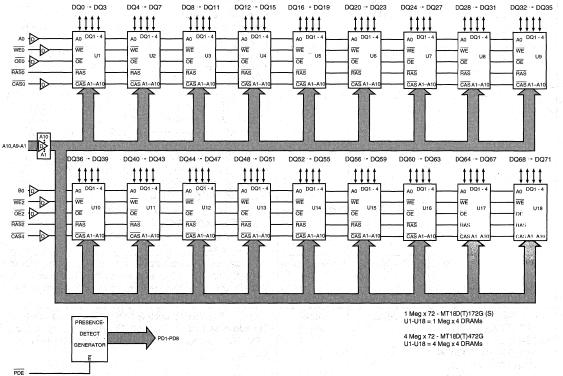
During READ or WRITE cycles, each bit is uniquely addressed through the 20/22 address bits, which are entered 10/11 bits (A0/B0-A10) at a time. Two copies of address 0 (A0 and B0) are defined to allow maximum performance for 4-byte applications which interleave between two 4-byte banks. A0 is common to the DRAMs used for DQ0-DQ35, while B0 is common to the DRAMs used for DQ36-DQ71. RAS is used to latch the first 10/11 bits and CAS the latter 10/11 bits.

READ and WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. EARLY WRITE occurs when \overline{WE} goes LOW prior to \overline{CAS} going LOW, and the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle.

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

REFRESH


Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time. Correct memory cell data is preserved by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR or HIDDEN) so that all combinations of \overline{RAS} addresses (A0/B0-A9/A10) are executed at least every ^tREF, regardless of sequence. The CBR REFRESH cycle will invoke the internal refresh counter for automatic \overline{RAS} addressing.

An additional SELF REFRESH mode is also available on the 1 Meg x 72. The "S" version allows the user the option of a fully static low power data retention mode, or a dynamic refresh mode at the extended refresh period. The module's SELF REFRESH mode is initiated by executing a CBR REFRESH cycle and holding \overline{RAS} LOW for the specified ^tRASS. Additionally, the "S" version allows for extended refresh rate of 125µs (8MB) per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation, as well as during a standby or extended refresh mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for the time minimum of an operation cycle, typically 'RPS. This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all 1,024 rows must be refreshed within 300µs, prior to the resumption of normal operation.

FUNCTIONAL BLOCK DIAGRAM

NOTE:

1. All inputs with the exception of RAS are redriven.

2. D = line buffers.

PIN DESCRIPTIONS

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
30, 45	RASO, RAS2	Input	Row-Address Strobe: RAS is used to clock-in the 10/11 row-address bits. Two RAS inputs allow for one x72 bank or two x36 banks.
28, 46	CAS0, CAS4	Buffered Input	Column-Address Strobe: CAS is used to clock-in the 10/11 column-address bits, enable the DRAM output buffers and strobe the data inputs on WRITE cycles.
27, 48	WEO, WE2	Buffered Input	Write Enable: WE is the READ/WRITE control for the DQ pins. WE0 controls DQ0-DQ35. WE2 controls DQ36-DQ71. If WE is LOW prior to CAS going LOW, the access is an EARLY WRITE cycle. If WE is HIGH while CAS is LOW, the access is a READ cycle, provided OE is also LOW. If WE goes LOW after CAS goes LOW, then the cycle is a LATE WRITE cycle. A LATE WRITE cycle is generally used in conjunction with a READ cycle to form a READ-MODIFY-WRITE cycle.
31, 44	OE0, OE2	Buffered Input	Output Enable: OE is the input/output control for the DQ pins. OE0 controls DQ0-DQ35. OE2 controls DQ36-DQ71. These signals may be driven, allowing LATE WRITE cycles.
33-38, 117-121, 126	A0-A10, B0	Buffered Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS. A0 is common to the DRAMs used for DQ0-DQ35 while B0 is common to the DRAMs used for DQ36-DQ71
2-5, 7-11, 13-17, 19-22, 52-53, 55-58, 60, 65-67, 69-72, 74-77, 86-89, 91-95, 97-101, 103-106, 136-137, 139-142, 144, 149-151, 153-156, 158-161	DQ0-DQ71	Input/ Output	Data I/O: For WRITE cycles, DQ0-DQ71 act as inputs to the addressed DRAM location. For READ access cycles, DQ0-DQ71 act as outputs for the addressed DRAM location.
79-82, 163-166	PD1-PD8	Buffered Output	Presence-Detect: These pins are read by the host system and tell the system the DIMM's personality. They will be either driven to VoH (1) or they will be driven to VoL (0).
29, 41-42, 47, 61-64, 111, 113, 115, 125, 128, 131, 145-148	RFU	-	RFU: These pins should be left unconnected (reserved for future use).
6, 18, 26, 40, 49, 59, 73, 84, 90, 102, 110, 124, 133,143, 157, 168	Vcc	Supply	Power Supply: +5.0V ± 10%

PIN DESCRIPTIONS (continued)

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
1, 12, 23, 32, 43, 54, 68, 78, 85, 96, 107, 116, 127, 138, 152, 162	Vss	Supply	Ground
83, 167	ID0, ID1	Output	ID bits: ID0 = DIMM type. ID1 = Refresh Mode. These pins will be either left floating (NC) or they will be grounded (Vss).
132	PDE	Input	Presence-Detect Enable: PDE is the READ control for the buffered presence-detect pins.
24-25, 39, 50-51, 108-109, 112, 114, 122-123, 129, 130, 134-135, 150, 161	NC	-	No connect

TRUTH TABLE

FUNCTION		등 보고 있는 그 없는 그들이 내려왔다면 하셨다.			ADDRI	ESSES	DATA-IN/OUT		
		RAS	CAS	WE	ŌĒ	PDE	^t R	tC	DQ0-71
Standby		Н	H→X	Х	Х	Х	Х	Х	High-Z
READ		L	L	Н	L	х	ROW	COL	Data-Out
EARLY WRITE		L	L.	L	Х	X	ROW	COL	Data-In
READ WRITE		L	, Lak	H→L	L→H	Х	ROW	COL	Data-Out, Data-In
FAST-PAGE-	1st Cycle	L	H→L	Н	L	Х	ROW	COL	Data-Out
MODE READ	2nd Cycle	L.	H→L	Н	L	X	n/a	COL	Data-Out
FAST-PAGE-	1st Cycle	L	H→L	L	Х	Х	ROW	COL	Data-In
MODE EARLY-WRITE	2nd Cycle	L	H→L	L	Х	Х	n/a	COL	Data-In
FAST-PAGE-	1st Cycle	L	H→L	H→L	L→H	Х	ROW	COL	Data-Out, Data-In
MODE READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	Х	n/a	COL	Data-Out, Data-In
RAS-ONLY REFRESH		Н	Х	Х	Х	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	L	Х	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	Х	Х	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	Х	Х	Х	Х	High-Z
SELF REFRESH (S version)		H→L	L	Н	Х	Х	Х	Х	High-Z
READ PRESENCE-DE	TECTS	Х	Х	Х	Х	L	Х	Х	Not Affected

PRESENCE-DETECT TRUTH TABLE

	CHARAC	CTERISTICS				P	RESE	NCE-DE	TECT	PIN (PE	x)	
Module Density	Module Organization	Row/Column Addresses	ID0	ID1	1	2	3	4	5	6	7	8
0MB	No module installed	A RETURN THE			1	1	-1	1				
2MB 4MB	256K x 64/72 512K x 64/72	9/9 9/9			0	0	0	0		1		
4MB 8MB	512K x 64/72/80 1 Meg x 64/72/80	10/9 10/9			0	1	0	0				
●8MB	1 Meg x 64/72/80	10/10			0	0	1	0				
16MB	2 Meg x 64/72/80	10/10	166		1	0	1	0				
16MB 32MB	2 Meg x 64/72/80 4 Meg x 64/72/80	11/10 11/10			1 0	0 1	0	1				
• 32MB	4 Meg x 64/72/80	12*/11*			1	1	0	1				
64MB	8 Meg x 64/72/80	12/10			0	0	1	0				
Page Mode		Fast Page Mode							0			
		EDO Page Mode							1			
Access Timi	ng	80ns								1	0	
		70ns								0	1	
1.5		60ns								1	1	
1300		50ns								0	0	
Refresh Con	trol	Standard		Vss								
		Self		NC								
Data Width,	Parity	x64, No Parity	Vss									1
11.3		x72, Parity	NC									1
		x72, ECC	Vss									0
100		x80, ECC	NC									0

NOTE: Vss = ground; 0 = Vol; 1 = Voh.

^{*} This addressing includes a redundant address to allow mixing of 12/10 and 11/11 DRAMs with the same presence-detect setting. The MT18D(T)472 uses 11/11 DRAMs.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +5V \pm 10\%$)

PARAMETER/CONDITION		SYM	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	4.5	5.5	V	
Input High (Logic 1) Voltage, all inputs		ViH	2.0	Vcc+1	V	
Input Low (Logic 0) Voltage, all inputs	1.	VIL	-0.5	0.8	V	
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le 5.5V$ (All other pins not under test = 0V) for each package input	CAS0, CAS4 A0-A10, B0, PDE WE0,2,OE0,2	li1	-2	2	μА	
	RAS0, RAS2	lı2	-18	18	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; $0V \le Vout \le 5.5V$) for each package input	DQ0-DQ71, PD1-PD8	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (Iout = -5mA)			2.4		٧	
Output Low Voltage (IouT = 4.2mA)		Vol		0.4	V	1

인 물과 내후의 기가 그 나가면 하게 되는 것이다. 다 마셨다네는	1918 201	T 24	M	AX		
PARAMETER/CONDITION	SYMBOL	SIZE	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	lcc1	8MB 32MB	36 56	36 56	mA	28
STANDBY CURRENT: (CMOS) (RAS = CAS = Vcc -0.2V)	lcc2	8MB 32MB	18 29	18 29	mA	28
	Icc2 (S only)	8MB 32MB	3.6	3.6		
OPERATING CURRENT: Random READ/WRITE		8MB	1,980	1,800	mA	3, 4,
Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	lcc3	32MB	2,160	1,980		28, 32
OPERATING CURRENT: FAST PAGE MODE		8MB	1,440	1,260	mA	3, 4,
Average power supply current (RAS = VIL, CAS, Address Cycling: [†] PC = [†] PC [MIN])	Icc4	32MB	1,620	1,440		28, 32
REFRESH CURRENT: RAS ONLY	ut Danit (j	8MB	1,980	1,800	mA	3, 28
Average power supply current (RAS Cycling, CAS = VIH: ^t RC = ^t RC [MIN])	Icc5	32MB	2,160	1,980		32
REFRESH CURRENT: CBR		8МВ	1,980	1,800	mA	3, 5,
Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Icc6	32MB	2,160	1,980		28
REFRESH CURRENT: Extended (S version only) Average power supply current; $\overline{CAS} = 0.2V$ or CBR cycling; $\overline{RAS} = {}^{t}RAS$ (MIN); $\overline{WE} = Vcc$ -0.2V; A0/B0-A10, \overline{OE} and $DIN = Vcc$ -0.2V or 0.2V (DIN may be left open); ${}^{t}RC = 125\mu s$ (8MB)	lcc7 (S only)	8MB	5.4	5.4	mA	3, 5, 28, 31
REFRESH CURRENT: SELF (S version only) Average power supply current; CBR cycling with RAS ≥ ¹RASS (MIN) and CAS held LOW; WE = Vcc -0.2V; A0/B0-A10, OE and DIN = Vcc -0.2V or 0.2V (DIN may be left open)	Iccs (S only)	8MB	5.4	5.4	mA	5, 28

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Vss1V to +7V
Operating Temperature, T _A (ambient) 0°C to +70°C
Storage Temperature (plastic)55°C to +125°C
Power Dissipation
Short Circuit Output Current 50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A10, B0, PDE	C _{I1}		9	pF	2
Input Capacitance: WEO, WE2, OEO, OE2, CASO, CAS4	C ₁₂	1	9	pF	2
Input Capacitance: RAS0, RAS2	Сіз		70	pF	2
Input/Output Capacitance: DQ0-DQ71	Сю		10	pF	2
Output Capacitance: PD1-PD8	Со		9	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS PARAMETER	SYM	-6		-7			7.0
		MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		35		40	ns	25
Column-address hold time (referenced to RAS)	tAR.	48		53		ns	24
Column-address setup time	tASC	2		2		ns	23
Row-address setup time	tASR	5		5		ns	25
Column-address to WE delay time	tAWD	57		67	1	ns	23, 30
Access time from CAS	^t CAC		20		25	ns	15, 25
Column-address hold time	tCAH	15		20		ns	25
CAS pulse width	tCAS	15	10,000	20	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH	tCHD	10		10		ns	36
CAS hold time (CBR REFRESH)	tCHR	8		8		ns	5, 24
CAS to output in Low-Z	^t CLZ	5		5		ns	23, 33
CAS precharge time	^t CP	10		10	40	ns	16
Access time from CAS precharge	tCPA		40	Jan 1, 15	45	ns	25
CAS to RAS precharge time	tCRP	15		15		ns	25
CAS hold time	tCSH	58		68		ns	24
CAS setup time (CBR REFRESH)	tCSR	12		12		ns	5, 23
CAS to WE delay time	tCWD	42		52		ns	23, 30
Write command to CAS lead time	^t CWL	15	1	20		ns	110000
Data-in hold time	^t DH	15		20		ns	25, 29
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	^t DS	-2		-2		ns	24, 29
Output disable	^t OD	3	15	3	20	ns	33
Output enable	^t OE		15		20	ns	
OE hold time from WE during READ-MODIFY-WRITE cycle	[†] OEH	13		18		ns	24
Output buffer turn-off delay	^t OFF	5	20	5	25	ns	20, 27

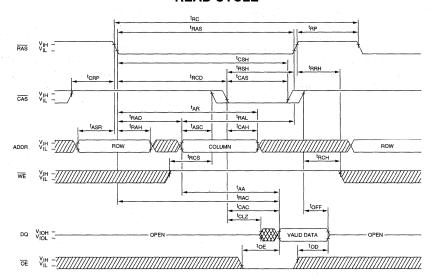
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS		-6		-7		1 10 10	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		ns	20
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	
PDE to valid presence-detect data	^t PD		10		10	ns	35
PDE inactive to presence-detects inactive	^t PDOFF	2		2		ns	34
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	87		97		ns	23
Access time from RAS	tRAC		60		70	ns	14
RAS to column-address delay time	^t RAD	13	25	13	30	ns	18, 26
Row-address hold time	^t RAH	8		8		ns	24
Column-address to RAS lead time	^t RAL	35		40		ns	25
RAS pulse width	tRAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	^t RASP	60	100,000	70	100,000	ns	
RAS pulse width during SELF REFRESH	†RASS	100		100		μs	36
Random READ or WRITE cycle time	^t RC	110		130		ns	
RAS to CAS delay time	^t RCD	18	40	18	45	ns	17, 26
Read command hold time (referenced to CAS)	tRCH	2		2		ns	19, 23
Read command setup time	tRCS	2		2		ns	23
Refresh period (2,048 cycles) - 4 Meg x 72	tREF		32		32	ms	
Refresh period (1,024 cycles) - 1 Meg x 72	^t REF		16		16	ms	
Refresh period (1,024 cycles) - 1 Meg x 72 S version	tREF	5.76	128		128	ms	
RAS precharge time	^t RP	40		50		ns	
RAS to CAS precharge time	^t RPC	0	1 2 3	0		ns	
RAS precharge time during SELF REFRESH	tRPS	110		130		ns	36
Read command hold time (referenced to RAS)	^t RRH	0		0	1000	ns	19
RAS hold time	tRSH	20		25		ns	25
READ WRITE cycle time	^t RWC	155		185		ns	25
RAS to WE delay time	tRWD	87	17 5 6	97	1.4	ns	23, 30
Write command to RAS lead time	†RWL	20		25		ns	25
Transition time (rise or fall)	İτ	3	50	3	50	ns	
Write command hold time	tWCH	15		20		ns	25
Write command hold time (referenced to RAS)	†WCR	43		53		ns	24
WE command setup time	†WCS	2		2		ns	23, 30
Write command pulse width	tWP	10		15	7 (2.5.7%)	ns	
WE hold time (CBR REFRESH)	†WRH	8		8		ns	22, 24
WE setup time (CBR REFRESH)	tWRP	12		12		ns	22, 23

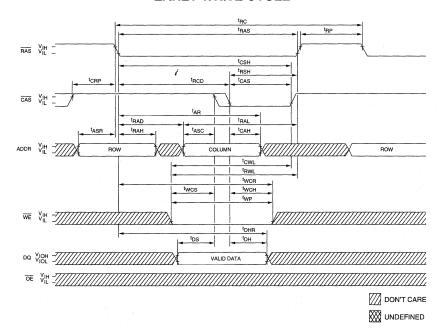
NOTES

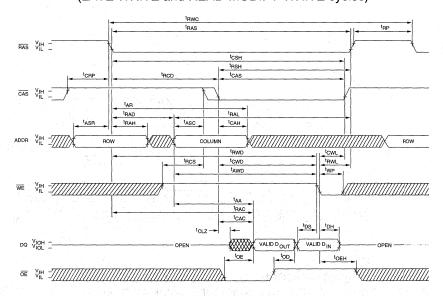
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $+5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ^tT = 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If CAS = VIL, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.

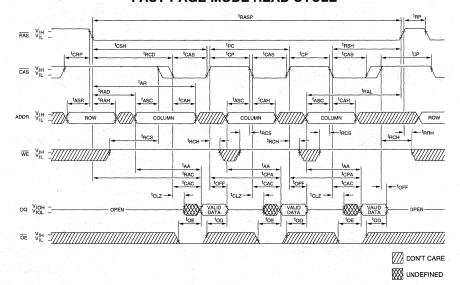
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 22. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverse of tWRP and tWRH in the CBR REFRESH cycle.
- 23. A +2ns timing skew from the DRAM to the module resulted from the addition of line drivers.
- 24. A -2ns timing skew from the DRAM to the module resulted from the addition of line drivers.
- 25. A +5ns timing skew from the DRAM to the module resulted from the addition of line drivers.
- 26. A -2ns (MIN) and a -5ns (MAX) timing skew from the DRAM to the module resulted from the addition of line drivers.
- 27. A +2ns (MIN) and a +5ns (MAX) timing skew from the DRAM to the module resulted from the addition of line drivers.
- 28. The maximum current ratings are based with the memory operating or being refreshed in the x72 mode. The stated maximums may be reduced by approximately one-half when used in the x36 mode.
- 29. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 30. ¹WCS, ¹RWD, ¹AWD and ¹CWD are not restrictive operating parameters. ¹WCS applies to EARLY WRITE cycles. ¹RWD, ¹AWD and ¹CWD apply to READ-MODIFY-WRITE cycles. If ¹WCS ≥ ¹WCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ¹RWD ≥ ¹RWD (MIN), ¹AWD ≥ ¹AWD (MIN) and ¹CWD ≥ ¹CWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. ¹WCS, ¹RWD, ¹CWD and ¹AWD are not applicable in a LATE WRITE cycle.

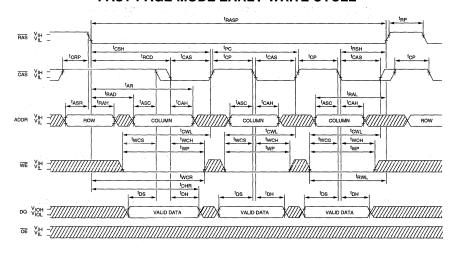


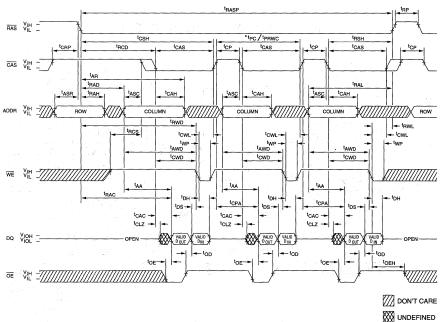
NOTES (continued)


- 31. Refresh current increases if ^tRAS is extended beyond its minimum specification.
- 32. Column-address changed once each cycle.
- 33. The 3ns minimum parameter guaranteed by design.
- 34. [†]PDOFF MAX is determined by the pull-up resistor value. Care must be taken to ensure adequate recovery time prior to reading valid up-level on subsequent DIMM position.
- 35. Measured with the specified current load and 100pf.
- If the DRAM controller uses a burst refresh, a burst refresh of all rows must be executed upon exiting SELFREFRESH.
- 37. ^tCAC (MIN), ^tCPA (MIN) and ^tAA (MIN) are for reference only to help aid the user as to when to expect the earliest data to be accessed. Only ^tCAC (MAX), ^tCPA (MAX) and ^tAA (MAX) are guaranteed.


READ CYCLE

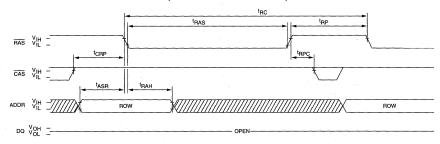

EARLY WRITE CYCLE


READ WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)

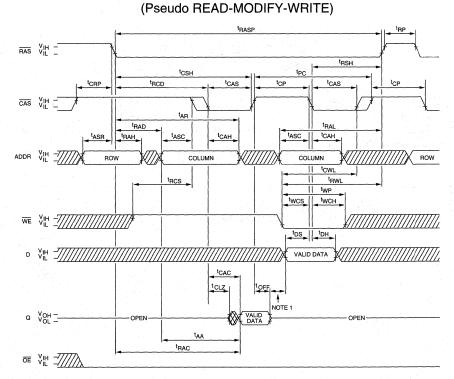

FAST-PAGE-MODE READ CYCLE

FAST-PAGE-MODE EARLY-WRITE CYCLE

FAST-PAGE-MODE READ-WRITE CYCLE (LATE WRITE and READ-MODIFY-WRITE cycles)



*NOTE: 1. ^tPC is for LATE WRITE cycle only.

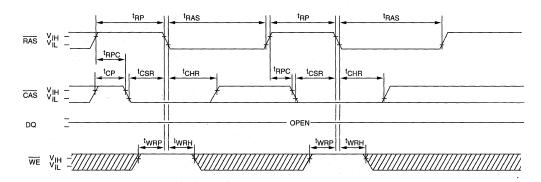


RAS ONLY REFRESH CYCLE

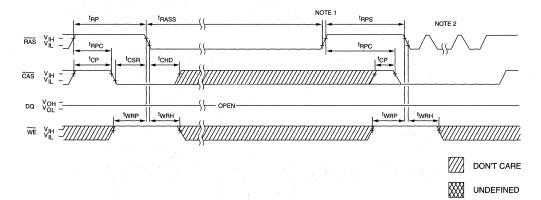
(WE = DON'T CARE)

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE

DON'T CARE


W UNDEFINED

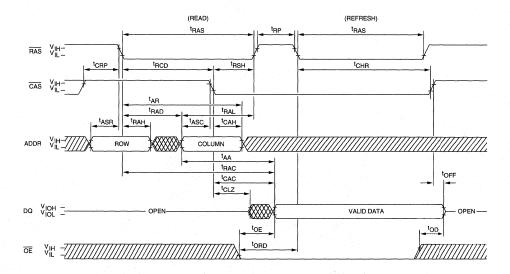
NOTE: 1. Do not drive data prior to tristate.


CBR REFRESH CYCLE

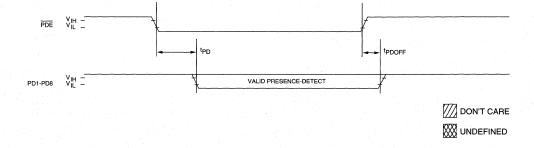
(Addresses and $\overline{OE} = DON'T CARE$)

SELF REFRESH CYCLE

(Addresses and OE = DON'T CARE)



NOTE


- 1. Once ${}^{t}RASS$ (MIN) is met and \overline{RAS} remains LOW, the DRAM will enter SELF REFRESH mode.
- 2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

HIDDEN REFRESH CYCLE²¹ (WE = HIGH; \overline{OE} = LOW)

PRESENCE-DETECT READ CYCLE

NOTE: 1. PD pins must be pulled HIGH at next level of assembly.

DRAM MODULE

1 MEG, 4 MEG x 72

8, 32 MEGABYTE, ECC, 3.3V, OPTIONAL SELF REFRESH, FAST PAGE OR EDO PAGE MODE

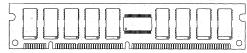
FEATURES

- JEDEC- and industry-standard ECC pinout in a 168pin, dual-in-line memory module (DIMM)
- High-performance CMOS silicon-gate process
- Single +3.3V ±0.3V power supply
- All device pins are TTL-compatible
- Low power, 18mW standby; 3,240mW active, typical
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN; optional Extended and SELF REFRESH
- All inputs are buffered except RAS
- 1,024-cycle refresh distributed across 16ms or 1,024-cycle Extended Refresh distributed across 128ms (1 Meg x 72)
- 2,048-cycle refresh distributed across 32ms or 2,048-cycle Extended Refresh distributed across 128ms (4 Meg x 72)
- FAST PAGE MODE (FPM) or Extended Data-Out (EDO) PAGE MODE access cycles
- 5V tolerant I/Os (5.5V maximum VIH level)

OPTIONS	MARKING
Timing	
60ns access	-6
70ns access	-7
Components	
SOJ	D
TSOP	DT
Packages	
168-pin DIMM (gold)	G
Access Cycle	
FAST PAGE MODE	Blank
EDO PAGE MODE (4 Meg x 72 only)	X
Refresh	and the second s
Standard/16ms or 32ms	Blank
SELF REFRESH/128ms	S

KEY TIMING PARAMETERS

EDO option


SPEED	tRC	^t RAC	^t PC	tAA	†CAC	tCAS
-6	110ns	60ns	25ns	35ns	20ns	10ns
-7	130ns	70ns	30ns	40ns	25ns	12ns

FPM option

SPEED	tRC	tRAC	^t PC	^t AA	tCAC	tRP
-6	110ns	60ns	35ns	35ns	20ns	40ns
-7	130ns	70ns	40ns	40ns	25ns	50ns

PIN ASSIGNMENT (Front View) 168-Pin DIMM

(DE-15) SOJ version (DE-16) TSOP version

PIN#	SYMBOL	PIN #	SYMBOL	PIN#	SYMBOL	PIN#	SYMBO
1 .	Vss	43	Vss	85	Vss	127	Vss
2	DQ0	44	0E2	86	DQ36	128	RFU
3	DQ1	45	RAS2	87	DQ37	129	NC
4	DQ2	46	CAS4	. 88	DQ38	130	NC
5	DQ3	47	RFU	89	DQ39	131	RFU
6	Vcc	48	WE2	90	Vcc	132	PDE
7	DQ4	49	Vcc	91	DQ40	133	Vcc
8	DQ5	50	NC	92	DQ41	134	NC
9	DQ6	51	NC	93	DQ42	135	NC
10	DQ7	52	DQ18	94	DQ43	136	DQ54
11	DQ8	53	DQ19	95	DQ44	137	DQ55
12	Vss	54	Vss	96	Vss	138	Vss
13	DQ9	55	DQ20	97	DQ45	139	DQ56
14	DQ10	56	DQ21	98	DQ46	140	DQ57
15	DQ11	57	DQ22	99	DQ47	141	DQ58
16	DQ12	58	DQ23	100	DQ48	142	DQ59
17	DQ13	59	Vcc	101	DQ49	143	Vcc
18	Vcc	60	DQ24	102	Vcc	144	DQ60
19	DQ14	61	RFU	103	DQ50	145	RFU
20	DQ15	62	RFU	104	DQ51	146	RFU
21	DQ16	63	RFU	105	DQ52	147	RFU
22	DQ17	64	RFU	106	DQ53	148	RFU
23	Vss	65	DQ25	107	Vss	149	DQ61
24	NC	66	DQ26	108	NC	150	DQ62
25	NC	67	DQ27	109	NC	151	DQ63
26	Vcc	68	Vss	110	Vcc	152	Vss
27	WE0	69	DQ28	111	RFU	153	DQ64
28	CAS0	70	DQ29	112	NC	154	DQ65
29	RFU	71	DQ30	113	RFU	155	DQ66
30	RAS0	72	DQ31	114	NC	156	DQ67
31	OE0	73	Vcc	115	RFU	157	Vcc
32	Vss	74	DQ32	116	Vss	158	DQ68
33	A0	75	DQ33	117	A1	159	DQ69
34	A2	76	DQ34	118	A3	160	DQ70
35	A4	77	DQ35	119	A5	161	DQ71
36	A6	78	Vss	120	A7	162	Vss
37	A8	79	PD1	121	A9	163	PD2
38	NC/A10*	80	PD3	122	NC	164	PD4
39	NC	81	PD5	123	NC	165	PD6
40	Vcc	82	PD7	124	Vcc	166	PD8
41	RFU	83	ID0	125	RFU	167	ID1
42	RFU	84	Vcc	126	В0	168	Vcc

*4 Meg x 72 version only

VALID PART NUMBERS

PART NUMBER	DESCRIPTION
MT18LD172G-xx	1 Meg x 72 ECC, FPM, SOJ
MT18LD172G-xx S	1 Meg x 72 ECC, FPM, SOJ, S*
MT18LDT172G-xx	1 Meg x 72 ECC, FPM, TSOP
MT18LDT172G-xx S	1 Meg x 72 ECC, FPM, TSOP, S*
MT18LDT472G-xx	4 Meg x 72 ECC, FPM, TSOP
MT18LDT472G-xx X	4 Meg x 72 ECC, EDO, TSOP
MT18LDT472G-xx S	4 Meg x 72 ECC, FPM, TSOP, S*
MT18LDT472G-xx XS	4 Meg x 72 ECC, EDO, TSOP, S*
MT18LD472G-xx	4 Meg x 72 ECC, FPM, SOJ
MT18LD472G-xx X	4 Meg x 72 ECC, EDO, SOJ
MT18LD472G-xx S	4 Meg x 72 ECC, FPM, SOJ, S*
MT18LD472G-xx XS	4 Meg x 72 ECC, EDO, SOJ, S*

*S = SELF REFRESH

GENERAL DESCRIPTION

The MT18LD(T)172(S) and MT18LD(T)472(X)(S) are randomly accessed 8MB and 32MB solid-state memories organized in a x72 configuration. They are specially processed to operate from 3.0V to 3.6V for low-voltage memory systems.

During READ or WRITE cycles, each bit is uniquely addressed through the 20/22 address bits, which are entered 10/11 bits (A0/B0-A10) at a time. Two copies of address 0 (A0 and B0) are defined to allow maximum performance for 4-byte applications which interleave between two 4-byte banks. A0 is common to the DRAMs used for DQ0-DQ35, while B0 is common to the DRAMs used for DQ36-DQ71. RAS is used to latch the first 10/11 bits and CAS the latter 10/11 bits.

READ and WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. EARLY WRITE occurs when \overline{WE}

goes LOW prior to $\overline{\text{CAS}}$ going LOW, and the output pin(s) remain open (High-Z) until the next $\overline{\text{CAS}}$ cycle.

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

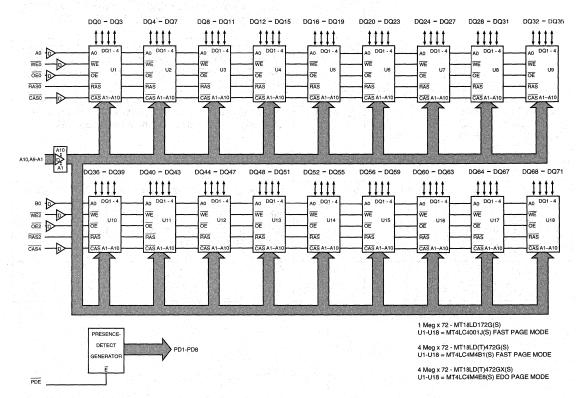
EDO PAGE MODE - 4 Meg x 72 only

EDO PAGE MODE, designated by the "X" version, is an accelerated FAST PAGE MODE cycle. The primary advantage of EDO is the availability of data-out even after $\overline{\text{CAS}}$ goes back HIGH. EDO provides for $\overline{\text{CAS}}$ precharge time ($^{\text{t}}\text{CP}$) to occur without the output data going invalid. This elimination of $\overline{\text{CAS}}$ output control provides for pipeline READs.

FAST-PAGE-MODE modules have traditionally turned the output buffers off (High-Z) with the rising edge of \overline{CAS} . EDO-PAGE-MODE DRAMs operate similar to FAST-PAGE-MODE DRAMs, except data will remain valid or become valid after \overline{CAS} goes HIGH during READs, provided \overline{RAS} and \overline{OE} are held LOW. If \overline{OE} is pulsed while \overline{RAS} and \overline{CAS} are LOW, data will toggle from valid data to High-Z and back to the same valid data. If \overline{OE} is toggled or pulsed after \overline{CAS} goes HIGH while \overline{RAS} remains LOW, data will transition to and remain High-Z.

If the DQ outputs are wire OR'd, \overline{OE} must be used to disable idle banks of DRAMs. Alternatively, pulsing \overline{WE} to the idle banks during \overline{CAS} HIGH time will also High-Z the outputs. Independent of \overline{OE} control, the outputs will disable after ${}^t\!OFF$, which is referenced from the rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last (reference the MT4LC4M4E8(S) DRAM data sheet for additional information on EDO functionality).

REFRESH


Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time. Correct memory cell data is preserved by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR or HIDDEN) so that all combinations of \overline{RAS} addresses (A0/B0-A9/A10) are executed at least every tREF , regardless of sequence. The CBR REFRESH cycle will invoke the internal refresh counter for automatic \overline{RAS} addressing.

An additional SELF REFRESH mode is also available. The "S" version allows the user the option of a fully static low power data retention mode, or a dynamic refresh mode at the extended refresh period. The module's SELF REFRESH mode is initiated by executing a CBR REFRESH cycle and holding RAS LOW for the specified 'RASS. Addi-

tionally, the "S" version allows for extended refresh rates of $62.5\mu s$ (32MB) and $125\mu s$ (8MB) per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation, as well as during a standby or extended refresh mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for the time minimum of an operation cycle, typically tRPS. This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all 1,024/2,048 rows must be refreshed within 300µs prior to the resumption of normal operation.

FUNCTIONAL BLOCK DIAGRAM

NOTE:

- 1. All inputs with the exception of RAS are redriven.
- 2. D = line buffers.

PIN DESCRIPTIONS

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
30, 45	RASO, RAS2	Input	Row-Address Strobe: RAS is used to clock-in the 10/11 row-address bits. Two RAS inputs allow for one x72 bank or two x36 banks.
28, 46	CASO, CAS4	Buffered Input	Column-Address Strobe: CAS is used to clock-in the 10/1 column-address bits, enable the DRAM output buffers and strobe the data inputs on WRITE cycles.
27, 48	WE0, WE2	Buffered Input	Write Enable: WE is the READ/WRITE control for the DQ pins. WE0 controls DQ0-DQ35. WE2 controls DQ36-DQ71. If WE is LOW prior to CAS going LOW, the acces is an EARLY WRITE cycle. If WE is HIGH while CAS is LOW, the access is a READ cycle, provided OE is also LOW. If WE goes LOW after CAS goes LOW, then the cycle is a LATE WRITE cycle. A LATE WRITE cycle is generally used in conjunction with a READ cycle to form a READ-MODIFY-WRITE cycle.
31, 44	OE0, OE2	Buffered Input	Output Enable: OE is the input/output control for the DQ pins. OE0 controls DQ0-DQ35. OE2 controls DQ36-DQ71 These signals may be driven, allowing LATE WRITE cycles.
33-38, 117-121, 126	A0-A10, B0	Buffered Input	Address Inputs: These inputs are multiplexed and clocke by RAS and CAS. A0 is common to the DRAMs used for DQ0-DQ35 while B0 is common to the DRAMs used for DQ36-DQ71
2-5, 7-11, 13-17, 19-22, 52-53, 55-58, 60, 65-67, 69-72, 74-77, 86-89, 91-95, 97-101, 103-106, 136-137, 139-142, 144, 149-151, 153-156, 158-161	DQ0-DQ71	Input/ Output	Data I/O: For WRITE cycles, DQ0-DQ71 act as inputs to the addressed DRAM location. For READ access cycles, DQ0-DQ71 act as outputs for the addressed DRAM location.
79-82, 163-166	PD1-PD8	Buffered Output	Presence-Detect: These pins are read by the host syster and tell the system the DIMM's personality. They will be either driven to Voh (1) or they will be driven to Vol. (0).
29, 41-42, 47, 61-64, 111, 113, 115, 125, 128, 131, 145-148	RFU		RFU: These pins should be left unconnected (reserved for future use).
6, 18, 26, 40, 49, 59, 73, 84, 90, 102, 110, 124, 133, 143, 157, 168	Vcc	Supply	Power Supply: +3.3V ± 0.3V

PIN DESCRIPTIONS (continued)

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
1, 12, 23, 32, 43, 54, 68, 78, 85, 96, 107, 116, 127, 138, 152, 162	Vss	Supply	Ground
83, 167	ID0, ID1	Output	ID bits: ID0 = DIMM type. ID1 = Refresh Mode. These pins will be either left floating (NC) or they will be grounded (Vss).
132	PDE	Input	Presence-Detect Enable: PDE is the READ control for the buffered presence-detect pins.
24-25, 39, 50-51, 108-109, 112, 114, 122-123, 129, 130, 134-135, 150, 161	NC		No connect

TRUTH TABLE

					10	1999	ADDRE	SSES	DATA-IN/OUT	
FUNCTION		RAS	CAS	WE	ŌĒ	PDE	t _R	tC	DQ0-71	
Standby		Н	H→X	Х	Х	Х	Х	X	High-Z	
READ		L	L	Н	L	Х	ROW	COL	Data-Out	
EARLY WRITE		L	L	L	X	Х	ROW	COL	Data-In	
READ WRITE		L	L	H→L	L→H	X	ROW	COL	Data-Out, Data-In	
EDO/FAST-PAGE-	1st Cycle	L	H→L	Н	L	Х	ROW	COL	Data-Out	
MODE READ	2nd Cycle	L	H→L	Н	L	X	n/a	COL	Data-Out	
EDO/FAST-PAGE-	1st Cycle	L	H→L	L	Х	Х	ROW	COL	Data-In	
MODE EARLY-WRITE	2nd Cycle	L	H→L	L	Х	Х	n/a	COL	Data-In	
EDO/FAST-PAGE-	1st Cycle	L	H→L	H→L	L→H	X	ROW	COL	Data-Out, Data-In	
MODE READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	Х	n/a	COL	Data-Out, Data-In	
RAS-ONLY REFRESH		Н	Х	Х	Х	X	ROW	n/a	High-Z	
HIDDEN	READ	L→H→L	L	Н	L	Х	ROW	COL	Data-Out	
REFRESH	WRITE	L→H→L	L	L	Х	Х	ROW	COL	Data-In	
CBR REFRESH		H→L	L	Н	Х	Х	Х	Х	High-Z	
SELF REFRESH (S ve	rsion)	H→L	L	Н	Х	Х	Х	Х	High-Z	
READ PRESENCE-DE	TECTS	Х	Χ	Х	Х	L	Х	Х	Not Affected	

PRESENCE-DETECT TRUTH TABLE

	CHARAC	CTERISTICS				P	RESEN	ICE-DE	TECT	PIN (PI	Dx)	
Module Density	Module Organization	Row/Column Addresses	ID0	ID1	1	2	3	4	5	6	7	8
OMB	No module installed	And the second of the second o			1	1	1	1				
2MB 4MB	256K x 64/72 512K x 64/72	9/9 9/9			0	0	0	0				
4MB 8MB	512K x 64/72/80 1 Meg x 64/72/80	10/9 10/9			0	1	0	0				
• 8MB	1 Meg x 64/72/80	10/10			0	0	1	0				
16MB	2 Meg x 64/72/80	10/10			1	0	1	0				
16MB 32MB	2 Meg x 64/72/80 4 Meg x 64/72/80	11/10 11/10			1 0	0	0	1				
• 32MB	4 Meg x 64/72/80	12*/11*			1	1	0	1				
64MB	8 Meg x 64/72/80	12/10			0	0	1	0				
Page Mode		Fast Page Mode							0			
ŀ		EDO Page Mode							1			
Access Timi	ng	80ns								1	0	1
		70ns								0	1	
		60ns								1	1	
15.00		50ns								0	0	
Refresh Con	trol	Standard		Vss								
		Self		NC								
Data Width,	Parity	x64, No Parity	Vss									1
1		x72, Parity	NC									1
2.12		x72, ECC	Vss									0
		x80, ECC	NC	100								0

NOTE: Vss = ground; 0 = Vol; 1 = Voh.

^{*} This addressing includes a redundant address to allow mixing of 12/10 and 11/11 DRAMs with the same presence-detect setting. The MT18LD(T)472 uses 11/11 DRAMs.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION		SYM	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	3.0	3.6	V	
Input High (Logic 1) Voltage, all inputs		ViH	2.0	5.5	V	11 11 11 11
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	V	,
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le 5.5V$ (All other pins not under test = 0V) for each package input	CASO, CAS4 A0-A10, B0, PDE WE0,2,OE0,2	lı1	-2	2	μΑ	
- 10 1 및 10 1 전 1 및 10 1 및 10 1 및 10 1 및 10 1 및 10 1 및 10 1 및 10 1 및 10 1 및 10 1 및 10 1 및 10 1 및 10 1 및 10 1 및 - 10 및 10 및 10 및 10 및 10 및 10 및 10 및 10	RASO, RAS2	lı2	-18	18	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; $0V \le Vout \le 5.5V$) for each package input	DQ0-DQ71, PD1-PD8	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (lout = -2mA)		Vон	2.4		V	14
Output Low Voltage (Iout = 2mA)		Vol		0.4	٧	

			M	ÁX		
PARAMETER/CONDITION	SYMBOL	SIZE	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	Icc1	8MB 32MB	18 32	18 32	mA	28
STANDBY CURRENT: (CMOS)	Icc2	ALL	9	9	mA	28
$\overline{\text{(RAS)}} = \overline{\text{CAS}} = \text{Vcc -0.2V}$	Icc2 (S only)	8MB 32MB	1.8 2.7	1.8 2.7		
OPERATING CURRENT: Random READ/WRITE		8МВ	1,440	1,260	mA	3, 4,
Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Icc3	32MB	2,160	1,980		28, 32
OPERATING CURRENT: FAST PAGE MODE	loos	8МВ	1,080	900	mA	3, 4,
Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN])	Icc4	32MB	1,620	1,440		28, 32
OPERATING CURRENT: EDO PAGE MODE (X version only)	Icc4	8MB			mA	3, 4,
Average power supply current (RAS = VIL, CAS, Address Cycling: tPC = tPC [MIN])	(X only)	32MB	1,980	1,800		28, 32
REFRESH CURRENT: RAS ONLY		8MB	1,440	1,260	mA	3, 28 32
Average power supply current (RAS Cycling, CAS = VIH: ^t RC = ^t RC [MIN])	Icc5	32MB	2,160	1,980		
REFRESH CURRENT: CBR		8MB	1,440	1,260	mA	3, 5,
Average power supply current (RAS, CAS, Address Cycling: [†] RC = [†] RC [MIN])	Icc6	32MB	2,160	1,980		28
REFRESH CURRENT: Extended (S version only) Average power supply current; CAS = 0.2V or CBR cycling; RAS =	Icc7	8МВ	2.7	2.7	mA	3, 5,
^t RAS (MIN); \overline{WE} = Vcc -0.2V; A0/B0-A10, \overline{OE} and DiN = Vcc -0.2V or 0.2V (DiN may be left open); ^t RC = 62.5 μ s (32MB)/125 μ s (8MB)	(S only)	32MB	5.4	5.4		28, 31
REFRESH CURRENT: SELF (S version only) Average power supply current; CBR cycling with RAS ≥ tRASS	Icc8	8MB	2.7	2.7	mA	5, 28
(MIN) and $\overline{\text{CAS}}$ held LOW; $\overline{\text{WE}}$ = Vcc -0.2V; A0/B0-A10, $\overline{\text{OE}}$ and DIN = Vcc -0.2V or 0.2V (DIN may be left open)	(S only)	32MB	5.4	5.4		

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Pin Relative to Vss1V to +4.6V
Voltage on Inputs or I/O Pins
Relative to Vss1V to +5.5V
Operating Temperature, T _A (ambient) 0°C to +70°C
Storage Temperature (plastic)55°C to +125°C
Power Dissipation
Short Circuit Output Current 50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A10, B0, PDE	Ci1		9	pF	2
Input Capacitance: WEO, WE2, OE0, OE2, CASO, CAS4	C ₁₂		9	pF	2
Input Capacitance: RASO, RAS2	Сіз		70 -	pF	2
Input/Output Capacitance: DQ0-DQ71	Cio		10	pF	2
Output Capacitance: PD1-PD8	Co		9	pF	2

FAST PAGE MODE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - FAST PAGE MODE OPTION			-6		-7		T
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		35		40	ns	25
Column-address hold time (referenced to RAS)	tAR .	48		53		ns	24
Column-address setup time	†ASC	2		2		ns	23
Row-address setup time	tASR	5		5		ns	25
Column-address to WE delay time	^t AWD	57		67		ns	23, 30
Access time from CAS	^t CAC		20		25	ns	15, 25
Column-address hold time	^t CAH	15		20		ns	25
CAS pulse width	^t CAS	15	10,000	20	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH	^t CHD	15	100	15	100	ns	36
CAS hold time (CBR REFRESH)	^t CHR	8		8		ns	5, 24
CAS to output in Low-Z	^t CLZ	5		5	8 1.0	ns	23, 33
CAS precharge time	^t CP	10		10		ns	16
Access time from CAS precharge	[†] CPA		40		45	ns	25
CAS to RAS precharge time	^t CRP	15		15		ns	25
CAS hold time	^t CSH	58		68		ns	24
CAS setup time (CBR REFRESH)	^t CSR	12	1	12		ns	5, 23
CAS to WE delay time	tCWD	42		47		ns	23, 30
Write command to CAS lead time	tCWL	15	1000	20		ns	1 2 2 2 3
Data-in hold time	tDH.	15		20		ns	25, 29
Data-in hold time (referenced to RAS)	tDHR	45		55		ns	1
Data-in setup time	t _{DS}	-2	1 1 7 1	-2		ns	24, 29
Output disable	tOD		15		20	ns	1
Output enable	^t OE	.65	15		20	ns	
OE hold time from WE during READ-MODIFY-WRITE cycle	(OEH)	13		18		ns	24
Output buffer turn-off delay	tOFF	5	20	5	25	ns	20,27,3

FAST PAGE MODE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - FAST PAGE MODE OPTION		-6		8 8 50	-7			
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES	
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		ns	20	
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35	1 1000	40	4 100	ns	1000	
PDE to valid presence-detect data	tPD		10		10	ns	35	
PDE inactive to presence-detects inactive	†PDOFF	2		2	11.50	ns	34	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	87		97	1 1 1 1 1	ns	23	
Access time from RAS	tRAC		60	14.1.4	70	ns	14	
RAS to column-address delay time	†RAD	13	25	13	30	ns	18, 26	
Row-address hold time	^t RAH	8		8	40.53	ns	24	
Column-address to RAS lead time	tRAL	35		40		ns	25	
RAS pulse width	†RAS	60	10,000	70	10,000	ns	1.41	
RAS pulse width (FAST PAGE MODE)	†RASP	60	100,000	70	100,000	ns	Ar E.S.	
RAS pulse width during SELF REFRESH	†RASS	100		100		μs	36	
Random READ or WRITE cycle time	tRC	110		130		ns		
RAS to CAS delay time	†RCD	18	40	18	45	ns	17, 20	
Read command hold time (referenced to CAS)	†RCH	2		2		ns	19, 2	
Read command setup time	tRCS	2		2		ns	23	
Refresh period (2,048 cycles) - 4 Meg x 72	tREF.		32		32	ms		
Refresh period (1,024 cycles) - 1 Meg x 72	tREF		16		16	ms	G0 (1)	
Refresh period (1,024 or 2,048 cycles) S version	†REF		128		128	ms		
RAS precharge time	tRP tRP	40		50		ns	12: 1 //	
RAS to CAS precharge time	†RPC	0		0		ns	1. 1924	
RAS precharge time during SELF REFRESH	tRPS	110		130	i dan megi	ns	36	
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	19	
RAS hold time	tRSH	20		25		ns	25	
READ WRITE cycle time	tRWC	155		185		ns	25	
RAS to WE delay time	tRWD	87		97		ns	23, 30	
Write command to RAS lead time	t _{RWL}	20		25	4.4 95	ns	25	
Transition time (rise or fall)	ŧт	3	50	3	50	ns		
Write command hold time	tWCH	15		20	- 11 12 12	ns	25	
Write command hold time (referenced to RAS)	tWCR	43		53	March 1	ns	24	
WE command setup time	twcs	2		2	100	ns	23, 30	
Write command pulse width	tWP	10		15		ns	EFF ST	
WE hold time (CBR REFRESH)	tWRH	8	1 1 6 7 7	8		ns	22, 24	
WE setup time (CBR REFRESH)	tWRP	12		12		ns	22, 23	

EDO PAGE MODE ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - EDO PAGE MODE OPTION		-6		-7				
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES	
Access time from column-address	^t AA		35		40	ns	25	
Column-address setup to CAS precharge during writes	†ACH	15	100	15		ns		
Column-address hold time (referenced to RAS)	tAR	43		53		ns	24	
Column-address setup time	†ASC	2		2		ns	23	
Row-address setup time	†ASR	5		5		ns	25	
Column-address to WE delay time	tAWD	57		67		ns	23, 30	
Access time from CAS	^t CAC		20		25	ns	15, 25	
Column-address hold time	ⁱ CAH	15		17		ns	25	
CAS pulse width	^t CAS	10	10,000	12	10,000	ns		
RAS LOW to "don't care" during SELF REFRESH	^t CHD	15		15		ns	36	
CAS hold time (CBR REFRESH)	^t CHR	8		10		ns	5, 24	
CAS to output in Low-Z	^t CLZ	2		2		ns	23	
Data output hold after CAS LOW	^t COH	7		7		ns	23	
CAS precharge time	^t CP	10		10		ns	16	
Access time from CAS precharge	[†] CPA		40		45	ns	25, 37	
CAS to RAS precharge time	^t CRP	10		10		ns	25	
CAS hold time	^t CSH	48		53		ns	24	
CAS setup time (CBR REFRESH)	^t CSR	7		7		ns	5, 23	
CAS to WE delay time	tCWD	37		42	1.	ns	23, 30	
Write command to CAS lead time	tCWL	15		15		ns		
Data-in hold time	tDH	15		17	1	ns	25, 29	
Data-in hold time (referenced to RAS)	†DHR	45		55	1	ns	1	
Data-in setup time	t _{DS}	-2	+	-2		ns	24, 29	
Output disable	tOD	0	15	0	15	ns		
Output enable	^t OE		15		15	ns	1	
OE hold time from WE during READ-MODIFY-WRITE cycle	[†] OEH	8		10		ns	24	
OE HIGH hold time from CAS HIGH	[†] OEHC	10		10		ns	 	
OE HIGH pulse width	[†] OEP	10	1	10	1	ns		
OE LOW to CAS HIGH setup time	^t OES	5	 	5	1	ns	 	
Output buffer turn-off delay	^t OFF	5	20	5	20	ns	20,27,38	
OE setup prior to RAS during HIDDEN REFRESH cycle	†ORD	0	1	0		ns	20	
EDO-PAGE-MODE READ or WRITE cycle time	^t PC	25		30	1	ns		
PDE to valid presence-detect data	tPD		10		10	ns	35	
PDE inactive to presence-detects inactive	^t PDOFF	2	+	2		ns	34	
EDO-PAGE-MODE READ-WRITE cycle time	†PRWC	 77		87		ns	23	
Access time from RAS	tRAC		60		70	ns	14	
RAS to column-address delay time	tRAD	10	25	10	30	ns	18, 26	
Row-address hold time	tRAH	8	1	8	+	ns	24	
Column-address to RAS lead time	†RAL	35		40		ns	25	
RAS pulse width	tRAS	60	10,000	70	10,000	ns	 	
RAS pulse width (EDO PAGE MODE)	†RASP	60	125,000	70	125,000	ns	 	
RAS pulse width during SELF REFRESH	†RASS	100	120,000	100	120,000	us	36	
Random READ or WRITE cycle time	tRC	110	+	130	+	ns	1 00	
RAS to CAS delay time	†RCD	12	40	12	45	ns	17, 26	

EDO PAGE MODE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - EDO PAGE MODE OPTION		-6		-7			
PARAMETER	SYM	MIN MAX		MIN	MAX	UNITS	NOTES
Read command hold time (referenced to \overline{CAS})	^t RCH	2		2		ns	19, 23
Read command setup time	t _{RCS}	2		2		ns	23
Refresh period (2,048 cycles) - 4 Meg x 72	tREF.		32	6-4	32	ms	
Refresh period (2,048 cycles) S version	^t REF		128		128	ms	
RAS precharge time	^t RP	40		50		ns	
RAS to CAS precharge time	^t RPC	0		0	100	ns	
RAS precharge time during SELF REFRESH	tRPS	110		130		ns	36
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	19
RAS hold time	^t RSH	15		17	100	ns	25
READ WRITE cycle time	^t RWC	155	ETC.	182		ns	25
RAS to WE delay time	^t RWD	82		92		ns	23, 30
Write command to RAS lead time	^t RWL	20		20		ns	25
Transition time (rise or fall)	tT t	2	50	2	50	ns	
Write command hold time	^t WCH	15		17		ns	25
Write command hold time (referenced to RAS)	tWCR	43	1.5	53		ns	24
WE command setup time	twcs	2		2		ns	23
Output disable delay from WE (CAS HIGH)	tWHZ	2	18	2	20	ns	27
Write command pulse width	tWP	10		12		ns	
WE pulse width for output disable when CAS HIGH	^t WPZ	10	9.327	12		ns	
WE hold time (CBR REFRESH)	^t WRH	8		8		ns	22, 24
WE setup time (CBR REFRESH)	tWRP	12	1 1 1 1 1 1	12		ns	22, 23

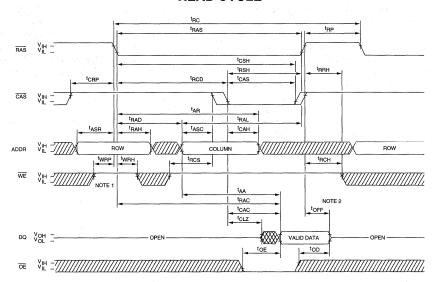
MICHON TECHNOLOGY, INC.

MT18LD(T)172(S), MT18LD(T)472(X)(S) 1 MEG, 4 MEG x 72 DRAM MODULES

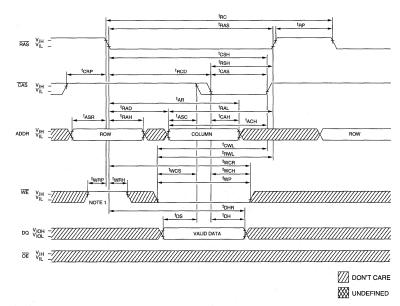
NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. $Vcc = +3.3V \pm 0.3V$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the REF refresh requirement is exceeded.
- AC characteristics assume ^tT = 5ns for FPM and 2.5ns for EDO.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) and ^tCAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.

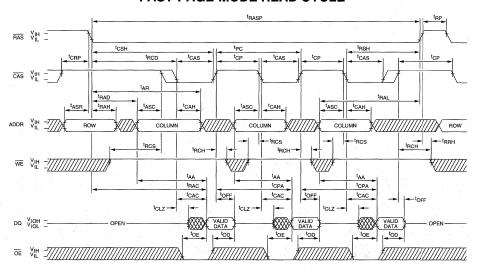
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 22. WTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverse of tWRP and tWRH in the CBR REFRESH cycle.
- 23. A +2ns timing skew from the DRAM to the module resulted from the addition of line drivers.
- 24. A -2ns timing skew from the DRAM to the module resulted from the addition of line drivers.
- 25. A +5ns timing skew from the DRAM to the module resulted from the addition of line drivers.
- 26. A -2ns (MIN) and a -5ns (MAX) timing skew from the DRAM to the module resulted from the addition of line drivers.
- 27. A +2ns (MIN) and a +5ns (MAX) timing skew from the DRAM to the module resulted from the addition of line drivers.
- 28. The maximum current ratings are based with the memory operating or being refreshed in the x72 mode. The stated maximums may be reduced by approximately one-half when used in the x36 mode.
- 29. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 30. tWCS, tRWD, tAWD and tCWD are not restrictive operating parameters. tWCS applies to EARLY WRITE cycles. tRWD, tAWD and tCWD apply to READ-MODIFY-WRITE cycles. If tWCS≥ tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If tRWD≥ tRWD (MIN), tAWD≥ tAWD (MIN) and tCWD≥ tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. tWCS, tRWD, tCWD and tAWD are not applicable in a LATE WRITE cycle.

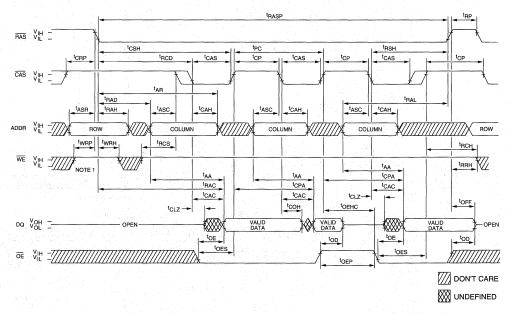


NOTES (continued)


- 31. Refresh current increases if ^tRAS is extended beyond its minimum specification.
- 32. Column-address changed once each cycle.
- 33. The 3ns minimum parameter guaranteed by design.
- 34. PDOFF MAX is determined by the pull-up resistor value. Care must be taken to ensure adequate recovery time prior to reading valid up-level on subsequent DIMM position.
- 35. Measured with the specified current load and 100pf.
- 36. If the DRAM controller uses a burst refresh, a burst refresh of all rows must be executed upon exiting SELF REFRESH.
- 37. ^tCAC (MIN), ^tCPA (MIN) and ^tAA (MIN) are for reference only to help aid the user as to when to expect the earliest data to be accessed. Only ^tCAC (MAX), ^tCPA (MAX) and ^tAA (MAX) are guaranteed.
- 38. For FAST PAGE MODE option, ^tOFF is determined by the first RAS or CAS signal to transition HIGH. In comparison, ^tOFF on an EDO option is determined by the latter of the RAS and CAS signal to transition HIGH.
- 39. Applies to both EDO and FAST PAGE MODEs.

READ CYCLE 39

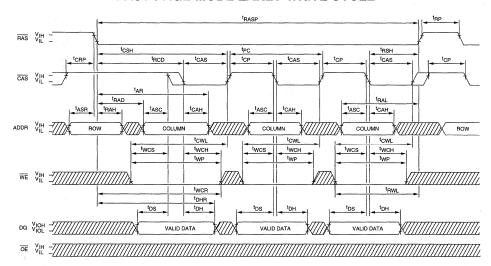

EARLY WRITE CYCLE 39


NOTE:

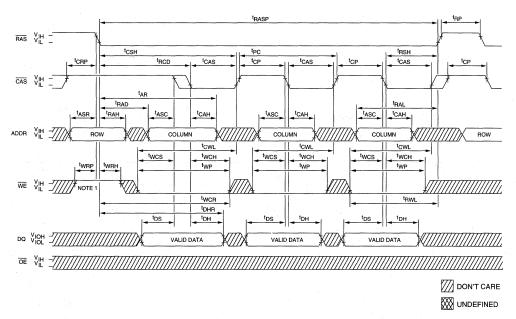
- Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.
- 2. ^tOFF is referenced from rising edge of RAS or CAS, which ever occurs last.

FAST-PAGE-MODE READ CYCLE

EDO-PAGE-MODE READ CYCLE

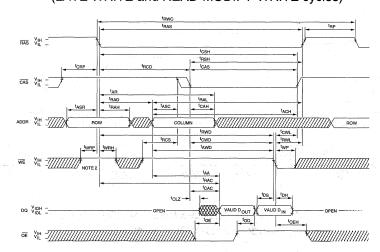


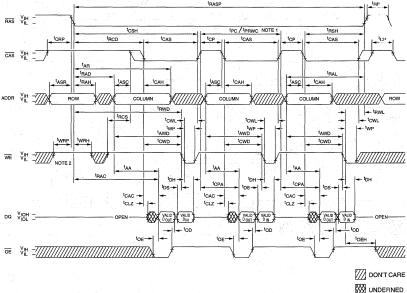
NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for ^tWRP and ^tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.


MICHON

MT18LD(T)172(S), MT18LD(T)472(X)(S) 1 MEG, 4 MEG x 72 DRAM MODULES

FAST-PAGE-MODE EARLY-WRITE CYCLE

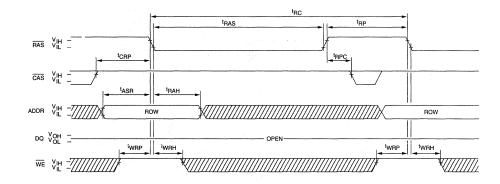

EDO-PAGE-MODE EARLY-WRITE CYCLE


NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

DRAM DIMM

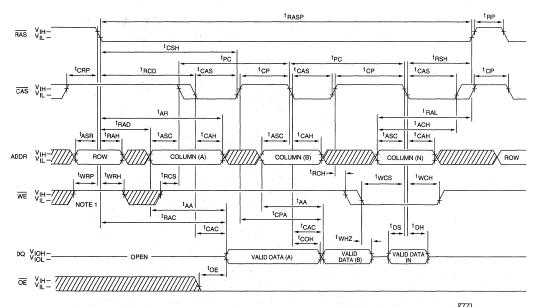
READ WRITE CYCLE 39 (LATE WRITE and READ-MODIFY-WRITE cycles)

EDO/FAST PAGE MODE-PAGE-MODE READ-WRITE CYCLE 39 (LATE WRITE and READ-MODIFY-WRITE cycles)



NOTE:

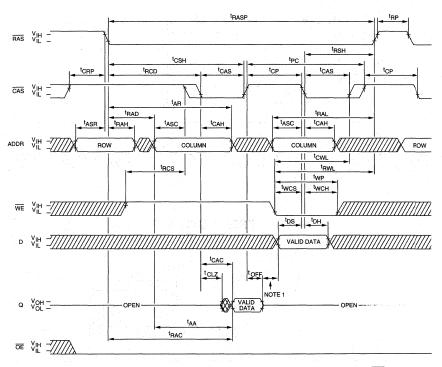
- 1. ^tPC is for LATE WRITE cycles only.
- 2. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.



RAS-ONLY REFRESH CYCLE 39 (WE = DON'T CARE)

EDO-PAGE-MODE READ-EARLY-WRITE CYCLE

(Pseudo READ-MODIFY-WRITE)

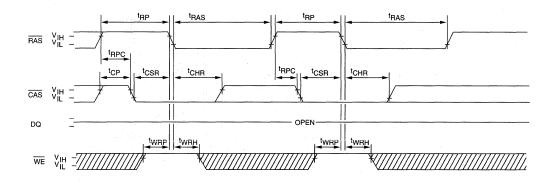

DON'T CARE

W UNDEFINED

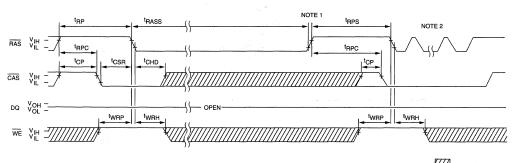
NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

DRAM DIMM

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)


DON'T CARE

₩ undefined

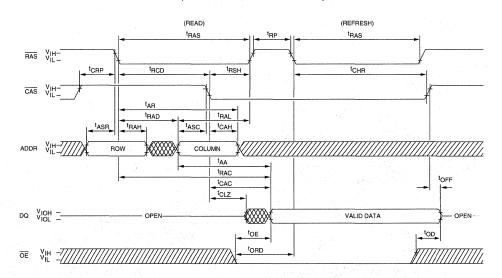

NOTE: 1. Do not drive data prior to tristate.

CBR REFRESH CYCLE 39 (Addresses, OE = DON'T CARE)

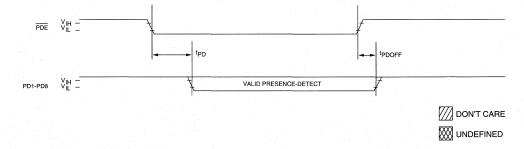
SELF REFRESH CYCLE 39 (Addresses and OE = DON'T CARE)

DON'T CARE

W UNDEFINED


NOTE: 1. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.

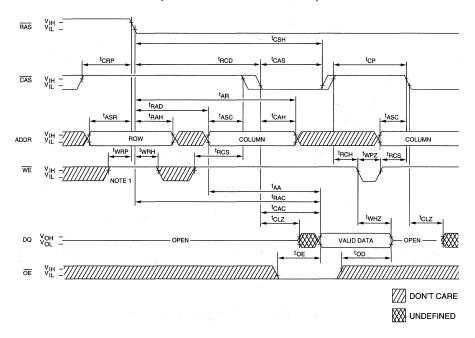
2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.



HIDDEN REFRESH CYCLE 21, 39

 $(\overline{WE} = HIGH; \overline{OE} = LOW)$

PRESENCE-DETECT READ CYCLE 39



NOTE: 1. PD pins must be pulled HIGH at next level of assembly.

EDO READ CYCLE

(with WE-controlled disable)

NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

DRAM MODULE

2 MEG x 72

16 MEGABYTE, ECC, 3.3V, OPTIONAL SELF REFRESH, FAST PAGE OR EDO PAGE MODE

FEATURES

OPETONIC

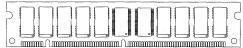
- JEDEC- and industry-standard ECC pinout in a 168pin, dual-in-line memory module (DIMM)
- High-performance CMOS silicon-gate process
- Single $+3.3V \pm 0.3V$ power supply
- All device pins are TTL-compatible
- Low power, 9mW standby; 1,800mW active, typical
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR), HIDDEN: Extended and SELF REFRESH
- All inputs are buffered except RAS
- 2,048-cycle refresh distributed across 32ms or 2,048-cycle Extended Refresh distributed across 128ms
- FAST PAGE MODE (FPM) or Extended Data-Out (EDO) PAGE MODE access cycles

그 등은 근무를 하루다면요? 그는 가는 것은 모양을 되었다.	MAKKIN
• Timing 60ns access 70ns access	-6 -7
• Components SOJ TSOP	D DT
Packages 168-pin DIMM (gold)	G
Refresh Standard/32ms SELF REFRESH/128ms	Blank S

KEY TIMING PARAMETERS

EDO option

SPEED	tRC	^t RAC	^t PC	^t AA	†CAC	tCAS
-6	110ns	60ns	25ns	35ns	20ns	10ns
-7	130ns	70ns	30ns	40ns	25ns	12ns


FPM option

SPEED	tRC	^t RAC	tPC	†AA	tCAC	tRP
-6	110ns	60ns	35ns	35ns	20ns	40ns
-7	130ns	70ns	40ns	40ns	25ns	50ns

PIN ASSIGNMENT (Front View)

168-Pin DIMM

(DE-17) SOJ Version (DE-18) TSOP Version

PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBO
1	Vss	43	Vss	85	Vss	127	Vss
2	DQ0	44	0E2	86	DQ36	128	RFU
3	DQ1	45	RAS2	87	DQ37	129	NC
4	DQ2	46	CAS4	88	DQ38	130	NC
5	DQ3	47	RFU	89	DQ39	131	RFU
6	Vcc	48	WE2	90	Vcc	132	PDE
7	DQ4	49	Vcc	91	DQ40	133	Vcc
8	DQ5	50	NC	92	DQ41	134	NC
9	DQ6	51	NC	- 93	DQ42	135	NC
10	DQ7	52	DQ18	94	DQ43	136	DQ54
11	DQ8	53	DQ19	95	DQ44	137	DQ55
12	Vss	54	Vss	96	Vss	138	Vss
13	DQ9	55	DQ20	97	DQ45	139	DQ56
14	DQ10	56	DQ21	98	DQ46	140	DQ57
15	DQ11	57	DQ22	99	DQ47	141	DQ58
16	DQ12	58	DQ23	100	DQ48	142	DQ59
17	DQ13	59	Vcc	101	DQ49	143	Vcc
18	Vcc	60	DQ24	102	Vcc	144	DQ60
19	DQ14	61	RFU	103	DQ50	145	RFU
20	DQ15	62	RFU	104	DQ51	146	RFU
21	DQ16	63	RFU	105	DQ52	147	RFU
22	DQ17	64	RFU	106	DQ53	148	RFU
23	Vss	65	DQ25	107	Vss	149	DQ61
24	NC	66	DQ26	108	NC	150	DQ62
25	NC	67	DQ27	109	NC	151	DQ63
26	Vcc	68	Vss	110	Vcc	152	Vss
27	WE0	69	DQ28	111	RFU	153	DQ64
28	CASO	70	DQ29	112	NC	154	DQ65
29	RFU	71	DQ30	113	RFU	155	DQ66
30	RAS0	72	DQ31	114	NC	156	DQ67
31	OE0	73	Vcc	115	RFU	157	Vcc
32	Vss	74	DQ32	116	Vss	158	DQ68
33	A0	75	DQ33	117	A1	159	DQ69
34	A2	76	DQ34	118	A3	160	DQ70
35	A4	77	DQ35	119	A5	161	DQ71
36	A6	78	Vss	120	A7	162	Vss
37	A8	79	PD1	121	A9	163	PD2
38	A10	80	PD3	122	NC	164	PD4
39	NC	81	PD5	123	NC	165	PD6
40	Vcc	82	PD7	124	Vcc	166	PD8
41	RFU	83	ID0	125	RFU	167	ID1
42	RFU	84	Vcc	126	B0	168	Vcc

VALID PART NUMBERS

PART NUMBER	DESCRIPTION
MT9LDT272G-xx	2 Meg x 72, FPM, TSOP
MT9LDT272G-xx S	2 Meg x 72, FPM, S*, TSOP
MT9LDT272G-xx X	2 Meg x 72, EDO, TSOP
MT9LDT272G-xx XS	2 Meg x 72, EDO, S*, TSOP
MT9LD272G-xx	2 Meg x 72, FPM, SOJ
MT9LD272G-xx S	2 Meg x 72, FPM, S*, SOJ
MT9LD272G-xx X	2 Meg x 72, EDO, SOJ
MT9LD272G-xx XS	2 Meg x 72, EDO, S*, SOJ

^{&#}x27;S = SELF REFRESH

GENERAL DESCRIPTION

The MT9LD(T)272(X)(S) is a randomly accessed solidstate memory containing 2,097,152 words respectively organized in a x72 configuration. It is specially processed to operate from 3.0V to 3.6V for low-voltage memory systems.

During READ or WRITE cycles, each bit is uniquely addressed through the 21 address bits. The address is entered first by RAS latching 11 bits and then CAS latching 10 bits. Two copies of address 0 (A0 and B0) are defined to allow maximum performance for 4-byte applications which interleave between two 4-byte banks. A0 is common to the DRAMs used for DQ0-DQ35, while B0 is common to the DRAMs used for DQ36-DQ71.

READ and WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. EARLY WRITE occurs when \overline{WE} goes LOW prior to \overline{CAS} going LOW, and the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle.

