## MOS DATA BOOK

## Nローロバ



## MICRON

DYNAMIC RAMS ..... 1
DRAM MODULES ..... 2
MULTIPORT DRAMS ..... 3
STATIC RAMS ..... 4
SYNCHRONOUS SRAMS ..... 5
SRAM MODULES ..... 6
CACHE DATA SRAMS ..... 7
FIFO MEMORIES ..... 8
APPLICATION/TECHNICAL INFORMATION ..... 9
MILITARY INFORMATION ..... 10
PACKAGE INFORMATION ..... 11
SALES INFORMATION ..... 12

## MOS DATA BOOK

2805 East Columbia Road
Boise, Idaho 83706
Telephone: (208) 368-3900
FAX: (208) 368-4617

MICRON

## MCADN

## IMPORTANT NOTICE

Micron Technology, Inc. reserves the right to change products or specifications without notice. Customers are advised to obtain the latest versions of product specifications, which should be considered in evaluating a product's appropriateness for a particular use. There is no assurance that Micron's semiconductors are appropriate for any application by a customer.

MICRON TECHNOLOGY, INC. MAKES NO WARRANTIES EXPRESSED OR IMPLIED OTHER THAN COMPLIANCE WITH MICRON'S SPECIFICATION SHEET FOR THE COMPONENT AT THE TIME OF DELIVERY. ANY CLAIM AGAINST MICRON MUST BE MADE WITHIN NINETY (90) DAYS FROM THE DATE OF SHIPMENT FROM MICRON, AND MICRON HAS NO LIABILITY THEREAFTER. ANY MICRON LIABILITY IS LIMITED TO REPLACEMENT OF DEFECTIVE ITEMS OR RETURN OF AMOUNTS PAID FOR DEFECTIVE ITEMS (AT THE BUYER'S ELECTION).

MICRON'S PRODUCTS ARE NOT AUTHORIZED FOR USE ASCRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF MICRON TECHNOLOGY, INC. AS USED HEREIN:
A. LIFE SUPPORT DEVICES OR SYSTEMS ARE DEVICES OR SYSTEMS WHICH (1) ARE INTENDED FOR SURGICAL IMPLANT INTO THE BODY, OR (2) SUPPORT OR SUSTAIN LIFE AND WHOSE FAILURE TO PERFORM WHEN PROPERLY USED IN ACCORDANCE WITH INSTRUCTIONS FOR USE PROVIDED IN THE LABELING CAN BE REASONABLY EXPECTED TO RESULT IN A SIGNIFICANT INJURY TO THE USER.
B. CRITICAL COMPONENT IS ANY COMPONENT OF A LIFE SUPPORT DEVICE OR SYSTEM WHOSE FAILURE TO PERFORM CAN BE REASONABLY EXPECTED TO CAUSE THE FAILURE OF THE LIFE SUPPORT DEVICE OR SYSTEM OR TO AFFECT ITS SAFETY OR EFFECTIVENESS.

## CONTENTS OVERVIEW

The MOS Data Book has been organized into 11 sections and includes complete detailed specifications on our growing, high-performance CMOS and NMOS product line.
Sections 1 through 8 cover individual product families. Each section contains a product selection guide followed by data sheets. Three different types of data sheets are used: Advance Information, which contains initial descriptions of products still under development; Preliminary Information, which contains initial device characterization limits that are subject to change upon full characterization of production devices; and Final Information, which contains minimum and maximum limits specified over the complete power supply and temperature range for production devices.

Section 9 contains application and technical information.
Section 10 contains selected information about Micron's growing Defense Electronics product offering.

Section 11 contains packaging information.
Section 12 contains ordering information, product quality and reliability information and a list of sales representatives and distributors by geographical location for the North American Continent, Europe and Asia.

Additional or updated information on any Micron product is available from:

MICRON TECHNOLOGY, INC.<br>Marketing Department<br>2805 East Columbia Road<br>Boise, Idaho 83706<br>Telephone: (208) 368-3900<br>FAX: (208) 368-4617

## TABLE OF CONTENTS

## DYNAMIC RAMS

PAGE
Product Selection Guide
MT4264 $64 \mathrm{~K} \times 1$ PM ..... 1-1
MT1259 256K x 1 PM ..... 1-9
MT4C1024 1 Meg $\times 1$ FPM ..... 1-19
MT4C1026 1 Meg $x 1$ SC ..... 1-31
MT4C1027 1 Meg x 1 FPM, LP ..... 1-43
MT4C1004 $4 \mathrm{Meg} \times 1$ FPM ..... 1-55
MT4C1006 $4 \mathrm{Meg} \times 1$ SC ..... 1-67
MT4C10016 16 Meg x 1 FPM ..... 1-79
MT4C10017 16 Meg x 1 SC ..... 1-79
MT4067 $.64 \mathrm{~K} \times 4 \mathrm{PM}$ ..... 1-81
MT4C4256 256K x 4 FPM ..... 1-91
MT4C4258 256K x 4 SC ..... 1-103
MT4C4259 256K x 4 FPM, QCP ..... 1-115
MT4C4260 256K x 4 FPM, LP ..... 1-129
MT4C4001 1 Meg $\times 4$ FPM ..... 1-141
MT4C4003 1 Meg $\times 4$ SC ..... 1-153
MT4C4004 1 Meg $x 4$ QCP ..... 1-165
MT4C4005 1 Meg x 4 FPM, WPB ..... 1-179
MT4C40004 4 Meg $\times 4$ FPM ..... 1-191
MT4C40005 4 Meg $\times 4$ SC ..... 1-191
MT4C8512 512K x 8 FPM ..... 1-193
MT4C8513 512K x 8 FPM, WPB ..... 1-193
MT4C1664 $64 \mathrm{~K} \times 16$ FPM, DW ..... 1-207
MT4C1665 $64 \mathrm{~K} \times 16$ FPM, WPB ..... 1-207
MT4C1668 $64 \mathrm{~K} \times 16$ FPM, LP, DW ..... 1-223
MT4C1669 $64 \mathrm{~K} \times 16$ FPM, LP, WPB ..... 1-223
MT4C1670 $64 \mathrm{~K} \times 16$ SC, DW ..... 1-239
MT4C1671 $64 \mathrm{~K} \times 16$ SC, WPB ..... 1-239
MT4C1672 $64 \mathrm{~K} \times 16$ FPM, DC ..... 1-257
MT4C16256 256K x 16 FPM, DW ..... 1-259
MT4C16257 $256 \mathrm{~K} \times 16$ FPM, DW, WPB ..... 1-259
MT4C16258 $256 \mathrm{~K} \times 16$ FPM, DC ..... 1-259
MT4C16259 .256K x 16 FPM, DC, WPB ..... 1-259

## DRAM MODULES

Product Selection GuideMT2D2568$.256 \mathrm{~K} \times 8 \quad$ FPM2-1
MT8D18 1 Meg $\times 8$ FPM ..... 2-11
MT2D18 $1 \mathrm{Meg} \times 8$ FPM ..... 2-21
MT8D48 $.4 \mathrm{Meg} \times 8$ FPM ..... 2-31
MT3D2569 256K x 9 FPM, PM ..... 2-41
MT9D19 1 Meg $\times 9$ FPM ..... 2-51
MT3D19 1 Meg $\times 9$ FPM ..... 2-61
MT9D49 $4 \mathrm{Meg} \times 9$ FPM ..... 2-71
MT8D25632 $.256 \mathrm{~K} \times 32$ FPM ..... 2-81
MT16D51232 $.512 \mathrm{~K} \times 32$ FPM ..... 2-91
MT8D132 $1 \mathrm{Meg} \times 32$ FPM ..... 2-101
MT16D232 .2 Meg $\times 32$ FPM ..... 2-111
MT9D25636 .256K x 36 FPM ..... 2-121
MT10D25636 $256 \mathrm{~K} \times 36$ FPM ..... 2-131
MT18D51236 512K x 36 FPM ..... 2-141
MT20D51236 $512 \mathrm{~K} \times 36$ FPM ..... 2-151
MT9D136 1 Meg x 36 FPM ..... 2-161
MT18D236 2 Meg x 36 FPM ..... 2-171
PMPAGE MODE
FPM
.FAST PAGE MODE
MULTIPORT DYNAMIC RAMS
Product Selection Guide
MT42C4064 $64 \mathrm{~K} \times 4 / 256 \times 4^{*}$ PM ..... 3-1
MT42C4255 256K x $4 / 512 \times 4 \quad$ FPM ..... 3-27
MT42C4256 $256 \mathrm{~K} \times 4 / 512 \times 4$ FPM, BW ..... 3-61
MT42C8127 $128 \mathrm{~K} \times 8 / 256 \times 8$ FPM ..... 3-97
MT42C8128 $128 \mathrm{~K} \times 8 / 256 \times 8$ FPM, BW ..... 3-131
MT42C8256 $256 \mathrm{~K} \times 8 / 512 \times 8 \quad$ FPM, BW ..... 3-167
MT43C4257 256K x $4 / 512 \times 4$ FPM, BW ..... 3-169
MT43C4258 256K x $4 / 512 \times 4 \quad$ FPM, BW ..... 3-169
MT43C8128 128K x $8 / 256 \times 8$ FPM, BW ..... 3-215
MT43C8129 $128 \mathrm{~K} \times 8 / 256 \times 8 \quad$ FPM, BW ..... 3-215PM.PAGE MODEFPMFAST PAGE MODEBWBLOCK WRITE*DRAM/SAM(S)

## TABLE OF CONTENTS

STATIC RAMS PAGE
Product Selection Guide
MT5C160116K x 1 CE only4-1
MT5C6401 64K x 1 CE only ..... 4-9
MT5C2561 256K x 1 CE only ..... 4-17
MT5C1001 1 Meg x 1 CE only ..... 4-25
MT5C1604 4K x 4 CE only ..... 4-33
MT5C1605 4K x 4 CE \& OE ..... 4-41
MT5C1606 4K x 4 SI/O,OT ..... 4-49
MT5C1607 4K x 4 SI/O, HZ ..... 4-49
MT5C6404 16K x 4 CE only ..... 4-57
MT5C6405 16K x 4 CE \& OE ..... 4-65
MT5C6406 16K x 4 SI/O, OE, CE1, CE2 \& OT ..... 4-73
MT5C6407 $16 \mathrm{~K} \times 4 \mathrm{SI} / \mathrm{O}, \mathrm{HZ}$ ..... 4-73
MT5C2564 64K x 4 CE only ..... 4-81
MT5C2565 64K x 4 CE \& OE ..... 4-89
MT5C1005 256K x 4 CE \& OE ..... 4-97
MT5C1608 2K x 8 CE \& OE ..... 4-105
MT5C6408 8K x 8 OE, CE1 \& CE2 ..... 4-113
MT5C2568 32K x 8 CE \& OE ..... 4-121
MT5C1008 128K x 8 OE, CE1 \& CE2 ..... 4-129
MT5C2516 $16 \mathrm{~K} \times 16$ Latched Address/Data ..... 4-137
MT5C2818 $16 \mathrm{~K} \times 18$ Latched Address/Data ..... 4-151
IT/AT/XT SPECIFICATIONS ..... 4-165

## SYNCHRONOUS SRAMS

## Product Selection Guide

MT58C1616 16K x 16SR, STW5-1
MT58C1618 $16 \mathrm{~K} \times 18$ SR, STW ..... 5-11
SRAM MODULESPAGE
Product Selection Guide
MT4S1288 $128 \mathrm{~K} \times 8$ CE \& OE ..... 6-1
MT2S3216 $32 \mathrm{~K} \times 16 \mathrm{CE} \& \mathrm{OE}$ ..... 6-9
MT4S6416 $64 \mathrm{~K} \times 16 \mathrm{CE} \& \mathrm{OE}$ ..... 6-17
MT8S1632 $16 \mathrm{~K} \times 32 \mathrm{CE} \& \mathrm{OE}$ ..... 6-25
MT8S6432 $64 \mathrm{~K} \times 32 \mathrm{CE} \& \mathrm{OE}$ ..... 6-33
MT4S12832 $128 \mathrm{~K} \times 32 \mathrm{CE} \& \mathrm{OE}$ ..... 6-41
MT8S25632 256K x 32 CE \& OE ..... 6-49
CE
$\qquad$CHIP ENABLEOE
$\qquad$ WITH OUTPUT ENABLE
CACHE DATA STATIC RAMS
Product Selection Guide
MT56C0816 .......dual 4K x 16 or single $8 \mathrm{~K} \times 16$ A0-A11 LATCH ..... 7-1
MT56C3816 .......dual 4K x 16 or single $8 \mathrm{~K} \times 16$ A0-A12 LATCH ..... 7-11
MT56C0818 .......dual 4K x 18 or single $8 \mathrm{~K} \times 18$ A0-A11 LATCH ..... 7-21
MT56C2818 .......dual 4K x 18 or single 8K x 18 80486/80485 SPECIFIC ..... 7-31
MT56C3818 .......dual 4K x 18 or single 8K x 18 A0-A12 LATCH ..... 7-41
FIFO (FIRST-IN FIRST-OUT) MEMORIES
Product Selection Guide
MT52C9005 ..... $512 \times 9$ E ..... 8-1
MT52C9007 $512 \times 9$ PF, E ..... 8-13
MT52C9010 $1 \mathrm{~K} \times 9 \mathrm{E}$ ..... 8-29
MT52C9012 $1 \mathrm{~K} \times 9$ PF, E ..... 8-41
MT52C9020 2K x9 E ..... 8-57
MT52C9022 2K x 9 PF, E ..... 8-69
$\qquad$
$\qquad$

## TABLE OF CONTENTS

APPLICATION/TECHNICAL INFORMATION ..... PAGE
Product Selection Guide
TN-04-01 DRAM Power-Up and Refresh Constraints ..... 9-1
TN-04-02 MT4C1664 and MT4C1665 Compatibilities ..... 9-3
TN-04-03 MT4C1664: 256 Kilobyte Memory System with Four $\overline{\text { RAS Lines }}$ ..... 9-5
TN-04-04 MT4C1664: 256 Kilobyte Memory System with Four $\overline{\text { CAS }}$ Lines ..... 9-7
TN-04-05 4 Meg DRAM - Direct 1 Meg Compatibility ..... 9-9
TN-04-06 Understanding DRAM LATE-WRITE Cycles ..... 9-11
TN-43-01 MT43C4257/MT43C4258 Comparison ..... 9-13
TN-05-02 SRAM Bus Contention Design Considerations ..... 9-15
TN-05-03 SRAM Capacitive Loading ..... 9-19
TN-05-06 1 Meg Fast SRAM Typical Operating Curves ..... 9-21
TN-05-07 256K Fast SRAM Typical Operating Curves ..... 9-23
TN-05-08 64K Fast SRAM Typical Operating Curves ..... 9-25
AN-56-01 MT56C0816 Cache Data SRAM Family ..... 9-27
MILITARY INFORMATION
General Information ..... 10-1
Product Assurance Flow ..... 10-2
Product Description Guide ..... 10-3
PACKAGE INFORMATION
Index ..... 11-1
SALES INFORMATION
Ordering Information and Examples ..... 12-1
Product Numbering System ..... 12-2
Product Reliability ..... 12-3
North American Sales Representatives and Distributors ..... 12-14
International Sales Representatives and Distributors ..... 12-26
NUMERICAL INDEXPAGE
Part \#
10D25636 DRAM MODULE ..... 2-131
1259
1259 DRAM DRAM ..... 1-9
16D232 DRAM MODULE2-111
16D51232 DRAM MODULE2-91
18D236 DRAM MODULE5-171
18D51236 DRAM MODULE2-141
20D51236 DRAM MODULE2-151
2D18 DRAM MODULE2-21
2D2568 DRAM MODULE ..... 2-1
2S3216 SRAM MODULE6-9
3D19 DRAM MODULE2-61
3D2569 DRAM MODULE2-41
4067 DRAM1-81
4264 DRAM1-1
42C4064 VRAM3-1
42C4255 VRAM3-27
42C4256 VRAM3-61
42C8127 VRAM3-97
42C8128 VRAM ..... 3-131
42C8256 VRAM ..... 3-167
43C4257 TPDRAM ..... 3-169
43C4258 TPDRAM3-169
43C8128 TPDRAM3-215
43C8129 TPDRAM3-215
DRAM 4C100161-79
DRAM 4C100171-79
4C1004 DRAM1-55
4C1006 DRAM1-67
4C1024 DRAM
4C1026 DRAM
4C1027 DRAM1-19
DRAM 4C162561-31
4C16257 DRAM1-43
4C16258 DRAM
4C16259 DRAM
4C1664 DRAM
4C1665 DRAM1-259
4C1668 DRAM1-259
4C1669 DRAM1-259
4C1670 DRAM1-259
4C1671 DRAM1-207
4C1672 DRAM1-207
1-2231-2231-2391-2391-257
NUMERICAL INDEX (Continued) ..... PAGE
Part \#
4C40004DRAM1-191
4C40005 DRAM ..... 1-191
4C4001 DRAM ..... 1-141
4C4003 DRAM ..... 1-153
4C4004 DRAM ..... 1-165
4C4005 DRAM1-179
4C4256 DRAM ..... 1-91
4C4258 DRAM ..... 1-103
4C4259 DRAM1-115
4C4260 DRAM ..... 1-129
4C8512 DRAM1-193
4C8513 DRAM ..... 1-193
4 S12832 SRAM MODULE ..... 6-41
4S1288 SRAM MODULE
4S6416 SRAM MODULE6-1
52C9005 FIFO6-17
52C9007 FIFO
52C9010 FIFO8-1
52C9012 FIFO8-138-29
52C9020 FIFO8-41
52C9022 FIFO8-5756C0816CACHE DATA SRAM8-69
56C0818 CACHE DATA SRAM7-17-21
56C2818 CACHE DATA SRAM
56C3816 CACHE DATA SRAM7-31
56C3818 CACHE DATA SRAM7-11
58C1616 SYNCHRONOUS SRAM ..... 5-17-41
58C1618 SYNCHRONOUS SRAM
5C1001 SRAM
5C1005 SRAM
5C1008 SRAM
5C1601 SRAM
5C1604 SRAM
5C1605 SRAM
5C1606 SRAM
5C1607 SRAM
5C1608 SRAM5-114-25
5C2516 SRAM4-97
5C2561 SRAM4-129
5C2564 SRAM4-1
5C2565 SRAM4-33
5C2568 SRAM4-414-494-494-1054-137
4-174-814-894-121
NUMERICAL INDEX (Continued)PAGE
Part \#
5С2818 SRAM4-151
5C6401 SRAM4-9
5C6404 SRAM4-57
5C6405 SRAM4-65
5С6406 ..... SRAM4-73
5С6407 ..... SRAM4-73
5C6408 SRAM4-113
8D132 DRAM MODULE2-101
8D18 DRAM MODULE2-11
8D25632 DRAM MODULE ..... 2-81
8D48 DRAM MODULE2-31
8S1632 .SRAM MODULE6-25
8S25632 SRAM MODULE ..... 6-49
8S6432 SRAM MODULE6-33
9D136 DRAM MODULE2-161
9D19 DRAM MODULE2-51
9D25636 DRAM MODULE2-121
9D49 DRAM MODULE ..... 2-71
DYNAMIC RAMS ..... 1
DRAM MODULES ..... 2
MULTIPORT DRAMS ..... 3
STATIC RAMS ..... 4
SYNCHRONOUS SRAMS ..... 5
SRAM MODULES ..... 6
CACHE DATA SRAMS ..... 7
FIFO MEMORIES ..... 8
APPLICATION/TECHNICAL INFORMATION ..... 9
MILITARY INFORMATION ..... 10
PACKAGE INFORMATION ..... 11
SALES INFORMATION ..... 12

DRAM PRODUCT SELECTION GUIDE

| Memory Configuration | Optional Access Cycle | Part <br> Number | Access <br> Time (ns) | Power Dissipation |  | Package and Number of Pins |  |  |  |  |  | Process | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Standby | Active | PDIP | ZIP | PLCC | SOJ | CDIP | TSOP |  |  |
| $64 \mathrm{~K} \times 1$ | PM | MT4264 | 100, 120, 150 | 15 mW | 75mW | 16 | - | - | - | 16 | - | NMOS | 1-1 |
| $256 \mathrm{~K} \times 1$ | PM | MT1259 | 100, 120, 150 | 15 mW | 150 mW | 16 | 16 | 18 | - | 16 | - | NMOS | 1-9 |
| 1 Meg $\times 1$ | FPM | MT4C1024 | 70, 80,100 | 3 mW | 175 mW | 18 | 20 | - | 20 | 18 | * | CMOS | 1-19 |
| $1 \mathrm{Meg} \times 1$ | SC | MT4C1026 | 70, 80, 100 | 3 mW | 175 mW | 18 | 20 | - | 20 | 18 | * | CMOS | 1-31 |
| $1 \mathrm{Meg} \times 1$ | FPM, LP | MT4C1027 | 70,80, 100 | 1 mW | 150 mW | 18 | 20 | - | 20 | 18 | * | CMOS | 1-43 |
| $4 \mathrm{Meg} \times 1$ | FPM | MT4C1004 | 60, 70, 80 | 3 mW | 225 mW | - | 20 | - | 20 | 18 | * | CMOS | 1-55 |
| $4 \mathrm{Meg} \times 1$ | SC | MT4C1006 | 60, 70, 80 | 3 mW | 225 mW | - | 20 | - | 20 | 18 | * | CMOS | 1-67 |
| $16 \mathrm{Meg} \times 1$ | FPM | MT4C10016 | 50,60, 70, 80 | 3 mW | 250mW | - | 24 | - | 24 | * | * | CMOS | $1-79$ |
| $16 \mathrm{Meg} \times 1$ | SC | MT4C10017 | 50,60,70, 80 | 3 mW | 250mW | - | 24 | - | 24 | * | * | CMOS | 1-79 |
| $64 \mathrm{~K} \times 4$ | PM | MT4067 | 100, 120, 150 | 15 mW | 150 mW | 18 | 20 | 18 | - | 18 | - | NMOS | $1-81$ |
| $256 \mathrm{~K} \times 4$ | FPM | MT4C4256 | 70, 80, 100 | 3 mW | 175 mW | 20 | 20 | - | 20 | 20 | * | CMOS | $1-91$ |
| 256K x 4 | SC | MT4C4258 | 70, 80, 100 | 3 mW | 175 mW | 20 | 20 | - | 20 | 20 | * | CMOS | 1-103 |
| 256K x 4 | FPM, QCP | MT4C4259 | 70,80, 100 | 3 mW | 175 mW | 20 | 20 | - | 20 | 20 | * | CMOS | 1-115 |
| $256 \mathrm{~K} \times 4$ | FPM, LP | MT4C4260 | 70, 80, 100 | 1 mW | 150 mW | 20 | 20 | - | 20 | 20 | * | CMOS | 1-129 |
| $1 \mathrm{Meg} \times 4$ | FPM | MT4C4001 | 60, 70, 80 | 3 mW | 225 mW | - | 20 | - | 20 | 20 | * | CMOS | 1-141 |
| $1 \mathrm{Meg} \times 4$ | SC | MT4C4003 | 60, 70, 80 | 3 mW | 225 mW | - | 20 | - | 20 | 20 | * | CMOS | 1-153 |
| $1 \mathrm{Meg} \times 4$ | FPM, QCP | MT4C4004 | 60, 70, 80 | 3 mW | 225 mW | - | 20 | - | 20 | 20 | * | CMOS | 1-165 |
| $1 \mathrm{Meg} \times 4$ | FPM, WPB | MT4C4005 | 60, 70, 80 | 3 mW | 225 mW | - | 20 | - | 20 | 20 | * | CMOS | 1-179 |
| $4 \mathrm{Meg} \times 4$ | FPM | MT4C40004 | 50, 60, 70, 80 | 3 mW | 250 mW | - | 20 | - | 20 | 20 | * | CMOS | 1-191 |
| $4 \mathrm{Meg} \times 4$ | SC | MT4C40005 | 50, 60, 70, 80 | 3 mW | 250 mW | - | 24 | - | 24 | * | * | CMOS | 1-191 |
| $512 \mathrm{~K} \times 8$ | FPM | MT4C8512 | 70, 80, 100 | 3 mW | 350 mW | - | - | - | 24 | * | * | CMOS | 1-193 |
| $512 \mathrm{~K} \times 8$ | FPM, WPB | MT4C8513 | 70,80, 100 | 3 mW | 350 mW | - | - | - | 28 | - | * | CMOS | 1-193 |
| $64 \mathrm{~K} \times 16$ | FPM, DW | MT4C1664 | 70, 80, 100 | 3 mW | 225 mW | - | 40 | - | 40 | - | * | CMOS | 1-207 |
| $64 \mathrm{~K} \times 16$ | FPM, WPB | MT4C1665 | 70,80, 100 | 3 mW | 225 mW | - | 40 | - | 40 | - | * | CMOS | 1-207 |
| $64 \mathrm{~K} \times 16$ | FPM, LP, DW | MT4C1668 | 70,80, 100 | 2 mW | 200 mW | - | 40 | - | 40 | - | * | CMOS | 1-223 |
| $64 \mathrm{~K} \times 16$ | FPM, LP, WPB | MT4C1669 | 70, 80, 100 | 2 mW | 200mW | - | 40 | - | 40 | - | * | CMOS | 1-223 |
| $64 \mathrm{~K} \times 16$ | SC, DW | MT4C1670 | 70,80,100 | 3 mW | 225 mW | - | 40 | - | 40 | - | * | CMOS | 1-239 |
| $64 \mathrm{~K} \times 16$ | SC, WPB | MT4C1671 | 70,80, 100 | 3 mW | 225 mW | - | 40 | - | 40 | - | * | CMOS | 1-239 |
| $64 \mathrm{~K} \times 16$ | FPM, DC | MT4C1672 | 70, 80, 100 | 3 mW | 350 mW | - | 40 | - | 40 | - | * | CMOS | 1-257 |
| $256 \mathrm{~K} \times 16$ | FPM, DW | MT4C16256 | 70, 80, 100 | 3 mW | 350 mW | - | * | - | 40 | - | * | CMOS | 1-259 |
| $256 \mathrm{~K} \times 16$ | FPM, DW, WPB | MT4C16257 | 70,80, 100 | 3 mW | 350 mW | - | * | - | 40 | - | * | CMOS | 1-259 |
| $256 \mathrm{~K} \times 16$ | FPM, DC | MT4C16258 | 70,80, 100 | 3 mW | 350 mW | - | * | - | 40 | - | * | CMOS | 1-259 |
| $256 \mathrm{~K} \times 16$ | FPM, DC, WPB | MT4C16259 | 70, 80, 100 | 3 mW | 350 mW | - | * | - | 40 | - | * | CMOS | 1-259 |

PM = Page Mode, FPM = Fast Page Mode, SC = Static Column, LP = Low Power, QCP = Quad CAS Parity, WPB = Write Per Bit, DW = Dual WE, DC = Dual CAS *Consult factory on availability of TSOP packages

## DRAM

## 64K x 1 DRAM <br> PAGE MODE

## FEATURES

- Industry standard pinout, functions and timing
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 15 mW standby; 75 mW active, typical
- Common I/O using EARLY-WRITE
- Q held indefinitely by $\overline{C A S}$
- 256 -cycle refresh in 4 ms
- Fully compatible with MT1259 (256K)
- Optional PAGE MODE access cycle


## OPTIONS

- Timing 100ns access -10
120 ns access -12
$\begin{array}{ll}150 \mathrm{~ns} \text { access } & -15 \\ 200 \mathrm{~ns} \text { access } & -20\end{array}$
200 ns access -20
- Packages

Plastic DIP
Ceramic DIP

## MARKING

None C

## GENERAL DESCRIPTION

The MT4264 is a randomly accessed solid-state memory containing 65,536 bits organized in a $x 1$ configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 16 address bits, which are entered 8 bits (A0-A7) at a time. $\overline{\text { RAS }}$ is used to latch the first 8 bits and CAS the latter 8 bits. A READ or WRITE cycle is selected with the $\overline{W E}$ input. A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ mode while a logic LOW on $\overline{\text { WE }}$ dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of WE or $\overline{C A S}$, whichever occurs last. If $\overline{W E}$ goes LOW prior to CAS going LOW, the output pin(s) remain open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle. If $\overline{\mathrm{WE}}$ goes LOW after data reaches the output pin(s), data out $(\mathrm{Q})$ is activated and retains the selected cell data as long as CAS remains LOW (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}}$ ). This late $\overline{\mathrm{WE}}$ pulse results in a READ-WRITE cycle.

PAGE MODE operations allow faster data operations

## PIN ASSIGNMENT (Top View)

## 16-Pin DIP

(A-1, B-1)

(READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A7) defined page boundary. The PAGEMODE cycle is always initiated with a row address strobed-in by $\overline{\text { RAS }}$ followed by a column address strobed-in by $\overline{\text { CAS. }}$ $\overline{\mathrm{CAS}}$ may be toggled-in by holding $\overline{\mathrm{RAS}} \mathrm{LOW}$ and strobingin different column addresses, thus executing faster memory cycles. Returning $\overline{\text { RAS }} \mathrm{HIGH}$ terminates the PAGE MODE operation.

Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the $\overline{R A S}$ HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\mathrm{RAS}}$ cycle (READ, WRITE, $\overline{\text { RAS-ONLY or HIDDEN RE- }}$ FRESH) so that all 256 combinations of $\overline{\text { RAS }}$ addresses (A0A7) are executed at least every 4 ms , regardless of sequence.

## FUNCTIONAL BLOCK DIAGRAM

PAGE MODE


## TRUTH TABLE

| Function | RAS | CAS | WE | Addresses |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | ${ }^{\text {tR }}$ | ${ }^{\text {t }}$ |  |
| Standby | H | X | X | X | X | High Impedance |
| READ | L | L | H | ROW | COL | Data Out |
| WRITE <br> (EARLY-WRITE) | L | L | L | ROW | COL | Data In |
| READ-WRITE | L | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Valid Data In |
| PAGE-MODE READ | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | H | ROW | COL | Valid Data Out, Valid Data Out |
| PAGE-MODE WRITE | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | L | ROW | COL | Valid Data In, Valid Data In |
| PAGE-MODE READ-WRITE | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Valid Data In |
| RAS-ONLY REFRESH | L | H | X | ROW | n/a | High Impedance |
| HIDDEN REFRESH | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | Valid Data Out |
| CAS-BEFORERAS REFRESH | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | High Impedance |ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc supply relative to Vss ......... -1.0 V to +7.0 V

Operating Temperature, $\mathrm{T}_{\mathrm{A}}$ (Ambient) ..... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic) ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) ..... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..... 1W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the deviceat these or any other conditions above thoseindicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: $1,2,3,4,6)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.4 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE <br> Input leakage current, any input ( $\mathrm{OV} \leq \mathrm{V} \operatorname{IN} \leq \mathrm{Vcc}$ ); I <br> all other pins not under test $=0 \mathrm{~V}$ | 11 | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE <br> Output leakage current ( $Q$ is disabled; $\mathrm{OV} \leq \mathrm{Vout} \leq \mathrm{Vcc}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High (Logic 1) Voltage (lout $=-5 \mathrm{~mA})$ <br> Output Low (Logic 0 ) Voltage (lout $=5 \mathrm{~mA}$ ) | Vor | 2.4 | 0.4 | V | 1 |


| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STANDBY CURRENT ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{I}}$ after 8 RAS cycles) | Icc1 |  | 4 | mA |  |
| OPERATING CURRENT ( $\overline{R A S}$ and $\overline{\text { CAS }}$ Cycling) | Icc2 |  | 30 | mA | 2 |
| $\overline{\text { RAS-ONLY REFRESH CURRENT }}$ $\overline{\text { CAS }}=\mathrm{V} I \mathrm{H}$ ) | Icc3 |  | 20 | mA | 2 |
| PAGE MODE CURRENT ( $\overline{\mathrm{RAS}}=\mathrm{V} \mathrm{k} ; \overline{\mathrm{CAS}}=$ Cycling) | Icc4 |  | 30 | mA | 2 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A7, D | $\mathrm{Cl}_{1}$ |  | 5 | pF | 18 |
| Input Capacitance: $\overline{\mathrm{RAS}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}}$ | Cl 2 |  | 8 | pF | 18 |
| Output Capacitance: Q | Co |  | 8 | pF | 18 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $3,4,5,10,11,17,18)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right.$; $\left.\mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -10 |  | -12 |  | -15 |  | -20 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t }}$ RC | 195 |  | 230 |  | 260 |  | 330 |  | ns | 6,7 |
| READ-MODIFY-WRITE cycle time | tRWC | 220 |  | 255 |  | 295 |  | 370 |  | ns |  |
| PAGE-MODE cycle time | tPC | 90 |  | 100 |  | 120 |  | 170 |  | ns | 6,7 |
| Access time from $\overline{\mathrm{RAS}}$ | ${ }^{\text {t RAC }}$ |  | 100 |  | 120 |  | 150 |  | 200 | ns | 7, 8 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ CAC |  | 50 |  | 60 |  | 75 |  | 120 | ns | 7,9 |
| $\overline{\text { RAS }}$ pulse width | ${ }^{\text {tRAS }}$ | 100 | 10,000 | 120 | 10,000 | 150 | 10,000 | 200 | 10,000 | ns |  |
| RAS hold time | ${ }^{\text {t RSH }}$ | 50 |  | 60 |  | 75 |  | 100 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }} \mathrm{R}$ P | 80 | 20,000 | 90 | 20,000 | 100 | 20,000 | 120 | 20,000 | ns |  |
| CAS pulse width | ${ }^{\text {t CAS }}$ | 50 | 10,000 | 60 | 10,000 | 75 | 10,000 | 120 | 10,000 | ns |  |
| CAS hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 100 |  | 120 |  | 150 |  | 200 |  | ns |  |
| CAS precharge time | ${ }^{\text {t }} \mathrm{CPN}$ | 25 |  | 25 |  | 30 |  | 35 |  | ns | 19 |
| CAS precharge time (PAGE MODE) | ${ }^{\text {t }} \mathrm{C} P$ | 30 |  | 30 |  | 35 |  | 40 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ delay time | ${ }^{\text {t R }}$ cD | 25 | 50 | 25 | 60 | 25 | 75 | 30 | 80 | ns | 13 |
| Row address setup time | ${ }^{t}$ ASR | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t RAH }}$ | 15 |  | 15 |  | 20 |  | 25 |  | ns |  |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }}$ CAH | 20 |  | 20 |  | 25 |  | 50 |  | ns |  |
| Column address hold time referenced to $\overline{\text { RAS }}$ | ${ }^{t} A R$ | 70 |  | 80 |  | 100 |  | 130 |  | ns |  |
| READ command setup time | ${ }^{\text {t R }}$ cS | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| READ command hold time referenced to CAS | ${ }^{\text {t } R C H}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns | 14 |
| READ command hold time referenced to RAS | tRRH | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {t }}$ OFF | 0 | 30 | 0 | 30 | 0 | 35 | 0 | 40 | ns | 12 |
| $\overline{\text { WE }}$ command setup time | ${ }^{\text {theS }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns | 16 |
| WRITE command hold time | ${ }^{\text {t }}$ WCH | 35 |  | 40 |  | 45 |  | 60 |  | ns |  |
| WRITE command hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ WCR | 85 |  | 100 |  | 120 |  | 140 |  | ns |  |
| WRITE command pulse width | tWP | 35 |  | 40 |  | 45 |  | 50 |  | ns |  |
| WRITE command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t }}$ RWL | 35 |  | 40 |  | 45 |  | 55 |  | ns |  |
| WRITE command to CAS lead time | ${ }^{\text {t }}$ CWL | 35 |  | 40 |  | 45 |  | 55 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ D | 0 |  | 0 |  | 0 |  | 0 |  | ns | 15 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 35 |  | 40 |  | 45 |  | 55 |  | ns | 15 |
| Data-in hold time referenced to $\overline{R A S}$ | t DHR | 85 |  | 100 |  | 120 |  | 135 |  | ns |  |
| $\overline{\text { CAS }}$ to WE delay | ${ }^{\text {t }}$ CWD | 40 |  | 50 |  | 60 |  | 100 |  | ns | 16 |
| $\overline{\text { RAS }}$ to $\overline{\text { WE delay }}$ | ${ }^{\text {tRWD }}$ | 90 |  | 110 |  | 135 |  | 180 |  | ns | 16 |
| Transition time (rise or fall) | t | 3 | 100 | 3 | 100 | 3 | 100 | 3 | 100 | ns | 5,17 |
| Refresh period ( 256 cycles) | ${ }^{\text {t REF }}$ |  | 4 |  | 4 |  | 4 |  | 4 | ms |  |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t CRP }}$ | 10 |  | 15 |  | 20 |  | 20 |  | ns |  |

## NOTES

1. All voltages referenced to Vss.
2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
3. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{\text { RAS }}$ cycles before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
4. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
5. ViH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\text {IH }}$ and $\mathrm{V}_{\mathrm{IL}}$ (or between $\mathrm{V}_{\mathrm{IL}}$ and $V_{\mathrm{IH}}$ ).
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ) is assured.
7. Measured with a load equivalent to 2 TTL gates and 100 pF .
8. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD}<{ }^{\mathrm{t} R C D}(\mathrm{MAX})$. If ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the maximum recommended value shown in this table, ${ }^{\mathrm{t} R A C}$ will increase by the amount that ${ }^{\mathrm{t}} \mathrm{RCD}$ exceeds the value shown.
9. Assumes that ${ }^{\mathrm{t} R C D} \geq \mathrm{t} R C D$ (MAX).
10. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\text {IH }}$, data output is high impedance.
11. If $\overline{\mathrm{CAS}}=V_{\text {IL, }}$ data output may contain data from the last valid READ cycle.
12. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voн or VoL.
13. Operation within the ${ }^{\mathrm{t} R C D}(\mathrm{MAX})$ limit ensures that ${ }^{t}$ RAC (MAX) can be met. ${ }^{t}$ RCD (MAX) is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the specified ${ }^{\text {tRCD }}$ (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{CAC}$.
14. ${ }^{\mathrm{t} R C H}$ is referenced to the first rising edge of $\overline{\mathrm{RAS}}$ or $\overline{\text { CAS. }}$
15. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in early WRITE cycles and $\overline{\text { WE leading edge in late }}$ WRITE or READ-WRITE cycles.
 parameters in late READ-WRITE and READ-MODIFY-WRITE cycles only. If ${ }^{\text {t}}{ }^{2} C S \geq^{t}$ WCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ${ }^{\mathrm{t}} \mathrm{CWD} \geq{ }^{\mathrm{t}} \mathrm{CWD}$ (MIN) and ${ }^{\mathrm{t} R W D} \geq$ ${ }^{\text {t }}$ RWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of Q (at access time and until CAS goes back to $\mathrm{V}_{\mathrm{IH}}$ ) is indeterminate.
16. In addition to meeting the transition rate specification, all input signals must transit between $\mathrm{VIH}^{\mathrm{H}}$ and $V_{\text {IL }}$ (or between VIL and $V_{\text {IH }}$ ) in a monotonic manner.
17. This parameter is sampled. Capacitance is calculated from the equation $C=I^{\mathrm{dt}} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
18. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{R A S}, \mathrm{Q}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{\text {t }} \mathrm{CPN}$.

## READ CYCLE



EARLY-WRITE CYCLE


## READ-WRITE CYCLE

(LATE-WRITE and READ-MODIFY-WRITE CYCLES)


PAGE-MODE READ CYCLE


## PAGE-MODE EARLY-WRITE CYCLE



RAS-ONLY REFRESH CYCLE
$\left(\right.$ ADDR $\left.=A_{0}-A_{7}\right)$


DQ ${ }_{\mathrm{V}}^{\mathrm{OH}} \mathrm{OH}=$ $\qquad$ OPEN
don't care
undefined

## DRAM

## 256K x 1 DRAM PAGE MODE

## FEATURES

- Industry standard pinout, timing and functions
- All inputs, outputs, and clocks are fully TTL compatible
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 15 mW standby; 150 mW active, typical
- Refresh modes: $\overline{\text { RAS-ONLY, }} \overline{\text { CAS-BEFORE-RAS, and }}$ HIDDEN
- 256 -cycle refresh in 4 ms
- Optional PAGE MODE access cycle


## OPTIONS

- Timing $\begin{array}{ll}\text { 100ns access } & -10 \\ 120 \mathrm{~ns} \text { access } & -12 \\ 150 \mathrm{~ns} \text { access } & -15\end{array}$
- Packages

Plastic DIP
Ceramic DIP
Plastic ZIP
PLCC

## MARKING

None
C
Z
EJ

## GENERAL DESCRIPTION

The MT1259 is a randomly accessed solid-state memory containing 262,144 bits organized in a $x 1$ configuration. The 18 address bits are entered 9 bits at a time using RASto latch the first 9 bits and $\overline{\mathrm{CAS}}$ the latter 9 bits. If the $\overline{\mathrm{WE}}$ pin goes LOW prior to CAS going LOW, the output pin remains open until the next CAS cycle. If WE goes LOW after data reaches the output pin, the output pin is activated and retains the selected cell data as long as $\overline{\text { CAS }}$ remains LOW (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}}$ ). This late $\overline{\mathrm{WE}}$ pulse results in a READ-MODIFY-WRITE cycle. Data-in (D) is latched when WE strobes LOW.
By holding $\overline{\text { RAS }}$ LOW, $\overline{\text { CAS }}$ may be toggled to execute several faster READ, WRITE, LATE-WRITE or READ-MODIFY-WRITE cycleswithin the $\overline{\text { RASaddressdefined page }}$ boundary. Returning RAS HIGH terminates the memory

## PIN ASSIGNMENT (Top View)

| $\begin{gathered} \text { 16-Pin DIP } \\ (\mathrm{A}-1, \mathrm{~B}-1) \end{gathered}$ |  |
| :---: | :---: |
| A8* ${ }_{1}$ | 16 V Vs |
| DC2 | $15 \square \overline{C A S}$ |
| WE 3 | 14Q |
| RAS 4 | 13. ${ }^{\text {a }}$ |
| A0 5 | 12 АЗ |
| A2 6 | 11 ] 4 |
| A1 47 | 10 A5 |
| Vcc[ 8 | 9 A7 |


cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycleduring the $\overline{\text { RAS }}$ high time. Memory cell data is retained in its correct state by maintaining power and executing a $\overline{\text { RAS }}$ (refresh) cycle so that all 256 combinations of $\overline{\mathrm{RAS}}$ addresses are executed at least every 4 ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity.

## FUNCTIONAL BLOCK DIAGRAM PAGE MODE



TRUTH TABLE

| Function | RAS | CAS | WE | Addresses |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
|  |  | tr | t $\mathbf{C}$ |  |  |  |
| Standby | H | X | X | X | X | High Impedance |
| READ | L | L | H | ROW | COL | Data Out |
| WRITE <br> (EARLY-WRITE) | L | L | L | ROW | COL | Data In |
| READ-WRITE | L | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, <br> Valid Data In |
| PAGE-MODE <br> READ | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | H | ROW | COL | Valid Data Out, <br> Valid Data Out |
| PAGE-MODE <br> WRITE | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | L | ROW | COL | Valid Data In, <br> Valid Data In |
| PAGE-MODE <br> READ-WRITE | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, <br> Valid Data In |
| RAS-ONLY <br> REFRESH | L | H | X | ROW | $\mathrm{n} / \mathrm{a}$ | High Impedance |
| HIDDEN <br> REFRESH | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | Valid Data Out |
| CAS-BEFORE- | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | High Impedance |
| RAS REFRESH |  |  |  |  |  |  |

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss $\qquad$ -1.0 V to +7.0 V
Operating Temperature, $\mathrm{T}_{\mathrm{A}}$ (Ambient). $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic) . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic)
Power Dissipation ............... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation . 1W
Short Circuit Output Current ...................................... 50 mA

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: $1,2,3,4,6)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V |  |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE <br> Input leakage current, any input ( $0 \mathrm{~V} \leq \mathrm{V} \mathrm{IN} \leq \mathrm{Vcc}$ ), all other pins not under test $=0 \mathrm{~V}$ | 11 | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE <br> Output leakage current ( $Q$ is disabled, $\mathrm{OV} \leq \mathrm{Vout} \leq \mathrm{Vcc}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High (Logic 1) Voltage (lout $=-5 \mathrm{~mA})$ <br> Output Low (Logic 0 ) Voltage (lout $=5 \mathrm{~mA}$ ) | Voh | 2.4 | 0.4 | V | 1 |


|  |  | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -10 | -12 | -15 | UNITS | NOTES |
| STANDBY CURRENT: TTL input levels ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V} \mathbf{I H}$ after $8 \overline{\mathrm{RAS}}$ cycles) | lcc1 | 5 | 5 | 5 | mA |  |
| OPERATING CURRENT: Random READ/WRITE ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling; ${ }^{\mathrm{t} R \mathrm{C}}={ }^{\mathrm{t} R \mathrm{C}}$ (MIN)) | Icc2 | 55 | 55 | 45 | mA | 2 |
| OPERATING CURRENT: PAGE MODE $\left(\overline{\mathrm{RAS}}=\mathrm{V}_{\mathrm{IL}} ; \mathrm{CAS}=\text { Cycling: } \mathrm{tPC}=\mathrm{tPC}(\mathrm{MIN})\right)$ | Icc3 | 55 | 55 | 45 | mA | 2 |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY <br> ( $\overline{\text { RAS }}=$ Cycling; $\overline{\mathrm{CAS}}=\mathrm{VIH}^{\prime} ;{ }^{\mathrm{t} R C}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc 4 | 40 | 40 | 35 | mA | 2 |
| REFRESH CURRENT: $\overline{\text { CAS }}$-BEFORE- $\overline{R A S}$ ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling; ${ }^{\mathrm{t}} \mathrm{RC}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc5 | 55 | 55 | 45 | mA | 2, 20 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A8, D | $\mathrm{Cl}_{11}$ |  | 5 | pF | 18 |
| Input Capacitance: $\overline{\mathrm{RAS}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}}$ | $\mathrm{Cl}_{12}$ |  | 8 | pF | 18 |
| Output Capacitance: Q | Co |  | 7 | pF | 18 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 10, 11, 17, 18) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -10 |  | -12 |  | -15 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | trC | 190 |  | 220 |  | 260 |  | ns | 6,7 |
| READ-MODIFY-WRITE cycle time | ${ }^{\text {tRWC }}$ | 220 |  | 255 |  | 295 |  | ns |  |
| PAGE-MODE cycle time | ${ }^{\text {tPC }}$ | 90 |  | 100 |  | 120 |  | ns | 6,7 |
| Access time from $\overline{\mathrm{RAS}}$ | ${ }^{\text {t RAC }}$ |  | 100 |  | 120 |  | 150 | ns | 7, 8 |
| Access time from CAS | ${ }^{\text {t CAC }}$ |  | 50 |  | 60 |  | 75 | ns | 7,9 |
| $\overline{\text { RAS pulse width }}$ | tRAS | 100 | 10,000 | 120 | 10,000 | 150 | 10,000 | ns |  |
| RAS hold time | ${ }^{\text {t }}$ RSH | 50 |  | 60 |  | 75 |  | ns |  |
| RAS precharge time | tRP | 80 |  | 90 |  | 100 |  | ns |  |
| CAS pulse width | ${ }^{\text {t CAS }}$ | 50 | 10,000 | 60 | 10,000 | 75 | 10,000 | ns |  |
| CAS hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 100 |  | 120 |  | 150 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 25 |  | 25 |  | 30 |  | ns | 19 |
| CAS precharge time (PAGE MODE) | ${ }^{\text {t }} \mathrm{CP}$ | 30 |  | 30 |  | 35 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ delay time | ${ }^{\text {tr }}$ CD | 25 | 50 | 25 | 60 | 25 | 75 | ns | 13 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ CRP | 15 |  | 20 |  | 20 |  | ns |  |
| Row address setup time | ${ }^{\text {t ASR }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t RAH }}$ | 15 |  | 15 |  | 15 |  | ns |  |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\mathrm{t}} \mathrm{CAH}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Column address hold time referenced to $\overline{R A S}$ | ${ }^{\text {t }}$ (R | 70 |  | 80 |  | 100 |  | ns |  |
| READ command setup time | ${ }^{\text {t R C }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| READ command hold time referenced to CAS | ${ }^{\text {tRCH }}$ | 0 |  | 0 |  | 0 |  | ns | 14 |
| READ command hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t RRH }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | tofF | 0 | 30 | 0 | 30 | 0 | 35 | ns | 12 |
| $\overline{\text { WE }}$ command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns | 1 |
| WRITE command hold time | twCH | 35 |  | 40 |  | 45 |  | ns |  |
| WRITE command hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ WCR | 85 |  | 100 |  | 120 |  | ns |  |
| WRITE command pulse width | tWP | 35 |  | 40 |  | 45 |  | ns |  |
| WRITE command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {trWL }}$ | 35 |  | 40 |  | 45 |  | ns |  |
| WRITE command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }}$ CWL | 35 |  | 40 |  | 45 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ S | 0 |  | 0 |  | 0 |  | ns | 15 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 35 |  | 40 |  | 45 |  | ns | 15 |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t DHR }}$ | 85 |  | 100 |  | 120 |  | ns |  |
| $\overline{\text { CAS }}$ to WE delay | ${ }^{\text {t }}$ CWD | 40 |  | 50 |  | 60 |  | ns | 16 |
| $\overline{\mathrm{RAS}}$ to WE delay | ${ }^{\text {tRWD }}$ | 90 |  | 110 |  | 135 |  | ns | 16 |
| Transition time (rise or fall) | ${ }^{\text {t }}$ T | 3 | 100 | 3 | 100 | 3 | 100 | ns | 5,17 |
| Refresh period (256 cycles) | ${ }^{\text {t }}$ 'teF |  | 4 |  | 4 |  | 4 | ms | 21 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }} \mathrm{CHR}$ | 20 |  | 25 |  | 30 |  | ns | 20 |
| $\overline{\text { CAS setup time }}$ (CAS-BEFORE-RAS) refresh | ${ }^{\text {t }}$ CSR | 15 |  | 20 |  | 20 |  | ns | 20 |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {t } R P C ~}$ | 0 |  | 0 |  | 0 |  | ns | 20 |

## NOTES

1. All voltages referenced to Vss.
2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
3. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{\mathrm{RAS}}$ cycles before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 4 ms refresh requirement is exceeded.
4. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
5. ViH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured.
7. Measured with a load equivalent to 2 TTL gates and 100 pF .
8. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t} R A C$ will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
9. Assumes that ${ }^{t} R C D \geq{ }^{\mathrm{t}} \mathrm{RCD}(\mathrm{MAX})$.
10. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
11. If $\overline{\mathrm{CAS}}=V_{\text {IL }}$, data output may contain data from the last valid READ cycle.
12. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
13. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the
specified ${ }^{t} R C D$ (MAX) limit, then access time is controlled exclusively by ${ }^{\mathrm{t}} \mathrm{CAC}$.
14. ${ }^{\mathrm{t}} \mathrm{RCH}$ is referenced to the first rising edge of $\overline{\mathrm{RAS}}$ or $\overline{\text { CAS. }}$
15. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in early WRITE cycles and to the $\overline{W E}$ leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
16. ${ }^{\mathrm{t}} \mathrm{WCS},{ }^{\mathrm{t}} \mathrm{CWD}$ and ${ }^{\mathrm{t}} \mathrm{RWD}$ are restrictive operating parameters in READ-WRITE and READ-MODIFYWRITE cycles only. If ${ }^{t} W C S \geq{ }^{t} W C S$ (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ${ }^{t} C W D \geq{ }^{t} C W D$ (MIN) and ${ }^{t} R W D \geq{ }^{t} R W D$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of $Q$ (at access time and until $\overline{\mathrm{CAS}}$ goes back to $\left.\mathrm{V}_{\mathrm{IH}}\right)$ is indeterminate.
17. In addition to meeting the transition rate specification, all input signals must transit between $\mathrm{VIH}_{\mathrm{IH}}$ and VIL (or between VIL and $V_{I H}$ ) in a monotonic manner.
18. This parameter is sampled. Capacitance is calculated from the equation $C=I{ }^{\mathrm{dt}} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
19. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{R A S}, Q$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\text { CAS }}$ must be pulsed HIGH for ${ }^{t} \mathrm{CP}$. Note 8 applies to determine valid data out.
20. On-chip refresh and address counters are enabled.
21. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case,$\overline{W E}=$ LOW .

## READ CYCLE



EARLY-WRITE CYCLE


## READ-WRITE CYCLE <br> (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



PAGE-MODE READ CYCLE


## PAGE-MODE EARLY-WRITE CYCLE



## RAS-ONLY REFRESH CYCLE

( $\mathrm{ADDR}=\mathrm{A}_{0}-\mathrm{A}_{7} ; \mathrm{A}_{8}$ and $\overline{\mathrm{WE}}=$ DON'T CARE)


CAS-BEFORE-RAS REFRESH CYCLE

$$
\left(\mathrm{A}_{0}-\mathrm{A}_{8} \text { and } \mathrm{WE}=\text { DON'T CARE }\right)
$$

$\overline{\text { RAS }}$
$\overline{\mathrm{CAS}}$


Q $\mathrm{V}_{\mathrm{OL}}^{\mathrm{OH}}=$ $\qquad$ OPEN

HIDDEN REFRESH CYCLE $(\overline{\mathrm{WE}}=\mathrm{HIGH})^{21}$


V/A DON'T CARE
UNDEFINED

## DRAM

## 1 MEG x 1 DRAM

## FAST PAGE MODE

## FEATURES

- Industry standard $x 1$ pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 3 mW standby; 175 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 512-cycle refresh in 8 ms
- Refresh modes: $\overline{\text { RAS-ONLY, }} \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$, and HIDDEN
- Optional FAST PAGE MODE access cycle


## OPTIONS

- Timing 70ns access -7
80ns access $\quad-8$
100ns access
- Packages

Plastic DIP ( 300 mil )
Ceramic DIP ( 300 mil )
Plastic ZIP ( 350 mil )
Plastic SOJ ( 300 mil )
Plastic TSOP ( ${ }^{(* *)}$

- Operating Temperature, $\mathrm{TA}_{\mathrm{A}}$

Commercial ( $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ )
Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

## MARKING

-7
-8
-10

GENERAL DESCRIPTION
The MT4C1024 is a randomly accessed solid-state memory containing $1,048,576$ bits organized in a $x 1$ configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. $\overline{R A S}$ is used to latch the first 10 bits and $\overline{C A S}$ the latter 10 bits. A READ or WRITE cycle is selected with the $\overline{\mathrm{WE}}$ input. A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ modewhilealogicLOW onWEdictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. If $\overline{W E}$ goes LOW prior to $\overline{\text { CAS }}$ going LOW, the output pin, data out (Q), remains open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle. If $\overline{\mathrm{WE}}$ goes LOW after data reaches the output $\mathrm{pin}, \mathrm{Q}$ is activated and retains the selected cell data as long as CAS remains LOW (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}}$ ). This late $\overline{\mathrm{WE}}$ pulse results in a READ-WRITE cycle.


FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{R A S}$ followed by a column address strobedin by $\overline{\text { CAS. }}$. CAS may be toggled by holding $\overline{\text { RAS }}$ LOW and strobing-in differentcolumnaddresses, thus executing faster memory cycles. Returning RASHIGH terminates the FAST PAGE MODE operation.
Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for thenext cycleduring the $\overline{\text { RAS }}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\mathrm{RAS}}$ cycle (READ, WRITE, $\overline{\text { RAS-ONLY, }} \overline{\mathrm{CAS}}$-BEFORE-RAS, or HIDDEN REFRESH) so that all 512 combinations of $\overline{\text { RAS }}$ addresses (A0-A8) are executed at least every 8 ms , regardless of sequence. The $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$ refresh will increment the refresh counter for automatic $\overline{\text { RAS }}$ addressing.

FUNCTIONAL BLOCK DIAGRAM

## FAST PAGE MODE


*NOTE: $\overline{\text { WE }}$ LOW prior to $\overline{\text { CAS }}$ LOW, EW detection CKT output is a HIGH (EARLY WRITE)
$\overline{\mathrm{CAS}}$ LOW prior to $\overline{\text { WE LOW, EW detection CKT output is a LOW (LATE WRITE) }}$

## TRUTH TABLE

| Function |  | RAS | CAS | WE | Address |  | DATA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {tr }}$ |  |  | ${ }^{\text {t }}$ | D (Data In) | Q (Data Out) |
| Standby |  |  | H | X | X | X | X | Don't Care | High-Z |
| READ |  | L | L | H | ROW | COL | Don't Care | Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | Data In | High-Z |
| READ-WRITE |  | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | Valid Data In | Valid Data Out |
| FAST-PAGE-MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | ROW | COL | Don't Care | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | n/a | COL | Don't Care | Valid Data Out |
| FAST-PAGE-MODE EARLY-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | ROW | COL | Valid Data In | High-Z |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | n/a | COL | Valid Data In | High-Z |
| FAST-PAGE-MODE READ-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | Valid Data In | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | n/a | COL | Valid Data In | Valid Data Out |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | Don't Care | High-Z |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | Don't Care | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | Valid Data In | High-Z |
| CAS-BEFORE- $\overline{R A S}$ REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | x | X | Don't Care | High-Z |ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc supply relative to VSS-1.0 V to +7.0 V

Storage Temperature (Ceramic) ..... $55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..... 600 mW
Soldering Temperature (soldering 10 sec ) ..... $.260^{\circ} \mathrm{C}$
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (Vcc = 5.0V $\pm 10 \%$ )

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.4 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -2.0 | 0.8 | V | 1,25 |
| INPUT LEAKAGE CURRENT any input ( $0 \mathrm{~V} \leq \mathrm{VIN} \leq 6.5 \mathrm{~V}$, all other pins not under test $=0 \mathrm{~V}$ ) | 1 | -2 | 2 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( Q is disabled, $\mathrm{OV} \leq$ Vout $\leq 5.5 \mathrm{~V}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS | Vor | 2.4 |  | V |  |
| Output High Voltage (lout $=-5 \mathrm{~mA})$ <br> Output Low Voltage (lout $=4.2 \mathrm{~mA}$ ) | VoL |  | 0.4 | V |  |


|  | SYMBOL | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION |  | -7 | -8 | -10 | UNITS | NOTES |
| STANDBY CURRENT: (TTL) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}(H)$ | Icc1 | 2 | 2 | 2 | mA |  |
| STANDBY CURRENT: (CMOS) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V})$ | Icc2 | 1 | 1 | 1 | mA | 24 |
| OPERATING CURRENT: Random READ/WRITE <br> Average power supply current <br> (RAS, $\overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\text {tRC }}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc3 | 80 | 70 | 60 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE Average power supply current ( $\overline{\text { RAS }}=\mathrm{VIL} ; \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}$ (MIN)) | Icc4 | 60 | 50 | 40 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY Average power supply current (RAS Cycling; CAS $=V_{I H}$ : ${ }^{\text {RC }}={ }^{\text {t } R C ~(M I N)) ~}$ | Icc5 | 80 | 70 | 60 | mA | 3 |
| REFRESH CURRENT: $\overline{\text { CAS }}$-BEFORE- $\overline{R A S}$ <br> Average power supply current <br> ( $\overline{R A S}, \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\text {tRC }}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc6 | 80 | 70 | 60 | mA | 3,5 |

MT4C1024

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A9, D | $\mathrm{Cl}_{11}$ |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ | $\mathrm{Cl}_{12}$ |  | 7 | pF | 2 |
| Output Capacitance: Q | Co |  | 7 | pF | 2 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc $=5.0 \mathrm{~V} \pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {tr }}$ C | 130 |  | 150 |  | 180 |  | ns |  |
| READ-WRITE cycle time | tRWC | 155 |  | 175 |  | 205 |  | ns |  |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 45 |  | 55 |  | ns |  |
| FAST-PAGE-MODE READ-WRITE cycle time | tPRWC | 65 |  | 70 |  | 85 |  | ns |  |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {trac }}$ |  | 70 |  | 80 |  | 100 | ns | 14 |
| Access time from CAS | ${ }^{\text {t }}$ 'AC |  | 20 |  | 20 |  | 25 | ns | 15 |
| Access time from column address | ${ }^{\text {t }} \mathrm{A} A$ |  | 35 |  | 40 |  | 50 | ns |  |
| Access time from $\overline{\mathrm{CAS}}$ precharge | ${ }^{\text {t }}$ CPA |  | 40 |  | 45 |  | 50 | ns |  |
| RAS pulse width | tRAS | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ pulse width (FAST PAGE MODE) | trasP | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {t RSH }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }} \mathrm{RP}$ | 50 |  | 60 |  | 70 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t }}$ cAS | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns |  |
| CAS hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 15 |  | ns | 16 |
| $\overline{\text { CAS }}$ precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time | ${ }^{\text {tr }}$ \% ${ }^{\text {ch }}$ | 20 | 50 | 20 | 60 | 25 | 75 | ns | 17 |
| $\overline{\text { CAS }}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {traH }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {tRAD }}$ | 15 | 35 | 15 | 40 | 20 | 50 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }}$ cAH | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time (referenced to RAS) | ${ }^{\text {t }}$ AR | 55 |  | 60 |  | 70 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {traL }}$ | 35 |  | 40 |  | 50 |  | ns |  |
| Read command setup time | ${ }^{\text {t }} \mathrm{RCS}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to CAS) | ${ }^{\text {tr CH }}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ RRH | 0 |  | 0 |  | 0 |  | ns | 19 |
| CAS to output in Low-Z | ${ }^{\text {t CLZ }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {t }}$ OFF | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20 |
| WE command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns | 21 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc $=5.0 \mathrm{~V} \pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t W W }}$ | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | tWP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{R A S}$ lead time | trWL | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to $\overline{C A S}$ lead time | ${ }^{\text {t }}$ CWL | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }}$ D ${ }^{\text {d }}$ | 15 |  | 15 |  | 20 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ DHR | 55 |  | 60 |  | 75 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ delay time | tRWD | 70 |  | 80 |  | 100 |  | ns | 21 |
| Column address to WE delay time | ${ }^{\text {t }}$ AWD | 35 |  | 40 |  | 50 |  | ns | 21 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | 20 |  | 20 |  | 25 |  | ns | 21 |
| Transition time (rise or fall) | ${ }^{\text {T }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9, 10 |
| Refresh period (512-cycles) | treF |  | 8 |  | 8 |  | 8 | ms |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {tr PPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\text { CAS }}$ setup time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE-ㅈRAS refresh) | ${ }^{\mathrm{t}} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5 |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=I^{\mathrm{dt}} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{VCC}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
7. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{\text { RAS }}$ cycles before proper device operation is assured. The eight $\overline{\mathrm{RAS}}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{t} T=5 n s$.
9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and $V_{\text {IH }}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $\mathrm{VIIH}_{\mathrm{IH}}$ and VIL (or between VIL and VIH) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IL}}$, data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to 2 TTL gates and 100 pF .
14. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t} R A C$ will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{t} R C D \geq{ }^{t} R C D$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}, \mathrm{Q}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\text { CAS }}$ must be pulsed HIGH for ${ }^{t} \mathrm{CPN}$.
17. Operation within the tRCD (MAX) limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{t} R C D$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} \mathrm{CAC}$.
18. Operation within the t $R A D$ (MAX) limit ensures that ${ }^{t} R C D$ (MAX) can be met. ${ }^{t} R A D(M A X)$ is specified as a reference point only; if ${ }^{t} R A D$ is greater than the specified ${ }^{\text {tRAD }}$ (MAX) limit, then access time is controlled exclusively by ${ }^{t}$ AA.
19. Either ${ }^{t} \mathrm{RCH}$ or ${ }^{t} \mathrm{RRH}$ must be satisfied for a READ cycle.
20. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VoH or Vol.
21. ${ }^{t} W C S,{ }^{t} R W D,{ }^{t} A W D$ and ${ }^{t} C W D$ are restrictive operating parameters in LATE-WRITE, and READ-MODIFY-WRITE cycles only. If ${ }^{\mathrm{t}} \mathrm{WCS} \geq{ }^{\mathrm{t}} \mathrm{WCS}$ (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ${ }^{\mathrm{t}} \mathrm{RWD} \geq \mathrm{t}^{2} \mathrm{RWD}$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq^{\mathrm{t}} \mathrm{AWD}$ (MIN) and ${ }^{t} C W D \geq{ }^{t} C W D$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the cycle is a LATE-WRITE and the state of $Q$ is indeterminate. (at access time and until $\overline{\text { CAS }}$ goes back to $\left.V_{I H}\right)$
22. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles and $\overline{W E}$ leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
23. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$.
24. All other inputs equal Vcc -0.2 V .
25. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5 V for a period of less than 20 ns and the signal's total duration is 25 ns or less; or a -0.3 V signal of any duration is presented (DC).

READ CYCLE


EARLY-WRITE CYCLE


READ-WRITE CYCLE
(LATE-WRITE and READ-MODIFY-WRITE CYCLES)


FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)

*tPC is for LATE-WRITE only.

## RAS-ONLY REFRESH CYCLE

$\left(\operatorname{ADDR}=\mathrm{A}_{0}-\mathrm{A}_{8} ; \mathrm{A}_{9}\right.$ and $\overline{\mathrm{WE}}=$ DON'T CARE $)$


- $\mathrm{VOH}_{\mathrm{OL}}=$

OPEN
CAS-BEFORE-ㅁAS REFRESH CYCLE

$$
\left(\mathrm{A}_{0}-\mathrm{A}_{9} \text { and } \overline{\mathrm{WE}}=\mathrm{DON} \text { 'T CARE }\right)
$$



Q $\mathrm{V}_{\mathrm{OL}}^{\mathrm{OH}}=$
OPEN

## HIDDEN REFRESH CYCLE

$$
(\overline{\mathrm{WE}}=\mathrm{HIGH})^{23}
$$




## DRAM

## 1 MEG x 1 DRAM STATIC COLUMN

## FEATURES

- Industry standard $\times 1$ pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 3 mW standby; 175 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 512 -cycle refresh in 8 ms
- Refresh modes: $\overline{\text { RAS-ONLY, } \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{R A S}}$, and HIDDEN
- Optional STATIC COLUMN access cycle


## OPTIONS

- Timing 70 ns access $\quad-7$
80ns access -8
100ns access -10
- Packages

Plastic DIP ( 300 mil )
Ceramic DIP ( 300 mil )
Plastic ZIP ( 350 mil )
Plastic SOJ ( 300 mil )
Plastic TSOP (***)

- Operating Temperature, $\mathrm{TA}_{\mathrm{A}}$

Commercial ( $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ )
Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

MARKING7
8-10
None
C
Z
DJ
VG

$$
\begin{aligned}
& \text { None } \\
& \text { IT }
\end{aligned}
$$

## GENERAL DESCRIPTION

The MT4C1026 is a randomly accessed solid-state memory containing $1,048,576$ bits organized in a $x 1$ configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. $\overline{\text { RAS }}$ is used to latch the first 10 bits and CAS the latter 10 bits. A READ or WRITE cycle is selected with the $\overline{\mathrm{WE}}$ input. A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ modewhilealogicLOW onWEdictatesWRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CAS}}$, whichever occurs last. If $\overline{\mathrm{WE}}$ goes LOW prior to CAS going LOW, the output pin, data out (Q) remains open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle. If $\overline{\mathrm{WE}}$ goes LOW after data reaches the output pin, Q is activated and retains the selected cell data as long as CAS remains LOW (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}}$ ). This late $\overline{\mathrm{WE}}$ pulse results in a READ-WRITE cycle.


STATIC COLUMN operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A9) defined page boundary. The STATIC COLUMN cycle is always initiated with a row address strobed-in by RAS followed by a column address strobedin by $\overline{\text { CAS. }}$ CAS may be toggled by holding $\overline{\text { RAS }}$ LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning $\overline{\text { RAS }}$ HIGH terminates the STATIC COLUMN operation.

Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycleduring the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\mathrm{RAS}}$ cycle (READ, WRITE, RAS-ONLY, $\overline{\mathrm{CAS}}$-BEFORE-RAS, or HIDDEN REFRESH) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8 ms , regardless of sequence. The $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\text { RAS }}$ refresh will increment the refresh counter for automatic $\overline{\text { RAS }}$ addressing.

## FUNCTIONAL BLOCK DIAGRAM STATIC COLUMN


*NOTE: $\overline{\text { WE }}$ LOW prior to $\overline{\text { CAS }}$ LOW, EW detection CKT output is a HIGH (EARLY WRITE) $\overline{\mathrm{CAS}}$ LOW prior to $\overline{W E}$ LOW, EW detection CKT output is a LOW (LATE WRITE)

## TRUTH TABLE

| Function |  | RAS | CAS | WE | Address |  | DATA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {t }}$ R |  |  | ${ }^{\text {t }}$ | D (Data In) | Q (Data Out) |
| Standby |  |  | H | X | X | X | X | Don't Care | High-Z |
| READ |  | L | L | H | ROW | COL | Don't Care | Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | Data In | High-Z |
| READ-WRITE |  | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | Valid Data In | Valid Data Out |
| STATIC COLUMN READ | 1st Cycle | L | L | H | ROW | COL | Don't Care | Valid Data Out |
|  | 2nd Cycle | L | L | H | n/a | COL | Don't Care | Valid Data Out |
| STATIC COLUMN EARLY-WRITE | 1st Cycle | L | L | L | ROW | COL | Valid Data In | High-Z |
|  | 2nd Cycle | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | n/a | COL | Valid Data In | High-Z |
| STATIC COLUMN READ-WRITE | 1st Cycle | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | Valid Data In | Valid Data Out |
|  | 2nd Cycle | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | n/a | COL | Valid Data In | Valid Data Out |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | Don't Care | High-Z |
| HIDDEN | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | Don't Care | Valid Data Out |
| REFRESH | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | Valid Data In | High-Z |
| CAS-BEFORE-RAS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | Don't Care | High-Z |

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss ......... -1.0 V to +7.0 V
Storage Temperature (Ceramic) ................. $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) .................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..................................................... 600 mW
Soldering Temperature (soldering 10 sec ) ................. $260^{\circ} \mathrm{C}$
Short Circuit Output Current ...................................... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (Vcc = 5.0V $\pm 10 \%$ )

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.4 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -2.0 | 0.8 | V | 1,25 |
| INPUT LEAKAGE CURRENT any input ( $0 \mathrm{~V} \leq \mathrm{VIN} \leq 6.5 \mathrm{~V}$, all other pins not under test $=0 \mathrm{~V}$ ) | 11 | -2 | 2 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( Q is disabled, $0 \mathrm{~V} \leq \mathrm{Vout} \leq 5.5 \mathrm{~V}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS | VOH | 2.4 |  | V |  |
| Output High Voltage (lout $=-5 \mathrm{~mA}$ ) <br> Output Low Voltage $($ lout $=4.2 \mathrm{~mA})$ | Vol |  | 0.4 | V |  |



## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A9, D | $\mathrm{Cl}_{11}$ |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\text { RAS, } \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}} \mathbf{\mathrm { Cl } _ { 2 }}$ |  | 7 | pF | 2 |  |
| Output Capacitance: Q | Co |  | 7 | pF | 2 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {tRC }}$ | 130 |  | 150 |  | 180 |  | ns |  |
| READ-WRITE cycle time | trwC | 155 |  | 175 |  | 205 |  | ns |  |
| STATIC-COLUMN READ or WRITE cycle time | ${ }^{\text {tS }} \mathrm{C}$ | 40 |  | 45 |  | 55 |  | ns |  |
| STATIC-COLUMN READ-WRITE cycle time | ${ }^{\text {t }}$ SRMC | 70 |  | 80 |  | 100 |  | ns |  |
| Access time from $\overline{\mathrm{RAS}}$ | ${ }^{\text {t }}$ RAC |  | 70 |  | 80 |  | 100 | ns | 14 |
| Access time from CAS | ${ }^{\text {t }}$ A $A C$ |  | 20 |  | 20 |  | 25 | ns | 15 |
| Access time from column address | ${ }^{\text {t }} \mathrm{A}$ A |  | 35 |  | 40 |  | 50 | ns |  |
| Access time from CAS precharge | ${ }^{\text {t }}$ CPA |  | 40 |  | 45 |  | 50 | ns |  |
| $\overline{\text { RAS }}$ pulse width | tras | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| RAS pulse width (STATIC COLUMN) | ${ }^{\text {tRASC }}$ | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| RAS hold time | ${ }^{\text {t }}$ RSH | 20 |  | 20 |  | 25 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | tRP | 50 |  | 60 |  | 70 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t }}$ CAS | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns |  |
| CAS hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 70 |  | 80 |  | 100 |  | ns |  |
| CAS precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 15 |  | ns | 16 |
| CAS precharge time (STATIC COLUMN) | ${ }^{\text {t }} \mathrm{C} P$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to CAS delay time | ${ }^{\text {tr }}$ L ${ }^{\text {c }}$ | 20 | 50 | 20 | 60 | 25 | 75 | ns | 17 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {tRAH }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {trad }}$ | 15 | 35 | 15 | 40 | 20 | 50 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{t} \mathrm{CAH}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ (R | 55 |  | 60 |  | 70 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {tRAL }}$ | 35 |  | 40 |  | 50 |  | ns |  |
| Read command setup time | ${ }^{\text {tr }}$ RCS | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to $\overline{\mathrm{CAS}}$ ) | ${ }^{\text {tr }} \mathrm{CH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {tRRH }}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t }} \mathrm{CL} \mathrm{Z}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | tofF | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20 |
| WE command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns | 21 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Write command hold time | tWCH | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time (referenced to RAS) | tWCR | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {tr WhL }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to CAS lead time | ${ }^{\text {t }}$ CWL | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }}$ DH | 15 |  | 15 |  | 20 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ HR | 55 |  | 60 |  | 75 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{W E}$ delay time | ${ }^{\text {tr }}$ WD | 70 |  | 80 |  | 100 |  | ns | 21 |
| Column address to $\overline{W E}$ delay time | ${ }^{\text {taWD }}$ | 35 |  | 40 |  | 50 |  | ns | 21 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | 20 |  | 20 |  | 25 |  | ns | 21 |
| Transition time (rise or fall) | ${ }^{\text {T }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period (512 cycles) | ${ }^{\text {t REF }}$ |  | 8 |  | 8 |  | 8 | ms |  |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {tRPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| CAS setup time (CAS-BEFORE- $\overline{R A S}$ refresh) | ${ }^{\text {t }}$ CSR | 10 |  | 10 |  | 10 |  | ns | 5 |
| CAS hold time (CAS-BEFORE-TAS refresh) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5 |
| Write inactive time | ${ }^{\text {t }}$ WI | 10 |  | 10 |  | 10 |  | ns |  |
| Last WRITE to column address delay time | ${ }^{\text {t }}$ LWAD | 20 | 30 | 20 | 35 | 25 | 45 | ns |  |
| Last WRITE to column address hold time | ${ }^{\text {t }}$ AHLW | 65 |  | 75 |  | 95 |  | ns |  |
| $\overline{\text { RAS }}$ hold time referenced to $\overline{\mathrm{OE}}$ | ${ }^{\text {t }} \mathrm{ROH}$ | 10 |  | 10 |  | 10 |  | ns |  |
| Output data hold time from column address | ${ }^{\mathrm{t}} \mathrm{AOH}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Output data enable from WRITE | tow | ${ }^{t} A A$ |  | ${ }^{t}$ AA |  | ${ }^{t} A A$ |  | ns |  |
| Access time from last WRITE | ${ }^{\text {t }}$ LLW | 65 |  | 75 |  | 95 |  | ns |  |
| Column address hold time referenced to $\overline{\text { RAS }}$ HIGH | ${ }^{\text {t }} \mathrm{AH}$ | 5 |  | 5 |  | 10 |  | ns |  |
| CAS pulse width in STATIC-COLUMN mode | ${ }^{\text {t }} \mathrm{CSC}$ | ${ }^{\text {t CAS }}$ |  | ${ }^{t} \mathrm{CAS}$ |  | ${ }^{t}$ CAS |  | ns |  |
| Output data hold from WRITE | ${ }^{\text {T}} \mathrm{WOH}$ | 0 |  | 0 |  | 0 |  | ns |  |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=I \mathrm{dt} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
7. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
8. $A C$ characteristics assume ${ }^{\mathfrak{t}} \mathrm{T}=5 \mathrm{~ns}$.
9. Vit (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between Vif and VIL (or between VIL and $\mathrm{V}_{\mathrm{IH}}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between Viн and $\mathrm{V}_{\mathrm{IL}}$ (or between VIL and VIH) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=V_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=V_{\text {IL }}$, data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to 2 TTL gates and 100 pF .
14. Assumes that ${ }^{t} R C D<{ }^{\mathrm{t} R C D}(\mathrm{MAX})$. If ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the maximum recommended value shown in this table, ${ }^{\mathrm{t}} \mathrm{RAC}$ will increase by the amount that ${ }^{\mathrm{t}} \mathrm{RCD}$ exceeds the value shown.
15. Assumes that ${ }^{\mathrm{t} R C D} \geq \mathrm{t}^{\mathrm{R}} \mathrm{CD}$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{R A S}, Q$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{t}$ CPN.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{\mathrm{t}} \mathrm{RAC}(\mathrm{MAX})$ can be met. ${ }^{\mathrm{t}} \mathrm{RCD}(\mathrm{MAX})$ is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the specified ${ }^{\text {tRCD }}$ (MAX) limit, then access time is controlled exclusively by ${ }^{\mathrm{t}} \mathrm{CAC}$.
18. Operation within the t ${ }^{\text {t }}$ AD (MAX) limit ensures that ${ }^{t}$ RCD (MAX) can be met. ${ }^{\text {R }}$ (MD (MAX) is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RAD}$ is greater than the specified trAD (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{AA}$.
19. Either ${ }^{t} \mathrm{RCH}$ or ${ }^{\mathrm{t} R R H}$ must be satisfied for a READ cycle.
20. ${ }^{\text {toFF }}$ (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voн or Vol.
21. ${ }^{\mathrm{t}} \mathrm{WCS},{ }^{\mathrm{t} R W D},{ }^{\mathrm{t}} \mathrm{AWD}$ and ${ }^{\mathrm{t}} \mathrm{C} W \mathrm{D}$ are restrictive operating parameters in LATE-WRITE, and READ-MODIFY-WRITE cycles only. If ${ }^{\text {t }} \mathrm{WCS} \geq^{\text {t }}$ WCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ${ }^{\mathrm{t} R W D} \geq{ }^{\mathrm{t} R W D}$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq^{\mathrm{t}} \mathrm{AWD}$ (MIN) and ${ }^{t} C W D \geq{ }^{t} C W D$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the cycle is a LATE-WRITE and the state of $Q$ is indeterminate. (at access time and until $\overline{\mathrm{CAS}}$ goes back to $\mathrm{V}_{\mathrm{IH}}$ )
22. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles and $\overline{W E}$ leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
23. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$.
24. All other inputs equal Vcc -0.2 V .
25. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5 V for a period of less than 20 ns and the signal's total duration is 25 ns or less; or a -0.3 V signal of any duration is presented (DC).


EARLY-WRITE CYCLE


Q $\mathrm{V}_{\mathrm{OL}}^{\mathrm{VH}}=$

- OPEN

UNDEFINED

## READ-WRITE CYCLE <br> (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



STATIC-COLUMN READ CYCLE


## STATIC-COLUMN EARLY-WRITE CYCLE

 (CAS Controlled)

Q $\stackrel{V}{\mathrm{VOH}}_{\mathrm{OH}-}$ $\qquad$ OPEN

## STATIC-COLUMN EARLY-WRITE CYCLE (WE Controlled)


a $\mathrm{V}_{\mathrm{OL}} \mathrm{VO}=$ $\qquad$

ZZZ dont care
Undefined

## STATIC-COLUMN READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



RAS-ONLY REFRESH CYCLE
$\left(\operatorname{ADDR}=\mathrm{A}_{0}-\mathrm{A}_{8} ; \mathrm{A}_{9}\right.$ and $\overline{\mathrm{WE}}=\mathrm{DON}{ }^{\prime} T$ CARE $)$


CAS-BEFORE-RAS REFRESH CYCLE

$$
\left(A_{0}-A_{9} \text { and } W E=D O N ' T \text { CARE }\right)
$$


a $\mathrm{VOH}_{\mathrm{OL}}=$

UNDEFINED

HIDDEN REFRESH CYCLE
$(\overline{\mathrm{WE}}=\mathrm{HIGH})^{23}$


HIDDEN REFRESH CYCLE
( $\overline{\mathrm{WE}}=\mathrm{LOW}$ )


## DRAM

## 1 MEG $\times 1$ DRAM

LOW POWER, FAST PAGE MODE

## FEATURES

- Industry standard $x 1$ pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 1.0 mW standby; 150 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 512 -cycle refresh in 64 ms
- Refresh modes: $\overline{\text { RAS-ONLY, }} \overline{\text { CAS }}$-BEFORE- $\overline{R A S}$, and HIDDEN
- Optional FAST PAGE MODE access cycle
- Low CMOS STANDBY CURRENT, $200 \mu \mathrm{~A}$ maximum


## OPTIONS

- Timing

70ns access
80ns access
100 ns access

- Packages

Plastic DIP (300mil)
Ceramic DIP (300mil)
Plastic ZIP (350mil)
Plastic SOJ (300mil)
Plastic TSOP (***)

- Operating Temperature, TA Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
$-7$


## MARKING

None C Z DJ VG<br>None<br>C<br>DJ VG

None IT

## GENERAL DESCRIPTION

The MT4C1027 is a randomly accessed solid-state memory containing $1,048,576$ bits organized in a $x 1$ configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. $\overline{R A S}$ is used to latch the first 10 bits and $\overline{\text { CAS }}$ the latter 10 bits. A READ or WRITE cycle is selected with the $\overline{\mathrm{WE}}$ input. A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ modewhilealogicLOW onWE dictatesWRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. If $\overline{W E}$ goes LOW prior to CAS going LOW, the output pin, data out (Q), remains open (High-Z) until the next $\overline{\text { CAS }}$ cycle. If WE goes LOW after data reaches the output pin, Q is activated and retains the selected cell data as long as $\overline{\mathrm{CAS}}$ remains LOW (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}}$ ). This late $\overline{\mathrm{WE}}$ pulse results in a READ-WRITE cycle.


FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a
row address (A0-A9) defined page boundary. The FAST tions (READ, WRITE or READ-MODIFY-WRITE) within a
row address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\mathrm{RA}} \overline{\mathrm{S}}$ followed by a column address strobedin by $\overline{\text { CAS. }}$. CAS may be toggled by holding $\overline{\text { RAS }}$ LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning $\overline{\text { RAS }} \mathrm{HIGH}$ terminates the FAST PAGE MODE operation.

Returning $\overline{R A S}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycleduring the $\overline{\text { RAS }}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\mathrm{RAS}}$ cycle (READ, WRITE, $\overline{R A S}-O N L Y, \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$, or HIDDEN REFRESH) so that all 512 combinations of $\overline{\text { RAS }}$ addresses (A0-A8) areexecuted at least every 64 ms , regardless of sequence. The $\overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$ refresh will increment the refresh counter for automatic $\overline{\mathrm{RAS}}$ addressing.
*Address not used for $\overline{\text { RAS }}-O N L Y$ refresh
**TF = Test Function, Vin must not exceed Vcc+1V for normal operation
***Consult factory on availability of TSOP packages

FUNCTIONAL BLOCK DIAGRAM LOW POWER, FAST PAGE MODE

*NOTE: $\overline{\text { WE }}$ LOW prior to $\overline{\text { CAS }}$ LOW, EW detection CKT output is a HIGH (EARLY WRITE)

## TRUTH TABLE

| Function |  | RAS | CAS | WE | Address |  | DATA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {tR }}$ |  |  | ${ }^{\text {t }}$ C | D (Data In) | Q (Data Out) |
| Standby |  |  | H | X | X | X | X | Don't Care | High-Z |
| READ |  | L | L | H | ROW | COL | Don't Care | Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | Data In | High-Z |
| READ-WRITE |  | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | Valid Data In | Valid Data Out |
| FAST-PAGE-MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | ROW | COL | Don't Care | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | n/a | COL | Don't Care | Valid Data Out |
| FAST-PAGE-MODE EARLY-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | ROW | COL | Valid Data In | High-Z |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | n/a | COL | Valid Data In | High-Z |
| FAST-PAGE-MODE READ-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | Valid Data In | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | n/a | COL | Valid Data In | Valid Data Out |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | Don't Care | High-Z |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | Don't Care | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | Valid Data In | High-Z |
| CAS-BEFORE-쥬AS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | Don't Care | High-Z |


*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: 1, 3, 4, 6, 7) (Vcc = 5.0V $\pm 10 \%$ )

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -2.0 | 0.8 | V | 1,25 |
| INPUT LEAKAGE CURRENT any input ( $0 \mathrm{~V} \leq \mathrm{ViN} \leq 6.5 \mathrm{~V}$, all other pins not under test $=0 \mathrm{~V}$ ) | 11 | -2 | 2 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( Q is disabled, $0 \mathrm{~V} \leq$ Vout $\leq 5.5 \mathrm{~V}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS | Voн | 2.4 |  | V |  |
| Output High Voltage (lout $=-5 \mathrm{~mA}$ ) <br> Output Low Voltage (lout $=4.2 \mathrm{~mA}$ ) | Vol |  | 0.4 | V |  |


|  | SYMBOL | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION |  | -7 | -8 | -10 | UNITS | NOTES |
| STANDBY CURRENT: (TTL) $\left(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{(H)}\right)$ | Icc1 | 2 | 2 | 2 | mA |  |
| STANDBY CURRENT: (CMOS) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V})$ | Icc2 | 1 | 1 | 1 | mA | 24 |
| OPERATING CURRENT: Random READ/WRITE <br> Average power supply current <br> (RAS, $\overline{C A S}$, Single Address Cycling: ${ }^{\text {tRC }}={ }^{\mathrm{t} R C}$ (MIN)) | Icc3 | 75 | 65 | 60 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE <br> Average power supply current <br> ( $\overline{\mathrm{RAS}}=\mathrm{VIL} ; \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}$ (MIN)) | Icc4 | 55 | 45 | 40 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY <br> Average power supply current ( $\overline{\text { RAS }}$ Cycling; $\overline{\mathrm{CAS}}=\mathrm{VIH:}^{\mathrm{t}}{ }^{\mathrm{RC}}={ }^{\mathrm{t}} \mathrm{RC}$ (MIN)) | Icc5 | 200 | 200 | 200 | $\mu \mathrm{A}$ | 3 |
| REFRESH CURRENT: $\overline{\text { CAS-BEFORE-RAS }}$ <br> Average power supply current <br> (RAS, CAS, Address Cycling: ${ }^{\text {tRC }}={ }^{\mathrm{t} R C}(\mathrm{MIN})$ ) | Icc6 | 75 | 65 | 60 | mA | 3,5 |
| BATTERY BACKUP REFRESH CURRENT <br> Average power supply current during battery backup refresh: $\overline{\mathrm{CAS}}=0.2 \mathrm{~V}$ or $\overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$ cycling; $\overline{\mathrm{RAS}}={ }^{\text {t }} \mathrm{RAS}$ (MIN) of $1 \mu \mathrm{~s}$; $\overline{\mathrm{WE}}, \mathrm{AO}-\mathrm{A} 9$ and D in $=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0.2 V ( D in may be left OPEN), ${ }^{\mathrm{t}} \mathrm{RC}=125 \mu \mathrm{~s}$ ( 512 rows at $125 \mu \mathrm{~s}=64 \mathrm{~ms}$ ) | Icc7 | 200 | 200 | 200 | $\mu \mathrm{A}$ | 5 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A9, D | Cl 1 |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ | $\mathrm{Cl}_{12}$ |  | 7 | pF | 2 |
| Output Capacitance: Q | Co |  | 7 | pF | 2 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc $=5.0 \mathrm{~V} \pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t } R C ~}$ | 130 |  | 150 |  | 180 |  | ns |  |
| READ-WRITE cycle time | trwC | 155 |  | 175 |  | 205 |  | ns |  |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 45 |  | 55 |  | ns |  |
| FAST-PAGE-MODE READ-WRITE cycle time | tPRWC | 65 |  | 70 |  | 85 |  | ns |  |
| Access time from $\overline{\mathrm{RAS}}$ | ${ }^{\text {t RAC }}$ |  | 70 |  | 80 |  | 100 | ns | 14 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{t}$ CAC |  | 20 |  | 20 |  | 25 | ns | 15 |
| Access time from column address | ${ }^{t} A A$ |  | 35 |  | 40 |  | 50 | ns |  |
| Access time from CAS precharge | ${ }^{\text {t }}$ PPA |  | 40 |  | 45 |  | 50 | ns |  |
| RAS pulse width | tRAS | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ pulse width (FAST PAGE MODE) | ${ }^{\text {tRASP }}$ | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| RAS hold time | ${ }^{\text {t } R S H}$ | 20 |  | 20 |  | 25 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | ${ }^{\text {tRP }}$ | 50 |  | 60 |  | 70 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t }}$ CAS | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns |  |
| CAS hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 15 |  | ns | 16 |
| CAS precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay time | ${ }^{\text {t RCD }}$ | 20 | 50 | 20 | 60 | 25 | 75 | ns | 17 |
| $\overline{\text { CAS }}$ to RAS precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {tRAH }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to columnaddress delay time | ${ }^{\text {tRAD }}$ | 15 | 35 | 15 | 40 | 20 | 50 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{t} \mathrm{CAH}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time (referenced to RAS) | ${ }^{t} A R$ | 55 |  | 60 |  | 70 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {traL }}$ | 35 |  | 40 |  | 50 |  | ns |  |
| Read command setup time | ${ }^{\text {t RCS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to $\overline{\mathrm{CAS}}$ ) | ${ }^{\text {t }} \mathrm{RCH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to RAS) | ${ }^{\text {t } R R H}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t }}$ CLZ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | toff | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20 |
| $\overline{\text { WE }}$ command setup time | ${ }^{\text {t W }}$ WCS | 0 |  | 0 |  | 0 |  | ns | 21 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) $(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ WCR | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | tWP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\mathrm{RAS}}$ lead time | ${ }^{\text {t RWL }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }}$ CWL | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }}$ D ${ }^{\text {d }}$ | 15 |  | 15 |  | 20 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ DHR | 55 |  | 60 |  | 75 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {tRWD }}$ | 70 |  | 80 |  | 100 |  | ns | 21 |
| Column address to $\overline{W E}$ delay time | ${ }^{\text {t }}$ AWD | 35 |  | 40 |  | 50 |  | ns | 21 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | 20 |  | 20 |  | 25 |  | ns | 21 |
| Transition time (rise or fall) | ${ }^{\text {T }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period (512-cycles) | ${ }^{\text {tREF }}$ |  | 64 |  | 64 |  | 64 | ms |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {tRPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| CAS setup time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5 |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=I \mathrm{dt} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{VCC}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
7. An initial pause of $100 \mu$ s is required after power-up followed by any eight $\overline{\mathrm{RAS}}$ cycles before proper device operation is assured. The eight $\overline{R A S}$ cycle wake-up should be repeated any time the 64 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\text {t }} \mathrm{T}=5 \mathrm{~ns}$.
9. $\mathrm{V}_{\mathrm{IH}}$ (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and $V_{\text {IH }}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $V_{I H}$ and VIL (or between VIL and VIH) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{VIH}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=V_{\text {IL }}$, data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to 2 TTL gates and 100 pF .
14. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t} R A C$ will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{t} R C D \geq{ }^{t} R C D$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}} \mathrm{Q}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{t} \mathrm{CPN}$.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t} R A C(M A X)$ can be met. ${ }^{t} R C D(M A X)$ is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{t} R C D$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} C A C$.
18. Operation within the ${ }^{t} R A D$ (MAX) limit ensures that ${ }^{t} R C D$ (MAX) can be met. ${ }^{t} R A D$ (MAX) is specified as a reference point only; if ${ }^{t} R A D$ is greater than the specified ${ }^{\text {t RAD }}$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} \mathrm{AA}$.
19. Either ${ }^{t}$ RCH or ${ }^{t}$ RRH must be satisfied for a READ cycle.
20. ${ }^{\text {t OFF }}$ (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
21. ${ }^{t} W C S,{ }^{t} R W D,{ }^{t} A W D$ and ${ }^{t} C W D$ are restrictive operating parameters in LATE-WRITE, and READ-MODIFY-WRITE cycles only. If ${ }^{\text {t}}{ }^{1}{ }^{\prime} \geq^{\text {t}}$ WCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ${ }^{\mathrm{t}} \mathrm{RWD} \geq^{\mathrm{t}} \mathrm{RWD}$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq^{\mathrm{t}} \mathrm{AWD}$ (MIN) and ${ }^{\mathrm{t}} \mathrm{CWD} \geq{ }^{\mathrm{t}} \mathrm{CWD}$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the cycle is a LATE-WRITE and the state of $Q$ is indeterminate. (at access time and until CAS goes back to $V_{I H}$ )
22. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles and $\overline{W E}$ leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
23. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case,$\overline{\mathrm{WE}}=\mathrm{LOW}$.
24. All other inputs equal Vcc -02 V .
25. The device shall meet all functional requirements when a - 2.0 signal is applied provided the signal is not more negative than -1.5 V for a period of less than 20 ns and the signal's total duration is 25 ns or less; or a -0.3 V signal of any duration is presented (DC).

## READ CYCLE



EARLY-WRITE CYCLE


## READ-WRITE CYCLE

(LATE-WRITE and READ-MODIFY-WRITE CYCLES)


FAST-PAGE-MODE READ CYCLE


## FAST-PAGE-MODE EARLY-WRITE CYCLE



FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)

*tPC is for LATE-WRITE only.

## RAS-ONLY REFRESH CYCLE

(ADDR $=\mathrm{A}_{0}-\mathrm{A}_{8} ; \mathrm{A}_{9}$ and $\overline{\mathrm{WE}}=$ DON'T CARE $)$


CAS-BEFORE-RAS REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{9}$ and $\overline{\mathrm{WE}}=$ DON'T CARE $)$


- $\mathrm{VoH}_{\text {ot }}=$ OPEN


## HIDDEN REFRESH CYCLE

$(\overline{\mathrm{WE}}=\mathrm{HIGH}){ }^{23}$


HIDDEN REFRESH CYCLE
( $\overline{\mathrm{WE}}=\mathrm{LOW}$ )


V/A DON'T CARE
UNDEFINED

## DRAM

## 4 MEG x 1 DRAM <br> FAST PAGE MODE

## FEATURES

- Industry standard $x 1$ pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 3 mW standby; 225 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 1024-cycle refresh distributed across 16 ms
- Refresh modes: $\overline{\text { RAS-ONLY, } \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{R A S}}$ (CBR), and HIDDEN
- FAST PAGE MODE access cycle
- 300 and 350 mil wide SOJ packages
- Two CBR options: CBR with WE a don't care (1 Meg compatible) and CBR with $\overline{\text { WE a HIGH (JEDEC test }}$ mode capable via WCBR)


## OPTIONS

- Timing 60ns access -6
70ns access $\quad-7$
80 ns access

$$
-8
$$

- Packages

Ceramic DIP ( 300 mil )
Ceramic DIP ( 400 mil ) CN

Plastic ZIP ( 350 mil )
Plastic SOJ ( 300 mil )
Plastic SOJ (350mil)
Plastic TSOP (**)

## MARKING

- $\overline{\text { CAS-BEFORE-RAS }}$ refresh CBR with $\overline{W E}$ a don't care CBR with $\overline{\mathrm{WE}}$ a HIGH C Z DJ DJW TG


## GENERAL DESCRIPTION

The MT4C1004 is a randomly accessed solid-state memory containing 4,194,304 bits organized in a x1 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 22 address bits, which are entered 11 bits (A0-A10) at a time. $\overline{\text { RAS }}$ is used to latch the first 11 bits and $\overline{\text { CAS }}$ the latter 11 bits. A READ or WRITE cycle is selected with the $\overline{\mathrm{WE}}$ input. A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ modewhile a logicLOW onWE dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. If $\overline{W E}$ goes LOW prior to $\overline{\mathrm{CAS}}$ going LOW, the output pin remains open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle. If $\overline{\mathrm{WE}}$ goes LOW after

(E-1, E-2)

| D 51. | 26 | Vss |
| :---: | :---: | :---: |
| WE 2 | 25 | , |
| AAS - 3 | 24 | CAS |
| NC $4_{4}$ | 23 | NC |
| *A10 5 | 22 | A9 |
| AO 09 | 18 | A8 |
| A1 10 | 17 | A7 |
| A2 11 | 16 | A6 |
| A3 12 | 15 | A5 |
| Vcc 13 | 14 | A4 |

*Address not used for $\overline{R A S}-O N L Y$ refresh
**Consult factory on availability of TSOP packages
data reaches the output pin, data out $(\mathrm{Q})$ is activated and retains the selected cell data as long as $\overline{\text { CAS }}$ remains LOW (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}}$ ). This late $\overline{\mathrm{WE}}$ pulse results in a READ-WRITE cycle.

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A10) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\text { RAS }}$ followed by a column address strobed-in by $\overline{\text { CAS. }}$ CAS may be toggled-in by holding $\overline{\text { RAS }}$ LOW and strobing-indifferentcolumnaddresses, thusexecuting faster memory cycles. Returning RASHIGH terminates the FAST PAGE MODE operation.
Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for thenext cycleduring the $\overline{\text { RAS }}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle (READ, WRITE, $\overline{R A S}-O N L Y, \overline{\mathrm{CAS}}$-BEFORE- $\overline{R A S}$, or HIDDEN REFRESH) so that all 1024 combinations of $\overline{\text { RAS }}$ addresses (A0-A9) are executed at leastevery 16 ms , regardless of sequence. The $\overline{C A S}$-BEFORE-RAS cycle will invoke the refresh counter for automatic $\overline{\text { RAS }}$ addressing.

FUNCTIONAL BLOCK DIAGRAM
FAST PAGE MODE

*NOTE: $\overline{\text { WE }}$ LOW prior to $\overline{\text { CAS }}$ LOW, EW detection CKT output is a HIGH (EARLY WRITE) $\overline{C A S}$ LOW prior to WE LOW, EW detection CKT output is a LOW (LATE WRITE)

## TRUTH TABLE

| Function |  | RAS | CAS | WE | Address |  | DATA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {tR }}$ |  |  | ${ }^{\text {t }}$ | D (Data In) | Q (Data Out) |
| Standby |  |  | H | X | X | X | X | Don't Care | High Impedance |
| READ |  | L | L | H | ROW | COL | Don't Care | Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | Data In | High Impedance |
| READ-WRITE |  | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | Valid Data In | Valid Data Out |
| FAST-PAGEMODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | ROW | COL | Don't Care | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | n/a | COL | Don't Care | Valid Data Out |
| FAST-PAGEMODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | ROW | COL | Valid Data In | High Impedance |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | n/a | COL | Valid Data In | High Impedance |
| FAST-PAGE-MODE READ-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | Valid Data In | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | n/a | COL | Valid Data In | Valid Data Out |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | Don't Care | High Impedance |
| HIDDEN <br> REFRESH | READ | $L \rightarrow H \rightarrow L$ | L | H | ROW | COL | Don't Care | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | Valid Data In | High Impedance |
| CAS-BEFORERAS REFRESH | Standard | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | Don't Care | High Impedance |
|  | "J" Option | $\mathrm{H} \rightarrow \mathrm{L}$ | L | H | X | X | Don't Care | High Impedance |

ABSOLUTE MAXIMUM RATINGS*
Voltage on Vcc supply relative to Vss

$\qquad$
-1.0 V to +7.0 V
Operating Temperature, $\mathrm{T}_{\mathrm{A}}$ (Ambient) ..... $\ldots . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic) ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) ..... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..... 1W
Short Circuit Output Current 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.4 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE CURRENT any input ( $0 \mathrm{~V} \leq$ Vin $\leq 6.5 \mathrm{~V}$, all other pins not under test $=0 \mathrm{~V}$ ) | 11 | -2 | 2 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( Q is disabled, $0 \mathrm{~V} \leq \mathrm{Vout} \leq 5.5 \mathrm{~V}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS | Vон | 2.4 |  | V |  |
| Output High Voltage (lout $=-5 \mathrm{~mA})$ <br> Output Low Voltage (lout $=4.2 \mathrm{~mA}$ ) | Vol |  | 0.4 | V |  |


|  | SYMBOL | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION |  | -6 | -7 | -8 | UNITS | NOTES |
| STANDBY CURRENT: (TTL) $\left(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{H}}\right)$ | Icc1 | 2 | 2 | 2 | mA |  |
| STANDBY CURRENT: (CMOS) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V})$ | Icc2 | 1 | 1 | 1 | mA | 24 |
| OPERATING CURRENT: Random READ/WRITE Average power supply current ( $\overline{R A S}, \overline{C A S}$, Address Cycling: ${ }^{\text {tRC }}={ }^{\text {t }} \mathrm{RC}(\mathrm{MIN})$ ) | Icc3 | 110 | 100 | 90 | mA | 3,4 |
| OPERATING CURRENT: FAST PAGE MODE Average power supply current ( $\overline{\text { RAS }}=$ VIL, $\overline{\text { CAS }}$, Address Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}$ (MIN)) | Icc4 | 80 | 70 | 60 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY <br> Average power supply current <br>  | Icc5 | 110 | 100 | 90 | mA | 3 |
| REFRESH CURRENT: $\overline{C A S}-B E F O R E-\overline{R A S}$ <br> Average power supply current <br> ( $\overline{R A S}, \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\mathrm{t} R \mathrm{C}}={ }^{\mathrm{t} R C}$ (MIN)) | Icc6 | 110 | 100 | 90 | mA | 3 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A10, D | $\mathrm{Cl}_{11}$ |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\text { RAS }}$, $\overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ | $\mathrm{Cl}_{12}$ |  | 7 | pF | 2 |
| Output Capacitance: Q | Co |  | 7 | pF | 2 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -6 |  | -7 |  | -8 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t } R C ~}$ | 110 |  | 130 |  | 150 |  | ns |  |
| READ-WRITE cycle time | trwC | 135 |  | 155 |  | 175 |  | ns |  |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 40 |  | 45 |  | ns |  |
| FAST-PAGE-MODE READ-WRITE cycle time | tPRWC | 60 |  | 65 |  | 70 |  | ns |  |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {t RAC }}$ |  | 60 |  | 70 |  | 80 | ns | 14 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ CAC |  | 15 |  | 20 |  | 20 | ns | 15 |
| Access time from column address | ${ }^{\text {t }} \mathrm{AA}$ |  | 30 |  | 35 |  | 40 | ns |  |
| Access time from $\overline{\mathrm{CAS}}$ precharge | ${ }^{\text {t }} \mathrm{CPA}$ |  | 40 |  | 40 |  | 45 | ns | 25 |
| RAS pulse width | tRAS | 60 | 100,00 | 70 | 100,00 | 80 | 100,000 | ns |  |
| RAS pulse width (FAST PAGE MODE) | ${ }^{\text {tRASP }}$ | 60 | 100,00 | 70 | 100,00 | 80 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {tRSH }}$ | 15 |  | 20 |  | 20 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | tRP | 45 |  | 50 |  | 60 |  | ns |  |
| CAS pulse width | ${ }^{\text {t }} \mathrm{CAS}$ | 15 | 100,000 | 20 | 100,000 | 20 | 100,000 | ns |  |
| CAS hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 60 |  | 70 |  | 80 |  | ns |  |
| CAS precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 10 |  | ns | 16 |
| CAS precharge time (FAST PAGE MODE) | ${ }^{t} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay time | ${ }^{\text {tRCD }}$ | 15 | 45 | 20 | 50 | 20 | 60 | ns | 17 |
| $\overline{\text { CAS }}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{t}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t }}$ RAH | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {t}} \mathrm{RAD}$ | 15 | 30 | 15 | 35 | 15 | 40 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ SSC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 10 |  | 15 |  | 15 |  | ns |  |
| Column address hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{t} A R$ | 50 |  | 55 |  | 60 |  | ns |  |
| Column address to $\overline{\text { RAS }}$ lead time | ${ }^{\text {traL }}$ | 30 |  | 35 |  | 40 |  | ns |  |
| Read command setup time | ${ }^{\text {tr }}$ RCS | 0 |  | 0 |  | 0 | . | ns |  |
| Read command hold time (referenced to $\overline{\mathrm{CAS}}$ ) | ${ }^{\text {t }} \mathrm{CCH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to RAS) | trRH | 0 |  | 0 |  | 0 |  | ns | 19 |
| CAS to output in Low-Z | ${ }^{\text {t CLZ }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {t }} \mathrm{OFF}$ | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20 |
| $\overline{\text { WE }}$ command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns | 21 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -6 |  | -7 |  | -8 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Write command hold time | ${ }^{\text {t }} \mathrm{WCH}$ | 10 |  | 15 |  | 15 |  | ns |  |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }} \mathrm{WCR}$ | 45 |  | 55 |  | 60 |  | ns |  |
| Write command pulse width | tWP | 10 |  | 15 |  | 15 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | trwL | 15 |  | 20 |  | 20 |  | ns |  |
| Write command to CAS lead time | ${ }^{\text {t }}$ CWL | 15 |  | 20 |  | 20 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ D | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 10 |  | 15 |  | 15 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {tD }}$ DR | 45 |  | 55 |  | 60 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ RWD | 60 |  | 70 |  | 80 |  | ns | 21 |
| Column address to $\overline{W E}$ delay time | ${ }^{t}$ AWD | 30 |  | 35 |  | 40 |  | ns | 21 |
| $\overline{\text { CAS }}$ to WE delay time | ${ }^{\text {t }}$ CWD | 15 |  | 15 |  | 20 |  | ns | 21 |
| Transition time (rise or fall) | 'T | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period (1024 cycles) | ${ }^{\text {treF }}$ |  | 16 |  | 16 |  | 16 | ms |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {t RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| CAS setup time (CAS-BEFORE- $\overline{R A S}$ refresh) | ${ }^{\text {t }}$ CSR | 10 |  | 10 |  | 10 |  | ns | 5 |
| $\overline{\text { CAS }}$ hold time <br>  | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5 |
| $\overline{\text { WE }}$ hold time (CAS-BEFORE- $\overline{R A S}$ refresh) | ${ }^{\text {t WRH }}$ | 10 |  | 10 |  | 10 |  | ns | 24 |
| WE setup time (CAS-BEFORE- $\overline{R A S}$ refresh) | tWRP | 10 |  | 10 |  | 10 |  | ns | 24 |
| $\overline{\text { WE }}$ hold time (WCBR test cycle) | ${ }^{\text {t WTH }}$ | 10 |  | 10 |  | 10 |  | ns | 24 |
| $\overline{\text { WE }}$ setup time (WCBR test cycle) | tWTS | 10 |  | 10 |  | 10 |  | ns | 24 |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=I^{d t} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured.
7. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by eight $\overline{\text { RAS }}$ refresh cycles ( $\overline{\text { RAS-ONLY or }}$ CBR with $\overline{\mathrm{WE}} \mathrm{HIGH}$ ) before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 16 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\dagger} \mathrm{T}=5 \mathrm{~ns}$.
9. $\mathrm{V}_{\mathrm{IH}}(\mathrm{MIN})$ and $\mathrm{V}_{\mathrm{IL}}$ (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and $V_{\mathrm{IH}}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between Vif and $V_{\text {IL }}$ (or between VIL and $V_{\text {IH }}$ ) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=V_{\text {IL, }}$ data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to 2 TTL gates and 100 pF .
14. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD} \geq^{\mathrm{t}} \mathrm{RCD}$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}} \mathrm{Q}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{t} \mathrm{CPN}$.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{\mathrm{t}} \mathrm{RCD}$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} C A C$.
18. Operation within the t $R A D$ (MAX) limit ensures that ${ }^{t} R C D(M A X)$ can be met. ${ }^{t} R A D$ (MAX) is specified as a reference point only; if ${ }^{t} R A D$ is greater than the specified ${ }^{t} R A D$ (MAX) limit, then access time is controlled exclusively by ${ }^{t}$ AA.
19. Either ${ }^{t}$ RCH or ${ }^{t}$ RRH must be satisfied for a READ cycle.
20. ${ }^{\text {t OFF }}$ (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VoL.
21. ${ }^{t} W C S,{ }^{t} R W D,{ }^{t} A W D$ and ${ }^{t} C W D$ are restrictive operating parameters in late WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If ${ }^{\text {t}}{ }^{W}$ WCS $\geq$ ${ }^{\text {t}}$ WCS (MIN), the cycle is an early WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ${ }^{\mathrm{t} R W D} \geq \mathrm{t}^{\mathrm{t}} \mathrm{RWD}$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq$ ${ }^{t} A W D$ (MIN) and ${ }^{\mathrm{t}} \mathrm{CWD} \geq{ }^{\mathrm{t}} \mathrm{CWD}$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the cycle is a LATE-WRITE and the state of data out is indeterminate. (at access time and until $\overline{\mathrm{CAS}}$ goes back to $\mathrm{V}_{\mathrm{IH}}$ )
22. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in early WRITE cycles and $\overline{W E}$ leading edge in late WRITE or READ-WRITE cycles.
23. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{W E}=$ LOW.
24. ${ }^{\text {tWTS }}$ and ${ }^{\text {tWTH }}$ are set up and hold specifications for the $\overline{\mathrm{WE}}$ pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of ${ }^{t} W R P$ and ${ }^{\text {t }} W R H$ in the CBR refresh cycle.

READ CYCLE


EARLY-WRITE CYCLE


## READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



FAST-PAGE-MODE READ CYCLE


FAST-PAGE MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)


## RAS-ONLY REFRESH CYCLE

$\left(A D D R=A_{0}-A_{9} ; A_{10}\right.$ and $\left.\overline{W E}=D O N ' T ~ C A R E\right)$


CAS-BEFORE-RAS REFRESH CYCLE
$\left(A_{0}-A_{10}=\right.$ DON'T CARE $)$


HIDDEN REFRESH CYCLE
$(\overline{\mathrm{WE}}=\mathrm{HIGH})^{23}$


## 4 MEG POWER-UP AND REFRESH CONSTRAINTS

The JEDEC 4 Meg DRAM introduces two potential incompatibilities compared to the previous generation 1 Meg DRAM. The incompatibilities involve refresh and power-up. Understanding these incompatibilities and providing for them will offer the designer and system user greater compatibility between the 1 Meg and 4 Meg .

## REFRESH

The most commonly used refresh mode of the 1 Meg is the CBR ( $\overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}})$ REFRESH cycle. The CBR for the 1 Meg specifies the $\overline{\mathrm{WE}}$ pin as a don't care. The 4 Meg, on the other hand, specifies the CBR REFRESH mode to be a $\bar{W} C B R$, which is $C B R$ with the $\overline{W E}$ pin held at a logical HIGH level.

The reason for $\bar{W} C B R$ instead of CBR on the 4 Meg is that a CBR cycle with $\overline{\mathrm{WE}} \mathrm{LOW}$ will put the 4 Meg into the JEDEC specified test mode ( $\overline{\mathrm{W}} C B R$ ). In contrast, the 1 Meg test mode is entered by applying a HIGH signal to the test pin (pin 4 on DIP, pin 5 on SOJ and pin 8 on ZIP). This HIGH signal is usually a "supervoltage" ( V in $\geq 7.5 \mathrm{~V}$ ) so normal TTL or CMOS HIGH levels will not cause the part to enter the test mode.

## POWER-UP

The $4 \mathrm{Meg} \overline{\mathrm{W}} C B R$ constraint may also introduce another problem. The 1 Meg POWER-UP cycle requires a $100 \mu$ s delay followed by any $8 \overline{\mathrm{RAS}}$ cycles. The 4 Meg POWER-UP is more restrictive in that $8 \overline{\mathrm{RAS}}-\mathrm{ONLY}$ or CBR REFRESH ( $\overline{W E}$ held HIGH) cycles must be used. The
restriction is needed since the 4 Meg may power-up in the JEDEC specified test mode and must exit out of the test mode. The only way to exit the 4 Meg JEDEC test mode is with either a $\overline{R A S}-O N L Y$ or a $\bar{W} C B R$ REFRESH cycle.

## SUMMARY

1. The optional 1 Meg test pin is the A10 pin on the 4 Meg .
2. For optional test mode, the 1 Meg requires a valid HIGH on the test pin while the 4 Meg requires a CBR cycle with WE LOW.
3. The 1 Meg CBR REFRESH allows the $\overline{W E}$ pin to be "don't care" while the 4 Meg CBR requires $\overline{\mathrm{WE}}$ to be HIGH ( $\bar{W} C B R$ ).
4. The $8 \overline{\mathrm{RAS}}$ wake-up cycles on the 1 Meg may be any valid $\overline{\text { RAS }}$ cycle while the 4 Meg may only use RAS-ONLY or $\bar{W} C B R$ REFRESH cycles.

## SPECIAL FEATURE

A memory system currently using 1 Meg DRAMs with $\overline{W E}$ as a don't care during CBR REFRESH does not allow for direct upgrading to 4 Meg DRAMs. Micron, realizing some applications will have this situation, provides a special feature on its 4 Meg DRAM, that requires "supervoltage" to access the 4 Meg JEDEC WCBR test function. This allows the Micron 4 Meg DRAM to be refreshed in the same manner as any 1 MEG DRAM. Note that the eight power-up cycles should only be refresh cycles in order to guarantee that any 4 Meg DRAM, including Micron's, does not inadvertently powerup in the test mode.


COMPARISON OF 4 MEG TEST MODE AND WCBR TO 1 MEG CBR

MICFON

## DRAM

## 4 MEG x 1 DRAM STATIC COLUMN

## FEATURES

- Industry standard $x 1$ pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 3 mW standby; 225 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 1024-cycle refresh distributed across 16 ms
- Refresh modes: $\overline{\text { RAS-ONLY, }} \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$ (CBR), and HIDDEN
- STATIC COLUMN access cycle
- 300 and 350 mil wide SOJ packages
- Two CBR options: CBR with WE a don't care (1 Meg compatible) and CBR with $\overline{\text { WE a HIGH (JEDEC test }}$ mode capable via WCBR)


## OPTIONS

- Timing

60 ns access -6
70ns access $\quad-7$
80ns access -8

- Packages

Ceramic DIP (300mil)
Ceramic DIP ( 400 mil )
Plastic ZIP ( 350 mil )
Plastic SOJ (300mil)
Plastic SOJ (350mil)
Plastic TSOP (**)
MARKING

$$
\begin{aligned}
& -7 \\
& -8
\end{aligned}
$$

- $\overline{\text { CAS-BEFORE- }}$ RAS refresh CBR with $\overline{\mathrm{WE}}$ a don't care CBR with $\overline{\text { WE a HIGH }}$

C CN Z
DJ DJW TG

$$
\begin{gathered}
\text { None } \\
\text { J }
\end{gathered}
$$

## GENERAL DESCRIPTION

The MT4C1006 is a randomly accessed solid-state memory containing 4,194,304 bits organized in a $x 1$ configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 22 address bits, which are entered 11 bits (A0-A10) at a time. $\overline{\mathrm{RAS}}$ is used to latch the first 11 bits and CAS the latter 11 bits. A READ or WRITE cycle is selected with the $\overline{W E}$ input. A logic HIGH on $\overline{W E}$ dictates READ modewhilealogicLOW onWE dictatesWRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. If $\overline{W E}$ goes LOW prior to CAS going LOW, the output pin remains open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle. If $\overline{\mathrm{WE}}$ goes LOW after

*Address not used for $\overline{\text { RAS }}$-ONLY refresh
${ }^{* *}$ Consult factory on availability of TSOP packages
data reaches the output pin, data out $(\mathrm{Q})$ is activated and retains the selected cell data as long as $\overline{\text { CAS }}$ remains LOW (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}}$ ). This late $\overline{\mathrm{WE}}$ pulse results in a READ-WRITE cycle.

STATIC COLUMN operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A10) defined page boundary. TheSTATIC COLUMN cycle is always initiated with a row address strobed-in by RAS followed by a column address strobedin by $\overline{\mathrm{CAS}} . \overline{\mathrm{CAS}}$ may be toggled-in by holding $\overline{\text { RAS }} \mathrm{LOW}$ and strobing-in different columnaddresses, thusexecuting faster memory cycles. Returning $\overline{\mathrm{RAS}}$ HIGH terminates the STATIC COLUMN operation.
Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycleduring the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle (READ, WRITE, $\overline{\text { RAS ONLY, }} \overline{\mathrm{CAS}}$-BEFORE-RAS, or HIDDEN REFRESH) so that all 1024 combinations of $\overline{\text { RAS }}$ addresses (A0-A9) are executed at least every 16 ms , regardless of sequence. The $\overline{\text { CAS-BEFORE- }} \overline{\text { RAS }}$ cycle will invoke the refresh counter for automatic $\overline{\mathrm{RAS}}$ addressing.

## FUNCTIONAL BLOCK DIAGRAM STATIC COLUMN


*NOTE: $\overline{\text { WE }}$ LOW prior to $\overline{\text { CAS }}$ LOW, EW detection CKT output is a HIGH (EARLY WRITE)
CAS LOW prior to WE LOW, EW detection CKT output is a LOW (LATE WRITE)

## TRUTH TABLE

| Function |  | RAS | CAS | WE | Address |  | DATA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {tR }}$ |  |  | ${ }^{\text {t }}$ C | D (Data In) | Q (Data Out) |
| Standby |  |  | H | X | X | X | X | Don't Care | High Impedance |
| READ |  | L | L | H | ROW | COL | Don't Care | Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | Data In | High Impedance |
| READ-WRITE |  | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | Valid Data In | Valid Data Out |
| STATIC COLUMN READ | 1st Cycle | L | L | H | ROW | COL | Don't Care | Valid Data Out |
|  | 2nd Cycle | L | L | H | n/a | COL | Don't Care | Valid Data Out |
| STATIC COLUMN WRITE | 1st Cycle | L | L | L | ROW | COL | Valid Data In | High Impedance |
|  | 2nd Cycle | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | n/a | COL | Valid Data In | High Impedance |
| STATIC COLUMN READ-WRITE | 1st Cycle | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | Valid Data In | Valid Data Out |
|  | 2nd Cycle | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | n/a | COL | Valid Data In | Valid Data Out |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | Don't Care | High Impedance |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | Don't Care | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | Valid Data In | High Impedance |
| CAS-BEFORE$\overline{\text { RAS REFRESH }}$ | Standard | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | Don't Care | High Impedance |
|  | "J" Option | $\mathrm{H} \rightarrow \mathrm{L}$ | L | H | X | X | Don't Care | High Impedance |


*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.4 | $\mathrm{V} \mathrm{cc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE CURRENT any input $(O \mathrm{~V} \leq \mathrm{ViN} \leq 6.5 \mathrm{~V}$, <br> all other pins not under test $=0 \mathrm{~V}$ ) | 1 | -2 | 2 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( Q is disabled, $0 \mathrm{O} \leq$ Vout $\leq 5.5 \mathrm{~V}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS | Vor | 2.4 |  | V |  |
| Output High Voltage (lout $=-5 \mathrm{~mA})$ <br> Output Low Voltage (lout $=4.2 \mathrm{~mA}$ ) | Vol |  | 0.4 | V |  |


|  |  | MAX |  |  |  | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -6 | -7 | -8 | UNITS |  |
| STANDBY CURRENT: (TTL) $\left(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{V}}\right)$ | IcC1 | 2 | 2 | 2 | mA |  |
| STANDBY CURRENT: (CMOS) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V})$ | Icce | 1 | 1 | 1 | mA | 24 |
| OPERATING CURRENT: Random READ/WRITE <br> Average power supply current <br> (RAS, $\overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\text {tRC }}={ }^{\mathrm{t}} \mathrm{RC}$ (MIN)) | Icc3 | 110 | 100 | 90 | mA | 3, 4 |
| OPERATING CURRENT: STATIC COLUMN <br> Average power supply current <br> ( $\overline{\text { RAS }}=$ VIL, $\overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}$ (MIN)) | Icc4 | 80 | 70 | 60 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY <br> Average power supply current (RAS Cycling, $\overline{\mathrm{CAS}}=\mathrm{VIH}^{\prime}{ }^{\mathrm{t}}{ }^{\text {R }}={ }^{\text {t }} \mathrm{RC}$ (MIN)) | Icc5 | 110 | 100 | 90 | mA | 3 |
| REFRESH CURRENT: $\overline{\text { CAS }}$-BEFORE- $\overline{R A S}$ Average power supply current (RAS, $\overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\mathrm{t} R \mathrm{C}}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc6 | 110 | 100 | 90 | mA | 3 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A10, D | $\mathrm{Cl}_{1}$ |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}} \overline{\mathrm{WE}}$ | $\mathrm{Cl}_{2}$ |  | 7 | pF | 2 |
| Output Capacitance: Q | Co |  | 7 | pF | 2 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) $(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%)$

| A.C. CHARACTERISTICS |  | -6 |  | -7 |  | -8 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t } R C}$ | 110 |  | 130 |  | 150 |  | ns |  |
| READ-WRITE cycle time | trwC | 135 |  | 155 |  | 175 |  | ns |  |
| STATIC-COLUMN READ or WRITE cycle time | ${ }^{\text {t }} \mathrm{SC}$ | 40 |  | 40 |  | 45 |  | ns |  |
| STATIC-COLUMN READ-WRITE cycle time | 'SRMC | 65 |  | 70 |  | 75 |  | ns |  |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {t RAC }}$ |  | 60 |  | 70 |  | 80 | ns | 14 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ 'AC |  | 15 |  | 20 |  | 20 | ns | 15 |
| Access time from column address | ${ }^{\text {t }}$ AA |  | 30 |  | 35 |  | 40 | ns |  |
| Access time from $\overline{\mathrm{CAS}}$ precharge | ${ }^{\text {t }}$ CPA |  | 40 |  | 40 |  | 45 | ns | 25 |
| RAS pulse width | tRAS | 60 | 100,00 | 70 | 100,00 | 80 | 100,000 | ns |  |
| RAS pulse width (STATIC COLUMN) | ${ }^{\text {tRASC }}$ | 60 | 100,00 | 70 | 100,00 | 80 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {tr }}$ 'R ${ }^{\text {P }}$ | 15 |  | 20 |  | 20 |  | ns |  |
| RAS precharge time | tRP | 45 |  | 50 |  | 60 |  | ns |  |
| CAS pulse width | ${ }^{\text {t CaS }}$ | 15 | 100,000 | 20 | 100,000 | 20 | 100,000 | ns |  |
| CAS hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 60 |  | 70 |  | 80 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }} \mathrm{CPN}$ | 10 |  | 10 |  | 10 |  | ns | 16 |
| $\overline{\text { CAS }}$ precharge time (STATIC COLUMN) | ${ }^{\text {t }} \mathrm{C} P$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay time | ${ }^{\text {tr }}$, ${ }^{\text {che }}$ | 15 | 45 | 20 | 50 | 20 | 60 | ns | 17 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {tRAH }}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {tRAD }}$ | 15 | 30 | 15 | 35 | 15 | 40 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 10 |  | 15 |  | 15 |  | ns |  |
| Column address hold time (referenced to RAS) | ${ }^{\text {t }}$ AR | 50 |  | 55 |  | 60 |  | ns |  |
| Column address to RAS lead time | traL | 30 |  | 35 |  | 40 |  | ns |  |
| Read command setup time | ${ }^{\text {tRCS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to $\overline{\mathrm{CAS}}$ ) |  | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | tRRH | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\mathrm{CAS}}$ to output in Low-Z | ${ }^{\text {t }} \mathrm{CLZ}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {toFF }}$ | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20 |
| $\overline{\text { WE }}$ command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns | 21 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -6 |  | -7 |  | -8 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Write command hold time | tWCH | 10 |  | 15 |  | 15 |  | ns |  |
| Write command hold time (referenced to $\overline{\text { RAS }}$ ) | tWCR | 45 |  | 55 |  | 60 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 10 |  | 15 |  | 15 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t }}$ RWL | 15 |  | 20 |  | 20 |  | ns |  |
| Write command to $\overline{\mathrm{CAS}}$ lead time | ${ }^{\text {t }} \mathrm{CWL}$ | 15 |  | 20 |  | 20 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 10 |  | 15 |  | 15 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\text { RAS }})$ | tDHR | 45 |  | 55 |  | 60 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ delay time | trwD | 60 |  | 70 |  | 80 |  | ns | 21 |
| Column address to $\overline{W E}$ delay time | ${ }^{\text {t}}$ AWD | 30 |  | 35 |  | 40 |  | ns | 21 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | 15 |  | 15 |  | 20 |  | ns | 21 |
| Transition time (rise or fall) | ${ }^{\text {T }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9, 10 |
| Refresh period (1024 cycles) | treF |  | 16 |  | 16 |  | 16 | ms |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ precharge time | ${ }^{\text {tRPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| CAS setup time (든-BEFORE- $\overline{R A S}$ refresh) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| $\overline{\mathrm{CAS}}$ hold time ( $\overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$ refresh) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5 |
| $\overline{\text { WE }}$ hold time ( $\overline{\mathrm{CAS}}$-BEFORE- $\overline{R A S}$ refresh) | tWRH | 10 |  | 10 |  | 10 |  | ns | 24 |
| $\overline{\text { WE }}$ setup time (CAS-BEFORE-RAS refresh) | tWRP | 10 |  | 10 |  | 10 |  | ns | 24 |
| $\overline{\text { WE }}$ hold time (WCBR test cycle) | ${ }^{\text {t }}$ WTH | 10 |  | 10 |  | 10 |  | ns | 24 |
| $\overline{\text { WE }}$ setup time (WCBR test cycle) | ${ }^{t}$ WTS | 10 |  | 10 |  | 10 |  | ns | 24 |
| Write inactive time | ${ }^{\text {t }}$ WI | 10 |  | 10 |  | 10 |  | ns |  |
| Last WRITE to column address delay time | t ${ }^{\text {LWAD }}$ | 15 | 25 | 20 | 30 | 20 | 35 | ns |  |
| Last WRITE to column address hold time | ${ }^{\text {t }}$ HLLW | 55 |  | 65 |  | 75 |  | ns |  |
| $\overline{\text { RAS }}$ hold time referenced to $\overline{\mathrm{OE}}$ | ${ }^{\text {t }} \mathrm{ROH}$ | 10 |  | 10 |  | 10 |  | ns |  |
| Output data hold time from column address | ${ }^{\text {t }} \mathrm{AOH}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Output data enable from WRITE | tow | 20 |  | 20 |  | 20 |  | ns |  |
| Access time from last WRITE | ${ }^{\text {t }}$ ALW | 55 |  | 65 |  | 75 |  | ns |  |
| Column address hold time referenced to RAS HIGH | ${ }^{\text {t }} \mathrm{AH}$ | 5 |  | 5 |  | 10 |  | ns |  |
| CAS pulse width in STATIC-COLUMN mode | ${ }^{\text {t }} \mathrm{CSC}$ | ${ }^{\text {t }}$ CAS |  | ${ }^{\text {t }}$ CAS |  | ${ }^{\text {t }} \mathrm{CAS}$ |  | ns |  |
| Output data hold from WRITE | ${ }^{\text {T}} \mathrm{WOH}$ | 0 |  | 0 |  | 0 |  | ns |  |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $\mathrm{C}=\mathrm{I}^{\mathrm{dt} / \mathrm{dv}}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured.
7. An initial pause of $100 \mu$ s is required after power-up followed by eight $\overline{\mathrm{RAS}}$ refresh cycles ( $\overline{\mathrm{RAS}}$-ONLY or CBR with $\overline{\mathrm{WE}} \mathrm{HIGH}$ ) before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 16 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between $V_{\text {IH }}$ and $V_{\text {IL }}$ (or between VIL and $V_{I H}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $\mathrm{VIH}_{\mathrm{IH}}$ and VIL (or between VIL and VIH) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=V_{\mathrm{IL}}$, data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to 2 TTL gates and 100 pF .
14. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{t} R C D \geq{ }^{t} R C D$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}} \mathrm{Q}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{t} \mathrm{CPN}$.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{t} R C D$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} C A C$.
18. Operation within the ${ }^{t} R A D$ (MAX) limit ensures that ${ }^{t} R C D$ (MAX) can be met. ${ }^{t} R A D$ (MAX) is specified as a reference point only; if ${ }^{t} R A D$ is greater than the specified ${ }^{\text {t RAD }}$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} A A$.
19. Either ${ }^{t} \mathrm{RCH}$ or ${ }^{t} \mathrm{RRH}$ must be satisfied for a READ cycle.
20. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VoH or Vol.
21. ${ }^{t} W C S,{ }^{t} R W D,{ }^{t} A W D$ and ${ }^{t} C W D$ are restrictive operating parameters in late WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If ${ }^{\text {t}}$ WCS $\geq$ ${ }^{\text {t}}$ WCS (MIN), the cycle is an early WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ${ }^{t} R W D \geq{ }^{t} R W D$ (MIN), ${ }^{t} A W D \geq$ ${ }^{t} A W D$ (MIN) and ${ }^{t} \mathrm{CWD} \geq{ }^{\mathrm{t}} \mathrm{CWD}$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the cycle is a LATE-WRITE and the state of data out is indeterminate. (at access time and uniil CAS goes back to V1H)
22. These parameters are referenced to $\overline{\text { CAS }}$ leading edge in early WRITE cycles and $\overline{W E}$ leading edge in late WRITE or READ-WRITE cycles.
23. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$.
24. ${ }^{\text {t }}$ WTS and ${ }^{\text {t }}$ WTH are set up and hold specifications for the $\overline{W E}$ pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of ${ }^{t}$ WRP and ${ }^{t} W R H$ in the CBR refresh cycle.


EARLY-WRITE CYCLE
$\overline{\mathrm{RAS}}$

ADDR
$\overline{C A S}$


- $\mathrm{V}_{\mathrm{OH}}$ $\qquad$
VZID dont care
undefined


## READ-WRITE CYCLE <br> (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



## STĀTIC̄-COLUMN READ CYCLE



## STATIC-COLUMN EARLY-WRITE CYCLE

 (CAS controlled)

STATIC-COLUMN EARLY-WRITE CYCLE (WE controlled)


## STATIC-COLUMN READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



V/Z dont care
undefined

RAS-ONLY REFRESH CYCLE
$\left(A D D R=A_{0}-A_{9} ; A_{10}\right.$ and $\overline{W E}=$ DON'T CARE $)$


CAS-BEFORE- $\overline{R A S}$ REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{10}=$ DON'T CARE)


HIDDEN REFRESH CYCLE

$$
(\overline{\mathrm{WE}}=\mathrm{HIGH})^{23}
$$



## 4 MEG POWER-UP AND REFRESH CONSTRAINTS

The 4 Meg DRAM introduces two potential incompatibilities compared to the previous generation 1 Meg DRAM. The incompatibilities involve refresh and power-up. Understanding these incompatibilities and providing for them will offer the designer and system user greater compatibility between the 1 Meg and 4 Meg .

## REFRESH

The most commonly used refresh mode of the 1 Meg is the CBR ( $\overline{\text { CAS-BEFORE-RAS) }}$ REFRESH cycle. The CBR for the 1 Meg specifies the $\overline{\mathrm{WE}}$ pin as a don't care. The 4 Meg , on the other hand, specifies the CBRREFRESH mode to be a $\bar{W} C B R$, which is CBR with the $\overline{W E}$ pin held at a logical HIGH level.

The reason for $\bar{W} C B R$ instead of CBR on the 4 Meg is that a CBR cycle with $\overline{W E}$ LOW will put the 4 Meg into the JEDEC specified test mode ( $\overline{\mathrm{W}} \mathrm{CBR}$ ). In contrast, the 1 Meg test mode is entered by applying a HIGH signal to the test pin (pin 4 on DIP, pin 5 on SOJ and pin 8 on ZIP). This HIGH signal is usually a "supervoltage" ( V in $\geq 7.5 \mathrm{~V}$ ) so normal TTL or CMOS HIGH levels will not cause the part to enter the test mode.

## POWER-UP

The 4 Meg $\bar{W} C B R$ constraint may also introduce another problem. The 1 MegPOWER-UP cycle requires a $100 \mu$ s delay followed by any $8 \overline{\text { RAS cycles. The } 4 \mathrm{Meg} \text { POWER-UP is more }}$ restrictive in that $8 \overline{\mathrm{RAS}}-\mathrm{ONLY}$ or $\overline{\mathrm{WCBR}}$ REFRESH ( $\overline{\mathrm{WE}}$ held HIGH) cycles must be used. The restriction is needed
since the 4 Meg may power-up in the JEDEC specified test mode and must exit out of the test mode. The only way to exit the 4 Meg JEDEC test mode is with either a RAS-ONLY or a $\bar{W} C B R$ REFRESH cycle.

## SUMMARY

1. The optional 1 Meg test pin is the A10 pin on the 4 Meg .
2. For optional test mode, the 1 Meg requires a valid HIGH on the test pin while the 4 Meg requires a CBR cycle with $\overline{\mathrm{WE}} \mathrm{LOW}$.
3. The 1 Meg CBR REFRESH allows the WEpin to be "don't care" while the 4 Meg CBR requires $\overline{\mathrm{WE}}$ to be HIGH ( $\overline{\mathrm{W}} \mathrm{CBR}$ ).
4. The $8 \overline{\mathrm{RAS}}$ wake-up cycles on the 1 Meg may be any valid $\overline{\mathrm{RAS}}$ cycle while the 4 Meg may only use $\overline{\mathrm{RAS}}-\mathrm{ONLY}$ or $\bar{W} C B R$ REFRESH cycles.

## SPECIAL FEATURE

Amemory system currentlyusing1MegDRAMswith $\overline{W E}$ as a don't care during CBR REFRESH does not allow for direct upgrading to 4 Meg DRAMs. Micron, realizing some companies will have this situation, provides a special feature on its 4 Meg DRAM, that requires "supervoltage" to access the 4 Meg JEDEC WCBR test function. This allows the Micron 4 Meg DRAM to be refreshed in the same manner as any 1 MEG DRAM. Note that the eight power-up cycles should only be refresh cycles in order to guarantee that any 4 Meg DRAM, including Micron's, does not inadvertently powerup in the test mode.


COMPARISON OF 4 MEG TEST MODE AND WCBR TO 1 MEG CBR

## DRAM

# 16 MEG x 1 DRAM 

FAST PAGE MODE: MT4C10016 STATIC COLUMN: MT4C10017

## FEATURES

- Industry standard $x 1$ pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single power supply: $+5 \mathrm{~V} \pm 10 \%$ or $+3.3 \mathrm{~V} \pm 10 \%$
- Low power, 3 mW standby; 250 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Refresh modes: $\overline{\text { RAS-ONLY, }} \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{R A S}$ (CBR), and HIDDEN
- 4096 -cycle refresh distributed across 64 ms


## OPTIONS

- Timing

50 ns access $\quad-5$
60ns access -6
70ns access -7
80ns access -8

- Packages

Plastic ZIP (475mil) Z
Plastic SOJ (400mil) DJ
Plastic TSOP (*) TG

- Refresh Period

4096 cycles @ 64ms
None

- Operating Temperature, TA

Commercial ( $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ )
Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
None

- Power Supply
$+5 \mathrm{~V} \pm 10 \%$
$+3.3 \mathrm{~V} \pm 10 \%$
None
V


## GENERAL DESCRIPTION

The MT4C10016/7 are randomly accessed solid-state memories containing $16,777,216$ bits organized in a $x 1$ configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 24 address bits, which are entered 12 bits (A0-A11) at a time. $\overline{\text { RAS }}$ is used to latch the first 12 bits and $\overline{\text { CAS }}$ the latter 12 bits. A READ or WRITE cycle is selected with the $\overline{\mathrm{WE}}$ input. A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ mode while a logic LOW on $\overline{\text { WE }}$ dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. If $\overline{\text { WE }}$ goes LOW prior to $\overline{\text { CAS }}$ going LOW, the output pin
PIN ASSIGNMENT (Top View)
24-Pin SOJ
(E-7)


| A9 |  | $5 \cdot$ | 2 | NC |
| :---: | :---: | :---: | :---: | :---: |
| $\overline{\text { CAS }}$ | 3 | C $5=$ | 2 | NC |
| Q | 5 | cı | 6 |  |
| Vcc | 7 | ${ }_{5}{ }^{\circ}$ | 6 | Vss |
| N | 9 | $\mathrm{r}=$ | 8 | D |
|  | 9 | $5=$ | 10 | WE |
| RAS | 11 | C $5=$ | 12 | A11 |
| A10 | 13 | ¢ $=$ | 12 |  |
| A1 | 15 | = 2 | 14 | AO |
| A3 | 17 | c. 5 | 16 | A2 |
|  |  | $r=$ | 18 | Vcc |
| VSS |  | r= | 20 | A4 |
| A5 | 21 | C= $\mathrm{c}=$ | 22 |  |
| A7 | 22 | $=2$ | 24 | A8 |

*Consult factory on availablity of TSOP packages
remains open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle. If $\overline{\mathrm{WE}}$ goes LOW after data reaches the output pin, data out $(\mathrm{Q})$ is activated and retains the selected cell data as long as CAS remains LOW (regardless of $\overline{\mathrm{WE}}$ or $\overline{\text { RAS }}$ ). This late WE pulse results in a READ-WRITE cycle.
FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A11) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\text { RAS }}$ followed by a column address strobed-in by $\overline{\text { CAS }}$. $\overline{\text { CAS }}$ may be toggled-in by holding $\overline{\text { RAS }}$ LOW and strobing-indifferent columnaddresses, thusexecuting faster memory cycles. Returning RASHIGH terminates the FAST PAGE MODE operation.
Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycleduring the $\overline{\text { RAS }}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle (READ, WRITE, $\overline{\text { RAS-ONLY, } \overline{\text { CAS-BEFORE-RAS }} \text { (CBR), or }}$ HIDDEN REFRESH) so that all 2048/4096 combinations of $\overline{\text { RAS }}$ addresses (A0-A10/A11) are executed at least every $32 \mathrm{~ms} / 64 \mathrm{~ms}$, regardless of sequence. The CBR refresh cycle will invoke the refresh counter for automatic $\overline{\text { RAS }}$ addressing.
The MT4C10016/7 are available with either 2048 cycles or 4096 cycles of refreshing. If CBR refresh is used, the 2048cycle version will work in either a 2048 or a 4096 cycle application.

## DRAM

## 64K x 4 DRAM

## PAGE MODE

## FEATURES

- Industry standard pinout, timing and functions
- All inputs, outputs, and clocks are fully TTL compatible
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 15 mW standby; 150 mW active, typical
- Refresh modes: $\overline{\text { RAS-ONLY, }} \overline{\mathrm{CAS}}$-BEFORE-근, and HIDDEN
- 256-cycle refresh in 4 ms
- Optional PAGE MODE access cycle



## GENERAL DESCRIPTION

The MT4067 is a randomly accessed solid-state memory containing 262,144 bits organized in a $x 4$ configuration. The 16 address bits are entered 8 bits at a time using $\overline{\operatorname{RAS}}$ to latch the first 8 bits and $\overline{C A S}$ the latter 8 bits. If the $\overline{W E}$ pin goes LOW prior to $\overline{\text { CAS }}$ going LOW, the output pin remains open until the next $\overline{C A S}$ cycle. If $\overline{W E}$ goes LOW after data reaches the output pin, the output pin is activated and retains the selected cell data as long as CAS remains LOW (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}})$. This late $\overline{\mathrm{WE}}$ pulse results in a READ-MODIFY-WRITE cycle. Data-in (D) is latched when $\overline{W E}$ strobes LOW.

By holding $\overline{\text { RAS }}$ LOW, $\overline{\text { CAS }}$ may be toggled to execute several faster READ, WRITE, READ-WRITE or READ-

## PIN ASSIGNMENT (Top View)

18-Pin DIP
(A-2, B-2)
20-Pin ZIP
(C-2)

| OE $[1 \cdot 18] \mathrm{Vss}$ |  |
| :---: | :---: |
| DQ1 12 | 17 T DQ4 |
| DQ2 3 | 16 |
| WE 4 | 15 DQ3 |
| RAS 5 | 14 A0 |
| A6 6 | 13 A 1 |
| A5 77 | 12 A 2 |
| A4 8 | 11 A3 |
| Vcc 9 | 10 A7 |




MODIFY-WRITEcycleswithin the $\overline{\text { RASada }}$ dressdefined page boundary. Returning $\overline{\text { RAS }}$ HIGH terminates the memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the $\overline{\text { RAS }}$ HIGH time. Memory cell data is retained in its correct state by maintaining power and executing a $\overline{\text { RAS }}$ (refresh) cycle so that all 256 combinations of $\overline{\text { RAS }}$ addresses are executed at least every 4 ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity.

## FUNCTIONAL BLOCK DIAGRAM

PAGE MODE


TRUTH TABLE

| Function | $\overline{\text { KáS }}$ | CAS | $\overline{\text { WE }}$ | $\overline{O E}$ | Addresses |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | ${ }^{\text {'R }}$ | ${ }^{\text {i }}$ C |  |
| Standby | H | X | X | X | X | X | High Impedance |
| READ | L | L | H | L | ROW | COL | Data Out |
| WRITE <br> (EARLY-WRITE) | L | L | L | X | ROW | COL | Data In |
| READ-WRITE | L | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Valid Data In |
| PAGE-MODE READ | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | H | L | ROW | COL | Valid Data Out, <br> Valid Data Out |
| PAGE-MODE WRITE | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | L | H | ROW | COL | Valid Data In, Valid Data In |
| PAGE-MODE READ-WRITE | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Valid Data In |
| RAS-ONLY REFRESH | L | H | X | H | ROW | $\mathrm{n} / \mathrm{a}$ | High Impedance |
| HIDDEN REFRESH | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | X | H | ROW | COL | Valid Data Out |
| CAS-BEFORERAS REFRESH | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | H | X | X | High Impedance |

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss ......... -1.0 V to +7.0 V
Operating Temperature, $\mathrm{T}_{\mathrm{A}}$ (Ambient) ........... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic) ................. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) .................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..............................................................1W
Short Circuit Output Current ...................................... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: $1,2,3,4,6)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V |  |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE <br> Input leakage current, any input ( $\mathrm{OV} \leq \mathrm{Vin} \leq \mathrm{Vcc}$ ), all other pins not under test $=0 \mathrm{~V}$ | 11 | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE <br> Output leakage current ( $Q$ is disabled, $\mathrm{OV} \leq$ Vout $\leq \mathrm{Vcc}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High (Logic 1) voltage (lout $=-5 \mathrm{~mA}$ ) <br> Output Low (Logic 0) voltage (lout $=5 \mathrm{~mA}$ ) | VOH VOL | 2.4 | 0.4 | V V | 1 |



## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A8 | $\mathrm{Cl}_{11}$ |  | 5 | pF | 18 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}, \overline{\mathrm{OE}}$ | $\mathrm{Cl}_{12}$ |  | 8 | pF | 18 |
| Input/Output Capacitance: DQ | Cıo |  | 7 | pF | 18 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 3, 4, 5, 10, 11, 17, 18) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -10 |  | -12 |  | -15 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {tRC }}$ | 190 |  | 220 |  | 260 |  | ns | 6, 7 |
| READ-MODIFY-WRITE cycle time | ${ }^{\text {tRWC }}$ | 250 |  | 295 |  | 345 |  | ns |  |
| PAGE-MODE cycle time | tPC | 90 |  | 100 |  | 120 |  | ns | 6,7 |
| Access time from $\overline{\mathrm{RAS}}$ | ${ }^{\text {tRAC }}$ |  | 100 |  | 120 |  | 150 | ns | 7, 8 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ AC |  | 50 |  | 60 |  | 75 | ns | 7, 9 |
| Output Enable | ${ }^{\text {toE }}$ |  | 25 |  | 30 |  | 40 | ns |  |
| $\overline{\text { RAS }}$ pulse width | tRAS | 100 | 10,000 | 120 | 10,000 | 150 | 10,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ RSH | 50 |  | 60 |  | 75 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t } R P ~}$ | 80 |  | 90 |  | 100 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t }} \mathrm{CAS}$ | 50 | 10,000 | 60 | 10,000 | 75 | 10,000 | ns |  |
| CAS hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 100 |  | 120 |  | 150 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 25 |  | 25 |  | 30 |  | ns | 19 |
| CAS precharge time (PAGE MODE) | ${ }^{t} \mathrm{CP}$ | 30 |  | 30 |  | 35 |  | ns |  |
| RAS to CAS delay time |  | 25 | 50 | 25 | 60 | 25 | 75 | ns | 13 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ CRP | 15 |  | 20 |  | 20 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t RAH }}$ | 15 |  | 15 |  | 15 |  | ns |  |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Column address hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ AR | 70 |  | 80 |  | 100 |  | ns |  |
| READ command setup time | trCS | 0 |  | 0 |  | 0 |  | ns |  |
| READ command hold time referenced to CAS | ${ }^{\text {tr }} \mathrm{RCH}$ | 0 |  | 0 |  | 0 |  | ns | 14 |
| READ command hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t } R R H}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | toFF | 0 | 30 | 0 | 30 | 0 | 35 | ns | 12 |
| Output Disable | ${ }^{\text {tod }}$ |  | 30 |  | 30 |  | 35 | ns |  |
| $\overline{\text { WE }}$ command setup time | twCS | 0 |  | 0 |  | 0 |  | ns | 16 |
| WRITE command hold time | ${ }^{\text {t }}$ WCH | 35 |  | 40 |  | 45 |  | ns |  |
| WRITE command hold time referenced to RAS | ${ }^{\text {t }}$ WCR | 85 |  | 100 |  | 120 |  | ns |  |
| WRITE command pulse width | ${ }^{\text {t }}$ WP | 35 |  | 40 |  | 45 |  | ns |  |
| WRITE command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {tr }}$ W ${ }^{\text {d }}$ | 35 |  | 40 |  | 45 |  | ns |  |
| WRITE command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }}$ WWL | 35 |  | 40 |  | 45 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 15 |
| Data-in hold time | ${ }^{\text {t }}$ DH | 35 |  | 40 |  | 45 |  | ns | 15 |
| Data-in hold time referenced to $\overline{\mathrm{RAS}}$ | ${ }^{\text {t DHR }}$ | 60 |  | 65 |  | 70 |  | ns |  |
| $\overline{\mathrm{CAS}}$ to WE delay |  | 70 |  | 90 |  | 110 |  | ns | 16 |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ delay | ${ }^{\text {tr }}$ WD | 120 |  | 150 |  | 185 |  | ns | 16 |
| Transition time (rise or fall) | ${ }^{\text {T }}$ | 3 | 100 | 3 | 100 | 3 | 100 | ns | 5,17 |
| Refresh period (256 cycles) | tREF |  | 4 |  | 4 |  | 4 | ms | 22 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }} \mathrm{CHR}$ | 20 |  | 25 |  | 30 |  | ns | 21 |
| $\overline{\text { CAS setup time }}$ (CAS-BEFORE- $\overline{\text { RAS }}$ ) refresh | ${ }^{\text {t }} \mathrm{CSR}$ | 15 |  | 20 |  | 20 |  | ns | 21 |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {t }}$ RPC | 0 |  | 0 |  | 0 |  | ns | 21 |

## NOTES

1. All voltages referenced to Vss.
2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
3. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{\text { RAS }}$ cycles before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 4 ms refresh requirement is exceeded.
4. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
5. $\mathrm{V}_{\mathrm{IH}}$ (MIN) and $\mathrm{V}_{\mathrm{IL}}(\mathrm{MAX})$ are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured.
7. Measured with a load equivalent to 2 TTL gates and 100 pF .
8. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
9. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD} \geq{ }^{\mathrm{t}} \mathrm{RCD}$ (MAX).
10. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
11. If $\overline{\mathrm{CAS}}=V_{\text {IL }}$, data output may contain data from the last valid READ cycle.
12. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VoH or Vol.
13. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t}$ RCD (MAX) is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the specified ${ }^{\mathrm{t} R C D}$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} C A C$.
14. ${ }^{\mathrm{t} R \mathrm{RCH}}$ is referenced to the first rising edge of $\overline{\mathrm{RAS}}$ or $\overline{\text { CAS. }}$
15. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in early WRITE cycles and to the $\overline{W E}$ leading edge in late WRITE or READ-MODIFY-WRITE cycles.
16. ${ }^{\mathrm{t}} \mathrm{WCS},{ }^{\mathrm{t}} \mathrm{RWD},{ }^{\mathrm{t}} \mathrm{AWD}$ and ${ }^{\mathrm{t}} \mathrm{CWD}$ are restrictive operating parameters in LATE-WRITE, and READ-MODIFY-WRITE cycles only. If ${ }^{t} W C S \geq{ }^{t} W C S$ (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit through out the entire cycle. If ${ }^{\mathrm{t}} \mathrm{RWD} \geq^{\mathrm{t}} \mathrm{RWD}$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq^{\mathrm{t}} A W D$ (MIN) and ${ }^{t} C W D \geq{ }^{t} C W D$ (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. $\overline{\mathrm{OE}}$ held HIGH and $\overline{\mathrm{WE}}$ taken LOW after $\overline{\text { CAS }}$ goes LOW results in a LATE-WRITE ( $\overline{\mathrm{OE}}$ controlled) cycle. (at access time and until $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{OE}}$ goes back to $\mathrm{VIH}_{\mathrm{IH}}$ )
17. In addition to meeting the transition rate specification, all input signals must transit between $\mathrm{V}_{\mathrm{IH}}$ and $V_{\text {IL }}$ (or between VIL and VIH) in a monotonic manner.
18. This parameter is sampled. Capacitance is calculated from the equation $C=I d / d v$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
19. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}} \mathrm{Q}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\text { CAS }}$ must be pulsed HIGH for ${ }^{\mathrm{t}} \mathrm{CP}$. Note 8 applies to determine valid data out.
20. During a READ cycle, if $\overline{\mathrm{OE}}$ is LOW then taken HIGH before $\overline{\mathrm{CAS}}$ goes $\mathrm{HIGH},(\mathrm{VIH}) \mathrm{Q}$ goes open. If $\overline{\mathrm{OE}}$ is tied permanently LOW, a READ-MODIFY-WRITE operation is not possible.
21. On-chip refresh and address counters are enabled.
22. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$ and $\overline{\mathrm{OE}}=$ HIGH.

## READ CYCLE



EARLY-WRITE CYCLE


## READ-WRITE CYCLE <br> (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



PAGE-MODE READ CYCLE


## PAGE-MODE EARLY-WRITE CYCLE



## PAGE-MODE READ-WRITE CYCLE <br> (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



RAS-ONLY REFRESH CYCLE $\left(\right.$ ADDR $=A_{0}-A_{7} ; \overline{W E}=$ DON'T CARE $)$


CAS-BEFORE-RAS REFRESH CYCLE

$$
\left(A_{0}-A_{7}, \overline{W E}, \overline{O E}=D O N ' T ~ C A R E\right)
$$

$\overline{\text { RAS }}$


DQ $\mathrm{V}_{\mathrm{OL}} \mathrm{OH}=$
OPEN

## HIDDEN REFRESH CYCLE

 $(\overline{\mathrm{WE}}=\mathrm{HIGH})^{22}$
W甘पם

## 256K x 4 DRAM <br> FAST PAGE MODE

## FEATURES

- Industry standard $\times 4$ pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 3 mW standby; 175 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 512-cycle refresh in 8 ms
- Refresh modes: $\overline{R A S}-O N L Y, \overline{\text { CAS }}$-BEFORE- $\overline{\mathrm{RAS}}$, and HIDDEN
- Optional FAST PAGE MODE access cycle


## OPTIONS

- Timing 70 ns access
80ns access
100 ns access
- Packages

Plastic DIP (300mil)
Ceramic DIP (300mil)
Plastic ZIP (350mil)
Plastic SOJ ( 300 mil )
Plastic TSOP (*)

- Operating Temperature, TA Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
MARKING
- 7
$-8$
-10

None
C
Z
DJ
VG

None
IT

## GENERAL DESCRIPTION

The MT4C4256 is a randomly accessed solid-state memory containing $1,048,576$ bits organized in a $x 4$ configuration. During READ or WRITE cycles each bit is uniquely addressed through the 18 address bits which are entered 9 bits (A0-A8) at a time. $\overline{\text { RAS }}$ is used to latch the first 9 bits and CAS the latter 9 bits. A READ or WRITE cycle is selected with the $\overline{W E}$ input. Alogic HIGHon $\overline{W E}$ dictates READ mode while a logic LOW on $\overline{W E}$ dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. If $\overline{W E}$ goes LOW prior to $\overline{\text { CAS going LOW, the output pin(s) remain open (High-Z) }}$ until the next $\overline{C A S}$ cycle. If $\overline{W E}$ goes LOW after data reaches the output pin, data out $(Q)$ is activated and retains the selected cell data as long as CAS remains LOW (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}})$. This late $\overline{\text { WE }}$ pulse results in a READ-WRITE cycle. The four data inputs and four data outputs are routed
PIN ASSIGNMENT (Top View)
20-Pin DIP
(A-5, B-4)
DQ1 $[1 \cdot 20] \mathrm{Vss}$
DQ2 2 19]DQ4
WE[3 18]DQ3
$\overline{\text { RAS }}[417] \overline{\mathrm{CAS}}$
NC[5 16$] \overline{\mathrm{OE}}$
A0 $6 \quad 15]$ A8
A1 714 A7
A2 8 13 A6
A3 $9 \quad 12$ A5
$\mathrm{Vcc}\left[\begin{array}{ll}10 & 11\end{array}\right] \mathrm{A} 4$

| 20-Pin ZIP |  |  |
| :---: | :---: | :---: |
| (C-2) |  |  |
| $\overline{\mathrm{OE}}$ | 1 | CAS |
| DQ3 | $3{ }^{3}$ | DQ4 |
| Vss | $5 \stackrel{ }{5}$ | DQ1 |
| DQ2 | 0 | WE |
| $\overline{\text { RAS }}$ | $9 \rightarrow=0$ | NC |
| A0 | 11 | NC |
| A2 | $13-14$ |  |
| Vcc | $15 \sim 14$ | A4 |
| A5 | $17 \rightarrow 18$ |  |
| A7 | 19 -70 |  |

20-Pin SOJ
(E-1)

| DQ1 | 1. | 26 | Vss |
| :---: | :---: | :---: | :---: |
| DQ2 | 2 | 25 | D D 4 |
| WE | 3 | 24 | $\square$ DQ3 |
| RAS | 4 | 23 | $\square$ CAS |
| NC 1 | 5 | 22 | DOE |
| AO | 9 | 18 | 7 A8 |
| A1 | 10 | 17 | - ${ }^{\text {7 }}$ |
| A2 5 | 11 | 16 | A ${ }^{\text {a }}$ |
| A3 | 12 | 15 | A5 |
| Voc [ | 13 | 14 | A4 |

*Consult factory on availability of TSOP packages
through four pins using common $\mathrm{I} / \mathrm{O}$, and pin direction is controlled by $\overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}$.

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A8) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RASfollowed by a column address strobed-in by $\overline{\text { CAS. }} \overline{\text { CAS }}$ may be toggled-in by holding $\overline{\text { RAS }}$ LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning $\overline{\mathrm{RAS}} \mathrm{HIGH}$ terminates the FAST PAGE MODE cycle.

Returning $\overline{\text { RAS }}$ and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycleduring the $\overline{\text { RAS }}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle (READ, WRITE, $\overline{R A S}-O N L Y, \overline{C A S}-B E F O R E-\overline{R A S}$, or HIDDEN refresh) so that all 512 combinations of $\overline{R A S}$ addresses (A0-A8) are executed at least every 8 ms , regardless of sequence. The CAS-BEFORE- $\overline{R A S}$ refresh will increment the refresh counter for automatic $\overline{\text { RAS }}$ addressing.

## FUNCTIONAL BLOCK DIAGRAM

 FAST PAGE MODE
*NOTE: $\overline{\text { WE }}$ LOW prior to $\overline{\text { CAS }}$ LOW, EW detection CKT output is a HIGH (EARLY WRITE) $\overline{\mathrm{CAS}}$ LOW prior to $\overline{W E}$ LOW, EW detection CKT output is a LOW (LATE WRITE)

TRUTH TABLE

| Function |  | RAS | CAS | WE | Address |  | OE | DATA IN / OUTDQ1-4 (IO) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {t }}$ R |  |  | ${ }^{\text {t }}$ C |  |  |
| Standby |  |  | H | X | X | X | X | X | High-Z |
| READ |  | L | L | H | ROW | COL | L | Valid Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | X | Valid Data In |
| READ-WRITE |  | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | $L \rightarrow H$ | Valid Data Out, Data In |
| FAST-PAGE-MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | ROW | COL | L | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | n/a | COL | L | Valid Data Out |
| FAST-PAGE-MODE EARLY-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | ROW | COL | X | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | n/a | COL | X | Valid Data In |
| FAST-PAGE-MODE READ-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | $L \rightarrow H$ | Valid Data Out, Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | n/a | COL | $\mathrm{L} \rightarrow \mathrm{H}$ | Valid Data Out, Data In |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | X | High-Z |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | L | Valid Data Out |
|  | WRITE | $L \rightarrow H \rightarrow L$ | L | L | ROW | COL | X | Valid Data In |
| CAS-BEFORE- $\overline{R A S}$ REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | X | High-Z |

## MT4C4256

ABSOLUTE MAXIMUM RATINGS*
Voltage on Vcc supply relative to Vss ..... -1.0 V to +7.0 V
Storage Temperature (Ceramic) ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation .....  1 W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the deviceat theseor any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: 1, 3, 4, 6, 7) (Vcc = 5.0V $\pm 10 \%$ )

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -2.0 | 0.8 | V | 1,28 |
| INPUT LEAKAGE CURRENT any input ( $O \mathrm{~V} \leq \mathrm{V} \operatorname{IN} \leq 6.5 \mathrm{~V}$, all other pins not under test $=0 \mathrm{~V}$ ) | 11 | -2 | 2 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT: (Q is disabled; $0 \mathrm{~V} \leq$ Vout $\leq 5.5 \mathrm{~V}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS | Vor | 2.4 |  | V |  |
| Output High Voltage (lout $=-5 \mathrm{~mA})$ <br> Output Low Voltage (lout $=4.2 \mathrm{~mA}$ ) | Vol |  | 0.4 | V |  |


|  | SYMBOL | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION |  | -7 | -8 | -10 | UNITS | NOTES |
| STANDBY CURRENT: (TTL) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}(\mathrm{H})$ | Icc1 | 2 | 2 | 2 | mA |  |
| STANDBY CURRENT: (CMOS) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V})$ | Icc2 | 1 | 1 | 1 | mA | 25 |
| OPERATING CURRENT: Random READ/WRITE Average power supply current ( $\overline{R A S}, \overline{C A S}$, Address Cycling: ${ }^{\text {tRC }}={ }^{\text {t }} \mathrm{RC}($ MIN $)$ ) | Icc3 | 80 | 70 | 60 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE <br> Average power supply current <br> ( $\overline{\text { RAS }}=$ VIL, $\overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}$ (MIN)) | Icc4 | 60 | 50 | 40 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS-ONLY }}$ <br> Average power supply current ( $\overline{\mathrm{RAS}}$ Cycling, $\overline{\mathrm{CAS}}=\mathrm{V}^{\prime}$ : ${ }^{\mathrm{t} R C=}{ }^{\mathrm{t} R C}$ (MIN)) | Icc5 | 80 | 70 | 60 | mA | 3 |
| REFRESH CURRENT: $\overline{\text { CAS-BEFORE-RAS }}$ <br> Average power supply current <br> ( $\overline{\text { RAS }}, \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\mathrm{t} R C}={ }^{\mathrm{t}} \mathrm{RC}($ MIN $)$ ) | Icc6 | 80 | 70 | 60 | mA | 3,5 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: AO-A8 | $\mathrm{C}_{11}$ |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}, \overline{\mathrm{OE}}}$ | $\mathrm{Cl}_{12}$ |  | 7 | pF | 2 |
| Input/Output Capacitance: DQ | $\mathrm{ClO}_{10}$ |  | 7 | pF | 2 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t } R C}$ | 130 |  | 150 |  | 180 |  | ns |  |
| READ-WRITE cycle time | ${ }^{\text {tr }}$, ${ }^{\text {P }}$ | 185 |  | 205 |  | 245 |  | ns |  |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 45 |  | 55 |  | ns |  |
| FAST-PAGE-MODE READ-WRITE cycle time | tPRWC | 95 |  | 100 |  | 115 |  | ns |  |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {tr }}$ RAC |  | 70 |  | 80 |  | 100 | ns | 14 |
| Access time from CAS | ${ }^{\text {t }}$ AAC |  | 20 |  | 20 |  | 25 | ns | 15 |
| Output Enable | ${ }^{\text {toE }}$ |  | 20 |  | 20 |  | 25 | ns |  |
| Access time from column address | ${ }^{\text {t }} \mathrm{A} A$ |  | 35 |  | 40 |  | 50 | ns |  |
| Access time from CAS precharge | ${ }^{t} \mathrm{CPA}$ |  | 40 |  | 45 |  | 50 | ns |  |
| $\overline{\text { RAS }}$ pulse width | tRAS | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| RAS pulse width (FAST PAGE MODE) | ${ }^{\text {tRASP }}$ | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| RAS hold time | trsh | 20 |  | 20 |  | 25 |  | ns |  |
| RAS precharge time | ${ }^{\text {t } R \text { P }}$ | 50 |  | 60 |  | 70 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t }}$ CAS | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns |  |
| CAS hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }} \mathrm{CPN}$ | 10 |  | 10 |  | 15 |  | ns | 16 |
| CAS precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{C}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time | ${ }^{\text {t } R C D}$ | 20 | 50 | 20 | 60 | 25 | 75 | ns | 17 |
| $\overline{\text { CAS }}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {traH }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {tRAD }}$ | 15 | 35 | 15 | 40 | 20 | 50 | ns | 18 |
| Column address setup time | ${ }^{t}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time (referenced to $\overline{\text { RAS }}$ ) | ${ }^{t} A R$ | 55 |  | 60 |  | 70 |  | ns |  |
| Column address to RAS lead time | traL | 35 |  | 40 |  | 50 |  | ns |  |
| Read command setup time |  | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to CAS) | ${ }^{\text {tr }}$ ( ${ }^{\text {P }}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | tRRH | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\mathrm{CAS}}$ to output in Low-Z | ${ }^{\text {t }} \mathrm{CL} 2$ | 0 |  | 0 |  | 0 |  | ns |  |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Output buffer turn-off delay | ${ }^{\text {t }}$ OFF | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20, 27 |
| Output Disable | ${ }^{\text {tob }}$ |  | 20 |  | 20 |  | 20 | ns | 27 |
| WE command setup time | ${ }^{\text {t WCS }}$ | 0 |  | 0 |  | 0 |  | ns | 21 |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | tWCR | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to RAS lead time | ${ }^{\text {tr WWL }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to CAS lead time | ${ }^{\text {t }} \mathrm{CWL}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 15 |  | 15 |  | 20 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {² DHR }}$ | 55 |  | 60 |  | 75 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to WE delay time | tRWD | 100 |  | 110 |  | 130 |  | ns | 21 |
| Column address to WE delay time | ${ }^{\text {t }}$ AWD | 65 |  | 70 |  | 80 |  | ns | 21 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | 50 |  | 55 |  | 60 |  | ns | 21 |
| Transition time (rise or fall) | ${ }^{\text {t }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period ( 512 cycles) | ${ }^{\text {tREF }}$ |  | 8 |  | 8 |  | 8 | ms |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ precharge time | ${ }^{\text {tr PPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| CAS setup time (CAS-BEFORE- $\overline{R A S}$ refresh) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE- $\overline{R A S}$ refresh) | ${ }^{t} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5 |
| $\overline{\mathrm{OE}}$ hold time from $\overline{\mathrm{WE}}$ during READ-MODIFY-WRITE cycle | ${ }^{\text {t }} \mathrm{OEH}$ | 20 |  | 20 |  | 20 |  | ns | 26 |
| $\overline{\mathrm{OE}}$ setup prior to $\overline{\mathrm{RAS}}$ during HIDDEN REFRESH cycle | ${ }^{\text {tor }}$ | 0 |  | 0 |  | 0 |  | ns | 24 |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=I^{\mathrm{dt}} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
7. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{\text { RAS }}$ cycles before proper device operation is assured. The eight $\overline{\mathrm{RAS}}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and $V_{\mathrm{IH}}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and $V_{I H}$ ) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=$ VIL, data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to 2 TTL gates and 100 pF .
14. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD}<^{\mathrm{t}} \mathrm{RCD}(\mathrm{MAX})$. If ${ }^{\mathrm{t} R C D}$ is greater than the maximum recommended value shown in this table, ${ }^{t} R A C$ will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{t} R C D \geq{ }^{t} R C D$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}, \mathrm{Q}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{t} \mathrm{CPN}$.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the specified ${ }^{t} R C D$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} C A C$.
18. Operation within the tRAD (MAX) limit ensures that ${ }^{t} R C D(M A X)$ can be met. ${ }^{t} R A D(M A X)$ is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RAD}$ is greater than the specified ${ }^{\text {tRAD }}$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} A A$.
19. Either ${ }^{t}$ RCH or ${ }^{t}$ RRH must be satisfied for a READ cycle.
20. ${ }^{\text {t OFF }}$ (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VoH or Vol.
21. ${ }^{t} W C S,{ }^{t} R W D,{ }^{t} A W D$ and ${ }^{t} C W D$ are restrictive operating parameters in LATE-WRITE, and READ-MODIFY-WRITE cycles only. If ${ }^{t} W C S \geq{ }^{t} W C S$ (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit through out the entire cycle. If ${ }^{\mathrm{t} R W D} \geq \mathrm{t}^{\mathrm{R}} \mathrm{RWD}$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq^{\mathrm{t}} \mathrm{AWD}$ (MIN) and ${ }^{t} C W D \geq{ }^{t} C W D$ (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. $\overline{\mathrm{OE}}$ held HIGH and $\overline{\mathrm{WE}}$ taken LOW after $\overline{\text { CAS }}$ goes LOW results in a LATE-WRITE ( $\overline{\mathrm{OE}}$ controlled) cycle.
22. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles and $\overline{W E}$ leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
23. If $\overline{\mathrm{OE}}$ is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$ and $\overline{\mathrm{OE}}=\mathrm{HIGH}$.
25. All other inputs at Vcc -0.2 V .
26. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ${ }^{\mathrm{t} O D}$ and ${ }^{\mathrm{t}} \mathrm{OEH}$ met ( $\overline{\mathrm{OE}} \mathrm{HIGH}$ during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if $\overline{\text { CAS }}$ remains LOW and $\overline{\mathrm{OE}}$ is taken back LOW after ${ }^{\text {t }} \mathrm{OEH}$ is met. If $\overline{\mathrm{CAS}}$ goes HIGH prior to $\overline{\mathrm{OE}}$ going back LOW, the DQs will remain open.
27. The DQs open during READ cycles once ${ }^{t} O D$ or ${ }^{t} O F F$ occur. If $\overline{\mathrm{CAS}}$ goes HIGH first, $\overline{\mathrm{OE}}$ becomes a don't care. If $\overline{\mathrm{OE}}$ goes HIGH and $\overline{\mathrm{CAS}}$ stays LOW, $\overline{\mathrm{OE}}$ is not a don't care; and the DQs will provide the previously read data if $\overline{\mathrm{OE}}$ is taken back LOW (while $\overline{\mathrm{CAS}}$ remains LOW).
28. The device shall meet all functional requirements when a - 2.0 signal is applied provided the signal is not more negative than -1.5 V for a period of less than 20 ns and the signal's total duration is 25 ns or less; or a -0.3 V signal of any duration is presented (DC).