FAST PAGE MODE

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address-defined page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by RAS followed by a column-address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

EDO PAGE MODE

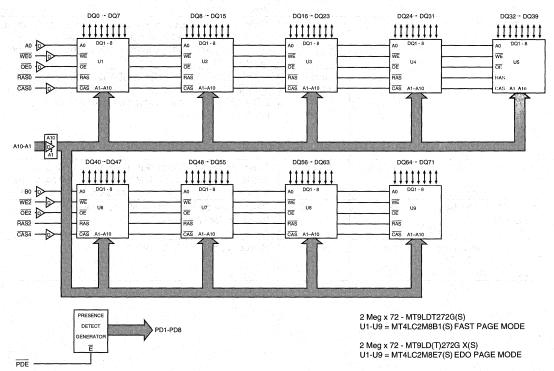
EDO PAGE MODE, designated by the "X" version, is an accelerated FAST PAGE MODE cycle. The primary advantage of EDO is the availability ofdata-out even after $\overline{\text{CAS}}$ goes back HIGH. EDO provides for $\overline{\text{CAS}}$ precharge time (tCP) to occur without the output data going invalid. This elimination of $\overline{\text{CAS}}$ output control provides for pipeline READs.

FAST-PAGE-MODE modules have traditionally turned the output buffers off (High-Z) with the rising edge of \overline{CAS} . EDO-PAGE-MODE DRAMs operate similar to FAST-PAGE-MODE DRAMs, except data will remain valid or become valid after \overline{CAS} goes HIGH during READs, provided \overline{RAS} and \overline{OE} are held LOW. If \overline{OE} is pulsed while \overline{RAS} and \overline{CAS} are LOW, data will toggle from valid data to High-Z and back to the same valid data. If \overline{OE} is toggled or pulsed after \overline{CAS} goes HIGH while \overline{RAS} remains LOW, data will transition to and remain High-Z.

If the DQ outputs are wire OR'd, \overline{OE} must be used to disable idle banks of DRAMs. Alternatively, pulsing \overline{WE} to the idle banks during \overline{CAS} HIGH time will also High-Z the outputs. Independent of \overline{OE} control, the outputs will disable after tOFF , which is referenced from the rising edge of \overline{RAS} or \overline{CAS} , whichever occurs last (reference the MT4LC2M8E7(S) DRAM data sheet for additional information on EDO functionality).

т

REFRESH


Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle, and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time. Correct memory cell data is preserved by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR or HIDDEN) so that all 2,048 combinations of \overline{RAS} addresses (A0-A10) are executed at least every 32ms (128ms "S" version), regardless of sequence. The CBR REFRESH cycle will invoke the internal refresh counter for automatic \overline{RAS} addressing.

An additional SELF REFRESH mode is also available. The "S" version allows the user the choice of a fully static, low-power, data-retention mode, or a dynamic refresh mode at the extended refresh period of 128ms, four times longer than the standard 32ms specifications. The module's SELF REFRESH mode is initiated by performing a CBR

REFRESH cycle and holding \overline{RAS} LOW for the specified ${}^{t}RASS$. Additionally, the "S" version allows for an extended refresh rate of 62.5 μs per row if using distributed CBR refresh. This refresh rate can be applied during normal operation, as well as during a standby or extended refresh mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for the time minimum of an operation cycle, typically 'RPS. This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all 2,048 rows must be refreshed within 300µs prior to the resumption of normal operation.

FUNCTIONAL BLOCK DIAGRAM

NOTE: 1. All inputs with the exception of RAS are redriven.

2. D = line buffers.

PIN DESCRIPTIONS

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
30, 45	RASO, RAS2	Input	Row-Address Strobe: RAS is used to clock-in the 11 row- address bits. Two RAS inputs allow for one x72 bank or two x36 banks.
28, 46	CASO, CAS4	Buffered Input	Column-Address Strobe: CAS is used to clock-in the 10 column-address bits, enable the DRAM output buffers an strobe the data inputs on WRITE cycles.
27, 48	WEO, WE2	Buffered Input	Write Enable: WE is the READ/WRITE control for the DQ pins. WE0 controls DQ0-DQ35. WE2 controls DQ36-DQ71. If WE is LOW prior to CAS going LOW, the access is an EARLY WRITE cycle. If WE is HIGH while CAS is LOW, the access is a READ cycle, provided OE is also LOW. If WE goes LOW after CAS goes LOW, then the cycle is a LATE WRITE cycle. A LATE WRITE cycle is generally used in conjunction with a READ cycle to form a READ-MODIFY-WRITE cycle.
31, 44	OE0, OE2	Buffered Input	Output Enable: OE is the input/output control for the DQ pins. OE0 controls DQ0-DQ35. OE2 controls DQ36-DQ71. These signals may be driven, allowing LATE WRITE cycles.
33-38, 117-121, 126	A0-A10, B0	Buffered Input	Address Inputs: These inputs are multiplexed and clocke by RAS and CAS. A0 is common to the DRAMs used for DQ0-DQ35, while B0 is common to the DRAMs used for DQ36-DQ71.
2-5, 7-11, 13-17, 19-22, 52-53, 55-58, 60, 65-67, 69-72, 74-77, 86-89, 91-95, 97-101, 103-106, 136-137, 139-142, 144, 149-151, 153-156, 158-161	DQ0-DQ71	Input/ Output	Data I/O: For WRITE cycles, DQ0-DQ71 act as inputs to the addressed DRAM location. For READ access cycles, DQ0-DQ71 act as outputs for the addressed DRAM location.
79-82, 163-166	PD1-PD8	Buffered Output	Presence-Detect: These pins are read by the host system and tell the system the DIMM's personality. They will be either driven to Voμ (1) or they will be driven to Voμ (0).
29, 41-42, 47, 61-64, 111, 113, 115, 125, 128, 131, 145-148	RFÜ		RFU: These pins should be left unconnected (reserved for future use).
6, 18, 26, 40, 49, 59, 73, 84, 90, 102, 110, 124, 133, 143, 157, 168	Vcc	Supply	Power Supply: +3.3V ± 0.3V

PIN DESCRIPTIONS (continued)

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
1, 12, 23, 32, 43, 54,	Vss	Supply	Ground
68, 78, 85, 96, 107, 116,			
127, 138, 152, 162			
83, 167	ID0, ID1	Output	ID bits: ID0 = DIMM type. ID1 = Refresh Mode. These pins will be either left floating (NC) or they will be grounded (Vss).
132	PDE	Input	Presence Detect-Enable: PDE is the READ control for the buffered presence-detect pins.
24-25, 39, 50-51,	NC		No connect
108-109, 112, 114,			
122-123, 129, 130,			
134-135, 150, 161			

TRUTH TABLE

FUNCTION						4.14	ADDRI	ESSES	DATA-IN/OUT
		RAS	CAS	WE	ŌE	PDE	^t R	t _C	DQ0-71
Standby		н	H→X	Х	Х	Х	Х	Х	High-Z
READ		L	L	Н	L	Х	ROW	COL	Data-Out
EARLY WRITE		L	L	L	Х	Х	ROW	COL	Data-In
READ WRITE		L	L-	H→L	L→H	Х	ROW	COL	Data-Out, Data-In
EDO/FAST-PAGE-	1st Cycle	L	H→L	Н	L	Х	ROW	COL	Data-Out
MODE READ	2nd Cycle	L	H→L	Н	L	Х	n/a	COL	Data-Out
EDO/FAST-PAGE-	1st Cycle	L	H→L	L	Х	Х	ROW	COL	Data-In
MODE EARLY-WRITE	2nd Cycle	L	H→L	L	Х	Х	n/a	COL	Data-In
EDO/FAST-PAGE-	1st Cycle	L	H→L	H→L	L→H	Х	ROW	COL	Data-Out, Data-In
MODE READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	Х	n/a	COL	Data-Out, Data-In
RAS-ONLY REFRESH		Н	Х	Х	Х	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	L	Х	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	Х	Х	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	Х	Х	Х	Х	High-Z
SELF REFRESH (S ve	rsion)	H→L	L	Н	Х	Х	Х	Х	High-Z
READ PRESENCE-DETECTS		Х	X	Х	Х	L	Х	Х	Not Affected

PRESENCE-DETECT TRUTH TABLE

	CHARAC	CTERISTICS		11.11		Р	RESEN	ICE-DI	TECT	PIN (PE	Dx)	
Module Density	Module Organization	Row/Column Addresses	ID0	ID1	1	2	3	4	5	6	7	8
OMB	No module installed		era caran a centra		- 1	1	1	1				
2MB 4MB	256K x 64/72 512K x 64/72	9/9 9/9			0	0	0	0				
4MB 8MB	512K x 64/72/80 1 Meg x 64/72/80	10/9 10/9			0	1	0	0				
8MB 16MB	1 Meg x 64/72/80 2 Meg x 64/72/80	10/10 10/10			0	0	1	0				
● 16MB	2 Meg x 64/72/80	11/10			1	0	0	1				
32MB	4 Meg x 64/72/80	11/10			0	1	0	1				
32MB 64MB	4 Meg x 64/72/80 8 Meg x 64/72/80	12*/11* 12/10			1	1	0	1				
Page Mode		Fast Page Mode							0			
		EDO Page Mode							1			
Access Timi	ing	80ns								1	0	
		70ns								0	-1	
		60ns								1	1	
		50ns								0	0	
Refresh Con	trol	Standard		Vss								
E 100.1 11		Self		NC								
Data Width,	Parity	x64, No Parity	Vss									1
		x72, Parity	NC									1
1 2 2 2 2 2 2		x72, ECC	Vss									0
		x80, ECC	NC									0

NOTE: Vss = ground; 0 = Vol.; 1 = Voh.

^{*} This addressing includes a redundant address to allow mixing of 12/10 and 11/11 DRAMs with the same presencedetect setting.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Pin Relative to Vss1V to +4.5V
Voltage on Inputs or I/O Pins
Relative to Vss1V to +5.5V
Operating Temperature, T _A (ambient) 0°C to +70°C
Storage Temperature (plastic)55°C to +125°C
Power Dissipation
Short Circuit Output Current 50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Alteración (s. es	Vcc	3.0	3.6	V	
Input High (Logic 1) Voltage, all inputs		Vін	2.0	5.5V	V	
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT Any input $0V \le V_{IN} \le 5.5V$ (All other pins not under test = 0V) for each package input	CAS0, CAS4 A0-A10, B0 WE0,2,OE0,2	111	-2	2	μА	
	RASO, RAS2	l ₁₂	-10	10	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; $0V \le Vout \le 5.5V$) for each package input	DQ0-DQ71	loz	-10	10	μА	
OUTPUT LEVELS		Vон	2.4		V	
Output High Voltage (IouT = -2mA) Output Low Voltage (IouT = 2mA)		Vol		0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) ($Vcc = +3.3V \pm 0.3V$)			M	AX		
PARAMETER/CONDITION	SYMBOL	SIZE	-6	-7	UNITS	NOTES
STANDBY CURRENT: (TTL) $(\overline{RAS} = \overline{CAS} = V_{IH})$	Icc1	16MB	18	18	mA	28
STANDBY CURRENT: (CMOS) (RAS = CAS = Vcc -0.2V)	Icc2 Icc2 (S only)	16MB 16MB	4.5 1.3	4.5 1.3	mA mA	28
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Icc3	16MB	1,170	1,080	mA	3, 4, 28, 32
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN])	Icc4	16MB	810	720	mA	3, 4, 28, 32
OPERATING CURRENT: EDO PAGE MODE (X version only) Average power supply current (RAS = VIL, CAS, Address Cycling: tPC = tPC [MIN])	lcc5 (X only)	16MB	1,080	990	mA	3, 4, 28, 32
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = Vih: ¹RC = ¹RC [MIN])	Icc6	16MB	1,170	1,080	mA	3, 28, 32
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Icc7	16MB	1,170	1,080	mA	3, 5, 28
REFRESH CURRENT: Extended CBR (S version only) Average power supply current CAS = 0.2V or CBR cycling; RAS = tRAS (MIN); WE = Vcc -0.2V; A0-A10, OE and DIN = Vcc -0.2V or 0.2V (DIN may be left open); tRC = 62.5µs (2,048 rows at 62.5µs = 128ms)	Iccs (S only)	16MB	2.7	2.7	mA	3, 5, 28, 31
REFRESH CURRENT: SELF (S version only) Average power supply current during SELF REFRESH; CBR cycling with RAS ≥ ¹RASS (MIN) and CAS held LOW; WE = Vcc -0.2V; A0-A10, OE and DIN = Vcc -0.2V or 0.2V (DIN may be left open)	Icce (S only)	16MB	2.7	2.7	mA	5, 28

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A10, B0	Cıı		9	pF	2
Input Capacitance: WEO, WE2, OEO, OE2	Cı2		9	pF	2
Input Capacitance: RASO, RAS2	Сіз		40	pF	2
Input Capacitance: CASO, CAS4	C14		9	pF	2
Input/Output Capacitance: DQ0-DQ71	Сю		10	pF	2
Output Capacitance: PD1-PD8	Со		10	pF	2

FAST PAGE MODE ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - FAST PAGE MODE OPTION		-6		2003	-7	1. Let 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		35		40	ns	25
Column-address hold time (referenced to RAS)	^t AR	48		53	Switz Page	ns	24
Column-address setup time	tASC	2		2		ns	23
Row-address setup time	tASR	5		5		ns	25
Column-address to WE delay time	^t AWD	57	1 1 1 1 1 1 1 1 1	62		ns	23, 30
Access time from CAS	^t CAC		20		25	ns	15, 25
Column-address hold time	^t CAH	15		20		ns	25
CAS pulse width	tCAS	15	10,000	20	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH	tCHD	15	A SECTION	15		ns	31
CAS hold time (CBR REFRESH)	tCHR	13	· ·	13		ns	5, 24
CAS to output in Low-Z	^t CLZ	5		5		ns	23, 33
CAS precharge time	^t CP	10		10	1.00	ns	16
Access time from CAS precharge	^t CPA		40		45	ns	25
CAS to RAS precharge time	^t CRP	10		10		ns	25
CAS hold time	^t CSH	58		68		ns	24
CAS setup time (CBR REFRESH)	^t CSR	7		7	gie or	ns	5, 23
CAS to WE delay time	^t CWD	42		47		ns	23, 30
Write command to CAS lead time	tCWL	15		20	1 119	ns	
Data-in hold time	^t DH	15		20		ns	25, 29
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	^t DS	-2		-2	Alberta de la composición	ns	24, 29
Output disable	^t OD	3	15	3	20	ns	33
Output enable	^t OE		15		20	ns	-53
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	13		13		ns	24

FAST PAGE MODE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - FAST PAGE MODE OPTION			-6	ele S	-7	F (1) 194	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	5	20	5	25	ns	20, 27, 36
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	. 0		0		ns	20
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	
PDE to valid presence-detect data	^t PD		10		10	ns	35
PDE inactive to presence-detects inactive	^t PDOFF	2		2	1	ns	34
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	87		97	1	ns	23
Access time from RAS	tRAC		60		70	ns	14
RAS to column-address delay time	^t RAD	13	25	13	30	ns	18, 26
Row-address hold time	tRAH .	8		8		ns	24
Column-address to RAS lead time	^t RAL	35		40		ns	25
RAS pulse width	^t RAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	^t RASP	60	100,000	70	100,000	ns	
RAS pulse width during SELF REFRESH	tRASS	100		100		μs	31
Random READ or WRITE cycle time	^t RC	110		130		ns	
RAS to CAS delay time	tRCD	18	40	18	45	ns	17, 26
Read command hold time (referenced to CAS)	tRCH	2		2		ns	19, 23
Read command setup time	tRCS	2		2		ns	23
Refresh period (2,048 cycles) - 2 Meg x 72	^t REF		32		32	ms	
Refresh period (2,048 cycles) - 2 Meg x 72 S version	†REF		128		128	ms	1.
RAS precharge time	t _{RP}	40		50		ns	
RAS to CAS precharge time	tRPC	0		0	100	ns	1
RAS precharge time during SELF REFRESH	t _{RPS}	110		130		ns	31
Read command hold time (referenced to RAS)	tRRH	0		0		ns	19
RAS hold time	tRSH	20		25		ns	25
READ WRITE cycle time	†RWC	155		185		ns	25
RAS to WE delay time	^t RWD	87		97		ns	23, 30
Write command to RAS lead time	tRWL	20		25		ns	25
Transition time (rise or fall)	^t T	3	50	3	50	ns	*
Write command hold time	tWCH	15		20		ns	25
Write command hold time (referenced to RAS)	tWCR	43		53		ns	24
WE command setup time	tWCS	2		2		ns	23, 30
Write command pulse width	tWP	10		15		ns	a esta esta esta esta esta esta esta est
WE hold time (CBR REFRESH)	tWRH	8		8		ns	22, 24
WE setup time (CBR REFRESH)	tWRP	12		12		ns	22, 23

EDO PAGE MODE ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

AC CHARACTERISTICS - EDO PAGE MODE OPTION			-6		-7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		35	1.74	40	ns	25
Column-address setup to CAS precharge during writes	^t ACH	15		15		ns	
Column-address hold time (referenced to RAS)	^t AR	43		53		ns	24
Column-address setup time	†ASC	2		2		ns	23
Row-address setup time	tASR	5	1773	5		ns	25
Column-address to WE delay time	tAWD	57		67		ns	23, 30
Access time from CAS	^t CAC		20		25	ns	15, 25
Column-address hold time	^t CAH	15		17		ns	25
CAS pulse width	†CAS	10	10,000	12	10,000	ns	
RAS LOW to "don't care" during SELF REFRESH	tCHD	15		15		ns	31
CAS hold time (CBR REFRESH)	tCHR	8		10		ns	5, 24
CAS to output in Low-Z	†CLZ	2		2	100	ns	23
Data output hold after CAS LOW	^t COH	7		7		ns	23
CAS precharge time	^t CP	10		10		ns	16
Access time from CAS precharge	^t CPA		40		45	ns	25, 37
CAS to RAS precharge time	^t CRP	10		10		ns	25
CAS hold time	^t CSH	48		53		ns	24
CAS setup time (CBR REFRESH)	^t CSR	7		7		ns	5, 23
CAS to WE delay time	tCWD	37		42		ns	23, 30
Write command to CAS lead time	tCWL	15		15		ns	
Data-in hold time	^t DH	15		17		ns	25, 29
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	t _{DS}	-2		-2		ns	24, 29
Output disable	tOD	0	15	0	15	ns	
Output enable	^t OE		15		15	ns	
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	10		10		ns	24
OE HIGH hold time from CAS HIGH	[†] OEHC	10	† – †	10		ns	
OE HIGH pulse width	^t OEP	10		10		ns	
OE LOW to CAS HIGH setup time	^t OES	5		5		ns	
Output buffer turn-off delay	^t OFF	5	20	5	20	ns	20, 27, 36
OE setup prior to RAS during HIDDEN REFRESH cycle	tORD	0		0		ns	20
EDO-PAGE-MODE READ or WRITE cycle time	^t PC	25		30		ns	
PDE to Valid Presence-Detect Data	^t PD		10		10	ns	35
PDE Inactive to Presence-Detects Inactive	^t PDOFF	2		2		ns	34
EDO-PAGE-MODE READ-WRITE cycle time	^t PRWC	77		87		ns	23
Access time from RAS	^t RAC		60	-	70	ns	14
RAS to column-address delay time	tRAD	10	25	10	30	ns	18, 26
Row-address hold time	^t RAH	8		8		ns	24
Column-address to RAS lead time	†RAL	35		40		ns	25
RAS pulse width	tRAS	60	10,000	70	10,000	ns	
RAS pulse width (EDO PAGE MODE)	tRASP	60	125,000	70	125,000	ns	
RAS pulse width during SELF REFRESH	tRASS	100	,	100	1	μѕ	31
Random READ or WRITE cycle time	tRC	110	1 - 1	130		ns	

EDO PAGE MODE

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = +3.3V \pm 0.3V$)

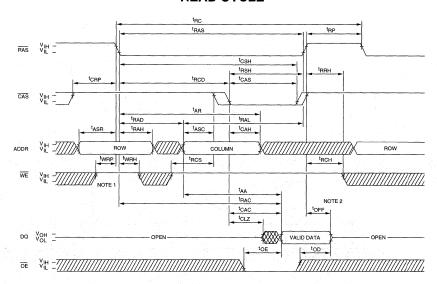
AC CHARACTERISTICS - EDO PAGE MODE OPTION			-6		-7	50 Sec.	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
RAS to CAS delay time	^t RCD	12	40	12	45	ns	17, 26
Read command hold time (referenced to CAS)	tRCH	2		2		ns	19, 23
Read command setup time	†RCS	2		2		ns	23
Refresh period (2,048 cycles) - 2 Meg x 72	^t REF		32		32	ms	
Refresh period (2,048 cycles) - 2 Meg x 72 S version	tREF.		128		128	ms	
RAS precharge time	^t RP	40		50		ns	
RAS to CAS precharge time	tRPC	0		0		ns	
RAS precharge time during SELF REFRESH	tRPS	110		130		ns	31
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	19
RAS hold time	tRSH t	15		17		ns	25
READ WRITE cycle time	tRWC	155		182		ns	25
RAS to WE delay time	tRWD	82		92		ns	23, 30
Write command to RAS lead time	^t RWL	20		20		ns	25
Transition time (rise or fall)	tΤ	2	50	2	50	ns	
Write command hold time	tWCH	15		17		ns	25
Write command hold time (referenced to RAS)	tWCR	43		53		ns	24
WE command setup time	twcs	2		2		ns	23
Output disable delay from WE (CAS HIGH)	tWHZ .	2	18	2	20	ns	27
Write command pulse width	tWP	10		12		ns	1
WE pulse width for output disable when CAS HIGH	tWPZ	10		12	1 1 1 1 1 1	ns	
WE hold time (CBR REFRESH)	tWRH	8		8		ns	22, 24
WE setup time (CBR REFRESH)	tWRP	12	T .	12	1.7.5	ns	22, 23

MT9LD(T)272(X)(S) 2 MEG x 72 DRAM MODULE

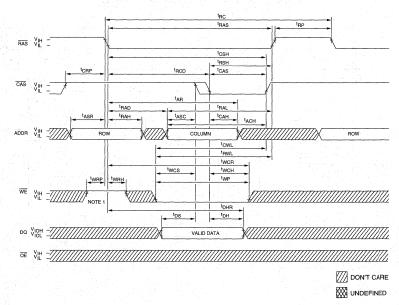
NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = +3.3V; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ^tT = 5ns for FPM and 2.5ns for EDO.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{\text{CAS}} = \text{ViL}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF and Vol = 0.8V and Vol = 2.0V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRAC (MIN) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.

- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE = HIGH.
- 22. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverse of tWRP and tWRH in the CBR REFRESH cycle.
- 23. A +2ns timing skew from the DRAM to the module resulted from the addition of line drivers.
- 24. A -2ns timing skew from the DRAM to the module resulted from the addition of line drivers.
- 25. A +5ns timing skew from the DRAM to the module resulted from the addition of line drivers.
- A -2ns (MIN) and a -5ns (MAX) timing skew from the DRAM to the module resulted from the addition of line drivers.
- 27. A +2ns (MIN) and a +5ns (MAX) timing skew from the DRAM to the module resulted from the addition of line drivers.
- 28. The maximum current ratings are based with the memory operating or being refreshed in the x72 mode. The stated maximums may be reduced by onehalf when used in the x36 mode.
- 29. These parameters are referenced to CAS leading edge in EARLY WRITE cycles and WE leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 30. ^tWCS, ^tRWD, ^tAWD and ^tCWD are not restrictive operating parameters. ^tWCS applies to EARLY WRITE cycles. ^tRWD, ^tAWD and ^tCWD apply to READ-MODIFY-WRITE cycles. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions is met, the state of data-out is indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE WRITE (OE-controlled) cycle. ^tWCS, ^tRWD, ^tCWD and ^tAWD are not applicable in a LATE WRITE cycle.

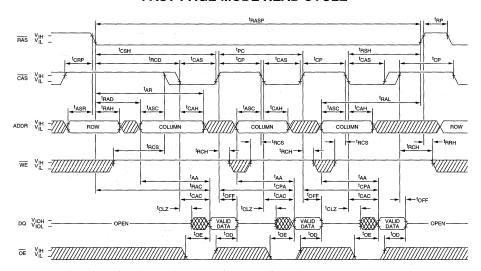

MT9LD(T)272(X)(S) 2 MEG x 72 DRAM MODULE

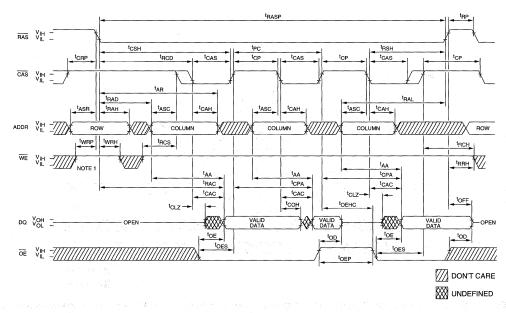
NOTES (continued)


- 31. Refresh must be completed within the time of three external refresh rate periods prior to active use of the DRAM (provided distributed CBR REFRESH is used when in the active mode.) Alternatively, a complete set of row refreshes must be executed when exiting SELF REFRESH prior to active use of the DRAM if anything other than distributed CBR REFRESH is used in the active mode.
- 32. Column-address changed once each cycle.
- The 3ns minimum is a parameter guaranteed by design.

- 34. [†]PDOFF MAX is determined by the pullup resistor value. Care must be taken to ensure adequate recovery time prior to reading valid up-level on subsequent DIMM position.
- 35. Measured with the specified current load and 100pf.
- 36. For FAST PAGE MODE option, 'OFF is determined by the first RAS or CAS signal to transition HIGH. In comparison, 'OFF on an EDO option is determined by the latter of the RAS and CAS signal to transition HIGH.
- 37. Applies to both EDO and FAST PAGE MODEs.

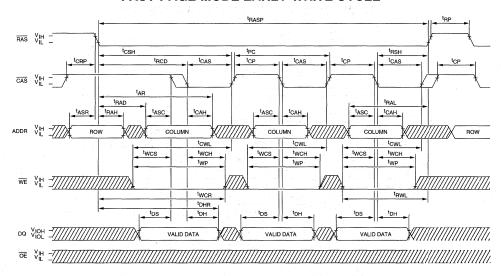
READ CYCLE 37

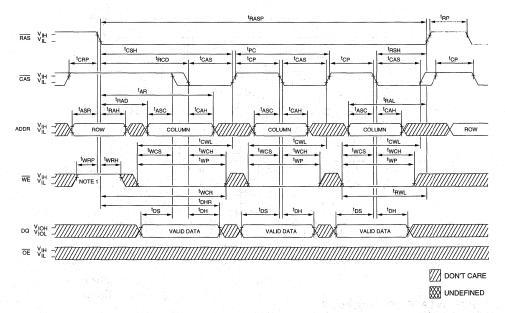

EARLY WRITE CYCLE 37


NOTE:

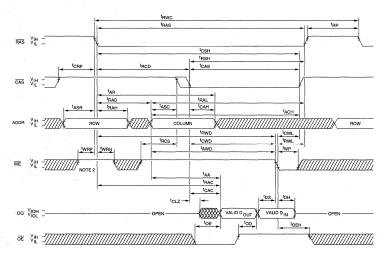
- Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.
- 2. OFF is referenced from rising edge of RAS or CAS, which ever occurs last.

FAST-PAGE-MODE READ CYCLE

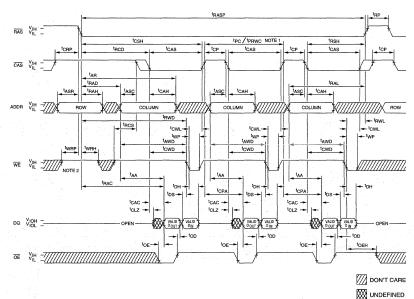

EDO-PAGE-MODE READ CYCLE


NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

FAST-PAGE-MODE EARLY-WRITE CYCLE



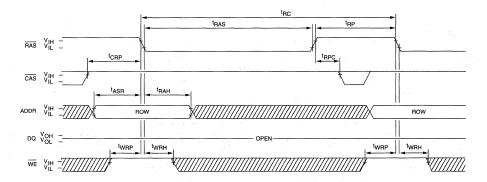
EDO-PAGE-MODE EARLY-WRITE CYCLE



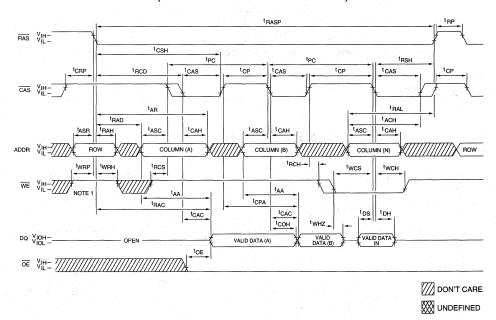
NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

READ WRITE CYCLE³⁷ (LATE WRITE and READ-MODIFY-WRITE cycles)

EDO/FAST-PAGE-MODE READ-WRITE CYCLE 37 (LATE WRITE and READ-MODIFY-WRITE cycles)

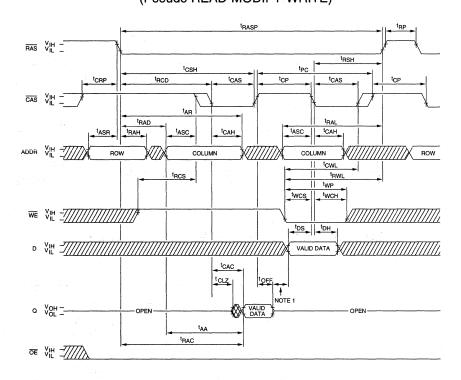


NOTE:

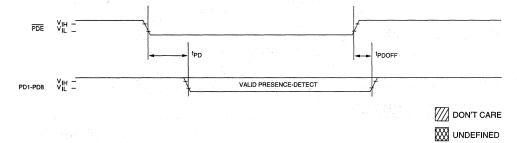

- 1. ^tPC is for LATE WRITE cycles only.
- 2. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for tWRP and tWRH. This design implementation will facilitate compatibility with future EDO DRAMs.

W I DRAM DIMM

RAS-ONLY REFRESH CYCLE 37 (WE = DON'T CARE)



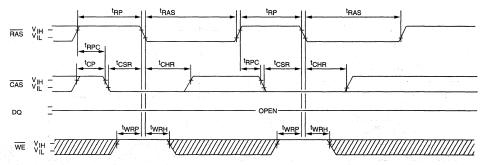
EDO-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)



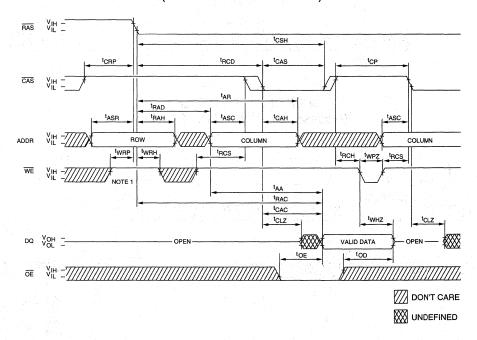
NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)

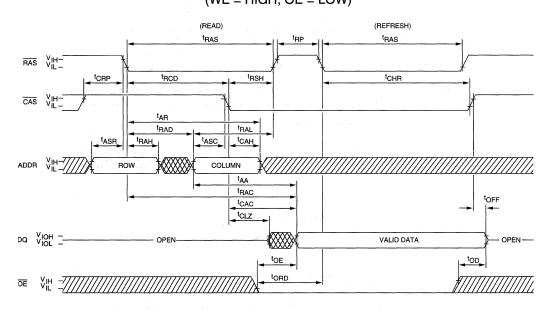
PRESENCE-DETECT READ CYCLE 37


NOTE: 1. Do not drive data prior to tristate.

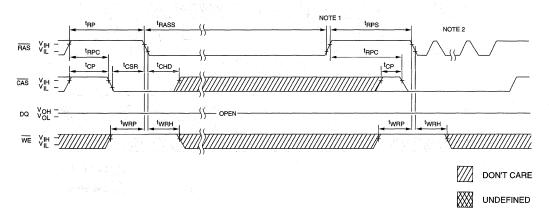
2. PD pins must be pulled HIGH at next level of assembly.


CBR REFRESH CYCLE 37

(Addresses, OE = DON'T CARE)


EDO READ CYCLE

(with WE-controlled disable)



NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

HIDDEN REFRESH CYCLE 21,37 $(\overline{WE} = HIGH; \overline{OE} = LOW)$

SELF REFRESH CYCLE 37 (Addresses and OE = DON'T CARE)

NOTE:

- 1. Once TRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.
- 2. Once ^tRPS is satisfied, a compete burst of all rows should be executed.

MICHON TECHNOLOGY, INC.

EDO DRAMs			****	1
FPM DRAMs			*****	2
SGRAM	ng dang mada dang maha maha maha maha maha maha maha mah			3
DRAM SIMMs	(***********			4
DRAM DIMMs	日 胡 郑 郑 郑 郑 郑 郑 郑 郑 郑 郑 郑 郑 郑 郑 郑 		******	5
DRAM CARDS				6
TECHNICAL NOTES			数数数 医早度 红 吃	7
PRODUCT RELIABILIT	Υ		*****	
PACKAGE INFORMATI	ON		* * * * * * * *	9
SALES AND SERVICE	INFORM	ATION	*****	10
MICRON DATAFAX INC)EX		***	11

DRAM CARD PRODUCT SELECTION GUIDE

Memory			Part	Access	Number of Pins	
Configuration			Number	Time (ns)	Card	Page
3.3V DRAM Cards	3					
1 Meg x 32	3.3V	4 Megabytes	MT8D88C132V(S)	60, 70, 80	88	6-33
1 Meg x 32	3.3V	4 Megabytes	MT8D88C132VH(S)	60, 70, 80	88	6-49
2 Meg x 32	3.3V	8 Megabytes	MT16D88C232V(S)	60, 70, 80	88	6-33
2 Meg x 32	3.3V	8 Megabytes	MT16D88C232VH(S)	60, 70, 80	88	6-49
4 Meg x 32	3.3V	16 Megabytes	MT8D88C432V(S)	60, 70, 80	88	6-33
4 Meg x 32	3.3V	16 Megabytes	MT8D88C432VH(S)	60, 70, 80	88	6-49
8 Meg x 32	3.3V	32 Megabytes	MT16D88C832V(S)	60, 70, 80	88	6-33
8 Meg x 32	3.3V	32 Megabytes	MT16D88C832VH(S)	60, 70, 80	88	6-49
5V DRAM Cards	90,80 3 0,800,000	en en en eg <u>a de la d</u>	e gweet e la land ee a			
1 Meg x 32	5V	4 Megabytes	MT8D88C132(S)	60, 70	88	6-1
1 Meg x 32	5V	4 Megabytes	MT8D88C132H(S)	60, 70	88	6-17
2 Meg x 32	5V	8 Megabytes	MT16D88C232(S)	60, 70	88	6-1
2 Meg x 32	5V	8 Megabytes	MT16D88C232H(S)	60, 70	88	6-17

DRAM CARD

4,8 MEGABYTES

1 MEG, 2 MEG x 32; 5V, FAST PAGE MODE, OPTIONAL SELF REFRESH

PIN ASSIGNMENT (End View)

FEATURES

- Low power
- JEDEC-standard 88-pin DRAM card pinout
- · Polarized receptacle connector
- Industry-standard DRAM FAST PAGE MODE operation
- High reliability, gold-plated connector
- All outputs fully TTL-compatible
- Multiple \overline{RAS} inputs for x16 or x32 selectability
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN; optional SELF REFRESH mode
- FAST PAGE MODE (FPM) access cycle
- Single +5V ±5% power supply
- Extended Refresh

O	P	ΤI	O	N	S

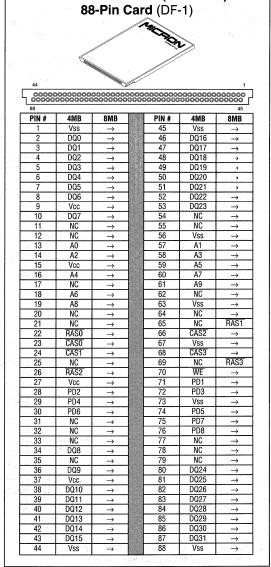
MARKING

-6

 Timing 			
60ns access			
70ns access			

Refresh
 Extended Refresh
 Blank
 SELF REFRESH
 S

KEY TIMING PARAMETERS


SPEED	tRC	^t RAC	^t PC	^t AA	^t CAC	^t RP
-6	110ns	60ns	35ns	37ns	22ns	40ns
-7	130ns	70ns	40ns	42ns	27ns	50ns

VALID PART NUMBERS

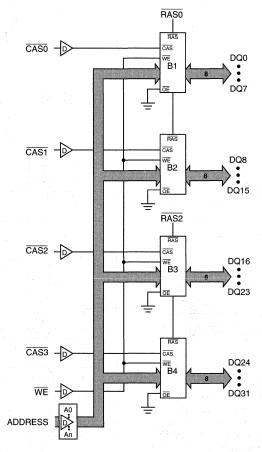
PART NUMBER	DESCRIPTION
MT8D88C132-xx	1 Meg x 32
MT8D88C132-xx S	1 Meg x 32, SELF REFRESH
MT16D88C232-xx	2 Meg x 32
MT16D88C232-xx S	2 Meg x 32, SELF REFRESH

GENERAL DESCRIPTION

The MT8D88C132(S) and MT16D88C232(S) comprise a family of JEDEC standard DRAM cards organized in x32-bit memory arrays. The cards may also be configured as x16-bit memory arrays, provided the corresponding DQs on the host system are made common, and memory bank control procedures are implemented. Four separate $\overline{\text{CAS}}$ inputs allow byte accesses.

GENERAL DESCRIPTION (continued)

These cards are designed for low-power operation using low-power, extended refresh DRAMs. Standard component DRAM refresh modes are supported as well.

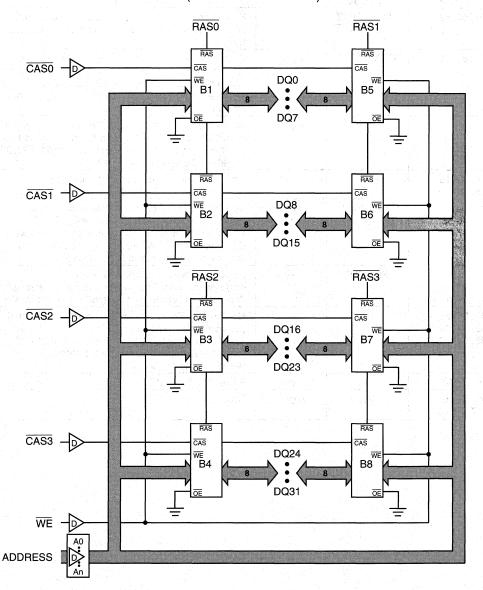

Multiple \overline{RAS} inputs conserve power by allowing individual bank selection. In the x32 organization, the memory is a single array that may be divided into four separate bytes. In the x16 organization, up to two banks, each with 2 separate bytes, may be independently selected. One bank is activated by each \overline{RAS} selection; the others not selected remain in standby mode, drawing minimum power.

Eight presence-detect pins may be read by the host to identify the card's organization, number of banks, access time and refresh operation. These extensive presence-detect functions allow systems to take full advantage of the card's advanced power-saving features.

These Micron DRAM Cards are built with 3.370-inchlong static dissipative plastic frames covered by metal panels. Packages containing 88-pin receptacle connectors are keyed to prevent improper installation or insertion into other types of IC card sockets.

FUNCTIONAL BLOCK DIAGRAM

(4MB - MT8D88C132)



NOTE: 1. B1 through B4 = x8 memory blocks.

2. D = 74AC11244 line drivers.

FUNCTIONAL BLOCK DIAGRAM

(8MB - MT16D88C232)

NOTE: 1. B1 through B8 = x8 memory blocks.

2. D = 74AC11244 line drivers.

PIN DESCRIPTIONS

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
22, 26, 65, 69	RASO, RAS2 RAST, RAS3	Input	Row-Address Strobe: RAS is used to latch the row- address. Two RAS inputs allow for a single x32 bank or two x16 banks.
23, 24, 66, 68	CASO-CAS3	Input	Column-Address Strobe: CAS is used to latch the column-address, enable the DRAM output buffers and strobe the data inputs on WRITE cycles. Four CAS inputs allow byte access control for any memory bank configuration.
70	wE	Input	Write Enable: WE is the READ/WRITE control for the DQ pins. If WE is LOW prior to CAS going LOW, the access is a WRITE cycle. If WE is HIGH during the CAS LOW transition, the access is a READ cycle.
13, 57, 14, 58, 16, 59, 18, 60, 19, 61	A0-A9	Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS.
2-8, 10, 34, 36, 38-43, 46-53, 80-87	DQ0-DQ31	Input/ Output	Data I/O: For WRITE cycles, DQ0-DQ31 act as inputs to the addressed DRAM location. BYTE WRITEs may be performed by using the corresponding CAS select. For READ access cycles, DQ0-DQ31 act as outputs for the addressed DRAM location.
71, 28, 72, 29, 74, 30, 75, 76	PD1-PD8	_	Presence-Detect: These pins are read by the host system and tell the system the card's personality. They will be either left floating (NC) or grounded (Vss).
11, 12, 17, 20, 21, 25, 31, 32, 33, 35, 54, 55, 62, 64, 65, 69, 77, 78, 79	NC		No Connect: These pins should be left unconnected (reserved for future use). Pins 12, 31-33, 54, 77-79 reserved for x36/x40 DQs. Plns 11, 17, 25, 35 reserved for 3.3V Vcc. Pin 55 reserved for x40 OE.
9, 15, 27, 37	Vcc	Supply	Power Supply: +5V ±5%
1, 44, 45, 56, 63, 67, 73, 88	Vss	Supply	Ground

DRAM CARD

FUNCTIONAL DESCRIPTION

The MT8D88C132(S) and MT16D88C232(S) comprise a family of DRAM cards organized in x32-bit memory arrays $(\overline{RAS0} = \overline{RAS2})$. They also may be configured as x16-bit memory arrays provided the corresponding DQs on the host are connected and memory bank control procedures are implemented by interleaving both \overline{RAS} lines.

Most x32-bit applications use the same signal to control the \overline{CAS} inputs. $\overline{RAS0}$ and $\overline{RAS1}$ control the lower 16 bits and $\overline{RAS2}$ and $\overline{RAS2}$ control the upper 16 bits to obtain a x32 memory array. For x16 applications, the corresponding DQ and \overline{CAS} pins must be connected (DQ0 to DQ15, DQ1 to DQ16 and so forth, $\overline{CAS0}$ to $\overline{CAS2}$ and $\overline{CAS1}$ to $\overline{CAS3}$). Each \overline{RAS} is then a bank select for the x16 memory organizations.

DRAM OPERATION

DRAM REFRESH

Memory cell data is retained in its correct state by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR, extended CBR or HIDDEN) so that all combinations of \overline{RAS} addresses (A0-A9) are executed at least every ^tREF, regardless of sequence. The CBR REFRESH cycle will invoke the internal refresh counter for automatic \overline{RAS} addressing.

The implied method of choice for refreshing the memory card is the extended CBR cycle. This is a very low-current, data retention mode made possible by using the CBR REFRESH cycle over the extended refresh range (Icc7).

The memory card may be used with the other refresh modes common to standard DRAMs. This allows the memory card to be used on existing systems that do not utilize the extended CBR REFRESH cycle. However, the memory card will draw more current in the standby mode.

DRAM READ AND WRITE CYCLES

During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. \overline{RAS} is used to latch the first 10 bits, and \overline{CAS} latches the latter 10 bits. READ or WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{CAS} . \overline{WE} must fall prior to \overline{CAS} (EARLY WRITE). The data inputs and data outputs are routed through pins using common I/O and pin direction is controlled by \overline{WE} .

FAST PAGE MODE operation allows faster data operations (READ or WRITE) within a row-address-defined (A0-A9) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by $\overline{CAS}.\overline{CAS}$ may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation. Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time.

REFRESH

An optional SELF REFRESH mode is also available. The "S" version allows the user the choice of a fully static low-power data retention mode, or a dynamic refresh mode at the extended refresh period.

The optional SELF REFRESH feature is initiated by performing a CBR REFRESH cycle and holding $\overline{\text{RAS}}$ LOW for the specified ^tRASS. Additionally, the "S" version allows for an extended refresh rate of 125µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation or during a standby mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for a minimum time of ${}^{t}RPS$ ($\approx {}^{t}RC$). This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all rows must be refreshed within 300 μ s prior to the resumption of normal operation.

PHYSICAL DESIGN

These Micron DRAM Cards are constructed with a 3.370-inch-long static dissipative plastic frame covered by metal panels. Inside, thin small-outline package (TSOP) DRAMs are mounted on an ultrathin printed circuit board. The board is attached to a high-insertion, 88-pin receptacle connector. The package is keyed to prevent improper installation, including insertion into other types of IC card sockets. The DRAM cards operate reliably up to 55°C.

MEMORY TRUTH TABLE

								ADDR	ESSES	3		DATA	IN/OUT	ī
FUNCTION			R	18	CAS	WE		R	1	^t C		DQ0-	DQ31	
Standby			· · · · ·	+	H→X	X		X		X		Hig	gh-Z	
READ				_	L	Н	R	OW	С	ΟL		Data	a-Out	
EARLY WRITE	:		I	-	L	L	R)W	С	OL		Dat	ta-In	
READ WRITE		414 T		_	L	H→L	R	ÓW	С	OL		Dat	ta-In	
FAST-PAGE-M	ODE	1st Cycle	l I		H→L	Н Н	R	OW.	С	OL		Data	a-Out	
READ		2nd Cycle) I		H→L	Н	l n	/a	C	OL		Data	a-Out	
FAST-PAGE-M	10DE	1st Cycle		- 111	H→L	L	R	DW	C	OL		Dat	ta-In	
EARLY-WRITE	E .	2nd Cycle)	-	H→L	L	r	/a	С	OL		Dat	ta-In	
FAST-PAGE-M	ODE	1st Cycle	l	-	H→L	H→L	R	DW_	C	OL		Data	a-Out	
READ-WRITE		2nd Cycle) I	_	H→L	H→L	r	/a	С	OL		Data	a-Out	
RAS-ONLY RE	FRESH				Н	Х	R	OW	r	n/a		Hiç	gh-Z	
HIDDEN		READ	L→l	⊣→L	L	Н	R	OW	С	OL		Data	a-Out	
REFRESH		WRITE	L→l	1 →L	. L	L	R	DW .	С	OL		Dat	ta-In	
CBR REFRES	Н		H-	→L ¹	L	, H 191		X		X		Hiç	gh-Z	
SELF REFRES	SH (S ve	ersion)	H-	→L	L	Н		X		X		Hiç	gh-Z	
PRESENCE-	DETE								· · ·					
Card			TERISTICS		-			P	RESEN	ICE-DE	TECT	PIN (PE	Jx)	Г
Card Density	DR <i>A</i> Organiz		# of Address	RAS Address	CAS Address	Page Depth	1	2	3	4	5	6	7	

	CHARAC	CTERISTICS	3				Р	RESEN	ICE-DE	TECT F	PIN (PE	Ox)	
Card Density	DRAM Organizations	# of Address	RAS Address	CAS Address	Page Depth	1	2	3	4	5	6	7	8
OMB	No card installed	Х	Х	X	Χ	NC	NC	NC	NC	NC			
1MB 2MB	256K x 4 or x16 256K x 4 or x16	18 18	9	9	512 512	Vss Vss	Vss Vss	Vss Vss	Vss Vss	NC Vss			
2MB 4MB	512K x 8 512K x 8	19 19	10 10	9	512 512	NC NC	Vss Vss	Vss Vss	Vss Vss	NC Vss			
●4MB ●8MB	1 Meg x 4 or x16 1 Meg x 4 or x16	20 20	10 10	10 10	1,024 1,024	Vss Vss	NC NC	Vss Vss	Vss Vss	NC Vss			
8MB 16MB	2 Meg x 8 2 Meg x 8	21 21	11 11	10 10	1,024 1,024	NC NC	NC NC	Vss Vss	Vss Vss	NC Vss			
16MB 32MB	4 Meg x 4 or x16 4 Meg x 4 or x16	22 22	11/12 11/12	11/10 11/10	2,048 2,048	Vss Vss	Vss Vss	NC NC	Vss Vss	NC Vss		400 S (4.0)	
Access Timi	ng		10	0ns							Vss	Vss	
^t RAC Max			80)ns							NC	Vşs	
			70	ns	1912						Vss	NC	
		60ns 50ns								NC	NC		
										Vss	Vss		
Refresh Con	trol		Extended				1 1 1						NC
		SELF, Extended								-		Vss	

NOTE: Vss = ground.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	1.0V to +7V
Operating Temperature T _A (ambient)	0°C to 55°C
Storage Temperature	
Power Dissipation	8W
Short Circuit Output Current	50mA
Card Insertions (connector's life cycle)	10,000

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0°C \leq T_A \leq 55°C; Vcc = +5V \pm 5%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES	
Supply Voltage		Vcc	4.75	5.25	V	
Input High (Logic 1) Voltage, all inputs	ViH	2.4	Vcc+1	V		
Input Low (Logic 0) Voltage, all inputs	VIL	-1.0	0.8	V		
INPUT LEAKAGE CURRENT Any input: 0V ≤ Vin ≤ 6.5V	RAS0-RAS3	l _{I1}	-8	8	μΑ	
(All other pins not under test = 0V) for each package input	Buffered	lı2	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vouт ≤ 5.5V) for each package input	DQ0-DQ31	loz	-20	20	μΑ	33
OUTPUT LEVELS		Vон	2.4		V	
Output High Voltage (lout = -5 mA) Output Low Voltage (lout = 4.2 mA)		Vol		0.4	٧	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) (0°C \leq T_A \leq 55°C; Vcc = +5V \pm 5%)

			M	AX]	
PARAMETER/CONDITION	SYMBOL	SIZE	-6	-7	UNITS	NOTES
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: [†] RC = [†] RC [MINI)	lcc1	4MB 8MB	880 896	800 816	mA	3, 4, 30
STANDBY CURRENT: (TTL) (RAS = CAS = Viii)	lcc2	4MB 8MB	16 32	16 32	mA	
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ¹PC = ¹PC [MIN])	lcc3	4MB 8MB	640 656	560 576	mA	3, 4, 30
STANDBY CURRENT: (CMOS) (RAS = CAS = Other Inputs = Vcc -0.2V)	Icc4	4MB 8MB	1.6 3.2	1.6 3.2	mA	
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = VIH: TRC = TRC [MIN])	Icc5	4MB 8MB	880 896	800 816	mA	3, 30
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: [†] RC = [†] RC [MIN])	Icc6	4MB 8MB	880 960	800 880	mA	3, 5
REFRESH CURRENT: Extended CBR Average power supply current during extended CBR; $\overline{CAS} = 0.2V$ or CBR cycling; $\overline{RAS} = {}^{t}RAS$ (MIN); ${}^{t}RC = 125\mu s$; $\overline{WE} = Vcc-0.2V$; A0-A9 and DQ = Vcc -0.2V or 0.2V (DQ may be left open)	lcc7	4MB 8MB	2.4 4.8	2.4 4.8	mA	3, 5
REFRESH CURRENT: SELF (S version only) Average power supply current; CBR cycling with RAS > [†] RASS (MIN) and CAS held LOW; WE = Vcc-0.2V; A0-A9 and DIN = Vcc - 0.2V or 0.2V (DIN may be left open)	Iccs (S only)	4MB 8MB	2.4 4.8	2.4 4.8	mA	5, 31

CAPACITANCE		М	AX		
PARAMETER	SYMBOL	4MB	8MB	UNITS	NOTES
Input Capacitance: CASO-CAS3	C _{l1}	9	9	pF	2
Input Capacitance: WE	Cı2	13	13	pF	2
Input Capacitance: RAS0-RAS3	Сіз	34	34	pF	2
Input/Output Capacitance: DQ0-DQ31	Сю	10	18	pF	2
Input Capacitance: Addressess	Сіз	9	9	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

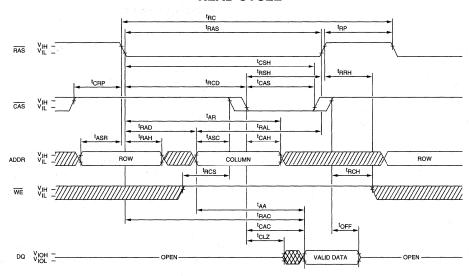
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq 55°C; Vcc = +5V \pm 5%)

AC CHARACTERISTICS			-6		-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		37		42	ns	25
Column-address hold time (referenced to RAS)	^t AR	43		48		ns	24
Column-address setup time	†ASC	2	St. District	2		ns	23
Row-address setup time	tASR	7		7		ns	25
Access time from CAS	tCAC		22		27	ns	15, 25
Column-address hold time	^t CAH	17		22		ns	25
CAS pulse width	†CAS	15	10,000	20	10,000	ns	
CAS hold time entering SELF REFRESH	tCHD	10		10		ns	31
CAS hold time (CBR REFRESH)	^t CHR	8		8		ns	5, 24
CAS to output in Low-Z	†CLZ	5		5		ns	23, 32
CAS precharge time	^t CP	10		10		ns	16
Access time from CAS precharge	^t CPA		42		47	ns	25
CAS to RAS precharge time	^t CRP	17		17		ns	25
CAS hold time	^t CSH	58		68		ns	24
CAS setup time (CBR REFRESH)	^t CSR	12		12		ns	5, 23
Write command to CAS lead time	tCML	15		20		ns	
Data-in hold time	tDH	17		22		ns	25
Data-in hold time (referenced to RAS)	^t DHR	45		55		ns	
Data-in setup time	t _{DS}	-2	- 1	-2		ns	24
Output buffer turn-off delay	^t OFF	- 5	22	5	27	ns	19, 27
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	
Access time from RAS	tRAC		60		70	ns	14
RAS to column-address delay time	^t RAD	13	23	13	28	ns	18, 26
Row-address hold time	^t RAH	8		8		ns	24
Column-address to RAS lead time	^t RAL	37	1	42		ns	25
RAS pulse width	†RAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	tRASP	60	100,000	70	100,000	ns	
RAS pulse width entering SELF REFRESH	tRASS	100		100		μs	31

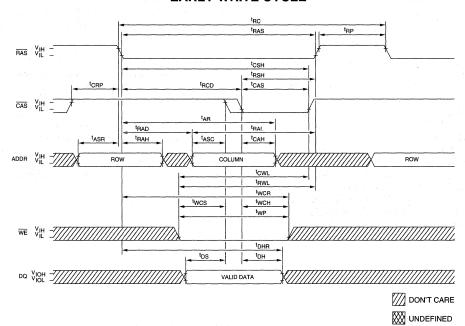
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq 55°C; Vcc = +5V \pm 5%)

AC CHARACTERISTICS			6		-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	tRC	110		130		ns	
RAS to CAS delay time	tRCD	18	38	18	43	ns	17, 26
Read command hold time (referenced to CAS)	^t RCH	2		2		ns	19, 23
Read command setup time	tRCS	2		2		ns	23
Refresh period (1,024 cycles)	tREF		128		128	ms	
RAS precharge time	t _{RP}	40		50		ns	
RAS to CAS precharge time	tRPC	0		0		ns	
RAS precharge time exiting SELF REFRESH	tRPS	110		130		ns	31
Read command hold time (referenced to RAS)	^t RRH	0		0		ns	19
RAS hold time	^t RSH	22	1	27		ns	25
Write command to RAS lead time	tRWL	22		27		ns	25
Transition time (rise or fall)	Τt	3	50	3	50	ns	
Write command hold time	†WCH	17		22		ns	25
Write command hold time (referenced to RAS)	tWCR	43		53		ns	24
WE command setup time	tWCS	2		2		ns	23
Write command pulse width	tWP	10		15	-	ns	
WE hold time (CBR REFRESH)	tWRH	8		8		ns	22, 24
WE setup time (CBR REFRESH)	tWRP	12		12		ns	22, 23

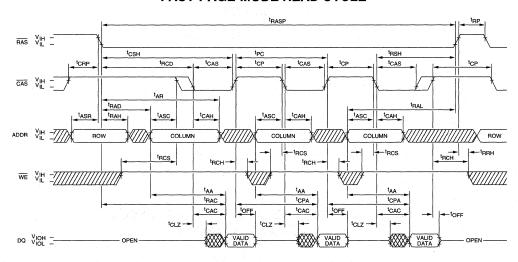

DRAM CARD

NOTES

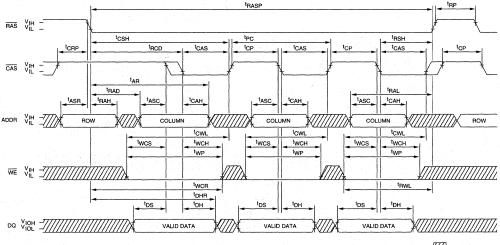

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Vcc = $+5V \pm 10\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VII. and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{\text{CAS}} = \text{Vil.}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that [†]RCD < [†]RCD (MAX). If [†]RCD is greater than the maximum recommended value shown in this table, [†]RAC will increase by the amount that [†]RCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.

- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- 22. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverse of tWRP and tWRH in the CBR REFRESH cycle.
- 23. A +2ns timing skew from the DRAM to the DRAM card resulted from the addition of line drivers.
- 24. A -2ns timing skew from the DRAM to the DRAM card resulted from the addition of line drivers.
- 25. A +7ns timing skew from the DRAM to the DRAM card resulted from the addition of line drivers.
- 26. A -2ns (MIN) and a -7ns (MAX) timing skew from the DRAM to the DRAM card resulted from the addition of line drivers.
- 27. A +2ns (MIN) and a +7ns (MAX) timing skew from the DRAM to the DRAM card resulted from the addition of line drivers.
- 28. The maximum current ratings are based on one of the two banks operating or being refreshed in a x32 mode. The stated maximums may be reduced by onehalf when used in the x16 mode.
- 29. These parameters are referenced to CAS leading edge in EARLY WRITE cycles.
- 30. Column-address changed once each cycle.
- 31. If the DRAM controller uses a burst refresh, a burst refresh of all rows must be executed upon exiting SELF REFRESH.
- 32. The 3ns minimum is a parameter guaranteed by
- 33. 4MB version is half of values shown.

READ CYCLE



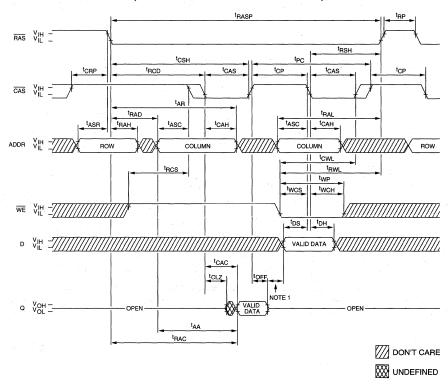
EARLY WRITE CYCLE



FAST-PAGE-MODE READ CYCLE

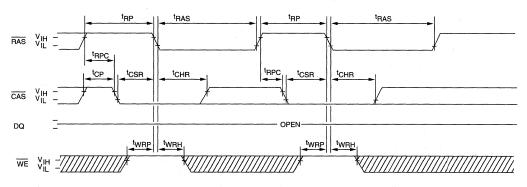
FAST-PAGE-MODE EARLY-WRITE CYCLE

DON'T CARE

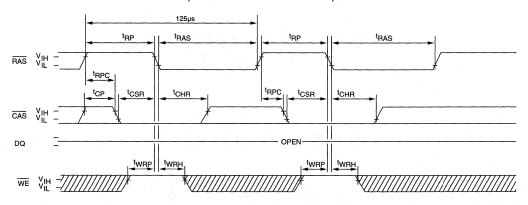

W UNDEFINED

RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)



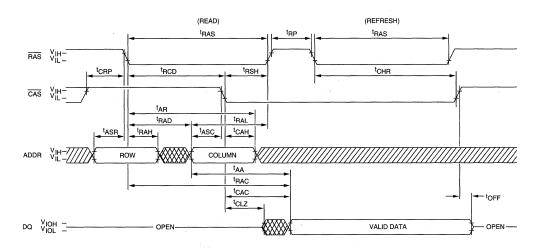
NOTE: 1. Do not drive data prior to tristate.


CBR REFRESH CYCLE

(Address = DON'T CARE)

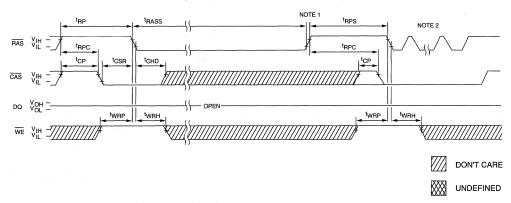
EXTENDED CBR REFRESH CYCLE

(Address = DON'T CARE)



DON'T CARE

₩ UNDEFINED



HIDDEN REFRESH CYCLE ²¹ (WE = HIGH)

SELF REFRESH CYCLE (S VERSION ONLY)

(Addresses = DON'T CARE)

NOTE: 1. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.

2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

DRAM MINICARD

4,8 MEGABYTES

1 MEG, 2 MEG x 32; 5V, FAST PAGE MODE, OPTIONAL SELF REFRESH

FEATURES

- · Low power
- JEDEC-standard 88-pin DRAM card pinout
- 2-inch (50.8mm)-long nonbuffered DRAM cards
- Polarized receptacle connector
- Industry-standard DRAM FAST PAGE MODE operation
- High reliability, gold-plated connector
- All outputs fully TTL-compatible
- Multiple RAS inputs for x16 or x32 selectability
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN; optional SELF REFRESH mode
- FAST PAGE MODE (FPM) access cycle
- Single +5V ±5% power supply
- Extended Refresh

OPTIONS

MARKING

 Timing 			
60ns access			

-6

70ns access
• Refresh

Blank

Extended Refresh SELF REFRESH

S

KEY TIMING PARAMETERS

SPEED	SPEED ^t RC		tPC	t _{AA}	tCAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns

VALID PART NUMBERS

PART NUMBER	DESCRIPTION
MT8D88C132H-xx	1 Meg x 32
MT8D88C132H-xx S	1 Meg x 32, SELF REFRESH
MT16D88C232H-xx	2 Meg x 32
MT16D88C232H-xx S	2 Meg x 32, SELF REFRESH

GENERAL DESCRIPTION

The MT8D88C132H(S) and MT16D88C232H(S) comprise a family of DRAM cards organized in x32-bit memory arrays. These DRAM cards are 2-inch-long bufferless versions of the JEDEC-standard 3.37-inch (85.6mm), 88-pin x32 DRAM cards. Buffers are not included on these cards, so the on-board timing delays have been eliminated. Redrive circuitry may be implemented on the system board.

PIN ASSIGNMENT (End View) 88-Pin Card (DF-2)

7	000	9000	000000	00000	2000	0000	00000	000000	0000	0000000	· r
	88									45	_

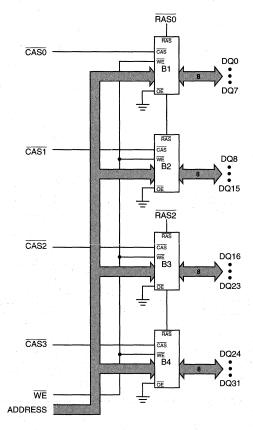
PIN#	4MB	8MB		PIN#	4MB	8MB
1	Vss	. →	1	45	Vss	\rightarrow
2	DQ0	\rightarrow	1 1	46	DQ16	\rightarrow
3	DQ1	\rightarrow	1 1	47	DQ17	\rightarrow
4	DQ2	\rightarrow	1 [48	DQ18	\rightarrow
5	DQ3	\rightarrow	1 1	49	DQ19	\rightarrow
6	DQ4	\rightarrow	1 1	50	DQ20	\rightarrow
7	DQ5	\rightarrow	1 1	51	DQ21	\rightarrow
8	DQ6	\rightarrow	1 [52	DQ22	\rightarrow
9	Vcc	\rightarrow	1 1	53	DQ23	\rightarrow
10	DQ7	\rightarrow	1 [54	NC	\rightarrow
11	NC	\rightarrow	1	55	NC	\rightarrow
12	NC	\rightarrow	1 [56	Vss	\rightarrow
13	A0	\rightarrow] [57	A1	\rightarrow
14	A2	\rightarrow		58	A3	\rightarrow
15	Vcc	\rightarrow	1 1	59	A5	\rightarrow
16	A4	\rightarrow \rightarrow	1 1	60	A7	\rightarrow
17	NC	→	1 1	61	A9	\rightarrow
18	A6	\rightarrow	1	62	NC	\rightarrow
19	A8	\rightarrow	1 1	63	Vss	\rightarrow
20	NC	\rightarrow	1 1	64	NC	\rightarrow
21	NC	\rightarrow	1 1	65	NC	RAS1
22	RAS0	\rightarrow	1 1	66	CAS2	\rightarrow
23	CAS0	\rightarrow	1 1	67	Vss	\rightarrow
24	CAS1	→	1	68	CAS3	. →
25	NC	\rightarrow	1 1	69	NC	RASS
26	RAS2	\rightarrow	1	70	WE	\rightarrow
27	Vcc	\rightarrow	1 1	71	PD1	\rightarrow
28	PD2	\rightarrow	1 1	72	PD3	\rightarrow
29	PD4	\rightarrow	1 1	73	Vss	\rightarrow
30	PD6	\rightarrow	1 1	74	PD5	\rightarrow
31	NC	\rightarrow	1 1	75	PD7	\rightarrow
32	NC	\rightarrow	1	76	PD8	\rightarrow
33	NC	$i \rightarrow$	1	77	NC	- →
34	DQ8	\rightarrow	1 1	78	NC	\rightarrow
35	NC	\rightarrow	1 1	79	NC	· →
36	DQ9	\rightarrow	1 1	80	DQ24	\rightarrow
37	Vcc	\rightarrow	1 1	81	DQ25	\rightarrow
38	DQ10	\rightarrow	1	82	DQ26	\rightarrow
39	DQ11	\rightarrow	1 1	83	DQ27	_ →
40	DQ12	\rightarrow	1 1	84	DQ28	\rightarrow
41	DQ13	\rightarrow	1 T	85	DQ29	\rightarrow
42	DQ14	\rightarrow	1 1	86	DQ30	\rightarrow
43	DQ15	\rightarrow	1	87	DQ31	\rightarrow
44	Vss		1 1	88	Vss	

GENERAL DESCRIPTION (continued)

These cards may also be configured as a x16-bit memory arrays, provided the corresponding DQs on the host system are made common, and memory bank control procedures are implemented. Four separate CAS inputs allow byte accesses.

These MiniCards are designed for low-power operation using low-power, extended refresh DRAMs. Standard component DRAM refresh modes are supported as well.

Multiple RAS inputs conserve power by allowing individual bank selection. In the x32 organization, the memory is a single array that may be divided into 4 separate bytes. In the x16 organization, up to two banks, each with two separate bytes, may be independently selected. One bank is

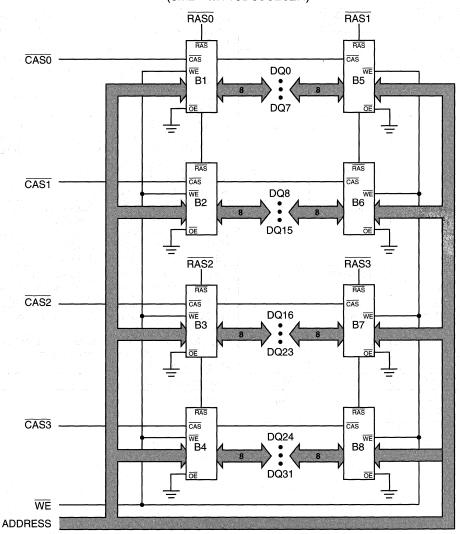

activated by each \overline{RAS} selection; the others not selected remain in standby mode, drawing minimum power.

Eight presence-detect pins may be read by the host to identify the card's organization, number of banks, access time and refresh operation. These extensive presence-detect functions allow systems to take full advantage of the advanced power-saving features.

These Micron DRAM Cards are built with 2-inch-long static dissipative plastic frames covered by metal panels. Packages containing 88-pin receptacle connectors are keyed to prevent improper installation or insertion into other types of IC card sockets.

FUNCTIONAL BLOCK DIAGRAM

(4MB - MT8D88C132H)



NOTE: 1. B1 through B4 = x8 memory blocks.

FUNCTIONAL BLOCK DIAGRAM

(8MB - MT16D88C232H)

NOTE: 1. B1 through B8 = x8 memory blocks.

PIN DESCRIPTIONS

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
22, 26, 65, 69	RASO, RAS2 RAS1, RAS3	Input	Row-Address Strobe: RAS is used to latch the row- address. Two RAS inputs allow for a single x32 bank or two x16 banks.
23, 24, 66, 68	CASO-CAS3	Input	Column-Address Strobe: CAS is used to latch the column-address, enable the DRAM output buffers and strobe the data inputs on WRITE cycles. Four CAS inputs allow byte access control for any memory bank configuration.
70	WE	Input	Write Enable: WE is the READ/WRITE control for the DQ pins. If WE is LOW prior to CAS going LOW, the access is a WRITE cycle. If WE is HIGH during the CAS LOW transition, the access is a READ cycle.
13, 57, 14, 58, 16, 59, 18, 60, 19, 61	A0-A9	Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS.
2-8, 10, 34, 36, 38-43, 46-53, 80-87	DQ0-DQ31	Input/ Output	Data I/O: For WRITE cycles, DQ0-DQ31 act as inputs to the addressed DRAM location. BYTE WRITEs may be performed by using the corresponding CAS select. For READ access cycles, DQ0-DQ31 act as outputs for the addressed DRAM location.
71, 28, 72, 29, 74, 30, 75, 76	PD1-PD8		Presence-Detect: These pins are read by the host system and tell the system the card's personality. They will be either left floating (NC) or grounded (Vss).
9, 11, 12, 15, 17, 20, 21, 25, 27, 31, 32, 33, 35, 37, 54, 55, 62, 64, 65, 69, 77, 78, 79	NC		No Connect: These pins should be left unconnected (reserved for future use). Pins 12, 31-33, 54, 77-79 reserved for x36/x40 DQs. Pins 11, 17, 25, 35 reserved for 3.3V Vcc. Pin 55 reserved for x40 OE.
9, 15, 27, 37	Vcc	Supply	Power Supply: +5V ±5%
1, 44, 45, 56, 63, 67, 73, 88	Vss	Supply	Ground

FUNCTIONAL DESCRIPTION

The MT8D88C132H(S) and MT16D88C232H(S) comprise a family of DRAM cards organized in x32-bit memory arrays ($\overline{RAS0} = \overline{RAS2}$). They also may be configured as x16-bit memory arrays provided the corresponding DQs on the host are connected and memory bank control procedures are implemented by interleaving both \overline{RAS} lines.

Most x32-bit applications use the same signal to control the \overline{CAS} inputs. $\overline{RAS0}$ and $\overline{RAS1}$ control the lower 16 bits and $\overline{RAS2}$ and $\overline{RAS2}$ control the upper 16 bits to obtain a x32 memory array. For x16 applications, the corresponding DQ and \overline{CAS} pins must be connected (DQ0 to DQ15, DQ1 to DQ16 and so forth, $\overline{CAS0}$ to $\overline{CAS2}$ and $\overline{CAS1}$ to $\overline{CAS3}$). Each \overline{RAS} is then a bank select for the x16 memory organizations.

DRAM OPERATION

DRAM REFRESH

Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR, extended CBR or HIDDEN) so that all combinations of RAS addresses (A0-A9) are executed at least every ^tREF, regardless of sequence. The CBR REFRESH cycle will invoke the internal refresh counter for automatic RAS addressing.

The implied method of choice for refreshing the memory card is the extended CBR cycle. This is a very low-current, data retention mode made possible by using the CBR REFRESH cycle over the extended refresh range (Icc7).

The memory card may be used with the other refresh modes common to standard DRAMs. This allows the memory card to be used on existing systems that do not utilize the extended CBR REFRESH cycle. However, the memory card will draw more current in the standby mode.

DRAM READ AND WRITE CYCLES

During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. \overline{RAS} is used to latch the first 10 bits, and \overline{CAS} latches the latter 10 bits. READ or WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{CAS} . \overline{WE} must fall prior to \overline{CAS} (EARLY WRITE). The data inputs and data outputs are routed through pins using common I/O and pin direction is controlled by \overline{WE} .

FAST PAGE MODE operation allows faster data operations (READ or WRITE) within a row-address-defined (A0-A9) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation. Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time.

REFRESH

An optional SELF REFRESH mode is also available. The "S" version allows the user the choice of a fully static low-power data retention mode, or a dynamic refresh mode at the extended refresh period.

The optional SELF REFRESH feature is initiated by performing a CBR REFRESH cycle and holding \overline{RAS} LOW for the specified ^tRASS. Additionally, the "S" version allows for an extended refresh rate of 125µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation or during a standby mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for a minimum time of ${}^{t}RPS$ (\approx ${}^{t}RC$). This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all rows must be refreshed within 300 μ s prior to the resumption of normal operation.

PHYSICAL DESIGN

These Micron DRAM MiniCards are constructed with a 2-inch-long static dissipative plastic frame covered by metal panels. Inside, thin small-outline package (TSOP) DRAMs are mounted on an ultrathin printed circuit board. The board is attached to a high-insertion, 88-pin receptacle connector. The package is keyed to prevent improper installation, including insertion into other types of IC card sockets. The DRAM cards operate reliably up to 55°C.

MEMORY TRUTH TABLE

					ADDR	ESSES	DATA IN/OUT
FUNCTION		RAS	CAS	WE	^t R	tC	DQ0-DQ31
Standby		Н	H→X	Х	Х	Х	High-Z
READ		L	L	Н	ROW	COL	Data-Out
EARLY WRITE	100	L	L	L	ROW	COL	Data-In
READ WRITE		L	L	H→L	ROW	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	Н	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	ROW	COL	Data-In
EARLY-WRITE	2nd Cycle	L	H→L	L	n/a	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	ROW	COL	Data-Out
READ-WRITE	2nd Cycle	L	H→L	H→L	n/a	COL	Data-Out
RAS-ONLY REFRESI	4	Prof. L. Maria	Н	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Data-In
CBR REFRESH	ar exist in	H→L	L	Н	Х	Х	High-Z
SELF REFRESH (S v	ersion)	H→L	L	Н	X	X	High-Z
PRESENCE-DETE				1		DESCRIPT DE	TEGT DIN (DD.)
	CHARACTE			Ι _	P	HESENCE-DE	TECT PIN (PDx)
	AM zations A		AS CAS tress Address	Page Depth	1 2	3 4	5 6 7
OMB No cord	inetalled	v	v v	V	אוכ אוכ	NC NC	NO I

2.5	CHARAC	TERISTICS	3	¹ a.			P	RESEN	ICE-DE	TECT F	PIN (PI	Dx)	110
Card Density	DRAM Organizations	# of Address	RAS Address	CAS Address	Page Depth	1	2	3	4	5	6	7	8
OMB	No card installed	Х	Х	Х	Χ	NC	NC	NC	NC	NC			
1MB 2MB	256K x 4 or x16 256K x 4 or x16	18 18	9 9	0 0	512 512	Vss Vss	Vss Vss	Vss Vss	Vss Vss	NC Vss			
2MB 4MB	512K x 8 512K x 8	19 19	10 10	9	512 512	NC NC	Vss Vss	Vss Vss	Vss Vss	NC Vss			
•4MB •8MB	1 Meg x 4 or x16 1 Meg x 4 or x16	20 20	10 10	10 10	1,024 1,024	Vss Vss	NC NC	Vss Vss	Vss Vss	NC Vss			
8MB 16MB	2 Meg x 8 2 Meg x 8	21 21	11 11	10 10	1,024 1,024	NC NC	NC NC	Vss Vss	Vss Vss	NC Vss			
16MB 32MB	4 Meg x 4 or x16 4 Meg x 4 or x16	22 22	11/12 11/12	11/10 11/10	2,048 2,048	Vss Vss	Vss Vss	NC NC	Vss Vss	NC Vss			
Access Timi	ng		10	0ns							Vss	Vss	
^t RAC Max	(1975년, 1987년 기계 전기 1977년 - 1987년 기원 기계 기계 1987년 (1987년 - 1987년		80)ns							NC	Vss	
			70)ns	Superior (A)						Vss	NC	
			60ns								NC	NC	
			50ns								Vss	Vss	
Refresh Con	itrol		Extended										NC
			SELF, Extended										Vss

NOTE: Vss = ground.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	1.0V to +7V
Operating Temperature T _A (ambient)	0°C to 55°C
Storage Temperature	40°C to +70°C
Power Dissipation	8W
Short Circuit Output Current	50mA
Card Insertions (connector's life cycle)	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0°C \leq T_A \leq 55°C; Vcc = +5V \pm 5%)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	NA L	Vcc	4.75	5.25	V	
Input High (Logic 1) Voltage, all inputs		ViH	2.4	Vcc+1	V	
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	V	1
INPUT LEAKAGE CURRENT	RAS0-RAS3	111	-8	8	μΑ	
Any input: $0V \le V_{IN} \le 6.5V$	A0-A9, WE	l ₁₂	-10	10	μА	
(All other pins not under test = 0V) for each package input	CASO-CAS3	lıз	-8	8	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vouт ≤ 5.5V) for each package input	DQ0-DQ31	loz	-20	20	μА	29
OUTPUT LEVELS		Vон	2.4		٧	
Output High Voltage (lout = -5 mA) Output Low Voltage (lout = 4.2 mA)		Vol		0.4	V	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) $(0^{\circ}C \le T_{A} \le 55^{\circ}C; Vcc = +5V \pm 5\%)$

rent en en 1990 en en en 1990 en en en 1990 en 1990 en 1990 en 1990 en 1990 en 1990 en 1990 en 1990 en 1990 en La rent en 1990 en 1990 en 1990 en 1990 en 1990 en 1990 en 1990 en 1990 en 1990 en 1990 en 1990 en 1990 en 199			M	AX		**
PARAMETER/CONDITION	SYMBOL	SIZE	-6	-7	UNITS	NOTES
OPERATING CURRENT: Random READ/WRITE Average power supply current	lcc1	4MB	880	800	mA	3, 4, 27
(RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])		8MB	896	816		
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	Icc2	4MB 8MB	16 32	16 32	mA	
OPERATING CURRENT: FAST PAGE MODE Average power supply current	Іссз	4MB	640	560	mA	3, 4, 27
(RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC [MIN])	1003	8MB	656	576	mA	3, 4, 27
STANDBY CURRENT: (CMOS)	Icc4	4MB	1.6	1.6	mA	
(RAS = CAS = Other Inputs = Vcc -0.2V)		8MB	3.2	3.2		
REFRESH CURRENT: RAS ONLY Average power supply current	Icc5	4MB	880	800	mA.	3, 27
(RAS Cycling, CAS = V _{IH} : ^t RC = ^t RC [MIN])	ices	8MB	896	816	1112	0, 27
REFRESH CURRENT: CBR	Icc6	4MB	880	800	mA	3, 5
Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	ICC6	8MB	896	816	mA	3, 5
REFRESH CURRENT: Extended CBR Average power supply current during extended CBR; CAS = 0.2V	lcc7	4MB	2.4	2.4	mA	3, 5
or CBR cycling; RAS = tRAS (MIN); tRC = 125µs; WE = Vcc-0.2V; A0-A9 and DQ = Vcc -0.2V or 0.2V (DQ may be left open)	1007	8MB	4.8	4.8	IIIA	0, 0
REFRESH CURRENT: SELF (S version only) Average power supply current; CBR cycling with	lcc8	4MB	2.4	2.4	mA	5, 29
$\overline{RAS} \ge {}^{t}RASS$ (MIN) and \overline{CAS} held LOW; $\overline{WE} = Vcc-0.2V$; A0-A9 and Din = Vcc - 0.2V or 0.2V (Din may be left open)	(S only)	8MB	4.8	4.8		

CA	PAC	ITA	NCE

CAPACITANCE	MAX				
PARAMETER	SYMBOL	4MB	8MB	UNITS	NOTES
Input Capacitance: CASO-CAS3	C _{I1}	17	32	pF	2
Input Capacitance: WE	C ₁₂	66	66	pF	2
Input Capacitance: RAS0-RAS3	Сіз	34	34	pF	2
Input/Output Capacitance: DQ0-DQ31	Сю	10	18	pF	2
Input Capacitance: Addresses	Сіз	51	90	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

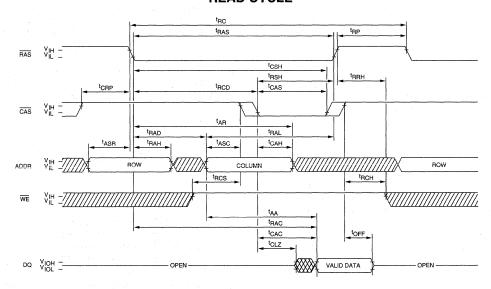
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($0^{\circ}C \le T_A \le 55^{\circ}C$; $Vcc = +5V \pm 5\%$)

AC CHARACTERISTICS			-6		-7		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA		30		35	ns	1.00
Column-address hold time (referenced to RAS)	t _{AR}	45		50		ns	
Column-address setup time	†ASC	0		0		ns	
Row-address setup time	†ASR	0		0		ns	
Access time from CAS	†CAC	\$4.5	15		20	ns	15
Column-address hold time	tCAH	10		15		ns	
CAS pulse width	†CAS	15	10,000	20	10,000	ns	
CAS hold time entering SELF REFRESH	tCHD	10		10		ns	28
CAS hold time (CBR REFRESH)	^t CHR	10		10		ns	5
CAS to output in Low-Z	tCLZ	3		3	11	ns	26
CAS precharge time	^t CP	10		10	7718 F. V	ns	16
Access time from CAS precharge	^t CPA		35		40	ns	
CAS to RAS precharge time	^t CRP	10		10		ns	
CAS hold time	^t CSH	60		70		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10		ns	5
Write command to CAS lead time	^t CWL	15		20		ns	
Data-in hold time	tDH t	10		15		ns	24
Data-in hold time (referenced to RAS)	tDHR	45		55		ns	
Data-in setup time	^t DS	0		0		ns	24
Output buffer turn-off delay	^t OFF	3	15	3	20	ns	20, 26
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35		40		ns	
Access time from RAS	^t RAC		60		70	ns	14
RAS to column-address delay time	tRAD.	15	30	15	35	ns	18
Row-address hold time	^t RAH	10		10		ns	
Column-address to RAS lead time	†RAL	30		35		ns	
RAS pulse width	tRAS	60	10,000	70	10,000	ns	
RAS pulse width (FAST PAGE MODE)	^t RASP	60	100,000	70	100,000	ns	
RAS pulse width entering SELF REFRESH	tRASS	100		100		μs	28

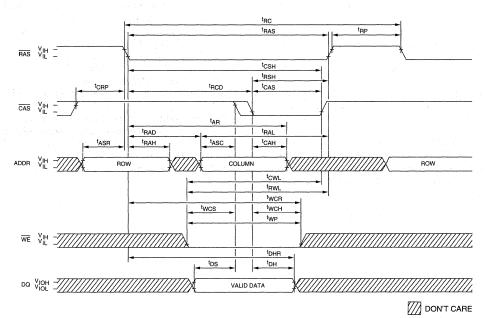
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq 55°C; Vcc = +5V \pm 5%)

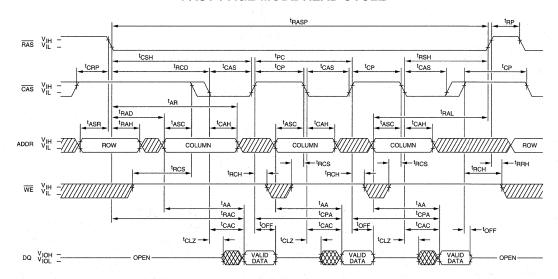
AC CHARACTERISTICS		-6			-7			
PARAMETER	SYM	MIN	MAX	MIN	MAX	ns ns ns ns ns ns ns ns ns ns ns ns ns n	NOTES	
Random READ or WRITE cycle time	tRC tRC	110		130		ns		
RAS to CAS delay time	†RCD	20	45	20	50	ns	17	
Read command hold time (referenced to CAS)	^t RCH	0		0		ns	19	
Read command setup time	tRCS	0		0		ns		
Refresh period (1,024 cycles)	tREF.		128		128	ms		
RAS precharge time	^t RP	40		50		ns		
RAS to CAS precharge time	tRPC	0		0		ns		
RAS precharge time exiting SELF REFRESH	tRPS	110		130		ns	28	
Read command hold time (referenced to RAS)	tRRH.	0		0		ns	19	
RAS hold time	^t RSH	15		20		ns		
Write command to RAS lead time	tRWL	15		20		ns		
Transition time (rise or fall)	^t T	3	50	3	50	ns		
Write command hold time	tWCH	10		15		ns		
Write command hold time (referenced to RAS)	tWCR	45		55		ns		
WE command setup time	tWCS	0		0		ns		
Write command pulse width	tWP	10		15	14	ns	100	
WE hold time (CBR REFRESH)	tWRH	10		10		ns	22	
WE setup time (CBR REFRESH)	tWRP	10		10		ns	22	

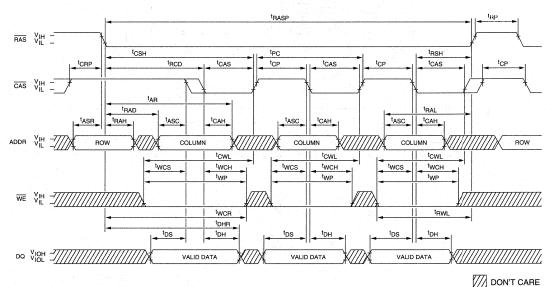

NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is measured using MIL-STD-883C, Method 3012.1. Vcc = $+5V \pm 5\%$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{\text{CAS}} = V_{IL}$, data output may contain data from the last valid READ cycle.
- Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.

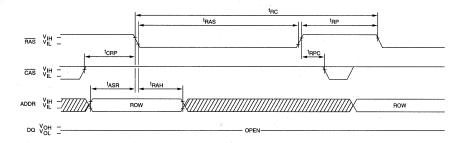

- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. 'OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- 22. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverse of tWRP and tWRH in the CBR REFRESH cycle.
- 23. The maximum current ratings are based on the memory operating or being refreshed in the x32 mode. The stated maximums may be reduced by onehalf when used in the x16 mode.
- 24. These parameters are referenced to CAS leading edge in EARLY WRITE cycles.
- LATE WRITE, READ WRITE or READ-MODIFY-WRITE cycles are not available due to OE being tied permanently LOW on all 4 Meg DRAMs.
- 26. The 3ns minimum is a parameter guaranteed by design.
- Column-address changed once each cycle.
- 28. If the DRAM controller uses a burst refresh, a burst refresh of all rows must be executed upon exiting SELF REFRESH.
- 29. 4MB version is half of values shown.

READ CYCLE

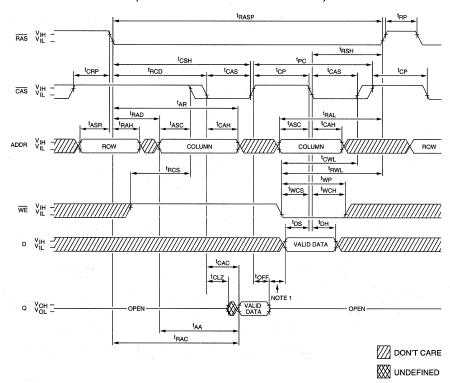

EARLY WRITE CYCLE


W UNDEFINED

FAST-PAGE-MODE READ CYCLE

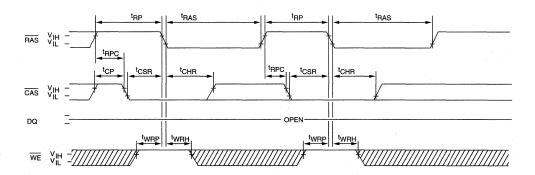


FAST-PAGE-MODE EARLY-WRITE CYCLE

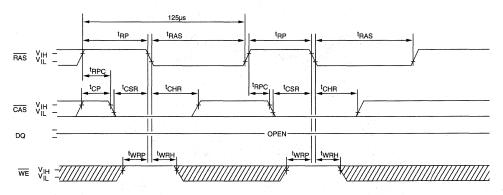


RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE


(Pseudo READ-MODIFY-WRITE)

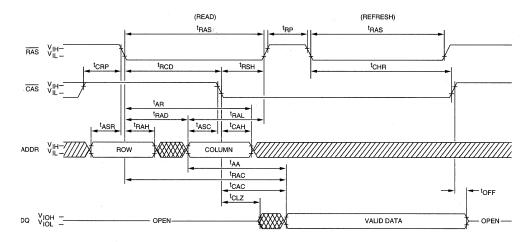
NOTE: 1. Do not drive data prior to tristate.



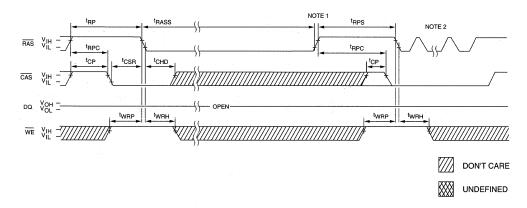
CBR REFRESH CYCLE (Addresses = DON'T CARE)

EXTENDED CBR REFRESH CYCLE

(Addresses = DON'T CARE)


DON'T CARE

₩ undefined


HIDDEN REFRESH CYCLE 21

 $(\overline{WE} = HIGH)$

SELF REFRESH CYCLE (S VERSION ONLY)

(Addresses = DON'T CARE)

NOTE:

- 1. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.
- 2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

DRAM CARD

4, 8, 16*, 32* MEGABYTES

1 MEG, 2 MEG, 4 MEG, 8 MEG x 32; 3.3V, FAST PAGE MODE OPTIONAL SELF REFRESH

FEATURES

- JEDEC-standard 88-pin DRAM card
- Polarized receptacle connector
- Industry-standard DRAM FAST PAGE MODE operation
- High reliability, gold-plated connector
- All outputs fully TTL-compatible
- All inputs buffered except RAS inputs
- Multiple RAS inputs for x16 or x32 selectability
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN; optional SELF REFRESH mode
- FAST PAGE MODE (FPM) access cycle
- Single $+3.3V \pm 0.3V$ power supply
- · Low power
- Extended Refresh

OPTIONS	MARKIN
Timing	
60ns access	-6
70ns access	-7
80ns access	-8
Refresh	
Extended Refresh	Blank
SELF REFRESH	S

KEY TIMING PARAMETERS

SPEED	tRC	tRAC	^t PC	^t AA	tCAC	tRP
-6	110ns	60ns	35ns	41ns	26ns	40ns
-7	130ns	70ns	40ns	46ns	31ns	50ns
-8	150ns	80ns	45ns	51ns	31ns	60ns

VALID PART NUMBERS

PART NUMBER	DESCRIPTION
MT8D88C132V-xx	1 Meg x 32
MT8D88C132V-xx S	1 Meg x 32, SELF REFRESH
MT16D88C232V-xx	2 Meg x 32
MT16D88C232V-xx S	2 Meg x 32, SELF REFRESH
MT8D88C432V-xx	4 Meg x 32
MT8D88C432V-xx S	4 Meg x 32, SELF REFRESH
MT16D88C832V-xx	8 Meg x 32
MT16D88C832V-xx S	8 Meg x 32, SELF REFRESH

^{*}Contact factory for availability.

PIN ASSIGNMENT (End View) 88-Pin Card (DF-3)

PIN # 4MB 8MB 16MB 32MB PIN # 4MB 8MB 16MB 32MB

L	"	711110	Olinb	101110	OLIND		7010	OIIID	1011111	OLIND
ſ	1 .	Vss	\rightarrow	\rightarrow	\rightarrow	45	Vss	\rightarrow	\rightarrow	\rightarrow
ſ	2	DQ0	\rightarrow	\rightarrow	\rightarrow	46	DQ16	→	\rightarrow	\rightarrow
ſ	3	DQ1	\rightarrow	\rightarrow	\rightarrow	47	D017		->	>
١.	4	DQ2	\rightarrow	\rightarrow	\rightarrow	48	D018)	,	,
ſ	5	DQ3	\rightarrow	\rightarrow	\rightarrow	49	DQ19	>	,	,
	6	DQ4	\rightarrow	\rightarrow	\rightarrow	50	DQ20	\rightarrow	→	
ſ	7	DQ5	\rightarrow	\rightarrow	†	51	DQ21	\rightarrow	\rightarrow	→
[8	DQ6	\rightarrow	\rightarrow	\rightarrow	52	D022	\rightarrow	\rightarrow	\rightarrow
ſ	9	NC	\rightarrow	\rightarrow	→	53	DQ23	\rightarrow	\rightarrow	\rightarrow
-[10	DQ7	$^{\prime} \rightarrow$	\rightarrow	. →	54	NC	\rightarrow	\rightarrow	\rightarrow
[11	3.3V Vcc	\rightarrow	\rightarrow	\	55	NC	\rightarrow	$^{\circ}$ \rightarrow	\rightarrow
• [12	NC	\rightarrow	\rightarrow	\rightarrow	56	Vss	\rightarrow	\rightarrow	\rightarrow
[. 13	A0	\rightarrow	\rightarrow	\rightarrow	57	A1	\rightarrow	\rightarrow	\rightarrow
. [14	A2	\rightarrow	\rightarrow	\rightarrow	58	A3	\rightarrow	\rightarrow	\rightarrow
	15	NC	\rightarrow	\rightarrow	\rightarrow	59	A5	\rightarrow	\rightarrow	\rightarrow
	16	A4	\rightarrow	\rightarrow	\rightarrow	60	A7	\rightarrow	\rightarrow	\rightarrow
	17	3.3V Vcc	\rightarrow	\rightarrow	\rightarrow	61	A9	\rightarrow	\rightarrow	\rightarrow
	18	A6	\rightarrow	\rightarrow	\rightarrow	62	NC	\rightarrow	\rightarrow	\rightarrow
	19	A8	\rightarrow	\rightarrow	\rightarrow 0	63	Vss	\rightarrow	\rightarrow	\rightarrow
	20	NC	\rightarrow	A10	\rightarrow	64	NC	\rightarrow	\rightarrow	→ '
[21	NC	$i \rightarrow$	\rightarrow	\rightarrow	65	NC	RAS1	NC	RAS1
ſ	22	RAS0	\rightarrow	\rightarrow	\rightarrow	66	CAS2	\rightarrow	\rightarrow	\rightarrow
[23	CAS0	\rightarrow	\rightarrow	\rightarrow	67	Vss	\rightarrow	\rightarrow	\rightarrow
	24	CAS1	\rightarrow	\rightarrow	\rightarrow	68	CAS3	\rightarrow	\rightarrow	\rightarrow
	25	3.3V Vcc	\rightarrow	\rightarrow	\rightarrow	69	NC	RAS3	NC	RAS3
ſ	26	RAS2	\rightarrow	\rightarrow	\rightarrow	70	WE	\rightarrow	$^{\circ}$ \rightarrow	\rightarrow
	27	NC	\rightarrow	\rightarrow	\rightarrow	71	PD1	\rightarrow	\rightarrow	\rightarrow
	28	PD2	\rightarrow	\rightarrow	\rightarrow	72	PD3	\rightarrow	\rightarrow	\rightarrow
	29	PD4	\rightarrow	\rightarrow	\rightarrow	73	Vss	\rightarrow	\rightarrow	\rightarrow
Ī	30	PD6	\rightarrow	$i \rightarrow i$	\rightarrow	74	PD5	\rightarrow	\rightarrow	\rightarrow
Ī	31	NC	\rightarrow	\rightarrow	\rightarrow	75	PD7	\rightarrow	\rightarrow	\rightarrow
[32	NC	\rightarrow	†	\rightarrow	76	PD8	\rightarrow	\rightarrow	\rightarrow
ſ	33	NC	\rightarrow	→	\rightarrow	77	NC	\rightarrow	\rightarrow	\rightarrow
[34	DQ8	\rightarrow	\rightarrow	\rightarrow	78	NC	\rightarrow	\rightarrow	\rightarrow
ſ	35	3.3V Vcc	\rightarrow	→	\rightarrow	79	NC	\rightarrow	\rightarrow	\rightarrow
ſ	36	DQ9	\rightarrow	\rightarrow	\rightarrow	80	DQ24	\rightarrow	\rightarrow	\rightarrow

DQ25

Vss

82 DQ26

83 DQ27

84 D028

85 DQ29

86 DQ30

87 DQ31 88

NC. DQ10

DQ11

D012

DQ13

DQ14

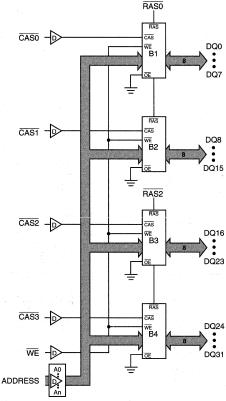
DQ15

Vss

GENERAL DESCRIPTION

The MT8D88C132V/432V(S) and MT16D88C232V/832V(S) comprise a family of JEDEC-standard DRAM cards organized in x32-bit memory arrays. The cards may also be configured as x16-bit memory arrays, provided the corresponding DQs on the host system are made common, and memory bank control procedures are implemented. Four separate $\overline{\text{CAS}}$ inputs allow byte accesses.

These 3.3V cards are designed for low-power operation using 3.3V, low-power, extended refresh DRAMs. Standard component DRAM refresh modes are supported as well.

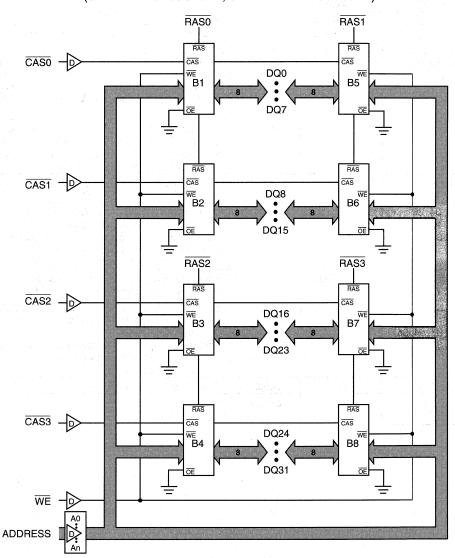

Multiple RAS inputs conserve power by allowing individual bank selection. In the x32 organization, the memory is a single array that may be divided into four separate bytes. In the x16 organization, up to two banks, each with 2 separate bytes, may be independently selected. One bank is activated by each \overline{RAS} selection; the others not selected remain in standby mode, drawing minimum power.

Eight presence-detect pins may be read by the host to identify the card's organization, number of banks, access time and refresh operation. These extensive presence-detect functions allow systems to take full advantage of the advanced power-saving features.

These Micron DRAM Cards are built with 3.370-inchlong static dissipative plastic frames covered by metal panels. Packages containing 88-pin receptacle connectors are keyed to prevent improper installation or insertion into other types of IC card sockets.

FUNCTIONAL BLOCK DIAGRAM

(4MB - MT8D88C132V, 16MB - MT8D88C432V)


NOTE: 1. B1 through B4 = x8 memory blocks.

2. D = 74AC11244 line drivers.

FUNCTIONAL BLOCK DIAGRAM

(8MB - MT16D88C232V, 32MB - MT16D88C832V)

NOTE:

- 1. B1 through B8 = x8 memory blocks.
- 2. D = 74AC11244 line drivers.

PIN DESCRIPTIONS

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
22, 26, 65, 69	RASO, RAS2 RAS1, RAS3	Input	Row-Address Strobe: RAS is used to latch the row- address. Two RAS inputs allow for a single x32 bank or two x16 banks.
23, 24, 66, 68	CASO-CAS3	Input	Column-Address Strobe: CAS is used to latch the column-address, enable the DRAM output buffers and strobe the data inputs on WRITE cycles. Four CAS inputs allow byte access control for any memory bank configuration.
70	WE	Input	Write Enable: WE is the READ/WRITE control for the DQ pins. If WE is LOW prior to CAS going LOW, the access is a WRITE cycle. If WE is HIGH during the CAS LOW transition, the access is a READ cycle.
13, 57, 14, 58, 16, 59, 18, 60, 19, 61	A0-A10	Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS.
2-8, 10, 34, 36, 38-43, 46-53, 80-87	DQ0-DQ31	Input/ Output	Data I/O: For WRITE cycles, DQ0-DQ31 act as inputs to the addressed DRAM location. BYTE WRITEs may be performed by using the corresponding CAS select. For READ access cycles, DQ0-DQ31 act as outputs for the addressed DRAM location.
71, 28, 72, 29, 74, 30, 75, 76	PD1-PD8		Presence-Detect: These pins are read by the host system and tell the system the card's personality. They will be either left floating (NC) or grounded (Vss).
9, 12, 15, 21, 27, 31, 32, 33, 37, 54, 55, 62, 64, 65, 69, 77, 78, 79	NC		No Connect: These pins should be left unconnected (reserved for future use). Pins 12, 31-33, 54, 77-79 reserved for x36/x40 DQs. PIns 9, 15, 27, 37 reserved for 5V Vcc. Pin 55 reserved for x40 OE.
11, 17, 25, 35	Vcc	Supply	Power Supply: +3.3V ±0.3V
1, 44, 45, 56, 63, 67, 73, 88	Vss	Supply	Ground

FUNCTIONAL DESCRIPTION

The MT8D88C132V/432V(S) and MT16D88C232V/832V(S) comprise a family of DRAM cards organized in x32-bit memory arrays ($\overline{RAS0} = \overline{RAS2}$). They also may be configured as x16-bit memory arrays provided the corresponding DQs on the host are connected and memory bank control procedures are implemented by interleaving both \overline{RAS} lines.

Most x32-bit applications use the same signal to control the \overline{CAS} inputs. $\overline{RAS0}$ and $\overline{RAS1}$ control the lower 16 bits and $\overline{RAS2}$ and $\overline{RAS3}$ control the upper 16 bits to obtain a x32 memory array. For x16 applications, the corresponding DQ and \overline{CAS} pins must be connected (DQ0 to DQ15, DQ1 to DQ16 and so forth, $\overline{CAS0}$ to $\overline{CAS2}$ and $\overline{CAS1}$ to $\overline{CAS3}$). Each \overline{RAS} is then a bank select for the x16 memory organizations.

DRAM OPERATION

DRAM REFRESH

Memory cell data is retained in its correct state by maintaining power and executing any \overline{RAS} cycle (READ, WRITE) or \overline{RAS} refresh cycle (\overline{RAS} ONLY, CBR, extended CBR or HIDDEN) so that all combinations of \overline{RAS} addresses (A0-A9/A10) are executed at least every ^tREF, regardless of sequence. The CBR REFRESH cycle will invoke the internal refresh counter for automatic \overline{RAS} addressing.

The implied method of choice for refreshing the memory card is the extended CBR cycle. This is a very low-current, data retention mode made possible by using the CBR RE-FRESH cycle over the extended refresh range (Icc7).

The memory card may be used with the other refresh modes common to standard DRAMs. This allows the memory card to be used on existing systems that do not utilize the extended CBR REFRESH cycle. However, the memory card will draw more current in the standby mode.

DRAM READ AND WRITE CYCLES

During READ or WRITE cycles, each bit is uniquely addressed through the 20/22 address bits, which are entered 10/11 bits (A0-A9/A10) at a time. \overline{RAS} is used to latch the first 10/11 bits, and \overline{CAS} latches the latter 10/11 bits. READ or WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, datain (D) is latched by the falling edge of \overline{CAS} . \overline{WE} must fall prior to \overline{CAS} (EARLY WRITE). The data inputs and data

outputs are routed through pins using common I/O and pin direction is controlled by WE.

FAST PAGE MODE operation allows faster data operations (READ or WRITE) within a row-address-defined (A0-A9/A10) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation. Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time.

REFRESH

An optional SELF REFRESH mode is also available. The "S" version allows the user the choice of a fully static low-power data retention mode, or a dynamic refresh mode at the extended refresh period.

The optional SELF REFRESH feature is initiated by performing a CBR REFRESH cycle and holding RAS LOW for the specified ¹RASS. Additionally, the "S" version allows for an extended refresh rate of 125µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation or during a standby mode.

The SELF REFRESH mode is terminated by driving RAS HIGH for a minimum time of ^tRPS (≈ ^tRC). This delay allows for the completion of any internal refresh cycles that may be in process at the time of the RAS LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes RAS ONLY or burst refresh sequence, all rows must be refreshed within 300µs prior to the resumption of normal operation.

PHYSICAL DESIGN

These Micron 3.3V DRAM Cards are constructed with a 3.370-inch long static dissipative plastic frame covered by metal panels. Inside, thin small-outline package (TSOP) DRAMs are mounted on an ultrathin printed circuit board. The board is attached to a high-insertion, 88-pin receptacle connector. The package is keyed to prevent improper installation, including insertion into other types of IC card sockets. The DRAM cards operate reliably up to 55°C.

MEMORY TRUTH TABLE

					ADDRI	SSES	DATA IN/OUT
FUNCTION		RAS	CAS	WE	^t R	tC	DQ0-DQ31
Standby		Н	H→X	Х	Х	X	High-Z
READ		L	L	Н	ROW	COL	Data-Out
EARLY WRITE		L	, s.; L	L	ROW	COL	Data-In
READ WRITE	a Albania	L	L	H→L	ROW	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	Н	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	ROW	COL	Data-In
EARLY-WRITE	2nd Cycle	L	H→L	L	n/a	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	ROW	COL	Data-Out
READ-WRITE	2nd Cycle	L	H→L	H→L	n/a	COL	Data-Out
RAS-ONLY REFRESH	1 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[1/3 L]	Η	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	Х	Х	High-Z
SELF REFRESH (S ve	ersion)	H→L	L	Н	Х	Х	High-Z

PRESENCE-DETECT TRUTH TABLE

	CHARAC	TERISTICS	3 1, 3, 1				Р	RESEN	ICE-DE	TECT I	PIN (PI	Ox)	
Card Density	DRAM Organizations	# of Address	RAS Address	CAS Address	Page Depth	1	2	3	4	5	6	7	8
OMB	No card installed	X	Х	Х	Х	NC	NC	NC	NC	NC			
1MB 2MB	256K x 4 or x16 256K x 4 or x16	18 18	9	0 0	512 512	Vss Vss	Vss Vss	Vss Vss	Vss Vss	NC Vss			
2MB 4MB	512K x 8 512K x 8	19 19	10 10	0.0	512 512	NC NC	Vss Vss	Vss Vss	Vss Vss	NC Vss			
●4MB ●8MB	1 Meg x 4 or x16 1 Meg x 4 or x16	20 20	10 10	10 10	1,024 1,024	Vss Vss	NC NC	Vss Vss	Vss Vss	NC Vss			
8MB 16MB	2 Meg x 8 2 Meg x 8	21 21	11 11	10	1,024 1,024	NC NC	NC NC	Vss Vss	Vss Vss	NC Vss			
●16MB ●32MB	4 Meg x 4 or x16 4 Meg x 4 or x16	22 22	11/12 11/12	11/10 11/10	2,048 2,048	Vss Vss	Vss Vss	NC NC	Vss Vss	NC Vss			
Access Timi	ng		10	0ns							Vss	Vss	
^t RAC Max		ar egistil	80)ns							NC	Vss	
			70)ns							Vss	NC	
1. 16. 14.			60)ns							NC	NC	
		50ns								Vss	Vss		
Refresh Con	Refresh Control		Exte	nded									NC
SELF, Extende			Extended									Vss	

NOTE: Vss = ground.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss1.0)V to +4.5V
Operating Temperature T _A (ambient))°C to 55°C
Storage Temperature40°	C to +70°C
Power Dissipation	8W
Short Circuit Output Current	50mA
Card Insertions (connector's life cycle)	10.000

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0°C \leq T_A \leq 55°C; Vcc = +3.3V \pm 0.3V)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	3.15	3.45	V	
Input High (Logic 1) Voltage, all inputs		Vін	2.1	Vcc+1	V	
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT Any input: 0V ≤ Vin ≤ Vcc	RASO-RAS3	lıı	-8	8	μА	
(All other pins not under test = 0V) for each package input	Buffered	lı2	-2	2	μА	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vouт ≤ Vcc) for each package input	DQ0-DQ31	loz	-20	20	μА	35
OUTPUT LEVELS		Vон	2.0		V	No.
Output High Voltage (lout = -2.0 mA) Output Low Voltage (lout = 2.0 mA)		Vol		0.4	v	79

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 6, 7) (0°C \leq T_A \leq 55°C; Vcc = +3.3V \pm 0.3V)

andria de la composição de la composição de la composição de la composição de la composição de la composição d La composição de la compo							
PARAMETER/CONDITION	SYMBOL	SIZE	-6	-7	-8	UNITS	NOTES
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: [†] RC = [†] RC [MIN])	lcc1	4MB 8MB 16MB 32MB	640 648 960 968	560 568 880 888	480 488 - -	mA	3, 4, 30
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	lcc2	4MB 8MB 16MB 32MB	8 16 8 16	8 16 8 16	8 16 -	mA	
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = V _I , CAS, Address Cycling: ¹PC = ¹PC [MIN])	Іссз	4MB 8MB 16MB 32MB	480 488 720 728	400 408 640 648	320 328 - -	mA	3, 4, 30
STANDBY CURRENT: (CMOS) (RAS = CAS = Other Inputs = Vcc -0.2V)	Icc4	4MB 8MB 16MB 32MB	4 8 4 8	4 8 4 8	4 8 -	mA	
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = Viii: RC = RC [MIN])	Iccs	4MB 8MB 16MB 32MB	640 648 960 968	560 568 880 888	480 488 - -	mA	3, 30
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC [MIN])	Icc6	4MB 8MB 16MB 32MB	640 648 960 968	560 568 880 888	480 488 - -	mA	3, 5
REFRESH CURRENT: Extended CBR Average power supply current during extended CBR; $\overline{CAS} = 0.2V$ or CBR cycling; $\overline{RAS} = {}^{t}RAS$ (MIN); ${}^{t}RC = 125\mu s$; $\overline{WE} = Vcc -0.2V$; A0-A10 and DQ = Vcc -0.2V or 0.2V (DQ may be left open)	Ісст	4MB 8MB 16MB 32MB	1.2 2.4 2.4 4.8	1.2 2.4 2.4 4.8	1.2 2.4 2.4 4.8	mA	3, 5
REFRESH CURRENT: SELF (S version only) Average power supply current; CBR cycling with $\overline{RAS} \ge {}^{t}RASS$ (MIN) and \overline{CAS} held LOW; $\overline{WE} = Vcc-0.2V$; A0-A10 and DIN = Vcc - 0.2V or 0.2V (DIN may be left open)	lcc8 (S only)	4MB 8MB 16MB 32MB	1.2 2.4 2.4 4.8	1.2 2.4 2.4 4.8	1.2 2.4 2.4 4.8	mA	5, 31

CAPACITANCE

		IVI.	AX	-	
PARAMETER	SYMBOL	4,16MB	8,32MB	UNITS	NOTES
Input Capacitance: CAS0-CAS3	Cıı	9	9	pF	2
Input Capacitance: WE	Cı2	13	13	pF	2
Input Capacitance: RAS0-RAS3	Сіз	34	34	pF	2
Input/Output Capacitance: DQ0-DQ31	Cio	10	18	pF	2
Input Capacitance: Addresses	Сіз	9	9	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

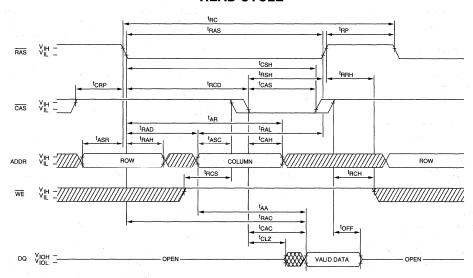
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq 55°C; Vcc = +3.3V \pm 0.3V)

AC CHARACTERISTICS			-6		-7		-8		100 A
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA	1.59	41	14.	46		51	ns	25
Column-address hold time (referenced to RAS)	^t AR	48	÷	53		53		ns	24
Column-address setup time	tASC	2	7	2		2		ns	23
Row-address setup time	tASR	7		7		7		ns	25
Access time from CAS	^t CAC		26		31		31	ns	15, 25
Column-address hold time	^t CAH	10		15		15	1 1 1 1	ns	25
CAS pulse width	tCAS	15	10,000	20	10,000	20	10,000	ns	
CAS hold time entering SELF REFRESH	^t CHD	15		15		15	1 1 1	ns	31
CAS hold time (CBR REFRESH)	^t CHR	13		13		13	1	ns	5, 24
CAS to output in Low-Z	†CLZ	5		5		5		ns	23, 32
CAS precharge time	^t CP	10		10		10	W 14	ns	16
Access time from CAS precharge	^t CPA	4.5	46		51		56	ns	25
CAS to RAS precharge time	^t CRP	21		21		21		ns	25
CAS hold time	^t CSH	58		68		78		ns	24
CAS setup time (CBR REFRESH)	^t CSR	12		12		12		ns	5, 23
Write command to CAS lead time	^t CWL	15	1,11	20	100	20		ns	
Data-in hold time	tDH -	21		26	PAGE 3	26		ns	25
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		ns	
Data-in setup time	tDS	-2		-2		-2		ns	24
Output buffer turn-off delay	^t OFF	5	26	5	31	5	31	ns	20, 27, 32
FAST-PAGE-MODE	^t PC	35		40		45		ns	
READ or WRITE cycle time	****								

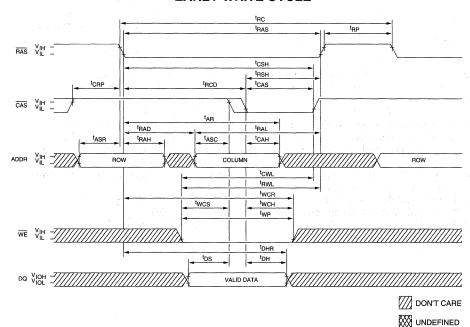
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($0^{\circ}C \le T_{A} \le 55^{\circ}C$; $Vcc = +3.3V \pm 0.3V$)

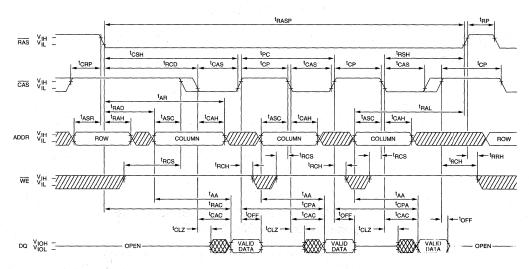
AC CHARACTERISTICS			-6		-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from RAS	†RAC		60		70		80	ns	14
RAS to column-address delay time	^t RAD	13	19	13	24	13	29	ns	18, 26
Row-address hold time	^t RAH	8		8		8		ns	24
Column-address to RAS lead time	^t RAL	41		46		51		ns	25
RAS pulse width	^t RAS	60	10,000	70	10,000	80	10,000	ns	10.
RAS pulse width (FAST PAGE MODE)	^t RASP	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width entering SELF REFRESH	†RASS	100		100		100		μs	31
Random READ or WRITE cycle time	tRC	110		130	17	150		ns	
RAS to CAS delay time	tRCD	18	34	18	39	18	49	ns	17, 26
Read command hold time (referenced to CAS)	tRCH	2		, 2		2		ns	19, 23
Read command setup time	tRCS	2		2		2		ns	23
Refresh period (1,024 cycles)	†REF	1.	128	21 1	128		128	ms	34
Refresh period (2,048 cycles)	tREF		128		128		128	ms	33
RAS precharge time	^t RP	40		50		60		ns	
RAS to CAS precharge time	^t RPC	0		0		0		ns	
RAS precharge time exiting SELF REFRESH	tRPS	110		130		150		ns	31
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
RAS hold time	^t RSH	26		31		31		ns	25
Write command to RAS lead time	^t RWL	26		31	1	31		ns	25
Transition time (rise or fall)	tΤ	3	50	3	50	3	50	ns	
Write command hold time	tWCH	21		26		26		ns	25
Write command hold time (referenced to RAS)	tWCR	43		53		58		ns	24
WE command setup time	tWCS	2		2		2		ns	23
Write command pulse width	tWP	10		15		15		ns	
WE hold time (CBR REFRESH)	tWRH	8		8		8		ns	22, 24
WE setup time (CBR REFRESH)	tWRP	12		12		12		ns	22, 23


NOTES

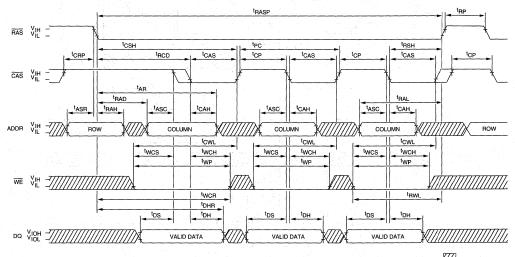
- . All voltages referenced to Vss.
- ?. This parameter is sampled. Vcc = $+3.3V \pm 0.3V$; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the tREF refresh requirement is exceeded.
- 3. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- In addition to meeting the transition rate specification, all input signals must transit between V_{IH} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{\text{CAS}} = \text{Vil.}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100 pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.


- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- 22. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverse of tWRP and tWRH in the CBR REFRESH cycle.
- 23. A +2ns timing skew from the DRAM to the DRAM card resulted from the addition of line drivers.
- 24. A -2ns timing skew from the DRAM to the DRAM card resulted from the addition of line drivers.
- 25. A +11ns timing skew from the DRAM to the DRAM card resulted from the addition of line drivers.
- 26. A -2ns (MIN) and a -11ns (MAX) timing skew from the DRAM to the DRAM card resulted from the addition of line drivers.
- 27. A +2ns (MIN) and a +11ns (MAX) timing skew from the DRAM to the DRAM card resulted from the addition of line drivers.
- 28. The maximum current ratings are based on the memory operating or being refreshed in the x32 mode. The stated maximums may be reduced by onehalf when used in the x16 mode.
- These parameters are referenced to CAS leading edge in EARLY WRITE cycles.
- 30. Column-address changed once each cycle.
- 31. If the DRAM controller uses a burst refresh, a burst refresh of all rows must be executed upon exiting SELF REFRESH.
- 32. The 3ns minimum is a parameter guaranteed by design
- 33. 16MB and 32MB only.
- 34. 4MB and 8MB only.
- 35, 4MB is half of values shown.

READ CYCLE



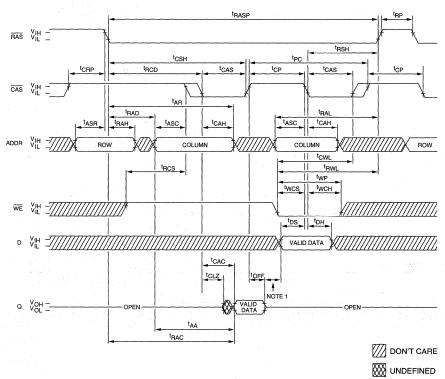
EARLY WRITE CYCLE



FAST-PAGE-MODE READ CYCLE

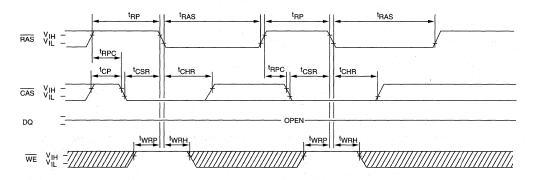
FAST-PAGE-MODE EARLY-WRITE CYCLE

DON'T CARE

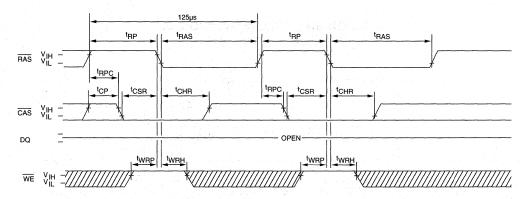

₩ UNDEFINED

RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)



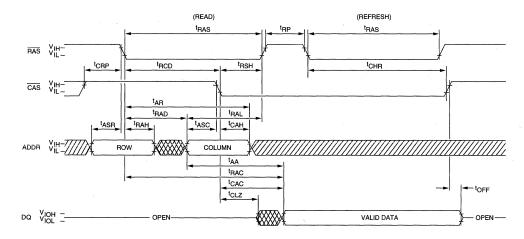
NOTE: 1. Do not drive data prior to tristate.


CBR REFRESH CYCLE

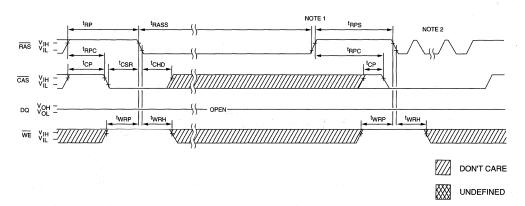
(Addresses = DON'T CARE)

EXTENDED CBR REFRESH CYCLE

(Addresses = DON'T CARE)


DON'T CARE

W UNDEFINED


HIDDEN REFRESH CYCLE 21

 $(\overline{WE} = HIGH)$

SELF REFRESH CYCLE (S VERSION ONLY)

(Addresses = DON'T CARE)

NOTE: 1. Once ^tRASS (MIN) is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.

2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

DRAM MINICARD

4, 8, 16*, 32* MEGABYTES

PIN ASSIGNMENT (End View)

1 MEG, 2 MEG, 4 MEG, 8 MEG x 32; 3.3V, FAST PAGE MODE, OPTIONAL SELF REFRESH

FEATURES

- JEDEC-standard 88-pin DRAM card pinout
- 2-inch (50.8mm)-long nonbuffered DRAM cards
- Polarized receptacle connector
- Industry-standard DRAM FAST PAGE MODE operation
- High reliability, gold-plated connector
- All outputs fully TTL-compatible
- Multiple RAS inputs for x16 or x32 selectability
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS (CBR) and HIDDEN; optional SELF REFRESH
- FAST PAGE MODE (FPM) access cycle
- Single $+3.3V \pm 0.3V$ power supply
- Low power
- Extended Refresh

OPTIONS	MARKING
 Timing 	•
60ns access	-6
70ns access	-7
80ns access	-8
Refresh	
Extended Refresh	Blank
SELF REFRESH	S

KEY TIMING PARAMETERS

SPEED	tRC	tRAC	^t PC	t _{AA}	^t CAC	tRP
-6	110ns	60ns	35ns	30ns	15ns	40ns
-7	130ns	70ns	40ns	35ns	20ns	50ns
-8	150ns	80ns	45ns	40ns	20ns	60ns

VALID PART NUMBERS

PART NUMBER	DESCRIPTION
MT8D88C132VH-xx	1 Meg x 32
MT8D88C132VH-xx S	1 Meg x 32, SELF REFRESH
MT16D88C232VH-xx	2 Meg x 32
MT16D88C232VH-xx S	2 Meg x 32, SELF REFRESH
MT8D88C432VH-xx	4 Meg x 32
MT8D88C432VH-xx S	4 Meg x 32, SELF REFRESH
MT16D88C832VH-xx	8 Meg x 32
MT16D88C832VH-xx S	8 Meg x 32, SELF REFRESH

^{*}Contact factory for availability.

88-Pin Card (DF-4) PIN # 4MB 16MB | 32MB 8MB | 16MB | 32MB 45 Vss 2 DOO 46 DQ16 3 DQ1 47 DQ17 \rightarrow \rightarrow \rightarrow ٠, ., 48 0018 4 D02 DQ3 49 D019 6 DQ4 50 D020 51 D021 \rightarrow 8 DQ6 52 D022 \rightarrow \rightarrow \rightarrow D023 9 NC 53 10 DQ7 54 NC \rightarrow 11 3.3V Vcc 55 NC <u>`</u> \rightarrow \rightarrow --> \rightarrow \rightarrow 12 NC \rightarrow 56 Vss ---> **→** 57 13 A0 \rightarrow A1 . • 14 A2 58 A3 59 15 NC A5 --> \rightarrow \rightarrow ---> 60 16 A4 \rightarrow \rightarrow A7 \rightarrow \rightarrow 17 3.3V Vcc 61 A9 \rightarrow \rightarrow 18 A6 62 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 19 A8 63 Vss 20 NC A10 64 \rightarrow \rightarrow NC RAS1 65 NC 21 NC RASC 66 CAS₂ 23 CAS₀ 67 Vss \rightarrow \rightarrow **→** \rightarrow 24 CAS1 68 CAS3 \rightarrow \rightarrow RAS3 NC 25 3.3V Vcc 69 NC RAS3 \rightarrow \rightarrow \rightarrow 70 WE 26 RAS2 27 NC 71 PD1 28 PD2 72 PD3 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 29 PD4 73 Vss 30 PD6 74 PD5 \rightarrow \rightarrow \rightarrow 31 NC 75 PD7 32 76 PD8 \rightarrow \rightarrow \rightarrow 33 NC \rightarrow 77 NC. \rightarrow \rightarrow \rightarrow 34 DQ8 78 NC \rightarrow 35 79 NC .3V Vcc _ \rightarrow 36 DQ9 80 DQ24 37 NC 81 DQ25 _ $\overline{}$ 38 82 DQ26 DQ10 \rightarrow 39 DQ11 83 DQ27 84 DQ12 DQ28 40 \rightarrow \rightarrow \rightarrow 41 DQ13 \rightarrow \rightarrow 85 DQ29 42 DQ14 86 DQ30 \rightarrow \rightarrow \rightarrow \rightarrow

DQ31

87

88 Vss

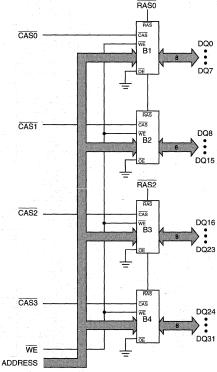
43 DQ15

Vss

GENERAL DESCRIPTION

The MT8D88C132VH/432VH(S), MT16D88C232VH/832VH(S) comprise a family of DRAM cards organized in x32-bit memory arrays. These DRAM cards are 2-inch-long bufferless versions of the JEDEC-standard 3.37-inch (85.6mm), 88-pin x32 DRAM cards. Buffers are not included on these cards, so the on-board timing delays have been eliminated. Redrive circuitry may be implemented on the system board.

The cards may also be configured as x16-bit memory arrays, provided the corresponding DQs on the host system are made common, and memory bank control procedures are implemented. Four separate CAS inputs allow byte accesses.

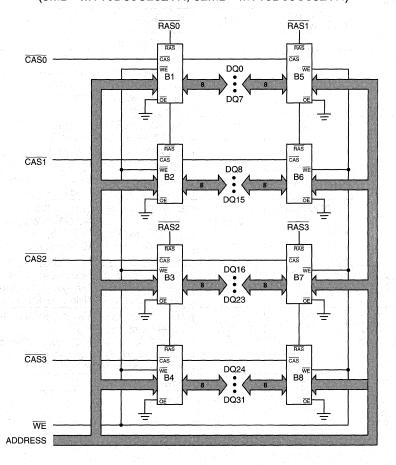

These 3.3V MiniCards are designed for low-power operation using 3.3V, low-power, extended refresh DRAMs. Standard component DRAM refresh modes are supported as well.

Multiple \overline{RAS} inputs conserve power by allowing individual bank selection. In the x32 organization, the memory is a single array that may be divided into 4 separate bytes. In the x16 organization, up to two banks, each with two separate bytes, may be independently selected. One bank is activated by each \overline{RAS} selection; the others not selected remain in standby mode, drawing minimum power.

Eight presence-detect pins may be read by the host to identify the card's organization, number of banks, access time and refresh operation. These extensive presence-detect functions allow systems to take full advantage of the advanced power-saving features.

These Micron DRAM Cards are built with 2-inch-long static dissipative plastic frames covered by metal panels. Packages containing 88-pin receptacle connectors are keyed to prevent improper installation or insertion into other types of IC card sockets.

FUNCTIONAL BLOCK DIAGRAM (4MB - MT8D88C132VH, 16MB - MT8D88C432VH)



NOTE: 1. B1 through B4 = x8 memory blocks.

FUNCTIONAL BLOCK DIAGRAM

(8MB - MT16D88C232VH, 32MB - MT16D88C832VH)

NOTE: 1. B1 through B8 = x8 memory blocks.

PIN DESCRIPTIONS

PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
22, 26, 65, 69	RASO, RAS2 RAS1, RAS3	Input	Row-Address Strobe: RAS is used to latch the row- address. Two RAS inputs allow for a single x32 bank or two x16 banks.
23, 24, 66, 68	CASO-CAS3	Input	Column-Address Strobe: CAS is used to latch the column-address, enable the DRAM output buffers and strobe the data inputs on WRITE cycles. Four CAS inputs allow byte access control for any memory bank configuration.
70	WE	Input	Write Enable: WE is the READ/WRITE control for the DQ pins. If WE is LOW prior to CAS going LOW, the access is a WRITE cycle. If WE is HIGH during the CAS LOW transition, the access is a READ cycle.
13, 57, 14, 58, 16, 59, 18, 60, 19, 61, 20	A0-A10	Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS.
2-8, 10, 34, 36, 38-43, 46-53, 80-87	DQ0-DQ31	Input/ Output	Data I/O: For WRITE cycles, DQ0-DQ31 act as inputs to the addressed DRAM location. BYTE WRITEs may be performed by using the corresponding CAS select. For READ access cycles, DQ0-DQ31 act as outputs for the addressed DRAM location.
71, 28, 72, 29, 74, 30, 75, 76	PD1-PD8		Presence-Detect: These pins are read by the host system and tell the system the card's personality. They will be either left floating (NC) or grounded (Vss).
9, 12, 15, 21, 27, 31, 32, 33, 37, 54, 55, 62, 64, 65, 69, 77, 78 79	NC		No Connect: These pins should be left unconnected (reserved for future use). Pins 12, 31-33, 54, 77-79 reserved for x36/x40 DQs. Pins 9, 15, 27, 37 reserved for 5V Vcc. Pin 55 reserved for x40 OE.
11, 17, 25, 35	Vcc	Supply	Power Supply: +3.3V ±0.3V
1, 44, 45, 56, 63, 67, 73, 88	Vss	Supply	Ground

FUNCTIONAL DESCRIPTION

The MT8D88C132VH/432VH(S), MT16D88C232VH/832VH(S) comprise a family of DRAM cards organized in x32-bit memory arrays ($\overline{RAS0} = \overline{RAS2}$). They also may be configured as x16-bit memory arrays provided the corresponding DQs on the host are connected and memory bank control procedures are implemented by interleaving both \overline{RAS} lines.

Most x32-bit applications use the same signal to control the \overline{CAS} inputs. $\overline{RAS0}$ and $\overline{RAS1}$ control the lower 16 bits and $\overline{RAS2}$ and $\overline{RAS3}$ control the upper 16 bits to obtain a x32 memory array. For x16 applications, the corresponding DQ and \overline{CAS} pins must be connected (DQ0 to DQ15, DQ1 to DQ16 and so forth, $\overline{CAS0}$ to $\overline{CAS2}$ and $\overline{CAS1}$ to $\overline{CAS3}$). Each \overline{RAS} is then a bank select for the x16 memory organizations.

DRAM OPERATION

DRAM REFRESH

Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE) or RAS refresh cycle (RAS ONLY, CBR, extended CBR or HIDDEN) so that all combinations of RAS addresses (A0-A9, A10) are executed at least every tREF, regardless of sequence. The CBR REFRESH cycle will invoke the internal refresh counter for automatic RAS addressing.

The implied method of choice for refreshing the memory card is the extended CBR cycle. This is a very low-current, data retention mode made possible by using the CBR REFRESH cycle over the extended refresh range (Icc7).

The memory card may be used with the other refresh modes common to standard DRAMs. This allows the memory card to be used on existing systems that do not utilize the extended CBR REFRESH cycle. However, the memory card will draw more current in the standby mode.

DRAM READ AND WRITE CYCLES

During READ or WRITE cycles, each bit is uniquely addressed through the 20/22 address bits, which are entered 10/11 bits (A0-A9/A10) at a time. \overline{RAS} is used to latch the first 10/11 bits, and \overline{CAS} latches the latter 10/11 bits. READ or WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, datain (D) is latched by the falling edge of \overline{CAS} . \overline{WE} must fall prior to \overline{CAS} (EARLY WRITE). The data inputs and data outputs are routed through pins using common I/O and pin direction is controlled by \overline{WE} .

FAST PAGE MODE operation allows faster data operations (READ or WRITE) within a row-address-defined (A0-A9/A10) page boundary. The FAST PAGE MODE cycle is always initiated with a row-address strobed-in by \overline{RAS} followed by a column-address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column-addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation. Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time.

REFRESH

An optional SELF REFRESH mode is also available. The "S" version allows the user the choice of a fully static low-power data retention mode, or a dynamic refresh mode at the extended refresh period.

The optional SELF REFRESH feature is initiated by performing a CBR REFRESH cycle and holding RAS LOW for the specified ¹RASS. Additionally, the "S" version allows for an extended refresh rate of 125µs per row if using distributed CBR REFRESH. This refresh rate can be applied during normal operation or during a standby mode.

The SELF REFRESH mode is terminated by driving \overline{RAS} HIGH for a minimum time of ${}^{t}RPS$ (= ${}^{t}RC$). This delay allows for the completion of any internal refresh cycles that may be in process at the time of the \overline{RAS} LOW-to-HIGH transition. If the DRAM controller uses a distributed CBR REFRESH sequence, a burst refresh is not required upon exiting SELF REFRESH mode. However, if the DRAM controller utilizes \overline{RAS} ONLY or burst refresh sequence, all rows must be refreshed within 300µs prior to the resumption of normal operation.

PHYSICAL DESIGN

These Micron DRAM MiniCards are constructed with a 2-inch-long static dissipative plastic frame covered by metal panels. Inside, thin small-outline package (TSOP) DRAMs are mounted on an ultrathin printed circuit board. The board is attached to a high-insertion, 88-pin receptacle connector. The package is keyed to prevent improper installation, including insertion into other types of IC card sockets. The DRAM cards operate reliably up to 55°C.

MEMORY TRUTH TABLE

	rantaga Boron Satisfa a Satisfa	19 14 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ADDRI	ESSES	DATA IN/OUT
FUNCTION		RAS	CAS	WE	^t R	tC	DQ0-DQ31
Standby		Н	H→X	Х	Х	X	High-Z
READ		L	L	Н	ROW	COL	Data-Out
EARLY WRITE		L	L	L	ROW	COL	Data-In
READ WRITE		L 2 - 2	L	H→L	ROW	COL	Data-In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	ROW	COL	Data-Out
READ	2nd Cycle	L	H→L	Н	n/a	COL	Data-Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	ROW	COL	Data-In
EARLY-WRITE	2nd Cycle	L	H→L	L	n/a	COL	Data-in
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	ROW	COL	Data-Out
READ-WRITE	2nd Cycle	L L	ı H→L	H→L	n/a	COL	Data-Out
RAS-ONLY REFRESH	f igitagebolyco	L	Н	Х	ROW	n/a	High-Z
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Data-Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Data-In
CBR REFRESH		H→L	L	Н	Х	X	High-Z
SELF REFRESH (S ve	ersion)	H→L	L	Н	X	Х	High-Z

PRESENCE-DETECT TRUTH TABLE

	CHARAC	TERISTICS	3			1.0	Р	RESEN	ICE-DE	TECT F	PIN (PE	Dx)	
Card Density	DRAM Organizations	# of Address	RAS Address	CAS Address	Page Depth	1	2	3	4	5	6	7	8
0MB	No card installed	Х	Х	Х	Х	NC	NC	NC	NC	NC			
1MB 2MB	256K x 4 or x16 256K x 4 or x16	18 18	9 9	0 0	512 512	Vss Vss	Vss Vss	Vss Vss	Vss Vss	NC Vss			
2MB 4MB	512K x 8 512K x 8	19 19	10 10	00	512 512	NC NC	Vss Vss	Vss Vss	Vss Vss	NC Vss			
●4MB ●8MB	1 Meg x 4 or x16 1 Meg x 4 or x16	20 20	10 10	10 10	1,024 1,024	Vss Vss	NC NC	Vss Vss	Vss Vss	NC Vss			
8MB 16MB	2 Meg x 8 2 Meg x 8	21 21	11 11	10 10	1,024 1,024	NC NC	NC NC	Vss Vss	Vss Vss	NC Vss			
●16MB ●32MB	4 Meg x 4 or x16 4 Meg x 4 or x16	22 22	11/12 11/12	11/10 11/10	2,048 2,048	Vss Vss	Vss Vss	NC NC	Vss Vss	NC Vss			
Access Timi	ng		10	0ns							Vss	Vss	1
^t RAC Max		daur sy 1	80)ns							NC	Vss	
			70)ns							Vss	NC	
		1.1	60)ns							NC	NC	
		50ns									Vss	Vss	
Refresh Con	trol		Extended										NC
			SELF, E	Extended									Vss

NOTE: Vss = ground.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc Supply Relative to Vss	1.0V to +4.5V
Operating Temperature T _A (ambient)	0°C to 55°C
Storage Temperature	
Power Dissipation	8W
Short Circuit Output Current	50mA
Card Insertions (connector's life cycle)	10,000

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0° C \leq T_A \leq 55 $^{\circ}$ C; Vcc = +3.3V \pm 0.3V)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES	
Supply Voltage		V cc	3.15	3.45	V	
Input High (Logic 1) Voltage, all inputs		ViH	2.0	Vcc+1	٧	
Input Low (Logic 0) Voltage, all inputs		VIL	-1.0	0.8	V	
INPUT LEAKAGE CURRENT	RAS0-RAS3	li1	-8	8	μΑ	
Any input: 0V ≤ Vin ≤ Vcc	A0-A10, WE	112	-10	10	μΑ	
(All other pins not under test = 0V) for each package input	CASO-CAS3	lıз	-8	8	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vout ≤ Vcc) for each package input	DQ0-DQ31	loz	-20	20	μΑ	31
OUTPUT LEVELS		Vон	2.0		٧	
Output High Voltage (lout = -2.0 mA) Output Low Voltage (lout = 2.0 mA)		Vol		0.4	٧	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

Notes: 1, 6, 7) $(0^{\circ}C \le T_A \le 55^{\circ}C; Vcc = +3.3V \pm 0.3V)$				MAX			
PARAMETER/CONDITION	SYMBOL	SIZE	-6	-7	-8	UNITS	NOTES
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: †RC = †RC [MIN])	lcc1	4MB 8MB 16MB 32MB	640 648 960 968	560 568 880 888	480 488 - -	mA	3, 4, 27
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	lcc2	4MB 8MB 16MB 32MB	8 16 8 16	8 16 8 16	8 16 -	mA	
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: [†] PC = [†] PC [MIN])	Іссз	4MB 8MB 16MB 32MB	480 488 720 728	400 408 640 648	320 328 - -	mA	3, 4, 27
STANDBY CURRENT: (CMOS) (RAS = CAS = Other Inputs = Vcc -0.2V)	Icc4	4MB 8MB 16MB 32MB	4 8 4 8	4 8 4 8	4 8 - -	mA	
REFRESH CURRENT: RAS ONLY Average power supply current (RAS Cycling, CAS = Viii: tRC = tRC [MIN])	lcc5	4MB 8MB 16MB 32MB	640 648 960 968	560 568 880 888	480 488 - -	mA	3, 27
REFRESH CURRENT: CBR Average power supply current (RAS, CAS, Address Cycling: [†] RC = [†] RC [MIN])	Icc6	4MB 8MB 16MB 32MB	640 648 960 968	560 568 880 888	480 488 - -	mA	3, 5
REFRESH CURRENT: Extended CBR Average power supply current during extended CBR; CAS = 0.2V or CBR cycling; RAS = tRAS (MIN); tRC = 125μs; WE = Vcc -0.2V A0-A10 and DQ = Vcc -0.2V or 0.2V (DQ may be left open)	lcc7	4MB 8MB 16MB 32MB	1.2 2.4 2.4 4.8	1.2 2.4 2.4 4.8	1.2 2.4 2.4 4.8	mA	3, 5
REFRESH CURRENT: SELF (S version only) Average power supply current; CBR cycling with RAS ≥ [†] RASS (MIN) and CAS held LOW; WE = Vcc-0.2V; A0-A10 and DIN = Vcc - 0.2V or 0.2V (DIN may be left open)	lccs (S only)	4MB 8MB 16MB 32MB	1.2 2.4 2.4 4.8	1.2 2.4 2.4 4.8	1.2 2.4 2.4 4.8	mA	5, 28

$\sim \Lambda$	D	Λ		т	A١	NI.	CE
CH	VE.	н	u		н	IV	CE.