## READ CYCLE



EARLY-WRITE CYCLE


READ-WRITE CYCLE
(LATE-WRITE and READ-MODIFY-WRITE CYCLES)


FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)


## RAS-ONLY REFRESH CYCLE (ADDR $=\mathrm{A}_{0}-\mathrm{A}_{8} ; \overline{\mathrm{WE}}=$ DON'T CARE $)$



CAS-BEFORE- $\overline{R A S}$ REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{8}, \overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}=\mathrm{DON}$ 'T CARE)

a Voil
OPEN

## HIDDEN REFRESH CYCLE

$(\overline{W E}=\mathrm{HIGH}, \overline{\mathrm{OE}}=\mathrm{LOW})^{24}$


HIDDEN REFRESH CYCLE $(\overline{W E}=L O W)$


## DRAM

## 256K x 4 DRAM STATIC COLUMN

## FEATURES

- Industry standard $\times 4$ pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 3 mW standby; 175 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 512 -cycle refresh in 8 ms
- Refresh modes: $\overline{\text { RAS-ONLY, }} \overline{\text { CAS-BEFORE-RAS }}$ and HIDDEN
- Optional STATIC COLUMN access cycle


## OPTIONS

- Timing 70ns access -7 80ns access -8 100ns access -10
- Packages

Plastic DIP ( 300 mil )
Ceramic DIP ( 300 mil )
Plastic ZIP (350mil)
Plastic SOJ (300mil)
Plastic TSOP ( ${ }^{*}$ )

- Operating Temperature, $\mathrm{TA}_{\mathrm{A}}$ Commercial ( $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ) Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$


## MARKING

None
C
Z
DJ
VG

None
IT

## GENERAL DESCRIPTION

The MT4C4258 is a randomly accessed solid-state memory containing $1,048,576$ bits organized in a $\times 4$ configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 18 address bits, which are entered 9 bits (A0-A8) at a time. RAS is used to latch the first 9 bits and $\overline{\text { CAS }}$ the latter 9 bits. A READ or WRITE cycle is selected with the $\overline{W E}$ input. AlogicHIGHon $\overline{W E}$ dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CAS}}$, whichever occurs last. If $\overline{\mathrm{WE}}$ goes LOW prior to CAS going LOW, the output pin(s) remain open (High-Z) until the next $\overline{\text { CAS }}$ cycle. If $\overline{W E}$ goes LOW after data reaches the output pin(s), data out $(\mathrm{Q})$ is activated and retains the selected cell data as long as $\overline{\text { CAS remains LOW (regardless of }}$ $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS})}$. This late $\overline{\mathrm{WE}}$ pulse results in a READ-WRITE cycle. The four data inputs and four data outputs are routed

## PIN ASSIGNMENT (Top View)

| $\begin{gathered} \text { 20-Pin DIP } \\ (\mathrm{A}-5, \mathrm{~B}-4) \end{gathered}$ |  |
| :---: | :---: |
|  |  |
| 2 | 19 DDC |
| - | 18 |
| PAS 4 | $17{ }^{\text {cheas }}$ |
|  |  |
| [6 | 15 |
| 17 |  |
| A2 $\mathrm{L}_{8}$ | ${ }_{13}{ }^{\text {a }}$ |
| - |  |
| Vcc 410 |  |


|  | $\begin{gathered} \text { O-Pin ZIP } \\ (\mathrm{C}-2) \end{gathered}$ |
| :---: | :---: |
| OE | E 1 國 $\quad$ CAS |
| DQ3 | $3{ }^{3} 51808$ |
|  | S 57006 |
|  | S 98 WE |
|  | O 11-10 NC |
|  | $213-12{ }^{12}$ |
|  | C 15 |
|  |  |
|  | 79 ${ }^{-10} 48$ |

20-Pin SOJ
(E-1)

*Consult factory on availability of TSOP packages
through four pins using common I/O and pin direction is controlled by $\overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}$.
STATIC COLUMN operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A9) defined page boundary. The STATIC COLUMN cycle is always initiated with a row address strobed-in by RAS followed by a column address strobedin by $\overline{\mathrm{CAS}}$. $\overline{\mathrm{CAS}}$ may be toggled-in by holding $\overline{\text { RASLOW }}$ and strobing-in different columnaddresses, thusexecuting faster memory cycles. Returning $\overline{\mathrm{RAS}}$ HIGH terminates the STATIC COLUMN operation.
Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycleduring the $\overline{\text { RAS }}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\mathrm{RAS}}$ cycle (READ, WRITE, $\overline{\text { RAS-ONLY, } \overline{\mathrm{CAS}} \text {-BEFORE- } \overline{R A S} \text {, or HID- }}$ DEN refresh) so that all 512 combinations of $\overline{\text { RAS }}$ addresses (A0-A8) are executed at least every 8 ms , regardless of sequence. The $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$ refresh will increment the refresh counter for automatic $\overline{\text { RAS }}$ addressing.

## FUNCTIONAL BLOCK DIAGRAM STATIC COLUMN


*NOTE: $\overline{\text { WE }}$ LOW prior to $\overline{\text { CAS }}$ LOW, EW detection CKT output is a HIGH (EARLY WRITE) CAS LOW prior to WE LOW, EW detection CKT output is a LOW (LATE WRITE)

## TRUTH TABLE

| Function |  | RAS | CAS | WE | Address |  | OE | $\begin{array}{\|l\|} \hline \text { DATA IN / OUT } \\ \hline \text { DQ1-4 (IO) } \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {tR }}$ |  |  | ${ }^{\text {t }}$ C |  |  |
| Standby |  |  | H | X | X | X | X | X | High-Z |
| READ |  | L | L | H | ROW | COL | L | Valid Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | X | Valid Data In |
| READ-WRITE |  | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | $\mathrm{L} \rightarrow \mathrm{H}$ | Valid Data Out, Data In |
| STATIC COLUMN READ | 1st Cycle | L | L | H | ROW | COL | L | Valid Data Out |
|  | 2nd Cycle | L | L | H | n/a | COL | L | Valid Data Out |
| STATIC COLUMN EARLY-WRITE | 1st Cycle | L | L | L | ROW | COL | X | Valid Data In |
|  | 2nd Cycle | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | n/a | COL | X | Valid Data In |
| STATIC COLUMN READ-WRITE | 1st Cycle | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | $L \rightarrow H$ | Valid Data Out, Data In |
|  | 2nd Cycle | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | n/a | COL | $\mathrm{L} \rightarrow \mathrm{H}$ | Valid Data Out, Data In |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | X | High-Z |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | L | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | X | Valid Data In |
| CAS-BEFORE- $\overline{R A S}$ REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | X | High-Z |

ABSOLUTE MAXIMUM RATINGS*<br>Voltage on Vcc supply relative to Vss . ..-1.0 V to +7.0 V<br>Storage Temperature (Ceramic)<br>$\qquad$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$<br>Storage Temperature (Plastic) $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$<br>Power Dissipation . 1 W<br>Short Circuit Output Current ......................................50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above thoseindicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: 1, 3, 4, 6, 7) (Vcc = 5.0V $\pm 10 \%$ )

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | ViH | 2.4 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -2.0 | 0.8 | V | 1,28 |
| INPUT LEAKAGE CURRENT any input $(0 \mathrm{~V} \leq \mathrm{VIN} \leq 6.5 \mathrm{~V}$, all other pins not under test $=0 \mathrm{~V}$ ) | 11 | -2 | 2 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( Q is disabled; $0 \mathrm{~V} \leq$ Vout $\leq 5.5 \mathrm{~V}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS | VOH | 2.4 |  | V |  |
| Output High Voltage (lout $=-5 \mathrm{~mA}$ ) <br> Output Low Voltage (lout $=4.2 \mathrm{~mA}$ ) | Vol |  | 0.4 | V |  |


|  |  | MAX |  |  | UNITS NOTES |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -7 | -8 | -10 |  |  |
| STANDBY CURRENT: (TTL) $\left(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{I}}\right)$ | Icc1 | 2 | 2 | 2 | mA |  |
| STANDBY CURRENT: (CMOS) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V})$ | Icce | 1 | 1 | 1 | mA | 25 |
| OPERATING CURRENT: Random READ/WRITE <br> Average power supply current <br> ( $\overline{\text { RAS }}, \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\mathrm{t}} \mathrm{RC}={ }^{\mathrm{t}} \mathrm{RC}$ (MIN)) | Icc3 | 80 | 70 | 60 | mA | 3, 4 |
| OPERATING CURRENT: STATIC COLUMN <br> Average power supply current <br> ( $\overline{\text { RAS }}=$ VIL, $\overline{\text { CAS }}$, Address Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}($ MIN $)$ ) | Icc4 | 60 | 50 | 40 | mA | 3, 4 |
| REFRESH CURRENT: RAS-ONLY <br> Average power supply current ( $\overline{\text { RAS }}$ Cycling, $\overline{\mathrm{CAS}}=\mathrm{VIH:}^{\mathrm{t} R C=}{ }^{\mathrm{t}} \mathrm{RC}$ (MIN)) | Icc5 | 80 | 70 | 60 | mA | 3 |
| REFRESH CURRENT: $\overline{\text { CAS-BEFORE-RAS }}$ <br> Average power supply current <br> ( $\overline{\text { RAS }}, \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\mathrm{t} R C}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc6 | 80 | 70 | 60 | mA | 3,5 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: AO-A8 | $\mathrm{Cl}_{11}$ |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}, \overline{\mathrm{OE}}}} \mathbf{\mathrm { C } _ { 1 2 }}$ |  | 7 | pF | 2 |  |
| Input/Output Capacitance: DQ | $\mathrm{C}_{10}$ |  | 7 | pF | 2 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | tr | 130 |  | 150 |  | 180 |  | ns |  |
| READ-WRITE cycle time | ${ }^{\text {tRWC }}$ | 185 |  | 205 |  | 245 |  | ns |  |
| STATIC-COLUMN READ or WRITE cycle time | ${ }^{\text {t }} \mathrm{SC}$ | 40 |  | 45 |  | 55 |  | ns |  |
| STATIC-COLUMN READ-WRITE cycle time | ${ }^{\text {t }}$ SRMC | 100 |  | 110 |  | 135 |  | ns |  |
| Access time from $\overline{\mathrm{RAS}}$ | ${ }^{\text {t } R A C ~}$ |  | 70 |  | 80 |  | 100 | ns | 14 |
| Access time from CAS | ${ }^{\text {t }}$ CAC |  | 20 |  | 20 |  | 25 | ns | 15 |
| Output Enable | ${ }^{\text {toE }}$ |  | 20 |  | 20 |  | 25 | ns |  |
| Access time from column address | ${ }^{\text {t }}$ AA |  | 35 |  | 40 |  | 50 | ns |  |
| Access time from CAS precharge | ${ }^{\text {t }}$ CPA |  | 40 |  | 45 |  | 50 | ns |  |
| $\overline{\text { RAS }}$ pulse width | tRAS | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| RAS pulse width (STATIC COLUMN) | ${ }^{\text {tRASC }}$ | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | trsh | 20 |  | 20 |  | 25 |  | ns |  |
| RAS precharge time | ${ }^{\text {t RP }}$ | 50 |  | 60 |  | 70 |  | ns |  |
| CAS pulse width | ${ }^{\text {t }}$ CAS | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns |  |
| CAS hold time | ${ }^{\text {t }}$ CSH | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\text { CAS precharge time }}$ | ${ }^{\text {t }} \mathrm{CPN}$ | 10 |  | 10 |  | 15 |  | ns | 16 |
| CAS precharge time (STATIC COLUMN) | ${ }^{t} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay time | ${ }^{\text {tr }}$ \% ${ }^{\text {ch }}$ | 20 | 50 | 20 | 60 | 25 | 75 | ns | 17 |
| $\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t RAH }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {tRAD }}$ | 15 | 35 | 15 | 40 | 20 | 50 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time (referenced to RAS) | ${ }^{t} A R$ | 55 |  | 60 |  | 70 |  | ns |  |
| Column address to $\overline{\text { RAS lead time }}$ | ${ }^{\text {tr }}$ RAL | 35 |  | 40 |  | 50 |  | ns |  |
| Read command setup time | ${ }^{\text {t }} \mathrm{RCS}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to CAS) | ${ }^{\text {tr }} \mathrm{RCH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to $\overline{\text { RAS }}$ ) | ${ }^{\text {t }}$ RRH | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t }} \mathrm{CL} \mathrm{Z}$ | 0 |  | 0 |  | 0 |  | ns |  | MT4C4258

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Output buffer turn-off delay | toFF | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20, 27 |
| Output Disable | ${ }^{\text {tob }}$ |  | 20 |  | 20 |  | 20 | ns | 27 |
| $\overline{\text { WE command setup time }}$ | tWCS | 0 |  | 0 |  | 0 |  | ns | 21 |
| Write command hold time | ${ }^{\text {t WCH }}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | *WCR | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {tRWL }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }}$ 'WL | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ S | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }}$ DH | 15 |  | 15 |  | 20 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\text { RAS }}$ ) | ${ }^{\text {t }}$ DHR | 55 |  | 60 |  | 75 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {th}}$ RWD | 100 |  | 110 |  | 130 |  | ns | 21 |
| Column address to $\overline{W E}$ delay time | ${ }^{\text {taWD }}$ | 65 |  | 70 |  | 80 |  | ns | 21 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | 50 |  | 55 |  | 60 |  | ns | 21 |
| Transition time (rise or fall) | ${ }^{\text {t }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period (512 cycles) | treF |  | 8 |  | 8 |  | 8 | ms |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| CAS setup time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }}$ CSR | 10 |  | 10 |  | 10 |  | ns | 5 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5 |
| $\overline{\mathrm{OE}}$ hold time from $\overline{\mathrm{WE}}$ during READ-MODIFY-WRITE cycle | ${ }^{\text {t }} \mathrm{OEH}$ | 20 |  | 20 |  | 20 |  | ns | 26 |
| $\overline{\mathrm{OE}}$ setup prior to $\overline{\mathrm{RAS}}$ during HIDDEN REFRESH cycle | ${ }^{\text {t }}$ ORD | 0 |  | 0 |  | 0 |  | ns | 24 |
| Write inactive time | ${ }^{\text {t }}$ WI | 10 |  | 10 |  | 10 |  | ns |  |
| Last WRITE to column address delay time | tLWAD | 20 | 30 | 20 | 35 | 25 | 45 | ns |  |
| Last WRITE to column address hold time | ${ }^{\text {t }}$ AHLW | 65 |  | 75 |  | 95 |  | ns |  |
| $\overline{\text { RAS }}$ hold time referenced to $\overline{\text { OE }}$ | ${ }^{\text {t }} \mathrm{ROH}$ | 10 |  | 10 |  | 10 |  | ns |  |
| Output data hold time from column address | ${ }^{\text {t }} \mathrm{AOH}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Output data enable from WRITE | tow | ${ }^{\text {t }}$ A |  | ${ }^{t} A A$ |  | ${ }^{t} A A$ |  | ns |  |
| Access time from last WRITE | ${ }^{\text {t }}$ LLW | 65 |  | 75 |  | 95 |  | ns |  |
| Column address hold time referenced to $\overline{\text { RAS }} \mathrm{HIGH}$ | ${ }^{\text {t }} \mathrm{AH}$ | 5 |  | 5 |  | 10 |  | ns |  |
| CAS pulse width in STATIC-COLUMN mode | ${ }^{\text {t }} \mathrm{CSC}$ | ${ }^{\text {t }} \mathrm{CAS}$ |  | ${ }^{\text {t }}$ CAS |  | ${ }^{\text {t }}$ CAS |  | ns |  |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=I{ }^{\mathrm{dt}} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
7. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{\text { RAS }}$ cycles before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
8. $A C$ characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
9. $\mathrm{V}_{\text {IH }}$ (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and $\mathrm{V}_{\mathrm{IH}}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $\mathrm{V}_{\mathrm{IH}}$ and $V_{\text {IL }}$ (or between Vil and Vif) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=V_{\text {IL, }}$ data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to 2 TTL gates and 100 pF .
14. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD}<^{\mathrm{t} R C D}$ (MAX). If ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the maximum recommended value shown in this table, ${ }^{\text {tRAC }}$ will increase by the amount that ${ }^{\mathrm{t} R C D}$ exceeds the value shown.
15. Assumes that ${ }^{\mathrm{t} R C D} \geq^{\mathrm{t}} \mathrm{RCD}$ (MAX).
16. If $\overline{C A S}$ is LOW at the falling edge of $\overline{R A S}, ~ Q$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\text { CAS }}$ must be pulsed HIGH for ${ }^{t} \mathrm{CPN}$.
17. Operation within the ${ }^{\text {t }} \mathrm{RCD}$ (MAX) limit ensures that ${ }^{\mathrm{t}} \mathrm{RAC}$ (MAX) can be met. ${ }^{\mathrm{t}} \mathrm{RCD}(\max )$ is specified as a reference point only; if tRCD is greater than the specified ${ }^{t} R C D$ (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{CAC}$.
18. Operation within the ${ }^{t} R A D$ (MAX) limit ensures that ${ }^{\mathrm{t}}$ RCD (MAX) can be met. ${ }^{\mathrm{t}}$ RAD (MAX) is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RAD}$ is greater than the specified trAD (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{AA}$.
19. Either ${ }^{t} \mathrm{RCH}$ or ${ }^{\text {t RRH }}$ must be satisfied for a READ cycle.
20. ${ }^{\text {t OFF }}$ (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voн or Vol.
21. ${ }^{\mathrm{t}} \mathrm{WCS},{ }^{\mathrm{t} R W D},{ }^{\mathrm{t}} \mathrm{AWD}$ and ${ }^{\mathrm{t}} \mathrm{C} W \mathrm{D}$ are restrictive operating parameters in LATE-WRITE, and READ-MODIFY-WRITE cycles only. If ${ }^{\text {th}}$ WCS $\geq^{\mathrm{t}}{ }^{\mathrm{W}} \mathrm{WCS}$ (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit through out the entire cycle. If ${ }^{\mathrm{t}} \mathrm{RWD} \geq{ }^{\mathrm{t} R W D}$ (MIN), ${ }^{\mathrm{t}} A W D \geq^{\mathrm{t}} \mathrm{AWD}$ (MIN) and ${ }^{\mathrm{t}} \mathrm{CWD} \geq^{\mathrm{t}} \mathrm{CWD}$ (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. $\overline{\mathrm{OE}}$ held HIGH and $\overline{\mathrm{WE}}$ taken LOW after $\overline{\mathrm{CAS}}$ goes LOW results in a LATE-WRITE ( $\overline{\mathrm{OE}}$ controlled) cycle.
22. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles and $\overline{W E}$ leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
23. If $\overline{\mathrm{OE}}$ is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$ and $\overline{\mathrm{OE}}=\mathrm{HIGH}$.
25. All other inputs at Vcc -0.2 V .
26. LATE-WRITE and READ-MODIFY-WRITE cycies must have both toD and toEH met ( $\overline{\mathrm{OE}}$ HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQ s will provide the previously read data if $\overline{\mathrm{CAS}}$ remains LOW and $\overline{\mathrm{OE}}$ is taken back LOW after ${ }^{\text {t OEH }}$ is met. If $\overline{\mathrm{CAS}}$ goes HIGH prior to $\overline{\mathrm{OE}}$ going back LOW, the DQs will remain open.
27. The DQs open during READ cycles once ${ }^{\text {toD }}$ or tofF occur. If $\overline{\mathrm{CAS}}$ goes HIGH first, $\overline{\mathrm{OE}}$ becomes a don't care. If $\overline{\mathrm{OE}}$ goes HIGH and $\overline{\mathrm{CAS}}$ stays LOW, $\overline{\mathrm{OE}}$ is not a don't care; and the DQs will provide the previously read data if $\overline{\mathrm{OE}}$ is taken back LOW (while $\overline{\mathrm{CAS}}$ remains LOW).
28. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5 V for a period of less than 20 ns and the signal's total duration is 25 ns or less; or a -0.3 V signal of any duration is presented (DC).


## EARLY-WRITE CYCLE


$\overline{O E}$
ZZA DON'T CARE
UNDEFINED

READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)


STATIC-COLUMN READ CYCLE


## STATIC-COLUMN EARLY-WRITE CYCLE

## (CAS controlled)



STATIC-COLUMN EARLY-WRITE CYCLE (WE controlled)


UZ dont care
< Undefned

## STATIC-COLUMN READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



RAS-ONLY REFRESH CYCLE
(ADDR $=\mathrm{A}_{0}-\mathrm{A}_{8} ; \overline{\mathrm{WE}}=$ DON'T CARE $)$

oo voit = $\qquad$

CAS-BEFORE-RAS REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{8}, \overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}=\mathrm{DON}$ 'T CARE)


- Vot =

OPEN

HIDDEN REFRESH CYCLE $(\overline{\mathrm{WE}}=\mathrm{HIGH}, \overline{\mathrm{OE}}=\mathrm{LOW})^{24}$


HIDDEN REFRESH CYCLE

$$
(\overline{\mathrm{WE}}=\mathrm{LOW})
$$



## DRAM

256K x 4 DRAM<br>QUAD CAS PARITY, FAST PAGE MODE

## FEATURES

- Four independent $\overline{\text { CAS }}$ controls offer individual manipulation to each of the four data Input/Output ports (DQ1 through DQ4).
- Offers a single-chip solution to byte-level parity for 36bit words when using $256 \mathrm{~K} \times 4$ DRAMs for memory.
- Emulates write-per-bit, at design-in level, with simplified timing constraints.
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 3 mW standby; 175 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 512-cycle refresh in 8 ms
- Refresh modes: $\overline{\text { RAS }}$ ONLY, $\overline{\text { CAS }}$ BEFORE- $\overline{R A S}$, and HIDDEN
- Optional FAST PAGE MODE access cycle


## OPTIONS

- Timing

| 70ns access | -7 |
| :--- | :---: |
| 80ns access | -8 |
| 100ns access | -10 |
| - Packages |  |
| Plastic SOJ (300mil) | DJ |

- Operating Temperature, TA

Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

## MARKING

## GENERAL DESCRIPTION

The MT4C4259 is a randomly accessed solid-state memory containing $1,048,576$ bits organized in a $x 4$ configuration. This $256 \mathrm{~K} \times 4$ DRAM is unique in that each $\overline{\text { CAS }}$ (CAS1 through $\overline{\text { CAS4) }}$ controls its corresponding data I/O port in conjunction with $\overline{\mathrm{OE}}$ (eg. $\overline{\mathrm{CAS1}}$ controls DQ1 I/O port, $\overline{\mathrm{CAS} 2}$ controls DQ2, $\overline{\mathrm{CAS}}$ controls DQ3 and $\overline{\mathrm{CAS}}$ controls DQ4).

The best way to view the Quad $\overline{\mathrm{CAS}}$ function is to imagine the $\overline{C A S}$ inputs going into an AND gate to obtain an internally generated CAS signal functioning in an identical manner to the single $\overline{\mathrm{CAS}}$ input on a standard $256 \mathrm{~K} \times 4$ DRAM device. The key difference is each $\overline{\text { CAS }}$ controls its corresponding DQ tristate logic (in conjunction with $\overline{\mathrm{OE}}$ and $\overline{\mathrm{WE}}$ ) on the Quad $\overline{\mathrm{CAS}}$ DRAM.

During READ or WRITE cycles, each bit is uniquely addressed through the 18 address bits, which are entered 9 bits (A0-A8) at a time. $\overline{\text { RAS }}$ is used to latch the first 9 bits and

PIN ASSIGNMENT (Top View)<br>24-Pin SOJ (E-5)<br>

the first $\overline{\text { CAS }}$ the latter 9 bits. A READ or WRITE cycle is selected with the $\overline{\mathrm{WE}}$ input. A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ mode while a logic LOW on $\overline{\text { WE }}$ dictates WRITE mode.

During a WRITE cycle, data in ( $D x$ ) is latched by the falling edge of $\overline{W E}$ or the first $\overline{C A S}$, whichever occurs last. If $\overline{W E}$ goes LOW prior to the first $\overline{C A S}$ going LOW, the output pin(s) remain open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle. If $\overline{\mathrm{WE}}$ goes LOW after data reaches the output buffer, data out (Q) is activated and retains the selected cell data until the trailing edge of its corresponding $\overline{\text { CAS occurs (regardless of }}$ $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}})$. This late $\overline{\mathrm{WE}}$ pulse results in a READ-WRITE cycle ( $\overline{\mathrm{OE}}$ switching the device from a READ to a WRITE function). The four data inputs and four data outputs are routed through four pins using common $I / O$, with pin direction controlled by $\overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}$.

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A8) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobedin by the first $\overline{\mathrm{CAS}} \overline{\mathrm{CAS}}$ may be toggled-in by holding $\overline{\text { RAS }}$ LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning $\overline{\mathrm{RAS}} \mathrm{HIGH}$ terminates the FAST PAGE MODE operation features.

Returning $\overline{\text { RAS }}$ and all four $\overline{\mathrm{CAS}}$ controls HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the $\overline{\mathrm{RAS}}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\mathrm{RAS}}$ cycle (READ, WRITE, $\overline{\mathrm{RAS}}-\mathrm{ONLY}$, CAS-BEFORE- $\overline{R A S}$, or HIDDEN REFRESH) so that all 512 combinations of $\overline{\mathrm{RAS}}$ addresses (A0-A8) are executed at least every 8 ms , regardless of sequence.The $\overline{\mathrm{CAS}}$-BEFORE$\overline{\mathrm{RAS}}$ cycle will invoke the refresh counter for automatic and sequential row addressing.

FUNCTIONAL BLOCK DIAGRAM QUAD CAS


First CAS LOW while WE HIGH, EW detection CKT output is a 0 , ( $\overline{\mathrm{OE}}$ will now determine $\mathrm{I} / \mathrm{O}$ ).

## TRUTH TABLE

| Function |  | RAS | CASx | CASy | WE | OE | Addresses |  | DQx (DQy always High-Z) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {t }} \mathrm{R}$ |  |  |  |  | ${ }^{\text {t }} \mathrm{C}$ |  |
| Standby |  |  | H | X | X | X | X | X | X | High-Z |
| READ |  | L | L | H | H | L | ROW | COL | Valid Data Out |
| EARLY-WRITE |  | L | L | H | L | X | ROW | COL | Valid Data In |
| READ-WRITE |  | L | L | H | $\mathrm{H} \rightarrow \mathrm{L}$ | $L \rightarrow H$ | ROW | COL | Valid Data Out, Data In |
| PAGE-MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | H | L | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | H | L | n/a | COL | Valid Data Out |
| PAGE-MODE EARLY-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | L | X | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | L | X | n/a | COL | Valid Data In |
| PAGE-MODE READ-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | $\mathrm{H} \rightarrow \mathrm{L}$ | $L \rightarrow H$ | ROW | COL | Valid Data Out, Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | $\mathrm{H} \rightarrow \mathrm{L}$ | $L \rightarrow H$ | n/a | COL | Valid Data Out, Data In |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | H | L | ROW | COL | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | L | X | ROW | COL | Valid Data In |
| RAS-ONLY REFRESH |  | L | H | H | X | X | ROW | n/a | High-Z |
| CAS-BEFORERAS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | H | X | X | X | X | High-Z |

ABSOLUTE MAXIMUM RATINGS*
Voltage on Vcc supply relative to Vss ..... -1.0 V to +7.0 V
Storage Temperature (Ceramic) ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) ..... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..... 1W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (Vcc $=5.0 \mathrm{~V} \pm 10 \%)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -2.0 | 0.8 | V | 1,39 |
| INPUT LEAKAGE CURRENT any input ( $0 \mathrm{~V} \leq \mathrm{VIN} \leq 6.5 \mathrm{~V}$, all other pins not under test $=0 \mathrm{~V}$ ) | 11 | -2 | 2 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( Q is disabled, $0 \mathrm{~V} \leq$ Vout $\leq 5.5 \mathrm{~V}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS | Vон | 2.4 |  | V |  |
| Output High Voltage (lout $=-5 \mathrm{~mA})$ <br> Output Low Voltage (lout $=4.2 \mathrm{~mA})$ | Vol |  | 0.4 | V |  |


|  | SYMBOL | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION |  | -7 | -8 | -10 | UNITS | NOTES |
| STANDBY CURRENT: (TTL) $(\overline{\text { RAS }}=\overline{\mathrm{CAS}}=\mathrm{V}(\mathrm{H})$ | Icc1 | 2 | 2 | 2 | mA |  |
| STANDBY CURRENT: (CMOS) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V})$ | Icc2 | 1 | 1 | 1 | mA | 26 |
| OPERATING CURRENT: Random READ/WRITE <br> Average power supply current <br> ( $\overline{R A S}, \overline{C A S}$, Address Cycling: ${ }^{\text {tRC }}={ }^{\text {t }} \mathrm{RC}(\mathrm{MIN})$ ) | Icc3 | 80 | 70 | 60 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE <br> Average power supply current <br> ( $\overline{\text { RAS }}=$ VIL, $\overline{\text { CAS }}$, Address Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}$ (MIN)) | Icc 4 | 60 | 50 | 40 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY <br> Average power supply current (RAS Cycling, $\overline{\mathrm{CAS}}=\mathrm{VIH}^{\mathrm{t}} \mathrm{RC}={ }^{\mathrm{t} R C}$ (MIN)) | Icc5 | 80 | 70 | 60 | mA | 3 |
| REFRESH CURRENT: $\overline{\text { CAS }}$-BEFORE-RAS <br> Average power supply current <br> ( $\overline{R A S}, \overline{C A S}$, Address Cycling: ${ }^{\text {tRC }}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc6 | 80 | 70 | 60 | mA | 3,5 |

CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A8 | Cl 1 |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}} 1-4, \overline{\mathrm{WE}}, \overline{\mathrm{OE}}$ | $\mathrm{Cl}_{12}$ |  | 7 | pF | 2 |
| Input/Output Capacitance: DQ | Cıo |  | 7 | pF | 2 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc $=5.0 \mathrm{~V} \pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | trC | 130 |  | 150 |  | 180 |  | ns |  |
| READ-WRITE cycle time | trwC | 185 |  | 205 |  | 220 |  | ns |  |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 45 |  | 55 |  | ns | 31 |
| FAST-PAGE-MODE READ-WRITE cycle time | tPRWC | 95 |  | 100 |  | 115 |  | ns | 31 |
| Access time from $\overline{\mathrm{RAS}}$ | ${ }^{\text {t RAC }}$ |  | 70 |  | 80 |  | 100 | ns | 14 |
| Access time from ट्टAS | ${ }^{\text {t }}$ AAC |  | 20 |  | 20 |  | 25 | ns | 15,29 |
| Output Enable | ${ }^{\text {t }} \mathrm{OE}$ |  | 20 |  | 20 |  | 25 | ns | 33 |
| Access time from column address | ${ }^{\text {t }} \mathrm{A}$ A |  | 35 |  | 40 |  | 50 | ns |  |
| Access time from $\overline{\text { CAS }}$ precharge | ${ }^{\text {t }}$ 'PA |  | 40 |  | 45 |  | 50 | ns | 29 |
| $\overline{\text { RAS pulse width }}$ | tRAS | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ pulse width (FAST PAGE MODE) | ${ }^{\text {tRASP }}$ | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| RAS hold time | trsh | 20 |  | 20 |  | 25 |  | ns | 27 |
| RAS precharge time | ${ }^{\text {t RP }}$ | 55 |  | 60 |  | 70 |  | ns |  |
| CAS pulse width | t'CAS | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns | 34 |
| CAS hold time | ${ }^{\text {t }}$ cSH | 70 |  | 80 |  | 100 |  | ns | 28 |
| CAS precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 15 |  | ns | 16, 32 |
| CAS precharge time (FAST PAGE MODE) | ${ }^{t} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns | 32 |
| $\overline{\mathrm{RAS}}$ to CAS delay time | ${ }^{\text {tRCD }}$ | 20 | 50 | 20 | 60 | 25 | 75 | ns | 17, 27 |
| $\overline{\text { CAS to RAS precharge time }}$ | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns | 28 |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {traH }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {tRAD }}$ | 15 | 35 | 15 | 40 | 20 | 50 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns | 27 |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 15 |  | 15 |  | 20 |  | ns | 27 |
| Column address hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ R | 55 |  | 60 |  | 70 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {traL }}$ | 35 |  | 40 |  | 50 |  | ns |  |
| Read command setup time | ${ }^{\text {tR }}$ RCS | 0 |  | 0 |  | 0 |  | ns | 27 |
| Read command hold time (referenced to CAS) | ${ }^{\text {tr CH }}$ | 0 |  | 0 |  | 0 |  | ns | 19, 28 |
| Read command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ RRH | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t CLZ }}$ | 0 |  | 0 |  | 0 |  | ns | 29 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Output buffer turn-off delay | toFF | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20,29,38 |
| Output disable | tod |  | 20 |  | 20 |  | 20 | ns | 34, 38 |
| $\overline{\text { WE }}$ command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns | 21, 27 |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | ns | 36 |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t W }}$ WCR | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t }}$ WWL | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\mathrm{CAS}}$ lead time | ${ }^{\text {t }} \mathrm{CWL}$ | 20 |  | 20 |  | 25 |  | ns | 28 |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 22, 29 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 15 |  | 15 |  | 20 |  | ns | 22, 29 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | tDHR | 55 |  | 60 |  | 75 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ delay time | trWD | 100 |  | 110 |  | 130 |  | ns | 21 |
| Column address to $\overline{W E}$ delay time | ${ }^{\text {t }}$ (WD | 65 |  | 70 |  | 80 |  | ns | 21 |
| $\overline{\mathrm{CAS}}$ to $\overline{\text { WE }}$ delay time | ${ }^{\text {t }}$ CWD | 50 |  | 55 |  | 60 |  | ns | 21, 27 |
| Transition time (rise or fall) | ${ }^{\text {t }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period (512 cycles) | ${ }^{\text {tREF }}$ |  | 8 |  | 8 |  | 8 | ms |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ precharge time | trPC | 0 |  | 0 |  | 0 |  | ns |  |
| CAS setup time (ㄷAS-BEFORE-즈NS refresh) | ${ }^{\text {t CSR }}$ | 10 |  | 10 |  | 10 |  | ns | 5,27 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE- $\overline{R A S}$ refresh) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5,28 |
| Last $\overline{\text { CAS }}$ going LOW to first $\overline{\text { CAS }}$ to return HIGH | ${ }^{\text {t }} \mathrm{CLCH}$ | 10 |  | 10 |  | 10 |  | ns | 30 |
| $\overline{\mathrm{OE}}$ hold time from $\overline{\mathrm{WE}}$ during READ-MODIFY-WRITE cycle | ${ }^{\text {toEH }}$ | 20 |  | 20 |  | 20 |  | ns | 37 |
| $\overline{\mathrm{OE}}$ setup prior to $\overline{\mathrm{RAS}}$ during HIDDEN REFRESH cycle | tord | 0 |  | 0 |  | 0 |  | ns |  |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=I d / d v$ with $d v=3 V$ and $\mathrm{VCC}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
7. An initial $100 \mu$ s pause is required after power-up
followed by any eight $\overline{\text { RAS }}$ cycles before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and $V_{\text {IH }}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $V_{\mathrm{IH}}$ and $V_{\text {IL }}$ (or between VIL and $V_{\mathrm{IH}}$ ) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output $(x)$ is high impedance.

## NOTES

12. If $\overline{\mathrm{CAS}} \mathbf{x}=$ VIL, data output ( $x$ ) may contain data from the last valid READ cycle.
13. Measured with a load equivalent to 2 TTL gates and 100 pF .
14. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t} R A C$ will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{t} R C D \geq{ }^{t} R C D$ (MAX).
16. If at least one $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}$, $Q$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, all four $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{\mathrm{t}} \mathrm{CPN}$.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{\mathrm{t}}$ RCD (MAX) limit, then access time is controlled exclusively by ${ }^{t} C A C$.
18. Operation within the ${ }^{\text {t RAD }}$ (MAX) limit ensures that ${ }^{t} R C D$ (MAX) can be met. ${ }^{t} R A D$ (MAX) is specified as a reference point only; if ${ }^{t} R A D$ is greater than the specified ${ }^{\text {t RAD }}$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} A A$.
19. Either ${ }^{t}$ RCH or ${ }^{t}$ RRH must be satisfied for a READ cycle.
20. ${ }^{\text {t OFF }}$ (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VoH or Vol.
21. ${ }^{\mathrm{t}} \mathrm{WCS},{ }^{\mathrm{t}} \mathrm{RWD},{ }^{\mathrm{t}} \mathrm{AWD}$ and ${ }^{\mathrm{t}} \mathrm{CWD}$ are restrictive operating parameters in EARLY-WRITE and READWRITE cycles only. If ${ }^{t} W C S \geq^{t} W C S$ (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ${ }^{\mathrm{t}} \mathrm{RWD} \geq{ }^{\mathrm{t}} \mathrm{RWD}$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq^{\mathrm{t}} \mathrm{AWD}$ (MIN) and ${ }^{\mathrm{t}} \mathrm{CWD} \geq{ }^{\mathrm{t}} \mathrm{CWD}$ (MIN), the cycle is a READ-WRITE CYCLE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. $\overline{\mathrm{OE}}$ held HIGH and $\overline{\mathrm{WE}}$ taken LOW after $\overline{\mathrm{CAS}}$ goes LOW results in a LATE-WRITE ( $\overline{\mathrm{OE}}$ controlled) cycle.
22. These parameters are referenced to $\overline{\mathrm{CAS}} \times$ leading edge in early WRITE cycles and $\overline{\mathrm{WE}}$ leading edge in late WRITE or READ-WRITE cycles.
23. If $\overline{\mathrm{OE}}$ is tied permanently LOW, READ-WRITE or READ-MODIFY-WRITE operations are not possible.
24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case $\overline{W E}=$ LOW and $\overline{\mathrm{OE}}=$ HIGH.
25. One to three $\overline{\mathrm{CAS}}$ controls may be HIGH throughout any given $\overline{\mathrm{CAS}}$ cycle, even though the timing waveforms show all $\overline{\text { CAS }}$ going LOW. If any one does go LOW, it must meet all the timing requirements listed or the data for that I/O buffer may be invalid. At least one of the four $\overline{\text { CAS }}$ controls must be LOW for a valid $\overline{\mathrm{CAS}}$ cycle to occur.
26. All other inputs at Vcc -0.2 V .
27. The first $\overline{\mathrm{CAS}} x$ edge to transition LOW.
28. The last $\overline{\mathrm{CAS}} \mathrm{x}$ edge to transition HIGH.
29. Output parameter ( DQx ) is referenced to corresponding CASx input; DQ1 by $\overline{\mathrm{CAS}} 1, \mathrm{DQ} 2$ by $\overline{\mathrm{CAS}} 2$ etc.
30. Last falling $\overline{\mathrm{CAS}} x$ edge to first rising $\overline{\mathrm{CAS}} \times$ edge.
31. Last rising $\overline{\mathrm{CAS}} x$ edge to next cycle's last rising $\overline{\mathrm{CAS}} \mathrm{x}$ edge.
32. Last rising $\overline{\mathrm{CAS}} x$ edge to first falling $\overline{\mathrm{CAS}} \mathrm{x}$ edge.
33. First DQx controlled by the first CASx to go LOW.
34. Last DQx controlled by the last $\overline{\mathrm{CAS}} x$ to go HIGH.
35. Each $\overline{\text { CAS }} x$ must meet minimum pulse width.
36. Last $\overline{\mathrm{CAS}} x$ to go LOW.
37. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ${ }^{\mathrm{t} O D}$ and ${ }^{\mathrm{t}} \mathrm{OEH}$ met $\overline{\mathrm{OE}}$ HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if $\overline{\text { CAS }}$ remains LOW and $\overline{\mathrm{OE}}$ is taken back LOW after ${ }^{\text {t }} \mathrm{OEH}$ is met. If the last $\overline{\mathrm{CAS}}$ goes HIGH prior to $\overline{\mathrm{OE}}$ going back LOW, the DQs will remain open.
38. The DQs open during READ cycles once ${ }^{t} \mathrm{OD}$ or ${ }^{\mathrm{t}} \mathrm{OFF}$ occur. If the last $\overline{\mathrm{CASx}}$ goes HIGH first, $\overline{\mathrm{OE}}$ becomes a don't care. If $\overline{\mathrm{OE}}$ goes HIGH and $\overline{\mathrm{CAS}}$ stays LOW, $\overline{\mathrm{OE}}$ is not a don't care; and the DQs will provide the previously read data if $\overline{\mathrm{OE}}$ is taken back LOW (while $\overline{\mathrm{CAS}}$ remains LOW).
39. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5 V for a period of less than 20 ns and the signal's total duration is 25 ns or less; or a -0.3 V signal of any duration is presented (DC).

READ CYCLE


EARLY-WRITE CYCLE


READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)


FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



CAS-BEFORE-RAS REFRESH CYCLE ( $\mathrm{A}_{0}-\mathrm{A}_{8}, \overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}=\mathrm{DON}$ 'T CARE)


Do Viot
HIDDEN REFRESH CYCLE
$(\overline{W E}=\mathrm{HIGH}, \overline{\mathrm{OE}}=\mathrm{LOW})^{24}$


## QUAD CAS MODULE UPGRADE

The MT4C4259 (QUAD CAS DRAM) was developed to eliminate the 256 K DRAMs used in the current 256 K and $512 \mathrm{~K} \times 36$ DRAM modules and to add total CMOS performance (FAST-PAGE-MODE and faster access speeds: 70ns and 80 ns ). The MT4C4259 is a $256 \mathrm{~K} \times 4$ CMOSFAST-PAGEMODE DRAM with four $\overline{\mathrm{CAS}}$ input controls. The four individual $\overline{\mathrm{CAS}}$ inputs allow each I/O buffer ( DQ ) to be separately controlled, just as if there were four separate $256 \mathrm{~K} \times 1$ DRAMs. Most $256 \mathrm{~K} \times 1$ DRAMs use older NMOS technology and do not have the access speeds of the newer CMOS 1 Meg ( $256 \mathrm{~K} \times 4$ ), nor FAST-PAGE-MODE capability.
The MT4C4259 will reduce chip count on a $\times 36$ module,
improving reliability, reducing power consumption and lowering cost. The $256 \mathrm{~K} \times 36$ will have four $256 \mathrm{~K} \times 1$ DRAMs replaced by either one or two QUAD CAS DRAMs, depending on whether $\overline{\text { RAS0 }}$ and $\overline{\text { RAS1 }}$ must be separate or can be connected together. The $512 \mathrm{~K} \times 36$ will have eight 256K $\times 1$ DRAMs replaced by either two or four QUADCAS DRAMs, depending on whether $\overline{\text { RASO }}, \overline{\mathrm{RAS1}}, \overline{\mathrm{RAS}}$, and $\overline{\text { RAS3 }}$ must be split or can be connected together.
The current $256 \mathrm{~K} \times 36$ DRAMM Module is shown with 256 K $x 1$ DRAMs in Figure 1 below. Figures 2 and 3 show how the same module will be realized with the QUADCASDRAM for both the split $\overline{\mathrm{RAS}}$ (Figure 2) and the common $\overline{\mathrm{RAS}}$ (Figure3) modules.


U1, U2, U4, U5, U7, U8, U10, U11 = MT4C4256DJ
U3, U6, U9, U12 = MT1259EJ

Figure 1
256K x 36 WITH 256K x 1 FOR PARITY BIT

## QUAD CAS ENHANCED x36 MODULES

## W甘Ya



U1, U2, U4, U5, U6, U7, U9, U10 = MT4C4256DJ
U3, U8 = MT4C4259EJ

Figure 2

## QUAD CAS ENHANCED x36 MODULES



U1, U2, U4, U5, U6, U7, U8, U9 = MT4C4256DJ
U3, $=$ MT4C4259EJ

Figure 3
256K x 36 WITH QUAD CAS FOR PARITY BIT AND COMMON RAS CONTROL

MICADN

## DRAM

## 256K x 4 DRAM LOW POWER, FAST PAGE MODE

## FEATURES

- Industry standard $\times 4$ pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 1 mW standby; 150 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 512 -cycle refresh in 64 ms
- Refresh modes: $\overline{\text { RAS-ONLY, }} \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$, and HIDDEN
- Optional FAST PAGE MODE access cycle
- Low CMOS STANDBY CURRENT, $200 \mu \mathrm{~A}$ Maximum


## OPTIONS

- Timing 70ns access -7
80 ns access
- 8

100 ns access-10

- Packages

Plastic DIP (300mil)
Ceramic DIP ( 300 mil )
Plastic ZIP (350mil)
Plastic SOJ ( 300 mil )
Plastic TSOP (*)
MARKING

Operating Temperature, $\mathrm{TA}_{\mathrm{A}}$ Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

| PIN ASSIGNMENT (Top View) |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { 20-Pin DIP } \\ (\mathrm{A}-5, \mathrm{~B}-4) \end{gathered}$ | $\underset{(\mathrm{C}-2)}{20-\mathrm{Pin} \text { ZIP }}$ |  |  |
|  | OE | $1{ }^{\circ}$ | CAs |
| DQ2प2 19 ${ }^{\text {DQ }}$ | DQ3 | 3 |  |
|  | - Das | $7{ }^{5}$ |  |
|  | RAS | $9-8$ | WE |
|  |  | $11-$ |  |
| A1 4714.47 | A2 | 13-2, |  |
| A2प8 13 A6 | Vcc | 15-316 |  |
| Аз $49{ }^{12} \mathrm{~A}^{\text {A5 }}$ | ${ }_{\text {A }}{ }^{\text {a }}$ | 19 ${ }^{\text {a }}$ |  |
| vccโ10 11 JA4 |  | 19 - |  |

20-Pin SOJ
(E-1)

*Consult factory on availability of TSOP packages
through four pins using common $\mathrm{I} / \mathrm{O}$, and pin direction is controlled by $\overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}$.

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A8) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RASfollowed by a column address strobed-in by $\overline{\mathrm{CAS}} \overline{\mathrm{CAS}}$ may be toggled-in by holding $\overline{\mathrm{RAS}} \mathrm{LOW}$ and strobing-in different column addresses, thusexecuting faster memory cycles. Returning $\overline{\mathrm{RAS}} \mathrm{HIGH}$ terminates the FAST PAGE MODE cycle.
Returning $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}} \mathrm{HIGH}$ terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the $\overline{\text { RAS }}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\mathrm{RAS}}$ cycle (READ, WRITE, $\bar{R} A S-O N L Y, \overline{C A S}-B E F O R E-\overline{R A S}$, or HIDDEN REFRESH) so that all 512 combinations of $\overline{\text { RAS }}$ addresses (A0-A8) are executed at least every 64 ms , regardless of sequence. The $\overline{\text { CAS }}$-BEFORE- $\overline{R A S}$ refresh will in-
crement the refresh counter for automatic $\overline{\mathrm{RAS}}$ addressing.

## GENERAL DESCRIPTION

The MT4C4260 is a randomly accessed solid-state memory containing $1,048,576$ bits organized in a $x 4$ configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 18 address bits, which are entered 9 bits (A0-A8) at a time. $\overline{\text { RAS }}$ is used to latch the first 9 bits and $\overline{\text { CAS }}$ the latter 9 bits. A READ or WRITE cycle is selected with the $\overline{W E}$ input. Alogic HIGH on $\overline{\mathrm{WE}}$ dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. If $\overline{W E}$ goes LOW prior to $\overline{C A S}$ going LOW, the output pin(s) remain open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle. If $\overline{\mathrm{WE}}$ goes LOW after data reaches the output pin, data out $(Q)$ is activated and retains the selected cell data as long as $\overline{\text { CAS }}$ remains LOW (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}}$ ). This late $\overline{\mathrm{WE}}$ pulse results in a READ-WRITE cycle. The four data inputs and four data outputs are routed

## FUNCTIONAL BLOCK DIAGRAM

FAST PAGE MODE

*NOTE: $\overline{\text { WE }}$ LOW prior to $\overline{\text { CAS }}$ LOW, EW detection CKT output is a HIGH (EARLY WRITE)
$\overline{C A S}$ LOW prior to WE LOW, EW detection CKT output is a LOW (LATE WRITE)

## TRUTH TABLE

| Function |  | RAS | CAS | WE | Address |  | $\overline{\text { OE }}$ | DATA IN / OUTDQ1-4 (IO) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {th}}$ |  |  | ${ }^{\text {t }}$ C |  |  |
| Standby |  |  | H | X | X | X | X | X | High-Z |
| READ |  | L | L | H | ROW | COL | L | Valid Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | X | Valid Data In |
| READ-WRITE |  | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | $L \rightarrow H$ | Valid Data Out, Data In |
| FAST-PAGE-MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | ROW | COL | L | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | n/a | COL | L | Valid Data Out |
| FAST-PAGE-MODE EARLY-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | ROW | COL | X | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | n/a | COL | X | Valid Data In |
| FAST-PAGE-MODE READ-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | $L \rightarrow H$ | Valid Data Out, Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | n/a | COL | $L \rightarrow H$ | Valid Data Out, Data In |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | X | High-Z |
| HIDDEN REFRESH | READ | $L \rightarrow H \rightarrow L$ | L | H | ROW | COL | L | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | X | Valid Data In |
| CAS-BEFORE-쥬AS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | X | High-Z |

ABSOLUTE MAXIMUM RATINGS*<br>Voltage on Vcc supply relative to Vss .........-1.0V to +7.0 V<br>Storage Temperature (Ceramic) ................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$<br>Storage Temperature (Plastic) ................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$<br>Power Dissipation .......................................................... 1 W<br>Short Circuit Output Current ................................... 50 mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in theoperational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (Vcc $=5.0 \mathrm{~V} \pm 10 \%$ )

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -2.0 | 0.8 | V | 1,28 |
| INPUT LEAKAGE CURRENT any input ( $0 \mathrm{~V} \leq \mathrm{VIN} \leq 6.5 \mathrm{~V}$, all other pins not under test $=0 \mathrm{~V}$ ) | 1 | -2 | 2 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT: (Q is disabled; $0 \mathrm{~V} \leq$ Vout $\leq 5.5 \mathrm{~V}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS | Voh | 2.4 |  | V |  |
| Output High Voltage (lout $=-5 \mathrm{~mA})$ <br> Output Low Voltage (lout $=4.2 \mathrm{~mA}$ ) | Vol |  | 0.4 | V |  |



## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A8 | $\mathrm{Cl}_{11}$ |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}, \overline{\mathrm{OE}}$ | $\mathrm{Cl2}$ |  | 7 | pF | 2 |
| Input/Output Capacitance: DQ | $\mathrm{Cı}$ |  | 7 | pF | 2 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc $=5.0 \mathrm{~V} \pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t R C }}$ | 130 |  | 150 |  | 180 |  | ns |  |
| READ-WRITE cycle time | trwC | 185 |  | 205 |  | 245 |  | ns |  |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 45 |  | 55 |  | ns |  |
| FAST-PAGE-MODE READ-WRITE cycle time | tPRWC | 95 |  | 100 |  | 115 |  | ns |  |
| Access time from $\overline{\mathrm{RAS}}$ | ${ }^{\text {tRAC }}$ |  | 70 |  | 80 |  | 100 | ns | 14 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ 'AC |  | 20 |  | 20 |  | 25 | ns | 15 |
| Output Enable | ${ }^{\text {toE }}$ |  | 20 |  | 20 |  | 25 | ns |  |
| Access time from column address | ${ }^{\text {t }}$ AA |  | 35 |  | 40 |  | 50 | ns |  |
| Access time from CAS precharge | ${ }^{\text {t }}$ (PA |  | 40 |  | 45 |  | 50 | ns |  |
| $\overline{\text { RAS }}$ pulse width | tRAS | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ pulse width (FAST PAGE MODE) | trasp | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {tRSH}}$ | 20 |  | 20 |  | 25 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | tRP | 50 |  | 60 |  | 70 |  | ns |  |
| CAS pulse width | ${ }^{\text {t }}$ CAS | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }}$ CSH | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 15 |  | ns | 16 |
| CAS precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{C}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time | ${ }^{\text {tr }}$ \% ${ }^{\text {ch }}$ | 20 | 50 | 20 | 60 | 25 | 75 | ns | 17 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }^{\text {t }}$ 'RPP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t }}$ RAH | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {t RAD }}$ | 15 | 35 | 15 | 40 | 20 | 50 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }}$ 'AH | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ AR | 55 |  | 60 |  | 70 |  | ns |  |
| Column address to $\overline{\text { RAS }}$ lead time | ${ }^{\text {traL }}$ | 35 |  | 40 |  | 50 |  | ns |  |
| Read command setup time | ${ }^{\text {t R CS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to CAS) | ${ }^{\text {trCH }}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to RAS) | ${ }^{\text {t } R R H ~}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t CLZ }}$ | 0 |  | 0 |  | 0 |  | ns |  |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = 5.0V $\pm 10 \%)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Output buffer turn-off delay | toFF | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20, 27 |
| Output Disable | ${ }^{\text {tob }}$ |  | 20 |  | 20 |  | 20 | ns | 27 |
| WE command setup time | ${ }^{\text {tWCS }}$ | 0 |  | 0 |  | 0 |  | ns | 21 |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {then }}$ | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {tr }}$ WL | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to CAS lead time | ${ }^{\text {t }} \mathrm{CWL}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }}$ D H | 15 |  | 15 |  | 20 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | t DHR | 55 |  | 60 |  | 75 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {tRWD }}$ | 100 |  | 110 |  | 130 |  | ns | 21 |
| Column address to WE delay time | ${ }^{\text {t }}$ AWD | 65 |  | 70 |  | 80 |  | ns | 21 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | 50 |  | 55 |  | 60 |  | ns | 21 |
| Transition time (rise or fall) | ${ }^{\text {T }}$ T | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9, 10 |
| Refresh period (512 cycles) | ${ }^{\text {t }}$ REF |  | 64 |  | 64 |  | 64 | ms |  |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {tr PPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\mathrm{CAS}}$ setup time (CAS-BEFORE- $\overline{R A S}$ refresh) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE-VAS refresh) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5 |
| $\overline{\mathrm{OE}}$ hold time from $\overline{\mathrm{WE}}$ during READ-MODIFY-WRITE cycle | ${ }^{\text {t }}$ OEH | 20 |  | 20 |  | 20 |  | ns | 26 |
| $\overline{\mathrm{OE}}$ setup prior to $\overline{\mathrm{RAS}}$ during HIDDEN REFRESH cycle | ${ }^{\text {t }}$ ORD | 0 |  | 0 |  | 0 |  | ns | 24 |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $\mathrm{C}=\mathrm{I}^{\mathrm{dt}} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{VCC}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
7. An initial pause of $100 \mu$ s is required after power-up followed by any eight $\overline{\mathrm{RAS}}$ cycles before proper device operation is assured. The eight $\overline{\mathrm{RAS}}$ cycle wake-up should be repeated any time the 64 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\text {IL }}$ (or between $\mathrm{V}_{\mathrm{IL}}$ and $V_{\mathrm{IH}}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $\mathrm{V}_{\mathrm{IH}}$ and VIL (or between VIL and VIH) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=V_{\text {IL }}$, data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to 2 TTL gates and 100 pF .
14. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{t} R C D \geq{ }^{t} R C D$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}, \mathrm{Q}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\text { CAS }}$ must be pulsed HIGH for ${ }^{t} \mathrm{CPN}$.
17. Operation within the ${ }^{\text {t }}$ RCD (MAX) limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{t} R C D(M A X)$ limit, then access time is controlled exclusively by ${ }^{t} C A C$.
18. Operation within the tRAD (MAX) limit ensures that ${ }^{t} R C D$ (MAX) can be met. ${ }^{t} R A D$ (MAX) is specified as a reference point only; if ${ }^{t} R A D$ is greater than the specified trAD (MAX) limit, then access time is controlled exclusively by ${ }^{t}$ AA.
19. Either ${ }^{t} \mathrm{RCH}$ or ${ }^{t} \mathrm{RRH}$ must be satisfied for a READ cycle.
20. ${ }^{\text {t OFF }}$ (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
21. ${ }^{t} W C S,{ }^{t} R W D,{ }^{t} A W D$ and ${ }^{t} C W D$ are restrictive operating parameters in LATE-WRITE, and READ-MODIFY-WRITE cycles only. If ${ }^{\mathrm{t}} \mathrm{WCS} \geq^{\mathrm{t}}$ WCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit through out the entire cycle. If ${ }^{\mathrm{t}} \mathrm{RWD} \geq^{\mathrm{t}} \mathrm{RWD}$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq^{\mathrm{t}} \mathrm{AWD}$ (MIN) and ${ }^{t} \mathrm{CWD} \geq{ }^{\mathrm{t}} \mathrm{CWD}$ (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. $\overline{\mathrm{OE}}$ held HIGH and $\overline{\mathrm{WE}}$ taken LOW after $\overline{\text { CAS }}$ goes LOW results in a LATE-WRITE ( $\overline{\mathrm{OE}}$ controlled) cycle.
22. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles and $\overline{W E}$ leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
23. If $\overline{\mathrm{OE}}$ is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$ and $\overline{\mathrm{OE}}=\mathrm{HIGH}$.
25. All other inputs at Vcc -0.2 V .
26. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ${ }^{t} \mathrm{OD}$ and ${ }^{\text {t}} \mathrm{OEH}$ met $\overline{\mathrm{OE}}$ HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if $\overline{\text { CAS }}$ remains LOW and $\overline{\mathrm{OE}}$ is taken back LOW after ${ }^{\text {t }} \mathrm{OEH}$ is met. If $\overline{\mathrm{CAS}}$ goes HIGH prior to $\overline{\mathrm{OE}}$ going back LOW, the DQs will remain open.
27. The DQs open during READ cycles once ${ }^{t}$ OD or ${ }^{\text {t OFF }}$ occur. If $\overline{\mathrm{CAS}}$ goes HIGH first, $\overline{\mathrm{OE}}$ becomes a don't care. If $\overline{\mathrm{OE}}$ goes HIGH and $\overline{\mathrm{CAS}}$ stays LOW, $\overline{\mathrm{OE}}$ is not a don't care; and the DQs will provide the previously read data if $\overline{\mathrm{OE}}$ is taken back LOW (while $\overline{\mathrm{CAS}}$ remains LOW).
28. The device shall meet all functional requirements when a - 2.0 signal is applied provided the signal is not more negative than -1.5 V for a period of less than 20 ns and the signal's total duration is 25 ns or less; or a -0.3 V signal of any duration is presented (DC).

## READ CYCLE



EARLY-WRITE CYCLE


READ-WRITE CYCLE
(LATE-WRITE and READ-MODIFY-WRITE CYCLES)


FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)


## RAS-ONLY REFRESH CYCLE (ADDR $=\mathrm{A}_{0}-\mathrm{A}_{8} ; \overline{\mathrm{WE}}=$ DON'T CARE)



CAS-BEFORE- $\overline{R A S}$ REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{8}, \overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}=\mathrm{DON}$ 'T CARE)


- Voot

OPEN
HIDDEN REFRESH CYCLE
$(\overline{W E}=\mathrm{HIGH}, \overline{\mathrm{OE}}=\mathrm{LOW})^{24}$


## HIDDEN REFRESH CYCLE

( $\overline{\mathrm{WE}}=\mathrm{LOW}$ )


## 1 MEG x 4 DRAM

## FAST PAGE MODE

## FEATURES

- Industry standard $\times 4$ pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 3 mW standby; 225 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 1024-cycle refresh distributed across 16 ms
- Refresh modes: $\overline{\text { RAS-ONLY, } \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{R A S}}$ (CBR), and HIDDEN
- FAST PAGE MODE access cycle
- 300 and 350 mil wide SOJ packages
- Two CBR options: CBR with WE a don't care (1 Meg compatible) and CBR with $\overline{\text { WE }}$ a HIGH (JEDEC test mode capable via WCBR)


## OPTIONS

- Timing 60ns access -6 70ns access -7 80ns access -8
- Packages

Ceramic DIP ( 300 mil ) Ceramic DIP ( 400 mil ) Plastic ZIP ( 350 mil ) Plastic SOJ ( 300 mil ) Plastic SOJ (350mil) Plastic TSOP (*)

## MARKING

$$
-6
$$

$$
\begin{aligned}
& -7 \\
& -8
\end{aligned}
$$

CAS-BEFORE-ㅈAS refresh CBR with $\overline{\text { WE }}$ a don't care CBR with $\overline{\text { WE a HIGH }}$

- Operating Temperature, $\mathrm{T}_{\mathrm{A}}$ Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$


## PIN ASSIGNMENT (Top View)


*Consult factory on availability of TSOP packages

During a WRITE cycle, data in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. If $\overline{W E}$ goes LOW prior to $\overline{\text { CAS }}$ going LOW, the output pin(s) remain open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle. If $\overline{\mathrm{WE}}$ goes LOW after data reaches the output pin(s), The Qs are activated and retain the selected cell data as long as $\overline{\mathrm{CAS}}$ remains low (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}}$ ). This late $\overline{\mathrm{WE}}$ pulse results in a READ-WRITE cycle. The four data inputs and four data outputs are routed through four pins using common I/O, and pin direction is controlled by $\overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}$.

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\mathrm{RAS}}$ followed by a column address strobedin by $\overline{\mathrm{CAS}} . \overline{\mathrm{CAS}}$ may betoggled-in by holding $\overline{\mathrm{RAS}} \mathrm{LOW}$ and strobing-in different column addresses, thus executing faster memory cycles. Returning $\overline{\text { RAS }}$ HIGH terminates the FAST PAGE MODE operation.
Returning $\overline{\mathrm{RAS}}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the $\overline{\text { RAS }}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\mathrm{RAS}}$ cycle (READ, WRITE, $\overline{R A S}-O N L Y, \overline{C A S}-B E F O R E-\overline{R A S}$, or HIDDEN refresh) so that all 1024 combinations of $\overline{\mathrm{RAS}}$ addresses (A0-A9) are executed at least every 16 ms , regardless of sequence. The CBR refresh cycle will invoke the internal refresh counter for automatic $\overline{\mathrm{RAS}}$ addressing.

## GENERAL DESCRIPTION

TheMT4C4001 is a randomly accessed solid-statememory containing 4,194,304 bits organized in a $\times 4$ configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. $\overline{\mathrm{RAS}}$ is used to latch the first 10 bits and $\overline{\text { CAS }}$ the latter 10 bits. A READ or WRITE cycle is selected with the $\overline{\mathrm{WE}}$ input. A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ mode whilealogic LOW onWE dictatesWRITE mode.

## FUNCTIONAL BLOCK DIAGRAM

FAST PAGE MODE

*NOTE: $\overline{\text { WE }}$ LOW prior to $\overline{\text { CAS }}$ LOW, EW detection CKT output is a HIGH (EARLY WRITE) $\overline{\text { CAS }}$ LOW prior to WE LOW, EW detection CKT output is a LOW (LATE WRITE)

## TRUTH TABLE

| Function |  | RAS | CAS | WE | Âdidess |  | OE | DAATÂ î̀ / OUUT DQ1-4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {th}}$ |  |  | ${ }^{\text {t }}$ |  |  |
| Standby |  |  | H | X | X | X | X | X | High-Z |
| READ |  | L | L | H | ROW | COL | L | Valid Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | X | Valid Data In |
| READ-WRITE |  | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | $\mathrm{L} \rightarrow \mathrm{H}$ | Valid Data Out, Data In |
| FAST-PAGE-MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | ROW | COL | L | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | n/a | COL | L | Valid Data Out |
| FAST-PAGE-MODE EARLY-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | ROW | COL | X | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | n/a | COL | X | Valid Data In |
| FAST-PAGE-MODE READ-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | $\mathrm{L} \rightarrow \mathrm{H}$ | Valid Data Out, Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | n/a | COL | $\mathrm{L} \rightarrow \mathrm{H}$ | Valid Data Out, Data In |
| RAS-ONLY REFRESH |  | H | X | X | ROW | n/a | X | High-Z |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | L | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | X | Valid Data In |
| CAS-BEFORERAS REFRESH | Standard | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | X | High-Z |
|  | "J" Option | $\mathrm{H} \rightarrow \mathrm{L}$ | L | H | X | X | X | High-Z |

ABSOLUTE MAXIMUM RATINGS*
Voltage on Vcc supply relative to Vss ..... -1.0 V to +7.0 V
Storage Temperature (Ceramic) ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation .....  1 W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (Vcc = 5.0V $\pm 10 \%$ )

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | $\mathrm{V}_{\mathrm{H}}$ | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE CURRENT any input ( $0 \mathrm{~V} \leq \mathrm{ViN} \leq 6.5 \mathrm{~V}$, all other pins not under test $=0 \mathrm{~V}$ ) | 11 | -2 | 2 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( Q is disabled, $0 \mathrm{~V} \leq$ Vout $\leq 5.5 \mathrm{~V}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS | VOH | 2.4 |  | V |  |
| Output High Voltage (lout $=-5 \mathrm{~mA})$ <br> Output Low Voltage (lout $=4.2 \mathrm{~mA}$ ) | Vol |  | 0.4 | V |  |


|  |  | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -6 | -7 | -8 | UNITS | NOTES |
| STANDBY CURRENT: (TTL) $\left(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{I H}\right)$ | Icc1 | 2 | 2 | 2 | mA |  |
| STANDBY CURRENT: (CMOS) <br> ( $\overline{\text { RAS }}=\overline{\mathrm{CAS}}=$ Other Inputs $=\mathrm{Vcc}-0.2 \mathrm{~V}$ ) | Icc2 | 1 | 1 | 1 | mA |  |
| OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: tRC = tRC (MIN)) | Icc3 | 110 | 100 | 90 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE <br> Average power supply current <br> ( $\overline{\mathrm{RAS}}=\mathrm{V} \mathrm{IL}, \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\text {P }}{ }^{\text {IPC }}{ }^{\text {tPC }}$ (MIN)) | IcC4 | 80 | 70 | 60 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY Average power supply current (RAS Cycling, $\overline{\mathrm{CAS}}=\mathrm{V}$ н: ${ }^{\text {tRC }}={ }^{\text {tRC }}$ (MIN)) | Icc5 | 110 | 100 | 90 | mA | 3 |
| REFRESH CURRENT: $\overline{\text { CAS }}$-BEFORE-규AS <br> Average power supply current <br> ( $\overline{R A S}, \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\mathrm{t}} \mathrm{RC}={ }^{\mathrm{t} R C}($ MIN $)$ ) | Icc6 | 110 | 100 | 90 | mA | 3, 5 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A10 | $\mathrm{Cl}_{11}$ |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}, \overline{\mathrm{OE}}$ | $\mathrm{Cl}_{12}$ |  | 7 | pF | 2 |
| Input/Output Capacitance: DQ | Clo |  | 7 | pF | 2 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -6 |  | -7 |  | -8 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t } R C}$ | 110 |  | 130 |  | 150 |  | ns |  |
| READ-WRITE cycle time | trwC | 165 |  | 185 |  | 205 |  | ns |  |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 40 |  | 45 |  | ns |  |
| FAST-PAGE-MODE READ-WRITE cycle time | tPRWC | 90 |  | 95 |  | 100 |  | ns |  |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {t } R A C ~}$ |  | 60 |  | 70 |  | 80 | ns | 14 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ A AC |  | 15 |  | 20 |  | 20 | ns | 15 |
| Access time from column address | ${ }^{\text {t }}$ AA |  | 30 |  | 35 |  | 40 | ns |  |
| Access time from $\overline{\mathrm{CAS}}$ precharge | ${ }^{\text {t }}$ CPA |  | 40 |  | 40 |  | 45 | ns |  |
| $\overline{\text { RAS }}$ pulse width | tRAS | 60 | 100,000 | 70 | 100,000 | 80 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ pulse width (FAST PAGE MODE) | ${ }^{\text {tRASP }}$ | 60 | 100,000 | 70 | 100,000 | 80 | 100,000 | ns |  |
| RAS hold time | ${ }^{\text {tRSH }}$ | 15 |  | 20 |  | 20 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | trP | 45 |  | 50 |  | 60 |  | ns |  |
| CAS puilse width | ${ }^{\text {t CAS }}$ | 15 | 100,000 | 20 | 100,000 | 20 | 100,000 | ns |  |
| CAS hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 60 |  | 70 |  | 80 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 10 |  | ns | 16 |
| $\overline{\text { CAS }}$ precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{C} P$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay time | ${ }^{\text {tr }}$ R ${ }^{\text {d }}$ | 15 | 45 | 20 | 50 | 20 | 60 | ns | 17 |
| $\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ precharge time | ${ }^{t}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t }}$ RAH | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {t RAD }}$ | 15 | 30 | 15 | 35 | 15 | 40 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }}$ A $A \mathrm{H}$ | 10 |  | 15 |  | 15 |  | ns |  |
| Column address hold time (referenced to RAS) | ${ }^{\text {t }} \mathrm{AR}$ | 50 |  | 55 |  | 60 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {traL }}$ | 30 |  | 35 |  | 40 |  | ns |  |
| Read command setup time | ${ }^{\text {tR }}$ RCS | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to $\overline{\mathrm{CAS}}$ ) | ${ }^{\text {tr }} \mathrm{RCH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t } R R H}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| CAS to output in Low-Z | ${ }^{\text {t }}$ CLZ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | tofF | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20 |
| WE command setup time | ${ }^{\text {thes }}$ | 0 |  | 0 |  | 0 |  | ns | 21,27 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -6 |  | -7 |  | -8 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Write command hold time | ${ }^{\text {t }}$ WCH | 10 |  | 15 |  | 15 |  | ns |  |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ WCR | 45 |  | 55 |  | 60 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 10 |  | 15 |  | 15 |  | ns |  |
| Write command to $\overline{\mathrm{RAS}}$ lead time | ${ }^{\text {tRWL }}$ | 15 |  | 20 |  | 20 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }} \mathrm{CWL}$ | 15 |  | 20 |  | 20 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }} \mathrm{DS}$ | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 10 |  | 15 |  | 15 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ DHR | 45 |  | 55 |  | 60 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { WE }}$ delay time | ${ }^{\text {t}}{ }^{\text {² }}$ WD | 90 |  | 100 |  | 110 |  | ns | 21 |
| Column address to $\overline{W E}$ delay time | ${ }^{\text {t }}$ AWD | 60 |  | 65 |  | 70 |  | ns | 21 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | 45 |  | 50 |  | 50 |  | ns | 21 |
| Transition time (rise or fall) | ${ }^{\text {T }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period (1024 cycles) | ${ }^{\text {t }}$ 'REF |  | 16 |  | 16 |  | 16 | ms |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }} \mathrm{RPC}$ | 0 |  | 0 |  | 0 |  | ns |  |
| CAS setup time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| $\overline{\text { CAS }}$ hold time ( $\overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$ refresh) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5 |
| WE hold time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }}$ WRH | 10 |  | 10 |  | 10 |  | ns | 25 |
| WE setup time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }}$ WRP | 10 |  | 10 |  | 10 |  | ns | 25 |
| WE hold time (WCBR test cycle) | ${ }^{\text {t }}$ WTH | 10 |  | 10 |  | 10 |  | ns | 25 |
| WE setup time (WCBR test cycle) | ${ }^{\text {t }}$ WTS | 10 |  | 10 |  | 10 |  | ns | 25 |
| $\overline{O E}$ setup prior to RAS during HIDDEN REFRESH cycle | ${ }^{\text {torb }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output disable | ${ }^{\text {tob }}$ | 15 |  | 20 |  | 20 |  | ns | 27 |
| Output enable | ${ }^{\text {t }} \mathrm{OE}$ | 15 |  | 20 |  | 20 |  | ns | 23 |
| $\overline{\mathrm{OE}}$ hold time from $\overline{\mathrm{WE}}$ during READ-MODIFY-WRITE cycle | ${ }^{\text {t }}$ OEH | 15 |  | 20 |  | 20 |  | ns | 26 |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $\mathrm{C}=\mathrm{I}^{\mathrm{dt}} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
7. An initial pause of $100 \mu$ s is required after power-up followed by eight $\overline{\mathrm{RAS}}$ refresh cycles ( $\overline{\mathrm{RAS}}$-ONLY or CBR with $\overline{\mathrm{WE}} \mathrm{HIGH}$ ) before proper device operation is assured. The eight $\overline{\mathrm{RAS}}$ cycle wake-up should be repeated any time the 16 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and $V_{\mathrm{IH}}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $\mathrm{VIIH}_{\mathrm{IH}}$ and $V_{\text {IL }}$ (or between VIL and $V_{I H}$ ) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\text {IL }}$, data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to 2 TTL gates and 100 pF .
14. Assumes that ${ }^{\mathrm{t}} R C D<{ }^{\mathrm{t}} R C D$ (MAX). If ${ }^{\mathrm{t} R C D}$ is greater than the maximum recommended value shown in this table, ${ }^{t} R A C$ will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{t} R C D \geq{ }^{t} R C D$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}, \mathrm{Q}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\text { CAS }}$ must be pulsed HIGH for ${ }^{t} \mathrm{CPN}$.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{t} R C D(M A X)$ limit, then access time is controlled exclusively by ${ }^{t} C A C$.
18. Operation within the ${ }^{t} R A D$ (MAX) limit ensures that ${ }^{t} R C D$ (MAX) can be met. ${ }^{t} R A D$ (MAX) is specified as a reference point only; if ${ }^{t} R A D$ is greater than the
specified ${ }^{\text {tRAD }}$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} A A$.
19. Either ${ }^{t} \mathrm{RCH}$ or ${ }^{t}$ RRH must be satisfied for a READ cycle.
20. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
21. ${ }^{t} W C S,{ }^{t} R W D,{ }^{t} A W D$ and ${ }^{t} C W D$ are restrictive operating parameters in late WRITE, and READ-MODIFY-WRITE cycles only. If ${ }^{t} W C S \geq{ }^{t}$ WCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit through out the entire cycle. If ${ }^{\mathrm{t}} \mathrm{RWD} \geq^{\mathrm{t}} \mathrm{RWD}$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq^{\mathrm{t}} \mathrm{AWD}$ (MIN) and ${ }^{t} C W D \geq{ }^{t} C W D$ (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. $\overline{\mathrm{OE}}$ held HIGH and $\overline{\mathrm{WE}}$ taken LOW after $\overline{\mathrm{CAS}}$ goes LOW results in a LATE-WRITE ( $\overline{\mathrm{OE}}$ controlled) cycle.
22. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles and $\overline{W E}$ leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
23. If $\overline{\mathrm{OE}}$ is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$ and $\overline{\mathrm{OE}}=\mathrm{HIGH}$.
25. ${ }^{\text {t}}$ WTS and ${ }^{\text {t}}$ WTH are setup and hold specifications for the $\overline{W E}$ pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of ${ }^{\text {t }} \mathrm{WRP}$ and ${ }^{\text {tw }} \mathrm{WRH}$ in the CBR refresh cycle.
26. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ${ }^{\mathrm{t}} \mathrm{OD}$ and ${ }^{\mathrm{t}} \mathrm{OEH}$ met $\overline{\mathrm{OE}} \mathrm{HIGH}$ during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if $\overline{\mathrm{CAS}}$ remains LOW and $\overline{\mathrm{OE}}$ is taken back LOW after ${ }^{\text {'OEH }}$ is met. If $\overline{\mathrm{CAS}}$ goes HIGH prior to $\overline{\mathrm{OE}}$ going back LOW, the DQs will remain open.
27. The DQs open during READ cycles once ${ }^{\text {t }} \mathrm{OD}$ or ${ }^{\text {t }} \mathrm{OFF}$ occur. If $\overline{\mathrm{CAS}}$ goes HIGH first, $\overline{\mathrm{OE}}$ becomes a don't care. If $\overline{\mathrm{OE}}$ goes HIGH and $\overline{\mathrm{CAS}}$ stays LOW, $\overline{\mathrm{OE}}$ is not a don't care; and the DQs will provide the previously read data if $\overline{\mathrm{OE}}$ is taken back LOW (while $\overline{\mathrm{CAS}}$ remains LOW).


EARLY-WRITE CYCLE


READ-WRITE CYCLE
(LATE-WRITE and READ-MODIFY-WRITE CYCLES)


FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)

$\nabla / \triangle$ DON'T CARE
UNDEFINED

RAS-ONLY REFRESH CYCLE
(ADDR $=\mathrm{A}_{0}-\mathrm{A}_{9} ; \overline{\mathrm{WE}}=\mathrm{DON}$ 'T CARE $)$


CAS-BEFORE-RAS REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{9}$, and $\overline{\mathrm{OE}}=$ DON'T CARE $)$


HIDDEN REFRESH CYCLE
$(\overline{\mathrm{WE}}=\mathrm{HIGH} ; \overline{\mathrm{OE}}=\mathrm{LOW})^{24}$


## 4 MEG POWER-UP AND REFRESH CONSTRAINTS

The JEDEC 4 Meg DRAM introduces two potential incompatibilities compared to the previous generation 1 Meg DRAM. The incompatibilities involve refresh and powerup. Understanding these incompatibilities and providing for them will offer the designer and system user greater compatibility between the 1 Meg and 4 Meg .

## REFRESH

The most commonly used refresh mode of the 1 Meg is the CBR ( $\overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}})$ REFRESH cycle. The CBR for the 1 Meg specifies the $\overline{\mathrm{WE}}$ pin as a don't care. The 4 Meg , on the other hand, specifies the CBR REFRESH mode to be a $\bar{W} C B R$, which is CBR with the $\overline{W E}$ pin held at a logical HIGH level.

The reason for $\bar{W} C B R$ instead of CBR on the 4 Meg is that a CBR cycle with $\overline{W E}$ LOW will put the 4 Meg into the JEDEC specified test mode ( $\overline{\mathrm{W}} \mathrm{CBR}$ ). In contrast, the 1 Meg test mode is entered by applying a HIGH signal to the test pin (pin 4 on DIP, pin 5 on SOJ and pin 8 on ZIP). This HIGH signal is usually a "supervoltage" ( V in $\geq 7.5 \mathrm{~V}$ ) so normal TTL or CMOS HIGH levels will not cause the part to enter the test mode.

## POWER-UP

The $4 \mathrm{Meg} \overline{\mathrm{W}} \mathrm{CBR}$ constraint may also introduce another problem. The 1 Meg POWER-UP cyclerequires a $100 \mu$ sdelay followed by any 8 RAS cycles. The 4 Meg POWER-UP is more restrictive in that $8 \overline{\mathrm{RAS}}-\mathrm{ONLY}$ or CBR REFRESH ( $\overline{\mathrm{WE}}$ held HIGH) cycles must be used. The restriction is needed since
the 4 Meg may power-up in the JEDEC specified test mode and must exit out of the test mode. The only way to exit the 4MegJEDEC test mode is with either a $\overline{R A S}-O N L Y$ or a CBR REFRESH cycle.

## SUMMARY

1. The optional 1 Meg test pin is the A10 pin on the 4 Meg .
2. For optional test mode, the 1 Meg requires a valid HIGH on the test pin while the 4 Meg requires a CBR cycle with $\overline{W E}$ LOW.
3. The 1 Meg CBR REFRESH allows the $\overline{W E}$ pin to be don't care while the 4 Meg CBR requires $\overline{\mathrm{WE}}$ to be HIGH ( $\bar{W} C B R$ ).
4. The $8 \overline{\mathrm{RAS}}$ wake-up cycles on the 1 Meg may be any valid $\overline{\mathrm{RAS}}$ cycle whilethe4 Meg may only use $\overline{\mathrm{RAS}}$-ONLY or CBR REFRESH cycles.

## SPECIAL FEATURE

A memory system currentlyusing 1MegDRAMswith $\overline{W E}$ as a don't care during CBR REFRESH does not allow for direct upgrading to 4 Meg DRAMs. Micron, realizing some companies will have this situation, provides a special feature on its 4 Meg DRAM, that requires "supervoltage" to access the 4 Meg JEDEC WCBR test function. This allows the Micron 4 Meg DRAM to be refreshed in the same manner as any 1 MEG DRAM. Note that the eight power-up cycles should only be refresh cycles in order to guarantee that any 4 Meg DRAM, including Micron's, does not inadvertently powerup in the test mode.

# 1 MEG x 4 DRAM static Column 

## FEATURES

- Industry standard $x 4$ pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 3 mW standby; 225 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 1024-cycle refresh distributed across 16 ms
- Refresh modes: $\overline{\mathrm{RAS}}-\mathrm{ONLY}, \overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$ (CBR), and HIDDEN
- STATIC COLUMN access cycle
- 300 and 350 mil wide SOJ packages
- Two CBR options: CBR with $\overline{W E}$ a don't care (1 Meg compatible) and CBR with $\overline{\mathrm{WE}}$ a HIGH (JEDEC test mode capable via WCBR)


## OPTIONS

- Timing 60ns access -6
70 ns access $\quad-7$
80ns access -8
- Packages

Ceramic DIP (300mil) CN
Ceramic DIP ( 400 mil ) C
Plastic ZIP (350mil) Z
Plastic SOJ (300mil) DJ
Plastic SOJ (350mil) DJW
Plastic TSOP (*) TG

- $\overline{\text { CAS-BEFORE-RAS }}$ refresh CBR with $\overline{W E}$ a don't care CBR with $\overline{W E}$ a HIGH

None
J

- Operating Temperature, TA Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

$$
\begin{aligned}
& \text { None } \\
& \text { IT }
\end{aligned}
$$

## GENERAL DESCRIPTION

TheMT4C4003 is a randomly accessed solid-statememory containing 4,194,304 bits organized in a $\times 4$ configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. $\overline{\mathrm{RAS}}$ is used to latch the first 10 bits and $\overline{\text { CAS }}$ the latter 10 bits. A READ or WRITE cycle is selected with the $\overline{W E}$ input. A logic HIGH on $\overline{W E}$ dictates READ modewhilealogicLOW on $\overline{W E}$ dictatesWRITE mode.

## PIN ASSIGNMENT (Top View)

| 20-Pin CDIP | 20-Pin ZIP |  |  | 20-Pin SOJ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (B-4, B-5) | (C-3) |  |  | (E-1, E-2) |  |  |
| DQ1[1- ${ }_{20}$ ] Vss | $\overline{\mathrm{OE}}$ | $1{ }^{\text {Pr }}$ | $\overline{\text { CAS }}$ | DQ1 1 - |  |  |
| DQ2 219 19DQ4 | DQ3 | $5{ }^{-1}{ }^{-1}$ | DQ4 | DQ2 $\mathrm{WE} \mathrm{C}^{2}$ | 25 |  |
| WE[3 18 18 DQ3 |  | $7{ }^{5}$ | DQ1 | RAS ${ }^{\text {W }}$ |  |  |
| RAS $4170 \overline{\text { CAS }}$ | RAS | $9{ }^{-1} 8$ | WE | A9 05 | 22 | OE |
| A9 $516{ }^{16} \overline{O E}$ | A0 | $1{ }^{-10}$ |  |  |  |  |
| A0-6 615 A8 | A2 | $3{ }^{-1} 12$ |  | AO 99 |  |  |
| A1 $\mathrm{Cl}_{7} 14 \mathrm{~A} 7$ | Vcc | 5 |  | A1 ${ }^{\text {a }} 10$ |  |  |
| A2C8 13 A6 |  | $7{ }^{16}$ |  | A2 11 |  | $\mathrm{j}^{\text {A6 }}$ |
| АЗ 912 l A5 | A7 | 9 |  |  |  | ${ }^{\text {A A }}$ A |
| $\mathrm{Vcc}\left[10{ }_{11} \mathrm{~S}_{\mathrm{A} 4}\right.$ |  |  |  |  |  | ${ }^{\text {A4 }}$ |

During a WRITE cycle, data in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. If $\overline{W E}$ goes LOW prior to $\overline{\mathrm{CAS}}$ going LOW, the output pin(s) remain open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle. If $\overline{\mathrm{WE}}$ goes LOW after data reaches the output pin(s), data out $(Q)$ is activated and retains the selected cell data as long as CAS remains low (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}}$ ). This late $\overline{\mathrm{WE}}$ pulse results in a READ-WRITE cycle. The four data inputs and four data outputs are routed through four pins using common I/O and pin direction is controlled by $\overline{W E}$ and $\overline{O E}$.

STATIC COLUMN operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A9) defined page boundary. The STATIC COLUMN cycle is always initiated with a row address strobed-in by RAS followed by a column address strobedin by $\overline{\mathrm{CAS}} . \overline{\mathrm{CAS}}$ may be toggled-in by holding $\overline{\mathrm{RAS}} \mathrm{LOW}$ and strobing-in different column addresses, thusexecuting faster memory cycles. Returning $\overline{\mathrm{RA}} \overline{\mathrm{S}} \mathrm{HIGH}$ terminates the STATIC COLUMN operation.

Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycleduring the $\overline{\mathrm{RAS}}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\mathrm{RAS}}$ cycle (READ, WRITE, $\bar{R} A S-O N L Y, \overline{C A S}-B E F O R E-\overline{R A S}$, or HIDDEN refresh) so that all 1024 combinations of $\overline{\mathrm{RAS}}$ addresses (A0-A9) are executed at least every 16 ms , regardless of sequence. The CBR refresh cycle will invoke the internal refresh counter for automatic $\overline{\text { RAS }}$ addressing.

## FUNCTIONAL BLOCK DIAGRAM STATIC COLUMN


*NOTE: $\overline{\text { WE }}$ LOW prior to $\overline{\text { CAS }}$ LOW, EW detection CKT output is a HIGH (EARLY WRITE) CAS LOW prior to WE LOW, EW detection CKT output is a LOW (LATE WRITE)

## TRUTH TABLE

| Function |  | RAS | CAS | WE | Address |  | $\overline{O E}$ | DATA IN / OUT DQ1-4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {t }}$ R |  |  | ${ }^{\text {t }}$ |  |  |
| Standby |  |  | H | X | X | X | X | X | High-Z |
| READ |  | L | L | H | ROW | COL | L | Valid Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | X | Valid Data In |
| READ-WRITE |  | L | L | $H \rightarrow L$ | ROW | COL | $L \rightarrow H$ | Valid Data Out, Data In |
| STATIC COLUMN READ | 1st Cycle | L | L | H | ROW | COL | L | Valid Data Out |
|  | 2nd Cycle | L | L | H | n/a | COL | L | Valid Data Out |
| STATIC COLUMN EARLY-WRITE | 1st Cycle | L | L | L | ROW | COL | X | Valid Data In |
|  | 2nd Cycle | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | n/a | COL | X | Valid Data In |
| STATIC COLUMN READ-WRITE | 1st Cycle | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | $\mathrm{L} \rightarrow \mathrm{H}$ | Valid Data Out, Data In |
|  | 2nd Cycle | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | n/a | COL | $L \rightarrow H$ | Valid Data Out, Data In |
| RAS-ONLY REFRESH |  | H | X | X | ROW | n/a | X | High-Z |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | L | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | X | Valid Data In |
| CAS-BEFORERAS REFRESH | Standard | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | X | High-Z |
|  | "J" Option | $\mathrm{H} \rightarrow \mathrm{L}$ | L | H | X | X | X | High-Z |

## ABSOLUTE MAXIMUM RATINGS*


*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in theoperational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: 1, 3, 4, 6, 7) (Vcc $=5.0 \mathrm{~V} \pm 10 \%$ )

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIн | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE CURRENT <br> any input $(0 \mathrm{~V} \leq \mathrm{Vin} \leq 6.5 \mathrm{~V}$, <br> all other pins not under test $=0 \mathrm{~V}$ ) | 11 | -2 | 2 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( Q is disabled, $\mathrm{OV} \leq$ Vout $\leq 5.5 \mathrm{~V}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS | Vor | 2.4 |  | V |  |
| Output High Voltage (lout $=-5 \mathrm{~mA}$ ) <br> Output Low Voltage (lout $=4.2 \mathrm{~mA}$ ) | Vol |  | 0.4 | V |  |


|  |  | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -6 | -7 | -8 | UNITS | NOTES |
| STANDBY CURRENT: (TTL) $\left(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{I}} \mathrm{H}\right)$ | Icc1 | 2 | 2 | 2 | mA |  |
| STANDBY CURRENT: (CMOS) $\text { (RAS }=\overline{\mathrm{CAS}}=\text { Other Inputs }=\mathrm{V} c \mathrm{c}-0.2 \mathrm{~V})$ | Icc2 | 1 | 1 | 1 | mA |  |
| OPERATING CURRENT: Random READ/WRITE <br> Average power supply current <br> (RAS, $\overline{\text { CAS }}$, Address Cycling: ${ }^{\mathrm{t} R C=}{ }^{\mathrm{t} R C}$ (MIN)) | Icc3 | 110 | 100 | 90 | mA | 3, 4 |
| OPERATING CURRENT: STATIC COLUMN <br> Average power supply current <br> ( $\overline{\text { RAS }}=$ VIL, $\overline{C A S}$, Address Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}($ MIN $)$ ) | IcC4 | 80 | 70 | 60 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS-ONLY }}$ <br> Average power supply current ( $\overline{\text { RAS }}$ Cycling, $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{V}}$ : ${ }^{\mathrm{t} R C=}{ }^{\mathrm{t} R C}(\mathrm{MIN})$ ) | IcC5 | 110 | 100 | 90 | mA | 3 |
| REFRESH CURRENT: $\overline{\mathrm{CAS}}$-BEFORE-RAS <br> Average power supply current <br> ( $\overline{\text { RAS }}, \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\mathrm{t} R C}={ }^{\mathrm{t} R C}$ (MIN)) | Icc6 | 110 | 100 | 90 | mA | 3,5 |

CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A10 | $\mathrm{Cl}_{11}$ |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}, \overline{\mathrm{OE}}}$ | $\mathrm{Cl}_{12}$ |  | 7 | pF | 2 |
| Input/Output Capacitance: DQ | $\mathrm{ClO}_{10}$ |  | 7 | pF | 2 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -6 |  | -7 |  | -8 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | trC | 110 |  | 130 |  | 150 |  | ns |  |
| READ-WRITE cycle time | trwC | 165 |  | 185 |  | 205 |  | ns |  |
| STATIC-COLUMN READ or WRITE cycle time | ${ }^{\text {t }} \mathrm{S}$ | 40 |  | 40 |  | 45 |  | ns |  |
| STATIC-COLUMN READ-WRITE cycle time | 'SRMC | 95 |  | 100 |  | 110 |  | ns |  |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {tr }}$ AC |  | 60 |  | 70 |  | 80 | ns | 14 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ CAC |  | 15 |  | 20 |  | 20 | ns | 15 |
| Access time from column address | ${ }^{\text {t }} \mathrm{A}$ A |  | 30 |  | 35 |  | 40 | ns |  |
| Access time from $\overline{\text { CAS }}$ precharge | ${ }^{\text {t }} \mathrm{CPA}$ |  | 40 |  | 40 |  | 45 | ns |  |
| $\overline{\text { RAS }}$ pulse width | tras | 60 | 100,000 | 70 | 100,000 | 80 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ pulse width (STATIC COLUMN) | ${ }^{\text {tRASC }}$ | 60 | 100,000 | 70 | 100,000 | 80 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {tRSH }}$ | 15 |  | 20 |  | 20 |  | ns |  |
| RAS precharge time | tRP | 45 |  | 50 |  | 60 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t }} \mathrm{CAS}$ | 15 | 100,000 | 20 | 100,000 | 20 | 100,000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 60 |  | 70 |  | 80 |  | ns |  |
| CAS precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 10 |  | ns | 16 |
| $\overline{\text { CAS }}$ precharge time (STATIC COLUMN) | ${ }^{\text {t }} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay time | trCD | 15 | 45 | 20 | 50 | 20 | 60 | ns | 17 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {tRAH }}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to column address delay time | ${ }^{\text {tRAD }}$ | 15 | 30 | 15 | 35 | 15 | 40 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ SS | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 10 |  | 15 |  | 15 |  | ns |  |
| Column address hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ AR | 50 |  | 55 |  | 60 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {traL }}$ | 30 |  | 35 |  | 40 |  | ns |  |
| Read command setup time | ${ }^{\text {tRCS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to CAS) | ${ }^{\text {tr }} \mathrm{CH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to RAS) | tRRH | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t }}$ LZ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {toff }}$ | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20 |
| $\overline{\text { WE }}$ command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns | 21, 27 |
| Write command hold time | ${ }^{\text {t }}$ WCH | 10 |  | 15 |  | 15 |  | ns |  |
| Write command hold time (referenced to $\overline{\text { RAS }}$ ) | ${ }^{\text {t }}$ WCR | 45 |  | 55 |  | 60 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 10 |  | 15 |  | 15 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {tRWL }}$ | 15 |  | 20 |  | 20 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }} \mathrm{CWL}$ | 15 |  | 20 |  | 20 |  | ns |  |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -6 |  | -7 |  | -8 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Data-in setup time | ${ }^{\text {t }}$ D | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 10 |  | 15 |  | 15 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) |  | 45 |  | 55 |  | 60 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { WE }}$ delay time |  | 90 |  | 100 |  | 110 |  | ns | 21 |
| Column address to $\overline{W E}$ delay time | ${ }^{\text {taWD }}$ | 60 |  | 65 |  | 70 |  | ns | 21 |
| $\overline{\text { CAS }}$ to $\overline{W E}$ delay time | ${ }^{\text {t }}$ CWD | 45 |  | 50 |  | 50 |  | ns | 21 |
| Transition time (rise or fall) | ${ }^{\text {t }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9, 10 |
| Refresh period (1024 cycles) | ${ }^{\text {tREF }}$ |  | 16 |  | 16 |  | 16 | ms |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ precharge time | trPC | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\mathrm{CAS}}$ setup time (CAS-BEFORE- $\overline{R A S}$ refresh) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5 |
| $\overline{\text { WE }}$ hold time ( $\overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$ refresh) | ${ }^{\text {t }}$ WRH | 10 |  | 10 |  | 10 |  | ns | 25 |
| $\overline{\text { WE }}$ setup time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }}$ WRP | 10 |  | 10 |  | 10 |  | ns | 25 |
| $\overline{\text { WE }}$ hold time (WCBR test cycle) | ${ }^{\text {t }}$ WTH | 10 |  | 10 |  | 10 |  | ns | 25 |
| $\overline{\text { WE }}$ setup time (WCBR test cycle) | tWTS | 10 |  | 10 |  | 10 |  | ns | 25 |
| $\overline{\mathrm{OE}}$ setup prior to RAS during HIDDEN REFRESH cycle | ${ }^{\text {tord }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output disable | ${ }^{\text {t }} \mathrm{OD}$ | 15 |  | 20 |  | 20 |  | ns | 27 |
| Output enable | ${ }^{\text {t }} \mathrm{OE}$ | 15 |  | 20 |  | 20 |  | ns | 23 |
| $\overline{\mathrm{OE}}$ hold time from $\overline{\mathrm{WE}}$ during READ-MODIFY-WRITE cycle | ${ }^{\text {toEH }}$ | 15 |  | 20 |  | 20 |  | ns | 26 |
| Write inactive time | ${ }^{\text {t W }}$ I | 10 |  | 10 |  | 10 |  | ns |  |
| Last WRITE to column address delay time | ${ }^{\text {t }}$ WWAD | 15 | 25 | 20 | 30 | 20 | 35 | ns |  |
| Last WRITE to column address hold time | ${ }^{\text {t }}$ AHLW | 55 |  | 65 |  | 75 |  | ns |  |
| $\overline{\text { RAS }}$ hold time referenced to $\overline{\mathrm{OE}}$ | ${ }^{\text {t }} \mathrm{ROH}$ | 10 |  | 10 |  | 10 |  | ns |  |
| Output data hold time from column address | ${ }^{\text {t }} \mathrm{AOH}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Output data enable from WRITE | tow | 20 |  | 20 |  | 20 |  | ns |  |
| Access time from last WRITE | ${ }^{\text {ta }}$, W | 55 |  | 65 |  | 75 |  | ns |  |
| Column address hold time referenced to $\overline{\text { RAS }}$ HIGH | ${ }^{\text {t }}$ H | 5 |  | 5 |  | 10 |  | ns |  |
| CAS pulse width in STATIC-COLUMN mode | ${ }^{\text {t }} \mathrm{CSC}$ | ${ }^{\text {t }}$ CAS |  | ${ }^{\text {t }} \mathrm{CAS}$ |  | ${ }^{\text {t }}$ CAS |  | ns |  |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $\mathrm{C}=\mathrm{I}^{\mathrm{dt}} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
7. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by eight $\overline{\text { RAS }}$ refresh cycles ( $\overline{\text { RAS-ONLY or }}$ CBR with $\overline{\text { WE }}$ HIGH) before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 16 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
9. $\mathrm{V}_{\mathrm{IH}}$ (MIN) and $\mathrm{V}_{\mathrm{IL}}$ (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and $V_{\mathrm{IH}}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $V_{I H}$ and $V_{\text {IL }}$ (or between VII and $V_{I H}$ ) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{C A S}=V_{I I}$, data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to 2 TTL gates and 100 pF .
14. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{\mathrm{t} R C D} \geq \mathrm{t}^{\mathrm{t} R C D}$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}, \mathrm{Q}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{t} \mathrm{CPN}$.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{t} R C D$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} \mathrm{CAC}$.
18. Operation within the tRAD (MAX) limit ensures that ${ }^{t} R C D$ (MAX) can be met. trAD (MAX) is specified as a reference point only; if ${ }^{t} R A D$ is greater than the
specified trAD (MAX) limit, then access time is controlled exclusively by ${ }^{t}$ AA.
19. Either ${ }^{\text {tRCH }}$ or ${ }^{t}$ RRH must be satisfied for a READ cycle.
20. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
21. ${ }^{t} W C S,{ }^{t} R W D,{ }^{t} A W D$ and ${ }^{t} C W D$ are restrictive operating parameters in late WRITE, and READ-MODIFY-WRITE cycles only. If ${ }^{t} W C S \geq^{t} W C S$ (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit through out the entire cycle. If ${ }^{t} R W D \geq{ }^{t} R W D$ (MIN), ${ }^{t} A W D \geq{ }^{t} A W D$ (MIN) and ${ }^{\mathrm{t}} \mathrm{CWD} \geq{ }^{\mathrm{t}} \mathrm{CWD}$ (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. $\overline{\mathrm{OE}}$ held HIGH and $\overline{\mathrm{WE}}$ taken LOW after $\overline{\text { CAS }}$ goes LOW results in a LATE-WRITE ( $\overline{\mathrm{OE}}$ controlled) cycle.
22. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles and $\overline{W E}$ leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
23. If $\overline{\mathrm{OE}}$ is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{W E}=$ LOW and $\overline{\mathrm{OE}}=\mathrm{HIGH}$.
25. 'WTS and ${ }^{\text {t}}$ WTH are setup and hold specifications for the $\overline{W E}$ pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of ${ }^{\text {t }}$ WRP and ${ }^{\text {t }}$ WRH in the CBR refresh cycle.
26. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ${ }^{\mathrm{t}} \mathrm{OD}$ and ${ }^{\text {t }} \mathrm{OEH}$ met $\overline{\mathrm{OE}}$ HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if $\overline{\text { CAS }}$ remains LOW and $\overline{\mathrm{OE}}$ is taken back LOW after ${ }^{\text {tOEH }}$ is met. If $\overline{\mathrm{CAS}}$ goes HIGH prior to $\overline{\mathrm{OE}}$ going back LOW, the DQs will remain open.
27. The DQs open during READ cycles once ${ }^{\text {tOD }}$ or ${ }^{\text {tOFF }}$ occur. If $\overline{\mathrm{CAS}}$ goes HIGH first, $\overline{\mathrm{OE}}$ becomes a don't care. If $\overline{\mathrm{OE}}$ goes HIGH and $\overline{\mathrm{CAS}}$ stays LOW, $\overline{\mathrm{OE}}$ is not a don't care; and the DQs will provide the previously read data if $\overline{\mathrm{OE}}$ is taken back LOW (while $\overline{\mathrm{CAS}}$ remains LOW).

READ CYCLE


EARLY-WRITE CYCLE

$\overline{O E}$
V/ZD dont care
undefined

## READ-WRITE CYCLE

(LATE-WRITE and READ-MODIFY-WRITE CYCLES)


STATIC-COLUMN READ CYCLE


## STATIC-COLUMN EARLY-WRITE CYCLE

(CAS Controlled)



## STATIC-COLUMN EARLY-WRITE CYCLE (WE Controlled)


$\overline{\mathrm{O}} \mathrm{V} \mathrm{V}_{\mathrm{H}}$
VZD dont care
( Undefined


RAS-ONLY REFRESH CYCLE

$$
\left(\mathrm{ADDR}=\mathrm{A}_{0}-\mathrm{A}_{9} ; \mathrm{WE}=D O N^{\prime} T \mathrm{CARE}\right)
$$



CAS-BEFORE-RAS REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{9}$, and $\overline{\mathrm{OE}}=$ DON'T CARE $)$


HIDDEN REFRESH CYCLE
$(\overline{\mathrm{WE}}=\mathrm{HIGH} ; \overline{\mathrm{OE}}=\mathrm{LOW})^{24}$


## 4 MEG POWER-UP AND REFRESH CONSTRAINTS

The JEDEC 4 Meg DRAM introduces two potential incompatibilities compared to the previous generation 1 Meg DRAM. The incompatibilities involve refresh and powerup. Understanding these incompatibilities and providing for them will offer the designer and system user greater compatibility between the 1 Meg and 4 Meg .

## REFRESH

The most commonly used refresh mode of the 1 Meg is the CBR (CAS-BEFORE- $\overline{R A S})$ REFRESH cycle. The CBR for the 1 Meg specifies the $\overline{\mathrm{WE}}$ pin as a don't care. The 4 Meg , on the other hand, specifies the CBR REFRESH mode to be a $\bar{W} C B R$, which is CBR with the $\overline{W E}$ pin held at a logical HIGH level.

The reason for $\bar{W} C B R$ instead of CBR on the 4 Meg is that a CBR cycle with $\overline{W E}$ LOW will put the 4 Meg into the JEDEC specified test mode ( $\overline{\mathrm{W}} \mathrm{CBR}$ ). In contrast, the 1 Meg test mode is entered by applying a HIGH signal to the test pin (pin 4 on DIP, pin 5 on SOJ and pin 8 on ZIP). This HIGH signal is usually a "supervoltage" (V in $\geq 7.5 \mathrm{~V}$ ) so normal TTL or CMOS HIGH levels will not cause the part to enter the test mode.

## POWER-UP

The 4 Meg $\bar{W} C B R$ constraint may also introduce another problem. The 1 Meg POWER-UP cycle requires a $100 \mu$ s delay followed by any 8 RAS cycles. The 4 Meg POWER-UP is more restrictive in that $8 \overline{\mathrm{RAS}}-\mathrm{ONLY}$ or CBR REFRESH ( $\overline{\mathrm{WE}}$ held HIGH) cycles must be used. The restriction is needed since
the 4 Meg may power-up in the JEDEC specified test mode and must exit out of the test mode. The only way to exit the 4 Meg JEDEC test mode is with either a $\overline{\text { RAS-ONLY or a }}$ $\bar{W} C B R$ REFRESH cycle.

## SUMMARY

1. The optional 1 Meg test pin is the A 10 pin on the 4 Meg .
2. For optional test mode, the 1 Meg requires a valid HIGH on the test pin while the 4 Meg requires a CBR cycle with $\overline{W E}$ LOW.
3. The 1 Meg CBR REFRESH allows the $\overline{W E}$ pin to be don't care while the 4 Meg CBR requires $\overline{\mathrm{WE}}$ to be HIGH ( $\overline{\mathrm{W}} \mathrm{CBR}$ ).
4. The $8 \overline{\mathrm{RAS}}$ wake-up cycles on the 1 Meg may be any valid $\overline{\mathrm{RAS}}$ cycle while the 4 Meg may only use $\overline{\mathrm{RAS}}-\mathrm{ONLY}$ or $\bar{W} C B R$ REFRESH cycles.

## SPECIAL FEATURE

A memory system currently using1MegDRAMswith $\overline{W E}$ as a don't care during CBR REFRESH does not allow for direct upgrading to 4 Meg DRAMs. Micron, realizing some companies will have this situation, provides a special feature on its 4 Meg DRAM, that requires "supervoltage" to access the 4 Meg JEDEC WCBR test function. This allows the Micron 4 Meg DRAM to be refreshed in the same manner as any 1 MEG DRAM. Note that the eight power-up cycles should only be refresh cycles in order to guarantee that any 4 Meg DRAM, including Micron's, does not inadvertently powerup in the test mode.


COMPARISON OF 4 MEG TEST MODE AND WCBR TO 1 MEG CBR

## DRAM

## 1 MEG x 4 DRAM

QUAD CAS PARITY, FAST PAGE MODE

## FEATURES

- Four independent $\overline{\mathrm{CAS}}$ controls, allowing individual manipulation to each of the four data Input/Output ports (DQ1 through DQ4).
- Offers a single chip solution to byte level parity for 36bit words when using 1 Meg $\times 4$ DRAMs for memory
- Emulates write-per-bit, at design-in level, with simplified timing constraints
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 3 mW standby; 225 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 1024 -cycle refresh in 16 ms
- Refresh modes: $\overline{\text { RAS-ONLY, }} \overline{\text { CAS-BEFORE-RAS, }}$ and HIDDEN
- $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$ cycles with $\overline{\mathrm{WE}}$ as a don't care


## OPTIONS

- Timing $\begin{array}{ll}70 \mathrm{~ns} \text { access } & -7 \\ 80 \mathrm{~ns} \text { access } & -8 \\ 100 \mathrm{~ns} \text { access } & -10\end{array}$
- Packages

Plastic SOJ (300mil)
Plastic SOJ ( 350 mil )
DJ
DJW

- Operating Temperature, TA

Commercial ( $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ )
None

## GENERAL DESCRIPTION

The MT4C4004 is a randomly accessed solid-state memory containing $4,194,304$ bits organized in a $\times 4$ configuration. This 1 Meg $\times 4$ DRAM is unique in that each CAS (CAS1 through CAS4) controls its corresponding data I/O port in conjunction with $\overline{\mathrm{OE}}$ (eg. $\overline{\mathrm{CAS}}$ controls DQ1 I/O port, $\overline{\mathrm{CAS}} 2$ controls DQ2, $\overline{\mathrm{CAS}}$ controls DQ 3 and $\overline{\mathrm{CAS4}}$ controls DQ 4 ).

The best way to view the Quad CAS function is to imagine the $\overline{\mathrm{CAS}}$ inputs going into an AND gate to obtain an internally generated CAS signal functioning in an identical manner to the single CAS input on a standard $1 \mathrm{Meg} \times 4$ DRAM device. The key difference is each $\overline{\text { CAS }}$ controls its corresponding DQ tristate logic (in conjunction with $\overline{\mathrm{OE}}$ and $\overline{W E}$ ) on the Quad CAS DRAM.

During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. RAS is used to latch the first 10 bits,

## PIN ASSIGNMENT (Top View)

24-Pin SOJ (E-5, E-6)

and the first $\overline{\mathrm{CAS}}$ the latter 10 bits. A READ or WRITE cycle is selected with the $\overline{W E}$ input. A logic HIGH on $\overline{W E}$ dictates READ mode while alogic LOW onWE dictates WRITE mode.

During a WRITE cycle, data-in ( Dx ) is latched by the falling edge of $\overline{\mathrm{WE}}$ or the first $\overline{\mathrm{CAS}}$, whichever occurs last. If $\overline{W E}$ goes LOW prior to the first $\overline{C A S}$ going LOW, the output $\mathrm{pin}(\mathrm{s})$ remain open (High-Z) until the next $\overline{C A S}$ cycle. If WE goes LOW after data reaches the output buffer, data out ( Q ) is activated and retains the selected cell data until the trailing edge of its corresponding $\overline{\text { CAS }}$ occurs (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}}$. This late $\overline{\mathrm{WE}}$ pulse results in a READ-WRITE cycle ( $\overline{\mathrm{OE}}$ switching the device from a READ to a WRITE function). The four data inputs and four data outputs are routed through four pins using common I/O, with pin direction controlled by $\overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}$.

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobedin by the first $\overline{\text { CAS. }} \overline{\text { CAS }}$ may be toggled-in by holding $\overline{\text { RAS }}$ LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning $\overline{\text { RAS }} \mathrm{HIGH}$ terminates the FAST PAGE MODE operation.

Returning $\overline{\mathrm{RAS}}$ and all four $\overline{\mathrm{CAS}}$ controls HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the $\overline{\mathrm{RAS}}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, $\overline{\text { CAS-BEFORE-RAS }}$ or HIDDEN refresh) so that all 1024 combinations of $\overline{\text { RAS }}$ addresses (A0-A9) are executed at least every 16 ms , regardless of sequence. The $\overline{\mathrm{CAS}}$-BEFORE$\overline{\text { RAS }}$ cycle will invoke the refresh counter for automatic and sequential row addressing.

## FUNCTIONAL BLOCK DIAGRAM

## QUAD CAS


*NOTE: $\overline{\text { WE }}$ LOW prior to first $\overline{\text { CAS }}$ LOW, EW detection CKT output is a 1. First CAS LOW while WE HIGH, EW detection CKT output is a 0 , ( $\overline{O E}$ will now determine $\mathrm{I} / \mathrm{O}$ ).

## TRUTH TABLE

| Function |  | RAS | CASx | CASy | WE | $\overline{O E}$ | Addresses |  | DQx (DQy always High-Z) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {th}}$ |  |  |  |  | ${ }^{t} \mathrm{C}$ |  |
| Standby |  |  | H | X | X | X | X | X | X | High-Z |
| READ |  | L | L | H | H | L | ROW | COL | Valid Data Out |
| EARLY-WRITE |  | L | L | H | L | X | ROW | COL | Valid Data In |
| READ-WRITE |  | L | L | H | $\mathrm{H} \rightarrow \mathrm{L}$ | $L \rightarrow H$ | ROW | COL | Valid Data Out, Data In |
| PAGE-MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | H | L | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | H | L | n/a | COL | Valid Data Out |
| PAGE-MODE EARLY-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | L | X | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | L | X | n/a | COL | Valid Data In |
| PAGE-MODE READ-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | $\mathrm{H} \rightarrow \mathrm{L}$ | $L \rightarrow H$ | ROW | COL | Valid Data Out, Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | $\mathrm{H} \rightarrow \mathrm{L}$ | $L \rightarrow H$ | n/a | COL | Valid Data Out, Data In |
| $\begin{aligned} & \hline \text { HIDDEN } \\ & \text { REFRESH } \end{aligned}$ | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | H | L | ROW | COL | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | L | X | ROW | COL | Valid Data In |
| RAS-ONLY REFRESH |  | L | H | H | X | X | ROW | n/a | High-Z |
| CAS-BEFORERAS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | H | X | X | X | X | High-Z |

ABSOLUTE MAXIMUM RATINGS*
Voltage on Vcc supply relative to Vss $\qquad$ -1.0 V to +7.0 V
Storage Temperature (Ceramic) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) ................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation
Short Circuit Output Current ................................... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above thoseindicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (Vcc $=5.0 \mathrm{~V} \pm 10 \%)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE CURRENT <br> any input ( $0 \mathrm{~V} \leq \mathrm{VIN} \leq 6.5 \mathrm{~V}$, <br> all other pins not under test $=0 \mathrm{~V}$ ) | 1 | -2 | 2 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( Q is disabled, $0 \mathrm{~V} \leq$ Vout $\leq 5.5 \mathrm{~V}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS | VoH | 2.4 |  | V |  |
| Output High Voltage (lout $=-5 \mathrm{~mA}$ ) <br> Output Low Voltage (lout $=4.2 \mathrm{~mA}$ ) | Vol |  | 0.4 | V |  |


|  | SYMBOL | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION |  | -7 | -8 | -10 | UNITS | NOTES |
| STANDBY CURRENT: (TTL) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V} I H)$ | IcC1 | 2 | 2 | 2 | mA |  |
| STANDBY CURRENT: (CMOS) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V})$ | Icc2 | 1 | 1 | 1 | mA | 26 |
| OPERATING CURRENT: Random READ/WRITE <br> Average power supply current <br> (RAS, $\overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\mathrm{R}} \mathrm{RC}={ }^{\mathrm{t} R C}$ (MIN)) | Icc3 | 100 | 90 | 80 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE <br> Average power supply current <br> (RAS $=$ VIL; $\overline{\text { CAS }}$, Address Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}(\mathrm{MIN})$ ) | IcC4 | 70 | 60 | 50 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY <br> Average power supply current ( $\overline{R A S}$ Cycling, $\overline{C A S}=\mathrm{V}_{1}:{ }^{\mathrm{t} R C}={ }^{\mathrm{t}} \mathrm{RC}$ (MIN)) | Icc5 | 100 | 90 | 80 | mA | 3 |
| REFRESH CURRENT: $\overline{\text { CAS }}$-BEFORE- $\overline{R A S}$ Average power supply current ( $\overline{R A S}, \overline{C A S}$, Address Cycling: ${ }^{\text {R }}{ }^{\text {C }}=$ tr $^{\text {RC }}$ (MIN)) | Icc6 | 100 | 90 | 80 | mA | 3,5 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A9 | $\mathrm{ClI}_{11}$ |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS},} \overline{\mathrm{CAS} 1-4, \overline{W E}, \overline{\mathrm{OE}}}$ | $\mathrm{Cl}_{12}$ |  | 7 | pF | 2 |
| Input/Output Capacitance: DQ | $\mathrm{ClO}_{10}$ |  | 7 | pF | 2 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) $(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t }} \mathrm{RC}$ | 130 |  | 150 |  | 180 |  | ns |  |
| READ-WRITE cycle time | trwC | 185 |  | 205 |  | 220 |  | ns |  |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 45 |  | 55 |  | ns | 31 |
| FAST-PAGE-MODE READ-WRITE cycle time | tPRWC | 95 |  | 100 |  | 115 |  | ns | 31 |
| Access time from $\overline{\mathrm{RAS}}$ | trac |  | 70 |  | 80 |  | 100 | ns | 14 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ AC |  | 20 |  | 20 |  | 25 | ns | 15, 29 |
| Output Enable | ${ }^{\text {t }} \mathrm{OE}$ |  | 20 |  | 20 |  | 25 | ns | 33 |
| Access time from column address | ${ }^{\text {t }}$ AA |  | 35 |  | 40 |  | 50 | ns |  |
| Access time from CAS precharge | ${ }^{\text {t }} \mathrm{CPA}$ |  | 40 |  | 45 |  | 50 | ns | 29 |
| $\overline{\text { RAS }}$ pulse width | tRAS | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| RAS pulse width (FAST PAGE MODE) | ${ }^{\text {tRASP }}$ | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| RAS hold time | ${ }^{\text {tR S. }}$ + | 20 |  | 20 |  | 25 |  | ns | 27 |
| RAS precharge time | trP | 50 |  | 60 |  | 70 |  | ns |  |
| CAS pulse width | ${ }^{\text {t }}$ cAS | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns | 34 |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 70 |  | 80 |  | 100 |  | ns | 28 |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 15 |  | ns | 16,32 |
| CAS precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns | 32 |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time | ${ }^{\text {tRCD }}$ | 20 | 50 | 20 | 60 | 25 | 75 | ns | 17, 27 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns | 28 |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {traH }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {trab }}$ | 15 | 35 | 15 | 40 | 20 | 50 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns | 27 |
| Column address hold time | ${ }^{t} \mathrm{CAH}$ | 15 |  | 15 |  | 20 |  | ns | 27 |
| Column address hold time (referenced to RAS) | ${ }^{t} A R$ | 55 |  | 60 |  | 70 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {traL }}$ | 35 |  | 40 |  | 50 |  | ns |  |
| Read command setup time | ${ }^{\text {tr }}$ RCS | 0 |  | 0 |  | 0 |  | ns | 27 |
| Read command hold time (referenced to CAS) | ${ }^{\text {t }} \mathrm{RCH}$ | 0 |  | 0 |  | 0 |  | ns | 19, 28 |
| Read command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | trRH | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t }} \mathrm{CL} \mathrm{Z}$ | 0 |  | 0 |  | 0 |  | ns | 29 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Output buffer turn-off delay | ${ }^{\text {toFF }}$ | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20, 29, 38 |
| Output disable | ${ }^{\text {tob }}$ |  | 20 |  | 20 |  | 20 | ns | 34, 38 |
| $\overline{\text { WE command setup time }}$ | ${ }^{\text {th}}$ WCS | 0 |  | 0 |  | 0 |  | ns | 21, 27 |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | ns | 36 |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {tWCR }}$ | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {tr WWL }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to CAS lead time | ${ }^{\text {t }} \mathrm{CWL}$ | 20 |  | 20 |  | 25 |  | ns | 28 |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 22, 29 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 15 |  | 15 |  | 20 |  | ns | 22, 29 |
| Data-in hold time (referenced to $\overline{\text { RAS }}$ ) | ${ }^{\text {t }}$ DHR | 55 |  | 60 |  | 75 |  | ns |  |
| $\overline{\text { RAS to } \overline{W E} \text { delay time }}$ | ${ }^{\text {tr }}$, ${ }^{\text {d }}$ | 100 |  | 110 |  | 130 |  | ns | 21 |
| Column address to $\overline{W E}$ delay time | ${ }^{\text {t}}$ AWD | 65 |  | 70 |  | 80 |  | ns | 21 |
| $\overline{\text { CAS }}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | 50 |  | 55 |  | 60 |  | ns | 21, 27 |
| Transition time (rise or fall) | ${ }^{\text {T }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9, 10 |
| Refresh period (512 cycles) | ${ }^{\text {treF }}$ |  | 16 |  | 16 |  | 16 | ms |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {tRPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| CAS setup time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t CSR }}$ | 10 |  | 10 |  | 10 |  | ns | 5,27 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE- $\overline{R A S}$ refresh) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5, 28 |
| Last $\overline{\text { CAS }}$ going LOW to first $\overline{\text { CAS }}$ to return HIGH | ${ }^{\text {t }} \mathrm{CLCH}$ | 10 |  | 10 |  | 10 |  | ns | 30 |
| $\overline{\overline{O E}}$ hold time from $\overline{\mathrm{WE}}$ during READ-MODIFY-WRITE cycle | ${ }^{\text {toEH }}$ | 20 |  | 20 |  | 20 |  | ns | 37 |
| $\overline{\overline{O E}}$ setup prior to $\overline{\mathrm{RAS}}$ during HIDDEN refresh cycle | torD | 0 |  | 0 |  | 0 |  | ns |  |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=I^{\mathrm{dt}} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{VcC}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
7. An initial $100 \mu \mathrm{~s}$ pause is required after power-up followed by eight $\overline{\text { RAS }}$ refresh cycles ( $\overline{\text { RAS-ONLY or CBR }}$ ) before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5$ ns.
9. $\mathrm{VIH}_{\mathrm{IH}}(\mathrm{MIN})$ and $\mathrm{V}_{\mathrm{IL}}(\mathrm{MAX})$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{I H}$ and $V_{\text {IL }}$ (or between $\mathrm{V}_{\text {IL }}$ and $\mathrm{V}_{\text {IH }}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between Vif and Vil (or between $\mathrm{V}_{\mathrm{IL}}$ and $\mathrm{V}_{\mathrm{H}}$ ) in a monotonic manner.
11. If $\overline{C A S x}=V_{I H}$, data output ( Qx ) is high impedance.
12. If $\overline{C A S x}=V_{\text {IL, }}, \mathrm{Qx}$ may contain data from the last valid READ cycle.
13. Measured with a load equivalent to 2 TTL gates and 100 pF .
14. Assumes that ${ }^{\mathrm{T}} \mathrm{RCD}<^{\mathrm{t}} \mathrm{RCD}(\mathrm{MAX})$. If $\mathrm{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{\mathrm{t} R A C}$ will increase by the amount that RCD exceeds the value shown.
15. Assumes that $\mathrm{RCD} \geq^{\mathrm{t} R C D}$ (MAX).
16. If at least one $\overline{C A S}$ is $L O W$ at the falling edge of $\overline{R A S}, Q$ will be maintained from the previous cycle. To initiate a new cycle and clear the Qbuffer, all four $\overline{C A S}$ controls must be pulsed HIGH for ${ }^{\text {t }}$ CPN.
17. Operation within the ${ }^{\text {t }} \mathrm{RCD}$ (MAX) limit ensures that ${ }^{\mathrm{t} R A C}$ (MAX) can be met. ${ }^{\text {tRCD }}$ (MAX) is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the specified ${ }^{\mathrm{t}} \mathrm{RCD}$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} \mathrm{CAC}$.
18. Operation within the ${ }^{t} R A D$ (MAX) limit ensures that ${ }^{\mathrm{t}} \mathrm{RCD}$ (MAX) can be met. ${ }^{\mathrm{t} R A D}(\mathrm{MAX})$ is specified as a reference point only; if RAD is greater than the specified ${ }^{\text {t }}$ RAD (max) limit, then access time is controlled exclusively by ${ }^{\mathrm{t}} \mathrm{AA}$.
19. Either ${ }^{\mathrm{t} R C H}$ or ${ }^{\mathrm{t} R \mathrm{RH}}$ must be satisfied for a READ cycle.
20. ${ }^{\text {t OFF }}$ (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voн or Vol.
21. ${ }^{\mathrm{t}} \mathrm{WCS},{ }^{\mathrm{t}} \mathrm{RWD},{ }^{\mathrm{t}} \mathrm{AWD}$ and ${ }^{\mathrm{t}} \mathrm{C} W \mathrm{D}$ are restrictive operating parameters in EARLY-WRITE and READ-WRITE cycles only. If ${ }^{\dagger} W C S \geq^{\dagger} W C S(\mathrm{~min})$, the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ${ }^{\mathrm{R}} \mathrm{RWD} \geq^{\mathrm{t}} \mathrm{RWD}$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq^{\mathrm{t}} \mathrm{AWD}$ (MIN) and ${ }^{\mathrm{t}} \mathrm{CWD} \geq^{\mathrm{t}} \mathrm{CWD}$ (MIN), the cycle is a READ-WRITE cycle, and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. $\overline{\mathrm{OE}}$ held HIGH and $\overline{\mathrm{WE}}$ taken LOW after $\overline{\mathrm{CAS}}$ goes LOW results in a LATE-WRITE ( $\overline{\mathrm{OE}}$ controlled) cycle. (at access time and until $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{OE}}$ goes back to $\mathrm{V}_{\mathrm{IH}}$ )
22. These parameters are referenced to $\overline{\mathrm{CASx}}$ leading edge in early WRITE cycles and $\overline{\mathrm{WE}}$ leading edge in late WRITE or READ-WRITE cycles.
23. If $\overline{O E}$ is tied permanently LOW, READ-WRITE or READ-MODIFY-WRITE operations are not possible.
24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$ and $\overline{\mathrm{OE}}=\mathrm{HIGH}$.
25. OnetothreeCAScontrolsmaybeHIGHthroughoutanygiven $\overline{\text { CAS }}$ cycle, even though the timing waveforms show all CAS controls going LOW. If any one does go LOW, it must meet all the timing requirements listed or the data for that I/O buffer may be invalid. At least one of the four $\overline{\mathrm{CAS}}$ controls must be LOW for a valid CAS cycle to occur.
26. All other inputs at $\mathrm{Vcc}-0.2 \mathrm{~V}$.
27. The first $\overline{C A S x}$ edge to transition LOW.
28. The last CASx edge to transition HIGH.
29. Output parameter ( DQx ) is referenced to corresponding CASx input; DQ1 by CAS1, DQ2 by CAS2, etc.
30. Last falling $\overline{C A S x}$ edge to first rising $\overline{\mathrm{CASx}}$ edge.
31. Last rising $\overline{\mathrm{CASx}}$ edge to next cycle's last rising $\overline{\mathrm{CASx}}$ edge.
32. Last rising CASx edge to first falling $\overline{\mathrm{CAS}}$ edge.
33. First DQx controlled by the first $\overline{C A S x}$ to go LOW.
34. Last DQx controlled by the last $\overline{\mathrm{CASx}}$ to go HIGH.
35. Each $\overline{C A S x}$ must meet minimum pulse width.
36. Last CASx to go LOW.
37. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ${ }^{\text {tOD }}$ and ${ }^{\text {tOEH }}$ met ( $\overline{\mathrm{OE}}$ HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if $\overline{\mathrm{CAS}}$ remains LOW and $\overline{\mathrm{OE}}$ is taken back LOW after ${ }^{\text {t }}$ OEH is met. If the last $\overline{\text { CASx }}$ goes HIGH prior to $\overline{\mathrm{OE}}$ going back LOW, the DQ s will remain open.
38. The DQs open during READ cycles once ${ }^{\text {t }}$ OD or ${ }^{\text {tOFF }}$ occur. If the last $\overline{\mathrm{CASx}}$ goes HIGH first, $\overline{\mathrm{OE}}$ becomes a don't care. If $\overline{\mathrm{OE}}$ goes HIGH and $\overline{\mathrm{CASx}}$ stays $\mathrm{LOW}, \overline{\mathrm{OE}}$ is not a don't care; and the DQs will provide the previously read data if $\overline{\mathrm{OE}}$ is taken back LOW (while $\overline{\mathrm{CAS} x}$ remains LOW).

READ CYCLE


EARLY-WRITE CYCLE


READ-WRITE CYCLE
(LATE-WRITE and READ-MODIFY-WRITE CYCLES)


FAST-PAGE-MODE READ CYCLE


FAST PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)


## RAS-ONLY REFRESH CYCLE

(ADDR $=\mathrm{A}_{0}-\mathrm{A}_{8} ; \overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}=$ DON'T CARE $)$


CAS-BEFORE-RAS REFRESH CYCLE ( $\mathrm{A}_{0}-\mathrm{A}_{8}, \overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}=\mathrm{DON}$ 'T CARE $)$


OIO Yơo OPEN

## HIDDEN REFRESH CYCLE

$(\overline{\mathrm{WE}}=\mathrm{HIGH}, \overline{\mathrm{OE}}=\mathrm{LOW})^{24}$


## QUAD CAS MODULE UPGRADE

The MT4C4004 (Quad CAS DRAM) was developed to supersede the 1 Meg DRAMs used in the current 1 Meg and 2 Meg x36DRAM modules and to add leading-edgeCMOS performance. The MT4C4004 is a 1 Meg x 4 CMOS FAST-PAGE-MODEDRAM with four $\overline{C A S}$ input controls. The four individual $\overline{\mathrm{CAS}}$ inputs allow each I/O buffer (DQ) to be separately controlled, just as if there were four separate 1 Meg x 1 DRAMs. Most 1 Meg x 1 DRAMs use older CMOS technology and do not have the access speeds of the newer CMOS $4 \mathrm{Meg}(1 \mathrm{Meg} \times 4)$.

The MT4C4004 will reduce chip count on a x36 module; improving reliability, reducing power consumption and
lowering cost. The 1 Meg x 36 will have four 1 Meg x 1 DRAMs replaced by either one or two Quad CAS DRAMs, depending on whether RAS0 and $\overline{\text { RAS1 must be separate or }}$ can be connected together. The 2 Meg $\times 36$ will have eight 1 Meg x 1 DRAMs replaced by either two or four Quad CAS DRAMs, depending on whether $\overline{\text { RAS0 }}, \overline{\text { RAS1 }}, \overline{\mathrm{RAS} 2}$, and $\overline{\text { RAS3 }}$ must be split or can be connected together.

The current 1 Meg x 36 DRAM Module is shown with $256 \mathrm{~K} \times 1$ DRAMs in Figure 1 below. Figures 2 and 3 show how the same module will be realized with the Quad CAS DRAM for both the split $\overline{\text { RAS }}$ (Figure 2) and the common $\overline{\mathrm{RAS}}$ (Figure 3) modules.


U1, U2, U4, U5, U7, U8, U10, U11 = MT4C4256DJ
U3, U6, U9, U12 = MT1259EJ

Figure 1
1 MEG x 36 WITH 1 MEG x 1 FOR PARITY BIT

## QUAD CAS ENHANCED x36 MODULES



U1, U2, U4, U5, U6, U7, U8, U9 = MT4C4256DJ $\mathrm{U} 3=$ MT4C4259E $J$

Figure 2
1 MEG x 36 WITH QUAD CAS FOR PARITY BIT AND SPLIT RAS CONTROL

## QUAD CAS ENHANCED x36 MODULES



U1, U2, U4-U9 = MT4C4256DJ
U3 = MT4C4259EJ

Figure 3
1 MEG x 36 WITH QUAD CAS FOR PARITY BIT AND COMMON RAS CONTROL

## DRAM

## 1 MEG x 4 DRAM

FAST PAGE MODE, WRITE-PER-BIT

## FEATURES

- Industry standard $x 4$ pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 3 mW standby; 225 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 1024-cycle refresh distributed across 16 ms
- Refresh modes: $\overline{\mathrm{RAS}}-\mathrm{ONLY}, \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}(\mathrm{CBR})$, and HIDDEN
- WRITE-PER-BIT access cycle (nonpersistent)
- 300 and 350 mil wide SOJ packages
- Two CBR options: CBR with $\overline{W E}$ a don't care (1 Meg compatible) and CBR with $\overline{\mathrm{WE}}$ a HIGH (JEDEC test mode capable via WCBR)


## OPTIONS

- Timing

60 ns access
70 ns access
-6
80ns access
$-7$
$-8$

- Packages

Ceramic DIP (400mil)
Plastic ZIP (350mil)
Plastic SOJ (300mil) Plastic SOJ (350mil) Plastic TSOP (*)

- $\overline{\text { CAS-BEFORE- }} \overline{\text { RAS }}$ refresh CBR with $\overline{W E}$ a don't care CBR with $\overline{\mathrm{WE}}$ a HIGH
- Operating Temperature, $\mathrm{T}_{\mathrm{A}}$

Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

C Z

## MARKING

 C Z DJ DJW TG

None J

None IT

## GENERAL DESCRIPTION

TheMT4C4005is a randomlyaccessed solid-statememory containing 4,194,304 bits organized in a $\times 4$ configuration. During READ or WRITE cycles each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. $\overline{\mathrm{RAS}}$ is used to latch the first 10 bits and $\overline{\text { CAS }}$ the latter 10 bits. A READ or WRITE cycle is selected with the $\overline{W E}$ input. A logic HIGH on $\overline{W E}$ dictates READ mode whilealogic LOW onWE dictatesWRITE mode. During a WRITE cycle, data in (D) is latched by the falling

## PIN ASSIGNMENT (Top View)

20-Pin CDIP
(B-5)

| DQ14.020 $\mathrm{V}_{\text {ss }}$ |  |
| :---: | :---: |
| DQ2 2 | 19 DQ4 |
| WEL3 | $18 \mathrm{DQ3}$ |
| RAS ${ }^{\text {d }}$ | 17 CAS |
| A9 55 | $16 \square \overline{O E}$ |
| A0. 6 | 15 A8 |
| A1 47 | 14 A7 |
| A2[8 | 13 A6 |
| А3 ${ }^{\text {9 }}$ | ${ }_{12}{ }^{\text {A }}$ |
| Vcc 410 | $11 . \mathrm{A} 4$ |

20-Pin SOJ
(E-1, E-2)

*Consult factory on availability of TSOP packages
edge of $\overline{W E}$ or $\overline{\mathrm{CAS}}$, whichever occurs last. If $\overline{\mathrm{WE}}$ goes LOW prior to $\overline{\mathrm{CAS}}$ going LOW, the output pin(s) remain open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle. If $\overline{\mathrm{WE}}$ goes LOW after data reaches the output pin(s), data out $(Q)$ is activated and retains the selected cell data as long as $\overline{\mathrm{CAS}}$ remains low (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}}$ ). This late $\overline{\mathrm{WE}}$ pulse results in a READ-WRITE cycle. The four data inputs and four data outputs are routed through four pins using common I/O, and pin direction is controlled by $\overline{W E}$ and $\overline{O E}$. The WRITE-PER-BIT feature allows the user to define WRITE MASK during a WRITE cycle when RAS goes LOW, depending on the state of $\overline{W E}$.

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\text { RAS }}$ followed by a column address strobedin by $\overline{\mathrm{CAS}} \overline{\mathrm{CAS}}$ may be toggled-in by holding $\overline{\mathrm{RAS}} \mathrm{LOW}$ and strobing-in different column addresses, thusexecuting faster memory cycles. Returning $\overline{\text { RAS }} \mathrm{HIGH}$ terminates the FAST PAGE MODE operation.

Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycleduring the $\overline{\mathrm{RAS}}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS cycle }}$ (READ, WRITE, $\overline{R A S}-O N L Y, \overline{\mathrm{CA}} \overline{\mathrm{S}}$-BEFORE- $\overline{\mathrm{RAS}}$, or HIDDEN refresh) so that all 1024 combinations of $\overline{\text { RAS }}$ addresses (A0-A9) are executed at least every 16 ms , regardless of sequence. The CBR refresh cycle will invoke the internal refresh counter for automatic $\overline{\mathrm{RAS}}$ addressing.

FUNCTIONAL BLOCK DIAGRAM
FAST PAGE MODE

*NOTE: $\overline{\text { WE }}$ LOW prior to $\overline{\text { CAS }}$ LOW, EW detection CKT output is a HIGH (EARLY WRITE) $\overline{\text { CAS }}$ LOW prior to WE LOW, EW detection CKT output is a LOW (LATE WRITE)

## TRUTH TABLE

| Function |  | RĀS | CAS | WE | Addresses |  | ठE | DATA IN / OUT | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {tR }}$ |  |  | ${ }^{t} \mathrm{C}$ | DQ1-4 |  |  |
| Standby |  |  | H | X | X | X | X | X | High-Z |  |
| READ |  | L | L | H | ROW | COL | L | Valid Data Out |  |
| EARLY-WRITE |  | L | L | L | ROW | COL | X | Valid Data In | 1 |
| READ-WRITE |  | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | $L \rightarrow H$ | Valid Data Out, Data In | 1 |
| FAST-PAGE-MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | ROW | COL | L | Valid Data Out |  |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | n/a | COL | L | Valid Data Out |  |
| FAST-PAGE-MODE EARLY-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | ROW | COL | X | Valid Data In | 1 |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | n/a | COL | X | Valid Data In | 1 |
| FAST-PAGE-MODE READ-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | L $\rightarrow$ H | Valid Data Out, Data In | 1 |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | n/a | COL | $L \rightarrow H$ | Valid Data Out, Data In | 1 |
| RAS-ONLY REFRESH |  | H | X | X | ROW | n/a | X | High-Z |  |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | L | Valid Data Out |  |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | X | Valid Data In | 1 |
| CAS-BEFORERAS REFRESH | Standard | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | X | High-Z |  |
|  | "J" Option | $\mathrm{H} \rightarrow \mathrm{L}$ | L | H | X | X | X | High-Z |  |

NOTE: 1. Data-in will be dependent on the mask provided. Refer to Figure 1.
ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc supply relative to Vss-1.0 V to +7.0 V
Storage Temperature (Ceramic) ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation .....  1 W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at theseor any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS <br> (Notes: 1, 3, 4, 6, 7) (Vcc $=5.0 \mathrm{~V} \pm 10 \%)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -1.0 | 0.8 | $\checkmark$ | 1 |
| INPUT LEAKAGE CURRENT any input ( $0 \mathrm{~V} \leq \mathrm{VIN} \leq 6.5 \mathrm{~V}$, all other pins not under test $=0 \mathrm{~V}$ ) | 1 | -2 | 2 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( Q is disabled, $0 \mathrm{~V} \leq$ Vout $\leq 5.5 \mathrm{~V}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS | Vor | 2.4 |  | V |  |
| Output High Voltage (lout $=-5 \mathrm{~mA}$ ) <br> Output Low Voltage (lout $=4.2 \mathrm{~mA}$ ) | Vol |  | 0.4 | V |  |


|  | SYMBOL | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION |  | -6 | -7 | -8 | UNITS | NOTES |
| STANDBY CURRENT: (TTL) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}(H)$ | IcC1 | 2 | 2 | 2 | mA |  |
| STANDBY CURRENT: (CMOS) ( $\overline{\text { RAS }}=\overline{\mathrm{CAS}}=$ Other Inputs $=\mathrm{Vcc}-0.2 \mathrm{~V}$ ) | Icc2 | 1 | 1 | 1 | mA |  |
| OPERATING CURRENT: Random READ/WRITE Average power supply current ( $\overline{\text { RAS }}, \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\text {tRC }}={ }^{\text {tRC }}$ (MIN)) | Icc3 | 110 | 100 | 90 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE <br> Average power supply current <br> ( $\overline{\text { RAS }}=$ VIL, $\overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}$ (MIN)) | Icc4 | 80 | 70 | 60 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY <br> Average power supply current ( $\overline{\text { RAS }}$ Cycling, $\overline{\mathrm{CAS}}=\mathrm{VIH}^{\mathrm{t}}{ }^{\mathrm{R} C}={ }^{\mathrm{t}} \mathrm{RC}$ (MIN)) | Icc5 | 110 | 100 | 90 | mA | 3 |
| REFRESH CURRENT: $\overline{\text { CAS }}$-BEFORE-RAS <br> Average power supply current <br> ( $\overline{R A S}, \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\text {tRC }}={ }^{\mathrm{t} R C}($ MIN $)$ ) | Icc6 | 110 | 100 | 90 | mA | 3, 5 |

## MASKED WRITE ACCESS CYCLE

Every WRITE access cycle can be a MASKED WRITE, depending on the state of $\overline{\mathrm{WE}}$ at $\overline{\mathrm{RAS}}$ time. A MASKED WRITE is selected when $\overline{W E}$ is LOW at $\overline{\text { RAS }}$ time and mask data is supplied on the DQ pins.
The mask data presenton the DQ1-DQ4 inputs at $\overline{\mathrm{RAS}}$ time will be written to an internal mask data register and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic " 0 ") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic
" 1 ") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At $\overline{\mathrm{CAS}}$ time, the bits present on the DQ1-DQ4 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).
For nonpersistent MASK WRITEs, new mask data must be supplied each time a MASKED WRITE cycle is initiated.
Figure 1 illustrates the MT4C4005 MASKED WRITE operation (Note: $\overline{\mathrm{RAS}}$ or $\overline{\mathrm{CAS}}$ time refers to the time at which $\overline{\text { RAS }}$ or $\overline{\text { CAS }}$ transition from HIGH to LOW).


Figure 1
MT4C4005 MASKED WRITE EXAMPLE

## MT4C4005

CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: $\mathrm{AO}-\mathrm{A} 10$ | $\mathrm{Cl}_{1}$ |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}, \overline{\mathrm{OE}}}$ | $\mathrm{Cl}_{12}$ |  | 7 | pF | 2 |
| Input/Output Capacitance: DQ | ClO |  | 7 | pF | 2 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -6 |  | -7 |  | -8 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {tRC }}$ | 110 |  | 130 |  | 150 |  | ns |  |
| READ-WRITE cycle time | trwC | 165 |  | 185 |  | 205 |  | ns |  |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 40 |  | 45 |  | ns |  |
| FAST-PAGE-MODE READ-WRITE cycle time | ${ }^{\text {tPRWC }}$ | 90 |  | 95 |  | 100 |  | ns |  |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {t } R A C ~}$ |  | 60 |  | 70 |  | 80 | ns | 14 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ CAC |  | 15 |  | 20 |  | 20 | ns | 15 |
| Access time from column address | ${ }^{\text {t }}$ A |  | 30 |  | 35 |  | 40 | ns |  |
| Access time from CAS precharge | ${ }^{\text {t }}$ CPA |  | 40 |  | 40 |  | 45 | ns |  |
| $\overline{\text { RAS }}$ pulse width | tRAS | 60 | 100,000 | 70 | 100,000 | 80 | 100,000 | ns |  |
| RAS pulse width (FAST PAGE MODE) | tRASP | 60 | 100,000 | 70 | 100,000 | 80 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {tRSH }}$ | 15 |  | 20 |  | 20 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | trP | 45 |  | 50 |  | 60 |  | ns |  |
| $\overline{\text { CAS pulse width }}$ | ${ }^{\text {t }}$ CAS | 15 | 100,000 | 20 | 100,000 | 20 | 100,000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 60 |  | 70 |  | 80 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }} \mathrm{CPN}$ | 10 |  | 10 |  | 10 |  | ns | 16 |
| $\overline{\text { CAS }}$ precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to CAS delay time | ${ }^{\text {tr }}$ RCD | 15 | 45 | 20 | 50 | 20 | 60 | ns | 17 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {tRAH }}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {tRAD }}$ | 15 | 30 | 15 | 35 | 15 | 40 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 10 |  | 15 |  | 15 |  | ns |  |
| Column address hold time (referenced to RAS) | ${ }^{\text {t AR }}$ | 50 |  | 55 |  | 60 |  | ns |  |
| Column address to RAS lead time | trAL | 30 |  | 35 |  | 40 |  | ns |  |
| Read command setup time | ${ }^{\text {tr }}$ RCS | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to $\overline{\mathrm{CAS}}$ ) | ${ }^{\text {tr }} \mathrm{CH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to RAS) | ${ }^{\text {tRRH }}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t }}$ CLZ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | toff | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20 |
| $\overline{\text { WE }}$ command setup time | tWCS | 0 |  | 0 |  | 0 |  | ns | 21, 27 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -6 |  | -7 |  | -8 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Write command hold time | ${ }^{\text {t }}$ WCH | 10 |  | 15 |  | 15 |  | ns |  |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }} \mathrm{WCR}$ | 45 |  | 55 |  | 60 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 10 |  | 15 |  | 15 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {tr }}$ WL | 15 |  | 20 |  | 20 |  | ns |  |
| Write command to CAS lead time | ${ }^{\text {t }}$ CWL | 15 |  | 20 |  | 20 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ D | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }}$ DH | 10 |  | 15 |  | 15 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\text { RAS }})$ | ${ }^{\text {t }}$ DHR | 45 |  | 55 |  | 60 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { WE }}$ delay time | ${ }^{\text {t }}$ WWD | 90 |  | 100 |  | 110 |  | ns | 21 |
| Column address to WE delay time | ${ }^{\text {t }}$ AWD | 60 |  | 65 |  | 70 |  | ns | 21 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | 45 |  | 50 |  | 50 |  | ns | 21 |
| Transition time (rise or fall) | ${ }^{\text {T }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period (1024 cycles) | ${ }^{\text {tREF }}$ |  | 16 |  | 16 |  | 16 | ms |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {tRPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| CAS setup time (CAS-BEFORE- $\overline{\text { RAS }}$ refresh) | ${ }^{\text {t CPSR }}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE-RAS refresh) | ${ }^{\mathrm{t}} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5 |
| WE hold time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }}$ WRH | 10 |  | 10 |  | 10 |  | ns | 25 |
| WE setup time (CAS-BEFORE- $\overline{\text { RAS }}$ refresh) | tWRP | 10 |  | 10 |  | 10 |  | ns | 25 |
| WE hold time (WCBR test cycle) | ${ }^{\text {t }}$ WTH | 10 |  | 10 |  | 10 |  | ns | 25 |
| $\overline{\text { WE setup time }}$ (WCBR test cycle) | ${ }^{\text {t WTS }}$ | 10 |  | 10 |  | 10 |  | ns | 25 |
| $\overline{\mathrm{OE}}$ setup prior to RAS during HIDDEN REFRESH cycle | ${ }^{\text {tor }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output disable | ${ }^{\text {t }} \mathrm{OD}$ | 15 |  | 20 |  | 20 |  | ns | 27 |
| Output enable | ${ }^{\text {t }} \mathrm{OE}$ | 15 |  | 20 |  | 20 |  | ns | 23 |
| $\overline{\mathrm{OE}}$ hold time from $\overline{\mathrm{WE}}$ during READ-MODIFY-WRITE cycle | ${ }^{\text {toEH }}$ | 15 |  | 20 |  | 20 |  | ns | 26 |
| WRITE-PER-BIT setup time | tWBS | 0 |  | 0 |  | 0 |  | ns |  |
| WRITE-PER-BIT hold time | tWBH | 10 |  | 10 |  | 10 |  | ns |  |
| WRITE-PER-BIT mask setup time | tWDS | 0 |  | 0 |  | 0 |  | ns |  |
| WRITE-PER-BIT mask hold time | ${ }^{\text {tWDH }}$ | 10 |  | 10 |  | 10 |  | ns |  |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=I{ }^{\mathrm{dt}} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{VCC}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
7. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by eight $\overline{\text { RAS }}$ refresh cycles ( $\overline{\text { RAS-ONLY or }}$ CBR with $\overline{W E}$ HIGH) before proper device operation is assured. The eight $\overline{\mathrm{RAS}}$ cycle wake-up should be repeated any time the 16 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between $V_{\text {IH }}$ and ViL (or between VIL and $V_{I H}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $V_{I H}$ and $V_{\text {IL }}$ (or between $V_{\text {IL }}$ and $V_{I H}$ ) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\text {IL }}$, data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to 2 TTL gates and 100 pF .
14. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t} R A C$ will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{t} R C D \geq{ }^{t} R C D$ (MAX).
16. If $\overline{C A S}$ is LOW at the falling edge of $\overline{R A S}, Q$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{t} \mathrm{CPN}$.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{t} R C D$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} \mathrm{CAC}$.
18. Operation within the tRAD (MAX) limit ensures that ${ }^{t} R C D$ (MAX) can be met. ${ }^{t} R A D$ (MAX) is specified as a reference point only; if ${ }^{t} R A D$ is greater than the
specified ${ }^{t} R A D$ (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t}} \mathrm{AA}$.
19. Either ${ }^{t} \mathrm{RCH}$ or ${ }^{t}$ RRH must be satisfied for a READ cycle.
20. ${ }^{\text {t OFF }}$ (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
21. ${ }^{t} W C S,{ }^{t} R W D,{ }^{t} A W D$ and ${ }^{t} C W D$ are restrictive operating parameters in late WRITE, and READ-MODIFY-WRITE cycles only. If ${ }^{\mathrm{t}} \mathrm{WCS} \geq^{\mathrm{t}} \mathrm{WCS}$ (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit through out the entire cycle. If ${ }^{t} R W D \geq{ }^{t} R W D$ (MIN), ${ }^{t} A W D \geq{ }^{t} A W D$ (MIN) and ${ }^{t} C W D \geq{ }^{t} C W D$ (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. $\overline{\mathrm{OE}}$ held HIGH and $\overline{\mathrm{WE}}$ taken LOW after $\overline{\mathrm{CAS}}$ goes LOW results in a LATE-WRITE ( $\overline{\mathrm{OE}}$ controlled) cycle.
22. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles and $\overline{W E}$ leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
23. If $\overline{\mathrm{OE}}$ is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$ and $\overline{\mathrm{OE}}=\mathrm{HIGH}$.
25. 'WTS and 'WTH are setup and hold specifications for the $\overline{W E}$ pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of ${ }^{\text {t}}$ WRP and ${ }^{\text {tWRH }}$ in the CBR refresh cycle.
26. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ${ }^{t} \mathrm{OD}$ and ${ }^{\mathrm{t}} \mathrm{OEH}$ met $\overline{\mathrm{OE}}$ HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if $\overline{\text { CAS }}$ remains LOW and $\overline{\mathrm{OE}}$ is taken back LOW after ${ }^{\text {t }} \mathrm{OEH}$ is met. If $\overline{\mathrm{CAS}}$ goes HIGH prior to $\overline{\mathrm{OE}}$ going back LOW, the DQs will remain open.
27. The DQs open during READ cycles once ${ }^{t} O D$ or ${ }^{t} O F F$ occur. If $\overline{\mathrm{CAS}}$ goes HIGH first, $\overline{\mathrm{OE}}$ becomes a don't care. If $\overline{\mathrm{OE}}$ goes HIGH and $\overline{\mathrm{CAS}}$ stays LOW, $\overline{\mathrm{OE}}$ is not a don't care; and the DQs will provide the previously read data if $\overline{\mathrm{OE}}$ is taken back LOW (while $\overline{\mathrm{CAS}}$ remains LOW).

## READ CYCLE



EARLY-WRITE CYCLE


## READ-WRITE CYCLE <br> (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)


RAS-ONLY REFRESH CYCLE (ADDR $=\mathrm{A}_{0}-\mathrm{A}_{9} ; \overline{\mathrm{WE}}=$ DON'T CARE)


## CAS-BEFORE- $\overline{R A S}$ REFRESH CYCLE

( $\mathrm{A}_{0}-\mathrm{A}_{9}$, and $\overline{\mathrm{OE}}=$ DON'T CARE)


HIDDEN REFRESH CYCLE
$(\overline{W E}=\mathrm{HIGH} ; \overline{\mathrm{OE}}=\mathrm{LOW})^{24}$


## 4 MEG POWER-UP AND REFRESH CONSTRAINTS

The JEDEC 4 Meg DRAM introduces two potential incompatibilities compared to the previous generation 1 Meg DRAM. The incompatibilities involve refresh and powerup. Understanding these incompatibilities and providing for them will offer the designer and system user greater compatibility between the 1 Meg and 4 Meg .

## REFRESH

The most commonly used refresh mode of the 1 Meg is the CBR ( $\overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}})$ REFRESH cycle. The CBR for the 1 Meg specifies the $\overline{\mathrm{WE}}$ pin as a don't care. The 4 Meg , on the other hand, specifies the CBR REFRESH mode to be a $\bar{W} C B R$, which is CBR with the $\overline{W E}$ pin held at a logical HIGH level.

The reason for $\bar{W} C B R$ instead of CBR on the 4 Meg is that a CBR cycle with $\overline{W E}$ LOW will put the 4 Meg into the JEDEC specified test mode ( $\bar{W} C B R$ ). In contrast, the 1 Meg test mode is entered by applying a HIGH signal to the test pin (pin 4 on DIP, pin 5 on SOJ and pin 8 on ZIP). This HIGH signal is usually a "supervoltage" ( V in $\geq 7.5 \mathrm{~V}$ ) so normal TTL or CMOS HIGH levels will not cause the part to enter the test mode.

## POWER-UP

The $4 \mathrm{Meg} \overline{\mathrm{W}} C B R$ constraint may also introduce another problem. The 1 Meg POWER-UP cyclerequires a $100 \mu$ sdelay foilowed by any $8 \overline{\mathrm{RA} A}$ cycles. The 4 Meg POWER-UP is more restrictive in that $8 \overline{\mathrm{RAS}}$-ONLY or CBR REFRESH ( $\overline{\mathrm{WE}}$ held HIGH) cycles must be used. The restriction is needed since the 4 Meg may power-up in the JEDEC specified test mode
and must exit out of the test mode. The only way to exit the 4 Meg JEDEC test mode is with either a $\overline{\text { RAS-ONLY or a }}$ $\bar{W} C B R$ REFRESH cycle.

## SUMMARY

1. The optional 1 Meg test pin is the A 10 pin on the 4 Meg (x1 only).
2. For optional test mode, the 1 Meg requires a valid HIGH on the test pin while the 4 Meg requires a CBR cycle with $\overline{W E}$ LOW.
3. The 1 Meg CBR REFRESH allows the $\overline{W E}$ pin to be don't care while the 4 Meg CBR requires $\overline{\mathrm{WE}}$ to be HIGH ( $\bar{W} C B R$ ).
4. The $8 \overline{\mathrm{RAS}}$ wake-up cycles on the 1 Meg may be any valid $\overline{\mathrm{RAS}}$ cycle while the 4 Meg may only use $\overline{\mathrm{RAS}}-\mathrm{ONLY}$ or $\bar{W} C B R$ REFRESH cycles.

## SPECIAL FEATURE

Amemory system currentlyusing 1MegDRAMswith $\overline{W E}$ as a don't care during CBR REFRESH does not allow for direct upgrading to 4 Meg DRAMs. Micron, realizing some companies will have this situation, provides a special feature on its 4 Meg DRAM, that requires "supervoltage" to access the 4 Meg JEDEC WCBR test function. This allows the Micron 4 Meg DRAM to be refreshed in the same manner as any 1 MEG DRAM. Note that the eight power-up cycles should only be refresh cycles in order to guarantee that any 4 Meg DRAM, including Micron's, does not inadvertently powerup in the test mode.


COMPARISON OF 4 MEG TEST MODE AND W̄CBR TO 1 MEG CBR

## DRAM

## 4 MEG x 4 DRAM

$$
\begin{array}{ll}
\text { FAST PAGE MODE: } & \text { MT4C40004 } \\
\text { STATIC COLUMN: } & \text { MT4C40005 }
\end{array}
$$

## FEATURES

- Industry standard $\times 4$ pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single power supply : $+5 \mathrm{~V} \pm 10 \%$ or $+3.3 \mathrm{~V} \pm 10 \%$
- Low power, 5 mW standby; 250 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Refresh modes: $\overline{\text { RAS-ONLY, }} \overline{\mathrm{CAS}}$-BEFORE-RAS (CBR), and HIDDEN
- 2048 -cycle refresh distributed across 32 ms or 4096-cycle refresh distributed across 64 ms


## OPTIONS

- Timing

50ns access -5
60 ns access -6
70ns access -7
80ns access -8

- Packages

Plastic ZIP (475mil) Z
Plastic SOJ (400mil) DJ
Plastic TSOP (*) TG

- Refresh Period

2048 cycles @ 32ms
4096 cycles @ 64ms
R
None

- Operating Temperature, TA

Commercial ( $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ )
Industrial ( $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ )
None
IT

- Power Supply
$+5 \mathrm{~V} \pm 10 \% \quad$ None
$+3.3 \mathrm{~V} \pm 10 \%$
V


## GENERAL DESCRIPTION

The MT4C40004/5 are randomly accessed solid-state memories containing $16,777,216$ bits organized in a $\times 4$ configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 22 address bits, which are entered 10-12 bits (A0-A11) at a time. $\overline{\mathrm{RAS}}$ is used to latch the first $11 / 12$ bits and $\overline{\text { CAS }}$ the latter 10/11 bits. A READ or WRITE cycle is selected with the WE input. A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ mode while a logic LOW on $\overline{\mathrm{WE}}$ dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of WE or $\overline{\mathrm{CAS}}$, whichever occurs last. If $\overline{W E}$ goes LOW prior to $\overline{\mathrm{CAS}}$ going LOW, the output
PIN ASSIGNMENT (Top View)

(E-7)

| Vcc 1 - | 28 | 7 Vss |
| :---: | :---: | :---: |
| DQ1 2 | 27 | 7 DQ4 |
| DQ2 3 | 26 | $7 \mathrm{DQ3}$ |
| WE $\square^{4}$ | 25 | $\square$ CAS |
| TAS 5 | 24 | $\overline{O E}$ |
| A11/NC 6 | 23 | 7 A9 |
| A10 9 | 20 | 7 AB |
| A0 10 | 19 | $\mathrm{P}^{\text {A }}$ |
| A1 11 | 18 | 7 A 6 |
| A2 12 | 17 | 7 A 5 |
| A3 13 | 16 | 7 A 4 |
| Vcc 14 | 15 | 7 Vss |


*Consult factory on availablity of TSOP packages
pins remain open (High- Z ) until the next $\overline{\mathrm{CAS}}$ cycle. If $\overline{\mathrm{WE}}$ goes LOW after data reaches the output pins, data out (Q), is activated and retains the selected cell data as long as $\overline{\mathrm{CAS}}$ remains LOW (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}}$ ). This late $\overline{\text { WE }}$ pulse results in a READ-WRITE cycle. The four data inputs and the four data outputs are routed through four pins using common I/O, and pin direction is controlled by $\overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}$.

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a rowaddress (A0-A10/11) defined pageboundary. TheFAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\text { RAS }}$ followed by a column address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-indifferentcolumnaddresses, thusexecuting faster memory cycles. Returning RASHIGH terminates the FAST PAGE MODE operation.
Returning $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycleduring the $\overline{\mathrm{RAS}}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle (READ, WRITE, $\overline{\text { RAS-ONLY, } \overline{\mathrm{CAS}} \text {-BEFORE-RAS (CBR), or }}$ HIDDEN refresh) so that all 2048/4096 combinations of $\overline{\text { RAS }}$ addresses (A0-A10/A11) are executed at least every $32 \mathrm{~ms} /$ 64 ms , regardless of sequence. The CBR refresh cycle will invoke the refresh counter for automatic $\overline{\text { RAS }}$ addressing.
The MT4C40004/5 are available with either 2048 cycles or 4096 cycles of refreshing. If CBR refresh is used, the number of cycles is a "don't care."

## DRAM

## 512K x 8 DRAM

FAST PAGE MODE

## FEATURES

- Industry standard $x 8$ pinouts, timing, functions and packages
- Address entry: 10 row addresses, nine column addresses
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 3 mW standby; 350 mW active, typical
- All device pins are fully TTL and CMOS compatible
- 1024-cycle refresh in 16 ms
- Refresh modes: $\overline{R A S}-O N L Y, \overline{C A S}-B E F O R E-\overline{R A S}$ and HIDDEN
- Optional FAST PAGE MODE access cycle
- NONPERSISTENT MASKED WRITE access cycle (MT4C8513 only)


## OPTIONS

- Timing 70 ns access
80 ns access
100 ns access
- Masked Write

Not available
Available

- Packages

Plastic SOJ (400mil)
DJ
Plastic TSOP (*)

MARKING
$-7$

- 8
-10

MT4C8512
MT4C8513

## GENERAL DESCRIPTION

The MT4C8512/3 are randomly accessed solid-state memories containing $4,194,304$ bits organized in a $x 8$ configuration. Each byte is uniquely addressed through the 19 address bits during READ or WRITE cycles. The address is entered by $\overline{\text { RAS latching the first } 10 \text { bits (A0-A9) }}$ and $\overline{\text { CAS }}$ latching the latter 9 bits (A0-A8).
TheMT4C8513 has NONPERSISTENTMASKEDWRITE allowing it to perform WRITE-PER-BIT accesses.

PIN ASSIGNMENT (Top View)

## 28-Pin SOJ (E-9)

| Vcc 1 | 28 | Vss |
| :---: | :---: | :---: |
| DQ1 2 | 27 | - DQ8 |
| DQ2 4 | 26 | $\square$ DQ7 |
| DQ3 4 | 25 | $\square$ DQ6 |
| DQ4 55 | 24 | $\square$ DQ5 |
| NC 4 | 23 | $\square$ CAS |
| WE 47 | 22 | $\square \mathrm{OE}$ |
| RAS 8 | 21 | $\square$ NC |
| A9 9 | 20 | $\square \mathrm{A} 8$ |
| A0 10 | 19 | $\square \mathrm{A} 7$ |
| A1 11 | 18 | $\square \mathrm{A} 6$ |
| A2 [ 12 | 17 | $\square \mathrm{A} 5$ |
| A3 13 | 16 | $\square \mathrm{A} 4$ |
| Vcc [ 14 | 15 | $\bigcirc \mathrm{Vss}$ |

[^0]
## FUNCTIONAL BLOCK DIAGRAM



## PIN DESCRIPTIONS

| SOJ PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| 8 | RAS | Input | Row Address Strobe: $\overline{\text { RAS }}$ is used to clock-in the 10 row-address bits and as a strobe for the $\overline{W E}$ and DQs in the MASKED WRITE mode (MT4C8513 only). |
| 23 | $\overline{\text { CAS }}$ | Input | Column Address Strobe: $\overline{\mathrm{CAS}}$ is used to clock in the 9 -column address bits, enable the DRAM output buffers, and as a strobe for the data inputs on WRITE cycles. |
| 7 | $\overline{\text { WE }}$ | Input | Write Enable: $\overline{\text { WE }}$ is used to select a READ ( $\overline{\mathrm{WE}}=\mathrm{HIGH}$ ) or WRITE ( $\overline{W E}=$ LOW) cycle. $\overline{W E}$ also serves as a Mask Enable ( $\overline{W E}=$ LOW) at the falling edge of $\overline{\text { RAS }}$ in a MASKED-WRITE cycle (MT4C8513). |
| 22 | $\overline{\mathrm{OE}}$ | Input | Output Enable: $\overline{\mathrm{OE}}$ enables the output buffers when taken LOW during a READ access cycle. RAS and CAS must be LOW and WE must be HIGH before $\overline{O E}$ will control the output buffers. Otherwise the output buffers are in a high-impedance state. |
| 10-13, 16-20, 9 | A0 to A9 | Input | Address Inputs: These inputs are multiplexed and clocked by $\overline{\text { RAS }}$ and $\overline{\mathrm{CAS}}$ to select one byte out of the 512 K available words. |
| 2-5, 24-27 | DQ1-DQ8 | Input | Data I/O: Includes inputs, outputs or high-impedance and/or Output masked data input (for MASKED WRITE cycle only). |
| 6 | NC | - | No Connect: These pins should be either left unconnected or tied to ground. |
| 1,14 | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 15, 28 | Vss | Supply | Ground |

## FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 19 address bits during READ or WRITE cycles. $\overline{\text { RAS }}$ is used to latch the first ten bits (A0-A9) and $\overline{\mathrm{CAS}}$ the latter nine bits (A0-A8).

The $\overline{\text { CAS }}$ control also determines whether the cycle will be a refresh cycle ( $\overline{\mathrm{RAS}}-\mathrm{ONLY}$ ) or an active cycle (READ, WRITE or READ-WRITE) once $\overline{\mathrm{RAS}}$ goes LOW.