		IVI.	AX	100		
PARAMETER	SYMBOL	4,16MB	8, 32MB	UNITS	NOTES	
Input Capacitance: CASO-CAS3	C ₁₁	17	34	pF	2	
Input Capacitance: WE	C ₁₂	66	66	pF	2	
Input Capacitance: RAS0-RAS3	Сіз	34	34	pF	2	
Input/Output Capacitance: DQ0-DQ31	Cio	10	18	pF	2	
Input Capacitance: Addresses	Сіз	51	90	pF	2	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

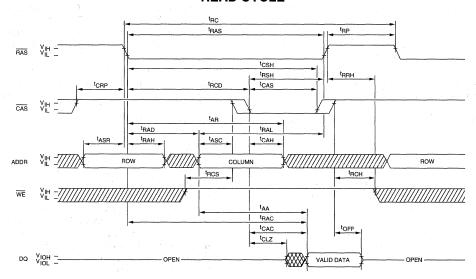
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq 55°C; Vcc = +3.3V \pm 0.3V)

AC CHARACTERISTICS			-6		-7		-8		1 1 2 2 2 3 1
PARAMETER		MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from column-address	^t AA	4 3	30		35		40	ns	
Column-address hold time (referenced to RAS)	^t AR	50		55		55		ns	1
Column-address setup time	†ASC	0		0		0		ns	
Row-address setup time	†ASR	0		0		0		ns	
Access time from CAS	^t CAC		15		20		20	ns	15
Column-address hold time	^t CAH	10		15		15	1	ns	
CAS pulse width	^t CAS	15	10,000	20	10,000	20	10,000	ns	4. 1. 1
CAS hold time entering SELF REFRESH	^t CHD	15		15		15		ns	28
CAS hold time (CBR REFRESH)	^t CHR	15		15		15		ns	5
CAS to output in Low-Z	tCLZ	3		3		3		ns	26
CAS precharge time	^t CP	10		10		10	1000	ns	16
Access time from CAS precharge	^t CPA		35	78.4	40		45	ns	
CAS to RAS precharge time	^t CRP	10		10		10		ns	B 12 2 2 2 3
CAS hold time	tCSH	60		70		80		ns	
CAS setup time (CBR REFRESH)	^t CSR	10		10	1.7	10		ns	5
Write command to CAS lead time	tCWL	15		20	177	20		ns	
Data-in hold time	^t DH	10		15		15		ns	24
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		ns	
Data-in setup time	^t DS	0	7.4	0		0		ns	24
Output buffer turn-off delay	^t OFF	3	15	3	20	3	20	ns	20, 26
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	35	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40		45		ns	

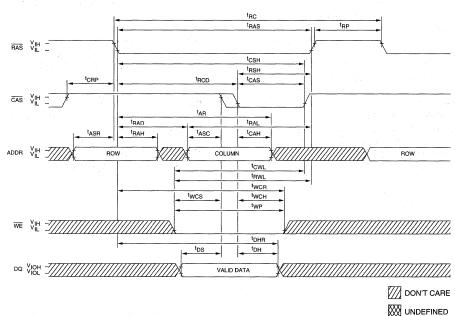
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($0^{\circ}C \le T_A \le 55^{\circ}C$; $Vcc = +3.3V \pm 0.3V$)

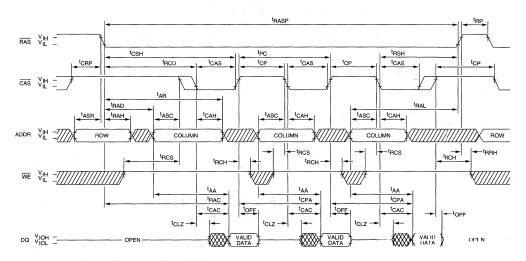
AC CHARACTERISTICS		-6		-7		-8			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Access time from RAS	tRAC		60		70		80	ns	14
RAS to column-address delay time	†RAD	15	30	15	35	15	40	ns	18
Row-address hold time	^t RAH	10		10		10		ns	
Column-address to RAS lead time	^t RAL	30		35		40		ns	- V
RAS pulse width	†RAS	60	10,000	70	10,000	80	10,000	ns	
RAS pulse width (FAST PAGE MODE)	tRASP	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width entering SELF REFRESH	†RASS	100		100		100		μs	28
Random READ or WRITE cycle time	^t RC	110		130		150		ns	
RAS to CAS delay time	^t RCD	20	45	20	50	20	60	ns	17
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19
Read command setup time	tRCS	0		0		0		ns	
Refresh period (1,024 cycles)	^t REF		128		128		128	ms	- 30
Refresh period (2,048 cycles)	†REF		128		128		128	ms	29
RAS precharge time	^t RP	40		50		60		ns	
RAS to CAS precharge time	†RPC	0	100	0		0		ns	
RAS precharge time exiting SELF REFRESH	tRPS	110		130		150	1.00	ns	28
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
RAS hold time	tRSH	15		20		20		ns	
Write command to RAS lead time	^t RWL	15		20		20		ns	
Transition time (rise or fall)	tΤ	3	50	3	50	3	50	ns	
Write command hold time	tWCH	10		15		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		60		ns	
WE command setup time	tWCS	0		0		0		ns	
Write command pulse width	^t WP	10		15		15		ns	
WE hold time (CBR REFRESH)	tWRH	10		10		10		ns	22
WE setup time (CBR REFRESH)	tWRP	10		10		10		ns	22


NOTES

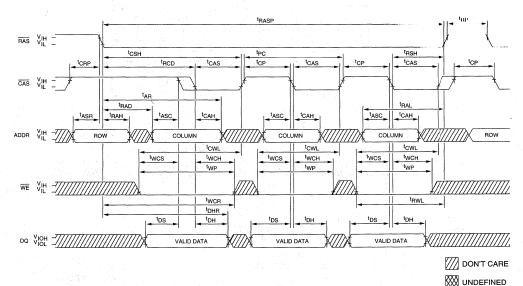
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is measured using MIL-STD-883C, Method 3012.1. Vcc = +3.3V ±5%; f = 1 MHz.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-ups should be repeated any time the ^tREF refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between V_{IL} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is High-Z.
- 12. If $\overline{CAS} = V_{IL}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP.


- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- 22. twTS and twTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverse of twRP and twRH in the CBR REFRESH cycle.
- 23. The maximum current ratings are based on the memory operating or being refreshed in the x32 mode. The stated maximums may be reduced by onehalf when used in the x16 mode.
- These parameters are referenced to CAS leading edge in EARLY WRITE cycles.
- 25. LATE WRITE, READ WRITE or READ-MODIFY-WRITE cycles are not available due to $\overline{\text{OE}}$ being tied permanently LOW on all 4 Meg DRAMs.
- 26. The 3ns minimum is a parameter guaranteed by design.
- 27. Column-address changed once each cycle.
- 28. If the DRAM controller uses a burst refresh, a burst refresh of all rows must be executed upon exiting SELF REFRESH.
- 29. 16MB and 32MB versions only.
- 30. 4MB and 8MB versions only.
- 31. 4MB version is half of values shown.

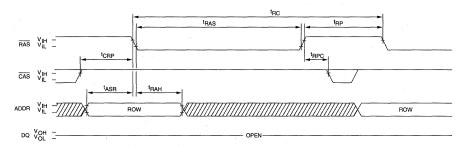
READ CYCLE



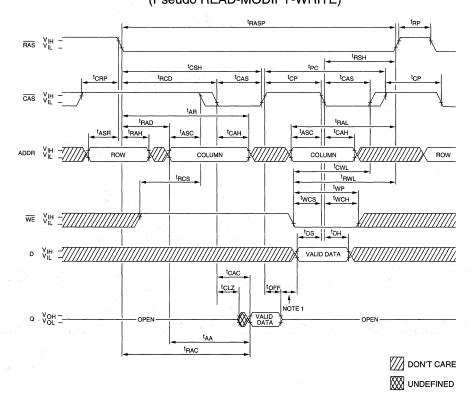
EARLY WRITE CYCLE



FAST-PAGE-MODE READ CYCLE

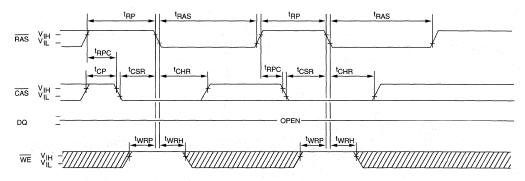


FAST-PAGE-MODE EARLY-WRITE CYCLE

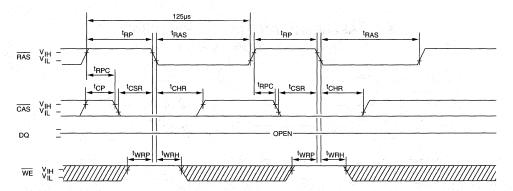


RAS-ONLY REFRESH CYCLE (WE = DON'T CARE)

FAST-PAGE-MODE READ-EARLY-WRITE CYCLE (Pseudo READ-MODIFY-WRITE)



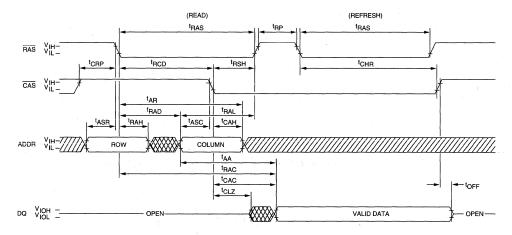
NOTE: 1. Do not drive data prior to tristate.


CBR REFRESH CYCLE

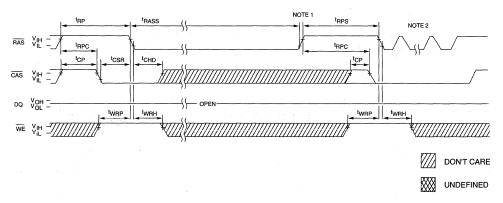
(Addresses = DON'T CARE)

EXTENDED CBR REFRESH CYCLE

(Addresses = DON'T CARE)


DON'T CARE

₩ undefined


HIDDEN REFRESH CYCLE 21

(WE = HIGH)

SELF REFRESH CYCLE (S VERSION ONLY)

(Addresses = DON'T CARE)

NOTE:

- 1. Once ^tRASS (MIN) is met and \overline{RAS} remains LOW, the DRAM will enter SELF REFRESH mode.
- 2. Once ^tRPS is satisfied, a complete burst of all rows should be executed.

MICHON

EDO DRAMs	1
FPM DRAMs	2
SGRAM	3
DRAM SIMMs	4
DRAM DIMMs	5
DRAM CARDS	6
TECHNICAL NOTES	7
PRODUCT RELIABILITY	37 2
PACKAGE INFORMATION	
SALES AND SERVICE INFORMATION	10
MICRON DATAFAX INDEX	

TECHNICAL NOTE SELECTION GUIDE

Technical Note Title		Page
TN-00-01	Moisture Absorption in Plastic Packages	7-1
TN-00-02	Tape-and-Reel Procedures	7-3
TN-00-03	Using Gel-Pak® Packaging With Micron Die	7-9
TN-04-01	DRAM Power-Up and Refresh Constraints	7-11
TN-04-06	OE-Controlled/LATE WRITE Cycles (DRAM)	7-13
TN-04-12	LPDRAM Extended Refresh Current vs. RAS Active Time (4 Meg)	7-15
TN-04-15	DRAM Considerations for PC Memory Design	7-17
TN-04-16	16 Meg DRAM—2K vs. 4K Refresh Comparison	7-23
TN-04-19	Low-Power DRAMs vs. Slow SRAMs for Main Memory	7-25
TN-04-20	SELF REFRESH DRAMs	7-27
TN-04-21	Reduce DRAM Cycle Times with Extended Data-Out	7-29
TN-04-22	256K x 16 DRAM Typical Operating Curves	7-37
TN-04-23	4 Meg DRAM Typical Operating Curves	7-39
TN-04-24	4 Meg DRAM—Access Time vs. Capacitance	7-45
TN-04-26	256K x 16—Access Time vs. Capacitance	7-47
TN-04-28	DRAM Soft Error Rate Calculations	7-49
TN-04-29	Maximizing EDO Advantages at the System Level	7-53
TN-04-30	Various Methods of DRAM Refresh	7-65
TN-04-31	PCB Layout for 4 Meg x 4 300 Mil or 400 Mil SOJ	7-69
TN-04-32	Reduce DRAM Memory Cost with Cache	7-71
TN-41-01	Decrement Bursting with the SGRAM	7-75
TN-88-01	88-Pin DRAM Cards	7-79

For the latest technical information on Micron products, read our quarterly technical newsletter *Design Line*. Call 208-368-3900 to be added to our mailing list.

TECHNICAL NOTE

MOISTURE ABSORPTION IN PLASTIC PACKAGES

INTRODUCTION

All plastic integrated-circuit packages have a tendency to absorb moisture. During surface-mount assembly, this moisture can vaporize when subjected to the heat associated with solder reflow operations. Vaporization creates internal stresses that can cause the plastic molding compound to crack. Cracks in the package allow contamination to penetrate to the die and potentially reduce the reliability of the semiconductor device. The cracking process associated with surface-mountable devices is commonly referred to as the "popcorn effect."

Cracks in the plastic pose several reliability concerns. The moisture path to the die is shortened, allowing ion migration or corrosion to occur more readily. Minor cracks which might not be harmful initially could propagate with time, resulting in a longer-term functional failure.

Since plastic packages absorb moisture, care must be taken to prevent exposure for any long period prior to surface-mounting the devices on the printed circuit board. If exposed to excessive moisture, the devices should be baked to remove moisture prior to solder reflow operations.

This technical note describes the shipping procedures that ensure Micron's customers will receive memory devices that do not exhibit the popcorn effect. It also discusses Micron's recommendations for baking the devices if they are exposed to excessive moisture.

ABSORPTION CHARACTERISTICS

Micron's extensive testing empirically characterizes the moisture absorption characteristics of plastic packages. As the plastic takes on moisture, the weight of the device increases. Micron employs a standard procedure for weighing the device before and after it is exposed to moisture. We calculate the percentage of weight gain to determine the relative efficiency of different packaging techniques used for shipping devices.

MICRON PROCEDURES

Micron has eliminated any chance of having popcorn ailures with surface-mount packages by shipping all surface-mount devices in sealed bags containing a desiccant. Devices stored in these bags show no measurable weight 3ain when subjected to a high-humidity environment for ong time periods.

DEVICE STORAGE

To prevent device failure due to the popcorn effect, store plastic surface-mount packages carefully before PCB assembly. Micron has run tests on devices that have been exposed to 50 percent humidity outside of their shipping containers for time intervals from six months to one year, and no failures have been recorded.

Any concerns about the moisture absorption can be eliminated by storing the devices in Micron's shipping bags. We designed these containers to prevent the passage of water vapor for long periods of time.

DEVICE BAKING

If devices have been removed from their shipping containers and exposed to high levels of moisture, Micron recommends a device bake-out procedure before surface mounting. This bake-out may be accomplished by placing the parts in a tray and baking them in an oven for 160 hours at 40° C. Any moisture is driven out of the devices during the exposure to the heat.

Moisture may be removed faster by baking at 100° C for 24 hours.

SUMMARY

- 1. All plastic packages absorb moisture when exposed to high levels of humidity for long time intervals.
- 2. Micron devices have not exhibited any popcorn effect when exposed to 50 percent humidity for long time periods.
- 3. Micron ships all surface-mount packages in containers that prevent absorption of moisture.
- If devices have been removed from their shipping containers and exposed to excessive moisture, they should be baked before being surface-mounted.

REFERENCES

"Moisture Absorption and Mechanical Performance of Surface Mountable Plastic Packages": Bhattacharyya, B. K., et al.: 1988 Proceedings of the 38th Electronics Components Conference.

"Analysis of Package Cracking During Reflow Soldering Process": Kitano, M., et al.: 26th Annual Proceeding, Reliability Physics, 1988.

"Moisture Induced Package Cracking in Plastic Encapsulated Surface Mounted Components During Solder Reflow Process": Lin, R., et al.: 26th Annual Proceeding, Reliability Physics, 1988.

TAPE-AND-REEL PROCEDURES

GENERAL DESCRIPTION

Tape-and-reel is becoming the packaging and shipment method of choice for Micron's surface-mounted memory devices. Tape-and-reel minimizes the handling of components by directly interfacing with automatic pick-and-place machines.

Micron supports the Electronic Industries Association's (EIA) standardization of tape-and-reel specifications number 481A. The intent of this technical note is to describe Micron's status in support of the EIA standard.

Table 1*
MICRON TAPE SIZES AND DEVICES PER REEL

COMPONENT	TAPE WIDTH (W) mm	PITCH (P) mm	DEVICES PER 13-INCH REEL
PLCC			
18 Pin	24	12	1,000
32 Pin	24	16	500
52 Pin	32	24	500
SOJ (300 mil)			
20/26 Pin	24	12	1,000
24 Pin	24	12	1,000
28 Pin	24	12	1,000
32 Pin	32	12	1,000
SOJ (400 mil)			
28 Pin	32	16	500
32 Pin	44	16	500
40 Pin	44	16	500
TSOP (300 mil)			
20/26 Pin [']	24	12	1,000
TSOP (400 mil)			
40/44 Pin ´	32	16	1,000

^{*}These are examples of tape-and-reel sizes available. Please contact Micron for all available options.

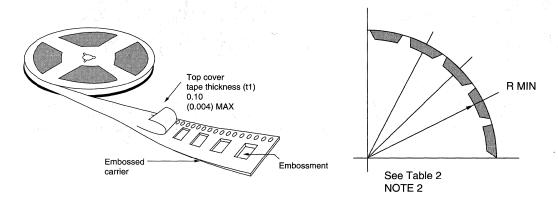
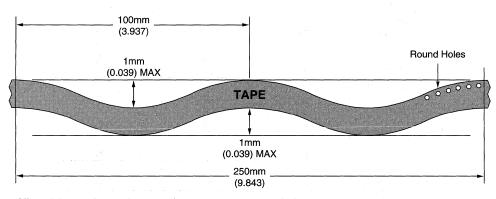
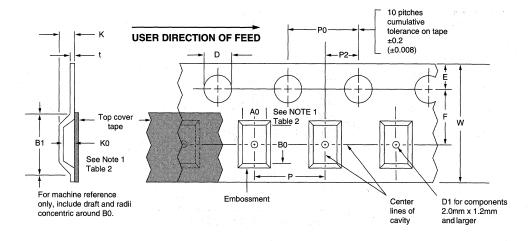



Figure 1 REEL


Figure 2 **BENDING RADIUS**

Allowable camber to be 1mm/100mm nonaccumulative over 250mm.

Figure 3 **CAMBER** (top view)

Figure 4 **EMBOSSED CARRIER DIMENSIONS**

(24mm tape only)

Table 2 24mm EMBOSSED TAPE DIMENSIONS³

TAPE SIZE	D	E	P0	t (MAX)	A0, B0, K0
24mm	1.5 +0.10 -0.00 (0.59) +0.004 -0.000	1.75 (0.069 ±0.004)	4 (0.157 ±0.004)	0.400 (0.16)	Note 1

TAPE SIZE	B1 (MAX)	D1 (MIN)	F	K (MAX)	P2	R (MIN)	W
24mm	20.1	1.5	11.5 ±0.10	6.5	2 ±0.10	50	24 ±0.30
1 4	(0.791)	(0.059)	(0.453 ±0.004)	(0.256)	(0.079 ±0.004)	(1.969)	(0.945 ±0.012)

			P			
TAPE SIZE	4 ±0.10 (0.157 ±0.004)	8 ±0.10 (0.315 ±0.004)	12 ±0.10 (0.472 ±0.004)	16 ±0.10 (0.630 ±0.004)	20 ±0.10 (0.787 ±0.004)	24 ±0.10 (0.945 ±0.004)
24mm			x	х	X	x

NOTE:

- 1. A0, B0 and K0 are determined by component size. The clearance between the component and the cavity must be within 0.05 (0.002) MIN to 1.00 (0.039) MAX for 24mm tape. The component cannot rotate more than 20° within the determined cavity.
- 2. Tape and components shall pass around radius "R" without damage.
- 3. All dimensions in millimeters, (inches).

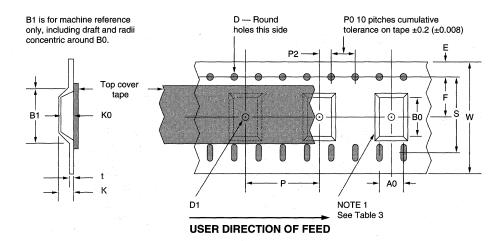


Figure 5
EMBOSSED CARRIER DIMENSIONS
(32 and 44mm tape only)

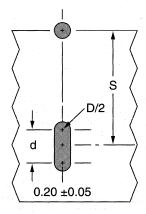


Figure 6
DETAIL ELONGATED HOLE

Table 3 32 AND 44mm EMBOSSED TAPE 3

TAPE SIZE	D	D1 (MIN)	E	K (MAX)	P0	t (MAX)	A0, B0, K0
32 and 44mm	1.5 +0.10	2	1.75 ±0.10	10	4 ±0.10	0.500	NOTE 1
	(0.059) +0.004	(0.079)	(0.069 ±0.004)	(0.394)	(0.156 ±0.004)	(0.20)	

TAPE SIZE	B1 (MAX)	F	P2	S	W	R (MIN)
32mm	23	14.2 ±0.10	2 ±0.10	28.4 ±0.10	32 ±0.30	50
	(0.906)	(0.559 ±0.004)	(0.079 ±0.004)	(1.118 ±0.004)	(1.26 ±0.012)	(1.973)
44mm	35	20.2 ±0.15	2 ±0.15	40.4 ±0.10	44.8 ±0.30	50
	(1.378)	(0.795 ±0.006)	(0.079 ±0.006)	(1.591 ±0.004)	(1.732 ±0.12)	(1.973)

					Р			
TAPE SIZE	16 ±0.10 (0.630 ±0.004)	20 ±0.10 (0.787 ±0.004)	24 ±0.10 (0.945 ±0.004)	28 ±0.10 (1.102 ±0.004)	32 ±0.10 (1.26 ±0.004)	36 ±0.10 (1.417 ±0.004)	40 ±0.10 (1.575 ±0.004)	44 ±0.10 (1.732 ±0.004)
32mm	х	x	х	x	x	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
44mm			х	х	х	х	х	х

NOTE:

- 1. A0, B0 and K0 are determined by component size. The clearance between the component and the cavity must be within 0.05 (0.002) MIN to 1.00 (0.039) MAX for 24mm tape. The component cannot rotate more than 20° within the determined cavity.
- 2. Tape and components shall pass around radius "R" without damage.
- 3. All dimensions in millimeters (inches).

USING GEL-PAK® PACKAGING WITH MICRON DIE

INTRODUCTION

In order to provide a robust packaging environment when shipping die products, Micron uses Gel-Pak® packages. This Technical Note describes the Gel-Pak package, the advantages it has over other forms of packaging and how customers can store and use die from this package.

THE GEL-PAK

The Gel-Pak was chosen because of its advantages over other methods of packaging. Although die can be stored in traditional waffle-packs or chip trays, these packages cannot be used for shipping die. In these packages, the die may easily move within the storage cavity during shipment. This movement can be abrasive to the die and can cause chipping or breakage.

The Gel-Pak eliminates these problems. Figure 1 shows a side view of a Gel-Pak containing die. Right below the die is a gel membrane that uses surface tension to rigidly hold the die in place. Because the die cannot move, the chances of damage are greatly reduced. In addition, the topside of the die which contains the device circuitry is not in contact with any surface that could damage the die.

Micron uses conductive Gel-Paks. The plastic used in the construction of the tray and cover is electrically conducting and protects the die from harmful static electricity. We still recommend that ESD precautions be taken whenever handling or moving the Gel-Pak tray.

STORAGE REQUIREMENTS

Micron die are packaged for shipping within a clean room environment and packaged in a vacuum sealed bag to minimize exposure to humidity. Upon receipt, the customer should transfer the Gel-Pak package to a similar environment for storage. Micron recommends the die be maintained in a filtered nitrogen atmosphere until removed for assembly. The moisture content of the storage facility should be maintained at 30% ±10% relative humidity. ESD damage precautions are necessary during handling. The die must be in an ESD-protected environment at all times during inspection and assembly.

USING GEL-PAKS

Figure 2 shows a Gel-Pak being used when die are being removed during an assembly process. Underneath the gel membrane is a release pattern formed of fabric mesh or molded pattern which defines a series of voids underneath the die. When a vacuum is applied to the tray, the gel membrane is deformed and the amount of surface area in contact with the die is greatly reduced. A holding fixture should be provided for positive positioning of the tray so that a leak-free vacuum can be delivered to the underside of the tray. Empirical tests show that the surface tension force is reduced by over two orders of magnitude allowing the die to be easily removed.

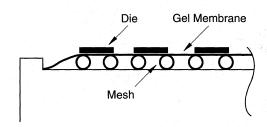


Figure 1 CROSS-SECTIONAL VIEW OF A GEL-PAK

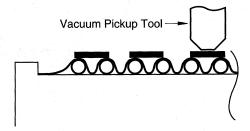


Figure 2 VACUUM APPLIED TO GEL-PAK

Once the vacuum is applied to the container, it is recommended that a vacuum pickup tool be used to remove and place the die. This will minimize the risk of breakage or chipping. Replaceable rubber tips for pickup tools may provide for a more positive device removal from vacuum release trays. The maximum tip size compatible with the device should be used.

With some pick and place machines, the vacuum is activated by the contact pressure of the pickup tool on the die. This may result in the die being pushed slightly into the gel, which in turn reduces the ease with which the die can be picked from the gel. Some equipment manufacturers have indicated that their pick and place machines can be easily modified to automatically activate the vacuum with very low contact pressure, or manually by the operator with essentially no contact pressure.

Vacuum Work Stations are available from Gel-Pak which provide an easy way to apply the vacuum to the Gel-Pak. Micron uses 2- and 4-inch Gel-Paks. The 4-inch Vacuum Work Station can be used with both types.

Figure 3 shows a typical orientation of die in a Gel-Pak. All die are placed in the Gel-Pak with identical orientation. Refer to individual die data sheets for the exact orientation for a particular die and part number.

CONCLUSION

By using the methods outlined above, customers will be able to use Micron die shipped in Gel-Paks. Following these guidelines will ensure minimum breakage and ease of use.

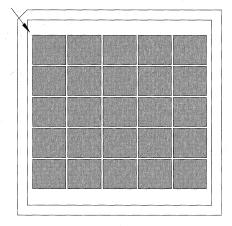


Figure 3 ORIENTATION OF DIE IN GEL-PAK

DRAM POWER-UP AND REFRESH CONSTRAINTS

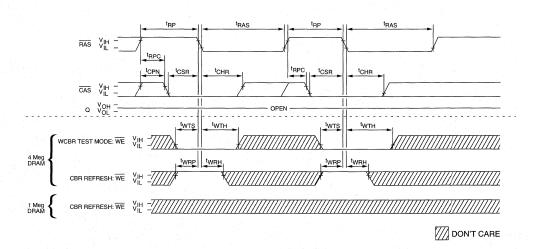
INTRODUCTION

The JEDEC 4 Meg DRAM introduces two potential incompatibilities compared to the previous generation 1 Meg DRAM. The incompatibilities involve refresh and power-up. Understanding and addressing these incompatibilities and providing for them will offer designers and system users greater compatibility between the 1 Meg and 4 Meg.

REFRESH

The most commonly used refresh mode of the 1 Meg is the CAS-BEFORE-RAS (CBR) REFRESH cycle. The CBR for the 1 Meg specifies the WE pin as a "don't care." The 4 Meg, on the other hand, specifies the CBR REFRESH mode with the $\overline{\text{WE}}$ pin held at a voltage HIGH level.

A CBR cycle with WE LOW will put the 4 Meg into the JEDEC-specified test mode (WCBR). In contrast, the 1 Meg test mode is entered by applying a HIGH signal to the test pin (pin 4 on DIPs, pin 5 on SOJs and pin 8 on ZIPs). This HIGH signal is usually a "super voltage" (VIN ≥ 7.5V), so normal TTL or CMOS HIGH levels will not cause the part to enter TEST MODE.


POWER-UP

The 4 Meg JEDEC test mode constraint may introduce another problem. The 1 Meg POWER-UP cycle requires a 100µs delay followed by any eight RAS cycles. The 4 Meg POWER-UP cycle is more restrictive in that eight RAS ONLY or CBR REFRESH (WE held HIGH) cycles must be used. The restriction is needed since the 4 Meg may powerup in the JEDEC-specified test mode and must exit out of the TEST MODE. The only way to exit the 4 Meg JEDEC TEST MODE is with either a RAS ONLY or a CBR REFRESH cycle (WE held HIGH).

SUMMARY

The 1 Meg and 4 Meg are compatible, with the following exceptions:

- 1. For standard TEST MODE, the 1 Meg requires a vaild HIGH on the test pin while the 4 Meg requires a CBR cycle with $\overline{\text{WE}}$ LOW.
- 2. The 1 Meg CBR REFRESH allows the $\overline{\text{WE}}$ pin to be a "don't care" while the 4 Meg CBR requires WE to be
- 3. The eight RAS wake-up cycles on the 1 Meg may be any valid RAS cycle while the 4 Meg may only use RAS ONLY or CBR REFRESH cycles (WE held HIGH).

COMPARISON OF 4 MEG TEST MODE AND WCBR TO 1 MEG CBR

TECHNICAL NOTE

OE-CONTROLLED/LATE WRITE CYCLES (DRAM)

INTRODUCTION

There are three cycles available to write to a DRAM: EARLY WRITE cycles, READ-MODIFY-WRITE cycles and LATE WRITE cycles. The industry-standard definitions for DRAM WRITE cycles are fairly consistent for both the EARLY WRITE and READ-MODIFY-WRITE cycles. An exception exists for the LATE WRITE cycle.

COMMON DO DRAM (x4, x8, etc.)

A LATE WRITE cycle is a READ-MODIFY-WRITE (see Figure 1) except that the READ portion is not utilized. This is accomplished by keeping the output enable pin (\overline{OE}) HIGH throughout the cycle. The timing parameters ${}^{t}RWD$, ${}^{t}AWD$ and ${}^{t}CWD$ no longer apply since \overline{OE} is HIGH.

WHITE CYCLES (DRAWI)

This condition may be viewed as an EARLY WRITE with tWCS "sliding" past the \overline{CAS} time and violating the 0ns setup time (WE going LOW prior to \overline{CAS} going LOW). However, since the output buffers are not being used (\overline{OE} is HIGH), tWCS and tCWD are no longer required.

If $\overline{\text{WE}}$ transitions LOW after $\overline{\text{CAS}}$ transitions LOW, do not bring $\overline{\text{OE}}$ LOW (a noise spike may occur), because the output buffers could turn on and cause contention with the data bus, which could corrupt input data.

The term used for such a WRITE cycle varies throughout the industry. The use of "OE-controlled WRITE," "delayed WRITE" and "LATE WRITE" all signify the same WRITE cycle described.

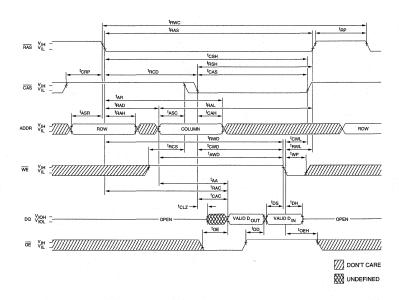


Figure 1
READ-MODIFY-WRITE (MULTIPLE DQ) TIMING

OE-CONTROLLED/LATE WRITE CYCLES (DRAM)

SPLIT D AND Q DRAM (x1)

A LATE-WRITE cycle is a READ-MODIFY-WRITE, except the READ portion is not guaranteed and the D and Q pins are separate paths (D and Q cannot be connected). This is accomplished by ignoring the timing parameters 'RWD, 'AWD and 'CWD.

This condition can be viewed as an EARLY WRITE with ^tWCS "sliding" past the CAS time and violating the 0ns setup time (WE going LOW prior to CAS going LOW). However, since the output buffers are "don't care," ^tWCS and ^tCWD are no longer required.

This cycle is not available on applications that have the D and Q connected together, because the output will contend with the input.

SUMMARY

A LATE WRITE cycle is most useful on common DQ DRAMs. Use caution to ensure that the output enable pin is properly controlled.

TECHNICAL NOTE

LPDRAM EXTENDED REFRESH CURRENT vs. RAS ACTIVE TIME (4 MEG)

INTRODUCTION

One of the most significant features of the low-power extended refresh DRAM (LPDRAM) is its cycle. Extended refresh is essentially a CAS-BEFORE-RAS (CBR) REFRESH at an extended refresh rate of 125µs per cycle.

RAS pulse width (tRAS) affects the extended refresh current and should be considered when designing a low-power system. The longer RAS is held LOW, the more current an LPDRAM will consume while in the extended refresh mode. Therefore, keeping tRAS at a minimum will maximize power savings.

Figure 1, a typical curve of Micron's 4 Meg LPDRAM (MT4C4001J S and MT4C1004J S), shows the relationship between its extended refresh standby current and the width of t RAS.

SUMMARY

The ^tRAS time should be kept as short as possible when designing memory array timing. This will result in lower standby currents, especially for the extended refresh cycle.

Extended Refresh (µA)

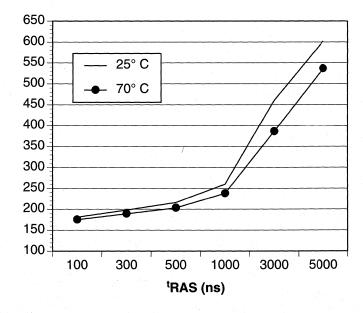


Figure 1
TYPICAL EXTENDED REFRESH CURRENT AS A FUNCTION OF ^tRAS

7-16

TECHNICAL NOTE

DRAM CONSIDERATIONS FOR PC MEMORY DESIGN

INTRODUCTION

The demand for DRAM memory in personal computers (PCs) has been mainly for desktop personal computers. When designing main memory, PC designers have primarily focused on three requirements: availability, cost and speed.

The new and growing field of portable personal computers has introduced seven additional issues:

- Parity
- Lower power (Extended Refresh)
- SELF REFRESH
- · Package size
- Operating current
- 3.3V operating voltage
- DRAM cards (88-pin)

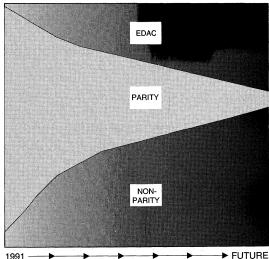
The first three issues (availability, cost and speed) are well understood. This technical note discusses the remaining issues in order to help memory designers choose the best solution for their portable or desktop system designs.

OFFERINGS

To design main memory, five basic offerings of DRAM are or will be available in the near future:

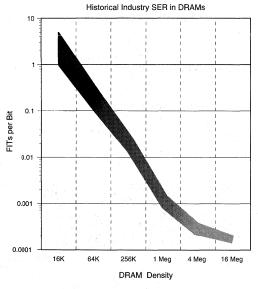
1 Meg x 4 (plus 1 Meg x 4 Quad CAS for parity) 512K x 8 (512K x 9 for parity) 2 Meg x 8 (4 Meg x 1 for parity) 256K x 16 (256K x 18 for parity)

1 Meg x 16 (1 Meg x 4 Quad CAS for parity)


The first offering is referred to as "standard DRAMs," and the remaining are referred to as "wide DRAMs." Generally, standard DRAMs are more readily available and have more sources. Wide DRAM development is usually a generation behind the standard DRAM and is not expected to catch up until the third generation of 16 Meg DRAMs and the first generation of 64 Meg DRAMs.

PARITY (OR NO PARITY)

There is a growing trend to build notebook and low-end to mid-range desktop PCs without parity. Within a few years, most parity-based systems will switch to either nonparity-based systems (as in most PCs) or error detection and correction (EDAC) based systems (high-end PCs).


Some of the reasons for this trend away from parity are listed below:

- 1. Parity does not significantly improve reliability.
- DRAMs from a quality manufacturer now have very low soft error rates (SERs).
- 3. Parity increases memory costs 10 to 15 percent.
- 4. Some chipsets allow turning off the parity bit.
- Parity requires extra board space as well as previous generation devices or less available parity chips.
- 6. Some software does not use parity.

Past. Present and Future Trends

The most important of these factors is the memory system's reliability. In the early days of semiconductor DRAM memories, the high SER of 4K and 16K DRAMs, coupled with the high cost of implementing EDAC (8-bit buses), made implementing parity critical. DRAM manufacturers, however, have significantly reduced SER during the last five generations (Fig. 1). For example, the SER on a 16K DRAM was approximately 1 to 5 FITs per bit, whereas the SER on a 4 Meg DRAM is closer to 0.0002 to 0.0004 FITs per bit—a 10,000x improvement. (FIT is a failure in time, where time is 1 billion device hours.)

Figure 1 HISTORICAL DRAM SER

By taking these industry SER averages and applying them to a 2MB, 16-bit wide memory system, meaningful benchmarks for PCs can be obtained. Most systems measure errors in mean time between failures (MTBF). Applying the SER numbers from the previous figure, the improvement in MTBF for a typical 2MB, 16-bit wide memory system can be demonstrated (Fig. 2).

It is obvious why parity was instituted in the 16K DRAM days. A memory system made of 16K DRAMs would experience a SER hit every 60 to 70 hours. Because of this, it has been standard operating procedure to design in parity. But changes are ahead. System designers are starting to ask, "Why?" Using today's high-quality 4 Meg DRAMs rather than yesterday's 16K DRAMs extends the MTBF from approximately 60 hours to an MTBF of 30 to 35 years on a 2MB by 16-bit wide memory system.

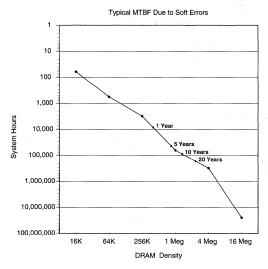


Figure 2
MTBF FOR 2MB MEMORY SYSTEM

Another way to look at this same data is to calculate the number of SER hits a user would see after ten years of continuous use (Fig. 3). As expected, the SER is negligible after ten years of continuous use when using today's high-quality DRAMs.

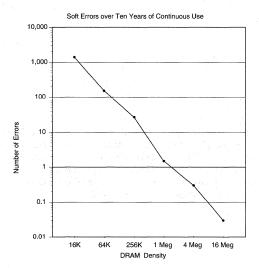


Figure 3
2MB MEMORY SYSTEM SER

It is important to note that the SER and MTBF must be carefully calculated for any given system and its application. The DRAM's SER is dependent on Vcc (power supply voltage), operating speed (cycle rate) and memory configuration. By taking the previous 2MB example and doubling it to 4MB, the SER will either increase slightly or double. If the width of the memory system is increased to 32 bits, the SER would double since all DRAM bits are active. If, on the other hand, the memory is interleaved and the bus remains 16 bits wide, the SER increases only slightly. This is because the bank not being accessed is in standby mode and is much less susceptible to SER hits. (The faster the cycle rate, the more susceptible a DRAM is to SER.) Technical note TN-04-28 provides an in-depth analysis to determine system MTBF to soft error.

Table 1 PARITY AND EDAC OVERHEAD

	EXTRA REQUI		BUS WIDTH INCREASE		
BUS SIZE (BITS)	PARITY	EDAC	PARITY	EDAC	
8	1	5	12.5%	62.5%	
16	2	6	12.5%	37.5%	
32	4	8	12.5%	25%	
64	8	8	12.5%	12.5%	

Although the need for parity would appear to be greater for wider buses, the additional cost to implement EDAC,

rather than parity, decreases substantially as the bus width increases. In fact, the DRAM memory cost is the same for a 64-bit wide bus (Table 1). Besides detecting two errors for a given word, EDAC will also correct any single bit error.

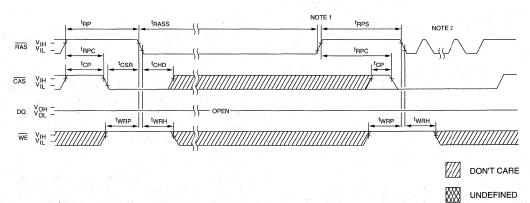

Most applications with buses no more than 32 bits wide do not require parity, whereas applications using bus widths of 32 bits or more may require some kind of bit-checking for errors. The choice is usually EDAC rather than parity.

Table 2 SELECTION FOR ERROR CHECKING

ERROR	BUS SIZE (BITS)					
CHECKING	16	32	64			
Nonparity	1 Meg x 4	1 Meg x 4	1 Meg x 4			
Parity	n/a	1 Meg x 4	1 Meg x 4			
EDAC	n/a	1 Meg x 4	1 Meg x 4			

Table 2 summarizes which DRAM would be the optimum choice, considering price, performance and space. It takes into account the typical PC which ships with a minimum of 4MB of memory. The 64-bit bus choice of 1 Meg x 4 DRAMs is based on memory size increase from 4MB to 8MB.

The 1 Meg x 16 will be the part of choice once the premium reaches 10 percent above four 1 Meg x 4 DRAMs. As the minimum memory requirements increase, the 2 Meg x 8 will offer the optimum support: 16- and 32-bit buses at 8MB and 64-bit buses at 16MB.

Figure 4 SELF REFRESH OPERATION

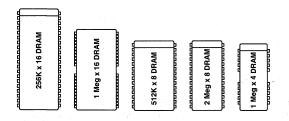
NOTE: 1. Once ^tRASSmin is met and RAS remains LOW, the DRAM will enter SELF REFRESH mode.

2. Once ^tRPS is satisfied, a complete burst refresh of all rows should be executed. Distributed refreshes at the specified refresh rate are acceptable, provided CBR REFRESH cycles are utilized.

LOW-POWER, EXTENDED REFRESH

A low-power, extended refresh DRAM (LPDRAM) has a reduced CMOS standby current limit (typically from 1mA to 200µA) and refresh interval eight times longer (from 15µs per row to 62.5µs or 125µs per row). The extended refresh offers an extended mode, which is a low-current, dataretention cycle. Each of the five DRAM options in this technical note have low power, extended refresh versions available.

On a per-bit basis, the 1 Meg x 16 (1K refresh version) generally offers the best standby and refresh power savings compared to the other four DRAM organizations. The DRAM standby current is important in battery-operated systems, since DRAMs usually draw a large percentage (50 to 70 percent) of the total system current when the system is in sleep or suspend mode.


SELF REFRESH

The SELF REFRESH feature built into some DRAMs is usually indicated by an LL or S suffix. This feature performs an extended refresh mode, with the exception that no external clocking is required; that is, the DRAM will refresh itself via its own internal refresh clock (Fig. 4).

Control of SELF REFRESH is defined by JEDEC and the following defacto standard timing specifications: ^tRASS = $100\mu s$, ^tRPS ≈ ^tRC, ^tCHD = 10ns.

PACKAGE SIZE

Conserving board space is always an important design consideration, especially for laptop and notebook computers. Functionally, DRAMs require more board space than most other devices. The size between the five options in small outline J-lead package (SOJ) vary greatly. The 512K x 8 DRAM requires approximately 50 percent more area than a 1 Meg x 4 DRAM. The 256K x 16 requires approximately 110 percent more area than a 1 Meg x 4 DRAM and 44 percent more area than a 512K x 8. Use of 16 Meg DRAMs result in significant space savings: 1 Meg x 16 equals 2.5 times and 2 Meg x 8 equals 4 times space savings over use of 1 Meg x 4. Full-sized outlines are shown here for comparison:

These are also available in a thin, small-outline, gull-lead package (TSOP). The length and width of a TSOP are the same as the corresponding SOJ package (same board area) except that the x16 length TSOP is reduced because of a smaller lead pitch (50mil to 32mil). The TSOP's key attraction is that it is one-third the thickness of the SOJ (47 mils compared to 142 mils), as illustrated below:

Notebooks and other compact designs which have height or layout restrictions can sometimes justify the current cost premium required to use TSOPs. Additionally, in TSOP, the x16 does not impose as severe a board space penalty, as does a x16 SOJ. Table 3 lists the dimensions (length and width) for the various packages.

Table 3 PACKAGE DIMENSIONS (in mils)

	S	DJ	TSOP		
Device Type	Width	Length	Width	Length	
1 Meg x 4	340	679	367	677	
512K x 8	445	729	467	727	
2 Meg x 8	340	729	340	727	
256K x 16	445	1029	467	727	
1 Meg x 16	n/a	n/a	467	827	

OPERATING CURRENT

Operating current is usually of less importance in system design. When a PC is in the active mode, the DRAM's portion of current draw is minimal (typically from four to six percent) compared to the total system current consumption. Wider DRAMs generally offer lower operating currents (10 to 20 percent) in most applications, since fewer devices are active for a given access, but generally not enough to outweigh the cost increase, board space increase and performance reduction they impose.

3.3 VOLTS

Personal computers are also starting to employ 3.3V DRAMs. A low-voltage (3.3V) DRAM consumes approximately half the power of a 5V version. The choice of whether to use 5V or 3.3V DRAMs is dictated by the voltage platform selected, which is determined by the CPU and chipset specifications. Systems requiring memory support beyond a few years are employing 3.3V DRAMs to ensure long term support.

FUTURE FEATURES

Many new features will be available in the near future. Some of the more important features will be extended data-out (EDO) and synchronous DRAMs. The EDO DRAM is a FAST PAGE DRAM with the exception that the data outputs (DQ) are not tristated by CAS.

The key advantage with EDO is a PAGE-MODE READ cycle up to 30 percent faster. Since CAS does not tristate the DQs, tCAS can be minimized and CAS precharge can occur while the output data is being latched. EDO is considered a bridge for performance increase until synchronous DRAMs are a cost effective solution for the very high-end performance system.

System designs should control WE HIGH at RAS time during READ and WRITE cycles (see Figure 6) in today's FAST-PAGE-MODE and EDO designs. Such controlling of WE will facilitate compatibility with future EDO DRAMs.

The synchronous DRAM is a radical change from the standard DRAM. Rather than being dependent on time delays, the synchronous DRAM's inputs will all be clocked-in on the positive edge of the system clock. The synchronous DRAM is expected to provide the speed performance required for 100 MHz and above systems.

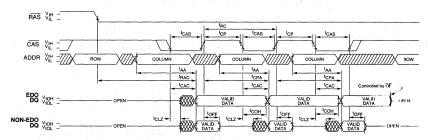


Figure 5
EDO vs. NON-EDO (FAST-PAGE-MODE) DRAMS

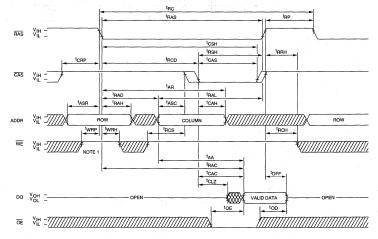


Figure 6
EDO READ CYCLE

NOTE: 1. Although WE is a "don't care" at RAS time during an access cycle (READ or WRITE), the system designer should implement WE HIGH for WRP and WRH. This design implementation will facilitate compatibility with future EDO DRAMs.

SUMMARY

The 1 Meg x 4 (desktops) and 1 Meg x 16 DRAM (notebooks) are today's best choices for main memory in personal computers. With minimum memory requirements growing, the 2 Meg x 8 DRAM is becoming the best choice for main memory in both desktop and notebook PCs. Table 3 summarizes and compares the issues involved in selecting DRAMs for PC memories.

Wider DRAMs are best suited to systems which require shallow and wide arrays. The 256K x 16 is a good choice for high-end video graphics and printer buffers requiring up to 256K bits deep and 16 or more bits wide.

Most PC systems do not require the burden of parity when using 4 or 16 Meg DRAMs. High-end systems should use EDAC for the best reliability.

Table 3 4 MEGABYTE MODULE (1 MEG x 32)

PARAMETERS		1 MEG x 4	512K x 8	256K x 16	2 MEG x 8	1 MEG x 16	UNITS
Number of Devices Required		8	8	8	n/a	2	Devices
Availability (Market Volume)		40	1	10	3	2	Relative to
Base Price		1.0	1.25	1.2	1.1	1.4	1 Meg x 4
Costs	Low Power Adder	5	5	5	5	5	% of Base
	TSOP Adder	10	10	10	10	5	% of Base
Minimum Speed (Typical)		70	80	70	70 ¹	70 ¹	ns @ 5V
BBU ICC	Maximum Spec	2.4	3.2	3.2	n/a	0.61	mA @ 5V
	Typical	1.2	2.4	2.4	n/a	0.41	mA @ 5V
Minimum Board Space Used		12	18	26	n/a	5	cm ²
Active ICC	Maximum Spec	680	400	280	n/a	310 ¹	mA @ 5V
	Typical	400	340	240	n/a	200 ¹	mA @ 5V

1. 3.3V with 5V tolerant I/O.

M Ī

TECHNICAL NOTE

16 MEG DRAM—2K vs. 4K REFRESH COMPARISON

INTRODUCTION

Micron Technology, Inc., offers its 4 Meg x 4 DRAM in two JEDEC-approved versions. The MT4C4M4A1 requires 12 row-address bits and 10 column-address bits for 4,096 (4K) cycle refresh in 64ms. The MT4C4M4B1 requires 11 row-address bits and 11 column-address bits for 2,048 (2K) cycle refresh in 32ms. Excluding this difference, the timing and performance of the two devices are identical.

Industry demand for decreased power consumption led JEDEC to approve 4K refresh in addition to 2K refresh at the 16 Meg level. At minimum random cycle time (tRC = 110ns), A 4 Meg x 4 device with 4K refresh draws ≈30mA less operating current than a device with 2K refresh. The current is decreased by increasing the number of rows and decreasing the number of columns in the DRAM array. A 4 Meg x 4 with 4K refresh has 4,096 rows and 1,024 columns, whereas one with 2K refresh has 2,048 rows and 2,048 columns. The number of columns defines the "depth" of a page. The drawing below shows how 2K and 4K refresh devices are different. Notice that the 2K device has a page depth of 2,048, while the 4K device has a page depth of 1,024, or half the page depth of the 2K device.

4 MEG x 4 WITH 2K REFRESH

4 MEG x 4 WITH **4K REFRESH**

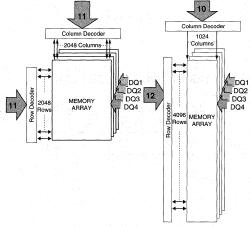


Figure 1

CHOOSING 2K OR 4K REFRESH

There are several factors to consider when deciding which refresh standard is best for an application:

- 1. Addressing supported by your DRAM controller— 11 row/11 column, 12 row/12 column, or both?
- 2. Frequency and length of page accesses
- 3. Average cycle rates

Some DRAM controllers have only 11 address drivers, so they are limited to 2K refresh. Many newer DRAM controllers, including some of the 3.3V controllers, are being designed to support both standards, so this limitation should be short-lived.

Your choice of 2K or 4K refresh will probably be based on the importance of power consumption versus page depth. A system requiring frequent page accesses may not benefit by sacrificing page depth in exchange for the power savings of a 4K refresh. In a portable system, the benefits of 20mA less current may easily override concerns about decreased page depth.

Additionally, the difference in power consumption decreases with longer cycle times. If the DRAMs spend much of their time idle, as in systems using SRAM caches, the power savings may be negligible. See Figure 2.

Comparison of Icc vs. Random Cycle Time for 2K Refresh and 4K Refresh 4 Meg x 4 DRAMs

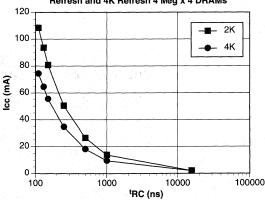


Figure 2

MODULES

Modules may use both 2K and 4K refresh depending on whether or not they have twelve address inputs. If a module uses parity, such as the 4 Meg x 9 or the 4 Meg x 36, it probably mixes 4 Meg x 4 and 4 Meg x 1 DRAMs on the same module. Because the 4 Meg x 1 DRAM requires symmetric addressing (11 row-addresses and 11 column-addresses), using a 4K refresh 4 Meg x 4 DRAM requires that the DRAM controller support both addressing decodes simultaneously. This is possible using "redundant addressing," whereby one of the address bits is duplicated as both a row-address and as a column-address. Most modules that have parity will simply use the 2K refresh 4 Meg x 4 DRAM in order to avoid changes to existing controllers. As shown in Figure 3, when a 4 Meg x 4 with 2K refresh is employed, the numbers of rows and columns match the 4 Meg x 1, allowing use of the 4 Meg x 1 for parity.

If the 4 Meg x 4 with 4K rows is implemented, redundant addressing must be employed, or use of the 4 Meg x 1 for parity becomes impossible because the number of rows and columns does not match. The shaded areas shown in Figure 4 are the portions of the DRAM that can't be used because of the difference in the number of rows and columns. Table 1 shows an example of redundant addressing. If bit 23 is set

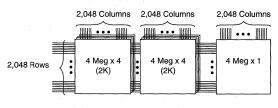


Figure 3

to equal bit 22, it can serve as both the 12th row-address on the 16 Meg and the 11th column-address on the 4 Meg.

SUMMARY

- 1. JEDEC has approved two refresh standards at the 16 Meg level, 2K and 4K.
- 2K refresh is 2,048 cycles in 32ms; 4K refresh is 4,096 cycles in 64ms.
- 3. Devices with 4K refresh cut current consumption by 20mA under worst-case operating conditions.
- 4. Devices with 4K refresh have half the page depth of a 2K device.
- 5. Existing 5V standard modules generally will use the 2K refresh standard DRAM.

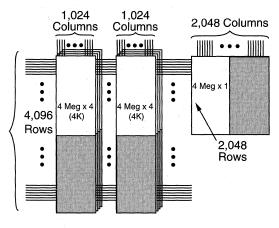


Figure 4

Table 1 ADDRESS MULTIPLEXING ASSIGNMENT FOR DRAM ROWS AND COLUMNS

DRAM Adress		A0	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11
Memory Controller Address	Column	1 -	2	3	4	5	6	7	8	9	20	23	
	Row	10	11	12	13	14	15	16	17	18	19	21	22

LOW-POWER DRAMS vs. SLOW SRAMS FOR MAIN MEMORY

INTRODUCTION

The market for portable computers such as notebooks, laptops and palmtops is extremely competitive and fast-paced. Designers of these systems are continually trying to minimize power, cost and size without compromising performance. One of the most challenging areas is memory design. To meet their design constraints, manufacturers are using either low-power DRAMs or slow SRAMs for memory. This technical note discusses memory design and the tradeoffs associated with each of these types of memory.

LPDRAMs AND SLOW SRAMs

Users of portable devices want long battery life. Reducing power consumption to meet this need is critical. This is why portables use low-power extended refresh DRAMs (LPDRAMs) instead of standard DRAMs. A standard DRAM has standby currents of 3mA at a 15µs refresh cycle. LPDRAMs have standby currents ranging from 1mA to 200µA, and a refresh interval of 125µs (extended refresh).

LPDRAMs offer a very low-power standby power mode called BATTERY BACKUP (BBU) mode. BBU is the lowest DRAM power mode possible that still retains data. It consists of a $\overline{\text{CAS-BEFORE-RAS}}$ (CBR) REFRESH cycle at the slowest possible cycle rate.

Some designers have used slow SRAMs in their designs since they offer low standby currents. Slow SRAMs are usually defined as SRAMs with a cycle speed of 80ns or slower. They have low standby currents when compared to standard DRAMs.

A standard memory configuration was chosen in order to compare the two types of memory. In portables, a 2MB memory in a x16 configuration is quite common. Memory will typically be a 4 Meg DRAM (x4 or x8) or a 1 Meg SRAM (x8). These memory arrays are compared in the following paragraphs and in Table 1 on the next page.

COST

In the highly competitive notebook market, reduction of cost is crucial. Because an SRAM bit cell uses four times as many transistors as a DRAM, the amount of silicon area used is much larger. Cost is proportional to silicon area, so for a given amount of memory the SRAM takes up more area and costs more. This is clearly seen in the marketplace since 256K SRAMs are more expensive than 256K DRAMs, 1 Meg SRAMs are more expensive than 1 Meg DRAMs, etc.

Of course, the size of a chip can be increased only so far before yield drops. When 4 Meg DRAMs were the highest density DRAM being manufactured, only 1 Meg SRAMs were available. A designer would only need one-fourth the number of 4 Meg DRAM parts over 1 Meg SRAMs. Table 1 compares the relative cost of several arrays; DRAMs always have the cost advantage.

SIZE AND WEIGHT

Typically, DRAMs are a generation ahead of SRAMs and are thus a factor of four ahead in density. This is because SRAMs take up much more silicon die area for a given memory density. For a typical memory size, SRAMs require four times as many devices and four times the board area (see Table 1).

DRAMs use multiplexed row and column addressing whereas SRAMs use unmultiplexed addressing. For an identical size of memory, DRAM packages use less pins and are smaller. This contributes to their effectiveness in minimizing space.

A designer should be cautious in choosing a slow SRAM for a portable application due to the board space required to implement the memory system. Similarly, the increased number of devices will make the portable heavier.

POWER

One of the main problems with notebook computers today is that the battery life is too short. Even with the large batteries used today, battery life can be less than two hoursusers are demanding eight hours or more.

Slow SRAMs have an advantage in standby and active currents (typical). As you can see from Table 1, slow SRAM standby current can be much lower than that of DRAMs. This is because only a portion of the memory is accessed at any given time, so much of the memory is in standby mode.

SUMMARY

The portable market is so competitive that cost is usually the overriding consideration. Even if battery time can be extended slightly with slow SRAMs, cost and increased board space usually prohibit their use. DRAMs have been and will likely continue to be the part of choice in portable applications.

Table 1 2MB, 16-BIT-WIDE MEMORY

PART TYPES		1 MEG x 4 Drams	512K x 8 Drams	128K x 8 SLOW SRAM ⁴	128K x 8 SLOW SRAM ⁵	UNITS
Number of Devices Rec	luired	4	4	16	16	No. of Devices
Total Cost ¹		1.0	1.1	4.3	4.3	Relative Cost
Minimum Speed		70	70 70 85		85	ns
Standby/BBU Current ²	(MAX)	1.2	1.2	1.6	0.8	mA
	(Typical)	600	600	32	32	μА
Active Icc Current ^{2, 3}	(MAX)	240	160	140	140	mA
	(Typical)	141	. 94	90	90	mA
Minimum Board Space	Used	0.9	1.3	7.4	7.4	(TSOP) in ²
Weight⁵		1.0	1.4	5.8	5.8	Relative Weight

NOTE:

- 1. Costs are relative to the 1 Meg x 4 DRAM.
- 2. Assumes an 80ns part in FAST PAGE MODE for DRAMs, 85ns part for SRAMs.
- 3. For the x8 devices, only a portion of the array is active at any one time.
- 4. Standard slow SRAMs
- 5. Low-power slow SRAMs
- 6. Weight is relative to the 1 Meg x 4 DRAM.

SELF REFRESH **DRAMS**

INTRODUCTION

DRAM memories targeted for the low-power, portable market are providing several new features to help maximize power savings. One of these new features is the SELF REFRESH mode. DRAMs having this new feature are referred to as SELF REFRESH DRAMs and provide the user with a very low-current, data-retention mode.

This mode has been approved by JEDEC and is quickly becoming an industry-standard feature. Most 3.3V DRAMs will be offered with this feature, as will many future 5V DRAMs.

SELF REFRESH DRAMs vs LPDRAMs

Low-power, extended-refresh DRAMs (LPDRAMs) have the same functionality as a standard DRAM, except they have been tested to meet the lower CMOS standby current and the extended refresh specifications. SELF REFRESH DRAMs, on the other hand, require additional circuitry be added to the standard DRAM to perform the SELF RE-FRESH function.

SELF REFRESH MODE

SELF REFRESH mode provides the DRAM with the ability to refresh itself while in an extended standby mode

(sleep or suspend). It is similar to the extended refresh mode of an LPDRAM except the SELF REFRESH DRAM utilizes an internally generated refresh clock while in the SELF REFRESH mode.

During a system's suspend mode, the internally generated refresh clock on the DRAM replaces the DRAM controller refresh signals. Therefore, it is no longer necessary to power-up the DRAM controller while the system is in the suspend mode. Consulting the devices' data sheets will determine the power savings achieved.

USING SELF REFRESH

SELF REFRESH introduces the new parameters ^tRASS, tCHD and tRPS. These new parameters are shown in Figure 1. The DRAM's SELF REFRESH mode is initiated by executing a CAS-BEFORE-RAS (CBR) REFRESH cycle and holding both RAS and CAS LOW for a specified period. The industry standard for this value is 100µs minimum (tRASS). The DRAM will remain in the SELF REFRESH mode while RAS and CAS remain LOW. Once CAS has been held LOW for tCHD, CAS is no longer required to remain LOW and becomes a "don't care."

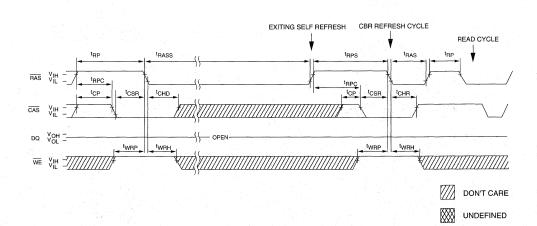


Figure 1 SELF REFRESH CYCLE UTILIZING DISTRIBUTED CBR REFRESH

The SELF REFRESH mode is terminated by taking $\overline{\text{RAS}}$ HIGH for ^tRPS (the minimum time of an operation cycle). Once the SELF REFRESH mode has been terminated, the user can access the DRAM normally.

HOW IS SELF-REFRESH DONE?

SELF REFRESH can be implemented on the device in two ways. One method utilizes a distributed method and the second uses a wait and burst method. Micron devices use the distributed method.

Devices that utilize the distributed method will refresh the rows at a regular rate, utilizing the CBR REFRESH counter to turn on rows. In a system that utilizes distributed CBR REFRESH as the standard refresh, accesses to the DRAM can begin as soon as SELF REFRESH is exited. The first CBR pulse should occur within the time of the external refresh rate prior to active use of the DRAM to ensure maximum data integrity and must be executed within three external refresh rate periods. Since CBR REFRESH is commonly implemented as the standard refresh, this ability to access the DRAM immediately after exiting SELF REFRESH is a big benefit over the burst scheme described later. If anything other than CBR REFRESH is used as the standard refresh, a burst of all rows needs to be executed when exiting SELF REFRESH. This is because the CBR counter and the DRAM controller counter will not likely be at the same count. If they're not at the same count and both are being used in the distributed method, then refresh will be violated and data will eventually be lost.

An alternative way to implement SELF REFRESH is to use an internal burst refresh scheme. Instead of turning on

a row at regular intervals, a circuit would sense when the array needs to be refreshed and then sequence through the rows until all had been refreshed. When exiting a burst type SELF REFRESH, the entire array must be refreshed before any accesses are allowed, regardless of the type of refresh used (see Figure 2). This full burst is necessary because you may have exited SELF REFRESH just before the entire array was going to be refreshed. If the burst is not performed when exiting this type of SELF REFRESH, you may violate refresh requirements and lose data.

Micron's devices allow you to access the DRAM as soon as SELF REFRESH is exited, while other manufacturers' devices may require a full burst when exiting, regardless of the refresh used. To prevent possible compatibility problems, you may want to design the controller to perform the burst when exiting SELF REFRESH.

SUMMARY

- SELF REFRESH mode allows additional power savings for portable applications since the DRAM controller is no longer required to remain powered-up while the system is in the suspend mode.
- 2. The mode is initiated by executing a CBR REFRESH with RAS and CAS remaining LOW for at least 100µs.
- 3. The SELF REFRESH mode remains active until \overline{RAS} is taken HIGH.
- You may access the DRAM as soon as SELF REFRESH has been exited, provided you use distributed CBR REFRESH as the standard refresh.

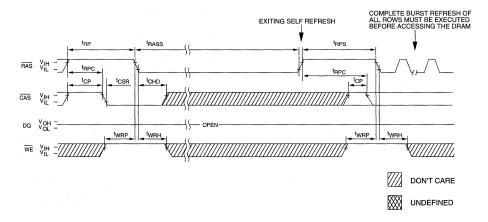


Figure 2
SELF REFRESH CYCLE UTILIZING BURST REFRESH SCHEME

TECHNICAL NOTE

REDUCE DRAM CYCLE TIMES WITH EXTENDED DATA-OUT

INTRODUCTION

As system speeds increase, DRAM manufacturers are developing methods to decrease the cycle times of DRAMs. The most common version of DRAM is FAST PAGE MODE (FPM) but the addition of a feature known as extended data-out (EDO) may become more common because it allows shorter page cycle times with only a minor functional change from FP. Because the device with EDO doesn't turn off the output drivers when $\overline{\text{CAS}}$ goes HIGH, it can have a shorter cycle time than FP.

EDO OFFERS ADVANTAGES

- It has a shorter PAGE READ cycle time than FPM devices.
- Data is valid on the falling edge of CAS, so the designer can use that edge to strobe data.
- A 70ns EDO device has the same PAGE READ cycle time as a 40/50ns FPM DRAM.

 Implementing EDO in place of FPM devices in a system can be as easy as knowing when the bus needs to be deactivated and using OE or WE instead of CAS to accomplish it.

This article first covers some basic differences between FPM and EDO during a PAGE READ cycle. Then a comparison of cycle times between FPM and EDO is done, followed by a few examples under different address setup conditions. When moving from a PAGE READ into a PAGE WRITE, the timing differs slightly between FPM and EDO; this difference is discussed. Finally, the issues involved when replacing an FPM device with an EDO device are addressed.

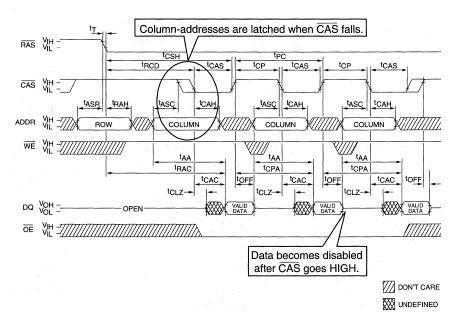


Figure 1
FPM READ CYCLE

BASIC DESCRIPTION

FPM and EDO allow fast data operations within a row. The differences are in the deactivation of data-out when $\overline{\text{CAS}}$ goes HIGH and the operation of $\overline{\text{OE}}$ and $\overline{\text{WE}}$. The following section highlights differences between the FPM and EDO when reading within a page.

FPM

Characteristics:

- The column-address is latched when CAS falls.
- The output drivers are turned off when CAS goes HIGH.
- Minimum FPM READ cycle time is ${}^{t}PC = {}^{t}CPA + {}^{t}T$, (${}^{t}CPA = {}^{t}AA + {}^{t}T$)

The cycle begins with \overline{RAS} strobing-in a row address, followed by \overline{CAS} strobing-in a column-address. To continue to access columns within that row, \overline{CAS} is toggled as addresses change.

Figure 1 shows a typical FPM READ cycle. The column-address is latched into the part when \overline{CAS} falls, so column-address setup and hold times are referenced to the falling edge of \overline{CAS} . Notice ^tOFF; this specification tells you that \overline{CAS} going HIGH turns off the output drivers.

EDO

Characteristics:

- The column-address is latched when CAS falls.
- The output drivers are not turned off when CAS goes HIGH.
- Minimum EDO read cycle time is determined by the greater of the two equations below.

Equation 1: ${}^{t}PC = {}^{t}CAS + {}^{t}CP + 2{}^{t}T$ Equation 2: ${}^{t}PC = {}^{t}CPA - ({}^{t}CP + {}^{t}T)$

- OE and CAS work together to enable and disable the outputs.
- WE can disable the outputs.

EDO allows fast access within a row and uses $\overline{\text{CAS}}$ to latch the column-address, as does FP, but does not turn off the output when $\overline{\text{CAS}}$ goes HIGH. This last feature allows EDO to cycle faster than FPM because the user does not have to wait for valid data to appear before starting the next access. In other words, data can appear after $\overline{\text{CAS}}$ has been pulled HIGH, and it will stay valid for 5ns after $\overline{\text{CAS}}$ transitions LOW again ($^{\text{t}}$ COH), as shown in Figure 2. The output will deactivate when both $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ are

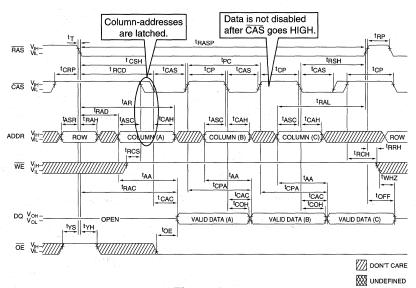


Figure 2
FPM READ WITH EDO

TECHNICAL NOTE

HIGH, so tOFF will now be referenced from the rising edge of RAS or CAS, whichever occurs last. OE will also deactivate the outputs, as shown in Figure 3. In order to accomodate systems where OE is tied LOW, WE now has the ability to turn off the output drivers as well (see Figure 4).

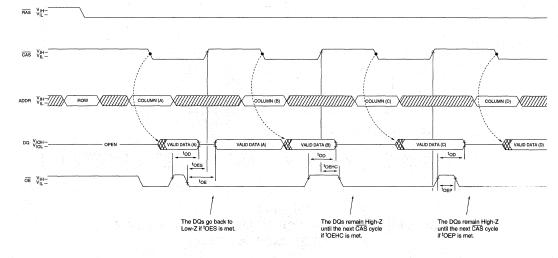


Figure 3 **OUTPUT ENABLE AND DISABLE USING OE**

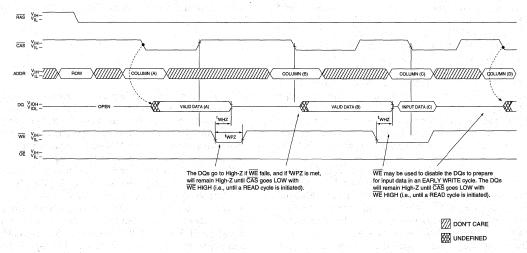


Figure 4 **OUTPUT DISABLE USING WE**

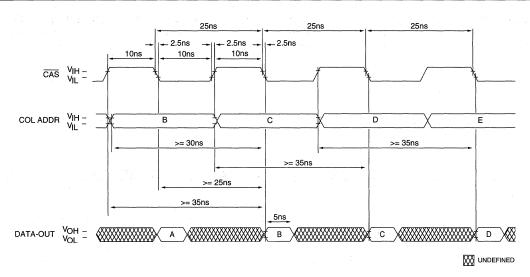


Figure 5
EDO MINIMUM FAST-PAGE-MODE READ CYCLE TIME
AVAILABLE ON 60ns DRAMs

PAGE READ CYCLE TIMES

This section examines the different cycle times of FPM and EDO to see how they are generated. Figure 1 shows that \overline{CAS} must stay LOW until data-out becomes valid (if \overline{CAS} goes HIGH before valid data, then the output buffers would turn off). The longest access time specified for the device is from \overline{CAS} HIGH to data-out (${}^t\!CPA$). \overline{CAS} can't go HIGH before ${}^t\!CPA$, or data-out will not fire. Add a transition time to pull \overline{CAS} HIGH and you have the cycle time ${}^t\!PC_{FPM}$ = ${}^t\!CPA$ + ${}^t\!T$.

EDO works a bit differently. ^tCPA is still the longest access time, but is no longer the limiting parameter in cycle time. This is because some of this access time includes \overline{CAS} precharge (\overline{CAS} HIGH time). In FP, you can't bring \overline{CAS} HIGH before data is valid because \overline{CAS} HIGH turn off. Since \overline{CAS} HIGH doesn't turn off data in the EDO device, you can bring \overline{CAS} HIGH before data is valid and begin precharging \overline{CAS} while you wait for data-out. This overlap of \overline{CAS} precharge and getting data-out means ^tCPA is no longer the limiting parameter.

The theoretical minimum page-mode cycle time is determined by one of the two equations below, whichever is greater (see Figure 2). ^tLH is the CAS LOW-to-HIGH tran-

sition time and the ${}^{t}\!HL$ is the \overline{CAS} HIGH-to-LOW transition time.

Equation 1: ${}^{t}PC = {}^{t}CAS + {}^{t}CP + {}^{t}LH + {}^{t}HL$

Equation 2: ${}^{t}PC = {}^{t}CPA - ({}^{t}CP + {}^{t}HL)$

The minimum cycle is achieved by providing valid column addresses early enough that ^tAA is not limiting. In the past, transition times were assumed to be 5ns each for the purpose of specifying cycle times. However, in many cases, the transitions between 0.8 and 2.4 volts do not require 5ns, so the EDO devices allow for 2ns transitions.

For example, a page-mode cycle time of 25ns can be achieved when using Micron 60ns EDO DRAMs with a ^tCPA of 35ns when transitions are 2.5ns or less (see Figure 5). This represents a 40 to 60 percent improvement over the same cycle times provided by 60ns devices with conventional FAST PAGE MODE operation. Similar improvements are provided on the 50ns and 70ns speed grades, which have theoretical minimum cycle times of 20ns and 30ns, respectively.

EXAMPLES: EDO AND FP

The table below compares page READ cycles of FPM and EDO under two different conditions: minimum columnaddress setup and maximum column-address setup time. The timing diagrams for the following examples assume that \overline{RAS} is already LOW, \overline{WE} is HIGH and \overline{OE} is LOW. A 70ns DRAM is used with the following timing:

DESCRIPTION	FP	ED0
^t PC (MIN)	45	30
tCAS (MIN)	20	12
tCLZ (MIN)	0	0
^t OFF	0-20	0-20
t T	5	5

Figures 6 and 7 show FPM and EDO cycles with plenty of address setup time. On an FPM device with plenty of address setup time, we can operate at ¹PC = 45ns (the minimum allowed), and data is valid for 5ns.