READ or WRITE cycles are selected by $\overline{W E}$. A logic HIGH on $\overline{W E}$ dictates READ mode while a logic LOW on $\overline{W E}$ dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{\mathrm{CAS}}$, whichever occurs last. Taking $\overline{W E}$ LOW will initiate a WRITE cycle, selecting DQ1 through DQ8. If $\overline{W E}$ goes LOW prior to $\overline{C A S}$ going LOW, theoutput pin(s) remain open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle. If $\overline{\mathrm{WE}}$ goes LOW after $\overline{\mathrm{CAS}}$ goes LOW and data reaches the output pins, data out $(\mathrm{Q})$ is activated and retains the selected cell data as long as $\overline{\mathrm{CAS}}$ and $\overline{\mathrm{OE}}$ remain LOW (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}}$ ). This late $\overline{\mathrm{WE}}$ pulse results in a READ-WRITE cycle.

The eight data inputs and eight data outputs are routed through eight pins using common $I / O$, and pin direction is controlled by $\overline{\mathrm{OE}}$ and $\overline{\mathrm{WE}}$.

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\mathrm{RAS}}$ followed by a column address strobedin by $\overline{\mathrm{CAS}} \overline{\mathrm{CAS}}$ may be toggled-in by holding $\overline{\mathrm{RAS}} \mathrm{LOW}$ and strobing-in different column addresses, thus executing faster memory cycles. Returning $\overline{\text { RAS }} \mathrm{HIGH}$ terminates the FAST PAGE MODE operation.

Returning $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}} \mathrm{HIGH}$ terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the
$\overline{\mathrm{RAS}}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\mathrm{RAS}}$ cycle (READ, WRITE, $\overline{\mathrm{RAS}}$-ONLY, $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$, or HIDDEN REFRESH) so that all 1024 combinations of $\overline{\mathrm{RAS}}$ addresses (A0-A9) are executed at least every 16 ms , regardless of sequence. The $\overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$ refresh cycle will also invoke the refresh counter and controller for row address control.

## MASKED WRITE ACCESS CYCLE (MT4C8513 ONLY)

Every WRITE access cycle can be a MASKED WRITE, depending on the state of $\overline{\mathrm{WE}}$ at $\overline{\mathrm{RAS}}$ time. A MASKED WRITE is selected when $\overline{W E}$ is LOW at $\overline{\mathrm{RAS}}$ time and mask data is supplied on the DQ pins.

The mask data present on the DQ1-DQ8 inputs at $\overline{\text { RAStime }}$ will be written to an internal mask data register and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic " 0 ") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic " 1 ") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At $\overline{\text { CAS }}$ time, the bits present on the DQ1-DQ8 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).

In nonpersistent MASKED V̄RITEs, new mask data must be supplied each time a MASKED WRITE cycle is initiated.
Figure 1 illustrates the MT4C8513 MASKED WRITE operation (Note: $\overline{\mathrm{RAS}}$ or $\overline{\mathrm{CAS}}$ time refers to the time at which $\overline{\text { RAS }}$ or $\overline{\text { CAS }}$ transition from HIGH to LOW).



Figure 1
MT4C8513 MASKED WRITE EXAMPLE

MT4C8512/3

## TRUTH TABLE

| Function |  | RAS | CAS | WE | $\overline{\text { OE }}$ | Addresses |  | DQs | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {t }}$ R |  |  |  | ${ }^{\text {t }}$ C |  |  |
| Standby |  |  | H | X | X | X | X | X | High-Z |  |
| READ |  | L | L | H | L | ROW | COL | Valid Data Out |  |
| EARLY-WRITE |  | L | L | L | X | ROW | COL | Valid Data In | 1 |
| READ-WRITE |  | L | L | $H \rightarrow L$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Data In | 1 |
| FAST-PAGEMODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | L | ROW | COL | Valid Data Out |  |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | L | n/a | COL | Valid Data Out |  |
| FAST-PAGEMODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | ROW | COL | Valid Data In | 1 |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | n/a | COL | Valid Data In | 1 |
| FAST-PAGE-MODE READ-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Data In | 1 |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | n/a | COL | Valid Data Out, Data In | 1 |
| $\begin{aligned} & \hline \text { HIDDEN } \\ & \text { REFRESH } \\ & \hline \end{aligned}$ | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | L | ROW | COL | Valid Data Out |  |
|  | WRITE | $L \rightarrow H \rightarrow L$ | L | L | X | ROW | COL | Valid Data In | 1,2 |
| RAS-ONLY REFRESH |  | L | H | X | X | ROW | n/a | High-Z |  |
| CAS-BEFORERAS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | X | High-Z |  |

NOTE: 1. Data In will be dependent on the mask provided (MT4C8513 only). Refer to Figure 1.
2. EARLY WRITE only.

## ABSOLUTE MAXIMUM RATINGS*


*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.4 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE CURRENT any input ( $\mathrm{OV} \leq \mathrm{Vin} \leq \mathrm{Vcc}$, all other pins not under test $=0 \mathrm{~V}$ ) | 11 | -2 | 2 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( Q is disabled, $0 \mathrm{~V} \leq \mathrm{Vout} \leq 5.5 \mathrm{~V}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS | VOH | 2.4 |  | V |  |
| Output High Voltage (lout $=-5 \mathrm{~mA}$ ) |  |  |  |  |  |
| Output Low Voltage (lout $=4.2 \mathrm{~mA}$ ) | Vol |  | 0.4 | V |  |



## CAPACITANCE

(Note: 2)

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A9 | $\mathrm{C}_{1} 1$ |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\text { RAS, } \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}, \overline{\mathrm{OE}}}$ | Cl 2 |  | 7 | pF | 2 |
| Input/Output Capacitance: DQ | $\mathrm{C} \circ$ |  | 7 | pF | 2 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t } R C}$ | 130 |  | 145 |  | 170 |  | ns |  |
| READ-WRITE cycle time | trwC | 175 |  | 185 |  | 220 |  | ns |  |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 45 |  | 55 |  | ns |  |
| FAST-PAGE-MODE READ-WRITE cycle time | tPRWC | 95 |  | 100 |  | 110 |  | ns |  |
| Access time from $\overline{\mathrm{RAS}}$ | ${ }^{\text {tr }}$ RAC |  | 70 |  | 80 |  | 100 | ns | 14 |
| Access time from $\overline{\text { CAS }}$ | ${ }^{\text {t }}$ AAC |  | 20 |  | 20 |  | 25 | ns | 15 |
| Output Enable time | ${ }^{\text {t }} \mathrm{OE}$ |  | 20 |  | 20 |  | 25 | ns |  |
| Access time from column address | ${ }^{\text {t }}$ AA |  | 35 |  | 40 |  | 45 | ns |  |
| Access time from $\overline{\text { CAS }}$ precharge | ${ }^{\text {t }}$ CPA |  | 40 |  | 45 |  | 50 | ns |  |
| $\overline{\text { RAS }}$ pulse width | tRAS | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| RAS pulse width (FAST PAGE MODE) | trasp | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {tRSH}}$ | 20 |  | 20 |  | 25 |  | ns |  |
| RAS precharge time | tRP | 50 |  | 55 |  | 60 |  | ns |  |
| CAS pulse width | ${ }^{\text {t }}$ cAS | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 10 |  | ns | 16 |
| CAS precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{C}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to CAS delay time | ${ }^{\text {tRCD }}$ | 20 | 45 | 20 | 50 | 25 | 65 | ns | 17 |
| $\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {tr }}$ AH | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {tRAD }}$ | 15 | 35 | 15 | 40 | 15 | 50 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{t}$ AR | 55 |  | 60 |  | 70 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {traL }}$ | 35 |  | 40 |  | 50 |  | ns |  |
| Read command setup time | ${ }^{\text {tR }}$ R ${ }^{\text {d }}$ | 0 |  | 0 |  | 0 |  | ns | 26 |
| Read command hold time (referenced to CAS) | ${ }^{\text {tr CH }}$ | 0 |  | 0 |  | 0 |  | ns | 19, 26 |
| Read command hold time (referenced to RAS) | ${ }^{\text {tRRH }}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t }} \mathrm{CL} \mathrm{Z}$ | 0 |  | 0 |  | 0 |  | ns |  |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Output buffer turn-off delay | ${ }^{\text {tofF }}$ | 0 | 15 | 0 | 15 | 0 | 20 | ns | 20, 29 |
| Output disable time | ${ }^{\text {t }} \mathrm{OD}$ |  | 10 |  | 12 |  | 20 | ns | 29 |
| Write command setup time | ${ }^{\text {thes }}$ | 0 |  | 0 |  | 0 |  | ns | 21, 26 |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 15 |  | ns | 26 |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ WCR | 50 |  | 55 |  | 65 |  | ns | 26 |
| Write command pulse width | ${ }^{\text {t }}$ WP | 10 |  | 10 |  | 15 |  | ns | 26 |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t }} \mathrm{WWL}$ | 20 |  | 20 |  | 20 |  | ns | 26 |
| Write command to CAS lead time | ${ }^{t} \mathrm{CWL}$ | 20 |  | 20 |  | 20 |  | ns | 26 |
| Data-in setup time | ${ }^{\text {t }}$ D | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }}$ D H | 15 |  | 15 |  | 20 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\text { RAS }}$ ) | ${ }^{\text {t }} \mathrm{DHR}$ | 50 |  | 55 |  | 65 |  | ns |  |
| $\overline{\text { RAS }}$ to WE delay time | ${ }^{\text {tRWD }}$ | 90 |  | 100 |  | 125 |  | ns | 21 |
| Column address to WE delay time | ${ }^{\text {t }}$ AWD | 60 |  | 65 |  | 80 |  | ns | 21 |
| $\overline{\text { CAS }}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }} \mathrm{CWD}$ | 45 |  | 45 |  | 60 |  | ns | 21 |
| Transition time (rise or fall) | 'T | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period (1,024 cycles) | tREF |  | 16 |  | 16 |  | 16 | ms | 28 |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| CAS setup time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE- $\overline{\text { RAS }}$ refresh) | ${ }^{\text {t }} \mathrm{CHR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| MASKED WRITE command to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ WRS | 0 |  | 0 |  | 0 |  | ns | 26, 27 |
| MASKED WRITE command to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t WRH }}$ | 10 |  | 10 |  | 15 |  | ns | 26, 27 |
| Mask data to $\overline{\text { RAS }}$ setup time | ${ }^{\text {tMS }}$ | 0 |  | 0 |  | 0 |  | ns | 26, 27 |
| Mask data to $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {t }} \mathrm{MH}$ | 10 |  | 10 |  | 15 |  | ns | 26, 27 |
| $\overline{\mathrm{OE}}$ hold time from $\overline{\mathrm{WE}}$ during READ-MODIFY-WRITE cycle | TOEH | 10 |  | 10 |  | 20 |  | ns | 28 |
| $\overline{\mathrm{OE}}$ setup prior to $\overline{\mathrm{RAS}}$ during HIDDEN REFRESH cycle | ${ }^{\text {t }}$ ORD | 0 |  | 0 |  | 0 |  | ns |  |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=I^{d t} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V} ; \mathrm{Vcc}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured.
7. An initial pause of $100 \mu$ s is required after power-up followed by eight $\overline{\text { RAS }}$ refresh cycles ( $\overline{\text { RAS }}$-ONLY or $C B R$ ) before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 16 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\dagger} \mathrm{T}=5 \mathrm{~ns}$.
9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and $V_{\mathrm{IH}}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $\mathrm{VIH}_{\mathrm{IH}}$ and $V_{\text {IL }}$ (or between VIL and VIH) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=V_{\text {IL }}$, data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to 2 TTL gates and 50 pF .
14. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{t} R C D \geq{ }^{t} R C D$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}} \mathrm{Q}$ will be maintained from the previous cycle. To initiate a new cycle and clear the $Q$ buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{\text {t }} \mathrm{CPN}$.
17. Operation within the ${ }^{\text {t }} \mathrm{RCD}(\mathrm{MAX})$ limit ensures that ${ }^{t}$ RAC (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{t} R C D$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} \mathrm{CAC}$.
18. Operation within the ${ }^{t} R A D$ limit ensures that ${ }^{t} R C D$ (MAX) can be met. ${ }^{\text {tRAD }}$ (MAX) is specified as a reference point only; if tRAD is greater than the specified trAD (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{AA}$.
19. Either ${ }^{t} \mathrm{RCH}$ or ${ }^{t}$ RRH must be satisfied for a READ cycle.
20. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output achieves the open circuit condition, not a reference to Voh or Vol.
21. ${ }^{t} W C S,{ }^{t} R W D,{ }^{t} A W D$ and ${ }^{t} C W D$ are restrictive operating parameters in LATE-WRITE and READ-MODIFY-WRITE cycles only. If ${ }^{\mathrm{t}} \mathrm{WCS} \geq^{\mathrm{t}} \mathrm{WCS}$ (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ${ }^{\mathrm{t}} \mathrm{RWD} \geq \mathrm{t} R W D$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq^{\mathrm{t}} \mathrm{AWD}$ (MIN) and ${ }^{t} C W D \geq{ }^{t} C W D$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. $\overline{\mathrm{OE}}$ held HIGH and $\overline{\mathrm{WE}}$ taken LOW after $\overline{\mathrm{CAS}}$ goes LOW results in a LATE-WRITE ( $\overline{\mathrm{OE}}$ controlled) cycle.
22. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles and $\overline{W E}$ leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
23. During a READ cycle, if $\overline{\mathrm{OE}}$ is LOW then taken HIGH before $\overline{\mathrm{CAS}}$ goes HIGH, Q goes open. If $\overline{\mathrm{OE}}$ is tied permanently LOW, LATE-WRITE or READ-MODIFYWRITE operations are not possible.
24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case $\overline{W E}=$ LOW and $\overline{\mathrm{OE}}-$ HIGH.
25. All other inputs at Vcc -0.2 V .
26. Write command is defined as $\overline{\mathrm{WE}}$ going LOW.
27. MT4C8513 only.
28. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ${ }^{\mathrm{t} O D}$ and ${ }^{\text {t }} \mathrm{OEH}$ met ( $\overline{\mathrm{OE}}$ HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if $\overline{\mathrm{CAS}}$ remains LOW and $\overline{\mathrm{OE}}$ is taken back LOW after ${ }^{\mathrm{t}} \mathrm{OEH}$ is met. If $\overline{\mathrm{CAS}}$ goes HIGH prior to $\overline{\mathrm{OE}}$ going back LOW, the DQs will remain open.
29. The DQs open during READ cycles once ${ }^{\text {t OD }}$ or ${ }^{t} O F F$ occur. If $\overline{\mathrm{CAS}}$ goes HIGH first, $\overline{\mathrm{OE}}$ becomes a don't care. If $\overline{\mathrm{OE}}$ goes HIGH and $\overline{\mathrm{CAS}}$ stays LOW, $\overline{\mathrm{OE}}$ is not a don't care; and the DQs will provide the previously read data if $\overline{\mathrm{OE}}$ is taken back LOW (while $\overline{\mathrm{CAS}}$ remains LOW).

READ CYCLE


EARLY-WRITE CYCLE


NOTE: 1. Applies to MT4C8513 only; $\overline{\text { WE }}$ and DQ inputs on MT4C8512 are don't care at $\overline{\text { RAS }}$ time. $\overline{\text { WE selects }}$ between normal WRITE and MASKED WRITE at $\overline{\text { RAS }}$ time. The DQ inputs are don't care for a normal WRITE, $\overline{\text { WE }}$ HIGH at $\overline{\text { RAS }}$ time. The DQ inputs provide the mask data at $\overline{\text { RAS }}$ time for a MASKED WRITE, $\overline{W E}$ LOW at $\overline{R A S}$ time.

READ-WRITE CYCLE
(LATE-WRITE and READ-MODIFY-WRITE CYCLES)


FAST-PAGE-MODE READ CYCLE


NOTE: 1. Applies to MT4C8513 only; $\overline{\text { WE }}$ and DQ inputs on MT4C8512 are don't care at $\overline{R A S}$ time. $\overline{\text { WE selects }}$ between normal WRITE and MASKED WRITE at $\overline{\text { RAS }}$ time. The DQ inputs are don't care for a normal WRITE, $\overline{\text { WE HIGH at } \overline{R A S}}$ time. The DQ inputs provide the mask data at $\overline{R A S}$ time for a MASKED WRITE, $\overline{W E}$ LOW at $\overline{R A S}$ time.

FAST-PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)


VZZ dont care
UNDEFINED
NOTE: 1. Applies to MT4C8513 only; $\overline{W E}$ and DQ inputs on MT4C8512 are don't care at $\overline{R A S}$ time. $\overline{W E}$ selects between normal WRITE and MASKED WRITE at $\overline{\text { RAS }}$ time. The DQ inputs are don't care for a normal WRITE, WE HIGH at $\overline{\text { RAS }}$ time. The DQ inputs provide the mask data at $\overline{\text { RAS }}$ time for a MASKED WRITE, $\overline{W E}$ LOW at $\overline{\text { RAS }}$ time.

RAS-ONLY REFRESH CYCLE ( $\overline{\mathrm{OE}}$ and $\overline{\mathrm{WE}}=$ DON'T CARE)


CAS-BEFORE-RAS REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{8} ; \overline{\mathrm{WE}}$ and $\overline{\mathrm{OE}}=$ DON'T CARE)
$\overline{\text { RAS }}$


DQ $\mathrm{V}_{1 \mathrm{OH}}=$ OPEN

HIDDEN REFRESH CYCLE
$(\overline{\mathrm{WE}}=\mathrm{HIGH} ; \overline{\mathrm{OE}}=\mathrm{LOW}){ }^{24}$


ZZZ dont care
UNDEFINED

## DRAM

## 64K x 16 DRAM

FAST PAGE MODE

## FEATURES

- Industry standard x16 pinouts, timing, functions and packages
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 3 mW standby; 225 mW active, typical
- All device pins are fully TTL and CMOS compatible
- 256-cycle refresh in 4 ms
- Refresh modes: $\overline{\text { RAS-ONLY, } \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{R A S}}$ and HIDDEN
- Optional FAST PAGE MODE access cycle
- 2 TTL Load output drive capability
- BYTE WRITE access cycle (MT4C1664 only)
- NONPERSISTENT MASKED WRITE access cycle (MT4C1665 only)


## OPTIONS

- Timing

70 ns access
80ns access
100 ns access

- Write Enable Byte or Word Word only
- Mask Enable

Not Available
Always Available

- Packages

Plastic SOJ (400mil)
Plastic ZIP (450mil)

## MARKING

-10

## MT4C1664

MT4C1665

## GENERAL DESCRIPTION

The MT4C1664/5 are randomly accessed solid-state memories containing $1,048,576$ bits organized in a $\times 16$ configuration. The MT4C1664 has both BYTE and WORD WRITE access cycles while the MT4C1665 has only WORD WRITE access cycles.
The MT4C1664 functions in a similar manner to the MT4C1665 except that replacing $\overline{\text { WE }}$ with $\overline{\text { WEL }}$ and $\overline{\text { WEH }}$ allows for BYTE WRITE access cycles. $\overline{\text { WEL }}$ and $\overline{\text { WEH }}$ function in an identical manner to $\overline{W E}$ : either WEL or $\overline{W E H}$ will generate an internal $\overline{\mathrm{WE}}$ through an AND gate (Inverted NOR gate).

MT4C1664
MT4C1665

## DJ

## Z

* MT4C1665/MT4C1664
** NC = No Connect


## PIN ASSIGNMENT (Top View)

## 40-Pin SOJ

(E-12)


## FUNCTIONAL BLOCK DIAGRAM



## PIN DESCRIPTIONS

| SOJ PIN NUMBER(S) | $\begin{array}{\|c\|} \text { ZIP PIN } \\ \text { NUMBER(S) } \end{array}$ | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| 14 | 24 | RAS | Input | ROW Address Strobe: $\overline{\text { RAS }}$ is used to clock in the 8 row address bits and as a strobe for the $\overline{W E L}, \overline{W E H}$ and DQ inputs for the MASKED WRITE function. |
| 29 | 39 | $\overline{\text { CAS }}$ | Input | Column Address Strobe: $\overline{\mathrm{CAS}}$ is used to clock in the 8 column address bits, enable the DRAM output buffers, and as a strobe for the data inputs on WRITE cycles. |
| 28 | 38 | $\overline{\mathrm{OE}}$ | Input | Output Enable: $\overline{O E}$ enables the output buffers when taken LOW during a READ access cycle. $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ must be LOW and WEL and WEH must be HIGH before $\overline{\mathrm{OE}}$ will control the output buffers. Otherwise the output buffers are in a high impedance state. |
| 13 | 23 | $\overline{W E / W E L}{ }^{*}$ | Input | WRITE Enable Lower Byte: WEL on MT4C1664 is $\overline{\text { WE }}$ control for the DQ1 through DQ8 inputs. WE on MT4C1665 controls DQ1 through DQ16 inputs. If ( $\overline{\mathrm{WEL}}$ or $\overline{\mathrm{WEH}}$ ) $\overline{\text { WE }}$ is LOW, the access is a WRITE cycle. The DQ outputs for the byte not being written will remain in a high impedance state (byte WRITE cycle only). |
| 12 | 22 | NC/ WEH $^{*}$ | Input | Write Enable Upper Byte: $\overline{\mathrm{WEH}}$ on MT4C1664 is $\overline{\mathrm{WE}}$ control for the DQ9 through DQ16 inputs. If ( $\overline{\mathrm{WEL}}$ or $\overline{\mathrm{WEH}}) \overline{\mathrm{WE}}$ is LOW, the access is a WRITE cycle. This pin is a no connect on the MT4C1665 as it has only WORD WRITE access cycles. |
| $\begin{gathered} \hline 15,16,17 \\ 18,19,22 \\ 23,24 \end{gathered}$ | $\begin{gathered} 25,26,27 \\ 28,29,34 \\ 35,36 \end{gathered}$ | A0 to A7 | Input | Address Inputs: These inputs are multiplexed and clocked by $\overline{\text { RAS }}$ and $\overline{\mathrm{CAS}}$ to select one 16 -bit word out of the 64 K available words. |
| $\begin{gathered} 2,3,4,5,6 \\ 7,8,9,32,33 \\ 34,35,36 \\ 37,38,39 \end{gathered}$ | $\begin{gathered} \hline 11,12,14 \\ 15,16,17 \\ 2,18,19,3 \\ 4,5,6,7,8 \\ 9 \end{gathered}$ | DQ1-DQ16 | Input/ Output | Data I/O: For WRITE cycles, DQ1-DQ16 act as inputs to the addressed DRAM location. BYTE WRITEs can be performed by using WEL or $\bar{W} E H$ to select the byte to be written. For READ access cycles, DQ1-DQ16 act as outputs for the addressed DRAM location. All sixteen I/Os are active for READ cycles (there is no BYTE READ cycle). |
| $\begin{gathered} 10,25,26 \\ 27,31 \end{gathered}$ | $\begin{gathered} 1,20,31 \\ 32,37 \end{gathered}$ | NC | - | No Connect: These pins should be either left unconnected or tied to ground. |
| 1,11, 20 | 13, 21, 30 | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 21, 30, 40 | 10, 33, 40 | Vss | Supply | Ground |

## NOTE: *MT4C1665/MT4C1664

## FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 16 address bits during READ or WRITE cycles. These are entered 8 bits (A0-A7) at a time. $\overline{\mathrm{RAS}}$ is used to latch the first 8 bits and $\overline{\mathrm{CAS}}$ the latter 8 bits.

READ or WRITE cycles on the MT4C1665 are selected with the $\overline{W E}$ input while either $\overline{W E L}$ or $\overline{W E H}$ perform the
 determined by the first byte WRITE ( $\overline{\mathrm{WEL}}$ or $\overline{\mathrm{WEH}}$ ) to transition LOW and the last one to transition back HIGH.

A logic HIGH on $\overline{W E}$ dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{\mathrm{WE}}$ or CAS, whichever occurs last. Taking $\overline{W E}$ LOW will initiate a WRITE cycle, selecting DQ1 through DQ16. If $\overline{W E}$ goes LOW prior to $\overline{\text { CAS }}$ going LOW, the output pin(s) remain open (HighZ) until the next $\overline{\mathrm{CAS}}$ cycle. If $\overline{\mathrm{WE}}$ goes LOW after $\overline{\mathrm{CAS}}$ goes LOW and data reaches the output pins, data out $(\mathrm{Q})$ is activated and retains the selected cell data as long as $\overline{\mathrm{CAS}}$ and $\overline{\mathrm{OE}}$ remain LOW (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}}$ ). This late $\overline{\mathrm{WE}}$ pulse results in a READ-WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O, and pin direction is controlled by $\overline{\mathrm{OE}}, \overline{\mathrm{WEL}}$ and $\overline{\mathrm{WEH}}$ (MT4C1664) or $\overline{\mathrm{WE}}$ (MT4C1665).

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A7) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\mathrm{RAS}}$ followed by a column address strobedin by $\overline{\mathrm{CAS}} . \overline{\mathrm{CAS}}$ maybe toggled-in by holding $\overline{\mathrm{RAS}} \mathrm{LOW}$ and strobing-in different column addresses, thus executing faster memory cycles. Returning $\overline{\text { RAS }} \mathrm{HIGH}$ terminates the FAST PAGE MODE operation.

Returning $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycleduring the $\overline{\mathrm{RAS}}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\mathrm{RAS}}$ cycle (READ, WRITE, $\bar{R} A S-O N L Y, \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$, or HIDDEN refresh) so that all 256 combinations of $\overline{\text { RAS }}$ addresses (A0-A7) are executed at least every 4 ms , regardless of sequence. The $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$ refresh cycle will also
invoke the refresh counter and controller for row address control.

## BYTE WRITE DESCRIPTION (MT4C1664 ONLY)

The byte WRITE mode is determined by the use of $\overline{\text { WEL }}$ and $\overline{W E H}$. Enabling $\overline{W E L}$ will select a lower BYTE WRITE cycle (DQ1-DQ8) while enabling $\overline{W E H}$ will select an upper BYTE WRITE (DQ9-DQ16). Enabling both $\overline{W E L}$ and $\overline{W E H}$ selects a WIRD WRITE cycle.

The MT4C1664 can be viewed as two $64 \mathrm{~K} \times 8$ DRAMs which have common input controls, with the exception of the WE input. Figure 1 illustrates the MT4C1664 BYTE and WORD WRITE cycles.

## MASKED WRITE DESCRIPTION (MT4C1665 ONLY)

Every WRITE access cycle can be a MASKED WRITE, depending on the state of $\overline{\mathrm{WE}}$ at $\overline{\mathrm{RAS}}$ time. A MASKED WRITE is selected when mask data is supplied on the DQ pins and $\overline{W E}$ is LOW at $\overline{R A S}$ time. The MT4C1665 is only word selectable when $\overline{W E}$ is LOW at $\overline{\mathrm{RAS}}$ time (the MT4C1664 does not have MASKED WRITE cycle function).

The data (mask data) present on the DQ1-DQ16 inputs at $\overline{\text { RAS time will be written to an internal bit mask data register }}$ and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic " 0 ") is written to a mask data register bit, the input port for that bit is disabled during the following WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic " 1 ") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At $\overline{\mathrm{CAS}}$ time, the bits present on the DQ1-DQ16 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).

New mask data must be supplied each time a MASKED WRITE cycle is initiated, even if the previous cycle's mask was the same mask.

Figure 2 illustrates the MT4C1665* MASKED WRITE operation (Note: $\overline{\mathrm{RAS}}$ or $\overline{\mathrm{CAS}}$ time refers to the time at which $\overline{\mathrm{RAS}}$ or $\overline{\mathrm{CAS}}$ transition from HIGH to LOW).


Figure 1
MT4C1664 WORD AND BYTE WRITE EXAMPLE


Figure 2
MT4C1665 MASKED WRITE EXAMPLE

TRUTH TABLE: MT4C1664

| Function |  | $\overline{\text { RAS }}$ | CAS | WEL | WEH | OE | Addresses |  | DQs | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {t }}$ R |  |  |  |  | ${ }^{\text {t }}$ C |  |  |
| Standby |  |  | H | X | X | X | X | X | X | High-Z |  |
| READ |  | L | L | H | H | L | ROW | COL | Valid Data Out |  |
| WRITE: WORD (EARLY-WRITE) |  | L | L | L | L | X | ROW | COL | Valid Data In |  |
| WRITE: LOWER BYTE (EARLY) |  | L | L | L | H | X | ROW | COL | Lower Byte, Valid Data In Upper Byte, High-Z |  |
| WRITE: UPPER BYTE (EARLY) |  | L | L | H | L | X | ROW | COL | Lower Byte, High-Z Upper Byte, Valid Data In |  |
| READ-WRITE |  | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Data In | 1 |
| FAST-PAGE-MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | H | L | ROW | COL | Valid Data Out |  |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | H | L | n/a | COL | Valid Data Out |  |
| FAST-PAGE-MODE EARLY-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | L | X | ROW | COL | Valid Data In | 1 |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | L | X | n/a | COL | Valid Data In | 1 |
| FAST-PAGE-MODE READ-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Data In | 1 |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | n/a | COL | Valid Data Out, Data In | 1 |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | H | L | ROW | COL | Valid Data Out |  |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | L | X | ROW | COL | Valid Data In | 1,2 |
| RAS-ONLY REFRESH |  | L | H | X | X | X | ROW | n/a | High-Z |  |
| CAS-BEFORERAS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | X | X | High-Z |  |

NOTE: 1. These cycles may also be byte WRITE cycles (either WEL or $\overline{\text { WEH }}$ active).
2. EARLY-WRITE only.

## TRUTH TABLE: MT4C1665

| Function |  | RAS | CAS | WE | OE | Addresses |  | DQs | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {t }}$ R |  |  |  | ${ }^{t} \mathrm{C}$ |  |  |
| Standby |  |  | H | X | X | X | X | X | High-Z |  |
| READ |  | L | L | H | L | ROW | COL | Valid Data Out |  |
| WRITE: WORD (EARLY-WRITE) |  | L | L | L | X | ROW | COL | Valid Data In | 1 |
| READ-WRITE |  | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Data In | 1 |
| FAST-PAGE-MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | L | ROW | COL | Valid Data Out |  |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | L | n/a | COL | Valid Data Out |  |
| FAST-PAGE-MODE EARLY-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | ROW | COL | Valid Data In | 1 |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | n/a | COL | Valid Data In | 1 |
| $\begin{aligned} & \text { FAST-PAGE-MODE } \\ & \text { READ-WRITE } \end{aligned}$ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Data In | 1 |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $L \rightarrow H$ | n/a | COL | Valid Data Out, Data In | 1 |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | L | ROW | COL | Valid Data Out |  |
|  | WRITE | $L \rightarrow H \rightarrow L$ | L | L | X | ROW | COL | Valid Data In | 1,2 |
| RAS-ONLY REFRESH |  | L | H | X | X | ROW | n/a | High-Z |  |
| $\overline{\text { CAS-BEFORE- }}$ RAS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | X | High-Z |  |

NOTE: 1. Data In will be dependent on the mask provided. Refer to Figure 2.
2. EARLY-WRITE only.
ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc supply relative to Vss ......... -1.0 V to +7.0 VOperating Temperature, TA (Ambient) ........... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation1 W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above thoseindicated in theoperational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | VCc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.4 | $\mathrm{VCc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE CURRENT <br> any input (OV $\leq$ Vin $\leq$ Vcc, <br> all other pins not under test $=0 \mathrm{~V})$ | -2 | 2 | $\mu \mathrm{~A}$ |  |  |
| OUTPUT LEAKAGE CURRENT (Q is disabled, OV $\leq$ Vout $\leq 5.5 \mathrm{~V})$ | loz | -10 | 10 | $\mu \mathrm{~A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage (lout $=-5 \mathrm{~mA})$ <br> Output Low Voltage (lout $=4.2 \mathrm{~mA})$ | VoH | 2.4 | VoL |  | V |


|  | SYMBOL | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION |  | -7 | -8 | -10 | UNITS | NOTES |
| STANDBY CURRENT: (TTL) $\left(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{I}} \mathrm{H}\right)$ | Icc1 | 2 | 2 | 2 | mA |  |
| STANDBY CURRENT: (CMOS) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V})$ | Icc2 | 1 | 1 | 1 | mA | 25 |
| OPERATING CURRENT: Random READ/WRITE Average power supply current ( $\overline{\text { RAS }}, \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\text {tRC }}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc3 | 110 | 100 | 90 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE <br> Average power supply current <br> ( $\overline{\text { RAS }}=\mathrm{VIL}, \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}$ (MIN)) | Icc4 | 80 | 70 | 60 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{R A S}-O N L Y$ <br> Average power supply current <br>  | Icc5 | 110 | 100 | 90 | mA | 3 |
| REFRESH CURRENT: $\overline{\mathrm{CAS}}$-BEFORE-규AS Average power supply current (RAS, CAS, Address Cycling: tRC $={ }^{\text {tRC }}(\mathrm{MIN})$ ) | Icc6 | 110 | 100 | 90 | mA | 3, 5 |

## CAPACITANCE

(Note: 2)

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A7 | $\mathrm{Cl}_{11}$ |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}},(\overline{\mathrm{WEL}}, \overline{\mathrm{WEH}}) / \mathrm{WE}, \overline{\mathrm{OE}}$ | $\mathrm{Cl}_{12}$ |  | 7 | pF | 2 |
| Input/Output Capacitance: DQ | $\mathrm{Cı}$ |  | 7 | pF | 2 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $6,7,8,9,10,11,12,13,23)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {tr }}$ C | 130 |  | 145 |  | 170 |  | ns |  |
| READ-WRITE cycle time | ${ }^{\text {tr }}$ WC | 175 |  | 185 |  | 220 |  | ns |  |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 45 |  | 50 |  | 60 |  | ns |  |
| FAST-PAGE-MODE READ-WRITE cycle time | tPRWC | 95 |  | 100 |  | 120 |  | ns |  |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {t RAC }}$ |  | 70 |  | 80 |  | 100 | ns | 14 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ CAC |  | 20 |  | 25 |  | 30 | ns | 15 |
| Output Enable time | ${ }^{\text {toE }}$ |  | 20 |  | 25 |  | 30 | ns |  |
| Access time from column address | ${ }^{\text {t }}$ A |  | 40 |  | 45 |  | 50 | ns |  |
| Access time from CAS precharge | ${ }^{\text {t }}$ CPA |  | 45 |  | 50 |  | 55 | ns |  |
| $\overline{\text { RAS }}$ pulse width | tras | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| RAS pulse width (FAST PAGE MODE) | tRASP | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| RAS hold time | tras | 20 |  | 20 |  | 25 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | tRP | 50 |  | 55 |  | 60 |  | ns |  |
| CAS pulse width | ${ }^{\text {t }}$ CAS | 25 | 100,000 | 30 | 100,000 | 30 | 100,000 | ns |  |
| CAS hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 15 |  | ns | 16 |
| CAS precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay time | ${ }^{\text {tRCD }}$ | 20 | 45 | 20 | 50 | 25 | 60 | ns | 17 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t } R A H ~}$ | 10 |  | 10 |  | 10 |  | ns |  |
| RAS to column address delay time | ${ }^{\text {trab }}$ | 15 | 35 | 15 | 40 | 15 | 50 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 15 |  | 15 |  | 15 |  | ns |  |
| Column address hold time (referenced to $\overline{\text { RAS }}$ ) | ${ }^{\text {t }}$ AR | 55 |  | 60 |  | 70 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {tRAL }}$ | 35 |  | 40 |  | 50 |  | ns |  |
| Read command setup time | ${ }^{\text {tr }}$ RCS | 0 |  | 0 |  | 0 |  | ns | 26 |
| Read command hold time (referenced to $\overline{\mathrm{CAS}}$ ) | ${ }^{\text {tr }} \mathrm{CH}$ | 0 |  | 0 |  | 0 |  | ns | 19, 26 |
| Read command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }} \mathrm{RRH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t }}$ LZ | 0 |  | 0 |  | 0 |  | ns |  |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Output buffer turn-off delay | toFF | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20,30 |
| Output disable time | toD |  | 10 |  | 12 |  | 20 | ns | 30 |
| Write command setup time | ${ }^{\text {t WCS }}$ | 0 |  | 0 |  | 0 |  | ns | 21, 26 |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 15 |  | ns | 26 |
| Write command hold time (referenced to RAS) | ${ }^{\text {t }}$ WCR | 50 |  | 55 |  | 65 |  | ns | 26 |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 15 |  | ns | 26 |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t }}$ RWL | 20 |  | 20 |  | 20 |  | ns | 26 |
| Write command to CAS lead time | ${ }^{\text {t }}$ CWL | 20 |  | 20 |  | 20 |  | ns | 26 |
| Data-in setup time | ${ }^{\text {t }} \mathrm{DS}$ | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }}$ DH | 15 |  | 15 |  | 20 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\text { RAS }})$ | ${ }^{\text {t DHR }}$ | 50 |  | 55 |  | 65 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { WE }}$ delay time | ${ }^{\text {t }}$ WD | 90 |  | 100 |  | 125 |  | ns | 21 |
| Column address to WE delay time | ${ }^{\text {t }}$ AWD | 65 |  | 70 |  | 80 |  | ns | 21 |
| $\overline{\text { CAS }}$ to $\overline{\text { WE }}$ delay time | ${ }^{\text {t }}$ CWD | 50 |  | 55 |  | 70 |  | ns | 21 |
| Transition time (rise or fall) | ${ }^{\text {T }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9, 10 |
| Refresh period (256 cycles) | ${ }^{\text {tREF }}$ |  | 4 |  | 4 |  | 4 | ms | 28 |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\text { CAS }}$ setup time (CAS-BEFORE- $\overline{\text { RAS }}$ refresh) | ${ }^{\text {t }}$ CSR | 10 |  | 10 |  | 10 |  | ns | 5 |
| CAS hold time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5 |
| MASKED WRITE command to $\overline{\text { RAS }}$ setup time | tWRS | 0 |  | 0 |  | 0 |  | ns | 26, 27 |
| MASKED WRITE command to $\overline{\text { RAS }}$ hold time | tWRH | 15 |  | 15 |  | 15 |  | ns | 26, 27 |
| Mask data to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ MS | 0 |  | 0 |  | 0 |  | ns | 26 |
| Mask data to $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {t }}$ MH | 15 |  | 15 |  | 15 |  | ns | 26 |
| $\overline{O E}$ hold time from $\overline{W E}$ during READ-MODIFY-WRITE cycle | ${ }^{\text {t OEH }}$ | 10 |  | 10 |  | 20 |  | ns | 29 |
| $\overline{\mathrm{OE}}$ setup prior to $\overline{\mathrm{RAS}}$ during HIDDEN REFRESH cycle | ${ }^{\text {tor }}$ | 0 |  | 0 |  | 0 |  | ns |  |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=I d / d v$ with $d v=3 V ; V C C=5 V$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured.
7. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{\text { RAS }}$ cycles before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\mathfrak{t}} \mathrm{T}=5 \mathrm{~ns}$.
9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between $V_{\text {IH }}$ and $V_{\text {IL }}$ (or between $V_{I L}$ and $V_{\mathrm{IH}}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $V_{I H}$ and $V_{\text {IL }}$ (or between VIL and $V_{I H}$ ) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=V_{\mathrm{IL}}$, data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to 2 TTL gates and 50 pF .
14. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD}<{ }^{\mathrm{t}} \mathrm{RCD}$ (MAX). If ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the maximum recommended value shown in this table, ${ }^{\mathrm{T}}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{t} R C D \geq{ }^{t} R C D$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}, \mathrm{Q}$ will be maintained from the previous cycle. To initiate a new cycle and clear the $Q$ buffer, $\overline{C A S}$ must be pulsed HIGH for ${ }^{t} \mathrm{CPN}$.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{t} R C D$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} \mathrm{CAC}$.
18. Operation within the ${ }^{\text {tRAD }}$ (MAX) limit ensures that ${ }^{t} R C D$ (MAX) can be met. ${ }^{t} R A D$ (MAX) is specified as a reference point only; if ${ }^{t} R A D$ is greater than the specified ${ }^{t} R A D$ (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t}} \mathrm{AA}$.
19. Either ${ }^{t} \mathrm{RCH}$ or ${ }^{t} \mathrm{RRH}$ must be satisfied for a READ cycle.
20. ${ }^{\text {t OFF }}$ (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VoH or Vol.
21. ${ }^{t} W C S,{ }^{t} R W D,{ }^{t} A W D$ and ${ }^{t} C W D$ are restrictive operating parameters in LATE-WRITE and READ-MODIFY-WRITE cycles only. If ${ }^{\mathrm{t}} \mathrm{WCS} \geq^{\mathrm{t}}{ }^{\mathrm{W}} \mathrm{CCS}$ (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ${ }^{\mathrm{t}} \mathrm{RWD} \geq \mathrm{t}^{\mathrm{t}} \mathrm{RWD}$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq^{\mathrm{t}} \mathrm{AWD}$ (MIN) and ${ }^{\mathrm{t}} \mathrm{CWD} \geq{ }^{\mathrm{t}} \mathrm{CWD}$ (MIN), the cycle is a LATEWRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. $\overline{\mathrm{OE}}$ held HIGH and $\overline{\mathrm{WE}}$ taken LOW after $\overline{\mathrm{CAS}}$ goes LOW results in a LATE-WRITE ( $\overline{\mathrm{OE}}$ controlled) cycle.
22. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in early WRITE cycles and $\overline{W E}$ leading edge in LATEWRITE or READ-MODIFY-WRITE cycles.
23. If $\overline{\mathrm{OE}}$ is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case $\overline{W E}=L O W$ and $\overline{O E}=H I G H$.
25. All other inputs at Vcc -0.2 V .
26. Write command is defined as either $\overline{\text { WEL }}$ or $\overline{\text { WEH }}$ or both going LOW on the MT4C1664. Write command is defined as $\overline{W E}$ going LOW on the MT4C1665.
27. Must be held LOW to ensure MASKED WRITE is enabled and must be held HIGH to ensure MASKED WRITE is disabled.
28. The refresh period may be extended to 8 ms without experiencing problems.
29. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ${ }^{\mathrm{t}} \mathrm{OD}$ and ${ }^{\mathrm{t}} \mathrm{OEH}$ met ( $\overline{\mathrm{OE}} \mathrm{HIGH}$ during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if $\overline{\text { CAS }}$ remains LOW and $\overline{\mathrm{OE}}$ is taken back LOW after ${ }^{\text {to }} \mathrm{OEH}$ is met. If $\overline{\mathrm{CAS}}$ goes HIGH prior to $\overline{\mathrm{OE}}$ going back LOW, the DQs will remain open.
30. The DQs open during READ cycles once ${ }^{\text {tOD }}$ or ${ }^{\text {tOFF }}$ occur. If $\overline{\mathrm{CAS}}$ goes HIGH first, $\overline{\mathrm{OE}}$ becomes a don't care. If $\overline{\mathrm{OE}}$ goes HIGH and $\overline{\mathrm{CAS}}$ stays LOW, $\overline{\mathrm{OE}}$ is not a don't care; and the DQs will provide the previously read data if $\overline{\mathrm{OE}}$ is taken back LOW (while $\overline{\mathrm{CAS}}$ remains LOW).

## READ CYCLE



## EARLY-WRITE CYCLE



NOTE: 1. Applies to MT4C1665 only; WEL, $\overline{\text { WEH }}$ and DQ inputs on MT4C1664 are don't care at RAS time. $\overline{\text { WE }}$ selects between normal WRITE and MASKED WRITE at $\overline{\text { RAS }}$ time. The DQ inputs are don't care for a normal WRITE, $\overline{\text { WE HIGH at } \overline{\text { RAS }} \text { time. The DQ inputs provide the mask data at } \overline{\text { RAS }} \text { time for a MASKED }}$ WRITE, $\overline{\text { WE }}$ LOW at $\overline{\text { RAS }}$ time.

READ-WRITE CYCLE
(LATE-WRITE and READ-MODIFY-WRITE CYCLES)


FAST-PAGE-MODE READ CYCLE


D/A DON'T CARE
UNDEFINED

NOTE: 1. Applies to MT4C1665 only; $\overline{\text { WEL }}, \overline{W E H}$ and DQ inputs on MT4C1664 are don't care at $\overline{R A S}$ time. $\overline{\text { WE }}$ selects between normal WRITE and MASKED WRITE at $\overline{\text { RAS }}$ time. The DQ inputs are don't care for a normal WRITE, $\overline{\text { WE HIGH at } \overline{R A S}}$ time. The DQ inputs provide the mask data at $\overline{\text { RAS }}$ time for a MASKED WRITE, $\overline{\text { WE LOW }}$ at $\overline{R A S}$ time.

FAST-PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)


NOTE: 1. Applies to MT4C1665 only; $\overline{\text { WEL, }} \overline{\mathrm{WEH}}$ and DQ inputs on MT4C1664 are don't care at $\overline{\text { RAS }}$ time. $\overline{\text { WE }}$ selects between normal WRITE and MASKED WRITE at $\overline{\text { RAS }}$ time. The DQ inputs are don't care for a normal WRITE, $\overline{\text { WE HIGH at } \overline{R A S} \text { time. The DQ inputs provide the mask data at } \overline{R A S} \text { time for a MASKED }}$ WRITE, $\overline{\text { WE LOW }}$ at $\overline{\text { RAS }}$ time.

## RAS-ONLY REFRESH CYCLE

(ADDR $=A_{0}-A_{7}, \overline{O E} ; \overline{W E L}, \overline{W E H}$ or $\overline{W E}=$ DON'T CARE $)$


CAS-BEFORE-RAS REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{7} ; \overline{\mathrm{WEL}}, \overline{\mathrm{WEH}}$ or $\overline{\mathrm{WE}}$, and $\overline{\mathrm{OE}}=$ DON'T CARE $)$


DQ $\mathrm{V}_{1 \mathrm{OH}}=$ OPEN

HIDDEN REFRESH CYCLE
( $\overline{\mathrm{WEL}}, \overline{\mathrm{WEH}}$ or $\overline{\mathrm{WE}}=\mathrm{HIGH} ; \overline{\mathrm{OE}}=\mathrm{LOW}$ ) ${ }^{24}$


## DRAM

## 64K x 16 DRAM LOW POWER, FAST PAGE MODE

## FEATURES

- Industry standard $\times 16$ pinouts, timing, functions and packages
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 2 mW standby; 200 mW active, typical
- All device pins are fully TTL and CMOS compatible
- Refresh modes: $\overline{\mathrm{RAS}}-\mathrm{ONLY}, \overline{\mathrm{CAS}}$-BEFORE- $\overline{R A S}$ and HIDDEN
- Optional FAST PAGE MODE access cycle
- 2 TTL load output drive capability
- BYTE WRITE access cycle (MT4C1668 only)
- NONPERSISTENT MASKED WRITE access cycle (MT4C1669 only)
- Reduced CMOS STANDBY CURRENT
- Reduced operating and refresh currents
- Extended refresh: 256 cycles over 32 ms ( $125 \mu$ s cycles)


## OPTIONS

- Timing 70ns access -7
80ns access $\quad-8$
100 ns access -10
- Write Enable

Byte or Word
Word only

- Mask Enable

Not available
Always available

- Packages

Plastic SOJ (400mil)
DJ
Plastic ZIP (450mil)

## GENERAL DESCRIPTION

The MT4C1668/9 are randomly accessed solid-state memories containing $1,048,576$ bits organized in a x16 configuration. The MT4C1668 has both BYTE and WORD WRITE access cycles while the MT4C1669 has only WORD WRITE access cycles.

The MT4C1668 functions in a similar manner to the MT4C1669 except that replacing $\overline{\mathrm{WE}}$ with $\overline{\mathrm{WEL}}$ and $\overline{\mathrm{WEH}}$ allows for BYTE WRITE access cycles. $\overline{\text { WEL }}$ and $\overline{W E H}$ function in an identical manner to $\overline{\mathrm{WE}}$ : either $\overline{\mathrm{WEL}}$ or

MT4C1668
MT4C1669

MT4C1668
MT4C1669

## MARKING

> * MT4C1669/MT4C1668
> ** NC = No Connect
$\overline{\mathrm{WEH}}$ will generate an internal $\overline{\mathrm{WE}}$ through an AND gate (inverted NOR gate).

TheMT4C1668" $\overline{\mathrm{WE}}$ " function and timing are determined by the first BYTE WRITE ( $\overline{\mathrm{WEL}}$ or $\overline{\mathrm{WEH}}$ ) to transition LOW and the last to transition back HIGH. Use of only one of the tworesults in a BYTE WRITE cycle:WEL transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) or $\overline{\text { WEH }}$ transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16).

TheMT4C1669hasNONPERSISTENTMASKEDWRITE capability.

The extended refresh of the MT4C1668/9 provides a factor-of-eight reduction of refresh intervals required, as compared to a standard $64 \mathrm{~K} \times 16$ DRAM (MT4C1664/5). The MT4C1668/9 offers lower operating power as well as the reduced refresh current and standby current. The MT4C1668/9 are the same devices as the MT4C1664/5, but with the low power capabilites.

## FUNCTIONAL BLOCK DIAGRAM



## PIN DESCRIPTIONS

| SOJ PIN NUMBER(S) | $\begin{array}{\|c\|} \hline \text { ZIP PIN } \\ \text { NUMBER(S) } \end{array}$ | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| 14 | 24 | $\overline{\text { RAS }}$ | Input | Row Address Strobe: $\overline{\mathrm{RAS}}$ is used to clock-in the 8 row-address bits and as a strobe for the $\overline{W E L}, \overline{W E H}$ and DQ inputs for the MASKED WRITE function. |
| 29 | 39 | $\overline{\text { CAS }}$ | Input | Column Address Strobe: $\overline{\mathrm{CAS}}$ is used to clock-in the 8 columnaddress bits, enable the DRAM output buffers, and as a strobe for the data inputs on WRITE cycles. |
| 28 | 38 | $\overline{\mathrm{OE}}$ | Input | Output Enable: $\overline{O E}$ enables the output buffers when taken LOW during a READ access cycle. $\overline{\text { RAS }}$ and CAS must be LOW and WEL and $\overline{\text { WEH }}$ must be HIGH before $\overline{\text { OE will control the output }}$ buffers. Otherwise the output buffers are in a high-impedance state. |
| 13 | 23 | $\overline{\mathrm{WE}} / \mathrm{WEL}^{*}$ | Input | Write Enable Lower Byte: WEL on MT4C1668 is WE control for the DQ1 through DQ8 inputs. $\overline{\text { WE }}$ on MT4C1669 controls DQ1 through DQ16 inputs. If ( $\overline{\text { WEL }}$ or $\overline{W E H}$ )/ $\overline{\text { WE }}$ is LOW, the access is a WRITE cycle. The DQ outputs for the byte not being written will remain in a high impedance state (BYTE WRITE cycle only). |
| 12 | 22 | NC/ WEH $^{*}$ | Input | Write Enable Upper Byte: $\overline{W E H}$ on MT4C1668 is WE control for the DQ9 through DQ16 inputs. If ( $\overline{\text { WEL }}$ or $\overline{W E H}$ )/WE is LOW, the access is a WRITE cycle. This pin is a no connect on the MT4C1669 as it has only WORD WRITE access cycles. |
| $\begin{gathered} 15,16,17 \\ 18,19,22 \\ 23,24 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 25,26,27 \\ 28,29,34 \\ 35,36 \end{gathered}$ | A0 to A7 | Input | Address Inputs: These inputs are multiplexed and clocked by $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ to select one 16 -bit word out of the 64 K available words. |
| $\begin{array}{\|c\|} \hline 2,3,4,5,6 \\ 7,8,9,32,33 \\ \\ 34,35,36 \\ 37,38,39 \end{array}$ | $\begin{array}{\|c\|} \hline 11,12,14 \\ 15,16,17 \\ \\ 2,18,19,3 \\ 4,5,6,7,8 \\ 9 \end{array}$ | DQ1-DQ16 | Input/ Output | Data I/O: For WRITE cycles, DQ1-DQ16 act as inputs to the addressed DRAM location. BYTE WRITEs can be performed by using <br> $\bar{W} E L$ or $\overline{W E H}$ to select the byte to be written. For READ access cycles, DQ1-DQ16 act as outputs for the addressed DRAM location. All $16 \mathrm{I} / \mathrm{Os}$ are active for READ cycles (there is no Byte READ cycle). |
| $\begin{gathered} \hline 10,25,26 \\ 27,31 \end{gathered}$ | $\begin{gathered} 1,20,31 \\ 32,37 \end{gathered}$ | NC | - | No Connect: These pins should be either left unconnected or tied to ground. |
| 1,11, 20 | 13, 21, 30 | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 21, 30, 40 | 10, 33, 40 | Vss | Supply | Ground |

## FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 16 addressbits during READ or WRITE cycles. These are entered 8 bits (A0-A7) at a time. $\overline{\text { RAS }}$ is used to latch the first 8 bits and $\overline{\mathrm{CAS}}$ the latter 8 bits.
READ or WRITE cycles on the MT4C1669 are selected with the $\overline{W E}$ input while either $\overline{W E L}$ or $\overline{W E H}$ perform the "信" ' on the MT4C1668. The MT4C1668 "信" function is determined by the first BYTE WRITE ( $\overline{\mathrm{WEL}}$ or $\overline{\mathrm{WEH}}$ ) to transition LOW and the last one to transition back HIGH.

A logic HIGH on $\overline{W E}$ dictates READ mode while a logic LOW on $\overline{W E}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CAS}}$, whichever occurs last. Taking $\overline{W E} L O W$ will initiatea WRITE cycle, selecting DQ1 through DQ16. If $\overline{W E}$ goes LOW prior to CAS going LOW, the output pin(s) remain open (HighZ) until the next $\overline{C A S}$ cycle. If $\overline{W E}$ goes LOW after $\overline{C A S}$ goes LOW and data reaches the output pins, data out $(\mathrm{Q})$ is activated and retains the selected cell data as long as $\overline{\mathrm{CAS}}$ and $\overline{\mathrm{OE}}$ remain LOW (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}}$ ). This late $\overline{\mathrm{WE}}$ pulse results in a READ-WRITE cycle.

The 16 datainputs and 16 data outputs are routed through 16 pins using common I/O, and pin direction is controlled by $\overline{\mathrm{OE}}, \overline{\mathrm{WEL}}$ and $\overline{\mathrm{WEH}}$ (MT4C1668) or $\overline{\mathrm{WE}}$ (MT4C1669).

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A7) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\text { RAS }}$ followed by a column address strobedin by $\overline{\mathrm{CAS}} . \overline{\mathrm{CAS}}$ may be toggled-in by holding $\overline{\mathrm{RASL}} \mathrm{LOW}$ and strobing-in different column addresses, thus executing faster memory cycles. Returning $\overline{\text { RAS }} \mathrm{HIGH}$ terminates the FAST PAGE MODE operation.
Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the $\overline{\mathrm{RAS}}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\mathrm{RAS}}$ cycle (READ, WRITE, $\bar{R} A S-O N L Y, \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$, or HIDDEN REFRESH) so that all 256 combinations of $\overline{\mathrm{RAS}}$ addresses (A0-A7) are executed at least every 32 ms , regardless of sequence. The $\overline{\text { CAS-BEFORE- }} \overline{\mathrm{RAS}}$ refresh cycle will
also invoke the refresh counter and controller for row address control.

## BYTE WRITE DESCRIPTION (MT4C1668 ONLY)

The BYTE WRITE mode is determined by the use of $\overline{W E L}$ and $\overline{W E H}$. Enabling $\overline{\text { WEL }}$ will select a lower BYTE WRITE cycle (DQ1-DQ8) while enabling $\overline{\mathrm{WEH}}$ will select an upper BYTE WRITE (DQ9-DQ16). Enabling both WEL and $\overline{W E H}$ selects a WORD WRITE cycle.

The MT4C1668 may be viewed as two $64 \mathrm{~K} \times 8$ DRAMs which have common input controls, with the exception of the WE input. Figure 1 illustrates the MT4C1668 BYTE and WORD WRITE cycles.

## MASKED WRITE DESCRIPTION (MT4C1669 ONLY)

Every WRITE access cycle may be a MASKED WRITE, depending on the state of $\overline{W E}$ at $\overline{R A S}$ time. A MASKED WRITE is selected when mask data is supplied on the DQ pins and $\overline{W E}$ is LOW at $\overline{R A S}$ time. The MT4C1669 is only word selectable when $\overline{W E}$ is LOW at $\overline{\mathrm{RAS}}$ time (the MT4C1668 does not have a MASKED WRITE cycle function).

The data (mask data) present on the DQ1-DQ16 inputs at $\overline{\mathrm{RAS}}$ time will be written to an internal bit mask data register and will then act as an individual write enable for each of the corresponding $D Q$ inputs. If a LOW (logic " 0 ") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic " 1 ") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At $\overline{C A S}$ time, the bits present on the DQ1-DQ16 inputs will be written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).

New mask data must be supplied each time a MASKED WRITE cycle is initiated, even if the previous cycle's mask was the same mask.

Figure 2 illustrates the MT4C1669 MASKED WRITE operation (Note: $\overline{\mathrm{RAS}}$ or $\overline{\mathrm{CAS}}$ time refers to the time at which $\overline{\mathrm{RAS}}$ or $\overline{\mathrm{CAS}}$ transition from HIGH to LOW).


Figure 1
MT4C1668 WORD AND BYTE WRITE EXAMPLE


Figure 2
MT4C1669 MASKED WRITE EXAMPLE

## TRUTH TABLE: MT4C1668

| Function |  | RAS | CAS | WEL | WEH | $\overline{\mathbf{O} E}$ | Addresses |  | DQs | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {tR }}$ |  |  |  |  | ${ }^{\text {t }} \mathrm{C}$ |  |  |
| Standby |  |  | H | X | X | X | X | X | X | High-Z |  |
| READ |  | L | L | H | H | L | ROW | COL | Valid Data Out |  |
| WRITE: WORD (EARLY-WRITE) |  | L | L | L | L | X | ROW | COL | Valid Data In |  |
| WRITE: LOWER BYTE (EARLY) |  | L | L | L | H | X | ROW | COL | Lower Byte, Valid Data In Upper Byte, High-Z |  |
| WRITE: UPPER BYTE (EARLY) |  | L | L | H | L | X | ROW | COL | Lower Byte, High-Z <br> Upper Byte, Valid Data In |  |
| READ-WRITE |  | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Data In | 1 |
| FAST-PAGE-MODEREAD | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | H | L | ROW | COL | Valid Data Out |  |
|  | 2nd Cycle | L | $H \rightarrow L$ | H | H | L | n/a | COL | Valid Data Out |  |
| FAST-PAGE-MODE EARLY-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | L | X | ROW | COL | Valid Data In | 1 |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | L | X | n/a | COL | Valid Data In | 1 |
| $\begin{aligned} & \text { FAST-PAGE-MODE } \\ & \text { READ-WRITE } \end{aligned}$ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Data In | 1 |
|  | 2nd Cycle | L | $H \rightarrow L$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | n/a | COL | Valid Data Out, Data In | 1 |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | H | L | ROW | COL | Valid Data Out |  |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | L | X | ROW | COL | Valid Data In | 1,2 |
| RAS-ONLY REFRESH |  | L | H | X | X | X | ROW | n/a | High-Z |  |
| CAS-BEFORERAS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | X | X | High-Z |  |

NOTE: 1. These cycles may also be BYTE WRITE cycles (either $\overline{W E L}$ or $\overline{W E H}$ active).
2. EARLY-WRITE only.

## TRUTH TABLE: MT4C1669

| Function |  | RAS | CAS | WE | $\overline{O E}$ | Addresses |  | DQs | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {tR }}$ |  |  |  | ${ }^{\text {t }}$ C |  |  |
| Standby |  |  | H | X | X | X | X | X | High-Z |  |
| READ |  | L | L | H | L | ROW | COL | Valid Data Out |  |
| WRITE: WORD (EARLY-WRITE) |  | L | L | L | X | ROW | COL | Valid Data In | 1 |
| READ-WRITE |  | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Data In | 1 |
| $\begin{aligned} & \text { FAST-PAGE-MODE } \\ & \text { READ } \end{aligned}$ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | L | ROW | COL | Valid Data Out |  |
|  | 2nd Cycle | L | $H \rightarrow L$ | H | L | n/a | COL | Valid Data Out |  |
| FAST-PAGE-MODE EARLY-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | ROW | COL | Valid Data In | 1 |
|  | 2nd Cycle | L | $H \rightarrow L$ | L | X | n/a | COL | Valid Data In | 1 |
| FAST-PAGE-MODE READ-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Data In | 1 |
|  | 2nd Cycle | L | $H \rightarrow L$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | n/a | COL | Valid Data Out, Data In | 1 |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | L | ROW | COL | Valid Data Out |  |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | X | ROW | COL | Valid Data In | 1,2 |
| RAS-ONLY REFRESH |  | L | H | X | X | ROW | n/a | High-Z |  |
| CAS-BEFORERAS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | X | High-Z |  |

NOTE: 1. Data-In will be dependent on the mask provided. Refer to Figure 2.
2. EARLY-WRITE only.

| ABSOLUTE MAXIMUM RATINGS* |
| :---: |
| Voltage on Vcc supply relative to Vss |
| Operating Temperature, $\mathrm{T}_{\mathrm{A}}$ (Ambient) .......... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature (Ceramic) ............... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Storage Temperature (Plastic) ................. $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| ssip |
|  |

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (Notes: $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE CURRENT any input ( $0 \mathrm{~V} \leq \mathrm{V}$ in $\leq \mathrm{Vcc}$, all other pins not under test $=0 \mathrm{~V}$ ) | 11 | -2 | 2 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( Q is disabled; $\mathrm{OV} \leq$ Vout $\leq 5.5 \mathrm{~V}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS | VOH | 2.4 |  | V |  |
|  | Vol. |  | 0.4 | V |  |


|  | SYMBOL | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION |  | -7 | -8 | -10 | UNITS | NOTES |
| STANDBY CURRENT: (TTL) $\left(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{I}} \mathrm{H}\right)$ | IcC1 | 2 | 2 | 2 | mA |  |
| STANDBY CURRENT: (CMOS) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V})$ | lcc2 | 650 | 650 | 650 | $\mu \mathrm{A}$ | 25 |
| OPERATING CURRENT: Random READ/WRITE Average power supply current ( $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\mathrm{t}} \mathrm{RC}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc3 | 100 | 90 | 80 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE Average power supply current ( $\overline{\mathrm{RAS}}=$ VIL; $\overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\text {tPC }}=$ tPC (MIN)) | Icc4 | 75 | 65 | 65 | mA | 3,4 |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY Average power supply current (RAS Cycling, $\overline{\mathrm{CAS}}=\mathrm{V}^{\prime}:{ }^{\text {tR }} \mathrm{RC}={ }^{\text {t }} \mathrm{RC}(\mathrm{MIN})$ ) | Icc5 | 100 | 90 | 80 | mA | 3 |
| REFRESH CURRENT: $\overline{\mathrm{CAS}}$-BEFORE-그AS Average power supply current ( $\overline{R A S}, \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\mathrm{t}} \mathrm{RC}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc6 | 100 | 90 | 80 | mA | 3,5 |
| REFRESH CURRENT: BATTERY BACK-UP (extended refresh cycles). Average power supply current with $\overline{\mathrm{CAS}}=0.2 \mathrm{~V}$ or CBR ; RAS has minimum trAS of $1 \mu \mathrm{~s} ; \mathrm{AO}-\mathrm{A} 7, \overline{\mathrm{WE}}, \overline{\mathrm{OE}}$ and $\mathrm{DQs}=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0.2V (DQs may float); thC $=125 \mu \mathrm{~s}$ | 1 lc 7 | 800 | 800 | 800 | $\mu \mathrm{A}$ | 3 |

## CAPACITANCE

(Note: 2)

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A7 | $\mathrm{Cl}_{11}$ |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}},(\overline{\mathrm{WEL}}, \overline{\mathrm{WEH}}) / \overline{\mathrm{WE}}, \overline{\mathrm{OE}}$ | $\mathrm{Cl}_{12}$ |  | 7 | pF | 2 |
| Input/Output Capacitance: DQ | Cıo |  | 7 | pF | 2 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $6,7,8,9,10,11,12,13,23)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {tRC }}$ | 130 |  | 145 |  | 170 |  | ns |  |
| READ-WRITE cycle time | tRWC | 175 |  | 185 |  | 220 |  | ns |  |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 45 |  | 50 |  | 60 |  | ns |  |
| FAST-PAGE-MODE READ-WRITE cycle time | tPRWC | 95 |  | 100 |  | 120 |  | ns |  |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {t RAC }}$ |  | 70 |  | 80 |  | 100 | ns | 14 |
| Access time from CAS | ${ }^{\text {t }}$ AAC |  | 20 |  | 25 |  | 30 | ns | 15 |
| Output Enable time | ${ }^{\text {toE }}$ |  | 20 |  | 25 |  | 30 | ns |  |
| Access time from column address | ${ }^{\text {t }}$ A |  | 40 |  | 45 |  | 50 | ns |  |
| Access time from $\overline{\text { CAS }}$ precharge | ${ }^{\text {t }}$ CPA |  | 45 |  | 50 |  | 55 | ns |  |
| $\overline{\text { RAS }}$ pulse width | tras | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS pulse width (FAST PAGE MODE) }}$ | ${ }^{\text {trasP }}$ | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {tRSH }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | tRP | 50 |  | 55 |  | 60 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t }}$ CAS | 25 | 100,000 | 30 | 100,000 | 30 | 100,000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 15 |  | ns | 16 |
| $\overline{\text { CAS }}$ precharge time (FAST PAGE MODE) | ${ }^{t} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time | ${ }^{\text {tr }}$ c ${ }^{\text {d }}$ | 20 | 45 | 20 | 50 | 25 | 60 | ns | 17 |
| $\overline{\text { CAS }}$ to $\overline{\text { AAS }}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t RAH }}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {tRAD }}$ | 15 | 35 | 15 | 40 | 15 | 50 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 15 |  | 15 |  | 15 |  | ns |  |
| Column address hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{t} A R$ | 55 |  | 60 |  | 70 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {traL }}$ | 35 |  | 40 |  | 50 |  | ns |  |
| Read command setup time | ${ }^{\text {t } R C S ~}$ | 0 |  | 0 |  | 0 |  | ns | 26 |
| Read command hold time (referenced to CAS) | ${ }^{\text {trCH }}$ | 0 |  | 0 |  | 0 |  | ns | 19, 26 |
| Read command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {tr R H }}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\mathrm{CAS}}$ to output in Low-Z | ${ }^{\text {t }} \mathrm{CL} \mathrm{Z}$ | 0 |  | 0 |  | 0 |  | ns |  |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Output buffer turn-off delay | tofF | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20,30 |
| Output disable time | ${ }^{\text {tod }}$ |  | 10 |  | 12 |  | 20 | ns | 30 |
| Write command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns | 21, 26 |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 15 |  | ns | 26 |
| Write command hold time (referenced to $\overline{\text { RAS }}$ ) | ${ }^{\text {t }}$ WCR | 50 |  | 55 |  | 65 |  | ns | 26 |
| Write command pulse width | tWP | 15 |  | 15 |  | 15 |  | ns | 26 |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {tr }}$ WL | 20 |  | 20 |  | 20 |  | ns | 26 |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }}$ WWL | 20 |  | 20 |  | 20 |  | ns | 26 |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }}$ D H | 15 |  | 15 |  | 20 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{R A S}$ ) | ${ }^{\text {t }} \mathrm{DHR}$ | 50 |  | 55 |  | 65 |  | ns |  |
| $\overline{\text { RAS }}$ to WE delay time | ${ }^{\text {tRWD }}$ | 90 |  | 100 |  | 125 |  | ns | 21 |
| Column address to $\overline{W E}$ delay time | ${ }^{\text {t }}$ AWD | 65 |  | 70 |  | 80 |  | ns | 21 |
| $\overline{\text { CAS }}$ to WE delay time | ${ }^{\text {t }} \mathrm{CWD}$ | 50 |  | 55 |  | 70 |  | ns | 21 |
| Transition time (rise or fall) | ${ }^{\text {T }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9, 10 |
| Refresh period (256 cycles) | ${ }^{\text {tREF }}$ |  | 32 |  | 32 |  | 32 | ms | 28 |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| CAS setup time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| CAS hold time (CAS-BEFORE- $\overline{\text { RAS }}$ refresh) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5 |
| MASKED WRITE command to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ WRS | 0 |  | 0 |  | 0 |  | ns | 26, 27 |
| MASKED WRITE command to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ WRH | 15 |  | 15 |  | 15 |  | ns | 26, 27 |
| Mask data to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t M }}$ | 0 |  | 0 |  | 0 |  | ns | 26 |
| Mask data to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t M }}$ H | 15 |  | 15 |  | 15 |  | ns | 26 |
| $\overline{\mathrm{OE}}$ hold time from $\overline{\mathrm{WE}}$ during READ-MODIFY-WRITE cycle | ${ }^{\text {t }} \mathrm{OEH}$ | 10 |  | 10 |  | 20 |  | ns | 29 |
| $\overline{\mathrm{OE}}$ setup prior to $\overline{\mathrm{RAS}}$ during HIDDEN REFRESH cycle | ${ }^{\text {tor }}$ | 0 |  | 0 |  | 0 |  | ns |  |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=I^{\mathrm{dt}} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured.
7. An initial pause of $100 \mu$ s is required after power-up followed by any eight $\overline{R A S}$ cycles before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 32 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\text {t }} \mathrm{T}=5 \mathrm{~ns}$.
9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between $V_{I H}$ and $V_{\text {IL }}$ (or between VII and $V_{I H}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between VIH and $V_{\text {IL }}$ (or between VIL and $V_{\text {IH }}$ ) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=V_{\text {IL }}$, data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to 2 TTL gates and 50 pF .
14. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, thAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{t} R C D{ }^{t} R C D$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}$, data out (Q) will bemaintained from the previous cycle. To initiate a new cycle and clear the $Q$ buffer, $\overline{C A S}$ must be pulsed HIGH for ${ }^{t}$ CPN.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{\mathrm{t}}$ RAC (MAX) can be met. ${ }^{\mathrm{t}} \mathrm{RCD}$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{t} R C D$ (MAX) limit, then access time is controlled exclusively by ${ }^{\mathrm{t}} \mathrm{CAC}$.
18. Operation within the tRAD (MAX) limit ensures that ${ }^{t} R C D$ (MAX) can be met. ${ }^{t} R A D$ (MAX) is specified as a reference point only; if ${ }^{t} R A D$ is greater than the specified ${ }^{\text {t RAD }}$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} \mathrm{AA}$.
19. Either ${ }^{t} \mathrm{RCH}$ or ${ }^{t}$ RRH must be satisfied for a READ cycle.
20. ${ }^{\text {t OFF }}$ (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VoH or Vol.
21. ${ }^{t} W C S,{ }^{t} R W D,{ }^{t} A W D$ and ${ }^{t} C W D$ are restrictive operating parameters in LATE-WRITE and READ-MODIFY-WRITE cycles only. If ${ }^{\mathrm{t}} \mathrm{WCS} \geq{ }^{\mathrm{t}} \mathrm{WCS}$ (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ${ }^{\mathrm{t}} \mathrm{RWD} \geq^{\mathrm{t}} \mathrm{RWD}$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq^{\mathrm{t}} \mathrm{AWD}$ (MIN) and ${ }^{\mathrm{t}} \mathrm{CWD} \geq{ }^{\mathrm{t}} \mathrm{CWD}$ (MIN), the cycle is a LATEWRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. $\overline{\mathrm{OE}}$ held HIGH and $\overline{\mathrm{WE}}$ taken LOW after $\overline{\mathrm{CAS}}$ goes LOW results in a LATE-WRITE ( $\overline{\mathrm{OE}}$ controlled) cycle.
22. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in early WRITE cycles and $\overline{W E}$ leading edge in LATEWRITE or READ-MODIFY-WRITE cycles.
23. If $\overline{\mathrm{OE}}$ is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case $\overline{W E}=$ LOW and $\overline{\mathrm{OE}}=\mathrm{HIGH}$.
25. All other inputs at Vcc-0.2V.
26. WRITE command is defined as either $\overline{\mathrm{WEL}}$ or $\overline{\mathrm{WEH}}$ or both going LOW on the MT4C1668. WRITE command is defined as $\overline{\overline{V V E}}$ going LOVV on the MT4C1669.
27. Must be held LOW to ensure MASKED WRITE is enabled and must be held HIGH to ensure MASKED WRITE is disabled.
28. The refresh period may be extended to 8 ms without experiencing problems.
29. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ${ }^{t} \mathrm{OD}$ and ${ }^{\mathrm{t}} \mathrm{OEH}$ met $\overline{\mathrm{OE}}$ HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if $\overline{\text { CAS }}$ remains LOW and $\overline{\mathrm{OE}}$ is taken back LOW after ${ }^{\text {t}} \mathrm{OEH}$ is met. If $\overline{\mathrm{CAS}}$ goes HIGH prior to $\overline{\mathrm{OE}}$ going back LOW, the DQs will remain open.
30. The DQs open during READ cycles once ${ }^{\mathrm{t}} \mathrm{OD}$ or ${ }^{\mathrm{t}} \mathrm{OFF}$ occur. If $\overline{\mathrm{CAS}}$ goes HIGH first, $\overline{\mathrm{OE}}$ becomes a don't care. If $\overline{\mathrm{OE}}$ goes HIGH and $\overline{\mathrm{CAS}}$ stays LOW, $\overline{\mathrm{OE}}$ is not a don't care; and the DQs will provide the previously read data if $\overline{\mathrm{OE}}$ is taken back LOW (while $\overline{\mathrm{CAS}}$ remains LOW).

## READ CYCLE



EARLY-WRITE CYCLE


NOTE: 1. Applies to MT4C1669 only; $\overline{\text { WEL, }} \overline{\text { WEH }}$ and DQ inputs on MT4C1668 are don't care at $\overline{\text { RAS }}$ time. $\overline{\text { WE }}$ selects between normal WRITE and MASKED WRITE at $\overline{\text { RAS }}$ time. The DQ inputs are don't care for a normal WRITE, $\overline{\text { WE HIGH at } \overline{R A S} \text { time. The DQ inputs provide the mask data at } \overline{\text { RAS }} \text { time for a MASKED }}$ WRITE, $\overline{\text { WE LOW }}$ at $\overline{\text { RAS }}$ time.

READ-WRITE CYCLE
(LATE-WRITE and READ-MODIFY-WRITE CYCLES)


FAST-PAGE-MODE READ CYCLE


NOTE: 1. Applies to MT4C1669 only; $\overline{\text { WEL }} \overline{\text { WEH }}$ and DQ inputs on MT4C1668 are don't care at $\overline{R A S}$ time. $\overline{\text { WE }}$ selects between normal WRITE and MASKED WRITE at $\overline{\text { RAS }}$ time. The DQ inputs are don't care for a normal WRITE, $\overline{\text { WE HIGH at } \overline{R A S} \text { time. The DQ inputs provide the mask data at } \overline{\text { RAS }} \text { time for a MASKED }}$ WRITE, $\overline{\text { WE }}$ LOW at $\overline{R A S}$ time.

FAST-PAGE-MODE EARLY-WRITE CYCLE


## FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



NOTE: 1. Applies to MT4C1669 only; WEL, $\overline{\text { WEH }}$ and DQ inputs on MT4C1668 are don't care at $\overline{\text { RAS }}$ time. $\overline{\text { WE }}$ selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are don't care for a normal WRITE, $\overline{\text { WE }}$ HIGH at $\overline{\text { RAS }}$ time. The DQ inputs provide the mask data at $\overline{R A S}$ time for a MASKED WRITE, $\overline{\text { WE LOW at }} \overline{\mathrm{RAS}}$ time.

## RAS-ONLY REFRESH CYCLE

(ADDR $=\mathrm{A}_{0}-\mathrm{A}_{7}, \overline{\mathrm{OE}} ; \overline{\mathrm{WEL}}, \overline{\mathrm{WEH}}$ or $\overline{\mathrm{WE}}=$ DON'T CARE)


CAS-BEFORE-RAS REFRESH CYCLE ( $\mathrm{A}_{0}-\mathrm{A}_{7}$; $\overline{\mathrm{WEL}}, \overline{\mathrm{WEH}}$ or $\overline{\mathrm{WE}}$, and $\overline{\mathrm{OE}}=\mathrm{DON}$ 'T CARE $)$


DQ


HIDDEN REFRESH CYCLE
( $\bar{W} E L, \overline{W E H}$ or $\overline{W E}=$ HIGH; $\overline{O E}=$ LOW $)^{24}$


UNDEFINED

## DRAM

## 64K x 16 DRAM <br> STATIC COLUMN MODE

## FEATURES

- Industry standard $\times 16$ pinouts, timing, functions and packages
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 3 mW standby; 225 mW active, typical
- All device pins are fully TTL and CMOS compatible
- 256 cycle refresh in 4 ms
- Refresh modes: $\overline{\text { RAS-ONLY, } \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{R A S}}$ and HIDDEN
- Optional STATIC COLUMN MODE access cycle
- 2 TTL Load output drive capability
- BYTE WRITE access cycle (MT4C1670 only)
- NONPERSISTENT MASKED WRITE access cycle (MT4C1671 only)


## OPTIONS

- Timing

70ns access
80ns access
100ns access

- Write Enable

Byte or Word
Word only

- Mask Enable

Not Available
Always Available

- Packages

Plastic SOJ (400mil)
Plastic ZIP (450mil)

## MARKING

- 7
- 8
-10
MT4C1670
MT4C1671

MT4C1670
MT4C1671

DJ
Z

## GENERAL DESCRIPTION

The MT4C1670/1 are randomly accessed solid-state memories containing $1,048,576$ bits organized in a x 16 configuration. The MT4C1670 has both BYTE and WORD WRITE access cycles while the MT4C1671 has only WORD WRITE access cycles.

The MT4C1670 functions in a similar manner to the MT4C1671 except that replacing $\overline{W E}$ with $\overline{\text { WEL }}$ and $\overline{\text { WEH }}$ allows for BYTE WRITE access cycles. WEL and $\overline{\text { WEH }}$ function in an identical manner to $\overline{\mathrm{WE}}$ : either $\overline{\mathrm{WEL}}$ or $\overline{\mathrm{WEH}}$ will generate an internal $\overline{\mathrm{WE}}$ through an AND gate (Inverted NOR gate).

> *MT4C1671/MT4C1670
> ** NC = No Connect

TheMT4C1670 " $\overline{\mathrm{WE}}$ " function and timing are determined by the first BYTE WRITE ( $\overline{\mathrm{WEL}}$ or $\overline{\mathrm{WEH}}$ ) to transition LOW and the last to transition back HIGH. Use of only one of the tworesults in a BYTEWRITE cycle: $\overline{W E L}$ transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) or $\overline{W E H}$ transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16).

TheMT4C1671 hasNONPERSISTENT MASKEDWRITE capability.

## PIN ASSIGNMENT (Top View)

40-Pin SOJ (E-12)

| Vcc $1 \cdot$ | 40 | Vss |
| :---: | :---: | :---: |
| DQ1 2 | 39 | DQ16 |
| DQ2 43 | 38 | DQ15 |
| DQ3 $¢ 4$ | 37 | DQ14 |
| DQ4 5 | 36 | DQ13 |
| DQ5 6 | 35 | DQ12 |
| DQ6 77 | 34 | DQ11 |
| DQ7 48 | 33 | DQ10 |
| DQ8 59 | 32 | DQ9 |
| NC 10 | 31 | NC |
| Vcc 11 | 30 | Vss |
| *NC/WEH 12 | 29 | CAS |
| *WE/WEL 13 | 28 | OE |
| $\overline{\text { RAS }} 14$ | 27 | **N |
| AO 15 | 26 | NC |
| A1 16 | 25 | NC |
| A2 17 | 24 | A7 |
| АЗ 18 | 23 | A6 |
| A4 19 | 22 | A5 |
| voc 20 | 21 | Vss |

 40-Pin Zip (C-6)
Vss

## FUNCTIONAL BLOCK DIAGRAM



PIN DESCRIPTIONS

| SOJ PIN NUMBER(S) | ZIP PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| 14 | 24 | $\overline{\text { RAS }}$ | Input | Row Address Strobe: $\overline{\text { RAS }}$ is used to clock-in the 8 row-address bits and as a strobe for the $\overline{W E L}, \overline{W E H}$ and DQ inputs for the MASKED WRITE function. |
| 29 | 39 | $\overline{\text { CAS }}$ | Input | Column Address Strobe: $\overline{\text { CAS }}$ is used to clock-in the 8 columnaddress bits, enable the DRAM output buffers, and as a strobe for the data inputs on WRITE cycles. |
| 28 | 38 | $\overline{O E}$ | Input | Output Enable: $\overline{O E}$ enables the output buffers when taken LOW during a READ access cycle. $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ must be LOW and WEL and WEH must be HIGH before $\overline{\text { OE will control the output }}$ buffers. Otherwise the output buffers are in a high-impedance state. |
| 13 | 23 | $\overline{\text { WE/ }}$ WEL ${ }^{*}$ | Input | Write Enable Lower Byte: WEL on MT4C1670 is the $\overline{\text { WE }}$ control for the DQ1 through DQ8 inputs. WE on MT4C1671 controls DQ1 through DQ16 inputs. If ( $\overline{\mathrm{WEL}}$ or $\overline{\mathrm{WEH}}) / \overline{\mathrm{WE}}$ is LOW, the access is a WRITE cycle. The DQ outputs for the byte not being written will remain in a high-impedance state (BYTE WRITE cycle only). |
| 12 | 22 | NC/WEH* | Input | Write Enable Upper Byte: $\overline{\mathrm{WEH}}$ on MT4C1670 is $\overline{\mathrm{WE}}$ control for the DQ9 through DQ16 inputs. If ( $\overline{\mathrm{WEL}}$ or $\overline{\mathrm{WEH}}$ ) $\overline{\mathrm{WE}}$ is LOW, the access is a WRITE cycle. This pin is a no connect on the MT4C1671 as it has only WORD WRITE access cycles. |
| $\begin{gathered} 15,16,17 \\ 18,19,22 \\ 23,24 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 25,26,27 \\ 28,29,34 \\ 35,36 \\ \hline \end{gathered}$ | A0 to A7 | Input | Address Inputs: These inputs are multiplexed and clocked by $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ to select one 16 -bit word out of the 64 K available words. |
| $2,3,4,5,6$ $7,8,9,32,33$ $34,35,36$ $37,38,39$ | $\begin{aligned} & 11,12,14 \\ & 15,16,17 \\ & 2,18,19,3 \\ & 4,5,6,7,8 \end{aligned}$ | DQ1-DQ16 | Input/ Output | Data I/O: For WRITE cycles, DQ1-DQ16 act as inputs to the addressed DRAM location. BYTE WRITEs can be performed by using WEL or WEH to select the byte to be written. For READ access cycles, DQ1-DQ16 act as outputs for the addressed DRAM location. All 16 I/Os are active for READ cycles (there is no BYTE READ cycle). |
| $\begin{gathered} 10,25,26 \\ 27,31 \\ \hline \end{gathered}$ | $\begin{gathered} 1,20,31 \\ 32,37 \end{gathered}$ | NC | - | No Connect: These pins should be either left unconnected or tied to ground. |
| 1,11, 20 | 13, 21, 30 | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 21, 30, 40 | 10, 33, 40 | Vss | Supply | Ground |

## FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 16 addressbits during READ or WRITE cycles. These are entered 8 bits (A0-A7) at a time. $\overline{\mathrm{RAS}}$ is used to latch the first 8 bits and $\overline{\text { CAS }}$ the latter 8 bits.

READ or WRITE cycles on the MT4C1671 are selected with the $\overline{W E}$ input while either $\overline{W E L}$ or $\overline{W E H}$ perform the " $\overline{\mathrm{WE}}$ " on the MT4C1670. The MT4C1670 " $\overline{\mathrm{WE}}$ " function is determined by the first BYTE WRITE ( $\overline{\mathrm{WEL}}$ or $\overline{\mathrm{WEH}}$ ) to transition LOW and the last one to transition back HIGH.

A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ mode while a logic LOW on $\overline{W E}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. Taking $\overline{W E} L O W$ will initiateaWRITE cycle, selecting DQ1 through DQ16. If $\overline{W E}$ goes LOW prior to $\overline{\text { CAS }}$ going LOW, the output pin(s) remain open (HighZ) until the next $\overline{\mathrm{CAS}}$ cycle. If $\overline{\mathrm{WE}}$ goes LOW after $\overline{\mathrm{CAS}}$ goes LOW and data reaches the output pins, data out $(\mathrm{Q})$ is activated and retains the selected cell data as long as $\overline{\mathrm{CAS}}$ and $\overline{\mathrm{OE}}$ remain LOW (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}}$ ). This late $\overline{\mathrm{WE}}$ pulse results in a READ-WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O, and pin direction is controlled by $\overline{\mathrm{OE}}, \overline{\mathrm{WEL}}$ and $\overline{\mathrm{WEH}}$ (MT4C1670) or $\overline{\mathrm{WE}}$ (MT4C1671).

STATIC COLUMN operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A7) defined page boundary. The STATIC COLUMN cycle is always initiated with a row address strobed-in by $\overline{\mathrm{RAS}}$ followed by a column address strobedin by $\overline{\mathrm{CAS}}$. By holding $\overline{\mathrm{RAS}}$ and $\overline{\text { CAS }}$ LOW, different column addresses may be given for executing faster STATIC COLUMN READ cycles. Faster STATIC COLUMN WRITE cycles must have $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{WE}}$ toggled strobing-in the different column addresses. Returning $\overline{\mathrm{RAS}}$ HIGH terminates the STATIC COLUMN operation.

Returning $\overline{R A S}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycleduring the $\overline{\mathrm{RAS}}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle (READ, WRITE, $\overline{R A S}-O N L Y, \overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$, or HIDDEN REFRESH) so that all 256 combinations of $\overline{\mathrm{RAS}}$ addresses (A0-A7) are executed at least every 4 ms , regardless
of sequence. The $\overline{\text { CAS-BEFORE-RAS }}$ refresh cycle will also invoke the refresh counter and controller for row address control.

## BYTE WRITE ACCESS CYCLE (MT4C1670 ONLY)

The BYTE WRITE mode is determined by the use of $\overline{\mathrm{WEL}}$ and $\overline{\mathrm{WEH}}$. Enabling $\overline{\mathrm{WEL}}$ will select a lower BYTE WRITE cycle (DQ1-DQ8) while Enabling $\overline{\mathrm{WEH}}$ will select an upper BYTE WRITE (DQ9-DQ16). Enabling both WEL and WEH selects a WORD WRITE cycle.

The MT4C1670 may be viewed as two $64 \mathrm{~K} \times 8$ DRAMS, which have common input controls, with the exception of the WE input. Figure 1 illustrates the MT4C1670 BYTE and WORD WRITE cycles.

## MASKED WRITE DESCRIPTION (MT4C1671 ONLY)

Every WRITE access cycle may be a MASKED WRITE, depending on the state of $\overline{W E}$ at $\overline{R A S}$ time. A MASKED WRITE is selected when mask data is supplied on the DQ pins and $\overline{W E}$ is LOW at $\overline{\mathrm{RAS}}$ time. The MT4C1671 is only word selectable when $\overline{W E}$ is LOW at $\overline{\mathrm{RAS}}$ time (the MT4C1670 does not have a MASKED WRITE cycle function).

The data (mask data) present on the DQ1-DQ16 inputs at $\overline{\text { RAS }}$ time will be written to an internal bit mask data register and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic " 0 ") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic " 1 ") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At $\overline{C A S}$ time, the bits present on the DQ1-DQ16 inputs will be written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).

New mask data must be supplied each time a MASKED WRITE cycle is initiated, even if the previous cycle's mask was the same mask.

Figure 2 illustrates the MT4C1671 MASKED WRITE operation (Note: $\overline{R A S}$ or $\overline{\mathrm{CAS}}$ time refers to the time at which $\overline{\text { RAS }}$ or $\overline{\text { CAS }}$ transition from HIGH to LOW).


Figure 1
MT4C1670 WORD AND BYTE WRITE EXAMPLE


LOWER BYTE (DQ1-DQ8) OF WORD

UPPER BYTE (DQ9-DQ16) OF WORD


Figure 2
MT4C1671 MASKED WRITE EXAMPLE

TRUTH TABLE: MT4C1670

| Function |  | RAS | CAS | WEL | WEH | OE | Addresses |  | DQs | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {t }}$ R |  |  |  |  | ${ }^{\text {t }}$ C |  |  |
| Standby |  |  | H | X | X | X | X | X | X | High-Z |  |
| READ |  | L | L | H | H | L | ROW | COL | Valid Data Out |  |
| WRITE: WORD (EARLY-WRITE) |  | L | L | L | L | X | ROW | COL | Valid Data In |  |
| WRITE: LOWER BYTE (EARLY) |  | L | L | L | H | X | ROW | COL | Lower Byte, Valid Data In Upper Byte, High-Z |  |
| WRITE: UPPER BYTE (EARLY) |  | L | L | H | L | X | ROW | COL | Lower Byte, High-Z Upper Byte, Valid Data In |  |
| READ-WRITE |  | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Data In | 1 |
| STATIC COLUMNREAD | 1st Cycle | L | L | H | H | L | ROW | COL | Valid Data Out |  |
|  | 2nd Cycle | L | L | H | H | L | n/a | COL | Valid Data Out |  |
| STATIC COLUMN EARLY-WRITE | 1st Cycle | L | L | L | L | X | ROW | COL | Valid Data In | 1 |
|  | 2nd Cycle | L | *L | * L | *L | X | n/a | COL | Valid Data In | 1,3 |
| STATIC COLUMN READ-WRITE | 1st Cycle | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $L \rightarrow H$ | ROW | COL | Valid Data Out, Data In | 1 |
|  | 2nd Cycle | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $L \rightarrow H$ | n/a | COL | Valid Data Out, Data In | 1 |
| $\begin{array}{\|l\|} \hline \text { HIDDEN } \\ \text { REFRESH } \\ \hline \end{array}$ | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | H | L | ROW | COL | Valid Data Out |  |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | L | X | ROW | COL | Valid Data In | 1,2 |
| RAS-ONLY REFRESH |  | L | H | X | X | X | ROW | $\mathrm{n} / \mathrm{a}$ | High-Z |  |
| CAS-BEFORERAS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | X | X | High-Z |  |

NOTE: 1. These cycles may also be BYTE WRITE cycles (either $\overline{W E L}$ or $\overline{W E H}$ active).
2. EARLY-WRITE only.
3. Either $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{WEL}}$ / $\overline{\mathrm{WEH}}$ must latch in each additional column address and input data.

TRUTH TABLE: MT4C1671

| Function |  | RAS | CAS | WE | OE | Addresses |  | DQs | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {t }}$ R |  |  |  | ${ }^{t} \mathrm{C}$ |  |  |
| Standby |  |  | H | X | X | X | X | X | High-Z |  |
| READ |  | L | L | H | L | ROW | COL | Valid Data Out |  |
| WRITE: WORD (EARLY-WRITE) |  | L | L | L | X | ROW | COL | Valid Data In | 1 |
| READ-WRITE |  | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Data In | 1 |
| STATIC COLUMN READ | 1st Cycle | L | L | H | L | ROW | COL | Valid Data Out |  |
|  | 2nd Cycle | L | L | H | L | n/a | COL | Valid Data Out |  |
| STATIC COLUMN EARLY-WRITE | 1st Cycle | L | L | L | X | ROW | COL | Valid Data In | 1 |
|  | 2nd Cycle | L | * L | * | X | n/a | COL | Valid Data In | 1,3 |
| STATIC COLUMN READ-WRITE | 1st Cycle | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L $\rightarrow$ H | ROW | COL | Valid Data Out, Data In | 1 |
|  | 2nd Cycle | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | n/a | COL | Valid Data Out, Data In | 1 |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | L | ROW | COL | Valid Data Out |  |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | X | ROW | COL | Valid Data In | 1,2 |
| RAS-ONLY REFRESH |  | L | H | X | X | ROW | n/a | High-Z |  |
| CAS-BEFORERAS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | X | High-Z |  |

NOTE: 1. Data-in will be dependent on the mask provided. Refer to Figure 2.
2. EARLY-WRITE only.
3. Either $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{WEL}} / \overline{\mathrm{WEH}}$ must latch in each additional column address and input data.

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.4 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE CURRENT any input ( $0 \mathrm{~V} \leq \mathrm{Vin} \leq \mathrm{Vcc}$, all other pins not under test $=0 \mathrm{~V}$ ) | 11 | -2 | 2 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( Q is disabled; $0 \mathrm{~V} \leq$ Vout $\leq 5.5 \mathrm{~V}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS | Vон | 2.4 |  | V |  |
| Output High Voltage (lout $=-5 \mathrm{~mA}$ ) <br> Output Low Voltage (lout $=4.2 \mathrm{~mA}$ ) | Vol |  | 0.4 | V |  |


|  | SYMBOL | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION |  | -7 | -8 | -10 | UNITS | NOTES |
| STANDBY CURRENT: (TTL) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}(\mathrm{H})$ | Icc1 | 2 | 2 | 2 | mA |  |
| STANDBY CURRENT: (CMOS) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V})$ | Icc2 | 1 | 1 | 1 | mA | 25 |
| OPERATING CURRENT: Random READ/WRITE <br> Average power supply current <br> ( $\overline{\text { RAS }}, \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\text {tRC }}={ }^{\text {tRC }}$ (MIN)) | Icc3 | 110 | 100 | 90 | mA | 3, 4 |
| OPERATING CURRENT: STATIC COLUMN <br> Average power supply current ( $\overline{R A S}=\mathrm{VIL} ; \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}$ (MIN)) | Icc4 | 80 | 70 | 60 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS-ONLY }}$ <br> Average power supply current ( $\overline{\text { RAS }}$ Cycling, $\overline{\mathrm{CAS}}=\mathrm{VIH}^{\mathrm{t}}{ }^{\mathrm{R} C}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc5 | 110 | 100 | 90 | mA | 3 |
| REFRESH CURRENT: $\overline{\mathrm{CAS}}$-BEFORE- $\overline{R A S}$ Average power supply current <br>  | Icc6 | 110 | 100 | 90 | mA | 3, 5 |

## CAPACITANCE

(Note: 2)

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A7 | Cl 1 |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WEL}, \overline{\mathrm{WEH}}) / \overline{\mathrm{WE}, \overline{\mathrm{OE}}}} \mathbf{\mathrm { Cl } 2}$ |  | 7 | pF | 2 |  |
| Input/Output Capacitance: DQ | ClO |  | 7 | pF | 2 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $6,7,8,9,10,11,12,13,23)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t }} \mathrm{RC}$ | 130 |  | 145 |  | 170 |  | ns |  |
| READ-WRITE cycle time | ${ }^{\text {tr }}$ WC | 175 |  | 185 |  | 220 |  | ns |  |
| STATIC-COLUMN READ or WRITE cycle time | ${ }^{\text {t }} \mathrm{SC}$ | 45 |  | 50 |  | 60 |  | ns |  |
| STATIC-COLUMN READ-WRITE cycle time | 'SRMC | 95 |  | 100 |  | 120 |  | ns |  |
| Access time from $\overline{\mathrm{RAS}}$ | trAC |  | 70 |  | 80 |  | 100 | ns | 14 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ CAC |  | 25 |  | 30 |  | 35 | ns | 15 |
| Output Enable time | ${ }^{\text {tob }}$ |  | 20 |  | 25 |  | 30 | ns |  |
| Access time from column address | ${ }^{\text {t }}$ A |  | 40 |  | 45 |  | 50 | ns |  |
| Access time from CAS precharge | ${ }^{\text {t }}$ CPA |  | 45 |  | 50 |  | 55 | ns |  |
| RAS pulse width | tRAS | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| RAS pulse width (STATIC COLUMN) | ${ }^{\text {trasC }}$ | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| RAS hold time | ${ }^{\text {t }}$ RSH | 20 |  | 20 |  | 25 |  | ns |  |
| RAS precharge time | trP | 50 |  | 55 |  | 60 |  | ns |  |
| CAS pulse width | ${ }^{\text {t }}$ CAS | 25 | 100,000 | 30 | 100,000 | 30 | 100,000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 70 |  | 80 |  | 100 |  | ns |  |
| CAS precharge time | ${ }^{\text {t }} \mathrm{CPN}$ | 10 |  | 10 |  | 15 |  | ns | 16 |
| CAS precharge time (STATIC COLUMN) | ${ }^{\text {t }} \mathrm{C}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time | ${ }^{\text {tR }}$ CD | 20 | 45 | 20 | 50 | 25 | 60 | ns | 17 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {tRAH }}$ | 10 |  | 12 |  | 12 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {tRAD }}$ | 15 | 35 | 15 | 40 | 15 | 50 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{t} \mathrm{CAH}$ | 15 |  | 15 |  | 15 |  | ns |  |
| Column address hold time (referenced to RAS) | ${ }^{\text {t }}$ AR | 55 |  | 60 |  | 70 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {traL }}$ | 35 |  | 40 |  | 50 |  | ns |  |
| Read command setup time | ${ }^{\text {tRCS }}$ | 0 |  | 0 |  | 0 |  | ns | 26 |
| Read command hold time (referenced to CAS) | ${ }^{\text {tr }} \mathrm{RCH}$ | 0 |  | 0 |  | 0 |  | ns | 19, 26 |
| Read command hold time (referenced to $\overline{\text { RAS }})$ | ${ }^{\text {tRRH }}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t }}$ CLZ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {torF }}$ | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20,30 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $6,7,8,9,10,11,12,13,23)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Output Disable time | ${ }^{\text {tod }}$ |  | 10 |  | 12 |  | 20 | ns | 30 |
| Write command setup time | tWCS | 0 |  | 0 |  | 0 |  | ns | 21, 26 |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 15 |  | ns | 26 |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ WCR | 50 |  | 55 |  | 65 |  | ns | 26 |
| Write command pulse width | tWP | 15 |  | 15 |  | 15 |  | ns | 26 |
| Write command to RAS lead time | ${ }^{\text {tr }}$ WL | 20 |  | 20 |  | 20 |  | ns | 26 |
| Write command to CAS lead time | ${ }^{\text {t }}$ 'WL | 20 |  | 20 |  | 20 |  | ns | 26 |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 15 |  | 15 |  | 20 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ HR | 50 |  | 55 |  | 65 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { WE }}$ delay time | ${ }^{\text {tRWD }}$ | 90 |  | 100 |  | 125 |  | ns | 21 |
| Column address to WE delay time | ${ }^{\text {taW }}$ D | 65 |  | 70 |  | 80 |  | ns | 21 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | 50 |  | 55 |  | 70 |  | ns | 21 |
| Transition time (rise or fall) | 'T | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period (256 cycles) | ${ }^{\text {t }}$ REF |  | 4 |  | 4 |  | 4 | ms | 28 |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ precharge time | ${ }^{\text {tr PPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| CAS setup time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE- $\overline{\text { RAS }}$ refresh) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5 |
| MASKED WRITE command to $\overline{\text { RAS }}$ setup time | tWRS | 0 |  | 0 |  | 0 |  | ns | 26, 27 |
| MASKED WRITE command to $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {t }}$ WRH | 15 |  | 15 |  | 15 |  | ns | 26, 27 |
| Mask data to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ MS | 0 |  | 0 |  | 0 |  | ns | 26 |
| Mask data to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }} \mathrm{MH}$ | 15 |  | 15 |  | 15 |  | ns | 26 |
| $\overline{O E}$ hold time from $\overline{W E}$ during READ-MODIFY-WRITE cycle | toEH | 10 |  | 10 |  | 20 |  | ns | 29 |
| $\overline{\mathrm{OE}}$ setup prior to $\overline{\mathrm{RAS}}$ during HIDDEN REFRESH cycle | tord | 0 |  | 0 |  | 0 |  | ns |  |
| Last WRITE to column address delay | ${ }^{\text {t }}$ LWAD | 20 | 30 | 20 | 35 | 25 | 45 | ns |  |
| Last WRITE to column address hold time | ${ }^{\text {t }}$ AHLW | 65 |  | 75 |  | 95 |  | ns |  |
| Access time from last WRITE | ${ }^{\text {t }}$ ALW | 65 |  | 75 |  | 95 |  | ns |  |
| Output data enable from WRITE | tow | ${ }^{\text {t }} \mathrm{A}$ A |  | ${ }^{\text {t }} \mathrm{A}$ A |  | ${ }^{\text {t }} \mathrm{A}$ A |  | ns |  |
| Output data hold time from column address | ${ }^{\mathrm{t}} \mathrm{AOH}$ | 5 |  | 5 |  | 5 |  | ns |  |
| $\overline{\text { RAS }}$ hold time referenced to $\overline{\mathrm{OE}}$ | ${ }^{\text {t }} \mathrm{ROH}$ | 10 |  | 10 |  | 10 |  | ns |  |
| Column address hold time referenced to $\overline{\text { RAS }} \mathrm{HIGH}$ | ${ }^{t} \mathrm{AH}$ | 5 |  | 5 |  | 10 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width in STATIC-COLUMN mode | ${ }^{t} \mathrm{CSC}$ | ${ }^{\text {t }} \mathrm{CAS}$ |  | ${ }^{\text {t }} \mathrm{CAS}$ |  | ${ }^{\text {t }} \mathrm{CAS}$ |  | ns |  |
| Write command in active time | tWI | 10 |  | 10 |  | 10 |  | ns |  |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=I d t / d v$ with $d v=3 V$ and $\mathrm{VCC}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured.
7. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{\text { RAS }}$ cycles before proper device operation is assured. The eight $\overline{\mathrm{RAS}}$ cycle wake-up should be repeated any time the 4 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\dagger} T=5 \mathrm{~ns}$.
9. $\mathrm{V}_{\mathrm{IH}}$ (MIN) and $\mathrm{V}_{\mathrm{IL}}(\mathrm{MAX})$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{I H}$ and $V_{I L}$ (or between VIL and $V_{\mathrm{IH}}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $V_{I H}$ and $V_{\text {IL }}$ (or between $V_{\text {IL }}$ and $V_{I H}$ ) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\pi}$, data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to 2 TTL gates and 50 pF .
14. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ ( $M A X$ ). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t} R A C$ will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{t} R C D \geq{ }^{t} R C D$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}$, data out $(\mathrm{Q})$ will bemaintained from the previous cycle. To initiate a new cycle and clear the $Q$ buffer, $\overline{C A S}$ must be pulsed HIGH for ${ }^{t} \mathrm{CPN}$.
17. Operation within the ${ }^{t} R C D$ ( MAX) limit ensures that ${ }^{t}$ RAC (MAX) can be met. ${ }^{t} R C D(M A X)$ is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{\text {t RCD }}$ ( MAX) limit, then access time is controlled exclusively by ${ }^{t}$ CAC.
18. Operation within the ${ }^{\text {t RAD }}$ (MAX) limit ensures that ${ }^{t} R C D$ ( MAX) can be met. ${ }^{t} R A D ~(M A X) ~ i s ~ s p e c i f i e d ~ a s ~$ a reference point only; if ${ }^{t} R A D$ is greater than the specified ${ }^{\text {t RAD }}$ ( MAX) limit, then access time is controlled exclusively by ${ }^{\text {t}} \mathrm{AA}$.
19. Either ${ }^{t} \mathrm{RCH}$ or ${ }^{t}$ RRH must be satisfied for a READ cycle.
20. ${ }^{\text {t }}$ OFF ( MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or Vol.
21. ${ }^{t} W C S,{ }^{t} R W D,{ }^{t} A W D$ and ${ }^{t} C W D$ are restrictive operating parameters in LATE-WRITE and READ-MODIFY-WRITE cycles only. If ${ }^{\mathrm{t}} \mathrm{WCS} \geq{ }^{\mathrm{t}} \mathrm{WCS}$ (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ${ }^{\mathrm{t}} \mathrm{RWD} \geq^{\mathrm{t}} \mathrm{RWD}$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq^{\mathrm{t}} \mathrm{AWD}$ (MIN) and ${ }^{\mathrm{t}} \mathrm{CWD} \geq{ }^{\mathrm{t}} \mathrm{CWD}$ (MIN), the cycle is a LATEWRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. $\overline{\mathrm{OE}}$ held HIGH and $\overline{\mathrm{WE}}$ taken LOW after $\overline{\mathrm{CAS}}$ goes LOW results in a LATE-WRITE ( $\overline{\mathrm{OE}}$ controlled) cycle.
22. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in early WRITE cycles and $\overline{W E}$ leading edge in LATEWRITE or READ-MODIFY-WRITE cycles.
23. If $\overline{\mathrm{OE}}$ is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case $\overline{W E}=$ LOW and $\overline{\mathrm{OE}}=\mathrm{HIGH}$.
25. All other inputs at Vcc -0.2 V .
26. WRITE command is defined as either $\overline{\text { VEL }}$ or $\overline{\text { VEH }}$ or both going LOW on the MT4C1670. WRITE command is defined as $\overline{W E}$ going LOW on the MT4C1671.
27. Must be held LOW to ensure MASKED WRITE is enabled and must be held HIGH to ensure MASKED WRITE is disabled.
28. The refresh period may be extended to 8 ms without experiencing problems.
29. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ${ }^{\text {t OD }}$ and ${ }^{\mathrm{t}} \mathrm{OEH}$ met $\overline{\mathrm{OE}}$ HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if $\overline{\text { CAS }}$ remains LOW and $\overline{\mathrm{OE}}$ is taken back LOW after ${ }^{\text {t }} \mathrm{OEH}$ is met. If $\overline{\mathrm{CAS}}$ goes HIGH prior to $\overline{\mathrm{OE}}$ going back LOW, the DQs will remain open.
30. The DQs open during READ cycles once ${ }^{\text {t OD }}$ or ${ }^{t} \mathrm{OFF}$ occur. If $\overline{\mathrm{CAS}}$ goes HIGH first, $\overline{\mathrm{OE}}$ becomes a don't care. If $\overline{\mathrm{OE}}$ goes HIGH and $\overline{\mathrm{CAS}}$ stays LOW, $\overline{\mathrm{OE}}$ is not a don't care; and the DQs will provide the previously read data if $\overline{\mathrm{OE}}$ is taken back LOW (while $\overline{\mathrm{CAS}}$ remains LOW).

## READ CYCLE



EARLY-WRITE CYCLE


NOTE: 1. Applies to MT4C1671 only; $\overline{\text { WEL }}, \overline{\text { WEH }}$ and DQ inputs on MT4C1670 are don't care at $\overline{R A S}$ time. $\overline{\text { WE }}$ selects between normal WRITE and MASKED WRITE at $\overline{\text { RAS }}$ time. The DQ inputs are don't care for a normal WRITE, $\overline{\text { WE }}$ HIGH at $\overline{\mathrm{RAS}}$ time. The DQ inputs provide the mask data at $\overline{\mathrm{RAS}}$ time for a MASKED WRITE, $\overline{\text { WE }}$ LOW at $\overline{R A S}$ time.

## READ-WRITE CYCLE

(LATE-WRITE and READ-MODIFY-WRITE CYCLES)


STATIC-COLUMN READ CYCLE


NOTE: 1. Applies to MT4C1671 only; $\overline{\text { WEL, }} \overline{\text { WEH }}$ and DQ inputs on MT4C1670 are don't care at $\overline{R A S}$ time. $\overline{\text { WE }}$ selects between normal WRITE and MASKED WRITE at $\overline{\text { RAS }}$ time. The DQ inputs are don't care for a normal WRITE, $\overline{\text { WE HIGH at } \overline{\text { RAS }} \text { time. The DQ inputs provide the mask data at } \overline{\text { RAS }} \text { time for a MASKED }}$ WRITE, $\overline{W E}$ LOW at $\overline{R A S}$ time.

## STATIC-COLUMN EARLY-WRITE CYCLE ( $\bar{W} E$ CONTROLLED)



## STATIC-COLUMN EARLY-WRITE CYCLE (CAS CONTROLLED)



NOTE: 1. Applies to MT4C1671 only; $\overline{\text { WEL, }} \overline{\text { WEH }}$ and DQ inputs on MT4C1670 are don't care at $\overline{\text { RAS }}$ time. $\overline{\text { WE }}$ selects between normal WRITE and MASKED WRITE at $\overline{\text { RAS }}$ time. The DQ inputs are don't care for a normal WRITE, $\overline{\text { WE }}$ HIGH at $\overline{\text { RAS }}$ time. The DQ inputs provide the mask data at $\overline{\text { RAS }}$ time for a MASKED WRITE, $\overline{\text { WE }}$ LOW at $\overline{\text { RAS }}$ time.

## STATIC COLUMN READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



NOTE: 1. Applies to MT4C1671 only; WEL, $\overline{\text { WEH }}$ and DQ inputs on MT4C1670 are don't care at $\overline{R A S}$ time. $\overline{\text { WE }}$ selects between normal WRITE and MASKED WRITE at $\overline{\text { RAS }}$ time. The DQ inputs are don't care for a normal WRITE, $\overline{\text { WE HIGH at } \overline{\text { RAS }} \text { time. The DQ inputs provide the mask data at } \overline{\text { RAS }} \text { time for a MASKED }}$ WRITE, $\overline{W E}$ LOW at $\overline{R A S}$ time.

## RAS-ONLY REFRESH CYCLE

(ADDR $=A_{0}-A_{7}, \overline{O E} ; \overline{W E L}, \overline{W E H}$ or $\overline{W E}=$ DON'T CARE $)$


## 

( $\mathrm{A}_{0}-\mathrm{A}_{7} ; \overline{\mathrm{WEL}}, \overline{\mathrm{WEH}}$ or $\overline{\mathrm{WE}}$, and $\overline{\mathrm{OE}}=$ DON'T CARE $)$


DQ ${ }^{\mathrm{V}_{10 \mathrm{OL}}^{-}}$ OPEN

HIDDEN REFRESH CYCLE
( $\overline{\mathrm{WEL}}, \overline{\mathrm{WEH}}$ or $\overline{\mathrm{WE}}=\mathrm{HIGH} ; \overline{\mathrm{OE}}=\mathrm{LOW}$ ) ${ }^{24}$


MICHON

## DRAM

## 64K x 16 DRAM

FAST PAGE MODE, DUAL CAS

## FEATURES

- Industry standard $\times 16$ pinouts, timing, functions and packages
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 3 mW standby; 350mW active, typical
- All device pins are fully TTL and CMOS compatible
- 256-cycle refresh in 4 ms
- Refresh modes: $\overline{\text { RAS-ONLY, }} \overline{\text { CAS-BEFORE-RAS }}$ and HIDDEN
- Optional FAST PAGE MODE access cycle
- 2 TTL Load output drive capability
- BYTE WRITE access cycle via two $\overline{\mathrm{CAS}}$ control pins


## OPTIONS

- Timing

70 ns access
80ns access
100 ns access

- Packages

Plastic SOJ (400mil)
Plastic ZIP (475mil)

DJ
MARKING
$-7$

- 8
$-10$

Z

## GENERAL DESCRIPTION

The MT4C1672 is a randomly accessed solid-state memories containing $1,048,576$ bits organized in a $x 16$ configuration. The MT4C1672 has both byte and word write access cycles.

The MT4C1672 functions in a similar manner to the MT4C1664 except that the BYTE WRITE cycles are determined by two $\overline{\mathrm{CAS}}$ controls rather than two $\overline{\mathrm{WE}}$ controls.

The MT4C1672 has the same pinout as the MT4C1664 except $\overline{\mathrm{WEL}}$ is replaced by $\overline{\mathrm{WE}}, \overline{\mathrm{WEH}}$ is replaced by $\overline{\mathrm{CASH}}$ and $\overline{C A S}$ is replaced by $\overline{\mathrm{CASL}}$. These changes allow for the $\overline{\text { CAS }}$ controlled byte WRITE access cycles.

The MT4C1672 CAS function and timing are determined by the first BYTEWRITE ( $\overline{\text { CASL }}$ or $\overline{\text { CASH }})$ to transition LOW and the last to transition back HIGH. Use of only one of the two results in a BYTE WRITE cycle: CASL transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) and $\overline{\mathrm{CASH}}$ transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16).

## PIN ASSIGNMENT (Top View)

$\underset{(\mathrm{E}-12)}{40-\mathrm{Pin} \text { SOJ }}$ (E-12)


NC = No Connect

The MT4C1672 does not have BYTE READ cycles. All 16 DQs are active regardless whether $\overline{\text { CASL }}$ or $\overline{\text { CASH }}$ is active. $\overline{\mathrm{CASL}}$ and $\overline{\mathrm{CASH}}$ function in an identical manner to $\overline{\mathrm{CAS}}$ : either $\overline{\text { CASL }}$ or $\overline{\mathrm{CASH}}$ will generate an internal $\overline{\mathrm{CAS}}$. The first $\overline{\text { CAS }}(\overline{\text { CASL }}$ or $\overline{\text { CASH }})$ to transition LOW and the last to transition back HIGH determines the $\overline{\mathrm{CAS}}$ timing for all 16 DQs during READ cycles.

The MT4C1672 specifications are exactly the same as the MT4C1664 specifications. Referrence to theMT4C1664 data sheet will provide all the specifications needed for the MT4C1672.

## DRAM

## 256K x 16 DRAM FAST PAGE MODE

## FEATURES

- Industry standard $\times 16$ pinouts, timing, functions and packages
- High performance, CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 3 mW standby; 350 mW active, typical
- All device pins are fully TTL and CMOS compatible
- 512 cycle refresh in 8 ms ( 9 rows and 9 columns)
- Refresh modes: $\overline{\text { RAS-ONLY, } \overline{\text { CAS-BEFORE-RAS }}}$ and HIDDEN
- Optional FAST PAGE MODE access cycle, 512
locations wide
- BYTE WRITE access cycle
- BYTE READ access cycle (MT4C16257/9 only)
- NONPERSISTENT MASKED WRITE access cycle (MT4C16258/9 only)


## OPTIONS

- Timing 70ns access


## MARKING

80 ns access
100 ns access

- 7
- Write Cycle Access

Byte or Word via $\overline{\mathrm{WE}}$
Byte or Word via CAS

- Masked Write

Not Available
Available

- Packages

Plastic SOJ
Plastic TSOP (*)

DJ
MT4C16256, MT4C16258
MT4C16257, MT4C16259
MT4C16256, MT4C16257
MT4C16258, MT4C16259

## GENERAL DESCRIPTION

The MT4C16256/7/8/9 are randomly accessed solidstate memories containing 4,194,304 bits organized in a $\times 16$ configuration. The MT4C16256 and MT4C16258 have both byte and word write access cycles via two write enable pins. The MT4C16257 and MT4C16259 have both byte and word write access cycles via two CAS pins. The MT4C16258 and MT4C16259 are also able to perform WRITE-PER-BIT accesses.
The MT4C16256 and MT4C16257 function in the same manner except that $\overline{\text { WEL }}$ and $\overline{W E H}$ on MT4C16256 and $\overline{\text { CASL }}$ and CASH on MT4C16257 control the selection of byte WRITE access cycles. WEL and $\overline{\text { WEH }}$ function in an


| Vcc | $1 \cdot$ |  | 40 | Vss |
| :---: | :---: | :---: | :---: | :---: |
| DQ1 | 5 |  | 39 | DQ16 |
| DQ2 | 13 |  | 38 | DQ15 |
| DQ3 | 4 |  | 37 | DQ14 |
| DQ4 | 5 |  | 36 | DQ13 |
| VCC | 46 |  | 35 | VSS |
| DQ5 | 47 | $\infty$ | 34 | DQ12 |
| DQ6 | 48 | 6 | 33 | DQ11 |
| DQ7 | 5 | 19 | 32 | DQ10 |
| DQ8 | 10 | $\bigcirc$ | 31 | DQ9 |
| NC | 11 | 6 | 30 | NC |
| WEL | 12 | ) | 29 | NC |
| WEH | 13 | + | 28 | CAS |
| $\overline{\text { RAS }}$ | 514 |  | 27 | OE |
| NC | 515 | 5 | 26 | A8 |
| A0 | $\square 16$ | $\underline{\square}$ | 25 | A7 |
|  | 917 |  | 24 | A6 |
| A2 | 18 |  | 23 | A5 |
|  | 19 |  | 22 | A4 |
|  | Q 20 |  | 21 | Vss |


| Vcc | $1 \cdot$ | 40 | Vss |
| :---: | :---: | :---: | :---: |
| DQ1 | 2 | 39 | DQ16 |
| DQ2 | [3 | 38 | DQ15 |
| DQ3 | 4 | 37 | DQ14 |
| DQ4 | 5 | 36 | DQ13 |
| VCC | 46 | 35 | VSS |
| DQ5 | 4 | 34 | DQ12 |
| DQ6 | 4 | 33 | DQ11 |
| DQ7 | 9 | 32 | DQ10 |
| DQ8 | 10 | 31 | DQ9 |
| NC | 11 | 30 | NC |
| NC | 412 | 29 | CASL |
| WE | 13 | 28 | $\overline{\text { CASH }}$ |
| RAS | 14 | 27 | OE |
| NC | 15 | 26 | A8 |
| AO | 16 | 25 | A7 |
| A1 | 17 | 24 | A6 |
| A2 | 18 | 23 | A5 |
| A3 | 19 | 22 | A4 |
| Vcc | 20 | 21 | Vss |

NC = No Connect
*Consult factory for availibilty of TSOP packages
identical manner to $\overline{\mathrm{WE}}$ in that either $\overline{\mathrm{WEL}}$ or $\overline{\mathrm{WEH}}$ will generate an internal $\overline{\mathrm{WE}} . \overline{\mathrm{CASL}}$ and $\overline{\mathrm{CASH}}$ function in an identical manner to $\overline{\mathrm{CAS}}$ in that either $\overline{\mathrm{CASL}}$ or $\overline{\mathrm{CASH}}$ will generate an internal $\overline{\mathrm{CAS}}$.

The MT4C16256 " $\overline{\mathrm{WE}}$ " function and timing are determined by the first $\overline{\mathrm{WE}}(\overline{\mathrm{WEL}}$ or $\overline{\mathrm{WEH}})$ to transition LOW and by the last to transition back HIGH. Use of only one of the two results in a BYTE WRITE cycle. WEL transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) and $\overline{W E H}$ transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16).

The MT4C16257 "CAS" function and timing are determined by the first $\overline{\mathrm{CAS}}(\overline{\mathrm{CASL}}$ or $\overline{\mathrm{CASH}})$ to transition LOW and by the last to transition back HIGH. Use of only one of the two results in a BYTE WRITE cycle. $\overline{\text { CASL }}$ transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) and $\overline{\text { CASH }}$ transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16). BYTE READ cycles are achieved through $\overline{\text { CASL }}$ or $\overline{\mathrm{CASH}}$ in the same manner during READ cycles for the MT4C16257.

The MT4C16258 and MT4C16259 function in the same manner as MT4C16256 and MT4C16257, respectively; and they have NONPERSISTENT, MASKED WRITE cycles capabilities. This option allows the MT4C16258 and MT4C16259 to operate with either normal WRITE cycles or with NONPERSISTENT, MASKED WRITE cycles.

FUNCTIONAL BLOCK DIAGRAM


## PIN DESCRIPTIONS

| SOJ PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| 14 | $\overline{\text { RAS }}$ | Input | ROW Address Strobe: $\overline{\text { RAS }}$ is used to latch in the 9 row address bits and as a strobe for the WE and DQ's on the MASKED WRITE option (MT4C16258 and MT4C16259 only). |
| 28 | $\overline{\text { CAS }} / \overline{\text { CASH }}$ | Input | Column Address Strobe: $\overline{\mathrm{CAS}}$ (MT4C16256/8) is used to latch in the 9 column address bits, enable the DRAM output buffers, and as a strobe for the data inputs on WRITE cycles. $\overline{\text { CAS }}$ controls DQ1 through DQ16.Column Address Strobe Upper Byte: $\overline{\text { CASH }}$ (MT4C16257/9) is the CAS control for DQ9 through DQ16. The DQs for the byte not being accessed will remain in a High-Z (high impedance) state during either a READ or a WRITE access cycle. |
| 27 | $\overline{\text { OE }}$ | Input | Output Enable: $\overline{O E}$ enables the output buffers when taken LOW during a READ access cycle. $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ (MT4C16256/8) or CASL / CASH (MT4C16257/9) must be LOW and WEL / WEH (MT4C16256/8) or $\overline{\mathrm{WE}}$ (MT4C16257/9) must be HIGH before $\overline{\mathrm{OE}}$ will control the output buffers. Otherwise the output buffers are in a high impedance state. |
| 13 | WEH/WE | Input | Write Enable Upper Byte: WEH (MT4C16256/8) is WE control forthe DQ9 through DQ16 inputs. If WEL or WEH is LOW, the access is a WRITE cycle. The DQs for the byte not being written will remain in a high impedance state (byte WRITE cycle only). <br> Write Enable: WE (MT4C16257/9) controls DQ1 through DQ16 inputs. If $\overline{W E}$ is LOW, the access is a WRITE cycle. The MT4C16258/9 also use $\overline{\text { WE }}$ to enable the MASK register during RAS time. |
| 12 | WEL/NC | Input | Write Enable Lower Byte: WEL (MT4C16256/8) is the WE control for DQ1 through DQ8 inputs. If WEL or WEH is LOW, the access is a WRITE cycle. The DQs for the byte not being written will remain in a high impedance state (byte WRITE cycle only). |
| 29 | NC/CASL | Input | Column Address Strobe Low Byte: $\overline{\text { CASL }}$ (MT4C16257/9) is the $\overline{\mathrm{CAS}}$ control for DQ1 through DQ8. The DQs for the byte not being accessed will remain in a high impedance state during either a READ or a WRITE access cycle. |
| $\begin{aligned} & 16-19 \\ & 22-26 \end{aligned}$ | A0 to A8 | Input | Address Inputs: These inputs are multiplexed and clocked by $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ (or CASL / $\overline{\mathrm{CASH}}$ ) to select one 16-bit word (or 8bit byte) out of the 256 K available words. |
| $\begin{gathered} 2-5,7-10 \\ 31-34,36-39 \end{gathered}$ | DQ1-DQ16 | Input/ Output | Data I/O: For WRITE cycles, DQ1-DQ16 act as inputs to the addressed DRAM location. Byte writes can be performed by using WEL / WEH (MT4C16256/8) or CASL / CASH (MT4C16257/8) to select the byte to be written. For READ access cycles, DQ1-DQ16 act as outputs for the addressed DRAM Location. All sixteen I/O's are active for READ cycles (MT4C16256/8). The MT4C16257/9 allow for Byte READ cycles. |
| 11, 15, 30 | NC |  | No Connect: These pins should be either left unconnected or tied to ground. |
| 1, 6, 20 | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 21, 35, 40 | Vss | Supply | Ground |

## FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 18 address bits during READ or WRITE cycles. These are entered nine bits (A0-A8) at a time. $\overline{\text { RAS }}$ is used to latch the first nine bits and $\overline{C A S}$ the latter nine bits.

The $\overline{\mathrm{CAS}}$ control also determines whether the cycle will be a refresh cycle ( $\overline{\mathrm{RAS}}-\mathrm{ONLY}$ ) or an active cycle (READ, WRITE or READ-WRITE) once $\overline{\mathrm{RAS}}$ goes low. The MT4C16256 and MT4C16258 each have one $\overline{\mathrm{CAS}}$ control while the MT4C16257 and MT4C16259 have two: $\overline{\mathrm{CASL}}$ and $\overline{\mathrm{CASH}}$.

The $\overline{\text { CASL }}$ and $\overline{\mathrm{CASH}}$ inputs internally generate a $\overline{\mathrm{CAS}}$ signal functioning in anidentical manner to thesingleCASinput on the other $256 \mathrm{~K} \times 16 \mathrm{DRAMs}$. The key difference is each $\overline{\mathrm{CAS}}$ controls its corresponding DQ tristate logic (in conjunction with $\overline{\mathrm{OE}}$ and $\overline{\mathrm{WE}}$ ). $\overline{\mathrm{CASL}}$ controls DQ1 throughDQ8 and CASH controls DQ9 through DQ16.

The MT4C16257 and MT4C16259 "CAS" function is determined by the first $\overline{\mathrm{CAS}}(\overline{\mathrm{CASL}}$ or $\overline{\mathrm{CASH}})$ to transition LOW and the last one to transition back HIGH. The two CAS controls give theMT4C16257andMT4C16259both byte READ and byte WRITE cycle capabilities.

A READ or WRITE cycle on the MT4C16257 or MT4C16259 is selected with the $\overline{\mathrm{WE}}$ input while either $\overline{\mathrm{WEL}}$ or $\overline{\mathrm{WEH}}$ perform the " $\overline{W E}$ " on the MT4C16256 or MT4C16258. The MT4C16256 and MT4C16258 ' $\overline{\mathrm{WE}}{ }^{\prime \prime}$ function is determined by the first byteWRITE $(\overline{\mathrm{WEL}}$ or $\overline{\mathrm{WEH}})$ to transition LOW and the last one to transition back HIGH.

A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ mode while a logic LOW on $\overline{W E}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CAS}}$, whichever occurs last. Taking $\overline{W E} L O W$ will initiate a WRITE cycle, selecting DQ1 through DQ16. If $\overline{W E}$ goes LOW prior to $\overline{\text { CAS }}$ going LOW, the output pin(s) remain open (HighZ) until the next $\overline{\mathrm{CAS}}$ cycle. If $\overline{\mathrm{WE}}$ goes LOW after $\overline{\mathrm{CAS}}$ goes LOW and data reaches the output pins, data out $(\mathrm{Q})$ is activated and retains the selected cell data as long as $\overline{\mathrm{CAS}}$ and $\overline{\mathrm{OE}}$ remain LOW (regardless of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{RAS}}$ ). This late $\overline{\mathrm{WE}}$ pulse results in a READ-WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O, and pin direction is controlled by $\overline{\mathrm{OE}}, \overline{\mathrm{WEL}}$ and $\overline{\mathrm{WEH}}$ (MT4C16256 and MT4C16258) or WE (MT4C16257 and MT4C16259).

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A8) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed in by $\overline{R A S}$ followed by a column address strobed in by $\overline{\text { CAS. }}$. By holding $\overline{\mathrm{RAS}} \mathrm{LOW}, \overline{\mathrm{CAS}}$ may be toggled strobing in different column addresses and executing faster memory cycles. Returning RASHIGH terminates the FAST PAGE MODE operation.

Returning $\overline{R A S}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level.

The chip is also preconditioned for the next cycle during the $\overline{\text { RAS }}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\mathrm{RAS}}$ cycle (READ, WRITE, $\bar{R} A S-O N L Y, \overline{C A S}-B E F O R E-\overline{R A S}$, or HIDDEN refresh) so that all 512 combinations of $\overline{\text { RAS }}$ addresses (A0-A8) are executed at least every 8 ms , regardless of sequence. The $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$ refresh cycle will also invoke the refresh counter and controller for ROW address control.

## BYTE ACCESS CYCLE

The byte WRITE mode is determined by the use of $\overline{W E L}$ and $\overline{W E H}$ or $\overline{C A S L}$ and $\overline{\mathrm{CASH}}$. Enabling $\overline{\mathrm{WEL}} / \overline{\mathrm{CASL}}$ will select a lower byte WRITE cycle (DQ1-DQ8) while Enabling $\overline{W E H}$ or $\overline{C A S H}$ will select an upper byteWRITE cycle(DQ9DQ16). Enabling both $\overline{\text { WEL }}$ and $\overline{\text { WEH }}$ or $\overline{\text { CASL }}$ and $\overline{\text { CASH }}$ selects a word WRITE cycle.

The MT4C16256, MT4C16257, MT4C16258 and MT4C16259 can be viewed as two $256 \mathrm{~K} \times 8$ DRAMS which have common input controls, with the exception of the $\overline{W E}$ or the $\overline{\text { CAS }}$ inputs. Figure 1 illustrates the MT4C16256 byte and word WRITE cycles and Figure 2 illustrates the MT4C16257 byte and word WRITE cycles.

TheMT4C16257 also has byteand word READ cycles since it uses two $\overline{\text { CAS }}$ inputs to control its byte accesses. Figure 3 illustrates the MT4C16257 byte and word READ cycles.

## MASKED WRITE ACCESS CYCLE (MT4C16258/9 Only)

The MASKEDWRITE mode control input selects normal WRITE access or MASKED WRITE access cycles. Every WRITE access cycle can be a MASKED WRITE, depending on the state of WE at RAS time. A MASKED WRITE is selected when mask data is supplied on the DQ pins and $\overline{W E}$ is LOW at $\overline{\text { RAS }}$ time. The MT4C16256 and MT4C16257 do not have the MASKED WRITE cycle function).

The data (mask data) present on the DQ1-DQ16 inputs at $\overline{\text { RAS }}$ time will be written to an internal bit mask data register and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic " 0 ") is written to a mask data register bit, the input port for that bit is disabled during the following WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic " 1 ") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At $\overline{\mathrm{CAS}}$ time, the bits present on the DQ1-DQ16inputs will be either written to the DRAM (if the mask data bit was HIGH ) or ignored (if the mask data bit was LOW).

New mask data must be supplied each time a MASKED WRITE cycle is initiated (non-persistent), even if the previous cycle's mask was the same mask.

Figure 4 illustrates the MT4C16258 and MT4C16259 MASKED WRITE operation (Note: $\overline{\mathrm{RAS}}$ or $\overline{\mathrm{CAS}}$ time refers to the timeat which $\overline{\mathrm{RAS}}$ or $\overline{\mathrm{CAS}}$ transition fromHIGH toLOW).


X = NOT EFFECTIVE (DON'T CARE)

Figure 1
MT4C16256/8 WORD AND BYTE WRITE EXAMPLE


Figure 2
MT4C16257/9 WORD AND BYTE WRITE EXAMPLE

## ADVANCE



| LOWER BYTE (DQ1-DQ8) OF WORD | Stored | output | output | stored | Stored | OUTPUT | output | stored |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | DATA |
|  | 1 | 1 -- | $\rightarrow 1$ | 1 | 1 | 1 .- | $\rightarrow$ | 1 |
|  | 1 | 1 - | $\rightarrow 1$ | 1 | 1 | 1 .-. | $\rightarrow 1$ | 1 |
|  | 0 | 0 - | $\rightarrow 0$ | 0 | 0 | 0 .-- | $\rightarrow 0$ | 0 |
|  | 1 | 1 . | $\rightarrow 1$ | 1 | 1 | 1 .-- | $\rightarrow 1$ | 1 |
|  | 1 | 1 .-. | $\rightarrow 1$ | 1 | 1 | 1. | $\rightarrow 1$ | 1 |
|  | 1 | 1 ... | $\rightarrow 1$ | 1 | 1 | 1 .-- | $\rightarrow 1$ | 1 |
|  | 1 | 1 .- | $\rightarrow 1$ | 1 | 1 | 1 - | $\rightarrow 1$ | 1 |
|  | 1 | 1 | $\rightarrow 1$ | 1 | 1 | 1. | $\rightarrow 1$ | 1 |
| UPPER BYTE (DQ9-DQ16) OF WORD | 0 | z | $\rightarrow 0$ | 0 | 0 | z | $\rightarrow$ z | 0 |
|  | 1 | z .-- | $\rightarrow 1$ | 1 | 1 | z | $\rightarrow$ z | 1 |
|  | 0 | z | $\rightarrow 0$ | 0 | 0 | z | $\rightarrow$ z | 0 |
|  | 1 | z | $\rightarrow 1$ | 1 | 1 | z | $\rightarrow$ z | 1 |
|  | 0 | z .-. | $\rightarrow 0$ | 0 | 0 | z | $\rightarrow$ z | 0 |
|  | 0 | z | $\rightarrow 0$ | 0 | 0 | z | $\rightarrow$ z | 0 |
|  | 0 | z $\cdots$ | $\rightarrow 0$ | 0 | $\bigcirc$ | z | $\rightarrow$ z | 0 |
|  | 0 | z | $\rightarrow 0$ | 0 | 0 | z | $\rightarrow$ z | 0 |

$Z=$ High $-Z$

Figure 3
MT4C16257/9 WORD AND BYTE READ EXAMPLE


Figure 4 MT4C16258/9 MASKED WRITE EXAMPLE

## TRUTH TABLE: MT4C16256/8

| Function |  | RAS | CAS | WEL | WEH | $\overline{\text { OE }}$ | Addresses |  | DQs | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {t }}$ R |  |  |  |  | ${ }^{\text {t }} \mathrm{C}$ |  |  |
| Standby |  |  | H | X | X | X | X | X | X | High-Z |  |
| READ |  | L | L | H | H | L | ROW | COL | Valid Data Out |  |
| WRITE: WORD (EARLY-WRITE) |  | L | L | L | L | X | ROW | COL | Valid Data In | 3 |
| WRITE: LOWER BYTE (EARLY) |  | L | L | L | H | X | ROW | COL | Lower Byte, Valid Data In Upper Byte, High-Z | 3 |
| WRITE: UPPER BYTE (EARLY) |  | L | L | H | L | X | ROW | COL | Lower Byte, High-Z <br> Upper Byte, Valid Data In | 3 |
| READ-WRITE |  | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Data In | 1,3 |
| PAGE-MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | H | L | ROW | COL | Valid Data Out |  |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | H | L | n/a | COL | Valid Data Out |  |
| PAGE-MODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | L | X | ROW | COL | Valid Data In | 1,3 |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | L | X | n/a | COL | Valid Data In | 1,3 |
| PAGE-MODE READ-WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Data In | 1,3 |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | n/a | COL | Valid Data Out, Data In | 1,3 |
| HIDDEN REFRESH | READ | $L \rightarrow H \rightarrow L$ | L | H | H | L | ROW | COL | Valid Data Out |  |
|  | WRITE | $L \rightarrow H \rightarrow L$ | L | L | L | X | ROW | COL | Valid Data In | 1,2,3 |
| RAS-ONLY REFRESH |  | L | H | X | X | X | ROW | n/a | High-Z |  |
| CAS-BEFORERAS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | X | X | High-Z |  |

NOTE: 1. These cycles may also be byte WRITE cycles (either $\overline{\text { WEL }}$ or $\bar{W} \bar{W}$ active).
2. EARLY-WRITE only.
3. Data in will be dependent on the mask provided (MT4C16258 only). Refer to Figure 4.

TRUTH TABLE: MT4C16257/9

| Function |  | RAS | CASL | CASH | WE | $\overline{O E}$ | Addresses |  | DQs | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {t }}$ R |  |  |  |  | ${ }^{t} \mathrm{C}$ |  |  |
| Standby |  |  | H | X | X | X | X | $X$ | X | High-Z |  |
| READ: WORD |  | L | L | L | H | L | ROW | COL | Valid Data Out |  |
| READ: LOWER BYTE |  | L | L | H | H | L | ROW | COL | Lower Byte,Valid Data Out Upper Byte, High-Z |  |
| READ: UPPER BYTE |  | L | H | L | H | L | ROW | COL | Lower Byte, High-Z Upper Byte,Valid Data Out |  |
| WRITE: WORD (EARLY-WRITE) |  | L | L | L | L | X | ROW | COL | Valid Data In | 5 |
| WRITE: LOWER BYTE (EARLY) |  | L | L | H | L | X | ROW | COL | Lower Byte, Valid Data In Upper Byte, High-Z | 5 |
| WRITE: UPPER BYTE (EARLY) |  | L | H | L | L | X | ROW | COL | Lower Byte, High-Z Upper Byte, Valid Data In | 5 |
| READ-WRITE |  | L | L | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Data In | 1,2,5 |
| $\begin{aligned} & \text { PAGE-MODE } \\ & \text { READ } \end{aligned}$ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | H | L | ROW | COL | Valid Data Out | 2 |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | H | L | n/a | COL | Valid Data Out | 2 |
| PAGE-MODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | ROW | COL | Valid Data In | 1,5 |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | n/a | COL | Valid Data In | 1,5 |
| $\begin{aligned} & \text { PAGE-MODE } \\ & \text { READ-WRITE } \end{aligned}$ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Data In | 1, 2, 5 |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | $L \rightarrow H$ | n/a | COL | Valid Data Out, Data In | 1,2,5 |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | H | L | ROW | COL | Valid Data Out | 2 |
|  | WRITE | $L \rightarrow H \rightarrow L$ | L | L | L | X | ROW | COL | Valid Data In | 1,3,5 |
| RAS-ONLY REFRESH |  | L | H | H | X | X | ROW | n/a | High-Z |  |
| CAS-BEFORERAS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | L | X | X | X | X | High-Z | 4 |

NOTE: 1. These WRITE cycles may also be byte WRITE cycles (either $\overline{\text { CASL }}$ or $\overline{\text { CASH }}$ active).
2. These READ cycles may also be byte READ cycles (either $\overline{\mathrm{CASL}}$ or $\overline{\mathrm{CASH}}$ active).
3. EARLY-WRITE only.
4. Only one of the two $\overline{\mathrm{CAS}}$ must be active ( $\overline{\mathrm{CASL}}$ or $\overline{\mathrm{CASH}}$ ).
3. Data in will be dependent on the mask provided (MT4C16259 only). Refer to Figure 4.
ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc supply relative to Vss .........-1.0V to +7.0 VOperating Temperature, Ta (Ambient) $\ldots . . . . . . . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$Storage Temperature (Ceramic) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Storage Temperature (Plastic) ................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Power Dissipation1W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above thoseindicated in theoperational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE CURRENT <br> any input ( $0 \mathrm{~V} \leq \mathrm{Vin} \leq \mathrm{Vcc}$, <br> all other pins not under test $=0 \mathrm{~V}$ ) | 1 | -2 | 2 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( Q is disabled, $\mathrm{OV} \leq \mathrm{Vout} \leq 5.5 \mathrm{~V}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS | Vон | 2.4 |  | V |  |
| Output High Voltage (lout $=-5 \mathrm{~mA}$ ) Output Low Voltage (lout $=4.2 \mathrm{~mA}$ ) | Vol |  | 0.4 | V |  |


|  |  | MAX |  |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -7 | -8 | -10 |  |  |
| STANDBY CURRENT: (TTL) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}(H)$ | IcC1 | 2 | 2 | 2 | mA |  |
| STANDBY CURRENT: (CMOS) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V} c \mathrm{c}-0.2 \mathrm{~V})$ | Icc2 | 1 | 1 | 1 | mA | 25 |
| OPERATING CURRENT: Random READ/WRITE <br> Average power supply current <br> (쥰, $\overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\mathrm{t} R C}={ }^{\mathrm{t}} \mathrm{RC}$ (MIN)) | Icc3 | 120 | 110 | 100 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE <br> Average power supply current ( $\overline{\mathrm{RAS}}=\mathrm{VIL}, \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\text {tPC }}=$ tPC (MIN)) | Icc4 | 90 | 80 | 70 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS-ONLY }}$ Average power supply current ( $\overline{\text { RAS }}$ Cycling, $\overline{\mathrm{CAS}}=\mathrm{V}$ H: ${ }^{\mathrm{t} R C=}{ }^{\mathrm{t} R C}$ (MIN)) | Icc5 | 120 | 110 | 100 | mA | 3 |
| REFRESH CURRENT: $\overline{\text { CAS-BEFORE-RAS }}$ <br> Average power supply current <br> ( $\overline{\text { RAS }}, \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\mathrm{t} R C}={ }^{\mathrm{t} R C}$ (MIN)) | Icc6 | 120 | 110 | 100 | mA | 3 |

## CAPACITANCE

(Note: 2)

| PARAMETER | SYMBOL | MIN | MAX | UNITS |
| :--- | :---: | :---: | :---: | :---: |
| NOTES |  |  |  |  |
| Input Capacitance: A0-A8 | $\mathrm{Cl}_{1}$ |  | 5 | pF |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}} /(\overline{\mathrm{CASL}, \overline{\mathrm{CASH}}),(\overline{\mathrm{WEL}}, \overline{\mathrm{WEH}}) / \overline{\mathrm{WE}, \overline{\mathrm{OE}}}} \mathbf{\mathrm { Cl2 }}$ |  | 7 | pF | 2 |
| Input/Output Capacitance: DQ | ClO |  | 7 | pF |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t }}$ RC | 130 |  | 145 |  | 170 |  | ns |  |
| READ-WRITE cycle time | trwC | 175 |  | 185 |  | 220 |  | ns |  |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 45 |  | 55 |  | ns | 35 |
| FAST-PAGE-MODE READ-WRITE cycle time | tPRWC | 95 |  | 100 |  | 120 |  | ns | 35 |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {t RAC }}$ |  | 70 |  | 80 |  | 100 | ns | 14 |
| Access time from CAS | ${ }^{\text {t }}$ CAC |  | 20 |  | 20 |  | 30 | ns | 15,33 |
| Output enable time | ${ }^{\text {t }} \mathrm{OE}$ |  | 20 |  | 20 |  | 30 | ns | 33 |
| Access time from column address | ${ }^{\text {t }} \mathrm{A}$ A |  | 35 |  | 40 |  | 50 | ns |  |
| Access time from $\overline{\text { CAS }}$ precharge | ${ }^{\text {t }}$ PPA |  | 40 |  | 45 |  | 50 | ns | 33 |
| $\overline{\text { RAS }}$ pulse width | tRAS | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| RAS pulse width (PAGE MODE) | ${ }^{\text {trasP }}$ | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {tRSH }}$ | 20 |  | 20 |  | 25 |  | ns | 40 |
| $\overline{\text { RAS }}$ precharge time | tRP | 50 |  | 55 |  | 60 |  | ns |  |
| CAS pulse width | ${ }^{\text {t }}$ A AS | 20 | 100,000 | 20 | 100,000 | 30 | 100,000 | ns | 39 |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 70 |  | 80 |  | 100 |  | ns | 32 |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }} \mathrm{CPN}$ | 10 |  | 10 |  | 10 |  | ns | 16, 36 |
| CAS precharge time (PAGE MODE) | ${ }^{\text {t }} \mathrm{C} P$ | 10 |  | 10 |  | 10 |  | ns | 36 |
| RAS to $\overline{\mathrm{CAS}}$ delay time | ${ }^{\text {tr }}$ ( ${ }^{\text {P }}$ | 20 | 45 | 20 | 50 | 25 | 60 | ns | 17, 31 |
| $\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns | 32 |
| Row address set-up time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t RAH }}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {t RAD }}$ | 15 | 35 | 15 | 40 | 15 | 50 | ns | 18 |
| Column address set-up time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns | 31 |
| Column address hold time | ${ }^{t} \mathrm{CAH}$ | 15 |  | 15 |  | 15 |  | ns | 31 |
| Column address hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ (R | 55 |  | 60 |  | 70 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {tr }}$ RAL | 35 |  | 40 |  | 50 |  | ns |  |
| Read command set-up time | ${ }^{\text {tr }}$ RCS | 0 |  | 0 |  | 0 |  | ns | 26, 31 |
| Read command hold time (referenced to $\overline{\mathrm{CAS}}$ ) | ${ }^{\text {t }} \mathrm{RCH}$ | 0 |  | 0 |  | 0 |  | ns | 19, 26 ,32 |
| Read command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | trRH | 0 |  | 0 |  | 0 |  | ns | 19 |
| CAS to output in low-Z | ${ }^{\text {t CLZ }}$ | 0 |  | 0 |  | 0 |  | ns | 33 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $6,7,8,9,10,11,12,13)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Output buffer turn-off delay | toff | 0 | 15 | 0 | 15 | 0 | 20 | ns | 20, 29, 33 |
| Output disable time | tod |  | 10 |  | 12 |  | 20 | ns | 29, 41 |
| Write command setup time | ${ }^{\text {t WCS }}$ | 0 |  | 0 |  | 0 |  | ns | 21, 26, 31 |
| Write command hold time | ${ }^{\text {tw }}$ W ${ }^{\text {ch }}$ | 15 |  | 15 |  | 15 |  | ns | 26, 40 |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | 'WCR | 50 |  | 55 |  | 65 |  | ns | 26 |
| Write command pulse width | ${ }^{\text {tw }}$ WP | 10 |  | 10 |  | 15 |  | ns | 26 |
| Write command to RAS lead time | ${ }^{\text {tr }}$ WL | 20 |  | 20 |  | 20 |  | ns | 26 |
| Write command to CAS lead time | ${ }^{\text {t }}$ CWL | 20 |  | 20 |  | 20 |  | ns | 26, 32 |
| Data-in setup time | ${ }^{\text {to }}$ S | 0 |  | 0 |  | 0 |  | ns | 22, 33 |
| Data-in hold time | ${ }^{\text {to }}$ | 15 |  | 15 |  | 20 |  | ns | 22,33 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t DHR }}$ | 50 |  | 55 |  | 65 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to WE delay time | ${ }^{\text {tr }}$, ${ }^{\text {a }}$ | 90 |  | 100 |  | 125 |  | ns | 21 |
| Column address to WE delay time | ${ }^{\text {t }}$ AWD | 60 |  | 65 |  | 80 |  | ns | 21 |
| $\overline{\text { CAS }}$ to WE delay time | ${ }^{\text {t }}$ CWD | 45 |  | 45 |  | 60 |  | ns | 21,31 |
| Transition time (rise or fall) | t' | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9, 10 |
| Refresh period (512 cycles) | ${ }^{\text {tREF }}$ |  | 8 |  | 8 |  | 8 | ms | 28 |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ precharge time | ${ }^{\text {tr PPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\text { CAS }}$ setup time <br> (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }}$ CSR | 10 |  | 10 |  | 10 |  | ns | 5,31 |
| CAS hold time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }} \mathrm{CHR}$ | 10 |  | 10 |  | 10 |  | ns | 5,32 |
| MASKED WRITE command to RAS setup time |  | 0 |  | 0 |  | 0 |  | ns | 26, 27 |
| MASKED WRITE command to $\overline{\text { RAS }}$ hold time | tWRH | 15 |  | 15 |  | 15 |  | ns | 26, 27 |
| Mask data to $\overline{\text { RAS }}$ setup time | ${ }^{\text {™ }}$ | 0 |  | 0 |  | 0 |  | ns | 26, 27 |
| Mask data to $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {t }} \mathrm{MH}$ | 15 |  | 15 |  | 15 |  | ns | 26, 27 |
| $\overline{O E}$ hold time from WE during READ-MODIFY-WRITE cycle | toen | 10 |  | 10 |  | 20 |  | ns | 28 |
| $\overline{\overline{O E}}$ setup prior to $\overline{\mathrm{RAS}}$ during hidden refresh cycle | torD | 0 |  | 0 |  | 0 |  | ns |  |
| Last $\overline{\mathrm{CAS}}$ going low to first $\overline{\mathrm{CAS}}$ to return high | ${ }^{\text {t }} \mathrm{CLCH}$ | 10 |  | 10 |  | 10 |  | ns | 34 |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=I \mathrm{dt} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates.

Specified values are obtained with minimum cycle time and the output open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ) is assured.

## NOTES

7. An initial pause of $100 \mu$ s is required after power-up followed by eight $\overline{\mathrm{RAS}}$ refresh cycles ( $\overline{\mathrm{RAS}}-\mathrm{ONLY}$ or CBR) before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\dagger} \mathrm{T}=5 \mathrm{~ns}$.
9. $\mathrm{V}_{\mathrm{IH}}(\mathrm{MIN})$ and $\mathrm{VII}_{\text {IL }}$ (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and $V_{I H}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $V_{I H}$ and VIL (or between VIL and $V_{I H}$ ) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=V_{\text {IL }}$, data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to 2 TTL gates and 50 pF .
14. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{\mathrm{t} R C D} \geq^{\mathrm{t}} \mathrm{RCD}$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}, \mathrm{Q}$ will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{t} \mathrm{CPN}$.
17. Operation within the ${ }^{i} \mathrm{RCD}$ (MAX) limit ensures that ${ }^{t}$ RAC (MAX) can be met. ${ }^{t}$ RCD (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{t} R C D$ (MAX) limit, then access time is controlled exclusively by ${ }^{\mathrm{t}} \mathrm{CAC}$.
18. Operation within the ${ }^{t} R A D$ limit ensures that ${ }^{t} R C D$ (MAX) can be met. ${ }^{t} R A D$ (MAX) is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RAD}$ is greater than the specified ${ }^{t} R A D(M A X)$ limit, then access time is controlled exclusively by ${ }^{t} A A$.
19. Either ${ }^{t}$ RCH or ${ }^{t}$ RRH must be satisfied for a READ cycle.
20. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output achieves the open circuit condition, not a reference to Voh or Vol.
21. ${ }^{\mathrm{t}} \mathrm{WCS},{ }^{\mathrm{t}} \mathrm{RWD},{ }^{\mathrm{t}} A W D$ and ${ }^{\mathrm{t}} \mathrm{CWD}$ are restrictive operating parameters in LATE-WRITE and READ-MODIFY-WRITE cycles only. If ${ }^{\text {t}} \mathrm{WCS} \geq^{t}$ WCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ${ }^{\mathrm{t}} \mathrm{RWD} \geq \mathrm{t} R W D$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq^{\mathrm{t}} \mathrm{AWD}$ (MIN) and ${ }^{\mathrm{t}} \mathrm{CWD} \geq{ }^{\mathrm{t}} \mathrm{CWD}$ (MIN), the cycle is a READ-WRITE and the data output will contain data
read from the selected cell. If neither of the above conditions is met, the state of $Q$ (at access time and until $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{OE}}$ goes back to $\mathrm{V}_{\mathrm{IH}}$ ) is indeterminate. $\overline{\mathrm{OE}}$ held HIGH and $\overline{\mathrm{WE}}$ taken LOW after $\overline{\text { CAS goes }}$ LOW results in a LATE-WRITE ( $\overline{\mathrm{OE}}$ Controlled) cycle.
22. These parameters are referenced to $\overline{\text { CAS }}$ leading edge in EARLY-WRITE cycles and $\overline{W E}$ leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
23. During a READ cycle, if $\overline{\mathrm{OE}}$ is LOW then taken HIGH before $\overline{\mathrm{CAS}}$ goes HIGH, $Q$ goes open. If $\overline{\mathrm{OE}}$ is tied permanently LOW, a LATE-WRITE or READ-MODIFY-WRITE operation is not possible.
24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case $\overline{W E}=L O W$ and $\overline{\mathrm{OE}}=\mathrm{HIGH}$.
25. All other inputs at Vcc -0.2 V .
26. Write command is defined as either $\overline{\mathrm{WEL}}$ or $\overline{\mathrm{WEH}}$ or both going LOW on the MT4C16256/8. Write command is defined as $\overline{\mathrm{WE}}$ going LOW on the MT4C16257/9.
27. MT4C16258/9 only.
28. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ${ }^{\text {t }} \mathrm{OD}$ and ${ }^{\text {t }} \mathrm{OEH}$ met $\overline{\mathrm{OE}}$ HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if $\overline{\text { CAS }}$ remains LOW and $\overline{\mathrm{OE}}$ is taken back LOW after ${ }^{\text {t OEH }}$ is met. If $\overline{\mathrm{CAS}}$ goes HIGH prior to OE going back LOW, the DQs will remain open.
29. The DQs open during READ cycles once tOD or toFF occur. If $\overline{\mathrm{CAS}}$ goes HIGH first, $\overline{\mathrm{OE}}$ becomes a don't care. If $\overline{\mathrm{OE}}$ goes HIGH and $\overline{\mathrm{CAS}}$ stays LOW, $\overline{\mathrm{OE}}$ is not a don't care; and the DQs will provide the previously read data if $\overline{\mathrm{OE}}$ is taken back LOW (while $\overline{\mathrm{CAS}}$ remains LOW).
30. Notes 31 through 41 apply to MT4C16257/9 only ( ${ }^{*}$ ):
31. *The first $\overline{\mathrm{CAS}} x$ edge to transition low.
32. *The last $\overline{C A S} x$ edge to transition high.
33. *Output parameter ( DQx ) is referenced to corresponding $\overline{\mathrm{CAS}}$ input; DQ1-DQ8 by $\overline{\mathrm{CASL}}$ and DQ1DQ8 by $\overline{\mathrm{CASH}}$.
34. *Last falling $\overline{\mathrm{CAS}} x$ edge to first rising $\overline{\mathrm{CAS}} x$ edge.
35. *Last rising $\overline{\text { CASx }}$ edge to next cycle's last rising $\overline{\text { CAS }}$ edge.
36. *Last rising $\overline{\mathrm{CAS}} x$ edge to first falling $\overline{\mathrm{CAS}} x$ edge.
37. *First DQs controlled by the first $\overline{\text { CAS }}$ to go LOW.
38. *Last DQs controlled by the last $\overline{\text { CAS }} x$ to go HIGH.
39. *Each $\overline{\mathrm{CAS}} \times$ must meet minimum pulse width.
40. *Last $\overline{\mathrm{CAS}} \mathrm{x}$ to go LOW.
41. *All DQs controlled, regardless $\overline{\text { CASL }}$ and $\overline{\text { CASH }}$


EARLY-WRITE CYCLE


NOTE: 1. Applies to MT4C16258 and MT4C16259 only. WE selects between normal WRITE and MASKED WRITE at $\overline{\text { RAS }}$ time. The DQ inputs are "don't care" for a normal WRITE: WE HIGH at $\overline{R A S}$ time. The DQ inputs provide the mask data at $\overline{\text { RAS }}$ time for a MASKED WRITE: $\overline{\text { WE }}$ LOW at $\overline{\text { RAS }}$ time. $\overline{\text { WEL, }} \overline{\mathrm{WEH}}$ and DQ inputs on MT4C16256 and MT4C16257 are "don't care" at RAS time.

## READ-WRITE CYCLE <br> (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



FAST PAGE-MODE READ CYCLE


NOTE: 1. Applies to MT4C16258 and MT4C16259 only. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE: WE HIGH at RAS time. The DQ inputs provide the mask data at $\overline{\text { RAS }}$ time for a MASKED WRITE: $\overline{\text { WE }}$ LOW at $\overline{\text { RAS }}$ time. $\overline{\text { WEL, }} \overline{\text { WEH }}$ and DQ inputs on MT4C16256 and MT4C16257 are "don't care" at $\overline{\text { RAS }}$ time.

FAST PAGE-MODE EARLY-WRITE CYCLE


FAST PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)


P/Z don't care
UNDEFINED

NOTE: 1. Applies to MT4C16258 and MT4C16259 only. WE selects between normal WRITE and MASKED WRITE at $\overline{R A S}$ time. The DQ inputs are "don't care" for a normal WRITE: $\overline{W E}$ HIGH at $\overline{R A S}$ time. The DQ inputs provide the mask data at $\overline{\text { RAS }}$ time for a MASKED WRITE: $\overline{\text { WE }}$ LOW at $\overline{\mathrm{RAS}}$ time. $\overline{\text { WEL, }} \overline{\text { WEH }}$ and DQ inputs on MT4C16256 and MT4C16257 are "don't care" at $\overline{R A S}$ time.

## RAS ONLY REFRESH CYCLE

(ADDR $=A_{0}-A_{7}, \overline{O E} ; \overline{W E L}, \overline{W E H}$ or $\overline{W E}=$ DON'T CARE $)$
 oo vot OPEN

CAS-BEFORE-RAS REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{7} ; \overline{\mathrm{WEL}}, \overline{\mathrm{WEH}}$ or $\overline{\mathrm{WE}}$, and $\overline{\mathrm{OE}}=$ DON'T CARE $)$


## HIDDEN REFRESH CYCLE

$(\overline{W E L}, \overline{W E H} \text { or } \overline{W E}=\text { HIGH; } \overline{\mathrm{OE}}=\mathrm{LOW})^{24}$

DYNAMIC RAMS ..... 1.
DRAM MODULES ..... 2
MULTIPORT DRAMS ..... 3
STATIC RAMS ..... 4
SYNCHRONOUS SRAMS ..... 5
SRAM MODULES6
CACHE DATA SRAMS ..... 7
FIFO MEMORIES8
APPLICATION/TECHNICAL INFORMATION ..... 9
MILITARY INFORMATION10렬
PACKAGE INFORMATION ..... 11
SALES INFORMATION ..... 12

## DRAM MODULE PRODUCT SELECTION GUIDE

| Memory Configuration | Optional Access Cycle | Part Number | Access <br> Time (ns) | Power Dissipation |  | Package |  |  | Process | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Standby | Active | SIP | SIMM | ZIP |  |  |
| $256 \mathrm{~K} \times 8$ | Fast Page Mode | MT2D2568 | 70,80,100,120 | 6 mW | 350 mW | 30 | 30 | - | CMOS | 2-1 |
| $1 \mathrm{Meg} \times 8$ | Fast Page Mode | MT8D18 | 70, 80, 100 | 24 mW | 1,400mW | 30 | 30 | - | CMOS | 2-11 |
| $1 \mathrm{Meg} \times 8$ | Fast Page Mode | MT2D18 | 60, 70, 80, 100 | 5 mW | 450 mW | 30 | 30 | - | CMOS | 2-21 |
| $4 \mathrm{Meg} \times 8$ | Fast Page Mode | MT8D48 | 60, 70, 80 | 24 mW | 1,800mW | 30 | 30 | - | CMOS | 2-31 |
| 256K x 9 | Fast Page/Page Mode | MT3D2569 | 70, 80, 100,120 | 9 mW | 625 mW | 30 | 30 | - | C/NMOS | 2-41 |
| $1 \mathrm{Meg} \times 9$ | Fast Page Mode | MT9D19 | 70, 80, 100 | 27 mW | 1,575mW | 30 | 30 | - | CMOS | 2-51 |
| $1 \mathrm{Meg} \times 9$ | Fast Page Mode | MT3D19 | 70, 80, 100 | 9 mW | 625 mW | 30 | 30 | - | CMOS | 2-61 |
| $4 \mathrm{Meg} \times 9$ | Fast Page Mode | MT9D49 | 60, 70, 80 | 27 mW | 2,025mW | 30 | 30 | - | CMOS | 2-71 |
| $256 \mathrm{~K} \times 32$ | Fast Page Mode | MT8D25632 | 70, 80, 85,100 | 24mW | 1,400mW | - | 72 | 72 | CMOS | 2-81 |
| $512 \mathrm{~K} \times 32$ | Fast Page Mode | MT16D51232 | 70, 80, 85, 100 | 48 mW | 2,800mW | - | 72 | 72 | CMOS | 2-91 |
| $1 \mathrm{Meg} \times 32$ | Fast Page Mode | MT8D132 | 70, 80, 100 | 24mW | 1,800mW | - | 72 | 72 | CMOS | 2-101 |
| $2 \mathrm{Meg} \times 32$ | Fast Page Mode | MT16D232 | 70, 80, 100 | 48 mW | $3,600 \mathrm{~mW}$ | - | 72 | 72 | CMOS | 2-111 |
| $256 \mathrm{~K} \times 36$ | Fast Page Mode | MT9D25636 | 70, 80, 85,100 | 27 mW | 1,515mW | - | 72 | 72 | CMOS | 2-121 |
| $256 \mathrm{~K} \times 36$ | Fast Page Mode | MT10D25636 | 70, 80, 85,100 | 30 mW | 1,750mW | - | 72 | 72 | CMOS | 2-131 |
| $512 \mathrm{~K} \times 36$ | Fast Page Mode | MT18D51236 | 70, 80, 85,100 | 54 mW | $3,150 \mathrm{~mW}$ | - | 72 | 72 | CMOS | 2-141 |
| $512 \mathrm{~K} \times 36$ | Fast Page Mode | MT20D51236 | 70, 80, 85,100 | 60 mW | 1,780mW | - | 72 | 72 | CMOS | 2-151 |
| $1 \mathrm{Meg} \times 36$ | Fast Page Mode | MT9D136 | 70, 80, 100 | 27 mW | 2,175mW | - | 72 | 72 | CMOS | 2-161 |
| $2 \mathrm{Meg} \times 36$ | Fast Page Mode | MT18D236 | 70, 80, 100 | 54 mW | 4,500mW | - | 72 | 72 | CMOS | 2-171 |

## DRAM MODULE

## 256K x 8 DRAM FAST PAGE MODE

## FEATURES

- Industry standard pinout in a 30-pin single-in-line memory module
- High-performance, CMOS silicon gate process
- Single $5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 6 mW standby; 350 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Optional FAST PAGE MODE access cycle
- Refresh modes: $\overline{\mathrm{RAS}}-\mathrm{ONLY}, \overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$, and HIDDEN
- 512-cycle refresh distributed across 8 ms


## OPTIONS

- Timing

70ns access -7
80ns access -8
100 ns access -10
120 ns access -12

- Packages

Leadless 30-pin SIMM M
Leaded 30-pin SIP

## MARKING

N

## GENERAL DESCRIPTION

The MT2D2568 is a randomly accessed solid-state memory containing 262,144 words organized in a $x 8$ configuration. During READ or WRITE cycles, each word is uniquely addressed through the 18 address bits, which are entered 9 bits (A0-A8) at a time. $\overline{\text { RAS is used to latch the first } 9 \text { bits and }}$ CAS the latter 9 bits. READ or WRITE cycles are selected with the $\overline{W E}$ input. A logicHIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. EARLY-WRITE occurs when $\overline{W E}$ goes LOW prior to $\overline{\text { CAS going LOW, and the }}$ output pins remain open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row address (A0-A8)

## PIN ASSIGNMENT (Top View)

30-Pin SIMM
(I-1)


30-Pin SIP ( $\mathrm{H}-1$ )

defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\text { RAS }}$ followed by a column address strobed-in by $\overline{\mathrm{CAS}} . \overline{\mathrm{CAS}}$ may be toggled-in by holding $\overline{\text { RAS }}$ LOW and strobing-in different column addresses, thus executing faster memory cycles.

Returning $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the $\overline{R A S}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle (READ, WRITE, $\overline{R A S}-O N L Y, \overline{C A S}-B E F O R E-$ $\overline{\text { RAS, }}$ or HIDDEN REFRESH) so that all 512 combinations of $\overline{\text { RAS }}$ addresses (A0-A8) are executed at least every 8 ms , regardless of sequence.