EDO under the same address setup time looks different (see Figure 5). Now the minimum cycle time is 32ns. Notice that data doesn't appear on the bus until you are already into the second access (8ns of \overline{CAS} precharge for the next cycle is already completed when data appears). This is the overlap that allows the shorter cycle time. ^tPC is 32ns and data is valid for 12ns.

Under these conditions, EDO cuts the cycle time over a FPM device by 29 percent, or increases burst rate by 41 percent (22 MHz to 31 MHz). In addition, even with the shorter cycle time, data-out is valid for 12ns on the EDO as opposed

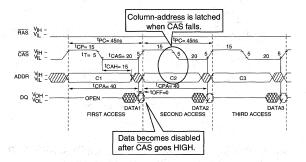


Figure 6
FPM PAGE READ CYCLE WITH MAXIMUM ADDRESS SETUP

tPC = 45ns; DATA VALID FOR 5ns

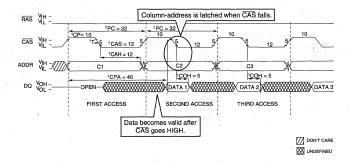


Figure 7
EDO-PAGE READ CYCLE WITH MAXIMUM ADDRESS SETUP

^tPC = 32ns; DATA VALID FOR 12ns

to only 5ns on the FPM device. We could get more performance by using shorter transition times on the EDO device, but we used 5ns to make the comparison between FPM and EDO easily understandable.

Figures 8 and 9 show FPM and EDO cycles with minimum address setup time. In this case, the address becomes valid coincident with \overline{CAS} falling. For FP, data won't be valid for ${}^{t}AA(35ns)$, so \overline{CAS} must be held LOW until that time (see Figure 8). Since the minimum \overline{CAS} HIGH time is 10ns, the cycle time is 50ns (${}^{t}AA + {}^{t}CP + {}^{t}T$). Data-out is valid for 5ns.

Looking at EDO under the same conditions, (Figure 9) it still takes ^tAA (35ns) after the addresses are valid to get valid data-out, but now you don't have to wait before pulling CAS HIGH. Notice that CAS has been pulled HIGH and precharge has been completed for the next cycle, before Data 1 appears on the bus. Just before data becomes valid, CAS drops and the second address is latched. Again, there is an overlap of starting one cycle and finishing the other. Now ^tPC = 32ns, and data-out is valid for 7ns.

In this case, EDO cycle time is 36 percent less than the FPM cycle time (providing a 55 percent improvement in burst rate); EDO data is valid 2ns longer.

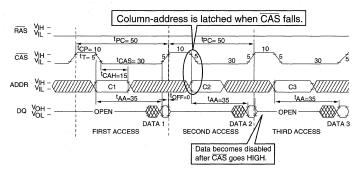


Figure 8

PAGE READ WITH MINIMUM ADDRESS SETUP

*PC = 50ns; DATA VALID FOR 5ns

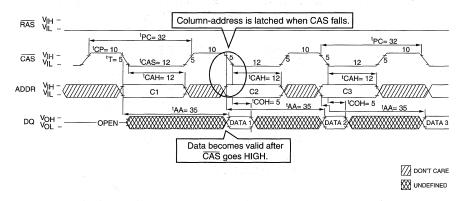


Figure 9
EDO-PAGE READ CYCLE WITH MINIMUM ADDRESS SETUP

tPC = 32ns; DATA VALID FOR 7ns

TECHNICAL NOTE

These examples should point out another big advantage of EDO. Not only can you operate at a shorter cycle time, but data is available longer for the system to sample. Since data is guaranteed to be valid as CAS falls, that edge may be used to sample data.

70ns EDO INSTEAD OF 40/50ns DRAMs

EDO can provide the FPM READ speed of a 40/50ns DRAM. Even though a 40/50ns DRAM has a 40/50ns tRAC, the FPM READ cycle time is 30-35ns, which is the same page READ cycle time as that of a 70ns EDO device.

EASY TO IMPLEMENT

An additional benefit of EDO is the ease of implementation. PAGE READ or WRITE cycle time is cut but the major difference between FPM and EDO is that the FPM device will stop driving data-out when \overline{CAS} goes HIGH and the

EDO device must have the correct combination of \overline{RAS} , \overline{CAS} , \overline{OE} and \overline{WE} to deactivate the output. This means that any time the designer is counting on \overline{CAS} by itself to turn off the output drivers, bus contention may occur if something else tries to drive the bus. This may occur in the following situations:

- PAGE interleave memory banks
- Moving from PAGE READ directly into a PAGE WRITE (within the same page)
- Whenever anything other than the DRAM is driving the bus, and OE and RAS are LOW while CAS is HIGH

(This last case is uncommon and should not mandate a change for most systems.) Interleaved memory need only make use of \overline{OE} or \overline{WE} instead of \overline{CAS} when turning off the output drivers; then EDO can be used in place of FPM DRAMS.

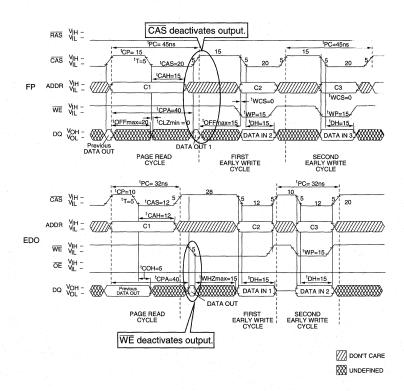


Figure 10
EXAMPLE FPM AND EDO READ TO WRITE CYCLES

tPC = 45ns

READ TO WRITE CYCLES

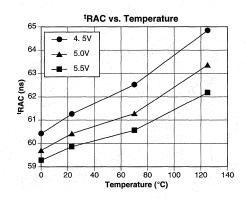
Since \overline{CAS} doesn't turn off the output devices on an EDO device, caution should be used when turning the bus around on a shared IO device. To demonstrate the difference, Figure 8 shows the transition from a PAGE READ to a PAGE EARLY WRITE on the same page. When using the FPM version, \overline{OE} can be tied LOW and \overline{CAS} can be used to deactivate the output. Notice that \overline{OE} is also tied low on the EDO device and this cycle is still possible.

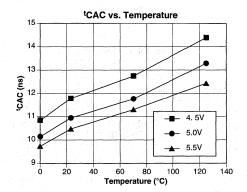
SUMMARY

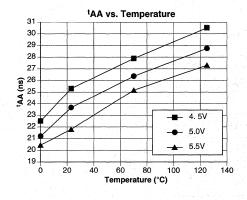
EDO is simply a modified FPM cycle and can be used in systems to increase performance. It allows system designers to improve their cycle times and system performance since data is present for a much longer time, even during short cycle times. Because each generation device has different timing limitations, be sure to consult the data sheet for exact timing.

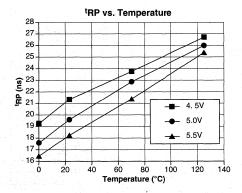
TECHNICAL NOTE

TECHNICAL NOTE

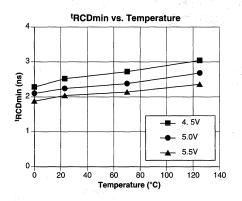

256K x 16 DRAM TYPICAL OPERATING CURVES

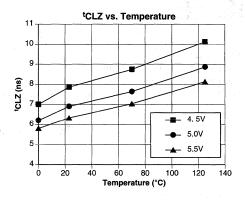

INTRODUCTION

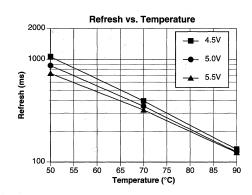

These curves represent the typical operating characterisics of Micron's 70ns 256K x 16 DRAMs. They may be used o calculate the typical operating parameters of a memory

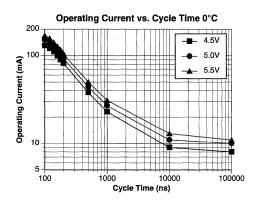

system. For worst-case design limits, the system designer should refer to the individual data sheets.

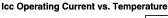
256K x 16 OPERATING CURVES

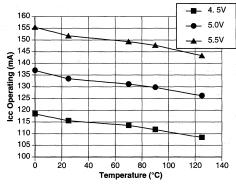






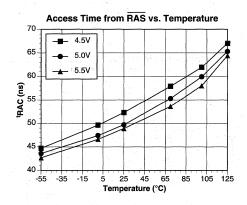


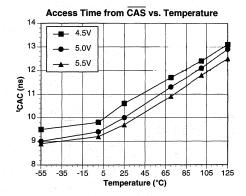

256K x 16 OPERATING CURVES (continued)

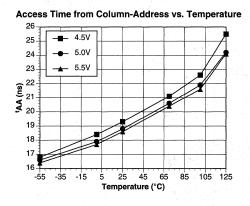


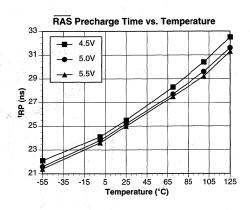
TECHNICAL NOTE

TECHNICAL NOTE

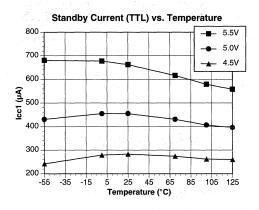

4 MEG DRAM TYPICAL OPERATING CURVES

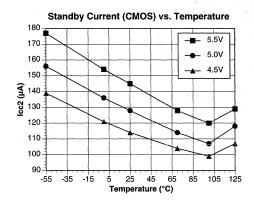

INTRODUCTION

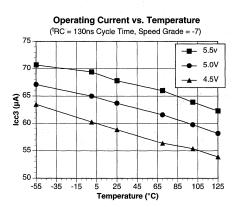

These curves represent the typical operating characteristics of Micron's 70ns 4 Meg DRAMs. They may be used to calculate the typical operating parameters of a memory

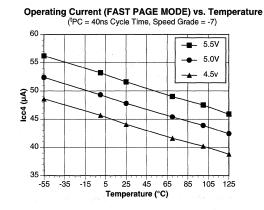

system. For worst-case design limits, the system designer should refer to the individual data sheets.

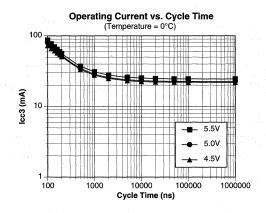
5V PRODUCT DC AND AC PARAMETER PERFORMANCE

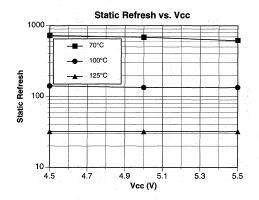


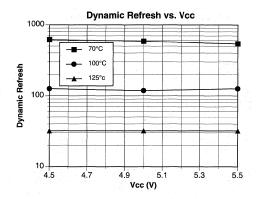


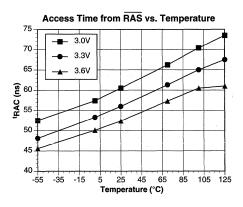


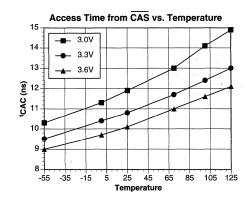


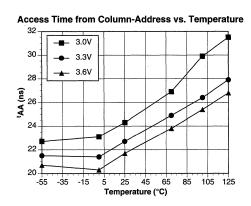

5V PRODUCT DC AND AC PARAMETER PERFORMANCE (continued)

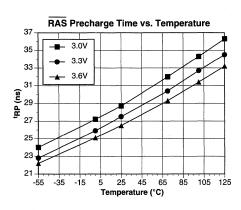


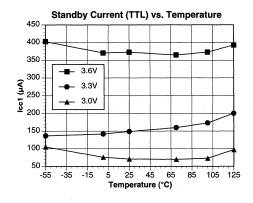


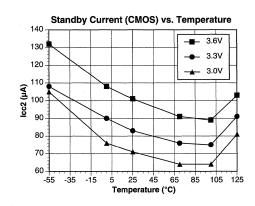


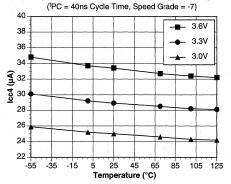

5V PRODUCT DC AND AC PARAMETER PERFORMANCE (continued)

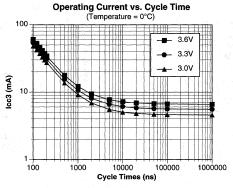




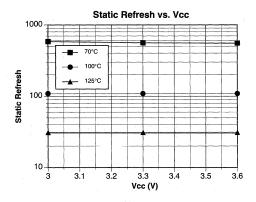

3.3V PRODUCT DC AND AC PARAMETER PERFORMANCE

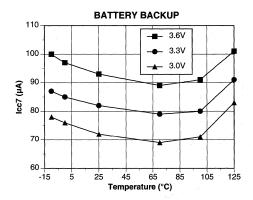


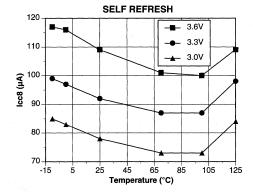



3.3V PRODUCT DC AND AC PARAMETER PERFORMANCE (continued)

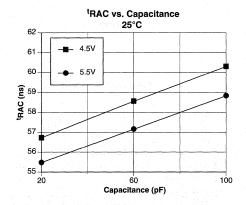
Operating Current vs. Temperature

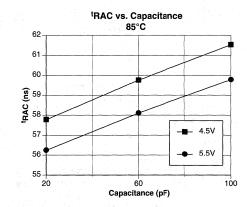

Operating Current (FAST PAGE MODE) vs. Temperature

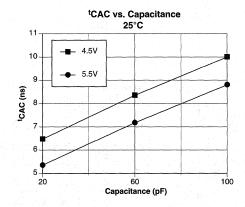


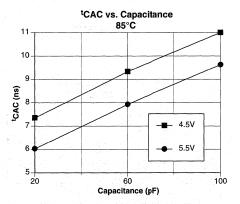


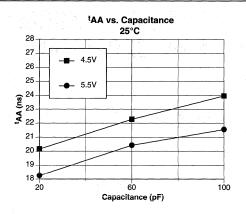
3.3V PRODUCT DC AND AC PARAMETER PERFORMANCE (continued)

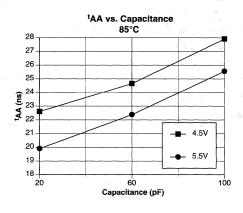

TECHNICAL NOTE

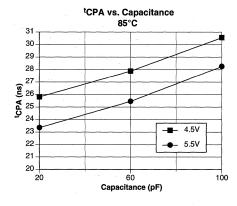

TECHNICAL NOTE

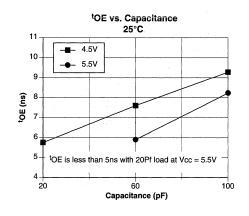

4 MEG DRAM—ACCESS TIME vs. CAPACITANCE

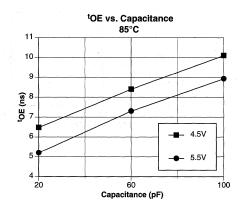

INTRODUCTION

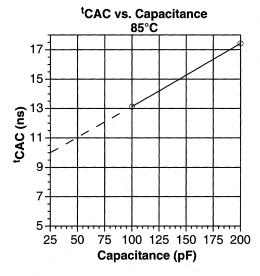

These curves for the 4 Meg DRAM show typical access times with different capacitive loading. For worst-case design limits, the system designer should refer to the individual data sheets.

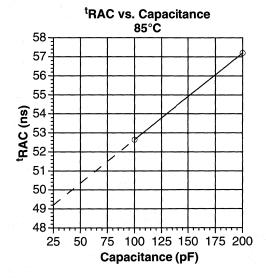


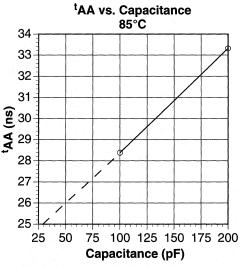









TECHNICAL NOTE


256K x 16—ACCESS TIME vs. CAPACITANCE

INTRODUCTION

These curves for the 256K x 16 DRAM show typical access times at Vcc = 4.5V with different capactive loading. For worst-case design limits, the system designer should refer to the individual data sheets.

TECHNICAL NOTE

DRAM SOFT ERROR RATE CALCULATIONS

INTRODUCTION

Micron technical note TN-04-15, "DRAM Considerations for PC Memory Design", presents a discussion on the use of parity. This technical note may have led some readers to conclude that parity is no longer of value. Although this conclusion is understandable (see Figure 1), the fact is that the need for parity can be determined only after design goals have been thoroughly analyzed.

Herein lies the problem: how to get from point A (DRAM manufacturer's reported soft error rate [SER]) to point B (system mean time between failures [MTBF]). This article's purpose is to solve the problem by showing how to take SER data reported by the manufacturer and determine a system's memory susceptibility to DRAM soft errors.

The SER data for the Micron 4 Meg DRAM, as reported in the Micron 4 Meg DRAM Reliability Monitor (dated 2/93), will be used throughout this article for illustrative purposes.

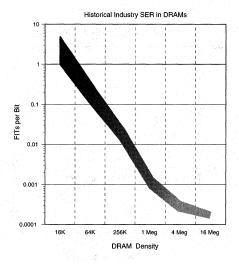


Figure 1 HISTORICAL DRAM SER

DRAM SER RATES

DRAM SER is a measurement of a DRAM's susceptibility to a nonrecurrent, single-bit output error. Although there is not a defined industry standard for measuring a component's SER, Micron has adopted a widely accepted methodology:

- Accelerated SER testing using an alpha radiation source.
- Realtime, system-level SER testing. Micron uses its AMBYX® intelligent burn-in and test system.

The accelerated test data provides the only practical, real time means to determine the relative increase or decrease in the component's SER for various test conditions.

Micron records a DRAM's realtime SER when the device is operating at a 5V Vcc with 15.625µs cycle rate (refresh rate). Micron's 4 Meg DRAM Reliability Monitor lists an SER of 41 FITs at a 90 percent confidence level. A FIT is a failure in time (1 billion device hours).

SER CALCULATIONS - REFRESH MODE

To begin, let's examine a memory buffer using only one 4 Meg DRAM (1 Meg x 4) at a 15 µs refresh rate. The system's MTBF-due-to-soft-error rate is the DRAM's SER rate, 41 FITs. Mean-time-between-failures is calculated by dividing one billion device hours by 41 FITs, which equals one error every 24,390,000 system hours or 2,784 years.

Now, let's take the previous example and add three additional 4 Meg DRAMs for a 16-bit-wide memory array (2MB). Since there are four components, the SER rate is increased by the same ratio in order to obtain a system hourly rating. The system's memory MTBF-due-to-softerror rate is now one billion device hours divided by four devices (41 FITs per device), equaling one error every 6,098,000 system hours, or 696 years.

Seven, rather than three, additional 4 Meg DRAMs provide a 32-bit wide memory array (4MB). In this case, the system's MTBF-due-to-soft-error rate is one billion device hours divided by 8 devices (41 FITs per device), equaling one error every 3,048,800 system hours or 348 years.

The previous calculations assume a single bank architecture. If any of the above examples had two banks, then SER would be twice as high and the MTBF would be half of the single-bank value. For example, a dual bank, 32-bit wide (8MB) memory system's MTBF-due-to-soft-error rate is one billion device hours divided by 16 devices (41 FITs per device), equaling one error every 1,524,400 system hours or 174 years.

SER CALCULATION - ACTIVE MODE

DRAM memory is not always in refresh mode. Rather, it is active (accessing data via READs and WRITEs) during a portion of its ON time. It is necessary to determine the memory's overall SER, or "operating SER," before determining a system's MTBF-due-to-soft-error rate during DRAM access.

First, the percentage of time the DRAMs are active and in refresh must be determined. The next step is to determine the refresh SER rate. As performed in the previous 32-bit, single-bank example using eight 4 Meg DRAMs, the refresh SER rate based on eight devices (41 FITs per device) is 328 FITs.

The active SER rate must now to be determined. This is where acceleration curves are required. Micron provides three types in the 4 Meg DRAM Reliability Monitor: checkerboard pattern, solid ones pattern and solid zeros pattern. The graph that provides the worst-case slope, typically the checkerboard pattern, is usually selected.

Referring to the 5V checkerboard pattern curve from the Micron 4 Meg DRAM Reliability Monitor (Figure 2), let's assume the DRAMs are being cycled at a 200ns (0.2µs) cycle rate. The alpha hits at 15µs is selected from the checkerboard pattern curve—3.4 hits. The alpha hits at 200ns are then selected from the same curve—160 hits. Taking 160 hits and dividing by 3.4 hits gives a ratio of 47. Thus, the SER can be expected to increase by a factor of 47 times when operating at 200ns as compared to refreshing at 15µs. By taking the real-time SER at 15µs and using the ratio from the acceleration curves just acquired, the SER at 200ns can be determined at 328 FITs times 47, which equals 15,416 FITs.

MTBF DUE TO SOFT ERRORS

Now,let's assume the 32-bit, single-bank DRAM memory array is active 15 percent of the time and is in refresh the remaining 85 percent of the time. The operating SER rate is now obtainable—15 percent of 15,416 FITs plus 85 percent of 328 FITs yields a FIT rate of 2,591 FITs. The system's memory MTBF for soft errors is obtained by dividing one billion device hours by 2,591 FITs for an MTBF of 385,950 system hours or 44 years.

For a dual-bank memory non-interleaved array, the operating SER rate would not be twice the single bank amount,

as was the case with the refresh SER rate. This is because only one bank at a time is actively being written or read. The other bank(s) are in standby (refresh only). For example, let's determine the operating SER and MTBF for the 32-bit, dual bank memory array. The operating SER rate is 2,591 FITs (active bank from previous example) plus 328 FITs (additional bank in standby), which equals 2,919 FITs. The system's memory MTBF for soft errors is 342,580 system hours or 39 years.

SYSTEM-INDUCED SOFT ERRORS

So far, this discussion has focused on DRAM-related soft errors (i.e., alpha particle induced). System-induced soft-error calculations are beyond the scope of this article but warrant some discussion.

System-induced soft errors are those not generated by the DRAM memory itself. They are most commonly due to noise sources such as undershoot/overshoot, as well as timing issues due to hardware and/or software problems. System-induced soft errors are usually overlooked because they have been negligible contributors on a well-designed, clean system. Improvements made in DRAM SER by quality DRAM manufacturers, as well as faster operating speeds and board design requirements, have shifted the primary cause of soft errors to the system design itself.

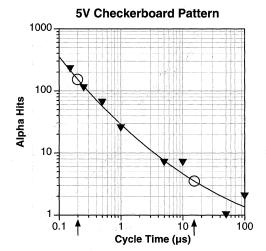


Figure 2
CHECKERBOARD PATTERN

Conventional parity-based systems check for soft errors stemming from the data, both alpha particles (DRAM) and data I/O bus noise (system). However, there are other sources of system-induced soft errors that are overlooked because they cannot be detected with conventional parity. For example, noise on the address bus can result in the wrong data being written to, or read from, the DRAM. The data itself will be unaffected by the address bus noise, but the wrong location is accessed. Even though these types of system soft errors are not checked for, they are just as harmful as data-I/O induced soft errors.

Parity checking can be useful in the prototype stage by helping to identify initial design problems. Such parity checking can include DRAM, address bus and data bus parity checking. There are strong arguments for eliminating DRAM parity memory and providing parity checking on the address and data bus only. In either case, the DRAM parity memory and bus parity checking circuits could be eliminated once the system's design has been qualified to meet overall system soft-error requirements.

Even if a DRAM memory's alpha-particle-induced softerror rate is at an acceptable level, some sort of parity checking may be desired. Bus-parity checking circuits could remain in the system at a lower cost and provide a greater safeguard against soft errors than that obtainable with DRAM parity memory.

Many of today's systems are designed to offer upgradability from the low-end to high-end of the performance spectrum. For these systems, where the low-end version does not require DRAM parity memory but the high-end upgrade does; designing-in flexibility to allow either choice is advantageous.

SUMMARY

In determining the parity requirements for a given memory system, the memory designer cannot assume parity is or is not required. Rather, the memory designer must analyze the system's reliability requirements and determine what soft error rate is expected and what MTBF for soft errors the system can tolerate.

The memory designer must "engineer" the SER numbers to his specific conditions to obtain numbers relevant to the design itself. Following the procedures outlined in this technical note will allow any memory system designer to determine expected memory MTBF-due-to-soft-error rates.

It should be noted that measured and accelerated SER data provides a "ball-park" number for general expectations. In the last example—a 32-bit, dual-bank memory array using 4 Meg DRAMs—the memory system was shown to experience one soft error every 39 years.

If a system required an MTBF of at least 38 years per soft error, the system using 4 Meg DRAMs would suffice technically. But since the expected MTBF is a typical expectation and not an absolute minimum, the number should be guard-banded. There is no industry rule for what guard band to use, but a memory designer should feel safe in using a 25 percent guard band. For the foregoing example, any system specifying an MTBF of 30 years or less should not jeopardize its reliability to DRAM-related soft errors by eliminating parity memory.

TECHNICAL NOTE

MAXIMIZING EDO ADVANTAGES AT THE SYSTEM LEVEL

implications are discussed.

INTRODUCTION

Extended data-out (EDO) DRAMs, while representing only a slight modification to conventional FAST PAGE MODE (FPM) components, can provide substantial advantages at the system level. The primary benefit is that EDO allows for a shorter PAGE MODE cycle time (or faster data rate) while accessing data within a single page in memory. Other advantages include relaxed system timing constraints and in some cases, less total overhead during page accesses. In general, the design complexity for an EDO-based system will be less than that for a system based on FPM components, and much less than that for systems based on any of the other alternative DRAM technologies now being introduced.

This article reviews the physical differences between EDO and FPM components and then describes the timing implications of those differences. This discussion is then extended to cover the increase in performance and other advantages at the system level; examples using typical

EDO vs. FPM—COMPONENT LEVEL DIFFERENCES

Simply stated, EDO means that data is not disabled when CAS goes HIGH during a PAGE-MODE READ access. Instead, data remains available until such time that data from the subsequent access begins to appear. This is indicated by the presence of a ^tCOH specification and the lack of a tOFF specification when compared to conventional FPM (as shown in Figure 1). Other changes include related modifications to RAS, OE and WE functionality, to provide for the disabling of data when necessary and when no longer accomplished by CAS alone. This related operation is further detailed in subsequent sections of this article.

system timing are shown. Finally, additional system design

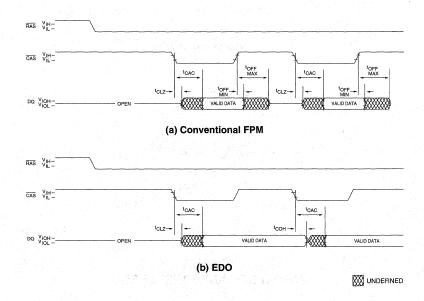


Figure 1 PHYSICAL DIFFERENCE BETWEEN FPM AND EDO

TIMING IMPLICATIONS

The real advantage of EDO is not necessarily that data can remain valid once CAS goes HIGH, as shown in Figure 1, but that CAS is allowed to go HIGH prior to valid data appearing on the outputs (this is shown, again compared to conventional FPM, in Figure 2). For FPM devices, the CAS pulse width (tCAS) is specified to be equal to tCAC since anything shorter would disable data before it became valid. In fact, tCAS typically must be longer than tCAC in the system because many DRAM vendors specify a minimum ^tOFF of 0ns. With EDO devices, ^tCAS is no longer limited by ^tCAC or the data valid time required by the system and is therefore typically specified at 10ns for the -6 speed grade.

The shorter ^tCAS specification associated with EDO allows the CAS or PAGE MODE cycle time to be tightened. As shown in Figure 2, EDO allows for a portion of the access time in one cycle to overlap a part of the access time, as well as all of the data valid time, for the previous cycle. In contrast, the only such overlap in a FPM access is the portion, if any, of the data valid time which is provided by a nonzero tOFF MIN specification. Specific system timing will determine the extent of the overlap that can be achieved, but the following theoretical example will illustrate the point.

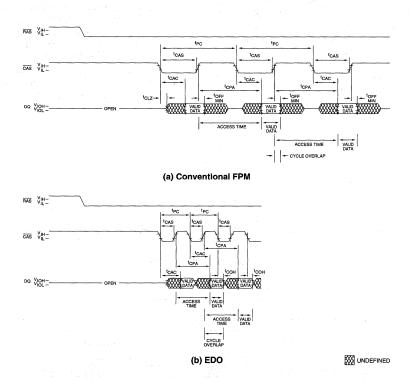


Figure 2 TIMING IMPLICATIONS OF EDO

time (35ns) and the EDO cycle time (25ns) can be accounted

for by noting that the FPM cycle can be computed as 35ns of

For now, let's ignore propagation delays from the system clock, system clock resolution, address timing and signal transition times. Let's assume that we have a -6 FPM version and a -6 EDO version of an otherwise identical device. For illustration, the timing for Micron's 256K x 16 DRAMs will be used (see Table 1.) This timing will be used in all of the examples that follow.

The PAGE MODE cycle timing for the two devices is shown in Figure 3. The difference between the FPM cycle

Table 1 RELEVANT SPECIFICATIONS FOR THE MICRON 256K x 16 DRAMS

Parai	neter	MT4C16257 (FPM) (ns)	MT4C16270 (EDO) (ns)
^t CAC	MAX	15	15
^t CPA	MAX	35	35
^t AA	MAX	30	30
^t CP	MIN	10	10
^t OFF	MIN	3	3
^t CAS	MIN	15	10
tCLZ	MIN	3	3
^t COH	MIN		5
^t PC	MIN	35	25
^t CSH	MIN	60	40
^t RSH	MIN	15	10
^t RAL	MIN	30	22
†ASC	MIN	0	0
^t CAH	MIN	10	10
^t RP	MIN	40	35
^t DS	MIN	0	0
^t DH	MIN	10	10

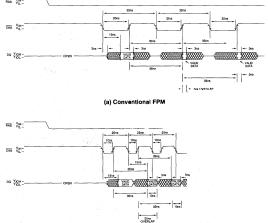


Figure 3 **EDO vs. FPM MINIMUM CYCLE TIMES**

(b) EDO

The overlapping of accesses described above leads to a pipelined effect in page mode read accesses, as shown in Figure 4. Ideally, data from one access is latched by the controller at the same time the controller fires CAS for the

next access. A PAGE-MODE WRITE access does not benefit from EDO, but can be executed with the same minimum cycle times as shown in Figure 5.

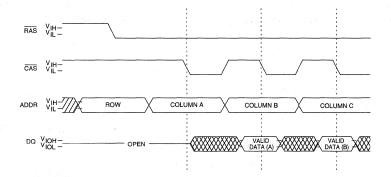


FIGURE 4
PIPELINED EFFECT IN EDO PAGE-MODE READS

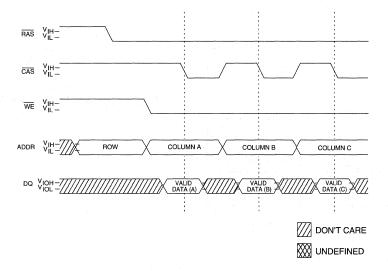


FIGURE 5
EDO PAGE-MODE WRITES

SYSTEM PERFORMANCE INCREASE FROM EDO

To examine the system performance advantage provided by EDO and factor system clock resolution into the discussion, a noninterleaved design based on a 66 MHz system clock driven by the positive clock edges only, will be considered. Figures 6 and 7 show, respectively, the FPM and EDO PAGE-MODE READ cycle timing resulting from the 15ns clock resolution (bursts of three locations were used strictly for the convenience of graphic illustration). Note that while a 30ns cycle time can be achieved with EDO, only a 45ns cycle can be achieved with FPM. Converting the cycle times to peak burst rates results in 33 MHz for EDO and 22 MHz for FPM. In this case, EDO provides a 50

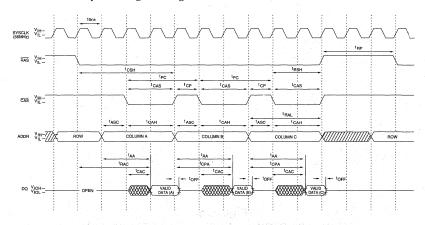


Figure 6
FPM READ CYCLE - 66 MHz SYSTEM CLOCK

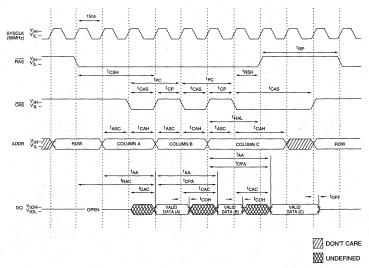


Figure 7
EDO READ CYCLE - 66 MHz SYSTEM CLOCK

percent improvement in peak burst rate in the system. For reference, Figures 8 and 9 show the corresponding PAGE-MODE WRITE cycle timing. Figure 9 shows that although the write cycles do not benefit from the EDO behavior itself, they can still match the cycle times for the EDO READs.

Also shown in Figure 7 is the fact that unlike operation within a page access, once the page access is terminated by RAS going HIGH, CAS going HIGH will disable data. This results in the ability to hide some row precharge time, as discussed below.

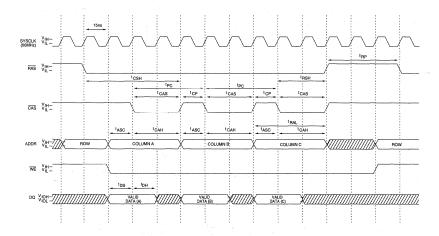


Figure 8 FPM WRITE CYCLE - 66 MHz SYSTEM CLOCK

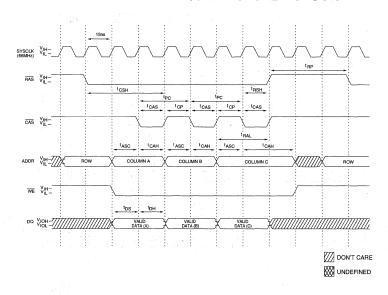


Figure 9 **EDO WRITE CYCLE - 66 MHz SYSTEM CLOCK**

Table 2 POPULAR SYSTEM CLOCK RATES AND RESULTING PAGE MODE CYCLE TIMES

SYSTEM CLOCK		PAGE MODE Cycle time	
Frequency (MHz)	Period (ns)	FPM (ns)	EDO (ns)
50	20.0	40	40
60	16.7	50	33
66	15.0	45	30
80	12.5	50	25

Table 2 lists popular system clock rates along with the corresponding FPM and EDO PAGE MODE cycle times that would result from system clock resolution alone. Not only does EDO provide a faster peak data rate in almost every case, but an increase in system clock rate is much more likely to result in a corresponding faster peak burst rate (shorter PAGE MODE cycle time) when EDO devices are used. This continuous increase will extend to 90 and 100 MHz systems with the introduction in the near future of EDO parts, which provide PAGE MODE cycle times down to 20ns.

Also related to system performance is the fact that the use of EDO typically results in the same total page mode overhead (row access time plus row precharge time) as with FPM. This is possible because ^tCSH, like ^tCAS, is not physically limiting on the devices as specified for FPM and would therefore be an artificial limiter if carried over directly from FPM and applied to EDO devices. Instead, Micron is adjusting the ^tCSH specification on EDO devices to allow for the first $\overline{\text{CAS}}$ pulse to go HIGH earlier in the page access, and it is expected that other vendors will make this adjustment

as well. This specification will typically be 40ns for -6 and -7 speed grades. Another parameter which would be a limiter if carried over is ^tRSH. This parameter will also be respecified for EDO; ideally it would be set equal to the EDO ^tCAS specification. There are also several other parameters, many device or vendor specific, that will be adjusted to accommodate EDO designs.

Figures 7 and 9 reflect the adjusted ^tCSH and ^tRSH specifications and the result is that the page mode overhead for the EDO devices is equal to that for the FPM devices. This is seen by noting that the total number of clock cycles for the page access for the FPM devices is 13. Three locations of data require three clocks each, for a total of nine, leaving four as overhead. For the EDO, ten total cycles are needed, six of which are required for data, again leaving four as overhead.

SYSTEM ADVANTAGES OF EDO

After reviewing the theoretical FPM and EDO PAGE MODE cycle times listed in Table 2, the next logical question is, can those cycle times actually be achieved in a real system, and with how much effort? The answer is that achieving these cycle times with EDO devices will require equal or less design complexity than that required with FPM devices. The biggest problem in designing with FPM devices, once the propagation delays from the system clock are taken into consideration, has been trying to align the read data valid window around a system clock edge that can be used to latch that data into the memory controller.

A 50 MHz system clock and the device timing mentioned earlier will be used to illustrate this point. Typical propagation delays that might be found in a graphics subsystem with a controller implemented in an ASIC will also be used. These include a clock-to-Q delay for the controller plus routing delays, together totaling 12ns, and routing delays plus setup time back to the controller, together equaling 7ns.

In Figure 10, the FPM case, the data valid window for the controller starts 3ns before, and ends 5ns after, a negative system clock edge, which also means that the window ends 5ns prior to the next positive system clock edge. The choices here are to work with a skewed and/or inverted internal

clock or with internal data delays to extend hold time to beyond the positive edge, or use an alternate external signal as a clock to the data input latch on the controller. Either way, these multiple/skewed clocks add design complexity.

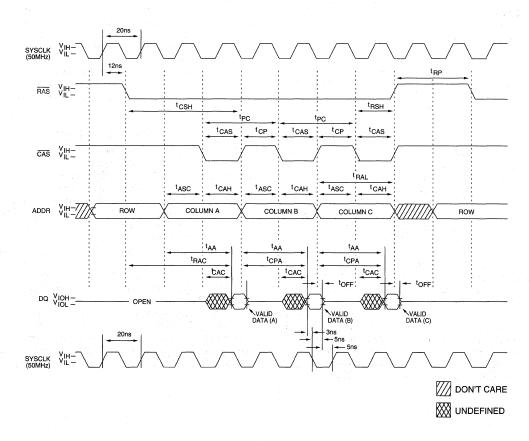


Figure 10
FPM READ CYCLE WITH PROPAGATION DELAYS - 50 MHz SYSTEM CLOCK

In contrast, when EDO devices are used with the same system timing, the data valid window begins at the same point but extends until tCOH (5ns) after the next CAS falling edge, shown in Figure 11. This total window is equal to 30ns or 1.5 system clock cycles; therefore, data can easily be latched in by an existing positive edge of the system clock with no additional design complexity.

Note that the page mode overhead for this example also happens to be less for EDO than for FPM. Since both methods use the same number of system clock cycles for each column (data) access, this overhead savings is seen by noting that the total number of clocks required for the page access is ten in the FPM case and nine in the EDO case.

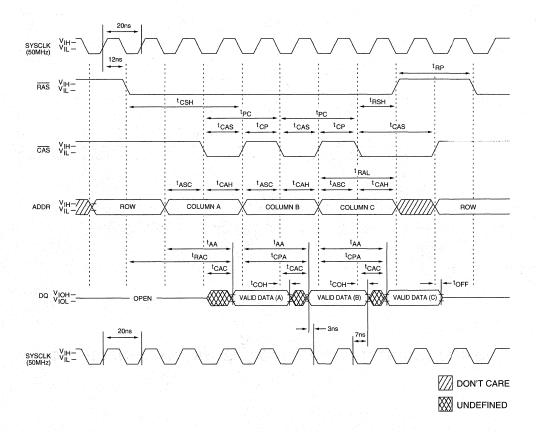


Figure 11 EDO READ CYCLE WITH PROPAGATION DELAYS - 50 MHz SYSTEM CLOCK

Now that we've shown that EDO can be substantially faster than FPM, and that at a given speed, an EDO-based system can be implemented with equal or less design complexity, the next question is, can an EDO-based system be designed to be faster with equal or less design complexity? The answer, again, is "yes." To see this, let's revisit the

66 MHz example (where EDO was previously shown to provide a 50 percent improvement in peak memory bandwidth), but now typical system propagation delays will be included. A system clock-to-Q plus trace delay of 9ns and a delay and setup time back to the controller of 5ns will be used. The resulting timing is shown in Figures 12 and 13.

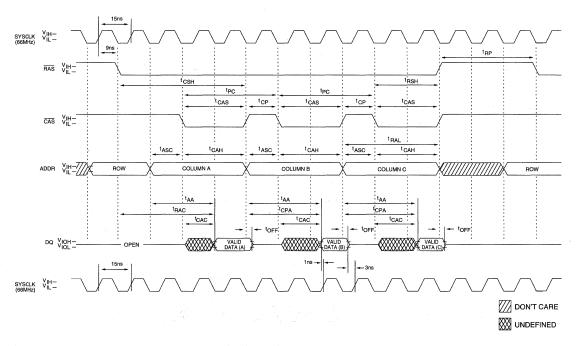


Figure 12
FPM READ CYCLE WITH PROPAGATION DELAYS - 66 MHz SYSTEM CLOCK

Once again for the FPM case, the data valid window (13ns) does not line up with an existing positive edge of the system clock (while meeting the required set-up time) so one of the design techniques mentioned above will need to be employed. The data valid window for the EDO case also does not align with an existing positive clock edge, and will

also require one of the above design techniques. However, in the EDO case, the data valid window is longer than for the FPM case (15ns vs 13ns) and is therefore simpler to design for. Here we have a case where EDO provides a 50 percent improvement in peak memory bandwidth, but with reduced design complexity.

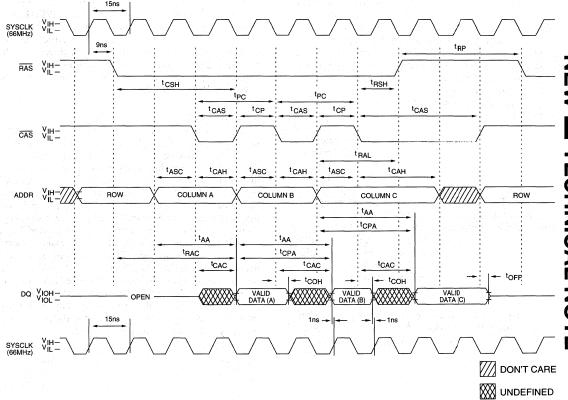


Figure 13 **EDO READ CYCLE WITH PROPAGATION DELAYS - 66 MHz SYSTEM CLOCK**

DESIGN IMPLICATIONS

Address Setup Time: In order to achieve maximum performance with EDO, it is necessary to provide valid column-addresses with sufficient setup time to the falling edge of \overline{CAS} so that tAA is not a limiting parameter. This leaves tCPA as the limiting parameter for PAGE-MODE READ cycle times. This is true for FPM as well, but there, either tCAC or tCPA may be limiting.

With the device timing shown, the column-addresses should transition after meeting the hold time (${}^{t}CAH$) from the previous access. This means that the same system clock edge that drives \overline{CAS} HIGH will drive the new address. Since ${}^{t}CPA$ is typically specified to be 5ns longer than ${}^{t}AA$, if the \overline{CAS} and column address lines transition at the same time, ${}^{t}CPA$ will always be limiting. However, the address lines may be more heavily loaded and may transition later. This is not an issue unless the address signals take over 5ns longer than the \overline{CAS} signal to become valid, and will actually provide additional guardband in meeting ${}^{t}CAH$.

OE and WE Operation: In certain situations it is necessary to disable the data outputs while within a page mode access (for example, when switching from a READ cycle to a WRITE cycle or when interleaving banks of memory). For EDO, since CAS alone will not disable the outputs, either OE or WE must be used.

As with FPM devices, the data outputs will be disabled whenever \overline{OE} goes HIGH. However, if this occurs (for a specified duration) while \overline{CAS} is HIGH, the EDO operation will be suspended. Specifically, the data outputs will be disabled and will remain that way, regardless of subsequent transitions on \overline{OE} , until \overline{CAS} goes LOW again for a READ cycle. This pulsed operation is beneficial in system implementations which include multiple banks of memory, and which may have rows activated in more than one bank simultaneously. Instead of supplying a separate \overline{OE} signal for each bank, bank-specific \overline{CAS} signals can be used in conjunction with a common \overline{OE} signal to disable the data

outputs for a given bank. Alternitively, $\overline{\text{WE}}$ going LOW at any time will suspend EDO operation; the outputs will be disabled and will remain disabled until $\overline{\text{CAS}}$ goes LOW for a READ cycle

Maximum page mode performance is achieved when executing strictly READ cycles ($\overline{\text{WE}}$ remains HIGH) or strictly WRITE cycles ($\overline{\text{WE}}$ remains LOW), as shown in the previous examples. Mixing READ and WRITE within a page is supported, but this usually requires additional clock cycles. For switching from a READ to a WRITE cycle, either $\overline{\text{OE}}$ or $\overline{\text{WE}}$ may be used to disable output data; depending on the individual device specification, one method may be faster than the other. In either case, $\overline{\text{WE}}$ must go LOW to execute the WRITE. More detailed information on $\overline{\text{OE}}$ and $\overline{\text{WE}}$ operation can be found in the individual device data sheets.

SUMMARY

EDO is a minor modification over conventional FPM memory components, with major implications in terms of system performance and/or simplifying system design complexity. A very simple physical change at the component level (data not being disabled by CAS going HIGH within a PAGE-MODE READ access) results in either a longer data valid window or a shorter PAGE MODE cycle time and often results in both. As with any component type, there are specific design factors to be considered but in general, the design complexity of an EDO-based system is equal to or less than that of an FPM-based system, resulting in a substantial performance increase with no added design cost. The performance increase is measured as an increase in peak memory bandwidth and on components which are widely available today, this increase can be up to 60 percent based on device specifications, and up to 100 percent once actual system clock timing is considered.

TECHNICAL NOTE

VARIOUS METHODS OF DRAM REFRESH

INTRODUCTION

DRAM refresh is the topic most misunderstood by designers due to the many ways refresh can be accomplished. This article addresses the most often asked questions about refresh. The two basic means of performing refresh, distributed and burst, are explained first followed by the various ways to accomplish refresh: RAS-ONLY REFRESH, CAS-BEFORE-RAS REFRESH and HIDDEN REFRESH.

STANDARD AND EXTENDED REFRESH

DRAMs are often referred to as either "standard refresh" or "extended refresh." Dividing the specified refresh time by the number of cycles required will determine if the DRAM is a standard refresh or an extended refresh device. If the result is 15.6us it is a standard refresh device, while a result of 125us indicates an extended refresh device.

Table 1 lists some of the standard DRAMs and their refresh specifications.

Table 1 STANDARD DRAMS AND REFRESH **SPECIFICATIONS**

DRAM	REFRESH TIME	NUMBER OF CYCLES	REFRESH RATE
4 Meg x 1	16 ms	1,024	15.6μs
256K x 16	8 ms	512	15.6μs
256K x 16 (L version)	64 ms	512	125µs
4 Meg x 4 (2K)	32 ms	2,046	15.6µs
4 Meg x 4 (4K)	64 ms	4,096	15.6µs

DISTRIBUTED REFRESH

Distributing the refresh cycles so that they are evenly spaced is known as distributed refresh. To perform distributed refresh on a standard DRAM, execute a refresh cycle every 15.6µs such that all rows are turned on before repeating the task. When not being refreshed, the DRAM can be read from or written to.

BURST REFRESH

Refresh may be achieved in a burst method by performing a series of refresh cycles, one right after the other until all rows have been accessed. During refresh other commands are not allowed. Below is a drawing representing burst and distributed refresh.

For example: a 4 Meg x 1 requires 1,024 consecutive refresh cycles, each of which will use 130ns (tRC) for a 70ns

> $1,024 \text{ cycles } \times 130 \text{ns} = 133,120 \text{ns} = 0.133 \text{ms}$ 16ms - 0.133ms = 15.867ms

Approximately 0.13ms would be spent performing refresh, and the remaining 15.87ms could be spent reading and writing; then burst refresh would occur again, and so on.

Distributed refresh is the more common of the two refresh categories. The DRAM controller is set up to perform a refresh cycle every 15.6us. Usually, this means the controller allows the current cycle to be completed, and then holds off all instructions while a refresh is performed on the DRAM. The requested cycle is then allowed to resume.

REFRESH CYCLES

There are different cycles you can use to refresh DRAMs, all of which can be used in a distributed or burst method. There are three types listed in a standard data sheet:

- RAS-ONLY REFRESH
- CAS-BEFORE-RAS REFRESH
- HIDDEN REFRESH

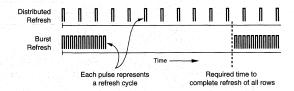


Figure 1 **BURST AND DISTRIBUTED REFRESH**

TECHNICAL NOT

RAS-ONLY REFRESH

To perform a \overline{RAS} -ONLY REFRESH, a row address is put on the address lines and then \overline{RAS} is dropped. When \overline{RAS} falls, that row will be refreshed and, as long as \overline{CAS} is held high, the DQs will remain open. (See Figure 2.)

It is the DRAM controller's function to provide the addresses to be refreshed and make sure that all rows are being refreshed in the appropriate amount of time. The row order of refreshing does not matter; what is important is that each row be refreshed in the specified amount of time.

CAS-BEFORE-RAS REFRESH

 $\overline{\text{CAS}}$ -BEFORE- $\overline{\text{RAS}}$ REFRESH, also known as CBR REFRESH, is a frequently used method of refresh because it is easy to use and offers the advantage of a power savings. A CBR REFRESH cycle is performed by dropping $\overline{\text{CAS}}$ and then dropping $\overline{\text{RAS}}$. One refresh cycle will be performed each time $\overline{\text{RAS}}$ falls. $\overline{\text{WE}}$ must be held high while $\overline{\text{RAS}}$ falls. The DQs will remain open during the cycle.

Here's how CBR REFRESH works. The die contains an internal counter which is initialized to a random count when the device is powered up. Each time a CBR REFRESH is performed, the device refreshes a row based on the counter, and then the counter is incremented. When CBR REFRESH is performed again, the next row is refreshed and the counter is incremented. The counter will automatically wrap and continue when it reaches the end of its count. There is no way to reset the counter. The user does not have

to supply or keep track of row addresses. A drawing of one CBR REFRESH cycle is shown in Figure 3. \overline{CAS} must be held low before and after \overline{RAS} falls to meet ${}^t\!CSR$ and ${}^t\!CHR$. Figure 4 shows three CBR REFRESH cycles. In this drawing, \overline{CAS} stays low and only \overline{RAS} toggles. Every time \overline{RAS} falls a refresh cycle is performed. \overline{CAS} may be toggled each time, but it's not necessary.

CBR POWER SAVINGS

Since CBR REFRESH uses the internal counter and not an external address, the address buffers are powered-down. For power sensitive applications, this can be a benefit, because there is no additional current used in switching address lines on a bus, nor will the DRAMs pull extra power if the address voltage is at an intermediate state.

CBR REFRESH IS EASY TO USE

Since CBR REFRESH uses its own internal counter, there is not a concern about the controller having to supply the refresh addresses. Virtually all DRAMs support CBR REFRESH and the 15.6µs refresh rate, so you can design for CBR REFRESH at the distributed rate of 15.6µs and plug in many different DRAMs without having to worry about refresh. For example, the 4 Meg x 4 comes in two versions:

- 2,048 cycles in 32ms
- 4,096 cycles in 64ms

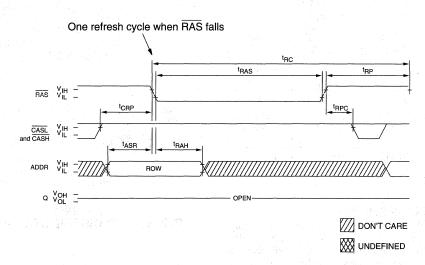


Figure 2
RAS-ONLY REFRESH

If CBR REFRESH is used, simply maintain the standard 15.6 μ s refresh rate. If \overline{RAS} -ONLY REFRESH is used, addresses must be supplied as follows:

- A0-A10 for the 2,048 cycle refresh
- A0-A11 for the 4,096 cycle refresh.

HIDDEN REFRESH

In HIDDEN REFRESH, the user does a READ or WRITE cycle and then, leaving CAS low, brings RAS high (for

minimum of tRP) and then low. Since CAS was low before RAS went low, the part will execute a CBR REFRESH. In a READ cycle the output data will remain valid during the CBR REFRESH. The refresh is not "hidden" in the sense that you can hide the time it takes to refresh, instead it is hidden in the sense that data-out will stay on the lines while performing the function. READ and HIDDEN REFRESH cycles will take the same amount of time: tRC. The two cycles together take 2 x tRC. If we were to do a READ and

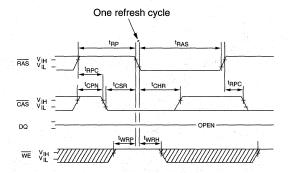


Figure 3
ONE CAS-BEFORE-RAS REFRESH CYCLE

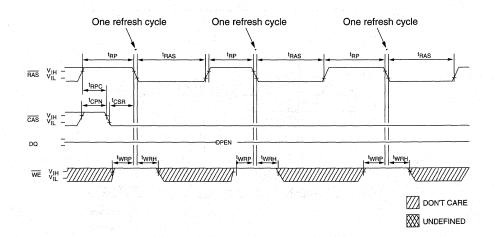
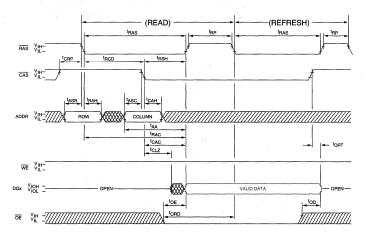


Figure 4
THREE CAS-BEFORE-RAS REFRESH CYCLES



then follow it with a standard CBR REFRESH (instead of a HIDDEN REFRESH), this would take the same amount of time: 2 x tRC.

Figure 5 shows a READ followed by a HIDDEN RE-FRESH. Figure 6 shows a READ followed by a standard CBR REFRESH. The only difference between the two is that data-out is valid during the HIDDEN REFRESH.

SUMMARY

Three different cycles exist to perform refresh on a standard DRAM: RAS-ONLY REFRESH, CAS-BEFORE-RAS REFRESH, and HIDDEN REFRESH. Each cycle can be used in a burst or distributed method, whichever best fits the designer's needs. However, CBR REFRESH is the preferred choice because of its ease of use and power savings.

FIGURE 5 READ CYCLE FOLLOWED BY HIDDEN REFRESH

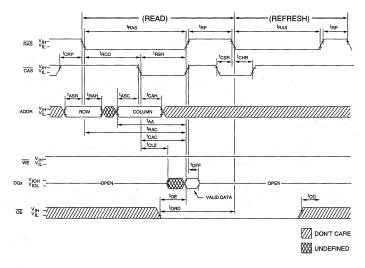


FIGURE 6 READ CYCLE FOLLOWED BY CBR REFRESH

TECHNICAL NOTE

PCB LAYOUT FOR 4 MEG x 4 **300 MIL OR 400 MIL SOJ**

INTRODUCTION

The 4 Meg, the 16 Meg and the 64 Meg DRAMs are experiencing similar packaging trends, in which the first generation is produced in a larger package than later generations for a given density. A list of DRAM configurations for the various 4, 16 and 64 Meg DRAMs is provided in Table 1. For each device type, the initial offering (first generation) is listed along with the size reduction on later generations.

Table 1 PACKAGE TRENDS BY CONFIGURATION

	Initial Package		As I	As Product Ma		
Device	Size	Pins	Size	Pins	Package	
4 Meg x 1	350 mil	20/26	300 mil	20/26	SOJ	
1 Meg x 4	350 mil	20/26	300 mil	20/26	SOJ	
4 Meg x 4	400 mil	24/28	300 mil	24/26	SOJ/ TSOP	
2 Meg x 8	400 mil	28	300 mil	28	TSOP	
16 Meg x 4	500 mil	34	400 mil	32	SOJ	
8 Meg x 8	500 mil	34	400 mil	32	SOJ	

Although migrating from a larger to a smaller package has obvious long term benefits, it can make the memory designer's job more difficult when designing a printed circuit board (PCB) layout that can accommodate both sizes. This technical note demonstrates a PCB layout that can accommodate 300 mil or 400 mil 4 Meg x 4 SOJ DRAMs in a 2K refresh version, as well as help point out the need to layout for future trends. This note applies only to the 2K refresh version because it has symmetric addressing, so A10 and A3 can be used interchangeably. Because the 4K refresh has 2 address bits dedicated as row-only addresses, additional jumpers would be required.

Figure 1 shows the basic pad layout for either 4 Meg x 4 DRAM.

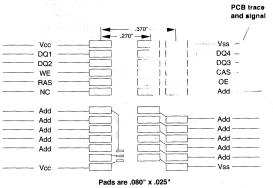


Figure 1 PCB LAYOUT FOR A 4 MEG x 4 SOJ

In Figure 2, the shaded pads show the 24/28 pin 400 mil package in the layout. The shading represents a solder connection from the PCB pad to the package lead. The text within the shaded pad is the DRAM pin assignment, and the text outside the pads is the signal coming from the PCB. The small numbers reflect the DRAM pin numbers. The three small boxes provide the jumper connection to enable

the 300 mil or 400 mil layout. A dotted line indicates where the jumper is used to make the correct electrical connection for the 400 mil package.

In Figure 3, the 24/26300 mil package fit is shown. Notice that the inside pads are now shaded instead of the outside pads. The jumper has been placed in the alternate position to make the proper connection for the 300 mil package.

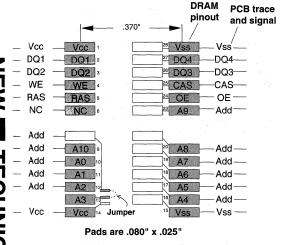


Figure 2 4 MEG x 4, 2K REFRESH 400 MIL SOJ LAYOUT

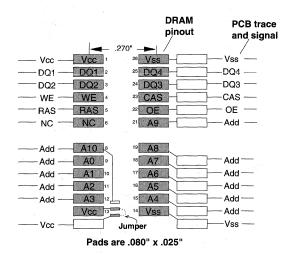


Figure 3 4 MEG x 4, 2K REFRESH 300 MIL SOJ LAYOUT

TECHNICAL NOTE

REDUCE DRAM MEMORY COSTS WITH CACHE

INTRODUCTION

All PCs sold today (x486 and above) have cache memory, usually both internal to the processor (L1) and external to the processor (L2). The intended purpose of the cache memory is to minimize the number of wait-states the DRAM-based main memory imposes on the microprocessor. In other words, cache memory improves the speed of microprocessor accesses because it is significantly faster than DRAM-based main memory.

Today, the performance of the DRAM-based main memory is not nearly as important to the microprocessor accesses as it was before the use of cache memories; a side benefit of incorporating cache that is generally overlooked. Cache is used during most of the microprocessor accesses (80 to 96+ percent of the accesses). When cache memory is accessed, DRAM-based main memory is not accessed. This means DRAM-based main memory is accessed by the microprocessor a small percentage of the time. This is a dramatic shift from the previous generations of systems that did not incorporate cache memory.

Two performance factors of the DRAM which dramatically improve when the usage rate of the DRAM is reduced are speed and soft error rates (SER).

DRAM SPEED

Prior to the employment of cache memory, the DRAM speed had a significant effect on the microprocessor's performance and was generally considered to be the bottleneck in system performance. Figure 1 depicts the historical performance increases obtained as the DRAM speed has improved from 120ns to 80ns. The analysis assumes a 386 microprocessor (no L1 cache), no external cache and 10ns buffer/trace delay.

DRAM speed grade improvements generally provided significant microprocessor performance enhancements. This generated the demand for faster DRAMs and warranted the extra premium being charged for them.

With the introduction of primary (L1) and secondary (L2) cache memory, the number of microprocessor accesses to the DRAM main memory have been significantly reduced, as seen in Figure 2. A microprocessor with internal (L1) cache will generally require 15 to 20 percent of the memory accesses to go out of the microprocessor and access either an L2 cache memory or the DRAM main memory. With the addition of an L2 cache memory, just one to four percent of the memory accesses are required to go to the slower DRAM main memory.

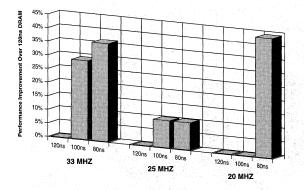


Figure 1
HISTORICAL DRAM MEMORY
PERFORMANCE IN PCS

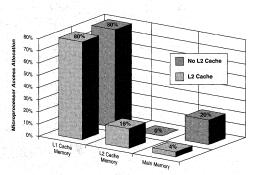


Figure 2
MICROPROCESSOR ACCESS
ALLOCATION

With only one to four percent of the memory accesses now going to DRAM main memory, microprocessor performance improvements obtained by using today's faster DRAMs are greatly minimized, as is seen in Figure 3. For example, utilizing 50ns DRAMs in a 486-based PC with an L2 cache and both L1 and L2 caches obtaining an 80 percent hit rate, the microprocessor's performance would be improved by less than one percent over the employment of 70ns DRAMs.

Excluding cache memory effects, a more in-depth look into the DRAM's speed performance reveals that the perceived advantages of faster DRAMs in PCs are, in part, diminished due to the nature of data being clocked. So, the faster DRAM speed does not affect the microprocessor's performance unless it can eliminate a wait-state, as demonstrated in Figure 4.

It should be noted that a faster ^tRAC (sufficiently fast enough to eliminate a wait state) only improves the microprocessor's burst performance by one clock at best. Whereas, a sufficiently faster ^tCAC improves the microprocessor's burst performance by three clocks. And thus, the impetus behind the growing demand for EDO DRAMs (see technical note TN-04-29, "Maximizing EDO Advantages at the System Level").

A prudent system designer can generally deliver the best price/performance ratio by using 70ns DRAMs rather than pay speed premiums for 50 and 60ns DRAMs. With today's computing architectures, one should not assume a faster DRAM equates to noticeable microprocessor performance improvement.

MULTIPLE-CLOCKED MICROPROCESSORS

It is worth noting that the previous analysis is based on non-multiple-clocked microprocessors. That is, microprocessors in which the data bus is clocking at the same rate as the microprocessor. The performance effects of the DRAM are more pronounced on multiple-clocked microprocessors.

Although the percentage of DRAM main memory accesses remain the same, the amount of time a DRAM access slows the microprocessor is no longer a one-to-one ratio due to the multiple microprocessor clocks. This ratio is different because each wait-state the external memory imposes on the microprocessor equates to several clocks for the microprocessor (e.g., three clocks for a triple-clocked microprocessor).

A typical PC system with an L1 cache (assume L1 and L2 each have 80 percent hit rate) will retain 80 percent of the memory accesses internal to the microprocessor (L1) and direct the remaining to external memory. Of this, 80 percent of the external memory accesses (16 percent of the total memory accesses) go to the secondary cache. The remaining memory accesses (4 percent of the total memory accesses) go to DRAM memory. For a multiple-clocked microprocessor based system, the L2 cache and DRAM memory accesses will require a higher percentage of execution time since each external clock translates to a multiple of the microprocessor's internal clocks.

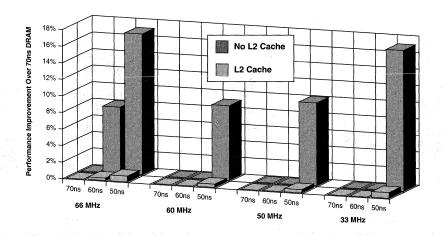


Figure 3
DRAM MEMORY PERFORMANCE IN PCs

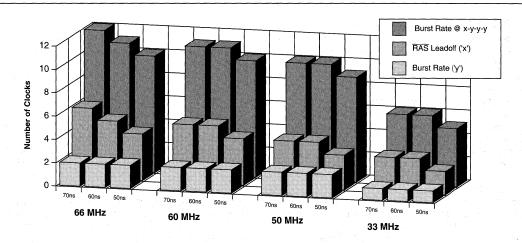


Figure 4 DRAM SPEED vs. CLOCKS IN PCs

The difference between a DX4-486 microprocessor (33 MHz external clock, 100 MHz internal clock) and a 33 MHz DX-486 when using 50ns and 70ns DRAMs is evaluated in Table 1.

This analysis shows that clocked-multiplied microprocessors put more demand on the external memories. For example, 70ns DRAMs require 8 percent of the memory accessing time with a typical 33 MHz-486DX but the clocktripled 33 MHz-486DX4 requires 17 percent of the memory accessing time. Even with this additional demand on the DRAM memory performance, the performance improvement obtained from using a 50ns DRAM over a 70ns is negligible. The 50ns DRAM only improves the leadoff cycle (i.e., one clock and fails to improve the burst rate).

Table 1 **EFFECTS OF MULTIPLE-CLOCKED MICROPROCESSORS**

Memory Type	L1-Cache	L2-Cache	70ns DRAMs	50ns DRAMs
33 MHz-486DX				
Percent of accesses	80%	16%	4%	4%
Clocks per burst	5 (2-1-1-1)	5 (2-1-1-1)	11 (5-2-2-2)	10 (4-2-2-2)
Clocks seen by μP	5	5	11	10
Time allocation for burst	76.3%	15.3%	8.4%	n/a
Time allocation for burst	77%	15.3%	n/a	7.7%
100 MHz-486DX4				
Percent of accesses	80%	16%	4%	4%
Clocks per burst	5 (2-1-1-1)	5 (2-1-1-1)	11 (5-2-2-2)	10 (4-2-2-2)
Clocks seen by μP	5	15	33	30
Time allocation for burst	52%	31%	17%	n/a
Time allocation for burst	52.5%	31.5%	n/a	16%

MICHON

PERIPHERAL COMPONENTS

Besides microprocessor accesses, DRAM memory is accessed by peripheral components. Non-cached peripheral components access the DRAM main memory over either the ISA or the local bus. As previously discussed, even without cache memory, faster DRAMs do not necessarily equate to increased performance.

Figure 5 depicts the leadoff and Page-Mode cycles of today's faster DRAMs while being accessed by peripheral components over either the ISA or the local bus. As the DRAM speed improves, the burst rate does not improve since the speed improvement is not sufficient enough to reduce the number of clocks required. And in the bus speeds used the burst rate is already at one clock.

In most cases the leadoff cycle does not change between speed versions either. The only improvement in DRAM memory accesses by peripheral components is obtained when using 50ns DRAMs over slower DRAMs at 33 MHz. Additionally, main memory accesses by peripheral components are typically long streams of data (i.e., Page Mode) which minimizes the improved leadoff time obtained from the faster DRAMs. For example, assume a burst of 128 words. The 50ns DRAM-based main memory would only be 0.8 percent faster than using 70ns DRAMs in a 33 MHz local bus. Such a negligible performance increase makes it difficult to justify speed premiums associated with fast DRAMs.

DRAM SOFT ERRORS

There has been much discussion regarding DRAM soft error rate (SER) with the common question being asked "Do Ineed parity?" A previous technical note, TN-04-28, "DRAM Soft Error Rate Calculations," (1Q94), discussed the issue of parity in detail and provides a system designer with the

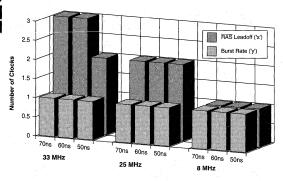


Figure 5
DRAM SPEED vs. LOCAL/ISA BUS
ACCESSES

information needed to answer this question. However, it is worth noting that when L1 and L2 cache memory is utilized, DRAM is accessed only one to four percent of the time. This leaves the DRAM main memory in the standby mode the remainder of the time. As mentioned in the same technical note, SER is highly dependent on the DRAM cycle rate. A DRAM is less susceptible to soft errors (by approximately a factor of 20x) when in standby mode (only refresh cycles) than when being accessed at a fast cycle rate.

Figure 6 depicts a typical 32-bit wide, 4MB, DRAM-based main memory's mean time between failures (MTBF) over various utilization rates (READ/WRITE accesses at 200ns). For example, a system with cache memories obtaining a 96 percent hit rate (80 percent L1 and 80 percent L2 Cache memory hit rates) can expect one DRAM soft error during 125 years of continuous use because it sees only a four percent utilization rate.

The same DRAM memory would expect one DRAM soft error every 25 years if only L1 cache (80 percent hit rate or 20 percent utilization rate) was employed. On the other extreme, the same DRAM memory in a non-cached (no L1 or L2 cache memory) system would see around a 50 percent to 70 percent utilization rate. These conditions would result in approximately one DRAM soft error every 10 years.

SUMMARY

The addition of cache memory not only achieves its objective of minimizing microprocessor wait states, but it also demands less of the DRAM main memory. With cache memory, the need for faster DRAMs and parity memory are all but eliminated in most designs. When improving main memory speed, focus on DRAM Page Mode speed (^tPC) rather than leadoff (^tRAC) speed.

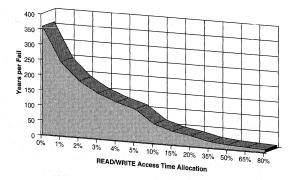


Figure 6
DRAM MTBF TO SOFT ERRORS vs.
ACCESS RATE

TECHNICAL NOTE

DECREMENT BURSTING WITH THE SGRAM

INTRODUCTION

Decrement bursting is a useful operation in many graphics applications, especially in a GUI environment. Any graphics memory device that facilitates this operation, such as the synchronous graphics RAM (SGRAM), provides system level benefits including reduced design complexity and increased performance.

There are several methods that can be used to achieve full-speed decrement bursting in synchronous DRAM (SDRAM)/SGRAM based graphics memory implementations. This note describes the various methods and the tradeoffs associated with each.

DECREMENT BURSTING

There are several instances in graphics applications where it is desired to access a series of pixels (in a line on the display) from right to left. This might occur when performing overlapping BITBLTs or when scrolling text horizontally within a window.

Pixels are typically mapped in memory such that moving from right to left in a section of a line on the screen means moving from a column location with a higher address in a row in memory to a column with a lower address. To perform the above operation requires the ability to burst sequentially from a starting column address to decreasing (or decrementing) column addresses within a row.

EXPLICIT COMMAND

One vendor of SDRAMs in a graphics configuration (256K x 16) has created an explicit command mode to accomplish decrement bursting, however this approach has several drawbacks. One drawback is that this command mode is additional to the defined command set for SDRAMs/ SGRAMs. This means that both the controller and the memory devices must contain additional logic to support the new command mode. Another drawback is that the new command must be executed every time there is a change in direction (from incrementing to decrementing, and vice versa). This results in additional overhead, in the form of Mode Register accesses. In addition, this new command mode is not available from other vendors.

Alternatively, the methods described below can be achieved on any SDRAM/SGRAM with a pipelined architecture, which includes all SGRAMs and all SDRAMs tailored for graphics applications. In addition, these methods use the existing command sets defined for SDRAMs/ SGRAMs and allow for operation at the maximum burst rate of the device.

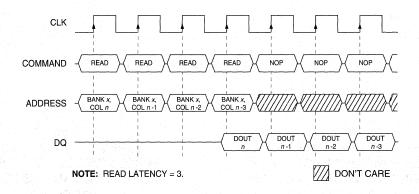


Figure 1 **DECREMENT BURSTING - NEW COLUMN ADDRESS EVERY CYCLE**

RANDOM COLUMN ACCESS

SDRAMs/SGRAMs with a pipelined architecture can accept a new read or write command and column address on each cycle during a burst access within a page. This provides the capability to sequentially access incrementing or decrementing column addresses, as well as to randomly access column locations within a page at the maximum burst rate of the device.

Providing a new read or write command and column address on each clock cycle is the most flexible way to achieve decrement bursting because it can be used regardless of the programmed burst length and burst type. In addition, this method does not require any Mode Register accesses, thereby avoiding that additional overhead. An example is shown in Figure 1.

The only drawback of random column access is that the address and command busses are used during every clock cycle. However, this is no different from the way these operations are performed with conventional FPM DRAMs or EDO DRAMs and full-speed random access is a significant benefit.

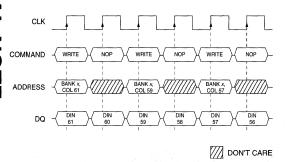


Figure 2 DECREMENT BURSTING WITH SUCCESSIVE BURSTS OF TWO -STARTING AT AN ODD COLUMN **ADDRESS**

SUCCESSIVE BURSTS OF TWO

The programmed burst length of two for SDRAMs/ SGRAMs is inherently bidirectional. If the burst starts at the first location in the block of two: i.e., the least significant address bit is zero, then the address will increment for the next access; if the burst starts at the second location in the block of two; i.e., the least significant address bit is one, then the address will decrement for the next access. Longer incrementing bursts can be constructed by issuing successive read or write commands to incrementing even addresses every other clock cycle. Similarly, longer decrementing bursts can be constructed by issuing successive read or write commands to decrementing odd addresses on every other clock cycle.

In the case where a decrementing burst needs to start at an even address, the initial command issued for the even address simply needs to be followed immediately with the command to the previous (odd) address. After that, a command would be issued on every other cycle to the decrementing odd addresses. A similar procedure would be used to start an incrementing burst from an odd address.

After this initial orientation, if necessary, the address and command busses are available every other cycle for other commands. Examples are shown in Figures 2 and 3.

Additional overhead in the form of Mode Register accesses is only required if the burst of two is not the preferred mode of operation for other accesses.

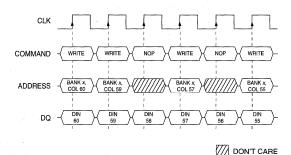


Figure 3 DECREMENT BURSTING WITH SUCCESSIVE BURSTS OF TWO -STARTING AT AN EVEN COLUMN **ADDRESS**

SUCCESSIVE BURSTS OF FOUR OR EIGHT

A programmed burst length of four (eight) is bidirectional if starting at either the first or last location in the block and the burst type is "interleaved". If the burst starts at the first location in the block; i.e., the two (three) least significant address bits are all zeroes, then the address will increment for the next three (seven) accesses; if the burst starts at the last location in the block; i.e., the two (three) least significant address bits are all ones, then the address will decrement for the next three (seven) accesses. Longer incrementing bursts can be constructed by issuing successive read or write commands to every fourth (eighth) incrementing column address on every fourth (eighth) clock cycle, and similarly, longer decrementing bursts can be constructed by issuing successive read or write commands to every fourth (eighth) decrementing column address on every fourth (eighth) clock cycle.

In the case where a decrementing burst needs to start at a location other than the last in the block, individual commands must be issued on each clock until the lower boundary is reached. A command would then be issued on every fourth (eighth) cycle to every fourth (eighth) decrementing column address. A similar procedure would be used to start an incrementing burst from any address other than the first address in the block.

After this initial orientation, if necessary, the address and command busses are available three of four (seven of eight) clock cycles, for other commands. Examples are shown in Figures 4 and 5.

Additional overhead in the form of Mode Register accesses is only required if the interleaved burst of four (eight) is not the preferred mode of operation for other accesses.

SUMMARY

The SGRAM, with it's pipelined architecture, provides high speed burst access (66-100 MHz) while still offering the ability to change the column address for each access. This ability leads to full-speed random, incrementing, or decrementing burst accesses within a row in memory.

Decrement bursting in particular can be achieved using one of several different methods which rely only on existing command modes defined for SDRAM/SGRAMs. Each method represents a different combination of flexibility, complexity, overhead, and command and address bus utilization. Regardless of the method selected in a given system, full-speed decrementing accesses can be achieved without a dedicated and additional command mode.

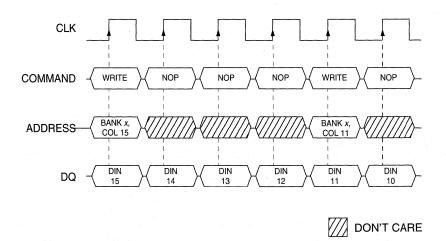
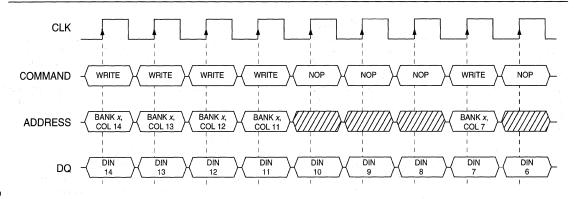



Figure 4
DECREMENT BURSTING WITH SUCCESSIVE BURSTS OF FOUR - STARTING AT THE
LAST COLUMN ADDRESS IN THE BLOCK

TN-41-01 DECREMENT BURSTING WITH THE SGRAM

DON'T CARE

Figure 5
DECREMENT BURSTING WITH SUCCESSIVE BURSTS OF FOUR - STARTING AT THE SECOND COLUMN ADDRESS IN THE BLOCK

TECHNICAL NOTE

88-PIN DRAM CARDS

INTRODUCTION

Just as SIMMs began a new period in memory placement and packaging in the 1980s, the 88-pin DRAM card promises to have an equal impact on the industry in the 1990s. The 88-pin DRAM card combines the architecture of a SIMM with an memory card form factor to create a high density, easy-to-use memory device. No longer do endusers have to disassemble their systems and risk ESD damage to add more SIMM modules or memory boards. Finally, a sensible approach to memory packaging has arrived.

For engineers, Micron's 88-pin DRAM cards offer a significant improvement in the way system designers manage main and add-in memory. DRAM memory cards require less system interface logic, they pack more memory into a given area than SIMM modules and they are better able to withstand more use and abuse than contemporary memory upgrade schemes. All this functionality is contained in a convenient, portable and standardized package.

Standards for the 88-pin DRAM card have been jointly ratified by the three major standard-setting bodies: PCMCIA, JEDIA and JEDEC. As a companion to the 68-pin memory card, or by itself, the 88-pin DRAM card will enhance your product design or offerings.

DRAM cards provide a rigid and durable enclosure for the printed circuit board and memory devices contained within. The card's physical dimensions are 2.126 ±0.004 inches wide by 3.37 ± 0.004 inches long by 0.129 ± 0.004 inches thick, which is about the same dimension as a credit card, though three times its thickness.

Once assembled, the strength of the DRAM card surpasses that of SIMM modules. Moreover, since the card's components are not subjected to direct physical contact by the user, it can withstand casual, even abusive, handling much better than a SIMM module. When a SIMM module is installed, removed or transported, there is a risk of inflicting damage due to ESD. The card is made with a conductive plastic that allows static charges to be safely dissipated to the ground pins via a High-Z path.

DRAM cards are designed to ease facilitation. Though the DRAM cards appear to function like 72-pin SIMM modules, significant differences favor the DRAM card. For example, the DRAM card provides its own buffering for its control lines, relieving the system board. Furthermore, buffering enhances system performance, both from noise reduction and reduced capacitive loading of the control

The DRAM cards are preferable to SIMMs in small profile notebook and palmtop computers, because the cards offer a twofold improvement in board area usage. Proper choice of receptacle connector for the system board provides the ability for hot insertion or removal, which is impossible for a SIMM module. And the DRAM card's size and ruggedness make it ideal for mainframe or industrial applications.

Table 1 **MEMORY ADDRESS RANGE**

	MEMORY ADDRESS RANGE						
DRAM ADDRESS	PRESENCE-DETECT BITS					TOTAL MEMORY SIZE	
SPACE PER BANK	PD1	PD2	PD3	PD4	PD5 = 0	PD5 = 1	
no card installed	11/1	1	1	1	n/a	n/a	
256K	0	0	0	0	1MB	2MB	
512K	1	0	0	0	2MB	4MB	
1 Meg	0	1	0	0	4MB	8MB	
2 Meg	1.	1	0	0	8MB	16MB	
4 Meg	0	0	1 2	0	16MB	32MB	
8 Meg	1	0	1	0	32MB	64MB	
16 Meg	0	1	1	0	64MB	128MB	

PRESENCE-DETECT DEFINITIONS FOR THE 88-PIN DRAM CARD

It is necessary to clarify the presence-detect definitions for the 88-pin DRAM cards. The eight presence-detect pins are divided into four groups, consisting of memory size (four bits), number of DRAM banks (1 bit), DRAM access timing (two bits) and refresh control (1 bit). As shown in Table 1, presence-detect bits are defined as 0 = ground, 1 = open.

Presence-detect bits PD1, PD2, PD3 and PD4 relate to the byte size of the card or its memory address range. The PD5 presence-detect indicates the number of memory banks present on the card. The card will be provided with either one or two banks (32-bit version) or two or four banks (16-bit version).

For 32-bit applications, PD5's definition relates to whether one or two banks are present. Each bank is defined by two \overline{RAS} lines. In other words, both \overline{RAS} lines should be activated simultaneously for a 32-bit word access. When PD5 = 0, there is one bank present, activated by $\overline{RAS0}$ and $\overline{RAS2}$. When PD5 = 1, there are two banks present. Bank 1 is activated by $\overline{RAS0}$ and $\overline{RAS0}$ and $\overline{RAS0}$ and $\overline{RAS1}$ and $\overline{RAS3}$.

Table 2
RAS RELATION TO DATA BUS

RAS0	D0-D17	Bank 1
RAS1	D18-D31	Bank 2
RAS2	D0-D17	Bank 3
RAS3	D18-D31	Bank 4

For 16-bit applications, PD5's definition relates to whether two or four banks are present. Each bank is defined by a single \overline{RAS} lines. When PD5 = 0, two banks are present, activated by $\overline{RAS0}$ and $\overline{RAS2}$. When PD5 = 1, two additional banks are present, activated by $\overline{RAS1}$ and $\overline{RAS3}$. A logical progression within the system's address space would be $\overline{RAS0}$, $\overline{RAS2}$, $\overline{RAS1}$ and $\overline{RAS3}$ in that order. For a 32-bit data bank interpreted as an 16-bit card, \overline{RAS} relates to the data bus as shown in Table 2.

The PD6 and PD7 presence-detects indicate the access time of the card from \overline{RAS} true to data-out. They are defined in Table 3.

The PD8 presence-detect is related to the refresh type of the card, either SELF REFRESH when PD8 = 0, or an extended refresh when PD8 = 1. Presently, all DRAM cards will leave PD8 open, indicating that the system should provide refreshing, preferably a $\overline{\text{CAS}}$ -BEFORE- $\overline{\text{RAS}}$ type of refresh. This allows an address-independent refresh, which allows interchangeability among different card types.

Table 3
DATA-OUT ACCESS TIME

ACCESS TIME	PD7	PD6
100ns (or 50ns for future cards)	0	0
80ns	0	1
70ns	1	0
60ns	1	1

Table 4 32-BIT PRODUCT OFFERINGS

PRODUCT NUMBER (32-BIT SERIES)	MEMORY Size (MB)	WORD LENGTH (BITS)	POWER SUPPLY	SPEED
MT8D88C132-xx	4	16, 32	5V	60-80ns
MT8D88C132V-xx	4	16, 32	3.3V	70-80ns
MT16D88C232-xx	8	16, 32	5V	60-80ns
MT16D88C232V-xx	8	16, 32	3.3V	70-80ns
MT8D88C432V-xx	16	16, 32	3.3V	60-80ns
MT16D88C832V-xx	32	16, 32	3.3V	60-80ns

PRODUCT OFFERING

DRAM cards are offered through Micron. The current product spectrum provides memory sizes from 4MB to 32MB with x16/x32 data path, and both 5V and 3.3V operation. Micron's product offering is shown in Table 4. The series is provided with speed grades from 80ns to 60ns. This is specified with a -8, -7 or -6 suffix to the part number where "xx" is shown. The cards use low-power, extended-refresh DRAMs. Cards using a 3.3V supply have their part number appended with a "V" option.

In addition, all versions of the standard DRAM card are available in a two-inch-long, bufferless version. Contact Micron for further details

SERVICES

Micron stands ready to help customers who wish to enter the IC DRAM card market with proprietary solutions. Our staff engineers are well-versed in the design of boards for the entire PCMCIA/JEDEC/JEIDA arena. If one of our standard products does not meet your current needs, we are ready and able to design a custom solution for you.

For customers desiring a standard product under private label, Micron can supply current products labeled and marked in virtually any manner the customer wishes. Simply supply us with the desired artwork and markings—Micron will do the rest.

Often overlooked by companies considering entrance into the DRAM card market are the mechanical consider-

ations. Micron has invested considerable time and effort into developing superior card frames, covers and components. Our custom design services break down the significant entry barriers to this burgeoning market and will get your product to market on time and on budget. Design services include:

- Design from concept
- Schematic capture
- Board layout
- Enclosure design
- Thermal and signal noise analysis
- Custom marking
- Comprehensive testing
- Connector redesign
- ASIC solutions
- Packaging solutions

Applications engineering assistance is also available from 8 a.m. to 5 p.m. Mountain Time by calling 208-368-3900.

The DRAM card arena is very fast-paced. Product development and introduction will quickly outdate current information. When contemplating a design in this arena, please call us for the latest product datasheets and design guidelines.

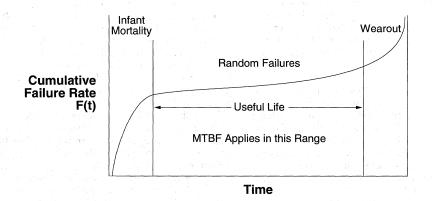
MICHON TECHNOLOGY, INC.

EDO DRAMs	1
FPM DRAMs	2
SGRAM	3
DRAM SIMMs	4
DRAM DIMMs	5
DRAM CARDS	6
TECHNICAL NOTES	7
PRODUCT RELIABILITY	8
PACKAGE INFORMATION	9
SALES AND SERVICE INFORMATION	10
MICRON DATAFAX INDEX	11

RELIABILITY

OVERVIEW

Product reliability is a product's ability to function within given performance limits, under specified operating conditions over time. This section contains a brief overview of some of the issues that affect the reliability of IC devices and briefly describes Micron's reliability program.


For a more in-depth discussion of reliability, please refer to Micron's Quality/Reliability literature.

RELIABILITY GOALS

When we discuss reliability goals of semiconductor ICs, we typically refer to the traditional reliability curve of component life. The reliability curve, or "bathtub curve,"

appears below, where h(t) is the hazard rate or the probability of a component failing at $t_0 + 1$ in time if it has survived at time t_0 .

The reliability curve in Figure 1 is divided into three segments: infant mortality, random failures and wearout. The term "infant mortality" refers to those ICs that would fail early in their lives due to manufacturing defects. To screen out such failures, Micron evaluates all our products using intelligent burn-in. This unique AMBYX® intelligent burn-in/test system developed by Micron is described in the following section.

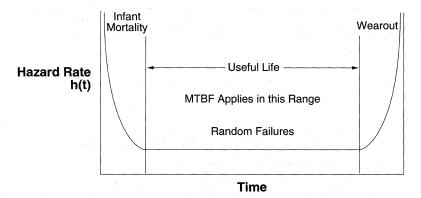


Figure 1
RELIABILITY CURVE

MICRON'S AMBYX® INTELLIGENT BURN-IN AND TEST SYSTEM

Burn-in refers to the process of accelerating failures that occur during the infant mortality phase of component life to remove the inherently weaker devices. The process has been regarded as critical for ensuring product reliability since the beginning of the semiconductor industry. To effectively screen out infant mortalities, Micron believes it is critical to functionally test devices several times during the burn-in cycle without removing them from the burnin oven. In 1986, when we were unable to find a system that met our requirements, we introduced the concept of "intelligent" burn-in and developed the AMBYX intelligent burn-in and test system. Today, we use AMBYX to test every component product we make.

With AMBYX, we can determine if the failure rate curves of individual product lots reach the random failure region of the bathtub curve by the end of the burn-in cycle. We subject product lots that do not exhibit a stable failure rate to additional burn-in. This burn-in flow also brings to our attention the slightest variation in a product's failure rate.

Since AMBYX allows us to test devices for functionality without removing them from the burn-in oven, we effectively eliminate failures resulting from handling, thereby minimizing "noise" from the test results. During the test phase, output produced by the devices under test is compared to the pattern expected. If a discrepancy occurs, AMBYX records the failure and provides the bit address, device address, board address, temperature, Vcc voltage, test pattern and time set.

During the burn-in cycle itself, devices are functionally tested in four intervals. The first test begins at room temperature. Then we ramp up the oven to 85°C for more functional testing. This enables us to detect thermal

intermittent failures, another unique feature of intelligent burn-in. We conduct the next test at 125°C — any device that does not pass this sequence is eliminated. As the burn-in process continues, the devices are dynamically stressed at high temperature and voltage for a given number of hours. At the end of this period, we functionally test all devices again, followed by another burn-in cycle and further tests. This sequence is repeated four times on every device in every production lot. These test results allow us to identify individual failures after each burn-in cycle.

There are two important reasons why Micron conducts the last two burn-in and test periods (or "quarters") at lower Vcc than the first two portions. First, we want the several million device hours that we accumulate weekly on production lots to be conducted at stress conditions identical to the conditions for the extended high-temperature-operating-life (HTOL) test used by IC manufacturers to compute random field failure rates. Second, we want to be sure we are not introducing new failure modes unrelated to normal wearout, such as VOS, by testing them at extremely elevated conditions.

Trend charts, such as the one shown in Figure 2, alert us to trends in lot failure rates. When we detect an upward trend in a failure rate, we correlate the lots that need additional burn-in with all the variables that might be influencing the increased rate.

The overall benefits of intelligent burn-in are wide ranging. Intelligent burn-in allows us to identify early-life failures and failure mechanisms as they would actually occur in customer applications. It also allows us to identify problem lots that, if undetected, could contribute substantially to infant mortalities.

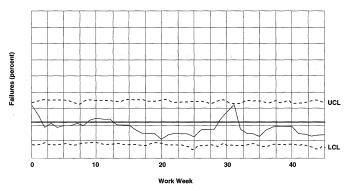


Figure 2
AMBYX FOURTH QUARTER FAILURES

ENVIRONMENTAL PROCESS MONITOR PROGRAM

Micron's environmental process monitor (EPM) program is designed to ensure the reliability of our standard products. Under this program, we subject weekly samples of our various product and package types to a battery of stress tests.

During these tests, we stress the devices for many hours under conditions designed to simulate years of normal field use. We then apply equations derived from intricate engineering models to the data collected from the accelerated tests. From these calculations, we are able to predict failure rates under normal use. Table 1 shows the conditions for these tests, known as environmental stress tests. The EPM program described in Table 1 is for Micron's 3.3V 16 Meg DRAM.

Table 1 SAMPLE ENVIRONMENTAL PROCESS MONITOR – 16 MEG DRAM

TEST NAME AND DESCRIPTION	TEST DURATION	BIWEEKLY SAMPLE SIZE
HIGH TEMPERATURE OPERATING LIFE (125°C, 4.3V, Checkerboard/Checkerboard Complement Pattern)	1,008 Hours	50 Devices
TEMPERATURE AND HUMIDITY (85°C, 85% RH, 4V, Alternating Bias)	1,008 Hours	50 Devices
AUTOCLAVE (121°C, 100% RH, 15 PSI, No Bias)	96 Hours	50 Devices
LOW TEMPERATURE LIFE (-25°C, 4.5V, Checkerboard/Checkerboard Complement Pattern)	1,008 Hours	15 Devices
TEMPERATURE CYCLE (-40°C for 15 min, air to air)	1,000 Cycles	50 Devices
THERMAL SHOCK (-55°C for 5 min., +125°C for 5 min., liquid to liquid)	700 Cycles	50 Devices
HIGH TEMPERATURE STORAGE (150°C, No Bias)	1,008 Hours	50 Devices
ELECTROSTATIC DISCHARGE (+ and -)	MIL-STD-3015.7	40 Devices
Vcc LATCH-UP (MIN voltage, 25°C)		10 Devices
SYSTEM SOFT ERROR (3V, 0.3ms, Checkerboard/Checkerboard Complement Patterns)	168 Hours	1,020 Devices

NOTE: Samples used in the EPM program are taken from five different lots at finished goods. Before being subjected to environmental testing, all surface-mount products are run twice through an infrared (IR) reflow furnace, reaching a peak temperature of 240°C.

FAILURE RATE CALCULATION

The failure rate during the useful life of a device is expressed as percent failures per thousand device hours or as FITs (failures in time, per billion device hours). Using Micron's 16 Meg DRAM as an example, the failure rate is calculated as follows:

Failure Rate =
$$\frac{Pn}{Device hours \times AF}$$

where: Pn = Poisson Statistic (at a given confidence level). In our example given seven device failure, Pn = 0.916 at 60 percent confidence level.

Device hours = sample size multiplied by test time (in hours) In our example, device hours equal 1.125×10^6 in an accelerated environment. From the table below, device hours equal:

$$(1,125 \times 168) + (1,125 \times 168) + (1,122 \times 168) + (1,115 \times 168) + (1,106 \times 168) + (1,105 \times 168) = 1,125,264 \text{ or } 1.125 \times 10^6$$

AF = acceleration factor between the stress environment and typical use conditions. For the 16 Meg DRAM, the acceleration factor between 125°C, 4.3V (HTOL stress conditions) and 50°C, 3.3V (typical operating conditions) equals 56. (Calculation of this acceleration factor is described in the following section.)

Thus, the failure rate of the Micron 16 Meg DRAM family is computed as follows:

Failure Rate =
$$\frac{0.916}{(1.125 \times 10^6)(56)} = 1.454 \times 10^{-8}$$

where: total device hours at test conditions = 1.125×10^6 . Equivalent device hours at typical use conditions (50°C, 3.3V Vcc) using an acceleration factor of 56 equals $56 (1.125 \times 10^6) = 63 \times 10^6$.

To translate this failure rate into percent failures per thousand device hours, we multiply the failure rate obtained from the equation above by 10⁵:

Failure Rate =
$$(1.454 \times 10^{-8}) \times 10^{5} = 0.001454\%$$
 or 0.0015% per 1K device hours

To state the failure rate in FITs, we multiply the failure rate obtained from the equation above by 10°:

Failure Rate = $(1.454 \times 10^{-8}) \times 10^9 = 1.454$ or 15 FITs.

	Table 2		
HIGH TEMP	ERATURE OPERATING	LIFE	(HTOL)

Sample No.	168 Hours	336 Hours	504 Hours	672 Hours	840 Hours	1,008 Hours
1111	0/0225	0/0225	0/0225	0/0225	0/0225	0/0225
2	0/0307	0/0307	0/0307	0/0306	0/0306	0/0306
3	0/0527	0/0527	0/0524	0/0522	0/0513	0/0513
4	0/0066	0/0066	0/0066	0/0062	0/0062	0/0061
Total	0/1125	1/1125	0/1122	0/1115	0/1106	0/1105

RELIABILITY

ACCELERATION FACTOR CALCULATION

Again, using the 16 Meg DRAM as our example, the acceleration factor between high temperature operating life stress conditions (125°C, 4.3V) and typical operating conditions (50°C, 3.3V) is computed using the following models:

ACCELERATION FACTOR DUE TO TEMPERATURE STRESS

The acceleration factor due to temperature stress is computed using the Arrhenius equation, which is stated as follows:

$$AF_{T} = e^{\frac{E_{a}}{k} \left[\frac{1}{T_{O}} - \frac{1}{T_{S}} \right]}$$

where: k = Boltzmann's constant , which is equal to $8.617 \times 10^{-5} \, eV/K$.

 T_O and T_S = typical operating and stress temperatures, respectively, in kelvins.

E = activation energy in eV. (For oxide defects, which is the most common failure mechanism for the 16 Meg DRAM used in our example. The activation energy is determined to be 0.3eV.)

Using these values, the temperature acceleration factor between 125°C and 50°C is computed to be 7.62.

ACCELERATION FACTOR DUE TO VOLTAGE STRESS

The acceleration factor due to voltage stress is computed using the following model:

$$AF_{V} = e^{\beta (V_{S} - V_{O})}$$

where:

 v_S and v_O = stress voltage and typical operating voltage, respectively, in volts

 β = constant, the value of which was derived experimentally by running several sessions of Micron's intelligent burn-in test sequence at different voltages on large numbers of the device. (For the 16 Meg DRAM used in our example, β equals 2).

Thus, the voltage acceleration factor for the $16\,\mathrm{Meg}$ DRAM between $4.3\mathrm{V}$ (stress condition) and $3.3\mathrm{V}$ (typical operating condition) is computed to be 7.39.

Finally, the overall acceleration factor due to temperature and voltage stress is calculated as the product of the two respective acceleration factors or:

$$AF_{overall} = AF_{temperature} \times AF_{voltage}$$
$$= 7.62 \times 7.39$$
$$= 56$$

OUTGOING PRODUCT QUALITY

Before being sent to our finished goods area, where products are prepared for shipping, a special unit within the quality assurance department takes a sample from each production lot. These samples are subjected to visual and electrical testing to measure the acceptable quality level (AQL) of all outgoing product. Test flows for new products that have not met required production volume and ppm levels are more comprehensive than for mature products. Over a period of time, as a product matures, the objective is to eliminate those tests which devices never fail. AQL testing, although it is performed on only a small percentage of each product, is much more exhaustive. Conducted at spec conditions without guardband for every known timing, pattern and background, it is a sanity check on the production test flow. Its purpose is to detect subtle shifts in defect mechanisms which the production test flow may not catch. Visual testing for mechanical defects consists of visual inspection of the sample devices for any physical irregularities that could negatively affect device performance. If a sample device is found to have, for example, a bent lead, a package irregularity or excess solder, the entire lot is returned to our test area for a 100 percent visual inspection.

Electrical testing of the sample devices is performed using automatic test equipment (ATE) systems. Testing is conducted at 0°C, or room temperature (~25°C) and at 70°C. Should an electrical failure occur, a quality assurance engineer further evaluates the failing device. After completing this analysis, the quality assurance engineer determines which production monitor/test should have caught the failure, and the devices are retested beginning at that point in the test flow. These are important steps to preserve the integrity of our test process.

AUTOMATED DATA CAPTURE AND ANALYSIS

Micron has developed a sophisticated data capture and analysis system with a computer network tailored to the needs of quality IC manufacturing. Figure 3 shows the

various functional areas that provide the input to our VAX data bases.

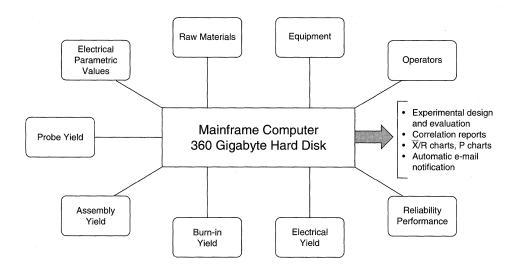


Figure 3
STATISTICAL CORRELATION

DATA CAPTURE

Automated, real-time data capture makes real-time charting (\overline{X}) and R charts, etc.) of all critical operations and processes possible and ensures that appropriate personnel know of any unexpected variation on a timely basis. As production lots move through each manufacturing step, detailed information (including step number, lot number, machine number, date/time, and operator number) is entered into the production data base. Automated, highly-programmable measurement systems capture a host of parameters associated with equipment, on-line process material and environmental variables.

STATISTICAL TECHNIQUES AND TOOLS

By using highly flexible, on-line data extraction programs, system users can tap this vast data base and design their own correlation and trend analyses. Because we can correlate process variables to product performance, we can make online projections of the quality of our finished product for a given lot or process run. In addition, we can estimate the impact of process improvements on quality well in advance and can make the impact of process deviations more visible to our engineers. This approach allows us to model yield and quality parameters based on on-line parameters. We then use this model to predict the final product results through the following means:

GROUP SUMMARIES

Summaries, which provide the means and standard deviations of user-defined parametrics, enable system users to compare the parametric values of production lots as well as special engineering lots.

TREND ANALYSIS

Trend charts are routinely generated for critical parameters. System users can plot the means and ranges of any probe or parametric data captured throughout the manufacturing process.

CORRELATION ANALYSIS

Correlation analysis can be performed on any combination of factors, such as equipment, masks or electrical parameters. One report, regularly produced and disseminated to key personnel, takes two groups of lots (one with a high failure rate, the other with a low failure rate) and identifies all the pieces of equipment that are common to one or the other group. The report quickly alerts us to any correlation between a lot with a high failure rate and particular piece(s) of equipment in the wafer fabrication or assembly areas.

Another regularly produced report analyzes a userselected set of database parametrics against an index, such as manufacturing yield. Lots are divided into three subgroups (upper yielding, middle yielding and lower yielding). The report then correlates the yields with all electrical parametric values taken on individual lots at wafer sort. It helps us determine which processing step may have caused the yields to vary among the three subgroups.

STATISTICAL PROCESS CONTROL (SPC) CHARTS

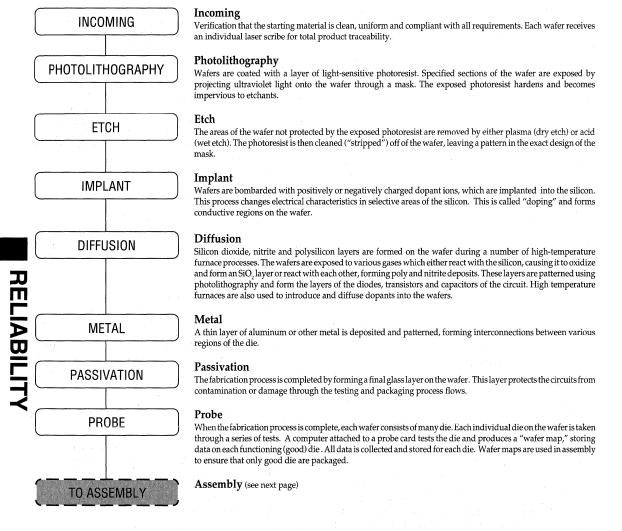
Micron employs SPC control charts throughout the company to monitor and evaluate critical process parameters, such as critical dimensions (CDs), oxide thickness, chemical vapor depositions (CVDs), particle counts, temperature and humidity, and many other critical process and product quality parameters.

OVERLAYS OR WAFER MAPS

Maps, which are produced for all wafers during probe, show various parameters as a function of position on the wafer and are very useful for problem isolation. Maps may be analyzed individually or in groups. For example, wafers from an entire lot may be analyzed in relation to one particular parameter.

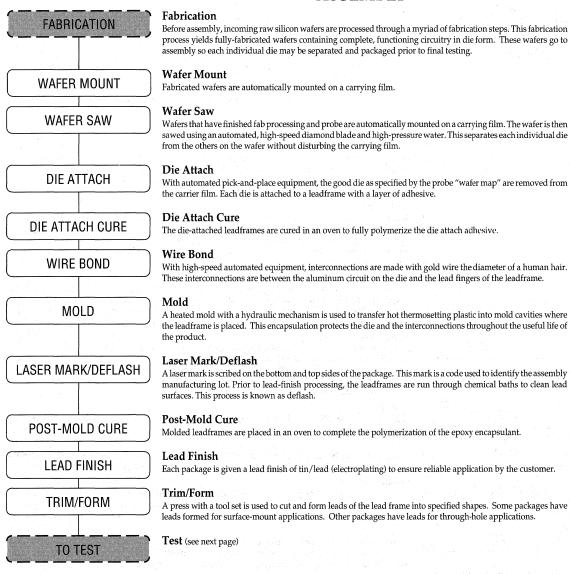
RS/1 DISCOVER/EXPLORE/MULREG

This analysis software is used for experimental design and evaluation of results. The statistical approach supported by this software (*t* tests, ANOVA tables, multiregression analysis, etc.) has proven invaluable in reducing time expended for product development and trouble-shooting. It is also used to determine the relationships between process output, probe and parametric data. Using multiregression analysis, for example, we are able to determine the relationship between L effective and CD dimensions to the speed of a device.


The use of automation in data capture, analysis and feedback greatly enhances the flexibility and speed with which we can view all aspects of the manufacturing process. This effective data analysis and feedback system helps to reduce parametric deviations, improve margin to specifications, increase manufacturing yields and provide more accurate fabrication output planning.

GAUGE CAPABILITY STUDIES

These studies are performed on both new and existing equipment. Gauge studies help us understand the cause of variation in a measurement process and determine the amount of variation in the system.

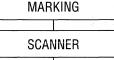

FABRICATION*

^{*}This flow is general and based on DRAM products.

ϵ

ASSEMBLY*

^{*}This flow is general and based on DRAM products.


ASSEMBLY Fully fabricated silicon wa are then carried through a HOT PREGRADE HOT PREGRADE Hot Pregrade All testing (including spee speed grade and function input/output high and lo bump, speed sorting, dyna backgrounds to verify AC

COLD TEST

HOT FINAL

BURN-IN

VISUAL INSPECTION

AQL

PACKAGING

FINISHED GOODS

*This flow is general and is based on DRAM products.

TEST*

Fully fabricated silicon wafers reach assembly after each die has been probed to screen out failures. Passing chips are then carried through a number of steps to become individual units in leaded packages.

All testing (including speed sorting, parametric and functional testing) is conducted at 85°C; parts are tested for speed grade and functionality. Parametric tests are performed to detect opens, shorts, input/output leakage, input/output high and low levels and standby current. Functional tests include low and high Vcc margin, Vcc bump, speed sorting, dynamic and static refresh, long ${}^{t}RAS$ and ${}^{t}CAS$ lows, and a full range of algorithms and data backgrounds to verify AC parameters. Specific tests and temperatures are incorporated as applicable for specific products.

Burn-in

Micron uses its exclusive AMBYX® intelligent burn-in and test system to screen out infant mortalities. Devices are dynamically burned-in, using checkerboard/checkerboard complement patterns in four intervals under the following conditions: 125° C, 5.7V Vcc for the first three intervals and 125° C, 4.3V Vcc for the final interval. Functional testing is performed at 85° C and back to 25° C AMBYX tests for thermal intermittent opens. Devices are also functionally tested at burn-in conditions (125° C, 5.7V) at the beginning of the burn-in cycle to verify that the devices under test are being properly exercised.

Cold Test

Micron also uses its AMBYX test system to perform functional pattern tests at ambient, cold and hot temperatures. Low and high Vcc margin, dynamic (distibuted only) and static refresh, long 'RAS and a full range of algorithms and data backgrounds are performed at temperatures ranging from -10° C to 90° C. To insure wire-bond integrity, testing is performed while temperature are ramped from 25° C to -10° C and back to 25° C.

Hot Final

All testing (including speed grade verification and parametric and functional testing) is conducted at 78°C. Parametric tests are performed to detect opens, shorts, and input/output leakage and to determine whether input/output high and low levels, and standby and operating currents are within specified limits. Functional tests include low and high Vcc margin, Vcc bump, speed verification, dynamic (distributed and disturbed) and static refresh, long PAS and VCAS lows, and a full range of algorithms and data backgrounds to verify AC parameters.

Cold Final

Parametric and functional tests are conducted at -5°C. Parametric tests are performed to detect opens, shorts, and input/output leakage, and to determine whether input/output high and low levels and standby and operating currents are within specified limits. Functional tests include low and high Vcc margin, Vcc bump, speed verification, dynamic (distributed and disturbed) and static refresh, long tRAS and tCAS lows, and a full range of algorithms and data backgrounds to verify AC parameters.

Marking

Devices are marked with ink with the following information: year, special process designator, part type, package type and speed grade.

Scanner

Devices are optically scanned by an automated scanning machine for bent leads, incorrect splay, coplanarity failures and tweeze failures. Passing and failing parts are then sorted into appropriate bins.

Visual Inspection

All devices determined functional are visually inspected for cosmetic defects such as bent leads, poor marks, broken packages and poor solder. Defective products are removed and repaired, if possible. Data on the type of defects found is carefully recorded and used for improving the manufacturing processes in both assembly and test.

AOL

A quality assurance monitoring program overseas the electrical and environmental performance of all production lots. New products which have not met required production volume and ppm levels are held at this stage until it is confirmed that electrical and environmental test results meet Micron's requirements.

Packaging

Devices are prepared for shipping. They may remain in tubes or they may be mechanically placed in tape-and-reel packages, ready for application in automatic pick-and-place machines. Products will be either dry-packed in vacuum sealed bags, or placed in black antistatic bags.

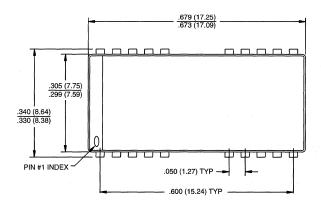
Finished Goods

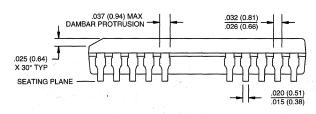
Devices are shipped through a system that maintains lot identity.

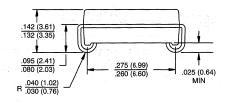
MICHON TECHNOLOGY, INC.

EDO DRAMs			
FPM DRAMs			2
SGRAM			3
DRAM SIMMs			4
DRAM DIMMs			5
DRAM CARDS	*****************	i 級 排 網 淑 瀬 路 納 根 瀬 路 線 線 線 郷 郷 郷	6
TECHNICAL NOTES			7
PRODUCT RELIABII	LITY	ng 1801 1801 1801 1801 1801 1801 1801 180	8
PACKAGE INFORMA	ATION		9
SALES AND SERVICE	E INFORMAT	ΓΙΟΝ	10
MICRON DATAFAX I	NDEX		11

PACKAGE SELECTION GUIDE

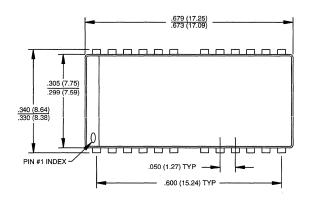

PACKAGE TYPE	REFERENCE CODE	PIN COUNT	WIDTH	PAGE
PLASTIC SOJ				
7	DA-1	20/26	300 mil	9-1
	DA-2	24/26	300 mil	9-2
	DA-3	24/28	400 mil	9-3
	DA-4	28	300 mil	9-4
	DA-5	28	400 mil	9-5
	DA-6	34	500 mil	9-6
<u> </u>	DA-7	40	400 mil	9-7
	DA-8	42	400 mil	9-8
TSOP			,	
	DB-1	20/26	300 mil	9-9
	DB-2	24/26	300 mil	9-10
	DB-3	28	300 mil	9-11
regit	DB-4	40/44	400 mil	9-12
	DB-5	44/50	400 mil	9-13
TQFP				
20.00	DC-1	100	14mm x 20mm	9-14

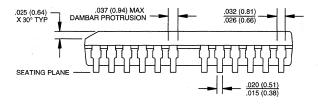

PACKAGE TYPE	REFERENCE CODE	PIN COUNT	HEIGHT	PAGE
MODULE SIMM				
	DD-1 to DD-2	30	0.5"	9-15
	DD-3 to DD-4	30	0.8"	9-16
	DD-5 to DD-10	72	1.0"	9-17
	DD-11 to DD-12	72	1.19"	9-20
	DD-13 to DD-18	72	1.0"	9-21
MODULE DIMM				
	DE-1 to DE-3	72	1.0"	9-25
	DE-4	72	1.25"	9-26
	DE-5	72	1.0"	9-27
	DE-6	72	1.25"	9-27
	DE-7 to DE-18	168	1.0"	9-28
DRAM CARD				
	DF-1	88	3.37"	9-38
	DF-2	88	2.0"	9-39
	DF-3	88	3.37"	9-40
	DF-4	88	2.0"	9-41

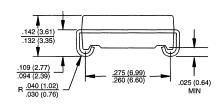

PACKAGE INFORMATION

20/26-PIN PLASTIC SOJ (300 mil)

DA-1

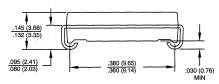





NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

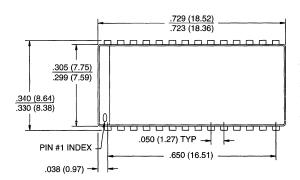
24/26-PIN PLASTIC SOJ (300 mil) DA-2

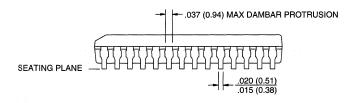

NOTE: 1. All dimensions in inches (millimeters) $\frac{\text{MAX}}{\text{MIN}}$ or typical where noted.

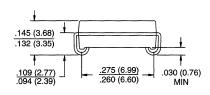

PACKAGE INFORMATION

24/28-PIN PLASTIC SOJ (400 mil)

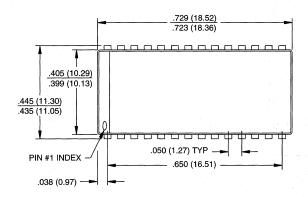
DA-3

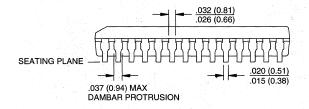


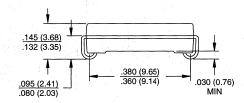



NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

28-PIN PLASTIC SOJ (300 mil) DA-4

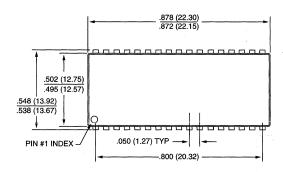


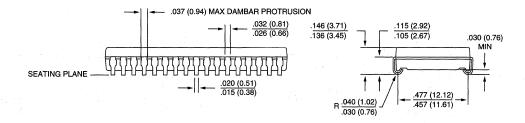

NOTE:


- 1. All dimensions in inches (millimeters) $\frac{\text{MAX}}{\text{MIN}}$ or typical where noted.
- 2. Package width and length do not include mold protrusion; allowable mold protrusion is .01" per side.

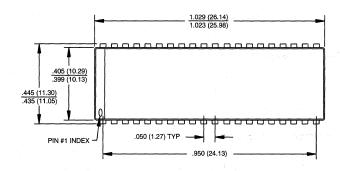
PACKAGE INFORMATION

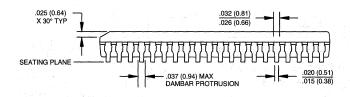
28-PIN PLASTIC SOJ (400 mil) DA-5

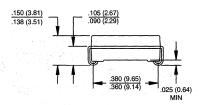




NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

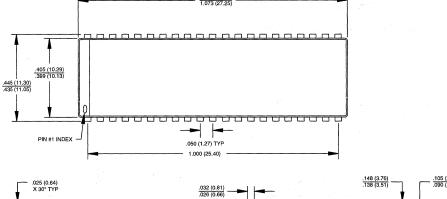

34-PIN PLASTIC SOJ (500 mil) DA-6

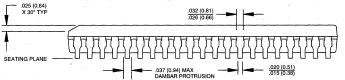


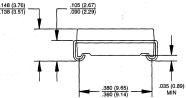


- 1. All dimensions in inches (millimeters) $\frac{\text{MAX}}{\text{MIN}}$ or typical where noted.
- 2. Package width and length do not include mold protrusion; allowable mold protrusion is .01" per side.

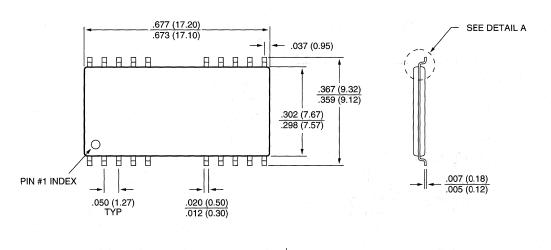
40-PIN PLASTIC SOJ (400 mil) DA-7

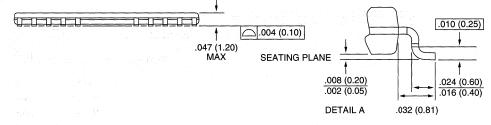





NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

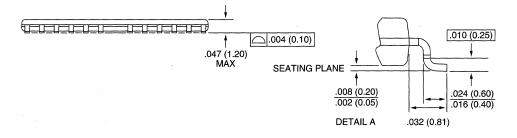
42-PIN PLASTIC SOJ (400 mil) DA-8





- 1. All dimensions in inches (millimeters) $\frac{\text{MAX}}{\text{MIN}}$ or typical where noted.
- 2. Package width and length do not include mold protrusion; allowable mold protrusion is .01" per side.

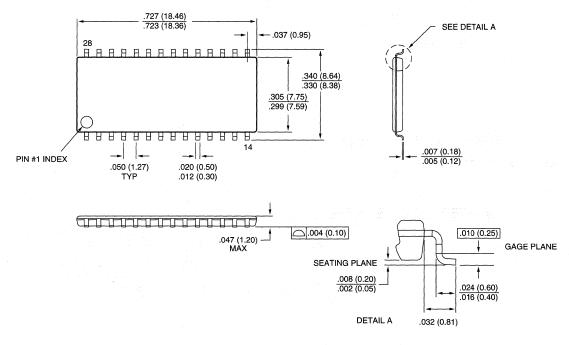
20/26-PIN PLASTIC TSOP (300 mil) DB-1



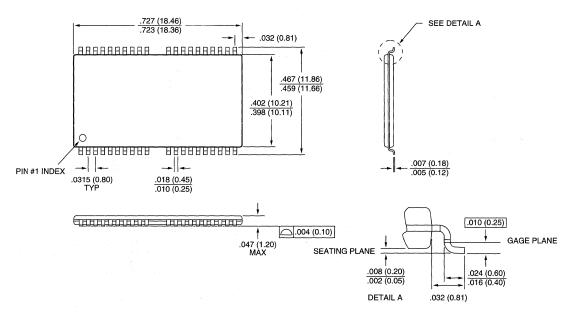
- 1. All dimensions in inches (millimeters) $\frac{\text{MAX}}{\text{MIN}}$ or typical where noted.
- 2. Package width and length do not include mold protrusion; allowable mold protrusion is .01" per side.

24/26-PIN PLASTIC TSOP (300 mil)

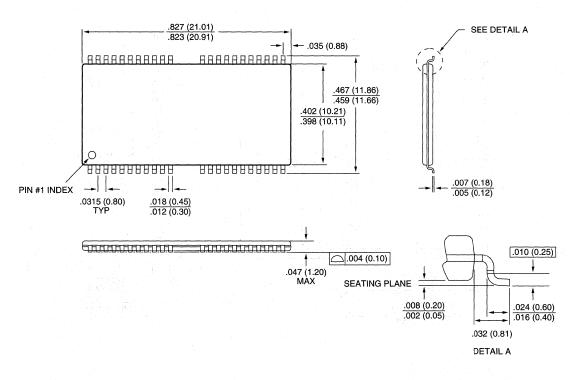
DB-2



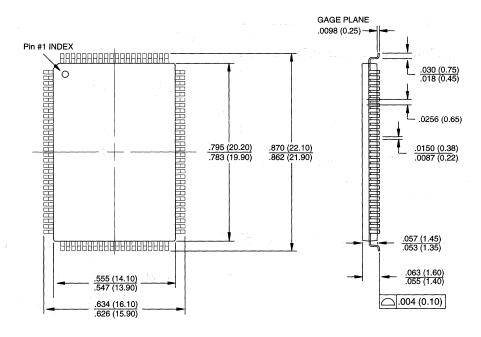
- 1. All dimensions in inches (millimeters) $\frac{\text{MAX}}{\text{MIN}}$ or typical where noted.
- 2. Package width and length do not include mold protrusion; allowable mold protrusion is .01" per side.


28-PIN PLASTIC TSOP (300 mil) DB-3

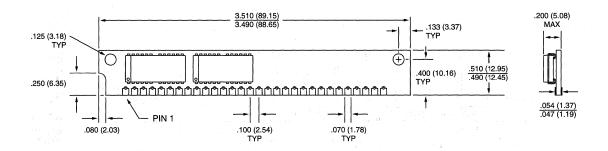
- 1. All dimensions in inches (millimeters) $\frac{\text{MAX}}{\text{MIN}}$ or typical where noted.
- 2. Package width and length do not include mold protrusion; allowable mold protrusion is .01" per side.


40/44-PIN PLASTIC TSOP (400 mil) DB-4

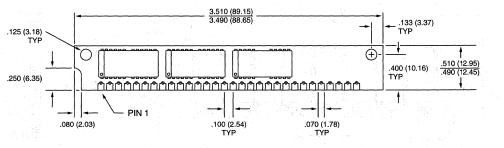
NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.


44/50-PIN PLASTIC TSOP (400 mil) DB-5

NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.

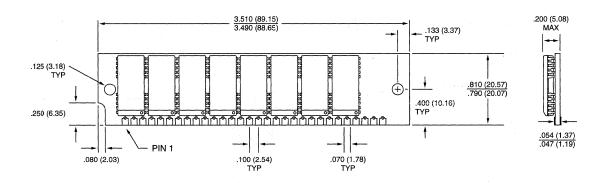

100-PIN PLASTIC TQFP DC-1

NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.


30-PIN SIMM

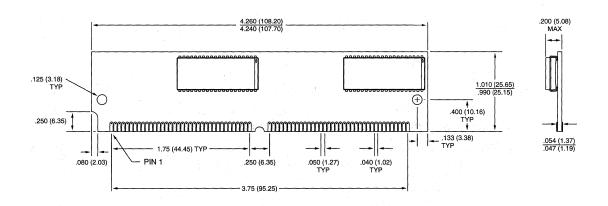
DD-1

30-PIN SIMM

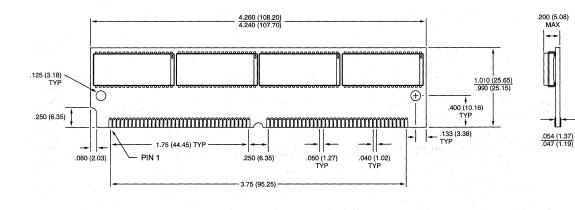

DD-2

IOTE: 1. All dimensions in inches (millimeters) $\frac{\text{MAX}}{\text{MIN}}$ or typical where noted.

30-PIN SIMM DD-3

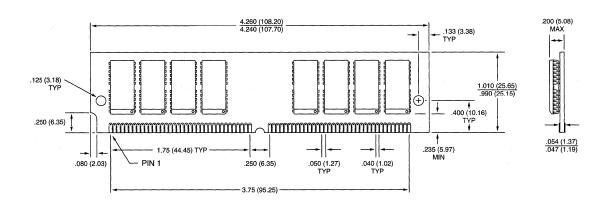

30-PIN SIMM

DD-4

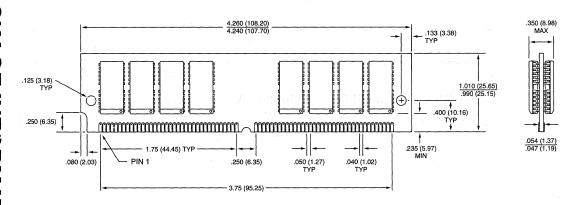


72-PIN SIMM

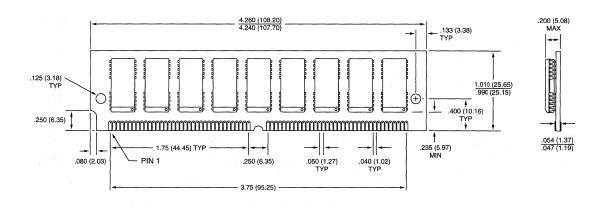
DD-5



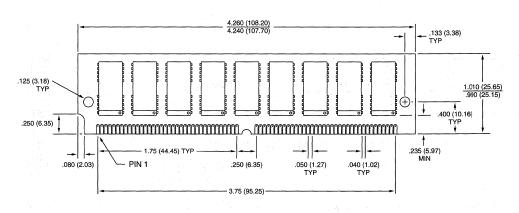
72-PIN SIMM DD-6

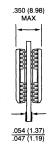

72-PIN SIMM

DD-7

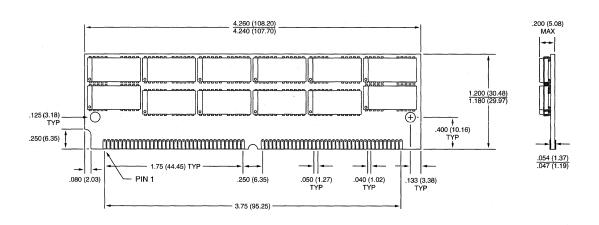

72-PIN SIMM

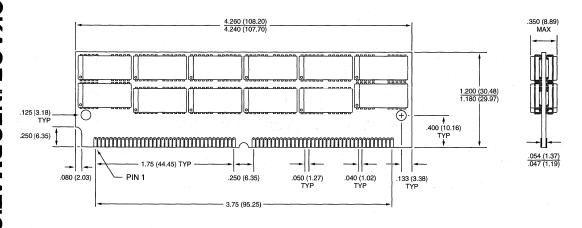
DD-8


72-PIN SIMM


DD-9

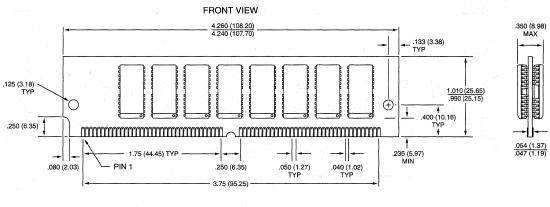
72-PIN SIMM


DD-10

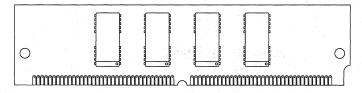


1. All dimensions in inches (millimeters) $\frac{\text{MAX}}{\text{MIN}}$ or typical where noted. NOTE:

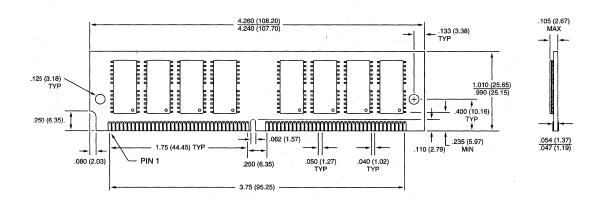
72-PIN SIMM DD-11



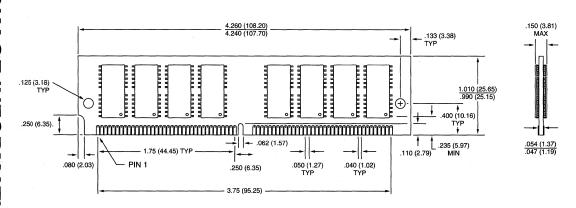
72-PIN SIMM DD-12



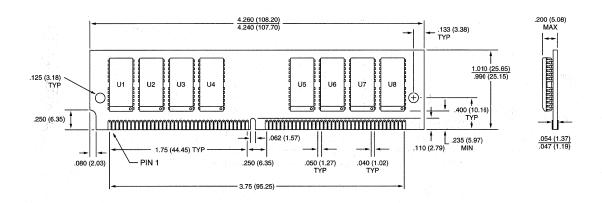
72-PIN SIMM


DD-13

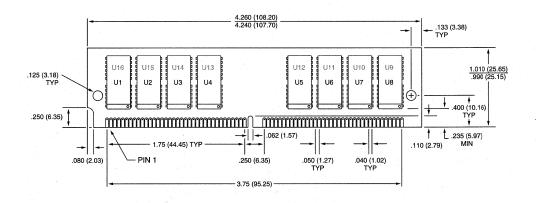
BACK VIEW



72-PIN TSOP SIMM DD-14

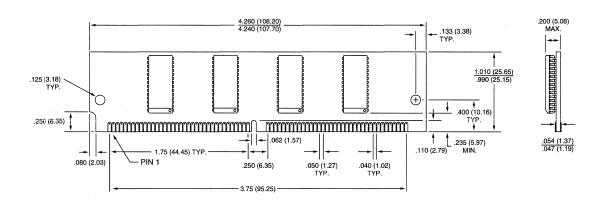


72-PIN TSOP SIMM


DD-15

72-PIN SIMM **DD-16**

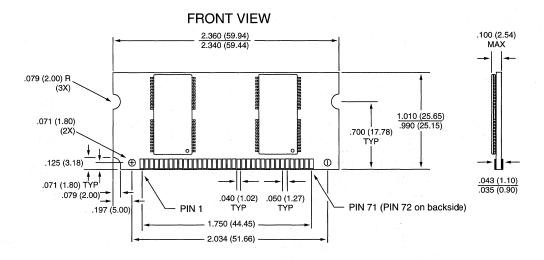
72-PIN SIMM **DD-17**



1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted. NOTE:

.350 (8.98) MAX

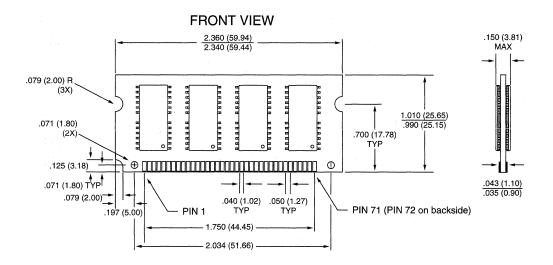
> THANK THANKS <u>(папапаттапапар</u>


72-PIN SIMM DD-18

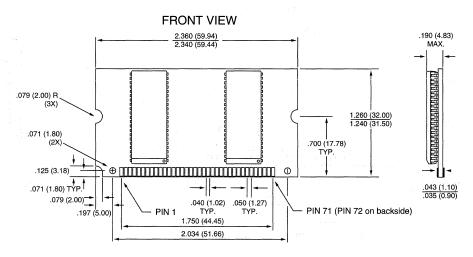
 $\textbf{NOTE:} \qquad \text{1. All dimensions in inches (millimeters)} \ \frac{\text{MAX}}{\text{MIN}} \ \text{or typical where noted.}$

72-PIN TSOP DIMM

DE-1

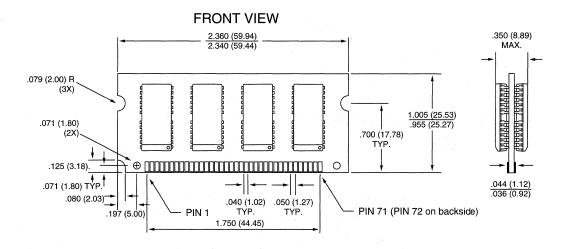


72-PIN TSOP DIMM

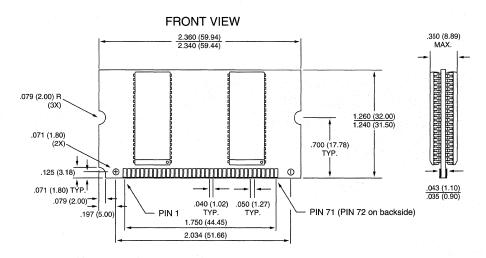

DE-2

FRONT VIEW .150 (3.81) 2.360 (59.94) 2.340 (59.44) MAX .079 (2.00) R (3X) 1.010 (25.65) .990 (25.15) .071 (1.80) (2X).700 (17.78) .125 (3.18) ⊕ mmmmmm .071 (1.80) TYP .043 (1.10) .035 (0.90) .079 (2.00) .040 (1.02) .050 (1.27) PIN 71 (PIN 72 on backside) PIN 1 .197 (5.00) 1.750 (44.45) - 2.034 (51.66)

72-PIN TSOP DIMM DE-3

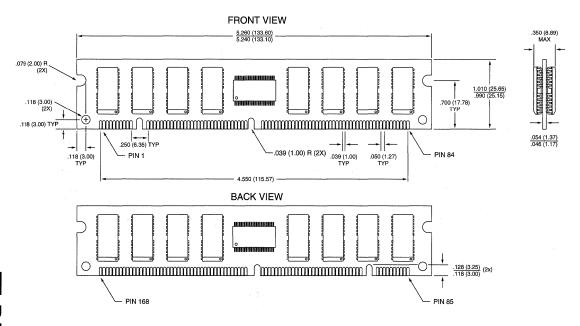

72-PIN DIMMDE-4

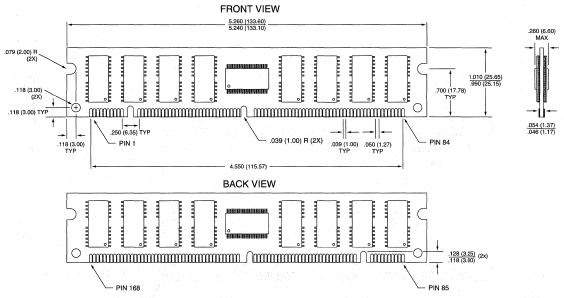
NOTE: 1. All dimensions in inches (millimeters) $\frac{MAX}{MIN}$ or typical where noted.


72-PIN DIMM

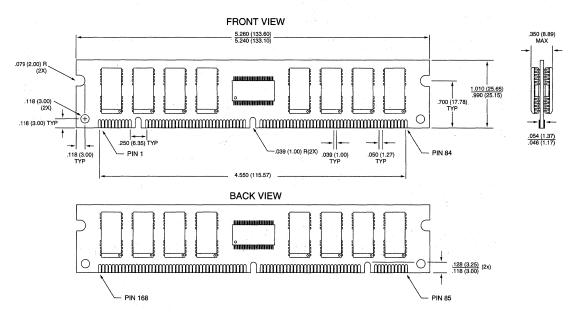
DE-5

72-PIN DIMM

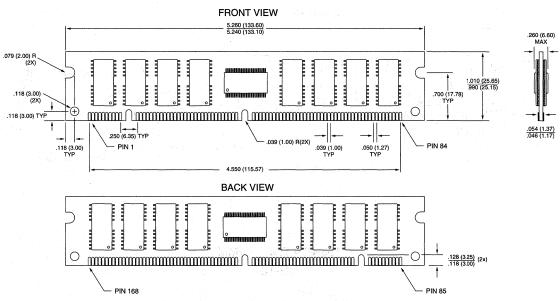

DE-6


168-PIN DIMM

DE-7

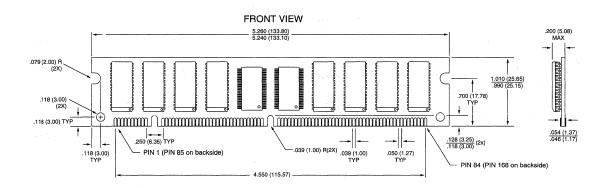

168-PIN TSOP DIMM

DE-8

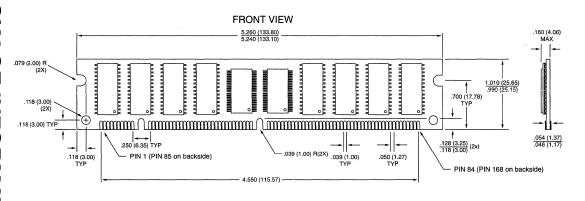

168-PIN DIMM

DE-9

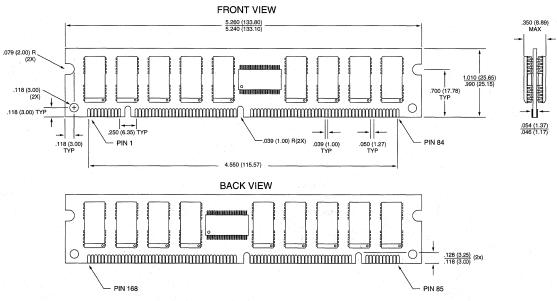
168-PIN TSOP DIMM


DE-10

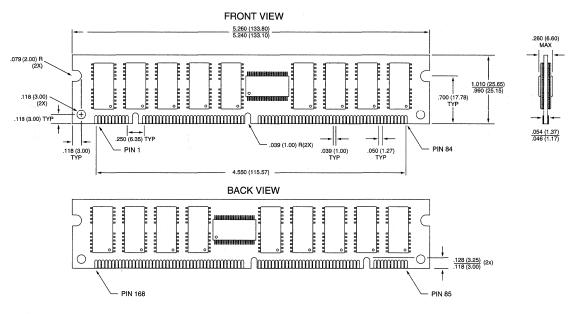
1. All dimensions in inches (millimeters) $\frac{\text{MAX}}{\text{MIN}}$ or typical where noted.


168-PIN DIMM

DE-11

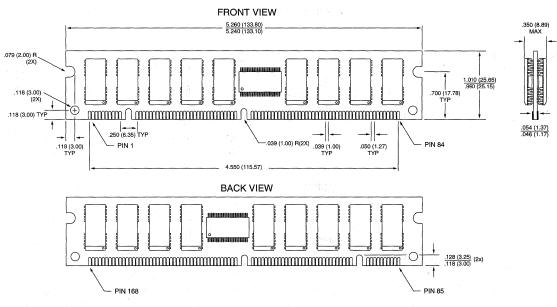

168-PIN TSOP DIMM

DE-12



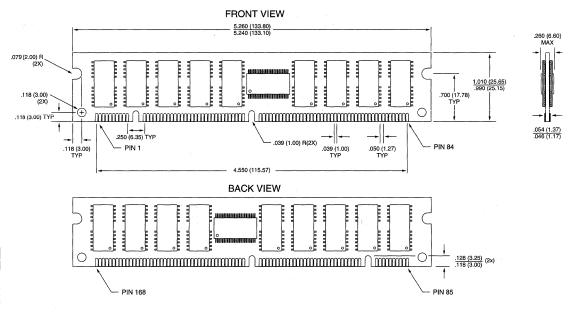
168-PIN DIMM

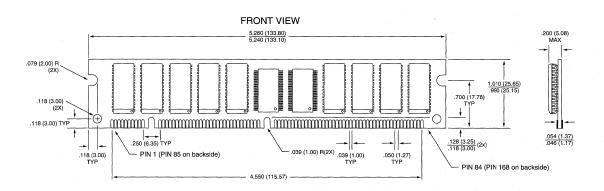
DE-13



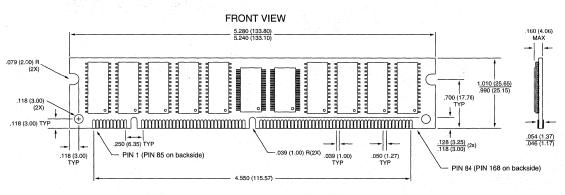
168-PIN TSOP DIMM DE-14

168-PIN DIMM


DE-15

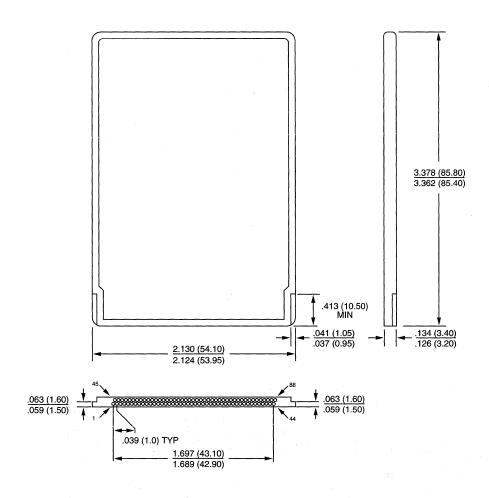

168-PIN TSOP DIMM

DE-16

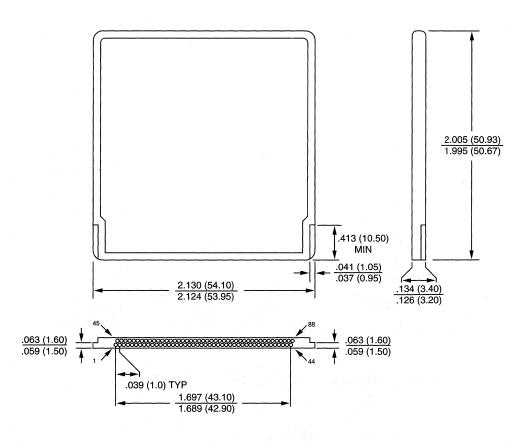

168-PIN DIMM

DE-17

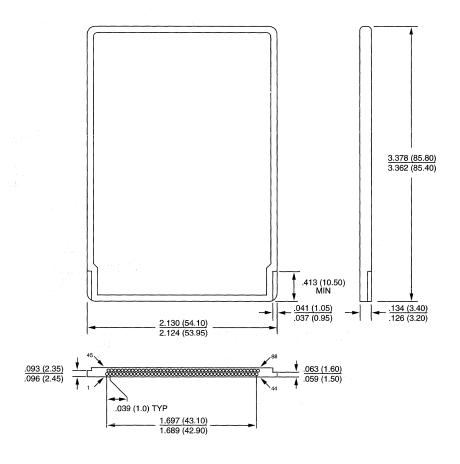
168-PIN TSOP DIMM


DE-18

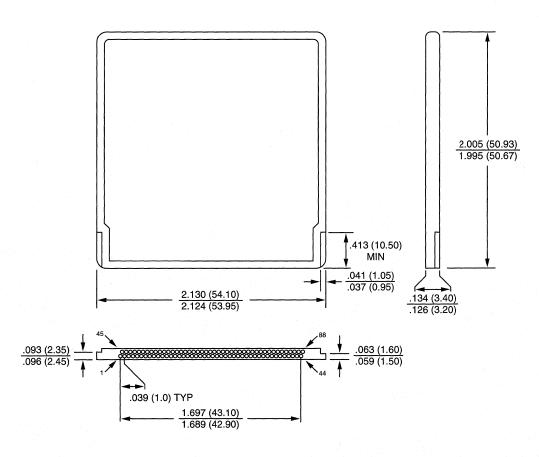
88-PIN DRAM CARD


DF-1

88-PIN REDUCED-LENGTH DRAM CARD


DF-2

88-PIN DRAM CARD


DF-3

1. All dimensions in inches (millimeters) $\frac{\text{MAX}}{\text{MIN}}$ or typical where noted. NOTE:

88-PIN REDUCED-LENGTH DRAM CARD

DF-4

MICHON TECHNOLOGY, INC.

EDO DRAMs	1
FPM DRAMs	2
SGRAM	3
DRAM SIMMs	4
DRAM DIMMs	5
DRAM CARDS	6
TECHNICAL NOTES	6 7 ·
PRODUCT RELIABILITY	
PACKAGE INFORMATION	9
SALES AND SERVICE INFORMATION	10
MICRON DATAFAX INDEX	4,11

STANDARD SHIPPING BAR CODE LABELS

INTRODUCTION

Micron Technology, Inc., has implemented standard bar code labels which accompany all shipments. These labels conform to EIA Standard 556.

The bar code labels allow customers to scan individual Micron containers for quick order verification. Figure 1 shows an example of the standard bar code label for master containers. Each individual box and/or container also has its own individual bar code label (see CSN-02).

BAR CODE INFORMATION

The information provided on the label is:

- (4S) Invoice/Packing Slip Number
- (Q) Quantity in master container

- (Z) Special: Reserved for individual customer requirements
- (K) Trans ID: Customer purchase order number
- (P) Customer Product ID: Customer part number. If a customer part number is not designated, the Micron part number will be printed.

ADDITIONAL SALES INFORMATION

Ship-To-Name: Customer's name and ship-to address Ship-From-Name: Micron name and address

Master container package count

Package weight

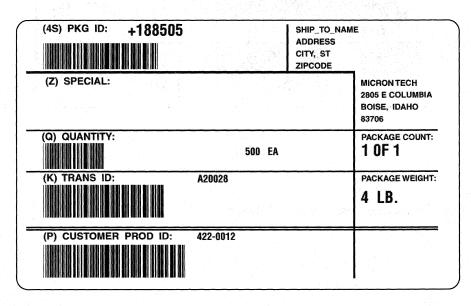


Figure 1
STANDARD BAR CODE LABEL

INDIVIDUAL BOX AND CONTAINER BAR CODE LABELS

INTRODUCTION

Micron Technology, Inc., provides a standard bar code label on each individual box or container. The standard bar code label allows scanning of Micron shipping containers at a receiving dock for quick order verification.

Figure 1 shows an example of the standard bar code label used on individual boxes.