## FUNCTIONAL BLOCK DIAGRAM



## TRUTH TABLE

| Function |  | RAS | CAS | WE | Addresses |  | DQ1-8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {tR }}$ |  |  | ${ }^{\text {t }}$ C |  |
| Standby |  |  | H | X | X | X | X | High Impedance |
| READ |  | L | L | H | ROW | COL | Valid Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | Valid Data In |
| FAST-PAGE-MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | n/a | COL | Valid Data Out |
| FAST-PAGE-MODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | n/a | COL | Valid Data In |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | High Impedance |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | Valid Data In |
| CAS-BEFORE-ㅈिAS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | High Impedance |


| ABSOLUTE MAXIMUM RATINGS* |
| :---: |
| Voltage on Vcc supply relative to Vss .........-1.0V to +7.0 V |
| Operating Temperature, $\mathrm{T}_{\mathrm{A}}$ (Ambient) .......... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| Storage Temperature ............................. $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Power Dissipation ..................................................2W |
| Short Circuit Output Current ...............................50mA |

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above thoseindicated in the operational sections of this specification is notimplied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V |  |
| Input High (Logic 1) Voltage, All Inp |  | VIH | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inp |  | VIL | -2.0 | 0.8 | V | 1,22 |
| INPUT LEAKAGE <br> Any Input $0 V \leq V_{i n} \leq V c c$ <br> (All other pins not under test $=0 \mathrm{~V}$ ) | A0-A8, $\overline{\text { RAS }}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ | 11 | -4 | 4 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE <br> ( Q is disabled, $\mathrm{OV} \leq \mathrm{Vout}^{\mathrm{V}} \mathrm{Vcc}$ ) | DQ1-8 | loz | -12 | 12 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High (Logic 1) Voltage (lout $=-5 \mathrm{~mA}$ ) <br> Output Low (Logic 0 ) Voltage (lout $=5 \mathrm{~mA}$ ) |  | Vor | 2.4 |  | V | 1 |
|  |  | Vol |  | 0.4 | V |  |


|  |  | MAX |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -7 | -8 | -10 | -12 | UNITS | NOTES |
| STANDBY CURRENT: TTL Input Levels ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V} \mathrm{I}$ ) | Icc1 | 4 | 4 | 4 | 4 | mA |  |
| STANDBY CURRENT: CMOS Input Levels $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V})$ | Icc2 | 2 | 2 | 2 | 2 | mA |  |
| OPERATING CURRENT <br> ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling; ${ }^{\mathrm{t}} \mathrm{RC}={ }^{\mathrm{t}} \mathrm{RC}$ (MIN)) | Icc3 | 160 | 140 | 120 | 100 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\text { RAS }}=$ VIL; $\overline{\text { CAS }}=$ Cycling; ${ }^{\text {tPC }}={ }^{\text {tPC }}($ MIN $)$ ) | Icc4 | 120 | 100 | 80 | 60 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS-ONLY }}$ <br> ( $\overline{\mathrm{RAS}}=$ Cycling; $\overline{\mathrm{CAS}}=\mathrm{VIH}^{\mathrm{t}} \mathrm{RC}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc5 | 160 | 140 | 120 | 100 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { CAS }}$-BEFORE- $\overline{\text { RAS }}$ | Icc6 | 160 | 140 | 120 | 100 | mA | 3, 4 |


| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A8 | $\mathrm{Cl}_{11}$ |  | 10 | pF | 18 |
| Input Capacitance: $\overline{\text { RAS, }}$ CAS, WE | Cl 2 |  | 14 | pF | 18 |
| Input/Output Capacitance: DQ | Cıo |  | 14 | pF | 18 |

MT2D2568

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

（Notes：6，7，8，9，10，11，12，13）$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A．C．CHARACTERISTICS |  | －7 |  | －8 |  | －10 |  | －12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t }}$ RC | 135 |  | 150 |  | 180 |  | 220 |  | ns |  |
| READ－WRITE cycle time | ${ }^{\text {tr }}$ WC | n／a |  | n／a |  | n／a |  | n／a |  | n／a | 21 |
| FAST－PAGE－MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 45 |  | 55 |  | 70 |  | ns |  |
| FAST－PAGE－MODE READ－WRITE cycle time | ${ }^{\text {tPRWC }}$ | n／a |  | n／a |  | n／a |  | n／a |  | n／a | 21 |
| Access time from $\overline{\mathrm{RAS}}$ | ${ }^{\text {tRAC }}$ |  | 70 |  | 80 |  | 100 |  | 120 | ns | 14 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{t} \mathrm{CAC}$ |  | 20 |  | 20 |  | 25 |  | 30 | ns | 15 |
| Output Enable | ${ }^{\text {t }} \mathrm{OE}$ |  | 20 |  | 20 |  | 25 |  | 30 | ns |  |
| Access time from column address | ${ }^{\text {t }}$ A |  | 35 |  | 40 |  | 50 |  | 60 | ns |  |
| Access time from $\overline{\text { CAS }}$ precharge | ${ }^{\text {t }}$＇PA |  | 35 |  | 40 |  | 50 |  | 65 | ns |  |
| RAS pulse width | tras | 70 | 100，000 | 80 | 100，000 | 100 | 100，000 | 120 | 100，000 | ns |  |
| $\overline{\text { RAS pulse width（FAST PAGE MODE）}}$ | ${ }^{\text {tRASP }}$ | 70 | 100，000 | 80 | 100，000 | 100 | 100，000 | 120 | 100，000 | ns |  |
| RAS hold time | ${ }^{\text {t RSH }}$ | 20 |  | 20 |  | 25 |  | 30 |  | ns |  |
| RAS precharge time | ${ }^{\text {t RP }}$ | 50 |  | 60 |  | 70 |  | 90 |  | ns |  |
| CAS pulse width | ${ }^{\text {t }}$ CAS | 20 | 100，000 | 20 | 100，000 | 25 | 100，000 | 30 | 100，000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 70 |  | 80 |  | 100 |  | 120 |  | ns |  |
| CAS precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 15 |  | 20 |  | ns | 16 |
| CAS precharge time（FAST PAGE MODE） | ${ }^{t} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to CAS delay time | ${ }^{\text {tr }}$ ，${ }^{\text {ch }}$ | 20 | 50 | 20 | 60 | 25 | 75 | 25 | 90 | ns | 17 |
| $\overline{\text { CAS }}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | 10 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {traH }}$ | 10 |  | 10 |  | 15 |  | 15 |  | ns |  |
| RAS to column address delay time | ${ }^{\text {trad }}$ | 15 | 35 | 15 | 40 | 20 | 50 | 20 | 60 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{t} \mathrm{CAH}$ | 15 |  | 15 |  | 20 |  | 25 |  | ns |  |
| Column address hold time （referenced to $\overline{\mathrm{RAS}}$ ） | ${ }^{t} A R$ | 55 |  | 60 |  | 70 |  | 85 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {tr }}$ RAL | 35 |  | 40 |  | 50 |  | 60 |  | ns |  |
| Read command setup time | ${ }^{\text {t R CS }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time （referenced to CAS） | ${ }^{\text {tr }} \mathrm{CH}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time （referenced to $\overline{\mathrm{RAS}}$ ） | tRRH | 0 |  | 0 |  | 0 |  | 0 |  | ns | 19 |
| CAS to output in Low－Z | ${ }^{\text {t }} \mathrm{CLZ}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $6,7,8,9,10,11,12,13)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Output buffer turn-off delay | ${ }^{\text {t OFF }}$ | 0 | 20 | 0 | 20 | 0 | 20 | 0 | 35 | ns | 20 |
| Output Disable | ${ }^{\text {t }}$ OD |  | 20 |  | 20 |  | 20 |  | 20 | ns |  |
| WE command setup time | ${ }^{\text {theS }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | 25 |  | ns |  |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {tw }}$ WCR | 55 |  | 60 |  | 75 |  | 85 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t }}$ WWL | 20 |  | 20 |  | 25 |  | 30 |  | ns |  |
| Write command to $\overline{\mathrm{CAS}}$ lead time | ${ }^{\text {t }}$ CWL | 20 |  | 20 |  | 25 |  | 30 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ D | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 15 |  | 15 |  | 20 |  | 25 |  | ns |  |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ DHR | 55 |  | 60 |  | 75 |  | 90 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\text { WE }}$ delay time | ${ }^{\text {tRWD }}$ | n/a |  | n/a |  | n/a |  | n/a |  | n/a | 21 |
| Column address to WE delay time | ${ }^{\text {t }}$ AWD | n/a |  | n/a |  | n/a |  | n/a |  | n/a | 21 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | n/a |  | n/a |  | na |  | n/a |  | n/a | 21 |
| Transition time (rise or fall) | ${ }^{\text {T }}$ | 3 | 50 | 3 | 50 | 3 | 50 | 3 | 50 | ns | 5,16 |
| Refresh period ( 512 cycles) | ${ }^{\text {t REF }}$ |  | 8 |  | 8 |  | 8 |  | 8 | ms | 20 |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {t RPC }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns | 19 |
| CAS setup time (ㄷAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }}$ CSR | 10 |  | 10 |  | 10 |  | 10 |  | ns | 19 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | 15 |  | ns | 19 |
| $\overline{\mathrm{OE}}$ hold time from $\overline{\mathrm{WE}}$ during READ-MODIFY-WRITE cycle | ${ }^{\text {t }} \mathrm{OEH}$ | n/a |  | n/a |  | n/a |  | n/a |  | n/a | 21 |

## NOTES

1. All voltages referenced to Vss.
2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
3. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{R A S}$ cycles before proper device operation is assured. The eight $\overline{\mathrm{RAS}}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
4. AC characteristics assume ${ }^{\dagger} \mathrm{T}=5 \mathrm{~ns}$.
5. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between $V_{I H}$ and $V_{I L}$.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured.
7. Measured with a load equivalent to two TTL gates and 100 pF .
8. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t}$ RCD exceeds the value shown.
9. Assumes that ${ }^{t} R C D \geq{ }^{t} R C D$ (MAX).
10. If $\overline{\mathrm{CAS}}=\mathrm{VIH}_{\text {IH }}$, data output is high impedance.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\text {IL }}$, data output may contain data from the last valid READ cycle.
12. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VoH or Vol.
13. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that
${ }^{t}$ RAC (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{\text {t RCD }}$ (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t}} \mathrm{CAC}$.
14. ${ }^{\mathrm{t} R C H}$ is referenced to the first rising edge of $\overline{\mathrm{RAS}}$ or CAS.
15. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles.
16. In addition to meeting the transition rate specification, all input signals must transit between $\mathrm{V}_{\mathrm{IH}}$ and $V_{\text {IL }}$ (or between VIL and VIH) in a monotonic manner.
17. This parameter is sampled. Capacitance is calculated from the equation $C=I d t / d v$ with $d v=3 V$ and $\mathrm{VCC}=5 \mathrm{~V}$.
18. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}$, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the $Q$ buffer, $\overline{C A S}$ must be pulsed HIGH for ${ }^{t} \mathrm{CP}$. Note 8 applies to determine valid data out.
19. On-chip refresh and address counters are enabled.
20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$.
21. LATE-WRITE, READ-WRITE or READ-MODIFYWRITE cycles are not available due to $\overline{\mathrm{OE}}$ being grounded on U1 and U2.
22. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5 V for a period of less than 20 ns and the signal's total duration is 25 ns or less; or a -0.3 V signal of any duration is presented (DC).

## READ CYCLE



EARLY-WRITE CYCLE


VZZZ dont care
Undefined

FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE


7/A DON'T CARE
UNDEFINED

RAS-ONLY REFRESH CYCLE
(ADDR $=\mathrm{A}_{0}-\mathrm{A}_{8} ;$ and $\overline{\mathrm{WE}}=$ DON'T CARE $)$


CAS-BEFORE-RAS REFRESH CYCLE

$$
\left(A_{0}-A_{8} \text { and } \overline{W E}=\text { DON'T CARE }\right)
$$



DQ $\qquad$
HIDDEN REFRESH CYCLE

$$
(\overline{\mathrm{WE}}=\mathrm{HIGH})^{20}
$$



## DRAM MODULE

## 1 MEG x 8 DRAM FAST PAGE MODE

## FEATURES

- Industry standard pinout in a 30-pin single-in-line package
- High-performance CMOS silicon gate process
- Single $5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 24 mW standby; 1400 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Refresh modes: $\overline{R A S}-O N L Y, \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$, and HIDDEN
- 512-cycle refresh distributed across 8 ms
- Optional FAST PAGE MODE access cycle


## OPTIONS

- Timing

70ns access -7
80ns access -8
100ns access -10

- Packages

Leadless 30-pin SIMM
Leaded 30-pin SIP

## MARKING

M
N

## GENERAL DESCRIPTION

The MT8D18 is a randomly accessed solid-state memory containing $1,048,576$ words organized in a $x 8$ configuration. During READ or WRITE cycles, each word is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. $\overline{\text { RAS }}$ is used to latch the first 10 bits and $\overline{\text { CAS }}$ the latter 10 bits. READ or WRITE cycles are selected with the $\overline{W E}$ input. A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ mode while a logic LOW on $\overline{W E}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CAS}}$, whichever occurs last. Early WRITE occurs when $\overline{W E}$ goes LOW prior to $\overline{C A S} g o i n g ~ L O W, ~$ and the output pins remain open (High-Z) until the next $\overline{\text { CAS cycle. }}$

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A9)

defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\text { RAS }}$ followed by a column address strobed-in by $\overline{\text { CAS. }} \overline{\text { CAS }}$ may be toggled-in by holding $\overline{R A S}$ LOW and strobing-in different column addresses, thus executing faster memory cycles.

Returning $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}} \mathrm{HIGH}$ terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the $\overline{\text { RAS }}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\mathrm{RAS}}$ cycles (READ, WRITE, $\overline{\mathrm{RAS}}-\mathrm{ONLY}, \overline{\mathrm{CAS}}$-BEFORE$\overline{\text { RAS, }}$ or HIDDEN REFRESH) so that all 512 combinations of $\overline{\mathrm{RAS}}$ addresses (A0-A9) are executed at least every 8 ms , regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM


TRUTH TABLE
U1 - U8 = MT4C1024DJ

| Function |  | RAS | CAS | WE | Addresses |  | DQ1-8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {t }}$ R |  |  | ${ }^{\text {t }}$ A |  |
| Standby |  |  | H | X | X | X | X | High Impedance |
| READ |  | L | L | H | ROW | COL | Valid Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | Valid Data In |
| FAST-PAGE-MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | n/a | COL | Valid Data Out |
| FAST-PAGE-MODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | n/a | COL | Valid Data In |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | High Impedance |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | Valid Data In |
| CAS-BEFORE-쥬AS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | High Impedance |


*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above thoseindicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V |  |
| Input High (Logic 1) Voltage, All Inputs |  | VIH | 2.4 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs |  | VIL | -2.0 | 0.8 | V | 1,25 |
| INPUT LEAKAGE: <br> Any Input $\mathrm{OV} \leq \mathrm{V}$ In $\leq \mathrm{Vcc}$, <br> (All other pins not under test $=0 \mathrm{~V}$ ) | D9, $\overline{\text { CAS9 }}$ | 1 | -2 | 2 | $\mu \mathrm{A}$ |  |
|  | A0-A9, $\overline{\text { RAS }}$, $\overline{W E}$ | 11 | -16 | 16 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE: <br> ( Q is disabled, $\mathrm{OV} \leq$ Vout $\leq \mathrm{Vcc}$ ) | Q9 | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
|  | DQ1-8 | loz | -12 | 12 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output HighVoltage $($ lout $=-5 \mathrm{~mA})$ <br> Output Low Voltage ( (lout $=5 \mathrm{~mA}$ ) |  | Vor | 2.4 |  | V | 1 |
|  |  | Vol |  | 0.4 | V |  |


|  |  | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -7 | -8 | -10 | UNITS | NOTES |
| STANDBY CURRENT: TTL input levels $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}(\mathrm{H})$ | IcC1 | 16 | 16 | 16 | mA |  |
| STANDBY CURRENT: CMOS Input Levels $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V})$ | Icc2 | 8 | 8 | 8 | mA |  |
| OPERATING CURRENT <br> ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling; ${ }^{\mathrm{t} R \mathrm{C}}={ }^{\mathrm{t} R C}$ (MIN)) | Icc3 | 640 | 560 | 480 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\text { RAS }}=\mathrm{VIL}, \overline{\mathrm{CAS}}=$ Cycling; ${ }^{\text {tPC }}={ }^{\text {tPC }}(\mathrm{MIN})$ ) | Icc 4 | 480 | 400 | 320 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS-ONLY }}$ $\left.\overline{\text { RAS }}=\text { Cycling; } \overline{\mathrm{CAS}}=\mathrm{V}_{I H} ; \text { tRC }=\text { tRC }(\mathrm{MIN})\right)$ | Icc5 | 640 | 560 | 480 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\mathrm{CAS}}$-BEFORE-RAS ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling; ${ }^{\mathrm{t} R \mathrm{C}}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc6 | 640 | 560 | 480 | mA | 3, 4 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A9 | $\mathrm{C}_{11}$ |  | 45 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ | $\mathrm{C}_{12}$ |  | 63 | pF | 2 |
| Input/Output Capacitance: DQ | $\mathrm{C} \circ$ |  | 12 | pF | 2 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

（Notes：6，7，8，9，10，11，12，13）$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A．C．CHARACTERISTICS |  | －7 |  | －8 |  | －10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {tRC }}$ | 130 |  | 150 |  | 180 |  | ns |  |
| READ－WRITE cycle time | ${ }^{\text {tr }}$ WC | n／a |  | n／a |  | n／a |  | n／a | 24 |
| FAST－PAGE－MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 40 |  | 55 |  | ns |  |
| FAST－PAGE－MODE READ－WRITE cycle time | ${ }^{\text {t PRWWC }}$ | n／a |  | n／a |  | n／a |  | n／a | 24 |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {tr }}$ RAC |  | 70 |  | 80 |  | 100 | ns | 14 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ AAC |  | 20 |  | 20 |  | 25 | ns | 15 |
| Access time from column address | ${ }^{\text {t }}$ AA |  | 35 |  | 40 |  | 50 | ns |  |
| Access time from CAS precharge | ${ }^{\text {t }}$ CPA |  | 35 |  | 40 |  | 50 | ns |  |
| $\overline{\text { RAS pulse width }}$ | ${ }^{\text {tras }}$ | 70 | 100，000 | 80 | 100，000 | 100 | 100，000 | ns |  |
| RAS pulse width（FAST PAGE MODE） | ${ }^{\text {trasP }}$ | 70 | 100，000 | 80 | 100，000 | 100 | 100，000 | ns |  |
| $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {tRSH }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | tRP | 50 |  | 60 |  | 70 |  | ns |  |
| CAS pulse width | ${ }^{\text {t }}$ CAS | 20 | 100，000 | 20 | 100，000 | 25 | 100，000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 15 |  | ns | 16 |
| CAS precharge time（FAST PAGE MODE） | ${ }^{\text {t }} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay time | ${ }^{\text {tRCD }}$ | 20 | 60 | 20 | 60 | 25 | 75 | ns | 17 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {traH }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | trad | 15 | 40 | 15 | 40 | 20 | 50 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time （referenced to $\overline{\mathrm{RAS}}$ ） | ${ }^{\text {t }}$ AR | 55 |  | 60 |  | 70 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {traL }}$ | 35 |  | 40 |  | 50 |  | ns |  |
| Read command setup time | ${ }^{\text {t R CS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time （referenced to CAS） | ${ }^{\text {tr }} \mathrm{CH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time （referenced to $\overline{\text { RAS }}$ ） | ${ }^{\text {t }}$ RRH | 0 |  | 0 |  | 0 |  | ns | 19 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $6,7,8,9,10,11,12,13)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 75^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t }}$ LLZ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | toff | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20 |
| $\overline{\text { WE }}$ command setup time | tWCS | 0 |  | 0 |  | 0 |  | ns |  |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ WCR | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t RWL }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to CAS lead time | ${ }^{\text {t }}$ CWL | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 21 |
| Data-in hold time | ${ }^{\text {t }}$ DH | 15 |  | 15 |  | 20 |  | ns | 21 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t DHR }}$ | 55 |  | 60 |  | 75 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {tRWD }}$ | n/a |  | n/a |  | n/a |  | n/a | 25 |
| Column address to $\overline{W E}$ delay time | ${ }^{\text {t }}$ AWD | n/a |  | n/a |  | n/a |  | n/a | 25 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | n/a |  | n/a |  | n/a |  | n/a | 25 |
| Transition time (rise or fall) | 'T | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period (512 cycles) | ${ }^{\text {tREF }}$ |  | 8 |  | 8 |  | 8 | ms |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\text { CAS }}$ setup time ( $\overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$ REFRESH) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| $\overline{\text { CAS hold time }}$ (CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5 |
| $\overline{\mathrm{OE}}$ hold time from $\overline{\mathrm{WE}}$ during READ-MODIFY-WRITE cycle | ${ }^{\text {t }} \mathrm{OEH}$ | n/a |  | n/a |  | n/a |  | n/a | 25 |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=I{ }^{\mathrm{dt}} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{VCC}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured.
7. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{\text { RAS }}$ cycles before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
9. ViH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and $V_{\mathrm{IH}}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $\mathrm{V}_{\mathrm{IH}}$ and $V_{\text {IL }}$ (or between VIL and $V_{\text {IH }}$ ) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\text {IL, }}$, data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to two TTL gates and 100 pF .
14. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD}<^{\mathrm{t} R C D}$ (MAX). If ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the maximum recommended value shown in this table, ${ }^{\mathrm{R}}$ RAC will increase by the amount that ${ }^{\mathrm{t}} \mathrm{RCD}$ exceeds the value shown.
15. Assumes that ${ }^{\mathrm{t} R C D} \geq \mathrm{t}^{\mathrm{R} C D}$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}, \mathrm{Q}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{t}$ CPN.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t}$ RAC (MAX) can be met. ${ }^{t}$ RCD (MAX) is specified as a reference point only; if ${ }^{\mathrm{t} R C D}$ is greater than the specified ${ }^{t}$ RCD (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{CAC}$.
18. Operation within the ${ }^{t}$ RAD (MAX) limit ensures that ${ }^{t}$ RCD (MAX) can be met. ${ }^{\text {R RAD (MAX) is specified as }}$ a reference point only; if ${ }^{\mathrm{t}} \mathrm{RAD}$ is greater than the specified ${ }^{t}$ RAD (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{AA}$.
19. Either ${ }^{\text {tRCH }}$ or ${ }^{\text {tRRH }}$ must be satisfied for a READ cycle.
20. ${ }^{\text {tofF }}$ (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voн or VoL.
21. These parameters are referenced to $\overline{\text { CAS leading edge }}$ in EARLY-WRITE cycles and WE leading edge in late WRITE or READ-WRITE cycles.
22. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=$ LOW.
23. All other inputs equal Vcc -0.2 V .
24. LATE-WRITE, READ-WRITE or READ-MODIFYWRITE cycles are not available due to the common DQ configuration of U1-U8.
25. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5 V for a period of less than 20 ns and the signal's total duration is 25 ns or less; or a -0.3 V signal of any duration is presented (DC).

## READ CYCLE



EARLY-WRITE CYCLE


FAST－PAGE－MODE READ CYCLE


FAST－PAGE－MODE EARLY－WRITE CYCLE


DON＇T CARE
UNDEFINED

RAS-ONLY REFRESH CYCLE
(ADDR $=\mathrm{A}_{0}-\mathrm{A}_{8} ; \mathrm{A}_{9}$ and $\overline{\mathrm{WE}}=$ DON'T CARE)


CAS-BEFORE-주AS REFRESH CYCLE

$$
\left(\mathrm{A}_{0}-\mathrm{A}_{9} \text { and } \overline{\mathrm{WE}}=\mathrm{DON} \text { 'T CARE }\right)
$$



DQ $\qquad$ OPEN

## HIDDEN REFRESH CYCLE

$(\overline{\mathrm{WE}}=\mathrm{HIGH})^{22}$


## DRAM MODULE

## 1 MEG x 8 DRAM

FAST PAGE MODE

## FEATURES

- Industry standard pinout in a 30-pin, single-in-line memory module
- High-performance, CMOS silicon gate process
- Single $5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 5 mW standby; 450 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Optional FAST PAGE MODE access cycle
- Refresh modes: $\overline{\text { RAS-ONLY, } \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{R A S}}$, and HIDDEN
- 1,024-cycle refresh distributed across 16 ms


## OPTIONS

- Timing 60ns access -6
70ns access -7
80ns access -8
100 ns access -10
- Packages

Leadless 30-pin SIMM
M
Leaded 30-pin SIP

## MARKING

-10N

## GENERAL DESCRIPTION

The MT2D18 is a randomly accessed solid-state memory containing $1,048,576$ words organized in a 88 configuration. During READ or WRITE cycles, each word is uniquely addressed through 20 address bits, which are entered 10 bits (A0-A9) at a time. $\overline{\mathrm{RAS}}$ is used to latch the first 10 bits and $\overline{\text { CAS }}$ the latter 10 bits. READ or WRITE cycles are selected with the $\overline{\mathrm{WE}}$ input. A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ mode while a logic LOW on $\overline{\mathrm{WE}}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CAS}}$, whichever occurs last. Early WRITE occurs when $\overline{W E}$ goes LOW prior to $\overline{\text { CAS }}$ going LOW, and the output pins remain open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle.
FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row address (A0-A9)

defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\text { RAS }}$ followed by a column address strobed-in by CAS. CAS may be toggled-in by holding $\overline{\text { RAS }}$ LOW and strobing-in different column addresses, thus executing faster memory cycles.

Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the $\overline{\text { RAS }}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\mathrm{RAS}}$ cycle (READ, WRITE, $\overline{\mathrm{RAS}}$-ONLY, $\overline{\mathrm{CAS}}$-BEFORERAS, or HIDDEN REFRESH) so that all 1,024 combinations of $\overline{\text { RAS }}$ addresses (A0-A9) are executed at least every 16 ms , regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM


## TRUTH TABLE

| Function |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :--- |

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss ......... -1.0 V to +7.0 V
Operating Temperature, TA (Ambient) ........... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature ................................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..............................................................2W
Short Circuit Output Current ...................................... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V |  |
| Input High (Logic 1) Voltage, All Input |  | VIH | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inp |  | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE <br> Any Input $0 V \leq \operatorname{Vin} \leq V_{c c}$ <br> (All other pins not under test $=0 \mathrm{~V}$ ) | A0-A9, RAS, $\overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ | 1 | -4 | 4 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE <br> ( Q is disabled, $\mathrm{OV} \leq \mathrm{Vout} \leq \mathrm{Vcc}$ ) | DQ1-DQ8 | loz | -12 | 12 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High (Logic 1) Voltage (lout $=-5 \mathrm{~mA})$ <br> Output Low (Logic 0 ) Voltage (lout $=5 \mathrm{~mA}$ ) |  | Vor | 2.4 |  | V | 1 |
|  |  | Vol |  | 0.4 | V |  |


|  |  | MAX |  |  |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -6 | -7 | -8 | -10 |  |  |
| STANDBY CURRENT: TTL Input Levels (RAS $=\overline{\mathrm{CAS}}=\mathrm{V}(\mathrm{H})$ | Icc1 | 4 | 4 | 4 | 4 | mA |  |
| STANDBY CURRENT: CMOS Input Levels $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V})$ | Icc2 | 2 | 2 | 2 | 2 | mA |  |
| OPERATING CURRENT <br> ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling; ${ }^{\text {tRC }}={ }^{\text {tRC }}$ (MIN)) | Icc3 | 220 | 200 | 180 | 160 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\mathrm{RAS}}=\mathrm{VIL} ; \overline{\mathrm{CAS}}=$ Cycling; ${ }^{\mathrm{tPC}}=\mathrm{tPC}(\mathrm{MIN})$ ) | Icc4 | 160 | 140 | 120 | 100 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY <br> ( $\overline{\text { RAS }}=$ Cycling; $\overline{\text { CAS }}=\mathrm{VIH}^{1 H} ;{ }^{\mathrm{t} R C}={ }^{\mathrm{t} R C}(\mathrm{MIN})$ ) | Icc5 | 220 | 200 | 180 | 160 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { CAS }}$-BEFORE-RAS | Icc6 | 220 | 200 | 180 | 160 | mA | 3, 4 |

CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: AO-A9 | Cl 1 |  | 10 | pF | 18 |
| Input Capacitance: $\overline{\text { RAS, } \overline{\mathrm{CAS}}, \overline{\text { WE }}} \mathrm{Cl} 2$ |  | 14 | pF | 18 |  |
| Input/Output Capacitance: DQ | Clo |  | 7 | pF | 18 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

（Notes： $6,7,8,9,10,11,12,13)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A．C．CHARACTERISTICS |  | －6 |  | －7 |  | －8 |  | －10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t }}$ RC | 110 |  | 130 |  | 150 |  | 180 |  | ns |  |
| READ－WRITE cycle time | trwC | n／a |  | n／a |  | n／a |  | n／a |  | n／a | 21 |
| FAST－PAGE－MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 40 |  | 45 |  | 55 |  | ns |  |
| FAST－PAGE－MODE READ－WRITE cycle time | tPRWC | n／a |  | n／a |  | n／a |  | n／a |  | n／a | 21 |
| Access time from $\overline{\mathrm{RAS}}$ | ${ }^{\text {t RAC }}$ |  | 60 |  | 70 |  | 80 |  | 100 | ns | 14 |
| Access time from $\overline{\text { CAS }}$ | ${ }^{\text {t }}$ A $A C$ |  | 15 |  | 20 |  | 20 |  | 25 | ns | 15 |
| Access time from column address | ${ }^{\text {t }}$ A |  | 30 |  | 35 |  | 40 |  | 50 | ns |  |
| Access time from $\overline{\text { CAS }}$ precharge | ${ }^{\text {t }}$＇PA |  | 40 |  | 40 |  | 45 |  | 50 | ns |  |
| RAS pulse width | tRAS | 60 | 100，000 | 70 | 100，000 | 80 | 100，000 | 100 | 100，000 | ns |  |
| RAS pulse width（FAST PAGE MODE） | tRASP | 60 | 100，000 | 70 | 100，000 | 80 | 100，000 | 100 | 100，000 | ns |  |
| RAS hold time | ${ }^{\text {tRSH }}$ | 15 |  | 20 |  | 20 |  | 25 |  | ns |  |
| RAS precharge time | tRP | 45 |  | 50 |  | 60 |  | 70 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t }}$ cAS | 15 | 100，000 | 20 | 100，000 | 20 | 100，000 | 25 | 100，000 | ns |  |
| CAS hold time | ${ }^{\text {t }}$ CSH | 60 |  | 70 |  | 80 |  | 100 |  | ns |  |
| CAS precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 10 |  | 15 |  | ns | 16 |
| $\overline{\text { CAS }}$ precharge time（FAST PAGE MODE） | ${ }^{t} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\text { CAS }}$ delay time | ${ }^{\text {tr }}$ CD | 15 | 45 | 20 | 50 | 20 | 60 | 25 | 75 | ns | 17 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {tRAH }}$ | 10 |  | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {tRAD }}$ | 15 | 30 | 15 | 35 | 15 | 40 | 20 | 50 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }}$ A AH | 10 |  | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time （referenced to $\overline{\mathrm{RAS}}$ ） | ${ }^{\text {t AR }}$ | 50 |  | 55 |  | 60 |  | 70 |  | ns |  |
| Column address to RAS lead time | trAL | 30 |  | 35 |  | 40 |  | 50 |  | ns |  |
| Read command setup time | ${ }^{\text {tRCS }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time （referenced to $\overline{\text { CAS }}$ ） | ${ }^{\text {tr CH }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time （referenced to $\overline{\mathrm{RAS}}$ ） | ${ }^{\text {tRRH }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low－Z | ${ }^{\text {t }}$ CLZ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $6,7,8,9,10,11,12,13)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -6 |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Output buffer turn-off delay | ${ }^{\text {torb }}$ | 0 | 20 | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20 |
| $\overline{\text { WE }}$ command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write command hold time | ${ }^{\text {t WCH }}$ | 10 |  | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | tWCR | 45 |  | 55 |  | 60 |  | 70 |  | ns |  |
| Write command pulse width | ${ }^{t}$ WP | 10 |  | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {tr }}$ WL | 15 |  | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to CAS lead time | ${ }^{\text {t }}$ CWL | 15 |  | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 10 |  | 15 |  | 15 |  | 20 |  | ns |  |
| Data-in hold time (referenced to $\overline{\text { RAS }}$ ) | ${ }^{\text {t }} \mathrm{DHR}$ | 45 |  | 55 |  | 60 |  | 70 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ ' ${ }^{\text {WWD }}$ | n/a |  | n/a |  | n/a |  | n/a |  | n/a | 21 |
| Column address to WE delay time | ${ }^{\text {t }}$ AWD | n/a |  | n/a |  | n/a |  | n/a |  | n/a | 21 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | n/a |  | n/a |  | n/a |  | n/a |  | n/a | 21 |
| Transition time (rise or fall) | ${ }^{\text {T }}$ | 3 | 50 | 3 | 50 | 3 | 50 | 3 | 50 | ns | 5,16 |
| Refresh period ( 512 cycles) | treF |  | 16 |  | 16 |  | 16 |  | 16 | ms | 20 |
| RAS to $\overline{\mathrm{CAS}}$ precharge time | trPC | 0 |  | 0 |  | 0 |  | 0 |  | ns | 19 |
| CAS setup time (ㄷAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | 10 |  | ns | 19 |
| CAS hold time ( $\overline{C A S}-B E F O R E-\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | 15 |  | ns | 19 |
| $\overline{\mathrm{OE}}$ hold time from $\overline{\mathrm{WE}}$ during READ-MODIFY-WRITE cycle | ${ }^{\text {toEH }}$ | n/a |  | n/a |  | n/a |  | n/a |  | n/a | 21 |

## NOTES

1. All voltages referenced to Vss.
2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
3. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{\text { RAS }}$ REFRESH cycles ( $\overline{\text { RAS- }}$ ONLY or CBR with $\overline{\text { WE }}$ HIGH) before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 16 ms refresh requirement is exceeded.
4. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
5. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ) is assured.
7. Measured with a load equivalent to 2 TTL gates and 100 pF .
8. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD}<^{\mathrm{t} R C D}$ (MAX). If ${ }^{\mathrm{t} R C D}$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{\mathrm{t} R C D}$ exceeds the value shown.
9. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD} \geq^{\mathrm{t}} \mathrm{RCD}$ (MAX).
10. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\text {IH }}$, data output is high impedance.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\text {IL }}$, data output may contain data from the last valid READ cycle.
12. ${ }^{\text {toFF }}$ (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Vон or Vol.
13. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t}$ RAC (MAX) can be met. ${ }^{t}$ RCD (MAX) is specified as a reference point only; if ${ }^{\mathrm{t} R C D}$ is greater than the specified ${ }^{t}$ RCD (MAX) limit, then access time is controlled exclusively by ${ }^{\mathrm{t}} \mathrm{CAC}$.
14. ${ }^{\text {tRCH }}$ is referenced to the first rising edge of $\overline{\text { RAS }}$ or $\overline{\text { CAS. }}$
15. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles.
16. In addition to meeting the transition rate specification, all input signals must transit between VIH and $\mathrm{V}_{\text {IL }}$ (or between $\mathrm{V}_{\text {IL }}$ and $\mathrm{V}_{\text {IH }}$ ) in a monotonic manner.
17. This parameter is sampled. Capacitance is calculated

18. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}$, data-out $(\mathrm{Q})$ will be maintained from the previous cycle. To initiate a new cycle and clear the $Q$ buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{\text {t }} \mathrm{CP}$. Note 8 applies to determine valid data out.
19. On-chip refresh and address counters are enabled.
20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case,$\overline{\mathrm{WE}}=\mathrm{LOW}$.
21. LATE-WRITE, READ-WRITE or READ-MODIFYWRITE cycles are not available due to $\overline{\mathrm{OE}}$ being grounded on U1 and U2.

## READ CYCLE



EARLY-WRITE CYCLE


DON'T CARE
UNDEFINED

FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE


Z/Z dont care
UNDEFINED


CAS-BEFORE-RAS REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{9}$ and $\overline{\mathrm{WE}}=\mathrm{DON}$ 'T CARE $)$

 $\qquad$ OPEN

HIDDEN REFRESH CYCLE $(\overline{\mathrm{WE}}=\mathrm{HIGH})^{20}$


ZZ Dont care
undefined

## DRAM MODULE

## 4 MEG x 8 DRAM

FAST PAGE MODE

## FEATURES

- Industry standard pinout in a 30-pin single-in-line package
- High-performance CMOS silicon gate process
- Single $5 \mathrm{~V} \pm 10 \%$ power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 24 mW standby; $1,800 \mathrm{~mW}$ active, typical
- Refresh modes: $\overline{\mathrm{RAS}}-\mathrm{ONLY}, \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$, and HIDDEN
- 1,024-cycle refresh distributed across 16 ms
- Optional FAST PAGE MODE access cycle


## OPTIONS

- Timing

60ns access -6
70 ns access
80 ns access

- Packages

Leadless 30 -pin SIMM
Leaded 30-pin SIP

## GENERAL DESCRIPTION

The MT8D48 is a randomly accessed solid-state memory containing $4,194,304$ words organized in a 88 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 22 address bits which are entered 11 bits (A0-A10) at a time. $\overline{\mathrm{RAS}}$ is used to latch the first 11 bits and CAS the latter 11 bits. A READ or WRITE cycle is selected with the $\overline{\mathrm{WE}}$ input. A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ mode, while a logic LOW on $\overline{W E}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. If $\overline{W E}$ goes LOW prior to $\overline{\mathrm{CAS}}$ going LOW, the output pin(s) remain open (High-Z) until the next $\overline{\text { CAS }}$ cycle. EARLY-WRITE occurs when $\overline{W E}$ goes LOW prior to $\overline{\text { CAS }}$ going LOW, and the ouput remains open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A10) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\mathrm{RAS}}$

- 7 - 8


## MARKING

## M

$$
\begin{aligned}
& \mathrm{V} 1 \\
& \mathrm{~N}
\end{aligned}
$$

FUNCTIONAL BLOCK DIAGRAM


TRUTH TABLE

| Function |  | RAS | CAS | CAS9 | WE | Addresses |  | DQ1-8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {tr }}$ |  |  |  | ${ }^{\text {t }}$ A |  |
| Standby |  |  | H | X | X | X | X | X | High Impedance |
| READ |  | L | L | L | H | ROW | COL | Valid Data Out |
| EARLY-WRITE |  | L | L | L | L | ROW | COL | Valid Data In |
| FAST-PAGE-MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | H | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | H | n/a | COL | Valid Data Out |
| FAST-PAGE-MODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | L | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | L | n/a | COL | Valid Data In |
| RAS-ONLY REFRESH |  | L | H | H | X | ROW | n/a | High Impedance |
| HIDDEN <br> REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | H | ROW | COL | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | L | ROW | COL | Valid Data In |
| CAS-BEFORER $\overline{A S}$ REFRESH | Standard | $\mathrm{H} \rightarrow \mathrm{L}$ | L | L | X | X | X | High Impedance |

ABSOLUTE MAXIMUM RATINGS*


ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs |  | VIH | 2.4 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs |  | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE CURRENT <br> Any Input: $0 \mathrm{~V} \leq \operatorname{Vin} \leq 6.5 \mathrm{~V}$ <br> (All other pins not under test $=0$ V) | A0-A10, $\overline{\text { WE, }}$, $\overline{\mathrm{CAS}}, \overline{\mathrm{RAS}}$ | 1 | -16 | 16 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( Q is disabled, $\mathrm{OV} \leq$ Vout $\leq 5.5 \mathrm{~V}$ ) | DQ1-DQ8 | loz | -12 | 12 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage (lout $=-5 \mathrm{~mA}$ ) <br> Output Low Voltage $($ lout $=4.2 \mathrm{~mA})$ |  | Vон | 2.4 |  | V |  |
|  |  | Vol |  | 0.4 | V |  |


|  |  | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -6 | -7 | -8 | UNITS | NOTES |
| STANDBY CURRENT (TTL) $\left(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{H}}\right)$ | IcC1 | 16 | 16 | 16 | mA |  |
| STANDBY CURRENT (CMOS) ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V}$ ) | Icc2 | 8 | 8 | 8 | mA |  |
| OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, $\overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\mathrm{t} R C}={ }^{\mathrm{t}} \mathrm{RC}$ (MIN)) | Icc3 | 880 | 800 | 720 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE <br> Average power supply current <br> ( $\overline{\mathrm{RAS}}=\mathrm{VIL}, \overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\mathrm{tPC}}={ }^{\text {tPC }}(\mathrm{MIN})$ ) | Icc4 | 640 | 560 | 480 | mA | 3, 4 |
| REFRESH CURRENT: RAS-ONLY Average power supply current ( $\overline{\text { RAS }}$ Cycling, $\overline{\mathrm{CAS}}=\mathrm{V}^{\prime}$ : ${ }^{\mathrm{t} R C}={ }^{\mathrm{t} R C}$ (MIN)) | Icc5 | 880 | 800 | 720 | mA | 3 |
| REFRESH CURRENT: $\overline{\text { CAS-BEFORE-RAS }}$ Average power supply current (RAS, $\overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\mathrm{t} R C}={ }^{\mathrm{t} R C}$ (MIN)) | Icc6 | 880 | 800 | 720 | mA | 3 |

CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance：A0－A10 | $\mathrm{C}_{11}$ |  | 45 | pF | 2 |
| Input Capacitance：$\overline{\mathrm{RAS}}, \overline{\mathrm{WE}}$ | C 12 |  | 63 | pF | 2 |
| Output Capacitance：Q | C 0 |  | 7 | pF | 2 |
| Input Capacitance： D | C 13 |  | 7 | pF | 2 |
| Input／Output Capacitance： DQ | C 10 |  | 12 | pF | 2 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

（Notes：6，7，8，9，10，11，12，13）（Vcc＝5．0V $\pm 10 \%$ ）

| A．C．CHARACTERISTICS |  | －6 |  | －7 |  | －8 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | tr ${ }^{\text {t }}$ | 110 |  | 130 |  | 150 |  | ns |  |
| READ－WRITE cycle time | ${ }^{\text {tRWC }}$ | n／a |  | n／a |  | n／a |  | n／a | 24 |
| FAST－PAGE－MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 40 |  | 45 |  | ns |  |
| FAST－PAGE－MODE READ－WRITE cycle time | tPRWC | n／a |  | n／a |  | n／a |  | n／a | 24 |
| Access time from $\overline{\mathrm{RAS}}$ | ${ }^{\text {t RAC }}$ |  | 60 |  | 70 |  | 80 | ns | 14 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ CAC |  | 15 |  | 20 |  | 20 | ns | 15 |
| Access time from column address | ${ }^{t} A A$ |  | 30 |  | 35 |  | 40 | ns |  |
| Access time from CAS precharge | ${ }^{\text {t }}$ CPA |  | 40 |  | 40 |  | 45 | ns | 25 |
| $\overline{\text { RAS }}$ pulse width | tRAS | 60 | 100，000 | 70 | 100，000 | 80 | 100，000 | ns |  |
| $\overline{\text { RAS }}$ pulse width（FAST PAGE MODE） | ${ }^{\text {tRASP }}$ | 60 | 100，000 | 70 | 100，000 | 80 | 100，000 | ns |  |
| RAS hold time | ${ }^{\text {t }}$ RSH | 15 |  | 20 |  | 20 |  | ns |  |
| RAS precharge time | tRP | 45 |  | 50 |  | 60 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t CAS }}$ | 15 | 100，000 | 20 | 100，000 | 20 | 100，000 | ns |  |
| CAS hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 60 |  | 70 |  | 80 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 10 |  | ns | 16 |
| CAS precharge time（FAST PAGE MODE） | ${ }^{\text {t }} \mathrm{C} P$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to CAS delay time | ${ }^{\text {t } R C D}$ | 15 | 45 | 20 | 50 | 20 | 60 | ns | 17 |
| $\overline{\text { CAS }}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t RAH }}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {trab }}$ | 15 | 30 | 15 | 35 | 15 | 40 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 10 |  | 15 |  | 15 |  | ns |  |
| Column address hold time （referenced to $\overline{\mathrm{RAS}}$ ） | ${ }^{\text {t } A R}$ | 50 |  | 55 |  | 60 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {traL }}$ | 30 |  | 35 |  | 40 |  | ns |  |
| Read command setup time | ${ }^{\text {t RCS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time （referenced to CAS） | ${ }^{\text {treH }}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time （referenced to $\overline{\mathrm{RAS}}$ ） | ${ }^{\text {tRRH }}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| CAS to output in Low－Z | ${ }^{\text {t }}$ CLZ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn－off delay | toff | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20 |
| WE command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns | 21 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -6 |  | -7 |  | -8 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Write command hold time | ${ }^{\text {t }}$ WCH | 10 |  | 15 |  | 15 |  | ns |  |
| Write command hold time (referenced to RAS) | ${ }^{\text {t }}$ WCR | 45 |  | 55 |  | 60 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 10 |  | 15 |  | 15 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t RWL }}$ | 15 |  | 20 |  | 20 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }} \mathrm{CWL}$ | 20 |  | 20 |  | 20 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 21 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 10 |  | 15 |  | 15 |  | ns | 21 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }} \mathrm{DHR}$ | 45 |  | 55 |  | 60 |  | ns |  |
| $\overline{\text { RAS }}$ to WE delay time | ${ }^{\text {t }}$ WD | n/a |  | n/a |  | n/a |  | n/a | 24 |
| Column address to WE delay time | ${ }^{\text {t }}$ AWD | n/a |  | n/a |  | n/a |  | n/a | 24 |
| $\overline{\text { CAS }}$ to WE delay time | ${ }^{\text {t }}$ CWD | n/a |  | n/a |  | n/a |  | n/a | 24 |
| Transition time (rise or fall) | ${ }^{\text {'T }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period (1,024 cycles) | tREF |  | 16 |  | 16 |  | 16 | ms |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t RPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| $\begin{aligned} & \hline \text { CAS setup time } \\ & \text { (CAS-BEFORE-RAS REFRESH) } \end{aligned}$ | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| CAS hold time (ㄷAS-BEFORE-즌 REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5 |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=I{ }^{\mathrm{dt} / \mathrm{dv}}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ) is assured.
7. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{\mathrm{RAS}}$ refresh cycles ( $\overline{\mathrm{RAS}}-\mathrm{ONLY}$ or CBR with $\overline{\text { WE HIGH) before proper device }}$ operation is assured. The eight RAS cycle wake-up should be repeated any time the 16 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\mathfrak{t}} \mathrm{T}=5 \mathrm{~ns}$.
9. $\mathrm{V}_{\mathrm{IH}}$ (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between $V_{\text {IH }}$ and $V_{\text {IL }}$ (or between VIL and $\mathrm{V}_{\mathrm{IH}}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between Vif and $V_{\text {IL }}$ (or between Vil and $V_{\text {IH }}$ ) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\text {IL }}$, data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to two TTL gates and 100 pF .
14. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD}<{ }^{\mathrm{t} R C D}$ (MAX). If ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater
than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD} \geq^{\mathrm{t}} \mathrm{RCD}$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\text { RAS }}, \mathrm{Q}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{\text {t }} \mathrm{CPN}$.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t}$ RAC (MAX) can be met. ${ }^{t}$ RCD (MAX) is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the specified ${ }^{t}$ RCD (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{CAC}$.
18. Operation within the ${ }^{\mathrm{t} R A D}(\mathrm{MAX})$ limit ensures that ${ }^{t}$ RCD (MAX) can be met. ${ }^{t}$ RAD (MAX) is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RAD}$ is greater than the specified trAD (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{AA}$.
19. Either tRCH or ${ }^{\text {tRRH }}$ must be satisfied for a READ cycle.
20. ${ }^{\text {toFF }}$ (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Vон or VoL.
21. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles.
22. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=$ LOW .
23. All other inputs equal Vcc -0.2 V .
24. LATE-WRITE, READ-WRITE or READ-MODIFYWRITE cycles are not available due to the common DQ configuration of U1-U8.

## READ CYCLE



EARLY-WRITE CYCLE


FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE


## RAS-ONLY REFRESH CYCLE

$\left(A D D R=A_{0}-A_{9} ; A_{10}\right.$ and $\overline{W E}=D O N ' T$ CARE $)$


DQ $V_{\mathrm{OL}}^{\mathrm{V}_{\mathrm{OH}}}$ $\qquad$

CAS-BEFORE-RAS REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{10}$ and $\overline{\mathrm{WE}}=$ DON'T CARE)


DQ $\mathrm{V}_{\mathrm{OL}}^{\mathrm{OH}}=$ $\qquad$

HIDDEN REFRESH CYCLE
$(\overline{\mathrm{WE}}=\mathrm{HIGH})^{23}$


## DRAM MODULE

## FEATURES

- Industry standard pinout in a 30-pin single-in-line memory module
- High-performance, CMOS silicon gate process
- Single $5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 9 mW standby; 625 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Optional FAST PAGE MODE access cycle
- Refresh modes: $\overline{\text { RAS-ONLY, } \overline{\text { CAS-BEFORE- }} \overline{R A S} \text {, and }}$ HIDDEN
- 512-cycle refresh distributed across 8 ms


## OPTIONS

- Timing

80 ns access
100 ns access

- Access Mode

FAST PAGE MODE
PAGE MODE

- Packages

Leadless 30-pin SIMM
Leaded 30-pin SIP
$\begin{array}{ll}70 \mathrm{~ns} \text { access } & -7 \\ 80 \mathrm{~ns} \text { access } & -8\end{array}$

$$
8
$$-10

120 ns access ..... $-12$

$\qquad$

## MARKING

$$
-7
$$

P NONE

## M

## GENERAL DESCRIPTION

The MT3D2569 is a randomly accessed solid-state memory containing 262,144 words organized in a $x 9$ configuration. During READ or WRITE cycles, each word is uniquely addressed through the 18 address bits, which are entered nine bits (A0-A8) at a time. $\overline{\text { RAS }}$ is used to latch the first nine bits and $\overline{\text { CAS }}$ the latter nine bits. A READ or WRITE cycle is selected with the $\overline{W E}$ input. A logic HIGH on $\overline{W E}$ dictates READ mode while a logic LOW on $\overline{W E}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{\mathrm{CAS}}$, whichever occurs last. EARLYWRITE occurs when $\overline{W E}$ goes LOW prior to $\overline{C A S} g o i n g L O W$, and the output pins remain open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row address (A0-A8)

## 256K x 9 DRAM <br> FAST PAGE MODE/PAGE MODE


defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\text { RAS }}$ followed by a column address strobed-in by $\overline{\text { CAS. }} \overline{\text { CAS }}$ may be toggled-in by holding $\overline{\text { RAS }}$ LOW and strobing-in different column addresses, thus executing faster memory cycles.

Returning $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}} \mathrm{HIGH}$ terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the $\overline{\mathrm{RAS}}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle (READ, WRITE, $\overline{\mathrm{RAS}}$-ONLY, $\overline{\mathrm{CAS}}$-BEFORE$\overline{\text { RAS }}$, or HIDDEN REFRESH) so that all 512 combinations of $\overline{\mathrm{RAS}}$ addresses (A0-A8) are executed at least every 8 ms , regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM


TRUTH TABLE

| Function |  | RAS | CAS | CAS9 | WE | Addresses |  | DQ1-8, D9, Q9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {tR }}$ |  |  |  | ${ }^{\text {t }}$ C |  |
| Standby |  |  | H | X | X | X | X | X | High Impedance |
| READ |  | L | L | L | H | ROW | COL | Valid Data Out |
| EARLY-WRITE |  | L | L | L | L | ROW | COL | Valid Data In |
| PAGE-MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | H | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | H | n/a | COL | Valid Data Out |
| PAGE-MODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | L | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | L | n/a | COL | Valid Data In |
| RAS-ONLY REFRESH |  | L | H | H | X | ROW | $\mathrm{n} / \mathrm{a}$ | High Impedance |
| HIDDEN | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | H | ROW | COL | Valid Data Out |
| REFRESH | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | L | ROW | COL | Valid Data In |
| CAS-BEFORE-쥬AS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | L | X | X | X | High Impedance |

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss .........-1.0V to +7.0 V
Operating Temperature, TA(Ambient) ........... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature ................................ $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation 3W
Short Circuit Output Current ................................... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above thoseindicated in theoperational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V |  |
| Input High (Logic 1) Voltage, All Inputs |  | VIH | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs |  | VIL | -2.0 | 0.8 | V | 1,22 |
| INPUT LEAKAGE <br> Any Input $0 V \leq$ Vin $\leq \mathrm{Vcc}_{\mathrm{c}}$, <br> (All other pins not under test $=0 \mathrm{~V}$ ) | D9, $\overline{\text { CAS9 }}$ | 1 | -2 | 2 | $\mu \mathrm{A}$ |  |
|  | A0-A8, $\overline{\text { RAS }}$, $\overline{\mathrm{WE}}$ | 11 | -6 | 6 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE <br> ( Q is disabled, $\mathrm{OV} \leq$ Vout $\leq \mathrm{Vcc}$ ) | Q9 | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
|  | DQ1-DQ8 | loz | -12 | 12 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High (Logic 1) Voltage (lout $=-5 \mathrm{~mA})$ <br> Output Low (Logic 0 ) Voltage (lout $=5 \mathrm{~mA}$ ) |  | Vон | 2.4 |  | V | 1 |
|  |  | Vol |  | 0.4 | V |  |


|  | SYMBOL | MAX |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION |  | -7 | -8 | -10 | -12 | UNITS | NOTES |
| STANDBY CURRENT: TTL Input Levels $(\mathrm{RAS}=\mathrm{CAS}=\mathrm{V} \mathrm{H})$ | Icc1 | 6 | 6 | 6 | 6 | mA |  |
| STANDBY CURRENT: CMOS Input Levels $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V})$ | Icc2 | 3 | 3 | 3 | 3 | mA |  |
| OPERATING CURRENT <br> ( $\overline{\text { RAS }}$ and $\overline{\text { CAS }}=$ Cycling; ${ }^{\text {tRC }}={ }^{\text {tRC }}$ (MIN)) | Icc3 | 240 | 210 | 180 | 150 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\text { RAS }}=$ VIL, $\overline{\text { CAS }}=$ Cycling; ${ }^{\text {tPC }}={ }^{\text {tPC }}(\mathrm{MIN})$ ) | Icc4 | 180 | 150 | 120 | 90 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS-ONLY }}$ ( $\overline{\text { RAS }}=$ Cycling; $\overline{\text { CAS }}=\mathrm{V}_{\mathrm{IH}} ;$ tRC $=$ tRC $($ MIN $)$ ) | Icc5 | 240 | 210 | 180 | 150 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$ ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling; ${ }^{\mathrm{t}} \mathrm{RC}={ }^{\mathrm{t} R C}(\mathrm{MIN})$ ) | Icc6 | 240 | 210 | 180 | 150 | mA | 3, 4 |


| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: AO-A8 | $\mathrm{C}_{11}$ |  | 15 | pF | 18 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ | $\mathrm{Cl}_{12}$ |  | 27 | pF | 18 |
| Input Capacitance: D | $\mathrm{C}_{13}$ |  | 7 | pF | 18 |
| Input/Output Capacitance: DQ | $\mathrm{C}_{1}$ |  | 12 | pF | 18 |
| Output Capacitance: Q | $\mathrm{C}_{0}$ |  | 7 | pF | 18 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $6,7,8,9,10,11,12,13)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {tr }}$ R | 135 |  | 150 |  | 180 |  | 220 |  | ns |  |
| READ-WRITE cycle time | trwC | n/a |  | n/a |  | n/a |  | n/a |  | n/a | 21 |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 45 |  | 55 |  | 70 |  | ns |  |
| PAGE-MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | n/a |  | n/a |  | 90 |  | 100 |  | ns |  |
| Access time from $\overline{\text { RAS }}$ | trac |  | 70 |  | 80 |  | 100 |  | 120 | ns | 14 |
| Access time from ट्रAS (FAST PAGE MODE) | ${ }^{\text {t }}$ CAC |  | 20 |  | 20 |  | 25 |  | 30 | ns | 15 |
| Access time from CAS (PAGE MODE) | ${ }^{\text {t }} \mathrm{CAC}$ |  | n/a |  | n/a |  | 50 |  | 60 | ns |  |
| Output Enable | ${ }^{\text {toE }}$ |  | 20 |  | 20 |  | 25 |  | 30 | ns |  |
| Access time from column address | ${ }^{\text {t }}$ AA |  | 35 |  | 40 |  | 50 |  | 60 | ns |  |
| Access time from CAS precharge | ${ }^{\text {t }} \mathrm{CPA}$ |  | 35 |  | 40 |  | 50 |  | 65 | ns |  |
| RAS pulse width | tRAS | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | 120 | 100,000 | ns |  |
| RAS pulse width (FAST PAGE MODE) | tRASP | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | 120 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {tRSH }}$ | 20 |  | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | ${ }^{\text {tRP }}$ | 50 |  | 60 |  | 70 |  | 90 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t CAS }}$ | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | 30 | 100,000 | ns |  |
| CAS hold time | ${ }^{\text {t }}$ CSH | 70 |  | 80 |  | 100 |  | 120 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }} \mathrm{CPN}$ | 10 |  | 10 |  | 15 |  | 20 |  | ns | 16 |
| CAS precharge time (FAST PAGE MODE) | ${ }^{t} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time (PAGE MODE) | ${ }^{t} \mathrm{CP}$ | n/a |  | n/a |  | 30 |  | 30 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time | ${ }^{\text {tr }}$ CD | 20 | 50 | 20 | 60 | 25 | 75 | 25 | 90 | ns | 17 |
| $\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | 10 |  | ns |  |
| Row address setup time | ${ }^{\text {t ASP }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {tRAH }}$ | 10 |  | 10 |  | 15 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {tRAD }}$ | 15 | 35 | 15 | 40 | 20 | 50 | 20 | 60 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }}$ 'AH | 15 |  | 15 |  | 20 |  | 25 |  | ns |  |
| Column address hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ AR | 55 |  | 60 |  | 70 |  | 85 |  | ns |  |
| Column address to RAS lead time | traL | 35 |  | 40 |  | 50 |  | 60 |  | ns |  |
| Read command setup time | tres | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to CAS) | ${ }^{\text {tRCH }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | tRRH | 0 |  | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t }} \mathrm{CLZ}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Output buffer turn-off delay | ${ }^{\text {toFF }}$ | 0 | 20 | 0 | 20 | 0 | 20 | 0 | 35 | ns | 20 |
| Output Disable | ${ }^{\text {tob }}$ |  | 20 |  | 20 |  | 20 |  | 20 | ns |  |
| $\overline{\text { WE }}$ command setup time | ${ }^{\text {tWCS }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | 25 |  | ns |  |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {W }}$ WCR | 55 |  | 60 |  | 75 |  | 85 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | 25 |  | ns |  |
| Write command to RAS lead time | ${ }^{\text {t } R W L ~}$ | 20 |  | 20 |  | 25 |  | 30 |  | ns |  |
| Write command to CAS lead time | ${ }^{\text {t }}$ CWL | 20 |  | 20 |  | 25 |  | 30 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 15 |  | 15 |  | 20 |  | 25 |  | ns |  |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ DHR | 55 |  | 60 |  | 75 |  | 90 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { WE }}$ delay time | ${ }^{\text {t }}$ WD | n/a |  | n/a |  | n/a |  | n/a |  | n/a | 21 |
| Column address to WE delay time | ${ }^{\text {t }}$ AWD | n/a |  | n/a |  | n/a |  | n/a |  | n/a | 21 |
| $\overline{\text { CAS }}$ to WE delay time | ${ }^{\text {t }}$ CWD | n/a |  | n/a |  | n/a |  | n/a |  | n/a | 21 |
| Transition time (rise or fall) | ${ }^{\text {T }}$ T | 3 | 50 | 3 | 50 | 3 | 50 | 3 | 50 | ns | 5,16 |
| Refresh period (512 cycles) | ${ }^{\text {treF }}$ |  | 8 |  | 8 |  | 8 |  | 8 | ms | 20 |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {tRPC }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns | 19 |
| CAS setup time <br> (CAS-BEFORE-RAS REFRESH) | ${ }^{t} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | 10 |  | ns | 19 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE-RAS REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | 15 |  | ns | 19 |
| $\overline{\mathrm{OE}}$ hold time from $\overline{\mathrm{WE}}$ during READ-MODIFY-WRITE cycle | ${ }^{\text {t }} \mathrm{OEH}$ | n/a |  | n/a |  | n/a |  | n/a |  | n/a | 21 |

## NOTES

1．All voltages referenced to Vss．
2．Icc is dependent on output loading and cycle rates． Specified values are obtained with minimum cycle time and the output open．
3．An initial pause of $100 \mu \mathrm{~s}$ is required after power－up followed by any eight RAS cycles before proper device operation is assured．The eight $\overline{\mathrm{RAS}}$ cycle wake－up should be repeated any time the 8 ms refresh requirement is exceeded．
4．AC characteristics assume ${ }^{\boldsymbol{t}} \mathrm{T}=5 \mathrm{~ns}$ ．
5．VIH（MIN）and VIL（MAX）are reference levels for measuring timing of input signals．Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and Vil．
6．The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range（ $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ）is assured．
7．Measured with a load equivalent to two TTL gates and 100 pF ．
8．Assumes that ${ }^{\mathrm{t}} \mathrm{RCD}<\mathrm{t}^{\mathrm{R} C D}$（MAX）．If ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the maximum recommended value shown in this table，${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown．
9．Assumes that ${ }^{\mathrm{t}} \mathrm{RCD} \geq^{\mathrm{t}} \mathrm{RCD}$（MAX）．
10．If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$ ，data output is high impedance．
11．If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IL}}$ ，data output may contain data from the last valid READ cycle．
12． OFFF （MAX）defines the time at which the output achieves the open circuit condition and is not referenced to Vон or Vol．
13．Operation within the ${ }^{t} R C D$（MAX）limit ensures that
${ }^{\mathrm{t}}$ RAC（MAX）can be met．${ }^{\mathrm{t}} \mathrm{RCD}$（MAX）is specified as a reference point only；if ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the specified ${ }^{t} R C D$（MAX）limit，then access time is controlled exclusively by ${ }^{t} \mathrm{CAC}$ ．
14．${ }^{\mathrm{t} R \mathrm{RCH}}$ is referenced to the first rising edge of $\overline{\mathrm{RAS}}$ or CAS．
15．These parameters are referenced to $\overline{\text { CAS }}$ leading edge in EARLY－WRITE cycles．
16．In addition to meeting the transition rate specifica－ tion，all input signals must transit between VIH and $\mathrm{V}_{\mathrm{IL}}$（or between VIL and $\mathrm{V}_{\mathrm{IH}}$ ）in a monotonic manner．
17．This parameter is sampled．Capacitance is calculated from the equation $\mathrm{C}=\mathrm{I} \mathrm{dt} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$ ．
18．If $\overline{\text { CAS }}$ is LOW at the falling edge of $\overline{\text { RAS }}$ ，data－out （Q）will be maintained from the previous cycle．To initiate a new cycle and clear the Q buffer，$\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{\text {t }} \mathrm{CP}$ ．Note 8 applies to determine valid data out．
19．On－chip refresh and address counters are enabled．
20．A HIDDEN REFRESH may also be performed after a WRITE cycle．In this case,$\overline{\mathrm{WE}}=$ LOW．
21．LATE－WRITE，READ－WRITE or READ－MODIFY－ WRITE cycles are not available due to $\overline{\mathrm{OE}}$ being grounded on U1 andU2．
22．The device shall meet all functional requirements when a -2.0 signal is applied provided the signai is not more negative than -1.5 V for a period of less than 20 ns and the signal＇s total duration is 25 ns or less；or a -0.3 V signal of any duration is presented（DC）．

## MT3D2569



EARLY-WRITE CYCLE


D/Z dont care
UNDEFINED

PAGE/FAST-PAGE-MODE READ CYCLE


PAGE/FAST-PAGE-MODE EARLY-WRITE CYCLE


UNDEFINED

RAS-ONLY REFRESH CYCLE
$\left(\operatorname{ADDR}=\mathrm{A}_{0}-\mathrm{A}_{8} ; \overline{\mathrm{WE}}=\right.$ DON'T CARE $)$


## CAS-BEFORE- $\overline{R A S}$ REFRESH CYCLE

( $\mathrm{A}_{0}-\mathrm{A}_{8}$ and $\overline{\mathrm{WE}}=$ DON'T CARE $)$


DQ

## Vor OPEN <br> HIDDEN REFRESH CYCLE

 $(\overline{\mathrm{WE}}=\mathrm{HIGH})^{20}$

## DRAM MODULE

# 1 MEG x 9 DRAM 

FAST PAGE MODE

## FEATURES

- Industry standard pinout in a 30-pin single-in-line package
- High-performance, CMOS silicon gate process
- Single $5 \mathrm{~V} \pm 10 \%$ power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 27 mW standby; $1,575 \mathrm{~mW}$ active, typical
- Refresh modes: $\overline{\mathrm{RAS}}-\mathrm{ONLY}, \overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$, and HIDDEN
- 512-cycle refresh distributed across 8 ms
- Optional FAST PAGE MODE access cycle


## OPTIONS

- Timing

70ns access -7
80 ns access $\quad-8$
100 ns access -10

- Packages

Leadless 30-pin SIMM M
Leadless 30-pin SIMM (Gold) G
Leaded 30-pin SIP N

## GENERAL DESCRIPTION

The MT9D19 is a randomly accessed solid-state memory containing 1,048,576 words organized in a $\times 9$ configuration. During READ or WRITE cycles, each word is uniquely addressed through the 20 address bits, which areentered 10 bits (A0-A9) at a time. $\overline{\mathrm{RAS}}$ is used to latch the first 10 bits and $\overline{\text { CAS }}$ the latter 10 bits. A READ or WRITE cycle is selected with the $\overline{W E}$ input. A logic HIGH on $\overline{W E}$ dictates READ mode while a logic LOW on $\overline{W E}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CAS}}$, whichever occurs last. EARLYWRITE occurs when $\overline{W E}$ goes LOW prior to $\overline{C A S}$ going LOW, and the output pins remain open (High-Z) until the next $\overline{\text { CAS }}$ cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A9)

defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\text { RAS }}$ followed by a column address strobed-in by $\overline{\mathrm{CAS}} . \overline{\mathrm{CAS}}$ may be toggled-in by holding $\overline{\text { RAS }}$ LOW and strobing-in different column addresses, thus executing faster memory cycles.

Returning $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}} \mathrm{HIGH}$ terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the $\overline{\text { RAS }}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\mathrm{RAS}}$ cycle (READ, WRITE, $\overline{\mathrm{RAS}}$-ONLY, $\overline{\mathrm{CAS}}$-BEFORE$\overline{\text { RAS, or HIDDEN REFRESH) so that all } 512 \text { combinations of }}$ $\overline{\text { RAS }}$ addresses (A0-A9) are executed at least every 8 ms , regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM


TRUTH TABLE

| Function |  | RAS | CAS | CAS9 | WE | Addresses |  | DQ1－8，D9，Q9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {tr }}$ |  |  |  | ${ }^{\text {t }}$ A |  |
| Standby |  |  | H | X | X | X | X | X | High Impedance |
| READ |  | L | L | L | H | ROW | COL | Valid Data Out |
| EARLY－WRITE |  | L | L | L | L | ROW | COL | Valid Data In |
| FAST－PAGE－MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | H | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | H | n／a | COL | Valid Data Out |
| FAST－PAGE－MODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | L | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | L | n／a | COL | Valid Data In |
| RAS－ONLY REFRESH |  | L | H | H | X | ROW | $\mathrm{n} / \mathrm{a}$ | High Impedance |
| HIDDEN REFRESH | READ | $L \rightarrow H \rightarrow L$ | L | L | H | ROW | COL | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | L | ROW | COL | Valid Data In |
| $\overline{\text { CAS－BEFORE－}} \overline{R A S}$ REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | L | X | X | X | High Impedance |ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss ......... -1.0 V to +7.0 V Operating Temperature, TA(Ambient) ........... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature (Plastic) .................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation .. 9 W
Short Circuit Output Current ...................................... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V |  |
| Input High (Logic 1) Voltage, All Inputs |  | $\mathrm{V}_{\mathrm{H}}$ | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs |  | VIL | -2.0 | 0.8 | V | 1,25 |
| INPUT LEAKAGE: <br> Any Input $0 \mathrm{~V} \leq \mathrm{Vin} \leq \mathrm{Vcc}$ (All other pins not under test $=0 \mathrm{~V}$ ) | D9, $\overline{\text { CAS9 }}$ | 11 | -2 | 2 | $\mu \mathrm{A}$ |  |
|  | A0-A9, $\overline{\mathrm{RAS}}, \overline{\mathrm{WE}}$ | 11 | -18 | 18 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE: <br> ( Q is disabled, $\mathrm{OV} \leq \mathrm{Vout} \leq \mathrm{Vcc}$ ) | Q9 | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
|  | DQ1-8 | loz | -12 | 12 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage (lout $=-5 \mathrm{~mA}$ ) <br> Output Low Voltage (lout $=5 \mathrm{~mA}$ ) |  | VOH | 2.4 |  | V | 1 |
|  |  | Vol |  | 0.4 | V |  |


|  |  | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -7 | -8 | -10 | UNITS | NOTES |
| STANDBY CURRENT: TTL Input Levels $\left(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{I}} \mathrm{H}\right)$ | IcC1 | 18 | 18 | 18 | mA |  |
| STANDBY CURRENT: CMOS Input Levels $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V})$ | Icc2 | 9 | 9 | 9 | mA |  |
| OPERATING CURRENT: <br> ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling; ${ }^{\mathrm{t} R C}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc3 | 720 | 630 | 540 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\text { RAS }}=$ VIL, $\overline{\text { CAS }}=$ Cycling; ${ }^{\text {tPC }}={ }^{\text {tPC }}(\mathrm{MIN})$ ) | IcC4 | 540 | 450 | 360 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS-ONLY }}$ ( $\overline{\mathrm{RAS}}=$ Cycling; $\overline{\mathrm{CAS}}=\mathrm{VIH}^{\mathrm{t}} \mathrm{t}^{\mathrm{R} C}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc5 | 720 | 630 | 540 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\mathrm{CAS}}$-BEFORE-RAS ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling; ${ }^{\mathrm{t}} \mathrm{RC}={ }^{\mathrm{t} R C}(\mathrm{MIN})$ ) | Icc6 | 720 | 630 | 540 | mA | 3, 4 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A8 | Cl 11 |  | 45 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ | Cl 2 |  | 63 | pF | 2 |
| Input Capacitance: D | Cl 3 |  | 7 | pF | 2 |
| Input/Output Capacitance: DQ | $\mathrm{C} \circ$ |  | 12 | pF | 2 |
| Output Capacitance: Q | Co |  | 7 | pF | 2 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $6,7,8,9,10,11,12,13)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | tRC | 130 |  | 150 |  | 180 |  | ns |  |
| READ-WRITE cycle time | ${ }^{\text {tr }}$, ${ }^{\text {P }}$ | n/a |  | n/a |  | $\mathrm{n} / \mathrm{a}$ |  | n/a | 25 |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 40 |  | 55 |  | ns |  |
| FAST-PAGE-MODE READ-WRITE cycle time | tPRWC | n/a |  | n/a |  | n/a |  | n/a | 25 |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {tRAC }}$ |  | 70 |  | 80 |  | 100 | ns | 14 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ 'AC |  | 20 |  | 20 |  | 25 | ns | 15 |
| Access time from column address | ${ }^{t} A A$ |  | 35 |  | 40 |  | 50 | ns |  |
| Access time from $\overline{\text { CAS }}$ precharge | ${ }^{t} \mathrm{CPA}$ |  | 35 |  | 40 |  | 50 | ns |  |
| $\overline{\text { RAS }}$ pulse width | tRAS | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS pulse width (FAST PAGE MODE) }}$ | ${ }^{\text {tRASP }}$ | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| PAS hold time | tps | 20 |  | 20 |  | 25 |  | ns |  |
| RAS precharge time | tRP | 50 |  | 60 |  | 70 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | tcAs | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }} \mathrm{CPN}$ | 10 |  | 10 |  | 15 |  | ns | 16 |
| $\overline{\text { CAS }}$ precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay time | ${ }^{\text {tr }}$ (CD | 20 | 60 | 20 | 60 | 25 | 75 | ns | 17 |
| $\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t CRP }}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {tRAH }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {t } R A D ~}$ | 15 | 40 | 15 | 40 | 20 | 50 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time (referenced to RAS) | ${ }^{t} \mathrm{AR}$ | 55 |  | 60 |  | 70 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {tRAL }}$ | 35 |  | 40 |  | 50 |  | ns |  |
| Read command setup time | ${ }^{\text {tRCS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to CAS) | ${ }^{\text {tr }} \mathrm{CH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | trRH | 0 |  | 0 |  | 0 |  | ns | 19 |

MT9D19

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $6,7,8,9,10,11,12,13)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 75^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| CAS to output in Low-Z | ${ }^{\text {t }}$ LZ C | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {torer }}$ | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20 |
| $\overline{\text { WE }}$ command setup time | ${ }^{\text {t W }}$ WS | 0 |  | 0 |  | 0 |  | ns |  |
| Write command hold time | tWCH | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time (referenced to RAS) | tWCR | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {tr }}$ WL | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to CAS lead time | ${ }^{\text {t }}$ CWL | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | tDS | 0 |  | 0 |  | 0 |  | ns | 21 |
| Data-in hold time | tD | 15 |  | 15 |  | 20 |  | ns | 21 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ DHR | 55 |  | 60 |  | 75 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {tRWD }}$ | n/a |  | n/a |  | n/a |  | n/a | 24 |
| Column address to $\overline{W E}$ delay time | ${ }^{\text {t }}$ AWD | n/a |  | n/a |  | n/a |  | n/a | 24 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | n/a |  | n/a |  | n/a |  | n/a | 24 |
| Transition time (rise or fall) | 'T | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period (512 cycles) | treF |  | 8 |  | 8 |  | 8 | ms |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ precharge time | trPC | 0 |  | 0 |  | 0 |  | ns |  |
| CAS setup time (CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| $\overline{\text { CAS }}$ hold time ( $\overline{\mathrm{CAS}}$-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5 |
| $\overline{\mathrm{OE}}$ hold time from $\overline{\mathrm{WE}}$ during READ-MODIFY-WRITE cycle | ${ }^{\text {toEH }}$ | n/a |  | n/a |  | n/a |  | n/a | 24 |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=I d / d v$ with $d v=3 V$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured.
7. An initial pause of $100 \mu$ s is required after power-up followed by any eight $\overline{\text { RAS }}$ cycles before proper device operation is assured. The eight $\overline{\mathrm{RAS}}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\boldsymbol{t}} \mathrm{T}=5 \mathrm{~ns}$.
9. $\mathrm{V}_{\mathrm{IH}}$ (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and $\mathrm{VIH}_{\mathrm{IH}}$.
10. In addition to meeting the transition rate specification, all input signals must transit between $V_{\text {IH }}$ and $V_{\text {IL }}$ (or between VIL and $V_{I H}$ ) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=\mathrm{VII}_{\text {IL }}$, data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to two TTL gates and 100 pF .
14. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD}<{ }^{\mathrm{t}} \mathrm{RCD}(\mathrm{MAX})$. If ${ }^{\mathrm{t} R C D}$ is greater than the maximum recommended value shown in this table, ${ }^{\text {t }}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{t} R C D \geq{ }^{t} R C D$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}, \mathrm{Q}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{t} \mathrm{CPN}$.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{t}$ RCD (MAX) limit, then access time is controlled exclusively by ${ }^{t} C A C$.
18. Operation within the ${ }^{t}$ RAD (MAX) limit ensures that ${ }^{t} R C D$ (MAX) can be met. ${ }^{t} R A D$ (MAX) is specified as a reference point only; if ${ }^{t} R A D$ is greater than the specified ${ }^{\text {tRAD }}$ (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t}}$ AA.
19. Either ${ }^{t} R C H$ or ${ }^{t}$ RRH must be satisfied for a READ cycle.
20. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VoH or Vol.
21. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles and $\overline{W E}$ leading edge in late WRITE or READ-WRITE cycles.
22. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$.
23. All other inputs equal Vcc -0.2 V .
24. LATE-WRITE, READ-WRITE or READ-MODIFYWRITE cycles are not available due to the common DQ configuration of U1-U8.
25. The device shall meet all functional requirements when a - 2.0 signal is applied provided the signal is not more negative than -1.5 V for a period of less than 20 ns and the signal's total duration is 25 ns or less; or a -0.3 V signal of any duration is presented (DC).

## READ CYCLE



EARLY-WRITE CYCLE


V/Z dont care
undefined

FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE


V/A d don't care
UNDEFINED

RAS-ONLY REFRESH CYCLE
( $\mathrm{ADDR}=\mathrm{A}_{0}-\mathrm{A}_{8} ; \mathrm{A}_{9}$ and $\overline{\mathrm{WE}}=\mathrm{DON} \cdot \mathrm{T}$ CARE $)$


CAS-BEFORE-RAS REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{9}$ and $\overline{\mathrm{WE}}=$ DON'T CARE $)$


DQ $\mathrm{V}_{\mathrm{OL}}=$ OPEN

HIDDEN REFRESH CYCLE
$(\overline{\mathrm{WE}}=\mathrm{HIGH})^{22}$


## DRAM MODULE

## 1 MEG x 9 DRAM FAST PAGE MODE

## FEATURES

- Industry standard pinout in a 30-pin single-in-line memory module
- High-performance, CMOS silicon gate process
- Single $5 \mathrm{~V} \pm 10 \%$ power supply
- Low power, 9 mW standby; 625 mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Optional FAST PAGE MODE access cycle
- Refresh modes: $\overline{\text { RAS-ONLY, }} \overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$, and HIDDEN
- 1,024-cycle refresh distributed across 16 ms


## OPTIONS

- Timing 70ns access -7
80ns access
100 ns access


## MARKING

$$
-7
$$

$$
\begin{aligned}
& -7 \\
& -8
\end{aligned}
$$

- 8

$$
-10
$$

- Packages

Leadless 30-pin SIMM
Leadless 30-pin SIMM (Gold)
Leaded 30-pin SIP

$$
x_{1}+2
$$

## GENERAL DESCRIPTION

The MT3D19 is a randomly accessed solid-state memory containing 1,048,576 words organized in a 9 configuration. During READ or WRITE cycles, each word is uniquely addressed through 20 address bits, which are entered 10 bits (A0-A9) at a time. $\overline{\text { RAS }}$ is used to latch the first 10 bits and $\overline{\text { CAS }}$ the latter 10 bits. A READ or WRITE cycle is selected with the $\overline{W E}$ input. A logic HIGH on $\overline{W E}$ dictates READ mode while a logic LOW on $\overline{W E}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. EARLY WRITE occurs when $\overline{W E}$ goes LOW prior to $\overline{C A S}$ going LOW, and the output pins remain open (High-Z) until the next $\overline{\text { CAS }}$ cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A9)

defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\text { RAS }}$ followed by a column address strobed-in by CAS. $\overline{\text { CAS }}$ may be toggled-in by holding $\overline{\text { RAS }}$ LOW and strobing-in different column addresses, thus executing faster memory cycles.

Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the $\overline{R A S}$ high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle (READ, WRITE, $\overline{\mathrm{RAS}}-\mathrm{ONLY}, \overline{\mathrm{CAS}}$-BEFORE$\overline{\text { RAS }}$ or HIDDEN REFRESH) so that all 1,024 combinations of $\overline{\text { RAS }}$ addresses (A0-A9) are executed at least every 16 ms , regardless of sequence.

## FUNCTIONAL BLOCK DIAGRAM



TRUTH TABLE

| Function |  | RAS | CAS | CAS9 | WE | Addresses |  | DQ1－8，D9，Q9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {tR }}$ |  |  |  | ${ }^{t} \mathrm{C}$ |  |
| Standby |  |  | H | X | X | X | X | X | High Impedance |
| READ |  | L | L | L | H | ROW | COL | Valid Data Out |
| EARLY－WRITE |  | L | L | L | L | ROW | COL | Valid Data In |
| FAST－PAGE－MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | H | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | H | n／a | COL | Valid Data Out |
| FAST－PAGE－MODE WRITE | 1st Cycle | L | $H \rightarrow L$ | $\mathrm{H} \rightarrow \mathrm{L}$ | L | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | L | n／a | COL | Valid Data In |
| RAS－ONLY REFRESH |  | L | H | H | X | ROW | n／a | High Impedance |
| HIDDEN <br> REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | H | ROW | COL | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | L | ROW | COL | Valid Data In |
| $\overline{\text { CAS－BEFORE－}} \overline{\text { RAS }}$ REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | L | X | X | X | High Impedance |

## ABSOLUTE MAXIMUM RATINGS*


*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V |  |
| Input High (Logic 1) Voltage, All Inputs |  | VIH | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs |  | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE <br> Any Input $0 V \leq V_{i n} \leq V_{c c}$ <br> (All other pins not under test $=0 \mathrm{~V}$ ) | D9, $\overline{\text { CAS9 }}$ | 1 | -2 | 2 | $\mu \mathrm{A}$ |  |
|  | A0-A9, $\overline{\text { RAS }}$, $\overline{W E}$ | 1 | -6 | 6 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE <br> ( Q is disabled, $\mathrm{OV} \leq \mathrm{Vout}^{\mathrm{V}} \mathrm{Vcc}$ ) | Q9 | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
|  | DQ1-DQ8 | loz | -12 | 12 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High (Logic 1) Voltage (lout $=-5 \mathrm{~mA}$ ) <br> Output Low (Logic 0 ) Voltage (lout $=5 \mathrm{~mA}$ ) |  | Vor | 2.4 |  | V | 1 |
|  |  | Vol |  | 0.4 | V |  |


|  |  | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -7 | -8 | -10 | UNITS | NOTES |
| STANDBY CURRENT: TTL Input Levels $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V} I \mathrm{H})$ | Icc1 | 6 | 6 | 6 | mA |  |
| STANDBY CURRENT: CMOS Input Levels $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V})$ | Icc2 | 3 | 3 | 3 | mA |  |
| OPERATING CURRENT <br> ( $\overline{\text { RAS }}$ and $\overline{\mathrm{CAS}}=$ Cycling; ${ }^{\mathrm{t} R C}={ }^{\mathrm{t} R C}($ MIN $)$ ) | Icc3 | 280 | 250 | 220 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\text { RAS }}=$ VIL, $\overline{\text { CAS }}=$ Cycling; ${ }^{\text {PPC }}={ }^{\text {tPC }}(\mathrm{MIN})$ ) | Icc 4 | 200 | 170 | 140 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY ( $\overline{\text { RAS }}=$ Cycling; $\overline{\mathrm{CAS}}=\mathrm{VIH}^{\mathrm{t}} \mathrm{t}^{\mathrm{RC}}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc5 | 280 | 250 | 220 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { CAS-BEFORE- } \overline{R A S}}$ ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling; ${ }^{\mathrm{t}} \mathrm{CC}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc6 | 280 | 250 | 220 | mA | 3, 4 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance：A0－A9 | $\mathrm{C}_{11}$ |  | 15 | pF | 18 |
| Input Capacitance：$\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}$ | $\mathrm{Cl}_{12}$ |  | 21 | pF | 18 |
| Input Capacitance： D | $\mathrm{C}_{13}$ |  | 7 | pF | 18 |
| Input／Output Capacitance：DQ | $\mathrm{Cl}_{1 / 2}$ |  | 7 | pF | 18 |
| Output Capacitance：Q | C 0 |  | 7 | pF | 18 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

（Notes：6，7，8，9，10，11，12，13）$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A．C．CHARACTERISTICS |  | －7 |  | －8 |  | －10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t }} \mathrm{RC}$ | 130 |  | 150 |  | 180 |  | ns |  |
| READ－WRITE cycle time | ${ }^{\text {tr WhC }}$ | n／a |  | n／a |  | n／a |  | n／a | 21 |
| FAST－PAGE－MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 45 |  | 55 |  | ns |  |
| FAST－PAGE－MODE READ－WRITE cycle time | tPRWC | n／a |  | n／a |  | n／a |  | n／a | 21 |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {tr }}$ AC |  | 70 |  | 80 |  | 100 | ns | 14 |
| Access time from CAS | ${ }^{\text {t }}$＇AC |  | 20 |  | 20 |  | 25 | ns | 15 |
| Access time from column address | ${ }^{\text {t }} \mathrm{A}$ A |  | 35 |  | 40 |  | 50 | ns |  |
| Access time from $\overline{\text { CAS }}$ precharge | ${ }^{t} \mathrm{CPA}$ |  | 40 |  | 45 |  | 50 | ns |  |
| $\overline{\text { RAS }}$ pulse width | tRAS | 70 | 100，000 | 80 | 100，000 | 100 | 100，000 | ns |  |
| RAS pulse width（FAST PAGE MODE） | ${ }^{\text {trasP }}$ | 70 | 100，000 | 80 | 100，000 | 100 | 100，000 | ns |  |
| $\overline{\text { RAS }}$ hoid time | ${ }^{\text {tr }}$ ，${ }^{\text {R }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| RAS precharge time | tRP | 50 |  | 60 |  | 70 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t }} \mathrm{CAS}$ | 20 | 100，000 | 20 | 100，000 | 25 | 100，000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 70 |  | 80 |  | 100 |  | ns |  |
| CAS precharge time | ${ }^{\text {t }} \mathrm{CPN}$ | 10 |  | 10 |  | 15 |  | ns | 16 |
| $\overline{\text { CAS }}$ precharge time（FAST PAGE MODE） | ${ }^{\text {t }} \mathrm{C}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to CAS delay time | ${ }^{\text {t}} \mathrm{RCD}$ | 20 | 50 | 20 | 60 | 25 | 75 | ns | 17 |
| $\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t RAH }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {tRAD }}$ | 15 | 35 | 15 | 40 | 20 | 50 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time （referenced to RAS） | ${ }^{\text {t }}$（R | 55 |  | 60 |  | 70 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {tRAL }}$ | 35 |  | 40 |  | 50 |  | ns |  |
| Read command setup time | ${ }^{\text {tRCS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time （referenced to $\overline{\mathrm{CAS}}$ ） | ${ }^{\text {tr }} \mathrm{CH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time （referenced to RAS） | ${ }^{\text {tRRH }}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low－Z | ${ }^{\text {t }} \mathrm{CL} \mathrm{Z}$ | 0 |  | 0 |  | 0 |  | ns |  |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Output buffer turn-off delay | ${ }^{\text {t OFF }}$ | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20 |
| WE command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns |  |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ WCR | 55 |  | 60 |  | 70 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t }}$ WWL | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\mathrm{CAS}}$ lead time | ${ }^{\text {t }}$ WWL | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }} \mathrm{DS}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ DHR | 55 |  | 60 |  | 70 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{W E}$ delay time | ${ }^{\text {tRWD }}$ | n/a |  | n/a |  | n/a |  | n/a | 21 |
| Column address to WE delay time | ${ }^{\text {t }}$ AWD | n/a |  | n/a |  | n/a |  | n/a | 21 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }} \mathrm{CWD}$ | n/a |  | n/a |  | n/a |  | n/a | 21 |
| Transition time (rise or fall) | ${ }^{\text {T }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 5,16 |
| Refresh period (1,024 cycles) | ${ }^{\text {t REF }}$ |  | 16 |  | 16 |  | 16 | ms | 20 |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {t RPC }}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ setup time (ㄷAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 19 |
| $\overline{\text { CAS }}$ hold time (ㄷAS-BEFORE-RAS REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 19 |
| $\overline{\mathrm{OE}}$ hold time from $\overline{\mathrm{WE}}$ during READ-MODIFY-WRITE cycle | ${ }^{\text {t }}$ 'OEH | n/a |  | n/a |  | n/a |  | n/a | 21 |

## NOTES

1. All voltages referenced to Vss.
2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
3. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{\text { RAS }}$ REFRESH cycles ( $\overline{\text { RAS- }}$ ONLY or CBR with $\overline{\text { WE }}$ HIGH) before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 16 ms refresh requirement is exceeded.
4. AC characteristics assume ${ }^{\boldsymbol{t}} \mathrm{T}=5 \mathrm{~ns}$.
5. Vif (MIN) and Vil (MAX) are reference levels for measuring timing of input signals. Transition times are measured between Vif and Vil.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ) is assured.
7. Measured with a load equivalent to two TTL gates and 100 pF .
8. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD}<^{\mathrm{t} R C D}$ (MAX). If ${ }^{\mathrm{t} R C D}$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
9. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD} \geq^{\mathrm{t}} \mathrm{RCD}$ (MAX).
10. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\text {IL, }}$ data output may contain data from the last valid READ cycle.
12. ${ }^{\text {toFF (MAX) defines the time at which the output }}$
achieves the open circuit condition and is not referenced to VoH or Vol.
13. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t} R A C(M A X)$ can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{t} R C D$ (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{CAC}$.
14. ${ }^{\text {t }} \mathrm{RCH}$ is referenced to the first rising edge of $\overline{\mathrm{RAS}}$ or CAS.
15. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles.
16. In addition to meeting the transition rate specification, all input signals must transit between $\mathrm{VIH}_{\mathrm{IH}}$ and VIL (or between VIL and VIH) in a monotonic manner.
17. This parameter is sampled. Capacitance is calculated from the equation $C=I^{d t} / \mathrm{dv}$ with $d v=3 V$ and $V C C=5 V$.
18. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}$, data-out $(Q)$ will be maintained from the previous cycle. To initiate a new cycle and clear the $Q$ buffer, $\overline{C A S}$ must be pulsed HIGH for ${ }^{\mathrm{t}} \mathrm{CP}$. Note 8 applies to determine valid data out.
19. On-chip refresh and address counters are enabled.
20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{W E}=$ LOW .
21. LATE-WRITE, READ-WRITE or READ-MODIFYWRITE cycles are not available due to $\overline{\mathrm{OE}}$ being grounded on U1 and U2.

## READ CYCLE



EARLY-WRITE CYCLE


48 DONt CarE
4 undefned

FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE


7/A DON'T CARE
UNDEFINED

RAS-ONLY REFRESH CYCLE $\left(\right.$ ADDR $=A_{0}-A_{9} ; \overline{W E}=$ DON'T CARE $)$


CAS-BEFORE-RAS REFRESH CYCLE ( $\mathrm{A}_{0}-\mathrm{A}_{9}$ and $\overline{\mathrm{WE}}=$ DON'T CARE $)$
$\overline{\text { RAS }}$
 DQ $\stackrel{V}{\mathrm{OH}}_{\mathrm{OL}}=$ OPEN

## HIDDEN REFRESH CYCLE

$(\overline{\mathrm{WE}}=\mathrm{HIGH})^{20}$


## DRAM MODULE

## 4 MEG x 9 DRAM FAST PAGE MODE

## FEATURES

- Industry standard pinout in a 30-pin single-in-line package
- High-performance, CMOS silicon gate process
- Single $5 \mathrm{~V} \pm 10 \%$ power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 27 mW standby; $2,025 \mathrm{~mW}$ active, typical
- Refresh modes: $\overline{\mathrm{RAS}}-\mathrm{ONLY}, \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$, and HIDDEN
- 1,024-cycle refresh distributed across 16 ms
- Optional FAST PAGE MODE access cycle


## OPTIONS

- Timing

60ns access -6
70 ns access
80ns access

- Packages

Leadless 30-pin SIMM M
Leadless 30 -pin SIMM (Gold)
Leaded 30-pin SIP

## GENERAL DESCRIPTION

The MT9D49 is a randomly accessed solid-state memory containing 4,194,304 words organized in a 9 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 22 address bits which are entered 11 bits (A0-A10) at a time. $\overline{\mathrm{RAS}}$ is used to latch the first 11 bits and $\overline{\text { CAS }}$ the latter 11 bits. A READ or WRITE cycle is selected with the $\overline{\mathrm{WE}}$ input. A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ mode while a logic LOW on $\overline{W E}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. If $\overline{W E}$ goes LOW prior to $\overline{\text { CAS }}$ going LOW, the output pin(s) remain open (High-Z) until the next $\overline{\text { CAS }}$ cycle. EARLY WRITE occurs when $\overline{W E}$ goes LOW prior to $\overline{\mathrm{CAS}}$ going LOW, and the ouput remains open (High-Z) until the next $\overline{\text { CAS }}$ cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A10) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\text { RAS }}$

## PIN ASSIGNMENT (Top View)


followed by a column address strobed-in by $\overline{\text { CAS. }} \overline{\text { CAS }}$ may be toggled-in by holding $\overline{\text { RAS }}$ LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle (READ, WRITE, $\overline{R A S}-O N L Y, \overline{\text { CAS-BEFORE- }}$ $\overline{\text { RAS, or HIDDEN REFRESH) so that all } 1,024 \text { combinations }}$ of RASaddresses (A0-A10) are executed at least every 16ms, regardless of sequence.

## FUNCTIONAL BLOCK DIAGRAM



TRUTH TABLE

| Function |  | RAS | CAS | CAS9 | WE | Addresses |  | DQ1-8, D9, Q9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {tr }}$ |  |  |  | ${ }^{\text {t }}$ A |  |
| Standby |  |  | H | X | X | X | X | X | High Impedance |
| READ |  | L | L | L | H | ROW | COL | Valid Data Out |
| EARLY-WRITE |  | L | L | L | L | ROW | COL | Valid Data In |
| FAST-PAGE-MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $H \rightarrow L$ | H | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | H | n/a | COL | Valid Data Out |
| FAST-PAGE-MODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | L | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | $\mathrm{H} \rightarrow \mathrm{L}$ | L | n/a | COL | Valid Data In |
| RAS-ONLY REFRESH |  | L | H | H | X | ROW | n/a | High Impedance |
| HIDDEN <br> REFRESH <br> CAS-BEFORE-RAS REFRESH | READ | $L \rightarrow H \rightarrow L$ | L | L | H | ROW | COL | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | L | ROW | COL | Valid Data In |
|  | Standard | $\mathrm{H} \rightarrow \mathrm{L}$ | L | L | X | X | X | High Impedance |

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss .........-1.0V to +7.0 V
Operating Temperature, $\mathrm{TA}_{\mathrm{A}}$ (Ambient) ........... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic) ................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) ................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..........................................................9W
Short Circuit Output Current ........................................ 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs |  | VIH | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs |  | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE CURRENT <br> Any Input: $0 \mathrm{~V} \leq$ VIN $\leq 6.5 \mathrm{~V}$ <br> (All other pins not under test $=0 \mathrm{~V}$ ) | A9, $\overline{\text { CAS9 }}$ | 11 | -2 | 2 | $\mu \mathrm{A}$ |  |
|  | A0-A10, $\overline{W E}, \overline{C A S}, \overline{R A S}$ | 1 | -18 | 18 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT <br> ( Q is disabled, $\mathrm{OV} \leq \mathrm{Vout} \leq 5.5 \mathrm{~V}$ ) | Q9 | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
|  | DQ1-DQ8 | loz | -12 | 12 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage (lout $=-5 \mathrm{~mA}$ ) <br> Output Low Voltage $($ lout $=4.2 \mathrm{~mA})$ |  | Vor | 2.4 |  | V |  |
|  |  | Vol |  | 0.4 | V |  |


|  | SYMBOL | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION |  | -6 | -7 | -8 | UNITS | NOTES |
| STANDBY CURRENT (TTL) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}(H)$ | IcC1 | 18 | 18 | 18 | mA |  |
| STANDBY CURRENT (CMOS) $(\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V})$ | Icc2 | 9 | 9 | 9 | mA |  |
| OPERATING CURRENT: Random READ/WRITE <br> Average power supply current <br> (RAS, CAS, Address Cycling: tRC = tRC (MIN)) | Icc3 | 990 | 900 | 810 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE <br> Average power supply current <br> ( $\overline{R A S}=V_{I L}, \overline{C A S}$, Address Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}$ (MIN)) | Icc4 | 720 | 630 | 540 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS-ONLY }}$ <br> Average power supply current ( $\overline{R A S}$ Cycling, $\overline{C A S}=V_{I H}:{ }^{\mathrm{t} R C}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc5 | 990 | 900 | 810 | mA | 3 |
| REFRESH CURRENT: $\overline{\text { CAS-BEFORE-RAS }}$ <br> Average power supply current <br> (RAS, $\overline{\mathrm{CAS}}$, Address Cycling: ${ }^{\mathrm{t} R C}={ }^{\mathrm{t}} \mathrm{RC}$ (MIN)) | Icc6 | 990 | 900 | 810 | mA | 3 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A10 | C 11 |  | 45 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}, \overline{\mathrm{WE}}}$ | Cl 2 |  | 63 | pF | 2 |
| Input Capacitance: D9 | Cl 3 |  | 7 | pF | 2 |
| Input/Output Capacitance: DQ | $\mathrm{Cl}_{1}$ |  | 12 | pF | 2 |
| Output Capacitance: Q9 | C 0 |  | 7 | pF | 2 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS <br> (Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc $=5.0 \mathrm{~V} \pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -6 |  | -7 |  | -8 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {tRC }}$ | 110 |  | 130 |  | 150 |  | ns |  |
| READ-WRITE cycle time | trwC | n/a |  | n/a |  | n/a |  | n/a | 24 |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 40 |  | 45 |  | ns |  |
| FAST-PAGE-MODE READ-WRITE cycle time | tPRWC | n/a |  | n/a |  | n/a |  | n/a | 24 |
| Access time from RAS | ${ }^{\text {traC }}$ |  | 60 |  | 70 |  | 80 | ns | 14 |
| Access time from $\overline{\text { CAS }}$ | ${ }^{\text {t }}$ CAC |  | 15 |  | 20 |  | 20 | ns | 15 |
| Access time from column address | ${ }^{\text {t }}$ A |  | 30 |  | 35 |  | 40 | ns |  |
| Access time from CAS precharge | ${ }^{\text {t }}$ CPA |  | 40 |  | 40 |  | 45 | ns | 25 |
| $\overline{\text { RAS pulse width }}$ | tras | 60 | 100,000 | 70 | 100,000 | 80 | 100,000 | ns |  |
| $\overline{\text { RAS pulse width (FAST PAGE MODE) }}$ | ${ }^{\text {tr }}$ RASP | 60 | 100,000 | 70 | 100,000 | 80 | 100,000 | ns |  |
| RAS hold time | ${ }^{\text {tRSH }}$ | 15 |  | 20 |  | 20 |  | ns |  |
| RAS precharge time | ${ }^{\text {t RP }}$ | 45 |  | 50 |  | 60 |  | ns |  |
| CAS pulse width | tcAs | 15 | 100,000 | 20 | 100,000 | 20 | 100,000 | ns |  |
| CAS hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 60 |  | 70 |  | 80 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }} \mathrm{CPN}$ | 10 |  | 10 |  | 10 |  | ns | 16 |
| CAS precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{C}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to CAS delay time | ${ }^{\text {tr }}$ CD | 15 | 45 | 20 | 50 | 20 | 60 | ns | 17 |
| $\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t } A S R}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t RAH }}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {tRAD }}$ | 15 | 30 | 15 | 35 | 15 | 40 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }}$ CAH | 10 |  | 15 |  | 15 |  | ns |  |
| Column address hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t } A R}$ | 50 |  | 55 |  | 60 |  | ns |  |
| Column address to RAS lead time | trAL | 30 |  | 35 |  | 40 |  | ns |  |
| Read command setup time | ${ }^{\text {tRCS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to CAS) | ${ }^{\text {tr }}$ ( ${ }^{\text {r }}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | tRRH | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t }} \mathrm{CLZ}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay |  | 0 | 20 | 0 | 20 | 0 | 20 | ns | 20 |
| $\overline{\text { WE command setup time }}$ | ${ }^{\text {t WCS }}$ | 0 |  | 0 |  | 0 |  | ns | 21 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc = 5.0V $\pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -6 |  | -7 |  | -8 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Write command hold time | ${ }^{\text {t }}$ WCH | 10 |  | 15 |  | 15 |  | ns |  |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t WCR }}$ | 45 |  | 55 |  | 60 |  | ns |  |
| Write command pulse width | tWP | 10 |  | 15 |  | 15 |  | ns |  |
| Write command to RAS lead time | ${ }^{\text {tr }}$ WL | 15 |  | 20 |  | 20 |  | ns |  |
| Write command to CAS lead time | ${ }^{\text {t }}$ CWL | 15 |  | 20 |  | 20 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 21 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 10 |  | 15 |  | 15 |  | ns | 21 |
| Data-in hold time (referenced to $\overline{\text { RAS }}$ ) | ${ }^{\text {t }}$ DHR | 45 |  | 55 |  | 60 |  | ns |  |
| RAS to WE delay time | ${ }^{\text {t }}$ WD | n/a |  | n/a |  | n/a |  | n/a | 24 |
| Column address to WE delay time | ${ }^{\text {t }}$ AWD | n/a |  | n/a |  | n/a |  | n/a | 24 |
| $\overline{\mathrm{CAS}}$ to $\overline{\text { WE }}$ delay time | ${ }^{\text {t }}$ CWD | n/a |  | n/a |  | n/a |  | n/a | 24 |
| Transition time (rise or fall) | 'T | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period (1,024 cycles) | treF |  | 16 |  | 16 |  | 16 | ms |  |
| $\overline{\mathrm{RAS}}$ to CAS precharge time | ${ }^{\text {tr PPC }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| CAS setup time (CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }}$ 'SR | 10 |  | 10 |  | 10 |  | ns | 5 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE-RAS REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 5 |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $\mathrm{C}=\mathrm{I}^{\mathrm{dt}} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{VCC}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ) is assured.
7. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{\text { RAS }}$ refresh cycles ( $\overline{\text { RAS-ONLY }}$ or CBR with $\overline{\mathrm{WE}} \mathrm{HIGH})$ before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 16 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5$ ns.
9. $\mathrm{V}_{\mathrm{IH}}$ (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$ (or between $\mathrm{V}_{\mathrm{IL}}$ and $V_{\mathrm{IH}}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $\mathrm{V}_{\mathrm{IH}}$ and $V_{\text {IL }}$ (or between $V_{\text {IL }}$ and $V_{\text {IH }}$ ) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
12. If $\overline{\mathrm{CAS}}=V_{\mathrm{IL}}$, data output may contain data from the last valid READ cycle.
13. Measured with a load equivalent to two TTL gates and 100 pF .
14. Assumes that ${ }^{\mathrm{t}} R C D<{ }^{\mathrm{t}} \mathrm{RCD}$ (MAX). If ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the maximum recommended value shown in this
table, ${ }^{t}$ RAC will increase by the amount that ${ }^{\mathrm{t}} \mathrm{RCD}$ exceeds the value shown.
15. Assumes that ${ }^{\dagger} R C D \geq^{t} R C D$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}, Q$ will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ${ }^{t} \mathrm{CPN}$.
17. Operation within the ${ }^{\mathrm{t} R C D}$ (MAX) limit ensures that ${ }^{t}$ RAC (MAX) can be met. ${ }^{t}$ RCD (MAX) is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the specified ${ }^{\text {RRCD }}$ (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{CAC}$.
18. Operation within the ${ }^{\text {t RAD (MAX) limit ensures that }}$ ${ }^{t}$ RCD (MAX) can be met. ${ }^{\text {t }}$ (MD (MAX) is specified as a reference point only; if ${ }^{\mathrm{t}}$ RAD is greater than the specified tRAD (MAX) limit, then access time is controlled exclusively by ${ }^{\mathrm{t}} \mathrm{AA}$.
19. Either ${ }^{\text {R }}$ CH or t RRH must be satisfied for a READ cycle.
20. ${ }^{\text {t OFF }}$ (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Vон or Vol.
21. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles.
22. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case,$\overline{\mathrm{WE}}=$ LOW.
23. All other inputs equal $\mathrm{Vcc}-0.2 \mathrm{~V}$.
24. LATE-WRITE, READ-WRITE or READ-MODIFYWRITE cycles are not available due to the common DQ configuration of U1-U8.

## READ CYCLE



## EARLY-WRITE CYCLE



VZ/ don't care
UNDEFINED

## FAST-PAGE-MODE READ CYCLE



FAST-PAGE-MODE EARLY-WRITE CYCLE


V/D DON't care
UNDEFINED

## RAS-ONLY REFRESH CYCLE

$\left(A D D R=A_{0}-A_{9} ; A_{10}\right.$ and $\overline{W E}=D O N ' T$ CARE $)$


CAS-BEFORE-RAS REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{10}$ and $\overline{\mathrm{WE}}=$ DON'T CARE)


DQ $\stackrel{V}{\mathrm{OH}}_{\mathrm{OH}}=$
OPEN

## HIDDEN REFRESH CYCLE

$$
(\overline{W E}=\mathrm{HIGH})^{23}
$$



MICAON

## DRAM MODULE

## 256K x 32 DRAM FAST PAGE MODE

## FEATURES

－Industry standard pinout in a 72－pin single－in－line package
－High－performance CMOS silicon gate process．
－Single $5 \mathrm{~V} \pm 10 \%$ power supply
－All inputs，outputs and clocks are fully TTL and CMOS compatible
－Low power， 24 mW standby； $1,400 \mathrm{~mW}$ active，typical
－Refresh modes：$\overline{\text { RAS－ONLY，}} \overline{\text { CAS－BEFORE－RAS，and }}$ HIDDEN
－512－cycle refresh distributed across 8 ms
－Optional FAST PAGE MODE access cycle

## OPTIONS

－Timing $\begin{array}{ll}70 \mathrm{~ns} \text { access } & -7 \\ 80 \mathrm{~ns} \text { access } & -8 \\ 85 \mathrm{~ns} \text { access } & -85 \\ 100 \mathrm{~ns} \text { access } & -10\end{array}$
－Packages
Leadless 72 －pin SIMM
Leadless 72 －pin SIMM（Gold）
M
Leadless 72 －pin SIMM
Leadless 72 －pin SIMM（Gold）
Leaded 72－pin ZIP

## MARKING

G
Z

## GENERAL DESCRIPTION

The MT8D25632 is a randomly accessed solid－state memory containing 262,144 words organized in a $\times 32$ con－ figuration．During READ or WRITE cycles，each bit is uniquely addressed through the 18 address bits which are entered 9 bits（A0－A8）at a time．$\overline{\text { RAS }}$ is used tolatch the first 9 bits and CAS the latter 9 bits．A READ or WRITE cycle is selected with the $\overline{\mathrm{WE}}$ input．A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ mode while a logic LOW on $\overline{\mathrm{WE}}$ dictates WRITE mode．During a WRITE cycle，data－in（D）is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last．If $\overline{W E}$ goes LOW prior to CAS going LOW，the output pin（s）remain open（High－Z）until the next $\overline{\text { CAS }}$ cycle．

FAST PAGE MODE operations allow faster data opera－ tions（READ or WRITE）within a row－address（A0－A8） defined page boundary．The FAST PAGE MODE cycle is always initiated with a row address strobed－in by $\overline{\text { RAS }}$
followed by a column address strobed－in by $\overline{\mathrm{CAS}} \overline{\mathrm{CAS}}$ may be toggled－in by holding $\overline{\text { RAS }}$ LOW and strobing－in differ－ ent column addresses，thus executing faster memory cycles． Returning $\overline{\text { RAS }}$ HIGH terminates the FAST PAGE MODE operation．
Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level． Also，the chip is preconditioned for the next cycle during the RAS HIGH time．Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle（READ，WRITE，$\overline{\text { RAS－ONLY，}}$ CAS－BEFORE－ $\overline{\text { RAS，}}$ or HIDDEN REFRESH）so that all 512 combinations of $\overline{\mathrm{RAS}}$ addresses（A0－A8）are executed at least every 8 ms ， regardless of sequence．

## PIN ASSIGNMENT（Top View）



72－Pin ZIP（J－4）


| PIN ASSIGNMENT（Top View） |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 72－Pin SIMM（1－5） |  |  |  |  |  |  |  |
| MT8D25632M／G |  |  |  |  |  |  |  |
| 72－Pin ZIP（J－4） |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| PIN \＃ | SYMBOL | PIN\＃ | SYMBOL | PIN\＃ | SYMBOL | PIN\＃ | SYMBOL |
| 1 | Vss | 19 | NC | 37 | NC | 55 | DQ12 |
| 2 | DQ1 | 20 | DQ5 | 38 | NC | 56 | DQ28 |
| 3 | DQ17 | 21 | DQ21 | 39 | Vss | 57 | DQ13 |
| 4 | DQ2 | 22 | DQ6 | 40 | CASO | 58 | DQ29 |
| 5 | DQ18 | 23 | DQ22 | 41 | CAS2 | 59 | Vcc |
| 6 | DQ3 | 24 | DQ7 | 42 | CAS3 | 60 | DQ30 |
| 7 | DQ19 | 25 | DQ23 | 43 | CAS1 | 61 | DQ14 |
| 8 | DQ4 | 26 | DQ8 | 44 | RASO | 62 | DQ31 |
| 9 | DQ20 | 27 | DQ24 | 45 | NC | 63 | DQ15 |
| 10 | Vcc | 28 | A7 | 46 | NC | 64 | DQ32 |
| 11 | NC | 29 | NC | 47 | WE | 65 | DQ16 |
| 12 | A0 | 30 | Vcc | 48 | NC | 66 | NC |
| 13 | A1 | 31 | A8 | 49 | DQ8 | 67 | PRD1 |
| 14 | A2 | 32 | NC | 50 | DQ25 | 68 | PRD2 |
| 15 | A3 | 33 | NC | 51 | DQ10 | 69 | PRD3 |
| 16 | A4 | 34 | RAS2 | 52 | DQ26 | 70 | PRD4 |
| 17 | A5 | 35 | NC | 53 | DQ11 | 71 | NC |
| 18 | A6 | 36 | NC | 54 | DQ27 | 72 | Vss |

FUNCTIONAL BLOCK DIAGRAM


## TRUTH TABLE

| Function |  | RAS | CAS | WE | Addresses |  | DQ1-32 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {t }}$ R |  |  | ${ }^{\text {t }}$ |  |
| Standby |  |  | H | X | X | X | X | High Impedance |
| READ |  | L | L | H | ROW | COL | Valid Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | Valid Data In |
| FAST-PAGEMODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | H | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | H | n/a | COL | Valid Data Out |
| FAST-PAGEMODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | L | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | L | n/a | COL | Valid Data In |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | High Impedance |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | Valid Data In |
| CAS-BEFORE- $\overline{R A S}$ REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | High Impedance |

## PRESENCE DETECT

| SYMBOL | $\mathbf{- 7}$ | $\mathbf{- 8}$ | $\mathbf{- 8 5}$ | $\mathbf{- 1 0}$ |
| :--- | :---: | :---: | :---: | :---: |
| PRD1 | NC | VSS | VSS | VSS |
| PRD2 | NC | NC | NC | NC |
| PRD3 | VSS | VSS | NC | VSS |
| PRD4 | VSS | NC | VSS | VSS |

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss $\qquad$ -1.0 V to +7.0 V
Operating Temperature, $\mathrm{TA}_{\mathrm{A}}$ (Ambient) ........... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature (Plastic) .................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation
Short Circuit Output Current 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above thoseindicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | * | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V |  |
| Input High (Logic 1) Voltage, All Inputs |  | $\mathrm{V}_{\mathrm{H}}$ | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs |  | VIL | -2.0 | 0.8 | V | 1,22 |
| INPUT LEAKAGE CURRENT <br> Any input: $\mathrm{OV} \leq \mathrm{V}$ in $\leq \mathrm{Vcc}$ <br> (All other pins not under test $=0 \mathrm{~V}$ ) For each package input | A0-A8, WE | 11 | -16 | 16 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT <br> ( Q is disabled, $\mathrm{OV} \leq$ Vout $\leq \mathrm{Vcc}$ ) For each package input | DQ1-DQ32 | loz | -12 | 12 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage (lout $=-5 \mathrm{~mA})$ <br> Output Low Voltage (lout $=5 \mathrm{~mA}$ ) |  | V OH | 2.4 |  | V | 1 |
|  |  | Vol |  | 0.4 | V |  |


|  |  | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -7 | -8, -85 | -10 | UNITS | NOTES |
| OPERATING CURRENT <br> ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling: ${ }^{\mathrm{t}} \mathrm{RC}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc1 | 640 | 560 | 480 | mA | 2 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\mathrm{RAS}}=\mathrm{VIL}, \overline{\mathrm{CAS}}=$ Cycling: ${ }^{\mathrm{t} P \mathrm{C}}={ }^{\mathrm{t}} \mathrm{PC}(\mathrm{MIN})$ ) | IcC2 | 480 | 400 | 320 | mA | 2 |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V} \mathrm{H}$ after 8 RAS cycles (MIN)) | Icc3 | 16 | 16 | 16 | mA |  |
| STANDBY CURRENT: CMOS INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V}$ after 8 RAS cycles (MIN)). (All other inputs at $\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{Vss}+0.2 \mathrm{~V}$ ) | Icc4 | 8 | 8 | 8 | mA |  |
| REFRESH CURRENT: $\overline{R A S}-O N L Y$ ( $\overline{\text { RAS }}=$ Cycling: $\overline{\mathrm{CAS}}=\mathrm{V}$ IH ) | Icc5 | 640 | 560 | 480 | mA | 2 |
| REFRESH CURRENT: $\overline{\mathrm{CAS}}$-BEFORE- $\overline{R A S}$ ( $\overline{\text { RAS }}$ and $\overline{\mathrm{CAS}}=$ Cycling) | Icc6 | 640 | 560 | 480 | mA | 2 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A8 | $\mathrm{Cl}_{1}$ |  | 40 | pF | 17 |
| Input Capacitance: $\overline{\text { WE }}$ | Cl 2 |  | 56 | pF | 17 |
| Input Capacitance: $\overline{\text { RAS0 }}$ | Cl 3 |  | 28 | pF | 17 |
| Input Capacitance: $\overline{\text { CAS0-CAS3 }}$ | Cl 4 |  | 14 | pF | 17 |
| Input/Output Capacitance: DQ1-DQ32 | $\mathrm{C} \circ$ |  | 7 | pF | 17 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 3, 4, 5, 10, 11, 16, 17) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8, -85 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {tr }}$ C | 135 |  | 150 |  | 180 |  | ns | 6, 7 |
| FAST-PAGE-MODE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 45 |  | 55 |  | ns | 6,7 |
| Access time from RAS | ${ }^{\text {tr }}$ RAC |  | 70 |  | 80 |  | 100 | ns | 7, 8 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ AAC |  | 20 |  | 20 |  | 25 | ns | 7, 9 |
| RAS pulse width | ${ }^{\text {tras }}$ | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {tRSH }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | tRP | 50 |  | 60 |  | 70 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t }}$ CAS | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 15 |  | ns | 18 |
| $\overline{\text { CAS }}$ precharge time (FAST PAGE MODE) | ${ }^{t} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time | ${ }^{\text {t } R C D}$ | 20 | 40 | 20 | 60 | 25 | 75 | ns | 13 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {tRAH }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time referenced to RAS | ${ }^{\text {t }} \mathrm{AR}$ | 55 |  | 60 |  | 70 |  | ns |  |
| Read command setup time | ${ }^{\text {t R CS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to CAS | ${ }^{\text {t RCH }}$ | 0 |  | 0 |  | 0 |  | ns | 14 |
| Read command hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t RRH }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | toff | 0 | 20 | 0 | 20 | 0 | 20 | ns | 12 |
| $\overline{\text { WE }}$ command setup time | tWCS | 0 |  | 0 |  | 0 |  | ns |  |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t W }}$ W | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t RWL }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }}$ CWL | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }} \mathrm{DS}$ | 0 |  | 0 |  | 0 |  | ns | 15 |
| Data-in hold time | ${ }^{\text {t }}$ D H | 15 |  | 15 |  | 20 |  | ns | 15 |
| Data-in hold time referenced to $\overline{R A S}$ | ${ }^{\text {t DHR }}$ | 55 |  | 60 |  | 75 |  | ns |  |
| Transition time (rise or fall) | ${ }^{\text {t }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 16 |
| Refresh period (256 cycles) | ${ }^{\text {treF }}$ |  | 8 |  | 8 |  | 8 | ms | 20 |
| CAS hold time <br>  | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 19 |
| $\overline{\text { CAS }}$ setup time (ㄷAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{t}$ CSR | 10 |  | 10 |  | 10 |  | ns | 19 |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {t }}$ RPC | 0 |  | 0 |  | 0 |  | ns | 19 |

## NOTES

1. All voltages referenced to Vss.
2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
3. An initial pause of $100 \mu$ s is required after power-up followed by any eight $\overline{\text { RAS }}$ cycles before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
4. AC characteristics assume ${ }^{\boldsymbol{t}} \mathrm{T}=5 \mathrm{~ns}$.
5. $\mathrm{V}_{\mathrm{IH}}$ (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ) is assured.
7. Measured with a load equivalent to two TTL gates and 100 pF .
8. Assumes that ${ }^{t} R C D<{ }^{t} R C D(M A X)$. If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
9. Assumes that ${ }^{t} R C D \geq{ }^{\mathrm{t} R C D}$ (MAX).
10. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
11. If $\overline{\mathrm{CAS}}=V_{\text {IL }}$, data output may contain data from the last valid READ cycle.
12. TOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or VoL.
13. Operation within the ${ }^{\mathrm{t} R C D}$ (MAX) limit ensures that
${ }^{t}$ RAC (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the specified ${ }^{\text {t RCD }}$ (MAX) limit, then access time is controlled exclusively by ${ }^{\mathrm{t}} \mathrm{CAC}$.
14. ${ }^{\text {t }}{ }^{\text {RCH }}$ is referenced to the first rising edge of $\overline{\text { RAS }}$ or $\overline{\text { CAS. }}$
15. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles.
16. In addition to meeting the transition rate specification, all input signals must transit between VIH and $V_{I L}$ (or between $V_{I L}$ and $V_{I H}$ ) in a monotonic manner.
17. This parameter is sampled. Capacitance is calculated from the equation $\mathrm{C}=\mathrm{I}^{\mathrm{dt}} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
18. If $\overline{\text { CAS }}$ is LOW at the falling edge of $\overline{\text { RAS }}$, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, $\overline{\text { CAS }}$ must be pulsed HIGH for ${ }^{\text {t }} \mathrm{C}$. Note 8 applies to determine valid data out.
19. On-chip refresh and address counters are enabled.
20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=$ LOW.
21. LATE-WRITE, READ-WRITE or READ-MODIFYWRITE cycles are not available due to $\overline{\mathrm{OE}}$ being grounded on U1-U8.
22. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5 V for a period of less than 20 ns and the signal's total duration is 25 ns or less; or a -0.3 V signal of any duration is presented (DC).

## READ CYCLE



EARLY-WRITE CYCLE


0 da dont care
UNDEFINED

FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE


V// $\triangle$ don't care
undefined

## RAS-ONLY REFRESH CYCLE

( $A D D R=A_{0}-A_{7} ; A_{8}$ and $\overline{W E}=$ DON'T CARE)


CAS-BEFORE- $\overline{R A S}$ REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{8}, \overline{\mathrm{WE}}=\mathrm{DON}$ 'T CARE)


DQ $\stackrel{\mathrm{V}_{\mathrm{OH}}}{\mathrm{v}_{\mathrm{OL}}}$
OPEN

HIDDEN REFRESH CYCLE
$(\overline{\mathrm{WE}}=\mathrm{HIGH})^{20}$


MICHON

## DRAM MODULE

## 512K x 32 DRAM FAST PAGE MODE

## FEATURES

- Industry standard pinout in a 72 -pin single-in-line package
- High-performance CMOS silicon gate process.
- Single $5 \mathrm{~V} \pm 10 \%$ power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 48 mW standby; $2,800 \mathrm{~mW}$ active, typical
- Refresh modes: $\overline{\text { RAS-ONLY, }} \overline{\text { CAS-BEFORE-RAS, and }}$ HIDDEN
- 512 -cycle refresh distributed across 8 ms
- Optional FAST PAGE MODE access cycle


## OPTIONS

- Timing

70 ns access
80 ns access

## $85 n s$ access

100 ns access

- Packages

Leadless 72-pin SIMM M
Leadless 72 -pin SIMM (Gold) G
Leaded 72-pin ZIP
MARKING
$-7$

- 8
-85

$$
-10
$$

## GENERAL DESCRIPTION

The MT16D51232 is a randomly accessed solid-state memory containing 524,288 words organized in a $x 32$ configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 18 address bits which are entered 9 bits (A0-A8) at a time. $\overline{\mathrm{RAS}}$ is used to latch the first 9 bits and CAS the latter 9 bits. READ or WRITE cycles are selected with the $\overline{W E}$ input. A logic HIGH on $\overline{W E}$ dictates READ mode while a logic LOW on $\overline{\mathrm{WE}}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. EARLY WRITE occurs when $\overline{W E}$ goes LOW prior to $\overline{C A S}$ going LOW, the output pin(s) remain open (High-Z) until the next CAS cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A8) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\text { RAS }}$ followed by a column address strobed-in by $\overline{\mathrm{CAS}} \overline{\mathrm{CAS}}$ may

## PIN ASSIGNMENT (Top View)

72-Pin SIMM (1-6)


72-Pin ZIP (J-5)


| PIN \# | SYMB0L | PIN\# | SYMBOL | PIN\# | SYMB0L | PIN\# | SYMBOL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Vss | 19 | NC | 37 | NC | 55 | DQ12 |
| 2 | DQ1 | 20 | DQ5 | 38 | NC | 56 | DQ28 |
| 3 | DQ17 | 21 | DQ21 | 39 | Vss | 57 | DQ13 |
| 4 | DQ2 | 22 | DQ6 | 40 | $\overline{\text { CAS0 }}$ | 58 | DQ29 |
| 5 | DQ18 | 23 | DQ22 | 41 | $\overline{\text { CAS2 }}$ | 59 | VcC |
| 6 | DQ3 | 24 | DQ7 | 42 | $\overline{\text { CAS3 }}$ | 60 | DQ30 |
| 7 | DQ19 | 25 | DQ23 | 43 | $\overline{\text { CAS1 }}$ | 61 | DQ14 |
| 8 | DQ4 | 26 | DQ8 | 44 | $\overline{\text { RAS0 }}$ | 62 | DQ31 |
| 9 | DQ20 | 27 | DQ24 | 45 | $\overline{\text { RAS1 }}$ | 63 | DQ15 |
| 10 | VCC | 28 | A7 | 46 | NC | 64 | DQ32 |
| 11 | NC | 29 | NC | 47 | WE | 65 | DQ16 |
| 12 | A0 | 30 | VCC | 48 | NC | 66 | NC |
| 13 | A1 | 31 | A8 | 49 | DQ9 | 67 | PRD1 |
| 14 | A2 | 32 | NC | 50 | DQ25 | 68 | PRD2 |
| 15 | A3 | 33 | RAS3 | 51 | DQ10 | 69 | PRD3 |
| 16 | A4 | 34 | $\overline{\text { RAS2 }}$ | 52 | DQ26 | 70 | PRD4 |
| 17 | A5 | 35 | NC | 53 | DQ11 | 71 | NC |
| 18 | A6 | 36 | NC | 54 | DQ27 | 72 | VSS |

be toggled-in by holding $\overline{\text { RAS }}$ LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning $\overline{\text { RA }} \bar{S}$ HIGH terminates the FAST-PAGEMODE operation.

Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle (READ, WRITE, $\overline{R A S}-O N L Y, \overline{C A S}-B E F O R E-$ $\overline{\text { RAS, }}$ or HIDDEN REFRESH) so that all 512 combinations of $\overline{\text { RAS }}$ addresses (A0-A8) are executed at least every 8 ms , regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

$\mathrm{U} 1-\mathrm{U} 16=$ MT4C4256DJ

TRUTH TABLE

| Function |  | RAS | CAS | WE | Addresses |  | DQ1-32 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {tR }}$ |  |  | ${ }^{\text {t }}$ |  |
| Standby |  |  | H | X | X | X | X | High Impedance |
| READ |  | L | L | H | ROW | COL | Valid Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | Valid Data In |
| FAST-PAGEMODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | H | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | H | n/a | COL | Valid Data Out |
| FAST-PAGEMODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | L | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | L | n/a | COL | Valid Data In |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | High Impedance |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | Valid Data In |
| CAS-BEFORE-RAS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | High Impedance |

## PRESENCE DETECT

| SYMBOL | $\mathbf{- 7}$ | $\mathbf{- 8}$ | $\mathbf{- 8 5}$ | $\mathbf{- 1 0}$ |
| :--- | :---: | :---: | :---: | :---: |
| PRD1 | VSS | NC | NC | NC |
| PRD2 | VSS | VSS | VSS | VSS |
| PRD3 | NC | VSS | NC | VSS |
| PRD4 | NC | NC | VSS | VSS |

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss ......... -1.0 V to +7.0 V
Operating Temperature, $\mathrm{T}_{\mathrm{A}}($ Ambient $) .. . . . . . . . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Plastic) .................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation
.16W
Short Circuit Output Current ...................................... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is notimplied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V |  |
| Input High (Logic 1) Voltage, All Inputs |  | VIH | 2.4 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs |  | VIL | -2.0 | 0.8 | V | 1,22 |
| INPUT LEAKAGE CURRENT <br> Any Input: $\mathrm{OV} \leq \mathrm{Vin} \leq \mathrm{Vcc}$ <br> (All other pins not under test $=0 \mathrm{~V}$ ) For each package input | A0-A8, $\overline{\mathrm{WE}}$ | 1 | -32 | 32 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT <br> ( Q is disabled, $0 \mathrm{~V} \leq \mathrm{Vout} \leq \mathrm{Vcc}$ ) For each package input | DQ1-32 | loz | -24 | 24 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage (lout $=-5 \mathrm{~mA})$ <br> Output Low Voltage (lout $=5 \mathrm{~mA}$ ) |  | Vor | 2.4 |  | V | 1 |
|  |  | Vol |  | 0.4 | V |  |


|  |  | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -7 | -8, -85 | -10 | UNITS | NOTES |
| OPERATING CURRENT <br> ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling: ${ }^{\mathrm{t} R C}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | Icc1 | 656 | 576 | 496 | mA | 2 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\text { RAS }}=\mathrm{VIL}, \overline{\mathrm{CAS}}=$ Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}(\mathrm{MIN})$ ) | Icc2 | 496 | 416 | 336 | mA | 2 |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\text { RAS }}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{H}}$ after 8 RAS cycles (MIN)) | Icc3 | 32 | 32 | 32 | mA |  |
| STANDBY CURRENT: CMOS INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V}$ <br> after 8 RAS cycles (MIN)). (All other inputs at $\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{Vss}+0.2 \mathrm{~V}$ ) | Icc4 | 16 | 16 | 16 | mA |  |
| REFRESH CURRENT: $\overline{R A S}-O N L Y$ ( $\overline{\mathrm{RAS}}=$ Cycling: $\overline{\mathrm{CAS}}=\mathrm{V} \mathrm{IH}$ ) | Icc5 | 656 | 576 | 496 | mA | 2 |
| REFRESH CURRENT: $\overline{\text { CAS }}$-BEFORE- $\overline{R A S}$ ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling) | Icc6 | 656 | 576 | 496 | mA | 2 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A8 | $\mathrm{Cl}_{11}$ |  | 80 | pF | 17 |
| Input Capacitance: $\overline{\text { WE }}$ | $\mathrm{Cl}_{12}$ |  | 112 | pF | 17 |
| Input Capacitance: $\overline{\text { CASO-CAS3, }}$ RAS0-RAS3 | C14 |  | 28 | pF | 17 |
| Input/Output Capacitance: DQ1-DQ32 | Cıo |  | 14 | pF | 17 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: $3,4,5,10,11,16,17)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8, 85 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t } R C}$ | 135 |  | 150 |  | 180 |  | ns | 6, 7 |
| FAST-PAGE-MODE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 45 |  | 55 |  | ns | 6, 7 |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {t RAC }}$ |  | 70 |  | 80 |  | 100 | ns | 7, 8 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ CAC |  | 20 |  | 20 |  | 25 | ns | 7, 9 |
| $\overline{\text { RAS }}$ pulse width | ${ }^{\text {t RAS }}$ | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ RSH | 20 |  | 20 |  | 25 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | trP | 50 |  | 60 |  | 70 |  | ns |  |
| CAS pulse width | ${ }^{\text {t }}$ CAS | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }}$ CSH | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }} \mathrm{CPN}$ | 10 |  | 10 |  | 15 |  | ns | 18 |
| CAS precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{C} P$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay time | ${ }^{\text {t } R C D ~}$ | 20 | 40 | 20 | 60 | 25 | 75 | ns | 13 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ 'RRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{t}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t RAH }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }}$ CAH | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time referenced to RAS | ${ }^{\text {t }} \mathrm{AR}$ | 55 |  | 60 |  | 70 |  | ns |  |
| Read command setup time | ${ }^{\text {t R }}$ ( ${ }^{\text {d }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to CAS | ${ }^{\text {treH }}$ | 0 |  | 0 |  | 0 |  | ns | 14 |
| Read command hold time referenced to RAS | ${ }^{\text {t RRH }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {t }}$ OFF | 0 | 20 | 0 | 20 | 0 | 20 | ns | 12 |
| WE command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns |  |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time referenced to RAS | ${ }^{\text {t }}$ WCR | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }} \mathrm{WP}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to RAS lead time | ${ }^{\text {tr }}$ WL | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }}$ CWL | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ D | 0 |  | 0 |  | 0 |  | ns | 15 |
| Data-in hold time | ${ }^{\text {t }}$ D ${ }^{\text {d }}$ | 15 |  | 15 |  | 20 |  | ns | 15 |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ DHR | 55 |  | 60 |  | 75 |  | ns |  |
| Transition time (rise or fall) | ${ }^{\text {T }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 16 |
| Refresh period (256 cycles) | ${ }^{\text {t REF }}$ |  | 8 |  | 8 |  | 8 | ms | 20 |
| $\overline{\text { CAS }}$ hold time <br>  | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 19 |
| $\overline{\text { CAS }}$ setup time (ㄷ्CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 19 |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {t }}$ RPC | 0 |  | 0 |  | 0 |  | ns | 19 |

## NOTES

1．All voltages referenced to Vss．
2．Icc is dependent on output loading and cycle rates． Specified values are obtained with minimum cycle time and the output open．
3．An initial pause of $100 \mu$ s is required after power－up followed by any eight $\overline{\mathrm{RAS}}$ cycles before proper device operation is assured．The eight $\overline{\text { RAS }}$ cycle wake－up should be repeated any time the 8 ms refresh requirement is exceeded．
4．AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$ ．
5．VIH（MIN）and VIL（MAX）are reference levels for measuring timing of input signals．Transition times are measured between $V_{I H}$ and VIL．
6．The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured．
7．Measured with a load equivalent to two TTL gates and 100 pF ．
8．Assumes that ${ }^{t} R C D<{ }^{t} R C D$（MAX）．If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table，${ }^{t}$ RAC will increase by the amount that ${ }^{t}$ RCD exceeds the value shown．
9．Assumes that ${ }^{t} R C D \geq{ }^{t} R C D$（MAX）．
10．If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$ ，data output is high impedance．
11．If $\overline{\mathrm{CAS}}=$ VIL，data output may contain data from the last valid READ cycle．
12．${ }^{\text {tor }}$（MAX）defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol．
13．Operation within the ${ }^{\text {t }} R C D$（MAX）limit ensures that ${ }^{t} R A C$（MAX）can be met．${ }^{t} R C D$（MAX）is specified as
a reference point only；if ${ }^{t} R C D$ is greater than the specified ${ }^{\text {tRCD }}$（MAX）limit，then access time is controlled exclusively by ${ }^{\text {t}} \mathrm{CAC}$ ．
14．${ }^{\mathrm{t} R C H}$ is referenced to the first rising edge of $\overline{\mathrm{RAS}}$ or CAS．
15．These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY－WRITE cycles．
16．In addition to meeting the transition rate specifica－ tion，all input signals must transit between $\mathrm{VIH}_{\mathrm{IH}}$ and $V_{\text {IL }}$（or between VIL and VIH）in a monotonic manner．
17．This parameter is sampled．Capacitance is calculated from the equation $C=I d t / d v$ with $d v=3 V$ and $\mathrm{Vcc}=5 \mathrm{~V}$ ．
18．If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}$ ，data－out （Q）will be maintained from the previous cycle．To initiate a new cycle and clear the data－out buffer， $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{\mathrm{t}} \mathrm{CP}$ ．Note 8 applies to determine valid data out．
19．On－chip refresh and address counters are enabled．
20．A HIDDEN REFRESH may also be performed after a WRITE cycle．In this case，$\overline{\mathrm{WE}}=\mathrm{LOW}$ ．
21．LATE－WRITE，READ－WRITE or READ－MODIFY－ WRITE cycles are not available due to $\overline{\mathrm{OE}}$ being grounded on U1－U16．
22．The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5 V for a period of less than 20 ns and the signal＇s total duration is 25 ns or less；or a -0.3 V signal of any duration is presented（DC）．

## READ CYCLE



EARLY-WRITE CYCLE

$\sqrt{7 / A}$ DON'T CARE
UNDEFINED

FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE


ZZa dont care
undefined

RAS-ONLY REFRESH CYCLE (ADDR $=\mathrm{A}_{0}-\mathrm{A}_{7} ; \mathrm{A}_{8}$ and $\overline{\mathrm{WE}}=$ DON'T CARE $)$


CAS-BEFORE-RAS REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{8}, \overline{\mathrm{WE}}=\mathrm{DON}$ 'T CARE $)$

oo Yoot
OPEN

## HIDDEN REFRESH CYCLE

$(\overline{\mathrm{WE}}=\mathrm{HIGH}){ }^{20}$


ZZa dont care
undefined

## DRAM MODULE

## 1 MEG x 32 DRAM

FAST PAGE MODE

## FEATURES

- Industry standard pinout in a 72-pin single-in-line package
- High-performance CMOS silicon gate process.
- Single $5 \mathrm{~V} \pm 10 \%$ power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 24 mW standby; $1,800 \mathrm{~mW}$ active, typical
- Refresh modes: $\overline{\mathrm{RAS}}-\mathrm{ONLY}, \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$, and HIDDEN
- 1,024-cycle refresh distributed across 16 ms
- Optional FAST PAGE MODE access cycle


## OPTIONS

- Timing

70ns access
80ns access
100 ns access

- Packages

Leadless 72-pin SIMM M
Leadless 72 -pin SIMM (Gold)
G
Leaded 72-pin ZIIP

## GENERAL DESCRIPTION

The MT8D132 is a randomly accessed solid-state memory containing 1,048,576 words organized in a $\times 32$ configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits which are entered 10 bits (A0-A9) at a time. $\overline{\text { RAS }}$ is used to latch the first 10 bits and CAS the latter 10 bits. A READ or WRITE cycle is selected with the $\overline{\mathrm{WE}}$ input. A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ mode while a logic LOW on $\overline{W E}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. If $\overline{W E}$ goes LOW prior to $\overline{\text { CAS }}$ going LOW, the output pin(s) remain open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle.
FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\text { RAS }}$

## PIN ASSIGNMENT (Top View)

72-Pin SIMM (I-5)


72-Pin ZIP (J-4)


| PIN \# | SYMBOL | PIN\# | SYMBOL | PIN\# | SYMBOL | PIN\# | SYMBOL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | VSS | 19 | NC | 37 | NC | 55 | DQ12 |
| 2 | DQ1 | 20 | DQ5 | 38 | NC | 56 | DQ28 |
| 3 | DQ17 | 21 | DQ21 | 39 | VSS | 57 | DQ13 |
| 4 | DQ2 | 22 | DQ6 | 40 | $\overline{\text { CAS0 }}$ | 58 | DQ29 |
| 5 | DQ18 | 23 | DQ22 | 41 | $\overline{\text { CAS2 }}$ | 59 | VcC |
| 6 | DQ3 | 24 | DQ7 | 42 | $\overline{\text { CAS3 }}$ | 60 | DQ30 |
| 7 | DQ19 | 25 | DQ23 | 43 | $\overline{\text { CAS1 }}$ | 61 | DQ14 |
| 8 | DQ4 | 26 | DQ8 | 44 | $\overline{\text { RAS0 }}$ | 62 | DQ31 |
| 9 | DQ20 | 27 | DQ24 | 45 | NC | 63 | DQ15 |
| 10 | VcC | 28 | A7 | 46 | NC | 64 | DQ32 |
| 11 | NC | 29 | NC | 47 | $\overline{\text { WE }}$ | 65 | DQ16 |
| 12 | A0 | 30 | Vcc | 48 | NC | 66 | NC |
| 13 | A1 | 31 | A8 | 49 | DQ9 | 67 | PRD1 |
| 14 | A2 | 32 | A9 | 50 | DQ25 | 68 | PRD2 |
| 15 | A3 | 33 | NC | 51 | DQ10 | 69 | PRD3 |
| 16 | A4 | 34 | $\overline{\text { RAS2 }}$ | 52 | DQ26 | 70 | PRD4 |
| 17 | A5 | 35 | NC | 53 | DQ11 | 71 | NC |
| 18 | A6 | 36 | NC | 54 | DQ27 | 72 | VSS |

followed by a column address strobed-in by $\overline{\mathrm{CAS}} \overline{\mathrm{CAS}}$ may be toggled-in by holding $\overline{\text { RAS }}$ LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning $\overline{\text { RAS }}$ HIGH terminates the FAST PAGE MODE operation.

Returning $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the $\overline{\text { RAS HIGH time. Memory cell data is retained in its }}$ correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE$\overline{\text { RAS, or HIDDEN REFRESH) so that all } 1,024 \text { combinations }}$ of $\overline{\text { RAS }}$ addresses (A0-A9) are executed at least every 16 ms , regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

$\mathrm{U} 1-\mathrm{U} 8=\mathrm{MT} 4 \mathrm{C} 4001 \mathrm{DJ}$

## TRUTH TABLE

| Function |  | RAS | CAS | WE | Addresses |  | DQ1-32 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {th}}$ |  |  | ${ }^{\text {t }}$ |  |
| Standby |  |  | H | X | X | X | X | High Impedance |
| READ |  | L | L | H | ROW | COL | Valid Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | Valid Data In |
| FAST-PAGEMODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | n/a | COL | Valid Data Out |
| FAST-PAGEMODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | n/a | COL | Valid Data In |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | High Impedance |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | Valid Data In |
| CAS-BEFORE-RAS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | High Impedance |

## PRESENCE DETECT

| SYMBOL | $\mathbf{- 7}$ | $\mathbf{- 8}$ | $\mathbf{- 1 0}$ |
| :--- | :---: | :---: | :---: |
| PRD1 | NC | VSS | NC |
| PRD2 | VSS | VSS | NC |
| PRD3 | VSS | NC | NC |
| PRD4 | NC | VSS | NC |

ABSOLUTE MAXIMUM RATINGS*
Voltage on Vcc supply relative to Vss ..... -1.0 V to +7.0 V
Operating Temperature, TA(Ambient) $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Plastic) ..... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..... 8 W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at theseor any other conditions above those indicated in theoperational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V |  |
| Input High (Logic 1) Voltage, All Inputs |  | VIH | 2.4 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs |  | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE CURRENT <br> Any input: $\mathrm{OV} \leq \mathrm{Vin} \leq \mathrm{Vcc}$ <br> (All other pins not under test $=0 \mathrm{~V}$ ) For each package input | A0-A8, $\overline{W E}$ | 11 | -16 | 16 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT <br> ( Q is disabled, $0 \mathrm{~V} \leq \mathrm{Vout}^{\mathrm{V} \text { Vcc) For each package input }}$ | DQ1-DQ32 | loz | -12 | 12 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage (lout $=-5 \mathrm{~mA}$ ) <br> Output Low Voltage (lout $=5 \mathrm{~mA}$ ) |  | Vor | 2.4 |  | V | 1 |
|  |  | Vol |  | 0.4 | V |  |



CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A8 | $\mathrm{Cl}_{11}$ |  | 40 | pF | 17 |
| Input Capacitance: $\overline{W E}$ | $\mathrm{Cl}_{12}$ |  | 56 | pF | 17 |
| Input Capacitance: RASO, RAS2 | $\mathrm{Cl}_{1}$ |  | 28 | pF | 17 |
| Input Capacitance: $\overline{\mathrm{CASO}}, \overline{\mathrm{CASO}}, \overline{\mathrm{CAS} 2}, \overline{\mathrm{CAS3}}$ | $\mathrm{Cl}_{14}$ |  | 14 | pF | 17 |
| Input/Output Capacitance: DQ1-DQ32 | Clo |  | 7 | pF | 17 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $3,4,5,10,11,16,17)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCc}=5.0 \mathrm{~V} \pm 10 \%\right.$ )

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {tr }}$ C | 130 |  | 150 |  | 180 |  | ns | 6, 7 |
| FAST-PAGE-MODE cycle time | ${ }^{\text {t P }}$ ( | 40 |  | 45 |  | 55 |  | ns | 6, 7 |
| Access time from $\overline{\mathrm{RAS}}$ | ${ }^{\text {tRAC }}$ |  | 70 |  | 80 |  | 100 | ns | 7, 8 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ CAC |  | 20 |  | 20 |  | 25 | ns | 7, 9 |
| $\overline{\text { RAS }}$ pulse width | ${ }^{\text {t RAS }}$ | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {t RSH }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | trP | 50 |  | 60 |  | 70 |  | ns |  |
| $\overline{\text { CAS }}$ puise width | ${ }^{\text {t CAS }}$ | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 15 |  | ns | 18 |
| CAS precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{C} P$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time | ${ }^{\text {t R C }}$ ( | 20 | 50 | 20 | 50 | 25 | 75 | ns | 13 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 20 |  | ns |  |
| Row address setup time | ${ }^{\text {t } A S R ~}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {tRAH }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| Column address setup time | ${ }^{\text {t } A S C ~}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ AR | 55 |  | 60 |  | 70 |  | ns |  |
| Read command setup time | ${ }^{\text {t }}$ RCS | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to $\overline{\text { CAS }}$ | ${ }^{\text {t }} \mathrm{RCH}$ | 0 |  | 0 |  | 0 |  | ns | 14 |
| Read command hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t RRH }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {t }}$ OFF | 0 | 20 | 0 | 20 | 0 | 20 | ns | 12 |
| $\overline{\text { WE command setup time }}$ | ${ }^{\text {theS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ WCR | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {tr }}$ WL | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }^{t} \mathrm{CWL}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ D | 0 |  | 0 |  | 0 |  | ns | 15 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 15 |  | 15 |  | 20 |  | ns | 15 |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t DHR }}$ | 55 |  | 60 |  | 75 |  | ns |  |
| Transition time (rise or fall) | ${ }^{\text {T }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 16 |
| Refresh period (256 cycles) | ${ }^{\text {t }}$ 'tEF |  | 16 |  | 16 |  | 16 | ms | 20 |
| $\overline{\mathrm{CAS}}$ hold time (CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 19 |
| $\overline{\text { CAS }}$ setup time (CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 19 |
| $\overline{\mathrm{RAS}}$-to-CAS precharge time | trPC | 0 |  | 0 |  | 0 |  | ns | 19 |

## NOTES

1. All voltages referenced to Vss.
2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
3. An initial pause of $100 \mu$ s is required after power-up followed by any eight $\overline{\mathrm{RAS}}$ REFRESH cycles ( $\overline{\mathrm{RAS}}-$ ONLY or CBR with $\overline{W E}$ HIGH) before proper device operation is assured. The eight $\overline{\mathrm{RAS}}$ cycle wake-up should be repeated any time the 16 ms refresh requirement is exceeded.
4. AC characteristics assume ${ }^{\dagger} T=5 n s$.
5. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured.
7. Measured with a load equivalent to two TTL gates and 100 pF .
8. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD}<^{\mathrm{t}} \mathrm{RCD}$ (MAX). If ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{\mathrm{t}} \mathrm{RCD}$ exceeds the value shown.
9. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD} \geq \mathrm{t} R C D$ (MAX).
10. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\text {IL }}$, data output may contain data from the last valid READ cycle.
12. ${ }^{\text {to }}$ 'FF (MAX) defines the time at which the output
achieves the open circuit condition and is not referenced to VOH or VoL.
13. Operation within the trCD (MAX) limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{t} R C D$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} C A C$.
14. ${ }^{t} \mathrm{RCH}$ is referenced to the first rising edge of $\overline{\mathrm{RAS}}$ or $\overline{\text { CAS. }}$
15. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles.
16. In addition to meeting the transition rate specification, all input signals must transit between VIH and $V_{\text {IL }}$ (or between VIL and $V_{I H}$ ) in a monotonic manner.
17. This parameter is sampled. Capacitance is calculated from the equation $\mathrm{C}=\mathrm{I}^{\mathrm{dt} / \mathrm{dv}}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
18. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}$, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{\text {t }} \mathrm{CP}$. Note 8 applies to determine valid data out.
19. On-chip refresh and address counters are enabled.
20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$.
21. LATE-WRITE, READ-WRITE or READ-MODIFYWRITE cycles are not available due to $\overline{\mathrm{OE}}$ being grounded on U1-U8.

## READ CYCLE



EARLY-WRITE CYCLE


T/Z dont care
undefined

FAST－PAGE－MODE READ CYCLE


FAST－PAGE－MODE EARLY－WRITE CYCLE


RAS-ONLY REFRESH CYCLE (ADDR $=\mathrm{A}_{0}-\mathrm{A}_{9} ; \overline{\mathrm{WE}}=$ DON'T CARE $)$


CAS-BEFORE-RAS REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{9}, \overline{\mathrm{WE}}=$ DON'T CARE $)$
$\overline{\text { RAS }}$


DQ $\mathrm{V}_{\mathrm{OH}}=$ $\qquad$

## HIDDEN REFRESH CYCLE

$(\overline{\mathrm{WE}}=\mathrm{HIGH})^{20}$


MICADN

## DRAM MODULE

## 2 MEG x 32 DRAM

FAST PAGE MODE

## FEATURES

－Industry standard pinout in a 72－pin single－in－line package
－High－performance，CMOS silicon gate process．
－Single $5 \mathrm{~V} \pm 10 \%$ power supply
－All inputs，outputs and clocks are fully TTL and CMOS compatible
－Low power， 48 mW standby； 3600 mW active，typical
－Refresh modes：$\overline{\text { RAS－ONLY，}}$ CAS－BEFORE－RAS and HIDDEN
－1，024－cycle refresh distributed across 16 ms
－Optional FAST PAGE MODE access cycle

## OPTIONS

－Timing
70ns access
MARKING

80 ns access
100ns access
$-7$
－ 8
－Packages
Leadless 72 －pin SIMM
Leadless 72 －pin SIMM（Gold）
M
Leaded 72－pin ZIP
G
Z

## GENERAL DESCRIPTION

TheMT16D232 is a randomly accessed solid－state memory containing 2，097，152 words organized in a x32 configura－ tion．During READ or WRITE cycles each bit is uniquely addressed through the 20 address bits，which are entered 10 bits（A0－A9）at a time．$\overline{\mathrm{RAS}}$ is used to latch the first 10 bits and CAS the latter 10 bits．A READ or WRITE cycle is selected with the $\overline{\mathrm{WE}}$ input．A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ mode while a logic LOW on $\overline{W E}$ dictates WRITE mode．During a WRITE cycle，data－in（D）is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$ ，whichever occurs last．EARLY－ WRITE occurs when $\overline{W E}$ goes LOW prior to $\overline{C A S}$ going LOW，the output pin（s）remain open（High－Z）until the next $\overline{\mathrm{CAS}}$ cycle．

FAST PAGE MODE operations allow faster data opera－ tions（READ or WRITE）within a row－address（A0－A9） defined page boundary．The FAST PAGE MODE cycle is always initiated with a row address strobed－in by $\overline{\text { RAS }}$ followed by a column address strobed－in by $\overline{\mathrm{CAS}} . \overline{\mathrm{CAS}}$ may

## PIN ASSIGNMENT（Top View）

72－Pin SIMM（I－6）


72－Pin ZIP（J－5）


| PIN \＃ | SYMBOL | PIN\＃ | SYMBOL | PIN\＃ | SYMBOL | PIN\＃ | SYMBOL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | VsS | 19 | NC | 37 | NC | 55 | DQ12 |
| 2 | DQ1 | 20 | DQ5 | 38 | NC | 56 | DQ28 |
| 3 | DQ17 | 21 | DQ21 | 39 | VSS | 57 | DQ13 |
| 4 | DQ2 | 22 | DQ6 | 40 | $\overline{\text { CAS0 }}$ | 58 | DQ29 |
| 5 | DQ18 | 23 | DQ22 | 41 | $\overline{\text { CAS2 }}$ | 59 | Vcc |
| 6 | DQ3 | 24 | DQ7 | 42 | $\overline{\text { CAS3 }}$ | 60 | DQ30 |
| 7 | DQ19 | 25 | DQ23 | 43 | $\overline{\text { CAS1 }}$ | 61 | DQ14 |
| 8 | DQ4 | 26 | DQ8 | 44 | $\overline{\text { RAS0 }}$ | 62 | DQ31 |
| 9 | DQ20 | 27 | DQ24 | 45 | $\overline{\text { RAS1 }}$ | 63 | DQ15 |
| 10 | Vcc | 28 | A7 | 46 | NC | 64 | DQ32 |
| 11 | NC | 29 | NC | 47 | $\overline{\text { WE }}$ | 65 | DQ16 |
| 12 | A0 | 30 | Vcc | 48 | NC | 66 | NC |
| 13 | A1 | 31 | A8 | 49 | DQ9 | 67 | PRD1 |
| 14 | A2 | 32 | A9 | 50 | DQ25 | 68 | PRD2 |
| 15 | A3 | 33 | $\overline{\text { RAS3 }}$ | 51 | DQ10 | 69 | PRD3 |
| 16 | A4 | 34 | $\overline{\text { RAS2 }}$ | 52 | DQ26 | 70 | PRD4 |
| 17 | A5 | 35 | NC | 53 | DQ11 | 71 | NC |
| 18 | A6 | 36 | NC | 54 | DQ27 | 72 | VsS |

be toggled－in by holding $\overline{\text { RAS }}$ LOW and strobing－in differ－ ent column addresses，thus executing faster memory cycles． Returning $\overline{\mathrm{RAS}} \mathrm{HIGH}$ terminates the FAST PAGE MODE operation．

Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level． Also，the chip is preconditioned for the next cycle during the $\overline{\mathrm{RAS}}$ high time．Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle（READ，WRITE，$\overline{\text { RAS－ONLY，} \overline{\text { CAS－BEFORE－}} \text {－}}$ RAS，or HIDDEN REFRESH）so that all 1，024 combination of $\overline{\text { RAS }}$ addresses（A0－A9）are executed at least every 16 ms ， regardless of sequence．

FUNCTIONAL BLOCK DIAGRAM


U1-U16 = MT4C4001DJ

## TRUTH TABLE

| Function |  | RAS | CAS | WE | Addresses |  | DQ1-32 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {th}}$ |  |  | ${ }^{\text {t }}$ C |  |
| Standby |  |  | H | X | X | X | X | High Impedance |
| READ |  | L | L | H | ROW | COL | Valid Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | Valid Data In |
| FAST-PAGEMODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | n/a | COL | Valid Data Out |
| FAST-PAGEMODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | n/a | COL | Valid Data In |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | High Impedance |
| HIDDEN REFRESH | READ | $L \rightarrow H \rightarrow L$ | L | H | ROW | COL | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | Valid Data In |
| $\overline{\text { CAS-BEFORE- }} \overline{\text { RAS }}$ REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | High Impedance |

## PRESENCE DETECT

| SYMBOL | $\mathbf{- 7}$ | $\mathbf{- 8}$ | $\mathbf{- 1 0}$ |
| :--- | :---: | :---: | :---: |
| PRD1 | NC | VSS | NC |
| PRD2 | NC | VSS | NC |
| PRD3 | VSS | VSS | NC |
| PRD4 | NC | NC | NC |

## ABSOLUTE MAXIMUM RATINGS*


电
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above thoseindicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V |  |
| Input High (Logic 1) Voltage, All Inputs |  | VIH | 2.4 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs |  | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE CURRENT <br> Any Input 0 V $\leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{Vcc}$ <br> (All other pins not under test $=0 \mathrm{~V}$ ) For each package input | A0-A9, $\overline{\mathrm{WE}}$ | 11 | -32 | 32 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT <br> ( Q is disabled, $\mathrm{OV} \leq \mathrm{Vout} \leq \mathrm{Vcc}$ ) For each package input | DQ1-DQ32 | loz | -24 | 24 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage (lout $=-5 \mathrm{~mA}$ ) <br> Output Low Voltage (lout $=5 \mathrm{~mA}$ ) |  | Vor | 2.4 |  | V | 1 |
|  |  | Vol |  | 0.4 | V |  |


|  |  | MAX |  |  | UNITS NOTES |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -7 | -8 | -10 |  |  |
| OPERATING CURRENT <br> ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling: ${ }^{\mathrm{t} R C}={ }^{\mathrm{t} R C}$ (MIN)) | Icc1 | 816 | 736 | 656 | mA | 2 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\mathrm{RAS}}=\mathrm{VIL}, \overline{\mathrm{CAS}}=$ Cycling: ${ }^{\mathrm{t} P \mathrm{C}}=\mathrm{tPC}(\mathrm{MIN})$ ) | Icc2 | 576 | 496 | 416 | mA | 2 |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\text { RAS }}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$ after 8 RAS cycles (MIN)) | Icc3 | 32 | 32 | 32 | mA |  |
| STANDBY CURRENT: CMOS INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V}$ <br> after 8 RAS cycles (MIN)). (All other inputs at $\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{Vss}+0.2 \mathrm{~V}$ ) | IcC4 | 16 | 16 | 16 | mA |  |
| REFRESH CURRENT: $\overline{\text { RAS-ONLY }}$ ( $\overline{\text { RAS }}=$ Cycling: $\overline{\mathrm{CAS}}=\mathrm{V} I \mathrm{H}$ ) | Icc5 | 816 | 736 | 656 | mA | 2 |
| REFRESH CURRENT: $\overline{C A S}$-BEFORE- $\overline{R A S}$ ( $\overline{\text { RAS }}$ and $\overline{\mathrm{CAS}}=$ Cycling) | Icc6 | 816 | 736 | 656 | mA | 2 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A9 | $\mathrm{Cl}_{11}$ |  | 80 | pF | 17 |
| Input Capacitance: $\overline{\text { WE }}$ | $\mathrm{Cl}_{12}$ |  | 112 | pF | 17 |
| Input Capacitance: $\overline{\text { CASO-CAS3, }} \overline{\text { RASO-RAS3 }}$ | $\mathrm{Cl}_{14}$ |  | 28 | pF | 17 |
| Input/Output Capacitance: DQ1-DQ32 | $\mathrm{Clo}_{10}$ |  | 14 | pF | 17 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: $3,4,5,10,11,16,17)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {tr }}$ C | 130 |  | 150 |  | 180 |  | ns | 6, 7 |
| FAST-PAGE-MODE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 45 |  | 55 |  | ns | 6,7 |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {traC }}$ |  | 70 |  | 80 |  | 100 | ns | 7, 8 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t CAC }}$ |  | 20 |  | 20 |  | 25 | ns | 7, 9 |
| $\overline{\text { RAS }}$ pulse width | ${ }^{\text {tRAS }}$ | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {tRSH }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | trP | 50 |  | 60 |  | 70 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t CAS }}$ | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns |  |
| CAS hold time | ${ }^{\text {t }}$ CSH | 70 |  | 80 |  | 100 |  | ns |  |
| CAS precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 15 |  | ns | 18 |
| $\overline{\text { CAS }}$ precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay time | ${ }^{\text {tr }}$ RCD | 20 | 50 | 20 | 60 | 25 | 75 | ns | 13 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 20 |  | ns |  |
| Row address setup time | ${ }^{\text {t } A S R ~}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t RAH }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time referenced to RAS | ${ }^{\text {t }}$ AR | 55 |  | 60 |  | 70 |  | ns |  |
| Read command setup time | trcs | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to CAS | ${ }^{\text {t } R C H}$ | 0 |  | 0 |  | 0 |  | ns | 14 |
| Read command hold time referenced to RAS | ${ }^{\text {t RRH }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | toff | 0 | 20 | 0 | 20 | 0 | 20 | ns | 12 |
| $\overline{W E}$ command setup time | ${ }^{\text {theS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ WCR | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t }}$ WWL | 15 |  | 20 |  | 25 |  | ns |  |
| Write command to CAS lead time | ${ }^{\text {t }}$ cWL | 15 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 15 |
| Data-in hold time | ${ }^{\text {t }}$ DH | 15 |  | 15 |  | 20 |  | ns | 15 |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }} \mathrm{DHR}$ | 55 |  | 60 |  | 75 |  | ns |  |
| Transition time (rise or fall) | ${ }^{\text {t }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 16 |
| Refresh period (256 cycles) | tREF |  | 16 |  | 16 |  | 16 | ms | 20 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 19 |
| $\overline{\text { CAS }}$ set-up time (CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 19 |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ precharge time | trPC | 0 |  | 0 |  | 0 |  | ns | 19 |

## NOTES

1. All voltages referenced to Vss.
2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
3. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by eight $\overline{\mathrm{RAS}}$ REFRESH cycles ( $\overline{\mathrm{RAS}}-\mathrm{ONLY}$ or CBR with WE HIGH) before proper device operation is assured. The eight $\overline{\mathrm{RAS}}$ cycle wake-up should be repeated any time the 16 ms refresh requirement is exceeded.
4. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
5. ViH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between ViH and VIL.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ) is assured.
7. Measured with a load equivalent to two TTL gates and 100 pF .
8. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, thAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
9. Assumes that ${ }^{t} R C D \geq{ }^{t} R C D$ (MAX).
10. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
11. If $\overline{\mathrm{CAS}}=V_{\text {IL }}$, data output may contain data from the last valid READ cycle.
12. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output
achieves the open circuit condition and is not referenced to VoH or VoL.
13. Operation within the ${ }^{\text {t } R C D ~(M A X) ~ l i m i t ~ e n s u r e s ~ t h a t ~}$ ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{t} R C D$ (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t}} \mathrm{CAC}$.
14. ${ }^{\mathrm{t}} \mathrm{RCH}$ is referenced to the first rising edge of $\overline{\mathrm{RAS}}$ or CAS.
15. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles.
16. In addition to meeting the transition rate specification, all input signals must transit between $V_{I H}$ and VIL (or between VIL and VIH) in a monotonic manner.
17. This parameter is sampled. Capacitance is calculated

18. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}$, data-out $(\mathrm{Q})$ will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{t} \mathrm{CP}$. Note 8 applies to determine valid data out.
19. On-chip refresh and address counters are enabled.
20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$.
21. LATE-WRITE, READ-WRITE or READ-MODIFYWRITE cycles are not available due to $\overline{\mathrm{OE}}$ being grounded on U1-U16.

## READ CYCLE



EARLY-WRITE CYCLE


V/Z don't care
undefined

FAST－PAGE－MODE READ CYCLE


FAST－PAGE－MODE EARLY－WRITE CYCLE


V／／A DON＇T CARE
UNDEFINED

RAS-ONLY REFRESH CYCLE (ADDR $=\mathrm{A}_{0}-\mathrm{A}_{9} ; \overline{\mathrm{WE}}=$ DON'T CARE $)$


CAS-BEFORE-RAS REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{9}, \overline{\mathrm{WE}}=$ DON'T CARE)
$\overline{\text { RAS }}$


DQ $\mathrm{VOH}_{\mathrm{OL}}=$
OPEN

HIDDEN REFRESH CYCLE
$(\overline{\mathrm{WE}}=\mathrm{HIGH})^{20}$


P/A DON'T CARE
X UNDEFINED
ヨ7naOW Wシya

## DRAM MODULE

## FEATURES

－Common $\overline{\mathrm{RAS}}$ control pinout in a 72 －pin single－in－line package
－High－performance CMOS silicon gate process．
－Single $5 \mathrm{~V} \pm 10 \%$ power supply
－All inputs，outputs and clocks are fully TTL and CMOS compatible
－Low power， 27 mW standby； $1,515 \mathrm{~mW}$ active，typical
－Refresh modes：$\overline{\text { RAS－ONLY，}} \overline{\mathrm{CAS}}$－BEFORE－RAS，and HIDDEN
－512－cycle refresh distributed across 8 ms
－Optional FAST PAGE MODE access cycle

## OPTIONS

－Timing
70 ns access
MARKING

80 ns access
－
$85 n \mathrm{n}$ access
－ 8
100 ns access
－Packages
Leadless 72－pin SIMM M
Leadless 72－pin SIMM（Gold）G
Leaded 72－pin ZIP Z

## GENERAL DESCRIPTION

The MT9D25636 is a randomly accessed solid－state memory containing 262，144 words organized in a x36 con－ figuration．During READ or WRITE cycles，each bit is uniquely addressed through the 18 address bits which are entered 9 bits（A0－A8）at a time．$\overline{\text { RAS }}$ is used to latch the first 9 bits and CAS the latter 9 bits．READ or WRITE cycles are selected with the $\overline{\mathrm{WE}}$ input．A logic HIGH on WE dictates READ mode while a logic LOW on $\overline{\text { WE }}$ dictates WRITE mode．During a WRITE cycle，data－in（D）is latched by the falling edgeof $\overline{W E}$ or $\overline{C A S}$ ，whichever occurs last．If $\overline{W E}$ goes LOW prior to CAS going LOW，the output pin（s）remain open（High－Z）until the next $\overline{\text { CAS }}$ cycle．

FAST PAGE MODE operations allow faster data opera－ tions（READ or WRITE）within a row－address（A0－A8） defined page boundary．The FAST PAGE MODE cycle is always initiated with a row address strobed－in by RAS followed by a column address strobed－in by $\overline{\mathrm{CAS}} \overline{\mathrm{CAS}}$ may

## 256K x 36 DRAM FAST PAGE MODE

## PIN ASSIGNMENT（Top View）

72－Pin SIMM（I－7）


72－Pin ZIP（J－6）


| PIN \＃ | SYMBOL | PIN\＃ | SYMBOL | PIN\＃ | SYMBOL | PIN\＃ | SYMB0L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | VSS | 19 | NC | 37 | DQ18 | 55 | DQ13 |
| 2 | DQ1 | 20 | DQ5 | 38 | DQ36 | 56 | DQ31 |
| 3 | DQ19 | 21 | DQ23 | 39 | VsS | 57 | DQ14 |
| 4 | DQ2 | 22 | DQ6 | 40 | $\overline{\text { CAS0 }}$ | 58 | DQ32 |
| 5 | DQ20 | 23 | DQ24 | 41 | $\overline{\text { CAS2 }}$ | 59 | VCc |
| 6 | DQ3 | 24 | DQ7 | 42 | $\overline{\text { CAS3 }}$ | 60 | DQ33 |
| 7 | DQ21 | 25 | DQ25 | 43 | $\overline{\text { CAS1 }}$ | 61 | DQ15 |
| 8 | DQ4 | 26 | DQ8 | 44 | $\overline{\text { RAS0 }}$ | 62 | DQ34 |
| 9 | DQ22 | 27 | DQ26 | 45 | NC | 63 | DQ16 |
| 10 | VCC | 28 | A7 | 46 | NC | 64 | DQ35 |
| 11 | NC | 29 | NC | 47 | $\overline{\text { WE }}$ | 65 | DQ17 |
| 12 | A0 | 30 | VCC | 48 | NC | 66 | NC |
| 13 | A1 | 31 | A8 | 49 | DQ10 | 67 | PRD1 |
| 14 | A2 | 32 | NC | 50 | DQ28 | 68 | PRD2 |
| 15 | A3 | 33 | NC | 51 | DQ11 | 69 | PRD3 |
| 16 | A4 | 34 | $\overline{\text { RAS0 }}$ | 52 | DQ29 | 70 | PRD4 |
| 17 | A5 | 35 | DQ27 | 53 | DQ12 | 71 | NC |
| 18 | A6 | 36 | DQ9 | 54 | DQ30 | 72 | Vss |

be toggled－in by holding $\overline{\text { RAS }}$ LOW and strobing－in differ－ ent column addresses，thus executing faster memory cycles． Returning RAS HIGH terminates the FAST PAGE MODE operation．
Returning $\overline{\mathrm{RAS}}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level． Also，the chip is preconditioned for the next cycle during the RAS HIGH time．Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle（READ，WRITE，$\overline{\text { RAS－ONLY，}} \overline{\text { CAS－BEFORE－}}$ $\overline{\text { RAS，}}$ or HIDDEN REFRESH）so that all 512 combinations of $\overline{\mathrm{RAS}}$ addresses（A0－A8）are executed at least every 8 ms ， regardless of sequence．

## FUNCTIONAL BLOCK DIAGRAM



NOTE: Due to the use of a Quad $\overline{\text { CAS }}$ parity DRAM, $\overline{\text { RASO }}$ is common to all devices.

## TRUTH TABLE

| Function |  | RAS | CAS | WE | Addresses |  | DQ1-36 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {th}}$ |  |  | ${ }^{\text {t }}$ C |  |
| Standby |  |  | H | X | X | X | X | High Impedance |
| READ |  | L | L | H | ROW | COL | Valid Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | Valid Data In |
| FAST-PAGEMODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | H | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | H | n/a | COL | Valid Data Out |
| FAST-PAGEMODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | L | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | L | n/a | COL | Valid Data In |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | High Impedance |
| HIDDEN REFRESH | READ | $L \rightarrow H \rightarrow L$ | L | H | ROW | COL | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | Valid Data In |
| $\overline{\text { CAS-BEFORE- }} \overline{\text { RAS }}$ REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | High Impedance |

## PRESENCE DETECT

| SYMBOL | $\mathbf{- 7}$ | $\mathbf{- 8}$ | $\mathbf{- 8 5}$ | $\mathbf{- 1 0}$ |
| :--- | :---: | :---: | :---: | :---: |
| PRD1 | NC | VSS | VSS | VSS |
| PRD2 | NC | NC | NC | NC |
| PRD3 | VSS | VSS | NC | VSS |
| PRD4 | VSS | NC | VSS | VSS |

ABSOLUTE MAXIMUM RATINGS*
Voltage on Vcc supply relative to Vss $\qquad$ -1.0 V to +7.0 V Operating Temperature, $\mathrm{T}_{\mathrm{A}}$ (Ambient) $\ldots . . . . . . . .0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature (Plastic) $\qquad$ $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$\qquad$Power Dissipation ..9W Short Circuit Output Current ................................... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

（Notes： $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER／CONDITION |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V |  |
| Input High（Logic 1）Voltage，All Inputs |  | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low（Logic 0）Voltage，All Inputs |  | VIL | －2．0 | 0.8 | V | 1，22 |
| INPUT LEAKAGE CURRENT <br> Any Input $0 \mathrm{~V} \leq \mathrm{Vin} \leq \mathrm{Vcc}$ （All other pins not under test $=0 \mathrm{~V}$ ）For each package input | A0－A8，$\overline{W E}$ | 11 | －18 | 18 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT <br> （ Q is disabled， $\mathrm{OV} \leq \mathrm{Vout} \leq \mathrm{Vcc}$ ）For each package input | DQ1－DQ36 | loz | －12 | 12 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage $($ lout $=-5 \mathrm{~mA})$ <br> Output Low Voltage（lout $=5 \mathrm{~mA}$ ） |  | VOH | 2.4 |  | V | 1 |
|  |  | Vol |  | 0.4 | V |  |


|  |  | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER／CONDITION | SYMBOL | －7 | －8，－85 | －10 | UNITS | NOTES |
| OPERATING CURRENT <br> （RAS and $\overline{\mathrm{CAS}}=$ Cycling：${ }^{\mathrm{t} R C}={ }^{\mathrm{t}} \mathrm{RC}$（MIN）） | Icc1 | 720 | 630 | 540 | mA | 2 |
| OPERATING CURRENT：FAST PAGE MODE （ $\overline{\text { RAS }}=$ VIL，$\overline{\text { CAS }}=$ Cycling：${ }^{\text {tPC }}={ }^{\text {tPC }}$（MIN）） | Icc2 | 540 | 450 | 360 | mA | 2 |
| STANDBY CURRENT：TTL INPUT LEVELS <br> Power supply standby current（ $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$ after 8 RAS cycles（MIN）） | Icc3 | 18 | 18 | 18 | mA |  |
| STANDBY CURRENT：CMOS INPUT LEVELS <br> Power supply standby current（ $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V}$ <br> after 8 RAS cycles（MIN））．（All other inputs at $\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{Vss}+0.2 \mathrm{~V}$ ） | Icc4 | 9 | 9 | 9 | mA |  |
| REFRESH CURRENT：$\overline{\text { RAS－ONLY }}$ （ $\overline{\text { RAS }}=$ Cycling：$\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$ ） | Icc5 | 720 | 630 | 540 | mA | 2 |
| REFRESH CURRENT：$\overline{\text { CAS }}$－BEFORE－RAS （ $\overline{\text { RAS }}$ and $\overline{\mathrm{CAS}}=$ Cycling） | Icc6 | 720 | 630 | 540 | mA | 2 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance：A0－A8 | $\mathrm{Cl}_{11}$ |  | 45 | pF | 17 |
| Input Capacitance：$\overline{\mathrm{WE}}$ | $\mathrm{Cl}_{12}$ |  | 63 | pF | 17 |
| Input Capacitance：$\overline{\text { RASO }}$ | $\mathrm{Cl}_{13}$ |  | 63 | pF | 17 |
| Input Capacitance：$\overline{\mathrm{CASO}}, \overline{\mathrm{CAS1}}, \overline{\mathrm{CAS} 2}, \overline{\mathrm{CAS3}}$ | $\mathrm{Cl}_{14}$ |  | 21 | pF | 17 |
| Input／Output Capacitance：DQ1－DQ36 | Clo |  | 7 | pF | 17 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: $3,4,5,10,11,16,17)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8, -85 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {tRC }}$ | 135 |  | 150 |  | 180 |  | ns | 6,7 |
| FAST-PAGE-MODE cycle time | tPC | 40 |  | 45 |  | 55 |  | ns | 6,7 |
| Access time from $\overline{\mathrm{RAS}}$ | ${ }^{\text {t RAC }}$ |  | 70 |  | 80 |  | 100 | ns | 7, 8 |
| Access time from CAS | ${ }^{\text {t }}$ 'AC |  | 20 |  | 20 |  | 25 | ns | 7, 9 |
| $\overline{\text { RAS }}$ pulse width | tRAS | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ RSH | 20 |  | 20 |  | 25 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | trP | 50 |  | 60 |  | 70 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t }}$ CAS | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns |  |
| CAS hold time | ${ }^{\text {t }}$ CSH | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }} \mathrm{CPN}$ | 10 |  | 10 |  | 15 |  | ns | 18 |
| CAS precharge time (FAST PAGE MODE) | ${ }^{t} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay time | ${ }^{\text {t } R C D}$ | 20 | 40 | 20 | 60 | 25 | 75 | ns | 13 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t }}$ RAH | 10 |  | 10 |  | 15 |  | ns |  |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{t} \mathrm{CAH}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time referenced to RAS | ${ }^{\text {t }} \mathrm{AR}$ | 55 |  | 60 |  | 70 |  | ns |  |
| Read command setup time | ${ }^{\text {t R CS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to CAS | ${ }^{\text {t }} \mathrm{RCH}$ | 0 |  | 0 |  | 0 |  | ns | 14 |
| Read command hold time referenced to RAS | ${ }^{\text {t } R R H ~}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {t }}$ OFF | 0 | 20 | 0 | 20 | 0 | 20 | ns | 12 |
| $\overline{\text { WE }}$ command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns |  |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ WCR | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | tWP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {tr WhL }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }} \mathrm{CWL}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }} \mathrm{DS}$ | 0 |  | 0 |  | 0 |  | ns | 15 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 15 |  | 15 |  | 20 |  | ns | 15 |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ DHR | 55 |  | 60 |  | 75 |  | ns |  |
| Transition time (rise or fall) | ${ }^{\text {t }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 16 |
| Refresh period (256 cycles) | ${ }^{\text {t REF }}$ |  | 8 |  | 8 |  | 8 | ms | 20 |
| CAS hold time <br>  | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 19 |
| $\overline{\mathrm{CAS}}$ setup time (CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }}$ CSR | 10 |  | 10 |  | 10 |  | ns | 19 |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {t RPC }}$ | 0 |  | 0 |  | 0 |  | ns | 19 |

## NOTES

1. All voltages referenced to Vss.
2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
3. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{\text { RAS }}$ cycles before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
4. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
5. $\mathrm{V}_{\mathrm{IH}}$ (MIN) and $\mathrm{V}_{\text {IL }}$ (MAX) are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ) is assured.
7. Measured with a load equivalent to two TTL gates and 100 pF .
8. Assumes that ${ }^{t} R C D<t^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
9. Assumes that ${ }^{\mathrm{t} R C D} \geq{ }^{\mathrm{t} R C D}$ (MAX).
10. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
11. If $\overline{\mathrm{CAS}}=V_{\text {IL, }}$, data output may contain data from the last valid READ cycle.
12. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Vон or VoL.
13. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that
${ }^{t}$ RAC (MAX) can be met. ${ }^{t}$ RCD (MAX) is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the specified ${ }^{t} R C D$ (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{CAC}$.
14. ${ }^{\text {t}}{ }^{\text {RCH }}$ is referenced to the first rising edge of $\overline{\text { RAS }}$ or $\overline{\mathrm{CAS}}$.
15. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles.
16. In addition to meeting the transition rate specification, all input signals must transit between $\mathrm{V}_{\mathrm{IH}}$ and $V_{\text {IL }}$ (or between $V_{\text {IL }}$ and $V_{\text {IH }}$ ) in a monotonic manner.
17. This parameter is sampled. Capacitance is calculated from the equation $\mathrm{C}=\mathrm{I}^{\mathrm{dt}} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
18. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}$, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, $\overline{\text { CAS }}$ must be pulsed HIGH for ${ }^{\text {t }} \mathrm{CP}$. Note 8 applies to determine valid data out.
19. On-chip refresh and address counters are enabled.
20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$.
21. LATE-WRITE, READ-WRITE or READ-MODIFYWRITE cycles are not available due to $\overline{\mathrm{OE}}$ being grounded on U1-U9.
22. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5 V for a period of less than 20 ns and the signal's total duration is 25 ns or less; or a -0.3 V signal of any duration is presented (DC).

## READ CYCLE



EARLY-WRITE CYCLE


UTZ Dont care
undefined

FAST－PAGE－MODE READ CYCLE


FAST－PAGE－MODE EARLY－WRITE CYCLE


ZZh dont care
undefined

## RAS-ONLY REFRESH CYCLE

(ADDR $=\mathrm{A}_{0}-\mathrm{A}_{7} ; \mathrm{A}_{8}$ and $\overline{\mathrm{WE}}=$ DON'T CARE $)$


CAS-BEFORE-RAS REFRESH CYCLE

$$
\left(A_{0}-A_{8}, \overline{W E}=D O N ' T \text { CARE }\right)
$$



## HIDDEN REFRESH CYCLE

$(\overline{\mathrm{WE}}=\mathrm{HIGH})^{20}$


V/A don't care
UNDEFINED

MT9D25636

## DRAM MODULE

## 256K x 36 DRAM FAST PAGE MODE

## FEATURES

- Industry standard pinout in a 72-pin single-in-line package
- High-performance CMOS silicon gate process.
- Single $5 \mathrm{~V} \pm 10 \%$ power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 30 mW standby; $1,750 \mathrm{~mW}$ active, typical
- Refresh modes: $\overline{\text { RAS-ONLY, }} \overline{\text { CAS-BEFORE-RAS, }}$ and HIDDEN
- 512-cycle refresh distributed across 8 ms
- Optional FAST PAGE MODE access cycle


## OPTIONS

- Timing

70 ns access
80ns access
85 ns access
100 ns access
MARKING

- 7
- 8
-85
-10
- Packages

Leadless 72-pin SIMM M
Leadless 72-pin SIMM (Gold) G
Leaded 72-pin ZIP
Z

## GENERAL DESCRIPTION

The MT10D25636 is a randomly accessed solid-state memory containing 262,144 words organized in a x36 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 18 address bits, which are entered 9 bits (A0-A8) at a time. $\overline{\text { RAS }}$ is used to latch the first 9 bits and CAS the latter 9 bits. READ or WRITE cycles are selected with the $\overline{W E}$ input. A logic HIGH on WE dictates READ mode while a logic LOW on $\overline{W E}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. If $\overline{W E}$ goes LOW prior to $\overline{\text { CAS }}$ going LOW, the output pin(s) remain open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A8) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\text { RAS }}$ followed by a column address strobed-in by $\overline{\mathrm{CAS}} . \overline{\mathrm{CAS}}$ may

## PIN ASSIGNMENT (Top View)

72-Pin SIMM (I-9)


72-Pin ZIP (J-8)


| PIN \# | SYMB0L | PIN\# | SYMBOL | PIN\# | SYMBOL | PIN\# | SYMBOL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | VSS | 19 | NC | 37 | DQ18 | 55 | DQ13 |
| 2 | DQ1 | 20 | DQ5 | 38 | DQ36 | 56 | DQ31 |
| 3 | DQ19 | 21 | DQ23 | 39 | VSS | 57 | DQ14 |
| 4 | DQ2 | 22 | DQ6 | 40 | $\overline{\text { CAS0 }}$ | 58 | DQ32 |
| 5 | DQ20 | 23 | DQ24 | 41 | $\overline{\text { CAS2 }}$ | 59 | VCC |
| 6 | DQ3 | 24 | DQ7 | 42 | $\overline{\text { CAS3 }}$ | 60 | DQ33 |
| 7 | DQ21 | 25 | DQ25 | 43 | $\overline{\text { CAS1 }}$ | 61 | DQ15 |
| 8 | DQ4 | 26 | DQ8 | 44 | $\overline{\text { RAS0 }}$ | 62 | DQ34 |
| 9 | DQ22 | 27 | DQ26 | 45 | NC | 63 | DQ16 |
| 10 | VCC | 28 | A7 | 46 | NC | 64 | DQ35 |
| 11 | NC | 29 | NC | 47 | WE | 65 | DQ17 |
| 12 | A0 | 30 | VCC | 48 | NC | 66 | NC |
| 13 | A1 | 31 | A8 | 49 | DQ10 | 67 | PRD1 |
| 14 | A2 | 32 | NC | 50 | DQ28 | 68 | PRD2 |
| 15 | A3 | 33 | NC | 51 | DQ11 | 69 | PRD3 |
| 16 | A4 | 34 | RAS2 | 52 | DQ29 | 70 | PRD4 |
| 17 | A5 | 35 | DQ27 | 53 | DQ12 | 71 | NC |
| 18 | A6 | 36 | DQ9 | 54 | DQ30 | 72 | VSS |

be toggled-in by holding $\overline{\text { RAS }}$ LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.
Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE$\overline{\text { RAS, orHIDDEN REFRESH) so that all } 512 \text { combinations of }}$ $\overline{\text { RAS }}$ addresses (A0-A8) are executed at least every 8 ms , regardless of sequence.

## FUNCTIONAL BLOCK DIAGRAM



U1-U8 = MT4C4256DJ
U9 \& U10 = MT4C4259DJ

## MT10D25636

TRUTH TABLE

| Function |  | RAS | CAS | WE | Addresses |  | DQ1-36 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 'R |  |  | ${ }^{t} \mathrm{C}$ |  |
| Standby |  |  | H | X | X | X | X | High Impedance |
| READ |  | L | L | H | ROW | COL | Valid Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | Valid Data In |
| FAST-PAGEMODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | H | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | H | n/a | COL | Valid Data Out |
| FAST-PAGEMODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | L | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | L | n/a | COL | Valid Data In |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | High Impedance |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | Valid Data In |
| CAS-BEFORE-듁 REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | High Impedance |

PRESENCE DETECT

| SYMBOL | $\mathbf{- 7}$ | $\mathbf{- 8}$ | $\mathbf{- 8 5}$ | $\mathbf{- 1 0}$ |
| :--- | :---: | :---: | :---: | :---: |
| PRD1 | NC | VSS | VSS | VSS |
| PRD2 | NC | NC | NC | NC |
| PRD3 | VSS | VSS | NC | VSS |
| PRD4 | VSS | NC | VSS | VSS |

## ABSOLUTE MAXIMUM RATINGS*


*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V |  |
| Input High (Logic 1) Voltage, All Inputs |  | VIH | 2.4 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs |  | VIL | -2.0 | 0.8 | V | 1,22 |
| INPUT LEAKAGE CURRENT <br> Any Input $0 \mathrm{~V} \leq \mathrm{V}$ IN $\leq \mathrm{Vcc}$ <br> (All other pins not under test $=0 \mathrm{~V}$ ) for each package input | A0-A8, $\overline{W E}$ | 11 | -20 | 20 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT <br> ( Q is disabled, $\mathrm{OV} \leq$ Vout $\leq \mathrm{Vcc}$ ) for each package input | DQ1-DQ36 | loz | -12 | 12 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage (lout $=-5 \mathrm{~mA}$ ) <br> Output Low Voltage (lout $=5 \mathrm{~mA}$ ) |  | Vон | 2.4 |  | V | 1 |
|  |  | VoL |  | 0.4 | V |  |


|  |  | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -7 | -8, -85 | -10 | UNITS | NOTES |
| OPERATING CURRENT <br> ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling: ${ }^{\mathrm{t} R C}={ }^{\mathrm{t} R C}(\mathrm{MIN})$ ) | Icc1 | 800 | 700 | 600 | mA | 2 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\mathrm{RAS}}=\mathrm{VIL}, \overline{\mathrm{CAS}}=$ Cycling: ${ }^{\mathrm{tPC}}=\mathrm{tPC}(\mathrm{MIN})$ ) | Icc2 | 600 | 500 | 400 | mA | 2 |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{I}}$ after 8 RAS cycles (MIN)) | Icc3 | 20 | 20 | 20 | mA |  |
| STANDBY CURRENT: CMOS INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V}$ <br> after 8 RAS cycles (MIN)). (All other inputs at $\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{Vss}+0.2 \mathrm{~V}$ ) | Icc4 | 10 | 10 | 10 | mA |  |
| REFRESH CURRENT: $\overline{\text { RAS-ONLY }}$ ( $\overline{\text { RAS }}=$ Cycling: $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$ ) | Icc5 | 800 | 700 | 600 | mA | 2 |
| REFRESH CURRENT: $\overline{\text { CAS-BEFORE-RAS }}$ ( $\overline{\text { RAS }}$ and $\overline{\mathrm{CAS}}=$ Cycling) | Icc6 | 800 | 700 | 600 | mA | 2 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A8 | $\mathrm{Cl}_{11}$ |  | 50 | pF | 17 |
| Input Capacitance: $\overline{\mathrm{WE}}$ | $\mathrm{Cl}_{12}$ |  | 70 | pF | 17 |
| Input Capacitance: $\overline{\text { RASO}, ~} \overline{\text { RAS2 }}$ | $\mathrm{Cl}_{13}$ |  | 35 | pF | 17 |
| Input Capacitance: $\overline{\mathrm{CASO}}, \overline{\mathrm{CAS1}}, \overline{\mathrm{CAS} 2}, \overline{\mathrm{CAS3}}$ | $\mathrm{Cl}_{14}$ |  | 21 | pF | 17 |
| Input/Output Capacitance: DQ1-DQ36 | $\mathrm{ClO}_{10}$ |  | 7 | pF | 17 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $3,4,5,10,11,16,17)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right.$; $\left.\mathrm{VCc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8, -85 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t R C }}$ | 135 |  | 150 |  | 180 |  | ns | 6, 7 |
| FAST-PAGE-MODE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 45 |  | 55 |  | ns | 6,7 |
| Access time from $\overline{\mathrm{RAS}}$ | ${ }^{\text {t } R A C ~}$ |  | 70 |  | 80 |  | 100 | ns | 7, 8 |
| Access time from CAS | ${ }^{\text {t }}$ 'AC |  | 20 |  | 20 |  | 25 | ns | 7, 9 |
| $\overline{\text { RAS }}$ pulse width | tras | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ RSH | 20 |  | 20 |  | 25 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | tRP | 50 |  | 60 |  | 70 |  | ns |  |
| CAS pulse width | ${ }^{\text {t }}$ CAS | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }}$ CSH | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\text { CAS precharge time }}$ | ${ }^{\text {t }} \mathrm{CPN}$ | 10 |  | 10 |  | 15 |  | ns | 18 |
| CAS precharge time (FAST PAGE MODE) | ${ }^{t} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to CAS delay time | ${ }^{\text {t } R C D}$ | 20 | 50 | 20 | 60 | 25 | 75 | ns | 13 |
| $\overline{\text { CAS }}$ to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t }}$ RAH | 10 |  | 10 |  | 15 |  | ns |  |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{t} \mathrm{CAH}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time referenced to RAS | ${ }^{t} A R$ | 55 |  | 60 |  | 70 |  | ns |  |
| Read command setup time | ${ }^{\text {t R CS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to CAS | ${ }^{\text {t }} \mathrm{RCH}$ | 0 |  | 0 |  | 0 |  | ns | 14 |
| Read command hold time referenced to RAS | ${ }^{\text {t } R R H ~}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | toff | 0 | 20 | 0 | 20 | 0 | 20 | ns | 12 |
| $\overline{\text { WE }}$ command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns |  |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time referenced to $\overline{R A S}$ | ${ }^{\text {t }}$ WCR | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width. | tWP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {tr }}$ WL | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to CAS lead time | ${ }^{\text {t }} \mathrm{CWL}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 15 |
| Data-in hold time | ${ }^{\text {t }}$ DH | 15 |  | 15 |  | 20 |  | ns | 15 |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ DHR | 55 |  | 60 |  | 75 |  | ns |  |
| Transition time (rise or fall) | ${ }^{\text {T }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 16 |
| Refresh period (256 cycles) | ${ }^{\text {t REF }}$ |  | 8 |  | 8 |  | 8 | ms | 20 |
| CAS hold time (ㄷAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 19 |
| $\overline{\mathrm{CAS}}$ setup time (ट्CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 19 |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {tRPC }}$ | 0 |  | 0 |  | 0 |  | ns | 19 |

## NOTES

1．All voltages referenced to Vss．
2．Icc is dependent on output loading and cycle rates． Specified values are obtained with minimum cycle time and the output open．
3．An initial pause of $100 \mu \mathrm{~s}$ is required after power－up followed by any eight RAS cycles before proper device operation is assured．The eight $\overline{\text { RAS }}$ cycle wake－up should be repeated any time the 8 ms refresh requirement is exceeded．
4．AC characteristics assume ${ }^{\mathfrak{t}} \mathrm{T}=5 \mathrm{~ns}$ ．
5．Vif（MIN）and Vil（MAX）are reference levels for measuring timing of input signals．Transition times are measured between Vir and Vit．
6．The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range（ $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ）is assured．
7．Measured with a load equivalent to two TTL gates and 100 pF ．
8．Assumes that ${ }^{t} R C D<{ }^{t} R C D$（MAX）．If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table，${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown．
9．Assumes that ${ }^{\mathrm{t} R C D} \geq^{\mathrm{t} R C D}$（MAX）．
10．If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$ ，data output is high impedance．
11．If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IL}}$ ，data output may contain data from the last valid READ cycle．
12．${ }^{\text {tofF }}$（MAX）defines the time at which the output achieves the open circuit condition and is not referenced to Vон or Vol．
13．Operation within the ${ }^{\mathrm{t} R C D}$（MAX）limit ensures that
${ }^{\text {t}}$ RAC（MAX）can be met．${ }^{\text {t }}$ RCD（MAX）is specified as a reference point only；if ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the specified ${ }^{t} R C D$（MAX）limit，then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{CAC}$ ．
14．${ }^{\mathrm{t} R C H}$ is referenced to the first rising edge of $\overline{\mathrm{RAS}}$ or $\overline{\text { CAS．}}$
15．These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY－WRITE cycles．
16．In addition to meeting the transition rate specifica－ tion，all input signals must transit between Vif and $V_{\text {IL }}$（or between VIL and VIH）in a monotonic manner．
17．This parameter is sampled．Capacitance is calculated from the equation $\mathrm{C}=\mathrm{Id} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$ ．
18．If $\overline{\text { CAS }}$ is LOW at the falling edge of $\overline{\text { RAS }}$ ，data－out （Q）will be maintained from the previous cycle．To initiate a new cycle and clear the data－out buffer，$\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{\text {t }} \mathrm{CP}$ ．Note 8 applies to determine valid data out．
19．On－chip refresh and address counters are enabled．
20．A HIDDEN REFRESH may also be performed after a WRITE cycle．In this case，$\overline{\mathrm{WE}}=$ LOW．
21．LATE－WRITE，READ－WRITE or READ－MODIFY－ WRITE cycles are not available due to $\overline{\mathrm{OE}}$ being grounded on U1－U9．
22．The module shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5 V for a period of less than 20 ns and the signal＇s total duration is 25 ns or less；or a -0.3 V signal of any duration is presented（DC）．

## READ CYCLE



EARLY-WRITE CYCLE


V/Za dont care
UNDEFINED

FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE

$0 / 2$ dont care
undefined

## RAS-ONLY REFRESH CYCLE

$$
\left(A D D R=A_{0}-A_{7} ; A_{8} \text { and } \overline{W E}=D O N ' T \text { CARE }\right)
$$



CAS-BEFORE-RAS REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{8}, \overline{\mathrm{WE}}=$ DON'T CARE $)$


HIDDEN REFRESH CYCLE
$(\overline{\mathrm{WE}}=\mathrm{HIGH})^{20}$


V/A DON'T CARE
UNDEFINED

## DRAM MODULE

## 512K x 36 DRAM <br> FAST PAGE MODE

## FEATURES

- Common $\overline{\mathrm{RAS}}$ control per side pinout in a 72-pin single-in-line package
- High performance CMOS silicon gate process.
- Single $5 \mathrm{~V} \pm 10 \%$ power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 54 mW standby; $3,150 \mathrm{~mW}$ active, typical
- Refresh modes: $\overline{\mathrm{RAS}}-\mathrm{ONLY}, \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$, and HIDDEN
- 512-cycle refresh distributed across 8 ms
- Optional FAST PAGE MODE access cycle


## OPTIONS

- Timing 70ns access -7
80ns access
- 8

85ns access -85
100 ns access

- Packages

Leadless 72-pin SIMM M
Leadless 72-pin SIMM (Gold) G
Leaded 72-pin ZIP Z

## GENERAL DESCRIPTION

The MT18D51236 is a randomly accessed solid-state memory containing 524,288 words organized in a $x 36$ configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 18 address bits, which are entered 9 bits (A0-A8) at a time. $\overline{\text { RAS }}$ is used to latch the first 9 bits and $\overline{\text { CAS }}$ the latter 9 bits. READ or WRITE cycles are selected with the $\overline{W E}$ input. A logic HIGH on $\overline{W E}$ dictates READ mode while a logic LOW on $\overline{W E}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. EARLY WRITE occurs when $\overline{W E}$ goes LOW prior to $\overline{\mathrm{CAS}}$ going LOW, the output pin(s) remain open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle.
FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A8) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\mathrm{RAS}}$

## PIN ASSIGNMENT (Top View)

72-Pin SIMM (I-8)


72-Pin ZIP (J-7)


| PIN \# | SYMBOL | PIN\# | SYMBOL | PIN\# | SYMBOL | PIN\# | SYMBOL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | VSS | 19 | NC | 37 | DQ18 | 55 | DQ13 |
| 2 | DQ1 | 20 | DQ5 | 38 | DQ36 | 56 | DQ31 |
| 3 | DQ19 | 21 | DQ23 | 39 | VSS | 57 | DQ14 |
| 4 | DQ2 | 22 | DQ6 | 40 | $\overline{\text { CAS0 }}$ | 58 | DQ32 |
| 5 | DQ20 | 23 | DQ24 | 41 | $\overline{\text { CAS2 }}$ | 59 | VCc |
| 6 | DQ3 | 24 | DQ7 | 42 | $\overline{\overline{\text { CAS3 }}}$ | 60 | DQ33 |
| 7 | DQ21 | 25 | DQ25 | 43 | $\overline{\text { CAS1 }}$ | 61 | DQ15 |
| 8 | DQ4 | 26 | DQ8 | 44 | $\overline{\text { RAS0 }}$ | 62 | DQ34 |
| 9 | DQ22 | 27 | DQ26 | 45 | $\overline{\text { RAS1 }}$ | 63 | DQ16 |
| 10 | Vcc | 28 | A7 | 46 | NC | 64 | DQ35 |
| 11 | NC | 29 | NC | 47 | $\overline{\text { WE }}$ | 65 | DQ17 |
| 12 | A0 | 30 | VCC | 48 | NC | 66 | NC |
| 13 | A1 | 31 | A8 | 49 | DQ10 | 67 | PRD1 |
| 14 | A2 | 32 | NC | 50 | DQ28 | 68 | PRD2 |
| 15 | A3 | 33 | $\overline{\text { RAS1 }}$ | 51 | DQ11 | 69 | PRD3 |
| 16 | A4 | 34 | $\overline{\text { RAS0 }}$ | 52 | DQ29 | 70 | PRD4 |
| 17 | A5 | 35 | DQ27 | 53 | DQ12 | 71 | NC |
| 18 | A6 | 36 | DQ9 | 54 | DQ30 | 72 | Vss |

followed by a column address strobed-in by $\overline{\mathrm{CAS}} \overline{\mathrm{CAS}}$ may be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning $\overline{\text { RAS }}$ HIGH terminates the FAST PAGE MODE operation.

Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle (READ, WRITE, $\overline{R A S}-O N L Y, \overline{\text { CAS-BEFORE- }}$ $\overline{\text { RAS, or HIDDEN REFRESH) so that all } 512 \text { combinations of }}$ $\overline{\mathrm{RAS}}$ addresses (A0-A8) are executed at least every 8 ms , regardless of sequence.

## FUNCTIONAL BLOCK DIAGRAM



NOTE: Due to the use of a Quad $\overline{\mathrm{CAS}}$ parity DRAM, $\overline{\mathrm{RASO}}$ is common to side 1 and $\overline{\mathrm{RAS1}}$ is common to side 2.

## TRUTH TABLE

| Function |  | RAS | CAS | WE | Addresses |  | DQ1-36 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {th}}$ |  |  | ${ }^{\text {t }}$ C |  |
| Standby |  |  | H | X | X | X | X | High Impedance |
| READ |  | L | L | H | ROW | COL | Valid Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | Valid Data In |
| FAST-PAGE- <br> MODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | H | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | H | n/a | COL | Valid Data Out |
| FAST-PAGEMODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | L | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | L | n/a | COL | Valid Data In |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | High Impedance |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | Valid Data In |
| CAS-BEFORE-ㄱAS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | High Impedance |

PRESENCE DETECT

| SYMBOL | $\mathbf{- 7}$ | $\mathbf{- 8}$ | $\mathbf{- 8 5}$ | $\mathbf{- 1 0}$ |
| :--- | :---: | :---: | :---: | :---: |
| PRD1 | VSS | NC | NC | NC |
| PRD2 | VSS | VSS | VSS | VSS |
| PRD3 | NC | VSS | NC | VSS |
| PRD4 | NC | NC | VSS | VSS |

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss . -1.0 V to +7.0 V
Operating Temperature, TA (Ambient) ........... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Plastic) ................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation .18W
Short Circuit Output Current ...................................... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in theoperational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

（Notes： $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER／CONDITION |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V |  |
| Input High（Logic 1）Voltage，All Inputs |  | VIH | 2.4 | Vcc＋1 | V | 1 |
| Input Low（Logic 0）Voltage，All Inputs |  | VIL | －2．0 | 0.8 | V | 1，22 |
| INPUT LEAKAGE CURRENT <br> Any Input $\mathrm{OV} \leq \mathrm{Vin} \leq \mathrm{Vcc}$ <br> （All other pins not under test $=0 \mathrm{~V}$ ）For each package input | A0－A8，WE | 1 | －36 | 36 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT <br> （ Q is disabled， $\mathrm{OV} \leq \mathrm{Vout} \leq \mathrm{Vcc}$ ）For each package input | DQ1－DQ36 | loz | －24 | 24 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage $($ lout $=-5 \mathrm{~mA})$ <br> Output Low Voltage（lout $=5 \mathrm{~mA}$ ） |  | VOH | 2.4 |  | V | 1 |
|  |  | Vol |  | 0.4 | V |  |


|  |  | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER／CONDITION | SYMBOL | －7 | －8，－85 | －10 | UNITS | NOTES |
| OPERATING CURRENT <br> （ $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling：${ }^{\mathrm{t} R C}={ }^{\mathrm{t} R C}(\mathrm{MIN})$ ） | IcC1 | 738 | 648 | 558 | mA | 2 |
| OPERATING CURRENT：FAST PAGE MODE （ $\overline{\text { RAS }}=$ VIL，$\overline{\mathrm{CAS}}=$ Cycling：${ }^{\text {tPC }}={ }^{\text {tPC }}(\mathrm{MIN})$ ） | IcC2 | 558 | 468 | 378 | mA | 2 |
| STANDBY CURRENT：TTL INPUT LEVELS <br> Power supply standby current（ $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V} \mathrm{IH}$ after 8 RAS cycles（MIN）） | Icc3 | 36 | 36 | 36 | mA |  |
| STANDBY CURRENT：CMOS INPUT LEVELS <br> Power supply standby current（ $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V}$ after 8 RAS cycles（MIN））．（All other inputs at Vcc -0.2 V or $\mathrm{Vss}+0.2 \mathrm{~V}$ ） | Icc4 | 18 | 18 | 18 | mA |  |
| REFRESH CURRENT：$\overline{R A S}-O N L Y$ （ $\overline{\mathrm{RAS}}=$ Cycling：$\overline{\mathrm{CAS}}=\mathrm{V} \mathrm{IH}$ ） | Icc5 | 738 | 648 | 558 | mA | 2 |
| REFRESH CURRENT：$\overline{\mathrm{CAS}}$－BEFORE－$\overline{R A S}$ （ $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling） | IcC6 | 738 | 648 | 558 | mA | 2 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance：A0－A8 | $\mathrm{Cl}_{11}$ |  | 90 | pF | 17 |
| Input Capacitance：WE | $\mathrm{Cl}_{12}$ |  | 126 | pF | 17 |
| Input Capacitance：$\overline{\mathrm{RASO}}, \overline{\mathrm{RAS1}}$ | Сı3 |  | 63 | pF | 17 |
| Input Capacitance：$\overline{\mathrm{CASO}}, \overline{\mathrm{CAS1}}, \overline{\mathrm{CAS}}$ ，$\overline{\mathrm{CAS3}}$ | C14 |  | 42 | pF | 17 |
| Input／Output Capacitance：DQ1－DQ36 | Cıo |  | 14 | pF | 17 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $3,4,5,10,11,16,17)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right.$ )

| A.C. CHARACTERISTICS |  | -7 |  | -8, -85 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t }}$ ( C | 135 |  | 150 |  | 180 |  | ns | 6,7 |
| FAST-PAGE-MODE cycle time | ${ }^{\text {tPC }}$ | 40 |  | 45 |  | 55 |  | ns | 6,7 |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {t } R A C ~}$ |  | 70 |  | 80 |  | 100 | ns | 7, 8 |
| Access time from CAS | ${ }^{\text {t }}$ CAC |  | 20 |  | 20 |  | 25 | ns | 7, 9 |
| RAS pulse width | ${ }^{\text {tRAS }}$ | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ RSH | 20 |  | 20 |  | 25 |  | ns |  |
| RAS precharge time | ${ }^{\text {t } R \text { P }}$ | 50 |  | 60 |  | 70 |  | ns |  |
| $\overline{\text { CAS pulse width }}$ | ${ }^{\text {t CAS }}$ | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 15 |  | ns | 18 |
| $\overline{\text { CAS }}$ precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to CAS delay time |  | 20 | 40 | 20 | 60 | 25 | 75 | ns | 13 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t }}$ RAH | 10 |  | 10 |  | 15 |  | ns |  |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\mathrm{t}} \mathrm{CAH}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time referenced to $\overline{R A S}$ | ${ }^{\text {t } A R ~}$ | 55 |  | 60 |  | 70 |  | ns |  |
| Read command setup time | ${ }^{\text {t R CS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to CAS | ${ }^{\text {t }} \mathrm{RCH}$ | 0 |  | 0 |  | 0 |  | ns | 14 |
| Read command hold time referenced to RAS | ${ }^{\text {t } R R H ~}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | toFF | 0 | 20 | 0 | 20 | 0 | 20 | ns | 12 |
| $\overline{\text { WE command setup time }}$ | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns |  |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ WCR | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t }}$ WWL | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }}$ CWL | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ S | 0 |  | 0 |  | 0 |  | ns | 15 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 15 |  | 15 |  | 20 |  | ns | 15 |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ DHR | 55 |  | 60 |  | 75 |  | ns |  |
| Transition time (rise or fall) | ${ }^{\text {t }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 16 |
| Refresh period (256 cycles) | ${ }^{\text {t }}$ REF |  | 8 |  | 8 |  | 8 | ms | 20 |
| CAS hold time (CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 19 |
| CAS setup time CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 19 |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {t }}$ RPC | 0 |  | 0 |  | 0 |  | ns | 19 |

## NOTES

1. All voltages referenced to Vss.
2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
3. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
4. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
5. Vif (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ) is assured.
7. Measured with a load equivalent to two TTL gates and 100 pF .
8. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD}<{ }^{\mathrm{t} R C D}$ (MAX). If ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the maximum recommended value shown in this table, ${ }^{t} R A C$ will increase by the amount that ${ }^{\mathrm{R}} \mathrm{RCD}$ exceeds the value shown.
9. Assumes that ${ }^{t} R C D{ }^{t} R C D$ (MAX).
10. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
11. If $\overline{\mathrm{CAS}}=V_{\text {IL, }}$, data output may contain data from the last valid READ cycle.
12. ${ }^{\text {t OFF }}$ (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VoH or VoL.
13. Operation within the ${ }^{\mathrm{t} R C D}$ (MAX) limit ensures that
${ }^{\mathrm{t}} \mathrm{RAC}$ (MAX) can be met. ${ }^{\mathrm{t}} \mathrm{RCD}^{2}$ (MAX) is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the specified ${ }^{t}$ RCD (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{CAC}$.
14. ${ }^{\text {t}}{ }^{\text {RCH }}$ is referenced to the first rising edge of $\overline{\text { RAS }}$ or CAS.
15. These parameters are referenced to $\overline{\text { CAS }}$ leading edge in EARLY-WRITE cycles.
16. In addition to meeting the transition rate specification, all input signals must transit between Vif and $\mathrm{V}_{\mathrm{IL}}$ (or between VIL and $\mathrm{V}_{\mathrm{IH}}$ ) in a monotonic manner.
17. This parameter is sampled. Capacitance is calculated from the equation $C=I \mathrm{dt} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
18. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}$, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{\text {t }} \mathrm{CP}$. Note 8 applies to determine valid data out.
19. On-chip refresh and address counters are enabled.
20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$.
21. LATE-WRITE, READ-WRITE or READ-MODIFYWRITE cycles are not available due to $\overline{\mathrm{OE}}$ being grounded on U1-U18.
22. The module shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5 V for a period of less than 20 ns and the signal's total duration is 25 ns or less; or a -0.3 V signal of any duration is presented (DC).

## READ CYCLE



EARLY-WRITE CYCLE


V/A DON'T CARE
UNDEFINED

FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE


7/A DON'T CARE
X UNDEFINED

## RAS-ONLY REFRESH CYCLE

(ADDR $=\mathrm{A}_{0}-\mathrm{A}_{7} ; \mathrm{A}_{8}$ and $\overline{\mathrm{WE}}=$ DON'T CARE $)$


CAS-BEFORE-RAS REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{8}, \overline{\mathrm{WE}}=\mathrm{DON}$ 'T CARE $)$


DQ


$$
(\overline{\mathrm{WE}}=\mathrm{HIGH})^{20}
$$



ZZa dont care
UNDEFINED

MT18D51236

## DRAM MODULE

## 512K x 36 DRAM

FAST PAGE MODE

## FEATURES

－Industry standard pinout in a 72－pin single－in－line package
－High performance CMOS silicon gate process．
－Single $5 \mathrm{~V} \pm 10 \%$ power supply
－All inputs，outputs and clocks are fully TTL and CMOS compatible
－Low power， 60 mW standby； $1,780 \mathrm{~mW}$ active，typical
－Refresh modes：$\overline{\text { RAS－ONLY，}} \overline{\text { CAS－BEFORE－RAS，}}$ ，and HIDDEN
－512－cycle refresh distributed across 8 ms
－Optional FAST PAGE MODE access cycle

## OPTIONS

－Timing
70 ns access $\quad-7$

80ns access
85ns access
100 ns access
－Packages
Leadless 72－pin SIMM M
Leadless 72－pin SIMM（Gold）G
Leaded 72－pin ZIP
－ 8 －85－10

## MARKING

－ 7
－10

G
Z

## GENERAL DESCRIPTION

The MT20D51236 is a randomly accessed solid－state memory containing 524，288 words organized in a x36 con－ figuration．During READ or WRITE cycles，each bit is uniquely addressed through the 18 address bits，which are entered 9 bits（A0－A8）at a time．$\overline{\mathrm{RAS}}$ is used to latch the first 9 bits and $\overline{\text { CAS }}$ the latter 9 bits．READ or WRITE cycles are selected with the $\overline{W E}$ input．A logic HIGH on $\overline{W E}$ dictates READ mode while a logic LOW on $\overline{W E}$ dictates WRITE mode．During a WRITE cycle，data－in（D）is latched by the falling edge of $\overline{\mathrm{WE}}$ or $\overline{\mathrm{CAS}}$ ，whichever occurs last．EARLY WRITE occurs when $\overline{W E}$ goes LOW prior to $\overline{C A S}$ going LOW， the output pin（s）remain open（High－Z）until the next $\overline{\mathrm{CAS}}$ cycle．

FAST PAGE MODE operations allow faster data opera－ tions（READ or WRITE）within a row－address（A0－A8） defined page boundary．The FAST PAGE MODE cycle is always initiated with a row address strobed－in by $\overline{\text { RAS }}$

| PIN ASSIGNMENT（Top View） 72－Pin SIMM（1－10） |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
|  | MT20D51236Z |  |  |  |  |  |  |
| PIN \＃ | SYMBOL | PIN\＃ | SYMBOL | PIN\＃ | SYMBOL | PIN\＃ | SYMBOL |
| 1 | Vss | 19 | NC | 37 | DQ18 | 55 | DQ13 |
| 2 | DQ1 | 20 | DQ5 | 38 | DQ36 | 56 | DQ31 |
| 3 | DQ19 | 21 | DQ23 | 39 | Vss | 57 | DQ14 |
| 4 | DQ2 | 22 | DQ6 | 40 | CASO | 58 | DQ32 |
| 5 | DQ20 | 23 | DQ24 | 41 | CAS2 | 59 | Vcc |
| 6 | DQ3 | 24 | DQ7 | 42 | CAS3 | 60 | DQ33 |
| 7 | DQ21 | 25 | DQ25 | 43 | CAS 1 | 61 | DQ15 |
| 8 | DQ4 | 26 | DQ8 | 44 | RASO | 62 | DQ34 |
| 9 | DQ22 | 27 | DQ26 | 45 | RAST | 63 | DQ16 |
| 10 | VCC | 28 | A7 | 46 | NC | 64 | DQ35 |
| 11 | NC | 29 | NC | 47 | $\overline{W E}$ | 65 | DQ17 |
| 12 | A0 | 30 | Vcc | 48 | NC | 66 | NC |
| 13 | A1 | 31 | A8 | 49 | DQ10 | 67 | PRD1 |
| 14 | A2 | 32 | NC | 50 | DQ28 | 68 | PRD2 |
| 15 | A3 | 33 | RAS3 | 51 | DQ11 | 69 | PRD3 |
| 16 | A4 | 34 | RAS2 | 52 | DQ29 | 70 | PRD4 |
| 17 | A5 | 35 | DQ27 | 53 | DQ12 | 71 | NC |
| 18 | A6 | 36 | DQ9 | 54 | DQ30 | 72 | Vss |

followed by a column address strobed－in by $\overline{\mathrm{CAS}} \overline{\mathrm{CAS}}$ may be toggled－in by holding $\overline{\text { RAS }}$ LOW and strobing－in differ－ ent column addresses，thus executing faster memory cycles． Returning RAS HIGH terminates the FAST PAGE MODE operation．
Returning $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level． Also，the chip is preconditioned for the next cycle during the $\overline{\text { RAS }}$ high time．Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle（READ，WRITE，$\overline{R A S}-O N L Y, \overline{C A S}-B E F O R E-$ RAS，or HIDDEN REFRESH）so that all 512 combinations of $\overline{\mathrm{RAS}}$ addresses（A0－A8）are executed at least every 8 ms ， regardless of sequence．

FUNCTIONAL BLOCK DIAGRAM


U1-U16 = MT4C4256DJ
U17-20 = MT4C4259DJ

## TRUTH TABLE

| Function |  | RAS | CAS | WE | Addresses |  | DQ1-36 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {tR }}$ |  |  | ${ }^{\text {t }}$ |  |
| Standby |  |  | H | X | X | X | X | High Impedance |
| READ |  | L | L | H | ROW | COL | Valid Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | Valid Data In |
| FAST-PAGEMODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | H | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | H | n/a | COL | Valid Data Out |
| FAST-PAGEMODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | L | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H}$ | L | n/a | COL | Valid Data In |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | High Impedance |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | Valid Data In |
| $\overline{\text { CAS-BEFORE- }} \overline{\text { RAS }}$ REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | High Impedance |

## PRESENCE DETECT

| SYMBOL | $\mathbf{- 7}$ | $\mathbf{- 8}$ | $\mathbf{- 8 5}$ | $\mathbf{- 1 0}$ |
| :--- | :---: | :---: | :---: | :---: |
| PRD1 | VSS | NC | NC | NC |
| PRD2 | VSS | VSS | VSS | VSS |
| PRD3 | NC | VSS | NC | VSS |
| PRD4 | NC | NC | VSS | VSS |

ABSOLUTE MAXIMUM RATINGS*
Voltage on Vcc supply relative to Vss ......... -1.0 V to +7.0 V
Operating Temperature, $\mathrm{TA}_{\mathrm{A}}$ (Ambient) ........... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Plastic) .................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ............................................................20W
Short Circuit Output Current ....................................... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in theoperational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V |  |
| Input High (Logic 1) Voltage, All Inputs |  | Vı | 2.4 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs |  | VIL | -2.0 | 0.8 | V | 1,22 |
| INPUT LEAKAGE CURRENT <br> Any Input $0 \mathrm{~V} \leq \mathrm{Vin} \leq \mathrm{Vcc}$ <br> (All other pins not under test $=0 \mathrm{~V}$ ) for each package input | A0-A8, $\overline{\text { WE }}$ | 11 | -40 | 40 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT <br> ( Q is disabled, $\mathrm{OV} \leq \mathrm{Vout} \leq \mathrm{Vcc}$ ) for each package input | DQ1-DQ36 | loz | -24 | 24 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage ( lout $=-5 \mathrm{~mA}$ ) <br> Output Low Voltage (lout $=5 \mathrm{~mA}$ ) |  | Voh | 2.4 |  | V | 1 |
|  |  | Vol |  | 0.4 | V |  |


|  |  | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -7 | -8, -85 | -10 | UNITS | NOTES |
| OPERATING CURRENT $\text { (RAS and CAS } \left.=\text { Cycling: }{ }^{\mathrm{t} R \mathrm{C}}=\mathrm{t}^{\mathrm{t} R C}(\mathrm{MIN})\right)$ | Icc1 | 820 | 720 | 620 | mA | 2 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\text { RAS }}=\mathrm{VIL}, \overline{\mathrm{CAS}}=$ Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}(\mathrm{MIN})$ ) | Icc2 | 620 | 520 | 420 | mA | 2 |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}$ IH after 8 RAS cycles (MIN)) | Icc3 | 40 | 40 | 40 | mA |  |
| STANDBY CURRENT: CMOS INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V}$ after 8 RAS cycles (MIN)). (All other inputs at $\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{Vss}+0.2 \mathrm{~V}$ ) | IcC4 | 20 | 20 | 20 | mA |  |
| REFRESH CURRENT: $\overline{R A S}-O N L Y$ ( $\overline{\text { RAS }}=$ Cycling: $\overline{C A S}=\mathrm{V}_{\mathrm{IH}}$ ) | Icc5 | 820 | 720 | 620 | mA | 2 |
| REFRESH CURRENT: $\overline{\text { CAS }}$-BEFORE-즈́ ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling) | Icc6 | 820 | 720 | 620 | mA | 2 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A8 | $\mathrm{Cl}_{11}$ |  | 100 | pF | 17 |
| Input Capacitance: $\overline{\mathrm{WE}}$ | $\mathrm{Cl}_{12}$ |  | 140 | pF | 17 |
| Input Capacitance: $\overline{\text { RASO, }}$, $\overline{\text { ASS }}$, $\overline{\text { RAS2, }}$, $\overline{\text { AS }}$ | $\mathrm{Cl}_{1}$ |  | 35 | pF | 17 |
| Input Capacitance: $\overline{\mathrm{CASO}}, \overline{\mathrm{CAS1}}, \overline{\mathrm{CAS}}$, $\overline{\mathrm{CAS3}}$ | $\mathrm{Cl}_{14}$ |  | 42 | pF | 17 |
| Input/Output Capacitance: DQ1-DQ36 | Clo |  | 14 | pF | 17 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $3,4,5,10,11,16,17)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right.$ )

| A.C. CHARACTERISTICS |  | -7 |  | -8, -85 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {tr }}$ C | 135 |  | 150 |  | 180 |  | ns | 6,7 |
| FAST PAGE MODE cycle time | tPC | 40 |  | 45 |  | 55 |  | ns | 6,7 |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {tr }}$ RAC |  | 70 |  | 80 |  | 100 | ns | 7, 8 |
| Access time from CAS | ${ }^{\text {t }}$ 'AC |  | 20 |  | 20 |  | 25 | ns | 7,9 |
| $\overline{\text { RAS }}$ pulse width | ${ }^{\text {tras }}$ | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ 'RSH | 20 |  | 20 |  | 25 |  | ns |  |
| RAS precharge time | tRP | 50 |  | 60 |  | 70 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t }}$ 'AS | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 15 |  | ns | 18 |
| CAS precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay time | ${ }^{\text {tr }}$ RCD | 20 | 50 | 20 | 60 | 25 | 75 | ns | 13 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 5 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ 'SR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t }}$ RAH | 10 |  | 10 |  | 15 |  | ns |  |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }}$ 'AH | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ AR | 55 |  | 60 |  | 70 |  | ns |  |
| Read command setup time | ${ }^{\text {t }} \mathrm{RCS}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to CAS |  | 0 |  | 0 |  | 0 |  | ns | 14 |
| Read command hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ RRH | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {to }}$ OFF | 0 | 20 | 0 | 20 | 0 | 20 | ns | 12 |
| $\overline{\text { WE }}$ command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns |  |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ WCR | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {tr }}$ WL | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to CAS lead time | ${ }^{\text {t }} \mathrm{CWL}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ D | 0 |  | 0 |  | 0 |  | ns | 15 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 15 |  | 15 |  | 20 |  | ns | 15 |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ DHR | 55 |  | 60 |  | 75 |  | ns |  |
| Transition time (rise or fall) | ${ }^{\text {t }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 16 |
| Refresh period (256 cycles) | ${ }^{\text {t REF }}$ |  | 8 |  | 8 |  | 8 | ms | 20 |
| CAS hold time (CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 19 |
| $\overline{\text { CAS }}$ setup time <br>  | ${ }^{\text {t }}$ CSR | 10 |  | 10 |  | 10 |  | ns | 19 |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {t }}$ RPC | 0 |  | 0 |  | 0 |  | ns | 19 |

## NOTES

1．All voltages referenced to Vss．
2．Icc is dependent on output loading and cycle rates． Specified values are obtained with minimum cycle time and the output open．
3．An initial pause of $100 \mu \mathrm{~s}$ is required after power－up followed by any eight $\overline{\text { RAS }}$ cycles before proper device operation is assured．The eight $\overline{\text { RAS }}$ cycle wake－up should be repeated any time the 8 ms refresh requirement is exceeded．
4．$A C$ characteristics assume ${ }^{\mathfrak{t}} \mathrm{T}=5 \mathrm{~ns}$ ．
5． $\mathrm{V}_{\mathrm{IH}}$（MIN）and VIL（MAX）are reference levels for measuring timing of input signals．Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$ ．
6．The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured．
7．Measured with a load equivalent to two TTL gates and 100 pF ．
8．Assumes that ${ }^{t} R C D<{ }^{t} R C D$（MAX）．If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table，${ }^{\text {R}}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown．
9．Assumes that ${ }^{\mathrm{t} R C D} \geq{ }^{\mathrm{t} R C D}$（MAX）．
10．If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$ ，data output is high impedance．
11．If $\overline{\mathrm{CAS}}=V_{\text {IL，}}$ data output may contain data from the last valid READ cycle．
12．${ }^{\text {t }}$ OFF（MAX）defines the time at which the output achieves the open circuit condition and is not referenced to V н or VoL．
13．Operation within the ${ }^{t} R C D$（MAX）limit ensures that
${ }^{t}$ RAC（MAX）can be met．${ }^{t} R C D$（MAX）is specified as a reference point only；if ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the specified ${ }^{t}$ RCD（MAX）limit，then access time is controlled exclusively by ${ }^{\mathrm{t}} \mathrm{CAC}$ ．
14．${ }^{\text {tRCH }}$ is referenced to the first rising edge of $\overline{\text { RAS }}$ or $\overline{\text { CAS．}}$
15．These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY－WRITE cycles．
16．In addition to meeting the transition rate specifica－ tion，all input signals must transit between $V_{\text {IH }}$ and $V_{\text {IL }}$（or between Vil and Vir）in a monotonic manner．
17．This parameter is sampled．Capacitance is calculated from the equation $\mathrm{C}=\mathrm{I}^{\mathrm{dt}} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$ ．
18．If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}$ ，data－out （Q）will be maintained from the previous cycle．To initiate a new cycle and clear the data－out buffer，$\overline{\text { CAS }}$ must be pulsed HIGH for ${ }^{\text {t }} \mathrm{CP}$ ．Note 8 applies to determine valid data out．
19．On－chip refresh and address counters are enabled．
20．A HIDDEN REFRESH may also be performed after a WRITE cycle．In this case，$\overline{\mathrm{WE}}=\mathrm{LOW}$ ．
21．LATE－WRITE，READ－WRITE or READ－MODIFY－ WRITE cycles are not available due to $\overline{\mathrm{OE}}$ being grounded on U1－U18．
22．The module shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5 V for a period of less than 20 ns and the signal＇s total duration is 25 ns or less；or a -0.3 V signal of any duration is presented（DC）．

## READ CYCLE



EARLY-WRITE CYCLE


V/A DON'T CARE
UNDEFINED

FAST－PAGE－MODE READ CYCLE


FAST－PAGE－MODE EARLY－WRITE CYCLE


7／A DON＇T CARE
UNDEFINED

## RAS-ONLY REFRESH CYCLE <br> $\left(\operatorname{ADDR}=\mathrm{A}_{0}-\mathrm{A}_{7} ; \mathrm{A}_{8}\right.$ and $\overline{\mathrm{WE}}=$ DON'T CARE $)$



CAS-BEFORE-RAS REFRESH CYCLE

$$
\left(A_{0}-A_{8}, \overline{W E}=D O N ' T \text { CARE }\right)
$$



DQ
$\xrightarrow{\mathrm{V}_{\mathrm{OH}}}$
OPEN

## HIDDEN REFRESH CYCLE

$(\overline{\mathrm{WE}}=\mathrm{HIGH}){ }^{20}$


KZh dont care
( undefined

## DRAM MODULE

## 1 MEG x 36 DRAM

FAST PAGE MODE

## FEATURES

- Common $\overline{\mathrm{RAS}}$ control pinout in a 72-pin single-in-line package
- High-performance, CMOS silicon gate process.
- Single $5 \mathrm{~V} \pm 10 \%$ power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 27 mW standby; 2,175mW active, typical
- Refresh modes: $\overline{\mathrm{RAS}}-\mathrm{ONLY}, \overline{\mathrm{CAS}}$ BEFORE-ㅈRAS, and HIDDEN
- 1,024-cycle refresh distributed across 16 ms
- Optional FAST PAGE MODE access cycle


## GENERAL DESCRIPTION

TheMT9D136 is a randomly accessed solid-state memory containing 1,048,576 words organized in a x36 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits which are entered 10 bits (A0-A9) at a time. $\overline{\text { RAS }}$ is used to latch the first 10 bits and CAS the latter 10 bits. READ or WRITE cycles are selected with the $\overline{W E}$ input. A logic HIGH on $\overline{W E}$ dictates READ mode while a logic LOW on $\overline{W E}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$, whichever occurs last. If $\overline{W E}$ goes LOW prior to $\overline{\mathrm{CAS}}$ going LOW, the output pin(s) remain open (High-Z) until the next $\overline{\mathrm{CAS}}$ cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\text { RAS }}$

## OPTIONS

- Timing

70ns access -7
80ns access
100 ns access

- Packages

Leadless 72-pin SIMM M
Leadless 72-pin SIMM (Gold) G
Leaded 72-pin ZIP
Z

## MARKING

- 8
-10


## FUNCTIONAL BLOCK DIAGRAM



NOTE: Due to the use of a Quad $\overline{C A S}$ DRAM, $\overline{\text { RASO }}$ is common to all devices.

## TRUTH TABLE

| Function |  | RAS | CAS | WE | Addresses |  | DQ1-36 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {th}}$ |  |  | ${ }^{\text {t }}$ C |  |
| Standby |  |  | H | X | X | X | X | High Impedance |
| READ |  | L | L | H | ROW | COL | Valid Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | Valid Data In |
| FAST-PAGEMODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | n/a | COL | Valid Data Out |
| FAST-PAGEMODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | n/a | COL | Valid Data In |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | High Impedance |
| HIDDEN <br> REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | Valid Data In |
| CAS-BEFORE-쥬AS REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | High Impedance |

## PRESENCE DETECT

| SYMBOL | $\mathbf{- 7}$ | $\mathbf{- 8}$ | $\mathbf{- 1 0}$ |
| :--- | :---: | :---: | :---: |
| PRD1 | NC | VSS | NC |
| PRD2 | VSS | VSS | NC |
| PRD3 | VSS | NC | NC |
| PRD4 | NC | VSS | NC |

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss. $\qquad$ -1.0 V to +7.0 V
Operating Temperature, TA (Ambient) ........... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Plastic) ................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Power Dissipation 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in theoperational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
(Notes: $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V |  |
| Input High (Logic 1) Voltage, All Inputs |  | VIH | 2.4 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs |  | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE CURRENT <br> Any input $0 V \leq V_{i n} \leq V_{c c}$ <br> (All other pins not under test $=0 \mathrm{~V}$ ) For each package input | A0-A8, $\overline{W E}$ | 11 | -18 | 18 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT <br> ( Q is disabled, $0 \mathrm{~V} \leq$ Vout $\leq \mathrm{Vcc}$ ) For each package input | DQ1-DQ36 | loz | -12 | 12 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage $($ lout $=-5 \mathrm{~mA})$ <br> Output Low Voltage (lout $=5 \mathrm{~mA}$ ) |  | VOH | 2.4 |  | V | 1 |
|  |  | Vol |  | 0.4 | V |  |


|  |  | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -7 | -8 | -10 | UNITS | NOTES |
| OPERATING CURRENT <br> ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling: ${ }^{\mathrm{t} R C}={ }^{\mathrm{t}} \mathrm{RC}$ (MIN)) | Icc1 | 900 | 810 | 720 | mA | 2 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\text { RAS }}=\mathrm{VIL}, \overline{\mathrm{CAS}}=$ Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}(\mathrm{MIN})$ ) | Icc2 | 630 | 540 | 450 | mA | 2 |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\text { RAS }}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$ after 8 RAS cycles (MIN)) | Icc3 | 18 | 18 | 18 | mA |  |
| STANDBY CURRENT: CMOS INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V}$ <br> after 8 RAS cycles (MIN)). (All other inputs at $\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{Vss}+0.2 \mathrm{~V}$ ) | IcC4 | 9 | 9 | 9 | mA |  |
| REFRESH CURRENT: $\overline{R A S}-O N L Y$ $\left(\overline{\text { RAS }}=\text { Cycling: } \overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{H}}\right)$ | Icc5 | 900 | 810 | 720 | mA | 2 |
| REFRESH CURRENT: $\overline{\text { CAS-BEFORE-RAS }}$ ( $\overline{\text { RAS }}$ and $\overline{\mathrm{CAS}}=$ Cycling) | Icc6 | 900 | 810 | 720 | mA | 2 |

CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A8 | $\mathrm{Cl}_{11}$ |  | 45 | pF | 17 |
| Input Capacitance: WE | $\mathrm{Cl}_{12}$ |  | 63 | pF | 17 |
| Input Capacitance: $\overline{\text { RASO }}$ | $\mathrm{Cl}_{13}$ |  | 63 | pF | 17 |
| Input Capacitance: $\overline{\mathrm{CASO}}, \overline{\mathrm{CAS1}}, \overline{\mathrm{CAS} 2}, \overline{\mathrm{CAS3}}$ | $\mathrm{Cl}_{14}$ |  | 21 | pF | 17 |
| Input/Output Capacitance: DQ1-DQ36 | Clo |  | 7 | pF | 17 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: $3,4,5,10,11,16,17)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {tr }}$ C | 130 |  | 150 |  | 180 |  | ns | 6,7 |
| FAST-PAGE-MODE cycle time | ${ }^{\text {t P }}$ C | 40 |  | 45 |  | 55 |  | ns | 6,7 |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {t RAC }}$ |  | 70 |  | 80 |  | 100 | ns | 7, 8 |
| Access time from CAS | ${ }^{\text {t }}$ CAC |  | 20 |  | 20 |  | 25 | ns | 7,9 |
| $\overline{\text { RAS }}$ pulse width | ${ }^{\text {tRAS }}$ | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| RAS hold time | ${ }^{\text {t }}$ RSH | 20 |  | 20 |  | 25 |  | ns |  |
| RAS precharge time | trP | 50 |  | 60 |  | 70 |  | ns |  |
| CAS pulse width | ${ }^{\text {t }}$ CAS | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns |  |
| CAS hold time | ${ }^{\text {t }}$ CSH | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 15 |  | ns | 18 |
| CAS precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay time | ${ }^{\text {t RCD }}$ | 20 | 50 | 20 | 60 | 25 | 75 | ns | 13 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t CRP }}$ | 5 |  | 5 |  | 20 |  | ns |  |
| Row address setup time | ${ }^{\text {t } A S R}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t RAH }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| Column address setup time | ${ }^{t}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }}$ CAH | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time referenced to RAS | ${ }^{\text {t }}$ AR | 55 |  | 60 |  | 70 |  | ns |  |
| Read command setup time | ${ }^{\text {t R CS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to CAS | ${ }^{\text {treH }}$ | 0 |  | 0 |  | 0 |  | ns | 14 |
| Read command hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t RRH }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {torfF }}$ | 0 | 20 | 0 | 20 | 0 | 20 | ns | 12 |
| $\overline{\text { WE }}$ command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns |  |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ WCR | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to RAS lead time | ${ }^{\text {tr }}$ WL | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }} \mathrm{CWL}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 15 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 15 |  | 15 |  | 20 |  | ns | 15 |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t DHR }}$ | 55 |  | 60 |  | 75 |  | ns |  |
| Transition time (rise or fall) | ${ }^{\text {T }}$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 16 |
| Refresh period (256 cycles) | ${ }^{\text {t REF }}$ |  | 16 |  | 16 |  | 16 | ms | 20 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 19 |
| CAS setup time (CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t CSR }}$ | 10 |  | 10 |  | 10 |  | ns | 19 |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ precharge time | trPC | 0 |  | 0 |  | 0 |  | ns | 19 |

## NOTES

1. All voltages referenced to Vss.
2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
3. An initial pause of $100 \mu$ s is required after power-up followed by any eight $\overline{\text { RAS }}$ REFRESH cycles ( $\overline{\mathrm{RAS}}$ ONLY or CBR with $\overline{W E}$ HIGH) before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 16 ms refresh requirement is exceeded.
4. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
5. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ) is assured.
7. Measured with a load equivalent to two TTL gates and 100 pF .
8. Assumes that ${ }^{t} R C D<{ }^{t} R C D(M A X)$. If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t} R A C$ will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
9. Assumes that ${ }^{t} R C D \geq \mathrm{t}^{\mathrm{t}} \mathrm{CD}$ (MAX).
10. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, data output is high impedance.
11. If $\overline{\mathrm{CAS}}=$ VIL, data output may contain data from the last valid READ cycle.
12. ${ }^{\text {t }} \mathrm{OFF}$ (MAX) defines the time at which the output
achieves the open circuit condition and is not referenced to VOH or Vol.
13. Operation within the ${ }^{\text {t }} R C D$ (MAX) limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{\mathrm{t} R C D}$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} C A C$.
14. ${ }^{\mathrm{t} R C H}$ is referenced to the first rising edge of $\overline{\mathrm{RAS}}$ or CAS.
15. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles.
16. In addition to meeting the transition rate specification, all input signals must transit between $V_{\text {IH }}$ and VIL (or between VIL and VIH) in a monotonic manner.
17. This parameter is sampled. Capacitance is calculated from the equation $C=I d / d v$ with $d v=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
18. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}$, data-out $(Q)$ will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{\text {t }} \mathrm{C}$ P. Note 8 applies to determine valid data out.
19. On-chip refresh and address counters are enabled.
20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=$ LOW .
21. LATE-WRITE, READ-WRITE or READ-MODIFYWRITE cycles are not available due to $\overline{\mathrm{OE}}$ being grounded on U1-U9.

## READ CYCLE



EARLY-WRITE CYCLE


ZTZ Dont care
UNDEFINED

## MT9D136

## FAST-PAGE-MODE READ CYCLE



FAST-PAGE-MODE EARLY-WRITE CYCLE


ZZab dont care
Undefined

# RAS-ONLY REFRESH CYCLE $\left(\operatorname{ADDR}=\mathrm{A}_{0}-\mathrm{A}_{9} ; \overline{\mathrm{WE}}=\right.$ DON'T CARE $)$ 



CAS-BEFORE-RAS REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{9}, \overline{\mathrm{WE}}=$ DON'T CARE)
$\overline{\text { RAS }}$


DO $\mathrm{V}_{\mathrm{OL}}=$ $\qquad$

HIDDEN REFRESH CYCLE $(\overline{\mathrm{WE}}=\mathrm{HIGH})^{20}$


Z/a dont care
undefined

## DRAM MODULE

## FEATURES

－Common $\overline{R A S}$ control per side pinout in a 72 －pin single－in－line package
－High－performance CMOS silicon gate process．
－Single $5 \mathrm{~V} \pm 10 \%$ power supply
－All inputs，outputs and clocks are fully TTL and CMOS compatible
－Low power， 54 mW standby； $4,500 \mathrm{~mW}$ active，typical
－Refresh modes：$\overline{\text { RAS－ONLY，}} \overline{\mathrm{CAS}}$－BEFORE－RAS，and HIDDEN
－ 1,024 －cycle refresh distributed across 16 ms
－Optional FAST PAGE MODE access cycle

## OPTIONS

－Timing 70ns access－7
80ns access－8
100ns access

## MARKING

－Packages
Leadless 72 －pin SIMM M
Leadless 72 －pin SIMM（Gold）
Leaded 72－pin ZIP

G
Z

## GENERAL DESCRIPTION

TheMT18D236is a randomly accessed solid－state memory containing 2，097，152 words organized in a $\times 36$ configura－ tion．During READ or WRITE cycles，each bit is uniquely addressed through the 20 address bits which are entered 10 bits（A0－A9）at a time．$\overline{\mathrm{RAS}}$ is used to latch the first 10 bits and CAS the latter 10 bits．READ or WRITE cycles are selected with the $\overline{\mathrm{WE}}$ input．A logic HIGH on $\overline{\mathrm{WE}}$ dictates READ mode while a logic LOW on $\overline{\text { WE }}$ dictates WRITE mode．During a WRITE cycle，data－in（D）is latched by the falling edge of $\overline{W E}$ or $\overline{C A S}$ ，whichever occurs last．EARLY WRITE occurs whenWEgoes LOW prior to $\overline{\text { CAS going LOW，}}$ the output pin（s）remain open（High－Z）until the next CAS cycle．
FAST PAGE MODE operations allow faster data opera－ tions（READ or WRITE）within a row－address（A0－A9） defined page boundary．The FAST PAGE MODE cycle is always initiated with a row address strobed－in by $\overline{\text { RAS }}$

## 2 MEG x 36 DRAM FAST PAGE MODE


followed by a column address strobed－in by $\overline{\mathrm{CAS}} \overline{\mathrm{CAS}}$ may be toggled－in by holding $\overline{\text { RAS }}$ LOW and strobing－in differ－ ent column addresses，thus executing faster memory cycles． Returning $\overline{\text { RAS }}$ HIGH terminates the FAST PAGE MODE operation．
Returning $\overline{\mathrm{RAS}}$ and $\overline{\text { CAS }}$ HIGH terminates a memory cycle and decreases chip current to a reduced standby level． Also，the chip is preconditioned for the next cycle during the RAS high time．Memory cell data is retained in its correct state by maintaining power and executing any $\overline{\text { RAS }}$ cycle（READ，WRITE，$\overline{R A S}$－ONLY，CAS－BEFORE－ $\overline{\text { RAS，or HIDDEN REFRESH）so that all } 1,024 \text { combinations }}$ of $\overline{\text { RAS }}$ addresses（A0－A9）are executed at least every 16 ms ， regardless of sequence．


NOTE: Due to the use of a Quad $\overline{\mathrm{CAS}}$ parity DRAM, $\overline{\mathrm{RASO}}$ is common to side 1 and $\overline{\mathrm{RAS1}}$ is common to side 2.

## TRUTH TABLE

| Function |  | RAS | CAS | WE | Addresses |  | DQ1-36 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {t }}$ R |  |  | ${ }^{\text {t }}$ C |  |
| Standby |  |  | H | X | X | X | X | High Impedance |
| READ |  | L | L | H | ROW | COL | Valid Data Out |
| EARLY-WRITE |  | L | L | L | ROW | COL | Valid Data In |
| FAST-PAGEMODE READ | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | ROW | COL | Valid Data Out |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | H | n/a | COL | Valid Data Out |
| FAST-PAGEMODE WRITE | 1st Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | ROW | COL | Valid Data In |
|  | 2nd Cycle | L | $\mathrm{H} \rightarrow \mathrm{L}$ | L | n/a | COL | Valid Data In |
| RAS-ONLY REFRESH |  | L | H | X | ROW | n/a | High Impedance |
| HIDDEN REFRESH | READ | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | H | ROW | COL | Valid Data Out |
|  | WRITE | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | L | ROW | COL | Valid Data In |
| CAS-BEFORE- $\overline{\text { RAS }}$ REFRESH |  | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | High Impedance |

PRESENCE DETECT

| SYMBOL | $\mathbf{- 7}$ | $\mathbf{- 8}$ | $\mathbf{- 1 0}$ |
| :--- | :---: | :---: | :---: |
| PRD1 | NC | VSS | NC |
| PRD2 | NC | VSS | NC |
| PRD3 | VSS | VSS | NC |
| PRD4 | NC | NC | NC |

## ABSOLUTE MAXIMUM RATINGS*


*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above thoseindicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: $1,3,4,6,7)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V |  |
| Input High (Logic 1) Voltage, All Inputs |  | VIH | 2.4 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs |  | VIL | -1.0 | 0.8 | V | 1 |
| INPUT LEAKAGE CURRENT <br> Any Input: $\mathrm{OV} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{cc}}$ <br> (All other pins not under test $=0$ V) For each package input | A0-A9, $\overline{\mathrm{WE}}$ | 11 | -36 | 36 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT <br> ( Q is disabled, $0 \mathrm{~V} \leq$ Vout $\leq \mathrm{Vcc}$ ) For each package input | DQ1-DQ36 | 102 | -24 | 24 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage ( lout $=-5 \mathrm{~mA}$ ) <br> Output Low Voltage (lout $=5 \mathrm{~mA}$ ) |  | Vor | 2.4 |  | V |  |
|  |  | Vol |  | 0.4 | V | 1 |


|  |  | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -7 | -8 | -10 | UNITS | NOTES |
| OPERATING CURRENT <br> ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling: ${ }^{\mathrm{t} R \mathrm{C}}={ }^{\mathrm{t} R C}$ (MIN)) | Icc1 | 918 | 828 | 738 | mA | 2 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\text { RAS }}=\mathrm{VIL}, \overline{\mathrm{CAS}}=$ Cycling: ${ }^{\mathrm{tPC}}={ }^{\text {tPC }}(\mathrm{MIN})$ ) | Icc2 | 648 | 558 | 468 | mA | 2 |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$ after 8 RAS cycles (MIN)) | Icc3 | 36 | 36 | 36 | mA |  |
| STANDBY CURRENT: CMOS INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V}$ <br> after 8 RAS cycles (MIN)). (All other inputs at $\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{Vss}+0.2 \mathrm{~V}$ ) | Icc4 | 18 | 18 | 18 | mA |  |
| REFRESH CURRENT: $\overline{\text { RAS-ONLY }}$ ( $\overline{\text { RAS }}=$ Cycling: $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$ ) | Icc5 | 918 | 828 | 738 | mA | 2 |
| REFRESH CURRENT: $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$ (RAS and $\overline{\mathrm{CAS}}=$ Cycling) | Icc6 | 918 | 828 | 738 | mA | 2 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A9 | $\mathrm{Cl}_{11}$ |  | 90 | pF | 17 |
| Input Capacitance: $\overline{\mathrm{WE}}$ | $\mathrm{Cl}_{12}$ |  | 126 | pF | 17 |
| Input Capacitance: $\overline{\text { RAS0, }}$, $\overline{\text { AS } 1}$ | $\mathrm{Cl}_{1}$ |  | 63 | pF | 17 |
| Input Capacitance: $\overline{\mathrm{CASO}}, \overline{\mathrm{CAS1}}, \overline{\mathrm{CAS2}}$, $\overline{\mathrm{CAS3}}$ | $\mathrm{Cl}_{14}$ |  | 42 | pF | 17 |
| Input/Output Capacitance: DQ1-DQ36 | $\mathrm{ClO}_{1}$ |  | 14 | pF | 17 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $3,4,5,10,11,16,17)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -7 |  | -8 |  | -10 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | tRC | 130 |  | 150 |  | 180 |  | ns | 6, 7 |
| FAST-PAGE-MODE cycle time | ${ }^{\text {t P }}$ C | 40 |  | 45 |  | 55 |  | ns | 6,7 |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {t RAC }}$ |  | 70 |  | 80 |  | 100 | ns | 7,8 |
| Access time from CAS | ${ }^{\mathrm{t}} \mathrm{CAC}$ |  | 20 |  | 20 |  | 25 | ns | 7,9 |
| $\overline{\text { RAS }}$ pulse width | ${ }^{\text {tRAS }}$ | 70 | 100,000 | 80 | 100,000 | 100 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {tRSH }}$ | 20 |  | 20 |  | 25 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | tRP | 50 |  | 60 |  | 70 |  | ns |  |
| CAS pulse width | ${ }^{\text {t }}$ 'AS | 20 | 100,000 | 20 | 100,000 | 25 | 100,000 | ns |  |
| CAS hold time | ${ }^{\text {t }}$ CSH | 70 |  | 80 |  | 100 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 10 |  | 10 |  | 15 |  | ns | 18 |
| $\overline{\mathrm{CAS}}$ precharge time (FAST PAGE MODE) | ${ }^{t} \mathrm{CP}$ | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay time | ${ }^{\text {t } R C D}$ | 20 | 50 | 20 | 60 | 25 | 75 | ns | 13 |
| $\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 20 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t RAH }}$ | 10 |  | 10 |  | 15 |  | ns |  |
| Column address setup time | ${ }^{t}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\mathrm{t}} \mathrm{CAH}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Column address hold time referenced to $\overline{R A S}$ | ${ }^{\text {t }}$ AR | 55 |  | 60 |  | 70 |  | ns |  |
| Read command setup time | ${ }^{\text {t } R C S ~}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time referenced to CAS | ${ }^{\text {tr }} \mathrm{RCH}$ | 0 |  | 0 |  | 0 |  | ns | 14 |
| Read command hold time referenced to RAS | ${ }^{\text {t } R R H ~}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {T O }}$ OFF | 0 | 20 | 0 | 20 | 0 | 20 | ns | 12 |
| $\overline{\text { WE }}$ command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns |  |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 15 |  | 20 |  | ns |  |
| Write command hold time referenced to RAS | ${ }^{\text {t }}$ WCR | 55 |  | 60 |  | 75 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t }}$ WWL | 15 |  | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }}$ WWL | 15 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }} \mathrm{DS}$ | 0 |  | 0 |  | 0 |  | ns | 15 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 15 |  | 15 |  | 20 |  | ns | 15 |
| Data-in hold time referenced to $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ DHR | 55 |  | 60 |  | 75 |  | ns |  |
| Transition time (rise or fall) | ${ }^{\dagger} T$ | 3 | 50 | 3 | 50 | 3 | 50 | ns | 16 |
| Refresh period (256 cycles) | ${ }^{\text {tr }}$ ' ${ }^{\text {cheF }}$ |  | 16 |  | 16 |  | 16 | ms | 20 |
| CAS hold time (CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 15 |  | 15 |  | 15 |  | ns | 19 |
| $\overline{\mathrm{CAS}}$ setup time (CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 19 |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {t }}$ RPC | 0 |  | 0 |  | 0 |  | ns | 19 |

## NOTES

1. All voltages referenced to Vss.
2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
3. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{\mathrm{RAS}}$ REFRESH cycles ( $\overline{\mathrm{RAS}}-$ ONLY or CBR with $\overline{W E}$ HIGH) before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 16 ms refresh requirement is exceeded.
4. $A C$ characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
5. $\mathrm{V}_{\mathrm{IH}}$ (MIN) and $\mathrm{V}_{\mathrm{IL}}$ (MAX) are reference levels for measuring timing of input signals. Transition times are measured between $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{V}_{\mathrm{IL}}$.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured.
7. Measured with a load equivalent to two TTL gates and 100 pF .
8. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD}<^{\mathrm{t} R C D}(\mathrm{MAX})$. If ${ }^{\mathrm{t} R C D}$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
9. Assumes that ${ }^{\mathrm{t} R C D} \geq \mathrm{t} C D$ (MAX).
10. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\text {IH }}$, data output is high impedance.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\text {IL }}$, data output may contain data from the last valid READ cycle.
12. ${ }^{\text {tofF }}$ (MAX) defines the time at which the output
achieves the open circuit condition and is not referenced to VoH or Vol.
13. Operation within the ${ }^{t} R C D(M A X)$ limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{\mathrm{t}}$ RCD (MAX) limit, then access time is controlled exclusively by ${ }^{t} C A C$.
14. ${ }^{\mathrm{t} R C H}$ is referenced to the first rising edge of $\overline{\mathrm{RAS}}$ or CAS.
15. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles.
16. In addition to meeting the transition rate specification, all input signals must transit between $\mathrm{V}_{\mathrm{IH}}$ and $V_{\text {IL }}$ (or between VIL and $V_{\text {IH }}$ ) in a monotonic manner.
17. This parameter is sampled. Capacitance is calculated from the equation $\mathrm{C}=\mathrm{I}^{\mathrm{dt}} / \mathrm{dv}$ with $\mathrm{dv}=3 \mathrm{~V}$ and $\mathrm{VCC}=5 \mathrm{~V}$.
18. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}$, data-out $(Q)$ will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, $\overline{\text { CAS }}$ must be pulsed HIGH for ${ }^{\text {t }} \mathrm{CP}$. Note 8 applies to determine valid data out.
19. On-chip refresh and address counters are enabled.
20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{\mathrm{WE}}=\mathrm{LOW}$.
21. LATE-WRITE, READ-WRITE or READ-MODIFYWRITE cycles are not available due to $\overline{\mathrm{OE}}$ being grounded on U1-U18.

## READ CYCLE



EARLY-WRITE CYCLE


UNDEFINED

FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE

$02 \pi$ dont care
( UnoemNeD

RAS-ONLY REFRESH CYCLE (ADDR $\left.=\mathrm{A}_{0}-\mathrm{A}_{9} ; \overline{\mathrm{WE}}=\mathrm{DON}{ }^{\prime} T \mathrm{CARE}\right)$


CAS-BEFORE-RAS REFRESH CYCLE
( $\mathrm{A}_{0}-\mathrm{A}_{9}, \overline{\mathrm{WE}}=$ DON'T CARE $)$


DQ $\mathrm{v}_{\mathrm{OL}}^{\mathrm{OH}}$
OPEN-
HIDDEN REFRESH CYCLE
$(\overline{\mathrm{WE}}=\mathrm{HIGH}){ }^{20}$


ZZZ Dont care
UNDEFINED

## MICADN

DYNAMIC RAMS ..... 1
DRAM MODULES ..... 2
MULTIPORT DRAMS ..... 3
STATIC RAMS ..... 4
SYNCHRONOUS SRAMS ..... 5
SRAM MODULES ..... 6
CACHE DATA SRAMS7 제․
FIFO MEMORIES ..... 8
APPLICATION/TECHNICAL INFORMATION ..... 9
MILITARY INFORMATION10
PACKAGE INFORMATION ..... 11
SALES INFORMATION ..... 12

## DUAL PORT DRAM PRODUCT SELECTION GUIDE

| Memory <br> Configuration | Access Cycle | Part Number | Access <br> Time (ns) | Power Dissipation |  | Package and Number of Pins |  |  |  | Process | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Standby | Active | PDIP | ZIP | SOJ | CDIP |  |  |
| $64 \mathrm{~K} \times 4$ | PM | MT42C4064 | 100,120,150 | 15 mW | 250 mW | 24 | 24 | - | 24 | CMOS | 3-1 |
| 256K x 4 | FPM | MT42C4255 | 80,100,120 | 15 mW | 200 mW | - | 28 | 28 | - | CMOS | 3-27 |
| $256 \mathrm{~K} \times 4$ | FPM, BW | MT42C4256 | 80,100,120 | 15 mW | 200 mW | - | 28 | 28 | - | CMOS | 3-61 |
| $128 \mathrm{~K} \times 8$ | FPM | MT42C8127 | 100,120 | 15 mW | 200 mW | - | - | 40 | - | CMOS | 3-97 |
| $128 \mathrm{~K} \times 8$ | FPM, BW | MT42C8128 | 80,100,120 | 15 mW | 275 mW | - | 40 | 40 | - | CMOS | 3-131 |
| 256K x 8 | FPM, BW | MT42C8256 | 70, 80,100 | 20 mW | 300 mW | - | - | 40 | - | CMOS | 3-167 |

PM = Page Mode, FPM = Fast Page Mode, BW = Block Write

TRIPLE PORT DRAM PRODUCT SELECTION GUIDE

| Memory <br> Contiguration | Access Cycle | Part Number | Access <br> Time (ns) | Power Dissipation |  | Package and Number of Pins |  |  | Process | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Standby | Active | ZIP | SOJ | PLCC |  |  |
| $256 \mathrm{~K} \times 4$ | FPM, BW, QSF pin | MT43C4257 | 80,100,120 | 15 mW | 450 mW | - | 40 | - | CMOS | 3-169 |
| 256K x 4 | FPM, BW, SSF pin | MT43C4258 | 80,100,120 | 15 mW | 450 mW | - | 40 | - | CMOS | 3-169 |
| $128 \mathrm{~K} \times 8$ | FPM, BW, QSF pin | MT43C8128 | 80,100,120 | 15mW | 450 mW | - | - | 52 | CMOS | 3-215 |
| 128K x 8 | FPM, BW, SSF pin | MT43C8129 | 80,100,120 | 15 mW | 450 mW | - | - | 52 | CMOS | 3-215 |

PM $=$ Page Mode, FPM $=$ Fast Page Mode, BW = Block Write

## VRAM

## 64K x 4 DRAM WITH $256 \times 4$ SAM

## FEATURES

- Industry standard pinout, timing and functions
- High performance CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Inputs and outputs are fully TTL and CMOS compatible
- Refresh modes: $\overline{\text { RAS }}$ ONLY, $\overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{R A S}$, and HIDDEN
- 256-cycle refresh within 4 ms
- Optional PAGE MODE access cycles
- Dual port organization: $64 \mathrm{~K} \times 4$ DRAM port $256 \times 4$ SAM port
- Bit MASKED WRITE mode capability on DRAM port
- No refresh required for Serial Access Memory
- Low power: 15 mW standby; 250 mW active, typical
- Fast access times -100 ns parallel, 33 ns serial


## OPTIONS

- Timing (DRAM, SAM)

100 ns , 33 ns
120 ns , 40 ns
$150 \mathrm{~ns}, 60 \mathrm{~ns}$

- Packages

Plastic DIP (400 mil)
Ceramic DIP ( 400 mil )
Plastic ZIP

MARKING
-10
-12
-15

## None

C Z

## GENERAL DESCRIPTION

The MT42C4064 is a high speed, dual port CMOS dynamic random access memory, or video RAM (VRAM) containing 262,144 bits. They may be accessed by a four bit wide DRAM port or by a $256 \times 4$ bit serial access memory (SAM) port. Data may be transferred bidirectionally between the DRAM and the SAM.

The DRAM portion of the VRAM is functionally identical to the MT4067 ( $64 \mathrm{~K} \times 4$ ) bit DRAM. Four 256-bit data registers make up the serial access memory portion of the VRAM.DataI/Oand internal data transfer areaccomplished using three separate bidirectional data paths: the 4 -bit random access I/O port, the four internal 256 bit wide paths between the DRAM and the SAM, and the 4-bit serial I/O

## PIN ASSIGNMENT (Top View)

24-Pin DIP (A-8, B-8)


port for the SAM. The rest of the circuitry consists of the control, timing, and address-decoding logic.

Each of the ports may be operated asynchronously and independently of the other except when data is being transferred internally between them. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 256 combinations of $\overline{\text { RAS }}$ addresses are executed at least every 4 ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. The SAM portion of the VRAM is fully static and does not require any refresh.


Figure 1
MT42C4064 BLOCK DIAGRAM

## PIN DESCRIPTIONS

| DIP PIN NUMBER(S) | ZIP PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 7 | SC | Input | Serial Clock: Clock input to the serial address counter for the SAM registers. |
| 4 | 8, 9, 4, 5 | $\overline{T R} / \overline{O E}$ | Input | Transfer Enable: Enables an internal TRANSFER operation at RAS ( $\mathrm{H} \rightarrow \mathrm{L}$ ), or <br> Output Enable: Enables the DRAM output buffers when taken LOW after $\overline{\text { RAS }}$ goes LOW (CAS must also be LOW); otherwise, the output buffers are in a High-Z. |
| 7 | 13 | $\overline{M E} \overline{W E}$ | Input | Mask Enable: If $\overline{M E} \overline{W E}$ is LOW at the falling edge of $\overline{R A S}$ a MASKED WRITE cycle is performed, or <br> Write Enable: $\overline{\mathrm{WE}}$ is used to select a READ ( $\overline{\mathrm{WE}}=\mathrm{H}$ ) or WRITE ( $\overline{\mathrm{WE}}=\mathrm{L}$ ) cycle when accessing the DRAM. This includes a DRAM-TO-SAM TRANSFER ( $\overline{\mathrm{WE}}=\mathrm{H}$ ) or SAM- TODRAM TRANSFER ( $\overline{\mathrm{WE}}=\mathrm{L}$ ). |
| 8 | 14 | RAS | Input | Row Address Strobe: $\overline{R A S}$ is used to clock in the 8 row-address bits and as a strobe for the MASK ENABLE and TRANSFER functions. |
| $\begin{aligned} & 9,10,11,13, \\ & 14,15,16,17 \end{aligned}$ | $\begin{aligned} & 23,22,21,20 \\ & 17,16,15,19 \end{aligned}$ | A0 to A7 | Input | Address Inputs: For the DRAM operation, these inputs are multiplexed and clocked by $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ to select 4 bits out of the 64 K available. During TRANSFER operations, A0 to A7 indicate the DRAM row being accessed (when $\overline{\text { RAS }}$ goes LOW) and the SAM start address (when CAS goes LOW). |
| 18 | 24 | $\overline{\text { CAS }}$ | Input | Column Address Strobe: $\overline{\mathrm{CAS}}$ is used to clock in the 8 columnaddress bits and enable the DRAM output buffers (TR/OE must also be LOW). |
| 21 | 3 | $\overline{\text { SE }}$ | Input | Serial Port Enable: $\overline{\text { SE }}$ enables the serial I/O buffers and allows a serial READ or WRITE operation to occur, otherwise the output buffers are in a High-Z state. $\overline{\text { SE }}$ is also used during a TRANSFER operation to indicate whether a SAM-TO-DRAM TRANSFER or a SERIAL-INPUT-MODE ENABLE cycle is performed. |
| 5, 6, 19, 20 | 11,12,1,2 | DQ1 - DQ4 | Input/ Output | DRAM Data I/O: Inputs, Outputs, or High-Z, and/or Mask Data Inputs: For MASKED WRITE cycle only. |
| 2, 3, 22, 23 | 8,9,4,5 | SDQ1-SDQ4 | Input/ Output | Serial Data I/O: Input, Output, or High-Z. |
| 12 | 18 | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 24 | 6 | Vss | Supply | Ground |

## FUNCTIONAL DESCRIPTION

The VRAM can be divided into three functional blocks (see Figure 1); the DRAM, the transfer control circuitry, and the serial access memory (SAM). All of the operations described below arealso shown in the AC Timing Diagrams section of this data sheet, and are summarized in the Truth Table.

Note: For dual function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing transfer operations the $\overline{T R} / \overline{O E}$ in will be shown as $\overline{T R} /(\overline{O E})$.

## DRAM OPERATION

The DRAM portion of the VRAM is functionally identical to standard $64 \mathrm{~K} \times 4$ DRAMs. However, because several of the DRAM control pins are used for additional functions on this part, several conditions that were undefined or "don't care" states for the DRAM are specified for the VRAM. These conditions arehighlighted in the following discussion.

## READ/WRITE Cycles

The 16 address bits that are used to select a 4 -bit word from the 65,536 available are latched into the chip using the A $0-A 7, \overline{R A S}$, and $\overline{\text { CAS }}$ inputs. First, the 8 row-address bits are set up on the address inputs and clocked into the part when RAS transitions from HIGH to LOW. Next, the 8 column-address bits are set up on the address inputs and clocked-in when CAS goes from HIGH to LOW.
For single port DRAMs the $\overline{O E}$ pin is a "don't care" when $\overline{\text { RAS }}$ goes LOW. For the VRAM, (TR)/ $\overline{\mathrm{OE}}$ is used, when $\overline{\text { RAS }}$ goes LOW, to select between an internal transfer operation and a DRAM operation. ( $\overline{\mathrm{TR}}) / \overline{\mathrm{OE}}$ must be HIGH at the $\overline{\text { RAS }}$ HIGH to LOW transition for a DRAM port READ or WRITE operation.

If $(\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is HIGH when $\overline{\mathrm{CAS}}$ goes LOW, a DRAM READoperation is performed and the data from the memory cells selected will appear at the DQ1 - DQ4 port. The (TR)/ $\overline{\mathrm{OE}}$ input must be LOW to enable the DRAM output port.
For single port DRAMs, WE is a "don't care" when RAS goes LOW. For the VRAM, ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is used, when $\overline{\text { RAS }}$ goes LOW, to select between a MASKED WRITE cycle and anormalWRITEcycle.If( $\overline{\mathrm{ME}}) / \overline{\text { WEisLOW at the }} \overline{\text { RASHIGH }}$ to LOW transition, a MASKED WRITE operation is selected. For a normal DRAM WRITE operation, ( $\overline{\mathrm{ME}}) / \overline{\text { WE }}$ must be HIGH at the RAS HIGH to LOW transition. (ME)/ $\overline{W E}$ is a "don't care" at the $\overline{\text { RAS HIGH to LOW transition for }}$ a DRAM READ cycle.
If ( $\overline{\mathrm{ME}}$ ) $/ \overline{\mathrm{WE}}$ is LOW when $\overline{\text { CAS }}$ goes LOW, a DRAM WRITE operation is performed and the data present on the DQ1 - DQ4 port will be written into the selected memory cells. If $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ is LOW when $\overline{\mathrm{RAS}}$ goes LOW, the input data will be "masked" before being stored in the DRAM.

The VRAM can perform all the normal DRAM cycles including EARLY-WRITE, LATE-WRITE, READ-WRITE, READ-MODIFY-WRITE, PAGE-MODE READ, PAGEMODEWRITE, and PAGE-MODEREAD-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in this data sheet for more details on these operations.

## REFRESH

The MT42C4064 supports $\overline{\text { RAS }}$ ONLY, $\overline{\text { CAS-BEFORE- }}$ $\overline{\text { RAS, }}$, and HIDDEN types of refresh cycles. All 256 rowaddress combinations must be accessed within 4 ms . For the $\overline{\text { CAS-BEFORE- }} \overline{\mathrm{RAS}}$ refresh mode, the row addresses are generated internally and the user need not supply them as he mustin $\overline{\mathrm{RASONL}} \mathrm{Y}$ refresh. $\overline{\mathrm{TR}} /(\overline{\mathrm{OE})}$ mustbeHIGH when $\overline{\text { RAS }}$ goes LOW for the RAS ONLY and CAS-BEFORERAStypes of refresh cycles. Any READ, WRITE, or TRANSFER operation also refreshes the DRAM row that is being accessed.


X = NOT EFFECTIVE (DON'T CARE)
$\square / \triangle$ don't care
UNDEFINED
Figure 2
MT42C4064 MASKED WRITE

## MASKED WRITE

If $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ is LOW at the $\overline{\mathrm{RAS}} \mathrm{HIGH}$ to LOW transition, the data (mask data) present on the DQ1-DQ4 inputs will be written into the bit mask data register. The mask data acts as an individual write enable for each of the four DQ1-DQ4 pins. If a LOW $(\operatorname{logic} 0)$ is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic 1) on a mask data register bit enables the input port and allows normal WRITE operations to proceed. Note that $\overline{\mathrm{CAS}}$ is still HIGH. When

CAS goes LOW, the bits present on the DQ1 - DQ4 inputs will be written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW). The DRAM contents that correspond to the masked bits will not be changed during the WRITE cycle. Since the mask data register is reset (to all 1 's) at the end of every MASKED WRITE cycle, new mask data must be supplied at the beginning of each MASKED WRITE cycle. An example of a typical MASKED WRITE cycle is shown in Figure 2.

## TRANSFER OPERATION <br> DRAM-TO-SAM TRANSFER (READ TRANSFER)

A TRANSFER operation is initiated when $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is LOW at $\overline{\mathrm{RAS}}(\mathrm{HIGH}$ to LOW) time. ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ indicates the direction of the transfer and must beHIGHas $\overline{R A S} g o e s L O W$ for a DRAM-TO-SAM TRANSFER. In this case, the row address bits indicate the four 256-bit DRAM rows that are to be transferred to the four SAM data registers, and the column address bits indicate the start address, or Tap, of the next SERIAL OUTPUT cycle from the SAM data registers. $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ are used to strobe the address bits into the part. To complete the TRANSFER, $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is taken HIGH while $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ are still LOW. The 1024 bits of DRAM data are then written into the SAM data registers and the serial shift start address is stored in an internal 8-bit register. There must be no rising edges on the serial clock (SC) input while a normal READ TRANSFER is taking place (refer to the AC timing diagrams for READ TRANSFER). A REALTIME READ-TRANSFER cycle is the only time when SC must be synchronized with the DRAM $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ timing (by using $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is to fire the TRANSFER, LOW to HIGH transition). See the REAL-TIME READ-TRANSFER AC timing waveforms. If $\overline{S E}$ is LOW, the first bits of the new row data will appear at the serial outputs with the first SC clock pulse. $\overline{\text { SE }}$ enables the serial outputs and may be either HIGH or LOW during this operation.

## SAM-TO-DRAM TRANSFER (WRITE TRANSFER)

The SAM-TO-DRAM TRANSFER operation is identical to the DRAM-TO-SAM TRANSFER described above except that $(\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ and $\overline{\mathrm{SE}}$ must be LOW when $\overline{\mathrm{RAS}}$ goes LOW. The row address indicates the DRAM row that the SAM data registers will be written to and the column address indicates the Tap address of the next SERIAL INPUT cycle for the SAM data registers. If $\overline{S E}$ is HIGH when RASgoes LOW, aSERIAL-INPUT-MODE ENABLE cycle is performed.

## SAM OPERATION <br> SERIAL INPUT/OUTPUT MODE CONTROL

TheSAM port is automatically placed in the serial output mode after a DRAM-TO-SAM TRANSFER operation. Conversely, after a SAM-TO-DRAMTRANSFER, theSAM port will be in the serial input mode.

## SERIAL-INPUT-MODE ENABLE (PSEUDO WRITE TRANSFER)

It is possible to change the direction of the SAM port from output to input without performing a SAM-TO-DRAM TRANSFER. This operation, called aSERIAL-INPUT-MODE ENABLE cycle, is simply a SAM-TO-DRAM TRANSFER cycle with $\overline{\text { SE }}$ held HIGH instead of LOW. The DRAM data will not be disturbed and the data registers will be ready to accept input data.

The only way to put the SAM port in the serial output mode is to do a DRAM-TO-SAM TRANSFER.

## SERIAL INPUT and SERIAL OUTPUT

The control inputs for SERIAL INPUT and SERIAL OUTPUT are SC and $\overline{S E}$. The rising edge of SC increments the serial address counter and provides access to the next SAMlocation. $\overline{\text { SE }}$ enables or disables the serial input/output buffers.

Serial output of the SAM data register contents will start at the tap start address that was loaded during the DRAM-TO-SAM TRANSFER cycle. The SC input increments the address counter and presents the contents of the next SAM location to the 4 -bit port. $\overline{\mathrm{SE}}$ is used as an output enable during the SAM output operation. The serial address is automatically incremented with every SC LOW to HIGH transition, regardless of whether $\overline{\mathrm{SE}}$ is HIGH or LOW, and will wrap around to location 0 after reaching its maximum count of 255 .

SC is also used to clock-in data when the device is in the serial input mode. As in the serial output operation, the serial address register contents, which was loaded when the serial input mode were enabled, will determine the serial address to which the first bit will be written. $\overline{\mathrm{SE}}$ acts as an enable for serial data input and must be LOW for normal serial input. If $\overline{\mathrm{SE}}$ is HIGH, the data inputs are disabled and the SAM contents will not be modified. The serial address register is incremented with every $L \rightarrow H$ transition of SC, regardless of the logic level on the $\overline{\mathrm{SE}}$ input.

## TRUTH TABLE

DRAM Operations (SC, SE, and SDQ1 - SDQ4 are "don't care")

| Function | RAS | CAS | $\overline{\text { ME/WE }}$ |  | TR/OE |  | Addresses |  | $\begin{aligned} & \text { DQ1 } \\ & \text { to } \\ & \text { DQ44 } \end{aligned}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | tR* | tC* | tR* | tC* | tR* | tC* |  |  |
| Standby | H | H | X | X | X | X | X | X | High-Z |  |
| READ | L | L | X | H | H | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | Data Out |  |
| WRITE <br> (EARLY-WRITE) | L | L | H | L | H | X | ROW | COL | Data In | 1 |
| MASKED WRITE | $\mathrm{H} \rightarrow \mathrm{L}$ | L | L | L | H | X | ROW | COL | Mask Data In, Valid Data In |  |
| READ-WRITE | L | L | H | $\mathrm{H} \rightarrow \mathrm{L}$ | H | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out | 1 |
| PAGE-MODE READ | L | $\begin{aligned} & \mathrm{H} \rightarrow \mathrm{~L} \rightarrow \mathrm{H}, \\ & \mathrm{H} \rightarrow \mathrm{~L} \rightarrow \mathrm{H} \end{aligned}$ | H | H | H | $\mathrm{H} \rightarrow \mathrm{L}$ | ROW | COL | Valid Data Out |  |
| PAGE-MODE WRITE | L | $\begin{aligned} & \mathrm{H} \rightarrow \mathrm{~L} \rightarrow \mathrm{H}, \\ & \mathrm{H} \rightarrow \mathrm{~L} \rightarrow \mathrm{H} \end{aligned}$ | H | L | H | X | ROW | COL | Valid Data In |  |
| PAGE-MODE READ-WRITE | L | $\begin{aligned} & \mathrm{H} \rightarrow \mathrm{~L} \rightarrow \mathrm{H}, \\ & \mathrm{H} \rightarrow \mathrm{~L} \rightarrow \mathrm{H} \end{aligned}$ | H | $\mathrm{H} \rightarrow \mathrm{L}$ | H | $\mathrm{L} \rightarrow \mathrm{H}$ | ROW | COL | Valid Data Out, Valid Data In | 1 |
| RAS-ONLY REFRESH | L | H | X | n/a | H | n/a | ROW | n/a | High-Z |  |
| HIDDEN REFRESH | $\mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L}$ | L | X | H | X | L | ROW | COL | Valid Data Out |  |
| CAS-BEFORERAS REFRESH | $\mathrm{H} \rightarrow \mathrm{L}$ | L | X | X | X | X | X | X | High-Z |  |

TRANSFER Operations (DQ1 - DQ4 are "don't care")

| Function | RAS | CAS | ME/WE |  | TR/OE |  | Addresses |  | SC | $\overline{\text { SE }}$ | $\begin{aligned} & \text { SDQ1 } \\ & \text { to } \\ & \text { SDQ4 } \end{aligned}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | tR* | tC* | tR* | tC* | tR* | tC* |  |  |  |  |
| DRAM-TO-SAM TRANSFER | L | L | H | X | L | L | ROW | TAP** | X | X | X | 2 |
| SAM-TO-DRAM TRANSFER | L | L | L | X | L | X | ROW | TAP** | X | L | X | 3 |
| SERIAL-INPUTMODE ENABLE | L | L | L | X | L | X | ROW | TAP** | X | H | X | 4 |

* tR = when $\overline{\text { RAS }}$ goes from HIGH to LOW
tC $=$ when CAS goes from HIGH to LOW
** TAP = Tap Address, the serial address to which the next serial input or output cycle will start.

Notes: 1. Any type of WRITE cycle may also be a MASKED WRITE cycle.
2. The SAM will be in a SERIAL OUTPUT mode after a DRAM-TO- SAM TRANSFER.
3. The SAM will be in a SERIAL INPUT mode after a SAM-TO-DRAM TRANSFER.
4. The SAM will be put in the SERIAL INPUT mode but the SAM-TO-DRAM TRANSFER will not occur.

## TRUTH TABLE

Serial I/O Operations ( $\overline{R A S}, \overline{C A S}, \overline{M E} / \overline{W E}$, TR/OE, and DQ1 - DQ4 are "don't care")

| Function | SC | $\overline{\text { SE }}$ | SDQ1 - SDQ4 | Notes |
| :--- | :---: | :---: | :---: | :---: |
| SERIAL OUTPUT | $\mathrm{L} \rightarrow \mathrm{H}$ | L | Valid Data Out | 5 |
| SERIAL INPUT | $\mathrm{L} \rightarrow \mathrm{H}$ | L | Valid Data In | 6 |

Notes: 5. The SAM must be in the SERIAL OUTPUT mode.
6. The SAM must be in the SERIAL INPUT mode.
ABSOLUTE MAXIMUM RATINGS*
Voltage on Vcc supply relative to Vss .........-1.0V to +7.0 V
Operating Temperature, Ta (Ambient) ........... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Plastic) ................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ....................................................... 1 W
Short Circuit Output Current ................................... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is notimplied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 | $\mathrm{Vcc}_{\mathrm{cc}}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | $\mathrm{V}_{\mathrm{IL}}$ | -1.0 | 0.8 | V | 1 |

## DC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT LEAKAGE CURRENT <br> (any input ( $0 \mathrm{~V} \leq \mathrm{V} \operatorname{IN} \leq \mathrm{Vcc}$ ), all other pins not under test $=0 \mathrm{~V}$ ). | IL | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( $\mathrm{DQ}, \mathrm{SDQ}$ disabled, $0 \mathrm{~V} \leq \mathrm{Vout} \leq \mathrm{Vcc}$ ). | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage (lout $=-5 \mathrm{~mA}$ ) | Vон | 2.4 |  |  |  |
| Output Low Voltage ( $\mathrm{lout}=5 \mathrm{~mA}$ ) | Vol |  | 0.4 | V | 1 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: $\mathrm{AO}-\mathrm{A} 7$ | $\mathrm{Cl}_{11}$ |  | 5 | pF | 18 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{WE}}, \overline{\mathrm{OE}, ~ S C, ~ \overline{S E}}$ | $\mathrm{Cl}_{12}$ |  | 7 | pF | 18 |
| Output Capacitance: $\mathrm{DQ}, \mathrm{SDQ}$ | $\mathrm{C}_{0}$ |  | 7 | pF | 18 |

CURRENT DRAIN, SAM IN STANDBY
(Notes 2,3) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION OF DRAM | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OPERATING CURRENT ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling; ${ }^{\text {t }} \mathrm{C}={ }^{\text {t }} \mathrm{RC}(\mathrm{MIN})$ ). | Icc1 |  | 40 | mA |  |
| OPERATING CURRENT: PAGE MODE $\left(\overline{\mathrm{RAS}}=\mathrm{V} \mathrm{IL}, \overline{\mathrm{CAS}}=\text { Cycling; tPC }={ }^{\text {tPC }}(\mathrm{MIN})\right) .$ | Icc2 |  | 40 | mA |  |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$ after 8 RAS cycles MIN). | Icc3 |  | 10 | mA |  |
| STANDBY CURRENT: CMOS INPUT LEVELS <br> Power supply standby current ( $\overline{\text { RAS }}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V}$ <br> after 8 RAS cycles MIN. All other inputs at $\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{Vss}+0.2 \mathrm{~V}$ ). | Icc4 |  | 4 | mA |  |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY ( $\overline{\mathrm{RAS}}=$ Cycling; $\overline{\mathrm{CAS}}=\mathrm{V}$ IH). | Icc5 |  | 30 | mA |  |
| REFRESH CURRENT: $\overline{\text { CAS }}$ - BEFORE- $\overline{R A S}$ ( $\overline{\text { RAS }}$ and $\overline{\mathrm{CAS}}=$ Cycling). | Icce |  | 30 | mA | 22 |
| SAM/DRAM DATA TRANSFER | lcc7 |  | 60 | mA |  |

CURRENT DRAIN, SAM ACTIVE ( ${ }^{\text {TS }}=$ MIN)
(Notes 2, 3) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION OF DRAM | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OPERATING CURRENT ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling; ${ }^{\text {t }} \mathrm{C}={ }^{\text {t }} \mathrm{RC}(\mathrm{MIN})$ ). | Icc8 |  | 60 | mA |  |
| OPERATING CURRENT: PAGE MODE ( $\overline{\mathrm{RAS}}=\mathrm{V} \mathrm{IL}, \overline{\mathrm{CAS}}=$ Cycling; ${ }^{\mathrm{t} P \mathrm{C}}={ }^{\text {tPC }}(\mathrm{MIN})$ ). | Icca |  | 60 | mA |  |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$ after 8 RAS cycles MIN). | Icc10 |  | 30 | mA |  |
| STANDBY CURRENT: CMOS INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V}$ <br> after 8 RAS cycles MIN. All other inputs at $\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{Vss}+0.2 \mathrm{~V}$ ). | Icc11 |  | 25 | mA |  |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY ( $\overline{\mathrm{RAS}}=\mathrm{Cycling}$; $\overline{\mathrm{CAS}}=\mathrm{V} 1 \mathrm{H})$ ). | Icc12 |  | 50 | mA |  |
| REFRESH CURRENT: $\overline{\text { CAS }-B E F O R E-\overline{R A S ~}}$ ( $\overline{\text { RAS }}$ and $\overline{\text { CAS }}=$ Cycling). | Icc13 |  | 50 | mA | 22 |
| SAM/DRAM DATA TRANSFER | Icc14 |  | 90 | mA |  |

## DRAM TIMING PARAMETERS

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 3, 4, 5, 6, 10, 11, 17) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -10 |  | -12 |  | -15 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t }}$ RC | 190 |  | 220 |  | 260 |  | ns |  |
| READ-MODIFY-WRITE cycle time | ${ }^{\text {t }}$ RWC | 250 |  | 295 |  | 345 |  | ns | 20, 21 |
| PAGE-MODE READ or WRITE cycle time | ${ }^{\text {t PC }}$ | 75 |  | 90 |  | 110 |  | ns | 6 |
| PAGE-MODE READ-MODIFY-WRITE cycle time | ${ }^{\text {t PRWWC }}$ | 125 |  | 150 |  | 175 |  | ns | 20, 21 |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {t } R A C}$ |  | 100 |  | 120 |  | 150 | ns | 7,8 |
| Access time from $\overline{\text { CAS }}$ | ${ }^{\text {t }}$ CAC |  | 50 |  | 60 |  | 75 | ns | 7,9 |
| RAS pulse width | ${ }^{\text {tras }}$ | 100 | 10,000 | 120 | 10,000 | 150 | 10,000 | ns |  |
| $\overline{\text { RAS }}$ pulse width (PAGE MODE) | ${ }^{\text {trasP }}$ | 100 | 100,000 | 120 | 100,000 | 150 | 100,000 | ns |  |
| RAS hold time | ${ }^{\text {tr }}$ ASH | 50 |  | 60 |  | 75 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }}$ RP | 80 |  | 90 |  | 100 |  | ns |  |
| CAS pulse width | ${ }^{\text {t }}$ CAS | 50 | 10,000 | 60 | 10,000 | 75 | 10,000 | ns |  |
| CAS hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 100 |  | 120 |  | 150 |  | ns |  |
| CAS precharge time | ${ }^{\text {t }}$ CPN | 15 |  | 20 |  | 25 |  | ns |  |
| CAS precharge time (PAGE MODE) | ${ }^{\text {t }} \mathrm{CP}$ | 15 |  | 20 |  | 25 |  | ns | 19 |
| $\overline{\text { RAS }}$ to CAS delay | ${ }^{\text {t }}$ tCD | 15 | 50 | 15 | 60 | 15 | 75 | ns | 13 |
| $\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }}$ 'RP | 10 |  | 10 |  | 10 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {traH }}$ | 15 |  | 15 |  | 15 |  | ns |  |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }}$ CAH | 20 |  | 20 |  | 25 |  | ns |  |
| Column address hold time (referenced to RAS) | ${ }^{\text {t }} \mathrm{AR}$ | 45 |  | 70 |  | 80 |  | ns |  |
| READ command setup time | ${ }^{\text {tras }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| READ command hold time (referenced to $\overline{\mathrm{CAS}}$ ) | ${ }^{\text {t }} \mathrm{RCH}$ | 0 |  | 0 |  | 0 |  | ns | 14 |
| READ command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t RRH }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| WE command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns | 16 |
| WRITE command hold time | ${ }^{\text {t }} \mathrm{WCH}$ | 20 |  | 25 |  | 30 |  | ns |  |
| WRITE command hold time (referenced to RAS) | ${ }^{\text {t }} \mathrm{WCR}$ | 70 |  | 80 |  | 90 |  | ns |  |
| WRITE command pulse width | ${ }^{\text {t }}$ WP | 20 |  | 25 |  | 30 |  | ns |  |
| WRITE command to RAS lead time | ${ }^{\text {traw }}$ | 25 |  | 30 |  | 35 |  | ns |  |
| WRITE command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }} \mathrm{CWL}$ | 25 |  | 30 |  | 35 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 15 |
| Data-in hold time | ${ }^{\text {t }}$ D | 15 |  | 20 |  | 25 |  | ns | 15 |
| Data-in hold time (referenced to $\overline{\text { RAS }}$ ) | ${ }^{\text {t }}$ DHR | 70 |  | 80 |  | 90 |  | ns |  |
| CAS to WE delay | ${ }^{\text {t }}$ CWD | 65 |  | 80 |  | 95 |  | ns | 16, 20 |
| $\overline{\mathrm{RAS}}$ to WE delay | ${ }^{\text {t }}$ WWD | 120 |  | 150 |  | 185 |  | ns | 16,20 |
| $\overline{\mathrm{ME} / \mathrm{WE}}$ to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ WSR | 0 |  | 0 |  | 0 |  | ns |  |

MT42C4064

DRAM TIMING PARAMETERS (Continued)
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes 3, $4,5,6,10,11,17)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right.$ )

| A.C. CHARACTERISTICS |  | -10 |  | -12 |  | -15 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| $\overline{\text { ME } / \overline{\text { WE }} \text { to } \overline{\mathrm{RAS}} \text { Hold Time }}$ | ${ }^{\text {t }}$ RWH | 10 |  | 10 |  | 15 | ns |  |  |
| Mask Data (DQ) to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ MS | 0 |  | 0 |  | 0 |  | ns |  |
| Mask Data (DQ) to $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {t }} \mathrm{MH}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Transition time (rise or fall) | ${ }^{\text {t }}$ T | 3 | 50 | 3 | 50 | 3 | 50 | ns |  |
| Refresh period (256 cycles) | ${ }^{\text {t }}$ tEF |  | 4 |  | 4 |  | 4 | ms |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {t RPC }}$ |  | 0 |  | 0 |  | 0 | ns |  |
| $\overline{\text { CAS }}$ setup time (CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }}$ CSR | 10 |  | 10 |  | 10 |  | ns |  |
| CAS hold time (CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 20 |  | 25 |  | 30 |  | ns | 22 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t }} \mathrm{CLZ}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {toFF }}$ | 0 | 25 | 0 | 25 | 0 | 30 | ns | 7,12 |
| Access time from ( $\overline{\mathrm{TR}}$ )/ $\overline{\mathrm{OE}}$ | ${ }^{\text {t }} \mathrm{OE}$ |  | 25 |  | 25 |  | 30 | ns |  |
| Output Disable | ${ }^{\text {t }} \mathrm{OD}$ | 0 | 25 | 0 | 25 | 0 | 30 | ns |  |
| Output Disable hold time from start of WRITE | ${ }^{\text {t OEH }}$ |  | 25 |  | 25 |  | 30 | ns |  |
| Output Enable to $\overline{\text { RAS }}$ delay | ${ }^{\text {t ORD }}$ |  | 0 |  | 0 |  | 0 | ns |  |

TRANSFER AND MODE CONTROL TIMING PARAMETERS
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes $3,4,5,6,17)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -10 |  | -12 |  | -15 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| TRANSFER command to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ S | 0 |  | 0 |  | 0 |  | ns | 23 |
| TRANSFER command to RAS hold time | ${ }^{\text {t }}$ RTH | 80 |  | 90 |  | 100 |  | ns | 23 |
| TRANSFER command to CAS hold time | ${ }^{\text {t }} \mathrm{CTH}$ | 30 |  | 30 |  | 35 |  | ns | 23 |
| TRANSFER command to SC lead time | ${ }^{\text {t }}$ TSL | 5 |  | 5 |  | 10 |  | ns | 23 |
| TRANSFER command to RAS lead time | ${ }^{\text {t }}$ TRL | 10 |  | 10 |  | 10 |  | ns | 23 |
| TRANSFER command to $\overline{\text { RAS delay time }}$ | ${ }^{\text {t }}$ TRD | 15 |  | 15 |  | 20 |  | ns | 23 |
| TRANSFER command to $\overline{\text { CAS }}$ time | ${ }^{\text {t }}$ TCL | 10 |  | 10 |  | 10 |  | ns | 23 |
| TRANSFER command to CAS delay time | ${ }^{\text {t }}$ TCD | 15 |  | 15 |  | 20 |  | ns | 23 |
| First SC edge to TRANSFER command delay time | ${ }^{\text {t }}$ TSD | 10 |  | 10 |  | 20 |  | ns | 23 |
| $\overline{\text { CAS }}$ to first SC delay | ${ }^{\text {t }}$ RSD |  | 95 |  | 105 |  | 115 | ns |  |
| RAS to first SC delay | ${ }^{\text {t }}$ CSD |  | 25 |  | 35 |  | 45 | ns |  |
| SAM-TO-DRAM (WRITE) transfer command to RAS hold time | ${ }^{\text {t }}$ RTHW | 15 |  | 15 |  | 15 |  | ns |  |
| Serial output buffer turn-off delay from $\overline{R A S}$ | ${ }^{\text {t }}$ SDZ | 10 | 40 | 10 | 50 | 10 | 60 | ns |  |
| SC to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ RRS | 35 |  | 40 |  | 45 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to SC delay time | ${ }^{\text {t }}$ SRD | 25 |  | 30 |  | 35 |  | ns |  |
| Serial data input to SE delay time | ${ }^{\text {t }}$ SZE | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\text { RAS }}$ to SD buffer turn-on time | ${ }^{\text {t }}$ SRO | 0 |  | 0 |  | 0 |  | ns |  |
| Serial data input delay from $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ SDD | 50 |  | 55 |  | 60 |  | ns |  |
| Serial data input to $\overline{\text { RAS }}$ delay time | ${ }^{\text {t }}$ SZS | 0 |  | 0 |  | 0 |  | ns |  |
| SERIAL INPUT MODE ENABLE (SE) to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t ESR }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| SERIAL INPUT MODE ENABLE ( $\overline{\mathrm{SE}}$ ) to $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {t }} \mathrm{REH}$ | 15 |  | 15 |  | 15 |  | ns |  |
| NONTRANSFER command to $\overline{R A S}$ setup time | ${ }^{t} \mathrm{YS}$ | 0 |  | 0 |  | 0 |  | ns | 24 |
| NONTRANSFER command to $\overline{\text { RAS }}$ hold time | ${ }^{t} \mathrm{YH}$ | 15 |  | 15 |  | 20 |  | ns | 24 |

## SAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes 3, 4, 5, 17, 25) ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -10 |  | -12 |  | -15 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Serial clock cycle time | ${ }^{\text {t }}$ S | 33 | 50000 | 40 | 50000 | 60 | 50000 | ns |  |
| Access time from SC | ${ }^{\text {t }}$ SAC |  | 33 |  | 40 |  | 60 | ns | 25 |
| SC precharge time | ${ }^{\text {t }}$ SP | 10 |  | 10 |  | 20 |  | ns |  |
| SC pulse width | ${ }^{\text {t }}$ SAS | 10 |  | 10 |  | 20 |  | ns |  |
| Access time from $\overline{\mathrm{SE}}$ | ${ }^{\text {t }}$ SEA |  | 25 |  | 30 |  | 40 | ns | 25 |
| $\overline{\text { SE precharge time }}$ | ${ }^{\text {t SEP }}$ | 10 |  | 15 |  | 20 |  | ns |  |
| $\overline{\text { SE pulse width }}$ | ${ }^{\text {t }}$ SE | 15 |  | 15 |  | 20 |  | ns |  |
| Serial data out hold time after SC high | ${ }^{\text {t }} \mathrm{SOH}$ | 10 |  | 10 |  | 10 |  | ns | 25 |
| Serial output buffer turn off delay from $\overline{\text { SE }}$ | ${ }^{\text {t }}$ SEZ | 0 | 15 | 0 | 25 | 0 | 30 | ns | 25 |
| Serial data in setup time | ${ }^{\text {t }}$ SDS | 0 |  | 0 |  | 0 |  | ns |  |
| Serial data in hold time | ${ }^{\text {t }}$ SDH | 15 |  | 20 |  | 25 |  |  |  |
| SERIAL INPUT (Write) Enable setup time | ${ }^{\text {t }}$ SWS | 0 |  | 0 |  | 0 |  | ns |  |
| SERIAL INPUT (Write) Enable hold time | ${ }^{\text {t }}$ SWH | 20 |  | 35 |  | 45 |  | ns |  |
| SERIAL INPUT (Write) Disable setup time | ${ }^{\text {t }}$ WWIS | 0 |  | 0 |  | 0 |  | ns |  |
| SERIAL INPUT (Write) Disable hold time | ${ }^{\text {t }}$ WWIH | 20 |  | 35 |  | 45 |  | ns |  |

## NOTES

1. All voltages referenced to Vss.
2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
3. An initial pause of $100 \mu$ s is required after power-up followed by any eight $\overline{\text { RAS }}$ cycles and 1 SC cycle, before proper device operation is assured. The $\overline{R A S}$ cycle wake-up should be repeated any time the 4 ms static refresh require-ment is exceeded.
4. AC characteristics assume ${ }^{\mathrm{t}} \mathrm{T}=5 \mathrm{~ns}$.
5. $\mathrm{V}_{\mathrm{IH}}(\mathrm{MIN})$ and $\mathrm{VIL}_{\mathrm{IL}}(\mathrm{MAX})$ are reference levels for measuring timing of input signals. Transition times are measured between $V_{I H}$ and $V_{I L}$.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ) is assured.
7. Measured with a load equivalent to 2 TTL gates and 100 pF .
8. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t}$ RCD exceeds the value shown.
9. Assumes that ${ }^{t} R C D \geq{ }^{t} R C D$ (MAX).
10. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, DRAM data output is high impedance.
11. If $\overline{\mathrm{CAS}}=$ Vil, DRAM data output may contain data from the last valid READ cycle.
12. ${ }^{\text {t }} \mathrm{OFF}$ (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VoH or Vol.
13. Operation within the ${ }^{t} R C D(M A X)$ limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{\mathrm{t}} \mathrm{RCD}$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} \mathrm{CAC}$.
14. ${ }^{t} \mathrm{RCH}$ is referenced to the first rising edge of $\overline{\mathrm{RAS}}$ or $\overline{\text { CAS. }}$
15. These parameters are referenced to $\overline{\text { CAS }}$ leading edge
in EARLY WRITE cycles and to $\overline{W E}$ leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
16. ${ }^{\mathrm{t}} \mathrm{WCS},{ }^{\mathrm{t}} \mathrm{CWD}$ and ${ }^{\mathrm{t}} \mathrm{RWD}$ are restrictive operating parameters in READ-WRITE and READ-MODIFYWRITE cycles only. If ${ }^{t} W C S \geq^{t} W C S$ (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain open circuit throughout the entire cycle. If ${ }^{\mathrm{t}} \mathrm{CWD} \geq{ }^{\mathrm{t}} \mathrm{CWD}$ (MIN) and ${ }^{\mathrm{t}} \mathrm{RWD} \geq^{\mathrm{t}}$ RWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out (at access time and until $\overline{\mathrm{CAS}}$ goes back toViH) is indeterminate. If ${ }^{t} W C S \leq^{t} W C S$, the cycle is a LATE WRITE $[\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ falls after CAS] ${ }^{\mathrm{t}} \mathrm{WCS},{ }^{\mathrm{t}} \mathrm{CWD}$ and ${ }^{t}$ RWD do not apply.
17. In addition to meeting the transition rate specification, all input signals must transit between $V_{\text {IH }}$ and VIL (or between VIL and VIH) in a monotonic manner.
18. Capacitance calculated from the equation $C=\underline{I \Delta t}$ $\Delta \mathrm{V}$
with $\Delta \mathrm{V}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$. This parameter is sampled.
19. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}, \mathrm{DQ}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{\mathrm{t}} \mathrm{CP}$. Note 8 applies to determine valid data out.
20. Includes the $\overline{\mathrm{OE}}$ delay time ( 30 ns for the $-10,40 \mathrm{~ns}$ for the -12 , and 50 ns for the -15 ).
21. During a READ cycle, if $\overline{\mathrm{OE}}$ is LOW then taken HIGH (VIH) DQ goes open. If $\overline{\mathrm{OE}}$ is tied permanently LOW a READ-MODIFY-WRITE operation is not possible.
22. Enables on-chip refresh and address counters.
23. TRANSFER command means that $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is LOW when $\overline{R A S}$ goes LOW.
24. NONTRANSFER command means that $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is HIGH when $\overline{R A S}$ goes LOW.
25. Measured with a load equivalent to 2 TTL gates and 50 pF .

## DRAM READ CYCLE



DRAM EARLY-WRITE CYCLE


DRAM MASKED WRITE CYCLE


## DRAM READ-WRITE CYCLE (READ-MODIFY-WRITE CYCLE and LATE-WRITE CYCLE)



NOTE: If $\overline{M E} \overline{W E}$ is LOW, a MASKED WRITE cycle will be performed.

DRAM PAGE-MODE READ CYCLE


DRAM PAGE-MODE EARLY-WRITE CYCLE


NOTE: If $\overline{M E} \overline{W E}$ is LOW, a MASKED WRITE cycle will be performed.

DRAM PAGE-MODE READ-WRITE CYCLE
(READ-MODIFY-WRITE CYCLE)


NOTE: 1. If $\overline{M E} \overline{W E}$ is LOW, a MASKED WRITE cycle will be performed.
RAS-ONLY REFRESH CYCLE ( $\overline{\mathrm{ME}} \overline{\mathrm{WE}}=$ Don't Care)


CAS-BEFORE-RAS REFRESH CYCLE ( $\mathrm{A}_{0}-\mathrm{A}_{7}$ and $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}$ are Don't Care.)


## HIDDEN REFRESH CYCLE



NOTE: A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case $\overline{M E} \overline{\mathrm{NE}}=\mathrm{LOW}$ (when $\overline{\mathrm{CAS}}$ goes LOW) and $\overline{T R} / \overline{O E}=\mathrm{HIGH}$.

## DRAM-TO-SAM TRANSFER <br> (READ TRANSFER)

(When part was previously in the SERIAL OUTPUT mode.)


NOTE: This $\overline{\operatorname{SE}}$ pulse is shown to illustrate the SERIAL OUTPUT ENABLE and DISABLE timing. It is not required.

## DRAM-TO-SAM TRANSFER <br> (READ TRANSFER)

(When part was previously in the SERIAL INPUT mode.)


NOTE: There must be no rising edges on the SC input during this time.

## SAM-TO-DRAM TRANSFER (WRITE TRANSFER)

(When part was previously in the SERIAL INPUT mode.)


NOTE: 1. If $\overline{S E}$ is LOW, the SAM data will be transferred to the DRAM.
If $\overline{\text { SE }}$ is HIGH, the SAM data will not be transferred to the DRAM (SERIAL INPUT MODE ENABLE cycle).
2. $\overline{\mathrm{SE}}$ must be LOW to input new serial data, but the serial address register is incremented by SC regardless of $\overline{S E}$.
3. There must be no rising edges on the SC input during this time.

## SAM-TO-DRAM TRANSFER (WRITE TRANSFER or PSEUDO WRITE TRANSFER) (When part was previously in the SERIAL OUTPUT mode.)


$Z / Z a$ dont care
undefined

NOTE: 1. If $\overline{S E}$ is LOW, the SAM data will be transferred to the DRAM.
If $\overline{\text { SE }}$ is HIGH, the SAM data will not be transferred to the DRAM (SERIAL INPUT MODE ENABLE cycle).
2. $\overline{\text { SE }}$ must be LOW to input new serial data, but the serial address register is incremented by SC regardless of $\overline{\mathrm{SE}}$.
3. There must be no rising edges on the SC input during this time.

## SAM SERIAL INPUT



SAM SERIAL OUTPUT


Z/A dont care
undefined

## VRAM

## 256K x 4 DRAM WITH $512 \times 4$ SAM

## FEATURES

－Industry standard pinout，timing and functions
－High performance CMOS silicon gate process
－Single $+5 \mathrm{~V} \pm 10 \%$ power supply
－Inputs and outputs are fully TTL and CMOS compatible
－Refresh modes：$\overline{\text { RAS－ONLY，}} \overline{\mathrm{CAS}}$ BEFORE－$\overline{R A S}$ ，and HIDDEN
－512－cycle refresh within 8 ms
－Optional FAST PAGE MODE access cycles
－Dual port organization： $256 \mathrm{~K} \times 4$ DRAM port $512 \times 4$ SAM port
－No refresh required for Serial Access Memory
－Low power： 15 mW standby； 275 mW active，typical
－Fast access times－80ns random，25ns serial

## SPECIAL FUNCTIONS

－JEDEC Standard Function set
－PERSISTENT MASKED WRITE
－SPLIT READ TRANSFER
－WRITE TRANSFER／SERIAL INPUT
－ALTERNATE WRITE TRANSFER

## OPTIONS

－Timing（DRAM，SAM）

| $80 \mathrm{~ns}, 25 \mathrm{~ns}$ | -8 |
| :--- | :--- |
| $100 \mathrm{~ns}, 30 \mathrm{~ns}$ | -10 |

120ns， 35 ns
－Packages
Plastic SOJ
DJ
Plastic ZIP

## GENERAL DESCRIPTION

The MT42C4255 is a high speed，dual port CMOS dy－ namic random access memory or video RAM（VRAM） containing $1,048,576$ bits．These bits may be accessed either by a 4 －bit wide DRAM port or by a $512 \times 4$－bit serial access memory（SAM）port．Data may be transferred bidirection－ ally between the DRAM and the SAM．

The DRAM portion of the VRAM is functionally identical to the MT4C4256（256K x 4－bit DRAM）．Four 512－bit data registers make up the serial access memory portion of the VRAM．Data I／O and internal data transfer are accom－ plished using three separate bidirectional data paths：the 4－ bit random access I／O port，the four internal 512 bit wide paths between the DRAM and the SAM，and the 4－bit serial I／O port for theSAM．The rest of the circuitry consists of the control，timing，and address decoding logic．

## PIN ASSIGNMENT（Top View）

28－Pin SOJ
（E－9）

| Sc $\sqrt{1}$ | 28 | Vss |
| :---: | :---: | :---: |
| SDQ1 2 | 27 | SDQ4 |
| SDQ2 ${ }^{3}$ | 26 | SDQ3 |
| TR／DE 4 | 25 | $\bigcirc \overline{\text { SE }}$ |
| DQ1 45 | 24 | DQ4 |
| DQ2 46 | 23 | DQ3 |
| $\overline{\mathrm{ME}}$ WE $\mathrm{T}^{7}$ | 22 | DSF |
| NC $¢ 8$ | 21 | $\square \overline{\text { CAS }}$ |
| $\overline{\mathrm{RAS}} 9$ | 20 | Q QS |
| A8［ 10 | 19 | A0 |
| A6 11 | 18 | A1 |
| A5 12 | 17 | A2 |
| A4［13 | 16 | A3 |
| Vcc［ 14 | 15 | A7 |


| DSF | E－ | 2 | DQ3 |
| :---: | :---: | :---: | :---: |
| DQ4 | こ |  |  |
|  | $=$ | 4 | $\overline{\mathrm{SE}}$ |
| SDQ3 | ＝－ |  |  |
|  | $=$ | 6 | SDQ4 |
| Vss | －1 |  |  |
|  | $=$ | 8 | SC |
| SDQ1 | － |  |  |
|  | ：$=$ | 10 | SDQ2 |
| $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ | － |  |  |
|  | $=$ | 12 | DQ1 |
| DQ2 | こ |  |  |
|  | 二 $=$ | 14 | $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}$ |
| NC 1 | こ |  |  |
|  | $=$ | 16 | $\overline{\mathrm{RAS}}$ |
| A8 1 | $\therefore$ |  |  |
|  | $=$ | 18 | A6 |
| A5 1 | － |  |  |
|  | $=$ | 20 | A4 |
| Vcc 2 | － |  |  |
|  | ：$=$ | 22 | A7 |
| A3 2 | 二 |  |  |
|  | ：$=$ | 24 | A2 |
| A1 2 | － |  |  |
|  | こ＝ | 26 | A0 |
| QSF 2 | $\vdots$ |  |  |
|  | L- | 28 | $\overline{\mathrm{CAS}}$ |

Each of the ports may be operated asynchronously and independently of the other except when data is being trans－ ferred internally between them．As with all DRAMs，the VRAM must be refreshed to maintain data．The refresh cycles must be timed so that all 512 combinations of $\overline{R A S}$ addresses are executed at least every 8 ms （regardless of sequence）．Micron recommendsevenly spaced refresh cycles for maximum data integrity．An internal transfer between the DRAM and the SAM counts as a refresh cycle．The SAM portion of the VRAM is fully static and does not require any refresh．

The operation and control of the MT42C4255 is compat－ ible with（and can be identical to）the operation of the MT42C4064（64K x 4 VRAM）．However，the MT42C4255 offers several additional functions that may be used to increase system performance or ease critical timing require－ ments．These＂special functions＂are described in detail in the following section．


Figure 1
MT42C4255 BLOCK DIAGRAM

## MULTIPORT DRAM

PIN DESCRIPTIONS

| SOJ PIN NUMBERS | ZIP PIN NUMBERS | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 8 | SC | Input | Serial Clock: Clock input to the serial address counter for the SAM registers. |
| 4 | 11 | $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ | Input | Transfer Enable: Enables an internal TRANSFER operation at $\overline{\text { RAS }}(\mathrm{H} \rightarrow \mathrm{L})$, or <br> Output Enable: Enables the DRAM output buffers when taken LOW after $\overline{R A S}$ goes LOW ( $\overline{C A S}$ must also be LOW), otherwise the output buffers are in the High-Z state. |
| 7 | 14 | $\overline{\text { ME }} \overline{\text { WE }}$ | Input | Mask Enable: If $\overline{M E} \overline{W E}$ is LOW at the falling edge of $\overline{\text { RAS }}$ a MASKED WRITE cycle is performed, or Write Enable: $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}$ is also used to select a READ $(\overline{M E} \overline{\mathrm{WE}}=\mathrm{H})$ or WRITE $(\overline{\mathrm{ME}} \overline{\mathrm{WE}}=\mathrm{L})$ cycle when accessing the DRAM. This includes a READ TRANSFER ( $\overline{\mathrm{ME}} \overline{\mathrm{WE}}=\mathrm{H}$ ) or WRITE TRANSFER ( $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}=\mathrm{L}$ ). |
| 25 | 4 | $\overline{\text { SE }}$ | Input | Serial Port Enable: $\overline{\text { SE }}$ enables the serial I/O buffers and allows a serial READ or WRITE operation to occur; otherwise, the output buffers are in the High-Z state. $\overline{\mathrm{SE}}$ is also used during a WRITE TRANSFER operation to indicate whether a WRITE TRANSFER or a PSEUDO WRITE TRANSFER cycle is performed. |
| 22 | 1 | DSF | Input | Special Function Select: DSF is used to indicate which special functions (MASKED WRITE vs. PERSISTENT MASKED WRITE, etc.) are used on a particular access cycle. |
| 9 | 16 | $\overline{\text { RAS }}$ | Input | Row Address Strobe: $\overline{\text { RAS }}$ is used to clock in the 9 rowaddress bits and as a strobe for the $\overline{M E} / \overline{W E}, \overline{T R} / \overline{\mathrm{OE}}, \mathrm{DSF}$, and DQ inputs. |
| 21 | 28 | $\overline{\text { CAS }}$ | Input | Column Address Strobe: $\overline{\text { CAS }}$ is used to clock in the 9 column-address bits and enable the DRAM output buffers (DQs) (along with $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ ). |
| $\begin{aligned} & 19,18,17, \\ & 16,13,12, \\ & 11,15,10 \end{aligned}$ | $\begin{aligned} & 26,25,24, \\ & 23,20,19 \\ & 18,22,17 \end{aligned}$ | A0 to A8 | Input | Address Inputs: For the DRAM operation, these inputs are multiplexed and clocked by $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ to select 4 bits out of the 262,144 available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when $\overline{\text { RAS }}$ goes LOW) and the SAM start address (when $\overline{\text { CAS }}$ goes LOW). A8 = "don't care" for the start address when doing SPLIT TRANSFERS. |
| 5, 6, 23, 24 | 12, 13, 2, 3 | DQ1 - DQ4 | Input/ Output | DRAM Data I/O: Data Input/Output for DRAM cycles; inputs for the LOAD MASK REGISTER cycles. |
| 2, 3, 26, 27 | 9, 10, 5, 6 | SDQ1-SDQ4 | Input/ Output | Serial Data I/O: Input/Output for SAM access cycles or High-Z, when $\overline{\text { SE }}=\mathrm{HIGH}$. |
| 20 | 27 | QSF | Output | Split SAM Status: QSF indicates which half of the SAM is being accessed. LOW if address 0 to 255, HIGH if address 256 to 511. |
| 8 | 15 | NC | - | No Connect: This pin should be left either unconnected or tied to ground. |
| 14 | 21 | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 28 | 7 | Vss | Supply | Ground |

## FUNCTIONAL DESCRIPTION

The MT42C4255 may be divided into three functional blocks (see Figure 1): the DRAM, the transfer circuitry, and the serial access memory (SAM). All of the operations described below are shown in the AC Timing Diagrams section of this data sheet and summarized in the Truth Table.

> Note: For dual function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing transfer operations the $\overline{T R} / \overline{O E}$ pin will be shown as $\overline{T R} /(\overline{O E})$.

## DRAM OPERATION

## DRAM REFRESH

Like any DRAM based memory, the MT42C4255 VRAM must be refreshed to retain data. All 512 row-address combinations mustbeaccessed within 8ms. TheMT42C4255 supports $\overline{\text { CAS-BEFORE-}} \overline{\text { RAS, }}$, $\overline{\text { RAS-ONLY }}$ and HIDDEN types of refresh cycles.
For the $\overline{\text { CAS-BEFORE-RAS }}$ REFRESH cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data, and simply must perform $512 \overline{\text { CAS-BEFORE-RAS }}$ cycles within the 8 ms time period.
The refresh address must be generated externally and applied to A0-A8 inputs for RAS-ONLY REFRESH cycles. The DQpins remainina High-Zstateforboth the RAS-ONLY and CAS-BEFORE-RAS cycles.

HIDDEN REFRESH cycles are performed by toggling $\overline{\text { RAS }}$ (and keeping CAS LOW) after a READ or WRITE cycle. This performs $\overline{C A S}-$ BEFORE- $\overline{R A S}$ cycles but does not disturb the $D Q$ lines.
Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row that is being accessed. The SAM portion of the MT42C4255 is fully static and does not require any refreshing.

## DRAM READ AND WRITE CYCLES

The DRAM portion of the VRAM is nearly identical to standard $256 \mathrm{~K} \times 4$ DRAMs. However, because several of the DRAM control pins are used for additional functions on this part, several conditions that were undefined or "don't
care" states for the DRAM are specified for the VRAM. These conditions are highlighted in the following discussion. In addition, the VRAM has several special functions that can be used when writing to the DRAM.
The 18 address bits that are used to select a 4-bit word from the 262,144 available are latched into the chip using the A0-A8, $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ inputs. First, the 9 row-address bits are set-up on the address inputs and clocked into the part when RAS transitions from HIGH to LOW. Next, the 9 column-address bits are set-up on the address inputs and clocked-in when $\overline{\text { CAS }}$ goes from HIGH to LOW.

For single port DRAMS, the OE pin is a "don't care" when $\overline{\text { RAS }}$ goes LOW. However, for the VRAM, when RAS goes LOW, (TR)/ $\overline{\mathrm{OE}}$ selects between DRAM access or TRANSFER cycles. $(\overline{\mathrm{TR}}) / \overline{\mathrm{OE}}$ must be HIGH at the $\overline{\mathrm{RAS}} \mathrm{HIGH}$-toLOW transition for all DRAM operations (except CAS-BEFORE-RAS).
If ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is HIGH when $\overline{\mathrm{CAS}}$ goes LOW, a DRAM READ operation is performed and the data from the memory cells selected will appear at the DQ1-DQ4 port. The ( $\overline{\mathrm{TR}}) / \overline{\mathrm{OE}}$ input must transition from HIGH to LOW sometime after $\overline{\text { RAS }}$ falls to enable the DRAM output port.

For single port normal DRAMs, $\overline{\mathrm{WE}}$ isa "don't care" when $\overline{\text { RAS }}$ goes LOW. For the VRAM, $\overline{\mathrm{ME}} /(\overline{\mathrm{WE})}$ is used, when RAS goes LOW, to select between a MASKED WRITE cycle and a normal WRITE cycle. If $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ is LOW at the $\overline{\text { RAS }}$ HIGH-to-LOW transition, a MASKED WRITE operation is selected. For any DRAM access cycle (READ or WRITE), $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ must be HIGH at the $\overline{\text { RASHIGH-to-LOW }}$ transition. If ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is LOW before $\overline{\mathrm{CAS}}$ goes LOW, a DRAM EARLY-WRITE operation is performed and the data present on the DQ1-DQ4 data port will be written into the selected memory cells. If ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ goes LOW after CAS goes LOW, a DRAM LATE-WRITE operation is performed. Refer to the AC timing diagrams.

The VRAM can perform all the normal DRAM cycles including READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE (Late or Early), and FAST-PAGEMODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

## NONPERSISTENT MASKED WRITE

The MASKED WRITE feature eliminates the need to do a READ-MODIFY-WRITE cycle when changing only specific bits within a 4-bit word. The MT42C4255 supports two types of MASKED WRITE cycles, NONPERSISTENT MASKED WRITE and PERSISTENT MASKED WRITE.

If $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ and DSF are LOW at the $\overline{\mathrm{RAS}}$ HIGH-to-LOW transition, a NONPERSISTENT MASKED WRITE is performed and the data (mask data) present on the DQ1-DQ4 inputs will be written into the mask data register. The mask data acts as an individual WRITE ENABLE for each of the four DQ1-DQ4 pins. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the following WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows
normal WRITE operation to proceed. Note that $\overline{\mathrm{CAS}}$ is still HIGH. When $\overline{C A S}$ goes LOW, the bits present on the DQ1DQ4 inputs will be either written to the DRAM (if the mask data bit is HIGH) or ignored (if the mask data bit is LOW). The DRAM contents that correspond to masked input bits will not be changed during the WRITE cycle. The MASKED WRITE is non-persistent (must be re-entered at every $\overline{\text { RAS }}$ cycle) if DSF is LOW when $\overline{\text { RAS }}$ goes LOW. The mask data register is cleared at the end of every NONPERSISTENT MASKED WRITE. FAST PAGE MODE can be used with NONPERSISTENT MASKED WRITE to write several column locations in an addressed row. The same mask is used during the entire FAST-PAGE-MODE $\overline{R A S}$ cycle. An exampleNONPERSISTENT MASKEDWRITE cycle is shown in Figure 2.


X = NOT EFFECTIVE (DON'T CARE)
DON'T CARE

Figure 2
NONPERSISTENT MASKED WRITE EXAMPLE

## PERSISTENT MASKED WRITE

The PERSISTENT MASKED WRITE feature eliminates the need to rewrite the mask data before each MASKED WRITE cycle if the same mask data is being used repeatedly. To initiate a PERSISTENT MASKED WRITE, a LOAD MASK REGISTER cycle is performed by taking $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ and DSF HIGH when RAS goes LOW. The mask data is loaded into the internal register when $\overline{C A S}$ goes LOW. Mask data may also be loaded into the mask register by performing a NONPERSISTENT MASKED WRITE before the PERSISTENT MASKED WRITE.

PERSISTENT MASKED WRITE cycles may then be performed by taking $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ LOW and DSF HIGH when $\overline{\text { RAS goes LOW. The contents of the mask data register will }}$ then be used as the mask data for the DRAM inputs. Unlike the NONPERSISTENT MASKED WRITE, the data present on the DQ inputs is not loaded into the mask register when $\overline{\text { RAS }}$ falls, and the mask data register will not be cleared at the end of the cycle. Any number of PERSISTENT MASKED WRITE cycles, to any address, may be performed without having to reload the mask data register. Figure 3 shows the LOAD MASK REGISTER and two PERSISTENT MASKED WRITE cycles in operation. The LOAD MASK REGISTER and PERSISTENT MASKED WRITE cycles allow controllers that cannot providemask data to the DQpins at $\overline{R A S}$ time to perform MASKED WRITE operations. PERSISTENT MASKED WRITE operations can be performed during

FAST PAGE MODE and the same mask will apply to all addressed columns in the addressed row.

## LOAD MASK DATA REGISTER

The LOAD MASK REGISTER operation and timing are identical to a normal WRITE cycle except that DSF is HIGH when $\overline{R A S}$ goes LOW. As shown in the Truth Table, the combination of $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}}), \overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$, and DSF being HIGH when $\overline{R A S}$ goes LOW indicates the cycle is a REGISTER load cycle. DSF is used when CAS goes LOW to select the register to be loaded and must be LOW for a LOAD MASK REGISTER cycle. The data present on the DQ lines will then be written to the mask data register.
Note: For a normal DRAM WRITE cycle, the mask data register is disabled but not modified. The contents of mask data register will not be changed unless NONPERSISTENT MASKED WRITE or LOAD MASK REGISTER cycles are performed.
The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

The mask data register contents are used during PERSISTENT MASKED WRITE cycles to selectively enable writes to the four DQ planes.


Figure 3
PERSISTENT MASKED WRITE EXAMPLE

## TRANSFER OPERATIONS

TRANSFER operations are initiated when $\overline{\mathrm{TR}} /(\overline{\mathrm{O}} \overline{\mathrm{E}})$ is LOW then $\overline{\mathrm{RAS}}$ goes LOW. The state of $(\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ when $\overline{\text { RAS }}$ goes LOW indicates the direction of the TRANSFER (to or from the DRAM), and DSF is used to select between NORMAL TRANSFER, SPLIT READ TRANSFER, and ALTERNATE WRITE TRANSFER cycles. Each of the TRANSFER cycles available is described below.

## READ TRANSFER (DRAM-TO-SAM TRANSFER)

If $(\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is HIGH and DSF is LOW when $\overline{\mathrm{RAS}}$ goes LOW, a READ TRANSFER cycle is selected. The row address bits indicate the four 512-bit DRAM row planes that are to be transferred to the four SAM data register planes. The column address bits indicate the start address (or Tap address) of the serial output cycle from the SAM data registers. $\overline{\text { CAS }}$ must fall for every TRANSFER in order to load a valid Tap address. A read transfer may be accom-
plished two ways. If the transfer is to be synchronized with SC (REAL-TIME READ TRANSFER), $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is taken HIGH after $\overline{\text { CAS }}$ goes LOW. If the transfer does not have to be synchronized with SC (READTRANSFER), $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ may go HIGH before $\overline{\text { CAS }}$ goes LOW (refer to the AC Timing Diagrams). The 2048 bits of DRAM data are written into the SAM data registers and the serial shift start address is stored in an internal9-bit register. QSF will be LOW if access is from the lower half (addresses 0 through 255), and HIGH if access is from the upper half ( 256 through 511 ). If $\overline{S E}$ is LOW, the first bits of the new row data will appear at the serial outputs with the first SC clock pulse. $\overline{\mathrm{SE}}$ enables the serial outputs and may be either HIGH or LOW during this operation. The SAM address pointer will increment with the SC LOW-to-HIGH transition, regardless of the state of $\overline{\mathrm{SE}}$. Performing a READTRANSFER cycle sets the direction of the SAM I/O buffers to the output mode.


Figure 5
TYPICAL SPLIT READ TRANSFER INITIATION SEQUENCE

## SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)

The SPLIT READ TRANSFER cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream. When using normal TRANSFER cycles, the REAL-TIME READ TRANSFER cycle has to occur immediately after the last bit of "old data" was clocked out of the SAM port.

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data can be transferred to the other half. The transfer can occur at any time while the other half is sending data and need not be synchronized with the SC clock.

The $\overline{T R} /(\overline{\mathrm{OE}})$ timing is also relaxed forSPLIT TRANSFER cycles. The rising edge of $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is not used to complete the TRANSFER cycle and therefore is independent of the rising edges of $\overline{\mathrm{RAS}}$ or $\overline{\mathrm{CAS}}$. The transfer timing is generated internally for SPLIT TRANSFER cycles.

A normal, non-split READ TRANSFER cycle must precede any sequence of SPLIT READ TRANSFER cycles to provide a reference to which half of the SAM the access will begin. Then SPLIT READTRANSFERS may be initiated by taking DSF HIGH when $\overline{\mathrm{RAS}}$ goes LOW during the TRANSFER cycle. As in non-split transfers, the row address is used to specify the DRAM row to be transferred. The column address, A0-A7, is used to input the SAM Tap address. Address pin A8 is a "don't care" when the Tap address is loaded at the HIGH to LOW transition of $\overline{\mathrm{CAS}}$. It is internally generated so that the SPLIT TRANSFER will be to the SAM half not currently being accessed.

Figure 5 shows a typical SPLIT READ TRANSFER initiation sequence. The normal READ TRANSFER is first performed, followed by a SPLIT READ TRANSFER of the same row to the upper half of the SAM. The purpose of the SPLIT TRANSFER of the same data is to initiate the split SAM operating mode and load the Tap address. Serial access continues, and when the SAM address counter reaches 255 ("A8" $=0, \mathrm{~A} 0-\mathrm{A} 7=1$ ) the new Tap address is loaded for the next half ("A8"=1, A0-A7=Tap) and the QSF output goes HIGH. Once the serial access has switched to the upper SAM, new data may be transferred to the lower SAM. The controller must wait for the state of QSF to change and then the new data may be transferred to the SAM half not being accessed. For example, the next step in Figure 5 would be to wait until QSF went LOW (indicating that row-1 data is shifting out the lower SAM) and then transfer the upper half of row 1 to the upper SAM.

## WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of theWRITE TRANSFER is identical to the READ TRANSFER described previously, except ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ and $\overline{\mathrm{SE}}$ must be LOW when $\overline{\mathrm{RAS}}$ goes LOW. The row address indicates the DRAM row to which the SAM data registerswillbewritten. Thecolumnaddress(Tap)indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. A WRITE TRANSFER changes the direction of the SAM I/O buffers to the input mode. QFS is LOW if access is to the lower half of the SAM, and HIGH if access is to the upper half.

## PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE ENABLE)

The PSEUDOWRITE TRANSFER cycle is used to change the direction of SAM port from output to input without performing a WRITE TRANSFER cycle. A PSEUDOWRITE TRANSFER is a WRITE TRANSFER with $\overline{\text { SE }}$ held HIGH instead of LOW. The DRAM data will not be disturbed and the SAM will be ready to accept input data.

## ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of the ALTERNATE WRITE TRANSFER is identical to the WRITE TRANSFER except that the DSF pin is HIGH and ( $\overline{\mathrm{ME}}$ ) $/ \overline{\mathrm{WE}}$ is LOW when $\overline{\mathrm{RAS}}$ goes LOW, allowing $\overline{\text { SE }}$ to be a "don't care." This allows the outputs to be disabled using $\overline{\text { SE }}$ during a WRITE TRANSFER cycle.

## POWER UP AND INITIALIZATION

When Vcc is initially supplied or when refresh is interrupted for more than 8ms, the MT42C4255 must be initialized.

After Vcc is at specified operating conditions, for $100 \mu \mathrm{~s}$ minimum, $8 \overline{\mathrm{RAS}}$ cycles and 1 SC cycle must be executed to initialize the memory array. When the device is initialized, the DRAM I/O pins (DQs) are in a High-Z state, regardless of the state of $(\overline{\mathrm{TR}}) / \overline{\mathrm{OE}}$. The DRAM array will contain random data.

The SAM portion of the MT42C4255 is completely static in operation and does not require refresh or initialization. The SAM port will power-up in the serial input mode (WRITE TRANSFER) and the I/O pins (SDQ's) will be High- Z, regardless of the state of $\overline{S E} a, b$. The mask register will contain random data after power-up.

## MULTIPORT DRAM

## TRUTH TABLE

| CODE | FUNCTION | RAS FALLING EDGE |  |  |  |  | AO-A8 ${ }^{1}$ |  | DQ1 - DQ4 ${ }^{2}$ |  | MASK REGISTER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CAS | $\overline{T R} / \overline{0 E}$ | ME/ $\overline{\mathrm{WE}}$ | DSF | SE | RAS | $\begin{aligned} & \text { CAS } \\ & \text { A8=X } \end{aligned}$ | RAS | CAS $^{3}$ |  |
|  | DRAM OPERATIONS |  |  |  |  |  |  |  |  |  |  |
| CBR | CAS-BEFORE-RAS REFRESH | 0 | X | X | X | X | - | X | - | X | X |
| ROR | $\overline{\text { RAS-ONLY REFRESH }}$ | 1 | 1 | X | X | X | ROW | - | X | - | X |
| RW | NORMAL DRAM READ OR WRITE | 1 | 1 | 1 | 0 | X | ROW | COLUMN | X | $\begin{aligned} & \text { VALID } \\ & \text { DATA } \end{aligned}$ | X |
| RWNM | NONPERSISTENT (LOAD AND USE) MASKED WRITE TO DRAM | 1 | 1 | 0 | 0 | X | ROW | COLUMN | WRITE MASK | VALID <br> DATA | $\begin{gathered} \text { LOAD \& } \\ \text { USE } \end{gathered}$ |
| RWOM | PERSISTENT (USE REGISTER) MASKED WRITE TO DRAM | 1 | 1 | 0 | 1 | X | ROW | COLUMN | X | VALID <br> DATA | USE |
|  | REGISTER OPERATIONS |  |  |  |  |  |  |  |  |  |  |
| LMR | LOAD MASK REGISTER | 1 | 1 | 1 | 1 | X | ROW ${ }^{4}$ | X | X | WRITE MASK | LOAD |
|  | TRANSFER OPERATIONS |  |  |  |  |  |  |  |  |  |  |
| RT | READ TRANSFER (DRAM-TO-SAM TRANSFER) | 1 | 0 | 1 | 0 | X | ROW | TAP ${ }^{5}$ | X | X | X |
| SRT | SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER) | 1 | 0 | 1 | 1 | X | ROW | TAP ${ }^{5}$ | X | X | X |
| WT | WRITE TRANSFER (SAM-TO-DRAM TRANSFER) | 1 | 0 | 0 | 0 | 0 | ROW | TAP ${ }^{5}$ | X | X | X |
| PWT | PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE ENABLE) | 1 | 0 | 0 | 0 | 1 | ROW ${ }^{4}$ | TAP ${ }^{5}$ | X | X | X |
| AWT | ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER) | 1 | 0 | 0 | 1 | X | ROW | TAP ${ }^{5}$ | X | X | X |

NOTE: 1. These columns show what must be present on the AO-A8 inputs when $\overline{R A S}$ falls and when $\overline{\text { CAS }}$ falls.
2. These columns show what must be present on the DQ1-DQ4 inputs when RAS falls and when CAS falls.
 Similarly, on READ cycles, the output data is latched at the falling edge of $\overline{C A S}$ or $\overline{T R} / \overline{O E}$, whichever is later.
4. The ROW that is addressed will be refreshed, but no particular ROW address is required.
5. This is the first SAM address location that the first SC cycle will access. For Split SAM transfers, the Tap will be the first address location accessed of the "new" SAM half after the boundary of the current half is reached ( 255 for lower half, 511 for upper half).

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss $\qquad$ -1.0 V to +7.0 V
Operating Temperature, Ta (Ambient) $.0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Plastic) $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation .1 W
Short Circuit Output Current ...................................50mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at theseor any other conditions above thoseindicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C}\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH $^{2}$ | 2.4 | Vcc +1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -1.0 | 0.8 | V | 1 |

DC ELECTRICAL CHARACTERISTICS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT LEAKAGE CURRENT <br> (any input ( $0 \mathrm{~V} \leq \mathrm{V} \operatorname{IN} \leq \mathrm{Vcc}$ ), all other pins not under test $=0 \mathrm{~V}$ ) | IL | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( DQ , SDQ disabled, $0 \mathrm{~V} \leq \mathrm{V}$ out $\leq \mathrm{V} c \mathrm{c}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage ( lout $=-2.5 \mathrm{~mA}$ ) | Vor | 2.4 |  | V |  |
| Output Low Voltage ( $\mathrm{lout}=5 \mathrm{~mA}$ ) | VoL |  | 0.4 | V | 1 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: Ao-A8 | $\mathrm{Cl}_{11}$ |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{ME}} \overline{\mathrm{NE}}, \overline{\mathrm{TR}} / \overline{\mathrm{OE}}, \mathrm{SC}, \overline{\mathrm{SE}, ~ D S F}$ | $\mathrm{Cl}_{12}$ |  | 8 | pF | 2 |
| Input/Output Capacitance: DQ, SDQ | $\mathrm{Cl/O}$ |  | 9 | pF | 2 |
| Output Capacitance: QSF | Co |  | 9 | pF | 2 |

## CURRENT DRAIN, SAM IN STANDBY

| $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$ |  | MAX |  |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -8 | -10 | -12 |  |  |
| OPERATING CURRENT <br> ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling: ${ }^{\mathrm{t} R C}={ }^{\mathrm{t} R C}$ (MIN)) | IcC1 | 90 | 80 | 70 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\text { RAS }}=\mathrm{VIL} ; \overline{\mathrm{CAS}}=$ Cycling: ${ }^{\mathrm{tPC}}=\mathrm{tPC}(\mathrm{MIN})$ ) | Icc2 | 70 | 60 | 50 | mA | 3, 4 |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}$ IH after $8 \overline{\mathrm{RAS}}$ cycles min) | Icc3 | 10 | 10 | 10 | mA |  |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY ( $\overline{\mathrm{RAS}}=$ Cycling; $\overline{\mathrm{CAS}}=\mathrm{V}_{I H}$ ) | Icc4 | 90 | 80 | 70 | mA | 3 |
| REFRESH CURRENT: $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$ ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling) | Icc5 | 80 | 70 | 60 | mA | 3, 5 |
| SAM/DRAM DATA TRANSFER | Icc6 | 95 | 85 | 75 | mA | 3 |

## CURRENT DRAIN, SAM ACTIVE ('SC = MIN)

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | SYMBOL | -8 | -10 | -12 | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OPERATING CURRENT <br> ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling: ${ }^{\mathrm{t} R C}={ }^{\mathrm{t}} \mathrm{RC}$ (MIN)) | Icc7 | 130 | 120 | 110 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\text { RAS }}=\mathrm{VIL} ; \overline{\mathrm{CAS}}=$ Cycling: ${ }^{\mathrm{t} P \mathrm{C}}={ }^{\text {tPC }}(\mathrm{MIN})$ ) | Icc8 | 110 | 100 | 90 | mA | 3, 4 |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\boldsymbol{H}}$ after $8 \overline{\mathrm{RAS}}$ cycles min) | Icc9 | 50 | 45 | 40 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{R A S}-O N L Y$ ( $\overline{\mathrm{RAS}}=$ Cycling; $\overline{\mathrm{CAS}}=\mathrm{V}_{1}$ ) | Icc10 | 130 | 120 | 110 | mA | 3, 4 |
| REFRESH CURRENT: <br> $\overline{\mathrm{CAS}}$-BEFORE-RAS ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling) | Icc11 | 120 | 110 | 100 | mA | 3,4,5 |
| SAM/DRAM DATA TRANSFER | Icc12 | 135 | 125 | 115 | mA | 3, 4 |

## DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Parameter | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t }} \mathrm{RC}$ | 150 |  | 180 |  | 210 |  | ns |  |
| READ-MODIFY-WRITE cycle time | ${ }^{\text {tr }}$ WC | 205 |  | 235 |  | 280 |  | ns |  |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {t P }}$ C | 45 |  | 55 |  | 65 |  | ns |  |
| FAST-PAGE-MODE READ-MODIFY-WRITE cycle time | tPRWC | 100 |  | 110 |  | 140 |  | ns |  |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {traC }}$ |  | 80 |  | 100 |  | 120 | ns | 14 |
| Access time from $\overline{\text { CAS }}$ | ${ }^{\text {t }} \mathrm{CAC}$ |  | 25 |  | 30 |  | 35 | ns | 15 |
| Access time from ( $\overline{\mathrm{TR}}$ //]E | ${ }^{\text {t }}$ OE |  | 20 |  | 25 |  | 30 | ns |  |
| Access time from column address | ${ }^{\text {t }} \mathrm{AA}$ |  | 40 |  | 50 |  | 60 | ns |  |
| Access time from CAS precharge | ${ }^{\text {t }}$ CPA |  | 45 |  | 55 |  | 65 | ns |  |
| $\overline{\text { RAS }}$ pulse width | ${ }^{\text {tras }}$ | 80 | 10,000 | 100 | 10,000 | 120 | 10,000 | ns |  |
| $\overline{\text { RAS }}$ pulse width (FAST PAGE MODE) | ${ }^{\text {t RASP }}$ | 80 | 100,000 | 100 | 100,000 | 120 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {trash }}$ | 25 |  | 30 |  | 35 |  | ns |  |
| RAS precharge time | ${ }^{\text {tr }}$ ( ${ }^{\text {d }}$ | 60 |  | 70 |  | 80 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t }} \mathrm{CAS}$ | 25 | 10,000 | 30 | 10,000 | 35 | 10,000 | ns |  |
| CAS hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 80 |  | 100 |  | 120 |  | ns |  |
| CAS precharge time | ${ }^{\text {t }}$ CPN | 15 |  | 15 |  | 20 |  | ns | 16 |
| CAS precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{CP}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to CAS delay time | ${ }^{\text {t } R C D}$ | 20 | 55 | 20 | 70 | 25 | 85 | ns | 17 |
| $\overline{\mathrm{CAS}}$ to $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 10 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {trah }}$ | 12 |  | 15 |  | 15 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to column address delay time | ${ }^{\text {trab }}$ | 17 | 40 | 20 | 50 | 20 | 60 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Column address hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }} \mathrm{AR}$ | 60 |  | 70 |  | 85 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {traL }}$ | 40 |  | 50 |  | 60 |  | ns |  |
| Read command setup time | ${ }^{\text {tr RCS }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to $\overline{\mathrm{CAS}}$ ) | ${ }^{\text {tren }}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to $\overline{\text { RAS }}$ ) | ${ }^{\text {tr R H }}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| CAS to output in Low-Z | ${ }^{\text {t }} \mathrm{CLZ}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {topF }}$ | 0 | 20 | 0 | 20 | 0 | 30 | ns | 20,23 |
| Output Disable | ${ }^{\text {tod }}$ | 0 | 20 | 0 | 20 | 0 | 30 | ns | 23 |
| Output Disable hold time from start of write | ${ }^{\text {toEH }}$ |  | 15 |  | 15 |  | 20 | ns | 27 |
| Output Enable to $\overline{\text { RAS }}$ delay | ${ }^{\text {t }}$ 'RD |  | 0 |  | 0 |  | 0 | ns |  |

## DRAM TIMING PARAMETERS (Continued)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Write command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns | 21 |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 20 |  | 25 |  | ns |  |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t W WCR }}$ | 60 |  | 70 |  | 85 |  | ns |  |
| Write command pulse width | ${ }^{t}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t }}$ RWL | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }} \mathrm{CWL}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }}$ DH | 20 |  | 20 |  | 25 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ DHR | 60 |  | 70 |  | 90 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{W E}$ delay time | ${ }^{\text {t }}$ ' ${ }^{\text {d }}$ | 110 |  | 130 |  | 160 |  | ns | 21 |
| Column address to WE delay time | ${ }^{\text {t }} \mathrm{AWD}$ | 70 |  | 80 |  | 100 |  | ns | 21 |
| $\overline{\text { CAS }}$ to $\overline{\text { WE }}$ delay time | ${ }^{\text {t }}$ CWD | 55 |  | 60 |  | 65 |  | ns | 21 |
| Transition time (rise or fall) | ${ }^{\text {t }}$ T | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period ( 512 cycles) | ${ }^{\text {t }}$ REF |  | 8 |  | 8 |  | 8 | ms |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {t }}$ RPC | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\text { CAS }}$ setup time (CAS-BEFORE-즈AS REFRESH) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| $\overline{\text { CAS }}$ hold time ( $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$ REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 30 |  | 30 |  | 30 |  | ns | 5 |
| $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}$ to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ WSR | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}$ to $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {t }}$ RWH | 12 |  | 15 |  | 15 |  | ns |  |
| Mask Data to $\overline{R A S}$ setup time | ${ }^{\text {t }}$ MS | 0 |  | 0 |  | 0 |  | ns |  |
| Mask Data to $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {t }} \mathrm{MH}$ | 12 |  | 15 |  | 15 |  | ns |  |

## TRANSFER AND MODE CONTROL TIMING PARAMETERS

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| TRANSFER command to RAS setup time | ${ }^{\text {t }}$ TLS | 0 |  | 0 |  | 0 |  | ns | 25 |
| TRANSFER command to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ tLH | 12 | 10,000 | 15 | 10,000 | 15 | 10,000 | ns | 25 |
| TRANSFER command to $\overline{\text { RAS }}$ hold time (REAL-TIME READ TRANSFER only) | ${ }^{\text {t }}$ RTH | 70 | 10,000 | 80 | 10,000 | 90 | 10,000 | ns | 25 |
| TRANSFER command to $\overline{\text { CAS }}$ hold time (REAL-TIME READ TRANSFER only) | ${ }^{\text {t }}$ CTH | 20 |  | 25 |  | 30 |  | ns | 25 |
| TRANSFER command to column address hold time (for REAL TIME READ TRANSFER only) | ${ }^{\text {t }}$ ATH | 25 |  | 30 |  | 35 |  | ns | 25 |
| TRANSFER command to SC lead time | ${ }^{\text {t }}$ TSL | 5 |  | 5 |  | 5 |  | ns | 25 |
| TRANSFER command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t }}$ TRL | 0 |  | 0 |  | 0 |  | ns | 25 |
| TRANSFER command to RAS delay time | ${ }^{\text {t }}$ TRD | 15 |  | 15 |  | 15 |  | ns | 25 |
| TRANSFER command to $\overline{\text { CAS }}$ time | ${ }^{\text {t }}$ TCL | 0 |  | 0 |  | 0 |  | ns | 25 |
| TRANSFER command to CAS delay time | ${ }^{\text {t }}$ TCD | 15 |  | 15 |  | 15 |  | ns | 25 |
| First SC edge to TRANSFER command delay time | ${ }^{\text {t }}$ TSD | 10 |  | 10 |  | 10 |  | ns | 25 |
| Serial output buffer turn-off delay from RAS | ${ }^{t}$ SDZ | 10 | 35 | 10 | 40 | 10 | 50 | ns |  |
| SC to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ SRS | 30 |  | 30 |  | 40 |  | ns |  |
| $\overline{\text { RAS }}$ to SC delay time | ${ }^{\text {t }}$ SRD | 20 |  | 25 |  | 30 |  | ns |  |
| Serial data input to $\overline{\mathrm{SE}}$ delay time | ${ }^{\text {t }}$ SZE | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\text { RAS }}$ to SD buffer turn-on time | ${ }^{\text {t }}$ SRO | 10 |  | 15 |  | 15 |  | ns |  |
| Serial data input delay from $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ SDD | 45 |  | 50 |  | 55 |  | ns |  |
| Serial data input to $\overline{\text { RAS }}$ delay time | ${ }^{\text {t }}$ SZS | 0 |  | 0 |  | 0 |  | ns |  |
| Serial-input-mode enable (SE) to RAS setup time | ${ }^{\text {t }}$ ESR | 0 |  | 0 |  | 0 |  | ns |  |
| Serial-input-mode enable ( $\overline{\mathrm{SE}}$ ) to $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {t }}$ REH | 12 |  | 15 |  | 15 |  | ns |  |
| NONTRANSFER command to RAS setup time | ${ }^{t} Y S$ | 0 |  | 0 |  | 0 |  | ns | 26 |
| NONTRANSFER command to $\overline{\text { RAS }}$ hold time | ${ }^{t} \mathrm{YH}$ | 12 |  | 15 |  | 15 |  | ns | 26 |
| DSF to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ FSR | 0 |  | 0 |  | 0 |  | ns |  |
| DSF to $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {t }}$ RFH | 12 |  | 15 |  | 15 |  | ns |  |
| SC to QSF delay time | ${ }^{\text {t }}$ SQD |  | 25 |  | 30 |  | 35 | ns |  |
| SPLIT TRANSFER setup time | ${ }^{\text {t STS }}$ | 30 |  | 35 |  | 40 |  | ns |  |
| SPLIT TRANSFER hold time | ${ }^{\text {t STH }}$ | 30 |  | 35 |  | 40 |  | ns |  |
| $\overline{\text { RAS }}$ to QSF delay time | ${ }^{\text {t }}$ RQD |  | 65 |  | 85 |  | 105 | ns |  |
| $\overline{T R} / \overline{O E}$ to QSF delay time | ${ }^{\text {t }}$ TQD |  | 25 |  | 30 |  | 35 | ns |  |
| $\overline{\mathrm{CAS}}$ to QSF delay time | ${ }^{t}$ CQD |  | 35 |  | 40 |  | 45 | ns |  |
| $\overline{\mathrm{RAS}}$ to first SC delay | ${ }^{\text {t }}$ RSD | 80 |  | 95 |  | 105 |  | ns |  |
| $\overline{\mathrm{CAS}}$ to first SC delay | ${ }^{\text {t }}$ CSD | 20 |  | 25 |  | 35 |  | ns |  |
| Column address valid to first SC delay | ${ }^{\text {t }}$ ASD | 45 |  | 55 |  | 65 |  | ns |  |

## SAM TIMING PARAMETERS

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Serial clock cycle time | ${ }^{\text {t }}$ SC | 25 |  | 30 |  | 35 |  | ns |  |
| Access time from SC | ${ }^{\text {t }}$ SAC |  | 25 |  | 30 |  | 35 | ns | 24 |
| SC precharge time (SC LOW time) | ${ }^{\text {t }}$ SP | 10 |  | 10 |  | 12 |  | ns |  |
| SC pulse width (SC HIGH time) | ${ }^{\text {t }}$ SAS | 10 |  | 10 |  | 12 |  | ns |  |
| Access time from $\overline{\text { SE }}$ | ${ }^{\text {t }}$ SEA |  | 15 |  | 20 |  | 30 | ns | 24 |
| $\overline{\text { SE }}$ precharge time | ${ }^{\text {t }}$ SEP | 10 |  | 15 |  | 15 |  | ns |  |
| $\overline{\text { SE }}$ pulse width | ${ }^{\text {t }}$ SE | 10 |  | 15 |  | 15 |  | ns |  |
| Serial data-out hold time after SC high | ${ }^{\text {t }} \mathrm{SOH}$ | 5 |  | 5 |  | 5 |  | ns | 24 |
| Serial output buffer turn-off delay from $\overline{\text { SE }}$ | ${ }^{t}$ SEZ | 0 | 12 | 0 | 15 | 0 | 25 | ns | 24 |
| Serial data-in setup time | ${ }^{t}$ SDS | 0 |  | 0 |  | 0 |  | ns | 24 |
| Serial data-in hold time | ${ }^{\text {t }}$ SDH | 10 |  | 15 |  | 20 |  | ns | 24 |
| SERIAL INPUT (Write) Enable setup time | ${ }^{\text {t }}$ SWS | 0 |  | 0 |  | 0 |  | ns |  |
| SERIAL INPUT (Write) Enable hold time | ${ }^{\text {t }}$ SWH | 10 |  | 15 |  | 20 |  | ns |  |
| SERIAL INPUT (Write) Disable setup time | ${ }^{\text {t }}$ SWIS | 0 |  | 0 |  | 0 |  | ns |  |
| SERIAL INPUT (Write) Disable hold time | ${ }^{\text {t }}$ SWIH | 10 |  | 15 |  | 20 |  | ns |  |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $\mathrm{C}=\frac{\mathrm{I} \Delta \mathrm{t}}{\Delta \mathrm{V}}$ with $\Delta \mathrm{V}=3 \mathrm{~V}$ and $\mathrm{VCC}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the output open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ) is assured.
7. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{\text { RAS }}$ cycles and 1 SC cycle before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
8. $A C$ characteristics assume ${ }^{t} T=5 \mathrm{~ns}$.
9. $\mathrm{V}_{\mathrm{If}}$ (MIN) and Vil (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and $\mathrm{V}_{\mathrm{IH}}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $V_{\text {If }}$ and Vil (or between Vil and Vif) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{if}}, \mathrm{DRAM}$ data output (DQ1-DQ4) is high impedance.
12. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{DRAM}$ data output (DQ1-DQ4) may contain data from the last valid READ cycle.
13. DRAM output timing measured with a load equivalent to 2 TTL gates and 100pF. Output reference levels: $\mathrm{VOH}=2.4 \mathrm{~V} ; \mathrm{VoL}=0.4 \mathrm{~V}$.
14. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD} \geq^{\mathrm{t}} \mathrm{RCD}$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}, \mathrm{DQ}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{t} \mathrm{CPN}$.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t}$ RAC (MAX) can be met. ${ }^{t}$ RCD (MAX) is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the specified ${ }^{t}$ RCD (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{CAC}$.
18. Operation within the ${ }^{t} R A D$ (MAX) limit ensures that ${ }^{t} R C D$ (MAX) can be met. ${ }^{t}$ RAD (MAX) is specified as
a reference point only; if ${ }^{\mathrm{t}} \mathrm{RAD}$ is greater than the specified ${ }^{\text {t RAD (MAX) limit, then access time is }}$ controlled exclusively by ${ }^{\text {t }} \mathrm{AA}$.
19. Either ${ }^{t}$ RCH or ${ }^{t}$ RRH must be satisfied for a READ cycle.
20. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Vон or VoL.
21. ${ }^{t} W C S,{ }^{t} R W D,{ }^{t} \mathrm{AWD}$ and ${ }^{\mathrm{t}} \mathrm{CWD}$ are restrictive operating parameters in LATE-WRITE, READWRITE and READ-MODIFY-WRITE cycles only. If ${ }^{\mathrm{t}}$ WCS $\geq{ }^{\mathrm{t}} \mathrm{WCS}(\mathrm{min})$, the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$. If ${ }^{t}$ WCS $\leq^{t}$ WCS (MIN), the cycle is a LATE-WRITE and $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ must control the output buffers during the write to avoid data contention. If ${ }^{\mathrm{t}} \mathrm{RWD} \geq^{\mathrm{t}} \mathrm{RWD}$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq^{\mathrm{t}} \mathrm{AWD}$ (MIN) and ${ }^{\mathrm{t}} \mathrm{CWD} \geq{ }^{\mathrm{t}} \mathrm{CWD}$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of the output buffers (at access time and until CAS goes back to $\mathrm{V}_{\mathrm{IH}}$ ) is indeterminate but the WRITE will be valid, if ${ }^{\text {t }}$ OD and ${ }^{\text {t }}$ OEH are met. See the LATE-WRITE AC Timing diagram.
22. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in early WRITE cycles and $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}$ leading edge in late WRITE or READ-WRITE cycles.
23. During a READ cycle, if $\overline{T R} / \overline{\mathrm{OE}}$ is LOW then taken HIGH, DQ goes open. The DQs will go open with $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CAS}}$, whichever goes HIGH first.
24. SAM output timing is measured with a load equivalent to 2 TTL gate and 50 pF . Output reference levels: $\mathrm{VOH}=2.0 \mathrm{~V}$; VoL $=0.8 \mathrm{~V}$.
25. TRANSFER command means that $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ is LOW when RAS goes LOW.
26. NONTRANSFER command means that $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ is HIGH when RAS goes LOW.
27. LATE-WRITE and READ-MODIFY-WRITE cycles must have ${ }^{\text {t }} \mathrm{OD}$ and ${ }^{\text {t OEH }}$ met $\overline{\overline{\mathrm{OE}}}$ HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if CAS remains LOW and $\overline{\mathrm{OE}}$ is taken LOW after ${ }^{\text {t }} \mathrm{OEH}$ is met. If $\overline{\mathrm{CAS}}$ goes HIGH prior to $\overline{\mathrm{OE}}$ going back LOW, the DQs will remain open.