BAR CODE INFORMATION

The information provided on the label is:

Label 1: Individual box number (in a multibox shipment)
Actual box number printed
Micron part number/speed/customer code
Part type/rev/quantity/date code of oldest lot*

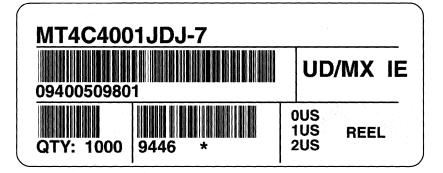


Figure 1 LABEL 1

^{*}Indicates that more than one date code is contained on the reel.

SURFACE-MOUNT PRODUCT LABELING

INTRODUCTION

Micron Technology, Inc., provides a Humidity Indicator Card (HIC) with all surface-mount products.

Figure 1 shows an example of the standard HIC. Figure 2 shows approximate labeling of tape-and-reel packaged products.

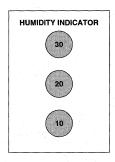


Figure 1
SURFACE-MOUNT PRODUCT HUMIDITY
INDICATOR CARD

HUMIDITY INDICATOR CARD (HIC)

The Humidity Indicator Card is hermetically sealed in drypack and provides an indication of the RH level of the contents.

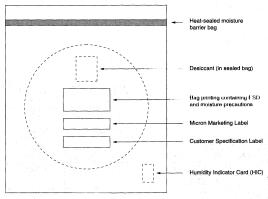


Figure 2
TAPE-AND-REEL
PACKAGED PRODUCT LABEL

BOX AND TAPE-AND-REEL QUANTITY AND WEIGHT CHART

INTRODUCTION

Micron encourages customers to place orders in increments of standard box, tray and reel quantities whenever possible. The chart below will help determine order quantities.

ADDITIONAL SALES INFORMATION

Benefits to Micron's customers by ordering in standard quantities:

- Cost Savings—it is less expensive to send a shipment containing full boxes.
- Process Control—Micron's production tracking system automatically checks speeds, revs, customer codes and quantities. When standard box quantities are ordered, manual errors are eliminated, thus ensuring error-free shipments.
- 3. Lot Integrity—lot integrity is kept in tact when box quantities are not broken up.
- 4. Fewer returns—fewer errors equal fewer complaints and returns.

DRAM STANDARD BOX AND TAPE-AND-REEL CHART

	QUANTITY	QUANTITY	LBS	QUANTITY	TAPE-AND-REEL	LBS	TAPE
PART TYPE	PER TRAY	PER BOX	PER BOX	PER TUBE	QUANTITY	PER REEL	SIZE
DRAM - MEGS			•				
MT4C4M4B1-4LC4M4B1DJ		2000	_	25	500		
MT4C1004JDJ-4C4001JDJ	_	4000	13.2	25	1000	4.1	24mm x 12mm
MT4C1004JTG-4C4001JTG	176	1000	8.0		1000	2.7	24mm x 12mm
MT4LC4001JDJ		4000	13.2	25	1000	4.1	24mm x 12mm
MT4LC4001JTG	176	1000	8.0		1000	2.7	24mm x 12mm
MT4C4004JDJ		4000	13.2	25	1000	4.1	24mm x 12mm
MT4C4007JDJ	· a —	4000	13.2	25	1000	4.1	24mm x 12mm
MT4LC4M4E8DJ	n/a	4000	13.2	25	1000	4.1	24mm x 12mm
MT4LC2M8B1DJ	n/a	4000	12.5	25	1000	3.9	24mm x 12mm
MT4LC2M8E7DJ	n/a	4000	12.5	25	1000	3.9	24mm x 12mm
MT4LC1M16C3TG	n/a	1000	10.0	n/a	500	3-4	44mm x 16mm
MT4LC1M16C3DJ	n/a	1500	12.0	15	500	4-5	44mm x 16mm
4 MEG SPECIALTY DRAMS							
MT4C16257DJ		1500	10.0	15	500	3.51	44mm x 16mm
MT4C16270DJ	_	1500	10.0	15	500	3.51	44mm x 16mm
MT4C16257TG	135	1000	9.0	_	500	2.5	44mm x 16mm

MODULE STANDARD BOX AND TAPE-AND-REEL CHART

PART TYPE	TUBE QUANTITY	BOX QUANTITY	LBS PER BOX
DRAM MODULES			
MT2D18M/N	5.	400	11
MT2D2568M	5	400	11
MT3D19M/N	5	400	10
MT3D2569M/N	5 2.5	400	12
MT8D132M/G	4	200	12
MT8D25632M/G	4	200	13
MT8D48M	5	400	17
MT8D48N	4	300	11 11
MT9D49M	5	400	18
MT9D49N	4	300	15
MT10D140M/G	4	200	15
MT12D136M/G	4	200	15
MT16D232M/G	4	200	15
MT16D51232M/G	4	200	15
MT18D236M/G	4	200	15
MT20D51240G	4	200	15
MT20D240G	4	200	15
MT24D236M/G	4.	200	20
MT8D432M/G	4	200	15
MT12D436M/G	4	200	15
MT12D436DM/G	4	200	15
MT16D832M/G	4	200	15
MT24D836M/G	4	200	15
MT4D51232M/G	4	200	12
MT16D164G	3, 3,	150	16
MT2D48M	5	400	12
MT3D49M	5.5	400	12
MT9D136M/G	301.1 . 1 . 1 . 1	200	12
MT12D136DM/DG	2 . 1	200	15
MT2D25632M/G	4	200	10
MT16LD(T)164G	3	150	16
MT8LD(T)264G	3	150	16
MT16LD(T)464G	3	150	16
MT18LD(T)172G	3	150	16
MT9LD(T)272G	3	150	16
MT18LD(T)472G	3	150	16

ENVIRONMENTAL PROGRAMS

INTRODUCTION

Micron Technology, Inc., takes a proactive approach to environmental protection and worker safety. We believe that this is not only environmentally responsible, but gives the company a long-term competitive advantage. Environmental protection programs include educating the workforce about chemical hazards, reduction in toxic chemical usage and air pollutants, recycling, and treating waste water.

CHEMICAL AWARENESS AND MONITORING

Micron educates and involves its workforce in eliminating hazardous and polluting chemicals and conditions. Micron currently has several programs in place which enable the company to minimize hazardous chemical use while maintaining flexibility in processes and operations. Examples of these programs include:

ENVIRONMENTAL TASK FORCE

This internal task force meets weekly to review the effects of process changes, new construction, and new equipment on the environment and on worker safety. The group also reviews regulations and compliance issues, and anticipates possible impacts of potential regulation changes from legislation.

CHEMICAL APPROVAL SYSTEM

This approval and monitoring system insures that Micron remains in compliance with OSHA and EPA reporting requirements and tracks chemicals in use. Acting as a guidance and training resource, the Chemical Approval Team gives direction and alternatives, rather than policing, chemical use. This cooperative method of identifying hazardous chemicals, waste treatment needs and costs, and safety procedures has proven very effective.

TOXIC CHEMICAL REDUCTION PROGRAM

This is an active program for continuous reduction of EPA toxic chemicals and other chemicals determined to be of some risk to employees or the environment. Through this program, in 1992 Micron eliminated the use of hazardous ethylene-based glycol ethers in manufacturing and replaced anhydrous ammonia in storage tanks with a process that uses aqueous calcium hydroxide. Micron also eliminated ozone-depleting chemicals from the manufacturing process in 1992.

REDUCTION OF AIR POLLUTANTS

Micron has an ongoing program to reduce toxic air pollutant emissions and is evaluating several different types of pollution abatement methods for air emissions. Micron has successfully reduced toxic air pollutant emissions and fugitive volatile organic compound (VOC) emmisions by 90 percent. Reductions were made in the use of acetone, toluene, methanol, and isopropyl alcohol. Use of methyl ethyl ketone was completely eliminated.

The company successfully replaced its solvent-based cleanroom cleaner with a water-based solution. Because cleaning procedures were changed and existing wipes were replaced with more absorbent ones, the water-based cleaner proved to be more effective than the solvent-based cleaner and has greatly reduced fugitive VOC emissions.

In converting from "puddle primers" to vapor primer ovens in our photo process, Micron has reduced HMDS usage by 90 percent. Micron has also installed high-efficiency purge pumps which exceed EPA specifications on refrigeration units in order to eliminate the discharge of refrigerants into the atmosphere. In addition, portable refrigerant reclaim units are used to recover and recycle refrigerants during maintenance or when equipment is retired.

WASTE WATER TREATMENT

Micron has completed the first phase of a three-phase industrial waste water treatment facility. The system was designed to remove fluoride from used process water and allow the water to be reclaimed. By 1997 Micron will reclaim all of its waste water and reduce ground water use by 80 percent. Micron recently won a Water Conservation Award from the Pacific Northwest Section of the American Water Works Association for this project.

RECYCLING AND ENERGY CONSERVATION

Several Micron teams have developed systems to recycle items for sale to outside customers or reuse within the manufacturing process. These items include sulfuric acid, gold, various solvents and alcohols, scrap metal, wire, aluminum and steel cans, buckets and barrels, pallets, plastic, and cardboard and paper products.

In 1987 Micron engineers developed an alternate cooling system, the Wet Side Economizer, which saves the company approximately \$150,000 annually. The Wet Side Economizer uses cold air rather than refrigeration to cool the manufacturing complex. The system reduces kWh consumption by 15.1 million, which translates into a 11,174-ton reduction in CO₂ emissions, a 121-ton reduction in SO₂

emissions, and a 53-ton cut in NOx emissions. The system earned Micron a Certificate of Recognition for Energy Consciousness from the state of Idaho and an award for Energy Innovation from the U. S. Department of Energy in 1991.

Micron is continually working toward reducing emissions through recycling of solvents. We work with suppliers and internally to incorporate chemical recycling systems into processes. Micron is currently redistilling acetone and isopropyl alcohol on-site to repurify for reuse in the fab. We are also reviewing methods to recycle resist edge remover and organic strip.

COMMUNITY ASSISTANCE

Micron volunteers lab resources and provides consultation to local companies and community organizations, such as the Peregrine Fund, to help resolve industrial hygiene and environmental issues. Micron team members are active in local environmental and safety organizations and in the Community Emergency Planning Committee. Team members periodically host training classes (such as Hazardous Gas Bottle Handling and Disposal) for local professional organizations. Micron is also a member of the Idaho Association of Commerce and Industry (IACI) and is very active in the environmental committee.

ELECTRONIC DATA INTERCHANGE

INTRODUCTION

Electronic Data Interchange (EDI) has become an important data transmission element in today's marketplace. Micron is ready to serve your EDI needs and encourages customer participation.

STANDARDS SUPPORTED

X.12

Micron supports versions 002000 through 003040 for all implemented transaction sets. The addition of new versions is an automated process which drives off of the standard diskettes available through Data Interchange Standards Association.

EDIFACT

Micron supports EDIFACT under the 90.1 EDIFICE guidelines (for the Purchase Order [PO], PO Acknowledgment, PO Change and PO Change Acknowledgment messages) and EDIFACT version 92.1 for all implemented messages.

TRANSACTION SETS

Acknowledgment

ORDERS - PO Message

ORDCHG - PO Change

DELFOR - Delivery

Request Message

Schedule Message

Inbound	Outbound
850 - PO	855 - PO Acknowledgment
860 - PO Change	865 - PO Change
	Acknowledgment
840 - Request For Quote	843 - Response to RFQ
(RFQ)	
830 - Forecast	856 - Advanced Ship Notice
846 - Inventory Inquiry/	810 - Invoice
Advice	
867 - Product Transfer &	832 - Price/Sales Catalog
Resale	
844 - Product Transfer	849 - Response to PTAA
Account Adjustment	•
(PTAA)	
997 - Functional	

ORDRSP - PO Response Message INVOIC - Invoice Message

DESADV - Despatch Advice Message

VALUE ADDED NETWORKS

AT&T

AT&T allows our partners to transmit EDI documents via standard protocol or X.400 (e-mail protocol).

Advantis

Advantis is the result of a merger between the Sears and IBM networks.

TRANSMISSION TIMES

Transmission times are 2 a.m., 10 a.m., 1 p.m., 3 p.m. and 8 p.m. MST weekdays and 1 p.m. MST on weekends. Additional transmission times can be added easily as circumstances warrant.

MICRON EDI CONTACTS

EDI Project Leader EDI Software Development Becka Shirrod Tony Holden 208-368-3338 208-368-3855

STEPS TO IMPLEMENTATION

The following are typical steps taken as Micron begins exchanging EDI data with a new trading partner:

- Micron receives an implementation guide from a trading partner
- Micron's EDI team contacts the trading partner's EDI coordinator to set up a trading partnership and coordinate the transmission and receipt of test documents
- Micron receives a test EDI document from the partner's VAN and responds with the necessary acknowledgments
- Once both parties agree everything is working properly, parallel testing with EDI and paper documents begins
- Micron insures an EDI agreement has been signed and returned to the trading partner
- Paper documents are replaced with EDI documents (full production).

LEAD TIMES FOR FULL PRODUCTION

X.12 EDIFACT
One Month Two Months

RETURNED MATERIAL AUTHORIZATION (RMA) PROCEDURES

HOW TO RETURN PRODUCT TO MICRON

- Obtain an RMA number (see "How to Obtain an RMA" below).
- · Package product taking all antistatic precautions.
- Write RMA number on outside of box for proper routing.
- Ship package prepaid to:
 Micron Technology, Inc.
 Attn.: RMA Area
 2805 East Columbia Road
 P.O. Box 6
 Boise, ID 83706-0006
- If RMA is being shipped from outside of the United States, please note that Boise, Idaho, is a customs port city; reference Port City Code 2907.

HOW TO OBTAIN AN RMA

NONFAILURE-RELATED RETURNS:

- If you buy direct, contact your Micron sales representative at 208-368-3900.
- If you buy through a Micron sales representative, contact that sales representative.
- If you buy through Distribution, contact the distributor.

Provide the following information:

- Micron part number, including speed and package
- Reason for return
- One of the following: PO number, invoice number, or sales order number
- Preferred reimbursement method: replacement parts, credit only, or refund.

FAILURE-RELATED RETURNS AND/OR APPLICATION PROBLEMS:

 Contact Micron Application Engineering Department at 208-368-3950.

Provide the following information:

- Micron part number, including speed and package
- · Type of failure
- Name of engineer who witnessed failure or requested failure analysis report
- One of the following: PO number, invoice number, or sales order number
- Preferred reimbursement method: replacement parts, credit only, or refund.

FAILURE ANALYSIS STANDARDS FOR RETURNED MATERIAL AUTHORIZATIONS:

- Upon receipt of an RMA for failure analysis, Micron's
 Quality Assurance Department will provide an initial
 response within 48 hours.
- Micron's Quality Assurance Department will issue a completed failure analysis report within three weeks of receiving an RMA.

MICRON ACCOUNTING PROCEDURES FOR RETURNED MATERIAL AUTHORIZATIONS

- Replacements: Replacement parts are shipped after receipt of the RMA parts. The credit memo will be applied directly to the replacement invoice, unless a tax is involved, in which case a credit memo will be sent out along with an additional billing invoice. A new invoice will be sent when the replacement amount is greater than the returned amount. If this is not compatible with your accounts payable procedures, please advise your sales representative upon RMA request.
- Credit: A credit memo is sent out for the amount of the return upon arrival of the RMA parts. This credit memo number should be referenced when sending in payment information if intended to be used.
- Refund: A check request is submitted to Micron Accounts Payable upon receipt of RMA parts. A refund check is sent upon completion of the check request approval process.

SALES AND SERVICE

CUSTOMER SERVICE NOTE

ISO 9001 CERTIFICATION

INTRODUCTION

Micron Technology, Inc., was certified to ISO 9001 in the United States and Europe on February 1, 1994, by KEMA Registered Quality, Inc. The certification is also recognized by EQNET, the European Network for Quality System Assessment and Certification. Through this network, our KEMA certification is recognized by: AENOR Spain, AFAQ France, AIB-Vincotte Belgium, BSI QA United Kingdom, CISQItaly, DS Denmark, ELOT Greece, IPQ Portugal, NCS Norway, NSAI Ireland, OQS Austria, SFS Finland, SIS Sweden and SQS Switzerland.

ISO 9001 CERTIFICATION DEFINED

ISO 9001 is one of a series of three international standards dealing with quality systems that can be used for external quality assurance purposes. It is a model for quality assurance in design/development, manufacturing, testing, installation and servicing. It is the most comprehensive level of certification in the internationally recognized ISO 9000 family for quality assurance management systems.

ISO 9000 gives customers and suppliers a single set of guidelines that are accepted worldwide and that can be followed to achieve a definable level of quality. The certification implies that a company's systems for accepting orders, reviewing customers' specifications, manufacturing and testing products, and delivering those products to

its customers are quality controlled and should produce consistent results. A company seeking ISO certification must be certified as ISO 9001 if it has complete control over the design of its product with that control being a major factor in ensuring delivered quality.

A supplier's ability to conform to the ISO 9001 standard is assessed via the standard's Quality System Requirements—a set of twenty paragraphs each designed to address a specific portion of a quality system: management responsibility; quality system; contract review; design control; document control; purchasing; purchaser supplied product; product identification and traceability; process control; inspection and testing; inspection measuring and test equipment; inspection and test status; control of nonconforming product; corrective action; handling, storage, packaging and delivery; quality records; internal quality audits; training; servicing; and statistical techniques.

Micron's ISO 9001 certificate, number 93119, is valid until February 1, 1997, at which time Micron must again complete the audit cycle.

In February, 1995, a surveillence audit will be performed and Micron's certificate is expected to be renewed. At this point the certificate will reflect the company's name change (Micron Semiconductor, Inc. has become Micron Technology, Inc.).

MEMBER OF THE EUROPEAN NETWORK FOR QUALITY SYSTEM ASSESSMENT AND CERTIFICATION "EQNET"

CERTIFICATE

Number: 93119

The quality system of:

MICRON SEMICONDUCTOR, INC. BOISE, IDAHO

including the implementation meets the requirements of the standard:

ISO 9001

Scope

Micron's semiconductor business, including the design, manufacturing, electrical and environmental testing and the marketing of semiconductor memory components.

Reports that form the basis of this certificate: 93119-KRQ-1 up to and including 93119-KRQ-3

This certificate is valid until: February 1, 1997

Issued for the first time: February 1, 1994

dr.ir. J.H. Blom managing director

The method of operation for quality certification is defined in the KEMA Regulations for Quality System Certification. Integral publication of this certificate and adjoining reports is allowed.

N.V. KEMA

Utrechtseweg 310, Arnhem, Postbus 9035, 6800 ET ARNHEM Telephone +31 85 56 34 98 Telefax +31 85 45 88 25

ACCEPTED BY THE
DUTCH COUNCIL FOR
CERTIFICATION

MICRON DATAFAX

INTRODUCTION

Micron Technology, Inc., gives customers and potential customers instant access to technical and sales information via Micron DataFax SM , a user-friendly, fax-on-demand system

Micron DataFax allows callers to make automated requests for data sheets, product literature and other product information during and after regular business hours. Micron DataFax improves customer support by offering product information 24-hours-a-day, and shortens the sales and design-in cycle by offering engineers the most up-to-date product information.

HOW IT WORKS

Micron DataFax makes ordering product information quick and easy using the touchtone keypad on your fax machine. Here's how it works:

- 1. From your fax machine, call 208-368-5800.
- 2. Press 1 to order. When requested, enter document number(s).*
- 3. The documents you ordered will be sent to the fax machine you called from.

*An index of the documents available from Micron DataFax can be found in the last section of this book. This index is also available through the system itself and is updated periodically. Follow the voice instructions to receive the latest revision of the index.

CUSTOMER COMMENT LINE

INTRODUCTION

Micron Technology, Inc., is committed to achieving the highest standard in customer satisfaction, and we believe that giving our customers the opportunity to voice comments and complaints will help us discover ways to better serve them. To achieve continuous improvement, we need ongoing constructive customer feedback so we know exactly what our customers expect and need.

COMMENT LINE INFORMATION

Micron's Comment Line is answered by Customer Service personnel from 8:00 a.m. to 5:00 p.m. MST weekdays and is transferred to voice mail during off hours, weekends, and holidays. You may also fax your comments to us at any time. Whether you have experienced a recent transaction with Micron that requires immediate assistance, you want to provide feedback, or need information on local represen-

tatives in your area, please call or fax. Direct your inquiry to a customer satisfaction representative. We value your input!

STANDARDS

At Micron, we are dedicated to serving our customers and have set a 24-hour standard of returning all calls received on the Customer Comment Line. If we can't solve the matter at the time of your call, we will respond with an update to your question or concern within 24 hours.

Customer Comment Line:

U.S.A. 800-932-4992 Intl. 01-208-368-3410 Fax 208-368-3342

PART MARKING

INTRODUCTION

Micron Technology, Inc., utilizes a standard part marking on each product as shown in Figure 1 below. The only exceptions to this marking are for 32-lead and 52-lead EI products on which the pin one designator is assigned a different location (see Figure 2).

PART MARKING INFORMATION

The part marking is right and left justified, and the character size is a minimum of .035/maximum of .045 inches high. Each part marking contains the following information: date code, revision letter (if relevant), country LASER SCRIBE IDENTIFICATION Each part is also laser-scribed with a unique identification number. This identification number was previously located on the bottom side of the part only. We are currently adding the laser inscription to the top side as well.* The top-side inscription will allow for complete traceability of a

component even after soldered onto a printed circuit board.

of origin (assembly), Micron logo, product family, process

technology, device number, package type, pin one designa-

tor, speed and special test option (if relevant).

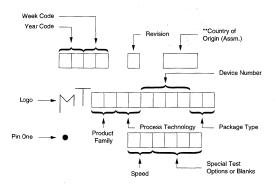


Figure 1 STANDARD PART MARKING

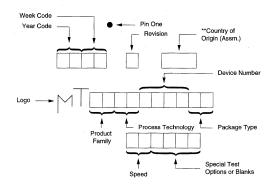


Figure 2 32-LEAD AND 52-LEAD EJ PRODUCTS PART MARKING

- Exceptions: A top-side laser inscription will not be added to the ZIP package. Off-shore assembled products will not be laser-scribed on the top side.
- May be blank if country of origin is printed on bottom of device.

PRODUCT CHANGE **NOTIFICATION (PCN) SYSTEM**

MICRON'S PCN SYSTEM

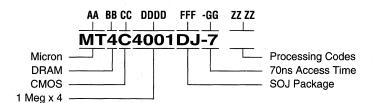
Micron's automated Product Change Notification (PCN) System provides notification to customers, per mutually agreed upon requirements, of Micron product or production changes affecting form, fit or function.

CHANGES REQUIRING NOTIFICATION

Product and production changes requiring customer notification include:

- · bonding wire
- · data sheet
- die coat
- · die redesign
- die shrink
- geographic location
- internal connections
- lead frame
- mark change
- mark ink

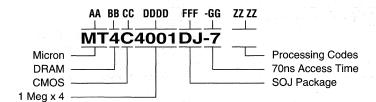
- metalization
- mold compound
- package dimensions
- packaging
- passivation
- plating material
- plating process
- product obsolescence
- shipping tube
- wafer material


PCN LETTER DOCUMENTATION

PCN letters include the following information:

- PCN number
- a detailed description of the change
- a statement of the reason for the change
- supporting qualification data if appropriate
- · a description of Micron product(s) affected by the change
- a list of each Micron part number (along with the corresponding customer number if available) purchased during the past 12 months or for which there is current backlog.

EXPANDED COMPONENT NUMBERING SYSTEM


AA – PRODUCT LINE IDENTIFIER	
Micron Product	MT
BB - PRODUCT FAMILY DRAM	
SRAM	4 5
CC - PROCESS TECHNOLOGY	
CMOS	C
Low Voltage CMOS	LC
DDDD – DEVICE NUMBER (Can be modified to indicate variations)	
DRAM	Width Density
TPDRAM	
SRAM	
Synchronous SRAM	
E – DEVICE VERSIONS	
(Alphabetic characters only; located betwee required.)	een D and F when
JEDEC Test Mode (4 Meg DRAM)	J

Errata on Base PartQ

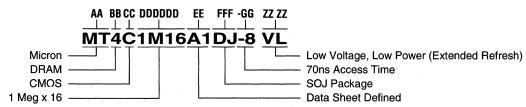
FFF - PACKAGE CODES

PLASTIC	
DIP	Blank
DIP (Wide Body)	W
ZIP	Z
LCC	EJ
SOP/SOIC	SG
QFP	LG
TSOP (Type I)	VG
TSOP (Type I, Reversed)	XG
TSOP (Type II)	TG
TSOP (Reversed)	
TSOP (Longer)	TL
SOJ	
SOJ (Reversed)	DR
SOJ (Longer)	

EXPANDED COMPONENT NUMBERING SYSTEM (continued)

DDAMA

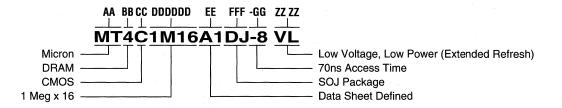
GG - ACCI	ESS TIME	
-5		5ns or 50ns
-6		6ns or 60ns
-7		7ns or 70ns
-8		8ns or 80ns
-10		10ns or 100ns
-12		12ns or 120ns
-15		15ns or 150ns
-17		17ns
		20ns
-25		25ns
-35		35ns
-45		45ns
		53ns
-55		55ns
(Multiple	Processing codes processing codes.	are separated by a space and are
	noraronicai oruer.	
		er, extended refresh (L); low voltage ture range (IT) would be indicated as
		1
Low Volta	age	V


DRAMS	
Low Power (Extended Refresh)	L
Low Power (Self Refresh/Extended Refresh)	S
SRAMs	
Low Volt Data Retention	L
Low Power	P
Low Power, Low Volt Data Retention	LP
EPI Wafer	
Operating Temperature Range	
0°C to +70°C	. Blank
-40°C to +85°C	IT
-40°C to +125°C	AT
-55°C to +125°C	XT
그렇게하는 그, 그들에 하는 그는 그는 그 그리고 되었다. 그 등 그리고 하는 그리고 하다 없다.	
Engineering Sample	ES
Mechanical Sample	MS
Sample Kit*	SK
Tape-and-Reel*	TR
Bar Code*	

^{*}Used in device order codes; this code is not marked on device.

SALES AND SERVICE INFORMATION PRODUCT NUMBERING

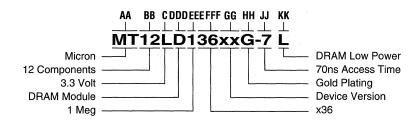
NEW COMPONENT NUMBERING SYSTEM


AA – PRODUCT LINE IDENTIFIER Micron Product	MT
BB – PRODUCT FAMILY Flash (Dual Supply) DRAM SGRAM Synchronous DRAM SRAM Synchronous SRAM	4 41 48 5
CC – PROCESS TECHNOLOGY CMOS Low Voltage CMOS BiCMOS Low Voltage BiCMOS Flash CMOS Low Voltage Flash CMOS AP Flash CMOS	LC B LB F LF
DDDDDD - DEVICE NUMBER Depth, Width Example: 1M16 = 1 megabit deep by 16 bits wide = 16 megabits of total memory. No Letter	Bits

M	
G	
Flash Density, (Configuration
EE – DEVICE VERSIONS	
(The first character is an alphabetic character on	ly; the
second character is a numeric character only.) Specified by individual data sheet.	
Specified by individual data street.	
FFF - PACKAGE CODES	
Plastic	Di- d
DIP DIP (Wide Body)	Biank
ZIP	
LCC	
SOP/SOIC	
QFP	
TSOP (Type II)	TG
TSOP (Reversed)	RG
TSOP (Longer)SOJ	IL
SOJ (Wide)	DJ
SOJ (Reversed)	DR

SOJ (Longer)DL

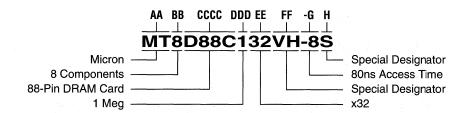
SALES AND SERVICE


NEW COMPONENT NUMBERING SYSTEM (continued)

- ACCESS TIME	
-5	5ns or 5
	6ns or 6
-7	7ns or 7
-8	8ns or 8
-9	9ns or 9
-10	10ns or 10
-12	12ns or 12
-15	15ns or 15
-17	
	2
-25	
-35	3
	5
-55	<u>E</u>
ZZ – PROCESSING	CODES
(Multiple processing cod listed in hierarchical ord	des are separated by a space and ler.)
	ower, extended refresh (L); low volta erature range (IT) would be indicated

DRAMs	
Low Power (Extended Refresh)	L
Low Power (Self Refresh/Extended Refresh)	
SRAMs	
Low Volt Data Retention	L
Low Power	P
Low Volt Data Retention, Low Power	LP
Flash	
3.3V Read (AP)	V
Bottom Boot Block	
Top Boot Block	T
EPI Wafer	E
Commercial Testing	
0°C to +70°C	Blank
-40°C to +85°C	IT
-40°C to +125°C	AT
-55°C to +125°C	XT
Special Processing	
Engineering Sample	ES
Engineering Sample	MS
Sample Kit*	SK
Tape-and-Reel*	TR
Bar Code*	BC

MODULE NUMBERING SYSTEM

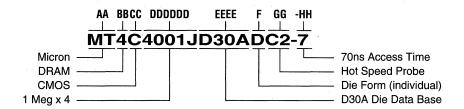


AA – PRODUCT LINE IDENTIFIER Micron ProductMT
BB - NUMBER OF MEMORY COMPONENTS
C – PROCESS TECHNOLOGY LOW VOLTAGE (3.3V) L
DDD - RAM FAMILY D DRAM SOP DT SRAM SS S SRAM TSOP ST SYNCHRONOUS SRAM SY SYNCHRONOUS SRAM TQFP SYT
EEE – DEPTH
FFF – WIDTH
GG - DEVICE VERSIONS Specified by individual data sheet (Synchronous SRAM only)
HH - PACKAGE CODE Gold Plated SIMM/DIMM

JJ – ACCESS TIME	
-10	10ns
-12	12ns
-15	
-17	
-20	20ns
-25	
-35	
-6	60ns
-7	
-8	
KK – MODULE SPECIAL DESIGNATOR SRAM	
2V data retention	L
Low Power	P
Low Power, 2V data retention	
DRAM	
Low Power (Extended Refresh)	L
ECC	
Extended Data Out	
Self Refresh	
16 Meg DRAM 4,096 Refresh	

SALES AND SERVICE

DRAM CARD NUMBERING SYSTEM



AA – Product Line Identifier Micron Product	MT
BB - NUMBER OF MEMORY COM	PONENTS
CCCC – DRAM CARD DESIGNATO 88-Pin DRAM Card	
DDD – DEPTH	
EE – WIDTH	
FF – SPECIAL DESIGNATOR 3.3 Volts	

-5 -6				
-7	 	 	 	
-8	 	 	 	

SALES AND SERVICE

DIE PRODUCT NUMBERING SYSTEM

AA – PRODUCT LINE IDENTIFIER Component Product	. MT
BB – PRODUCT FAMILY SRAM DRAM Synchronous SRAM	4
CC – PROCESS TECHNOLOGY CMOS Low Voltage CMOS	
DDDDDD – DEVICE NUMBER When no alpha character appears as part of this section, section is defined as: DRAM	nsity 'idth
When an alpha character occurs as part of this section, the section is defined as: Depth, Width	10
Example: 1M16 = 1 megabit deep by 16 bits wide = 16 megabits of total memory.	
No Letter Kilo K M Mega G G Giga	bits bits

EEEE - DIE DATA BASE REVISION

F – FORM Die Form Wafer Form (6" Wafer)	D
GG – TESTING LEVELS Standard Probe (0° to 70°C)	C2
HH – ACCESS TIME	
(Applicable for C2 and C3 only)	
-5	5ns or 50ns
-6	6ns or 60ns
-7	7ns or 70ns
-8	8ns or 80ns
-9	
-10	
-12	
-15	
-17	
-20	
-25	
-35	
-45 -50 (SRAM only)	
00 (01 t/ tivi 0111y)	

-SS (C2 only) speed sorted

SALES AND SERVICE INFORMATION ORDERING INFORMATION

ORDER INFORMATION*

Each Micron component family is manufactured and quality controlled in the U.S.A. at our modern Boise, Idaho, facility employing Micron's low-power, highperformance CMOS silicon-gate process. Micron products are functionally equivalent to other manufacturers' products meeting JEDEC standards. Device functionality is consistently assured over a wider power supply, temperature range and refresh range than specified. Each unit receives continuous system-level testing during many hours of accelerated burn-in prior to final test and shipment. This testing is performed with Micron's exclusive AMBYX intelligent burn-in and test system.

Please contact the factory for technical, test and application assistance. Micron can also furnish the sales representative and distributor nearest you. Micron's policy is to offer prompt, accurate and courteous service while assuring reliability and quality.

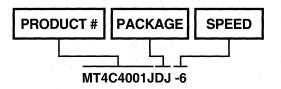
Telephone: 208-368-3900 Fax: 208-368-4431

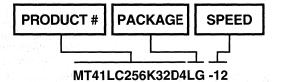
Micron DataFax: 208-368-5802

Customer Comment Line: U.S.A. 800-932-4992

Intl. 01-208-368-3410

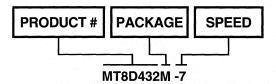
Fax 208-368-3342


ORDER EXAMPLES


DRAM

1 Meg x 4, 60ns in Plastic SOJ

SGRAM


256K x 32, 12ns in Plastic QFP

DRAM MODULE

4 Meg x 32, 70ns in SIMM Module

DRAM CARD

1 Meg x 32, 70ns DRAM Card

^{*}For more detailed information, refer to the product numbering charts on pages 10-16 through 10-22.

SALES AND SERVICE INFORMATION NORTH AMERICA

ALABAMA

Representative

Southeast Technical Group 101 Washington, Suite 6 Huntsville, AL 35801 Phone - 205-534-2376 Fax - 205-534-2384

Distributors

Anthem Electronics Incorporated 4920 H, Corporate Drive Huntsville, AL 35805 Phone - 205-890-0302 Phone - 800-359-3531 Fax - 205-890-0130

Hamilton Hallmark 4890 University Square, Suite 1 Huntsville, AL 35816 Phone - 205-837-8700 Phone - 800-572-7236 Fax - 205-830-2565

Wyle Laboratories Tower Building, 2nd Floor 7800 Governers Drive West Huntsville, AL 35807 Phone - 205-830-1119 Fax - 205-830-1520

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

ARIZONA

Representative

Quatra Associates 4645 South Lakeshore Drive, Suite 1 Tempe, AZ 85282 Phone - 602-820-7050 Fax - 602-820-7054

Distributors

Anthem Electronics Incorporated 1555 10th Place, Suite 101 Tempe, AZ 85281 Phone - 602-966-6600 Fax - 602-966-4826

Phoenix, AZ 85040 Phone - 602-437-1200 Phone - 800-352-8489 Fax - 602-437-2348

Hamilton Hallmark

4637 South 36th Place

Wyle Laboratories 4141 E. Raymond Street, Suite 1 Phoenix, AZ 85040 Phone - 602-437-2088

Fax - 602-437-2124 **Die Distributor**

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

ARKANSAS

Representative

Nova Marketing Incorporated 8350 Meadow Road, Suite 174 Dallas, TX 75231 Phone - 214-265-4600

Fax - 214-265-4668 Distributors

Anthem Electronics Incorporated 651 N. Plano Road, Suite 401 Richardson, TX 75081 Phone - 214-238-7100 Fax - 214-238-0237

Hamilton Hallmark 7079 University Blvd. Winter Park, FL 32792 Phone - 407-657-3300 Fax - 407-678-4414

Wyle Laboratories 1810 N. Greenville Avenue Richardson, TX 75081 Phone - 214- 235-9953 Fax - 214-644-5064

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

CALIFORNIA

Representatives (Northern California)

Bay Area Electronic Sales, Inc. 2001 Gateway Place, Suite 315 W San Jose, CA 95110 Phone - 408-452-8133 Fax - 408-452-8139 Bay Area Electronic Sales, Inc. 9119 Eden Oak Circle Loomis, CA 95650 Phone - 916-652-6777 Fax - 916-652-5678

Sales Offices (Southern California)

Micron Sales California, Inc. 10573 W. Pico Blvd. #199 Los Angeles, CA 90064

Los Angeles County Phone - 714-586-9977 Fax - 714-586-9656

Orange County Phone - 310-446-1647 Fax - 310-446-1507

San Diego Phone - 619-452-2042 Fax - 619-452-1683

San Fernando Valley Phone - 805-681-0136 Fax - 805-681-0146

Distributors

Anthem Electronics Incorporated 1160 Ridder Park Drive San Jose, CA 95131 Phone - 408-453-1200 Fax - 408-441-4500

Anthem Electronics Incorporated 9131 Oakdale Avenue Chatsworth, CA 91311 Phone - 818-700-1000 Fax - 818-775-1302

Anthem Electronics Incorporated 1 Old Field Drive East Irvine, CA 92718-2809 Phone - 714-768-4444 Fax - 714-768-6456

Anthem Electronics Incorporated 580 Menlo Drive, Suite 8 Rocklin, CA 95677 Phone - 916-624-9744 Fax - 916-624-9750

Anthem Electronics Incorporated 9369 Carroll Park Drive San Diego, CA 92121 Phone - 619-453-9005 Fax - 619-546-7893 Hamilton Hallmark 3170 Pullman Street Costa Mesa, CA 92626 Phone - 714-641-4100 Fax - 714-641-4122

Hamilton Hallmark 580 Menlo Drive, Suite 2 Rocklin, CA 95765 Phone - 916-624-9781 Fax - 916-961-0922

Hamilton Hallmark 4545 Viewridge Avenue San Diego, CA 92123 Phone - 619-571-7540 Fax - 619-277-6136

Hamilton Hallmark 2105 Lundy Avenue San Jose, CA 95131-1849 Phone - 408-435-3500 Fax - 408-435-3535

Hamilton Hallmark 21150 Califa Street Woodland Hills, CA 91367 Phone - 818-594-0404 Fax - 818-594-8234

Wyle Laboratories 3000 Bowers Avenue Santa Clara, CA 95051 Phone - 408-727-2500 Fax - 408-988-3479

Wyle Laboratories 29A Technology Drive, Suite 100 Irvine, CA 92718

Phone - 714-789-9953 Fax - 714-789-9961

Wyle Laboratories 2951 Sunrise Blvd., Suite 175 Rancho Cordova, CA 95742 Phone - 916-638-5282 Fax - 916-638-1491

Wyle Laboratories 9525 Chesapeake Drive San Diego, CA 92123 Phone - 619-565-9171 Fax - 619-565-0512

Wyle Laboratories 26010 Mureau Road, Suite 150 Calabasas, CA 91302 Phone - 818-880-9000

Phone - 818-880-900 Fax - 818-880-5510

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

CANADA

Sales Office

B.C., Alberta, Saskatchewan Micron Sales Northwest, Inc. P.O. Box 902 Woodinville, WA 98072-0902 Phone - 206-486-2775

Fax - 206-486-3960 Representatives

Manitoba, Ontario, Quebec, New Brunswick, Nova Scotia

Clark-Hurman Associates 20 Regan Road, Unit 14 Brampton, Ontario L7A 1C3 Phone - 905-840-6066 Fax - 905-840-6091

Clark-Hurman Associates 308 Palladium Drive, Suite 200 Kanata, Ontario K2B 1A1 Phone - 613-599-5626 Fax - 613-599-5707

Clark-Hurman Associates 78 Donegani, Suite 200 Pointe Claire, Quebec H9R 2V4 Phone - 514-426-0453

Fax - 514-426-0455

Distributors

Hamilton Hallmark 8610 Commerce Court Burnaby, BC V5A 4N6 Phone - 604-420-4101 Fax - 604-420-5376

Hamilton Hallmark 151 Superior Blvd., Unit 1-6 Mississauga, Ontario L5T 2L1 Phone - 905-564-6060

Hamilton Hallmark 190 Colonnade Road Nepean, Ontario K2E 7J5

Fax - 905-564-6033

Phone - 613-226-1700 Fax - 613-226-1184 Hamilton Hallmark

Suite 600 7575 Transcanada Hwy. Ville St. Laurent, Quebec H4T 1V6

Phone - 514-335-1000 Fax - 514-335-2481

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

COLORADO

Representative

Wescom Marketing 4860 Ward Road Wheatridge, CO 80033 Phone - 303-422-8957 Fax - 303-422-9892

Distributors

Anthem Electronics Incorporated 373 Inverness Drive Englewood, CO 80112 Phone - 303-790-4500 Fax - 303-790-4532

Hamilton Hallmark 12503 E. Euclid Drive, Suite 20 Englewood, CO 80111 Phone - 303-790-1662 Fax - 303-790-4991

Wyle Laboratories 451 E. 124th Street Thornton, CO 80241 Phone - 303-457-9953 Fax - 303-457-4831

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

CONNECTICUT

Representative

Advanced Tech Sales Incorporated Westview Office Park Building 2, Suite 1C 850 N. Main Street Extension Wallingford, CT 06492 Phone - 508-664-0888 Fax - 508-664-5503

SALES AND SERVICE INFORMATION NORTH AMERICA

Distributors

Anthem Electronics Incorporated 61 Mattatuck Heights Waterbury, CT 06705 Phone - 203-575-1575 Fax - 203-596-3232

Hamilton Hallmark 125 Commerce Court, Unit 6 Cheshire, CT 06410 Phone - 203-271-2844 Fax - 203-272-1704

Wyle Laboratories 20 Chapin Road, Bldg. 1013 Pinebrook, NJ 07058 Phone - 201-882-8358 Phone - 800-862-9953 Fax - 201-882-9109

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

DELAWARE

Representative

Omega Electronic Sales Inc. Four Neshaminy Interplex, Suite 101 Trevose, PA 19053 Phone - 215-244-4000

Fax - 215-244-4104 **Distributor**Wyle Laboratories

815 Eastgate Drive Mt. Laurel, NJ 08054 Phone - 609-439-9110 Fax - 609-439-9020

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

DISTRICT OF COLUMBIA

Representative

Electronic Engineering & Sales, Inc. 305 Kramer Road Pasadena, MD 21122 Phone - 410-255-9686 Fax - 410-255-9688

Distributors

Anthem Electronics Incorporated 7168 A Columbia Gateway Drive Columbia, MD 21046-2101 Phone - 301-995-6640 Fax - 301-381-4379

Hamilton Hallmark 10240 Old Columbia Road Columbia, MD 21046

Phone - 410-988-9800 Fax - 410-381-2036

Wyle Laboratories 9101 Guilford Road, Suite 120 Columbia, MD 21046 Phone - 301-490-2170 Fax - 301-490-2190

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

FLORIDA

Representatives

Photon Sales, Inc. 1600 Sarno Road, Suite 21 Melbourne, FL 32935 Phone - 407-259-8999 Fax - 407-259-1323

Photon Sales, Inc. 715 Florida Street Orlando, FL 32806 Phone - 407-841-7423 Fax - 407-843-1505

Distributors

Anthem Electronics Incorporated 598 S. Northlake Blvd., Suite 1024 Altamonte Springs, FL 32701 Phone - 407-831-0007 Fax - 407-831-6990

Anthem Electronics Incorporated 5200 N.W. 33rd Avenue, Suite 206 Ft. Lauderdale, FL 33309 Phone - 305-484-0990 Fax - 305-484-0951

Hamilton Hallmark 3350 NW 53rd Street, Suite 105-107 Ft. Lauderdale, FL 33309 Phone - 305-484-5482

Fax - 305-484-2995

Hamilton Hallmark 10491 72nd Street North

Largo, FL 34647 Phone - 813-541-7440 Phone - 800-282-9350 Fax - 813-544-4394

Hamilton Hallmark 7079 University Blvd. Winter Park, FL 32792 Phone - 407-657-3300

Fax - 407-678-4414

Wyle Laboratories 1000 112th Circle North, Suite 800 St. Petersburg, FL 33716

Phone - 813-576-3004 Fax - 813-579-1518

Wyle Laboratories 600 W. Hillsboro Blvd., Suite 300 Deerfield Beach. FL 33441 Phone - 305-420-0500 Fax - 305-428-2134

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

GEORGIA

Representative

Southeast Technical Group 3500 Parkway Lane, Suite 420 Norcross, GA 30092 Phone - 404-416-6336 Fax - 404-416-6433

Distributors

Anthem Electronics Incorporated 3305 Breckenridge, Suite 108 Duluth, GA 30136 Phone - 404-931-3900 Fax - 404-931-3902

Hamilton Hallmark 3425 Corporate Way, Suite A and G Duluth, GA 30136-2552 Phone - 404-623-4400

Wyle Laboratories 6025 The Corners Pkwy, Suite 111

Norcross, GA 30092 Phone - 404-441-9045 Fax - 404-441-9086

Fax - 404-476-8806

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

HAWAII

Representatives

Bay Area Electronics Sales, Inc. 2001 Gateway Place, Suite 315 San Jose, CA 95110 Phone - 408-452-8133 Fax - 408-452-8139

Bay Area Electronics Sales, Inc. 5711 Reinhold Street Fair Oaks, CA 95628 Phone - 916-863-0563 Fax - 916-863-0615

Distributors

Anthem Electronics Incorporated 1160 Ridder Park Drive San Jose, CA 95131 Phone - 408-453-1200 Fax - 408-441-4500

Hamilton Hallmark 2105 Lundy Avenue San Jose, CA 95131-1849 Phone - 408-435-3500 Fax - 408-435-3535

Wyle Laboratories 3000 Bowers Avenue Santa Clara, CA 95051 Phone - 408-727-2500 Fax - 408-988-3479

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

IDAHO

Representative

Contact Micron Semiconductor, Inc. Component Sales Phone - 208-368-3900 Fax - 208-368-3488 Micron DataFax - 208-368-5800

Distributors

Anthem Electronics Incorporated 1279 West 2200 South Salt Lake City, UT 84119 Phone - 801-973-8555 Fax - 801-973-8909

Hamilton Hallmark 2105 Lundy Avenue San Jose, CA 95131-1849 Phone - 408-435-3500 Fax - 408-435-3535

Wyle Laboratories 1325 West 2200 South, Suite E Salt Lake City, UT 84119 Phone - 801-974-9953 Fax - 801-972-2524

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

ILLINOIS

Representatives

Advanced Technical Sales (S. IL) 13755 St. Charles Rock Road Bridgeton, MO 63044 Phone - 314-291-5003 Fax - 314-291-7958

Industrial Representatives, Inc. (N. IL) 8430 Gross Point Road Skokie, IL 60077 Phone - 708-967-8430

Fax - 708-967-5903

Distributors

Anthem Electronics Incorporated 1300 Remington, Suite A Schaumburg, IL 60173 Phone - 708-884-0200 Fax - 708-884-0480

Hamilton Hallmark 1130 Thorndale Avenue Bensenville, IL 60106 Phone - 708-860-7780 Fax - 708-860-8530

Wyle Laboratories 2055 Army Trail Road, Suite 140 Addison, IL 60101 Phone - 708-620-0969

Fax - 708-620-1610

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

INDIANA

Representatives

Scott Electronics, Inc. (S. IN) 7321 Shadeland Station, Suite 256 Indianapolis, IN 46256 Phone - 317-841-0010 Fax - 317-841-0107

Scott Electronics, Inc. (N. IN) Lima Valley Office Village 8109 Lima Road Fort Wayne, IN 46818-2162 Phone - 219-489-5690 Fax - 219-489-1842

Distributor

Hamilton Hallmark 4275 W. 96th Street Indianapolis, IN 46268 Phone - 317-872-8875 Phone - 800-829-0146 Fax - 317-876-7165

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

IOWA

Representative

Advanced Technical Sales 375 Collins Road N.E. Cedar Rapids, IA 52402 Phone - 319-393-8280 Fax - 319-393-7258

Distributors

Anthem Electronics Incorporated 7690 Golden Triangle Drive Eden Prairie, MN 55344 Phone - 612-944-5454 Fax - 612-944-3045

Hamilton Hallmark 1130 Thorndale Avenue Bensonville, IL 60106 Phone - 708-860-7780 Fax - 708-860-8530

SALES AND SERVICE INFORMATION NORTH AMERICA

Hamilton Hallmark 9401 James Avenue South, Suite 140 Bloomington, MN 55431 Phone - 612-881-2600

Fax - 612-881-9461

Wyle Laboratories 1821 Walden Office Square, Suite 332 Schaumburg, IL 60173 Phone - 708-303-1040 Fax - 708-303-1055

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

KANSAS

Representative

Advanced Technical Sales 601 N. Mur-Len, Suite 8 Olathe, KS 66062 Phone - 913-782-8702 Fax - 913-782-8641

Distributors

Anthem Electronics Incorporated 8780 Mastin Overland Park, KS 66212 Phone - 913-599-1528

Phone - 913-599-1528 Fax - 913-599-1326

Hamilton Hallmark 10809 Lakeview Avenue Lenexa, KS 66215 Phone - 913-888-4747

Phone - 800-332-4375 Fax - 913-888-0523

Fax - 800-255-6946

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

KENTUCKY

Representative

Scott Electronics, Inc. 10901 Reed-Hartman Hwy., Suite 301 Cincinnati, OH 45242-2821

Phone - 513-791-2513 Fax - 513-791-8059 Distributor

Hamilton Hallmark 1847 Mercer Road, Suite G Lexington, KY 40511 Phone - 800-327-4426 (IBM) Phone - 800-525-0068 (DEC)

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

LOUISIANA

Representative

Nova Marketing Incorporated 8350 Meadow Road, Suite 174 Dallas, TX 75231 Phone - 214-265-4660 Fax - 214-265-4668

Distributors

Anthem Electronics 651 N. Plano Road, Suite 401 Richardson, TX 75081

Phone - 214-238-7100 Fax - 214-238-0237

Hamilton Hallmark 11420 Pagemill Road Dallas, TX 75243 Phone - 214-553-4300 Fax - 214-553-4395

Wyle Laboratories 1810 N. Greenville Avenue Richardson, TX 75081 Phone - 214-235-9953 Fax - 214-644-5064

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MAINE

Representative

Advanced Tech Sales Inc. 348 Park Street, Suite 102 North Reading, MA 01864 Phone - 508-664-0888 Fax - 508-664-5503 Distributors

Anthem Electronics Incorporated 200 Research Drive Wilmington, MA 01887 Phone - 508-657-5170

Fax - 508-657-6008

Hamilton Hallmark 10M Centennial Drive Peabody, MA 01960 Phone - 508-532-9808 Fax - 508-532-9802

Wyle Laboratories 15 3rd Avenue Burlington, MA 01803 Phone - 617-271-9953 Fax - 617-275-3687

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MARYLAND

Representative

Electronic Engineering & Sales, Inc. 305 Kramer Road Pasadena, MD 21122

Phone - 410-255-9686 Fax - 410-255-9688

Distributors

Anthem Electronics Incorporated 7168 A Columbia Gateway Drive Columbia, MD 21046-2101 Phone - 410-995-6640

Hamilton Hallmark 10240 Old Columbia Road Columbia, MD 21046 Phone - 410-988-9800

Fax - 410-381-2036

Fax - 410-290-9862

Wyle Laboratories 7180 Columbia Gateway Drive, Suite 100 Columbia, MD 21046

Phone - 410-312-4844 Fax - 410-312-4953

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MASSACHUSETTS

Representative

Advanced Tech Sales, Inc. 348 Park Street, Suite 102 North Reading, MA 01864 Phone - 508-664-0888 Fax - 508-664-5503

Distributors

Anthem Electronics Incorporated 200 Research Drive Wilmington, MA 01887 Phone - 508-657-5170 Fax - 508-657-6008

Hamilton Hallmark 10M Centennial Drive Peabody, MA 01960 Phone - 508-532-9808 Fax - 508-532-9802

5 Oak Park Drive Bedford, MA 01730 Phone - 617-271-9953 Fax - 617-275-3687

Wyle Laboratories

Wyle Laboratories 15 3rd Avenue Burlington, MA 01803 Phone - 617-272-7300 Fax - 617-272-6809

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MICHIGAN

Representative

Rathsburg Associates Incorporated 41100 Bridge Street Novi, MI 48375 Phone - 810-615-4000 Fax - 810-615-4001

Distributors

Hamilton Hallmark 41650 Gardenbrook Road, Suite 100 Novi, MI 49418 Phone - 313-347-4271 Fax - 313-347-4021 Hamilton Hallmark

44191 Plymouth Oaks Blvd. #1300

Plymouth, MI 48170 Phone - 313-416-5800 Phone - 800-767-9654 Fax - 313-416-5811

Wyle Laboratories

150 N. Patrick Blvd., Suite 150 Brookfield, WI 53045

Phone - 414-879-0434 Phone - 800-867-9953 Fax - 414-879-0474

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MINNESOTA

Representative

High Technology Sales Associates 4801 W. 81st Street, Suite 115 Bloomington, MN 55437 Phone - 612-844-9933 Fax - 612-844-9930

Distributors

Anthem Electronics Incorporated 7646 Golden Triangle Drive, Suite 160 Eden Prairie, MN 55344 Phone - 612-944-5454 Fax - 612-944-3045

Hamilton Hallmark 9401 James Avenue South, Suite 140 Bloomington, MN 55431 Phone - 612-881-2600

Wyle Laboratories 1325 East 79th Street, Suite 1 Bloomington, MN 55425 Phone - 612-853-2280 Fax - 612-853-2298

Die Distributor

Fax - 612-881-9461

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MISSISSIPPI

Representative

Southeast Technical Group 4315 Hwy., 39 North Northwood Place, Suite 3L Meridian, MS 39305 Phone - 601-485-7055 Fax - 601-485-7063

Distributors

Anthem Electronics 4920-H Corporate Drive Huntsville, AL 35805 Phone - 205-890-0302 Fax - 205-890-0130

Hamilton Hallmark 7079 University Blvd. Winter Park, FL 32792 Phone - 407-657-3300 Fax - 407-678-4414

Wyle Laboratories Tower Building, 2nd Floor 7800 Governers Drive West Huntsville, AL 35807 Phone - 205-830-1119 Fax - 205-830-1520

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MISSOURI

Representative

Advanced Technical Sales 13755 St. Charles Rock Road Bridgeton, MO 63044 Phone - 314-291-5003 Fax - 314-291-7958

Distributors

Hamilton Hallmark 3783 Rider Trail South Earth City, MO 63045 Phone - 314-291-5350 Fax - 314-291-0362

Wyle Laboratories 1821 Walden Office Square, Suite 332 Schaumburg, IL 60173

Phone - 708-303-1040 Fax - 708-303-1055

SALES AND SERVICE INFORMATION NORTH AMERICA

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MONTANA

Representative

Contact Micron Semiconductor, Inc. Component Sales Phone - 208-368-3900 Fax - 208-368-3488 Micron DataFax - 208-368-5800

Distributor

Hamilton Hallmark 2105 Lundy Avenue San Jose, CA 95131-1849 Phone - 408-435-3500 Fax - 408-435-3535

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NEBRASKA

Representative

Advanced Technical Sales 601 North Mur-Len, Suite 8 Olathe, KS 66062 Phone - 913-782-8702 Fax - 913-782-8641

Distributors

Hamilton Hallmark 1130 Thorndale Avenue Bensenville, IL 60106 Phone - 708-860-7780 Fax - 708-860-8530

Wyle Laboratories
451 E. 124th Street
Thornton, CO 80241
Phone - 303-457-9953
Fax - 303-457-4831

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NEVADA

Representatives

Bay Area Electronics Sales, Inc. 2001 Gateway Place, Suite 315 W. San Jose, CA 95110 Phone - 408-452-8133 Fax - 408-452-8139

Quatra Associates (Clark County) 4645 S. Lakeshore Drive, Suite 1 Tempe, AZ 85282 Phone - 602-820-7050

Phone - 602-820-70 Fax - 602-820-7054

Distributors

Anthem Electronics Incorporated 580 Menlo Drive, Suite 8 Rocklin, CA 95677 Phone - 916-624-9744 Fax - 916-624-9750

Hamilton Hallmark 2105 Lundy Avenue San Jose, CA 95131-1849 Phone - 408-435-3500 Fax - 408-435-3535

Wyle Laboratories 2951 Sunrise Blvd., Suite 175 Rancho Cordova, CA 95742 Phone - 916-638-5282 Fax - 916-638-1491

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NEW HAMPSHIRE

Representative

Advanced Tech Sales Inc. 348 Park Street, Suite 102 North Reading, MA 01864 Phone - 508-664-0888 Fax - 508-664-5503

Distributors

Anthem Electronics Incorporated 36 Jonspin Road Wilmington, MA 01887 Phone - 508-657-5170 Fax - 508-657-6008 Hamilton Hallmark 10M Centennial Drive Peabody, MA 01960 Phone - 508-532-9808 Fax - 508-532-9802

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NEW JERSEY

Representatives

Omega Electronic Sales Inc. Four Neshaminy Interplex, Suite 101 Trevose, PA 19053 Phone - 215-244-4000 Fax - 215-244-4104

Parallax, Inc. (N. NJ) 734 Walt Whitman Road, Suite 209 Melville, NY 11747 Phone - 516-351-1000 Fax - 516-351-1606

Distributors

Anthem Electronics Incorporated 355 Business Center Drive Horsham, PA 19044 Phone - 215-443-5150 Fax - 215-675-9875

Anthem Electronics Incorporated 26 Chapin Road, Unit K Pine Brook, NJ 07058 Phone - 201-227-7960 Fax - 201-227-9246

Hamilton Hallmark 1 Keystone Avenue, Bldg. #36 Cherry Hill, NJ 08003 Phone - 609-751-2590 Fax - 609-751-2552

Hamilton Hallmark 10 Lanidex Plaza West Parsippany, NJ 07054 Phone - 201-515-5300 Fax - 201-515-1601

Wyle Laboratories 20 Chapin Road, Bldg. 1013 Pinebrook, NJ 07058 Phone - 201-882-8358 Phone - 800-862-9953 Fax - 201-882-9109 Wyle Laboratories 815 Eastgate Drive Mt. Laurel, NJ 08054 Phone - 609-439-9110 Fax - 609-439-9020

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NEW MEXICO

Representative

Quatra Associates Incorporated 600 Autumnwood Place, S.E. Albuquerque, NM 87123 Phone - 505-296-6781 Fax - 505-292-2092

Distributors

Anthem Electronics Incorporated 1555 W. 10th Place, Suite 101 Tempe, AZ 85281 Phone - 602-966-6600 Fax - 602-966-4826

Hamilton Hallmark 4637 South 36th Place Phoenix, AZ 85040 Phone - 602-437-1200 Phone - 800-528-8471 Fax - 602-437-2348

Wyle Laboratories 4141 E. Raymond Street, Suite 1 Phoenix, AZ 85040 Phone - 602-437-2088 Fax - 602-437-2124

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NEW YORK

Representatives

Electra Sales Corporation 333 Metro Park, Suite M103 Rochester, NY 14623 Phone - 716-427-7860 Fax - 716-427-0614 Electra Sales Corporation 6700 Old Collamer Road East Syracuse, NY 13057 Phone - 315-463-1248 Fax - 315-463-1717

Parallax, Inc.

734 Walt Whitman Road, Suite 209

Melville, NY 11747 Phone - 516-351-1000 Fax - 516-351-1606

Distributors

Anthem Electronics 47 Mall Drive Commack, NY 11725-5703 Phone - 516-864-6600 Fax - 516-493-2244

Anthem Electronics Incorporated 26 Chapin Road, Unit K Pinebrook, NJ 07058 Phone - 201-227-7960 Fax - 201-227-9246

Hamilton Hallmark 3075 Veterans Memorial Hwy. Ronkonkoma, NY 11779 Phone - 516-737-0600

Fax - 516-737-0838 Hamilton Hallmark

933A Motor Parkway Hauppauge, NY 11788 Phone - 516-434-7470 Fax - 516-434-7491

Hamilton Hallmark 1057 East Henrietta Road Rochester, NY 14623 Phone - 716-475-9130

Phone - 800-462-6440 Fax - 716-475-9119

Wyle Laboratories 20 Chapin Road, Bldg. 1013 Pinebrook, NJ 07058 Phone - 201-882-8358 Phone - 800-862-9953 Fax - 201-882-9109

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NORTH CAROLINA

Representatives

Southeast Technical Group 4408 Ennismore Circle Raleigh, NC 27613 Phone - 919-781-9857 Fax - 919-420-0274

Southeast Technical Group 1401 N. Arendell Avenue Zebulon, NC 27597 Phone - 919-269-5589 Fax - 919-269-5670

Distributor

Anthem Electronics Incorporated 4805 Green Road, Suite 100 Raleigh, NC 27604 Phone - 919-871-6200 Phone - 800-359-3532 Fax - 919-790-8970

Hamilton Hallmark 5234 Green's Dairy Road Raleigh, NC 27604 Phone - 919-872-0712 Fax - 919-878-8729

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NORTH DAKOTA

Representative

High Technology Sales Associates 4801 W. 81st Street, Suite 115 Bloomington, MN 55437 Phone - 612-844-9933 Fax - 612-844-9930

Distributors

Anthem Electronics Incorporated 7646 Golden Triangle Drive, Suite 160 Eden Prairie, MN 55344 Phone - 612-944-5454 Fax - 612-944-3045

Hamilton Hallmark 9401 James Avenue South, Suite 140 Bloomington, MN 55431 Phone - 612-881-2600

Fax - 612-881-9461

SALES AND SERVICE INFORMATION NORTH AMERICA

Wyle Laboratories 1325 E 79th Street, Suite 1 Bloomington, MN 55425 Phone - 612-853-2280 Fax - 612-853-2298

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

OHIO

Representatives

Fax - 216-473-5055

Scott Electronics, Inc. 30 Alpha Park Cleveland, OH 44143-2240 Phone - 216-473-5050

Scott Electronics, Inc. 6728 Loop Road, Suite 202

Centerville, OH 45459 Phone - 513-291-9910

Fax - 513-291-9022

Scott Electronics, Inc. 916 Eastwind Drive Westerville, OH 43081-3379

Phone - 614-882-6100 Fax - 614-882-0900

Scott Electronics, Inc.

10901 Reed-Hartman Hwy., Suite 301

Cincinnati, OH 45242-2821
Phone - 513-791-2513

Phone - 513-791-251 Fax - 513-791-8059

Distributors

Anthem Electronics Incorporated 7646 Golden Triangle Drive, Suite 160 Eden Prairie. MN 55344

Phone - 612-944-5454 Fax - 612-944-3045

Hamilton Hallmark 5821 Harper Road

Solon, OH 44139 Phone - 216-498-1100

Fax - 216-248-4803

Hamilton Hallmark 777 Dearborn Park Lane, Suite L Worthington, OH 43085

Phone - 614-888-3313 Fax - 614-888-0767 Hamilton Hallmark

7760 Washington Village Drive

Dayton, OH 45459 Phone - 513-439-6735

Phone - 800-423-4688 Fax - 513-439-6711

Wyle Laboratories

1821 Walden Office Square, Suite 332

Schaumburg, IL 60173 Phone - 708-303-1040

Fax - 708-303-1055

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

OKLAHOMA

Representative

Nova Marketing Incorporated 8421 East 61st Street, Suite P #139 Tulsa, OK 74145 Phone - 918-660-5105 Fax - 918-357-1091

Distributor

Hamilton Hallmark 12206 E. 51st Street, Suite 103 Tulsa, OK 74146 Phone - 918-254-6110 Fax - 918-254-6207

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

OREGON Sales Office

Micron Sales Northwest, Inc. AmberGlen Business Center 1600 N.W. Compton Drive, Suite 206 Beaverton, OR 97006 Phone - 503-531-2010 Fax - 503-531-2011

Distributors

Anthem Electronics Incorporated 9090 S.W. Gemini Drive Beaverton, OR 97005 Phone - 503-643-1114 Fax - 503-626-7928 Hamilton Hallmark 9750 S.W. Nimbus Avenue Beaverton, OR 97005 Phone - 503-526-6200 Fax - 503-641-5939

Wyle Laboratories

9640 Sunshine Court, Suite 200, Bldg. G

Beaverton, OR 97005 Phone - 503-643-7900 Fax - 503-646-5466

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

PENNSYLVANIA

Representatives

Omega Electronic Sales Incorporated (E. PA) Four Neshaminy Interplex, Suite 101

Trevose, PA 19053 Phone - 215-244-4000 Fax - 215-244-4104

Scott Electronics, Inc. (W. PA) 916 Eastwind Drive Westerville, OH 43081-3379 Phone - 614-882-6100 Fax - 614-882-0900

Distributors

Anthem Electronics Incorporated 355 Business Center Drive Horsham, PA 19044 Phone - 215-443-5150 Fax - 215-675-9875

Hamilton Hallmark (W. PA) 5821 Harper Road Solon, OH 44139 Phone - 216-498-1100 Fax - 216-248-4803

Wyle Laboratories 815 Eastgate Drive Mt. Laurel, NJ 08054 Phone - 609-439-9110 Fax - 609-439-9020

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

PUERTO RICO

Representative

Photon Sales, Inc. 1600 Sarno Road, Suite 21 Melbourne, FL 32935 Phone - 407-259-8999 Fax - 407-259-1323

Distributors

Anthem Electronics 5200 N.W. 33rd Avenue, Suite 206 Ft. Lauderdale, FL 33309 Phone - 305-484-0900 Fax - 305-484-0951

Wyle Laboratories 600 West Hillsboro, Suite 300 Deerfield Beach, FL 33441 Phone - 305-420-0500 Fax - 305-428-2134

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

RHODE ISLAND

Representative

Advanced Tech Sales Inc. 348 Park Street, Suite 102 North Reading, MA 01864 Phone - 508-664-0888 Fax - 508-664-5503

Distributors

Anthem Electronics Incorporated 61 Mattatuck Heights Waterbury, CT 06705 Phone - 203-575-1575 Fax - 203-596-3232

Hamilton Hallmark 125 Commerce Court, Unit 6 Cheshire, CT 06410 Phone - 203-271-2844 Fax - 203-272-1704

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

SOUTH CAROLINA

Representative

Southeast Technical Group 1401 N. Arendell Avenue Zebulon, NC 27597 Phone - 919-269-5589 Fax - 919-269-5670

Distributor

Anthem Electronics Incorporated 4805 Green Road, Suite 100 Raleigh, NC 27604 Phone - 919-871-6200 Phone - 800-359-3532 Fax - 919-790-8970

Hamilton Hallmark 5234 Green's Dairy Road Raleigh, NC 27604 Phone - 919-872-0712 Fax - 919-878-8729

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

SOUTH DAKOTA

Representative

High Technology Sales Associates 4801 W. 81st Street, Suite 115 Bloomington, MN 55437 Phone - 612-844-9933 Fax - 612-844-9930

Anthem Electronics Incorporated

Distributors

7646 Golden Triangle Drive, Suite 160 Eden Prairie, MN 55344 Phone - 612-944-5454 Fax - 612-944-3045 Hamilton Hallmark 9401 James Avenue South, Suite 140 Bloomington, MN 55431 Phone - 612-881-2600 Fax - 612-881-9461

Wyle Laboratories 1325 East 79th Street, Suite 1 Bloomington, MN 55425 Phone - 612-853-2280 Fax - 612-853-2298

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

TENNESSEE

Representative

Southeast Technical Group 101 Washington, Suite 6 Huntsville, AL 35801 Phone - 205-534-2376 Fax - 205-534-2384

Distributors

Hamilton Hallmark 3425 Corporate Way, Suite A and G Duluth, GA 30136-2552 Phone - 404-623-4400 Fax - 404-476-8806

Wyle Laboratories Tower Building, 2nd Floor 7800 Governers Drive West Huntsville, AL 35807 Phone - 205-830-1510 Fax - 205-830-1520

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

TEXAS

Representatives

Nova Marketing Incorporated 8350 Meadow Road, Suite 174 Dallas, TX 75231 Phone - 214-265-4600

Fax - 214-265-4668 Nova Marketing Incorporated

10701 Corporate Drive, Suite 140 Stafford, TX 77477 Phone - 713-240-6082

Phone - 713-240-6082 Fax - 713-240-6094

Nova Marketing Incorporated 8310 Capitol of Texas Hwy. North, Suite 180 Austin, TX 78731 Phone - 512-343-2321

Phone - 512-343-2321 Fax - 512-343-2487

SALES AND SERVICE INFORMATION **NORTH AMERICA**

Ouatra Associates, Inc. (El Paso, TX) 600 Autumnwood Place, S.E. Albuquerque, NM 87123 Phone - 505-296-6781 Fax - 505-292-2092

Distributors

Anthem Electronics Incorporated 651 N. Plano Road, Suite 401 Richardson, TX 75081 Phone - 214-238-7100 Fax - 214-238-0237

Anthem Electronics Incorporated 14050 Summit Drive, Suite 119 Austin, TX 78728 Phone - 512-388-0049

Fax - 512-388-0271

Hamilton Hallmark 12211 Technology Blvd. Austin, TX 78727

Phone - 512-258-8848

Fax - 512-258-3777

Hamilton Hallmark 11420 Pagemill Road Dallas, TX 75243 Phone - 214-553-4300 Fax - 214-553-4395

Hamilton Hallmark 8000 Westglen Houston, TX 77063 Phone - 713-781-6100 Fax - 713-953-8420

Wyle Laboratories 4030 W. Braker Lane, Suite 420 Austin, TX 78759

Phone - 512-345-8853 Fax - 512-834-0981

> Wyle Laboratories 1810 N. Greenville Avenue Richardson, TX 75081

Phone - 214-235-9953

Fax - 214-644-5064

Wyle Laboratories 11001 S. Wilcrest, Suite 100 Houston, TX 77099 Phone - 713-879-9953

Fax - 713-879-6540

Die Distributor

Fax - 407-290-0164

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100

UTAH

Representative

Wescom Marketing 3500 S. Main, Suite 100 Salt Lake City, UT 84115 Phone - 801-269-0419 Fax - 801-269-0665

Distributors

Anthem Electronics Incorporated 1279 West 2200 South Salt Lake City, UT 84119 Phone - 801-973-8555

Fax - 801-973-8909

Hamilton Hallmark 1100 East 6600 South, Suite 120 Salt Lake City, UT 84121 Phone - 801-266-2022 Fax - 801-263-0104

Wyle Laboratories 1325 West 2200 South, Suite E Salt Lake City, UT 84119 Phone - 801-974-9953 Fax - 801-972-2524

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

VERMONT

Representative

Advanced Tech Sales Inc. 348 Park Street, Suite 102 North Reading, MA 01864 Phone - 508-664-0888 Fax - 508-664-5503

Distributors

Anthem Electronics Incorporated 36 Jonspin Road Wilmington, MA 01887 Phone - 508-657-5170 Fax - 508-657-6008

Hamilton Hallmark 10M Centennial Drive Peabody, MA 01960 Phone - 508-532-9808 Fax - 508-532-9713

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

VIRGINIA

Representative

Electronic Engineering & Sales, Inc. 305 Kramer Road Pasadena, MD 21122 Phone - 410-255-9686 Fax - 410-255-9688

Distributors

Anthem Electronics Incorporated 7168 A Columbia Gateway Drive Columbia, MD 21046-2101 Phone - 301-995-6640 Fax - 301-381-4379

Hamilton Hallmark 10240 Old Columbia Road Columbia, MD 21046 Phone - 410-988-9800 Fax - 410-381-2036

Wyle Laboratories 7180 Columbia Gateway Drive, Suite 100

Columbia, MD 21046 Phone - 410-312-4844 Fax - 410-312-4953

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

WASHINGTON

Sales Office

Micron Sales Northwest, Inc. P.O. Box 902 Woodinville, WA 98072-0902 Phone - 206-486-2775 Fax - 206-486-3960

Distributors

Anthem Electronics Incorporated 19017-120th Avenue N.E., Suite 102 Bothell, WA 98011

Phone - 206-483-1700 Fax - 206-486-0571

Hamilton Hallmark 3216 154th Avenue N.E. Redmond, WA 98052

Phone - 206-882-7000 Fax - 206-882-7070

Wyle Laboratories 15385 N.E. 90th Street

Redmond, WA 98052-3522

Phone - 206-881-1150 Phone - 800-248-9953

Fax - 206-881-1567

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail

Orlando, FL 32810-2696 Phone - 407-298-7100

Fax - 407-290-0164

WEST VIRGINIA

Representative

Scott Electronics, Inc. 916 Eastwind Drive

Westerville, OH 43081-3379

Phone - 614-882-6100

Fax - 614-882-0900

Die Distributor

Chip Supply

7725 N. Orange Blossom Trail

Orlando, FL 32810-2696 Phone - 407-298-7100

Fax - 407-290-0164

WISCONSIN

Representatives

High Technology Sales Associates (W. WI)

4801 W. 81st Street, Suite 115

Bloomington, MN 55437

Phone - 612-844-9933 Fax - 612-844-9930

Industrial Representatives, Inc. (E. WI)

2831 N. Grandview, Suite 215

Pewaukee, WI 53072

Phone - 414-574-9393 Fax - 414-574-9394

Distributors

Anthem Electronics Incorporated

1300 Remington, Suite A

Schaumburg, IL 60173

Phone - 708-884-0200

Fax - 708-884-0480

Hamilton Hallmark

2440 S. 179th Street

New Berlin, WI 53146-2152

Phone - 414-797-7844

Fax - 414-797-9259

Wyle Laboratories

150 N. Patrick Blvd., Suite 150

Brookfield, WI 53045

Phone - 414-879-0434

Phone - 800-867-9953

Fax - 414-879-0474

Die Distributor

Chip Supply

7725 N. Orange Blossom Trail

Orlando, FL 32810-2696

Phone - 407-298-7100

Fax - 407-290-0164

WYOMING

Representative

Contact Micron Semiconductor, Inc.