DRAM READ CYCLE


V/Z don't care
undefined

## DRAM FAST-PAGE-MODE READ CYCLE



NOTE: WRITE or READ-MODIFY-WRITE cycles may be mixed with READ cycles while in FAST PAGE MODE.

WRITE CYCLE FUNCTION TABLE

| LOGIC STATES |  |  |  | FUNCTION |
| :---: | :---: | :---: | :---: | :--- |
| RAS Falling Edge | CAS Falling Edge |  |  |  |
| A <br> ME/WE | B <br> DSF | C <br> DQ (Input) | D <br> DQ (Input) |  |
| 1 | 0 | X | DRAM <br> Data | Normal DRAM WRITE |
| 0 | 0 | Write <br> Mask | DRAM <br> Data (Masked) | NONPERSISTENT (Load and Use Register) <br> MASKED WRITE to DRAM |
| 0 | 1 | X | DRAM <br> Data (Masked) | PERSISTENT (Use Register) <br> MASKED WRITE to DRAM |
| 1 | 1 | X | Write <br> Mask | Load Mask Register |

NOTE: Refer to this function table to determine the logic states of " $A$ ", " $B$ ", " $C$ ", and " $D$ " for the WRITE cycle timing diagrams on the following pages.

## DRAM EARLY-WRITE CYCLE



Z/a dont care
UNDEFINED

NOTE: The logic states of "A", "B", "C", and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

## DRAM LATE-WRITE CYCLE



NOTE: The logic states of "A", "B", "C", and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM READ-WRITE CYCLE
(READ-MODIFY-WRITE CYCLE)


DON'T CARE
UNDEFINED

NOTE: The logic states of "A", "B", "C", and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

## DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE



NOTE: 1. READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST PAGE MODE.
2. The logic states of "A", "B", "C", and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM FAST-PAGE-MODE READ-WRITE CYCLE
(READ-MODIFY-WRITE or LATE-WRITE CYCLES)


DON'T CARE
UNDEFINED

NOTE: 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST PAGE MODE. Use the Write Function Table to determine the proper DSF state for the desired WRITE operation.
2. The logic states of "A", "B" and "C" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

## DRAM $\overline{\text { RAS-ONLY REFRESH CYCLE }}$

(ADDR = AO-A8)


CAS-BEFORE-RAS REFRESH CYCLE


ADDR
テं=: DSF


Do Viot- $\qquad$ open OPEN $\qquad$
$\overline{T R} \overline{O E}$


ITZ dont care
undefined

## DRAM HIDDEN-REFRESH CYCLE



V/D DON'T CARE
UNDEFINED

NOTE: A HIDDEN REFRESH may also be performed after a WRITE or TRANSFER cycle. In the WRITE case, $\overline{M E} / \overline{W E}$ $=$ LOW (when $\overline{\mathrm{CAS}}$ goes LOW) and $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}=\mathrm{HIGH}$. In the TRANSFER case, $\overline{T R} / \overline{\mathrm{OE}}=\mathrm{LOW}$ (when RAS goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of $\overline{T R} / \overline{O E}$.

READ TRANSFER
(DRAM-TO-SAM TRANSFER)
(When part was previously in the SERIAL INPUT mode)


NOTE: 1. There must be no rising edges on the SC input during this time period.
V/D DON'T CARE
2. $\mathrm{QSF}=0$ when the Lower SAM (bits $0-255$ ) is being accessed.

QSF $=1$ when the Upper SAM (bits 256-511) is being accessed.

REAL-TIME READ TRANSFER (DRAM-TO-SAM TRANSFER) (When part was previously in the SERIAL OUTPUT mode)


NOTE: 1. The $\overline{\operatorname{SE}}$ pulse is shown to illustrate the SERIAL OUTPUT ENABLE and DISABLE timing. It is not required.
2. QSF $=0$ when the Lower SAM (bits $0-255$ ) is being accessed.

QSF $=1$ when the Upper SAM (bits 256-511) is being accessed.

## SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)



## WRITE TRANSFER and PSEUDO WRITE TRANSFER (SAM-TO-DRAM TRANSFER) <br> (When part was previously in the SERIAL OUTPUT mode)



NOTE: 1. If $\overline{S E}$ is LOW, the SAM data will be transferred to the DRAM.
If $\overline{S E}$ is HIGH, the SAM data will not be transferred to the DRAM (SERIAL-INPUT-MODE ENABLE cycle).
2. $\overline{\text { SE must be LOW to input new serial data, but the serial address register is incremented by SC }}$ regardless of the state of $\overline{\mathrm{SE}}$.
3. There must be no rising edges on the SC input during this time period.
4. QSF $=0$ when the Lower SAM (bits $0-255$ ) is being accessed.

QSF = 1 when the Upper SAM (bits 256-511) is being accessed.

## WRITE TRANSFER <br> (SAM-TO-DRAM TRANSFER)

(When part was previously in the SERIAL INPUT mode)


NOTE: 1. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of $\overline{S E}$.
2. There must be no rising edges on the SC input during this time period.
3. QSF $=0$ when the Lower SAM (bits $0-255$ ) is being accessed.

QSF $=1$ when the Upper SAM (bits 256-511) is being accessed.

## ALTERNATE WRITE TRANSFER <br> (SAM-TO-DRAM TRANSFER)



NOTE: 1. $\overline{\text { SE }}$ must be LOW to input new serial data, but the serial address register is incremented by SC regardless of the state of $\overline{\mathrm{SE}}$.
2. There must be no rising edges on the SC input during this time period.
3. QSF $=0$ when the Lower SAM (bits $0-255$ ) is being accessed.

QSF = 1 when the Upper SAM (bits 256-511) is being accessed.

SAM SERIAL INPUT


## SAM SERIAL OUTPUT



5 STD ouv come
Kxy une neo

## VRAM

## 256K x 4 DRAM WITH $512 \times 4$ SAM

## FEATURES

- Industry standard pinout, timing and functions
- High-performance CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Inputs and outputs are fully TTL and CMOS compatible
- Refresh modes: $\overline{\text { RAS-ONLY, }} \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$, and HIDDEN
- 512 -cycle refresh within 8 ms
- Optional FAST PAGE MODE access cycles
- Dual port organization: $256 \mathrm{~K} \times 4$ DRAM port $512 \times 4$ SAM port
- No refresh required for Serial Access Memory
- Low power: 15 mW standby; 275 mW active, typical
- Fast access times - 80ns random, 25 ns serial


## SPECIAL FUNCTIONS

- JEDEC Standard Function set
- PERSISTENT MASKED WRITE
- SPLIT READ TRANSFER
- WRITE TRANSFER/SERIAL INPUT
- ALTERNATE WRITE TRANSFER
- BLOCK WRITE


## OPTIONS

- Timing (DRAM, SAM)

80ns, 25ns

- 8
$100 \mathrm{~ns}, 30 \mathrm{~ns}$
-10
$120 \mathrm{~ns}, 35 \mathrm{~ns}$
-12
- Packages

Plastic SOJ
DJ
Plastic ZIP
Z

## GENERAL DESCRIPTION

The MT42C4256 is a high-speed, dual port CMOS dynamic random access memory or video RAM (VRAM) containing $1,048,576$ bits. These bits may be accessed by a $4-$ bit wide DRAM port or by a $512 \times 4$-bit serial access memory (SAM) port. Data may be transferred bidirectionally between the DRAM and the SAM.

The DRAM portion of the VRAM is functionally identical to the MT4C4256 ( $256 \mathrm{~K} \times 4$ DRAM). Four 512-bit data registers make up the SAM portion of the VRAM. Data I/O and internal data transfer are accomplished using three separate bidirectional data paths; the 4 -bit random access I/O port, the four internal 512 bit wide paths between the DRAM and the SAM, and the 4-bit serial I/O port for the

## PIN ASSIGNMENT (Top View)

| $\begin{gathered} \text { 28-Pin SOJ } \\ (\mathrm{E}-9) \end{gathered}$ |  |  |
| :---: | :---: | :---: |
| Sc $\sqrt{1}$ | 28 | Vss |
| SDQ1 ${ }^{2}$ | 27 | SDQ4 |
| SDQ2 ${ }^{\text {a }}$ | 26 | SDO3 |
| TR/OE [4 | 25 | $\square \overline{\text { SE }}$ |
| DQ1 $0^{5}$ | 24 | D DQ4 |
| DQ2 $\square^{6}$ | 23 | DQ3 |
| $\overline{\text { MEME }} \overline{\text { WE }}$ [ 7 | 22 | DSF |
| NC $\mathrm{C}_{8}$ | 21 | , $\overline{C A S}$ |
| $\overline{\text { RAS }} \mathrm{C} 9$ | 20 | OSF |
| A8 10 | 19 | A AO |
| A6 11 | 18 | A1 |
| A5 12 | 17 |  |
| A4 13 | 16 |  |
| Vcco 14 | 15 | A7 |

28-Pin ZIP
(C-5)

SAM. The rest of the circuitry consists of the control, timing and address decoding logic.

Each of the ports may be operated asynchronously and independently of the other except when data is being transferred internally between them. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of $\overline{\text { RAS }}$ addresses are executed at least every 8 ms (regardless of sequence). Micron recommendsevenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. TheSAM portion of the VRAM is fully static and does not require any refresh.
The operation and control of the MT42C4256 is compatible with (and can be identical to) the operation of the MT42C4064 ( $64 \mathrm{~K} \times 4$ VRAM). However, the MT42C4256 offers several additional functions that may be used to increase system performance or ease critical timing requirements. These "special functions" are described in detail in the following sections.



Figure 1
MT42C4256 BLOCK DIAGRAM

## MULTIPORT DRAM

## MT42C4256

## PIN DESCRIPTIONS

| SOJ PIN NUMBERS | ZIP PIN NUMBERS | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 8 | SC | Input | Serial Clock: Clock input to the serial address counter for the SAM registers. |
| 4 | 11 | TR/OE | Input | Transfer Enable: Enables an internal TRANSFER operation at $\overline{\text { RAS }}(\mathrm{H} \rightarrow \mathrm{L})$, or <br> Output Enable: Enables the DRAM output buffers when taken LOW after $\overline{\text { RAS }}$ goes LOW (CAS must also be LOW), otherwise the output buffers are in a High-Z state. |
| 7 | 14 | $\overline{M E} \overline{W E}$ | Input | Mask Enable: If $\overline{M E} \overline{W E}$ is LOW at the falling edge of $\overline{\text { RAS }}$ a MASKED WRITE cycle is performed, or Write Enable: $\overline{\mathrm{ME}} \overline{\mathrm{WE}}$ is also used to select a READ ( $\overline{\mathrm{ME}} \overline{\mathrm{NE}}=\mathrm{H}$ ) or WRITE ( $\overline{\mathrm{ME}} \overline{\mathrm{NE}}=\mathrm{L}$ ) cycle when accessing the DRAM. This includes a READ TRANSFER ( $\overline{\mathrm{ME}} \overline{\mathrm{WE}}=\mathrm{H}$ ) or WRITE TRANSFER ( $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}=\mathrm{L}$ ). |
| 25 | 4 | $\overline{\text { SE }}$ | Input | Serial Port Enable: $\overline{\text { SE }}$ enables the serial I/O buffers and allows a serial READ or WRITE operation to occur, otherwise the output buffers are in a High-Z state. $\overline{\mathrm{SE}}$ is also used during a WRITE TRANSFER operation to indicate whether a WRITE TRANSFER or a SERIAL INPUT MODE ENABLE cycle is performed. |
| 22 | 1 | DSF | Input | Special Function Select: DSF is used to indicate which special functions (BLOCK WRITE, MASKED WRITE vs. PERSISTENT MASKED WRITE, etc.) are used on a particular access cycle. |
| 9 | 16 | $\overline{\text { RAS }}$ | Input | Row Address Strobe: $\overline{\mathrm{RAS}}$ is used to clock in the 9 rowaddress bits and as a strobe for the $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}, \overline{\mathrm{TR}} / \overline{\mathrm{OE}}, \mathrm{DSF}, \overline{\mathrm{SE}}$, $\overline{C A S}$ and $D Q$ inputs. |
| 21 | 28 | $\overline{\text { CAS }}$ | Input | Column Address Strobe: $\overline{\mathrm{CAS}}$ is used to clock in the 9 column-address bits, enable the DRAM output buffers (along with $\overline{T R} / \overline{\mathrm{OE}}$ ), and as a strobe for the DSF input. |
| $\begin{aligned} & 19,18,17, \\ & 16,13,12, \\ & 11,15,10 \end{aligned}$ | $\begin{aligned} & 26,25,24, \\ & 23,20,19, \\ & 18,22,17 \end{aligned}$ | A0 to A8 | Input | Address Inputs: For the DRAM operation, these inputs are multiplexed and clocked by RAS and $\overline{\text { CAS }}$ to select one 4-bit word out of the 256 K available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when $\overline{\text { RAS }}$ goes LOW) and the SAM start address (when $\overline{\text { CAS }}$ goes LOW). |
| 5, 6, 23, 24 | 12, 13, 2, 3 | DQ1 - DQ4 | Input/ Output | DRAM Data I/O: DRAM input/Output for DRAM cycles; inputs for Mask Data Register and Color Register load cycles, and Bit and Column Mask inputs for BLOCK WRITE. |
| 2, 3, 26, 27 | 9, 10, 5, 6 | SDQ1 - SDQ4 | Input/ Output | Serial Data I/O: Input, output, or High-Z. |
| 20 | 27 | QSF | Output | Split SAM Status: QSF indicates which half of the SAM is being accessed. LOW if address is $0-255$, HIGH if address is 256-511. |
| 8 | 15 | NC | - | No Connect: This pin should be left either unconnected or tied to ground. |
| 14 | 21 | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 28 | 7 | Vss | Supply | Ground |

## FUNCTIONAL DESCRIPTION

The MT42C4256 may be divided into three functional blocks (see Figure 1): the DRAM, the transfer circuitry, and the SAM. All of the operations described below are shown in the AC Timing Diagrams section of this data sheet and summarized in the Truth Table.

Note: For dual-function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing transfer operations the $\overline{T R} / \overline{O E}$ pin will be shown as $\overline{T R} /(\overline{O E})$.

## DRAM OPERATION

## DRAM REFRESH

Like any DRAM based memory, the MT42C4256 VRAM must be refreshed to retain data. All 512 row address combinations must be accessed within 8ms. TheMT42C4256 supports $\overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}, \overline{\mathrm{RAS}}-\mathrm{ONLY}$ and HIDDEN types of refresh cycles.

For the $\overline{\text { CAS-BEFORE- }} \overline{\mathrm{RAS}}$ REFRESH cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data, and simply must perform 512 CAS-BEFORE- $\overline{\text { RAS }}$ cycles within the 8 ms time period.

The refresh address must be generated externally and applied to A0-A8 inputs for $\overline{\mathrm{RAS}}-\mathrm{ONLY}$ refresh cycles. The DQ pins remain in a High-Z state for both the $\overline{\text { RAS }}-\mathrm{ONLY}$ and CAS-BEFORE-RAS refresh cycles.

HIDDEN REFRESH cycles are performed by toggling $\overline{\text { RAS }}$ (and keeping CAS LOW) after a READ or WRITE cycle. This performs $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$ cycles but does not disturb the $D Q$ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row that is being accessed. The SAM portion of the MT42C4256 is fully static and does not require any refreshing.

## DRAM READ AND WRITE CYCLES

The DRAM portion of the VRAM is nearly identical to standard $256 \mathrm{~K} x 4$ DRAMs. However, because several of the DRAM control pins are used for additional functions on this part, several conditions that were undefined or in
"don't care" states for the DRAM are specified for the VRAM. These conditions are highlighted in the following discussion. In addition, the VRAM has several special functions that can be used when writing to the DRAM.
The 18 address bits that are used to select a 4-bit word from the 262,144 available are latched into the chip using the A0-A8, $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ inputs. First, the 9 row-address bits are set up on the address inputs and clocked into the part when $\overline{\mathrm{RAS}}$ transitions from HIGH to LOW. Next, the 9 column address bits are set up on the address inputs and clocked-in when $\overline{\text { CAS }}$ goes from HIGH to LOW.

For single port DRAMS, the $\overline{O E}$ pin is a "don't care" when $\overline{\mathrm{RAS}}$ goes LOW. However, for the VRAM, when RAS goes LOW, (TR)/ $\overline{\mathrm{OE}}$ selects between DRAM access or TRANSFER cycles. ( $\overline{\mathrm{TR}}) / \overline{\mathrm{OE}}$ must be HIGH at the $\overline{\mathrm{RAS}}$ HIGH-toLOW transition for all DRAM operations (except $\overline{\text { CAS- }}$ BEFORE- $\overline{R A S}$ ).

If ( $\overline{\mathrm{ME}}$ ) $/ \overline{\mathrm{WE}}$ is HIGH when $\overline{\mathrm{CAS}}$ goes LOW, a DRAM READ operation is performed and the data from the memory cells selected will appear at the DQ1-DQ4 port. The (TR)/ $\overline{\mathrm{OE}}$ input must transition from HIGH to LOW sometime after $\overline{\mathrm{RAS}}$ falls to enable the DRAM output port.

For single port normal DRAMs, $\overline{W E}$ is a "don't care" when $\overline{\mathrm{RAS}}$ goes LOW. For the VRAM, $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ is used, when RAS goes LOW, to select between a MASKED WRITE cycle and a normal WRITE cycle. If $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ is LOW at the $\overline{\text { RAS }}$ HIGH-to-LOW transition, a MASKED WRITE operation is selected. For any DRAM access cycle (READ or WRITE), $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ must be HIGH at the $\overline{\mathrm{RASHIGH}}$-to-LOW transition. If ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is LOW before $\overline{\mathrm{CAS}}$ goes LOW, a DRAM EARLY-WRITE operation is performed and the data present on the DQ1-DQ4 data port will be written into the selected memory cells. If ( $\overline{\mathrm{ME}}$ ) $/ \overline{\mathrm{WE}}$ goes LOW after CAS goes LOW, a DRAM LATE-WRITE operation is performed. Refer to the AC timing diagrams.

The VRAM can perform all the normal DRAM cycles including READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE (Late or Early), and FAST-PAGEMODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

## NON PERSISTENT MASKED WRITE

The MASKED WRITE feature eliminates the need to do a READ-MODIFY-WRITE cycle when changing only specific bits within a 4-bit word. The MT42C4256 supports two types of MASKED WRITE cycles, NONPERSISTENT MASKED WRITE and PERSISTENT MASKED WRITE.

If $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ and DSF are LOW at the $\overline{\mathrm{RAS}} \mathrm{HIGH}$ to LOW transition, a NONPERSISTENT MASKED WRITE is performed and the data (mask data) present on the DQ1-DQ4 inputs will be written into the mask data register. The mask data acts as an individual write enable for each of the four DQ1-DQ4 pins. If a LOW (logic " 0 ") is written to a mask data register bit, the input port for that bit is disabled during the following WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic " 1 ") on a mask data register bit enables the input port and allows
normal WRITE operation to proceed. Note that $\overline{\text { CAS }}$ is still HIGH. When CAS goes LOW, the bits present on the DQ1DQ4 inputs will be either written to the DRAM (if the mask data bit is HIGH) or ignored (if the mask data bit is LOW). The DRAM contents that correspond to masked input bits will not be changed during the WRITE cycle. The MASKED WRITE is nonpersistent (must be re-entered at every $\overline{\mathrm{RAS}}$ cycle) if DSF is LOW when $\overline{R A S}$ goes LOW. The mask data register is cleared at the end of every NONPERSISTENT MASKED WRITE. FAST PAGE MODE can be used with NONPERSISTENT MASKED WRITE to write several column locations in an addressed row. The same mask is used during the entire FAST-PAGE-MODE $\overline{\mathrm{RAS}}$ cycle. An example NON PERSISTENT MASKEDWRITE cycle is shown in Figure 2.


X = NOT EFFECTIVE (DON'T CARE)

Figure 2
NONPERSISTENT MASKED WRITE EXAMPLE

## PERSISTENT MASKED WRITE

The PERSISTENT MASKED WRITE feature eliminates the need to rewrite the mask data before each MASKED WRITE cycle if the same mask data is being used repeatedly. To initiate a PERSISTENT MASKED WRITE, a LOAD MASK REGISTER cycle is performed by taking $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ and DSF HIGH when $\overline{\text { RAS }}$ goes LOW. The mask data is loaded into theinternal register when $\overline{\mathrm{CAS}}$ goes LOW.Mask data may also be loaded into the mask register by perform-
ing a NONPERSISTENT MASKED WRITE cycle before the data may also be loaded into the mask register by perform-
ing a NONPERSISTENT MASKED WRITE cycle before the PERSISTENT MASKED WRITE cycles.

PERSISTENT MASKED WRITE cycles may then be performed by taking $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ LOW and DSF HIGH when $\overline{\mathrm{RAS}}$ goes LOW. The contents of the mask data register will then be used as the mask data for the DRAM inputs. Unlike the NONPERSISTENT MASKED WRITE cycle, the data
present on the DQ inputs is not loaded into the mask register when $\overline{\mathrm{RAS}}$ falls, and the mask data register will not be cleared at the end of the cycle. Any number of PERSISTENT MASKED WRITE cycles, to any address, may be performed without having to reload the mask data register. Figure 3 shows the LOAD MASK REGISTER and two PERSISTENT MASKED WRITE cycles in operation. The LOAD MASK REGISTER and PERSISTENT MASKED WRITE cycles allow controllers that cannot provide mask data to the DQ pins at $\overline{\text { RAS }}$ time to perform MASKEDWRITE operations. PERSISTENT MASKEDWRITE operations may be performed during FAST PAGE MODE cycles and the same mask will apply to all addressed columns in the addressed row.


X = NOT EFFECTIVE (DON'T CARE)

Figure 3
PERSISTENT MASKED WRITE EXAMPLE


Figure 4
BLOCK WRITE EXAMPLE

## BLOCK WRITE

If DSF is HIGH when $\overline{\text { CAS }}$ goes LOW, the MT42C4256 will perform a BLOCK WRITE cycle instead of a normal WRITE cycle. In BLOCK WRITE cycles, the contents of the color register are directly written to four adjacent column locations (see Figure 4). The color register must be loaded prior to beginning BLOCKWRITEcycles(seeLOADCOLOR REGISTER).

The row is addressed as in a normal DRAMWRITE cycle, however when $\overline{\text { CAS }}$ goes LOW only the A2-A8 inputs are used. A2-A8 specify the "block" of four adjacent column locations that will be accessed. The DQ inputs are then used
to determine what combination of the four column locations will be changed. DQ1 acts as a write enable for column location $\mathrm{A} 0=0, \mathrm{~A} 1=0 ; \mathrm{DQ} 2$ controls column location $\mathrm{A} 0=1$, $\mathrm{A} 1=0$; DQ 3 controls $\mathrm{A} 0=0, \mathrm{~A} 1=1$; and DQ 4 controls $\mathrm{A} 0=1$, A1=1. The write enable controls are active HIGH; a logic 1 enables and a logic 0 disables the WRITE function.

The contents of the color register will then be written to the column locations enabled. Each DQ location of the color register is written to the four column locations (or any of the four that are enabled) in the corresponding DQ bit plane.

## NONPERSISTENT MASKED BLOCK WRITE

The MASKED WRITE functions can also be used during BLOCK WRITE cycles. NONPERSISTENT MASKED BLOCK WRITE operates exactly like the normal NONPERSISTENT MASKED WRITE except the mask is now applied to four column locations instead of just one column location.
Like NONPERSISTENT MASKEDWRITE, the combination of $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ LOW and DSFLOW when $\overline{\text { RASgoes LOW }}$ initiates a NONPERSISTENT MASKED cycle. The DSF pin must be driven HIGH when CAS goes LOW, to perform the NONPERSISTENT MASKED BLOCK WRITE. By using both the column mask input and the MASKED WRITE function, any combination of the four bit planes may be masked and any combination of the four column locations may be masked.

## PERSISTENT MASKED BLOCK WRITE

This cycle is also performed exactly like the normal PERSISTENT MASKED WRITE except that DSF is HIGH when CAS goes LOW to indicate the BLOCK WRITE function. Both the mask data register and the color register must be loaded with the appropriate data prior to starting a PERSISTENT MASKED BLOCK WRITE.

## LOAD MASK DATA REGISTER

The LOAD MASK REGISTER operation and timing are identical to a normal WRITE cycle except that DSF is HIGH when RAS goes LOW. As shown in the Truth Table, the
combination of $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}}), \overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$, and DSF being HIGH when RAS goes LOW indicates the cycle is a LOAD REGISTER cycle. DSF is used when $\overline{\text { CAS }}$ goes LOW to select the register to be loaded and must be LOW for a LOAD MASK REGISTER cycle. The data present on the DQ lines will then be written to the mask data register.

Note: For a normal DRAM WRITE cycle, the mask data register is disabled but not modified. The contents of mask data register will not be changed unless a NONPERSISTENT MASKED WRITE cycle or a LOAD MASK REGISTER cycle is performed.
The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

The mask data register contents are used during PERSISTENT MASKED WRITE and PERSISTENT MASKED BLOCK WRITE cycles to selectively enable writes to the four $D Q$ planes.

## LOAD COLOR REGISTER

A LOAD COLOR REGISTER cycle is identical to the LOAD MASK REGISTER cycle except DSF is HIGH when CAS goes LOW. The contents of the color register are retained until changed by another LOAD COLOR REGISTER cycle (or the part loses power) and are used as data inputs during BLOCK WRITE cycles.

## TRANSFER OPERATIONS

TRANSFER operations are initiated when $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is LOW then $\overline{\mathrm{RAS}}$ goes LOW. The state of ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ when $\overline{\mathrm{RAS}}$ goes LOW indicates the direction of the TRANSFER (to or from the DRAM), and DSF is used to select between NORMAL TRANSFER, SPLIT READ TRANSFER, and ALTERNATE WRITE TRANSFER cycles. Each of the TRANSFER cycles available is described below.

## READ TRANSFER (DRAM-TO-SAM TRANSFER)

If ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is HIGH and DSF is LOW when $\overline{\mathrm{RAS}}$ goes LOW, a READ TRANSFER cycle is selected. The row address bits indicate the four 512-bit DRAM row planes that are to be transferred to the four SAM data register planes. The column address bits indicate the start address (or Tap address) of the serial output cycle from the SAM data registers. $\overline{\text { CAS }}$ must fall for every TRANSFER in order to load a valid Tap address. A read transfer may be accom-
plished two ways. If the transfer is to be synchronized with SC (REAL-TIME READ TRANSFER), $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is taken HIGH after $\overline{\text { CAS }}$ goes LOW. If the transfer does not have to be synchronized withSC (READTRANSFER), $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ may go HIGH before $\overline{\text { CAS }}$ goes LOW (refer to the AC Timing Diagrams). The 2048 bits of DRAM data are written into the SAM data registers and the serial shift start address is stored in an internal9-bit register. QSF will be LOW if access is from the lower half (addresses 0 through 255), and HIGH if accessis from the upper half ( 256 through511).If $\overline{S E}$ is LOW, the first bits of the new row data will appear at the serial outputs with the first SC clock pulse. $\overline{\mathrm{SE}}$ enables the serial outputs and may be either HIGH or LOW during this operation. The SAM address pointer will increment with the SC LOW-to-HIGH transition, regardless of the state of $\overline{\text { SE }}$. Performing a READ TRANSFER cycle sets the direction of the SAM I/O buffers to the output mode.


## SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)

The SPLIT READ TRANSFER (SRT) cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream. When using normal TRANSFER cycles, the REAL-TIME READ TRANSFER cycle has to occur immediately after the last bit of "old data" was clocked out of the SAM port.

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data can be transferred to the other half. The transfer can occur at any time while the other half is sending data and need not be synchronized with the SC clock.

The $\overline{T R} /(\overline{\mathrm{OE}})$ timing is also relaxed forSPLITTRANSFER cycles. The rising edge of $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is not used to complete the TRANSFER cycle and therefore is independent of the rising edges of $\overline{R A S}$ or $\overline{C A S}$. The transfer timing is generated internally for SPLIT TRANSFER cycles. A SPLIT READ TRANSFER does not change the direction of the SAM port.

A normal, non-split READ TRANSFER cycle must precede any sequence of SPLIT READ TRANSFER cycles to provide a reference to which half of the SAM the access will begin and set SAM I/O direction. Then SPLIT READ TRANSFERS may be initiated by taking DSF HIGH when $\overline{R A S}$ goes LOW during the TRANSFER cycle. As in non split transfers, the row address is used to specify the DRAM row to be transferred. The column address, A0-A7, is used to input the SAM tap address. Address pin A8 is a "don't care" when the Tap address is loaded at the HIGH to LOW transition of $\overline{\mathrm{CAS}}$. It is internally generated so that the SPLIT TRANSFER will be to the SAM half not currently being accessed.

Figure 5 shows a typical SPLIT READ TRANSFER initiation sequence. The normal READ TRANSFER is first performed, followed by aSPLIT READTRANSFER of the same row to the upper half of the SAM. The purpose of the SPLIT TRANSFER of the same data is to initiate the split SAM operating mode and load the Tap address. Serial access continues, and when the SAM address counter reaches 255 ("A8" $=0, \mathrm{~A} 0-\mathrm{A} 7=1$ ) the new Tap address is loaded for the next half ("A8" $=1, A 0-A 7=T a p$ ) and the QSF output goes HIGH. Once the serial access has switched to the upper SAM, new data may be transferred to the lower SAM. The controller must wait for the state of QSF to change and then the new data may be transferred to the SAM half not being accessed. For example, the next step in Figure 5 would be to wait until QSF went LOW (indicating that row-1 data is shifting out the lowerSAM) and then transfer the upper half of row 1 to the upper SAM. If the half boundry is reached, before a SRT is done for the next half, a Tap address of " 0 " will be used. Access will start at 0 if going to the lower half, 256 if going to the upper. See Figure 6.

## WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of the WRITE TRANSFER is identical to the READ TRANSFER described previously except ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ and $\overline{\text { SE }}$ must be LOW when $\overline{R A S}$ goes LOW. The row address indicates the DRAM row to which the SAM data registers will be written. The columnaddress(Tap) indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. A WRITE TRANSFER changes the direction of the SAM I/O buffers to the input mode. QFS is LOW if access is to the lower half of the SAM, and HIGH if access isto the upper half.

## PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE ENABLE)

The PSEUDO WRITE TRANSFER cycle is used to change the direction of SAM port from output to input without performing a WRITE TRANSFER cycle. A PSEUDOWRITE TRANSFER cycleisa WRITETRANSFER cycle with $\overline{\text { SE }}$ held HIGH instead of LOW. The DRAM data will not be disturbed and the SAM will be ready to accept input data.

## ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of the ALTERNATE WRITE TRANSFER is identical to the WRITE TRANSFER except that the DSF pin is HIGH and ( $\overline{\mathrm{ME}}$ ) $/ \overline{\mathrm{WE}}$ is LOW when $\overline{\mathrm{RAS}}$ goes LOW, allowing $\overline{\mathrm{SE}}$ to be a "don't care." This allows the outputs to be disabled using $\overline{\text { SE }}$ during a WRITE TRANSFER cycle.

## POWER-UP AND INITIALIZATION

When Vcc is initially supplied or when refresh is interrupted for more than 8ms, the MT42C4256 must be initialized.

After Vcc is at specified operating conditions, for $100 \mu \mathrm{~s}$ minimum, eight $\overline{\mathrm{RAS}}$ cycles must be executed to initialize the dynamic memory array. When the device is initialized the DRAM I/O pins (DQs) are in a High-Z state, regardless of the state of $(\overline{\mathrm{TR}}) / \overline{\mathrm{OE}}$. The DRAM array will contain random data. QSF will be drawing data.

The SAM portion of the MT42C4256 is completely static in operation and does not require refresh or initialization. The SAM port will power-up in the serial input mode (WRITE TRANSFER) and theI/O pins (SDQs) will be HighZ , regardless of the state of $\overline{\mathrm{SE}}, \mathrm{b}$. The mask and color register will contain random data after power-up.


Figure 6
SPLIT SAM TRANSFER

## MULTIPORT DRAM

TRUTH TABLE

| CODE | FUNCTION | $\overline{\text { RAS FALLING EDGE }}$ |  |  |  |  | $\begin{array}{\|c\|} \hline \text { CAS FALL } \\ \hline \text { DSF } \\ \hline \end{array}$ | A0-A8 ${ }^{1}$ |  | DQ1-DQ4 ${ }^{2}$ |  | REGISTERS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CAS | $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ | $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}$ | DSF | $\overline{\text { SE }}$ |  | $\overline{\text { RAS }}$ | CAS | RAS | $\overline{\text { CAS }}{ }^{\text {W }}$ | MASK | COLOR |
| DRAM OPERATIONS |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CBR | CAS-BEFORE- $\overline{R A S}$ REFRESH | 0 | X | 1 | X | X | X | - | X | - | X | X | X |
| ROR | RAS-ONLY REFRESH | 1 | 1 | X | X | X | - | ROW | - | X | - | X | X |
| RW | NORMAL DRAM READ OR WRITE | 1 | 1 | 1 | 0 | X | 0 | ROW | COLUMN | X | VALID | X | X |
| RWNM | NONPERSISTENT (LOAD AND USE) MASKED WRITE TO DRAM | 1 | 1 | 0 | 0 | X | 0 | ROW | COLUMN | WRITE MASK | VALID <br> DATA | LOAD \& USE | X |
| RWOM | PERSISTENT (USE REGISTER) MASKED WRITE TO DRAM | 1 | 1 | 0 | 1 | X | 0 | ROW | COLUMN | X | VALID DATA | USE | X |
| BW | BLOCK WRITE TO DRAM (NO DATA MASK) | 1 | 1 | 1 | 0 | X | 1 | ROW | $\begin{aligned} & \text { COLUMN } \\ & \text { (A2 - A8) } \end{aligned}$ | X | COLUMN MASK | X | USE |
| BWNM | NONPERSISTENT (LOAD \& USE) MASKED BLOCK WRITE TO DRAM | 1 | 1 | 0 | 0 | X | 1 | ROW | COLUMN | WRITE MASK | COLUMN MASK | LOAD \& USE | USE |
| BWOM | PERSISTENT (USE MASKED REGISTER) MASKED BLOCK WRITE TO DRAM | 1 | 1 | 0 | 1 | X | 1 | ROW | $\begin{aligned} & \text { COLUMN } \\ & \text { (A2 - A8) } \end{aligned}$ | X | COLUMN MASK | USE | USE |
| REGISTER OPERATIONS |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LMR | LOAD MASK REGISTER | 1 | 1 | 1 | 1 | X | 0 | ROW ${ }^{4}$ | X | X | WRITE MASK | LOAD | X |
| LCR | LOAD COLOR REGISTER | 1 | 1 | 1 | 1 | X | 1 | ROW ${ }^{4}$ | X | X | COLOR DATA | X | LOAD |
| TRANSFER OPERATIONS |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RT | READ TRANSFER (DRAM-TO-SAM TRANSFER) | 1 | 0 | 1 | 0 | X | X | ROW | TAP ${ }^{5}$ | X | X | X | X |
| SRT | SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER) | 1 | 0 | 1 | 1 | X | X | ROW | TAP ${ }^{5}$ | X | X | X | X |
| WT | WRITE TRANSFER (SAM-TO-DRAM TRANSFER) | 1 | 0 | 0 | 0 | 0 | X | ROW | TAP ${ }^{5}$ | X | X | X | X |
| PWT | PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE ENABLE) | 1 | 0 | 0 | 0 | 1 | X | ROW ${ }^{4}$ | TAP ${ }^{5}$ | X | X | X | X |
| AWT | ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER) | 1 | 0 | 0 | 1 | X | X | ROW | TAP ${ }^{5}$ | X | X | X | X |

NOTE: 1. These columns show what must be present on the AO-A8 inputs when $\overline{\text { RAS }}$ falls and when $\overline{\mathrm{CAS}}$ falls.
2. These columns show what must be present on the DQ1-DQ4 inputs when RAS falls and when $\overline{\mathrm{CAS}}$ falls.
3. On WRITE cycles, the input data is latched at the falling edge of CAS or ME/WE, whichever is later. Similarly, on READ cycles, the output data is latched at the falling edge of $\overline{C A S}$ or $\overline{T R} / \mathrm{OE}$, whichever is later.
4. The ROW that is addressed will be refreshed, but no particular ROW address is required.
5. This is the SAM location that the first SC cycle will access. For Split SAM transfers, the Tap will be the first address location accessed of the "new" SAM half after the boundary of the current half is reached ( 255 for lower half, 511 for upper half).

## ABSOLUTE MAXIMUM RATINGS*


*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | $\mathrm{VCC}_{c \mid}$ | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 | Vcc +1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | $\mathrm{VIL}_{\mathrm{IL}}$ | -1.0 | 0.8 | V | 1 |

## DC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT LEAKAGE CURRENT <br> (any input ( $0 \mathrm{~V} \leq \mathrm{V}, \mathrm{N} \leq \mathrm{V} c \mathrm{c}$ ), all other pins not under test $=0 \mathrm{~V}$ ) | IL | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT (DQ, SDQ disabled, OV $\leq$ Vout $\leq \mathrm{Vcc}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage (lout $=-2.5 \mathrm{~mA}$ ) | Vон | 2.4 |  |  |  |
| Output Low Voltage ( $\mathrm{lout}=2.5 \mathrm{~mA}$ ) | VoL |  | 0.4 | V | 1 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A8 | Cl 1 |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{ME}} \overline{\mathrm{ME}}, \overline{\mathrm{TR}} / \overline{\mathrm{OE}}, \mathrm{SC}, \overline{\mathrm{SE}, ~ D S F}$ | $\mathrm{Cl2}$ |  | 8 | pF | 2 |
| Input/Output Capacitance: DQ, SDQ | $\mathrm{Cl/O}$ |  | 9 | pF | 2 |
| Output Capacitance: QSF | Co |  | 9 | pF | 2 |

## CURRENT DRAIN, SAM IN STANDBY

| $\leq T_{A} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%$ ) |  | MAX |  |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -8 | -10 | -12 |  |  |
| OPERATING CURRENT <br> ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling: ${ }^{\mathrm{t} R C}={ }^{\mathrm{t} R C}(\mathrm{MIN})$ ) | Icc1 | 90 | 80 | 70 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\text { RAS }}=$ VIL; $\overline{\text { CAS }}=$ Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}(\mathrm{MIN})$ ) | Icc2 | 70 | 60 | 50 | mA | 3, 4 |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{1}$ after $8 \overline{\mathrm{RAS}}$ cycles min) | Icc3 | 10 | 10 | 10 | mA |  |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY <br> ( $\overline{\mathrm{RAS}}=$ Cycling; $\overline{\mathrm{CAS}}=\mathrm{V} \mathrm{IH}$ ) | Icc 4 | 90 | 80 | 70 | mA | 3 |
| REFRESH CURRENT: <br> $\overline{\text { CAS }}$-BEFORE- $\overline{\text { RAS }}$ ( $\overline{\mathrm{RAS}}$ and $\overline{\text { CAS }}=$ Cycling) | Icc5 | 80 | 70 | 60 | mA | 3, 5 |
| SAM/DRAM DATA TRANSFER | Icc6 | 95 | 85 | 75 | mA | 3 |

## CURRENT DRAIN, SAM ACTIVE ('SC = MIN)

| $\left.0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$ |  | MAX |  |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -8 | -10 | -12 |  |  |
| OPERATING CURRENT <br> ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling: ${ }^{\mathrm{t} R C}={ }^{\text {tRC }}$ (MIN)) | Icc7 | 130 | 120 | 110 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\text { RAS }}=$ VIL; $\overline{\text { CAS }}=$ Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}($ MIN $)$ ) | Icc8 | 110 | 100 | 90 | mA | 3, 4 |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V} \mathbf{\mathrm { IH }}$ after $8 \overline{\mathrm{RAS}}$ cycles min) | Icc9 | 50 | 45 | 40 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY ( $\overline{\mathrm{RAS}}=$ Cycling; $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{I}}$ ) | Icc10 | 130 | 120 | 110 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$ ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling) | Icc11 | 120 | 110 | 100 | mA | 3, 4, 5 |
| SAM/DRAM DATA TRANSFER | IcC12 | 135 | 125 | 115 | mA | 3, 4 |

## DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right.$ )

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t }} \mathrm{RC}$ | 150 |  | 180 |  | 210 |  | ns |  |
| READ-MODIFY-WRITE cycle time | ${ }^{\text {t }}$ RWC | 205 |  | 235 |  | 280 |  | ns |  |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {t }} \mathrm{PC}$ | 45 |  | 55 |  | 65 |  | ns |  |
| FAST-PAGE-MODE READ-MODIFY-WRITE cycle time | tPRWC | 100 |  | 110 |  | 140 |  | ns |  |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ RAC |  | 80 |  | 100 |  | 120 | ns | 14 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ CAC |  | 20 |  | 25 |  | 30 | ns | 15 |
| Access time from ( $\overline{\mathrm{TR}}$ )/ /OE | ${ }^{\text {t }} \mathrm{OE}$ |  | 20 |  | 25 |  | 30 | ns |  |
| Access time from column address | ${ }^{\text {t }} \mathrm{AA}$ |  | 40 |  | 50 |  | 60 | ns |  |
| Access time from $\overline{\mathrm{CAS}}$ precharge | ${ }^{\text {t }}$ CPA |  | 45 |  | 55 |  | 65 | ns |  |
| $\overline{\text { RAS }}$ pulse width | ${ }^{\text {t }}$ RAS | 80 | 10,000 | 100 | 10,000 | 120 | 10,000 | ns |  |
| $\overline{\text { RAS }}$ pulse width (FAST PAGE MODE) | ${ }^{\text {t RASP }}$ | 80 | 100,000 | 100 | 100,000 | 120 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ RSH | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }}$ RP | 60 |  | 70 |  | 80 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t }}$ CAS | 20 | 10,000 | 25 | 10,000 | 30 | 10,000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 80 |  | 100 |  | 120 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }} \mathrm{CPN}$ | 15 |  | 15 |  | 20 |  | ns | 16 |
| $\overline{\text { CAS }}$ precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{CP}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ delay time | ${ }^{\text {t }}$ RCD | 20 | 55 | 20 | 70 | 25 | 85 | ns | 17 |
| $\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 10 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t }}$ RAH | 12 |  | 15 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {t }}$ RAD | 17 | 40 | 20 | 50 | 20 | 60 | ns | 18 |
| Column address setup time | ${ }^{t}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Column address hold time (referenced to RAS) | ${ }^{t} A R$ | 60 |  | 70 |  | 85 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {t } R A L}$ | 40 |  | 50 |  | 60 |  | ns |  |
| Read command setup time | ${ }^{\text {t }}$ RCS | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to CAS) | ${ }^{\text {t }} \mathrm{RCH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }} \mathrm{RRH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t }} \mathrm{CLZ}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {t }}$ OFF | 0 | 20 | 0 | 20 | 0 | 30 | ns | 20,23 |
| Output Disable | ${ }^{\text {t }} \mathrm{OD}$ | 0 | 20 | 0 | 20 | 0 | 30 | ns | 23 |
| Output Disable hold time from start of write | ${ }^{\text {t }} \mathrm{OEH}$ |  | 15 |  | 15 |  | 20 | ns | 27 |
| Output Enable to $\overline{\mathrm{RAS}}$ delay | ${ }^{\text {t }}$ ORD |  | 0 |  | 0 |  | 0 | ns |  |

## DRAM TIMING PARAMETERS (Continued)

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Write command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns | 21 |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 20 |  | 25 |  | ns |  |
| Write command hold time (referenced to RAS) | ${ }^{\text {t }}$ WCR | 60 |  | 70 |  | 85 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\mathrm{RAS}}$ lead time | ${ }^{\text {t }}$ WWL | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to CAS lead time | ${ }^{\text {t }} \mathrm{CWL}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }}$ DH | 20 |  | 20 |  | 25 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ DHR | 60 |  | 70 |  | 90 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\text { WE }}$ delay time | ${ }^{\text {t }}$ WD | 110 |  | 130 |  | 160 |  | ns | 21 |
| Column address to $\overline{W E}$ delay time | ${ }^{\text {t }} \mathrm{AWD}$ | 70 |  | 80 |  | 100 |  | ns | 21 |
| CAS to WE delay time | ${ }^{\text {t }}$ CWD | 50 |  | 55 |  | 70 |  | ns | 21 |
| Transition time (rise or fall) | ${ }^{\text {t }}$ T | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period ( 512 cycles) | ${ }^{\text {t }}$ REF |  | 8 |  | 8 |  | 8 | ms |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ precharge time | ${ }^{\text {t }}$ RPC | 0 |  | 0 |  | 0 |  | ns |  |
| CAS setup time (CAS-BEFORE-즉 REFRESH) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| $\overline{\text { CAS }}$ hold time <br> (CAS-BEFORE-RAS REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 30 |  | 30 |  | 30 |  | ns | 5 |
| $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}$ to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ WSR | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}$ to $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {t }}$ RWH | 12 |  | 15 |  | 15 |  | ns |  |
| Mask Data to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ MS | 0 |  | 0 |  | 0 |  | ns |  |
| Mask Data to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }} \mathrm{MH}$ | 12 |  | 15 |  | 15 |  | ns |  |

## TRANSFER AND MODE CONTROL TIMING PARAMETERS

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| TRANSFER command to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ TLS | 0 |  | 0 |  | 0 |  | ns | 25 |
| TRANSFER command to $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {t }}$ TLH | 12 | 10,000 | 15 | 10,000 | 15 | 10,000 | ns | 25 |
| TRANSFER command to RAS hold time (REAL-TIME READ TRANSFER only) | ${ }^{\text {t }}$ RTH | 70 | 10,000 | 80 | 10,000 | 90 | 10,000 | ns | 25 |
| TRANSFER command to $\overline{\text { CAS }}$ hold time (REAL-TIME READ TRANSFER only) | ${ }^{\text {t }}$ CTH | 20 |  | 25 |  | 30 |  | ns | 25 |
| TRANSFER command to column address hold time (for REAL-TIME READ TRANSFER only) | ${ }^{\text {t }}$ ATH | 25 |  | 30 |  | 35 |  | ns | 25 |
| TRANSFER command to SC lead time | ${ }^{\text {t }}$ TSL | 5 |  | 5 |  | 5 |  | ns | 25 |
| TRANSFER command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t }}$ TRL | 0 |  | 0 |  | 0 |  | ns | 25 |
| TRANSFER command to $\overline{\text { RAS }}$ delay time | ${ }^{\text {t }}$ TRD | 15 |  | 15 |  | 15 |  | ns | 25 |
| TRANSFER command to $\overline{\text { CAS }}$ time | ${ }^{\text {t }}$ TCL | 0 |  | 0 |  | 0 |  | ns | 25 |
| TRANSFER command to $\overline{\text { CAS }}$ delay time | ${ }^{\text {t }}$ TCD | 15 |  | 15 |  | 15 |  | ns | 25 |
| First SC edge to Transfer command delay time | ${ }^{\mathrm{t}} \mathrm{TSD}$ | 10 |  | 10 |  | 10 |  | ns | 25 |
| Serial output buffer turn-off delay from RAS | ${ }^{\text {t }}$ SDZ | 10 | 35 | 10 | 40 | 10 | 50 | ns |  |
| SC to $\overline{\mathrm{RAS}}$ setup time | ${ }^{t}$ SRS | 30 |  | 30 |  | 40 |  | ns |  |
| $\overline{\text { RAS }}$ to SC delay time | ${ }^{\text {t }}$ SRD | 20 |  | 25 |  | 30 |  | ns |  |
| Serial data input to $\overline{\text { SE }}$ delay time | ${ }^{\text {t }}$ SZE | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\text { RAS }}$ to SD buffer turn-on time | ${ }^{\text {t }}$ SRO | 10 |  | 15 |  | 15 |  | ns |  |
| Serial data input delay from $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ SDD | 45 |  | 50 |  | 55 |  | ns |  |
| Serial data input to $\overline{\text { RAS }}$ delay time | ${ }^{\text {t }}$ SZS | 0 |  | 0 |  | 0 |  | ns |  |
| Serial-input-mode enable ( $\overline{\mathrm{SE}}$ ) to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ ESR | 0 |  | 0 |  | 0 |  | ns |  |
| Serial-input-mode enable ( $\overline{\mathrm{SE}})$ to RAS hold time | ${ }^{\text {t REH }}$ | 10 |  | 15 |  | 15 |  | ns |  |
| NONTRANSFER command to $\overline{R A S}$ setup time | ${ }^{t} \mathrm{YS}$ | 0 |  | 0 |  | 0 |  | ns | 26 |
| NONTRANSFER command to $\overline{\text { RAS }}$ hold time | ${ }^{t} \mathrm{YH}$ | 12 |  | 15 |  | 15 |  | ns | 26 |
| DSF to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ FSR | 0 |  | 0 |  | 0 |  | ns |  |
| DSF to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ RFH | 12 |  | 15 |  | 15 |  | ns |  |
| SC to QSF delay time | ${ }^{\text {t }}$ SQD |  | 25 |  | 30 |  | 35 | ns |  |
| SPLIT TRANSFER setup time | ${ }^{\text {t }}$ STS | 30 |  | 35 |  | 40 |  | ns |  |
| SPLIT TRANSFER hold time | ${ }^{\text {t STH }}$ | 30 |  | 35 |  | 40 |  | ns |  |
| $\overline{\text { RAS }}$ to QSF delay time | ${ }^{\text {t }}$ RQD |  | 65 |  | 85 |  | 105 | ns |  |
| DSF to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ FHR | 60 |  | 65 |  |  |  | ns |  |
| DSF to CAS Set up time | ${ }^{\text {t }}$ FSC | 0 |  | 0 |  | 0 |  | ns |  |
| DSF to $\overline{\mathrm{CAS}}$ hold time | ${ }^{\text {t }}$ CFH | 15 |  | 20 |  |  |  | ns |  |
| TR/OE to QSF delay time | ${ }^{\text {t }}$ TQD |  | 25 |  | 30 |  | 35 | ns |  |
| $\overline{\text { CAS }}$ to QSF delay time | ${ }^{\text {t }}$ CQD |  | 35 |  | 40 |  | 45 | ns |  |
| $\overline{\mathrm{RAS}}$ to first SC delay | ${ }^{\text {t }}$ RSD | 80 |  | 95 |  | 105 |  | ns |  |
| $\overline{\text { CAS }}$ to first SC delay | ${ }^{\text {t }}$ CSD | 20 |  | 25 |  | 35 |  | ns |  |
| Column address valid to first SC delay | ${ }^{\text {t }}$ ASD | 45 |  | 55 |  | 65 |  | ns |  |

## SAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes 6, 7, 8, 9, 10) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right.$ )

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Serial clock-cycle time | ${ }^{\text {t }}$ SC | 25 |  | 30 |  | 35 |  | ns |  |
| Access time from SC | ${ }^{\text {t }}$ SAC |  | 25 |  | 25 |  | 35 | ns | 24 |
| SC precharge time (SC LOW time) | ${ }^{\text {t }}$ SP | 10 |  | 10 |  | 12 |  | ns |  |
| SC pulse width (SC HIGH time) | ${ }^{\text {t }}$ SAS | 10 |  | 10 |  | 12 |  | ns |  |
| Access time from $\overline{\text { SE }}$ | ${ }^{\text {t }}$ SEA |  | 15 |  | 20 |  | 30 | ns | 24 |
| $\overline{\text { SE }}$ precharge time | ${ }^{\text {t }}$ SEP | 10 |  | 15 |  | 15 |  | ns |  |
| $\overline{\text { SE }}$ pulse width | ${ }^{\text {t }}$ SE | 10 |  | 15 |  | 15 |  | ns |  |
| Serial data-out hold time after SC high | ${ }^{\text {t }} \mathrm{SOH}$ | 5 |  | 5 |  | 5 |  | ns | 24 |
| Serial output buffer turn-off delay from $\overline{\text { SE }}$ | ${ }^{\text {t }}$ SEZ | 0 | 12 | 0 | 15 | 0 | 25 | ns | 24 |
| Serial data-in setup time | ${ }^{\text {t }}$ SDS | 0 |  | 0 |  | 0 |  | ns | 24 |
| Serial data-in hold time | ${ }^{\text {t }}$ SDH | 10 |  | 15 |  | 20 |  | ns | 24 |
| Serial input (Write) Enable setup time | ${ }^{\text {t }}$ SWS | 0 |  | 0 |  | 0 |  | ns |  |
| Serial input (Write) Enable hold time | ${ }^{t}$ SWH | 10 |  | 15 |  | 20 |  | ns |  |
| Serial input (Write) Disable setup time | ${ }^{\text {t }}$ SWIS | 0 |  | 0 |  | 0 |  | ns |  |
| Serial input (Write) Disable hold time | ${ }^{\text {t }}$ SWIH | 10 |  | 15 |  | 20 |  | ns |  |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=\frac{\mathrm{I} \Delta \mathrm{t}}{\Delta \mathrm{V}}$ with $\Delta \mathrm{V}=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the output open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ) is assured.
7. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{\text { RAS }}$ cycles before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
8. $A C$ characteristics assume ${ }^{t} T=5 n$ s.
9. ViH (MIN) and Vil (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and $\mathrm{V}_{\mathrm{IH}}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between Viн and Vil (or between Vil and Vif) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\text {IH, }}$ DRAM data output (DQ1-DQ4) is high impedance.
12. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\text {IL }}, \mathrm{DRAM}$ data output (DQ1-DQ4) may contain data from the last valid READ cycle.
13. DRAM output timing measured with a load equivalent to 2 TTL gates and 100 pF . Output reference levels: $\mathrm{VOH}=2.4 \mathrm{~V} ; \mathrm{VoL}=0.4 \mathrm{~V}$.
14. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD} \geq{ }^{\mathrm{t}} \mathrm{RCD}$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}, \mathrm{DQ}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\text { CAS }}$ must be pulsed HIGH for ${ }^{t}$ CPN.
17. Operation within the ${ }^{t}$ RCD (MAX) limit ensures that ${ }^{t}$ RAC (MAX) can be met. ${ }^{t}$ RCD (MAX) is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the specified ${ }^{\text {t RCD }}$ (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{CAC}$.
18. Operation within the ${ }^{t} R A D(M A X)$ limit ensures that ${ }^{t}$ RCD (MAX) can be met. ${ }^{t} R A D ~(M A X)$ is specified as a reference point only; if ${ }^{t} R A D$ is greater than the
specified ${ }^{t}$ RAD (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{AA}$.
19. Either ${ }^{t}$ RCH or ${ }^{t}$ RRH must be satisfied for a READ cycle.
20. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Vон or VoL.
21. ${ }^{t} W C S,{ }^{t} R W D,{ }^{t} A W D$ and ${ }^{t} \mathrm{C} W D$ are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If tWCS $\geq$ ${ }^{\text {t}}$ WCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$. If ${ }^{\mathrm{t}} \mathrm{WCS} \leq$ ${ }^{t}$ WCS (MIN), the cycle is a LATE-WRITE and $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ must control the output buffers during the write to avoid data contention. If ${ }^{t} R W D \geq^{t} R W D$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq^{\mathrm{t}} \mathrm{AWD}$ (MIN) and ${ }^{\mathrm{t}} \mathrm{CWD} \geq^{\mathrm{t}} \mathrm{CWD}$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of the output buffers (at access time and until CAS goes back to $V_{\text {IH }}$ ) is indeterminate but the WRITE will be valid, if ${ }^{\text {t }}$ OD and ${ }^{\text {t }}$ OEH are met. See the LATE-WRITE AC Timing diagram.
22. These parameters are referenced to $\overline{\text { CAS }}$ leading edge in EARLY-WRITE cycles and $\overline{\text { ME }} / \overline{\mathrm{WE}}$ leading edge in LATE-WRITE or READ-WRITE cycles.
23. During a READ cycle, if $\overline{T R} / \overline{\mathrm{OE}}$ is LOW then taken HIGH, DQ goes open. The DQs will go open with $\overline{\mathrm{O}} \overline{\mathrm{E}}$ or $\overline{\mathrm{CAS}}$, whichever goes HIGH first.
24. SAM output timing is measured with a load equivalent to 2 TTL gate and 50 pF . Output reference levels: $\mathrm{VOH}=2.0 \mathrm{~V} ; \mathrm{VoL}=0.8 \mathrm{~V}$.
25. Transfer command means that $\overline{T R} / \overline{\mathrm{OE}}$ is LOW when RAS goes LOW.
26. Non transfer command means that $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ is HIGH when RAS goes LOW.
27. LATE-WRITE and READ-MODIFY-WRITE cycles must have ${ }^{\text {t OD }}$ and ${ }^{\text {tOEH }}$ met ( $\overline{\mathrm{OE}}$ HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if CAS remains LOW and $\overline{\mathrm{OE}}$ is taken LOW after ${ }^{\text {t OEH }}$ is met. If $\overline{\mathrm{CAS}}$ goes HIGH prior to $\overline{\mathrm{OE}}$ going back LOW, the DQs will remain open.

DRAM READ CYCLE


## DRAM FAST-PAGE-MODE READ CYCLE



V/D DON'T CARE
UNDEFINED

NOTE: 1. WRITE cycles or READ-MODIFY-WRITE cycles may be mixed with READ cycles while in FAST PAGE MODE.

## WRITE CYCLE FUNCTION TABLE ${ }^{1}$

| LOGIC STATES |  |  |  |  | FUNCTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RAS Falling Edge |  |  | CAS Falling Edge |  |  |
| $\frac{\mathrm{A}}{\overline{\mathrm{ME}} / \overline{\mathrm{WE}}}$ | $\begin{gathered} \mathrm{B} \\ \mathrm{DSF} \end{gathered}$ | $\begin{gathered} \text { C } \\ \text { DQ (Input) } \end{gathered}$ | $\begin{gathered} \mathrm{D} \\ \mathrm{DSF} \end{gathered}$ | $\begin{gathered} \mathrm{E}^{2} \\ \mathrm{DQ} \text { (Input) } \end{gathered}$ |  |
| 1 | 0 | X | 0 | DRAM Data | Normal DRAM WRITE (or READ) |
| 0 | 0 | Write Mask | 0 | DRAM <br> Data (Masked) | NONPERSISTENT (Load and Use) MASKED WRITE to DRAM |
| 0 | 1 | X | 0 | DRAM <br> Data (Masked) | PERSISTENT (Use Register) MASKED WRITE to DRAM |
| 1 | 0 | X | 1 | Column Mask | BLOCK WRITE to DRAM (No Data Mask) |
| 0 | 0 | Write Mask | 1 | Column Mask | NONPERSISTENT (Load and Use) MASKED BLOCK WRITE to DRAM |
| 0 | 1 | X | 1 | Column Mask | PERSISTENT (Use Register) <br> MASKED BLOCK WRITE to DRAM |
| 1 | 1 | X | 0 | Write Mask | Load Mask Register |
| 1 | 1 | X | 1 | Color Data | Load Color Register |

NOTE: 1. Refer to this function table to determine the logic states of " $A$ ", " $B$ ", " $C$ ", " $D$ " and " $E$ " for the WRITE cycle timing diagrams on the following pages.
2. $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}$, whichever occurs later.

DRAM EARLY-WRITE CYCLE ${ }^{1}$


VZZA dont care
UNDEFINED

NOTE: 1. The logic states of " $A$ ", " $B$ ", " $C$ ", " $D$ " and " $E$ " determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

## DRAM LATE-WRITE CYCLE ${ }^{1}$



NOTE: 1. The logic states of " $A$ ", " $B$ ", " $C$ ", " $D$ " and " $E$ " determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

## DRAM READ-WRITE CYCLE (READ-MODIFY-WRITE CYCLE)



DON'T CARE
UNDEFINED

NOTE: 1. The logic states of " $A$ ", " $B$ ", " $C$ ", " $D$ " and " $E$ " determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

## DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE



DON'T CARE
UNDEFINED

NOTE: 1. READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST PAGE MODE.
2. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

MT42C4256

DRAM FAST-PAGE-MODE READ-WRITE CYCLE
(READ-MODIFY-WRITE OR LATE-WRITE CYCLES)


DON'T CARE
UNDEFINED

NOTE: 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST PAGE MODE. Use the Write Function Table to determine the proper DSF state for the desired WRITE operation.
2. The logic states of " $A$ ", " $B$ " and " $C$ " determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

## DRAM RAS-ONLY REFRESH CYCLE

(ADDR = AO-A8)


CAS-BEFORE- $\overline{R A S}$ REFRESH CYCLE
$\overline{\text { RAS }}$


ADDR

$\overline{M E} \overline{W E}$
$v_{1 \mathrm{~L}-7} \mathrm{v}_{1 \mathrm{l}} / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1$



DQ ${ }^{\mathrm{V}} \mathrm{VOH}-$ $\qquad$ OPEN OPEN
$\overline{T R} \overline{O E}$


V/A DON'T CARE UNDEFINED

## DRAM HIDDEN-REFRESH CYCLE


$0 / 2$ dont care
undefined

NOTE: 1. A HIDDEN REFRESH may also be performed after a WRITE or TRANSFER cycle. In the WRITE case, $\overline{M E} \overline{W E}=$ LOW (when $\overline{\mathrm{CAS}}$ goes LOW) and $\overline{\mathrm{TR} / \overline{O E}}=\mathrm{HIGH}$. In the TRANSFER case, $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}=\mathrm{LOW}$ (when $\overline{R A S}$ goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of $\overline{T R} / \overline{O E}$.

READ TRANSFER
(DRAM-TO-SAM TRANSFER)
(When part was previously in the SERIAL INPUT mode.)


NOTE: 1. There must be no rising edges on the SC input during this time period.
2. QSF $=0$ when the Lower SAM (bits $0-255$ ) is being accessed. QSF $=1$ when the Upper SAM (bits 256-511) is being accessed.

REAL-TIME READ-TRANSFER
(DRAM-TO-SAM TRANSFER)
(When part was previously in the SERIAL OUTPUT mode)


NOTE: 1. The $\overline{\operatorname{SE}}$ pulse is shown to illustrate the SERIAL OUTPUT
UNDEFINED ENABLE and DISABLE timing. It is not required.
2. QSF $=0$ when the Lower SAM (bits $0-255$ ) is being accessed. QSF $=1$ when the Upper SAM (bits 256-511) is being accessed.

## SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)



VTZ dont care
NOTE: 1. QSF $=0$ when the Lower SAM (bits $0-255$ ) is being accessed.
undefined QSF $=1$ when the Upper SAM (bits 256-511) is being accessed.

## WRITE TRANSFER and PSEUDO WRITE TRANSFER (SAM-TO-DRAM TRANSFER) <br> (When part was previously in the SERIAL OUTPUT mode)



NOTE: 1. If $\overline{S E}$ is LOW, the SAM data will be transferred to the DRAM.
If $\overline{S E}$ is HIGH, the SAM data will not be transferred to the DRAM (SERIAL-INPUT-MODE ENABLE cycle).
2. $\overline{S E}$ must be LOW to input new serial data, but the serial address register is incremented by SC regardless of $\overline{S E}$.
3. There must be no rising edges on the SC input during this time period.
4. STS is LOW to select SAMa or HIGH to select SAMb
5. QSF $=0$ when the Lower SAM (bits $0-255$ ) is being accessed.

QSF = 1 when the Upper SAM (bits 256-511) is being accessed.

## WRITE TRANSFER <br> (SAM-TO-DRAM TRANSFER)

(When part was previously in the SERIAL INPUT mode)


NOTE: 1. $\overline{\mathrm{SE}}$ must be LOW to input new serial data, but the serial address register is incremented by SC regardless of $\overline{S E}$.
$\square Z \square$ dont care
undefined
2. There must be no rising edges on the SC input during this time period.
3. QSF $=0$ when the Lower SAM (bits $0-255$ ) is being accessed. QSF $=1$ when the Upper SAM (bits 256-511) is being accessed.

## ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)



## SAM SERIAL INPUT



SAM SERIAL OUTPUT


D/A don't care

## VRAM

## 128K x 8 DRAM WITH $256 \times 8$ SAM

## FEATURES

- Industry standard pinout, timing and functions
- High performance CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Inputs and outputs are fully TTL and CMOS compatible
- Refresh modes: $\overline{\text { RAS-ONLY, }} \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$, and HIDDEN
- 512 -cycle refresh within 8 ms
- Optional FAST PAGE MODE access cycles
- Dual port organization: 128K x 8 DRAM port $256 \times 8$ SAM port
- No refresh required for Serial Access Memory
- Low power: 15 mW standby; 275 mW active, typical
- Fast access times -100 ns random, 30 ns serial


## SPECIAL FUNCTIONS

- JEDEC Standard Function set
- PERSISTENT MASKED WRITE
- SPLIT READ TRANSFER
- WRITE TRANSFER/SERIAL INPUT
- ALTERNATE WRITE TRANSFER


## OPTIONS

- Timing (DRAM, SAM)
$100 \mathrm{~ns}, 30 \mathrm{~ns}$
$120 \mathrm{~ns}, 35 \mathrm{~ns}$
-12
- Packages

Plastic SOJ
DJ

## GENERAL DESCRIPTION

The MT42C8127 is a high speed, dual port CMOS dynamic random access memory, or Video RAM (VRAM) containing $1,048,576$ bits. These bits may be accessed either by an 8 -bit wide DRAM port or by a $256 \times 8$-bit serial access memory (SAM) port. Data may be transferred bidirectionally between the DRAM and the SAM.

The DRAM portion of the VRAM is functionally identical to the MT4C4256 ( $256 \mathrm{~K} \times 4$-bit DRAM). Eight 256-bit data registers make up the serial access memory portion of the VRAM. Data I/O and internal data transfer are accomplished using three separate bidirectional data paths: the 8bit random access I/O port, the eight internal 256 bit wide paths between the DRAM and the SAM, and the 8-bit serial I/O port for theSAM. The rest of the circuitry consists of the control, timing, and address decoding logic.

## PIN ASSIGNMENT (Top View)

40-Pin SOJ<br>(E-12)

| SC | 5 | 40 | Vss1 |
| :---: | :---: | :---: | :---: |
| SDQ1 | 2 | 39 | SDQ8 |
| SDQ2 | C 3 | 38 | SDQ7 |
| SDQ3 | 4 | 37 | SDQ6 |
| SDQ4 | 5 | 36 | SDQ5 |
| $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ | [ 6 | 35 | $\overline{\mathrm{SE}}$ |
| DQ1 | [ 7 | 34 | DQ8 |
| DQ2 | 8 | 33 | DQ7 |
| DQ3 | - 9 | 32 | DQ6 |
| DQ4 | -10 | 31 | DQ5 |
| Vcc1 | C11 | 30 | Vss2 |
| $\overline{M E} / \overline{W E}$ | [12 | 29 | DSF |
| NC | C 13 | 28 | NC |
| $\overline{\mathrm{RAS}}$ | -14 | 27 | $\overline{\text { CAS }}$ |
| NC | -15 | 26 | QSF |
| A8 | C16 | 25 | A0 |
| A6 | -17 | 24 | A1 |
| A5 | O 18 | 23 | A2 |
| A4 | -19 | 22 | A3 |
| Vac2 | [ 20 | 21 | A7 |

Each of the ports may be operated asynchronously and independently of the other except when data is being transferred internally between them. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of $\overline{\text { RAS }}$ addresses are executed at least every 8 ms (regardless of sequence).Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. The SAM portion of the VRAM is fully static and does not require any refresh.

The operation and control of the MT42C8127 is compatible with (and can be identical to) the operation of the MT42C4064 (64K x 4 VRAM). However, the MT42C8127 offers several additional functions that may be used to increase system performance or ease critical timing requirements. These "special functions" are described in detail in the following sections.


Figure 1
MT42C8127 BLOCK DIAGRAM

## MULTIPORT DRAM

## PIN DESCRIPTIONS

| SOJ PIN NUMBERS | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| 1 | SC | Input | Serial Clock: Clock input to the serial address counter for the SAM registers. |
| 6 | 16 | $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ | Input Transfer Enable: Enables an internal TRANSFER operation at $\overline{\text { RAS }}(\mathrm{H} \rightarrow \mathrm{L})$, or <br> Output Enable: Enables the DRAM output buffers when taken LOW after $\overline{\mathrm{RAS}}$ goes LOW ( $\overline{\mathrm{CAS}}$ must also be LOW), otherwise the output buffers are in the High-Z state. |
| 12 | $\overline{M E} \overline{W E}$ | Input | Mask Enable: If $\overline{M E} \overline{W E}$ is LOW at the falling edge of $\overline{\text { RAS }}$ a MASKED WRITE cycle is performed, or Write Enable: $\overline{M E} \overline{W E}$ is also used to select a READ ( $\overline{\mathrm{ME}} \overline{\mathrm{WE}}=\mathrm{H}$ ) or WRITE $(\overline{\mathrm{ME}} \overline{\mathrm{NE}}=\mathrm{L})$ cycle when accessing the DRAM. This includes a READ TRANSFER ( $\overline{\mathrm{ME}} \overline{\mathrm{WE}}=\mathrm{H}$ ) or WRITE TRANSFER ( $\overline{M E} / \overline{W E}=\mathrm{L})$. |
| 35 | $\overline{\text { SE }}$ | Input | Serial Port Enable: $\overline{\text { SE }}$ enables the serial I/O buffers and allows a serial READ or WRITE operation to occur; otherwise, the output buffers are in the High-Z state. $\overline{\mathrm{SE}}$ is also used during a WRITE TRANSFER operation to indicate whether a WRITE TRANSFER or a PSEUDO WRITE TRANSFER cycle is performed. |
| 29 | DSF | Input | Special Function Select: DSF is used to indicate which special functions (MASKED WRITE vs. PERSISTENT MASKED WRITE, etc.) are used for a particular access cycle. |
| 14 | $\overline{\text { RAS }}$ | Input | Row Address Strobe: $\overline{\mathrm{RAS}}$ is used to clock in the 9 rowaddress bits and as a strobe for the $\overline{M E} / \overline{\mathrm{WE}}, \overline{\mathrm{TR}} / \overline{\mathrm{OE}}, \mathrm{DSF}$, and $D Q$ inputs. |
| 27 | $\overline{\text { CAS }}$ | Input | Column Address Strobe: $\overline{\mathrm{CAS}}$ is used to clock in the 8 column-address bits and enable the DRAM output buffers (DQ's) (along with $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ ). |
| $\begin{aligned} & 25,24,23, \\ & 22,19,18, \\ & 17,21,16 \end{aligned}$ | A0 to A8 | Input | Address Inputs: For the DRAM operation, these inputs are multiplexed and clocked by $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ to select one 8 -bit word out of the 131,072 available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when RAS goes LOW) and AO-A7 indicate the SAM start address (when CAS goes LOW). A7, A8 = "don't care" for the start address when doing SPLIT TRANSFERS. |
| $\begin{gathered} 7,8,9,10, \\ 31,32,33,34 \end{gathered}$ | DQ1 - DQ8 | Input/ Output | DRAM Data I/O: Data Input/Output for DRAM cycles; inputs for the LOAD MASK REGISTER cycles. |
| $\begin{gathered} 2,3,4,5,36 \\ 37,38,39 \\ \hline \end{gathered}$ | SDQ1-SDQ8 | Input/ Output | Serial Data I/O: Input/Output for SAM access cycles or High-Z, when $\overline{\mathrm{SE}}=\mathrm{HIGH}$. |
| 26 | QSF | Output | Split SAM Status: QSF indicates which half of the SAM is being accessed. LOW if address 0 to 127, HIGH if address 128 to 255. |
| 13, 15, 28 | NC | - | No Connect: This pin should be either left unconnected or tied to ground. |
| 11, 20 | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 30, 40 | Vss | Supply | Ground |

## FUNCTIONAL DESCRIPTION

The MT42C8127 can be divided into three functional blocks (see Figure 1): the DRAM, the transfer circuitry, and the serial access memory (SAM). All of the operations described below are shown in the AC Timing Diagrams section of this data sheet and summarized in the Truth Table.

Note: For dual function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing transfer operations, the $\overline{T R} / \overline{O E}$ pin will be shown as $\overline{T R} /(\overline{O E})$.

## DRAM OPERATION

## DRAM REFRESH

Like any DRAM based memory, the MT42C8127 VRAM must be refreshed to retain data. All 512 row-address combinations must be accessed within 8 ms . The MT42C8127 supports $\overline{\text { CAS-BEFORE- }}$ RAS, $\overline{\text { RAS-ONLY and HIDDEN }}$ types of refresh cycles.

For the $\overline{C A S}-B E F O R E-\overline{R A S}$ REFRESH cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data, and simply must perform $512 \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$ cycles within the 8 ms time period.

The refresh address must be generated externally and applied to A0-A8 inputs for RAS-ONLY REFRESH cycles. The DQpins remainin a High-Zstate for both the $\overline{R A S O N L Y}$ and $\overline{\text { CAS-BEFORE-RAS }}$ cycles.

HIDDEN REFRESH cycles are performed by toggling $\overline{\text { RAS }}$ (and keeping $\overline{\text { CAS }}$ LOW) after a READ or WRITE cycle. This performs $\overline{\mathrm{CAS}}$-BEFORE--RAS cycles but does not disturb the $D Q$ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row that is being accessed. The SAM portion of the MT42C8127 is fully static and does not require any refreshing.

## DRAM READ AND WRITE CYCLES

The DRAM portion of the VRAM is nearly identical to standard $256 \mathrm{~K} \times 4$ DRAMs. However, because several of the DRAM control pins are used for additional functions on this part, several conditions that were undefined or "don't
care" states for the DRAM are specified for the VRAM. These conditions are highlighted in the following discussion. In addition, the VRAM has several special functions that can be used when writing to the DRAM.

The 17 address bits that are used to select an 8-bit word from the 131,072 available are latched into the chip using the A0-A8, $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ inputs. First, the 9 row-address bits are set-up on the address inputs and clocked into the part when $\overline{\mathrm{RAS}}$ transitions from HIGH to LOW. Next, the 8 column-address bits are set-up on the address inputs and clocked-in when $\overline{\text { CAS }}$ goes from HIGH to LOW.

For single port DRAMS, the $\overline{O E}$ pin is a "don't care" when $\overline{\mathrm{RAS}}$ goes LOW. However, for the VRAM, when $\overline{\text { RAS goes }}$ LOW, (TR) $/ \overline{\mathrm{OE}}$ selects between DRAM access or TRANSFER cycles. ( $\overline{\mathrm{TR}}) / \overline{\mathrm{OE}}$ must be HIGH at the $\overline{\text { RAS }}$ HIGH-toLOW transition for all DRAM operations (except $\overline{\text { CAS }}$ BEFORE- $\overline{R A S}$ ).

If ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is HIGH when $\overline{\mathrm{CAS}}$ goes LOW, a DRAM READ operation is performed and the data from the memory cells selected will appear at the DQ1-DQ8 port. The (TR)/ $\overline{\mathrm{OE}}$ input must transition from HIGH to LOW sometime after $\overline{\mathrm{RAS}}$ falls to enable the DRAM output port.

For single port normal DRAMs, $\overline{W E}$ is a "don't care" when $\overline{\text { RAS }}$ goes LOW. For the VRAM, $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ is used, when $\overline{\text { RAS }}$ goes LOW, to select between a MASKED WRITE cycle and a normal WRITE cycle. If $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ is LOW at the $\overline{\mathrm{RAS}}$ HIGH to LOW transition, a MASKED WRITE operation is selected. For any DRAM access cycle (READ or WRITE), $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ must beHIGH at the $\overline{\mathrm{RASHIGH}}$-to-LOW transition. If ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is LOW before $\overline{\mathrm{CAS}}$ goes LOW, a DRAM EARLY-WRITE operation is performed and the data present on the DQ1-DQ8 data port will be written into the selected memory cells. If ( $\overline{\mathrm{ME}}$ ) $/ \overline{\mathrm{WE}}$ goes LOW after $\overline{\text { CAS }}$ goes LOW, a DRAM LATE-WRITE operation is performed. Refer to the AC timing diagrams.

The VRAM can perform all the normal DRAM cycles including READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE (Late or Early), and FAST-PAGEMODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

## NONPERSISTENT MASKED WRITE

The MASKED WRITE feature eliminates the need to do a READ-MODIFY-WRITE cycle when changing only specific bits within an 8-bit word. The MT42C8127 supports two types of MASKED WRITE cycles, NONPERSISTENT MASKED WRITE and PERSISTENT MASKED WRITE.

If $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ and DSF are LOW at the $\overline{\mathrm{RAS}}$ HIGH-to-LOW transition, a NONPERSISTENT MASKED WRITE is performed and the data (mask data) present on the DQ1-DQ8 inputs will be written into the mask data register. The mask data acts as an individual WRITE ENABLE for each of the eight DQ1-DQ8 pins. If a LOW (logic " 0 ") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and
allows normal WRITE operation to proceed. Note that $\overline{\text { CAS }}$ is still HIGH. When CAS goes LOW, the bits present on the DQ1-DQ8 inputs will be either written to the DRAM (if the mask data bit is HIGH) or ignored (if the mask data bit is LOW). The DRAM contents that correspond to masked input bits will not be changed during the WRITE cycle. The MASKED WRITE is non-persistent (must be re-entered at every $\overline{\mathrm{RAS}}$ cycle) if DSF is LOW when $\overline{\mathrm{RAS}}$ goes LOW. The mask data register is cleared at the end of every NONPERSISTENT MASKED WRITE. FAST PAGE MODE can be used with NONPERSISTENT MASKED WRITE to write several column locations in an addressed row. The same mask is used during the entire FAST-PAGE-MODE $\overline{\text { RAS }}$ cycle. An example NONPERSISTENT MASKED WRITE cycle is shown in Figure 2.


Figure 2
NONPERSISTENT MASKED WRITE EXAMPLE

## PERSISTENT MASKED WRITE

The PERSISTENT MASKED WRITE feature eliminates the need to rewrite the mask data before each MASKED WRITE cycle if the same mask data is being used repeatedly. To initiate a PERSISTENT MASKED WRITE, a LOAD MASK REGISTER cycle is performed by taking $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ and DSF HIGH when RAS goes LOW. The mask data is loaded into theinternal register when $\overline{C A S}$ goes LOW. Mask data may also be loaded into the mask register by performing a NONPERSISTENT MASKED WRITE cycle before the PERSISTENT MASKED WRITE cycles.

PERSISTENT MASKED WRITE cycles may then be performed by taking $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ LOW and DSF HIGH when $\overline{\mathrm{RAS}}$ goes LOW. The contents of the mask data register will then be used as the mask data for the DRAM inputs. Unlike the NONPERSISTENT MASKED WRITE, the data present on the DQ inputs is not loaded into the mask register when RAS falls and the mask data register will not be cleared at the end of the cycle. Any number of PERSISTENTMASKED WRITEs, to any address, may be performed without having to feload the mask data register. Figure 3 shows the LOAD MASK REGISTER and two PERSISTENTMASKEDWRITE cycles in operation. The LOAD MASK REGISTER and PERSISTENT MASKED WRITE cycles allow controllers, that cannot provide mask data to the DQ pins at $\overline{R A S}$ time, to perform MASKED WRITE operations. PERSISTENT MASKED WRITE operations can be performed during

FAST PAGE MODE and the same mask will apply to all addressed columns in the addressed row.

## LOAD MASK DATA REGISTER

The LOAD MASK REGISTER operation and timing are identical to a normal WRITE except that DSF is HIGH when $\overline{\text { RAS }}$ goes LOW. As shown in the Truth Table, the combination of $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}}), \overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$, and DSF being HIGH when $\overline{\text { RAS }}$ goes LOW indicates the cycle is a REGISTER load cycle. DSF is used when $\overline{\text { CAS }}$ goes LOW to select the register to be loaded and must be LOW for a LOAD MASK REGISTER cycle. The data present on the DQlines will then be written to the mask data register.

Note: For a normal DRAM WRITE cycle, the maskdata register is disabled but not modified. The contents of mask data register will not be changed unless a NONPERSISTENT MASKED WRITE cycle or a LOAD MASK REGISTER cycle is performed.
The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

The mask data register contents are used during PERSISTENT MASKED WRITE cycles to selectively enable writes to the eight DQ planes.


Figure 3 PERSISTENT MASKED WRITE EXAMPLE

## TRANSFER OPERATIONS

TRANSFER operations are initiated when $\overline{T R} /(\overline{\mathrm{OE}})$ is LOW then $\overline{\mathrm{RAS}}$ goes LOW. The state of ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ when $\overline{\text { RAS }}$ goes LOW indicates the direction of the TRANSFER (to or from the DRAM), and DSF is used to select between NORMAL TRANSFER, SPLIT READ TRANSFER, and ALTERNATE WRITE TRANSFER cycles. Each of the TRANSFER cycles available is described below.

## READ TRANSFER (DRAM-TO-SAM TRANSFER)

If $(\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is HIGH and DSF is LOW when $\overline{\mathrm{RAS}}$ goes LOW, a READ TRANSFER cycle is selected. The row address bits indicate the eight 256-bit DRAM row planes that are to be transferred to the eight SAM data register planes. The column address bits indicate the start address (or Tap address) of the serial output cycle from the SAM data registers. $\overline{\text { CAS }}$ must fall for every TRANSFER in order to load a valid Tap address. A read transfer may be accom-
plished two ways. If the transfer is to be synchronized with SC (REAL-TIME READ TRANSFER), $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is taken HIGH after $\overline{\text { CAS }}$ goes LOW. If the transfer does not have to be synchronized withSC (READTRANSFER), $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ may go HIGH before $\overline{\text { CAS }}$ goes LOW (refer to the AC Timing Diagrams). The 2048 bits of DRAM data are written into the SAM data registers and the serial shift start address is stored in an internal 8-bit register. QSF will be LOW if access is from the lower half (addresses 0 through 127), and HIGH if access is from the upper half ( 128 through 255). If $\overline{\mathrm{SE}}$ is LOW, the first bits of the new row data will appear at the serial outputs with the first SC clock pulse. $\overline{\mathrm{SE}}$ enables the serial outputs and may be either HIGH or LOW during this operation. The SAM address pointer will increment with the SC LOW to HIGH transition, regardless of the state of $\overline{\mathrm{SE}}$. Performing a READ TRANSFER cycle sets the direction of the SAM I/O buffers to the output mode.


Figure 5
TYPICAL SPLIT READ TRANSFER INITIATION SEQUENCE

## SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)

The SPLIT READ TRANSFER cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream. When using normal TRANSFER cycles, the REAL-TIME READ TRANSFER cycle has to occur immediately after the last bit of "old data" was clocked out of the SAM port.

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data can be transferred to the other half. The transfer can occur at any time while the other half is sending data and need not be synchronized with the SC clock.

The $\overline{T R} /(\overline{\mathrm{OE}})$ timing is also relaxed for SPLIT TRANSFER cycles. The rising edge of $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is not used to complete the TRANSFER cycle and therefore is independent of the rising edges of $\overline{\mathrm{RAS}}$ or $\overline{\mathrm{CAS}}$. The transfer timing is generated internally for SPLIT TRANSFER cycles.

A normal, non-split READ TRANSFER cycle must precede any sequence of SPLIT READ TRANSFER cycles to provide a reference to which half of the SAM the access will begin. Then SPLITREADTRANSFERS may be initiated by taking DSF HIGH when $\overline{R A S}$ goes LOW during the TRANSFER cycle. As in non-split transfers, the row address is used to specify the DRAM row to be transferred. The column address, A0-A6, is used to input the SAM Tap address. Address pins A7 and A8 are "don't care" when the Tap address is loaded at the HIGH to LOW transition of $\overline{\text { CAS. It is internally generated so that theSPLIT TRANSFER }}$ will be to the SAM half not currently being accessed.

Figure 5 shows a typical SPLIT READ TRANSFER initiation sequence. The normal READ TRANSFER is first performed, followed by a SPLIT READTRANSFER of the same row to the upper half of the SAM. The purpose of the SPLIT TRANSFER of the same data is to initiate the split SAM operating mode and load the Tap address. Serial access continues, and when the SAM address counter reaches 127 ("A7" $=0, \mathrm{~A} 0-\mathrm{A} 6=1$ ) the new Tap address is loaded for the next half ("A7" $=1, \mathrm{~A} 0-\mathrm{A} 6=$ Tap) and the QSF output goes HIGH. Once the serial access has switched to the upper SAM, new data may be transferred to the lower SAM. The controller must wait for the state of QSF to change and then the new data may be transferred to the SAM half not being accessed. For example, the next step in Figure 5 would be to wait until QSF went LOW (indicating that row-1 data is shifting out the lower SAM) and then transfer the upper half of row 1 to the upper SAM.

## WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

Theoperation of the WRITE TRANSFER is identical to the READ TRANSFER described previously except ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ and $\overline{\mathrm{SE}}$ must be LOW when $\overline{\mathrm{RAS}}$ goes LOW. The row address indicates the DRAM row to which the SAM data registerswill be written. The columnaddress(Tap)indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. A WRITE TRANSFER changes the direction of theSAMI/Obuffers to the input mode. QSF will indicate the SAM half accessed.

## PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE ENABLE)

The PSEUDOWRITE TRANSFER cycle is used to change the direction of SAM port from output to input without performing a WRITE TRANSFER. A PSEUDO WRITE TRANSFER is aWRITETRANSFER cyclewithSEheldHIGH instead of LOW. The DRAM data will not be disturbed and the SAM will be ready to accept input data.

## ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of the ALTERNATE WRITE TRANSFER is identical to the WRITE TRANSFER except that the DSF pin is HIGH and ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is LOW when $\overline{\mathrm{RAS}}$ goes LOW, allowing $\overline{\mathrm{SE}}$ to be a "don't care." This allows the outputs to be disabled using $\overline{\mathrm{SE}}$ during a WRITE TRANSFER cycle.

## POWER UP AND INITIALIZATION

When Vcc is initially supplied or when refresh is interrupted for more than 8 ms , the MT42C8127 must be initialized.

After Vcc is at specified operating conditions, for $100 \mu \mathrm{~s}$ minimum, $8 \overline{\mathrm{RAS}}$ cycles and 1 SC cycle must be executed to initialize the memory array. When the device is initialized the DRAM I/O pins (DQ's) are in a High-Z state, regardless of the state of $(\overline{\mathrm{TR}}) / \overline{\mathrm{OE}}$. The DRAM array will contain random data.
The SAM portion of the MT42C8127 is completely static in operation and does not require refresh or initialization. The SAM port will power-up in the serial input mode (WRITE TRANSFER) and theI/Opins (SDQ's) will beHighZ , regardless of the state of $\overline{\mathrm{SE}}, \mathrm{b}$. The mask register will contain random data after power-up.

MULTIPORT DRAM

TRUTH TABLE

| CODE | FUNCTION | $\overline{\text { RAS FALLING EDGE }}$ |  |  |  |  | AO-A8 ${ }^{1}$ |  | DQ1-DQ8 ${ }^{2}$ |  | MASK REGISTER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\overline{\text { CAS }}$ | $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ | ME / $\overline{\mathrm{WE}}$ | DSF | $\overline{\text { SE }}$ | RAS | $\begin{aligned} & \text { CAS } \\ & \text { A8 }=X \end{aligned}$ | $\overline{\text { RAS }}$ | CAS $^{3}$ |  |
|  | DRAM OPERATIONS |  |  |  |  |  |  |  |  |  |  |
| CBR | $\overline{\text { CAS-BEFORE-RAS }}$ REFRESH | 0 | X | X | X | X | - | X | - | X | X |
| ROR | $\overline{\text { RAS-ONLY REFRESH }}$ | 1 | 1 | X | X | X | ROW | - | X | - | X |
| RW | NORMAL DRAM READ OR WRITE | 1 | 1 | 1 | 0 | X | ROW | COLUMN | X | VALID DATA | X |
| RWNM | NONPERSISTENT (LOAD AND USE) MASKED WRITE TO DRAM | 1 | 1 | 0 | 0 | X | ROW | COLUMN | WRITE MASK | VALID DATA | LOAD \& USE |
| RWOM | PERSISTENT (USE REGISTER) MASKED WRITE TO DRAM | 1 | 1 | 0 | 1 | X | ROW | COLUMN | X | VALID DATA | USE |
|  | REGISTER OPERATIONS |  |  |  |  |  |  |  |  |  |  |
| LMR | LOAD MASK REGISTER | 1 | 1 | 1 | 1 | X | ROW ${ }^{4}$ | X | X | WRITE MASK | LOAD |
|  | TRANSFER OPERATIONS |  |  | 兂 |  |  |  |  |  |  |  |
| RT | READ TRANSFER (DRAM-TO-SAM TRANSFER) | 1 | 0 | 1 | 0 | X | ROW | TAP ${ }^{5}$ | X | X | X |
| SRT | SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER) | 1 | 0 | 1 | 1 | X | ROW | TAP ${ }^{5}$ | X | X | X |
| WT | WRITE TRANSFER (SAM-TO-DRAM TRANSFER) | 1 | 0 | 0 | 0 | 0 | ROW | TAP ${ }^{5}$ | X | X | X |
| PWT | PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE ENABLE) | 1 | 0 | 0 | 0 | 1 | ROW ${ }^{4}$ | TAP ${ }^{5}$ | X | X | X |
| AWT | ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER) | 1 | 0 | 0 | 1 | X | ROW | TAP ${ }^{5}$ | X | X | X |

NOTE: 1. These columns show what must be present on the A0-A8 inputs when RAS falls and A0-A7 when $\overline{\mathrm{CAS}}$ falls.
2. These columns show what must be present on the DQ1-DQ8 inputs when $\overline{\text { RAS }}$ falls and when $\overline{\text { CAS }}$ falls.
3. On WRITE cycles, the input data is latched at the falling edge of $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{ME} / \overline{W E} \text {, whichever is later. }}$ Similarly, on READ cycles, the output data is latched at the falling edge of $\overline{C A S}$ or $\overline{T R} / \overline{O E}$, whichever is later.
4. The ROW that is addressed will be refreshed, but no particular ROW address is required.
5. This is the first SAM address location that the first SC cycle will access. For Split SAM transfers, the Tap will be the first address location accessed of the "new" SAM half after the boundary of the current half is reached ( 127 for lower half, 255 for upper half).
ABSOLUTE MAXIMUM RATINGS*
Voltage on Vcc supply relative to Vss ......... -1.0 V to +7.0 V Operating Temperature, Ta (Ambient) ........... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Plastic) $55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation 1 W
Short Circuit Output Current ..................................... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at theseor any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | $\mathrm{V}_{\mathrm{cc}}$ | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 | $\mathrm{~V}_{\mathrm{cc}}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | $\mathrm{V}_{\mathrm{IL}}$ | -1.0 | 0.8 | V | 1 |

## DC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT LEAKAGE CURRENT <br> (any input ( $0 \mathrm{~V} \leq \mathrm{V}{ }_{\mathrm{I}} \leq \mathrm{V} \subset \mathrm{C}$ ), all other pins not under test $=0 \mathrm{~V}$ ) | IL | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT (DQ, SDQ disabled, $0 \mathrm{~V} \leq \mathrm{Vout} \leq \mathrm{Vcc}$ ) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage (lout $=-2.5 \mathrm{~mA})$ | Vон | 2.4 |  |  |  |
| Output Low Voltage (lout $=2.5 \mathrm{~mA}$ ) | Vol |  | 0.4 | V | 1 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A8 | $\mathrm{Cl}_{11}$ |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{ME}} \overline{\mathrm{ME}}, \overline{\mathrm{TR}} / \overline{\mathrm{OE}}, \mathrm{SC}, \overline{\mathrm{SE}}$, DSF | $\mathrm{Cl}_{12}$ |  | 8 | pF | 2 |
| Input/Output Capacitance: DQ, SDQ | C/IO |  | 9 | pF | 2 |
| Output Capacitance: QSF | Co |  | 9 | pF | 2 |

MT42C8127

## CURRENT DRAIN, SAM IN STANDBY

| $\left.10^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%\right)$ |  | MAX |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -10 | -12 | UNITS | NOTES |
| OPERATING CURRENT <br>  | Icc1 | 80 | 70 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE $(\overline{\mathrm{RAS}}=\mathrm{VLL} ; \overline{\mathrm{CAS}}=$ Cycling: $\operatorname{TPC}=\operatorname{TPC}(\mathrm{MIN}))$ | Icc2 | 60 | 70 | mA | 3, 4 |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V} \boldsymbol{\mathrm { H }}$ after $8 \overline{\mathrm{RAS}}$ cycles min) | Icc3 | 10 | 10 | mA |  |
| REFRESH CURRENT: $\overline{R A S}-O N L Y$ ( $\overline{\mathrm{RAS}}=$ Cycling; $\overline{\mathrm{CAS}}=\mathrm{V} / \mathrm{H}$ ) | Icc4 | 80 | 70 | mA | 3 |
| REFRESH CURRENT: <br> $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$ ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling) | Icc5 | 70 | 60 | mA | 3,5 |
| SAM/DRAM DATA TRANSFER | Icc6 | 85 | 75 | mA | 3 |

CURRENT DRAIN, SAM ACTIVE ( $\mathbf{t s c}=\mathbf{~ M I N ) ~}$

| $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$ |  | MAX |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -10 | -12 | UNITS | NOTES |
| OPERATING CURRENT <br> ( $\overline{\text { RAS }}$ and $\overline{\text { CAS }}=$ Cycling: TrC $=\mathrm{TrC}_{\text {RIM }}$ ) | Icc7 | 120 | 110 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE $(\overline{\mathrm{RAS}}=\mathrm{VIL} ; \overline{\mathrm{CAS}}=$ Cycling: $\operatorname{TPC}=\operatorname{TPC}(\mathrm{MIN})$ ) | Icc8 | 100 | 90 | mA | 3, 4 |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\text { RAS }}=\overline{\mathrm{CAS}}=\mathrm{V} \mid+$ after $8 \overline{\text { RAS }}$ cycles min) | Icc9 | 45 | 40 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\text { RAS-ONLY }}$ ( $\overline{\mathrm{RAS}}=$ Cycling; $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$ ) | Icc10 | 120 | 110 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$ ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling) | Icc11 | 110 | 100 | mA | 3, 4, 5 |
| SAM/DRAM DATA TRANSFER | Icc12 | 125 | 115 | mA | 3, 4 |

## DRAM TIMING PARAMETERS

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $6,7,8,9,10,11,12,13)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t }} \mathrm{RC}$ | 180 |  | 210 |  | ns |  |
| READ-MODIFY-WRITE cycle time | ${ }^{\text {t }}$ RWC | 235 |  | 280 |  | ns |  |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {t P }}$ C | 55 |  | 65 |  | ns |  |
| FAST-PAGE-MODE READ-MODIFY-WRITE cycle time | tPRWC | 110 |  | 140 |  | ns |  |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ RAC |  | 100 |  | 120 | ns | 14 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }} \mathrm{CAC}$ |  | 30 |  | 35 | ns | 15 |
| Access time from ( $\overline{\mathrm{TR}}$ )/ $\overline{\mathrm{OE}}$ | ${ }^{\text {t }} \mathrm{OE}$ |  | 25 |  | 30 | ns |  |
| Access time from column address | ${ }^{\text {t }} \mathrm{AA}$ |  | 50 |  | 60 | ns |  |
| Access time from $\overline{\mathrm{CAS}}$ precharge | ${ }^{\text {t }} \mathrm{CPA}$ |  | 55 |  | 65 | ns |  |
| $\overline{\text { RAS }}$ pulse width | ${ }^{\text {t }}$ RAS | 100 | 10,000 | 120 | 10,000 | ns |  |
| $\overline{\text { RAS }}$ pulse width (FAST PAGE MODE) | ${ }^{\text {t }}$ RASP | 100 | 100,000 | 120 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ RSH | 30 |  | 35 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }} \mathrm{RP}$ | 70 |  | 80 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{t} \mathrm{CAS}$ | 30 | 10,000 | 35 | 10,000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 100 |  | 120 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }} \mathrm{CPN}$ | 15 |  | 20 |  | ns | 16 |
| $\overline{\text { CAS }}$ precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{CP}$ | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ delay time | ${ }^{\text {t }} \mathrm{RCD}$ | 20 | 70 | 25 | 85 | ns | 17 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 10 |  | ns |  |
| Row address setup time | ${ }^{t}$ ASR | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t } R A H}$ | 15 |  | 15 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to column address delay time | ${ }^{\text {t } R A D}$ | 20 | 50 | 20 | 60 | ns | 18 |
| Column address setup time | ${ }^{t}$ ASC | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 20 |  | 25 |  | ns |  |
| Column address hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{t} A R$ | 70 | . | 85 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {t }} \mathrm{RAL}$ | 50 |  | 60 |  | ns |  |
| Read command setup time | ${ }^{\text {t }}$ RCS | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to CAS) | ${ }^{t} \mathrm{RCH}$ | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }} \mathrm{RRH}$ | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t }} \mathrm{CLZ}$ | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {t }}$ OFF | 0 | 20 | 0 | 30 | ns | 20,23 |
| Output Disable | ${ }^{\text {t }} \mathrm{OD}$ | 0 | 20 | 0 | 30 | ns | 23 |
| Output Disable hold time from start of write | ${ }^{\text {t }}$ OEH |  | 15 |  | 20 | ns | 27 |
| Output Enable to $\overline{\mathrm{RAS}}$ delay | ${ }^{\text {t ORD }}$ |  | 0 |  | 0 | ns |  |

## DRAM TIMING PARAMETERS (Continued)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Write command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | ns | 21 |
| Write command hold time | ${ }^{\text {t }}$ WCH | 20 |  | 25 |  | ns |  |
| Write command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }} \mathrm{WCR}$ | 70 |  | 85 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t }}$ RWL | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }} \mathrm{CWL}$ | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }} \mathrm{DS}$ | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 20 |  | 25 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ DHR | 70 |  | 90 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ RWD | 130 |  | 160 |  | ns | 21 |
| Column address to $\overline{W E}$ delay time | ${ }^{\text {t }} \mathrm{AWD}$ | 80 |  | 100 |  | ns | 21 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | 60 |  | 75 |  | ns | 21 |
| Transition time (rise or fall) | ${ }^{\text {t }}$ T | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period ( 512 cycles) | ${ }^{\text {t }}$ REF |  | 8 |  | 8 | ms |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ RPC | 0 |  | 0 |  | ns |  |
| $\overline{\text { CAS }}$ setup time ( $\overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$ REFRESH) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | ns | 5 |
| $\overline{\text { CAS }}$ hold time (ㄷ्CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 30 |  | 30 |  | ns | 5 |
| $\overline{\mathrm{ME} / \overline{\mathrm{WE}} \text { to } \overline{\mathrm{RAS}} \text { setup time }}$ | ${ }^{\text {t }}$ WSR | 0 |  | 0 |  | ns |  |
| $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}$ to $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {t }}$ RWH | 15 |  | 15 |  | ns |  |
| Mask Data to RAS setup time | ${ }^{\text {t }}$ MS | 0 |  | 0 |  | ns |  |
| Mask Data to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }} \mathrm{MH}$ | 15 |  | 15 |  | ns |  |

## TRANSFER AND MODE CONTROL TIMING PARAMETERS <br> ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | UNITS | NOTES |
| TRANSFER command to $\overline{\text { RAS setup time }}$ | ${ }^{\text {t TLS }}$ | 0 |  | 0 |  | ns | 25 |
| TRANSFER command to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ LLH | 15 | 10,000 | 15 | 10,000 | ns | 25 |
| TRANSFER command to $\overline{\text { RAS }}$ hold time (REAL-TIME READ TRANSFER only) | ${ }^{\text {t RTH }}$ | 80 | 10,000 | 90 | 10,000 | ns | 25 |
| TRANSFER command to $\overline{\text { CAS }}$ hold time (REAL-TIME READ TRANSFER only) | ${ }^{\text {t }}$ CTH | 25 |  | 30 |  | ns | 25 |
| TRANSFER command to column address hold time (for REAL-TIME READ TRANSFER only) | ${ }^{\text {t }}$ ATH | 30 |  | 35 |  | ns | 25 |
| TRANSFER command to SC lead time | ${ }^{\text {t }}$ TSL | 5 |  | 5 |  | ns | 25 |
| TRANSFER command to $\overline{\text { RAS lead time }}$ | ${ }^{\text {t }}$ TRL | 0 |  | 0 |  | ns | 25 |
| TRANSFER command to RAS delay time | ${ }^{\text {t }}$ TRD | 15 |  | 15 |  | ns | 25 |
| TRANSFER command to $\overline{\mathrm{CAS}}$ time | ${ }^{\text {t }}$ TCL | 0 |  | 0 |  | ns | 25 |
| TRANSFER command to CAS delay time | ${ }^{\text {t }}$ TCD | 15 |  | 15 |  | ns | 25 |
| First SC edge to TRANSFER command delay time | ${ }^{\text {t }}$ TS | 10 |  | 10 |  | ns | 25 |
| Serial output buffer turn-off delay from $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ SDZ | 10 | 40 | 10 | 50 | ns |  |
| SC to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ SRS | 30 |  | 40 |  | ns |  |
| $\overline{\text { RAS }}$ to SC delay time | ${ }^{\text {t }}$ SRD | 25 |  | 30 |  | ns |  |
| Serial data input to $\overline{\text { SE }}$ delay time | ${ }^{\text {t }}$ SZE | 0 |  | 0 |  | ns |  |
| $\overline{\text { RAS }}$ to SD buffer turn-on time | ${ }^{\text {t }}$ SRO | 15 |  | 15 |  | ns |  |
| Serial data input delay from $\overline{\mathrm{RAS}}$ | ${ }^{\text {t }}$ SDD | 50 |  | 55 |  | ns |  |
| Serial data input to $\overline{\text { RAS }}$ delay time | ${ }^{\text {t }}$ SZS | 0 |  | 0 |  | ns |  |
| Serial-input-mode enable (SE) to RAS setup time | ${ }^{\text {t ESR }}$ | 0 |  | 0 |  | ns |  |
| Serial-input-mode enable (SE) to $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {t REH }}$ | 15 |  | 15 |  | ns |  |
| NONTRANSFER command to $\overline{R A S}$ setup time | ${ }^{\text {tr }}$ S | 0 |  | 0 |  | ns | 26 |
| NONTRANSFER command to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ YH | 15 |  | 15 |  | ns | 26 |
| DSF to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ FSR | 0 |  | 0 |  | ns |  |
| DSF to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ RFH | 15 |  | 15 |  | ns |  |
| SC to QSF delay time | ${ }^{\text {t }}$ SQD |  | 30 |  | 35 | ns |  |
| SPLIT TRANSFER setup time | ${ }^{\text {t }}$ STS | 35 |  | 40 |  | ns |  |
| SPLIT TRANSFER hold time | ${ }^{\text {t }}$ STH | 35 |  | 40 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to first SC delay | ${ }^{\text {t }}$ RSD | 95 |  | 105 |  | ns |  |
| $\overline{\text { CAS }}$ to first SC delay | ${ }^{\text {t }}$ CSD | 25 |  | 35 |  | ns |  |
| Column address valid to first SC delay | ${ }^{\text {t }}$ ASD | 55 |  | 65 |  | ns |  |
| TR/OE to QSF Delay Time | ${ }^{\text {t }}$ TQD |  | 35 |  | 40 | ns |  |
| CAS to QSF Delay Time | ${ }^{\text {t }}$ CQD |  | 45 |  | 50 | ns |  |
| $\overline{\text { RAS }}$ to QSF delay time | ${ }^{\text {t } R Q D}$ |  | 85 |  | 105 | ns |  |

MT42C8127

## SAM TIMING PARAMETERS

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes $6,7,8,9,10)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | UNITS | NOTES |  |  |
| Serial clock cycle time | ${ }^{\text {t }} \mathrm{SC}$ | 30 |  | 35 |  | ns |  |
| Access time from SC | ${ }^{\text {t }}$ SAC |  | 30 |  | 35 | ns | 24 |
| SC precharge time (SC LOW time) | ${ }^{\text {t }}$ SP | 10 |  | 12 |  | ns |  |
| SC pulse width (SC HIGH time) | ${ }^{\text {t }}$ SAS | 10 |  | 12 |  | ns |  |
| Access time from $\overline{\text { SE }}$ | ${ }^{\text {t }}$ SEA |  | 20 |  | 30 | ns | 24 |
| $\overline{S E}$ precharge time | ${ }^{\text {t }}$ SEP | 15 |  | 15 |  | ns |  |
| SE pulse width | ${ }^{\text {t }}$ SE | 15 |  | 15 |  | ns |  |
| Serial data-out hold time after SC high | ${ }^{\text {t }} \mathrm{SOH}$ | 5 |  | 5 |  | ns | 24 |
| Serial output buffer turn-off delay from $\overline{\mathrm{SE}}$ | ${ }^{\text {t }}$ SEZ | 0 | 15 | 0 | 25 | ns | 24 |
| Serial data-in setup time | ${ }^{\text {t }}$ SDS | 0 |  | 0 |  | ns | 24 |
| Serial data-in hold time | ${ }^{\text {t }}$ SDH | 15 |  | 20 |  | ns | 24 |
| SERIAL INPUT (Write) Enable setup time | ${ }^{\text {t }}$ SWS | 0 |  | 0 |  | ns |  |
| SERIAL INPUT (Write) Enable hold time | ${ }^{\text {t }}$ SWH | 15 |  | 20 |  | ns |  |
| SERIAL INPUT (Write) Disable setup time | ${ }^{\text {t }}$ SWIS | 0 |  | 0 |  | ns |  |
| SERIAL INPUT (Write) Disable hold time | ${ }^{\text {t }}$ SWIH | 15 |  | 20 |  | ns |  |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $\mathrm{C}=\underline{\mathrm{I} \Delta \mathrm{t}} \underline{\mathrm{V}}$ with $\Delta \mathrm{V}=3 \mathrm{~V}$ and $\mathrm{VCC}=5 \mathrm{~V}$.
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the output open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured.
7. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any eight $\overline{R A S}$ cycle and 1 SC cycle before proper device operation is assured. The eight $\overline{\mathrm{RAS}}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{\boldsymbol{t}} \mathrm{T}=5 \mathrm{~ns}$.
9. VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between $V_{\text {IH }}$ and $V_{\text {IL }}$ (or between VIL and $V_{I H}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $V_{I H}$ and VIL (or between VIL and Vif) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{DRAM}$ data output (DQ1-DQ8) is high impedance.
12. If $\overline{\mathrm{CAS}}=V_{\text {IL, }}$, DRAM data output (DQ1-DQ8) may contain data from the last valid READ cycle.
13. DRAM output timing measured with a load equivalent to 1 TTL gate and 100 pF . Output reference levels: $\mathrm{VOH}=2.0 \mathrm{~V} ; \mathrm{VOL}=0.8 \mathrm{~V}$.
14. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{t} R C D \geq^{t} R C D$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}, \mathrm{DQ}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\text { CAS }}$ must be pulsed HIGH for ${ }^{t} \mathrm{CPN}$.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the specified ${ }^{\mathrm{t}}$ RCD (MAX) limit, then access time is controlled exclusively by ${ }^{t} C A C$.
18. Operation within the ${ }^{t} R A D$ (MAX) limit ensures that ${ }^{t} R C D$ (MAX) can be met. ${ }^{t}$ RAD (MAX) is specified as
a reference point only; if ${ }^{t} R A D$ is greater than the specified ${ }^{\text {t RAD }}$ (MAX) limit, then access time is controlled exclusively by ${ }^{t} \mathrm{AA}$.
19. Either ${ }^{t} \mathrm{RCH}$ or ${ }^{t}$ RRH must be satisfied for a READ cycle.
20. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or Vol.
21. ${ }^{t} W C S,{ }^{t} R W D,{ }^{t} A W D$ and ${ }^{t} C W D$ are restrictive operating parameters in LATE-WRITE, READWRITE and READ-MODIFY-WRITE cycles only. If ${ }^{\mathrm{t}}$ WCS $\geq^{\mathrm{t}}$ WCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{T R} / \overline{\mathrm{OE}}$. If ${ }^{\mathrm{t}} \mathrm{WCS} \leq^{\mathrm{t}} \mathrm{WCS}$ (MIN), the cycle is a LATE-WRITE and $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ must control the output buffers during the write to avoid data contention. If ${ }^{t} R W D \geq{ }^{t} R W D$ (MIN), ${ }^{t} A W D \geq{ }^{t} A W D$ (MIN) and ${ }^{t} C W D \geq{ }^{t} C W D$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of the output buffers (at access time and until CAS goes back to $\mathrm{V}_{\mathrm{IH}}$ ) is indeterminate but the WRITE will be valid, if ${ }^{t} O D$ and ${ }^{t} O E H$ are met. See the LATE-WRITE AC Timing diagram.
22. These parameters are referenced to $\overline{\text { CAS }}$ leading edge in early WRITE cycles and $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}$ leading edge in late WRITE or READ-WRITE cycles.
23. During a READ cycle, if $\overline{T R} / \overline{\mathrm{OE}}$ is LOW then taken HIGH, DQ goes open. The DQs will go open with $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CAS}}$, whichever goes HIGH first.
24. SAM output timing is measured with a load equivalent to 1 TTL gate and 50 pF . Output reference levels: $\mathrm{VOH}=2.0 \mathrm{~V} ; \mathrm{VoL}=0.8 \mathrm{~V}$.
25. TRANSFER command means that $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ is LOW when $\overline{R A S}$ goes LOW.
26. NONTRANSFER command means that $\overline{T R} / \overline{\mathrm{OE}}$ is HIGH when $\overline{\text { RAS }}$ goes LOW.
27. LATE-WRITE and READ-MODIFY-WRITE cycles must have ${ }^{t} O D$ and ${ }^{t} O E H$ met ( $\overline{\mathrm{OE}}$ HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if $\overline{\mathrm{CAS}}$ remains LOW and $\overline{O E}$ is taken LOW after ${ }^{\text {t }} \mathrm{OEH}$ is met. If $\overline{\mathrm{CAS}}$ goes HIGH prior to $\overline{\mathrm{OE}}$ going back LOW, the DQs will remain open.

DRAM READ CYCLE


DRAM FAST-PAGE-MODE READ CYCLE


NOTE: WRITE or READ-MODIFY-WRITE cycles may be mixed with READ cycles while in FAST PAGE MODE.

WRITE CYCLE FUNCTION TABLE

| LOGIC STATES |  |  |  | FUNCTION |
| :---: | :---: | :---: | :---: | :---: |
| RAS Falling Edge |  |  | CAS Falling Edge |  |
| A ME/WE | $\begin{gathered} \mathrm{B} \\ \mathrm{DSF} \end{gathered}$ | $\begin{gathered} \mathbf{C} \\ \mathbf{D Q} \text { (Input) } \end{gathered}$ | $\frac{\mathrm{D}}{\mathrm{DQ} \text { (Input) }}$ |  |
| 1 | 0 | X | DRAM Data | Normal DRAM WRITE |
| 0 | 0 | Write Mask | DRAM <br> Data (Masked) | NONPERSISTENT (Load and Use Register) MASKED WRITE to DRAM |
| 0 | 1 | X | DRAM <br> Data (Masked) | PERSISTENT (Use Register) MASKED WRITE to DRAM |
| 1 | 1 | X | Write Mask | Load Mask Register |

NOTE: Refer to this function table to determine the logic states of "A", "B", " $C$ ", and " $D$ " for the WRITE cycle timing diagrams on the following pages.

## DRAM EARLY-WRITE CYCLE



Z/Z dont care
undefined

NOTE: The logic states of "A", "B", "C", and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM LATE-WRITE CYCLE


NOTE: The logic states of "A", "B", "C", and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

## DRAM READ-WRITE CYCLE

 (READ-MODIFY-WRITE CYCLE)

DON'T CARE
UNDEFINED

NOTE: The logic states of " $A$ ", " $B$ ", " $C$ ", and " $D$ " determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

## DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE



UNDEFINED

NOTE: 1. READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST PAGE MODE.
2. The logic states of " $A$ ", " $B$ ", " $C$ ", and " $D$ " determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM FAST-PAGE-MODE READ-WRITE CYCLE
(READ-MODIFY-WRITE or LATE-WRITE CYCLES)


NOTE: 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST PAGE MODE. Use the Write Function Table to determine the proper DSF state for the desired WRITE operation.
2. The logic states of "A", "B" and "C" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

## DRAM RAS-ONLY REFRESH CYCLE

(ADDR $=\mathrm{A} 0-\mathrm{A} 8)$


CAS-BEFORE-RAS REFRESH CYCLE




DSF


Do $\mathrm{VIOH}_{\mathrm{VO}}^{\mathrm{V}}$ $\qquad$
$\overline{T B} / \overline{O E}$


T/A DON'T CARE
UNDEFINED

## DRAM HIDDEN-REFRESH CYCLE



NOTE: A HIDDEN REFRESH may also be performed after a WRITE or TRANSFER cycle. In the WRITE case, $\overline{M E} \overline{W E}=$ LOW (when $\overline{\mathrm{CAS}}$ goes LOW) and $\overline{T R} / \overline{\mathrm{OE}}=\mathrm{HIGH}$. In the TRANSFER case, $\overline{T R} / \overline{\mathrm{OE}}=\mathrm{LOW}$ (when $\overline{R A S}$ goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of $\overline{T R} / \overline{O E}$.

## READ TRANSFER (DRAM-TO-SAM TRANSFER)

(When part was previously in the SERIAL INPUT mode)


NOTE: 1. There must be no rising edges on the SC input during this time period.
2. $\mathrm{QSF}=0$ when the Lower SAM (bits $0-127$ ) is being accessed.

QSF = 1 when the Upper SAM (bits 128-255) is being accessed.

## MT42C8127

REAL-TIME READ TRANSFER (DRAM-TO-SAM TRANSFER)
(When part was previously in the SERIAL OUTPUT mode)


NOTE: 1. The $\overline{\text { SE }}$ pulse is shown to illustrate the SERIAL OUTPUT ENABLE and DISABLE timing. It is not required.
2. QSF $=0$ when the Lower SAM (bits $0-127$ ) is being accessed.

QSF = 1 when the Upper SAM (bits 128-255) is being accessed.

## SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)


$V / \lambda$ DON'T CARE
UNDEFINED
NOTE: 1. QSF $=0$ when the Lower SAM (bits 0-127) is being accessed. QSF = 1 when the Upper SAM (bits 128-255) is being accessed.

## WRITE TRANSFER and PSEUDO WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

(When part was previously in the SERIAL OUTPUT mode)


VZZA dont care
( underined
NOTE: 1. If $\overline{S E}$ is LOW, the SAM data will be transferred to the DRAM.
If $\overline{\text { SE }}$ is HIGH, the SAM data will not be transferred to the DRAM (SERIAL INPUT MODE ENABLE cycle).
2. $\overline{S E}$ must be LOW to input new serial data, but the serial address register is incremented by SC regardless of $\overline{S E}$.
3. There must be no rising edges on the SC input during this time period.
4. $\mathrm{QSF}=0$ when the Lower SAM (bits $0-127$ ) is being accessed.

QSF = 1 when the Upper SAM (bits 128-255) is being accessed.
WRITE TRANSFER
(SAM-TO-DRAM TRANSFER)
(When part was previously in the SERIAL INPUT mode)


NOTE: 1. $\overline{S E}$ must be LOW to input new serial data, but the serial address register is incremented by SC regardless of $\overline{S E}$.
2. There must be no rising edges on the SC input during this time period.
3. QSF $=0$ when the Lower SAM (bits $0-127$ ) is being accessed.

QSF = 1 when the Upper SAM (bits 128-255) is being accessed.

ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)


## SAM SERIAL INPUT



SAM SERIAL OUTPUT

$V / \triangle$ DON'T CARE
UNDEFINED

MICFON

## VRAM

# 128K x 8 DRAM WITH $256 \times 8$ SAM 

## FEATURES

- Industry standard pinout, timing and functions
- High-performance CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Low power: 15 mW standby; 275 mW active, typical
- Inputs and outputs are fully TTL and CMOS compatible
- Refresh modes: $\overline{\text { RAS }}$ ONLY, $\overline{\mathrm{CAS}}$-BEFORE- $\overline{R A S}$, and HIDDEN
- 512-cycle refresh within 8 ms
- No refresh required for Serial Access Memory
- Optional FAST PAGE MODE access cycles
- Dual port organization: 256K x 4 DRAM port $512 \times 4$ SAM port
- Fast access times - 80 ns random, 25 ns serial


## SPECIAL FUNCTIONS

- JEDEC Standard Function set
- PERSISTENT MASKED WRITE
- SPLIT READ TRANSFER
- WRITE TRANSFER/SERIAL INPUT
- ALTERNATE WRITE TRANSFER
- BLOCK WRITE


## OPTIONS

- Timing (DRAM, SAM)

80 ns , 25 ns
100 ns , 30 ns
$120 \mathrm{~ns}, 35 \mathrm{~ns}$

## MARKING

- 8
-10
-12
- Packages

Plastic SOJ
DJ
Plastic ZIP

## GENERAL DESCRIPTION

The MT42C8128 is a high-speed, dual port CMOS dynamic random access memory or Video RAM (VRAM) containing $1,048,576$ bits. These bits may be accessed either by an 8 -bit wide DRAM port or by a $256 \times 8$-bit serial access memory (SAM) port. Data may be transferred bidirectionally between the DRAM and the SAM.
The DRAM portion of the VRAM is functionally identical to the MT4C4256 ( $256 \mathrm{~K} \times 4$ DRAM). Eight 256 -bit data registers make up the SAM portion of the VRAM. Data I/O and internal data transfer are accomplished using three separate bidirectional data paths: the 8 -bit random access I/O port, the eight internal 256 bit wide paths between the DRAM and the SAM, and the 8 -bit serial I/O port for the

PIN ASSIGNMENT (Top View)
40-Pin SOJ (E-12)

| SC | 4 | 40 | Vss1 |
| :---: | :---: | :---: | :---: |
| SDQ1 | 52 | 39 | SDQ8 |
| SDQ2 | [ 3 | 38 | SDQ7 |
| SDQ3 | [4 | 37 | SDQ6 |
| SDQ4 | [5 | 36 | SDQ5 |
| $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ | 46 | 35 | $\overline{S E}$ |
| DQ1 | 47 | 34 | DQ8 |
| DQ2 | [8 | 33 | DQ7 |
| DQ3 | [ 9 | 32 | DQ6 |
| DQ4 | [ 10 | 31 | DQ5 |
| Vcc1 | [ 11 | 30 | Vss2 |
| $\overline{M E} / \overline{W E}$ | [ 12 | 29 | DSF |
| NC | [ 13 | 28 | NC |
| $\overline{\text { RAS }}$ | ¢ 14 | 27 | $\overline{\mathrm{CAS}}$ |
| NC | [ 15 | 26 | QSF |
| A8 | [ 16 | 25 | AO |
| A6 | [17 | 24 | A1 |
| A5 | [18 | 23 | A2 |
| A4 | [ 19 | 22 | A3 |
| Vcc2 | [ 20 | 21 | A7 |


| $\begin{aligned} & \text { 40-Pin ZIP } \\ & (\mathrm{C}-6) \end{aligned}$ |  |  |
| :---: | :---: | :---: |
| da5 |  |  |
| $\stackrel{\text { Do7 }}{\text { S }}$ | $3{ }^{2}=$ |  |
| $\overline{\text { SE }}$ | $5{ }^{=1}=6$ |  |
| 06 | $7{ }^{7}=8$ | 8 SDO7 |
| ab | 9 ${ }_{11}=1$ | $10 \mathrm{Vss1}$ |
| Q2 | $13=$ | 12 SDO 1 |
| SDO4 | 15 = | SDO |
| Da1 | 17 E- | TR/ |
| dаз | 19 = | 18 D02 |
| D04 | 21 = | $20 \mathrm{Vss2}$ |
| MEME | 23 = | 22 Vcol |
| AB | 25 | 24 RAS |
| Vss3 | $27 \mathrm{E}=$ | 26 A6 |
| A5 | 29. |  |
| NC | 31 |  |
| A7 | 33 = | 32 Vcc |
| ${ }^{\text {A2 }}$ | 35 | $34 \mathrm{A3}$ |
| ${ }_{\text {A }}$ |  | 36 A1 |
|  | 39 | 38 |

SAM. The rest of the circuitry consists of the control, timing and address decoding logic.
Each of the ports may be operated asynchronously and independently of the other except when data is being transferred internally between them. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of $\overline{\text { RAS }}$ addresses are executed at least every 8 ms (regardless of sequence).Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. TheSAM portion of the VRAM is fully static and does not require any refresh.
The operation and control of the MT42C8128 is compatible with (and can be identical to) the operation of the MT42C4064 ( $64 \mathrm{~K} \times 4$ VRAM). However, the MT42C8128 offers several additional functions that may be used to increase system performance or ease critical timing requirements. These "special functions" are described in detail in the following sections.



Figure 1
MT42C8128 BLOCK DIAGRAM

## MULTIPORT DRAM

## PIN DESCRIPTIONS

| SOJ PIN NUMBERS | ZIP PIN NUMBERS | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 11 | SC | Input | Serial Clock: Clock input to the serial address counter for the SAM registers. |
| 6 | 16 | $\overline{\text { TR/OE }}$ | Input | Transfer Enable: Enables an internal TRANSFER operation at $\overline{\text { RAS }}(\mathrm{H} \rightarrow \mathrm{L})$, or <br> Output Enable: Enables the DRAM output buffers when taken LOW after $\overline{\text { RAS }}$ goes LOW (CAS must also be LOW), otherwise the output buffers are in a High-Z state. |
| 12 | 23 | $\overline{M E} \overline{W E}$ | Input | Mask Enable: If $\overline{M E} \overline{W E}$ is LOW at the falling edge of $\overline{R A S}$ a MASKED WRITE cycle is performed, or Write Enable: $\overline{M E} / \overline{W E}$ is also used to select a READ ( $\overline{\mathrm{ME}} \overline{\mathrm{WE}}=\mathrm{H}$ ) or WRITE $(\overline{\mathrm{ME}} \overline{\mathrm{WE}}=\mathrm{L})$ cycle when accessing the DRAM. This includes a READ TRANSFER ( $\overline{\mathrm{ME}} \overline{\mathrm{WE}}=\mathrm{H}$ ) or WRITE TRANSFER ( $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}=\mathrm{L}$ ). |
| 35 | 5 | $\overline{\text { SE }}$ | Input | Serial Port Enable: $\overline{\text { SE }}$ enables the serial I/O buffers and allows a serial READ or WRITE operation to occur, otherwise the output buffers are in a High-Z state. SE is also used during a WRITE TRANSFER operation to indicate whether a WRITE TRANSFER or a SERIAL INPUT MODE ENABLE cycle is performed. |
| 29 | 40 | DSF | Input | Special Function Select: DSF is used to indicate which special functions (BLOCK WRITE, MASKED WRITE vs. PERSISTENT MASKED WRITE, etc.) are used for a particular access cycle. |
| 14 | 24 | $\overline{\text { RAS }}$ | Input | Row Address Strobe: $\overline{\text { RAS }}$ is used to clock in the 9 rowaddress bits and as a strobe for the $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}, \overline{\mathrm{TR}} / \overline{\mathrm{OE}}, \mathrm{DSF}, \overline{\mathrm{SE}}$, $\overline{C A S}$ and DQ inputs. |
| 27 | 39 | $\overline{\text { CAS }}$ | Input | Column Address Strobe: $\overline{\mathrm{CAS}}$ is used to clock in the 8 columnaddress bits, enable the DRAM output buffers (along with $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ ), and as a strobe for the DSF input. |
| $\begin{aligned} & 16,17,18 \\ & 19,21,22 \\ & 23,24,25 \end{aligned}$ | $\begin{aligned} & 37,36,35 \\ & 34,30,29 \\ & 26,33,25 \end{aligned}$ | A0 to A8 | Input | Address Inputs: For the DRAM operation, these inputs are multiplexed and clocked by $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ to select one 8 -bit word out of the 128 K available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when RAS goes LOW) and A0-A7 indicate the SAM start address (when $\overline{\text { CAS }}$ goes LOW). A7, A8 = "don't care" for the start address when doing SPLIT TRANSFER. |
| $\begin{gathered} 7,8,9,10,31 \\ 32,33,34 \end{gathered}$ | $\begin{gathered} 17,18,19,21 \\ 1,2,3,4 \end{gathered}$ | DQ1 - DQ8 | Input/ Output | DRAM Data I/O: DRAM input/Output for DRAM cycles; inputs for Mask Data Register and Color Register load cycles, and Bit and Column Mask inputs for BLOCK WRITE. |
| $\begin{gathered} 2,3,4,5,36 \\ 37,38,39 \\ \hline \end{gathered}$ | $\begin{gathered} 12,13,14,15 \\ 6,7,8,9 \\ \hline \end{gathered}$ | SDQ1 - SDQ8 | Input/ Output | Serial Data I/O: Input, output, or High-Z. |
| 26 | 38 | QSF | Output | Split SAM Status: QSF indicates which half of the SAM is being accessed. LOW if address is 0-127, HIGH if address is 128-255. |
| 28 | 28, 31 | NC | - | No Connect: This pin should be either left unconnected or tied to ground. |
| 11, 20 | 22, 32 | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 30, 40 | 10, 20, 27 | Vss | Supply | Ground |

## FUNCTIONAL DESCRIPTION

The MT42C8128 can be divided into three functional blocks (see Figure 1): the DRAM, the transfer circuitry, and the SAM. All of the operations described below are shown in the AC Timing Diagrams section of this data sheet and summarized in the Truth Table.

Note: For dual-function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing transfer operations, the $\overline{T R} / \overline{O E}$ pin will be shown as $\overline{T R} /(\overline{O E})$.

## DRAM OPERATION

## DRAM REFRESH

Like any DRAM based memory, the MT42C8128 VRAM must be refreshed to retain data. All 512 row address combinationsmust beaccessed within 8ms. TheMT42C8128 supports $\overline{\text { CAS-BEFORE- }} \overline{R A S}, \overline{R A S}$ ONLY and HIDDEN types of refresh cycles.

For the $\overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$ REFRESH cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data, and simply must perform $512 \overline{\text { CAS-BEFORE- }}$ RAS cycles within the 8 ms time period.

The refresh address must be generated externally and applied to A0-A8 inputs for RAS-ONLY REFRESH cycles. TheDQpins remainin aHigh-Zstate for both the $\overline{R A S}-O N L Y$ and $\overline{C A S}-B E F O R E-\overline{R A S}$ cycles.

HIDDEN REFRESH cycles are performed by toggling $\overline{\text { RAS }}$ (and keeping CAS LOW) after a READ or WRITE cycle. This performs $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$ cycles but does not disturb the $D Q$ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row that is being accessed. The SAM portion of the MT42C8128 is fully static and does not require any refreshing.

## DRAM READ AND WRITE CYCLES

The DRAM portion of the VRAM is nearly identical to standard $256 \mathrm{~K} \times 4$ DRAMs. However, because several of the DRAM control pins are used for additional functions on this part, several conditions that were undefined or in
"don't care" states for the DRAM are specified for the VRAM. These conditions are highlighted in the following discussion. In addition, the VRAM has several special functions that can be used when writing to the DRAM.
The 17 address bits that are used to select a 8-bit word from the 131,072 available are latched into the chip using the A0-A8, $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ inputs. First, the nine row-address bits are set up on the address inputs and clocked into the part when $\overline{\text { RAS }}$ transitions from HIGH to LOW. Next, the 8 column address bits are set up on the address inputs and clocked-in when $\overline{\text { CAS }}$ goes from HIGH to LOW.

For single port DRAMS, the $\overline{O E}$ pin is a "don't care" when $\overline{\mathrm{RAS}}$ goes LOW. However, for the VRAM, when RAS goes LOW, (TR)/ $\overline{\mathrm{OE}}$ selects between DRAM access or TRANSFER cycles. ( $\overline{\mathrm{TR}}) / \overline{\mathrm{OE}}$ must be HIGH at the $\overline{\mathrm{RAS}}$ HIGH-toLOW transition for all DRAM operations (except $\overline{\text { CAS- }}$ BEFORE- $\overline{R A S}$ ).

If ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is HIGH when $\overline{\mathrm{CAS}}$ goes LOW, a DRAM READ operation is performed and the data from the memory cells selected will appear at the DQ1-DQ8 port. The (TR)/ $\overline{\mathrm{OE}}$ input must transition from HIGH to LOW sometime after $\overline{\text { RAS }}$ falls to enable the DRAM output port.

For single port normal DRAMs, $\overline{W E}$ is a "don't care" when $\overline{\mathrm{RAS}}$ goes LOW. For the VRAM, $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ is used, when $\overline{\text { RAS }}$ goes LOW, to select between a MASKED WRITE cycle and a normal WRITE cycle. If $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ is LOW at the $\overline{\text { RAS }}$ HIGH to LOW transition, a MASKED WRITE operation is selected. For any DRAM access cycle (READ or WRITE), $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ must be HIGH at the $\overline{\text { RASHIGH-to-LOW }}$ transition. If ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is LOW before $\overline{\mathrm{CAS}}$ goes LOW, a DRAM EARLY-WRITE operation is performed and the data present on the DQ1-DQ8 data port will be written into the selected memory cells. If ( $\overline{\mathrm{ME}}$ )/ $\overline{\mathrm{WE}}$ goes LOW after CAS goes LOW, a DRAM LATE-WRITE operation is performed. Refer to the AC timing diagrams.

The VRAM can perform all the normal DRAM cycles including READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE (Late or Early), and FAST-PAGEMODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

## MT42C8128

## NON PERSISTENT MASKED WRITE

The MASKED WRITE feature eliminates the need to do a READ-MODIFY-WRITE cycle when changing only specific bits within a 8-bit word. The MT42C8128 supports two types of MASKED WRITE cycles, NONPERSISTENT MASKED WRITE and PERSISTENT MASKED WRITE.

If $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ and DSF are LOW at the $\overline{\mathrm{RAS}}$ HIGH-to-LOW transition, a NONPERSISTENT MASKED WRITE is performed and the data (mask data) present on the DQ1-DQ8 inputs will be written into the mask data register. The mask data acts as an individual write enable for each of the eight DQ1-DQ8 pins. If a LOW (logic " 0 ") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows
normal WRITE operation to proceed. Note that $\overline{\mathrm{CAS}}$ is still HIGH. When CAS goes LOW, the bits present on the DQ1DQ8 inputs will be either written to the DRAM (if the mask data bit is HIGH) or ignored (if the mask data bit is LOW). The DRAM contents that correspond to masked input bits will not be changed during the WRITE cycle. The MASKED WRITE is non persistent (must be re-entered at every $\overline{\text { RAS }}$ cycle) if DSF is LOW when $\overline{R A S}$ goes LOW. The mask data register is cleared at the end of every NONPERSISTENT MASKED WRITE. FAST PAGE MODE can be used with NONPERSISTENT MASKED WRITE to write several column locations in an addressed row. The same mask is used during the entire FAST-PAGE-MODE $\overline{\mathrm{RAS}}$ cycle. An example NONPERSISTENT MASKEDWRITE cycle is shown in Figure 2.


X = NOT EFFECTIVE (DON'T CARE)

Figure 2
NONPERSISTENT MASKED WRITE EXAMPLE

## PERSISTENT MASKED WRITE

The PERSISTENT MASKED WRITE feature eliminates the need to rewrite the mask data before each MASKED WRITE cycle if the same mask data is being used repeatedly. To initiate a PERSISTENT MASKED WRITE, a LOAD MASK REGISTER cycle is performed by taking $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ and DSF HIGH when $\overline{\text { RAS }}$ goes LOW. The mask data is loaded into the internal register when CAS goes LOW.Mask data may also be loaded into the mask register by performing a NONPERSISTENT MASKED WRITE cycle before the PERSISTENT MASKED WRITE cycles.

PERSISTENT MASKED WRITE cycles may then be performed by taking $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ LOW and DSF HIGH when $\overline{\mathrm{RAS}}$ goes LOW. The contents of the mask data register will then be used as the mask data for the DRAM inputs. Unlike the NONPERSISTENT MASKED WRITE cycle, the data
present on the $D Q$ inputs is not loaded into the mask register when RAS falls and the mask data register will not be cleared at the end of the cycle. Any number of PERSISTENT MASKED WRITE cycles, to any address, may be performed without having to reload the mask data register. Figure 3 shows the LOAD MASK REGISTER and two PERSISTENT MASKED WRITE cycles in operation. The LOAD MASK REGISTER and PERSISTENT MASKED WRITE cycles allow controllers, that cannot provide mask data to the DQpins at RAStime, to perform MASKEDWRITE operations. PERSISTENT MASKED WRITE operations can be performed during FAST PAGE MODE cycles and the same mask will apply to all addressed columns in the addressed row.


Figure 3
PERSISTENT MASKED WRITE EXAMPLE


Figure 4
BLOCK WRITE EXAMPLE

## BLOCK WRITE

If DSF is HIGH when $\overline{\text { CAS }}$ goes LOW, the MT42C8128 will perform a BLOCK WRITE cycle instead of a normal WRITE cycle. In BLOCK WRITE cycles, the contents of the color register are directly written to four adjacent column locations (see Figure 4). The color register must be loaded prior to beginning BLOCK WRITE cycles (see LOAD COLOR REGISTER).

The ROW is addressed as in a normal DRAM WRITE cycle. However when $\overline{\text { CAS }}$ goes LOW, only the A2-A7 inputs are used. A2-A7 specify the "block" of four adjacent column locations that will be accessed. The DQ inputs (DQ1, 2, 3, and 4) are then used to determine what combination of the four column locations will be changed. The table on this page illustrates how each of the DQ inputs is used to selectively enable or disable individual column
locations within the block. The Write Enable controls are active HIGH; a logic " 1 " enables the WRITE function and a logic " 0 " disables the WRITE function.

The contents of the color register will then be written to the column locations enabled. Each DQ location of the color register is written to the four column locations (or any of the four that are enabled) in the corresponding DQ bit plane.

| INPUTS | Address Controlled |  |
| :---: | :---: | :---: |
|  | A0 | A1 |
| DQ1 | 0 | 0 |
| DQ2 | 1 | 0 |
| DQ3 | 0 | 1 |
| DQ4 | 1 | 1 |

## NONPERSISTENT MASKED BLOCK WRITE

The MASKED WRITE functions can also be used during BLOCK WRITE cycles. NONPERSISTENT MASKED BLOCK WRITE operates exactly like the normal NONPERSISTENT MASKED WRITE except the mask is now applied to four column locations instead of just one column location.

Like NONPERSISTENT MASKED WRITE, the combination of $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ LOW and DSF LOW when $\overline{\mathrm{RAS}}$ goes LOW initiates a NONPERSISTENT MASK cycle. The DSF pin must be driven HIGH when CAS goes LOW, to perform a NONPERSISTENT MASKED BLOCK WRITE. By using both the column mask input and the MASKED WRITE function, any combination of the eight bit planes can be masked and any combination of the four column locations can be masked.

## PERSISTENT MASKED BLOCK WRITE

This cycle is also performed exactly like the normal PERSISTENT MASKED WRITE except that DSF is HIGH when $\overline{\text { CAS }}$ goes LOW to indicate the BLOCK WRITE function. Both the mask data register and the color register must be loaded with the appropriate data prior to starting a PERSISTENT MASKED BLOCK WRITE.

## LOAD MASK DATA REGISTER

The LOAD MASK REGISTER operation and timing are identical to a normal WRITE cycle except that DSF is HIGH when $\overline{R A S}$ goes LOW. As shown in the Truth Table, the
combination of $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}}), \overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$, and DSF being HIGH when $\overline{R A S}$ goes LOW indicates the cycle is a LOAD REGISTER cycle. DSF is used when $\overline{\text { CAS }}$ goes LOW to select the register to be loaded and must be LOW for a LOAD MASK REGISTER cycle. The data present on the DQ lines will then be written to the mask data register.

Note: For a normal DRAM WRITE cycle, the mask data register is disabled but not modified. The contents of mask data register will not be changed unless a NONPERSISTENT MASKED WRITE cycle or a LOAD MASK REGISTER cycle is performed.
The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

The mask data register contents are used during PERSISTENT MASKED WRITE and PERSISTENT MASKED BLOCK WRITE cycles to selectively enable writes to the eight DQ planes.

## LOAD COLOR REGISTER

A LOAD COLOR REGISTER cycle is identical to the LOAD MASK REGISTER cycle except DSF is HIGH when CAS goes LOW. The contents of the color register are retained until changed by another LOAD COLOR REGISTER cycle (or the part loses power) and are used as data inputs during BLOCK WRITE cycles.

## TRANSFER OPERATIONS

TRANSFER operations are initiated when $\overline{\mathrm{TR}} /(\overline{\mathrm{O}} \overline{\mathrm{E}})$ is LOW then $\overline{\mathrm{RAS}}$ goes LOW. The state of $(\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ when $\overline{\text { RAS }}$ goes LOW indicates the direction of the TRANSFER (to or from the DRAM), and DSF is used to select between NORMAL TRANSFER, SPLIT READ TRANSFER, and ALTERNATE WRITE TRANSFER cycles. Each of the TRANSFER cycles available is described below.

## READ TRANSFER (DRAM-TO-SAM TRANSFER)

If ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is HIGH and DSF is LOW when $\overline{\mathrm{RAS}}$ goes LOW, a READ TRANSFER cycle is selected. The row address bits indicate the eight 256 -bit DRAM row planes that are to be transferred to the eight SAM data register planes. The column address bits indicate the start address (or Tap address) of the serial output cycle from the SAM data registers. $\overline{\text { CAS }}$ must fall for every TRANSFER in order to load a valid Tap address. A read transfer may be accom-
plished two ways. If the transfer is to be synchronized with SC (REAL-TIME READ TRANSFER), $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is taken HIGH after $\overline{\text { CAS }}$ goes LOW. If the transfer does not have to besynchronized withSC(READTRANSFER), $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ may go HIGH before CAS goes LOW (refer to the AC Timing Diagrams). The 2048 bits of DRAM data are written into the SAM data registers and the serial shift start address is stored in an internal 8-bit register. QSF will be LOW if access is from the lower half (addresses 0 through 127), and HIGH if access is from the upper half ( 128 through 255). If $\overline{\mathrm{SE}}$ is LOW, the first bits of the new row data will appear at the serial outputs with the first SC clock pulse. $\overline{\mathrm{SE}}$ enables the serial outputs and may be either HIGH or LOW during this operation. The SAM address pointer will increment with the SC LOW to HIGH transition, regardless of the state of $\overline{\text { SE. Performing a READ TRANSFER cycle sets the direction }}$ of the SAM I/O buffers to the output mode.

Figure 5
TYPICAL SPLIT-READ-TRANSFER INITIATION SEQUENCE

## SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)

The SPLIT READ TRANSFER (SRT) cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream. When using normal TRANSFER cycles, the REAL-TIME READ TRANSFER cycle has to occur immediately after the last bit of "old data" was clocked out of the SAM port.

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data can be transferred to the other half. The transfer can occur at any time while the other half is sending data and need not be synchronized with the SC clock.

The $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ timing is also relaxed for SPLIT TRANSFER cycles. The rising edge of $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is not used to complete the TRANSFER cycle and therefore is independent of the rising edges of $\overline{\mathrm{RAS}}$ or $\overline{\mathrm{CAS}}$. The transfer timing is generated internally for SPLIT TRANSFER cycles. A SPLIT READ TRANSFER does not change the direction of the SAM port.

A normal, non-split READ TRANSFER cycle must precede any sequence of SPLIT READ TRANSFER cycles to provide a reference to which half of the SAM the access will begin and set SAM I/O direction. Then SPLIT READ TRANSFERS may be initiated by taking DSF HIGH when RASgoes LOW during theTRANSFER cycle. As in non-split transfers, the row address is used to specify the DRAM row to be transferred. The column address, A0-A6, is used to input theSAMTapaddress. Address pin A7 is a "don't care" when the Tap address is loaded at the HIGH to LOW transition of $\overline{\mathrm{CAS}}$. It is internally generated so that the SPLIT TRANSFER will be to the SAM half not currently being accessed.

Figure 5 shows a typical SPLIT-READ-TRANSFER initiation sequence. The normal READ TRANSFER is first performed, followed by a SPLIT READ TRANSFER of the same row to the upper half of the SAM. The purpose of the SPLIT TRANSFER of the same data is to initiate the split SAM operating mode and load the Tap address. Serial access continues, and when the SAM address counter reaches 127 ("A7" $=0, \mathrm{~A} 0-\mathrm{A} 6=1$ ) the new Tap address is loaded for the next half ("A7"=1, A0-A6=Tap) and the QSF output goes HIGH. Once the serial access has switched to the upper SAM, new data may be transferred to the lower SAM. The controller must wait for the state of QSF to change and then the new data may be transferred to the SAM half not being accessed. For example, the next step in Figure 5 would be to wait until QSF went LOW (indicating that row-1 data is shifting out the lowerSAM) and then transfer the upper half of row 1 to the upper SAM. if the half boundry is reached, before a SRT is done for the half, a Tap address of " 0 " will be used. Access will start at 0 if going to the lower half, 128 if going to the upper. See Figure 6.

## WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of the WRITE TRANSFER is identical to that of the READ TRANSFER described previously except ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ and $\overline{\mathrm{SE}}$ must be LOW when $\overline{\mathrm{RAS}}$ goes LOW. The row address indicates the DRAM row to which the SAM data registers will be written. The column address (Tap) indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. A WRITE TRANSFER changes the direction of the SAM I/O buffers to the input mode. QFS is LOW if access is to the lower half of the SAM, HIGH if to the upper.

## PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE ENABLE)

The PSEUDOWRITE TRANSFER cycle is used to change the direction of SAM port from output to input without performing a WRITE TRANSFER cycle. A PSEUDOWRITE TRANSFER cycle is a WRITETRANSFER cycle with $\overline{\text { SE }}$ held HIGH instead of LOW. The DRAM data will not be disturbed and the SAM will be ready to accept input data.

## ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of the ALTERNATE WRITE TRANSFER is identical to the WRITE TRANSFER except that the DSF pin is HIGH and ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is LOW when $\overline{\mathrm{RAS}}$ goes LOW, allowing $\overline{\mathrm{SE}}$ to be a "don't care." This allows the outputs to be disabled using $\overline{\mathrm{SE}}$ during a WRITE TRANSFER cycle.

## POWER-UP AND INITIALIZATION

When Vcc is initially supplied or when refresh is interrupted for more than 8 ms , the MT42C8128 must be initialized.

After Vcc is at specified operating conditions, for $100 \mu \mathrm{~s}$ minimum, eight $\overline{\text { RAS }}$ cycles must be executed to initialize the dynamic memory array. When the device is initialized the DRAMI/O pins (DQs) are in a High-Z state, regardless of the state of $(\overline{\mathrm{TR}}) / \overline{\mathrm{OE}}$. The DRAM array will contain random data. QSF will be drawing data.

The SAM portion of the MT42C8128 is completely static in operation and does not require refresh or initialization. The SAM port will power-up in the serial input mode (WRITE TRANSFER) and theI/O pins (SDQs) will be HighZ , regardless of the state of $\overline{\mathrm{SE}} \mathrm{a}, \mathrm{b}$. The mask and color register will contain random data after power-up.


Figure 6 SPLIT SAM TRANSFER

## MULTIPORT DRAM

TRUTH TABLE

| CODE | FUNCTION | RAS FALLING EDGE |  |  |  |  | CAS FALL <br> DSF | AO-A8 ${ }^{1}$ |  | D01-DQ8 ${ }^{2}$ |  | REGISTERS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CAS | $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ | $\overline{\text { ME } / \overline{W E}}$ | DSF | $\overline{S E}$ |  | RAS | $\begin{gathered} \overline{\text { CAS }} \\ \mathbf{A B}=X \end{gathered}$ | RAS | CAS ${ }^{\text {WE }}$ | MASK | COLOR |
| DRAM OPERATIONS |  |  |  |  |  |  |  |  |  |  |  |  |  |
| CBR | CAS-BEFORE- $\overline{\text { RAS }}$ REFRESH | 0 | X | 1 | X | X | X | - | X | - | X | X | X |
| ROR | RAS-ONLY REFRESH | 1 | 1 | X | X | X | - | ROW | - | X | - | X | X |
| RW | NORMAL DRAM READ OR WRITE | 1 | 1 | 1 | 0 | X | 0 | ROW | COLUMN | X | VALID | X | X |
| RWNM | NONPERSISTENT (LOAD AND USE) MASKED WRITE TO DRAM | 1 | 1 | 0 | 0 | X | 0 | ROW | COLUMN | WRITE MASK | VALID DATA | LOAD \& USE | X |
| RWOM | PERSISTENT (USE REGISTER) MASKED WRITE TO DRAM | 1 | 1 | 0 | 1 | X | 0 | ROW | COLUMN | X | VALID DATA | USE | X |
| BW | BLOCK WRITE TO DRAM (NO DATA MASK) | 1 | 1 | 1 | 0 | X | 1 | ROW | $\begin{array}{\|l\|} \hline \text { COLUMN } \\ \text { (A2 - A7) } \\ \hline \end{array}$ | X | COLUMN MASK | X | USE |
| BWNM | NONPERSISTENT (LOAD \& USE) MASKED BLOCK WRITE TO DRAM | 1 | 1 | 0 | 0 | X | 1 | ROW | COLUMN | WRITE <br> MASK | COLUMN MASK | LOAD \& USE | USE |
| BWOM | PERSISTENT (USE MASKED REGISTER) MASKED BLOCK WRITE TO DRAM | 1 | 1 | 0 | 1 | X | 1 | ROW | $\begin{array}{\|c\|} \hline \text { COLUMN } \\ \text { (A2 - A7) } \\ \hline \end{array}$ | X | COLUMN MASK | USE | USE |
| REGISTER OPERATIONS |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LMR | LOAD MASK REGISTER | 1 | 1 | 1 | 1 | X | 0 | ROW ${ }^{4}$ | X | X | WRITE MASK | LOAD | X |
| LCR | LOAD COLOR REGISTER | 1 | 1 | 1 | 1 | X | 1 | ROW ${ }^{4}$ | X | X | $\begin{array}{\|c\|} \hline \text { COLOR } \\ \text { DATA } \\ \hline \end{array}$ | X | LOAD |
| TRANSFER OPERATIONS |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RT | READ TRANSFER (DRAM-TO-SAM TRANSFER) | 1 | 0 | 1 | 0 | X | X | ROW | TAP ${ }^{5}$ | X | X | X | X |
| SRT | SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER) | 1 | 0 | 1 | 1 | X | X | ROW | TAP ${ }^{5}$ | X | X | X | X |
| WT | WRITE TRANSFER (SAM-TO-DRAM TRANSFER) | 1 | 0 | 0 | 0 | 0 | X | ROW | TAP ${ }^{5}$ | X | X | X | X |
| PWT | PSEUDO WRITE TRANSFER (SERIAL-INPUT- MODE ENABLE) | 1 | 0 | 0 | 0 | 1 | X | ROW ${ }^{4}$ | TAP ${ }^{\text {s }}$ | X | X | X | X |
| AWT | ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER) | 1 | 0 | 0 | 1 | X | X | ROW | TAP ${ }^{5}$ | X | X | X | X |

NOTE: 1. These columns show what must be present on the A0-A8 inputs when $\overline{R A S}$ falls and A0-A7 when $\overline{\text { CAS }}$ falls.
2. These columns show what must be present on the DQ1-DQ8 inputs when $\overline{R A S}$ falls and when $\overline{C A S}$ falls.
3. On WRITE cycles, the input data is latched at the falling edge of $\overline{C A S}$ or $\overline{M E} \bar{W} E$, whichever is later. Similarly, on READ cycles, the output data is latched at the falling edge of $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{TR}} / \mathrm{OE}$, whichever is later.
4. The ROW that is addressed will be refreshed, but no particular ROW address is required.
5. This is the SAM location that the first SC cycle will access. For Split SAM transfers, the Tap will be the first address location accessed of the "new" SAM half after the boundary of the current half is reached ( 127 for lower half, 255 for upper half).

## MT42C8128

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss -1.0 V to +7.0 V
Operating Temperature, Ta (Ambient) ........... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature (Plastic) ................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation .1W
Short Circuit Output Current 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH $^{2}$ | 2.4 | Vcc +1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL $^{\prime}$ | -1.0 | 0.8 | V | 1 |

## DC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT LEAKAGE CURRENT <br> (any input ( $0 \mathrm{~V} \leq \mathrm{V}, \mathrm{N} \leq \mathrm{V} \subset \mathrm{C}$ ), all other pins not under test $=0 \mathrm{~V}$ ) | IL | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT ( DQ , SDQ disabled, $0 \mathrm{~V} \leq \mathrm{Vout} \leq \mathrm{V}$ cc) | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage (lout $=-2.5 \mathrm{~mA}$ ) | Vон | 2.4 |  | V |  |
| Output Low Voltage ( lout $=2.5 \mathrm{~mA}$ ) | Vol |  | 0.4 | V | 1 |

## CAPACITANCE

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A8 | Cl1 |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{ME}} / \overline{\mathrm{WE}}, \overline{\mathrm{TR} / \mathrm{OE}, ~ S C, ~} \overline{\mathrm{SE}}, \mathrm{DSF}$ | $\mathrm{Cl}_{12}$ |  | 8 | pF | 2 |
| Input/Output Capacitance: DQ, SDQ | Cl/o |  | 9 | pF | 2 |
| Output Capacitance: QSF | Co |  | 9 | pF | 2 |

## CURRENT DRAIN, SAM IN STANDBY

| $\left.T_{A} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$ |  | MAX |  |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -8 | -10 | -12 |  |  |
| OPERATING CURRENT <br> ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling: ${ }^{\mathrm{t} R C}={ }^{\mathrm{t}} \mathrm{RC}(\mathrm{MIN})$ ) | IcC1 | 90 | 80 | 70 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\text { RAS }}=\mathrm{VIL} ; \overline{\mathrm{CAS}}=$ Cycling: ${ }^{\mathrm{t} P \mathrm{C}}=\mathrm{tPC}(\mathrm{MIN})$ ) | Icc2 | 70 | 60 | 50 | mA | 3, 4 |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V} \boldsymbol{H}$ after $8 \overline{\mathrm{RAS}}$ cycles min) | Icc3 | 10 | 10 | 10 | mA |  |
| REFRESH CURRENT: $\overline{R A S}-O N L Y$ ( $\overline{\mathrm{RAS}}=$ Cycling; $\overline{\mathrm{CAS}}=\mathrm{V} I \mathrm{H}$ ) | Icc4 | 90 | 80 | 70 | mA | 3 |
| REFRESH CURRENT: <br> $\overline{\text { CAS-BEFORE- } \overline{R A S}}$ ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling) | Icc5 | 80 | 70 | 60 | mA | 3, 5 |
| SAM/DRAM DATA TRANSFER | Icc6 | 95 | 85 | 75 | mA | 3 |

## CURRENT DRAIN, SAM ACTIVE ('SC = MIN)

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| $\left.\bigcirc \leq{ }_{\text {A }} \leq 70 \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$ |  | MAX |  |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -8 | -10 | -12 |  |  |
| OPERATING CURRENT <br> ( $\overline{\text { RAS }}$ and $\overline{\text { CAS }}=$ Cycling: ${ }^{\text {tRC }}={ }^{\text {tRC }}$ (MIN)) | Icc7 | 130 | 120 | 110 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\text { RAS }}=$ VIL; $\overline{\text { CAS }}=$ Cycling: ${ }^{\text {tPC }}={ }^{\text {tPC }}(\mathrm{MIN})$ ) | Icc8 | 110 | 100 | 90 | mA | 3, 4 |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\boldsymbol{H}}$ after $8 \overline{\mathrm{RAS}}$ cycles min) | Icc9 | 50 | 45 | 40 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{R A S}-O N L Y$ ( $\overline{\mathrm{RAS}}=$ Cycling; $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{I}}$ ) | Icc10 | 130 | 120 | 110 | mA | 3, 4 |
| REFRESH CURRENT: $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$ ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling) | Icc11 | 120 | 110 | 100 | mA | 3, 4, 5 |
| SAM/DRAM DATA TRANSFER | Icc12 | 135 | 125 | 115 | mA | 3, 4 |

## DRAM TIMING PARAMETERS

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: $6,7,8,9,10,11,12,13)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Random READ or WRITE cycle time | ${ }^{\text {t }}$ RC | 150 |  | 180 |  | 210 |  | ns |  |
| READ-MODIFY-WRITE cycle time | ${ }^{\text {t }}$ RWC | 205 |  | 235 |  | 280 |  | ns |  |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {t }} \mathrm{PC}$ | 45 |  | 55 |  | 65 |  | ns |  |
| FAST-PAGE-MODE READ-MODIFY-WRITE cycle time | tPRWC | 100 |  | 110 |  | 140 |  | ns |  |
| Access time from $\overline{\mathrm{RAS}}$ | ${ }^{\text {t }}$ RAC |  | 80 |  | 100 |  | 120 | ns | 14 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ CAC |  | 20 |  | 25 |  | 30 | ns | 15 |
| Access time from ( $\overline{\mathrm{TR}}$ )/ $\overline{\mathrm{OE}}$ | ${ }^{\text {t }} \mathrm{OE}$ |  | 20 |  | 25 |  | 30 | ns |  |
| Access time from column address | ${ }^{\text {t }} \mathrm{AA}$ |  | 40 |  | 50 |  | 60 | ns |  |
| Access time from $\overline{\text { CAS }}$ precharge | ${ }^{t} \mathrm{CPA}$ |  | 45 |  | 55 |  | 65 | ns |  |
| $\overline{\text { RAS }}$ pulse width | ${ }^{\text {t }}$ RAS | 80 | 10,000 | 100 | 10,000 | 120 | 10,000 | ns |  |
| RAS pulse width (FAST PAGE MODE) | ${ }^{\text {t }}$ RASP | 80 | 100,000 | 100 | 100,000 | 120 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ RSH | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }} \mathrm{RP}$ | 60 |  | 70 |  | 80 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t }}$ CAS | 20 | 10,000 | 25 | 10,000 | 30 | 10,000 | ns |  |
| CAS hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 80 |  | 100 |  | 120 |  | ns |  |
| CAS precharge time | ${ }^{\text {t }}$ CPN | 15 |  | 15 |  | 20 |  | ns | 16 |
| $\overline{\text { CAS }}$ precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{CP}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ delay time | ${ }^{\text {t }} \mathrm{RCD}$ | 20 | 55 | 20 | 70 | 25 | 85 | ns | 17 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 10 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t }} \mathrm{RAH}$ | 12 |  | 15 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {t }} \mathrm{RAD}$ | 17 | 40 | 20 | 50 | 20 | 60 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{\text {t }} \mathrm{CAH}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Column address hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{t} A R$ | 60 |  | 70 |  | 85 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {t RAL }}$ | 40 |  | 50 |  | 60 |  | ns |  |
| Read command setup time | ${ }^{\text {t }}$ RCS | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to $\overline{\mathrm{CAS}}$ ) | ${ }^{\text {t }} \mathrm{RCH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }} \mathrm{RRH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t }} \mathrm{CLZ}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {t }}$ OFF | 0 | 20 | 0 | 20 | 0 | 30 | ns | 20,23 |
| Output Disable | ${ }^{\text {t }} \mathrm{OD}$ | 0 | 20 | 0 | 20 | 0 | 30 | ns | 23 |
| Output Disable hold time from start of write | ${ }^{\text {t }}$ OEH |  | 15 |  | 15 |  | 20 | ns | 27 |
| Output Enable to $\overline{\mathrm{RAS}}$ delay | ${ }^{\text {t }}$ ORD |  | 0 |  | 0 |  | 0 | ns |  |

## DRAM TIMING PARAMETERS (Continued)

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Write command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns | 21 |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 20 |  | 25 |  | ns |  |
| Write command hold time (referenced to $\overline{\text { RAS }}$ ) | ${ }^{\text {t }}$ WCR | 60 |  | 70 |  | 85 |  | ns |  |
| Write command pulse width | ${ }^{t} \mathrm{WP}$ | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t }}$ RWL | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }} \mathrm{CWL}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }}$ DH | 20 |  | 20 |  | 25 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ DHR | 60 |  | 70 |  | 90 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ RWD | 110 |  | 130 |  | 160 |  | ns | 21 |
| Column address to WE delay time | ${ }^{\text {t }}$ AWD | 70 |  | 80 |  | 100 |  | ns | 21 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | 50 |  | 55 |  | 70 |  | ns | 21 |
| Transition time (rise or fall) | ${ }^{\text {t }}$ T | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period ( 512 cycles) | ${ }^{\text {t }}$ REF |  | 8 |  | 8 |  | 8 | ms |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ RPC | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\text { CAS }}$ setup time (CAS-BEFORE- $\overline{R A S}$ REFRESH) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| CAS hold time ( $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$ REFRESH) | ${ }^{\text {t }} \mathrm{CHR}$ | 30 |  | 30 |  | 30 |  | ns | 5 |
| $\overline{M E} / \overline{\text { WE }}$ to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ WSR | 0 |  | 0 |  | 0 |  | ns |  |
|  | ${ }^{\text {t }}$ RWH | 10 |  | 15 |  | 15 |  | ns |  |
| Mask Data to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ MS | 0 |  | 0 |  | 0 |  | ns |  |
| Mask Data to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }} \mathrm{MH}$ | 10 |  | 15 |  | 15 |  | ns |  |

## TRANSFER AND MODE CONTROL TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes 6, 7, 8, 9, 10) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right.$ )

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| TRANSFER command to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ TLS | 0 |  | 0 |  | 0 |  | ns | 25 |
| TRANSFER command to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ tLH | 12 | 10,000 | 15 | 10,000 | 15 | 10,000 | ns | 25 |
| TRANSFER command to $\overline{\text { RAS }}$ hold time (REAL-TIME READ-TRANSFER only) | ${ }^{\text {t }}$ RTH | 70 | 10,000 | 80 | 10,000 | 90 | 10,000 | ns | 25 |
| TRANSFER command to $\overline{\text { CAS }}$ hold time (REAL-TIME READ-TRANSFER only) | ${ }^{\text {t }}$ CTH | 20 |  | 25 |  | 30 |  | ns | 25 |
| TRANSFER command to column address hold time (for REAL TIME READ TRANSFER only) | ${ }^{\text {t }}$ ATH | 25 |  | 30 |  | 35 |  | ns | 25 |
| TRANSFER command to SC lead time | ${ }^{\text {t }}$ TSL | 5 |  | 5 |  | 5 |  | ns | 25 |
| TRANSFER command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t }}$ TRL | 0 |  | 0 |  | 0 |  | ns | 25 |
| TRANSFER command to $\overline{\text { RAS }}$ delay time | ${ }^{\text {t }}$ TRD | 15 |  | 15 |  | 15 |  | ns | 25 |
| TRANSFER command to $\overline{\text { CAS }}$ time | ${ }^{\text {t }}$ TCL | 0 |  | 0 |  | 0 |  | ns | 25 |
| TRANSFER command to $\overline{\text { CAS }}$ delay time | ${ }^{\text {t }}$ TCD | 15 |  | 15 |  | 15 |  | ns | 25 |
| First SC edge to Transfer command delay time | ${ }^{\text {t }}$ TSD | 10 |  | 10 |  | 10 |  | ns | 25 |
| Serial output buffer turn-off delay from RAS | ${ }^{\text {t }}$ SDZ | 10 | 35 | 10 | 40 | 10 | 50 | ns |  |
| SC to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ SRS | 30 |  | 30 |  | 40 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to SC delay time | ${ }^{\text {t }}$ SRD | 20 |  | 25 |  | 30 |  | ns |  |
| Serial data input to $\overline{\text { SE }}$ delay time | ${ }^{\text {t }}$ SZE | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\text { RAS }}$ to SD buffer turn-on time | ${ }^{\text {t }}$ SRO | 10 |  | 15 |  | 15 |  | ns |  |
| Serial data input delay from $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ SDD | 45 |  | 50 |  | 55 |  | ns |  |
| Serial data input to $\overline{\mathrm{RAS}}$ delay time | ${ }^{\text {t }}$ SZS | 0 |  | 0 |  | 0 |  | ns |  |
| Serial-input-mode enable ( $\overline{\mathrm{SE}}$ ) to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ ESR | 0 |  | 0 |  | 0 |  | ns |  |
| Serial-input-mode enable ( $\overline{\mathrm{SE}}$ ) to $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {t }}$ REH | 12 |  | 15 |  | 15 |  | ns |  |
| NONTRANSFER command to $\overline{R A S}$ setup time | ${ }^{t} \mathrm{YS}$ | 0 |  | 0 |  | 0 |  | ns | 26 |
| NONTRANSFER command to RAS hold time | ${ }^{\text {t }} \mathrm{YH}$ | 12 |  | 15 |  | 15 |  | ns | 26 |
| DSF to $\overline{R A S}$ setup time | ${ }^{\text {t }}$ FSR | 0 |  | 0 |  | 0 |  | ns |  |
| DSF to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ RFH | 12 |  | 15 |  | 15 |  | ns |  |
| SC to QSF delay time | ${ }^{\text {t }}$ SQD |  | 25 |  | 30 |  | 35 | ns |  |
| SPLIT TRANSFER setup time | ${ }^{\text {t }}$ STS | 30 |  | 35 |  | 40 |  | ns |  |
| SPLIT TRANSFER hold time | ${ }^{\text {t STH }}$ | 30 |  | 35 |  | 40 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to QSF delay time | ${ }^{\text {t }} \mathrm{RQD}$ |  | 65 |  | 85 |  | 105 | ns |  |
| DSF to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ FHR | 60 |  | 65 |  |  |  | ns |  |
| DSF to CAS Set up time | ${ }^{\text {t }}$ FSC | 0 |  | 0 |  | 0 |  | ns |  |
| DSF to $\overline{\mathrm{CAS}}$ hold time | ${ }^{\text {t }}$ CFH | 15 |  | 20 |  |  |  | ns |  |
|  | ${ }^{\text {t }}$ TQD |  | 25 |  | 30 |  | 35 | ns |  |
| $\overline{\mathrm{CAS}}$ to QSF delay time | ${ }^{\text {t }}$ CQD |  | 35 |  | 40 |  | 45 | ns |  |
| $\overline{\text { RAS }}$ to first SC delay | ${ }^{\text {t }}$ RSD | 80 |  | 95 |  | 105 |  | ns |  |
| $\overline{\text { CAS }}$ to first SC delay | ${ }^{\text {t }}$ CSD | 20 |  | 25 |  | 35 |  | ns |  |
| Column address valid to first SC delay | ${ }^{t}$ ASD | 45 |  | 55 |  | 65 |  | ns |  |

## SAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes 6, 7, 8, 9, 10) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right.$ )

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Serial clock-cycle time | ${ }^{\text {t }}$ SC | 25 |  | 30 |  | 35 |  | ns |  |
| Access time from SC | ${ }^{\text {t }}$ SAC |  | 25 |  | 25 |  | 35 | ns | 24 |
| SC precharge time (SC LOW time) | ${ }^{\text {t }}$ SP | 10 |  | 10 |  | 12 |  | ns |  |
| SC pulse width (SC HIGH time) | ${ }^{\text {t }}$ SAS | 10 |  | 10 |  | 12 |  | ns |  |
| Access time from $\overline{\mathrm{SE}}$ | ${ }^{\text {t }}$ SEA |  | 15 |  | 20 |  | 30 | ns | 24 |
| $\overline{\text { SE }}$ precharge time | ${ }^{\text {t }}$ SEP | 10 |  | 15 |  | 15 |  | ns |  |
| $\overline{\text { SE }}$ pulse width | ${ }^{\text {t }}$ SE | 10 |  | 15 |  | 15 |  | ns |  |
| Serial data-out hold time after SC high | ${ }^{\text {t }} \mathrm{SOH}$ | 5 |  | 5 |  | 5 |  | ns | 24 |
| Serial output buffer turn-off delay from $\overline{\text { SE }}$ | ${ }^{t}$ SEZ | 0 | 12 | 0 | 15 | 0 | 25 | ns | 24 |
| Serial data-in setup time | ${ }^{\text {t }}$ SDS | 0 |  | 0 |  | 0 |  | ns | 24 |
| Serial data-in hold time | ${ }^{\text {t }}$ SDH | 10 |  | 15 |  | 20 |  | ns | 24 |
| Serial input (Write) Enable setup time | ${ }^{\text {t }}$ SWS | 0 |  | 0 |  | 0 |  | ns |  |
| Serial input (Write) Enable hold time | ${ }^{\text {t }}$ SWH | 10 |  | 15 |  | 20 |  | ns |  |
| Serial input (Write) Disable setup time | ${ }^{\text {t }}$ SWIS | 0 |  | 0 |  | 0 |  | ns |  |
| Serial input (Write) Disable hold time | ${ }^{\text {t }}$ SWIH | 10 |  | 15 |  | 20 |  | ns |  |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=\underline{I \Delta t}$ with $\Delta V=3 \mathrm{~V}$ and $\mathrm{Vcc}=5 \mathrm{~V}$. $\overline{\Delta \mathrm{V}}$
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the output open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ) is assured.
7. An initial pause of $100 \mu$ s is required after power-up followed by any eight $\overline{\text { RAS }}$ cycles before proper device operation is assured. The eight $\overline{\text { RAS }}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
8. $A C$ characteristics assume ${ }^{t} T=5 \mathrm{~ns}$.
9. $\mathrm{V}_{\mathrm{IH}}(\mathrm{MIN})$ and $\mathrm{V}_{\mathrm{IL}}(\mathrm{MAX})$ are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and $\mathrm{V}_{\mathrm{IH}}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between Viн and $V_{\text {IL }}$ (or between VIL and $V_{\text {IH }}$ ) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{DRAM}$ data output (DQ1-DQ8) is high impedance.
12. If $\overline{\mathrm{CAS}}=\mathrm{VIL}, \mathrm{DRAM}$ data output (DQ1-DQ8) may contain data from the last valid READ cycle.
13. DRAM output timing measured with a load equivalent to 1 TTL gates and 100 pF . Output reference levels: $\mathrm{VOH}=2.0 \mathrm{~V} ; \mathrm{VoL}=0.8 \mathrm{~V}$.
14. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{t} R C D \geq^{t} R C D$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}, \mathrm{DQ}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\mathrm{CAS}}$ must be pulsed HIGH for ${ }^{t}$ CPN.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t}$ RAC (MAX) can be met. ${ }^{t}$ RCD (MAX) is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the specified ${ }^{t}$ RCD (MAX) limit, then access time is controlled exclusively by ${ }^{\mathrm{t}} \mathrm{CAC}$.
18. Operation within the ${ }^{\text {t } R A D ~(M A X) ~ l i m i t ~ e n s u r e s ~ t h a t ~}$ ${ }^{t}$ RCD (MAX) can be met. ${ }^{t}$ RAD (MAX) is specified as a reference point only; if ${ }^{\dagger} R A D$ is greater than the
specified ${ }^{t}$ RAD (MAX) limit, then access time is controlled exclusively by ${ }^{\mathrm{t}} \mathrm{AA}$.
19. Either ${ }^{t}$ RCH or ${ }^{t}$ RRH must be satisfied for a READ cycle.
20. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voн or Vol.
21. ${ }^{t} W C S,{ }^{t} R W D,{ }^{t} \mathrm{AWD}$ and ${ }^{\mathrm{t}} \mathrm{CWD}$ are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If ${ }^{\text {t }} \mathrm{WCS} \geq$ ${ }^{t}$ WCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$. If ${ }^{\mathrm{t}} \mathrm{WCS} \leq$ ${ }^{\text {t}}$ WCS (MIN), the cycle is a LATE-WRITE and $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ must control the output buffers during the write to avoid data contention. If ${ }^{\mathrm{t}} \mathrm{RWD} \geq^{\mathrm{t}} \mathrm{RWD}$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq^{\mathrm{t}} \mathrm{AWD}$ (MIN) and ${ }^{\mathrm{t}} \mathrm{C} W D \geq{ }^{\mathrm{t}} \mathrm{CWD}$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of the output buffers (at access time and until CAS goes back to $\mathrm{V}_{\mathrm{IH}}$ ) is indeterminate but the WRITE will be valid, if ${ }^{\text {t }}$ OD and ${ }^{\text {t }}$ OEH are met. See the LATE-WRITE AC Timing diagram.
22. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in EARLY-WRITE cycles and $\overline{\text { ME }} / \overline{\text { WE leading edge }}$ in LATE-WRITE or READ-WRITE cycles.
23. During a READ cycle, if $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ is LOW then taken HIGH, DQ goes open. The DQs will go open with $\overline{\mathrm{OE}}$ or $\overline{\text { CAS, }}$, whichever goes HIGH first.
24. SAM output timing is measured with a load equivalent to 1 TTL gate and 50 pF . Output reference levels: $\mathrm{VOH}=2.0 \mathrm{~V} ; \mathrm{VoL}=0.8 \mathrm{~V}$.
25. Transfer command means that $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ is LOW when RAS goes LOW.
26. Non transfer command means that $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ is HIGH when $\overline{\text { RAS }}$ goes LOW.
27. LATE-WRITE and READ-MODIFY-WRITE cycles must have ${ }^{\mathrm{t}} \mathrm{OD}$ and ${ }^{\text {t }}$ OEH met ( $\overline{\mathrm{OE}}$ HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if CAS remains LOW and $\overline{\mathrm{OE}}$ is taken LOW after ${ }^{\text {t }} \mathrm{OEH}$ is met. If $\overline{\mathrm{CAS}}$ goes HIGH prior to $\overline{\mathrm{OE}}$ going back LOW, the DQs will remain open.

## DRAM READ CYCLE



V/A dont care
undefined

## DRAM FAST-PAGE-MODE READ CYCLE



NOTE: 1. WRITE cycles or READ-MODIFY-WRITE cycles may be mixed with READ cycles while in FAST PAGE MODE.

## WRITE CYCLE FUNCTION TABLE ${ }^{1}$

| LOGIC STATES |  |  |  |  | FUNCTION |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RAS Falling Edge |  |  | CAS Falling Edge |  |  |
| $\frac{A}{\overline{M E} / \mathbf{W E}}$ | $\begin{gathered} \mathrm{B} \\ \mathrm{DSF} \end{gathered}$ | $\begin{gathered} C \\ D Q \text { (Input) } \end{gathered}$ | $\begin{gathered} \mathrm{D} \\ \mathrm{DSF} \end{gathered}$ | $\begin{gathered} \mathrm{E}^{2} \\ \mathrm{DQ} \text { (Input) } \end{gathered}$ |  |
| 1 | 0 | X | 0 | DRAM <br> Data | Normal DRAM WRITE (or READ) |
| 0 | 0 | Write Mask | 0 | DRAM <br> Data (Masked) | NONPERSISTENT (Load and Use) MASKED WRITE to DRAM |
| 0 | 1 | X | 0 | DRAM Data (Masked) | PERSISTENT (Use Register) MASKED WRITE to DRAM |
| 1 | 0 | X | 1 | Column Mask | BLOCK WRITE to DRAM (No Data Mask) |
| 0 | 0 | Write Mask | 1 | Column Mask | NONPERSISTENT (Load and Use) MASKED BLOCK WRITE to DRAM |
| 0 | 1 | X | 1 | Column Mask | PERSISTENT (Use Register) MASKED BLOCK WRITE to DRAM |
| 1 | 1 | x | 0 | Write Mask | Load Mask Data Register |
| 1 | 1 | X | 1 | Color Data | Load Color Register |

NOTE: 1. Refer to this function table to determine the logic states of "A", "B", "C", "D" and "E" for the WRITE cycle timing diagrams on the following pages.
2. $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}$, whichever occurs later.

DRAM EARLY-WRITE CYCLE ${ }^{1}$


ZZZA dont care
undefined

NOTE: 1. The logic states of " $A$ ", " $B$ ", " $C$ ", " $D$ " and " $E$ " determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM LATE-WRITE CYCLE


NOTE: 1. The logic states of " $A$ ", " $B$ ", " $C$ ", " $D$ " and " $E$ " determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

## DRAM READ-WRITE CYCLE (READ-MODIFY-WRITE CYCLE)


don't Care
UNDEFINED

NOTE: 1. The logic states of " $A$ ", " $B$ ", " $C$ ", " $D$ " and " $E$ " determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE


KZZ dont care
《 Unoerneo

NOTE: 1. READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST PAGE MODE.
2. The logic states of " $A$ ", " $B$ ", " $C$ ", " $D$ " and " $E$ " determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

## DRAM FAST-PAGE-MODE READ-WRITE CYCLE (READ-MODIFY-WRITE OR LATE-WRITE CYCLES)



NOTE: 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST PAGE MODE. Use the Write Function Table to determine the proper DSF state for the desired WRITE operation.
2. The logic states of " $A$ ", " $B$ " and " $C$ " determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

## DRAM RAS-ONLY REFRESH CYCLE

 (ADDR = A0-A8)

CAS-BEFORE-RAS REFRESH CYCLE




DSF


DQ Viot- $\qquad$ OPEN


DRAM HIDDEN-REFRESH CYCLE


DON'T CARE
UNDEFINED

NOTE: 1. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}=\mathrm{LOW}$ (when $\overline{\mathrm{CAS}}$ goes LOW) and $\overline{T R} / \overline{O E}=\mathrm{HIGH}$.

## READ TRANSFER <br> (DRAM-TO-SAM TRANSFER)

(When part was previously in the SERIAL INPUT mode)


NOTE: 1. There must be no rising edges on the SC input during this time period.
2. QSF $=0$ when the Lower SAM (bits $0-127$ ) is being accessed.

QSF = 1 when the Upper SAM (bits 128-255) is being accessed.

## REAL-TIME READ TRANSFER

(DRAM-TO-SAM TRANSFER)
(When part was previously in the SERIAL OUTPUT mode)

2. QSF $=0$ when the Lower SAM (bits $0-127$ ) is being accessed.

QSF = 1 when the Upper SAM (bits 128-255) is being accessed.

## SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)



## WRITE TRANSFER and PSEUDO WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

(When part was previously in the SERIAL OUTPUT mode)


NOTE: 1. If $\overline{S E}$ is LOW, the SAM data will be transferred to the DRAM.
If $\overline{S E}$ is HIGH, the SAM data will not be transferred to the DRAM (SERIAL-INPUT-MODE ENABLE cycle).
2. $\overline{\text { SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless }}$ of $\overline{S E}$.
3. There must be no rising edges on the SC input during this time period.
4. STS is LOW to select SAMa or HIGH to select SAMb
5. QSF $=0$ when the Lower SAM (bits $0-127$ ) is being accessed.

QSF = 1 when the Upper SAM (bits 128-255) is being accessed.

## WRITE TRANSFER <br> (SAM-TO-DRAM TRANSFER)

(When part was previously in the SERIAL INPUT mode)


NOTE: 1. $\overline{\mathrm{SE}}$ must be LOW to input new serial data, but the serial address register is incremented by SC regardless of $\overline{\mathrm{SE}}$.
2. There must be no rising edges on the SC input during this time period.
3. QSF $=0$ when the Lower SAM (bits $0-127$ ) is being accessed.

QSF = 1 when the Upper SAM (bits 128-255) is being accessed.

## ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)



## SAM SERIAL INPUT



SAM SERIAL OUTPUT


ZZZ Dont care
UNDEFINED

## VRAM

# 256K x 8 DRAM WITH $512 \times 8$ SAM 

## FEATURES

- Industry standard pin-out timing, and functions
- High-performance CMOS silicon gate process
- Single $+5 \mathrm{~V} \pm 10 \%$ power supply
- Inputs and outputs are fully TTL and CMOS compatible
- Refresh modes: $\overline{\text { RAS }}$ ONLY, $\overline{\mathrm{CAS}}$-BEFORE- $\overline{R A S}$, and HIDDEN
- 512-cycle refresh within 8 ms
- Optional FAST PAGE MODE access cycles
- Dual port organization: $256 \mathrm{~K} \times 8$ DRAM port $512 \times 8$ SAM port
- No refresh required for Serial Access Memory
- Low power: 20 mW standby; 300 mW active, typical
- Fast access times - 70ns random, 20ns serial


## SPECIAL FUNCTIONS

- JEDEC Standard Manditory Function set
- PERSISTENT MASKED WRITE
- MASKED WRITE TRANSFER/SERIAL INPUT
- MASKED SPLIT WRITE TRANSFER
- BLOCK WRITE (MASK)
- MASKED FLASH WRITE


## OPTIONS

- Timing (DRAM, SAM)

70 ns , 20ns

- 7

80 ns , 25 ns
100 ns , 30 ns

- Packages

Plastic SOJ
DJ

PIN ASSIGNMENT (Top View)
40-Pin SOJ (E-12)

the circuitry consists of the control, timing, and address decoding logic.

Each of the ports may be operated asynchronously and independently of the other except when data is being transferred internally between them. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of $\overline{\text { RAS }}$ addresses are executed at least every 8 ms (regardless of sequence).Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. TheSAM portion of the DPDRAM is fully static and does not require any refresh.

The operation and control of the MT42C8256 is similar to with the operation of the MT42C8128 (128K x 8 VRAM).

## TRIPLE PORT DRAM

## FEATURES

- Three asynchronous, independent, data access ports
- Fast access times - 80 ns random, 25 ns serial
- Operation and control compatible with 1 Meg VRAMS
- High performance CMOS silicon gate process
- Low power: 15 mW standby; 450 mW active, typical
- 512-cycle refresh within 8 ms
- Refresh modes: $\overline{\text { RAS-ONLY, }} \overline{\text { CAS-BEFORE-RAS }}$, and HIDDEN
- FAST PAGE MODE access cycles
- Two, bidirectional Serial Access Memories (SAMs)
- Fully static SAM and Mask Register, no refresh required
- 2048-bit Transfer Mask Register
- SERIAL MASK DATA INPUT mode


## SPECIAL FUNCTIONS

- MASKED WRITE (Write-Per-Bit)
- PERSISTENT MASKED WRITE
- SPLIT READ and WRITE TRANSFERs
- BLOCK WRITE
- BIT MASKED TRANSFERs


## OPTIONS

- Timing (DRAM, SAMs) $80 \mathrm{~ns}, 25 \mathrm{~ns}$

MARKING
$100 \mathrm{~ns}, 30 \mathrm{~ns}$ - 8
$120 \mathrm{~ns}, 35 \mathrm{~ns}$

- Packages

Plastic SOJ (400 mil)

- Functionality

QSF output (indicates SAM-half accessed) 43 C 4257
SSF input (Split SAM special function, stop count) 43 C 4258

## GENERAL DESCRIPTION

The MT43C4257/8 are high speed, triple port CMOS dynamic random access memories (TPDRAMs) containing $1,048,576$ bits. Data may be accessed by a 4 bit wide DRAM port or by either of two independently clocked $512 \times 4$-bit serial access memory (SAM) ports. Data may be transferred bidirectionally between the DRAM and either SAM.

The DRAM portion of the TPDRAM is functionally identical to the MT4C4256 (256K x 4 DRAM). Eight 512-bit data registers make up the serial access memory portions of the TPDRAM. Data I/O and internal data transfer are accomplished using five separate bidirectional data paths; the 4bit random access I/O port, the pair of internal 2048 bit wide paths between the DRAM and the SAMs, and the pair

## 256K x 4 DRAM WITH DUAL $512 \times 4$ SAMS



## MULTIPORT DRAM

## PIN DESCRIPTIONS

$\left.\begin{array}{|c|c|c|c|l|}\hline \begin{array}{c}\text { SOJ PIN } \\ \text { NUMBER(S) }\end{array} & \begin{array}{c}\text { FUTURE PIN } \\ \text { NUMBER(S) }\end{array} & \text { SYMBOL } & \text { TYPE } & \\ \hline 5 & & \text { SCa } & \text { Input } & \begin{array}{l}\text { Serial Clock, SAMa: Clock input to the serial address counter for } \\ \text { the SAMa registers and strobe for SAMa control and data inputs. }\end{array} \\ \hline 1 & \text { SCb } & \text { Input } & \begin{array}{l}\text { Serial Clock, SAMb: Clock input to the serial address counter for } \\ \text { the SAMb registers and strobe for SAMb control and data inputs. }\end{array} \\ \hline 8 & \text { TR/OE } & \text { Input } & \begin{array}{l}\text { Transfer Enable: Enables an internal TRANSFER operation at the } \\ \text { falling edge of } \overline{\text { RAS, or }}\end{array} \\ \hline \text { Output Enable: Enables the DRAM output buffers when taken } \\ \text { LOW after } \overline{\text { RAS goes LOW (CAS must also be LOW), otherwise }} \\ \text { the output buffers are in a high impedance state. }\end{array}\right]$

## PIN DESCRIPTIONS (Continued)

| SOJ PIN NUMBER(S) | FUTURE PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 25,24,23 \\ & 22,19,18 \\ & 17,21,16 \end{aligned}$ |  | A0-A8 | Input | Address Inputs: For DRAM operation, these inputs are multiplexed and clocked by $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ to select one 4-bit word out of the 256 K available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when RAS goes LOW) and the SAM start address (when CAS goes LOW). |
| 13 |  | STS | Input | SAM Transfer Select: The state of STS at RAS time determines which SAM is involved in a transfer (SAMa=LOW, SAMb=HIGH). |
| 36 |  | MKD | Input | Mask Data Input: MKD is used during BIT MASK REGISTER LOAD cycles to enable or disable the serial mask input mode (SMI). If SMI is enabled (MKD=HIGH at $\overline{\text { RAS }}$ ), then MKD is used as mask data input and is clocked by SCb into the mask data register. |
| 4 |  | TRM | Input | Transfer Mask Select: TRM is used to select between NORMAL TRANSFER cycles and BIT MASKED TRANSFER or BIT MASK REGISTER LOAD cycles. |
| 9, 10, 31, 32 |  | DQ1 - DQ4 | Input/ Output | DRAM Data I/O: Data inputs and outputs for the DRAM memory array; inputs for the MASK and COLOR REGISTER load cycles; address mask inputs for BLOCK WRITE cycles. |
| 6, 7, 34, 35 |  | SDQa1-SDQa4 | Input/ Output | Serial Data I/O, SAMa: Input, Output, or High-Z. |
| 2, 3, 38, 39 |  | SDQb1-SDQb4 | Input/ Output | Serial Data I/O, SAMb: Input, Output, or High-Z. |
| 26 |  | QSFa/SSFa | Output <br> Input | Split SAM Status, SAMa (MT43C4257): QSFa indicates which half of SAMa is being accessed (Lower = LOW, Upper $=$ HIGH). <br> Split SAM Special Function, SAMa (MT43C4258): SSFa=HIGH stops access to current half of SAM and will load the Tap address of the next half into the address pointer. SSFa is synchronized with SCa. |
| 28 |  | QSFb/SSFb | Output <br> Input | Split SAM Status, SAMb (MT43C4257): QSFb indicates which half of SAMb is being accessed. (Lower = LOW, Upper = HIGH). <br> Split SAM Special Function, SAMb (MT43C4258): SSFb=HIGH stops access to current half of SAM and will load the Tap address of the next half into the address pointer. SSFb is synchronized with SCb. |
| 11, 20 |  | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 30, 40 |  | Vss | Supply | Ground |

## FUNCTIONAL DESCRIPTION

The MT43C4257/8 can be divided into four functional blocks (see Figure 1): the DRAM and its special functions, the Bit Mask Register (BMR), the two Serial Access Memories (SAMs), and the DRAM/SAM/BMR transfer circuitry. All the operations described below are also shown in the AC Timing Diagrams section of this data sheet and are summarized in the Functional Truth Table.

Note: For dual function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing transfer operations the $\overline{T R} / \overline{O E}$ pin will be shown as $\overline{T R} /(\overline{O E})$.

## DRAM OPERATION

This section describes the operation of the random access port and the special functions associated with the DRAM.

DRAM REFRESH (ROR, CBR, and HR)
Like any DRAM-based memory, the MT43C4257/8 TPDRAM must be refreshed to retain data. All 512 row address combinations must be accessed within 8 ms . The MT43C4257/8 supports $\overline{\text { CAS-BEFORE- }} \overline{\mathrm{RAS}}, \overline{\mathrm{RAS}}$ ONLY and HIDDEN types of refresh cycles.

For the $\overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$ REFRESH cycle, the row-addresses are generated and stored in an internal address counter. The user need not supply any address data and simply must perform $512 \overline{\text { CAS-BEFORE-RAS }}$ cycles within the 8 ms time period.

For RAS-ONLY REFRESH cycles, the refresh address must be generated externally and applied to the A0-A8 inputs. The $D Q$ pins remain in a High-Z state for both the $\overline{\text { RAS-ONLY }}$ and $\overline{C A S}-B E F O R E-\overline{R A S}$ cycles.

HIDDEN REFRESH (HR) cycles are performed by toggling $\overline{R A S}($ while keeping $\overline{C A S L O W) ~ a f t e r ~ a ~ R E A D ~ o r W R I T E ~}$ cycle. This performs $\overline{\mathrm{CAS}}$-BEFORE- $\overline{\mathrm{RAS}}$ REFRESH cycles but does not disturb the $D Q$ lines.
Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row that is being accessed. The SAM and Bit Mask Register portions of the MT43C4257/8 are fully static and do not require any refreshing.

## DRAM READ AND WRITE CYCLES (RW)

The DRAM portion of the TPDRAM is nearly identical to standard $256 \mathrm{~K} \times 4$ DRAMs. However, because several of the DRAM control pins are used for additional functions on this device, several conditions that were undefined or "don't care" states for the DRAM are specified for the TPDRAM. These conditions are highlighted in the following discussion. In addition, the TPDRAM has several special functions that may be used when writing to the DRAM.

The 18 address bits used to select a 4-bit word from the 262,144 available are latched into the chip using the A0-A8, $\overline{\mathrm{RAS}}$, and $\overline{\mathrm{CAS}}$ inputs. First, the 9 row-address bits are setup on the address inputs and clocked into the part when $\overline{\text { RAS }}$ transitions from HIGH to LOW. Next, the 9 column-address bits are setup on the address inputs and clocked in when $\overline{\mathrm{CAS}}$ goes from HIGH to LOW.

For single port DRAMS, the $\overline{O E}$ pin is a "don't care" when $\overline{\mathrm{RAS}}$ goes LOW. For the TPDRAM, ( $\overline{\mathrm{TR}}) / \overline{\mathrm{OE}}$ is used when $\overline{\text { RAS }}$ goes LOW, to select between DRAM and TRANSFER cycles. (TR) $/ \overline{\mathrm{OE}}$ must be HIGH at the $\overline{\mathrm{RAS}} \mathrm{HIGH}$ to LOW transition for all DRAM operations.

If ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is HIGH when $\overline{\mathrm{CAS}}$ goes LOW, a DRAM READ operation is performed and the data from the memory cells selected will appear at the DQ1-DQ4 port. The (TR)/ $\overline{\mathrm{OE}}$ input must transition from HIGH to LOW sometime after $\overline{\mathrm{RAS}}$ falls to enable the DRAM output port.

For single port DRAMs, $\overline{\mathrm{WE}}$ is a "don't care" when $\overline{\mathrm{RAS}}$ goes LOW. For the TPDRAM, $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ is used, when RAS goes LOW, to select between a MASKED WRITE cycle or a normal WRITE cycle. If $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ is LOW at the $\overline{\mathrm{RAS}}$ HIGH to LOW transition, a MASKED WRITE operation is selected.For any TPDRAM non-masked access cycle (READ or WRITE), $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ must be HIGH at the $\overline{\text { RAS }} \mathrm{HIGH}$ to LOW transition. If $(\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is LOW when $\overline{\mathrm{CAS}}$ goes LOW, a DRAM WRITE operation is performed and the data present on the DQ1-DQ4 data port will be written into the selected memory cells.

The TPDRAM can perform all the normal DRAM cycles: READ, EARLY-WRITE, LATE-WRITE, READ-MODIFYWRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE, and FAST-PAGE-MODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.


Figure 2
NONPERSISTENT MASKED WRITE EXAMPLE

## NONPERSISTENT MASKED WRITE (RWNM)

The MASKED WRITE feature eliminates the need to do a READ-MODIFY-WRITE cycle when changing only certain bits within a 4-bit word. The MT43C4257/8 supports two types of MASKED WRITE cycles, NONPERSISTENT MASKED WRITE and PERSISTENT MASKED WRITE.

If $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}}), \mathrm{DSF} 1$ and DSF2 are LOW at the $\overline{\mathrm{RAS}} \mathrm{HIGH}$ to LOW transition, the data (mask data) present on the DQ1-DQ4 inputs will be written into the mask data register. The mask data acts as an individual write enable for each of the four DQ1-DQ4 pins. If a LOW (logic 0 ) is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic 1) on a mask data register bit enables the input port and
allows normal WRITE operations to proceed. This convention is used for all masks on the MT43C4257/8. Note that $\overline{\text { CAS is still HIGH. When CAS goes LOW, the bits present on }}$ the DQ1-DQ4 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW). The DRAM contents that correspond to the masked bits will not be changed during the WRITE cycle. When using NONPERSISTENT MASKEDWRITE, the data present on the DQ inputs is loaded into the mask data register at every falling edge of $\overline{\text { RAS. FAST PAGE MODE }}$ can be used in tandem with NONPERSISTENT MASKED WRITE to write several column locations using the same mask during one RAS cycle. An example of NONPERSISTENT MASKED WRITE cycle is shown in Figure 2.


Figure 3
PERSISTENT MASKED WRITE EXAMPLE

## PERSISTENT MASKED WRITE (RWOM)

The PERSISTENT MASKED WRITE feature eliminates the need to rewrite the mask data before each MASKED WRITE cycle if the same mask data is being used repeatedly. To initiate a PERSISTENT MASKED WRITE, a LOAD MASK REGISTER cycle is performed by taking $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ and DSF1 HIGH, and DSF2 LOW when RASgoes LOW. The mask data is loaded into the internal register when $\overline{\mathrm{CAS}}$ goes LOW, provided DSF1 is LOW (see the LOAD MASK REGISTER description).

Mask data may also be loaded into the mask register by simply performing a NONPERSISTENT MASKED WRITE before the PERSISTENT MASKED WRITE cycles.

PERSISTENT MASKED WRITE cycles may then be performed by taking $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ and DSF2 LOW and DSF1 HIGH when RAS goes LOW. The contents of the mask data register will then be used as the mask data for the DRAM inputs. Unlike the NONPERSISTENT MASKED WRITE cycle, the data present at the $D Q$ inputs is not loaded into the mask register when $\overline{R A S}$ falls. Another PERSISTENT MASKED WRITE cycle may be performed without reloading the register. Figure 3 shows the LOAD MASK REGISTER and PERSISTENTMASKEDWRITEcycleoperations. TheLOAD MASK REGISTER and PERSISTENT MASKED WRITE cycles allow systems that cannot output data at $\overline{R A S}$ time to perform MASKED WRITE cycles. PERSISTENT MASKED WRITE can also operate in FAST PAGE MODE.

## BLOCK WRITE (BW)

If DSF1 is HIGH when $\overline{\text { CAS }}$ goes LOW, the MT43C4257/ 8 will perform a BLOCK WRITE cycle ( $\overline{\mathrm{WE}}=$ "don't care") instead of a normal WRITE cycle. In BLOCK WRITE cycles, the contents of the color register (instead of the DQ inputs) are directly written to four adjacent column locations (see Figure 4). A total of 16 bits will be written simultaneously, improving the normal DRAM fill rate by four times. The color register must be loaded prior to beginning BLOCK WRITE cycles (see LOAD COLOR REGISTER).

The row is addressed as in a normal DRAMWRITE cycle. However, when $\overline{\text { CAS }}$ goes LOW, only the A2-A8 inputs are used. A2-A8 specify the "block" (out of the 128 possible) of four adjacent column locations that will be accessed. When CAS goes LOW, the DQ inputs are then used to determine which combination of the four column locations will be changed. DQ1 acts as a write enable for column location $\mathrm{A} 0=0, \mathrm{~A} 1=0 ; \mathrm{DQ} 2$ controls column location $\mathrm{A} 0=1, \mathrm{~A} 1=0$; DQ 3 controls $\mathrm{A} 0=0, \mathrm{~A} 1=1$; and DQ 4 controls $\mathrm{A} 0=1, \mathrm{~A} 1=1$. The write enable controls are active HIGH; a logic 1 enables and a logic 0 disables the WRITE function.


Figure 4
BLOCK WRITE EXAMPLE
The contents of the color register will then be written to the column locations enabled. Each DQ location of the color register is written to the four column locations (or any of the four that are enabled) in the corresponding DQ bit plane. The DQ mask is not used in this mode.

Note: When performing a BLOCK WRITE, $\overline{W E}$ is a "don't care". This means LATE-WRITEs in the BW mode are not allowed.

## NONPERSISTENT MASKED BLOCK WRITE (BWNM)

The MASKED WRITE functions can also be used during BLOCK WRITE cycles. NONPERSISTENT MASKED BLOCK WRITE operates exactly like the normal NONPERSISTENT MASKED WRITE except the mask is now applied to four column locations instead of just one column location.

Like NONPERSISTENT MASKED WRITE, the combination of $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ LOW and DSF1 LOW when $\overline{\mathrm{RAS}}$ goes LOW, initiates a NONPERSISTENT MASK cycle. The DSF pin must be driven HIGH, when $\overline{\text { CAS }}$ goes LOW to perform
a NONPERSISTENT MASKED BLOCK WRITE. By using both the column mask input and the MASKED WRITE function, any combination of the four bit planes may be masked and any combination of the four column locations may be masked.

## PERSISTENT MASKED BLOCK WRITE (BWOM)

This cycle is also performed exactly like the normal PERSISTENT MASKED WRITE except that DSF1 is HIGH when CAS goes LOW to indicate the BLOCK WRITE function. Both the mask data register and the color register must be loaded with the appropriate data prior to starting a PERSISTENT MASKED BLOCK WRITE.

## DRAM REGISTER OPERATIONS

The MT43C4257/8 contains two 4-bit registers that are used as data registers for special functions. This section describes how to load these registers.

## LOAD MASK REGISTER (LMR)

The LOAD MASK REGISTER operation and timing are identical to a normal WRITE cycle except that DSF1 is HIGH when $\overline{R A S}$ goes LOW. As shown in the Truth Table, the combination of $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}}), \overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$, and DSF1 beingHIGH when $\overline{\mathrm{RAS}}$ goes LOW indicates the cycle is a REGISTER load cycle. DSF1 is used when CAS goes LOW to select the register to be loaded, and must be LOW for a LOAD MASK REGISTER cycle. The data present on the DQ lines will then be written to the mask data register.

Note: For a normal DRAM WRITE cycle, the mask data register is disabled but not modified. The contents of mask data register will not be changed unless a NONPERSISTENT MASKED WRITE cycle or a LOAD MASK REGISTER cycle is performed

The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

The mask data register contents are used during PERSISTENT MASKED WRITE and PERSISTENT MASKED BLOCK WRITE cycles to selectively enable writes to the four DQ planes.

## LOAD COLOR REGISTER (LCR)

A LOAD COLOR REGISTER cycle is identical to the LOAD MASK REGISTER cycle except DSF1 is HIGH when $\overline{\mathrm{CAS}}$ goes LOW. The contents of the color register are retained until changed by another LOAD COLOR REGISTER cycle (or the part loses power) and are used as data inputs during BLOCK WRITE cycles.

## TRANSFER OPERATIONS

This section describes transfer operations between the DRAM and either SAM. The direction of the transfer is specified with respect the DRAM portion of the device. A write is referenced to the DRAM array and a read is referenced from the array.

Note: The three ports of the TPDRAM are independent and asynchronous to one another. Any or all of the ports may be accessed simultaneously at the maximum allowable frequencies. The only time the ports are synchronized is during transfers to or from the DRAM and SAM portions of the device. A transfer involving a SAM does not affectaccess from the other SAM port. Both SAMs may be accessed during a DRAM/BMR transfer operation or any other DRAM access cycle other than a SAM transfer.

TRANSFER operations are initiated when $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is LOW at the falling edge of $\overline{\text { RAS. The state of STS when }}$ $\overline{\text { RAS }}$ goes LOW indicates which SAM the TRANSFER will address. The state of $(\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ when $\overline{\mathrm{RAS}}$ goes LOW indicates the direction of the TRANSFER. At the same time, DSF1 is used to select between normal TRANSFER cycles and SPLIT TRANSFER cycles and DSF2 is used to select between normal TRANSFER cycles and MASKED TRANSFER cycles. A TRANSFER cycle can be performed without dropping $\overline{\text { CAS. }}$. In this case, the previously loaded Tap address will be used.
The MT43C4257/8 include a feature called BIT MASKED TRANSFER, which uses a third, 2048-bit data register to individually mask every bit involved in a transfer operation. The BIT MASKED TRANSFER may be applied to either READ or WRITE TRANSFERS. The TRM pin is used to select between NORMAL and BITMASKEDTRANSFER (or BIT MASK REGISTER LOAD) cycles. The type of transfer operation is always selected on the falling edge of $\overline{\text { RAS }}$.

## NORMAL TRANSFERS

The MT43C4257/8 support all of the popular transfer cycles available on the 1 Meg Video RAMs. Each of these is described in the following section.

## READ TRANSFER (RT)

A READ TRANSFER cycle is selected if $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ is HIGH, and DSF1 and $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ are LOW when $\overline{\text { RAS goes }}$ LOW. When RAS goes LOW, the READ TRANSFER is to SAMa if STS = LOW, or to SAMb if STS = HIGH. The row address bits indicate the four 512-bit DRAM rows that are to be transferred to the four SAM data registers. The column address bits indicate the start address (or Tap point) of the next serial output cycle from the designated SAM data
registers. QSF indicates the SAM half being accessed; LOW if the lower half, HIGH if the upper. Performing a READ TRANSFER cycle sets the direction of the selected SAM's I/O buffers to the output mode.

To complete a REAL-TIME READ-TRANSFER, $\overline{T R} /(\overline{\mathrm{OE}})$ is taken HIGH while $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ are LOW. In order to synchronize the REAL-TIME READ TRANSFER to the serial clock, the rising edge of $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ must occur between the rising edges of successive clocks on the SC input (refer to the ACtiming diagrams). A "regular" READTRANSFER is not sychronized with the SC pin of the addressed SAM. This type of RT is performed when $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is taken HIGH "early," without regard to the falling edge of $\overline{\mathrm{CAS}}$. The transfer will be completed internally by the device. The first serial clock must meet the tRSD, tCSD and tASD delays. (see READ TRANSFER AC timing diagram). The 2048 bits of DRAM data are then written into the SAM data registers and the selected SAM's Tap address that was stored in the internal, 9 -bit Tap address register is loaded into the address counter. If $\overline{\text { SE }}$ for the SAM selected ( $\overline{\text { SEa }}$ for SAMa) is LOW, the first bits of the new row data will appear at the serial outputs with the next SC clock pulse. $\overline{\mathrm{SE}}$ enables the serial outputs, and may be either HIGH or LOW during this operation.

## SPLIT READ TRANSFER (SRT)

The SPLIT READ TRANSFER cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream (the "full" READ TRANSFER cycle has to occur immediately after the final bit of "old data," and before the first bit of "new data" is clocked out the SAM port).

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data can be transferred to the other half. The transfer can occur at any time while the other half is sending data and need not be synchronized with the SC clock.

The $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ timing is relaxed for SRT cycles. The rising edge of $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is not used to complete the TRANSFER cycle and therefore is independent of the rising edges of $\overline{\text { RAS }}$ and $\overline{\text { CAS. The transfer timing is generated internally }}$ for SPLIT TRANSFER cycles.

SPLIT TRANSFERs do not change the SAM I/O direction. A normal (non-split) READ TRANSFER cycle must precede any sequence of SRT cycles to put the SAM I/O in the output mode and provide the initial SAM Tap address (which half). Then an SRT can be initiated by taking DSF1 HIGH and selecting the desired SAM (using STS) when $\overline{\text { RAS goes LOW during the TRANSFER cycle. As in non- }}$ split transfers, the row address is used to specify the DRAM row to be transferred. When an SRT cycle is initiated, the half of the SAM not actively being accessed will be the half
that receives the transfer. When CAS falls, address pins A0A7 determine the Tap address for the SAM-half selected;A8 = "don't care." If $\overline{\mathrm{CAS}}$ does not fall, the previously loaded Tap address will be reused and the TRANSFER will be to the idle half.

Figure 5 shows a typical SRT initiation sequence. The normal READ TRANSFER is first performed, followed by an SRT of the same row to the upper half of the SAM. The purpose of the SRT from the same row is to initiate the split SAM operating mode and load the Tap address for the upper half of the SAM. For the MT43C4257, serial access continues and when the SAM address counter reaches 255 ("A8" $=1, \mathrm{~A} 0-\mathrm{A} 7=0$ ), the QSF output for that SAM goes HIGH and the Tap address for the upper half is automatically loaded. Since the serial access has now switched to the upper half of the SAM, new data may now be transferred to the lower half. This sequence of waiting for the state of QSF to change and then transferring new data to the SAM half that is not being accessed may now be repeated. For ex-
ample, the next step in Figure 5 would be to wait until QSF went LOW (indicating that row-1 data is shifting out the lowerSAM) and then transferring the upper half of row 1 to the upper SAM. $\overline{\mathrm{CAS}}$ is used to load the Tap address. If $\overline{\mathrm{CAS}}$ does not fall, the last Tap address load for the addressed SAM will be reused.

The split SAM operation is slightly different for the MT43C4258. Instead of having a QSF, this device has a Split SAMSpecial Function (SSF) input. With this input the serial access may be switched at will from one half of the SAM to the other. In other words, the address count may be stopped on the current half and the Tap address of the next half may be loaded, without waiting for the maximum address count of the current half ( 255 ; lower, 511 ; upper). If no SSF pulse is applied, the Tap address of the next half will be automatically loaded when the maximum count of the current SAMhalf is reached. QSF = 0 when the Lower SAM (bits 0-255) is being accessed. QSF = 1 when the Upper SAM (bits 256511) is being accessed.


Figure 5
TYPICAL SPLIT READ TRANSFER INITIATION SEQUENCE

## WRITE TRANSFER (WT)

The operation of the WRITE TRANSFER is identical to the READ TRANSFER described previously, except ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ and $\overline{\text { SE }}$ must be LOW when $\overline{\text { RAS }}$ goes LOW. The DSF2 input is used to select between the WT and DQMASKED WRITE TRANSFER cycles, and must be LOW for the WT cycle. The STS pinisalsotakenLOW orHIGH to selectSAMa orSAMb, respectively, when $\overline{\text { RAS }}$ goes LOW. The row address indicates the DRAM row to which the SAM data register will be written, and the Tap address indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. QSF indicates the SAM half being accessed; LOW if the lower half, HIGH if the upper. Performing a WT sets the direction of the SAM I/O buffers to the input mode.

## PSEUDO WRITE TRANSFER (PWT)

The PSEUDO WRITE TRANSFER cycle can be used to change the direction of a SAM port from output to input without disturbing the DRAM data in the selected row. A PSEUDOWRITE TRANSFER cycle is a WRITE TRANSFER cycle with the $\overline{S E}$ of theappropriateSAM held HIGHinstead of LOW. The addressed row will be refreshed. A DQ MASKED WRITE TRANSFER (with all bits masked) is an alternate method for changing the direction of theSAM port without disturbing the addressed row data.

## DQ MASKED WRITE TRANSFER (DMWT)

The data being transferred from either SAM to the DRAM may be masked by performing a DQ MASKED WRITE TRANSFER cycle. The transfer of data may be selectively enabled for each of the four DQ planes (see Figure 6). The DMWT cycle is identical to the WRITE TRANSFER cycle except DSF2 is HIGH and mask data must be on the DQ inputs at the falling edge of $\overline{\text { RAS. }}$

The complete SAM register will be transferred to the selected row in each DQ plane if the mask data input is HIGH, and the SAM register will not be transferred if the mask data input for that DQ plane is LOW. DRAM data is not disturbed in masked DQ planes.

## SPLIT WRITE TRANSFER (SWT)

The SPLIT WRITE TRANSFER feature makes it possible to input and transfer uninterrupted bit streams. Figure 7 shows a typical initiation sequence for SWT cycles.

Like the SRT, the SPLIT WRITE TRANSFER cycle does not change the state of the SAM I/O buffers. A normal, DQ MASKED or PSEUDOWRITE TRANSFER cycle is required to set the Tap address and set the SAM I/O direction to input mode.

After the WT, a SWT is performed to enter the split SAM operating mode. This sets the Tap for the next half of the SAM. The addressed half of the SAM is immediately trans-


Figure 6
DQ MASKED WRITE TRANSFER
ferred to the first destination row. This half of the SAM may not yet contain valid data. However, another SWT to the same row will normally occur after this is loaded, so the initial invalid data will be overwritten. Another approach would be to initiate an SWT addressed to any DRAM row, but mask (disable) all four of the DQ planes. This method can be used to initiate the SWT sequence without disturbing any DRAM data.

Write mask data must be supplied to the DQ inputs during every SWT cycle at $\overline{\mathrm{RAS}}$ time. The mask data acts as an individual write enable for each of the four DRAM DQ planes. For example, the DQ1 MASKED WRITE bit enables or disables the transfer of theSAMSDQ1 register to the DQ1 plane of the DRAM row selected (see the DQ MASKED WRITE TRANSFER description). As in all other MASKED WRITE operations, a HIGH enables the WRITE TRANSFER and a LOW disables the WRITE TRANSFER. As with SPLIT READ TRANSFER, the half of the SAM not receiving data will be the half transferred and the Tap address (A0-A7) for the other half is loaded when $\overline{\text { CAS falls (A8 is a "don't care"). }}$ If $\overline{\mathrm{CAS}}$ does not fall, the previously loaded Tap address, A0A7, will be reused. The TRANSFER will be to the idle half. When the serial clock crosses the half-SAM boundary, the new Tap address for that half is automatically loaded.

The QSFa and QSFb output (MT43C4257) indicate which half of SAMa or SAMb, respectively, is currently accepting data. After QSF goes HIGH, indicating that serial input has now switched to the upper SAM, the contents of the lower half of the SAM may be transferred to any DRAM row. The
cycle of checking for a change in QSF and then transferring the half of the SAM just filled may now be repeated. The next step on Figure 7 is to wait for QSF to go LOW and then SWT the contents of the upper half of the SAM to row 0 . If the terminal count of theSAM half is reached before an SWT is performed for the next half, the access will be repeated from the same half and previously loaded address (access will not move to the next half).

When operating the MT43C4258 in the SWT mode, the address pointer may be changed, at will, to the new Tap address of the next half when the final desired input data is clocked in. When the final data is input, the SSF input is taken HIGH at the corresponding rising edge of SC. The next SC rising edge will input data into the Tap location of the next half of the SAM. If SSF is not applied, the Tap address will be automatically loaded when the maximum Tap address count is reached for the current half ( 255 or
511). If SSF is HIGH at SC, before an SWT is performed for the next half, the access will jump to the old Tap address of the same half. Access will not preceed to the next half. If terminal count is reached before an SWT, the access will proceed as it does for the MT43C4257.

## SERIAL INPUT and SERIAL OUTPUT

The control inputs for SERIAL INPUT and SERIALOUTPUT are SCa,b, $\overline{S E} a, b$ and SSFa,b (MT43C4258). The rising edge of SC increments the serial address counter and provides access to the nextSAMlocation. $\overline{\mathrm{SE}}$ enables or disables the serial input/output buffers.

Serial output of the SAM contents will start at the serial start address that was loaded during the DRAM-TO-SAM TRANSFER cycle. The SC input increments the address counter and presents the contents of the next SAM location to the 4-bit port. $\overline{S E}$ is used as an output enable during the


Figure 7
TYPICAL SPLIT WRITE TRANSFER INITIATION SEQUENCE


Figure 8
BIT MASKED TRANSFER BLOCK DIAGRAM

SAM output operation. The serial address is automatically incremented with every SC LOW-to-HIGH transition, regardless of whether $\overline{\mathrm{SE}}$ is HIGH or LOW. For the MT43C4257, the address progresses through the SAM and will wrap around (after count 255 or 511 ) to the Tap address of the next half, for split modes. Address count will wrap around (after count511) to Tap address 0 if in the "full" SAM modes. For the 43C4258, the address count will wrap as it does for the MT43C4257 or it may be triggered, at will, to the next half by the SSF input (splitSAM modes). If SSF is HIGH at a LOW-to-HIGH transition of SC, the Tap address of the next half will be loaded into the address pointer. The following LOW to HIGH transition of SC will clock data from the Tap address of the new half.

SC is also used to clock-in data when the device is in the serial input mode. As in the serial output operation, the contents of the serial address register (loaded when the serial input mode was enabled) will determine the serial address of the first 4-bit word written. $\overline{\text { SE }}$ acts as a WRITE ENABLE for serial input data and must be LOW for valid serial input. If $\overline{S E}=\mathrm{HIGH}$, the data inputs are disabled and the SAM contents will not be modified. The serial address counter is incremented with every LOW to HIGH transition of SC, regardless of the logic level on the $\overline{\mathrm{SE}}$ input.

## BIT MASKED TRANSFERS

This section describes transfers between the DRAM and either of the two SAMs using the BIT MASKED TRANSFER capability. Before performing these BIT MASKED TRANSFERS, the bit mask register must first be loaded with the mask data. See the next section, BIT MASK REGISTER OPERATIONS, for instructions on how to load the Bit Mask Register (BMR).

The BMR is a 2048-bit register that individually controls each of the 2048 transfer gates on the internal $512 \times 4$ transfer bus (see Figure 8). These bus transfer gates reside between the DRAM array and the three data registers and are set to the "pass-thru" mode for nonmasked transfers. For BIT MASKED TRANSFERs, the data in the BMR is coupled to the control inputs of the bus transfer gates. A logic " 1 " in the BMR will select the pass-thru (unmasked) mode for the corresponding SAM data bit, while a logic " 0 " will select the masked mode for that bit.

BIT MASKED TRANSFERs may be incorporated when doing READ, WRITE, SPLIT READ and SPLIT WRITE TRANSFERs. The timing and control required for any particular BIT MASKED TRANSFER cycle is identical to the corresponding normal TRANSFER cycle, except that TRM and DSF2 are HIGH instead of LOW. BIT MASKED TRANSFERs between the DRAM and either of the two SAM registers are possible. Figure 9 illustrates the BIT MASKED TRANSFER functions.

## BIT MASKED READ TRANSFER (BMRT)

BIT MASKED READ TRANSFER can be used to transfer any combination of the 2048 bits contained in any DRAM row address to either of the twoSAMs. The logic conditions and timing for the BMRT function are identical to the normal READ TRANSFER function except to select the BIT MASKED feature, TRM and DSF2 are HIGH. If a bit in the BMR is a logic " 1 ", the bus connection between the corresponding DRAM bit and the selected SAM bit is enabled and the data at the destination (one of the SAMs for BMRT) will be changed to the source data (the DRAM row for BMRT).


Figure 9

## BIT MASK TRANSFER BLOCK DIAGRAM

## BIT MASKED SPLIT READ TRANSFER (BMSRT)

The BIT MASKEDSPLIT READ TRANSFER operation is identical to the normal SPLIT READ TRANSFER except that the bit mask (stored in the bit mask register) is applied to the transfer data by taking TRM and DSF2 HIGH when $\overline{\mathrm{RAS}}$ falls. The remaining control timing is identical to the requirements for a normal SPLIT READ TRANSFER.

## BIT MASKED WRITE TRANSFER (BMWT)

Like WRITE TRANSFER, the BIT MASKED WRITE TRANSFER function may be used to transfer data to any DRAM row address from either of the two SAM registers. In this case, the SAM data will be masked by the contents of the Bit Mask Register before the data is written to the DRAM.

## BIT MASKED SPLIT WRITE TRANSFER (BMSWT)

Like the other BIT MASKED TRANSFER cycles, the BMSWT is nearly identical to the SPLIT WRITE TRANSFER, except TRM and DSF2 are HIGH when RAS falls. Two masks are applied during a BMSWT operation. Each of the individual bits are masked by the bit mask register and each of the DQ planes are masked by the DQ inputs at $\overline{\text { RAS }}$ time. If a DQ input is LOW at $\overline{\text { RAS }}$ time, none of the 256 SAM bits for that DQ plane will be transferred to the DRAM row-half selected. If a DQ input is HIGH, the 256 SAM bits for that
row half will be masked by the corresponding 256 mask register bits when written to the selected DRAM row-half. The remaining control timing is identical to the requirements for a normal SPLIT WRITE TRANSFER.

## BIT MASK REGISTER OPERATIONS

This section describes how to transfer data to or from the Bit Mask Register (BMR) and how to clear the BMRs contents. Data may also be inverted when being transferred between the BMR and DRAM.

## BMR READ TRANSFER (BMR-RT)

Any DRAM row may be transferred to the BMR by using the BMR READTRANSFER function. When $\overline{R A S}$ falls, $\overline{\mathrm{TR}} /$ $(\overline{\mathrm{OE}})$ is LOW to select a transfer cycle. TRM is HIGH to indicate that the BMR is involved in the TRANSFER cycle, and DSF2 is LOW to indicate that the data is to be transferred to the BMR (as opposed to using the contents of the BMR as bit mask data). The remainder of the timing and control required is identical to a normal READ TRANSFER cycle. No Tap address is loaded in this TRANSFER.
Note that the SAM transfer select (STS) pin is used to select whether non-inverted (STS=LOW) or inverted (STS=HIGH) data is transferred to the bit mask register. For all transfers to or from the bit mask register, the state of the MKD pin when $\overline{\text { RAS }}$ falls selects whether the Serial Mask Input (SMI) feature is enabled (see the Functional Truth Table). SMI is a special serial input mode that allows mask information to be clocked into the BMR at the same address location as the data clocked into SAMb (see the SMI mode description). MKD is LOW when RAS falls to disable SMI or HIGH to enable SMI. After the transfer is completed, the MKD pin then acts either as a mask data input to the BMR (SMI enabled) or is "don't care" (SMI disabled). The MKD input is tied to the 4 bit-planes, the data on the MKD pin is written to each bit plane simultaneously.

## BMR INVERTED READ TRANSFER (BMR-IRT)

If the STS pin is HIGH at $\overline{\text { RAS }}$ time the DRAM data will be inverted before being written to the BMR. All 2048 bits involved in the transfer will be complemented. The functionality and logic levels for the other control inputs are identical to the BMR READ TRANSFER cycle. Note that MKD is still used to enable or disable the SMI mode. There is no added cycle time delay for either the BMR INVERTED READ or BMR INVERTED WRITE TRANSFER cycles.

## BMR WRITE TRANSFER (BMR-WT)

The contents of the BMR may also be transferred to any DRAM row by using the BMR WRITE TRANSFER cycle. $(\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ and DSF2 are LOW and TRM is HIGH when $\overline{\text { RAS }}$ falls, to select a write transfer from the BMR. The DQ inputs are used to input a DQ bit-plane mask when $\overline{\mathrm{RAS}}$ falls. This allows each of the four DQ planes to be write enabled or disabled during the BMR-WT. The MKD input is used to enable or disable the SMI mode. STS must be LOW at $\overline{\mathrm{RAS}}$ time to transfer non-inverted BMR data to the DRAM row selected.

## BMR INVERTED WRITE TRANSFER (BMR-IWT)

As with the BMR INVERTED READ TRANSFER, the 2048 bits involved in the transfer may be inverted while being transferred. Taking STS HIGH at $\overline{\text { RAS }}$ time will cause the BMR data to be inverted before it is stored in the selected DRAM row. The other control and DQ (mask) inputs are the same as the BMR-WT.

## SAM-TO-BMR TRANSFER (SAM-BMR)

The contents of either SAM may be transferred to the BMR in the same manner that a DRAM row is transferred. In this case, DSF1 is HIGH to indicate that the SAM is the source of the data instead of the DRAM. ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is used to indicate the direction of the transfer and must be LOW, when $\overline{R A S}$ falls, for a SAM-TO-BMR TRANSFER. STS is no longer used to select between normal and inverted data, it now indicates which SAM is involved in the transfer. Since a SAM-TO-BMR TRANSFER "reads" data from the SAM, the SAM will be placed into input mode by this transfer cycle. The MKD input is still used to determine if the SMI mode will be enabled after the transfer is completed. Since no DRAM access is involved, it is not necessary to provide any particular ROW address at RAS time. However, whichever ROW address is present at $\overline{\mathrm{RAS}}$ time will be used as the address for a $\overline{R A S}-O N L Y$ REFRESH. Since a SAM is involved in the transfer, a new SAM starting Address (or Tap) will be loaded at $\overline{\text { CAS }}$ time. This address will be loaded into the serial address counter of the SAM selected by STS at $\overline{\text { RAS }}$ time.

Note: Any SAM/BMR TRANSFER will take the device out of the split SAM mode, if it was in that mode before the transfer.

## BMR-TO-SAM TRANSFER (BMR-SAM)

The contents of the BMR may also be transferred to one of the SAM registers. The ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ input is used to indicate the direction of the transfer and must be HIGH for a BMR-TO-SAMTRANSFER. STS is LOW to selectSAMa or HIGH to select SAMb as the destination for the BMR data. The
remaining inputs and functionality are identical to the SAM-TO-BMR TRANSFER. Since a BMR-TO-SAM TRANSFER writes new data to the selected SAM register, the I/O for the SAM involved will be placed in the output mode and a new Tap address will be loaded when $\overline{\mathrm{CAS}}$ falls.

## CLEAR BIT MASK REGISTER (CLR-BMR)

The entire contents of the BMR can be cleared (set all bit LOW) within a single transfercycle by performing a CLEAR BMR cycle. Unlike the other cycles that access the BMR, TRM is LOW at $\overline{\text { RAS }}$ time for the CLEAR BIT MASK REGISTER function. $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is LOW to indicate that the cycle is a transfer cycle (although there is really no data transfer involved). The CLR-BMR function is selected when $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}}), \mathrm{DSF} 1$ and DSF2 are HIGH when RAS falls.

When the BMR is cleared, all data will be masked when a BIT MASKED TRANSFER cycle is performed.
The BMR INVERTED WRITE and BMR WRITE TRANSFERS can be used with theCLR-BMR function to set or clear, respectively, any DRAM row. The CLR-BMR function is used to clear the BMR then the BMR TRANSFERS are performed to the addressed DRAM row.

The CLEAR BIT MASK REGISTER function is useful when using the SERIAL MASK INPUT mode. It is automatically performed (when in the SMI mode) when data is transferred from SAMb to the DRAM (see SERIAL MASK INPUT section).

## SERIAL MASK INPUT (SMI)

Whenever the BMR is accessed, the MKD input is sensed and latched into the BMR control logic. If the MKD pin is LOW at $\overline{\mathrm{RAS}}$ time the Serial Mask Input (SMI) mode is disabled and the BMR may only be loaded via internal transfer cycles. If MKD is HIGH when $\overline{\mathrm{RAS}}$ falls, during a BMR access, then the BMR control logic enables the SMI mode and the BMR may be serially loaded via the MKD input.
When SMI is enabled, the MKD input is coupled to all four of the bit mask register's DQ planes (see Figure 10). The SCb clock input and SAMb's address counter are used to input data to SAMb and the BMR. SEb will enable (LOW) or disable (HIGH) input data to SAMb and the BMR, the address count will increment regardless of the state of SEb.
The most common application of the SMI mode is to automatically load a transfer mask with the new data written to SAMb . To initialize the sequence, the BMR is cleared (CLR-BMR) with MKD=HIGH at $\overline{\mathrm{RAS}}$ time to enable the SMI mode. Then SAMb is prepared to accept input data by performing PSEUDO WRITE TRANSFER. The SAM starting address loaded will also apply to the BMR. For every address location that data is written to in SAMb, the corresponding address location in the BMR will be written to the value present on MKD (all four planes of the


Figure 10
SERIAL-MASK-INPUT MODE BLOCK DIAGRAM

BMR will be written). After the input of data to SAMb is complete, a BIT MASKED WRITE TRANSFER may be done and only the unmasked data from SAMb will be transferred to the DRAM. The BMR will be cleared automatically after a BIT MASKED WRITE TRANSFER from SAMb, if the device is in theSMI mode. A BMSWT from SAMb will clear only half of the BMR. This allows a new mask to be loaded during the next fill of SAMb, without performing a CLRBMR cycle. If data is to be masked during the BMWT then MKD is held LOW when the corresponding SAMb data is written. If the data is to be written (unmasked) to the DRAM during the BMWT, then MKD is held HIGH when the corresponding SAMb location is written. The function of the MKD pin is dependent on the I/O direction of SAMb. MKD is an input only, if SMI is enabled and SAMb is in input mode. If SMI is enabled and SAMb is in output mode, the MKD input is a "don't care," no new data may be written to the BMR via MKD. MKD is also "don't care" if the SMI mode is disabled. Note that the mask data loaded via SAMb may also be applied to a SAMaTRANSFER cycle, if the mask hasn't been cleared by a SAMb TRANSFER or a CLR-BMR
cycle. The BMR will not be cleared after a TRANSFER involving SAMa.

## POWER UP INITIALIZATION

When Vcc is initially supplied or when refresh is interrupted for more than 8 ms , the device must be initialized.

After Vcc is at specified operating conditions, for $100 \mu \mathrm{~s}$ (minimum), eight $\overline{R A S}$ cycles must be executed to initalize the dynamic memory array. When the device is initialized the DRAMI/O pins (DQs) are in a High-Z state, regardless of the state of $(\overline{\mathrm{TR}}) / \overline{\mathrm{OE}}$. The DRAM array will contain random data.

The SAM portion of the device is completely static and does not require an initialization cycle. Both SAM ports will power-up in the serial input mode (WRITE TRANSFERs) and the SAM I/O pins (SDQs) are in a High-Z state, regardless of the state of $\overline{S E}$ ab. Also, SPLIT TRANSFER and SMI modes are disabled. Both QSF (MT43C4257) outputs are in the High-Z state. Both SAMs, bit mask, color, and DRAM mask registers all contain random data after power-up.

TRUTH TABLE ${ }^{1}$

| CODE | FUNCTION | RAS FALLING EDGE |  |  |  |  |  |  |  |  | CAS FALL | AO-A8 ${ }^{2}$ |  | DQ1- DQ4 ${ }^{3}$ |  | REGISTERS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CAS | $\overline{T R} / \overline{O E}$ | ME/ $\overline{W E}^{0}$ | DSF1 | DSF2 | SEa, SEb | TRM | MKD | STS | DSF1 | RAS | CAS | RAS | $\overline{\text { CAS }}^{4}$ | MASK | COLOR |

DRAM OPERATIONS

| CBR | $\overline{\text { CAS-BEFORE- } \overline{R A S}}$ REFRESH | 0 | $1^{11}$ | $1{ }^{11}$ | X | X | X | X | X | X | X | X | X | X | X | X | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ROR | $\overline{\text { RAS }}$ ONLY REFRESH | 1 | 1 | X | X | X | X | X | X | X | - | ROW | - | X | - | X | X |
| RW | NORMAL DRAM READ OR WRITE | 1 | 1 | 1 | 0 | $0^{11}$ | X | X | X | X | 0 | ROW | COLUMN | X | $\begin{aligned} & \text { VALID } \\ & \text { DATA } \end{aligned}$ | X | X |
| RWNM | NONPERSISTENT (LOAD AND USE) MASKED WRITE TO DRAM | 1 | 1 | 0 | 0 | $0^{11}$ | X | X | X | X | 0 | ROW | COLUMN | WRITE <br> MASK | $\begin{aligned} & \text { VALID } \\ & \text { DATA } \end{aligned}$ | LOAD \& USE | X |
| RWOM | PERSISTENT (USE REGISTER) MASKED WRITE TO DRAM | 1 | 1 | 0 | 1 | $0^{11}$ | X | X | X | X | 0 | ROW | COLUMN | X | $\begin{aligned} & \hline \text { VALID } \\ & \text { DATA } \end{aligned}$ | USE | X |
| BW | BLOCK WRITE TO DRAM (NO DATA MASK) | 1 | 1 | 1 | 0 | $0^{11}$ | X | X | X | X | 1 | ROW | $\begin{aligned} & \hline \text { COLUMN } \\ & \text { (A2 - A8) } \end{aligned}$ | X | $\begin{aligned} & \text { COLUMN } \\ & \text { MASK } \end{aligned}$ | X | USE |
| BWNM | NONPERSISTENT (LOAD \& USE) MASKED BLOCK WRITE TO DRAM | 1 | 1 | 0 | 0 | $0^{11}$ | X | X | X | X | 1 | ROW | $\begin{aligned} & \begin{array}{l} \text { COLUMN } \\ \text { (A2 - A8) } \end{array} \\ & \hline \end{aligned}$ | WRITE MASK | COLUMN MASK | LOAD \& USE | USE |
| BWOM | PERSISTENT (USE MASK REGISTER) MASKED BLOCK WRITE TO DRAM | 1 | 1 | 0 | 1 | $0^{11}$ | X | X | X | X | 1 | ROW | $\begin{aligned} & \hline \text { COLUMN } \\ & \text { (A2 - A8) } \end{aligned}$ | X | COLUMN MASK | USE | USE |

REGISTER OPERATIONS

| LMR | LOAD MASK REGISTER | 1 | 1 | 1 | 1 | $0^{11}$ | X | X | X | X | 0 | $\chi^{5}$ | X | X | WRITE MASK | LOAD | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCR | LOAD COLOR REGISTER | 1 | 1 | 1 | 1 | $0^{11}$ | X | X | X | X | 1 | $\mathrm{X}^{5}$ | X | X | $\begin{gathered} \text { COLOR } \\ \text { DATA } \end{gathered}$ | X | LOAD |

## TRANSFER OPERATIONS

| RT | READ TRANSFER (DRAM-TO-SAM TRANSFER) | 1 | 0 | 1 | 0 | 0 | X | 0 | X | $\begin{aligned} & 0=\text { SAMa } \\ & 1=\text { SAMb } \end{aligned}$ | X | ROW | TAP ${ }^{6}$ | X | X | X | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SRT ${ }^{9}$ | SPLIT READ TRANSFER <br> (SPLIT DRAM-TO-SAM TRANSFER) | 1 | 0 | 1 | 1 | 0 | X | 0 | X | $\begin{aligned} & 0=\text { SAMa } \\ & 1=\text { SAMb } \end{aligned}$ | X | ROW | TAP ${ }^{6}$ | X | X | X | X |
| WT | WRITE TRANSFER (SAM-TO-DRAM TRANSFER) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | X | $\begin{aligned} & 0=\mathrm{SAMa} \\ & 1=\mathrm{SAMb} \end{aligned}$ | X | ROW | TAP ${ }^{6}$ | X | X | X | X |
| PWT | PSEUDO WRITE TRANSFER (SERIAL INPUT MODE ENABLE) | 1 | 0 | 0 | 0 | 0 | 1 | 0 | X | $\begin{aligned} & 0=S A M a \\ & 1=S A M b \end{aligned}$ | X | $\mathrm{X}^{5}$ | TAP ${ }^{6}$ | X | X | X | X |
| SWT ${ }^{9}$ | SPLIT WRITE TRANSFER (SPLIT SAM-TO-DRAM TRANSFER WITH MASK) | 1 | 0 | 0 | 1 | 0 | X | 0 | X | $\begin{aligned} & 0=\text { SAMa } \\ & 1=\text { SAMb } \end{aligned}$ | X | ROW | TAP ${ }^{6}$ | $\begin{gathered} \text { DQ } \\ \text { MASK } \end{gathered}$ | X | LOAD \& USE | X |
| DMWT | DQ MASKED WRITE TRANSFER | 1 | 0 | 0 | 0 | 1 | X | 0 | X | $\begin{aligned} & 0=\text { SAMa } \\ & 1=S A M b \end{aligned}$ | X | ROW | TAP ${ }^{6}$ | $\begin{gathered} \text { DQ } \\ \text { MASK } \end{gathered}$ | X | LOAD \& USE | X |

TRUTH TABLE ${ }^{1}$

| CODE | FUNCTION | RAS FALLING EDGE |  |  |  |  |  |  |  |  | CAS FALL | A0-A8 ${ }^{2}$ |  | DQ1- DQ4 ${ }^{3}$ |  | REGISTERS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CAS | $\overline{\mathrm{TR} / \overline{O E}}$ | $\overline{\mathrm{ME}} / \mathrm{WE}^{10}$ | DSF1 | DSF2 | $\overline{\text { SEa, }}$ SEb | TRM | MKD | STS | DSF1 | $\overline{\text { RAS }}$ | CAS | EAS | CAS $^{4}$ | MASK | COLOR |

BIT MASK REGISTER OPERATIONS

| BMRRT | BMR READ TRANSFER (DRAM $\rightarrow$ BMR TRANSFER) | 1 | 0 | 1 | 0 | 0 | X | 1 | 0/17 | 0 | X | ROW | X | X | X | X | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { BMR- } \\ & \text { IRT } \end{aligned}$ | BMR READ TRANSFER <br> (DRAM $\rightarrow$ INVERT $\rightarrow$ BMR TRANSFER) | 1 | 0 | 1 | 0 | 0 | X | 1 | 0/1 ${ }^{7}$ | 1 | X | ROW | X | X | X | X | X |
| BMRWT | BMR WRITE TRANSFER <br> (BMR $\rightarrow$ DRAM TRANSFER) | 1 | 0 | 0 | 0 | 0 | X | 1 | 0/1 ${ }^{7}$ | 0 | X | ROW | X | $\begin{gathered} \text { DQ } \\ \text { MASK } \end{gathered}$ | X | X | X |
| $\begin{aligned} & \text { BMR- } \\ & \text { IWT } \end{aligned}$ | BMR WRITE TRANSFER <br> (BMR $\rightarrow$ INVERT $\rightarrow$ DRAM TRANSFER) | 1 | 0 | 0 | 0 | 0 | X | 1 | 0/17 | 1 | X | ROW | X | $\begin{gathered} \hline \text { DQ } \\ \text { MASK } \\ \hline \end{gathered}$ | X | X | X |
| $\begin{aligned} & \text { SAM- } \\ & \text { BMR } \\ & \hline \end{aligned}$ | SAM $\rightarrow$ BMR TRANSFER | 1 | 0 | 0 | 1 | 0 | X | 1 | 0/17 | $\begin{aligned} & 0=\text { SAMa } \\ & 1=\text { SAM } \end{aligned}$ | X | $\mathrm{X}^{5}$ | TAP ${ }^{6}$ | X | X | X | X |
| $\begin{aligned} & \text { BMR- } \\ & \text { SAM } \end{aligned}$ | BMR $\rightarrow$ SAM TRANSFER | 1 | 0 | 1 | 1 | 0 | X | 1 | 0/1 ${ }^{7}$ | $\begin{aligned} & \hline 0=\text { SAMa } \\ & 1=\text { SAMb } \end{aligned}$ | X | $\mathrm{X}^{5}$ | TAP ${ }^{6}$ | X | X | X | X |
| $\begin{aligned} & \text { CLR- } \\ & \text { BMR } \\ & \hline \end{aligned}$ | CLEAR BIT MASK REGISTER (SETS BMR TO ALL "0's") | 1 | 0 | 1 | 1 | 1 | X | 0 | 0/1 ${ }^{7}$ | X | X | $\chi^{5}$ | X | X | X | X | X |

BIT MASKED TRANSFER OPERATIONS

| BMRT | BIT MASKED READ TRANSFER (BM DRAM $\rightarrow$ SAM TRANSFER) | 1 | 0 | 1 | 0 | 1 | X | 1 | X | $\begin{aligned} & 0=\text { SAMa } \\ & 1=\text { SAM } \end{aligned}$ | X | ROW | TAP ${ }^{6}$ | X | X | X | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BMSRT $^{9}$ | BIT MASKED SPLIT READ TRANSFER (BM SPLIT DRAM $\rightarrow$ SAM TRANSFER) | 1 | 0 | 1 | 1 | 1 | X | 1 | X | $\begin{aligned} & 0=\text { SAMa } \\ & 1=\text { SAMb } \end{aligned}$ | X | ROW | TAP ${ }^{6}$ | X | X | X | X |
| BMWT | BIT MASKED WRITE TRANSFER (BM SAM $\rightarrow$ DRAM TRANSFER) | 1 | 0 | 0 | 0 | 1 | X | 1 | $\mathrm{X}^{8}$ | $\begin{aligned} & 0=\text { SAM } 2 \\ & 1=\text { SAMb } \end{aligned}$ | X | ROW | TAP ${ }^{6}$ | X | X | X | X |
| $3^{3}$ SSWT $^{9}$ | BIT MASKED SPLIT WRITE TRANSFER (BM SPLIT SAM $\rightarrow$ DRAM TRANSFER) | 1 | 0 | 0 | 1 | 1 | X | 1 | $\mathrm{X}^{8}$ | $\begin{aligned} & 0=\text { SAMa } \\ & 1=\text { SAMb } \end{aligned}$ | X | ROW | TAP ${ }^{6}$ | $\begin{gathered} \hline \text { DQ } \\ \text { MASK } \end{gathered}$ | X | $\begin{gathered} \hline \text { LOAD \& } \\ \text { USE } \\ \hline \end{gathered}$ | X |

NOTE: $\quad$ 1. $0=\operatorname{LOW}\left(\mathrm{V}_{\mathrm{IL}}\right), 1=\operatorname{HIGH}\left(\mathrm{V}_{1 H}\right), \mathrm{X}=$ "don't care", $-=$ "not applicable"
2. These columns show what must be present on the AO-A8 inputs when $\overline{\text { RAS }}$ falls and when $\overline{\mathrm{CAS}}$ falls.
3. These columns show what must be present on the DQ1-DQ4 inputs when $\overline{R A S}$ falls and when $\overline{\mathrm{CAS}}$ falls.
4. On WRITE cycles (except BLOCK WRITE), the input data is latched at the falling edge of $\overline{C A S}$ or $\overline{M E} \overline{W E}$, whichever is later. Similarly, on READ cycles, the output data is enabled on the falling edge of CAS or TR/OE, whichever is later.
5. The ROW that is addressed will be refreshed, but no particular ROW address is required.
6. Tap Address; this is the SAM location that the first SC cycle will access. For SPLIT TRANSFERS the half receiving the transfer is determined by the MSB of the internal address counter. The SAM half not currently being accessed will be the half receiving the transfer. Column address A8 is a "don't care" for SPLIT TRANSFERS.
7. The Serial Mask Input mode (SMI) is enabled (" 1 ") or disabled (" 0 ") when the BMR is accessed (see BMR OPERATIONS). If SMI is enabled (MKD = " 1 "), mask data is serially clocked into the BMR with SCb and the BMR is automatically cleared after a BIT MASKED WRITE or BIT MASKED SPLIT WRITE TRANSFER cycle from SAMb. For BIT MASKED READ TRANSFERs to any SAM and BIT MASKED WRITE TRANSFERs from SAMa, the BMR is not cleared automatically.
8. If the SMI mode is enabled, mask data is clocked into the BMR with SCb. A HIGH will allow data from the SAM address location to be written to the DRAM, a LOW will mask data to the DRAM during a BIT MASKED WRITE or BIT MASKED SPLIT WRITE TRANSFER.
9. SPLIT TRANSFERs do not change SAM I/O direction.
10. SAM I/O direction is a function of the state of $\overline{M E} / \overline{W E}$ at $\overline{R A S}$ time. If $\overline{M E} / \overline{W E}$ is LOW, then the selected SAM is an input; if $\overline{M E} / \overline{W E}$ is HIGH then the SAM is an output.
11. The MT43C4257/8 operates properly if this state is " X ", but to allow for future functional enhancements it is recommended that they are driven as shown in the Truth Table.

## ABSOLUTE MAXIMUM RATINGS*

| Voltage on Vcc supply relative to Vss ........ -1.0 V to +7.0 V |  |
| :---: | :---: |
| Operating Temperature, Ta (Ambient) .......... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |  |
| Storage Temperature (Ceramic) .... | ...... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Storage Temperature (Plastic) | .. $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| Power Dissipati |  |
| Short Circuit Output | m |

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## RECOMMENDED DC OPERATING CONDITIONS <br> $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right.$ )

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.4 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -1.0 | 0.8 | V | 1 |

## DC ELECTRICAL CHARACTERISTICS

(Notes 3, 4, 5) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right.$; $\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$ )

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS |
| :--- | :---: | :---: | :---: | :---: | NOTES $\mid$

## CAPACITANCE

$\left(T_{A}=25^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}\right)$

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A8, TRM, MKD | $\mathrm{Cl}_{11}$ |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{ME}} \overline{\mathrm{WE}}, \overline{\mathrm{TR}} / \overline{\mathrm{OE}}, \mathrm{SCa}, \mathrm{b}, \overline{\mathrm{SE}}, \mathrm{b}, \mathrm{DSF} 1,2, \mathrm{STS}$ SSFa,b | $\mathrm{Cl}_{12}$ |  | 7 | pF | 2 |
| Input/Output Capacitance: DQ, SDQa,b | C/Io |  | 9 | pF | 2 |
| Output Capacitance: QSFa,b | Co |  | 9 | pF | 2 |

## CURRENT DRAIN, SAMa and SAMb IN STANDBY

| $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$ |  | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -8 | -10 | -12 | UNITS | NOTES |
| OPERATING CURRENT <br> ( $\overline{R A S}$ and $\overline{\mathrm{CAS}}=$ Cycling; ${ }^{\text {R }} \mathrm{RC}={ }^{\mathrm{t}} \mathrm{RC}$ (MIN)) | lcc1 | 100 | 90 | 80 | mA | 3, 4 |
| OPERATING CURRENT: PAGE MODE ( $\overline{\text { RAS }}=\mathrm{V}_{\mathrm{LL}} \overline{\mathrm{CAS}}=$ Cycling; ${ }^{\text {PPC }}={ }^{\text {tPC }}(\mathrm{MIN})$ ) | Icc2 | 90 | 80 | 70 | mA | 3, 4 |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{H}}$, after $8 \overline{\mathrm{RAS}}$ cycles min) | Icc3 | 7 | 7 | 7 | mA |  |
| STANDBY CURRENT: CMOS INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V}$, <br> after 8 RAS cycles min ). All other inputs at $\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{Vss}+0.2 \mathrm{~V}$ | Icc4 | 1 | 1 | 1 | mA |  |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY ( $\overline{\mathrm{RAS}}=$ Cycling; $\overline{\mathrm{CAS}}=\mathrm{V} \mathrm{IH}$ ) | Icc5 | 100 | 90 | 80 | mA | 3 |
| REFRESH CURRENT: $\overline{\text { CAS }}$-BEFORE-RAS ( $\overline{\text { RAS }}$ and $\overline{\text { CAS }}=$ Cycling) | Icc6 | 90 | 80 | 70 | mA | 3,5 |
| TRANSFER CURRENT: SAM/DRAM DATA TRANSFER | Icc7 | 110 | 100 | 90 | mA | 3 |

CURRENT DRAIN, SAMa and SAMb ACTIVE

| (Notes 3, 4) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$ |  | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION | SYMBOL | -8 | -10 | -12 | UNITS | NOTES |
| OPERATING CURRENT <br> ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling; ${ }^{\mathrm{t} R C}={ }^{\text {t }} \mathrm{RC}$ (MIN)) | Icc8 | 180 | 170 | 160 | mA |  |
| OPERATING CURRENT: PAGE MODE ( $\overline{\text { RAS }}=\mathrm{V}_{\mathrm{IL}} \overline{\mathrm{CAS}}=$ Cycling; ${ }^{\text {tPC }}={ }^{\text {tPC }}(\mathrm{MIN})$ ) | Icc9 | 160 | 150 | 140 | mA |  |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$, after $8 \overline{\mathrm{RAS}}$ cycles min ) | Icc10 | 85 | 85 | 85 | mA |  |
| STANDBY CURRENT: CMOS INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V}$, <br> after 8 RAS cycles min ). All other inputs at $\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{Vss}+0.2 \mathrm{~V}$ | Icc11 | 75 | 75 | 75 | mA |  |
| REFRESH CURRENT: $\overline{\text { RAS-ONLY }}$ ( $\overline{\text { RAS }}=$ Cycling; $\overline{\text { CAS }}=\mathrm{V}^{\prime}$ ) | Icc12 | 180 | 170 | 160 | mA |  |
| REFRESH CURRENT: $\overline{\mathrm{CAS}}$-BEFORE-RAS ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling) | IcC13 | 170 | 160 | 150 | mA | 5 |
| TRANSFER CURRENT: SAM/DRAM DATA TRANSFER | IcC14 | 180 | 170 | 160 | mA |  |

## DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| Random READ or WRITE cycle time | ${ }^{\text {t }} \mathrm{RC}$ | 150 |  | 180 |  | 210 |  | ns |  |
| READ-MODIFY-WRITE cycle time | ${ }^{\text {t }}$ RWC | 205 |  | 235 |  | 280 |  | ns |  |
| FAST PAGE MODE READ or WRITE cycle time | ${ }^{\text {t }} \mathrm{PC}$ | 45 |  | 55 |  | 65 |  | ns |  |
| FAST-PAGE-MODE READ-MODIFYWRITE cycle time | ${ }^{\text {t PRWC }}$ | 100 |  | 110 |  | 140 |  | ns |  |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ RAC |  | 80 |  | 100 |  | 120 | ns | 14, 17 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ CAC |  | 20 |  | 25 |  | 30 | ns | 15 |
| Access time from ( $\overline{\mathrm{TR}}$ )/OE | ${ }^{\text {t }} \mathrm{OE}$ |  | 20 |  | 25 |  | 30 | ns |  |
| Access time from column address | ${ }^{\text {t }}$ AA |  | 40 |  | 50 |  | 60 | ns |  |
| Access time from $\overline{\mathrm{CAS}}$ precharge | ${ }^{\text {t }} \mathrm{CPA}$ |  | 45 |  | 55 |  | 65 | ns |  |
| $\overline{\text { RAS }}$ pulse width | ${ }^{\text {t RAS }}$ | 80 | 10,000 | 100 | 10,000 | 120 | 10,000 | ns |  |
| $\overline{\text { RAS }}$ pulse width (FAST PAGE MODE) | ${ }^{\text {t }}$ RASP | 80 | 100,000 | 100 | 100,000 | 120 | 100,000 | ns |  |
| $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }} \mathrm{RSH}$ | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }}$ RP | 60 |  | 70 |  | 80 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t }}$ CAS | 20 | 10,000 | 25 | 10,000 | 30 | 10,000 | ns |  |
| CAS hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 80 |  | 100 |  | 120 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 15 |  | 15 |  | 20 |  | ns | 16 |
| CAS precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{CP}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\mathrm{CAS}}$ delay time | ${ }^{\text {t }}$ RCD | 20 | 60 | 20 | 75 | 25 | 90 | ns | 17 |
| $\overline{\text { CAS }}$ to $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 10 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t }} \mathrm{RAH}$ | 12 |  | 15 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to column address delay time | ${ }^{\text {t } R A D ~}$ | 17 | 40 | 20 | 50 | 25 | 60 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{t} \mathrm{CAH}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Column address hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }} \mathrm{AR}$ | 60 |  | 70 |  | 85 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {t }} \mathrm{RAL}$ | 40 |  | 50 |  | 60 |  | ns |  |
| Read command setup time | ${ }^{\text {t }}$ RCS | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to CAS) | ${ }^{\text {t }} \mathrm{RCH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to RAS) | ${ }^{\text {t }} \mathrm{RRH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t }}$ CLZ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {t }}$ OFF | 0 | 20 | 0 | 20 | 0 | 30 | ns | 20 |
| Output disable | ${ }^{\text {t }} \mathrm{OD}$ | 0 | 20 | 0 | 20 | 0 | 30 | ns |  |
| Output disable hold time from start of write | ${ }^{\text {t }}$ OEH |  | 15 |  | 15 |  | 20 | ns |  |
| Output enable to $\overline{\mathrm{RAS}}$ delay | ${ }^{\text {t }}$ ORD |  | 0 |  | 0 |  | 0 | ns |  |

DRAM TIMING PARAMETERS (Continued)

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right.$ )

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| Write command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns | 21 |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 20 |  | 25 |  | ns |  |
| Write command hold time (referenced to RAS) | ${ }^{\text {t }}$ WCR | 60 |  | 75 |  | 85 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t }}$ RWL | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }} \mathrm{CWL}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }}$ DH | 20 |  | 20 |  | 25 |  | ns | 22 |
| Data-in hold time (referenced to RAS) | ${ }^{\text {t }}$ DHR | 60 |  | 70 |  | 90 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{\text { WE }}$ delay time | ${ }^{\text {t }}$ RWD | 110 |  | 130 |  | 160 |  | ns | 21 |
| Column address to $\overline{W E}$ delay time | ${ }^{\text {t }} \mathrm{AWD}$ | 70 |  | 80 |  | 100 |  | ns | 21 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | 50 |  | 55 |  | 70 |  | ns | 21 |
| Transition time (rise or fall) | ${ }^{\text {t }}$ T | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9,10 |
| Refresh period ( 512 cycles) | ${ }^{\text {t }}$ REF |  | 8 |  | 8 |  | 8 | ms |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ RPC | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\text { CAS }}$ setup time (CAS-BEFORE- $\overline{R A S}$ refresh) | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| $\overline{\text { CAS }}$ hold time (CAS-BEFORE-RAS refresh) | ${ }^{\text {t }} \mathrm{CHR}$ | 30 |  | 30 |  | 30 |  | ns | 5 |
| $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}$ to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ WSR | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}$ to $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {t }}$ RWH | 12 |  | 15 |  | 15 |  | ns |  |
| Mask data to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }} \mathrm{MS}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Mask data to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }} \mathrm{MH}$ | 12 |  | 15 |  | 15 |  | ns |  |

## TRANSFER AND MODE CONTROL TIMING PARAMETERS

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| TRANSFER command to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ TLS | 0 |  | 0 |  | 0 |  | ns | 25 |
| TRANSFER command to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ tLH | 12 | 10,000 | 15 | 10,000 | 15 | 10,000 | ns | 25 |
| TRANSFER command to $\overline{\text { RAS }}$ hold time (REAL-TIME READ TRANSFER only) | ${ }^{\text {t }}$ RTH | 70 | 10,000 | 80 | 10,000 | 90 | 10,000 | ns | 25 |
| TRANSFER command to $\overline{\text { CAS }}$ hold time (REAL-TIME READ TRANSFER only) | ${ }^{\text {t }} \mathrm{CTH}$ | 20 |  | 25 |  | 30 |  | ns | 25 |
| TRANSFER command to column address hold time (For REAL-TIME READ TRANSFER only) | ${ }^{\text {t }}$ ATH | 25 |  | 30 |  | 35 |  | ns | 25 |
| TRANSFER command to SC lead time | ${ }^{\text {t }}$ TSL | 5 |  | 5 |  | 5 |  | ns | 25 |
| TRANSFER command to $\overline{\text { RAS }}$ HIGH lead time | ${ }^{\text {t }}$ TRL | 0 |  | 0 |  | 0 |  | ns | 25 |
| TRANSFER command to $\overline{\text { RAS }}$ delay time | ${ }^{\text {t }}$ TRD | 15 |  | 15 |  | 15 |  | ns | 25 |
| TRANSFER command to $\overline{\text { CAS }}$ HIGH lead time | ${ }^{\text {t }}$ TCL | 0 |  | 0 |  | 0 |  | ns | 25 |
| TRANSFER command to $\overline{\text { CAS }}$ delay time | ${ }^{\text {t }}$ TCD | 15 |  | 15 |  | 15 |  | ns | 25 |
| First SC edge to TRANSFER command delay time | ${ }^{\text {t }}$ TSD | 10 |  | 10 |  | 10 |  | ns | 25 |
| $\overline{\text { RAS }}$ to first SC edge delay time | ${ }^{\text {t }}$ RSD | 80 |  | 95 |  | 105 |  | ns |  |
| $\overline{\text { CAS }}$ to first SC edge delay time | ${ }^{\text {t }}$ CSD | 25 |  | 30 |  | 35 |  | ns |  |
| Column address to first SC edge delay time | ${ }^{\text {t }}$ ASD | 50 |  | 60 |  | 65 |  | ns |  |
| Serial output buffer turn-off delay from $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ SDZ | 10 | 35 | 10 | 40 | 10 | 45 | ns |  |
| SC to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ SRS | 30 |  | 30 |  | 40 |  | ns |  |
| $\overline{\text { RAS }}$ to SC delay time | ${ }^{\text {t }}$ SRD | 20 |  | 25 |  | 30 |  | ns |  |
| Serial data input to $\overline{\text { SE }}$ delay time | ${ }^{\text {t }}$ SZE | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\mathrm{RAS}}$ to SD buffer turn on time | ${ }^{\text {t }}$ SRO | 10 |  | 15 |  | 15 |  | ns |  |
| Serial data input delay from $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ SDD | 45 |  | 50 |  | 55 |  | ns |  |
| Serial data input to $\overline{\text { RAS }}$ delay time | ${ }^{\text {t }}$ SZS | 0 |  | 0 |  | 0 |  | ns |  |
| Serial-Input-Mode enable (SE) to RAS setup time | ${ }^{\text {t }}$ ESR | 0 |  | 0 |  | 0 |  | ns |  |
| Serial-Input-Mode enable ( $\overline{\mathrm{SE}}$ ) to $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {t REH }}$ | 12 |  | 15 |  | 15 |  | ns |  |
| NONTRANSFER command to RAS setup time | ${ }^{t} Y S$ | 0 |  | 0 |  | 0 |  | ns | 26 |
| NONTRANSFER command to RAS hold time | ${ }^{t} \mathrm{YH}$ | 12 |  | 15 |  | 15 |  | ns | 26 |
| DSF, TRM, STS, MKD to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ FSR | 0 |  | 0 |  | 0 |  | ns |  |
| DSF, TRM, STS, MKD to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ RFH | 12 |  | 15 |  | 15 |  | ns |  |
| DSF to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ FHR | 60 |  | 65 |  | 70 |  | ns |  |
| DSF to $\overline{\text { CAS }}$ setup time | ${ }^{\text {t }}$ FSC | 0 |  | 0 |  | 0 |  | ns |  |
| DSF to CAS hold time | ${ }^{\text {t }} \mathrm{CFH}$ | 15 |  | 20 |  | 20 |  | ns |  |
| SC to QSF delay time | ${ }^{\text {t }}$ SQD |  | 35 |  | 40 |  | 45 | ns |  |
| $\overline{\text { RAS }}$ to QSF delay time | ${ }^{\text {t }}$ RQD |  | 65 |  | 85 |  | 105 | ns |  |
| $\overline{\text { CAS }}$ to QSF delay time | ${ }^{\text {t }}$ CQD |  | 35 |  | 40 |  | 45 | ns |  |
| $\overline{\mathrm{TR} / \overline{\mathrm{OE}} \text { to QSF delay time }}$ | ${ }^{\text {t }}$ TQD |  | 25 |  | 30 |  | 35 | ns |  |
| SPLIT TRANSFER setup time | ${ }^{\text {t }}$ STS | 30 |  | 35 |  | 40 |  | ns |  |
| SPLIT TRANSFER hold time | ${ }^{\text {t STH }}$ | 30 |  | 35 |  | 40 |  | ns |  |
| Split SAM setup time to $\overline{\text { RAS }}$ from last SC | ${ }^{\text {t }}$ SCR | 30 |  | 35 |  | 40 |  | ns | 29 |
| Split SAM hold time to $\overline{\text { RAS }}$ from first SC | ${ }^{\text {t }}$ RSC | 30 |  | 35 |  | 40 |  | ns | 29 |

## SAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes 6, 7, 8, 9, 10) ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| Serial clock cycle time | ${ }^{\text {t }}$ SC | 25 |  | 30 |  | 35 |  | ns |  |
| Access time from SC | ${ }^{\text {t }}$ SAC |  | 25 |  | 30 |  | 35 | ns | 24 |
| SC precharge time (SC LOW time) | ${ }^{\text {t }}$ SP | 10 |  | 10 |  | 12 |  | ns |  |
| SC pulse width (SC HIGH time) | ${ }^{\text {t }}$ SAS | 5 |  | 10 |  | 12 |  | ns |  |
| Access time from $\overline{\mathrm{SE}}$ | ${ }^{\text {t }}$ SEA |  | 15 |  | 20 |  | 30 | ns | 24 |
| $\overline{\text { SE }}$ precharge time | ${ }^{\text {t }}$ SEP | 10 |  | 15 |  | 15 |  | ns |  |
| $\overline{\text { SE }}$ pulse width | ${ }^{\text {t }}$ SE | 10 |  | 15 |  | 15 |  | ns |  |
| Serial data out hold time after SC HIGH | ${ }^{\text {t }} \mathrm{SOH}$ | 5 |  | 5 |  | 5 |  | ns | 24 |
| Serial output buffer turn off delay from $\overline{\text { SE }}$ | ${ }^{\text {t }}$ SEZ | 0 | 12 | 0 | 15 | 0 | 25 | ns | 24 |
| Serial data in setup time | ${ }^{\text {t }}$ SDS | 0 |  | 0 |  | 0 |  | ns | 24 |
| Serial data in hold time | ${ }^{\text {t }}$ SDH | 10 |  | 15 |  | 20 |  | ns | 24 |
| SERIAL INPUT (Write) Enable setup time | ${ }^{\text {t }}$ SWS | 0 |  | 0 |  | 0 |  | ns |  |
| SERIAL INPUT (Write) Enable hold time | ${ }^{\text {t }}$ SWH | 15 |  | 15 |  | 25 |  | ns |  |
| SERIAL INPUT (Write) Disable setup time | ${ }^{\text {t }}$ SWIS | 0 |  | 0 |  | 0 |  | ns |  |
| SERIAL INPUT (Write) Disable hold time | ${ }^{\text {t }}$ SWIH | 15 |  | 15 |  | 25 |  | ns |  |
| SSF to SC setup time | ${ }^{\text {t }}$ SFS | 0 |  | 0 |  | 0 |  | ns | 29 |
| SSF to SC hold time | ${ }^{\text {t }}$ SFH | 15 |  | 20 |  | 20 |  | ns | 29 |
| SSF LOW to SC HIGH delay | ${ }^{\text {t }}$ SFD | 0 |  | 0 |  | 0 |  | ns | 29 |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $\mathrm{C}=\underline{\mathrm{I} \Delta \mathrm{t}}$ with $\Delta \mathrm{V}=3 \mathrm{~V}$ and $\mathrm{Vcc}=$ 5 V . $\Delta \mathrm{V}$
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the outputs open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ ) is assured.
7. An initial pause of $100 \mu \mathrm{~s}$ is required after power-up followed by any $8 \overline{\mathrm{RAS}}$ cycles before proper device operation is assured. The $8 \overline{\mathrm{RAS}}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{t} T=5 \mathrm{~ns}$.
9. $\mathrm{V}_{\mathrm{IH}}$ (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and $V_{\mathrm{IH}}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $V_{\text {IH }}$ and $\mathrm{V}_{\text {IL }}$ (or between $\mathrm{V}_{\text {IL }}$ and $\mathrm{V}_{\mathrm{IH}}$ ) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\text {IH }}$, DRAM data outputs (DQ1-DQ4) is high impedance.
12. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{I}}$, DRAM data outputs $(\mathrm{DQ1}-\mathrm{DQ4})$ may contain data from the last valid READ cycle.
13. DRAM output timing measured with a load equivalent to 2 TTL gates and 100 pF . Output reference levels: $\mathrm{VOH}=2.0 \mathrm{~V} ; \mathrm{VoL}=0.8 \mathrm{~V}$.
14. Assumes that ${ }^{\mathrm{t}} \mathrm{RCD}<{ }^{\mathrm{t}} \mathrm{RCD}$ (MAX). If ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{\mathrm{t}} \mathrm{RCD}$ exceeds the value shown.
15. Assumes that ${ }^{t} R C D \geq{ }^{t} R C D$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}, \mathrm{DQ}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\text { CAS }}$ must be pulsed HIGH for ${ }^{\text {t }} \mathrm{CPN}$.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t}$ RAC (MAX) can be met. ${ }^{t}$ RCD (MAX) is specified as a reference point only; if ${ }^{\mathrm{t}} \mathrm{RCD}$ is greater than the speci fied ${ }^{t}$ RCD (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{CAC}$.
18. Operation within the ${ }^{t} R A D$ (MAX) limit ensures that ${ }^{t} R C D(M A X)$ can be met. ${ }^{t} R A D(M A X)$ is specified as
a reference point only; if ${ }^{\mathrm{t}} \mathrm{RAD}$ is greater than the specified ${ }^{\text {t }}$ RAD (MAX) limit, then access time is controlled exclusively by ${ }^{\text {t }} \mathrm{AA}$.
19. Either ${ }^{t}$ RCH or ${ }^{t}$ RRH must be satisfied for a READ cycle.
20. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voн or VoL.
21. ${ }^{t} \mathrm{WCS},{ }^{\mathrm{t}} \mathrm{RWD},{ }^{\mathrm{t}} \mathrm{AWD}$ and ${ }^{\mathrm{t}} \mathrm{CWD}$ are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If ${ }^{\text {t}} \mathrm{WCS} \geq$ ${ }^{t}$ WCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{T R} / \overline{\mathrm{OE}}$. If ${ }^{\text {t }} \mathrm{WCS} \leq$ ${ }^{t}$ WCS (MIN), the cycle is a LATE-WRITE and $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ must control the output buffers during the write to avoid data contention. If ${ }^{\mathrm{t}} \mathrm{RWD} \geq^{\mathrm{t}} \mathrm{RWD}$ (MIN), ${ }^{\mathrm{t}} \mathrm{AWD} \geq^{\mathrm{t}} \mathrm{AWD}$ (MIN) and ${ }^{\mathrm{t}} \mathrm{CWD} \geq^{\mathrm{t}} \mathrm{CWD}$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of the output buffers (at access time and until CAS goes back to $\mathrm{V}_{\mathrm{IH}}$ ) is indeterminate but the WRITE will be valid, if ${ }^{\text {t }}$ ) in and ${ }^{\text {t }}$ OEH are met. See the LATE-WRITE AC Timing diagram.
22. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in early WRITE cycles and ME/ $\overline{\text { WE leading edge in }}$ late WRITE or READ-WRITE cycles.
23. During a READ cycle, if $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ is LOW then taken HIGH, DQ goes open. The DQs will go open with $\overline{\mathrm{O}} \overline{\mathrm{E}}$ or $\overline{\mathrm{CAS}}$, whichever goes HIGH first.
24. SAM output timing is measured with a load equivalent to 2 TTL gates and 50 pF . Output reference levels: $\mathrm{VOH}=2.0 \mathrm{~V}$; VoL $=0.8 \mathrm{~V}$.
25. TRANSFER command means that $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ is LOW when RAS goes LOW.
26. NONTRANSFER command means that $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ is HIGH when $\overline{\text { RAS }}$ goes LOW.
27. LATE-WRITE and READ-MODIFY-WRITE cycles must have ${ }^{\text {to }}$ OD and ${ }^{\text {tOEH }}$ met ( $\overline{\mathrm{OE}}$ HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if CAS remains LOW and $\overline{\mathrm{OE}}$ is taken LOW after ${ }^{\text {t }} \mathrm{OEH}$ is met. If $\overline{\mathrm{CAS}}$ goes HIGH prior to $\overline{\mathrm{OE}}$ going back LOW, the DQs will remain open.
28. Applies to the MT43C4257 only.
29. Applies to the MT43C4258 only.

## DRAM READ CYCLE



DON'T CARE
UNDEFINED

DRAM FAST-PAGE-MODE READ CYCLE


## WRITE CYCLE FUNCTION TABLE ${ }^{1}$

| LOGIC STATES ${ }^{2}$ |  |  |  |  |  | FUNCTION | CODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RAS Falling Edge |  |  | CAS Falling Edge |  |  |  |  |
| $\frac{\mathbf{A}}{\overline{M E} \overline{\mathbf{W E}}}$ | $\begin{gathered} \mathrm{B} \\ \mathrm{DSF} 1 \end{gathered}$ | $\begin{gathered} C \\ D Q \text { (Input) } \end{gathered}$ | $\frac{\mathrm{D}}{\mathrm{ME} / \mathbf{W E}}$ | $\underset{\mathrm{DSF}}{\mathrm{E}}$ | $\begin{gathered} \text { F } \\ \mathbf{D Q} \text { (Input) } \end{gathered}$ |  |  |
| 1 | 0 | X | 0/15 | 0 | DRAM | Normal DRAM WRITE | RW |
| 0 | 0 | Write Mask | 0/15 | 0 | DRAM <br> (Masked) | NONPERSISTENT (Load and Use) MASKED WRITE to DRAM | RWNM |
| 0 | 1 | X | 0/15 | 0 | DRAM <br> (Masked) | PERSISTENT (Use Register) MASKED WRITE to DRAM | RWOM |
| 1 | 0 | X | $\mathrm{X}^{3}$ | 1 | Column Mask | BLOCK WRITE to DRAM <br> (No Data Mask) | BW |
| 0 | 0 | Write Mask | $\mathrm{X}^{3}$ | 1 | Column Mask | NONPERSISTENT (Load and Use) MASKED BLOCK WRITE to DRAM | BWNM |
| 0 | 1 | X | $\mathrm{X}^{3}$ | 1 | Column Mask | PERSISTENT (Use Register) MASKED BLOCK WRITE to DRAM | BWOM |
| 1 | 1 | X | $\mathrm{X}^{4}$ | 0 | Write Mask | LOAD MASK REGISTER | LMR |
| 1 | 1 | X | $\mathrm{X}^{4}$ | 1 | Color Data | LOAD COLOR REGISTER | LCR |

NOTE: 1. Refer to this function table to determine the logic states of " $A$ ", " $B$ ", " $C$ ", " $D$ ", " $E$ " and " $F$ " for the WRITE cycle timing diagrams on the following pages.
2. TRM, MKD and STS are "don't care" for all WRITE cycles.
3. $\overline{W E}$ is a "don't care" for BLOCK WRITE cycles. It occurs on the falling edge of CAS.
4. Register load cycles can be either EARLY or LATE-WRITE cycles.
5. If $\overline{M E} \overline{W E}$ is LOW, an EARLY-WRITE is performed; if it is HIGH, a LATE-WRITE is performed if $\overline{M E} \overline{W E}$ falls after $\overline{\text { CAS }}$

## DRAM EARLY-WRITE CYCLE



V/Z dont care
undefined

NOTE: 1. The logic states of " $A$ ", " $B$ ", " $C$ ", " $E$ ", and " $F$ " determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM LATE-WRITE CYCLE 1,2


NOTE: 1. The logic states of " $A$ ", " $B$ ", " $C$ ", " $E$ ", and " $F$ " determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.
2. LATE-WRITE cycles are not valid for BLOCK WRITEs. ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}=$ "don't care" at the falling edge of $\overline{\mathrm{CAS}}$.

DRAM READ-WRITE CYCLE ${ }^{1}$
(READ-MODIFY-WRITE CYCLE)


NOTE: 1. The logic states of " $A$ ", " $B$ ", " $C$ ", and " $F$ " determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE ${ }^{1,2}$


NOTE: 1. READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST PAGE MODE.
2. The logic states of "A", "B", "C", "D", "E", and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM FAST-PAGE-MODE READ-WRITE CYCLE (READ-MODIFY-WRITE or LATE-WRITE CYCLES)


NOTE: 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST PAGE MODE. Use the Write Function Table to determine the proper DSF1 state for the desired WRITE operation.
2. The logic states of " $A$ ", " $B$ ", " $C$ ", and " $F$ " determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM RAS-ONLY REFRESH CYCLE (ADDR $=\mathrm{AO}-\mathrm{A} 8$ )


CAS-BEFORE-RAS REFRESH CYCLE


0 ZD dont care
UNDEFINED
NOTE: 1. The MT43C4257/8 operates with this state as "don't care", but to allow for future functional enhancements, it is recommended that they be driven as illustrated for system upgradability.

DRAM HIDDEN-REFRESH CYCLE


DON'T CARE
UNDEFINED

NOTE: 1. A HIDDEN REFRESH may also be performed after a WRITE or TRANSFER cycle. In the WRITE case, $\overline{\mathrm{ME} /}$ $\overline{W E}=\mathrm{LOW}$ (when $\overline{\mathrm{CAS}}$ goes LOW) and $\overline{T R} / \overline{\mathrm{OE}}=\mathrm{HIGH}$. In the TRANSFER case, $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}=\mathrm{LOW}$ (when $\overline{R A S}$ goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of $\overline{T R} / \overline{O E}$.

## DRAM/BMR TRANSFER CYCLE FUNCTION TABLE

| LOGIC STATES |  |  |  |  |  |  | FUNCTION | CODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RAS Falling Edge |  |  |  |  |  |  |  |  |
| A ME/VE | $\begin{gathered} \mathrm{B} \\ \mathrm{DSF} 1 \end{gathered}$ | $\begin{gathered} \mathrm{C} \\ \mathrm{DSF} 2 \end{gathered}$ | $\begin{gathered} \mathrm{D} \\ \text { TRM } \end{gathered}$ | $\begin{gathered} \mathrm{E} \\ \text { STS } \end{gathered}$ | F MKD | $\begin{gathered} G \\ D Q \text { (input) } \end{gathered}$ |  |  |
| 1 | 0 | 0 | 1 | 0 | X | X | BMR READ TRANSFER (DRAM $\rightarrow$ BMR TRANSFER) | BMR-RT |
| 1 | 0 | 0 | 1 | 1 | X | X | BMR READ TRANSFER (DRAM $\rightarrow$ invert $\rightarrow$ BMR TRANSFER) | BMR-IRT |
| 0 | 0 | 0 | 1 | 0 | X ${ }^{1}$ | MASK | BMR WRITE TRANSFER (BMR $\rightarrow$ DRAM TRANSFER) | BMR-WT |
| 0 | 0 | 0 | 1 | 1 | ${ }^{1}$ | MASK | BMR WRITE TRANSFER (BMR $\rightarrow$ invert $\rightarrow$ DRAM TRANSFER) | BMR-IWT |
| 1 | 1 | 1 | 0 | X | X ${ }^{1}$ | X | CLEAR BMR (CLR-BMR) | CLR- BMR |

## DRAM/BMR TRANSFERS



ZTZ Dont care
UNDEFINED

NOTE: 1. Serial Mask Input mode is enabled if MKD = HIGH; disabled if MKD = LOW.
2. It is not necessary to drop CAS during a DRAM/BMR TRANSFER.

READ TRANSFER CYCLE FUNCTION TABLE ${ }^{1}$

| LOGIC STATES ${ }^{2}$ |  |  |  |  | FUNCTION | CODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RAS Falling Edge |  |  |  |  |  |  |
| $\begin{gathered} \mathbf{A} \\ \mathbf{D S F 1} \end{gathered}$ | $\begin{gathered} \mathrm{B} \\ \mathrm{DSF} 2 \end{gathered}$ | $\begin{gathered} \text { C } \\ \text { TRM } \end{gathered}$ | $\begin{gathered} \text { D } \\ \text { STS } \end{gathered}$ | $\begin{gathered} \mathrm{E} \\ \text { MKD } \end{gathered}$ |  |  |
| 0 | 0 | 0 | $0 / 1^{2}$ | X | READ TRANSFER (DRAM $\rightarrow$ SAM) | RW |
| 1 | 0 | 0 | $0 / 1^{2}$ | X | SPLIT READ TRANSFER (DRAM $\rightarrow$ SAM) | SRT |
| 0 | 1 | 1 | $0 / 1^{2}$ | X | BIT MASKED READ TRANSFER | BMRT |
| 1 | 1 | 1 | $0 / 1^{2}$ | X | BIT MASKED SPLIT READ TRANSFER | BMSRT |
| 1 | 0 | 1 | $0 / 1^{2}$ | $0 / 1^{3}$ | BMR $\rightarrow$ SAM TRANSFER | BMR-SAM |

NOTE: 1. Refer to this function table to determine the logic states of " $A$ ", " $B$ ", " $C$ ", " $D$ " and " $E$ " for READ TRANSFER cycle timing diagrams on the following pages.
2. The state of STS at the falling edge of $\overline{\text { RAS }}$ determines the SAM involved in the transfer. When STS = LOW the transfer is to SAMa; when STS = HIGH the transfer is to SAMb.
3. Serial Mask Input mode is enabled if MKD $=$ HIGH; disabled if MKD $=$ LOW.

## READ TRANSFER ${ }^{1,4}$ <br> (DRAM-TO-SAM TRANSFER)

(When part was previously in the SERIAL INPUT mode)


0 ZD dont care
NOTE: 1. QSF = "OPEN"; SSF = "Don't Care"
undefined
2. $\overline{\mathrm{CAS}}$ is used to load the Tap address. If $\overline{\mathrm{CAS}}$ does not fall, the last Tap address loaded for the addressed SAM will be reused.
3. There must be no rising edges on the SC input during this time period.
4. The logic states of "A", "B", " $C$ ", and " $D$ " determine the type of TRANSFER operation performed. See the Read Transfer Cycle Function Table.
5. QSF $=0$ when the Lower SAM (bits $0-255$ ) is being accessed. QSF $=1$ when the Upper SAM (bits 256-511) is being accessed.

```
REAL-TIME READ TRANSFER \({ }^{1,4}\) (DRAM-TO-SAM TRANSFER) (When part was previously in the SERIAL OUTPUT mode)
```



ITA dont care
NOTE: 1. $\mathrm{QSF}=$ "OPEN"; $S S F=$ "Don't Care"
2. $\overline{\mathrm{CAS}}$ is used to load the Tap address. If $\overline{\mathrm{CAS}}$ does not fall, the last Tap address loaded for the addressed
3. The $\overline{S E}$ pulse is shown to illustrate the serial output enable and disable timing. It is not required.
4. The logic states of " $A$ ", " $B$ ", " $C$ ", and " $D$ " determine the type of TRANSFER operation performed. See the Read Transfer Cycle Function Table.
QSF $=0$ when the Lower SAM (bits $0-255$ ) is being accessed.
QSF $=1$ when the Upper SAM (bits 256-511) is being accessed.

## SPLIT READ TRANSFER ${ }^{3}$ (SPLIT DRAM-TO-SAM TRANSFER)



ZZd dont care
NOTE: 1. $\overline{\mathrm{CAS}}$ is used to load the Tap address. If $\overline{\mathrm{CAS}}$ does not fall, the last Tap address loaded for the addressed SAM will be reused for the idle half.
2. $\mathrm{QSF}=0$ when the Lower SAM (bits $0-255$ ) is being accessed.

QSF $=1$ when the Upper SAM (bits 256-511) is being accessed.
3. The logic states of " $A$ ", " $B$ ", " $C$ ", and " $D$ " determine the type of TRANSFER operation performed. See the Read Transfer Cycle Function Table.

WRITE TRANSFER CYCLE FUNCTION TABLE ${ }^{1}$

| LOGIC STATES |  |  |  |  |  |  |  | FUNCTION | CODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RAS Falling Edge |  |  |  |  |  |  | SC |  |  |
| $\begin{gathered} \mathrm{A} \\ \mathrm{DSF} \end{gathered}$ | $\begin{gathered} \mathrm{B} \\ \mathrm{DSF} 2 \end{gathered}$ | $\begin{gathered} \mathrm{C} \\ \mathrm{DQ} \end{gathered}$ | $\begin{gathered} \mathrm{D} \\ \text { TRM } \end{gathered}$ | $\begin{gathered} \mathrm{E} \\ \mathrm{STS} \end{gathered}$ | $\frac{F}{S E}$ | $\begin{gathered} \mathrm{G} \\ \text { MKD } \end{gathered}$ | $\begin{gathered} \mathrm{H} \\ \mathrm{MKD} \end{gathered}$ |  |  |
| 0 | 0 | X | 0 | $0 / 1^{2}$ | 0 | X | - | WRITE TRANSFER (SAM $\rightarrow$ DRAM) | WT |
| 0 | 0 | X | 0 | $0 / 1^{2}$ | 1 | X | - | PSEUDO WRITE TRANSFER | PWT |
| 1 | 0 | mask | 0 | $0 / 1^{2}$ | X | $X$ | - | SPLIT WRITE TRANSFER (SAM $\rightarrow$ DRAM) | SWT |
| 0 | 1 | mask | 0 | $0 / 1^{2}$ | X | $x$ | - | DQ MASKED WRITE TRANSFER (SAM $\rightarrow$ DRAM) | DMWT |
| 0 | 1 | X | 1 | $0 / 1^{2}$ | X | X | $0 / 1^{4}$ | BIT MASKED WRITE TRANSFER (SAM $\rightarrow$ DRAM) | BMWT |
| 1 | 1 | mask | 1 | $0 / 1^{2}$ | $X$ | X | $0 / 1{ }^{4}$ | BIT MASKED SPLIT WRITE TRANSFER (SAM $\rightarrow$ DRAM) | BMSWT |
| 1 | 0 | X | 1 | $0 / 1^{2}$ | X | $0 / 1^{3}$ | - | SAM $\rightarrow$ BMR TRANSFER | SAM-BMR |

NOTE: 1. QSF = "OPEN"; SSF = "Don't Care."
Refer to this function table to determine the logic states of "A", "B", "C", "D", " $E$ ", " " $"$ ", " $G$ ", and " $H$ " for WRITE TRANSFER cycle timing diagrams on the following pages.
2. The state of STS at the falling edge of RAS determines the SAM involved in the transfer. When STS = LOW the transfer is to SAMa; when SAM $=$ HIGH the transfer is to SAMb.
3. Serial Mask Input (SMI) mode is enabled if MKD $=$ HIGH and disabled if MKD $=$ LOW.
4. When in the SMI mode (see BMR transfer waveforms) MKD is the SMI data input. MKD data is clocked into all bit planes of the bit mask register with SCb. A logic " 1 " on MKD will allow data to pass through the mask; a logic " 0 " will mask the corresponding location of the SAM during a BIT MASKED TRANSFER. BIT MASKED TRANSFERs to or from SAMa must not take place while mask data is being serially input via SCb and MKD.

## WRITE TRANSFER ${ }^{4}$

(When part was previously in the SERIAL OUTPUT mode)

[6] DONT CAAE
NOTE: 1. $\overline{\mathrm{CAS}}$ is used to load the Tap address. If $\overline{\mathrm{CAS}}$ does not fall, the last
UNDEFINED Tap address loaded for the addressed SAM will be reused.
2. There must be no rising edges on the SC input during this time period.
3. $\overline{\mathrm{SE}}$ must be LOW to input new serial data, but the serial address register is incremented by SC regardless of $\overline{\mathrm{SE}}$.
4. The logic states of " $A$ ", " $B$ ", " $C$ ", " $D$ ", " $E$ ", " $F$ ", " $G$ " and " $H$ " determine the type of TRANSFER operation performed. See the Write Transfer Cycle Function Table.
5. QSF $=0$ when the Lower SAM (bits $0-255$ ) is being accessed.

QSF = 1 when the Upper SAM (bits 256-511) is being accessed. SSFa,b = "don't care" (MT43C4258).

WRITE TRANSFER ${ }^{4}$
(When part was previously in the SERIAL INPUT mode)


NOTE: 1. $\overline{\text { CAS }}$ is used to load the Tap address. If $\overline{\text { CAS }}$ does not fall, the last Tap address loaded for the addressed SAM will be reused.
2. $\overline{\mathrm{SE}}$ must be LOW to input new serial data, but the serial address register is incremented by SC regardless of $\overline{\mathrm{SE}}$.
3. There must be no rising edges on the SC input during this time period.
4. The logic states of "A", "B", "C", "D", "E", "F", "G" and "H" determine the type of TRANSFER operation performed. See the Write Transfer Cycle Function Table.
5. QSF $=0$ when the Lower SAM (bits $0-255$ ) is being accessed.

QSF = 1 when the Upper SAM (bits 256-511) is being accessed. SSFa,b = "don't care" (MT43C4258).

## SPLIT WRITE TRANSFER ${ }^{3}$ (SPLIT SAM-TO-DRAM TRANSFER)



ZZD DONT care
UNDEFINED

NOTE: 1. $\overline{\text { CAS }}$ is used to load the Tap address. If $\overline{\text { CAS }}$ does not fall, the last Tap address load for the addressed SAM will be reused.
2. QSF $=0$ when the Lower SAM (bits $0-255$ ) is being accessed.

QSF $=1$ when the Upper SAM (bits 256-511) is being accessed.
3. The logic states of " $A$ ", " $B$ ", " $C$ ", " $D$ ", " $E$ ", and " $H$ " determine the type of TRANSFER operation performed. See the Write Transfer Cycle Function Table.

SAMa or SAMb SERIAL INPUT
sca, b $\quad \mathrm{V}_{1 \mathrm{H}-}$
sDQa, b $\quad \mathrm{V}_{\text {IL- }}$


## SAMa or SAMb SERIAL OUTPUT

$\overline{S E} a, b$

SCa, b

SDQa, b

 in SAMb.

## PRELIMINARY

MICFON
MT43C4257/8

## TRIPLE PORT DRAM

## FEATURES

- Three asynchronous, independent, data access ports
- Fast access times -80 ns random, 25 ns serial
- Operation and control compatible with 1 Meg VRAMS
- High performance CMOS silicon gate process
- Low power: 15 mW standby; 450 mW active, typical
- 512-cycle refresh within 8 ms
- Refresh modes: $\overline{\mathrm{RAS}}-\mathrm{ONLY}, \overline{\mathrm{CAS}}-\mathrm{BEFORE}-\overline{\mathrm{RAS}}$, and HIDDEN
- FAST PAGE MODE access cycles
- Two bidirectional Serial Access Memories (SAMs)
- Fully static SAMs and Mask Register, no refresh required
- 2048-bit Transfer Mask Register
- SERIAL MASK DATA INPUT mode


## SPECIAL FUNCTIONS

- MASKED WRITE (Write-Per-Bit)
- PERSISTENT MASKED WRITE
- SPLIT READ AND WRITE TRANSFERS
- BLOCK WRITE
- BIT MASKED TRANSFERS


## OPTIONS

- Timing (DRAM, SAMs) $80 \mathrm{~ns}, 25 \mathrm{~ns} \quad-8$
$100 \mathrm{~ns}, 30 \mathrm{~ns} \quad-10$
120ns, 35ns -12
- Packages

Plastic LCC (750 mil)

- Functionality

QSF output (indicates SAM half accessed) 43 C 8128
SSF input (Split SAM special function, stop count) 43 C 8129

## GENERAL DESCRIPTION

The MT43C8128/9 are high speed, triple port CMOS dynamic random access memories (TPDRAM) containing $1,048,576$ bits. Data may be accessed by an 8 bit wide DRAM port or by either of two independently-clocked $256 \times 8$-bit serial access memory (SAM) ports. Data may be transferred bidirectionally between the DRAM and the SAMs.

The DRAM portion of the TPDRAM is functionally identical to the MT4C4256 (256K x 4) DRAM. Sixteen 256-bit data registers make up the serial access memory portions of the TPDRAM. Data I/O and internal data transfer are accomplished using five separate bidirectional data paths; the 8-bit random access I/O port, a pair of internal 2048 bit wide paths between the DRAM and the SAMs, and the pair

## 128K x 8 DRAM WITH DUAL 256 x 8 SAMS

## PRELIMINARY MT43C8128／9 <br> NatPlw



## MULTIPORT DRAM

## PIN DESCRIPTIONS

| PLCC PIN NUMBERS | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| 7 | SCa | Input | Serial Clock, SAMa: Clock input to the serial address counter for the SAMa registers and strobe for SAMa control and data inputs. |
| 1 | SCb | Input | Serial Clock, SAMb: Clock input to the serial address counter for the SAMb registers and strobe for SAMb control and data inputs. |
| 12 | $\overline{T R} / \overline{O E}$ | Input | Transfer Enable: Enables an internal TRANSFER operation at the falling edge of $\overline{\text { RAS }}$, or <br> Output Enable: Enables the DRAM output buffers when taken LOW after RAS goes LOW (CAS must also be LOW), otherwise the output buffers are in a high impedance state. |
| 18 | $\overline{M E} \overline{W E}$ | Input | Mask Enable: If $\overline{M E} \overline{W E}$ is LOW at the falling edge of $\overline{\text { RAS, }}$ a MASKED WRITE cycle is performed, or <br> Write Enable: $\overline{\mathrm{ME}} \overline{\mathrm{WE}}$ is also used to select a READ ( $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}=$ H) or WRITE $(\overline{M E} \overline{W E}=\mathrm{L})$ cycle when accessing the DRAM. This includes a READ TRANSFER ( $\overline{\mathrm{ME}} \overline{\mathrm{WE}}=\mathrm{H}$ ) or WRITE TRANSFER ( $\overline{M E} \overline{N E}=\mathrm{L}$ ). |
| 41 | SEa | Input | Serial Port Enable SAMa: $\overline{\text { SEa enables Port A serial I/O buffers }}$ and allows a serial READ or WRITE operation to occur; otherwise, the output buffers are in a High-Z state. $\overline{\text { SEa }}$ is also used during a TRANSFER operation to indicate whether a WRITE TRANSFER or a SERIAL INPUT MODE ENABLE (PSEUDO WRITE TRANSFER) cycle is performed. |
| 47 | $\overline{\text { SEb }}$ | Input | Serial Port Enable, SAMb: $\overline{\text { EEb }}$ enables Port B serial I/O buffers and allows a serial READ or WRITE operation to occur; otherwise, the output buffers are in a High-Z state. $\overline{\text { SEb }}$ is also used during a TRANSFER operation to indicate whether a WRITE TRANSFER or a SERIAL-INPUT-MODE ENABLE (PSEUDO WRITE TRANSFER) cycle is performed. |
| 35 | DSF1 | Input | Special Function (Control) 1: DSF1 is used to indicate which special functions are used on a particular access or transfer cycle. See the Functional Truth Table for a detailed description. |
| 21 | DSF2 | Input | Special Function (Control) 2: DSF2 is used to indicate which special functions are used on a particular access or transfer cycle. See the Functional Truth Table for a detailed description. |
| 20 | $\overline{\text { RAS }}$ | Input | Row Address Strobe: $\overline{\mathrm{RAS}}$ is used to clock in the 9 row-address bits and as a strobe for control and data inputs. |
| 33 | $\overline{\text { CAS }}$ | Input | Column Address Strobe: $\overline{\text { CAS }}$ is used to clock in the 8 columnaddress bits, enable the DRAM output buffers (along with $\overline{\mathrm{TR}} / \overline{\mathrm{OE}})$, and as a strobe for control and data inputs. |

## PIN DESCRIPTIONS (Continued)

$\left.\begin{array}{|c|c|c|l|}\hline \begin{array}{c}\text { PLCC PIN } \\ \text { NUMBERS }\end{array} & \text { SYMBOL } & \text { TYPE } & \\ \hline \begin{array}{c}31,30,29,28 \\ 25,24,27,22 \\ 23\end{array} & \text { A0 - A8 } & \text { Input } & \begin{array}{l}\text { Address Inputs: For DRAM operation, these inputs are } \\ \text { multiplexed and clocked by } \overline{\text { RAS and } \overline{\text { CAS to select one 8-bit }}} \begin{array}{l}\text { word out of the 128K available. During TRANSFER operations, } \\ \text { A0 to A8 indicate the DRAM row being accessed (when RAS } \\ \text { goes LOW) and A0-A7 indicate the SAM start address (when } \\ \text { CAS goes LOW). A7, A8 = "don't care" for the start address when } \\ \text { doing SPLIT TRANSFER. }\end{array} \\ \hline 19\end{array} \\ \hline 46 & \text { STS } & \text { Input } & \begin{array}{l}\text { SAM Transfer Select: The state of STS at RAS time determines } \\ \text { which SAM is involved in a transfer (SAMa=LOW, SAMb=HIGH). }\end{array} \\ \hline 6 & \text { MKD } & \text { Input } & \begin{array}{l}\text { Mask Data Input: MKD is used during BIT MASK REGISTER } \\ \text { LOAD cycles to enable or disable the serial mask input mode }\end{array} \\ \text { (SMI). If SMI is enabled (MKD=HIGH at RAS), then MKD is used } \\ \text { as mask data input and is clocked by SCb into the mask data } \\ \text { register. }\end{array}\right\}$

## FUNCTIONAL DESCRIPTION

The MT43C8128/9 may be divided into four functional blocks (see Figure 1): the DRAM and its special functions, the Bit Mask Register (BMR), the two Serial Access Memories (SAMs), and the DRAM/SAM/BMR transfer circuitry. All the operations described below are also shown in the AC Timing Diagrams section of this data sheet and are summarized in the Functional Truth Table.

Note: For dual function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing transfer operations the $\overline{T R} / \widehat{O E}$ pin will be shown as $\overline{T R} /(\overline{O E})$.

## DRAM OPERATION

This section describes the operation of the random access port and the special functions associated with the DRAM.

## DRAM REFRESH (ROR, CBR, and HR)

Like any DRAM-based memory, the MT43C8128/9 TPDRAM must be refreshed to retain data. All 512 rowaddress combinations must be accessed within 8 ms . The MT43C8128/9 supports $\overline{\text { CAS-BEFORE-RAS, }} \overline{\text { RAS-ONLY }}$ and HIDDEN types of refresh cycles.

For the CAS-BEFORE-RAS REFRESH cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data and simply must perform $512 \overline{\text { CAS-BEFORE-RAS cycles within }}$ the 8 ms time period.

For RAS-ONLY REFRESH cycles, the refresh address must be generated externally and applied to the A0-A8 inputs. The $D Q$ pins remain in a High- $Z$ state for both the $\overline{\text { RAS ONLY }}$ and CAS-BEFORE-RAS cycles.

HIDDEN REFRESH (HR) cycles are performed by toggling $\overline{\text { RAS }}$ (whilekeeping $\overline{\text { CAS LOW }}$ ) after a READ or WRITE cycle. This performs $\overline{\text { CAS-BEFORE-RAS }}$ cycles but does not disturb the DQ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row that is being accessed. The SAM and Bit Mask Register portions of the MT43C8128/9 are fully static and do not require any refreshing.

## DRAM READ AND WRITE CYCLES (RW)

The DRAM portion of the TPDRAM is nearly identical to standard $128 \mathrm{~K} \times 8$ DRAMs. However, because several of the DRAM control pins are used for additional functions on this device, several conditions that were undefined or "don't care" states for the DRAM are specified for the TPDRAM. These conditions are highlighted in the following discussion. In addition, the TPDRAM has several special functions that may be used when writing to the DRAM.

The 17 address bits used to select an 8 -bit word from the 131,072 available are latched into the chip using the A0-A8, $\overline{\text { RAS, and }} \overline{\text { CAS }}$ inputs. First, the 9 row-address bits are setup on the address inputs and clocked into the part when RAS transitions from HIGH to LOW. Next, the 8 column-address bits (A0 - A7) are setup on the address inputs and clocked in when CAS goes from HIGH to LOW.

For single port DRAMS, the $\overline{O E}$ pin is a "don't care" when $\overline{\text { RAS }}$ goes LOW. For the TPDRAM, $(\overline{\mathrm{TR}}) / \overline{\mathrm{OE}}$ is used when $\overline{\text { RAS }}$ goes LOW, to select between DRAM and TRANSFER cycles. (TR)/ $\overline{\mathrm{OE}}$ must be HIGH at the RAS HIGH-to-LOW transition for all DRAM operations.

If ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is HIGH when $\overline{\text { CAS }}$ goes LOW, a DRAM READ operation is performed and the data from the memory cells selected will appear at the DQ1-DQ8 port. The $(\overline{\mathrm{TR}}) / \overline{\mathrm{OE}}$ input must transition from HIGH-to-LOW sometime after $\overline{\text { RAS }}$ falls to enable the DRAM output port.
For single port DRAMs, $\overline{\mathrm{WE}}$ is a "don't care" when $\overline{\text { RAS }}$ goes LOW. For the TPDRAM, $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ is used, when RAS goes LOW, to select between a MASKED WRITE cycle or a normal WRITE cycle. If $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ is LOW at the RAS HIGH-to-LOW transition, a MASKED WRITE operation is selected.Forany TPDRAM non-masked access cycle (READ or WRITE), $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ must be HIGH at the $\overline{\text { RAS HIGH to }}$ LOW transition. If $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is LOW when $\overline{\mathrm{CAS}}$ goes LOW, a DRAM WRITE operation is performed and the data present on the DQ1-DQ8 data port will be written into the selected memory cells.

The TPDRAM can perform all the normal DRAM cycles: READ, EARLY-WRITE, LATE-WRITE, READ-MODIFYWRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE, and FAST-PAGE-MODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.


## NONPERSISTENT MASKED WRITE (RWNM)

The MASKED WRITE feature eliminates the need to do a READ-MODIFY-WRITE cycle when changing only certain bits within an 8-bit word. The MT43C8128/9 supports two types of MASKED WRITE cycles, NONPERSISTENT MASKED WRITE and PERSISTENT MASKED WRITE.

If $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}}), \mathrm{DSF} 1$ and DSF2 are LOW at the $\overline{\mathrm{RAS}} \mathrm{HIGH}-$ to-LOW transition, the data (mask data) present on the DQ1-DQ8 inputs will be written into the mask data register. The mask data acts as an individual write enable for each of the eight DQ1-DQ8 pins. If a LOW (logic 0 ) is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic 1) on a mask data register bit enables the input port and
allows normal WRITE operations to proceed. This convention is used for all masks on the MT43C8128/9. Note that
 the DQ1-DQ8 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW). The DRAM contents that correspond to the masked bits will not be changed during the WRITE cycle. When using NONPERSISTENT MASKEDWRITE, the data present on the DQ inputs is loaded into the mask data register at every falling edge of $\overline{R A S}$. FAST PAGE MODE may be used in tandem with NONPERSISTENT MASKED WRITE to write several column locations using the same mask during one $\overline{\mathrm{RAS}}$ cycle. An example of NONPERSISTENT MASKED WRITE cycle is shown in Figure 2.


PERSISTENT MASKED WRITE EXAMPLE

## PERSISTENT MASKED WRITE (RWOM)

The PERSISTENT MASKED WRITE feature eliminates the need to rewrite the mask data before each MASKED WRITE cycle if the same mask data is being used repeatedly. To initiate a PERSISTENT MASKED WRITE, a LOAD MASK REGISTER cycle is performed by taking $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ and DSF1 HIGH, and DSF2 LOW when RAS goes LOW. The mask data is loaded into the internal register when $\overline{\mathrm{CAS}}$ goes LOW, provided DSF1 is LOW (see the LOAD MASK REGISTER description).

Mask data may also be loaded into the mask register by simply performing a NONPERSISTENT MASKED WRITE before the PERSISTENT MASKED WRITE cycles.

PERSISTENT MASKED WRITE cycles may then be performed by taking $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ and DSF2 LOW and DSF1 HIGH when $\overline{R A S}$ goes LOW. The contents of the mask data register will then be used as the mask data for the DRAM inputs. Unlike the NONPERSISTENT MASKED WRITE cycle, the data present at the DQ inputs is not loaded into the mask register when $\overline{\mathrm{RAS}}$ falls. Another PERSISTENT MASKED WRITE cycle may be performed without reloading the register. Figure 3 shows the LOAD MASK REGISTER and PERSISTENTMASKEDWRITE cycleoperations. TheLOAD MASK REGISTER and PERSISTENT MASKED WRITE cycles allow systems that cannot output data at $\overline{R A S}$ time to perform MASKED WRITE cycles. PERSISTENT MASKED WRITE can also operate in FAST PAGE MODE.

## BLOCK WRITE (BW)

If DSF1 is HIGH when $\overline{\text { CAS }}$ goes LOW, the MT43C8128/9 will perform a BLOCK WRITE cycle ( $\overline{\mathrm{WE}}=$ "don't care") instead of a normal WRITE cycle. In BLOCK WRITE cycles, the contents of the color register (instead of the DQ inputs) are directly written to four adjacent column locations (see Figure 4). A total of 32 bits will be written simultaneously, improving the normal DRAM fill rate by four times. The color register must be loaded prior to beginning BLOCK WRITE cycles (see LOAD COLOR REGISTER).

The row is addressed as in a normal DRAM WRITE cycle. However, when $\overline{\text { CAS goes LOW, only the A2-A7 inputs are }}$ used. A2-A7 specify the "block" (out of the 64 possible) of four adjacent column locations that will be accessed. When CAS goes LOW, the DQ inputs are then used to determine which combination of the four column locations will be changed. DQ1 acts as a write enable for column location $\mathrm{A} 0=0, \mathrm{~A} 1=0 ; \mathrm{DQ} 2$ controls column location $\mathrm{A} 0=1, \mathrm{~A} 1=0$; DQ 3 controls $\mathrm{A} 0=0, \mathrm{~A} 1=1$; and DQ 4 controls $\mathrm{A} 0=1, \mathrm{~A} 1=1$. The write enable controls are active HIGH; a logic 1 enables and a logic 0 disables the WRITE function.


Figure 4 BLOCK WRITE EXAMPLE

The contents of the color register will then be written to the column locations enabled. Each DQ location of the color register is written to the four column locations (or any of the four that are enabled) in the corresponding DQ bit plane. The DQ mask is not used in this mode.
Note: When performing a BLOCK WRITE, $\overline{\text { WE }}$ is a "don't care". This means LATE-WRITEs in the BW mode are not allowed.

## NONPERSISTENT MASKED BLOCK WRITE (BWNM)

The MASKED WRITE functions can also be used during BLOCK WRITE cycles. NONPERSISTENT MASKED BLOCK WRITE operates exactly like the normal NONPERSISTENT MASKED WRITE except the mask is now applied to four column locations instead of just one column location.
Like NONPERSISTENT MASKED WRITE, the combination of $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ LOW and DSF1 LOW when $\overline{\mathrm{RAS}}$ goes LOW, initiates a NONPERSISTENT MASK cycle. The DSF
pin must be driven HIGH, when CAS goes LOW, to perform a NONPERSISTENT MASKED BLOCK WRITE. By using both the column maskinput and the MASKEDWRITE function, any combination of the four bit planes may be masked and any combination of the eight column locations may be masked.

## PERSISTENT MASKED BLOCK WRITE (BWOM)

This cycle is also performed exactly like the normal PERSISTENT MASKED WRITE except that DSF1 is HIGH when CAS goes LOW to indicate the BLOCK WRITE function. Both the mask data register and the color register must be loaded with the appropriate data prior to starting a PERSISTENT MASKED BLOCK WRITE.

## DRAM REGISTER OPERATIONS

The MT43C8128/9 contains two 8-bit registers that are used as data registers for special functions. This section describes how to load these registers.

## LOAD MASK REGISTER (LMR)

The LOAD MASK REGISTER operation and timing are identical to a normal WRITE cycle except thatDSF1 is HIGH when RAS goes LOW. As shown in the Truth Table, the combination of $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}}), \overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$, and DSF1 being HIGH when $\overline{\text { RAS }}$ goes LOW indicates the cycle is a REGISTER load cycle. DSF1 is used when CAS goes LOW to select the register to be loaded, and must be LOW for a LOADMASK REGISTER cycle. The data present on the DQ lines will then be written to the mask data register.
Note: For a normal DRAM WRITE cycle, the mask data register is disabled but not modified. The contents of mask data register will not be changed unless a NONPERSISTENT MASKED WRITE cycle or a LOAD MASK REGISTER cycle is performed
The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

The mask data register contents are used during PERSISTENT MASKED WRITE and PERSISTENT MASKED BLOCK WRITE cycles to selectively enable writes to the eight DQ planes.

## LOAD COLOR REGISTER (LCR)

A LOAD COLOR REGISTER cycle is identical to the LOAD MASK REGISTER cycle except DSF1 is HIGH when CAS goes LOW. The contents of the color register are retained until changed by another LOAD COLOR REGISTER cycle (or the part loses power) and are used as data inputs during BLOCK WRITE cycles.

## TRANSFER OPERATIONS

This section describes transfer operations between the DRAM and either SAM. The direction of the transfer is specified with respect the DRAM portion of the device. A write is referenced to the DRAM array and a read is referenced from the array.

## Note: The three ports of the TPDRAM are independent and

 asynchronous to one another. Any or all of the ports may be accessed simultaneously at the maximum allowable frequencies. The only time the ports are synchronized is during transfers to or from the DRAM and SAM portions of the device. A transfer involving a SAM does not affect access from the other SAM port. Both SAMs may be accessed during a DRAM/BMR transfer operation or any other DRAM access cycle other than a SAM transfer.TRANSFER operations are initiated when $\overline{T R} /(\overline{\mathrm{OE}})$ is LOW at the falling edge of $\overline{\text { RAS. The state of STS when }}$ $\overline{R A S}$ goes LOW indicates which SAM the TRANSFER will address. The state of $(\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ when $\overline{\mathrm{RAS}}$ goes LOW indicates the direction of the TRANSFER. At the same time, DSF1 is used to select between normal TRANSFER cycles and SPLIT TRANSFER cycles and DSF2 is used to select between normal TRANSFER cycles and MASKED TRANSFER cycles. A TRANSFER cycle can be performed without dropping $\overline{\mathrm{CAS}}$. In this case, the previously loaded Tap address will be used.

TheMT43C8128/9 include a feature called BIT MASKED TRANSFER, which uses a third, 2048-bit data register to individually mask every bit involved in a TRANSFER operation. The BIT MASKED TRANSFER may be applied to either READ or WRITE TRANSFERS. The TRM pin is used to select between NORMAL and BIT MASKED TRANSFER (or BIT MASK REGISTER LOAD) cycles. The type of transfer operation is always selected on the falling edge of $\overline{R A S}$.

## NORMAL TRANSFERS

The MT43C8128/9 support all of the popular transfer cycles available on the 1 Meg video RAMs. Each of these is described in the following section.

## READ TRANSFER (RT)

A READ TRANSFER cycle is selected if $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$ is HIGH, and DSF1 and $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ are LOW when $\overline{\mathrm{RAS}}$ goes LOW. When RAS goes LOW, the READ TRANSFER is to SAMa if STS $=$ LOW, or to SAMb if STS $=$ HIGH. The row address bits indicate the eight 256-bit DRAM rows that are to be transferred to the eight SAM data registers. The column address bits indicate the start address (or Tap point)
of the next serial output cycle from the designated SAM data registers. QSF indicates the SAM half being accessed: LOW if the lower half; HIGH if the upper. Performing a READ TRANSFER cycle sets the direction of the selected SAMs I/O buffers to the output mode.

To complete a REAL-TIMEREAD-TRANSFER, $\overline{\mathrm{TR}} /(\overline{\mathrm{O}} \overline{\mathrm{E}})$ is taken HIGH while $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ are LOW. In order to synchronize the REAL-TIME READ-TRANSFER to the serial clock, the rising edge of $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ must occur between the rising edges of successive clocks on the SC input (refer to the AC timing diagrams). A "regular" READ TRANSFER is not sychronized with the SC pin of the addressed SAM. This type of RT is performed when $\overline{T R} /(\overline{\mathrm{OE}})$ is taken HIGH "early," without regard to the falling edge of $\overline{\mathrm{CAS}}$. The transfer will be completed internally by the device. The first serial clock must meet the tRSD, tCSD and tASD delays. (see READ TRANSFER AC timing diagram). The 2048 bits of DRAM data are then written into the SAM data registers, and the selected SAM's Tap address that was stored in the internal, 8-bit Tap address register is loaded into the address counter. If $\overline{\mathrm{SE}}$ for the SAM selected ( $\overline{\mathrm{SE}} \mathrm{a}$ for SAMa) is LOW, the first bits of the new row data will appear at the serial outputs with the next SC clock pulse. $\overline{\mathrm{SE}}$ enables the serial outputs, and may be either HIGH or LOW during this operation.

## SPLIT READ TRANSFER (SRT)

TheSPLIT READTRANSFER cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream (the "full" READ TRANSFER cycle has to occur immediately after the final bit of "old data," and before the first bit of "new data" is clocked out of the SAM port).

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data may be transferred to the other half. The transfer can occur at any time while the other half is sending data and need not be synchronized with the SC clock.

The $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ timing is relaxed for SRT cycles. The rising edge of $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is not used to complete the TRANSFER cycle and therefore is independent of the rising edges of $\overline{\text { RAS }}$ and $\overline{\text { CAS. }}$. The transfer timing is generated internally for SPLIT TRANSFER cycles.

SPLIT TRANSFERs do not change the SAM I/O direction. A normal (nonsplit) READ TRANSFER cycle must precede any sequence of SRT cycles to put the SAMI/O in the output mode and provide the initial SAM Tap address (which half). Then an SRT may be initiated by taking DSF1 HIGH and selecting the desired SAM (using STS) when $\overline{\mathrm{RAS}}$ goes LOW during the TRANSFER cycle. As in nonsplit transfers, the row address is used to specify the DRAM row to be transferred. When an SRT cycle is initiated, the half of
the SAM not actively being accessed will be the half that receives the transfer. When CAS falls, address pins A0-A6 determine the Tap address for the SAM-half selected; A7 = "don't care." If $\overline{C A S}$ does not fall, the previously loaded Tap address will be reused and the TRANSFER will be to the idle half.
Figure 5 shows a typical SRT initiation sequence. The normal READ TRANSFER is first performed, followed by an SRT of the same row to the upper half of the SAM. The purpose of the SRT from the same row is to initiate the split SAM operating mode and load the Tap address for the upper half of the SAM. For the MT43C8128, serial access continues and when the SAM address counter reaches 127 ("A7" $=1, \mathrm{~A} 0-\mathrm{A} 6=0$ ), the QSF output for that SAM goes HIGH and the Tap address for the upper half is automatically loaded. Since the serial access has now switched to the upper half of the SAM, new data may now be transferred to the lower half. This sequence of waiting for the state of QSF to change and then transferring new data to the SAM half that is not being accessed may now be repeated. For ex-
ample, the next step in Figure 5 would be to wait until QSF went LOW (indicating that row-1 data is shifting out the lower SAM) and then transferring the upper half of row 1 to the upper SAM. $\overline{\text { CAS }}$ is used to load the Tap address. If $\overline{\text { CAS }}$ does not fall, the last Tap address load for the addressed SAM will be reused.
The split SAM operation is slightly different for the MT43C8129. Instead of having a QSF, this device has a Split SAMSpecial Function (SSF) input. With this input the serial access may be switched at will from one half of the SAM to the other. In other words, the address count may be stopped on the current half and the Tap address of the next half may be loaded, without waiting for the maximum address count of the current half (127; lower, 255; upper). If no SSF pulse is applied, the Tap address of the next half will be automatically loaded when the maximum count of the currentSAMhalf is reached.QSF $=0$ when the Lower SAM (bits 0-255) is being accessed. QSF = 1 when the Upper SAM (bits 256-511) is being accessed.


Figure 5
TYPICAL SPLIT READ TRANSFER INITIATION SEQUENCE

## WRITE TRANSFER (WT)

The operation of the WRITE TRANSFER is identical to the READ TRANSFER described previously, except ( $\overline{\mathrm{ME}}$ ) $/ \overline{\mathrm{WE}}$ and $\overline{\text { SE }}$ must be LOW when $\overline{\mathrm{RAS}}$ goes LOW. The DSF2 input is used to select between the WT and DQ MASKED WRITE TRANSFER cycles, and must be LOW for the WT cycle. The STS pin is also taken LOW or HIGH to selectSAMa orSAMb, respectively, when $\overline{\mathrm{RAS}}$ goes LOW. The row address indicates the DRAM row to which the SAM data register will be written, and the Tap address indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. QSF indicates the SAM half being accessed; LOW if the lower half, HIGH if the upper. Performing a WT sets the direction of the SAM I/O buffers to the input mode.

## PSEUDO WRITE TRANSFER (PWT)

The PSEUDO WRITE TRANSFER cycle can be used to change the direction of a SAM port from output to input without disturbing the DRAM data in the selected row. A PSEUDO WRITE TRANSFER cycle is a WRITE TRANSFER cycle with the $\overline{S E}$ of the appropriateSAM held HIGH instead of LOW. The addressed row will be refreshed. A DQ MASKED WRITE TRANSFER (with all bits masked) is an alternate method for changing the direction of theSAM port without disturbing the addressed row data.

## DQ MASKED WRITE TRANSFER (DMWT)

The data being transferred from eitherSAM to the DRAM may be masked by performing a DQ MASKED WRITE TRANSFER cycle. The transfer of data may be selectively enabled for each of the eight DQ planes (see Figure 6). The DMWT cycle is identical to the WRITE TRANSFER cycle except DSF2 is HIGH and mask data must be on the DQ inputs at the falling edge of $\overline{\mathrm{RAS}}$.

The complete SAM register will be transferred to the selected row in each DQ plane if the mask data input is HIGH, and the SAM register will not be transferred if the mask data input for that DQ plane is LOW. DRAM data is not disturbed in masked DQ planes.

## SPLIT WRITE TRANSFER (SWT)

The SPLIT WRITE TRANSFER feature makes it possible to input and transfer uninterrupted bit streams. Figure 7 shows a typical initiation sequence for SWT cycles.

Like the SRT, the SPLIT WRITE TRANSFER cycle does not change the state of the SAM I/O buffers. A normal, DQ MASKED or PSEUDOWRITETRANSFER cycle is required to set the Tap address and set the SAM I/O direction to input mode.

After the WT, a SWT is performed to enter the split SAM operating mode. This sets the Tap for the next half of the SAM. The addressed half of the SAM is immediately trans-


Figure 6 DQ MASKED WRITE TRANSFER
ferred to the first destination row. This half of the SAM may not yet contain valid data. However, another SWT to the same row will normally occur after this is loaded, so the initial invalid data will be overwritten. Another approach would be to initiate an SWT addressed to any DRAM row, but mask (disable) all eight of the DQ planes. This method can be used to initiate theSWT sequence without disturbing any DRAM data.

Write mask data must be supplied to the DQ inputs during every SWT cycle at $\overline{\text { RAS }}$ time. The mask data acts as an individual write enable for each of the eight DRAM DQ planes. For example, the DQ1 MASKED WRITE bit enables or disables the transfer of theSAMSDQ1 register to the DQ1 plane of the DRAM row selected (see the DQ MASKED WRITE TRANSFER description). As in all other MASKED WRITE operations, a HIGH enables the WRITE TRANSFER and a LOW disables the WRITE TRANSFER. As with SPLIT READ TRANSFER, the half of the SAM not receiving data will be the half transferred and the Tap address (A0-A6) for the other half is loaded when $\overline{\mathrm{CAS}}$ falls (A7 is a "don't care"). If $\overline{\mathrm{CAS}}$ does not fall, the previously loaded Tap address, A0A6, will be reused. The TRANSFER will be to the idle half. When the serial clock crosses the half-SAM boundary, the new Tap address for that half is automatically loaded.

The QSFa and QSFb outputs (MT43C8128) indicate which half of SAMa or SAMb, respectively, is currently accepting data. After QSF goes HIGH, indicating that serial input has now switched to the upper SAM, the contents of the lower
half of the SAM may be transferred to any DRAM row. The cycle of checking for a change in QSF and then transferring the half of the SAM just filled may now be repeated. The next step on Figure 7 is to wait for QSF to go LOW and then SWT the contents of the upper half of the SAM to row 0 . If the terminal count of theSAM half is reached before an SWT is performed for the next half, the access will be repeated from the same half and previously loaded address (access will not move to the next half).

When operating the MT43C8129 in the SWT mode, the address pointer may be changed, at will, to the new Tap address of the next half when the final desired input data is clocked-in. When the final data is input, the SSF input is taken HIGH at the corresponding rising edge of SC. The next SC rising edge will input data into the Tap location of the next half of the SAM. If SSF is not applied, the Tap
address will be automatically loaded when the maximum Tap address count is reached for the current half (127 or 255). If SSF is HIGH at SC, before an SWT is performed for the next half, the access will jump to the old Tap address of the same half. Access will not preceed to the next half. If terminal count is reached before an SWT, the access will proceed as it does for the MT43C4257.

## SERIAL INPUT and SERIAL OUTPUT

The control inputs for SERIAL INPUT and SERIAL OUTPUT are SCa,b and $\overline{S E} a, b$. The rising edge of SC increments the serial address counter and provides access to the next SAM location. $\overline{\text { SE }}$ enables or disables the serial input/output buffers.

Serial output of the SAM contents will start at the serial start address that was loaded during the DRAM-TO-SAM
 MT43C8128/9


Figure 8
BIT MASKED TRANSFER BLOCK DIAGRAM

TRANSFER cycle. The SC input increments the address counter and presents the contents of the next SAM location to the 8 -bit port. $\overline{\mathrm{SE}}$ is used as an output enable during the SAM output operation. The serial address is automatically incremented with every SC LOW-to-HIGH transition, regardless of whether $\overline{\mathrm{SE}}$ is HIGH or LOW. For the MT43C8128, the address progresses through the SAM and will wrap around (after count 127 or 255) to the Tap address of the next half, for split modes. Address count will wrap around (after count 255) to Tap address 0 if in the "full"SAM modes. For the MT43C8129, the address count will wrap as it does for the MT43C8128 or it may be triggered, at will, to the next half by the SSF input (split SAM modes). If SSF is HIGH at a LOW-to-HIGH transition of SC, the Tap address of the next half will be loaded into the address pointer. The following LOW-to-HIGH transition of SC will clock data from the Tap address of the new half.

SC is also used to clock-in data when the device is in the serial input mode. As in the serial output operation, the contents of the serial address register (loaded when the serial input mode was enabled) will determine the serial address of the first 8-bit word written. $\overline{\mathrm{SE}}$ acts as a WRITE ENABLE for serial input data and must be LOW for valid serial input. If $\overline{S E}=\mathrm{HIGH}$, the data inputs are disabled and the SAM contents will not be modified. The serial address counter is incremented with every LOW-to-HIGH transition of SC, regardless of the logic level on the $\overline{\mathrm{SE}}$ input.

## BIT MASKED TRANSFERS

This section describes transfers between the DRAM and either of the two SAMs using the BITMASKEDTRANSFER capability. Before performing these BIT MASKED TRANSFERS, the bit mask register must first be loaded with the
mask data. See the next section, BIT MASK REGISTER OPERATIONS, for instructions on how to load the Bit Mask Register (BMR).

The BMR is a 2048-bit register that individually controls each of the 2048 transfer gates on the internal $256 \times 8$ transfer bus (see Figure 8). These bus transfer gates reside between the DRAM array and the three data registers and are set to the "pass-thru" mode for nonmasked transfers. For BIT MASKED TRANSFERs, the data in the BMR is coupled to the control inputs of the bus transfer gates. A logic " 1 " in the BMR will select the pass-thru (unmasked) mode for the corresponding SAM data bit, while a logic " 0 " will select the masked mode for that bit.

BIT MASKED TRANSFERs may be incorporated when doing READ, WRITE, SPLIT READ and SPLIT WRITE TRANSFERs. The timing and control required for any particular BIT MASKED TRANSFER cycle is identical to the corresponding normal TRANSFER cycle, except that TRM and DSF2 are HIGH instead of LOW. BIT MASKED TRANSFERs between the DRAM and either of the two SAM registers are possible. Figure 9 illustrates the BIT MASKED TRANSFER functions.

## BIT MASKED READ TRANSFER (BMRT)

BIT MASKED READ TRANSFER can be used to transfer any combination of the 2048 bits contained in any DRAM row address to either of the two SAMs. The logic conditions and timing for the BMRT function are identical to the normal READ TRANSFER function except to select the BIT MASKED feature, TRM and DSF2 are HIGH. If a bit in the BMR is a logic " 1 ", the bus connection between the corresponding DRAM bit and the selected SAM bit is enabled and the data at the destination (one of the SAMs for BMRT) will be changed to the source data (the DRAM row for BMRT).


Figure 9
BIT MASK TRANSFER BLOCK DIAGRAM

## BIT MASKED SPLIT READ TRANSFER (BMSRT)

The BIT MASKED SPLIT READ TRANSFER operation is identical to the normal SPLIT READ TRANSFER except that the bit mask (stored in the bit mask register) is applied to the transfer data by taking TRM and DSF2 HIGH when $\overline{\mathrm{RAS}}$ falls. The remaining control timing is identical to the requirements for a normal SPLIT READ TRANSFER.

## BIT MASKED WRITE TRANSFER (BMWT)

Like WRITE TRANSFER, the BIT MASKED WRITE TRANSFER function may be used to transfer data to any DRAM row address from either of the two SAM registers. In this case, the SAM data will be masked by the contents of the bit mask register before the data is written to the DRAM.

## BIT MASKED SPLIT WRITE TRANSFER (BMSWT)

Like the other BIT MASKED TRANSFER cycles, the BMSWT is nearly identical to the SPLIT WRITE TRANSFER, except TRM and DSF2 are HIGH when RAS falls. Two masks are applied during a BMSWT operation. Each of the individual bits are masked by the bit mask register and each of the DQ planes are masked by the DQ inputs at $\overline{R A S}$ time. If a DQ input is LOW at $\overline{R A S}$ time, none of the 128 SAM bits for that DQ plane will be transferred to the DRAM row-half selected. If a DQ input is HIGH, the 128 SAM bits for that row-half will be masked by the corresponding 128 mask
register bits when written to the selected DRAM row-half. The remaining control timing is identical to the requirements for a normal SPLIT WRITE TRANSFER.

## BIT MASK REGISTER OPERATIONS

This section describes how to transfer data to or from the Bit Mask Register (BMR) and how to clear the BMR's contents. Data may also beinverted when being transferred between the BMR and DRAM.

## BMR READ TRANSFER (BMR-RT)

Any DRAM row may be transferred to the bit mask register by using the BMR READ TRANSFER function. When $\overline{\mathrm{RAS}}$ falls, $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is LOW to select a transfer cycle. TRM is HIGH to indicate that the BMR is involved in the TRANSFER cycle, and DSF2 is LOW to indicate that the data is to be transferred to the BMR (as opposed to using the contents of the BMR as bit mask data). The remainder of the timing and control required is identical to a normal READ TRANSFER cycle. No Tap address is loaded in this TRANSFER.

Note that the SAM transfer select (STS) pin is used to select whether non-inverted (STS=LOW) or inverted $(\mathrm{STS}=\mathrm{HIGH})$ data is transferred to the bit mask register. For all transfers to or from the bit mask register, the state of the MKD pin when RAS falls selects whether the Serial Mask Input (SMI) feature is enabled (see the Functional Truth Table). SMI is a special serial input mode that allows mask information to be clocked into the BMR at the same address location as the data clocked into SAMb (see the SMI mode description). MKD is LOW when $\overline{\text { RAS }}$ falls to disable SMI or HIGH to enable SMI. After the transfer is completed the MKD pin then acts either as a mask data input to the BMR (SMI enabled) or is "don't care" (SMI disabled). The MKD input is tied to the 8 bit-planes, the data on the MKD pin is written to each bit-plane simultaneously.

## BMR INVERTED READ TRANSFER (BMR-IRT)

If the STS pin is HIGH at $\overline{\text { RAS }}$ time the DRAM data will be inverted before being written to the BMR. All 2048 bits involved in the transfer will be complemented. The functionality and logic levels for the other control inputs are identical to the BMR READ TRANSFER cycle. Note that MKD is still used to enable or disable the SMI mode. There is no added cycle time delay for either the BMRINVERTED READ or BMR INVERTED WRITE TRANSFER cycles.

## BMR WRITE TRANSFER (BMR-WT)

The contents of the BMR may also be transferred to any DRAM row by using the BMR WRITE TRANSFER cycle. $(\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ and DSF2 are LOW and TRM is HIGH when $\overline{\mathrm{RAS}}$ falls, to select a write transfer from the BMR. The DQ inputs are used to input a DQbit-plane mask when $\overline{R A S} f a l l s$. This allows each of the four DQ planes to be write enabled or disabled during the BMR-WT. The MKD input is used to enable or disable the SMI mode. STS must be LOW at $\overline{\text { RAS }}$ time to transfer non-inverted BMR data to the DRAM row selected.

## BMR INVERTED WRITE TRANSFER (BMR-IWT)

As with the BMR INVERTED READ TRANSFER, the 2048 bits involved in the transfer may be inverted while being transferred. Taking STS HIGH at RAS time will cause the BMR data to be inverted before it is stored in the selected DRAM row. Theother control and DQ (mask) inputs are the same as the BMR-WT.

## SAM-TO-BMR TRANSFER (SAM-BMR)

The contents of either SAM may be transferred to the BMR in the same manner that a DRAM row is transferred. In this case, DSF1 is HIGH to indicate that the SAM is the source of the data instead of the DRAM. ( $\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ is used to indicate the direction of the transfer and must be LOW, when $\overline{R A S}$ falls, for a SAM-TO-BMR TRANSFER. STS is no longer used to select between normal and inverted data, it now indicates which SAM is involved in the transfer. Since a SAM-TO-BMR TRANSFER "reads" data from the SAM, the SAM will be placed into input mode by this transfer cycle. The MKD input is still used to determine if the SMI mode will be enabled after the transfer is completed. Since no DRAM access is involved, it is not necessary to provide any particular ROW address at $\overline{\mathrm{RAS}}$ time. However, whichever ROW address is present at $\overline{R A S}$ time will be used as the address for a $\overline{\text { RAS-ONLY REFRESH. Since a SAM is }}$ involved in the transfer, a new SAM starting Address (or Tap) will be loaded at $\overline{\text { CAS }}$ time. This address will beloaded into the serial address counter of the SAM selected by STS at $\overline{\mathrm{RAS}}$ time.

Note: Any SAM/BMR TRANSFER will take the device out of the split SAM mode, if it was in that mode before the transfer.

## BMR-TO-SAM TRANSFER (BMR-SAM)

The contents of the BMR may also be transferred to one of the SAM registers. The $(\overline{\mathrm{ME}}) / \overline{\mathrm{WE}}$ input is used to indicate the direction of the transfer and must be HIGH for a BMR-TO-SAM TRANSFER. STS is LOW to select SAMa or HIGH to select SAMb as the destination for the BMR data. The
remaining inputs and functionality are identical to the SAM-TO-BMR TRANSFER. Since a BMR-TO-SAM TRANSFER writes new data to the selected SAM register, the I/O for the SAM involved will be placed in the output mode and a new Tap address will be loaded when $\overline{\text { CAS }}$ falls.

## CLEAR BIT MASK REGISTER (CLR-BMR)

The entire contents of the BMR can be cleared (set all bit LOW) within a single transfer cycle by performing a CLEAR BMR cycle. Unlike the other cycles that access the BMR, TRM is LOW at $\overline{\text { RAS }}$ time for the CLEAR BIT MASK REGISTER function. $\overline{\mathrm{TR}} /(\overline{\mathrm{OE}})$ is LOW to indicate that the cycle is a transfer cycle (although there is really no data transfer involved). The CLR-BMR function is selected when $\overline{\mathrm{ME}} /(\overline{\mathrm{WE}})$, DSF1 and DSF2 are HIGH when RAS falls.

When the BMR is cleared, all data will be masked when a BIT MASKED TRANSFER cycle is performed.

The BMR INVERTED WRITE and BMR WRITE TRANSFERS can be used with the CLR-BMR function to set or clear, respectively, any DRAM row. The CLR-BMR function is used to clear the BMR then the BMR TRANSFERS are performed to the addressed DRAM row.
The CLEAR BIT MASK REGISTER function is useful when using the SERIAL MASK INPUT mode. It is automatically performed (when in the SMI mode) when data is transferred from SAMb to the DRAM (see SERIAL MASK INPUT section).