Component Sales

Phone - 208-368-3900

Fax - 208-368-3488

Micron DataFax - 208-368-5800

Distributors

Anthem Electronics Incorporated

373 Inverness Drive

Englewood, CO 80112

Phone - 303-790-4500

Fax - 303-790-4532

Wyle Laboratories

1325 West 2200 South, Suite E

Salt Lake City, UT 84119

Phone - 801-974-9953

Fax - 801-972-2524

Die Distributor

Chip Supply

7725 N. Orange Blossom Trail

Orlando, FL 32810-2696

Phone - 407-298-7100

Fax - 407-290-0164

SALES AND SERVICE INFORMATION INTERNATIONAL

AUSTRALIA

Representative

Reptechnic Pty. Ltd. 3/36 Bydown Street Neutral Bay Sydney, NS 2089 Phone - 612-953-9844 Fax - 612-953-9683

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

AUSTRIA

Representative

Thomas Neuroth GmbH Heitzinger Hauptstrasse 22/A/2 A-1130 Wien Phone - 43-1-877-5645

Phone - 43-1-877-564 Fax - 43-1-876-4920

Distributor

Waidhausenstrasse 19 A-1140 Wien Phone - 43-222-911-2847 Fax - 43-222-911-3853

Avnet E2000 Ges. M.B.H.

EBV Elektronik GmbH Diefenbachgasse 35/6

A-1150 Wien Phone - 43-222-894-1774 Fax - 43-222-894-1775

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

BALTIC STATES

Representative

Integrated Electronics Oy Ab Turkhaudantie 1 P.O. Box 160 SF-00700 Helsinki Finland

Phone - 358-0-351-3133 Fax - 358-0-351-3134

Distributor

Avnet Baltronic AS Akadeemia tee 21F Tallinn EE-0026 Estonia Phone - 372-6397000

Phone - 372-6397000 Fax - 372-6397009

BELGIUM

Representative

Microtron Generaal De Wittelaan 7 B-2800 Mechelen Phone - 32-15-212223 Fax - 32-15-210069

Distributor

EBV Elektronik GmbH Excelsiorlaan 35 B-1930 Zaventem Phone - 32-2 7209936 Fax - 32-2-7208152

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

CZECH REPUBLIC

Representative

Thomas Neuroth GmbH Heitzinger Hauptstrasse 22/A/2 A-1130 Wien Austria Phone - 43-1-877-5645 Fax - 43-1-876-4920

DENMARK

Representative

Integrerad Elektronik Komponenter AB Box 11113, Ulvsundavagen 106 S-161 11 Bromma Sweden Phone - 46-8-804-685 Fax - 46-8-262-286

Distributor

Avnet Nortec AS Transformervej 17 DK-2730 Herlev Phone - 45-44-88-0800 Fax - 45-44-88-0888

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

FINLAND

Representative

Integrated Electronics Oy Ab Turkhaudantie 1 P.O. Box 160 SF-00700 Helsinki Phone - 358-0-351-3133 Fax - 358-0-351-3134

Distributor

Avnet Nortec Oy Italahdenkatu 18 FIN-00210 Helsinki Phone - 358-0-6131-8260 Fax - 358-0-692-2326

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

FRANCE

Representative

Rep'Tronic S.A. 1 bis, rue Marcel Paul Z.I. La Bonde - Bâtiment B 91742 Massy, Cedex Phone - 33-1-60-13-93-00 Fax - 33-1-60-13-91-98

Distributors

Avnet EMG SA 79, rue Pierre Semard B.P. 90 F-92322 Chatillon, Cedex Phone - 33-1-49-65-2600 Fax - 33-1-49-65-2769

EBV Elektronik Parc Club de la Haute Maison 16, rue Galilée, Cité Descartes 77420 Champs-sur-Marne Phone - 33-1-64-68-8609

Fax - 33-1-64-68-2767

Société Paris Sud Electronique 12, rue René-Cassin Z.I. de la Bonde F-91742 Massy Phone - 33-1-69-81-2020 Fax - 33-1-69-20-7532

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

GERMANY

Sales & Customer Service Office

Micron Semiconductor (Deutschland) GmbH Sternstrasse 20 D-85609 Aschheim Phone - 49-89-9030021

Fax - 49-89-9043114

Distributors Avnet E2000

Stahlgruberring 12 D-81829 München Phone - 49-89-4511001 Fax - 49-89-45110129

EBV Elektronik GmbH Hans-Pinsel-Str. 4 D-85540 Haar b. München Phone - 49-89-45610-0 Fax - 49-89-464488

MSC-Vertriebs GmbH Industriestraße 16 D-76297 Stutensee Phone - 49-72-49910-0 Fax - 49-72-497993

Neumüller-Fenner Elektronik GmbH Mehlbeerenstr. 2 D-82024 Taufkirchen

Phone - 49-89-6144990 Fax - 49-89-6144980

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

HONG KONG

Sales & Customer Service Office

Micron Semiconductor Asia Pacific, Pte Ltd 629 Aljunied Road #07-21 Cititech Industrial Bldg. Singapore 1438

Singapore 1438 Phone - 65-841-4066 Fax - 65-841-4166

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

HUNGARY

Representative

Thomas Neuroth GmbH Heitzinger Hauptstrasse 22/A/2 A-1130 Wien Austria Phone - 43-1-877-5645

Phone - 43-1-877-5645 Fax - 43-1-876-4920

INDIA

Distributor

Pandori Electronics Pvt Ltd 306, Guru Ram Das Bhawan Ranjit Nagar, Commercial Complex New Delhi 110008 Phone - 91-11-5703615 Fax - 91-11-5700478

1148 Sonora Court Sunnyvale, CA 94086 Phone - 408-738-8235 Fax - 408-738-0698

Silicon Electronics

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

INDONESIA

Distributor

Desner Electronics (FE) Pte. Ltd. 42 Mactaggart Road #04-01 Mactaggart Bldg. Singapore 1336 Phone - 65-285-1566 Fax - 65-284-9466

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

IRELAND

Representative

New England Technical Sales The Diamond Malahide Co. Dublin Phone - 353-18-450635 Fax - 353-18-453625

Distributor

Macro Group Merrion Business Corp. 20 Upper Merrion Street Dublin 2 Phone - 1-67-66-904 Fax - 1-76-0-713

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

ISRAEL

Representative & Distributor

C.R.G. Electronics Ltd. Industrial Park P.O.B. 590 Carmiel 20101 Phone - 972-49-887-877 Fax - 972-49-887-588

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

ITALY

Representative

Acsis srl via Alberto Mario, 26 Milano 20149 Phone - 39-2-4802-2522 Fax - 39-2-4801-2289

SALES AND SERVIC

Distributors

Avnet EMG SRL Via Novara 570 20153 Milano

Phone - 39-2-3810-3100 Fax - 39-2-3800-2988

EBV Elektronik Sede di Milano Via C. Frova, 34 I-20092 Cinisello Balsamo (MI) Phone - 39-2-66-01-71-11 Fax - 39-2-66-01-7020

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

JAPAN Distributors

Internix Inc. Shinjuku Hamada Bldg. 7-4-7 Nishi-shinjuku, shinjuku-ku Tokyo 160 Phone - 81-3-3369-1105

Fax -81-3-3363-8486 Macnica, Inc. Hakusan High-Tech Park 1-22-2 Hakusan

Midori-ku, Yokohama City 226 Phone - 81-45-939-6140 Fax - 81-45-939-6141

Sanyo Electric Co. Ltd.
Import Promotion Division
1-1-10 Ueno
Taito-ku, Tokyo 110
Phone - 81-3-3837-6345
Fax - 81-3-3837-6379

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

KOREA

Representative

I & C Microsystems Co. Ltd. 3rd Floor, Jung-Nam Bldg. 191-3 Poi-Dong Kangnam-Ku Seoul

Phone - 822-577-9131 Fax - 822-577-9130

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

LUXEMBOURG

Representative

Microtron Generaal De Wittelaan 7 B-2800 Mechelen Phone - 32-15-212223 Fax - 32-15-210069

Distributor

EBV Elektronik GmbH Excelsiorlaan 35 B-1930 Zaventem Belgium Phone - 32-2 7209936 Fax - 32-2-7208152

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MALAYSIA

Distributors

Desner (Malaysia) Sdn. Bhd. 23 Jalan Sarikei 53000 Kuala Lumpur Phone - 60-3-4211123 Fax - 60-3-4219923

Desner (Malaysia) Sdn. Bhd. 39 Persiaran Bukit Kecil 5 Taman Sri Nibong 11900 Bayan Lepas Penang

Phone - 60-4-838352 Fax - 60-4-849370

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

THE NETHERLANDS

Representative

Microtron Beneluxweg 37 Postbus 4336 NL-4904 SJ Oosterhout Phone - 31-162-060-638 Fax - 31-162-060-633

Distributor

EBV Elektronik GmbH Planetenbaan 2 NL-3606 AK Maarssenbroek Phone - 31 34 65-62353 Fax - 31 34 65-64277

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NEW ZEALAND

Distributor

Maxbyte Technologies 35 Kaihuia Street P.O. Box 28-096 Wellington, 6001 Phone - 642-542-7799 Fax - 644-475-3856

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

NORWAY

Representative

Integrerad Elektronik Komponenter AB Box 11113, Ulvsundavagen 106 S-161 11 Bromma Sweden Phone - 46-8-804-685

Fax - 46-8-262-286

Distributor

Avnet Nortec A/S Smedsvingen 4B N-1364 Hvalstad Phone - 47-284-6210 Fax - 47-284-6545

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

PHILLIPINES

Distributor

Desner Electronics (FE) Pte. Ltd. 42 Mactaggart Road #04-01 Mactaggart Bldg. Singapore 1336 Phone - 65-285-1566 Fax - 65-284-9466

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

PORTUGAL

Distributor EBV Elektronik

Calle Maria Tubau, 5 28050 Madrid Phone - 34-1-358-8608 Fax - 34-1-358-8560

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

SINGAPORE

Sales & Customer Service Office

Micron Semiconductor Asia Pacific, Pte Ltd 629 Aljunied Road #07-21 Cittech Industrial Bldg. Singapore 1438 Phone - 65-841-4066 Fax - 65-841-4166

Distributor

Desner Electronics (FE) Pte. Ltd. 42 Mactaggart Road #04-01 Mactaggart Bldg. Singapore 1336 Phone - 65-285-1566 Fax - 65-284-9466

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

SLOVENIA

Representative

Thomas Neuroth GmbH Heitzinger Hauptstrasse 22/A/2 A-1130 Wien Austria Phone - 43-1-877-5645 Fax - 43-1-876-4920

SOUTH AFRICA

Distributor

Computer Parts cc CNR Athol and Louis Botha Avenue Highlands North Johannesburg 2192 Phone - 27-11-887-2438 Fax - 27-11-887-2514

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

SPAIN

Distributor

EBV Elektronik Calle Maria Tubau, 5 28050 Madrid Phone - 34-1-358-8608

Fax - 34-1-358-8560 **Die Distributor**

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

SWEDEN

Representative

Integrerad Elektronik Komponenter AB Box 11113, Ulvsundavagen 106 S-161 11 Bromma Phone - 46-8-804-685 Fax - 46-8-262-286

Distributor

Avnet Nortec AB Englundavagen 7 S-171 27 Solna Phone - 46-8-629-1400 Fax - 46-8-627-0280

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

SWITZERLAND

Distributors

Avnet E2000 AG Böhnirainstrasse 11 CH-8801 Thalwil Phone - 41 1-7 22 13 30 Fax - 41 1-7 22 13 40

EBV Elektronik GmbH Vorstadtstrasse 37 CH-8953 Dietikon Phone - 41 1-7 40 10 90 Fax - 41 1-7 41 51 10

Fenner Elektronik AG Gewerbestraße 10 CH-4450 Sissach Phone - 41 6-1 97 50 00 0 Faxc - 41 6-1 97 17 42 1

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

TAIWAN, R.O.C.

Sales & Customer Service Office

Micron Semiconductor Asia Pacific, Inc. Suite 1010, 10th Floor 333 Keelung Road, Sec 1 Taipei, 110

Phone - 886-2-757-6622 Fax - 886-2-757-6656

SALES AND SERVICE INFORMATION INTERNATIONAL

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

THAILAND

Distributor

Desner Electronics (Thailand) Co. Ltd. ITF Silom Palace Building 11th Floor, Room 160/128-129 Silom Road, Bangkok 10500 Phone - 662-2356492-5 Extension - 128-129 Fax - 662-2668040

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

UNITED KINGDOM

Sales & Customer Service Office

Micron Europe Limited Centennial Court Easthampstead Road Bracknell Berkshire RG12 1JA Phone - 44-344-360055 Fax - 44-344-869504

Representative

Cedar Technologies U.K. Ltd. Unit One Old Barns Rycote Lane Farm Milton Common Oxfordshire OX9 2NZ Phone - 44-1844-278278 Fax - 44-1844-278378

Distributors

Avnet EMG Access Jubilee House Jubilee Road Letchworth, Hertfordshire SG6 1QH Phone - 44-0462-480888 Fax - 44-0462-488567

Macro Group Burnham Lane Slough, Berkshire SL1 6LN Phone - 44-628-604383 Fax - 44-628-666873

Die Distributor

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 Fax - 407-290-0164

MICHON

EDO DRAMs	1000
FPM DRAMs	2
SGRAM	3
DRAM SIMMs	4
DRAM DIMMs	5
DRAM CARDS	6
TECHNICAL NOTES	malana Z
PRODUCT RELIABILITY	
PACKAGE INFORMATION	, 9
SALES AND SERVICE INFORMATION	= 10
MICRON DATAFAX INDEX	11

Data Fax 208-368-5800

Instructions for using Micron DataFax can be found in Customer Service Note, CSN-09, on page 10-12.

Document Index

INDEXES		DOCUMENT NUMBER
DRAM Products	(Ray 1/05)	
SRAM Products	(Rev. 1/95)(Rev. 1/95)	3 pg 0030
Flash Memory Products		
Complete Product Line (all of the above indexes)		
EDO DRAMs		
MT4C4007J (Rev. 2/95) 1 Meg x 4	5V	15 ng 125
MT4C4007] S	5V, S	
MT4LC4007J	3.3V	10
MT4LC4007J S (Rev. 2/95)	3.3V, S	
MT4LC4M4E8 (Rev. 2/95) 4 Meg x 4	3.3V, 2KR	
MT4LC4M4E8 S (Rev. 2/95) 4 Meg x 4		
MT4LC16M4G3	3.3V, 2KR, S	
MT4LC16M4H9	3.3V, 8KR	
MT4LC10M4119 (Rev. 2/95) 16 Meg x 4 MT4LC2M8E7 (Rev. 2/95) 2 Meg x 8	3.3V, 4KR	
MT4LC2M8E7 S	3.3V, 2KR	
MT4LC2M8P4 (Rev. 2/95)	3.3V, 2KR, S	
MT4LC8M8C2	3.3V, 8KR	
MT4C16270 (Rev. 2/95)	3.3V, 4KR	
MT4LC16270 (Rev. 2/95)	5V, DC	· · · · · · · · · · · · · · · · · · ·
	3.3V, DC	
MT4LC1M16E5 (Rev. 2/95)	3.3V, DC, 1KR 3.3V, DC, 1KR, S	
DC	1KR	
2KR 2.048 Refresh	4KR	
8KR	S	SELF REFRESH
5V	3.3V	3.3 volt Vcc
FPM DRAMs		
MT4C1004J (Rev. 2/95) 4 Meg x 1	5V	16 pg 102
MT4C1004J S (Rev. 2/95) 4 Meg x 1	5V, S	16 pg 102
DC	QC	
1KR	2KR	
4,096 Refresh S SELF REFRESH	8KR 5V	

	J
	>
	ĺ
P	•
J	١
3	•
×	
\leq	-
)
Ū	ļ
\rightarrow	ζ

			DOCUMENT
FPM DRAMs (continued)			NUMBER
MT4C4001J (Rev. 2/95)	1 Meg x 4	5V	16 pg 106
MT4C4001J S (Rev. 2/95)	1 Meg x 4	5V, S	16 pg 106
MT4LC4001J (Rev. 2/95)		3.3V	14 pg 107
MT4LC4001J S (Rev. 2/95)	1 Meg x 4		14 pg 107
MT4C4004J (Rev. 2/95)			13 pg 118
MT4C4M4B1 (Rev. 2/95)	4 Meg x 4	5V, 2KR	14 pg 114
MT4LC4M4B1 (Rev. 2/95)	4 Meg x 4		16 pg 115
MT4LC4M4B1 S (Rev. 2/95)			
MT4LC16M4A7 (Rev. 2/95)	16 Meg x 4		13 pg 122
MT4LC16M4T8 (Rev. 2/95)	16 Meg x 4		
MT4LC2M8B1 (Rev. 2/95)			16 pg 307
MT4LC2M8B1 S (Rev. 2/95)			16 pg 307
MT4LC8M8E1 (Rev. 2/95)			13 pg 124
MT4LC8M8B6 (Rev. 2/95)	0	3.3V, 4KR	13 pg 124
MT4C16257 (Rev. 2/95)			16 pg 302
MT4LC16257 (Rev. 2/95)			18 pg 311
MT4LC16257 S (Rev. 2/95)		3.3V, DC, S	
MT4C1M16C3 (Rev. 2/95)			
MT4LC1M16C3 (Rev. 2/95)			
MT4LC1M16C3 S (Rev. 2/95)		3.3V. DC. 1KR. S	
DC	, 0		Quad CAS
1KR			Quad CAS
4KR	4,096 Refresh	8KR	
S		5V	5 volt Vcc
3.5 ¥	3.3 VOIL VCC		
SGRAM			
	2561/ 22	2.287	15 2700*
MT41LC256K32D4 (Rev. 2/95) MT41LC256K32D4 S (Rev. 2/95)		2.37	
			15 pg 2700*
S	SELF REFRESH	3.3V	
DRAMBIE			
DRAM DIE			
D22A (Rev. 7/94)	4 Meg		4 pg 2401
D18A (Rev. 9/94)			4 pg 2400
D21A (Rev. 7/94)			4 pg 2402
D24A (Rev. 7/94)	16 Meg	x4, x8, x16	4 pg 2403
DRAM SIMMs			
MT2D18 (Rev. 2/95)	1 Meg x 8	5V	11 pg 400
MT2D48 (Rev. 2/95)		5V	11 pg 402
MT8D48 (Rev. 2/95)	4 Meg x 8		11 pg 403
MT3D49 (Rev. 2/95)	4 Meg x 9		11 pg 406
MT9D49 (Rev. 2/95)			
MT2D25632 (Rev. 2/95)			13 pg 433
MT4D51232 (Rev. 2/95)			
MT8D132 (Rev. 2/95)			
MT8D132 S (Rev. 2/95)		5V, S	16 pg 447
S			Extended Data-Out
5V			

*Because this document exceeds the maximum length for effective fax processing, only an abbreviated version can be faxed. Along with the abbreviated fax version, you will receive a form offering you several alternative ways to receive the complete document, depending on urgency.

		DOCUMENT
DRAM SIMMs (continued)		NUMBER
MT8LD(T)132 (Rev. 2/95) 1 Meg x 32	3.3V	24 pg 441
MT8LD(T)132 S (Rev. 2/95)	3.3V, S	
MT8LD(T)132 X (Rev. 2/95)	3.3V, EDO	24 pg 441
MT8LD(T)132 XS (Rev. 2/95) 1 Meg x 32	3.3V, EDO, S	24 pg 441
MT16D232 (Rev. 2/95) 2 Meg x 32	5V	
MT16D232 S (Rev. 2/95) 2 Meg x 32	5V, S	
MT16LD(T)232 (Rev. 2/95) 2 Meg x 32	3.3V	24 pg 441
MT16LD(T)232 S (Rev. 2/95)	3.3V, S	
MT16LD(T)232 X (Rev. 2/95) 2 Meg x 32	3.3V, EDO	
MT16LD(T)232 XS (Rev. 2/95) 2 Meg x 32	3.3V, EDO, S	24 pg 441
MT4LD232 (Rev. 2/95) 2 Meg x 32	3.3V	21 pg 442
MT4LD232 S (Rev. 2/95) 2 Meg x 32	3.3V, S	21 pg 442
MT4LD232 X (Rev. 2/95) 2 Meg x 32	3.3V, EDO	21 pg 442
MT4LD232 XS (Rev. 2/95) 2 Meg x 32	3.3V, EDO, S	21 pg 442
MT8D432 (Rev. 2/95) 4 Meg x 32	5V	14 pg 412
MT8D432 S (Rev. 2/95) 4 Meg x 32	5V, S	
MT8LD432 (Rev. 2/95) 4 Meg x 32	3.3V	
MT8LD432 S (Rev. 2/95) 4 Meg x 32	3.3V, S	
MT8LD432 X (Rev. 2/95)4 Meg x 32	3.3V, EDO	
MT8LD432 XS (Rev. 2/95)4 Meg x 32	3.3V, EDO, S	
MT16D832 (Rev. 2/95)	5V	
MT16D832 S (Rev. 2/95)8 Meg x 32	5V, S	
MT16LD832 (Rev. 2/95) 8 Meg x 32	3.3V	
MT16LD832 S (Rev. 2/95)	3.3V, S	
MT16LD832 X (Rev. 2/95)	3.3V, EDO	
MT16LD832 XS (Rev. 2/95) 8 Meg x 32	3.3V, EDO, S	
MT9D136 (Rev. 2/95) 1 Meg x 36	5V	
MT18D236 (Rev. 2/95)	5V	
MT12D436 (Rev. 2/95) 4 Meg x 36	5V	
MT12D436 S (Rev. 2/95) 4 Meg x 36	5V, S	16 pg 417
MT24D836 (Rev. 2/95)8 Meg x 36	5V	16 pg 417
MT24D836 S (Rev. 2/95) 8 Meg x 36	5V, S	
S	EDO	Extended Data-Out
5V 5 volt Vcc	3.3V	3.3 volt Vcc
DRAM DIMMs		
MT2LD(T)132H (Rev. 2/95) 1 Meg x 32	3.3V	
MT2LD(T)132H S (Rev. 2/95) 1 Meg x 32	3.3V, S	16 pg 446
MT4LD(T)232H (Rev. 2/95)2 Meg x 32	3.3V	16 pg 446
MT4LD(T)232H S (Rev. 2/95)2 Meg x 32	3.3V, S	16 pg 446
MT8LD(T)432H (Rev. 2/95)4 Meg x 32	3.3V	
MT8LD(T)432H S (Rev. 2/95)4 Meg x 32	3.3V, S	15 pg 440
MT16D(T)164 (Rev. 2/95)1 Meg x 64	5V	19 pg 429
MT16D(T)164 S (Rev. 2/95) 1 Meg x 64	5V, S	
MT16LD(T)164 (Rev. 2/95)1 Meg x 64	3.3V	24 pg 435
MT16LD(T)164 S (Rev. 2/95) 1 Meg x 64	3.3V, S	
MT8LD(T)264 (Rev. 2/95)2 Meg x 64	3.3V	
MT8LD(T)264 S (Rev. 2/95)2 Meg x 64	3.3V, S	23 pg 437
MT8LD(T)264 X (Rev. 2/95)2 Meg x 64	3.3V, EDO	23 pg 437
S	EDO	
5V 5 volt Vcc	3.3V	3.3 volt Vcc

					DOCUMENT
DRA	M DIMMs (cor	ntinued)			NUMBER
	8LD(T)264 XS		2 Meg x 64	3.3V, EDO, S	
	16D(T)464			5V	
	16LD(T)464		0	3.3V	
	16LD(T)464 S			3.3V, S	24 pg
	16LD(T)464 X			3.3V, EDO	
	16LD(T)464 XS		· ·	3.3V, EDO, S	
	18D(T)172		0	5V	
	18D(T)172 S		Ų.	5V, S	19 pg 451
	18LD(T)172		0	3.3V	
			0		
	18LD(T)172 S			3.3V, S	
	9LD(T)272			3.3V	10
	9LD(T)272 S			3.3V, S	
	9LD(T)272 X			3.3V, EDO	
MT	9LD(T)272 XS	. (Rev. 2/95)	2 Meg x 72	3.3V, EDO, S	
MT	18D(T)472	. (Rev. 2/95)	4 Meg x 72	5V	19 pg 451
	18LD(T)472			3.3V	
MT	18LD(T)472 S	. (Rev. 2/95)	4 Meg x 72	3.3V, S	24 pg 438
MT	18LD(T)472 X	. (Rev. 2/95)	4 Meg x 72	3.3V, EDO	24 pg 438
MT	18LD(T)472 XS	. (Rev. 2/95)	4 Meg x 72	3.3V, EDO, S	24 pg 438
			_	EDO	
				3.3V	3.3 volt Vcc
DRA)	M CARDS				
MT	8D88C132(S)	. (Rev. 2/95)	1 Meg x 32	5V	17 pg 500
	8D88C132H(S)			5V	
	8D88C132V(S)			3.3V	
MT	8D88C132VH(S)	. (Rev. 2/95)	1 Meg x 32	3.3V	17 pg 503
MT	16D88C232(S)	. (Rev. 2/95)	2 Meg x 32	5V	17 pg 500
	16D88C232H(S)			5V	17 pg 501
	16D88C232V(S)			3.3V	17 pg 502
	16D88C232VH(S)			3.3V	17 pg 502
	8D88C432V(S)			3.3V	17 pg 503
	8D88C432VH(S)			3.3V	17 pg 502
				2.237	17 pg 503
	16D88C832V(S)			3.3V	
	16D88C832VH(S)			3.3V	
5V			5 volt Vcc	3.3V	3.3 volt Vcc
DDAI	MTECHNICA	LNOTEC			
	M TECHNICA				
				(Rev. 2/95)	
TN-	-00-03 Using	; Gel-Pak® Packaş	ging With Micron l	Die (Rev. 2/95)	2 pg 624
				nts (Rev. 2/95)	
TN-	-04-06 OE -C	ontrolled/LATE	WRITE Cycles (D)	RAM) (Rev. 2/95)	2 pg 603
TN-	-04-12 LPDR	AM Extended R	efresh Current vs.	RAS Active Time (4 Meg) (Rev. 2/95).	1 pg 606
				Design (Rev. 2/95)	
				parison (Rev. 2/95)	
				Main Memory (Rev. 2/95)	
TN-	-04-20 SELF	REFRESH DRAM	Vis (Rev. 2/95)	Train tremery (nev. 2, 30)	2 ng 612
TN-	-04-21 Redu	re DRAM Cycle	Times with Extend	led Data-Out (Rev. 2/95)	8 pg 613
114		L DIVINI CYCLE	TITLES WILL DATELLO	ica Data Out (100v. 2/ 70)	o pg 013

L NOTES (continued)		NIII	ABER
v 16 DP AM Typical Operating Con	rves (Rev. 2/95)		
o DRAM Typical Operating Curves	(Rev. 2/95)	4 pg	615
g DRAM—Access Time vis Conscit	ance (Rev. 2/95)	o pg 2 pg	013 414
y 16 Access Time vs. Canacitance	(Roy 2/05)	2 pg 1 pg	610
M Soft Error Poto Colculations (Por	(Rev. 2/95)	1 pg	619
mizing EDO Advantages at the Sys	tom Lovel (Pov. 2/05)	5 pg	622
Mothodo of DPAM Potroch (Por	2 /05)	12 pg	622
Level for 4 Mag v 4 200 Mil or 400	M;1 COL (Pay 2 /05)	4 pg	626
Layout for 4 Meg x 4 300 Mill of 400	o (Pov. 2 /05)	4 pg	627
n DRAM Cards (Rev. 2/95)	Sev. 2/ 33)	3 pg	618
RELIABILITY			
(Rev. 2/95)		10 pg	701
		F8	
(Rev. 11/94)256K x 1	CE only	11 pg	1202
	CE only	11 pg	1208
	<u>CF & OF</u>	12 pg	1209
	CE & OE, Revolutionary Pinout	10 pg	1211
	CE & OF	12 pg	1215
	CE & OE. Revolutionary Pinout	10 pg	1217
	BE, CE & OE, Revolutionary Pinout	11 pg	1221
	REVOLUTIONARY PINOUT CENTER PI	N POWER AND	ROUND
(Rev. 11/94A)256K x 1	CE only with separate I/O	9 pg	1300
	CE only	9 pg	1302
	CE & OE, Revolutionary Pinout	9 pg	1306
	CE & OE	10 pg	1307
	BE, CE & OE, Revolutionary Pinout	11 pg	1311
CHIP ENABLE	OE	OUTPUT	ENABLE
BYTE ENABLE	REVOLUTIONARY PINOUT CENTER PI	N POWER AND C	GROUND
(Rev. 1/94)256K	x1, x4, x8	4 pg	2502
	x1. x4. x8	5 pg	2506
	M Soft Error Rate Calculations (Revimizing EDO Advantages at the Systous Methods of DRAM Refresh (RevLayout for 4 Meg x 4 300 Mil or 400 are DRAM Memory Cost with Cachement Bursting with the SGRAM (Fin DRAM Cards (Rev. 2/95)	M Soft Error Rate Calculations (Rev. 2/95) mrizing EDO Advantages at the System Level (Rev. 2/95) Layout for 4 Meg x 4 300 Mil or 400 Mil SOJ (Rev. 2/95) Layout for 4 Meg x 4 300 Mil or 400 Mil SOJ (Rev. 2/95) mee DRAM Memory Cost with Cache (Rev. 2/95) mement Bursting with the SGRAM (Rev. 2/95) m DRAM Cards (Rev. 2/95) RELIABILITY (Rev. 2/95) (Rev. 11/94)	(Rev. 2/95)

	DO	CUMENT
SYNCHRONOUS SRAMs		NUMBER
MT58LC64K18B2 (Rev. 11/94)64K x 18	SyncBurst™, Interleaved, Linear 17	pg 1502
MT58LC64K18M1 (Rev. 11/94) 64K x 18	SyncBurst, Linear	
MT58LC32K32B2 (Rev. 11/94)	SyncBurst	
MT58LC32K32C4 (Rev. 11/94)32K x 32	SyncBurst, Interleaved, Pipelined	pg 1513
MT58LC32K36B2 (Rev. 11/94)32K x 36	SyncBurst, Interleaved	
MT58LC32K36C4 (Rev. 11/94)32K x 36	SyncBurst, Interleaved, Pipelined 14	
MT58LC64K36B2 (Rev. 12/94)64K x 36		
SRAM MODULES		
MT8S6432 (Rev. 11/94)64K x 32	<u>CE</u> & <u>OE</u>	pg 1901
MT8LS6432 (Rev. 11/94)64K x 32	<u>CE</u> & <u>OE</u>	pg 1902
MT4S12832 (Rev. 11/94) 128K x 32	<u>CE</u> & <u>OE</u>	pg 1903
MT4LS12832 (Rev. 11/94) 128K x 32	<u>CE</u> & <u>OE</u>	pg 1904
MT4LS12832R (Rev. 9/94) 128K x 32	9	pg 1909
MT8S25632 (Rev. 11/94)256K x 32	<u>CE</u> & <u>OE</u>	pg 1905
MT8LS25632 (Rev. 11/94)256K x 32	<u>CE</u> & <u>OE</u>	pg 1906
MT8LS25632R (Rev. 9/94) 256K x 32	9	
MT8LS132 (Rev. 11/94) 1 Meg x 32	<u>CE</u> & <u>OE</u>	pg 1907
MT2LSYT3264T1 (Rev. 11/94) 32K x 64	SyncBurst, Linear 13	pg 3002
MT2LSYT3264T2 (Rev. 11/94) 32K x 64	SyncBurst, Interleaved 13	pg 3002
MT2LSYT3264T4 (Rev. 11/94)32K x 64	SyncBurst, Interleaved, Pipelined	pg 3003
MT2LSYT3264T6 (Rev. 11/94) 32K x 64	SyncBurst, Linear, Pipelined	pg 3003
MT2LSYT3264B2 (Rev. 11/94) 32K x 64	SyncBurst, Interleaved, Linear 7	
MT2LSYT3264C4 (Rev. 11/94)32K x 64	SyncBurst, Interleaved, Linear, Pipelined 7	pg 3001
MT2LSYT3272T1 (Rev. 11/94)32K x 72	SyncBurst, Linear 14	
MT2LSYT3272T2 (Rev. 11/94)32K x 72	SyncBurst, Interleaved 14	
MT2LSYT3272T4 (Rev. 11/94)32K x 72	SyncBurst, Interleaved, Pipelined 14	pg 3007
MT2LSYT3272T6 (Rev. 11/94)32K x 72	SyncBurst, Linear, Pipelined 14	pg 3007
MT2LSYT3272B2 (Rev. 11/94)32K x 72	SyncBurst, Interleaved, Linear 8	
MT2LSYT3272C4 (Rev. 11/94)32K x 72	SyncBurst, Interleaved, Linear, Pipelined 8	pg 3005
MT4LSY6472T1 (Rev. 11/94)64K x 72	SyncBurst, Linear 14	pg 3006
MT4LSY6472T2 (Rev. 11/94)64K x 72	SyncBurst, Interleaved14	pg 3006
MT4LSY6472T4 (Rev. 11/94)64K x 72	SyncBurst, Interleaved, Pipelined 14	pg 3007
MT4LSY6472T6 (Rev. 11/94)64K x 72	SyncBurst, Linear, Pipelined 14	
MT4LSYT6472B2 (Rev. 11/94)64K x 72	SyncBurst, Interleaved, Linear 8	
MT4LSYT6472C4 (Rev. 11/94)64K x 72	SyncBurst, Interleaved, Linear, Pipelined 8	
CECHIP ENABLE	OEO	UTPUT ENABLE
SRAM TECHNICAL NOTES		
TN-00-01 Moisture Absorption in Plastic Packages	(Rev. 2/95) 1	pg 600
TN-00-02 Tape-and-Reel Procedures (Rev. 2/95)	5	pg 601
TN-00-03 Using Gel-Pak® Packaging With Micron I	Die (Rev. 2/95) 2	pg 624
TN-05-02 SRAM Bus Contention Design Considera	tions (Rev. 11/94) 4	pg 2000
TN-05-03 5V SRAM Capacitive Loading (Rev. 11/9	4)	pg 2001
TN-05-06 1 Meg Evolutionary Pinout SRAM Typica	al (5V) Operating Curves (Rev. 11/94) 2	pg 2002
TN-05-07 256K SRAM Typical (5V) Operating Curv	ves (Rev. 11/94) 2	pg 2003
TN-05-13 1 Meg Low-Power SRAMs (Rev. 11/94)		
TN-05-14 SRAM Thermal Design Considerations (F	Rev. 11/94) 5	pg 2006
TN-05-16 A Designer's Guide to 3.3V SRAMs (Rev.	11/94)6	pg 2010
TN-05-17 Low-Power Memory Design Using Data	Ketention (Kev. 11/94)3	pg 2011

MT28LF002 (Rev. 7/94) 256K x 8 BB, AUTO 2 pg 2900 MT28LF200 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 3 pg 2901 MT28LF004 (Rev. 7/94) 512K x 8 BB, AUTO 2 pg 2902 MT28LF400 (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 26 pg 2903 MT28LF008 (Rev. 7/94) 1 Meg x 8 SB, AUTO, DPD 3 pg 2904 BB Boot Block AUTO Automated W/E Algorithm SB Symmetric Block DPD Deep Power Down			
SRAM TECHNICAL NOTES (continued) 2 pg 2018			DOCUMENT
TN-05-19. SRAMs and Low-Voltage Data Retention (Rev. 11/94) 2 pg. 2013 TN-05-20. 3.3V SRAM Capacitive Loading (Rev. 11/94) 2 pg. 2015 TN-05-21. High-Speed Memory Design Techniques (Rev. 11/94) 6 pg. 2015 TN-05-22. 1 Meg Revolutionary Pinout SRAM Typical (SV) Operating Curves (Rev. 11/94) 3 pg. 2017 TN-05-23. 2566 SRAM Typical (3.3V) Operating Curves (Rev. 11/94) 2 pg. 2018 TN-58-01. SyncBurst™ SRAM Design for Compatibility (Rev. 11/94) 8 pg. 2014 TN-58-02. Design Tips: 32K x 36 Synchronous SRAM (Rev. 11/94) 5 pg. 2019 TN-58-03. SyncBurst™ SRAM in Asynchronous Designs (Rev. 11/94) 5 pg. 2019 TN-58-04. Design Tips: SyncBurst™ SRAM Standards (Rev. 11/94) 5 pg. 2019 SRAM PRODUCT RELIABILITY Product Reliability (Rev. 11/94) 11 pg. 707 5/12 VOLT FLASH MEMORY MT28F002. (Rev. 7/94) 256K x 8 BB, AUTO 25 pg. 2601 MT28F200. (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 25 pg. 2602 MT28F004. (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 25 pg. 2603 MT28F009. (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 25 pg. 2603 MT28F400. (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 25 pg. 2603 MT28F400 ES (Rev. 11/94) 4 Meg. ERRATA 1 pg. 2605 MT28F008 (Rev. 7/94) 4 Meg. ERRATA 1 pg. 2605 MT28F008 (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 26 pp. 2602 MT28F004 ES (Rev. 11/94) 4 Meg. ERRATA 1 pg. 2605 MT28F004 ES (Rev. 11/94) 4 Meg. ERRATA 1 pg. 2605 MT28F004 ES (Rev. 11/94) 4 Meg. ERRATA 1 pg. 2605 MT28F004 ES (Rev. 11/94) 4 Meg. ERRATA 1 pg. 2605 MT28F004 ES (Rev. 11/94) 4 Meg. ERRATA 1 pg. 2605 MT28F004 ES (Rev. 11/94) 526K x 16/512K x 8 BB, AUTO 3 pg. 2900 MT28LF000 (Rev. 7/94) 512K x 8 BB, AUTO 3 pg. 2900 MT28LF000 (Rev. 7/94) 512K x 8 BB, AUTO 3 pg. 2900 MT28LF000 (Rev. 7/94) 512K x 8 BB, AUTO 3 pg. 2901 MT28LF000 (Rev. 7/94) 512K x 8 BB, AUTO 3 pg. 2901 MT28LF000 (Rev. 7/94) 512K x 8 BB, AUTO 3 pg. 2901 MT28LF000 (Rev. 7/94) 512K x 8 BB, AUTO 3 pg. 2901 MT28LF000 (Rev. 7/94) 512K x 8 BB, AUTO 3 pg. 2901 MT28LF000 (Rev. 7/94) 512K x 8 BB, AUTO 3 pg. 2901 MT28LF000 (Rev. 7/94) 512K x 8 BB, AUTO 3 pg. 2901 MT28LF000 (Rev. 7/94) 512K x 8 BB, AUTO 3 pg. 290	SRAM TECHNICAL NOTES (continued)		
TN-05-20			
TN-05-21 High-Speed Memory Design Techniques (Rev. 11/94) 6 pg 2015 TN-05-22 1 Meg Revolutionary Pinout SRAM Typical (5V) Operating Curves (Rev. 11/94) 3 pg 2017 TN-05-23 256K SRAM Typical (3.3V) Operating Curves (Rev. 11/94) 2 pg 2018 TN-58-01 SyncBurst™ SRAM Design for Compatibility (Rev. 11/94) 5 pg 2019 TN-58-01 Design Tips: 32K x 36 Synchronous SRAM (Rev. 11/94) 5 pg 2009 TN-58-03 SyncBurst™ SRAM in Asynchronous Designs (Rev. 11/94) 5 pg 2019 TN-58-04 Design Tips: SyncBurst™ SRAM Standards (Rev. 11/94) 5 pg 2012 TN-58-04 Design Tips: SyncBurst™ SRAM Standards (Rev. 11/94) 5 pg 2019 SRAM PRODUCT RELIABILITY Product Reliability (Rev. 11/94) 11 pg 707 5/12 VOLT FLASH MEMORY MT28F002 (Rev. 7/94) 256K x 8 BB, AUTO 25 pg 2601 MT28F200 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 26 pg 2602 MT28F400 (Rev. 7/94) 512K x 8 BB, AUTO 25 pg 2603 MT28F400 (Rev. 7/94) 1 Meg x 8 SB, AUTO 26 pg 2600 MT28F008 (Rev. 7/94) 4 Meg ERRATA 1 pg 2605 MT28F8004 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 MT28F8004 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 MT28F8004 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 MT28F8004 ES (Rev. 11/94) 256K x 16/512K x 8 BB, AUTO 20 pg 2003 MT28F8004 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 MT28F8004 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 MT28F8004 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 MT28F8004 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 MT28F8004 ES (Rev. 11/94) 256K x 8 BB, AUTO 26 pg 2902 MT28LF002 (Rev. 7/94) 256K x 8 BB, AUTO 3 pg 2901 MT28LF002 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 3 pg 2901 MT28LF004 (Rev. 7/94) 3 E86 SB, AUTO 3 pg 2901 MT28LF005 (Rev. 7/94) 3 E86 SB, AUTO 3 pg 2901 MT28LF006 (Rev. 7/94) 5 E86 SB, AUTO 3 pg 2901 MT28LF007 (Rev. 7/94) 5 E86 SB, AUTO 3 pg 2901 MT28LF008 (Rev. 7/94) 5 E86 SB, AUTO 3 pg 2902 MT28LF009 (Rev. 7/94) 5 E86 SB, AUTO 3 pg 2901 MT28LF000 (Rev. 7/94) 5 E86 SB, AUTO 3 pg 2902 MT28LF000 (Rev. 7/94) 5 E86 SB, AUTO 3 pg 2902 MT28LF000 (Rev. 7/94) 5 E86 SB, AUTO 3 pg 2902 MT28LF000 (Rev. 7/94) 5 E86 SB, AUTO 3 pg 2902 MT28LF000 (Rev. 7/94) 5 E86 SB, AUTO 3 pg 2902 MT28LF000 (R	TN-05-20 3 3V SRAM Capacitive Loading (Rev. 11.	(Rev. 11/ 94/	2 pg 2016
TN-05-22. 1 Meg Revolutionary Pinout SRAM Typical (5V) Operating Curves (Rev. 11/94) 2 pg 2018 TN-05-23. 256K SRAM Typical (3.3V) Operating Curves (Rev. 11/94) 8 pg 2014 TN-05-25 Spr. 19 SyncBurst™ SRAM Design for Compatibility (Rev. 11/94) 5 pg 2012 TN-05-26 Design Tips: 32K x 36 Synchronous SRAM (Rev. 11/94) 5 pg 2012 TN-05-27 Design Tips: SyncBurst™ SRAM Standards (Rev. 11/94) 5 pg 2012 TN-05-28 Design Tips: SyncBurst™ SRAM Standards (Rev. 11/94) 5 pg 2012 TN-05-29 Design Tips: SyncBurst™ SRAM Standards (Rev. 11/94) 5 pg 2012 TN-05-29 Design Tips: SyncBurst™ SRAM Standards (Rev. 11/94) 5 pg 2019 SRAM PRODUCT RELIABILITY Product Reliability (Rev. 11/94) 256K x 8 BB, AUTO 25 pg 2601 MT28F002 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 26 pg 2602 MT28F004 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 26 pg 2602 MT28F004 (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 25 pg 2603 MT28F004 (Rev. 7/94) 1 Meg x 8 SB, AUTO 25 pg 2603 MT28F005 (Rev. 7/94) 4 Meg ERRATA 1 pg 2605 MT28F006 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 MT28F004 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 BB 8 BOSON Block AUTO Automated W/E Algorithm Deep Power Down 3.3/12 VOLT FLASH MEMORY MT28LF002 (Rev. 7/94) 256K x 8 BB, AUTO 2 pg 2900 MT28LF004 (Rev. 7/94) 256K x 8 BB, AUTO 2 pg 2900 MT28LF006 (Rev. 7/94) 256K x 8 BB, AUTO 2 pg 2900 MT28LF006 (Rev. 7/94) 256K x 8 BB, AUTO 2 pg 2900 MT28LF006 (Rev. 7/94) 256K x 8 BB, AUTO 2 pg 2900 MT28LF006 (Rev. 7/94) 256K x 8 BB, AUTO 2 pg 2900 MT28LF006 (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 2 pg 2900 MT28LF006 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 2 pg 2900 MT28LF006 (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 2 pg 2900 MT28LF006 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 2 pg 2900 MT28LF006 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 2 pg 2900 MT28LF006 (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 2 pg 2900 MT28LF006 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 2 pg 2900 MT28LF006 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 2 pg 2900 MT28LF006 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 2 pg 2900 MT28LF006 (Rev. 7/94) 19 256K x 16/512K x 8 BB, AUT	TN 05 21 High-Speed Memory Design Techniques	(Par 11/04)	2 pg 2010
TN-05-23	TN 05-22 1 Mag Payalutionary Pinout SP AM Typic	cal (EV) Operating Current (Per 11/	6 pg 2013
TN-58-01	TN 05-22 1 Wieg Nevolutionally 1 mout official 1 year	cal (5V) Operating Curves (Kev. 11/	94) 3 pg 2017
TN-58-02. Design Tips: 32K x 36 Synchronous SRAM (Rev. 11/94). 5 pg. 2009 TN-58-03. SyncBurst™ SRAMs in Asynchronous Designs (Rev. 11/94). 5 pg. 2011 TN-58-04. Design Tips: SyncBurst™ SRAM Standards (Rev. 11/94). 5 pg. 2019 SRAM PRODUCT RELIABILITY Product Reliability. (Rev. 11/94). 11 pg. 707 5/12 VOLT FLASH MEMORY MT28F002. (Rev. 7/94)	TN-00-23 200K 3KANN Typical (3.3 V) Operating Cu	rves (Kev. 11/94)	2 pg 2010
TN-58-03. SyncBurst™ SRAMs in Asynchronous Designs (Rev. 11/94). 5 pg. 2012 TN-58-04. Design Tips: SyncBurst™ SRAM Standards (Rev. 11/94). 5 pg. 2019 SRAM PRODUCT RELIABILITY Product Reliability (Rev. 11/94). 11 pg. 707 5/12 VOLT FLASH MEMORY MT28F002. (Rev. 7/94). 256K x 8 BB, AUTO. 25 pg. 2601 MT28F200. (Rev. 7/94). 128K x 16/256K x 8 BB, AUTO. 25 pg. 2602 MT28F004. (Rev. 7/94). 256K x 16/512K x 8 BB, AUTO. 25 pg. 2603 MT28F006. (Rev. 7/94). 1 Meg x 8 SB, AUTO. 25 pg. 2603 MT28F008. (Rev. 7/94). 1 Meg x 8 SB, AUTO, DPD. 3 pg. 2604 MT28F006 ES. (Rev. 11/94). 4 Meg. ERRATA. 1 pg. 2605 MT28F004 ES. (Rev. 11/94). 4 Meg. ERRATA. 1 pg. 2605 MT28F006 ES. (Rev. 11/94). 4 Meg. ERRATA. 1 pg. 2605 MT28F006 ES. (Rev. 11/94). 5 pool Block. AUTO. Automated W.F. Algorithm. Bb. Symmetric Block. DPD. Deep Power Down 3.3/12 VOLT FLASH MEMORY MT28LF002. (Rev. 7/94). 256K x 16/512K x 8 BB, AUTO. 2 pg. 2900 MT28LF200. (Rev. 7/94). 128K x 16/256K x 8 BB, AUTO. 3 pg. 2901 MT28LF004. (Rev. 7/94). 256K x 16/512K x 8 BB, AUTO. 3 pg. 2901 MT28LF006. (Rev. 7/94). 256K x 16/512K x 8 BB, AUTO. 3 pg. 2902 MT28LF008. (Rev. 7/94). 256K x 16/512K x 8 BB, AUTO. 2 pg. 2902 MT28LF008. (Rev. 7/94). 1 Meg x 8 SB, AUTO. 2 pg. 2902 MT28LF008. (Rev. 7/94). 256K x 16/512K x 8 BB, AUTO. 3 pg. 2904 MT28LF008. (Rev. 7/94). 256K x 16/512K x 8 BB, AUTO. 3 pg. 2904 MT28LF008. (Rev. 7/94). 256K x 16/512K x 8 BB, AUTO. 3 pg. 2904 MT28LF008. (Rev. 7/94). 256K x 16/512K x 8 BB, AUTO. 3 pg. 2904 MT28LF008. (Rev. 7/94). 256K x 16/512K x 8 BB, AUTO. 3 pg. 2904 MT28LF008. (Rev. 7/94). 256K x 16/512K x 8 BB, AUTO. 3 pg. 2904 MT28LF009. (Rev. 7/94). 256K x 16/512K x 8 BB, AUTO. 3 pg. 2904 MT28LF009. (Rev. 7/94). 256K x 16/512K x 8 BB, AUTO. 3 pg. 2904 MT28LF009. (Rev. 7/94). 256K x 16/512K x 8 BB, AUTO. 3 pg. 2904 MT28LF009. (Rev. 7/94). 256K x 16/512K x 8 BB, AUTO. 3 pg. 2904 MT28LF009. (Rev. 7/94). 256K x 16/512K x 8 BB, AUTO. 3 pg. 2904 MT28LF009. (Rev. 7/94). 256K x 16/512K x 8 BB, AUTO. 3 pg. 2904 MT28LF009. (Rev. 7/94). 256K x 16/512K x 8 BB, AUTO. 3 pg.	TN 50 02 Doctor Time 22V v 26 Comphrenous CD AN	/IIIty (Rev. 11/94)	8 pg 2014
TN-58-04 Design Tips: SyncBurst™ SRAM Standards (Rev. 11/94) 5 pg 2019	TN 50-02 CringPringtTM CD A Main A grandhannaire De	VI (Rev. 11/94)	5 pg 2009
SRAM PRODUCT RELIABILITY	TN 50 04 Decime Time Complement M CD AM Complement	281gns (Kev. 11/94)	5 pg 2012
Product Reliability	1N-58-04 Design Tips: Syncburst 1112 SKAM Standard	ds (Rev. 11/94)	5 pg 2019
5/12 VOLT FLASH MEMORY MT28F002 (Rev. 7/94) 256K x 8 BB, AUTO 25 pg 2601 MT28F200 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 26 pg 2602 MT28F004 (Rev. 7/94) 512K x 8 BB, AUTO 25 pg 2603 MT28F008 (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 26 pg 2600 MT28F008 (Rev. 7/94) 1 Meg x 8 SB, AUTO, DPD 3 pg 2604 MT28F400 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 MT28F004 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 BB Boot Block AUTO Automated W/E Algorithm SB Symmetric Block DPD Deep Power Down 3.3/12 VOLT FLASH MEMORY MT28LF002 (Rev. 7/94) 256K x 8 BB, AUTO 2 pg 2900 MT28LF200 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 2 pg 2902 MT28LF200 (Rev. 7/94) <			
MT28F002	Product Reliability (Rev. 11/94)		11 pg 707
MT28F002			
MT28F200 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 26 pg 2602 MT28F004 (Rev. 7/94) 512K x 8 BB, AUTO 25 pg 2600 MT28F400 (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 26 pg 26010 MT28F008 (Rev. 7/94) 1 Meg x 8 SB, AUTO, DPD 3 pg 2604 MT28F400 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 MT28F004 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 BB Boot Block AUTO Automated W/E Algorithm DPD Deep Power Down 3.3/12 VOLT FLASH MEMORY MT28LF002 (Rev. 7/94) 256K x 8 BB, AUTO 2 pg 2900 MT28LF200 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 2 pg 2900 MT28LF004 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 2 pg 2902 MT28LF008 (Rev. 7/94) 256K x 8 BB, AUTO 2 pg 2902 MT28LF008			
MT28F004 (Rev. 7/94) .512K x 8 BB, AUTO .25 pg .2603 MT28F400 (Rev. 7/94) .256K x 16/512K x 8 BB, AUTO .26 pg .2600 MT28F008 (Rev. 7/94) .1 Meg x 8 SB, AUTO, DPD .3 pg .2604 MT28F000 ES (Rev. 11/94) .4 Meg ERRATA .1 pg .2605 MT28F004 ES (Rev. 11/94) .4 Meg ERRATA .1 pg .2605 MT28F004 ES (Rev. 11/94) .4 Meg ERRATA .1 pg .2605 MT28F004 ES (Rev. 11/94) .4 Meg ERRATA .1 pg .2605 BB			
MT28F400 .(Rev. 7/94) .256K x 16/512K x 8 BB, AUTO			
MT28F008 (Rev. 7/94) 1 Meg x 8 SB, AUTO, DPD 3 pg 2604 MT28F400 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 MT28F004 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 BB Boot Block AUTO Automated W/E Algorithm SB Symmetric Block DPD Automated W/E Algorithm Deep Power Down 3.3/12 VOLT FLASH MEMORY 2 pg 2900 MT28LF002 (Rev. 7/94) 256K x 8 BB, AUTO 2 pg 2900 MT28LF200 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 2 pg 2902 MT28LF004 (Rev. 7/94) 128K x 16/512K x 8 BB, AUTO 2 pg 2903 MT28LF008 (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 2 pg 2903 MT28LF008 (Rev. 7/94) 1 Meg x 8 SB, AUTO, DPD 3 pg 2904 BB Box Block Block Box Block Block Box Block Block Box Block Block DPD Automated W/E Algorithm		BB, AUTO	25 pg 2603
MT28F400 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 MT28F004 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 BB Boot Block AUTO Automated W/E Algorithm SB Symmetric Block DPD Deep Power Down 3.3/12 VOLT FLASH MEMORY MT28LF002 (Rev. 7/94) 256K x 8 BB, AUTO 2 pg 2900 MT28LF200 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 3 pg 2901 MT28LF004 (Rev. 7/94) 512K x 8 BB, AUTO 2 pg 2902 MT28LF008 (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 2 pg 2903 MT28LF008 (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 26 pg 2903 MT28LF008 (Rev. 7/94) 1 Meg x 8 SB, AUTO, DPD 3 pg 2904 BB Boot Block AUTO Automated W/E Algorithm AUTO Automated W/E Algorithm SB Symmetric Block DPD Deep Power Down Deep Power Down		BB, AUTO	26 pg 2600
MT28F400 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 MT28F004 ES (Rev. 11/94) 4 Meg ERRATA 1 pg 2605 BB Boot Block AUTO Automated W/E Algorithm SB Symmetric Block DPD Deep Power Down 3.3/12 VOLT FLASH MEMORY MT28LF002 (Rev. 7/94) 256K x 8 BB, AUTO 2 pg 2900 MT28LF200 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 3 pg 2901 MT28LF004 (Rev. 7/94) 512K x 8 BB, AUTO 2 pg 2902 MT28LF008 (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 2 pg 2903 MT28LF008 (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 26 pg 2903 MT28LF008 (Rev. 7/94) 1 Meg x 8 SB, AUTO, DPD 3 pg 2904 BB Boot Block AUTO Automated W/E Algorithm AUTO Automated W/E Algorithm SB Symmetric Block DPD Deep Power Down Deep Power Down		SB, AUTO, DPD	3 pg 2604
MT28F004 ES (Rev. 11/94)			
3.3/12 VOLT FLASH MEMORY MT28LF002	MT28F004 ES (Rev. 11/94)4 Meg		
3.3/12 VOLT FLASH MEMORY MT28LF002		AUTO	Automated W/E Algorithm
MT28LF002 (Rev. 7/94)	SB Symmetric block	DPD	Deep rower Down
MT28LF200 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 3 pg 2901 MT28LF004 (Rev. 7/94) 512K x 8 BB, AUTO 2 pg 2902 MT28LF400 (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 26 pg 2903 MT28LF008 (Rev. 7/94) 1 Meg x 8 SB, AUTO, DPD 3 pg 2904 BB Boot Block AUTO Automated W/E Algorithm SB Symmetric Block DPD Deep Power Down CUSTOMER SERVICE NOTES CSN-01 Standard Shipping Bar Code Labels (Rev. 2/95) 1 pg 709 CSN-02 Individual Box and Container Bar Code Labels (Rev. 2/95) 1 pg 710 CSN-03 Surface-Mount Product Labeling (Rev. 2/95) 1 pg 711 CSN-04 Box and Tape-and-Reel Quantity and Weight Chart (Rev. 2/95) 2 pg 712 CSN-05 Environmental Programs (Rev. 2/95) 2 pg 713 CSN-06 Electronic Data Interchange (Rev. 2/95) 1 pg 714 CSN-07 Return Material Authorization (RMA) Procedures (Rev. 2/95) 1 pg 715 CSN-08 ISO 9001 Certifi	3.3/12 VOLT FLASH MEMORY		
MT28LF200 (Rev. 7/94) 128K x 16/256K x 8 BB, AUTO 3 pg 2901 MT28LF004 (Rev. 7/94) 512K x 8 BB, AUTO 2 pg 2902 MT28LF400 (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 26 pg 2903 MT28LF008 (Rev. 7/94) 1 Meg x 8 SB, AUTO, DPD 3 pg 2904 BB Boot Block AUTO Automated W/E Algorithm SB Symmetric Block DPD Deep Power Down CUSTOMER SERVICE NOTES CSN-01 Standard Shipping Bar Code Labels (Rev. 2/95) 1 pg 709 CSN-02 Individual Box and Container Bar Code Labels (Rev. 2/95) 1 pg 710 CSN-03 Surface-Mount Product Labeling (Rev. 2/95) 1 pg 711 CSN-04 Box and Tape-and-Reel Quantity and Weight Chart (Rev. 2/95) 2 pg 712 CSN-05 Environmental Programs (Rev. 2/95) 2 pg 713 CSN-06 Electronic Data Interchange (Rev. 2/95) 1 pg 714 CSN-07 Return Material Authorization (RMA) Procedures (Rev. 2/95) 1 pg 715 CSN-08 ISO 9001 Certifi	MT28LF002 (Rev. 7/94)256K x 8	BB, AUTO	2 pg 2900
MT28LF004 (Rev. 7/94) 512K x 8 BB, AUTO 2 pg 2902 MT28LF400 (Rev. 7/94) 256K x 16/512K x 8 BB, AUTO 26 pg 2903 MT28LF008 (Rev. 7/94) 1 Meg x 8 SB, AUTO, DPD 3 pg 2904 BB Boot Block AUTO Automated W/E Algorithm SB Symmetric Block DPD Deep Power Down CUSTOMER SERVICE NOTES CSN-01 Standard Shipping Bar Code Labels (Rev. 2/95) 1 pg 709 CSN-02 Individual Box and Container Bar Code Labels (Rev. 2/95) 1 pg 710 CSN-03 Surface-Mount Product Labeling (Rev. 2/95) 1 pg 711 CSN-04 Box and Tape-and-Reel Quantity and Weight Chart (Rev. 2/95) 2 pg 712 CSN-05 Environmental Programs (Rev. 2/95) 2 pg 713 CSN-06 Electronic Data Interchange (Rev. 2/95) 1 pg 714 CSN-07 Return Material Authorization (RMA) Procedures (Rev. 2/95) 1 pg 715 CSN-08 ISO 9001 Certification (Rev. 2/95) 2 pg 716		BB, AUTO	3 pg 2901
MT28LF008 (Rev. 7/94) 1 Meg x 8			
MT28LF008 (Rev. 7/94) 1 Meg x 8	MT28LF400 (Rev. 7/94) 256K x 16/512K x 8	BB, AUTO	26 pg 2903
BB Boot Block AUTO Automated W/E Algorithm Symmetric Block DPD Deep Power Down CUSTOMER SERVICE NOTES CSN-01 Standard Shipping Bar Code Labels (Rev. 2/95) 1 pg 709 CSN-02 Individual Box and Container Bar Code Labels (Rev. 2/95) 1 pg 710 CSN-03 Surface-Mount Product Labeling (Rev. 2/95) 1 pg 711 CSN-04 Box and Tape-and-Reel Quantity and Weight Chart (Rev. 2/95) 2 pg 712 CSN-05 Environmental Programs (Rev. 2/95) 2 pg 713 CSN-06 Electronic Data Interchange (Rev. 2/95) 1 pg 714 CSN-07 Return Material Authorization (RMA) Procedures (Rev. 2/95) 1 pg 715 CSN-08 ISO 9001 Certification (Rev. 2/95) 2 pg 716		SB, AUTO, DPD	3 pg 2904
CUSTOMER SERVICE NOTES CSN-01 Standard Shipping Bar Code Labels (Rev. 2/95) 1 pg 709 CSN-02 Individual Box and Container Bar Code Labels (Rev. 2/95) 1 pg 710 CSN-03 Surface-Mount Product Labeling (Rev. 2/95) 1 pg 711 CSN-04 Box and Tape-and-Reel Quantity and Weight Chart (Rev. 2/95) 2 pg 712 CSN-05 Environmental Programs (Rev. 2/95) 2 pg 713 CSN-06 Electronic Data Interchange (Rev. 2/95) 1 pg 714 CSN-07 Return Material Authorization (RMA) Procedures (Rev. 2/95) 1 pg 715 CSN-08 ISO 9001 Certification (Rev. 2/95) 2 pg 716	BB Boot Block	AUTO	Automated W/E Algorithm
CSN-01 Standard Shipping Bar Code Labels (Rev. 2/95) 1 pg 709 CSN-02 Individual Box and Container Bar Code Labels (Rev. 2/95) 1 pg 710 CSN-03 Surface-Mount Product Labeling (Rev. 2/95) 1 pg 711 CSN-04 Box and Tape-and-Reel Quantity and Weight Chart (Rev. 2/95) 2 pg 712 CSN-05 Environmental Programs (Rev. 2/95) 2 pg 713 CSN-06 Electronic Data Interchange (Rev. 2/95) 1 pg 714 CSN-07 Return Material Authorization (RMA) Procedures (Rev. 2/95) 1 pg 715 CSN-08 ISO 9001 Certification (Rev. 2/95) 2 pg 716	SB Symmetric Block	DPD	Deep Power Down
CSN-02 Individual Box and Container Bar Code Labels (Rev. 2/95) 1 pg 710 CSN-03 Surface-Mount Product Labeling (Rev. 2/95) 1 pg 711 CSN-04 Box and Tape-and-Reel Quantity and Weight Chart (Rev. 2/95) 2 pg 712 CSN-05 Environmental Programs (Rev. 2/95) 2 pg 713 CSN-06 Electronic Data Interchange (Rev. 2/95) 1 pg 714 CSN-07 Return Material Authorization (RMA) Procedures (Rev. 2/95) 1 pg 715 CSN-08 ISO 9001 Certification (Rev. 2/95) 2 pg 716	CUSTOMER SERVICE NOTES		
CSN-02 Individual Box and Container Bar Code Labels (Rev. 2/95) 1 pg 710 CSN-03 Surface-Mount Product Labeling (Rev. 2/95) 1 pg 711 CSN-04 Box and Tape-and-Reel Quantity and Weight Chart (Rev. 2/95) 2 pg 712 CSN-05 Environmental Programs (Rev. 2/95) 2 pg 713 CSN-06 Electronic Data Interchange (Rev. 2/95) 1 pg 714 CSN-07 Return Material Authorization (RMA) Procedures (Rev. 2/95) 1 pg 715 CSN-08 ISO 9001 Certification (Rev. 2/95) 2 pg 716	CSN-01 Standard Shipping Bar Code Label	ls (Rev. 2/95)	
CSN-03 Surface-Mount Product Labeling (Rev. 2/95) 1 pg 711 CSN-04 Box and Tape-and-Reel Quantity and Weight Chart (Rev. 2/95) 2 pg 712 CSN-05 Environmental Programs (Rev. 2/95) 2 pg 713 CSN-06 Electronic Data Interchange (Rev. 2/95) 1 pg 714 CSN-07 Return Material Authorization (RMA) Procedures (Rev. 2/95) 1 pg 715 CSN-08 ISO 9001 Certification (Rev. 2/95) 2 pg 716			
CSN-04 Box and Tape-and-Reel Quantity and Weight Chart (Rev. 2/95) 2 pg 712 CSN-05 Environmental Programs (Rev. 2/95) 2 pg 713 CSN-06 Electronic Data Interchange (Rev. 2/95) 1 pg 714 CSN-07 Return Material Authorization (RMA) Procedures (Rev. 2/95) 1 pg 715 CSN-08 ISO 9001 Certification (Rev. 2/95) 2 pg 716			
CSN-05 Environmental Programs (Rev. 2/95) 2 pg 713 CSN-06 Electronic Data Interchange (Rev. 2/95) 1 pg 714 CSN-07 Return Material Authorization (RMA) Procedures (Rev. 2/95) 1 pg 715 CSN-08 ISO 9001 Certification (Rev. 2/95) 2 pg 716			
CSN-06 Electronic Data Interchange (Rev. 2/95) 1 pg 714 CSN-07 Return Material Authorization (RMA) Procedures (Rev. 2/95) 1 pg 715 CSN-08 ISO 9001 Certification (Rev. 2/95) 2 pg 716			
CSN-07	CSN-06 Electronic Data Interchange (Rev. 2	2/95)	1 pg 714
CSN-08 ISO 9001 Certification (Rev. 2/95)			

 CSN-10
 Customer Comment Line (Rev. 2/95)
 1 pg
 719

 CSN-11
 Part Marking (Rev. 2/95)
 1 pg
 720

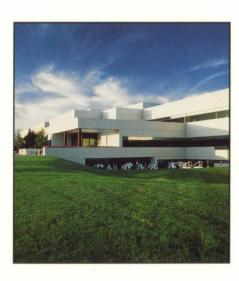
 CSN-12
 Product Change Notification (PCN) System (Rev. 2/95)
 1 pg
 721

	DOCUMENT
SALES AND SERVICE INFORMATION	NUMBER
Product Numbering System (Rev. 2/95)	
Ordering Information and Examples (Rev. 2/95)	
North American Sales Representatives and Distributors (Rev. 2/95)	17 pg 704
International Sales Representatives and Distributors (Rev. 2/95)	17 pg 704
GENERAL PRODUCT INFORMATION	
Literature Order Form (Rev. 11/94)	2 pg 2300
Memory Selector Guide (Rev. 5/94)	3 pg 2301
3.3V DRAM Selector Guide (Rev. 1/95)	
Design Line, November (Fall), 1992:	o po 2017
Upgrading from 1 Meg to 2 Meg VRAMs	
Reduce DRAM Cycle Times with Extended Data-Out	8 pg 2303
Design Line, February (Spring), 1993:	- 10
486 Level-2 Cache Design	8 pg 2304
Design Line, 2nd Quarter 1993 (2Q93):	10
Synchronous DRAMs: Designing to the JEDEC Standard	
Converting from x9 Memory Modules to x36 SIMMs	8 pg 2305
Design Line, 3rd Quarter 1993 (3Q93):	
SRAM Thermal Design Considerations	
A Designer's Guide to 3.3V SRAMs	12 pg 2308
Design Line, 4th Quarter 1993 (4Q93):	
Design Tips: 32K x 36 Sync SRAM	
Achieving Higher Memory Bandwidth in Graphics Systems	12 pg 2309
Design Line, 1st Quarter 1994 (1Q94):	
DRAM Soft Error Rate Calculations	
SyncBurst SRAMs in Asynchronous Designs	8 pg 2310
Design Line, 2nd Quarter 1994 (2Q94):	
Maximizing EDO Advantages at the System Level	8 pg 2311
Design Line, 3rd Quarter 1994 (3Q94):	
High-Speed Memory Design Techniques	
Various Methods of DRAM Refresh	8 pg 2313
Design Line, 4th Quarter 1994 (4Q94):	
Reduce DRAM Memory Costs With Cache	
Design Tips: SyncBurst SRAM Standards	8 pg 2318

NOTES

NOTES

MICHON TECHNOLOGY, IRC.


EDO DRAMs	
FPM DRAMs	2
SGRAM	3
DRAM SIMMs	4
DRAM DIMMs	5
DRAM CARDS	6
TECHNICAL NOTES	7
PRODUCT RELIABILITY	8
PACKAGE INFORMATION	9
SALES AND SERVICE INFORMATION	10
MICRON DATAFAX INDEX	

MICHON TECHNOLOGY, INC.

1	EDO DRAMs
2	FPM DRAMs
3	SGRAM
4	DRAM SIMMs
5	DRAM DIMMs
6	DRAM CARDS
7	TECHNICAL NOTES
8	PRODUCT RELIABILITY
9	PACKAGE INFORMATION
10	SALES AND SERVICE INFORMATION
	MICRON DATAFAX INDEX

Micron Technology, Inc.

2805 East Columbia Road P.O. Box 6 Boise, Idaho 83707-0006 Tel: 208-368-3900 Fax: 208-368-4431 Customer Comment Line: U.S.A. 800-932-4992 Intl. 01-208-368-3410 Fax 208-368-3342

Micron Europe Limited

Centennial Court Easthampstead Road Bracknell Berkshire RG12 1JA United Kingdom Tel: 44-1344-360055 Fax: 44-1344-869504

Micron Semiconductor (Deutschland) GmbH

Sternstrasse 20 D-85609 Aschheim Germany Tel: 49-89-903-0021 Fax: 49-89-904-3114

Micron Semiconductor Asia Pacific Pte Ltd

629 Aljunied Road #07-21 Cititech Industrial Bldg. Singapore 1438 Tel: 65-841-4066 Fax: 65-841-4166

Micron Semiconductor Asia Pacific, Inc.

Suite 1010, 10th Floor 333 Keelung Road, Sec 1 Taipei, 110 Taiwan, ROC Tel: 886-2-757-6622 Fax: 886-2-757-6656