## SERIAL MASK INPUT (SMI)

Whenever the BMR is accessed, the MKD input is sensed and latched into the BMR control logic. If the MKD pin is LOW at $\overline{\mathrm{RAS}}$ time the Serial Mask Input (SMI) mode is disabled and the BMR may only be loaded via internal transfer cycles. If MKD is HIGH when $\overline{\mathrm{RAS}}$ falls, during a BMR access, then the BMR control logic enables the SMI mode and the BMR may be serially loaded via the MKD input.
When SMI is enabled, the MKD input is coupled to all eight of the bit mask register's DQ planes (see Figure 10). The SCb clock input and SAMb's address counter are used to input data to SAMb and the BMR. SEb will enable (LOW) or disable (HIGH) input data to SAMb and the BMR, the address count will increment regardless of the state of SEb.
The most common application of the SMI mode is to automatically load a transfer mask with the new data written to SAMb . To initialize the sequence, the BMR is cleared (CLR-BMR) with MKD=HIGH at $\overline{\mathrm{RAS}}$ time to enable the SMI mode. Then SAMb is prepared to accept input data by performing PSEUDO WRITE TRANSFER. The SAM starting address loaded will also apply to the BMR. For every address location that to which data is written in SAMb, the corresponding address location in the BMR will be written to the value present on MKD (all eight planes of the BMR will be written). After the input of data to SAMb


Figure 10 SERIAL-MASK-INPUT MODE BLOCK DIAGRAM
is complete, a BIT MASKED WRITE TRANSFER may be done and only the unmasked data from SAMb will be transferred to the DRAM. The BMR will be cleared automatically after a BIT MASKED WRITE TRANSFER from SAMb, if the device is in the SMI mode. A BMSWT from SAMb will clear on half of the BMR. This allows a new mask to beloaded during the next fill of SAMb, without performing a CLR-BMR cycle. If data is to be masked during the BMWT, then MKD is held LOW when the corresponding SAMb data is written. If the data is to be written (unmasked) to the DRAM during the BMWT, then MKD is held HIGH when the corresponding SAMb location is written. The function of the MKD pin is dependent on the I/Odirection of SAMb. MKD is an input only, if SMI is enabled and SAMb is in input mode. If SMI is enabled and SAMb is in output mode, the MKD input is a "don't care," no new data may be written to the BMR via MKD. MKD is also "don't care" if the SMI mode is disabled. Note that the mask data loaded via SAMb may also be applied toaSAMaTRANSFER cycle, if the mask hasn't been cleared by a SAMb TRANSFER or a CLR-BMR cycle. The BMR will not be cleared after a TRANSFER involving SAMa.

## POWER UP INITIALIZATION

When Vcc is initially supplied or when refresh is interrupted for more than 8 ms the device must be initialized.

After Vcc is at specified operating conditions, for $100 \mu \mathrm{~s}$ (minimum), eight RAS cycles must be executed to initalize the dynamic memory array. When the device is initialized the DRAMI/O pins (DQs) are in a High-Z state, regardless of the state of $(\overline{\mathrm{TR}}) / \overline{\mathrm{OE}}$. The DRAM array will contain random data.
The SAM portion of the device is completely static and does not require an initialization cycle. Both SAM ports will power up in the serial input mode (WRITE TRANSFERs) and the SAM I/O pins (SDQ's) are in a High-Z state, regardless of the state of $\overline{S E}$ ab. Also, SPLIT TRANSFER and SMI modes are disabled. Both QSF (MT43C8128) outputs are in the High-Z state. BothSAMs as well as bit mask, color, and DRAM mask registers all contain random data after power-up.

MULTIPORT DRAM

TRUTH TABLE ${ }^{1}$

| CODE | FUNCTION | RAS FALLING EDGE |  |  |  |  |  |  |  |  | CAS FALL | AO-A8 ${ }^{2}$ |  | DQ1-DQ8 ${ }^{3}$ |  | REGISTERS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\overline{\text { CAS }}$ | $\overline{T R} / \overline{O E}$ | $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}{ }^{10}$ | DSF1 | DSF2 | SEa, SEb | TRM | MKD | STS | DSF1 | $\overline{\text { RAS }}$ | $\begin{aligned} & \overline{\text { CAS }} \\ & \mathrm{AB}=\mathrm{X} \end{aligned}$ | RAS | CAS $^{4}$ | MASK | COLOR |

DRAM OPERATIONS

| CBR | CAS-BEFORE-®AS REFRESH | 0 | $1^{11}$ | $1^{11}$ | X | X | X | X | X | X | X | X | X | X | X | X | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ROR | $\overline{\text { RAS ONLY REFRESH }}$ | 1 | 1 | X | X | X | X | X | X | X | - | ROW | - | X | - | X | X |
| RW | NORMAL DRAM READ OR WRITE | 1 | 1 | 1 | 0 | $0{ }^{11}$ | X | X | X | X | 0 | ROW | COLUMN | X | VALID DATA | X | X |
| RWNM | NONPERSISTENT (LOAD AND USE) MASKED WRITE TO DRAM | 1 | 1 | 0 | 0 | $0^{11}$ | X | X | X | X | 0 | ROW | COLUMN | WRITE MASK | VALID DATA | LOAD \& USE | X |
| RWOM | PERSISTENT (USE REGISTER) MASKED WRITE TO DRAM | 1 | 1 | 0 | 1 | $0^{11}$ | X | X | X | X | 0 | ROW | COLUMN | X | VALID DATA | USE | X |
| BW | BLOCK WRITE TO DRAM (NO DATA MASK) | 1 | 1 | 1 | 0 | $0^{11}$ | X | X | X | X | 1 | ROW | $\begin{array}{\|l\|} \hline \text { COLUMN } \\ \text { (A2 - A7) } \\ \hline \end{array}$ | X | COLUMN MASK | X | USE |
| BWNM | NONPERSISTENT (LOAD \& USE) MASKED BLOCK WRITE TO DRAM | 1 | 1 | 0 | 0 | $0^{11}$ | X | X | X | X | 1 | ROW | $\begin{aligned} & \text { COLUMN } \\ & (\mathrm{A} 2 \text { - A7) } \end{aligned}$ | WRITE MASK | COLUMN MASK | LOAD \& USE | USE |
| BWOM | PERSISTENT (USE MASK REGISTER) MASKED BLOCK WRITE TO DRAM | 1 | 1 | 0 | 1 | $0^{11}$ | X | X | X | X | 1 | ROW | $\begin{array}{\|l} \hline \text { COLUMN } \\ \text { (A2 - A7) } \\ \hline \end{array}$ | X | COLUMN MASK | USE | USE |

## REGISTER OPERATIONS

| LMR | LOAD MASK REGISTER | 1 | 1 | 1 | 1 | $0^{11}$ | X | X | X | X | 0 | $\mathrm{X}^{5}$ | X | X | WRITE MASK | LOAD | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LCR | LOAD COLOR REGISTER | 1 | 1 | 1 | 1 | $0^{11}$ | X | X | X | X | 1 | $\mathrm{X}^{5}$ | X | X | $\begin{gathered} \text { COLOR } \\ \text { DATA } \end{gathered}$ | X | LOAD |

TRANSFER OPERATIONS

| RT | READ TRANSFER (DRAM-TO-SAM TRANSFER) | 1 | 0 | 1 | 0 | 0 | X | 0 | X | $\begin{array}{l\|} \hline 0=\text { SAMa } \\ 1=\text { SAMb } \end{array}$ | X | ROW | TAP ${ }^{6}$ | X | X | X | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SRT ${ }^{9}$ | SPLIT READ TRANSFER <br> (SPLIT DRAM-TO-SAM TRANSFER) | 1 | 0 | 1 | 1 | 0 | X | 0 | X | $\begin{array}{\|l\|} \hline 0=\text { SAMa } \\ 1=\text { SAMb } \\ \hline \end{array}$ | X | ROW | TAP ${ }^{6}$ | X | X | X | X |
| WT | WRITE TRANSFER (SAM-TO-DRAM TRANSFER) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | X | $\begin{array}{l\|} \hline 0=\text { SAMa } \\ 1=\text { SAMb } \end{array}$ | X | ROW | TAP ${ }^{6}$ | X | X | X | X |
| PWT | PSEUDO WRITE TRANSFER (SERIAL INPUT MODE ENABLE) | 1 | 0 | 0 | 0 | 0 | 1 | 0 | X | $\begin{array}{\|l\|} \hline 0=\text { SAMa } \\ 1=\text { SAM } \end{array}$ | X | $\mathrm{X}^{5}$ | TAP ${ }^{6}$ | X | X | X | X |
| SWT ${ }$ | SPLIT WRITE TRANSFER (SPLIT SAM-TO-DRAM TRANSFER WITH MASK) | 1 | 0 | 0 | 1 | 0 | X | 0 | X | $\begin{array}{l\|} \hline 0=\text { SAMa } \\ 1=\text { SAMb } \end{array}$ | X | ROW | TAP ${ }^{6}$ | $\begin{gathered} \text { DQ } \\ \text { MASK } \\ \hline \end{gathered}$ | X | LOAD \& USE | X |
| DMWT | DQ MASKED WRITE TRANSFER | 1 | 0 | 0 | 0 | 1 | X | 0 | X | $\begin{array}{l\|} \hline 0=\text { SAMa } \\ 1=\text { SAMb } \end{array}$ | X | ROW | TAP ${ }^{6}$ | $\begin{gathered} \mathrm{DQ} \\ \text { MASK } \\ \hline \end{gathered}$ | X | LOAD \& USE | X |

TRUTH TABLE ${ }^{1}$

| CODE | FUNCTION | RAS FALLING EDGE |  |  |  |  |  |  |  |  | CAS FALL | AO-A8 ${ }^{2}$ |  | DQ1- DQ4 ${ }^{3}$ |  | REGISTERS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\overline{C A S}$ | $\overline{\text { TR } / \overline{O E}}$ | $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}{ }^{0}$ | DSF1 | DSF2 | SEa, SEb | TRM | MKD | STS | DSF1 | RAS | $\begin{aligned} & \text { CAS } \\ & \text { A } 8=\mathrm{X} \end{aligned}$ | RAS | $\overline{C A S}^{4}$ | MASK | COLOR |

BIT MASK REGISTER OPERATIONS

| BMRRT | BMR READ TRANSFER (DRAM $\rightarrow$ BMR TRANSFER) | 1 | 0 | 1 | 0 | 0 | X | 1 | 0/1 ${ }^{7}$ | 0 | X | ROW | X | X | X | X | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BMRIRT | BMR READ TRANSFER (DRAM $\rightarrow$ INVERT $\rightarrow$ BMR TRANSFER) | 1 | 0 | 1 | 0 | 0 | X | 1 | 0/17 | 1 | X | ROW | X | X | X | X | X |
| BMRWT | BMR WRITE TRANSFER (BMR $\rightarrow$ DRAM TRANSFER) | 1 | 0 | 0 | 0 | 0 | X | 1 | 0/17 | 0 | X | ROW | X | $\begin{gathered} \hline \text { DQ } \\ \text { MASK } \end{gathered}$ | X | X | X |
| BMRIWT | BMR WRITE TRANSFER <br> (BMR $\rightarrow$ INVERT $\rightarrow$ DRAM TRANSFER) | 1 | 0 | 0 | 0 | 0 | X | 1 | 0/1 ${ }^{7}$ | 1 | X | ROW | X | $\begin{gathered} \mathrm{DQ} \\ \text { MASK } \\ \hline \end{gathered}$ | X | X | X |
| SAMBMR | SAM $\rightarrow$ BMR TRANSFER | 1 | 0 | 0 | 1 | 0 | X | 1 | 0/1 ${ }^{7}$ | $\begin{aligned} & 0=\text { SAMa } \\ & 1=\text { SAM } \end{aligned}$ | X | $\mathrm{X}^{5}$ | TAP ${ }^{6}$ | X | X | X | X |
| $\begin{aligned} & \text { BMR- } \\ & \text { SAM } \\ & \hline \end{aligned}$ | BMR $\rightarrow$ SAM TRANSFER | 1 | 0 | 1 | 1 | 0 | X | 1 | 0/1 ${ }^{7}$ | $\begin{aligned} & 0=\text { SAMa } \\ & 1=\text { SAMb } \end{aligned}$ | X | $\mathrm{X}^{5}$ | TAP ${ }^{6}$ | X | X | X | X |
| CLRBMR | CLEAR BIT MASK REGISTER (SETS BMR TO ALL "O's") | 1 | 0 | 1 | 1 | 1 | X | 0 | 0/1 ${ }^{7}$ | X | X | $\mathrm{X}^{5}$ | X | X | X | X | X |

## BIT MASKED TRANSFER OPERATIONS

| BMRT | BIT MASKED READ TRANSFER (BM DRAM $\rightarrow$ SAM TRANSFER) | 1 | 0 | 1 | 0 | 1 | X | 1 | X | $\begin{aligned} & 0=\text { SAM } a \\ & 1=\text { SAMb } \end{aligned}$ | X | ROW | TAP ${ }^{6}$ | X | X | X | X |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BMSRT ${ }^{9}$ | BIT MASKED SPLIT READ TRANSFER (BM SPLIT DRAM $\rightarrow$ SAM TRANSFER) | 1 | 0 | 1 | 1 | 1 | X | 1 | X | $\begin{aligned} & 0=\text { SAMa } \\ & 1=\text { SAMb } \end{aligned}$ | X | ROW | TAP ${ }^{6}$ | X | X | X | X |
| BMWT | BIT MASKED WRITE TRANSFER (BM SAM $\rightarrow$ DRAM TRANSFER) | 1 | 0 | 0 | 0 | 1 | X | 1 | $\mathrm{X}^{8}$ | $\begin{aligned} & 0=S A M a \\ & 1=S A M b \end{aligned}$ | X | ROW | TAP ${ }^{6}$ | X | X | X | X |
| BMSWT ${ }^{\text {a }}$ | BIT MASKED SPLIT WRITE TRANSFER (BM SPLIT SAM $\rightarrow$ DRAM TRANSFER) | 1 | 0 | 0 | 1 | 1 | X | 1 | $\mathrm{X}^{8}$ | $\begin{aligned} & 0=\text { SAMa } \\ & 1=\text { SAMb } \end{aligned}$ | X | ROW | TAP ${ }^{6}$ | $\begin{gathered} \text { DQ } \\ \text { MASK } \end{gathered}$ | X | $\begin{gathered} \text { LOAD \& } \\ \text { USE } \end{gathered}$ | X |

NOTES: 1. $0=\operatorname{LOW}\left(\mathrm{V}_{\mathrm{H}}\right), 1=\operatorname{HIGH}\left(\mathrm{V}_{\mathrm{tH}}\right), \mathrm{X}=$ "don't care", $-=$ "not applicable"
2. These columns show what must be present on the A0-A8 inputs when $\overline{R A S}$ falls and A0-A7 when $\overline{\text { CAS }}$ falls.
3. These columns show what must be present on the DQ1-DQ8 inputs when $\overline{R A S}$ falls and when $\overline{C A S}$ falls.
4. On WRITE cycles (except BLOCK WRITE), the input data is latched at the falling edge of $\overline{C A S}$ or $\overline{M E} / \overline{W E}$, whichever is later. Similarly, on READ cycles, the output data is enabled on the falling edge of $\overline{\mathrm{CAS}}$ or $\overline{\mathrm{TR}} / \mathrm{OE}$, whichever is later.
5. The ROW that is addressed will be refreshed, but no particular ROW address is required.
6. Tap Address; this is the SAM location that the first SC cycle will access. For SPLIT TRANSFERs the half receiving the transfer is determined by the MSB of the internal address counter. The SAM half not currently being accessed will be the half receiving the transfer. Column address A7 is a "don't care" for SPLIT TRANSFERS.
7. The Serial Mask Input mode (SMI) is enabled (" 1 ") or disabled (" 0 ") when the BMR is accessed (see BMR OPERATIONS). If SMI is enabled (MKD = "1"), mask data is serially clocked into the BMR with SCb and the BMR is automatically cleared after a BIT MASKED WRITE or BIT MASKED SPLIT WRITE TRANSFER cycle from SAMb. For BIT MASKED READ TRANSFERs to any SAM and BIT MASKED WRITE TRANSFERs from SAMa, the BMR is not cleared automatically.
8. If the SMI mode is enabled, mask data is clocked into the BMR with SCb. A HIGH will allow data from the SAM address location to be written to the DRAM, a LOW will mask data to the DRAM during a BIT MASKED WRITE or BIT MASKED SPLIT WRITE TRANSFER.
9. SPLIT TRANSFERs do not change SAM I/O direction.
10. SAM I/O direction is a function of the state of $\overline{M E} \overline{W E}$ at $\overline{R A S}$ time. If $\overline{M E} \overline{W E}$ is LOW, then the selected SAM is an input; if $\overline{M E} \overline{W E}$ is HIGH then the SAM is an output.
11. The MT43C8128/9 operates properly if this state is " $X$ ", but to allow for future functional enhancements it is recommended that they are driven as shown in the Truth Table.

## ABSOLUTE MAXIMUM RATINGS*


*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | $\mathrm{VCC}_{\mathrm{Cc}}$ | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | $\mathrm{V}_{\mathrm{IH}}$ | 2.4 | $\mathrm{~V} \mathrm{Cc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | $\mathrm{VIL}_{\mathrm{L}}$ | -1.0 | 0.8 | V | 1 |

## DC ELECTRICAL CHARACTERISTICS

(Notes 3, 4,5) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| INPUT LEAKAGE CURRENT <br> (any input ( $0 \mathrm{~V} \leq \mathrm{V} \operatorname{IN} \leq \mathrm{Vcc}$, all other pins not under test $=0 \mathrm{~V}$ ). | IL | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEAKAGE CURRENT (Dout is disabled, $0 \mathrm{~V} \leq \mathrm{Vout} \leq \mathrm{Vcc}$ ). | loz | -10 | 10 | $\mu \mathrm{A}$ |  |
| OUTPUT LEVELS <br> Output High Voltage (lout $=-2.5 \mathrm{~mA}$ ) | VoH | 2.4 |  |  |  |
| Output Low Voltage (lout $=2.5 \mathrm{~mA}$ ) | Vol |  | 0.4 | V | 1 |

## CAPACITANCE

$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}\right)$

| PARAMETER | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: Ao-A8, TRM, MKD | Cl1 |  | 5 | pF | 2 |
| Input Capacitance: $\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}, \overline{\mathrm{ME}} \overline{\mathrm{WE}}, \overline{\mathrm{TR}} / \overline{\mathrm{OE}}, \mathrm{SCa}, \mathrm{b}, \overline{\mathrm{SE}}, \mathrm{b}, \mathrm{DSF1} 1,2, \mathrm{STS}$ SSFa,b | $\mathrm{Cl}_{12}$ |  | 7 | pF | 2 |
| Input/Output Capacitance: DQ, SDQa,b | Cl/o |  | 9 | pF | 2 |
| Output Capacitance: QSFa,b | Co |  | 9 | pF | 2 |

CURRENT DRAIN, SAMa and SAMb IN STANDBY

| A | SYMBOL | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER/CONDITION |  | -8 | -10 | -12 | UNITS | NOTES |
| OPERATING CURRENT <br> ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling; ${ }^{\text {tRC }}={ }^{\mathrm{t} R C}$ (MIN)) | Icc1 | 100 | 90 | 80 | mA | 3, 4 |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\text { RAS }}=\mathrm{V}_{\mathrm{L}} \overline{\mathrm{CAS}}=$ Cycling; ${ }^{\text {PPC }}={ }^{\text {tPC }}(\mathrm{MIN})$ ) | Icc2 | 90 | 80 | 70 | mA | 3, 4 |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V}_{\mathbf{I H}}$, after $8 \overline{\mathrm{RAS}}$ cycles min) | Icc3 | 7 | 7 | 7 | mA |  |
| STANDBY CURRENT: CMOS INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{Vcc}-0.2 \mathrm{~V}$, <br> after $8 \overline{\text { RAS }}$ cycles min). All other inputs at $\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{Vss}+0.2 \mathrm{~V}$ | Icc4 | 1 | 1 | 1 | mA |  |
| REFRESH CURRENT: $\overline{\text { RAS }}$-ONLY ( $\overline{\mathrm{RAS}}=$ Cycling; $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}$ ) | Icc5 | 100 | 90 | 80 | mA | 3 |
| REFRESH CURRENT: $\overline{\text { CAS }}$-BEFORE- $\overline{\text { RAS }}$ ( RAS and $\overline{\mathrm{CAS}}=$ Cycling) | Icc6 | 90 | 80 | 70 | mA | 3,5 |
| TRANSFER CURRENT: SAM/DRAM DATA TRANSFER | Icc7 | 110 | 100 | 90 | mA | 3 |

## CURRENT DRAIN, SAMa and SAMb ACTIVE

(Notes 3, 4) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| PARAMETER/CONDITION | SYMBOL | -8 | -10 | -12 | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OPERATING CURRENT <br> ( $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}=$ Cycling; ${ }^{\mathrm{t} R C}={ }^{\mathrm{t}} \mathrm{RC}$ (MIN)) | Icc8 | 180 | 170 | 160 | mA |  |
| OPERATING CURRENT: FAST PAGE MODE ( $\overline{\mathrm{RAS}}=\mathrm{V}_{\mathrm{L}} \overline{\mathrm{CAS}}=$ Cycling; ${ }^{\text {tPC }}={ }^{\text {tPC }}(\mathrm{MIN})$ ) | Icc9 | 160 | 150 | 140 | mA |  |
| STANDBY CURRENT: TTL INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\overline{\mathrm{CAS}}=\mathrm{V} \boldsymbol{I H}$, after $8 \overline{\mathrm{RAS}}$ cycles min) | Icc10 | 85 | 85 | 85 | mA |  |
| STANDBY CURRENT: CMOS INPUT LEVELS <br> Power supply standby current ( $\overline{\mathrm{RAS}}=\mathrm{CAS}=\mathrm{Vcc}-0.2 \mathrm{~V}$, <br> after 8 RAS cycles min ). All other inputs at $\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{Vss}+0.2 \mathrm{~V}$ | IcC11 | 75 | 75 | 75 | mA |  |
| REFRESH CURRENT: $\overline{R A S}-O N L Y$ ( $\overline{\mathrm{RAS}}=$ Cycling; $\overline{\mathrm{CAS}}=\mathrm{V} / \mathrm{H}$ ) | Icc12 | 180 | 170 | 160 | mA |  |
| REFRESH CURRENT: $\overline{\text { CAS-BEFORE-RAS }}$ (RAS and $\overline{\mathrm{CAS}}=$ Cycling) | Icc13 | 170 | 160 | 150 | mA | 5 |
| TRANSFER CURRENT: SAM/DRAM DATA TRANSFER | Icc14 | 180 | 170 | 160 | mA |  |

## DRAM TIMING PARAMETERS

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| Random READ or WRITE cycle time | ${ }^{\text {t }} \mathrm{RC}$ | 150 |  | 180 |  | 210 |  | ns |  |
| READ-MODIFY-WRITE cycle time | ${ }^{\text {t }}$ RWC | 205 |  | 235 |  | 280 |  | ns |  |
| FAST-PAGE-MODE READ or WRITE cycle time | ${ }^{\text {t }} \mathrm{PC}$ | 45 |  | 55 |  | 65 |  | ns |  |
| FAST-PAGE-MODE READ-MODIFYWRITE cycle time | ${ }^{\text {t P PRWC }}$ | 100 |  | 110 |  | 140 |  | ns |  |
| Access time from $\overline{\text { RAS }}$ | ${ }^{\text {t }}$ RAC |  | 80 |  | 100 |  | 120 | ns | 14,17 |
| Access time from $\overline{\mathrm{CAS}}$ | ${ }^{\text {t }}$ CAC |  | 20 |  | 25 |  | 30 | ns | 15 |
| Access time from ( $\overline{\mathrm{TR}}$ )/OE | ${ }^{\text {t }} \mathrm{OE}$ |  | 20 |  | 25 |  | 30 | ns |  |
| Access time from column address | ${ }^{\text {t }}$ AA |  | 40 |  | 50 |  | 60 | ns |  |
| Access time from $\overline{\mathrm{CAS}}$ precharge | ${ }^{\text {t }}$ CPA |  | 45 |  | 55 |  | 65 | ns |  |
| $\overline{\text { RAS }}$ pulse width | ${ }^{\text {t }}$ RAS | 80 | 10,000 | 100 | 10,000 | 120 | 10,000 | ns |  |
| $\overline{\text { RAS pulse width (FAST PAGE MODE) }}$ | ${ }^{\text {t }}$ RASP | 80 | 100,000 | 100 | 100,000 | 120 | 100,000 | ns |  |
| RAS hold time | ${ }^{\text {t }}$ RSH | 20 |  | 25 |  | 30 |  | ns |  |
| $\overline{\text { RAS }}$ precharge time | ${ }^{\text {t }} \mathrm{RP}$ | 60 |  | 70 |  | 80 |  | ns |  |
| $\overline{\text { CAS }}$ pulse width | ${ }^{\text {t }}$ CAS | 20 | 10,000 | 25 | 10,000 | 30 | 10,000 | ns |  |
| $\overline{\text { CAS }}$ hold time | ${ }^{\text {t }} \mathrm{CSH}$ | 80 |  | 100 |  | 120 |  | ns |  |
| $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }}$ CPN | 15 |  | 15 |  | 20 |  | ns | 16 |
| $\overline{\text { CAS }}$ precharge time (FAST PAGE MODE) | ${ }^{\text {t }} \mathrm{CP}$ | 10 |  | 10 |  | 15 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{C A S}$ delay time | ${ }^{\text {t }} \mathrm{RCD}$ | 20 | 60 | 20 | 75 | 25 | 90 | ns | 17 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ precharge time | ${ }^{\text {t }}$ CRP | 5 |  | 5 |  | 10 |  | ns |  |
| Row address setup time | ${ }^{\text {t }}$ ASR | 0 |  | 0 |  | 0 |  | ns |  |
| Row address hold time | ${ }^{\text {t }} \mathrm{RAH}$ | 12 |  | 15 |  | 15 |  | ns |  |
| $\overline{R A S}$ to column address delay time | ${ }^{\text {t RAD }}$ | 17 | 40 | 20 | 50 | 25 | 60 | ns | 18 |
| Column address setup time | ${ }^{\text {t }}$ ASC | 0 |  | 0 |  | 0 |  | ns |  |
| Column address hold time | ${ }^{t} \mathrm{CAH}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Column address hold time (referenced to RAS) | ${ }^{t} A R$ | 60 |  | 70 |  | 85 |  | ns |  |
| Column address to RAS lead time | ${ }^{\text {t } R A L ~}$ | 40 |  | 50 |  | 60 |  | ns |  |
| Read command setup time | ${ }^{\text {t }}$ RCS | 0 |  | 0 |  | 0 |  | ns |  |
| Read command hold time (referenced to CAS) | ${ }^{t} \mathrm{RCH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| Read command hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }} \mathrm{RRH}$ | 0 |  | 0 |  | 0 |  | ns | 19 |
| $\overline{\text { CAS }}$ to output in Low-Z | ${ }^{\text {t CLZ }}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Output buffer turn-off delay | ${ }^{\text {t }}$ OFF | 0 | 20 | 0 | 20 | 0 | 30 | ns | 20 |
| Output Disable | ${ }^{\text {t }} \mathrm{OD}$ | 0 | 20 | 0 | 20 | 0 | 30 | ns |  |
| Output Disable hold time from start of write | ${ }^{\text {t OEH }}$ |  | 15 |  | 15 |  | 20 | ns |  |
| Output Enable to $\overline{\text { RAS }}$ delay | ${ }^{\text {t ORD }}$ |  | 0 |  | 0 |  | 0 | ns |  |

## DRAM TIMING PARAMETERS (Continued)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Notes: $6,7,8,9,10,11,12,13)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right.$ )

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| Write command setup time | ${ }^{\text {t }}$ WCS | 0 |  | 0 |  | 0 |  | ns | 21 |
| Write command hold time | ${ }^{\text {t }}$ WCH | 15 |  | 20 |  | 25 |  | ns |  |
| Write command hold time (referenced to RAS) | ${ }^{\text {t }}$ WCR | 60 |  | 75 |  | 85 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 20 |  | ns |  |
| Write command to $\overline{\text { RAS }}$ lead time | ${ }^{\text {t }} \mathrm{RWL}$ | 20 |  | 20 |  | 25 |  | ns |  |
| Write command to $\overline{\text { CAS }}$ lead time | ${ }^{\text {t }}$ CWL | 20 |  | 20 |  | 25 |  | ns |  |
| Data-in setup time | ${ }^{\text {t }}$ DS | 0 |  | 0 |  | 0 |  | ns | 22 |
| Data-in hold time | ${ }^{\text {t }} \mathrm{DH}$ | 20 |  | 20 |  | 25 |  | ns | 22 |
| Data-in hold time (referenced to $\overline{\mathrm{RAS}}$ ) | ${ }^{\text {t }}$ DHR | 60 |  | 70 |  | 90 |  | ns |  |
| $\overline{\text { RAS }}$ to $\overline{W E}$ delay time | ${ }^{\text {t }}$ RWD | 110 |  | 130 |  | 160 |  | ns | 21 |
| Column address to WE delay time | ${ }^{\text {t }}$ AWD | 70 |  | 80 |  | 100 |  | ns | 21 |
| $\overline{\mathrm{CAS}}$ to $\overline{\mathrm{WE}}$ delay time | ${ }^{\text {t }}$ CWD | 50 |  | 60 |  | 70 |  | ns | 21 |
| Transition time (rise or fall) | ${ }^{\text {t }}$ T | 3 | 50 | 3 | 50 | 3 | 50 | ns | 9, 10 |
| Refresh period ( 512 cycles) | ${ }^{\text {t }}$ REF |  | 8 |  | 8 |  | 8 | ms |  |
| $\overline{\text { RAS }}$ to $\overline{\text { CAS }}$ precharge time | ${ }^{\text {t }} \mathrm{RPC}$ | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\mathrm{CAS}}$ setup time <br>  | ${ }^{\text {t }} \mathrm{CSR}$ | 10 |  | 10 |  | 10 |  | ns | 5 |
| CAS hold time <br> (CAS-BEFORE-쥭 refresh) | ${ }^{\text {t }} \mathrm{CHR}$ | 30 |  | 30 |  | 30 |  | ns | 5 |
| $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}$ to $\overline{\mathrm{RAS}}$ setup time | ${ }^{\text {t }}$ WSR | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\text { ME/WE }}$ to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ RWH | 12 |  | 15 |  | 15 |  | ns |  |
| Mask data to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ MS | 0 |  | 0 |  | 0 |  | ns |  |
| Mask data to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }} \mathrm{MH}$ | 12 |  | 15 |  | 15 |  | ns |  |

## TRANSFER AND MODE CONTROL TIMING PARAMETERS

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) ( $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| TRANSFER command to RAS setup time | ${ }^{\text {t }}$ TLS | 0 |  | 0 |  | 0 |  | ns | 25 |
| TRANSFER command to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ TLH | 12 | 10,000 | 15 | 10,000 | 15 | 10,000 | ns | 25 |
| TRANSFER command to $\overline{R A S}$ hold time (REAL-TIME READ TRANSFER only) | ${ }^{\text {t }}$ RTH | 70 | 10,000 | 80 | 10,000 | 90 | 10,000 | ns | 25 |
| TRANSFER command to $\overline{\text { CAS }}$ hold time (REAL-TIME READ TRANSFER only) | ${ }^{\text {t }}$ CTH | 20 |  | 25 |  | 30 |  | ns | 25 |
| TRANSFER command to column address hold time (For REAL-TIME READ TRANSFER only) | ${ }^{\text {t }}$ ATH | 25 |  | 30 |  | 35 |  | ns | 25 |
| TRANSFER command to SC lead time | ${ }^{\mathrm{T}}$ TSL | 5 |  | 5 |  | 5 |  | ns | 25 |
| TRANSFER command to $\overline{\text { RAS }}$ HIGH lead time | ${ }^{\text {t }}$ TRL | 0 |  | 0 |  | 0 |  | ns | 25 |
| TRANSFER command to $\overline{\text { RAS }}$ delay time | ${ }^{\text {t }}$ TRD | 15 |  | 15 |  | 15 |  | ns | 25 |
| TRANSFER command to $\overline{\text { CAS }}$ HIGH lead time | ${ }^{\text {t }}$ TCL | 0 |  | 0 |  | 0 |  | ns | 25 |
| TRANSFER command to $\overline{\text { CAS }}$ delay time | ${ }^{\text {t }}$ TCD | 15 |  | 15 |  | 15 |  | ns | 25 |
| First SC edge to TRANSFER command delay time | ${ }^{\text {t }}$ TSD | 10 |  | 10 |  | 10 |  | ns | 25 |
| $\overline{\text { RAS }}$ to first SC edge delay time | ${ }^{\text {t }}$ RSD | 80 |  | 95 |  | 105 |  | ns |  |
| $\overline{\text { CAS }}$ to first SC edge delay time | ${ }^{\text {t }}$ CSD | 25 |  | 30 |  | 35 |  | ns |  |
| Column address to first SC edge delay time | ${ }^{\text {t }}$ ASD | 50 |  | 60 |  | 65 |  | ns |  |
| Serial output buffer turn-off delay from RAS | ${ }^{\text {t }}$ SDZ | 10 | 35 | 10 | 40 | 10 | 45 | ns |  |
| SC to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ SRS | 30 |  | 30 |  | 40 |  | ns |  |
| $\overline{\text { RAS }}$ to SC delay time | ${ }^{\text {t }}$ SRD | 20 |  | 25 |  | 30 |  | ns |  |
| Serial data input to $\overline{\text { SE }}$ delay time | ${ }^{\text {t }}$ SZE | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\text { RAS to SD buffer turn-on time }}$ | ${ }^{\text {t }}$ SRO | 10 |  | 15 |  | 15 |  | ns |  |
| Serial data input delay from $\overline{\mathrm{RAS}}$ | ${ }^{\text {t }}$ SDD | 45 |  | 50 |  | 55 |  | ns |  |
| Serial data input to $\overline{\text { RAS }}$ delay time | ${ }^{\text {t }}$ SZS | 0 |  | 0 |  | 0 |  | ns |  |
| Serial Input Mode enable ( $\overline{\mathrm{SE}}$ ) to RAS setup time | ${ }^{\text {t }}$ ESR | 0 |  | 0 |  | 0 |  | ns |  |
| Serial Input Mode enable ( $\overline{\text { SE }}$ ) to $\overline{\mathrm{RAS}}$ hold time | ${ }^{\text {t }}$ REH | 12 |  | 15 |  | 15 |  | ns |  |
| NONTRANSFER command to RAS setup time | ${ }^{\text {t }} \mathrm{YS}$ | 0 |  | 0 |  | 0 |  | ns | 26 |
| NONTRANSFER command to RAS hold time | ${ }^{\text {t }} \mathrm{YH}$ | 12 |  | 15 |  | 15 |  | ns | 26 |
| DSF, TRM, STS, MKD to $\overline{\text { RAS }}$ setup time | ${ }^{\text {t }}$ FSR | 0 |  | 0 |  | 0 |  | ns |  |
| DSF, TRM, STS, MKD to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ RFH | 12 |  | 15 |  | 15 |  | ns |  |
| DSF to $\overline{\text { RAS }}$ hold time | ${ }^{\text {t }}$ FHR | 60 |  | 65 |  | 70 |  | ns |  |
| DSF to CAS setup time | ${ }^{\text {t }}$ FSC | 0 |  | 0 |  | 0 |  | ns |  |
| DSF to $\overline{\text { CAS }}$ hold time | ${ }^{t} \mathrm{CFH}$ | 15 |  | 20 |  | 20 |  | ns |  |
| SC to QSF delay time | ${ }^{\text {t }}$ SQD |  | 35 |  | 40 |  | 45 | ns |  |
| $\overline{\text { RAS }}$ to QSF delay time | ${ }^{\text {t }}$ RQD |  | 65 |  | 85 |  | 105 | ns |  |
| $\overline{\mathrm{CAS}}$ to QSF delay time | ${ }^{\text {t }}$ CQD |  | 35 |  | 40 |  | 45 | ns |  |
| TR/OE to QSF delay time | ${ }^{\text {t }}$ TQD |  | 25 |  | 30 |  | 35 | ns |  |
| SPLIT TRANSFER setup time | ${ }^{\text {t STS }}$ | 30 |  | 35 |  | 40 |  | ns |  |
| SPLIT TRANSFER hold time | ${ }^{\text {t }}$ STH | 30 |  | 35 |  | 40 |  | ns |  |
| Split SAM setup time to $\overline{\mathrm{RAS}}$ from last SC | ${ }^{\text {t }}$ SCR | 30 |  | 35 |  | 40 |  | ns | 29 |
| Split SAM hold time to $\overline{\text { RAS }}$ from first SC | ${ }^{\text {t RSC }}$ | 30 |  | 35 |  | 40 |  | ns | 29 |

MT43C8128/9

## SAM TIMING PARAMETERS

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -8 |  | -10 |  | -12 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Serial clock cycle time | ${ }^{\text {t }}$ SC | 25 |  | 30 |  | 35 |  | ns |  |
| Access time from SC | ${ }^{\text {t }}$ SAC |  | 25 |  | 30 |  | 35 | ns | 24 |
| SC precharge time (SC LOW time) | ${ }^{\text {t }}$ SP | 10 |  | 10 |  | 12 |  | ns |  |
| SC pulse width (SC HIGH time) | ${ }^{\text {t }}$ SAS | 5 |  | 10 |  | 12 |  | ns |  |
| Access time from $\overline{\mathrm{SE}}$ | ${ }^{\text {t }}$ SEA |  | 15 |  | 20 |  | 30 | ns | 24 |
| $\overline{\text { SE }}$ precharge time | ${ }^{\text {t }}$ SEP | 10 |  | 15 |  | 15 |  | ns |  |
| $\overline{\text { SE pulse width }}$ | ${ }^{\text {t }}$ SE | 10 |  | 15 |  | 15 |  | ns |  |
| Serial data out hold time after SC HIGH | ${ }^{\text {t }} \mathrm{SOH}$ | 5 |  | 5 |  | 5 |  | ns | 24 |
| Serial output buffer turn-off delay from $\overline{\text { SE }}$ | ${ }^{\text {t }}$ SEZ | 0 | 12 | 0 | 15 | 0 | 25 | ns | 24 |
| Serial data in setup time | ${ }^{t}$ SDS | 0 |  | 0 |  | 0 |  | ns | 24 |
| Serial data in hold time | ${ }^{\text {t }}$ SDH | 10 |  | 15 |  | 20 |  | ns | 24 |
| SERIAL INPUT (Write) Enable setup time | ${ }^{\text {t }}$ SWS | 0 |  | 0 |  | 0 |  | ns |  |
| SERIAL INPUT (Write) Enable hold time | ${ }^{\text {t }}$ SWH | 15 |  | 15 |  | 25 |  | ns |  |
| SERIAL INPUT (Write) Disable setup time | ${ }^{\text {t }}$ SWIS | 0 |  | 0 |  | 0 |  | ns |  |
| SERIAL INPUT (Write) Disable hold time | ${ }^{\text {t }}$ SWIH | 15 |  | 15 |  | 25 |  | ns |  |
| SSF to SC setup time | ${ }^{\text {t }}$ SFS | 0 |  | 0 |  | 0 |  | ns | 29 |
| SSF to SC hold time | ${ }^{\text {t }}$ SFH | 15 |  | 20 |  | 20 |  | ns | 29 |
| SSF LOW to SC HIGH delay | ${ }^{\text {t }}$ SFD | 0 |  | 0 |  | 0 |  | ns | 29 |

## NOTES

1. All voltages referenced to Vss.
2. This parameter is sampled. Capacitance is calculated from the equation $C=\underline{I \Delta t}$ with $\Delta V=3 \mathrm{~V}$ and $\mathrm{VCC}=$ 5 V . $\Delta \mathrm{V}$
3. Icc is dependent on cycle rates.
4. Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the outputs open.
5. Enables on-chip refresh and address counters.
6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right)$ is assured.
7. An initial pause of $100 \mu$ s is required after power-up followed by any $8 \overline{\mathrm{RAS}}$ cycles before proper device operation is assured. The $8 \overline{\mathrm{RAS}}$ cycle wake-up should be repeated any time the 8 ms refresh requirement is exceeded.
8. AC characteristics assume ${ }^{t} T=5 n s$.
9. VIH MIN and VIL MAX are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and $V_{I H}$ ).
10. In addition to meeting the transition rate specification, all input signals must transit between $V_{\text {IH }}$ and VIL (or between Vil and $V_{\text {IH }}$ ) in a monotonic manner.
11. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}, \mathrm{DRAM}$ data outputs (DQ1-DQ8) is high impedance.
12. If $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IL}}$, DRAM data outputs (DQ1-DQ8) may contain data from the last valid READ cycle.
13. DRAM output timing measured with a load equivalent to 1 TTL gate and 50 pF . Output reference levels: $\mathrm{VOH}=2.0 \mathrm{~V} ; \mathrm{VOL}=0.8 \mathrm{~V}$.
14. Assumes that ${ }^{t} R C D<{ }^{t} R C D$ (MAX). If ${ }^{t} R C D$ is greater than the maximum recommended value shown in this table, ${ }^{t}$ RAC will increase by the amount that ${ }^{t} R C D$ exceeds the value shown.
15. Assumes that ${ }^{t} R C D \geq^{t} R C D$ (MAX).
16. If $\overline{\mathrm{CAS}}$ is LOW at the falling edge of $\overline{\mathrm{RAS}}, \mathrm{DQ}$ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, $\overline{\text { CAS }}$ must be pulsed HIGH for ${ }^{t} \mathrm{CPN}$.
17. Operation within the ${ }^{t} R C D$ (MAX) limit ensures that ${ }^{t} R A C$ (MAX) can be met. ${ }^{t} R C D$ (MAX) is specified as a reference point only; if ${ }^{t} R C D$ is greater than the speci fied ${ }^{t}$ RCD (MAX) limit, then access time is controlled exclusively by ${ }^{\mathrm{t}} \mathrm{CAC}$.
18. Operation within the ${ }^{t}$ RAD (MAX) limit ensures that ${ }^{t} R C D(M A X)$ can be met. ${ }^{t} R A D(M A X)$ is specified as
a reference point only; if ${ }^{t} R A D$ is greater than the specified ${ }^{t}$ RAD (MAX) limit, then access time is controlled exclusively by ${ }^{\mathrm{t}} \mathrm{AA}$.
19. Either ${ }^{t} \mathrm{RCH}$ or ${ }^{\mathrm{t}} \mathrm{RRH}$ must be satisfied for a READ cycle.
20. ${ }^{\text {t }}$ OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
21. ${ }^{t} \mathrm{WCS},{ }^{t} \mathrm{RWD},{ }^{t} \mathrm{AWD}$ and ${ }^{\mathrm{t}} \mathrm{CWD}$ are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If ${ }^{\mathrm{t}} \mathrm{WCS} \geq$ ${ }^{t}$ WCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$. If ${ }^{\mathrm{t}} \mathrm{WCS} \leq$ ${ }^{\mathrm{t}}$ WCS (MIN), the cycle is a LATE-WRITE and $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ must control the output buffers during the write to avoid data contention. If ${ }^{t} R W D \geq{ }^{t} R W D$ (MIN), ${ }^{t} A W D \geq{ }^{t} A W D$ (MIN) and ${ }^{t} C W D \geq{ }^{t} C W D$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of the output buffers (at access time and until CAS goes back to $\mathrm{V}_{\mathrm{IH}}$ ) is indeterminate but the WRITE will be valid, if ${ }^{\mathrm{t}} \mathrm{OD}$ and ${ }^{\mathrm{t}} \mathrm{OEH}$ are met. See the LATE-WRITE AC Timing diagram.
22. These parameters are referenced to $\overline{\mathrm{CAS}}$ leading edge in early WRITE cycles and $\overline{\mathrm{ME}} / \overline{\mathrm{WE}}$ leading edge in late WRITE or READ-WRITE cycles.
23. During a READ cycle, if $\overline{T R} / \overline{\mathrm{OE}}$ is LOW then taken HIGH, DQ goes open. The DQs will go open with $\overline{\mathrm{O}} \overline{\mathrm{E}}$ or $\overline{\mathrm{CAS}}$, whichever goes HIGH first.
24. SAM output timing is measured with a load equivalent to 1 TTL gate and 30 pF . Output reference levels: $\mathrm{VOH}=2.0 \mathrm{~V} ; \mathrm{VOL}=0.8 \mathrm{~V}$.
25. TRANSFER command means that $\overline{\mathrm{TR}} / \overline{\mathrm{OE}}$ is LOW when RAS goes LOW.
26. NON-TRANSFER command means that $\overline{T R} / \overline{\mathrm{OE}}$ is HIGH when $\overline{\mathrm{RAS}}$ goes LOW.
27. LATE-WRITE and READ-MODIFY-WRITE cycles must have ${ }^{t} \mathrm{OD}$ and ${ }^{\mathrm{t}} \mathrm{OEH}$ met ( $\overline{\mathrm{OE}}$ HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if $\overline{\mathrm{CAS}}$ remains LOW and $\overline{\mathrm{OE}}$ is taken LOW after ${ }^{\mathrm{t}} \mathrm{OEH}$ is met. If $\overline{\mathrm{CAS}}$ goes HIGH prior to $\overline{\mathrm{OE}}$ going back LOW, the DQs will remain open.
28. Applies to the MT43C8128 only.
29. Applies to the MT43C8129 only.

## DRAM READ CYCLE



Z/Z Dont care
UNDEFINED

DRAM FAST PAGE MODE READ CYCLE


WRITE CYCLE FUNCTION TABLE ${ }^{1}$

| LOGIC STATES ${ }^{2}$ |  |  |  |  |  | FUNCTION | CODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RAS Falling Edge |  |  | CAS Falling Edge |  |  |  |  |
| A ME/WE | $\begin{gathered} \mathrm{B} \\ \mathrm{DSF} 1 \end{gathered}$ | $\begin{gathered} \mathrm{C} \\ \mathrm{DQ} \text { (Input) } \end{gathered}$ | D ME/WE | $\begin{gathered} \mathrm{E} \\ \mathrm{DSF} 1 \end{gathered}$ | $\begin{gathered} \mathrm{F} \\ \mathrm{DQ} \text { (Input) } \end{gathered}$ |  |  |
| 1 | 0 | X | 0/15 | 0 | DRAM | Normal DRAM WRITE | RW |
| 0 | 0 | Write Mask | 0/15 | 0 | DRAM (Masked) | NONPERSISTENT (Load and Use) MASKED WRITE to DRAM | RWNM |
| 0 | 1 | X | 0/15 | 0 | DRAM (Masked) | PERSISTENT (Use Register) MASKED WRITE to DRAM | RWOM |
| 1 | 0 | X | $\mathrm{X}^{3}$ | 1 | Column Mask | BLOCK WRITE to DRAM (No Data Mask) | BW |
| 0 | 0 | Write Mask | $\mathrm{X}^{3}$ | 1 | Column Mask | NONPERSISTENT (Load and Use) MASKED BLOCK WRITE to DRAM | BWNM |
| 0 | 1 | X | $\mathrm{X}^{3}$ | 1 | Column Mask | PERSISTENT (Use Register) <br> MASKED BLOCK WRITE to DRAM | BWOM |
| 1 | 1 | X | $\mathrm{X}^{4}$ | 0 | Write Mask | LOAD MASK REGISTER | LMR |
| 1 | 1 | X | $\mathrm{X}^{4}$ | 1 | Color <br> Data | LOAD COLOR REGISTER | LCR |

NOTE: 1. Refer to this function table to determine the logic states of " $A$ ", " $B$ ", " $C$ ", " $D$ ", " $E$ " and " $F$ " for the WRITE cycle timing diagrams on the following pages.
2: TRM, MKD and STS are "don't care" for all WRITE cycles.
3. $\overline{W E}$ is a "don't care" for BLOCK WRITE cycles. It occurs on the falling edge of $\overline{\text { CAS. }}$
4. Register load cycles can be either EARLY or LATE-WRITE cycles.
5. If $\overline{M E} / \overline{W E}$ is LOW, an EARLY-WRITE is performed; if it is HIGH, a LATE-WRITE is performed if $\overline{M E} \overline{W E}$ falls after CAS.

DRAM EARLY-WRITE CYCLE


V/A DON'T CARE
UNDEFINED

NOTE: The logic states of "A", "B", "C", "D", "E" and "F" determine the type of WRITE operation performed. See the WRITE Cycle Function Table for a detailed description.

DRAM LATE-WRITE CYCLE


NOTE: 1. The logic states of " $A$ ", " $B$ ", " $C$ ", " $E$ ", and " $F$ " determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.
2. LATE-WRITE cycles are not valid for BLOCK WRITEs. ( $\overline{M E}) / \overline{W E}=$ "don't care" at the falling edge of $\overline{C A S}$.

## DRAM READ-WRITE CYCLE

 (READ-MODIFY-WRITE CYCLE)

NOTE: The logic states of "A", "B", "C", and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE ${ }^{1,2}$


NOTE: 1. READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST PAGE MODE.
2. The logic states of "A", "B", "C", "D", "E", and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM FAST-PAGE-MODE READ-WRITE CYCLE (READ-MODIFY-WRITE or LATE-WRITE CYCLES)


ZZZ dont care
UNDEFINED

NOTE: 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST PAGE MODE. Use the Write Function Table to determine the proper DSF1 state for the desired WRITE operation.
2: The logic states of "A", "B", "C", and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM $\overline{\text { RAS-ONLY REFRESH CYCLE }}$
(ADDR = AO-A8)


CAS-BEFORE-RAS REFRESH CYCLE


VIZ don't care
undefined
NOTE: 1. The MT43C8128/9 operates with this state as "don't care", but to allow for future functional enhancements it is recommended that they be driven as illustrated for system upgradability.

## DRAM HIDDEN-REFRESH CYCLE



NOTE: A HIDDEN REFRESH may also be performed after a WRITE or TRANSFER cycle. In the WRITE case, $\overline{M E} / \overline{\mathrm{WE}}$ $=$ LOW (when CAS goes LOW) and $\overline{T R} / \overline{O E}=$ HIGH. In the TRANSFER case, $\overline{T R} / \overline{O E}=$ LOW (when RAS goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of TR/OE.

## DRAM/BMR TRANSFER CYCLE FUNCTION TÄBLE

| LOGIC STATES |  |  |  |  |  |  | FUNCTION | CODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RAS Falling Edge |  |  |  |  |  |  |  |  |
| A ME/WE | $\begin{gathered} \mathbf{B} \\ \text { DSF1 } \\ \hline \end{gathered}$ | $\begin{gathered} \text { C } \\ \text { DSF2 } \end{gathered}$ | $\begin{gathered} D \\ \text { TRM } \\ \hline \end{gathered}$ | $\begin{gathered} \text { E } \\ \text { STS } \\ \hline \end{gathered}$ | $\begin{gathered} \mathbf{F} \\ \text { MKD } \end{gathered}$ | $\begin{array}{\|c\|} \hline \mathbf{G} \\ \mathbf{D Q} \text { (input) } \\ \hline \end{array}$ |  |  |
| 1 | 0 | 0 | 1 | 0 | X ${ }^{1}$ | X | BMR READ TRANSFER (DRAM $\rightarrow$ BMR TRANSFER) | BMR-RT |
| 1 | 0 | 0 | 1 | 1 | $\mathrm{X}^{1}$ | X | BMR $\overline{R E A D}$ TRANSFER ( $\mathrm{DRAM} \rightarrow$ invert $\rightarrow$ BMR TRANSFER) | BMR-IRT |
| 0 | 0 | 0 | 1 | 0 | $\mathrm{X}^{1}$ | MASK | BMR WRITE TRANSFER (BMR $\rightarrow$ DRAM TRANSFER) | BMR-WT |
| 0 | 0 | 0 | 1 | 1 | $\mathrm{X}^{1}$ | MASK | BMR WRITE TRANSFER (BMR $\rightarrow$ invert $\rightarrow$ DRAM TRANSFER) | BMR-IWT |
| 1 | 1 | 1 | 0 | X | ${ }^{1}$ | X | CLEAR BMR (CLR-BMR) | CLR- BMR |

DRAM/BMR TRANSFERS


NOTE: 1. Serial Mask Input mode is enabled if MKD = HIGH; disabled if MKD = LOW.
2. It is not necessary to drop CAS during a DRAM/BMR TRANSFER.

READ TRANSFER CYCLE FUNCTION TABLE ${ }^{1}$

| LOGIC STATES ${ }^{2}$ |  |  |  |  | FUNCTION | CODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RAS Falling Edge |  |  |  |  |  |  |
| $\begin{gathered} \text { A } \\ \text { DSF1 } \end{gathered}$ | $\begin{gathered} \mathrm{B} \\ \mathrm{DSF} 2 \end{gathered}$ | $\begin{gathered} \mathrm{C} \\ \text { TRM } \end{gathered}$ | $\begin{gathered} \mathrm{D} \\ \text { STS } \end{gathered}$ | $\begin{gathered} \hline \mathbf{E} \\ \text { MKD } \end{gathered}$ |  |  |
| 0 | 0 | 0 | $0 / 1^{2}$ | X | READ TRANSFER (DRAM $\rightarrow$ SAM) | RW |
| 1 | 0 | 0 | $0 / 1^{2}$ | X | SPLIT READ TRANSFER (DRAM $\rightarrow$ SAM) | SRT |
| 0 | 1 | 1 | 0/1 ${ }^{2}$ | X | BIT MASKED READ TRANSFER | BMRT |
| 1 | 1 | 1 | $0 / 1^{2}$ | X | BIT MASKED SPLIT READ TRANSFER | BMSRT |
| 1 | 0 | 1 | $0 / 1^{2}$ | $0 / 1^{3}$ | BMR $\rightarrow$ SAM TRANSFER | BMR-SAM |

NOTE: 1. Refer to this function table to determine the logic states of "A", "B", "C", "D" and " $E$ " for READ TRANSFER cycle timing diagrams on the following pages.
2. The state of STS at the falling edge of RAS determines the SAM involved in the transfer. When STS = LOW the transfer is to SAMa; when STS = HIGH the transfer is to SAMb.
3. Serial Mask Input mode is enabled if MKD $=$ HIGH; disabled if MKD $=$ LOW.

MT43C8128/9

## READ TRANSFER ${ }^{1,4}$ <br> (DRAM-TO-SAM TRANSFER)

(When part was previously in the SERIAL INPUT mode)

2. $\overline{\mathrm{CAS}}$ is used to load the Tap address. If $\overline{\mathrm{CAS}}$ does not fall, the last Tap address loaded for the addressed SAM will be reused.
3. There must be no rising edges on the SC input during this time period.
4. The logic states of "A", "B", "C", and "D" determine the type of TRANSFER operation performed. See the Read Transfer Cycle Function Table.
5. QSF $=0$ when the Lower SAM (bits 0-127) is being accessed. QSF = 1 when the Upper SAM (bits 128-255) is being accessed.

REAL-TIME READ TRANSFER ${ }^{1,4}$ (DRAM-TO-SAM TRANSFER) (When part was previously in the SERIAL OUTPUT mode)


NOTE: 1. SSF = "Don't Care"
2. $\overline{\mathrm{CAS}}$ is used to load the Tap address. If $\overline{\mathrm{CAS}}$ does not fall, the last Tap address loaded for the addressed
3. The $\overline{\text { SE }}$ pulse is shown to illustrate the serial output enable and disable timing. It is not required.
4. The logic states of " $A$ ", " $B$ ", " $C$ ", and " $D$ " determine the type of TRANSFER operation performed. See the Read Transfer Cycle Function Table.
5. QSF $=0$ when the Lower SAM (bits $0-127$ ) is being accessed.

QSF = 1 when the Upper SAM (bits 128-255) is being accessed.

## SPLIT READ TRANSFER ${ }^{3}$ (SPLIT DRAM-TO-SAM TRANSFER)



NOTE: 1. $\overline{\text { CAS }}$ is used to load the Tap address. If $\overline{\text { CAS }}$ does not fall, the last Tap address loaded for the addressed SAM will be reused for the idle half.
2. $\mathrm{QSF}=0$ when the Lower SAM (bits $0-127$ ) is being accessed.

QSF $=1$ when the Upper SAM (bits 128-255) is being accessed.
3. The logic states of "A", "B", "C", and "D" determine the type of TRANSFER operation performed. See the Read Transfer Cycle Function Table.

## WRITE TRANSFER CYCLE FUNCTION TABLE ${ }^{1}$

| LOGIC STATES |  |  |  |  |  |  |  | FUNCTION | CODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RAS Falling Edge |  |  |  |  |  |  | SC |  |  |
| $\begin{array}{\|c} \hline \text { A } \\ \text { DSF1 } \end{array}$ | $\begin{gathered} \hline \mathbf{B} \\ \text { DSF2 } \end{gathered}$ | $\begin{gathered} \mathrm{C} \\ \mathrm{DQ} \end{gathered}$ | $\begin{gathered} \hline \mathbf{D} \\ \text { TRM } \end{gathered}$ | ETS | $\frac{\mathbf{F}}{\mathbf{S E}}$ | $\begin{gathered} \mathrm{G} \\ \text { MKD } \end{gathered}$ | $\begin{gathered} \mathrm{H} \\ \text { MKD } \end{gathered}$ |  |  |
| 0 | 0 | X | 0 | 0/1² | 0 | X | - | WRITE TRANSFER (SAM $\rightarrow$ DRAM) | WT |
| 0 | 0 | X | 0 | $0 / 1^{2}$ | 1 | X | - | PSEUDO WRITE TRANSFER | PWT |
| 1 | 0 | mask | 0 | $0 / 1{ }^{2}$ | X | X | - | SPLIT WRITE TRANSFER (SAM $\rightarrow$ DRAM) | SWT |
| 0 | 1 | mask | 0 | $0 / 1^{2}$ | X | X | - | DQ MASKED WRITE TRANSFER (SAM $\rightarrow$ DRAM) | DMWT |
| 0 | 1 | X | 1 | $0 / 1^{2}$ | X | X | 0/14 | BIT MASKED WRITE TRANSFER (SAM $\rightarrow$ DRAM) | BMWT |
| 1 | 1 | mask | 1 | $0 / 1^{2}$ | X | X | 0/14 | BIT MASKED SPLIT WRITE TRANSFER (SAM $\rightarrow$ DRAM) | BMSWT |
| 1 | 0 | X | 1 | $0 / 1^{2}$ | X | $0 / 1^{3}$ | - | SAM $\rightarrow$ BMR TRANSFER | SAM-BMR |

NOTE: 1. Refer to this function table to determine the logic states of " $A$ ", " $B$ ", " $C$ ", " $D$ ", " $E$ ", " $F$ ", " $G$ ", and " $H$ " for WRITE TRANSFER cycle timing diagrams on the following pages.
2. The state of STS at the falling edge of RAS determines the SAM involved in the transfer. When STS = LOW the transfer is to SAMa; when SAM = HIGH the transfer is to SAMb.
3. Serial Mask Input (SMI) mode is enabled if MKD $=\mathrm{HIGH}$ and disabled if MKD $=$ LOW.
4. When in the SMI mode (see BMR transfer waveforms) MKD is the SMI data input. MKD data is clocked into all bit planes of the bit mask register with SCb. A logic "1" on MKD will allow data to pass through all the mask; a logic "0" will mask the corresponding location of the SAM during a BIT MASKED TRANSFER. BIT MASKED TRANSFERs to or from SAMa must not take place while mask data is being serially input via SCb and MKD.

WRITE TRANSFERIAL OUTPUT mode)


NOTE: 1. $\overline{\mathrm{CAS}}$ is used to load the Tap address. If $\overline{\mathrm{CAS}}$ does not fall, the last

ZZIA dont care
undefined
2. There must be no rising edges on the SC input during this time period.
3. $\overline{\mathrm{SE}}$ must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
4. The logic states of "A", "B", "C", "D", "E", "F", "G" and "H" determine the type of TRANSFER operation performed. See the Write Transfer Cycle Function Table.
5. QSF $=0$ when the Lower SAM (bits $0-127$ ) is being accessed.

QSF = 1 when the Upper SAM (bits 128-255) is being accessed. SSFa, $\mathrm{b}=$ "don't care" (MT43C8129).

WRITE TRANSFER ${ }^{4}$
(When part was previously in the SERIAL INPUT mode)


NOTE: 1. $\overline{\text { CAS }}$ is used to load the Tap address. If $\overline{\text { CAS }}$ does not fall,
VZZ dont care the last Tap address loaded for the addressed SAM will be reused.

UNDEFINED
2. $\overline{\mathrm{SE}}$ must be LOW to input new serial data, but the serial address register is incremented by SC regardless of $\overline{S E}$.
3. There must be no rising edges on the SC input during this time period.
4. The logic states of "A", "B", "C", "D", " $E$ ", " $F$ ", " $G$ " and " $H$ " determine the type of TRANSFER operation performed. See the Write Transfer Cycle Function Table.
5. QSF $=0$ when the Lower SAM (bits $0-127$ ) is being accessed.

QSF = 1 when the Upper SAM (bits 128-255) is being accessed. SSFa, b = "don't care" (MT43C8129).

## SPLIT WRITE TRANSFER ${ }^{3}$ (SPLIT SAM-TO-DRAM TRANSFER)



ZZDont care
NOTE: 1. $\overline{\mathrm{CAS}}$ is used to load the Tap address. If $\overline{\mathrm{CAS}}$ does not fall, the last UNDEFined Tap address loaded for the addressed SAM will be reused.
2. QSF $=0$ when the Lower SAM (bits $0-127$ ) is being accessed.

QSF $=1$ when the Upper SAM (bits 128-255) is being accessed.
3. The logic states of "A", "B", "C", "D", "E", and "H" determine the type of TRANSFER operation performed. See the Write Transfer Cycle Function Table.

## SAMa or SAMb SERIAL INPUT



SAMa or SAMb SERIAL OUTPUT


NOTE: $\overline{\text { SEa, }}$ SCa and SDQa are used when accessing SAMa and $\overline{\text { SEb }}$; SCb and SDQb are used when access in SAMb.
DYNAMIC RAMS ..... 1
DRAM MODULES ..... 2
MULTIPORT DRAMS ..... 3
STATIC RAMS ..... 4
SYNCHRONOUS SRAMS ..... 5
SRAM MODULES ..... 6
CACHE DATA SRAMS ..... 7
FIFO MEMORIES ..... 8
APPLICATION/TECHNICAL INFORMATION ..... 9
MILITARY INFORMATION ..... 10
PACKAGE INFORMATION ..... 11
SALES INFORMATION ..... 12

## SRAM PRODUCT SELECTION GUIDE

| Memory Configuration | Control Functions | Part Number | Access <br> Time (ns) | Package and Number of Pins |  |  |  |  |  | Process | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | PDIP | SOJ | CDIP | LCC | ZIP | TSOP |  |  |
| $16 \mathrm{~K} \times 1$ | CE only | MT5C1601 | 12 to 35 | 20 | 24 | 20 | 20 | - | - | CMOS | 4-1 |
| $64 \mathrm{~K} \times 1$ | CE only | MT5C6401 | 12 to 35 | 22 | 24 | 22 | - | - | - | CMOS | 4-9 |
| $256 \mathrm{~K} \times 1$ | CE only | MT5C2561 | 20 to 45 | 24 | 24 | 24 | 28 | - | - | CMOS | 4-17 |
| $1 \mathrm{Meg} \times 1$ | CE only | MT5C1001 | 25 to 45 | 28 | 28 | 28 | 32 | * | 28 | CMOS | 4-25 |
| $4 \mathrm{~K} \times 4$ | CE only | MT5C1604 | 12 to 35 | 20 | 24 | 20 | 20 | - | - | CMOS | 4-33 |
| 4K $\times 4$ | CE \& OE | MT5C1605 | 12 to 35 | 22 | 24 | 22 | - | - | - | CMOS | 4-41 |
| $4 \mathrm{~K} \times 4$ | Separate I/O | MT5C1606 | 12 to 35 | 24 | 24 | 24 | 28 | - | - | CMOS | 4-49 |
| $4 \mathrm{~K} \times 4$ | Separate I/O High-Z | MT5C1607 | 12 to 35 | 24 | 24 | 24 | 28 | - | - | CMOS | 4-49 |
| $16 \mathrm{~K} \times 4$ | CE only | MT5C6404 | 12 to 35 | 22 | 24 | 22 | - | - | - | CMOS | 4-57 |
| $16 \mathrm{~K} \times 4$ | CE \& OE | MT5C6405 | 12 to 35 | 24 | 24 | 24 | 28 | - | - | CMOS | 4-65 |
| $16 \mathrm{~K} \times 4$ | Separate I/O, CE1, CE2 | MT5C6406 | 12 to 35 | 28 | 28 | 28 | 28 | - | - | CMOS | 4-73 |
| $16 \mathrm{~K} \times 4$ | Separate I/O High-Z | MT5C6407 | 12 to 35 | 28 | 28 | 28 | 28 | - | - | CMOS | 4-73 |
| $64 \mathrm{~K} \times 4$ | CE only | MT5C2564 | 20 to 45 | 24 | 24 | 24 | 28 | - | - | CMOS | 4-81 |
| $64 \mathrm{~K} \times 4$ | CE \& OE | MT5C2565 | 20 to 45 | 28 | 28 | 28 | 28 | - | - | CMOS | 4-89 |
| 256K x 4 | CE \& OE | MT5C1005 | 25 to 45 | 28 | 28 | 28 | 32 | * | 28 | CMOS | 4-97 |
| $2 \mathrm{~K} \times 8$ | CE \& OE | MT5C1608 | 12 to 35 | 24 | 24 | 24 | 24 | - | - | CMOS | 4-105 |
| $8 \mathrm{~K} \times 8$ | CE1, CE2 \& OE | MT5C6408 | 12 to 35 | 28 | 28 | 28 | 32 | - | - | CMOS | 4-113 |
| $32 \mathrm{~K} \times 8$ | CE \& OE | MT5C2568 | 20 to 45 | 28 | 28 | 28 | 32 | 28 | - | CMOS | 4-121 |
| $128 \mathrm{~K} \times 8$ | OE, CE1 \& CE2 | MT5C1008 | 25 to 45 | 32 | 32 | 32 | 32 | * | 32 | CMOS | 4-129 |
| $16 \mathrm{~K} \times 16$ | Latched Address/Data | MT5C2516 | 15 to 25 | - | - | - | - | - | - | CMOS | 4-137 |
| $16 \mathrm{~K} \times 18$ | Latched Address/Data | MT5C2818 | 15 to 25 | - | - | - | - | - | - | CMOS | 4-151 |

* ZIP introduced in Q191


## SRAM

## 16K x 1 SRAM

## FEATURES

- High speed: $12,15,20,25,30$ and $35 n s$
- High-performance, low-power, CMOS double metal process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ option
- All inputs and outputs are TTL compatible


## OPTIONS

- Timing

12 ns access -12
15 ns access -15
20ns access -20
25ns access -25
30ns access -30
35ns access -35

- Packages

Plastic DIP ( 300 mil )
Ceramic DIP ( 300 mil )
Ceramic LCC EC

- Two Volt Data Retention

None
C
DJ

## MARKING

-20-25-35L

## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.
For flexibility in high speed memory applications, Micron offers chip enable ( $\overline{\mathrm{CE}})$ on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design. The $x 1$ configuration features separate data input and output.

Writing to these devices is accomplished when write enable ( $\overline{\mathrm{WE}})$ and $\overline{\mathrm{CE}}$ inputs are both LOW. Reading is accomplished when $\overline{W E}$ remains HIGH and $\overline{\mathrm{CE}}$ goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5 V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)
20L/300 DIP
(A-4, B-4)


24L/300 SOJ (E-4)


## FUNCTIONAL BLOCK DIAGRAM



TRUTH TABLE

| MODE | $\overline{C E}$ | $\overline{\text { WE }}$ | OUTPUT | POWER |
| :--- | :---: | :---: | :---: | :---: |
| STANDBY | H | X | HIGH-Z | STANDBY |
| READ | L | H | Q | ACTIVE |
| WRITE | L | L | HIGH-Z | ACTIVE |

ABSOLUTE MAXIMUM RATINGS*
Voltage on Vcc supply relative to Vss $\qquad$ -1.0 V to +7.0 V Storage Temperature (Ceramic) ................. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Storage Temperature (Plastic) .................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation $55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Short Circuit Output Current 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | Vcc +1 | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | OV $\leq \mathrm{VIN} \leq \mathrm{Vcc}$ | ILI | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled, <br> $0 \mathrm{~V} \leq \mathrm{Vout} \leq \mathrm{Vcc}$ | ILo | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | $\mathrm{IoH}=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | IoL $=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |



## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | Cl |  | 7 | pF | 4 |
|  | $\mathrm{VCc}=5 \mathrm{~V}$ | Co |  | 7 | pF | 4 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Note 5, 13) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right.$ )

| DESCRIPTION |  | -12 |  | -15 |  | -20 |  | -25 |  | -30 |  | -35 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | UNITS | NOTES |

## READ Cycle

| READ cycle time | ${ }^{\text {t }} \mathrm{C}$ C | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }} \mathrm{AA}$ |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 11 |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | ns |  |
| Chip Enable to output in Low-Z | ${ }^{\text {t }}$ LZCE | 3 |  | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Disable to output in High-Z | thZCE |  | 7 |  | 7 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6,7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | tPD |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |

## WRITE Cycle

| WRITE cycle time | ${ }^{\text {t }}$ WC | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 12 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ S | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Data setup time | tDS | 7 |  | 8 |  | 10 |  | 10 |  | 15 |  | 15 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | ${ }^{\text {t }}$ LZWE | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | ns |  |
| Write Enable to output in High-Z | tHZWE |  | 6 |  | 6 |  | 8 |  | 10 |  | 12 |  | 15 | ns | 6 |

## MT5C1601

## AC TEST CONDITIONS

Input pulse levels Vss to 3.0 V
Input rise and fall times .5ns
Input timing reference levels ..............................1.5V
Output reference levels .....................................1.5V
Output load See Figures 1 and 2

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\text {t }} \mathrm{HZCE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=5 \mathrm{pF}$ as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZCE}$.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{\mathrm{WE}}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. ${ }^{\mathrm{t} R C}=$ Read Cycle Time.
12. Chip enable ( $\overline{\mathrm{CE}})$ and write enable ( $\overline{\mathrm{WE})}$ can initiate and terminate a WRITE cycle.
13. For automotive, industrial and extended temperature specifications refer to page 4-165.

## DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MaX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{aligned} & \overline{\overline{C E}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \mathrm{Vin} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \text { or } \leq 0.2 \mathrm{~V} \end{aligned}$ | $\mathrm{Vcc}=2 \mathrm{v}$ | ICCDR |  | 95 | 250 | $\mu \mathrm{A}$ |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{v}$ |  |  | 300 | 400 | $\mu \mathrm{A}$ |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{\text {t }}$ CDR | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {t }}$ R | ${ }^{\text {tRC }}$ |  |  | ns | 4, 11 |

## LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. $1^{8,9}$


READ CYCLE NO. 2 7, 8, 10


KZ Dont care
UNDEFINED

WRITE CYCLE NO. 1
(Write Enable Controlled) ${ }^{7,12}$


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{12}$


## SRAM

## 64K x 1 SRAM

## FEATURES

- High speed: $12,15,20,25,30$ and 35 ns
- High-performance, low-power, CMOS double metal process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ option
- All inputs and outputs are TTL compatible


## OPTIONS

- Timing

12ns access -12
15 ns access
20ns access -20
25ns access -25
30ns access -30
35ns access -35

- Packages

Plastic DIP ( 300 mil )
Ceramic DIP ( 300 mil )
Plastic SOJ ( 300 mil )
Ceramic LCC

- Two Volt Data Retention
-15
MARKING

None
C
DJ
EC

L

## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers chip enable ( $\overline{\mathrm{CE}})$ on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design. The $x 1$ configuration features separate data input and output.

Writing to these devices is accomplished when write enable ( $\overline{\mathrm{WE}}$ ) and $\overline{\mathrm{CE}}$ inputs are both LOW. Reading is accomplished when $\overline{W E}$ remains HIGH and $\overline{\mathrm{CE}}$ goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5 V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)

22L/300 DIP
(A-6, B-6)


24L/300 SOJ (E-4)

| A0 1 - | 24 | Vcc |
| :---: | :---: | :---: |
| A1 2 | 23 | A15 |
| A2 3 | 22 | A14 |
| A3 4 | 21 | - A13 |
| A4 5 | 20 | A12 |
| A5 6 | 19 | P NC |
| NC [ 7 | 18 | - A11 |
| A6 8 | 17 | A10 |
| A7 9 | 16 | - A9 |
| Q 10 | 15 | A8 |
| WE 11 | 14 | D |
| Vss 12 | 13 | CE |

## FUNCTIONAL BLOCK DIAGRAM



TRUTH TABLE

| MODE | CE | WE | DQ | POWER |
| :--- | :---: | :---: | :---: | :---: |
| STANDBY | H | X | HIGH-Z | STANDBY |
| READ | L | H | Q | ACTIVE |
| WRITE | L | L | HIGH-Z | ACTIVE |

ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc supply relative to Vss .........-1.0V to +7.0 VStorage Temperature (Ceramic) ................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Storage Temperature (Plastic) ................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Power Dissipation1W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | Vcc +1 | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | $\mathrm{OV} \leq \mathrm{Vin} \leq \mathrm{Vcc}$ | ILI | -5 | 5 | $\mu \mathrm{A}$ |  |
| Output Leakage Current | Output(s) Disabled, $\mathrm{OV} \leq \mathrm{Vout} \leq \mathrm{Vcc}$ | ILo | -5 | 5 | $\mu \mathrm{A}$ |  |
| Output High Voltage | $\mathrm{lOH}=-4.0 \mathrm{~mA}$ | Voн | 2.4 |  | V | 1 |
| Output Low Voltage | $\mathrm{loL}=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |



## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\begin{gathered} T_{A}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} \\ \mathrm{Vcc}=5 \mathrm{~V} \end{gathered}$ | Cl |  | 7 | pF | 4 |
| Output Capacitance |  | Co |  | 7 | pF | 4 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5,13$)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION |  | -12 |  | -15 |  | -20 |  | -25 |  | -30 |  | -35 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | UNITS | NOTES |

## READ Cycle

| READ cycle time | tRC | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | taA |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Chip Enable access time | ${ }^{\text {t ACE }}$ |  | 12 |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 | ns |  |
| Output hold from address change | toH | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | ns |  |
| Chip Enable to output in Low-Z | tLZCE | 3 |  | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Disable to output in High-Z | thZCE |  | 7 |  | 7 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6,7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | tPD |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |

## WRITE Cycle

| WRITE cycle time | tWC | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 12 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Data setup time | tDS | 8 |  | 8 |  | 10 |  | 10 |  | 15 |  | 15 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | ${ }^{\text {t }}$ LZWE | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | ns |  |
| Write Enable to output in High-Z | ${ }^{\text {th }}$ L WWE |  | 6 |  | 6 |  | 8 |  | 10 |  | 12 |  | 15 | ns | 6 |

## AC TEST CONDITIONS

Input pulse levels .................................... Vss to 3.0 V
Input rise and fall times .......................................... 5 ns
Input timing reference levels ................................. 1.5 V
Output reference levels ......................................... 1.5 V
Output load .............................. See Figures 1 and 2

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\text {t }} \mathrm{HZCE}$ and ${ }^{\text {tHZWE }}$ are specified with $\mathrm{CL}=5 \mathrm{pF}$ as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZCE}$.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{\mathrm{WE}}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. ${ }^{\mathrm{t}} \mathrm{RC}=$ Read Cycle Time.
12. Chip enable ( $\overline{\mathrm{CE}})$ and write enable ( $\overline{\mathrm{WE})}$ can initiate and terminate a WRITE cycle.
13. For automotive, industrial and extended temperature specifications refer to page 4-167.

## DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)



## LOW Vcc DATA RETENTION WAVEFORM



MT5C6401

## READ CYCLE NO. $1^{\text {8,9 }}$



READ CYCLE NO. $2^{7,8,10}$

KZ Dont care
UNDEFINED

## WRITE CYCLE NO. 1 <br> (Write Enable Controlled) ${ }^{7,12}$



WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{12}$


D/A DON'T CARE
UNDEFINED

## SRAM

## 256K x 1 SRAM

## FEATURES

- High speed: 20, 25,30,35, and 45ns
- High-performance, low-power, CMOS double metal process
- Single +5 V ( $\pm 10 \%$ ) power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ option
- All inputs and outputs are TTL compatible


## OPTIONS

- Timing

20 ns access -20
25ns access -25
30ns access -30
35ns access -35
45 ns access -45

- Packages

Plastic DIP (300 mil)
Ceramic DIP ( 300 mil )
Plastic SOJ ( 300 mil )
None
C
Ceramic LCC

- Two Volt Data Retention


## MARKING



Two Volt Data Retention


## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.
For flexibility in high speed memory applications,Micron offers chip enable ( $\overline{\mathrm{CE}}$ ) on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design. The x1 configuration features separate data input and output.
Writing to these devices is accomplished when write enable ( $\overline{\mathrm{WE}}$ ) and $\overline{\mathrm{CE}}$ inputs are both LOW. Reading is accomplished when $\overline{W E}$ remains HIGH and $\overline{\text { CE goes to LOW. }}$ The device offers a reduced power standby mode when disabled. Thisallows system designs toachievelow standby power requirements.

All devices operate from a single +5 V power supply and all inputs and outputs are fully TTL compatible.

FUNCTIONAL BLOCK DIAGRAM


TRUTH TABLE

| MODE | CE | WE | OUTPUT | POWER |
| :--- | :---: | :---: | :---: | :---: |
| STANDBY | H | X | HIGH-Z | STANDBY |
| READ | L | H | Q | ACTIVE |
| WRITE | L | L | HIGH-Z | ACTIVE |

## ABSOLUTE MAXIMUM RATINGS*


*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | Vcc +1 | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | OV $\leq$ VIN $\leq$ Vcc | ILI | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled, <br> OV $\leq$ Vout $\leq$ Vcc | ILo | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | IOH $=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | IoL $=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |


|  |  |  | MAX |  |  |  |  | Units | notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION | CONDITIONS | SYMBOL | -20 | -25 | -30 | -35 | -40 |  |  |
| Power Supply <br> Current: Operating | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{V} \text { L ; } ; V C=M A X \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} \mathrm{RC}, \\ \text { Outputs Open } \end{gathered}$ | Icc | 105 | 95 | 95 | 90 | 90 | mA | 3 |
| Power Supply Current: Standby | $\begin{gathered} \hline \overline{C E} \geq V_{I H} ; V_{C C}=M A X \\ f=M A X=1 /{ }^{t} R C, \\ \text { Outputs Open } \end{gathered}$ | IsB1 | 30 | 25 | 25 | 25 | 25 | mA |  |
|  | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{Vcc}_{\mathrm{Cc}}=\mathrm{MAX} \\ \mathrm{~V}_{\mathrm{IL}} \leq \mathrm{V}_{\mathrm{ss}}+0.2 \mathrm{~V} ; \\ \mathrm{V}_{\mathrm{IH}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{f}=0 \end{gathered}$ | IsB2 | 5 | 5 | 5 | 7 | 7 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | CI |  | 7 | pF | 4 |
| $n n$ | Output Capacitance | $\mathrm{Vcc}=5 \mathrm{~V}$ | Co |  | 5 | pF |
|  |  |  |  |  |  |  |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Note 5, 13) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION |  | -20 |  | -25 |  | -30 |  | -35 |  | -45 |  |  | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | UNITS |  |
| READ Cycle |  |  |  |  |  |  |  |  |  |  |  |  |  |
| READ cycle time | ${ }^{\text {t }} \mathrm{RC}$ | 20 |  | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Address access time | ${ }^{\text {t }} \mathrm{AA}$ |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Enable to output in Low-Z | t LZCE | 6 |  | 6 |  | 6 |  | 6 |  | 6 |  | ns |  |
| Chip Disable to output in High-Z | thZCE |  | 9 |  | 9 |  | 12 |  | 15 |  | 18 | ns | 6,7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | tPD |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| WRITE Cycle |  |  |  |  |  |  |  |  |  |  |  |  |  |
| WRITE cycle time | tWC | 20 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| Chip Enable to end of write | ${ }^{\text {t }}$ W | 15 |  | 15 |  | 18 |  | 20 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 15 |  | 15 |  | 18 |  | 20 |  | 25 |  | ns |  |
| Address setup time | ${ }^{t}$ AS | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 15 |  | 15 |  | 18 |  | 20 |  | 25 |  | ns |  |
| Data setup time | ${ }^{\text {t }}$ D | 10 |  | 10 |  | 12 |  | 15 |  | 20 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | tLZWE | 5 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Write Enable to output in High-Z | ${ }^{\text {t }}$ HZWE |  | 10 |  | 10 |  | 12 |  | 15 |  | 18 | ns | 6 |

## AC TEST CONDITIONS



## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\text {t }} \mathrm{HZCE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=5 \mathrm{pF}$ as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZCE}$.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{\mathrm{WE}}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. ${ }^{\text {t }} \mathrm{RC}=$ Read Cycle Time.
12. Chip enable ( $\overline{\mathrm{CE}})$ and write enable $(\overline{\mathrm{WE}})$ can initiate and terminate a WRITE cycle.
13. For automotive, industrial and extended temperature specifications refer to page 4-169.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{aligned} & \overline{\mathrm{CE}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \mathrm{ViN} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \quad \text { or } \leq 0.2 \mathrm{~V} \end{aligned}$ | $\mathrm{Vcc}=2 \mathrm{v}$ | ICCDR |  | 95 | 300 | $\mu \mathrm{A}$ |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{v}$ |  |  | 350 | 400 | $\mu \mathrm{A}$ |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{\text {t }}$ CDR | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {t } R}$ | trc |  |  | ns | 4, 11 |

## LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. $1^{\text {8, } 9}$


READ CYCLE NO. $2^{7,8,10}$


WRITE CYCLE NO. 1
(Write Enable Controlled) ${ }^{12}$


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{12}$


ZIZ don't care
undefined

## SRAM

## 1 MEG x 1 SRAM

## FEATURES

- High speed: 25,35 , and $45 n s$
- High-performance, low-power, CMOS double metal process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ option
- All inputs and outputs are TTL compatible


## OPTIONS

- Timing

25ns access -25
35ns access -35
45 ns access -45

- Packages

Plastic DIP ( 400 mil )
Ceramic DIP (400mil)
Plastic SOJ ( 400 mil )

- Two Volt Data Retention

MARKING

None
C
DJ

## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers chip enable ( $\overline{\mathrm{CE}})$ capability. This enhancement can place the outputs in a high impedance state for additional flexibility in system design.

Writing to this device is accomplished when write enable $(\overline{\mathrm{WE}})$ and $\overline{\mathrm{CE}}$ inputs are both LOW. Reading is accomplished when $\overline{\mathrm{WE}}$ remains HIGH while $\overline{\mathrm{CE}}$ goes LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5 V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)


## 28L/400 SOJ

 (E-9)| A10 1 | 28 | Vcc |
| :---: | :---: | :---: |
| A11 2 | 27 | A9 |
| A12 [ 3 | 26 | A8 |
| A13-4 | 25 | A7 |
| A14 5 | 24 | A6 |
| A15 6 | 23 | A5 |
| NC 17 | 22 | A4 |
| A16 8 | 21 | $\square \mathrm{NC}$ |
| A17 9 | 20 | A3 |
| A18 10 | 19 | A2 |
| A19 [11 | 18 | A1 |
| Q 12 | 17 | A0 |
| WE [13 | 16 | 7 D |
| Vss [14 | 15 | $\overline{C E}$ |

FUNCTIONAL BLOCK DIAGRAM


NOTE: The two least significant row address bits (A6 and A14) are encoded using a gray code.

TRUTH TABLE

| MODE | $\overline{\text { CE }}$ | $\overline{\text { WE }}$ | DQ | POWER |
| :--- | :---: | :---: | :---: | :--- |
| STANDBY | H | X | HIGH-Z | STANDBY |
| READ | L | H | Q | ACTIVE |
| WRITE | L | L | D | ACTIVE |

ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc supply relative to Vss .........-1.0V to +7.0 VStorage Temperature (Ceramic)$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) ..... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..... 1W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | $\mathrm{VCc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | OV $\leq$ VIN $\leq$ Vcc | ILI | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled, <br> OV $\leq$ Vout $\leq \mathrm{Vcc}$ | ILO | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | $\mathrm{IOH}=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | IoL $=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |


| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Current: Operating | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{LL}} ; V_{c c}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} R C, \\ \text { Outputs Open } \end{gathered}$ | Icc |  | 120 | mA | 3 |
| Power Supply Current: Standby | $\begin{gathered} \overline{C E} \geq V_{I H} ; V_{c c}=M A X \\ f=M A X=1 /{ }^{t} R C, \\ \text { Outputs Open } \end{gathered}$ | Isb1 |  | 30 | mA |  |
|  |  | Isb2 |  | 7 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | Cl |  | 8 | pF | 4 |
|  | $\mathrm{VCC}=5 \mathrm{~V}$ | Co |  | 8 | pF | 4 |
|  |  |  |  |  |  |  |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Note 5,13$)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right.$ )

| DESCRIPTION |  | -25 |  | -35 |  | -45 |  |  | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS |  |
| READ Cycle |  |  |  |  |  |  |  |  |  |
| READ cycle time | ${ }^{\text {tRC }}$ | 25 |  | 35 |  | 45 |  | ns |  |
| Address access time | ${ }^{\text {t }}$ A |  | 25 |  | 35 |  | 45 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 25 |  | 35 |  | 45 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Enable to output in Low-Z | t LZCE | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Disable to output in High-Z | thZCE |  | 10 |  | 15 |  | 18 | ns | 6,7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | tPD |  | 25 |  | 35 |  | 45 | ns |  |
| WRITE Cycle |  |  |  |  |  |  |  |  |  |
| WRITE cycle time | tWC | 25 |  | 35 |  | 45 |  | ns |  |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 15 |  | 20 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ S | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }}$ A ${ }^{\text {H}}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 15 |  | 20 |  | 25 |  | ns |  |
| Data setup time | ${ }^{\text {t }}$ S | 10 |  | 15 |  | 20 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | tLZWE | 0 |  | 0 |  | 0 |  | ns |  |
| Write Enable to output in High-Z | ${ }^{\text {tha }}$ WWE | 0 | 10 | 0 | 15 | 0 | 18 | ns | 6,7 |

## AC TEST CONDITIONS



## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\text {t}} \mathrm{HZCE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=5 \mathrm{pF}$ as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{t} H Z C E$ is less than ${ }^{t} L Z C E$ and ${ }^{\text {t }} \mathrm{HZWE}$ is less than ${ }^{t}$ LZWWE.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{\mathrm{WE}}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables and output enable held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. ${ }^{\mathrm{t}} \mathrm{RC}=$ Read Cycle Time.
12. Chip enable ( $\overline{\mathrm{CE}})$ and write enable ( $\overline{\mathrm{WE}})$ can initiate and terminate a WRITE cycle.
13. For automotive, industrial and extended temperature specifications refer to page 4-171.

## DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{gathered} \overline{\mathrm{CE}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \mathrm{VIN} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \text { or } \leq 0.2 \mathrm{~V} \end{gathered}$ | $\mathrm{Vcc}=2 \mathrm{v}$ | ICCDR |  | 95 | 500 | $\mu \mathrm{A}$ |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{v}$ |  |  | 350 | 750 | $\mu \mathrm{A}$ |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{t} \mathrm{CDR}$ | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {tR }}$ | ${ }^{\text {tRC }}$ |  |  | ns | 4,11 |

## LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. $1^{\text {8,9 }}$


READ CYCLE NO. $2^{7,8,10}$


## MT5C1001



## WRITE CYCLE NO. 2

(Chip Enable Controlled) ${ }^{12}$


Z/A don't care
undefined

## SRAM

## 4K x 4 SRAM

## FEATURES

- High speed: $12,15,20,25,30$ and 35 ns
- High-performance, low-power, CMOS double metal process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ option
- All inputs and outputs are TTL compatible


## OPTIONS

- Timing

12 ns access -12
15 ns access -15
20ns access -20
25 ns access -25
30ns access -30
35ns access -35

- Packages

Plastic DIP ( 300 mil )
Ceramic DIP ( 300 mil )
Plastic SOJ (300 mil)
Ceramic LCC

- Two Volt Data Retention

MARKING

## None

C
DJ
EC

L

## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers chip enable ( $\overline{\mathrm{CE}})$ on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design.

Writing to these devices is accomplished when write enable ( $\overline{\mathrm{WE}})$ and $\overline{\mathrm{CE}}$ inputs are both LOW. Reading is accomplished when $\overline{W E}$ remains HIGH and $\overline{C E}$ goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achievelow standby power requirements.

All devices operate from a single +5 V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)

20L/300 DIP
(A-4, B-4)


24L/300 SOJ
(E-4)



## FUNCTIONAL BLOCK DIAGRAM



TRUTH TABLE

| MODE | $\overline{C E}$ | $\overline{W E}$ | DQ | POWER |
| :--- | :---: | :---: | :---: | :---: |
| STANDBY | H | X | HIGH-Z | STANDBY |
| READ | L | H | Q | ACTIVE |
| WRITE | L | L | D | ACTIVE |

## ABSOLUTE MAXIMUM RATINGS*


*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

```
ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS \(\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)\)
```

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | Vcc +1 | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | OV $\leq$ VIN $\leq$ Vcc | ILI | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled, <br> OV $\leq$ Vout $\leq$ Vcc | ILo | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | loH $=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | IoL $=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |


|  |  |  | MAX |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION | CONDITIONS | SYMBOL | -12 | -15 | -20 | -25 | -30 | -35 | UNITS | notes |
| Power Supply Current: Operating | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{VLL} ; \mathrm{VCC}_{\mathrm{C}}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} \mathrm{RC}, \\ \text { Outputs Open } \end{gathered}$ | Icc | 140 | 125 | 110 | 100 | 100 | 100 | mA | 3 |
| Power Supply Current: Standby | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{VIH}_{1} ; V_{c C}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t}^{2} \mathrm{RC}, \\ \text { Outputs Open } \end{gathered}$ | Isb1 | 50 | 45 | 40 | 30 | 30 | 30 | mA |  |
|  | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{cc}}=\mathrm{MAX} \\ V_{\mathrm{IL}} \leq V_{\text {ss }}+0.2 \mathrm{~V} ; \\ \mathrm{VIH}^{2} \geq \mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{f}=0 \end{gathered}$ | Isb2 | 3 | 3 | 3 | 3 | 3 | 3 | mA |  |

CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | CI |  | 7 | pF | 4 |
|  | $\mathrm{VCC}=5 \mathrm{~V}$ | Co |  | 7 | pF | 4 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5,13$)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION |  | -12 |  | -15 |  | -20 |  | -25 |  | -30 |  | -35 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX |  |  |

## READ Cycle

| READ cycle time | ${ }^{\text {t }} \mathrm{C}$ C | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{t} A A$ |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Chip Enable access time | ${ }^{\text {t }} \mathrm{ACE}$ |  | 11 |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | ns |  |
| Chip Enable to output in Low-Z | t LZCE | 3 |  | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Disable to output in High-Z | thZCE |  | 7 |  | 7 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6,7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | ${ }^{\text {tPD }}$ |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |

## WRITE Cycle

| WRITE cycle time | ${ }^{\text {t }}$ WC | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 12 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{t} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Data setup time | ${ }^{\text {t }}$ S | 7 |  | 8 |  | 10 |  | 10 |  | 15 |  | 15 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | tLZWE | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | ns |  |
| Write Enable to output in High-Z | tHZWE |  | 6 |  | 6 |  | 8 |  | 10 |  | 12 |  | 15 | ns | 6 |

## AC TEST CONDITIONS

Input pulse levels Vss to 3.0 V
Input rise and fall times .........................................5ns
Input timing reference levels 1.5V
Output reference levels ..... 1.5 V
Output load
See Figures 1 and 2

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\mathrm{t}} \mathrm{HZCE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=5 \mathrm{pF}$ as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZCE}$.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{\mathrm{WE}}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. ${ }^{\mathrm{t}} \mathrm{RC}=$ Read Cycle Time.
12. Chip enable ( $\overline{\mathrm{CE}}$ ) and write enable ( $\overline{\mathrm{WE})}$ can initiate and terminate a WRITE cycle.
13. For automotive, industrial and extended temperature specifications refer to page 4-165.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{aligned} & \overline{\mathrm{CE}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \mathrm{Viv} \geq(\mathrm{Vccc}-0.2 \mathrm{~V}) \\ & \text { or } \leq 0.2 \mathrm{~V} \end{aligned}$ | $\mathrm{Vcc}=2 \mathrm{v}$ | ICCDR |  | 95 | 250 | $\mu \mathrm{A}$ |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{~V}$ |  |  | 300 | 400 | $\mu \mathrm{A}$ |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{\text {t }}$ CDR | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | tR | tRC |  |  | ns | 4, 10 |

## LOW Vcc DATA RETENTION WAVEFORM



DON'T CARE
UNDEFINED

READ CYCLE NO. $1^{8,9}$


READ CYCLE NO. 2 7, 8, 10


V/A don't care
UNDEFINED

WRITE CYCLE NO. 1
(Write Enable Controlled) ${ }^{7,12}$


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{12}$


## SRAM

## 4K x 4 SRAM <br> WITH OUTPUT ENABLE

## FEATURES

- High speed: $12,15,20,25,30$ and $35 n s$
- High-performance, low-power, CMOS double metal process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ options
- All inputs and outputs are TTL compatible


## OPTIONS

- Timing

12ns access -12
15 ns access -15
20ns access -20
30ns access -30

$$
\begin{aligned}
& 12 \\
& 15
\end{aligned}
$$

$$
-20
$$

25 ns access -25

$$
-25
$$

-35

35ns access -35

- Packages

Plastic DIP ( 300 mil )
Ceramic DIP ( 300 mil )
Plastic SOJ ( 300 mil )
Ceramic LCC

- Two Volt Data Retention

MARKING

## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.
For flexibility in high speed memory applications,Micron offers chip enable ( $\overline{\mathrm{CE}})$ on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design.
Writing to these devices is accomplished when write enable ( $\overline{\mathrm{WE}}$ ) and $\overline{\mathrm{CE}}$ inputs are both LOW. Reading is accomplished when $\overline{\mathrm{WE}}$ remains HIGH and $\overline{\mathrm{CE}}$ goes to LOW. The device offers a reduced power standby mode when disabled. Thisallows system designs to achievelow standby power requirements.
All devices operate from a single +5 V power supply and all inputs and outputs are fully TTL compatible.

## PIN ASSIGNMENT (Top View)

22L/300DIP
(A-6, B-6)


24L/300 SOJ (E-4)

| A4 1 - | 24 | $\square \mathrm{Vcc}$ |
| :---: | :---: | :---: |
| A5 2 | 23 | $\square \mathrm{A} 3$ |
| A6 3 | 22 | $\square \mathrm{A} 2$ |
| A7 4 | 21 | $\square \mathrm{A} 1$ |
| A8 5 | 20 | $\square \mathrm{AO}$ |
| A9 6 | 19 | $\square \mathrm{NC}$ |
| NC 7 | 18 | $\square \mathrm{NC}$ |
| A10 8 | 17 | - DQ4 |
| A11 9 | 16 | - DQ3 |
| $\overline{\mathrm{CE}}$-10 | 15 | - DQ2 |
| $\overline{\mathrm{OE}} \mathrm{C} 11$ | 14 | $\square$ DQ1 |
| Vss 12 | 13 | $\overline{\mathrm{WE}}$ |

FUNCTIONAL BLOCK DIAGRAM


TRUTH TABLE

| MODE | $\overline{\mathbf{O E}}$ | $\mathbf{C E}$ | WE | DQ | POWER |
| :--- | :---: | :---: | :---: | :---: | :---: |
| STANDBY | X | H | X | HIGH-Z | STANDBY |
| READ | L | L | H | Q | ACTIVE |
| READ | H | L | H | HIGH-Z | ACTIVE |
| WRITE | X | L | L | D | ACTIVE |

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss. -1.0 V to +7.0 V
Storage Temperature (Ceramic) ................. $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) ................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ........................................................ 1 W
Short Circuit Output Current ................................... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | Vcc +1 | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | OV $\leq \mathrm{VIN} \leq$ Vcc | ILI | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled, <br> OV $\leq$ Vout $\leq$ Vcc | ILO | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | $\mathrm{IOH}=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | IoL $=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |


|  |  |  | MAX |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION | CONDITIONS | SYMBOL | -12 | -15 | -20 | -25 | -30 | -35 | UNITS | notes |
| Power Supply Current: Operating | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{V} \mathrm{VL} ; \mathrm{VCC}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} R C, \\ \text { Outputs Open } \end{gathered}$ | Icc | 140 | 125 | 110 | 100 | 100 | 100 | mA | 3 |
| Power Supply <br> Current: Standby | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{V}_{1 H} ; V_{c c}=M A X \\ \mathrm{f}=\mathrm{MAX}=1 /{ }^{\mathrm{t} R C}, \\ \text { Outputs Open } \end{gathered}$ | Isb1 | 50 | 45 | 40 | 30 | 30 | 30 | mA |  |
|  |  | IsB2 | 3 | 3 | 3 | 3 | 3 | 3 | mA |  |

CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | CI |  | 7 | pF | 4 |
|  | $\mathrm{VCC}=5 \mathrm{~V}$ | Co |  | 7 | pF | 4 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5,13$)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right.$ )

| DESCRIPTION |  | -12 |  | -15 |  | -20 |  | -25 |  | -30 |  | -35 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | UNITS | NOTES |

## READ Cycle

| READ cycle time | ${ }^{\text {tR }} \mathrm{C}$ | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }} \mathrm{AA}$ |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 11 |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | ns |  |
| Chip Enable to output in Low-Z | tLZCE | 3 |  | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Disable to output in High-Z | tHZCE |  | 7 |  | 7 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6,7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | tPD |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Output enable access time | ${ }^{\text {t }}$ AOE |  | 7 |  | 7 |  | 9 |  | 10 |  | 15 |  | 20 | ns |  |
| Output Enable to output in Low-Z | tLZOE | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Output Disable to output in High-Z | ${ }^{\text {t }} \mathrm{HZOE}$ |  | 6 |  | 6 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6 |

## WRITE Cycle

| WRITE cycle time | tWC | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 12 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Data setup time | ${ }^{\text {t }}$ S | 7 |  | 8 |  | 10 |  | 10 |  | 15 |  | 15 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | tLZWE | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | ns |  |
| Write Enable to output in High-Z | tHZWE |  | 6 |  | 6 |  | 8 |  | 10 |  | 12 |  | 15 | ns | 6 |

MT5C1605

## AC TEST CONDITIONS

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\mathrm{t}} \mathrm{HZCE},{ }^{\mathrm{t}} \mathrm{HZWE}$ and ${ }^{\mathrm{t}} \mathrm{HZOE}$ are specified with CL $=5 \mathrm{pF}$ as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZ}$ CE is less than ${ }^{\text {t }}$ LZCE.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{\mathrm{WE}}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. ${ }^{\mathrm{t}} \mathrm{RC}=$ Read Cycle Time.
12. Chip enable ( $\overline{\mathrm{CE}}$ ) and write enable ( $\overline{\mathrm{WE})}$ can initiate and terminate a WRITE cycle.
13. For automotive, industrial and extended temperature specifications refer to page 4-165.

## DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{gathered} \overline{\overline{C E}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \mathrm{VIN} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \quad \text { or } \leq 0.2 \mathrm{~V} \end{gathered}$ | $\mathrm{Vcc}=2 \mathrm{v}$ | ICCDR |  | 95 | 250 | $\mu \mathrm{A}$ |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{v}$ |  |  | 300 | 400 | $\mu \mathrm{A}$ |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{\text {t }}$ CDR | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {t }}$ R | trC |  |  | ns | 4, 11 |

## LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. $1^{\text {8, }} 9$


READ CYCLE NO. 2 7, 8, 10



WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{12}$


## SRAM

## 4K x 4 SRAM

WITH SEPARATE INPUTS AND OUTPUTS

## FEATURES

- High speed: $12,15,20,25,30$ and $35 n \mathrm{~ns}$
- High-performance, low-power, CMOS double metal process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ option
- All inputs and outputs are TTL compatible
- MT5C1606 - output tracks input during WRITE
- MT5C1607 - output high impedance during WRITE


## OPTIONS

- Timing

12 ns access -12
15 ns access -15
20ns access -20
25ns access -25
30ns access -30
35ns access -35

- Packages

Plastic DIP ( 300 mil )
Ceramic DIP ( 300 mil )
Plastic SOJ ( 300 mil )
Ceramic LCC

- Two Volt Data Retention

MARKING1220-30

EC

L

## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers chip enable ( $\overline{\mathrm{CE}})$ on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design. The 44 configuration features separate data input and output.

Writing to these devices is accomplished when write enable ( $\overline{\mathrm{WE}})$ and $\overline{\mathrm{CE}}$ inputs are both LOW. Reading is accomplished when $\overline{W E}$ remains HIGH and $\overline{C E}$ goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achievelow standby power requirements.

All devices operate from a single +5 V power supply and all inputs and outputs are fully TTL compatible.

## PIN ASSIGNMENT (Top View)

## 24L/300DIP

(A-7, B-7)


## 24L/300 SOJ

 (E-4)| A4 1 - | 24 |
| :---: | :---: |
| A5 2 | 23 |
| A6 3 | 22 |
| A7 4 | 21 |
| A8 5 | 20 |
| A9 6 | 19 |
| A10 7 | 18 |
| A11 [ 8 | 17 |
| D1 9 | 16 |
| D2 [ 10 | 15 |
| $\overline{\text { CE }} 11$ | 14 |
| Vss 12 | 13 |

## FUNCTIONAL BLOCK DIAGRAM



TRUTH TABLE

| MODE | CE | WE | DQ | POWER |
| :--- | :---: | :---: | :---: | :---: |
| STANDBY | H | X | HIGH-Z | STANDBY |
| READ | L | H | Q | ACTIVE |
| WRITE (1) | L | L | HIGH-Z | ACTIVE |
| WRITE (2) | L | L | D | ACTIVE |

```
NOTE: 1. MT5C1607 ONLY
```

2. MT5C1606 ONLY
ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc supply relative to Vss ......... -1.0 V to +7.0 VStorage Temperature (Ceramic) ................. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Storage Temperature (Plastic) .................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Power Dissipation1W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | OV $\leq$ VIN $\leq \mathrm{Vcc}$ | ILI | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled, <br> OV $\leq$ VouT $\leq \mathrm{Vcc}$ | ILo | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | IoH $=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | loL $=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |



CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | $\mathrm{Cl}_{\mathrm{C}}$ |  | 7 | pF | 4 |
| $n n$ | Output Capacitance | $\mathrm{VCC}=5 \mathrm{~V}$ | Co |  | 7 | pF |

## MICREN

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5,13$)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right.$ )

| DESCRIPTION |  | -12 |  | -15 |  | -20 |  | -25 |  | -30 |  | -35 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | UNITS | NOTES |

## READ Cycle

| READ cycle time | ${ }^{\text {t }} \mathrm{RC}$ | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{t} A A$ |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 11 |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | ns |  |
| Chip Enable to output in Low-Z | t LZCE | 3 |  | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Disable to output in High-Z | thZCE |  | 7 |  | 7 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6,7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | tPD |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |

## WRITE Cycle

| WRITE cycle time | tw | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 12 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ S | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Data setup time | ${ }^{\text {t }}$ DS | 7 |  | 8 |  | 10 |  | 10 |  | 15 |  | 15 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | tLZWE | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | ns |  |
| Write Enable to output in High-Z | tHZWE |  | 6 |  | 6 |  | 8 |  | 10 |  | 12 |  | 15 | ns |  |
| Write Enable to output valid | ${ }^{\text {t }}$ AWE |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Data valid to output valid | ${ }^{\text {t }}$ ADV |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |

## AC TEST CONDITIONS



## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\mathrm{t}} \mathrm{HZCE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=5 \mathrm{pF}$ as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZCE}$.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{W E}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. ${ }^{\mathrm{t}} \mathrm{RC}=$ Read Cycle Time.
12. Chip enable ( $\overline{\mathrm{CE}})$ and write enable ( $\overline{\mathrm{WE})}$ can initiate and terminate a WRITE cycle.
13. For automotive, industrial and extended temperature specifications refer to page 4-165.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{aligned} \overline{\mathrm{CE}} & \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \mathrm{VIN} & \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \text { or } \leq 0.2 \mathrm{~V} \end{aligned}$ | $V C c=2 v$ | ICCDR |  | 95 | 250 | $\mu \mathrm{A}$ |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{v}$ |  |  | 300 | 400 | $\mu \mathrm{A}$ |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{t} \mathrm{CDR}$ | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {t }} \mathrm{R}$ | ${ }^{\text {tRC }}$ |  |  | ns | 4, 11 |

## LOW Vcc DATA RETENTION WAVEFORM



DON'T CARE UNDEFINED

READ CYCLE NO. $1^{\text {8, } 9}$


READ CYCLE NO. $2^{7,8,10}$



WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{12}$


x $x$ UND UNEFINED

## SRAM

 16K x 4 SRAM
## FEATURES

- High speed: 12, 15, 20, 25, 30 and $35 n$ s
- High-performance, low-power, CMOS double metal process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ option
- All inputs and outputs are TTL compatible


## OPTIONS

- Timing

12 ns access
MARKING
-12
15 ns access-15

20ns access -20
25ns access -25
30ns access -30
35ns access -35

- Packages

Plastic DIP ( 300 mil )
Ceramic DIP ( 300 mil )
Plastic SOJ ( 300 mil )
Ceramic LCC

- Two Volt Data Retention

PIN ASSIGNMENT (Top View)

24L/300 SOJ
(E-4)

| A5 1 - | 24 | $\square \mathrm{Vcc}$ |
| :---: | :---: | :---: |
| A6 2 | 23 | $\square \mathrm{A} 4$ |
| A7 [ 3 | 22 | $\square \mathrm{A} 3$ |
| A8 4 | 21 | $\square \mathrm{A} 2$ |
| A9 55 | 20 | $\square \mathrm{A} 1$ |
| A10 6 | 19 | $\square \mathrm{AO}$ |
| A11 7 | 18 | $\square \mathrm{NC}$ |
| A12 8 | 17 | DQ4 |
| A13 9 | 16 | - DQ3 |
| $\overline{\mathrm{CE}}$ - 10 | 15 | $\square$ DQ2 |
| NC 11 | 14 | DQ1 |
| Vss 12 | 13 | $\overline{W E}$ |



## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers chip enable ( $\overline{\mathrm{CE}})$ on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design.

Writing to these devices is accomplished when write enable ( $\overline{\mathrm{WE}}$ ) and $\overline{\mathrm{CE}}$ inputs are both LOW. Reading is accomplished when $\overline{W E}$ remains HIGH and $\overline{\mathrm{CE}}$ goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5 V power supply and all inputs and outputs are fully TTL compatible.

FUNCTIONAL BLOCK DIAGRAM


TRUTH TABLE

| MODE | $\overline{\text { CE }}$ | $\overline{\text { WE }}$ | DQ | POWER |
| :--- | :---: | :---: | :---: | :---: |
| STANDBY | H | X | HIGH-Z | STANDBY |
| READ | L | H | Q | ACTIVE |
| WRITE | L | L | DIN | ACTIVE | MT5C6404

ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc supply relative to Vss-1.0 V to +7.0 V
Storage Temperature (Ceramic) ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) ..... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..... 1W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | $\mathrm{VCC}+1$ | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | OV $\leq$ VIN $\leq \mathrm{VCC}$ | ILI | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled, <br> OV $\leq$ VouT $\leq \mathrm{Vcc}$ | ILo | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | IoH $=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | loL $=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |



## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | Cl |  | 7 | pF | 4 |
|  | Output Capacitance | $\mathrm{Vcc}=5 \mathrm{~V}$ | Co |  | 7 | pF |
|  |  |  |  |  |  |  |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Note 5,13$)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION |  | -12 |  | -15 |  | -20 |  | -25 |  | -30 |  | -35 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | UNITS | NOTES |

## READ Cycle

| READ cycle time | ${ }^{\text {t }} \mathrm{CC}$ | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }}$ A |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Chip Enable access time | ${ }^{\text {t }} \mathrm{ACE}$ |  | 12 |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | ns |  |
| Chip Enable to output in Low-Z | t LZCE | 3 |  | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Disable to output in High-Z | ${ }^{\text {t }} \mathrm{HZCE}$ |  | 7 |  | 7 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6,7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | tPD |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |

## WRITE Cycle

| WRITE cycle time | tWC | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 12 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{t} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | twP | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Data setup time | t DS | 8 |  | 8 |  | 10 |  | 10 |  | 15 |  | 15 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | tLZWE | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | ns |  |
| Write Enable to output in High-Z | ${ }^{\text {tHZWE }}$ |  | 6 |  | 6 |  | 8 |  | 10 |  | 12 |  | 15 | ns | 6 |

## AC TEST CONDITIONS



## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\mathrm{t}} \mathrm{HZCE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=5 \mathrm{pF}$ as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZCE}$.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{\mathrm{WE}}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. ${ }^{\mathrm{t}} \mathrm{RC}=$ Read Cycle Time.
12. Chip enable ( $\overline{\mathrm{CE}}$ ) and write enable ( $\overline{\mathrm{WE}})$ can initiate and terminate a WRITE cycle.
13. For automotive, industrial and extended temperature specifications refer to page 4-167.

## DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{aligned} & \overline{\overline{\mathrm{CE}}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \mathrm{Vin} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \\ & \text { or } \leq 0.2 \mathrm{~V} \end{aligned}$ | $\mathrm{Vcc}=2 \mathrm{v}$ | ICCDR |  | 95 | 250 | $\mu \mathrm{A}$ |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{~V}$ |  |  | 300 | 400 | $\mu \mathrm{A}$ |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{\text {t }}$ CDR | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {t } R}$ | ${ }^{\text {tRC }}$ |  |  | ns | 4, 11 |

## LOW Vcc DATA RETENTION WAVEFORM



DON'T CARE
UNDEFINED

READ CYCLE NO. $1^{\text {8, } 9}$


READ CYCLE NO. $2^{7,8,10}$


V/A DON'T CARE
UNDEFINED

WRITE CYCLE NO. 1
(Write Enable Controlled) 7, 12


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{12}$


## SRAM

## 16K x 4 SRAM <br> WITH OUTPUT ENABLE

## FEATURES

- High speed: $12,15,20,25,30$ and $35 n s$
- High-performance, low-power, CMOS double metal process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ options
- All inputs and outputs are TTL compatible


## OPTIONS

- Timing

12 ns access -12
15 ns access -15
20ns access -20
25ns access -25
30ns access -30
35ns access -35

- Packages

Plastic DIP ( 300 mil )
Ceramic DIP ( 300 mil )
Plastic SOJ ( 300 mil )
Ceramic LCC

- Two Volt Data Retention

MARKING$-35$-35

None
C
DJ
EC
L

## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers chip enable ( $\overline{\mathrm{CE}}$ ) on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design.

Writing to these devices is accomplished when write enable ( $\overline{\mathrm{WE}}$ ) and $\overline{\mathrm{CE}}$ inputs are both LOW. Reading is accomplished when $\overline{W E}$ remains HIGH and $\overline{C E}$ goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5 V power supply and all inputs and outputs are fully TTL compatible.

## PIN ASSIGNMENT (Top View)

24L/300 DIP
(A-7, B-7)
24L/300 SOJ
(E-4)


$$
\begin{aligned}
& \text { 28L/LCC } \\
& \text { (F-4) }
\end{aligned}
$$

FUNCTIONAL BLOCK DIAGRAM


TRUTH TABLE

| MODE | $\mathbf{O E}$ | $\mathbf{C E}$ | WE | DQ | POWER |
| :--- | :---: | :---: | :---: | :---: | :---: |
| STANDBY | X | H | X | HIGH-Z | STANDBY |
| READ | L | L | H | Q | ACTIVE |
| READ | H | L | H | HIGH-Z | ACTIVE |
| WRITE | X | L | L | D | ACTIVE |

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss $\qquad$ -1.0 V to +7.0 V
Storage Temperature (Ceramic) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) ................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation . 1 W
Short Circuit Output Current ................................... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | $\mathrm{OV} \leq$ VIN $\leq$ Vcc | ILI | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled, <br> $0 \mathrm{~V} \leq$ VouT $\leq$ Vcc | ILo | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | $\mathrm{IOH}=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | loL $=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |


|  |  |  | MAX |  |  |  |  |  | UNITS | notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION | CONDITIONS | SYMBOL | -12 | -15 | -20 | -25 | -30 | -35 |  |  |
| Power Supply Current: Operating | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{IL}} ; \mathrm{VCC}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} R C, \\ \text { Outputs Open } \end{gathered}$ | Icc | 140 | 130 | 120 | 110 | 100 | 100 | mA | 3 |
| Power Supply Current: Standby | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{V}_{1 H} ; V_{c c}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 /{ }^{\mathrm{t} R C}, \\ \text { Outputs Open } \\ \hline \end{gathered}$ | IsB1 | 60 | 50 | 40 | 30 | 30 | 30 | mA |  |
|  | $\begin{gathered} \hline \overline{\mathrm{CE}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{Vcc}=\mathrm{MAX} \\ \mathrm{VIL} \leq \mathrm{V} \text { ss }+0.2 \mathrm{~V} ; \\ \mathrm{V}_{\mathrm{H}} \geq \mathrm{V} \text { Cc }-0.2 \mathrm{~V} ; \mathrm{f}=0 \end{gathered}$ | Isb2 | 5 | 5 | 5 | 5 | 5 | 5 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | $\mathrm{Cl}^{2}$ |  | 7 | pF | 4 |
|  | Output Capacitance | $\mathrm{VCC}=5 \mathrm{~V}$ | Co |  | 7 | pF |
|  |  |  |  |  |  |  |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION |  | -12 |  | -15 |  | -20 |  | -25 |  | -30 |  | -35 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | UNITS | NOTES |

## READ Cycle

| READ cycle time | ${ }^{\text {tR }} \mathrm{C}$ | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }} \mathrm{AA}$ |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 12 |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | ns |  |
| Chip Enable to output in Low-Z | ${ }^{\text {t }}$ LZCE | 3 |  | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Disable to output in High-Z | thZCE |  | 7 |  | 7 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6,7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | tPD |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 7 |  | 7 |  | 9 |  | 10 |  | 15 |  | 20 | ns |  |
| Output Enable to output in Low-Z | ${ }^{\text {t }}$ LZOE | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Output Disable to output in High-Z | tHZOE |  | 6 |  | 6 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6 |

## WRITE Cycle

| WRITE cycle time | ${ }^{\text {t }}$ WC | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 12 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Data setup time | ${ }^{t} \mathrm{DS}$ | 8 |  | 8 |  | 10 |  | 10 |  | 15 |  | 15 |  | ns |  |
| Data hold time | ${ }^{\text {t }}$ H | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | tLZWE | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | ns |  |
| Write Enable to output in High-Z | ${ }^{\text {th }}$ ZWE |  | 6 |  | 6 |  | 8 |  | 10 |  | 12 |  | 15 | ns | 6 |

## AC TEST CONDITIONS

Input pulse levels Vss to 3.0 V
Input rise and fall times .........................................5ns
Input timing reference levels ..............................1.5V
Output reference levels .......................................1.5V
Output load See Figures 1 and 2

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\mathrm{t}} \mathrm{HZCE},{ }^{\mathrm{t}} \mathrm{HZWE}$ and ${ }^{\mathrm{t}} \mathrm{HZOE}$ are specified with $\mathrm{CL}=$ 5 pF as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZCE}$.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{\mathrm{WE}}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. ${ }^{\text {t}} \mathrm{RC}=$ Read Cycle Time.
12. Chip enable ( $\overline{\mathrm{CE}})$ and write enable $(\overline{\mathrm{WE}})$ can initiate and terminate a WRITE cycle.
13. For automotive, industrial and extended temperature specifications refer to page 4-167.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{aligned} & \hline \overline{\mathrm{CE}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \mathrm{VIN} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \text { or } \leq 0.2 \mathrm{~V} \end{aligned}$ | $\mathrm{Vcc}=2 \mathrm{v}$ | ICCDR |  | 95 | 250 | $\mu \mathrm{A}$ |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{v}$ |  |  | 300 | 400 | $\mu \mathrm{A}$ |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{\text {t }}$ CDR | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {t }} \mathrm{R}$ | ${ }^{\text {t }} \mathrm{RC}$ |  |  | ns | 4,11 |

## LOW Vcc DATA RETENTION WAVEFORM



## READ CYCLE NO. $1^{\text {8, }} 9$



READ CYCLE NO. $2^{7,8,10}$


WRITE CYCLE NO. 1
(Write Enable Controlled) ${ }^{7,12}$


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{12}$

WVYS ISVコ

## SRAM

## 16K x 4 SRAM

## FEATURES

- High speed: 12, 15, 20, 25, 30 and $35 n s$
- High-performance, low-power, CMOS double metal process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}} 1, \overline{\mathrm{CE}} 2$ and $\overline{\mathrm{OE}}$ options
- All inputs and outputs are TTL compatible
- MT5C6406 - output tracks input during WRITE
- MT5C6407 - output high impedance during WRITE


## OPTIONS

- Timing

12ns access -12
15 ns access
20 ns access
25ns access -25
30ns access -30
35ns access -35

- Packages

Plastic DIP ( 300 mil)
Ceramic DIP ( 300 mil )
Plastic SOJ ( 300 mil )
Ceramic LCC

- Two Volt Data Retention


## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.
For flexibility in high speed memory applications, Micron offers chip enable ( $\overline{\mathrm{CE}}$ ) on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design. The $x 4$ configuration features separate data input and output.

Writing to these devices is accomplished when write enable ( $\overline{\mathrm{WE}}$ ) and $\overline{\mathrm{CE}}$ inputs are both LOW. Reading is accomplished when $\overline{W E}$ remains HIGH and $\overline{\mathrm{CE}}$ goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve lowstandby power requirements.

All devices operate from a single +5 V power supply and all inputs and outputs are fully TTL compatible.
-15
-20

## MARKING

-12-15-25-35None
C
DJ
EC

L

| $\begin{gathered} \text { 28L/300 DIP } \\ \text { (A-9, B-9) } \end{gathered}$ |  |
| :---: | :---: |
| A5 1 | 28 Vcc |
| A6 2 | 27 A4 |
| A7 3 | 26 A3 |
| A8 4 | 25 A2 |
| A9 5 | 24 A1 |
| A10 6 | 23 A0 |
| A11 7 | 22. D4 |
| A12 8 | 21. D3 |
| A13 9 | 20. Q4 |
| D1 10 | 19 Q3 |
| D2 11 | 18 P Q2 |
| CE1 12 | 17 Q1 |
| $\overline{\mathrm{OE}} \subset 13$ | $16 \square \overline{\mathrm{WE}}$ |
| Vss 14 | 15 CE2 |

## 28L/300 SOJ

 (E-8)| A5 1 | 28 | P Vcc |
| :---: | :---: | :---: |
| A6 2 | 27 | A4 |
| A7 3 | 26 | A3 |
| A8 4 | 25 | A2 |
| A9 5 | 24 | P 1 |
| A10 6 | 23 | P A0 |
| A11 7 | 22 | D ${ }^{\text {d }}$ |
| A12 8 | 21 | D3 |
| A13 9 | 20 | Q4 |
| D1 10 | 19 | Q3 |
| D2 11 | 18 | Q Q2 |
| CE1 12 | 17 | Q1 |
| OE [ 13 | 16 | $\square$ WE |
| Vss [14 | 15 | CE2 |

FUNCTIONAL BLOCK DIAGRAM


TRUTH TABLE

| MODE | CE1 | CE2 | OE | WE | OUTPUTS | POWER |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| STANDBY | H | X | X | X | HIGH-Z | STANDBY |
| STANDBY | X | H | X | X | HIGH-Z | STANDBY |
| READ | L | L | L | H | Q | ACTIVE |
| READ | L | L | H | H | HIGH-Z | ACTIVE |
| WRITE (1) | L | L | X | L | HIGH-Z | ACTIVE |
| WRITE (2) | L | L | L | L | D | ACTIVE |
| WRITE (2) | L | L | H | L | HIGH-Z | ACTIVE |

NOTE: 1. MT5C6407 ONLY
2. MT5C6406 ONLY

## MT5C6406/7

ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc supply relative to Vss-1.0 V to +7.0 V
Storage Temperature (Ceramic) ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..... 1W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | $\mathrm{V}_{\mathrm{HH}}$ | 2.2 | Vcc +1 | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | OV $\leq$ VIN $\leq$ Vcc | ILI | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled, <br> $0 \mathrm{~V} \leq$ Vout $\leq \mathrm{Vcc}$ | ILo | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | $\mathrm{IOH}=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | loL $=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |


|  |  |  | MAX |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION | CONDITIONS | SYMBOL | -12 | -15 | -20 | -25 | -30 | -35 | UNITS | NOTES |
| Power Supply Current: Operating | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{LL}} ; V_{C C}=M A X \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} \mathrm{RC}, \\ \text { Outputs Open } \end{gathered}$ | Icc | 140 | 130 | 120 | 110 | 100 | 100 | mA | 3 |
| Power Supply Current: Standby | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{VIH} ; \mathrm{Vcc}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 /{ }^{\mathrm{t} R C}, \\ \text { Outputs Open } \\ \hline \end{gathered}$ | Isb1 | 60 | 50 | 40 | 30 | 30 | 30 | mA |  |
|  | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{Vcc}=\mathrm{MAX} \\ \mathrm{VIL} \leq \mathrm{Vss}+0.2 \mathrm{~V} ; \\ \mathrm{V}_{\mathrm{H}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{f}=0 \end{gathered}$ | Isb2 | 5 | 5 | 5 | 5 | 5 | 5 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | Cl |  | 7 | pF | 4 |
|  |  | Co |  | 7 | pF | 4 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Note 5, 13) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION |  | -12 |  | -15 |  | -20 |  | -25 |  | -30 |  | -35 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | UNITS | NOTES |

## READ Cycle

| READ cycle time | ${ }^{\text {tRC }}$ | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }}$ A |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 12 |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 | ns |  |
| Output hoid from address change | ${ }^{\text {t }} \mathrm{OH}$ | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | ns |  |
| Chip Enable to output in Low-Z | t LZCE | 3 |  | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Disable to output in High-Z | tHZCE |  | 7 |  | 7 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6, 7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | ${ }^{\text {t }}$ PD |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 7 |  | 7 |  | 9 |  | 10 |  | 15 |  | 20 | ns |  |
| Output Enable to output in Low-Z | ${ }^{\text {t }}$ LZOE | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Output Disable to output in High-Z | thZOE |  | 6 |  | 6 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6 |

## WRITE Cycle

| WRITE cycle time | tWC | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {T}}$ AW | 12 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{t} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Data setup time | tDS | 8 |  | 8 |  | 10 |  | 10 |  | 15 |  | 15 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | tLZWE | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | ns |  |
| Write Enable to output in High-Z | tHZWE |  | 6 |  | 6 |  | 8 |  | 10 |  | 12 |  | 15 | ns | 6 |
| Write Enable to output valid | ${ }^{\text {t }}$ AWE |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Data valid to output valid | ${ }^{\text {t }}$ ADV |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |

## AC TEST CONDITIONS

Input pulse levels Vss to 3.0 V
Input rise and fall times 5ns
Input timing reference levels ..... 1.5 V
Output reference levels ..... 1.5 V
Output load See Figures 1 and 2

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\mathrm{t}} \mathrm{HZCE},{ }^{\mathrm{t}} \mathrm{HZWE}$ and ${ }^{\mathrm{t}} \mathrm{HZOE}$ are specified with $\mathrm{CL}=$ 5 pF as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZCE}$.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{\mathrm{WE}}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. ${ }^{\text {t }} \mathrm{RC}=$ Read Cycle Time.
12. Chip enable ( $\overline{\mathrm{CE}})$ and write enable $(\overline{\mathrm{WE}})$ can initiate and terminate a WRITE cycle.
13. For automotive, industrial and extended temperature specifications refer to page 4-167.

## DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{aligned} & \overline{\mathrm{CE}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \mathrm{VIN} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \\ & \text { or } \leq 0.2 \mathrm{~V} \end{aligned}$ | $\mathrm{Vcc}=2 \mathrm{v}$ | ICCDR |  | 95 | 250 | $\mu \mathrm{A}$ |  |
|  |  | $V \mathrm{Cc}=3 \mathrm{~V}$ |  |  | 300 | 400 | $\mu \mathrm{A}$ |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{\text {t }}$ CDR | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {t } R}$ | ${ }^{\text {tRC }}$ |  |  | ns | 4, 11 |

## LOW Vcc DATA RETENTION WAVEFORM



## READ CYCLE NO. $1^{\text {8, } 9}$



READ CYCLE NO. $2^{7,8,10}$


20 DONT CARE
UNDEFINED

WRITE CYCLE NO. 1 (Write Enable Controlled) ${ }^{7,12}$


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{12}$


## SRAM

## 64K x 4 SRAM

## FEATURES

- High speed: 20, 25,30,35, and 45ns
- High-performance, low-power, CMOS double metal process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{C E}$ option
- All inputs and outputs are TTL compatible


## OPTIONS

- Timing

20ns access -20
25 ns access -25
30ns access -30
35ns access -35
45 ns access -45

- Packages

Plastic DIP (300 mil)
Ceramic DIP ( 300 mil )
Plastic SOJ ( 300 mil )
Ceramic LCC

- Two Volt Data Retention


## MARKING

-25
-30
-35
-45

None
C
DJ
EC
L

## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers chip enable ( $\overline{\mathrm{CE}})$ on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design.

Writing to these devices is accomplished when write enable ( $\overline{\mathrm{WE}})$ and $\overline{\mathrm{CE}}$ inputs are both LOW. Reading is accomplished when $\overline{W E}$ remains HIGH and $\overline{\mathrm{CE}}$ goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5 V power supply and all inputs and outputs are fully TTL compatible.


24L/300 SOJ (E-4)

| A0 1 - | 24 | 7 Vcc |
| :---: | :---: | :---: |
| A1 2 | 23 | 7 A15 |
| A2 3 | 22 | 7 A14 |
| A3 4 | 21 | 7 A13 |
| A4 5 | 20 | 7 A12 |
| A5 6 | 19 | 7 A11 |
| A6 7 | 18 | $\square \mathrm{A} 10$ |
| A7 8 | 17 | 7 DQ4 |
| A8 9 | 16 | I DQ3 |
| A9 10 | 15 | I DQ2 |
| $\overline{C E}-11$ | 14 | D DQ1 |
| Vss 12 | 13 | WE |

## PIN ASSIGNMENT (Top View)

## 24L/300 DIP

(A-7, B-7)

| -1 | $24 . \mathrm{Vcc}$ |
| :---: | :---: |
| A1-2 | 23 A15 |
| A2 3 | 22 A14 |
| A3 4 | 21 A13 |
| A4 5 | 20]A12 |
| A5 6 | 19 A11 |
| A6 7 | 18 A10 |
| A7 8 | 17 DQ4 |
| A8 9 | 16 DQ3 |
| A9 10 | 15 DQ2 |
| CE [11 | 14 DQ1 |
| Vss 12 | $13 \square \overline{W E}$ |

## FUNCTIONAL BLOCK DIAGRAM



TRUTH TABLE

| MODE | $\mathbf{C E}$ | WE | DQ | POWER |
| :--- | :---: | :---: | :---: | :---: |
| STANDBY | H | X | HIGH-Z | STANDBY |
| READ | L | H | Q | ACTIVE |
| WRITE | L | L | D | ACTIVE |

## MT5C2564

ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc supply relative to Vss
$\qquad$ -1.0 V to +7.0 VStorage Temperature (Ceramic)$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation1W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | Vcc +1 | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | OV $\leq$ VIN $\leq$ Vcc | ILI | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled, <br> OV $\leq$ Vout $\leq$ Vcc | ILo | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | $\mathrm{IOH}=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | IoL $=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |


| DESCRIPTION | CONDITIONS | SYMBOL | MAX |  |  |  |  | UNITS NOTES |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | -20 | -25 | -30 | -35 | -40 |  |  |
| Power Supply Current: Operating | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{LL}} ; \mathrm{VCC}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} \mathrm{RC}, \\ \text { Outputs Open } \end{gathered}$ | Icc | 105 | 95 | 95 | 90 | 90 | mA | 3 |
| Power Supply Current: Standby | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{V}_{1} ; V_{C C}=M A X \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} R C, \\ \text { Outputs Open } \end{gathered}$ | Isb1 | 30 | 25 | 25 | 25 | 25 | mA |  |
|  | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{Vcc}=\mathrm{MAX} \\ \mathrm{~V}_{\mathrm{IL}} \leq \mathrm{V} \text { ss }+0.2 \mathrm{~V} ; \\ \mathrm{V} \text { IH } \geq \mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{f}=0 \end{gathered}$ | Isb2 | 5 | 5 | 5 | 7 | 7 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathfrak{f}=1 \mathrm{MHz}$ | $\mathrm{Cl}^{2}$ |  | 7 | pF | 4 |
|  | $\mathrm{Vcc}=5 \mathrm{~V}$ | Co |  | 5 | pF | 4 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5,13$)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right.$ )

| DESCRIPTION |  | -20 |  | -25 |  | -30 |  | -35 |  | -45 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | UNITS | NOTES |

## READ Cycle

| READ cycle time | ${ }^{\text {tRC }}$ | 20 |  | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }}$ A |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Chip Enable access time | ${ }^{\text {t }} \mathrm{ACE}$ |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Output hold from address change | ${ }^{\mathrm{t}} \mathrm{OH}$ | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Enable to output in Low-Z | t LZCE | 6 |  | 6 |  | 6 |  | 6 |  | 6 |  | ns |  |
| Chip Disable to output in High-Z | tHZCE |  | 9 |  | 9 |  | 12 |  | 15 |  | 18 | ns | 6, 7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | ${ }^{\text {tPD }}$ |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |

## WRITE Cycle

| WRITE cycle time | tWC | 20 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 15 |  | 15 |  | 18 |  | 20 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 15 |  | 15 |  | 18 |  | 20 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | ${ }^{\text {t }}$ WP | 15 |  | 15 |  | 18 |  | 20 |  | 25 |  | ns |  |
| Data setup time | ${ }^{\text {t }}$ D | 10 |  | 10 |  | 12 |  | 15 |  | 20 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | tLZWE | 5 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Write Enable to output in High-Z | tHZWE |  | 10 |  | 10 |  | 12 |  | 15 |  | 18 | ns | 6 |

## AC TEST CONDITIONS

Input pulse levels .................................... Vss to 3.0 V
Input rise and fall times ......................................... 5 ns
Input timing reference levels ...............................1.5V
Output reference levels ....................................... 1.5V
Output load $\qquad$ See Figures 1 and 2

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\mathrm{t}} \mathrm{HZCE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=5 \mathrm{pF}$ as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZCE}$.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{\mathrm{WE}}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. ${ }^{\mathrm{t}} \mathrm{RC}=$ Read Cycle Time.
12. Chip enable ( $\overline{\mathrm{CE}}$ ) and write enable ( $\overline{\mathrm{WE})}$ can initiate and terminate a WRITE cycle.
13. For automotive, industrial and extended temperature specifications refer to page 4-169.

## DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{aligned} & \overline{\overline{C E}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \mathrm{VIN} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \text { or } \leq 0.2 \mathrm{~V} \end{aligned}$ | $\mathrm{Vcc}=2 \mathrm{v}$ | ICCDR |  | 95 | 300 | $\mu \mathrm{A}$ |  |
|  |  | $V c c=3 v$ |  |  | 350 | 400 | $\mu \mathrm{A}$ |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{\text {t }}$ CDR | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {t } R}$ | ${ }^{\text {tRC }}$ |  |  | ns | 4, 10 |

## LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. $1^{\text {8, }} 9$


READ CYCLE NO. $2^{7,8,10}$


## MT5C2564

WRITE CYCLE NO. 1
(Write Enable Controlled) 7, 12


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{12}$

[ 4 D ONT CaAE
XX UNDEFINED

## SRAM

## 64K x 4 SRAM <br> WITH OUTPUT ENABLE

## FEATURES

- High speed: 20, 25,30,35, and 45ns
- High-performance, low-power, CMOS double metal process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ options
- All inputs and outputs are TTL compatible

| OPTIONS | MARKING |
| :--- | :---: |
| - Timing |  |
| 20ns access | -20 |
| 25ns access | -25 |
| 30ns access | -30 |
| 35ns access | -35 |
| 45ns access | -45 |
|  |  |
| - Packages | None |
| Plastic DIP (300 mil) | C |
| Ceramic DIP (300 mil) | DJ |
| Plastic SOJ (300 mil) | EC |
| Ceramic LCC |  |
|  | L |

## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers chip enable ( $\overline{\mathrm{CE}}$ ) and output enable ( $\overline{\mathrm{OE}}$ ) on this organization. These enhancements can place the outputs in a high impedance state for additional flexibility in system design.

Writing to these devices is accomplished when write enable ( $\overline{\mathrm{WE}})$ and $\overline{\mathrm{CE}}$ inputs are both LOW. Reading is accomplished when $\overline{\mathrm{WE}}$ remains HIGH and $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ go LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5 V power supply and all inputs and outputs are fully TTL compatible.

## PIN ASSIGNMENT (Top View)

28L/300 DIP
(A-9, B-9)

|  | 28 | Vcc |
| :---: | :---: | :---: |
| A0 2 | 27 | A15 |
| $1{ }^{1}$ | 26 | A14 |
| A2 44 | 25 | A13 |
| A3 5 | 24 | A12 |
| A4 96 | 23 | A11 |
| A5 47 | 22 | A10 |
| A6 48 | 21 | NC |
| A7 99 | 20 | NC |
| A8 10 | 19 | DQ4 |
| A9 411 | 18 | DQ3 |
| $\overline{\mathrm{CE}}$ | 17 | DQ2 |
| OE $\mathrm{S}_{13}$ | 16 | DQ1 |
| Vss | 15 |  |

FUNCTIONAL BLOCK DIAGRAM


TRUTH TABLE

| MODE | $\overline{\mathbf{O E}}$ | $\mathbf{C E}$ | $\overline{\text { WE }}$ | DQ | POWER |
| :--- | :---: | :---: | :---: | :---: | :---: |
| STANDBY | X | H | X | HIGH-Z | STANDBY |
| READ | L | L | H | Q | ACTIVE |
| READ | H | L | H | HIGH-Z | ACTIVE |
| WRITE | X | L | L | D | ACTIVE |

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss ......... -1.0 V to +7.0 V
Storage Temperature (Ceramic) .................. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) .................. $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation .................................................. W
Short Circuit Output Current ........................................ 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | Vcc +1 | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | OV $\leq$ VIN $\leq$ Vcc | ILI | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled, <br> OV $\leq$ Vout $\leq$ Vcc | ILo | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | IOH $=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | IoL $=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |


|  |  |  | MAX |  |  |  |  | UNITS | notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION | CONDITIONS | SYMBOL | -20 | -25 | -30 | -35 | -40 |  |  |
| Power Supply Current: Operating | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{L}} ; V_{C C}=M A X \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} \mathrm{RC}, \\ \text { Outputs Open } \end{gathered}$ | Icc | 105 | 95 | 95 | 90 | 90 | mA | 3 |
| Power Supply Current: Standby | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{VIH} ; \mathrm{Vcc}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 /{ }^{\mathrm{t}} \mathrm{RC}, \\ \text { Outputs Open } \\ \hline \end{gathered}$ | Isb1 | 30 | 25 | 25 | 25 | 25 | mA |  |
|  |  | IsB2 | 5 | 5 | 5 | 7 | 7 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathfrak{f}=1 \mathrm{MHz}$ | CI |  | 7 | pF | 4 |
|  |  | Co |  | 5 | pF | 4 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION |  | -20 |  | -25 |  | -30 |  | -35 |  | -45 |  | UNITS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | max |  | notes |

## READ Cycle

| READ cycle time | ${ }^{\text {t }} \mathrm{C}$ | 20 |  | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }} \mathrm{A} A$ |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Output hold from address change | ${ }^{\mathrm{t}} \mathrm{OH}$ | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Enable to output in Low-Z | t LZCE | 6 |  | 6 |  | 6 |  | 6 |  | 6 |  | ns |  |
| Chip Disable to output in High-Z | thZCE |  | 9 |  | 9 |  | 12 |  | 15 |  | 18 | ns | 6,7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | tPD |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 8 |  | 8 |  | 10 |  | 12 |  | 15 | ns |  |
| Output Enable to output in Low-Z | t LZOE | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Output Disable to out put in High-Z | thzoe |  | 7 |  | 7 |  | 10 |  | 12 |  | 15 | ns |  |

## WRITE Cycle

| WRITE cycle time | tWC | 20 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 15 |  | 15 |  | 18 |  | 20 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 15 |  | 15 |  | 18 |  | 20 |  | 25 |  | ns |  |
| Address setup time | ${ }^{t}$ AS | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 15 |  | 15 |  | 18 |  | 20 |  | 25 |  | ns |  |
| Data setup time | ${ }^{t} \mathrm{DS}$ | 10 |  | 10 |  | 12 |  | 15 |  | 20 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | t LZWE | 5 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Write Enable to output in High-Z | ${ }^{\text {tha }}$ WWE |  | 10 |  | 10 |  | 12 |  | 15 |  | 18 | ns | 6 |

## AC TEST CONDITIONS

| Input pulse levels ...............................Vss to 3.0V |
| :---: |
| Input rise and fall times ...................................5ns |
| Input timing reference levels ..........................1.5V |
| Output reference levels .................................1.5V |
| Output load ...........................See Figures 1 and 2 |

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\mathrm{t}} \mathrm{HZCE},{ }^{\mathrm{t}} \mathrm{HZOE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=$ 5 pF as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZCE}$.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{W E}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. ${ }^{\mathrm{t}} \mathrm{RC}=$ Read Cycle Time.
12. Chip enable ( $\overline{\mathrm{CE}})$ and write enable ( $\overline{\mathrm{WE})}$ can initiate and terminate a WRITE cycle.
13. For automotive, industrial and extended temperature specifications refer to page 4-169.

## DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{gathered} \overline{\mathrm{CE}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \mathrm{VIN} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \text { or } \leq 0.2 \mathrm{~V} \end{gathered}$ | $V c c=2 v$ | ICCDR |  | 95 | 300 | $\mu \mathrm{A}$ |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{v}$ |  |  | 350 | 400 | $\mu \mathrm{A}$ |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{t}$ CDR | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {t }} \mathrm{R}$ | ${ }^{\text {t }} \mathrm{RC}$ |  |  | ns | 4,11 |

## LOW Vcc DATA RETENTION WAVEFORM



DON'T CARE
UNDEFINED

## READ CYCLE NO. $1^{\text {8, }} 9$



READ CYCLE NO. $2^{7,8,10}$


## WRITE CYCLE NO. 1

(Write Enable Controlled) $^{7,12}$


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{12}$

$\square / \Delta$ don't care
UNDEFINED

## SRAM

## FEATURES

- High speed: 25,35 , and 45 ns
- High-performance, low-power, CMOS double metal process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ options
- All inputs and outputs are TTL compatible
- Fast Output Enable access time: 8ns


## OPTIONS

- Timing

25ns access -25
35ns access -35
45 ns access -45

- Packages

Plastic DIP ( 400 mil )
Ceramic DIP ( 400 mil )
Plastic SOJ (400 mil)

- Two Volt Data Retention


## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers chip enable ( $\overline{\mathrm{CE}})$ capability. This enhancement can place the outputs in a high impedance state for additional flexibility in system design.

Writing to this device is accomplished when write enable $(\overline{\mathrm{WE}})$ and $\overline{\mathrm{CE}}$ inputs are both LOW. Reading is accomplished when $\overline{W E}$ remains HIGH while output enable ( $\overline{\mathrm{OE}}$ ) and $\overline{C E}$ goLOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5 V power supply and all inputs and outputs are fully TTL compatible.

## 256K x 4 SRAM WITH OUTPUT ENABLE

## PIN ASSIGNMENT (Top View) <br> PIN



28L/400 SOJ

| A7 1 | 28 | Vcc |
| :---: | :---: | :---: |
| A8 2 | 27 | A6 |
| A9 [ 3 | 26 | A5 |
| A10 4 | 25 | A4 |
| A11 5 | 24 | A3 |
| A12 6 | 23 | A2 |
| A13 7 | 22 | A1 |
| A14 8 | 21 | AO |
| A15 9 | 20 | NC |
| A16 10 | 19 | DQ4 |
| A17 11 | 18 | DQ3 |
| CE 12 | 17 | DQ2 |
| $\overline{\text { OE }} 13$ | 16 | DQ1 |
| Vss 14 | 15 | $\overline{W E}$ |

## (E-9)

## FUNCTIONAL BLOCK DIAGRAM



NOTE: The two least significant row address bits (A11 and A3) are encoded using a gray code.

TRUTH TABLE

| MODE | OE | CE | WE | DQ | POWER |
| :--- | :---: | :---: | :---: | :---: | :--- |
| STANDBY | X | H | X | HIGH-Z | STANDBY |
| READ | L | L | H | Q | ACTIVE |
| READ | H | L | H | HIGH-Z | ACTIVE |
| WRITE | X | L | L | D | ACTIVE |

ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc supply relative to Vss-1.0 V to +7.0 V
Storage Temperature (Ceramic) $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Power Dissipation1W
Short Circuit Output Current ..... 50mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | OV $\leq \mathrm{VIN} \leq \mathrm{Vcc}$ | ILI | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled, <br> OV $\leq$ Vout $\leq \mathrm{Vcc}$ | ILO | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | IOH $=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | loL $=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |


| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply <br> Current: Operating | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{VIL}^{2}, \mathrm{VCC}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 /{ }^{\mathrm{t} R C}, \\ \text { Outputs Open } \end{gathered}$ | Icc |  | 120 | mA | 3 |
| Power Supply Current: Standby | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{V} \mathrm{~V}_{\mathbf{H}} ; \mathrm{Vcc}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 /{ }^{\mathrm{t} R C}, \\ \text { Outputs Open } \end{gathered}$ | IsB1 |  | 30 | mA |  |
|  | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{Vcc}=\mathrm{MAX} \\ \mathrm{VIL} \leq \mathrm{Vss}+0.2 \mathrm{~V} ; \\ \mathrm{VIH} \geq \mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{f}=0 \end{gathered}$ | IsB2 |  | 7 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | CI |  | 8 | pF | 4 |
|  | $\mathrm{VCc}=5 \mathrm{~V}$ | Co |  | 8 | pF | 4 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5,13$)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION |  | -25 |  | -35 |  | -45 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |

READ Cycle

| READ cycle time | ${ }^{\text {tRC }}$ | 25 |  | 35 |  | 45 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }} \mathrm{AA}$ |  | 25 |  | 35 |  | 45 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 25 |  | 35 |  | 45 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Enable to output in Low-Z | t LZCE | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Disable to output in High-Z | thZCE |  | 10 |  | 15 |  | 18 | ns | 6,7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | tPD |  | 25 |  | 35 |  | 45 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 8 |  | 12 |  | 15 | ns |  |
| Output Enable to output in Low-Z | tLZOE | 0 |  | 0 |  | 0 |  | ns |  |
| Output Disable to output in High-Z | thZOE |  | 10 |  | 12 |  | 15 | ns | 6 |

## WRITE Cycle

| WRITE cycle time | tWC | 25 |  | 35 |  | 45 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }}$ CW | 15 |  | 20 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 15 |  | 20 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ S | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 15 |  | 20 |  | 25 |  | ns |  |
| Data setup time | tDS | 10 |  | 15 |  | 20 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | t L WWE | 0 |  | 0 |  | 0 |  | ns |  |
| Write Enable to output in High-Z | tHZWE | 0 | 10 | 0 | 15 | 0 | 18 | ns | 6,7 |

## AC TEST CONDITIONS



## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\mathrm{t}} \mathrm{HZCE},{ }^{\mathrm{t}} \mathrm{HZOE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $C L=5 \mathrm{pF}$ as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{t} \mathrm{HZCE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZCE}$ and ${ }^{\text {t }} \mathrm{HZWE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZWW}$.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\bar{W}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables and output enable held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. ${ }^{\mathrm{t}} \mathrm{RC}=$ Read Cycle Time.
12. Chip enable $(\overline{\mathrm{CE}})$ and write enable $(\overline{\mathrm{WE}})$ can initiate and terminate a WRITE cycle.
13. For automotive, industrial and extended temperature specifications refer to page 4-171.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{gathered} \overline{\mathrm{CE}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \mathrm{V} \text { IN } \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \text { or } \leq 0.2 \mathrm{~V} \end{gathered}$ | $\mathrm{Vcc}=2 \mathrm{v}$ | Iccor |  | 95 | 500 | $\mu \mathrm{A}$ |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{v}$ |  |  | 350 | 750 | $\mu \mathrm{A}$ |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{\text {t }}$ CDR | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {t } R}$ | ${ }^{\text {tRC }}$ |  |  | ns | 4, 11 |

## LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. $1^{\text {8, }} 9$


READ CYCLE NO. $2^{7,8,10}$


WRITE CYCLE NO. 1
(Write Enable Controlled) ${ }^{12}$


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{12}$


7/A DON'T CARE
XXX UNDEFINED

## SRAM

## 2K x 8 SRAM

## FEATURES

- High speed: $12,15,20,25,30$ and $35 n s$
- High-performance, low-power, CMOS double metal process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ options
- All inputs and outputs are TTL compatible


## OPTIONS

- Timing

12ns access -12
15 ns access -15
20 ns access -20
25ns access -25
30ns access -30
35ns access -35

- Packages

Plastic DIP ( 300 mil )
Ceramic DIP ( 300 mil )
Plastic SOJ ( 300 mil )
Ceramic LCC ( 28 pin)

- Two Volt Data Retention


## MARKING

$$
-12
$$

$$
-15
$$

$$
-20
$$

$$
\begin{aligned}
& -25 \\
& -30
\end{aligned}
$$

$$
-35
$$

None
C
DJ
EC
L

## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.
For flexibility in high speed memory applications, Micron offers chip enable ( $\overline{\mathrm{CE}})$ on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design.
Writing to these devices is accomplished when write enable ( $\overline{\mathrm{WE}})$ and $\overline{\mathrm{CE}}$ inputs are both LOW. Reading is accomplished when $\overline{\text { WE }}$ remains HIGH and $\overline{\mathrm{CE}}$ goes to LOW. The device offers a reduced power standby mode when disabled. Thisallows system designs to achieve low standby power requirements.
All devices operate from a single +5 V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)
24L/300DIP (A-7, B-7)

24L/300 SOJ (E-4)

| A7 ${ }^{\text {P }}$ | 24 Vcc |
| :---: | :---: |
| A6 2 | 23 A8 |
| A5 3 | 22 A 9 |
| A4 4 | $21 . \overline{W E}$ |
| A3 5 | 20 OE |
| A2 6 | 19 A10 |
| A147 | 18 CE |
| A0-8 | 17 DQ8 |
| DQ1 9 | 16 DQ7 |
| DQ2 10 | 15 DQ6 |
| DQ3 11 | 14 DQ5 |
| Vss 12 | $13 \mathrm{DQ4}$ |


|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  | 3 |  |  |
| A4 | 4 | 26 | AO |
| A3 | 5 | 25 | $\overline{\text { WE }}$ |
| A2 | 6 | 24 | $\overline{\text { OE }}$ |
| NC | 7 | 23 | A10 |
| NC | 8 | 22 | $\square \mathrm{NC}$ |
| A1 | 9 | 21 | NC |
| A0 | 10 | 20 | $\square \overline{\mathrm{CE}}$ |
| DQ1 | 11 | 19 | DQ8 |
| DQ2 | 12 | 18 | DQ7 |
| 1314151617 |  |  |  |
|  |  |  |  |

FUNCTIONAL BLOCK DIAGRAM


TRUTH TABLE

| MODE | $\mathbf{O E}$ | CE | WE | DQ | POWER |
| :--- | :---: | :---: | :---: | :---: | :---: |
| STANDBY | X | H | X | HIGH-Z | STANDBY |
| READ | L | L | H | Q | ACTIVE |
| READ | H | L | H | HIGH-Z | ACTIVE |
| WRITE | X | L | L | D | ACTIVE |

ABSOLUTE MAXIMUM RATINGS*
Voltage on Vcc supply relative to Vss ..... -1.0 V to +7.0 V
Storage Temperature (Ceramic) ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) ..... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..... 1W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | $\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{Vcc}$ | ILI | -5 | 5 | $\mu \mathrm{A}$ |  |
| Output Leakage Current | Output(s) Disabled, $\mathrm{OV} \leq \mathrm{Vout} \leq \mathrm{Vcc}$ | ILo | -5 | 5 | $\mu \mathrm{A}$ |  |
| Output High Voltage | $\mathrm{IOH}=-4.0 \mathrm{~mA}$ | Vor | 2.4 |  | V | 1 |
| Output Low Voltage | $\mathrm{loL}=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |


|  |  |  | MAX |  |  |  |  |  | UNITS | notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION | CONDITIONS | SYMBOL | -12 | -15 | -20 | -25 | -30 | -35 |  |  |
| Power Supply Current: Operating | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{V} \mathrm{~V} ; \mathrm{Vcc}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} \mathrm{RC}, \\ \text { Outputs Open } \end{gathered}$ | Icc | 140 | 125 | 110 | 100 | 100 | 100 | mA | 3 |
| Power Supply Current: Standby | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{V}_{1 H} ; V_{c c}=M A X \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} \mathrm{RC}, \\ \text { Outputs Open } \end{gathered}$ | Isb1 | 50 | 45 | 40 | 30 | 30 | 30 | mA |  |
|  |  | Isb2 | 3 | 3 | 3 | 3 | 3 | 3 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | Cl |  | 7 | pF | 4 |
| $n n$ | Output Capacitance | $\mathrm{Vcc}=5 \mathrm{~V}$ | Co |  | 7 | pF |
|  |  |  |  |  |  |  |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Note 5, 13) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}\right.$; $\mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%$ )

| DESCRIPTION |  | -12 |  | -15 |  | -20 |  | -25 |  | -30 |  | -35 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX |  |  |

## READ Cycle

| READ cycle time | ${ }^{\text {t } R C}$ | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }} \mathrm{AA}$ |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 11 |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 | ns |  |
| Output hold from address change | ${ }^{\mathrm{t}} \mathrm{OH}$ | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | ns |  |
| Chip Enable to output in Low-Z | tLZCE | 3 |  | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Disable to output in High-Z | tHZCE |  | 7 |  | 7 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6,7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | tPD |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 7 |  | 7 |  | 9 |  | 10 |  | 15 |  | 20 | ns |  |
| Output Enable to output in Low-Z | tLZOE | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Output Disable to output in High-Z | tHZOE |  | 6 |  | 6 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6 |

## WRITE Cycle

| WRITE cycle time | tWC | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 12 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }}$ AH | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Data setup time | ${ }^{\text {t }} \mathrm{DS}$ | 7 |  | 8 |  | 10 |  | 10 |  | 15 |  | 15 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | ${ }^{\text {t }}$ LZWE | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | ns |  |
| Write Enable to output in High-Z | ${ }^{\text {t HZWE }}$ |  | 6 |  | 6 |  | 8 |  | 10 |  | 12 |  | 15 | ns | 6 |

## AC TEST CONDITIONS

Input pulse levels
Vss to 3.0 V

Input rise and fall times .......................................5ns

Input timing reference levels . 1.5 V
Output reference levels .....................................1.5V
Output load ...............................See Figures 1 and 2

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\mathrm{t}} \mathrm{HZCE},{ }^{\mathrm{t}} \mathrm{HZWE}$ and ${ }^{\mathrm{t}} \mathrm{HZOE}$ are specified with CL $=5 \mathrm{pF}$ as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZCE}$.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{W E}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. ${ }^{\mathrm{t}} \mathrm{RC}=$ Read Cycle Time.
12. Chip enable ( $\overline{\mathrm{CE}}$ ) and write enable ( $\overline{\mathrm{WE})}$ can initiate and terminate a WRITE cycle.
13. For automotive, industrial and extended temperature specifications refer to page 4-165.

## DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{aligned} & \overline{\mathrm{CE}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \mathrm{ViN} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \\ & \text { or } \leq 0.2 \mathrm{~V} \end{aligned}$ | $\mathrm{Vcc}=2 \mathrm{v}$ | ICCDR |  | 95 | 250 | $\mu \mathrm{A}$ |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{v}$ |  |  | 300 | 400 | $\mu \mathrm{A}$ |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{\text {t }}$ CDR | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {t }}$ R | ${ }^{\text {t } R C ~}$ |  |  | ns | 4,11 |

## LOW Vcc DATA RETENTION WAVEFORM



DON'T CARE

READ CYCLE NO. $1^{\text {8, }} 9$


READ CYCLE NO. $2^{7,8,10}$

$0 / 2$ dont care
UNDEFINED

## WRITE CYCLE NO. 1 <br> (Write Enable Controlled) ${ }^{7,12}$



WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{12}$


D/Z dont care
undefined

## SRAM

## 8K x 8 SRAM

## FEATURES

- High speed: 12, 15, 20, 25, 30 and 35ns
- High-performance, low-power, CMOS double metal process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}} 1, \mathrm{CE} 2$ and $\overline{\mathrm{OE}}$ options
- All inputs and outputs are TTL compatible


## OPTIONS

- Timing

12 ns access -12
15 ns access -15
20ns access -20
25ns access -25
30ns access -30
35ns access -35

- Packages

Plastic DIP ( 300 mil )
Ceramic DIP ( 300 mil )
Plastic SOJ ( 300 mil )
Ceramic LCC (28 pin)
Ceramic LCC (32 pin)

- Two Volt Data Retention


## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers two chip enables on the $x 8$ organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design.

Writing to these devices is accomplished when write enable ( $\overline{\mathrm{WE}}$ ) and $\overline{\mathrm{CE}}$ inputs are both LOW. Reading is accomplished when $\overline{W E}$ remains HIGH and $\overline{\mathrm{CE}}$ goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5 V power supply and all inputs and outputs are fully TTL compatible.


## FUNCTIONAL BLOCK DIAGRAM



TRUTH TABLE

| MODE | CE1 | CE2 | WE | OE | DQ OPERATION | POWER |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| STANDBY | H | X | X | X | HIGH-Z | STANDBY |
| STANDBY | X | L | X | X | HIGH-Z | STANDBY |
| READ | L | H | H | L | Q | ACTIVE |
| READ | L | H | H | H | HIGH-Z | ACTIVE |
| WRITE | L | H | L | X | D | ACTIVE |

ABSOLUTE MAXIMUM RATINGS*
Voltage on Vcc supply relative to Vss ..... -1.0 V to +7.0 V
Storage Temperature (Ceramic) ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation1W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | Vcc +1 | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | OV $\leq$ VIN $\leq$ Vcc | ILI | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled, <br> OV $\leq$ Vout $\leq$ Vcc | ILo | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | IoH $=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | IOL $=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |



CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | CI |  | 7 | pF |
|  | $\mathrm{VCC}=5 \mathrm{~V}$ | Co |  | 7 | pF | 4 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Note 5,13$)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right.$ )

| DESCRIPTION |  | -12 |  | -15 |  | -20 |  | -25 |  | -30 |  | -35 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | UNITS | NOTES |

## READ Cycle

| READ cycle time | ${ }^{\text {t }} \mathrm{RC}$ | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }} \mathrm{AA}$ |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 12 |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 | ns |  |
| Output hold from address change | ${ }^{\mathrm{t}} \mathrm{OH}$ | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | ns |  |
| Chip Enable to output in Low-Z | tLZCE | 3 |  | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Disable to output in High-Z | thZCE |  | 7 |  | 7 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6,7 |
| Chip Enable to power-up time | tpu | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | ${ }^{\text {tPD }}$ |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 7 |  | 7 |  | 9 |  | 10 |  | 15 |  | 20 | ns |  |
| Output Enable to output in Low-Z | tzOEE | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Output Disable to output in High-Z | ${ }^{\text {thZOE }}$ |  | 6 |  | 6 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6 |

## WRITE Cycle

| WRITE cycle time | tWC | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 12 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Data setup time | ${ }^{\text {t }}$ DS | 8 |  | 8 |  | 10 |  | 10 |  | 15 |  | 15 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | tLZWE | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | ns |  |
| Write Enable to output in High-Z | ${ }^{\text {t }}$ HZWE |  | 6 |  | 6 |  | 8 |  | 10 |  | 12 |  | 15 | ns | 6 |

## AC TEST CONDITIONS

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\mathrm{t}} \mathrm{HZCE},{ }^{\mathrm{t}} \mathrm{HZWE}$ and ${ }^{\mathrm{t}} \mathrm{HZOE}$ are specified with $\mathrm{CL}=$ 5 pF as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZCE}$.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{W E}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. ${ }^{\mathrm{t}} \mathrm{RC}=$ Read Cycle Time.
12. Chip enable ( $\overline{\mathrm{CE}}$ ) and write enable ( $\overline{\mathrm{WE})}$ can initiate and terminate a WRITE cycle.
13. For automotive, industrial and extended temperature specifications refer to page 4-167.

## DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{aligned} & \overline{\mathrm{CE}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \mathrm{VIN} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \text { or } \leq 0.2 \mathrm{~V} \end{aligned}$ | $\mathrm{Vcc}=2 \mathrm{v}$ | ICCDR |  | 95 | 250 | $\mu \mathrm{A}$ |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{~V}$ |  |  | 300 | 400 | $\mu \mathrm{A}$ |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{\text {t }}$ CDR | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {tR }}$ | ${ }^{\text {tr }}$ C |  |  | ns | 4, 11 |

## LOW Vcc DATA RETENTION WAVEFORM



## READ CYCLE NO. $1^{\text {8, } 9}$



READ CYCLE NO. $2^{7,8,10}$


WRITE CYCLE NO. 1 (Write Enable Controlled) ${ }^{7,12}$


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{12}$


V/A DON'T CARE
UNDEFINED

## SRAM

## 32K x 8 SRAM

## FEATURES

- High speed: 20, 25, 30, 35, and 45ns
- High-performance, low-power, CMOS double metal process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ options
- All inputs and outputs are TTL compatible


## OPTIONS

- Timing

20ns access -20
25ns access -25
30ns access -30
35ns access -35
45ns access -45

- Packages

Plastic DIP ( 300 mil )
Plastic DIP ( 600 mil )
Ceramic DIP ( 300 mil )
Ceramic DIP ( 600 mil )
Plastic SOJ ( 300 mil )
Ceramic LCC (28 pin)
Ceramic LCC (32 pin)

- Two Volt Data Retention
- Temperature

Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

## MARKING

## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers chip enable ( $\overline{\mathrm{CE}}$ ) and output enable ( $\overline{\mathrm{OE}}$ ) on this organization. These enhancements can place the outputs in a high impedance state for additional flexibility in system design.

Writing to these devices is accomplished when write enable ( $\overline{\mathrm{WE}})$ and $\overline{\mathrm{CE}}$ inputs are both LOW. Reading is accomplished when $\overline{\mathrm{WE}}$ remains HIGH and $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ go LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5 V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)
28L/300/600 DIP (A-9, A-11, B-9, B-11)

| A14 1 | 28 | Vcc |
| :---: | :---: | :---: |
| A12 2 | 27 | WE |
| A7 3 | 26 | A13 |
| A6 4 | 25 | A8 |
| A5 5 | 24 | A9 |
| A4 6 | 23 | A11 |
| A3 7 | 22 | $\overline{\mathrm{OE}}$ |
| A2 8 | 21 | A10 |
| A1 9 | 20 | $\overline{\mathrm{CE}}$ |
| A0 10 | 19 | DQ8 |
| DQ1 11 | 18 | DQ7 |
| DQ2 12 | 17 | DQ6 |
| DQ3 13 | 16 | DQ5 |
| Vss 14 | 15 | DQ4 |


| 28L ZIP |  |
| :--- | :--- | :--- | :--- | :--- |
| (C-5) |  |


(E-8)

| A14 1 | $28 . \mathrm{Vcc}$ |
| :---: | :---: |
| A12 2 | 27 WE |
| A7-3 | 26 A13 |
| A6 4 | 25 A8 |
| A5 5 | 24 A9 |
| A4 6 | 23 A11 |
| A3 47 | $22] \overline{O E}$ |
| A2 8 | 21. |
| A1-9 | $20]$ CE |
| A0-10 | 19 DQ8 |
| DQ1 11 | 18 D DQ7 |
| DQ2 12 | 17 D DQ6 |
| DQ3 13 | 16 DQ5 |
| Vss 414 | 15 PQ4 |
| 28L/LCC |  |
| (F-4) |  |




## FUNCTIONAL BLOCK DIAGRAM



TRUTH TABLE

| MODE | $\overline{\mathbf{O E}}$ | $\overline{\text { CE }}$ | $\overline{\text { WE }}$ | DQ | POWER |
| :--- | :---: | :---: | :---: | :---: | :---: |
| STANDBY | X | H | X | HIGH-Z | STANDBY |
| READ | L | L | H | Q | ACTIVE |
| READ | H | L | H | HIGH-Z | ACTIVE |
| WRITE | X | L | L | D | ACTIVE |

## MT5C2568

ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc supply relative to Vss-1.0 V to +7.0 V
Storage Temperature (Ceramic) ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..... 1W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | $\mathrm{VCC}+1$ | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | OV $\leq$ VIN $\leq$ Vcc | ILI | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled, <br> OV $\leq$ Vout $\leq$ Vcc | ILO | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | $\mathrm{IOH}=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | IoL $=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |


|  |  |  | MAX |  |  |  |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION | CONDITIONS | SYMBOL | -20 | -25 | -30 | -35 | -40 |  |  |
| Power Supply Current: Operating | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{LL}} ; \mathrm{VCC}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} \mathrm{RC}, \\ \text { Outputs Open } \end{gathered}$ | Icc | 105 | 95 | 95 | 90 | 90 | mA | 3 |
| Power Supply Current: Standby | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{V}_{1} ; V_{c c}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} \mathrm{RC}, \\ \text { Outputs Open } \\ \hline \end{gathered}$ | Isb1 | 30 | 25 | 25 | 25 | 25 | mA |  |
|  | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{Vcc}=\mathrm{MAX} \\ \mathrm{VIL} \leq \mathrm{Vss}+0.2 \mathrm{~V} ; \\ \mathrm{VIH} \geq \mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{f}=0 \end{gathered}$ | Isb2 | 5 | 5 | 5 | 7 | 7 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | CI |  | 7 | pF | 4 |
|  |  | Co |  | 5 | pF | 4 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS <br> (Note 5,13$)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right.$ )

| DESCRIPTION |  | -20 |  | -25 |  | -30 |  | -35 |  | -45 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | UNITS | NOTES |

## READ Cycle

| READ cycle time | ${ }^{\text {t }} \mathrm{RC}$ | 20 |  | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }} \mathrm{AA}$ |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Enable to output in Low-Z | t LZCE | 6 |  | 6 |  | 6 |  | 6 |  | 6 |  | ns |  |
| Chip Disable to output in High-Z | thZCE |  | 9 |  | 9 |  | 12 |  | 15 |  | 18 | ns | 6, 7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | tPD |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 8 |  | 8 |  | 10 |  | 12 |  | 15 | ns |  |
| Output Enable to output in Low-Z | ${ }^{\text {t }}$ LZOE | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Output Disable to output in High-Z | ${ }^{\text {t }} \mathrm{HZOE}$ |  | 7 |  | 7 |  | 10 |  | 12 |  | 15 | ns |  |

## WRITE Cycle

| WRITE cycle time | ${ }^{\text {t }}$ WC | 20 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 15 |  | 15 |  | 18 |  | 20 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 15 |  | 15 |  | 18 |  | 20 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 15 |  | 15 |  | 18 |  | 20 |  | 25 |  | ns |  |
| Data setup time | ${ }^{\text {t }}$ S | 10 |  | 10 |  | 12 |  | 15 |  | 20 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | tLZWE | 5 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Write Enable to output in High-Z | tHZWE |  | 10 |  | 10 |  | 12 |  | 15 |  | 18 | ns | 6 |

## AC TEST CONDITIONS

Input pulse levels Vss to 3.0 V
Input rise and fall times 5ns
Input timing reference levels .............................1.5V
Output reference levels 1.5 V
Output load See Figures 1 and 2

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\mathrm{t}} \mathrm{HZCE},{ }^{\mathrm{t}} \mathrm{HZOE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=$ 5 pF as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\text {t }}$ LZCE.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{\mathrm{WE}}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. ${ }^{\mathrm{t} R C=\text { Read Cycle Time. }}$
12. Chip enable ( $\overline{\mathrm{CE}}$ ) and write enable ( $\overline{\mathrm{WE})}$ can initiate and terminate a WRITE cycle.
13. For automotive, industrial and extended temperature specifications refer to page 4-169.

## DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{aligned} & \overline{\mathrm{CE}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \mathrm{VIN} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \text { or } \leq 0.2 \mathrm{~V} \end{aligned}$ | $V \mathrm{cc}=2 \mathrm{v}$ | ICCDR |  | 95 | 300 | $\mu \mathrm{A}$ |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{~V}$ |  |  | 350 | 400 | $\mu \mathrm{A}$ |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{\text {t }}$ CDR | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {t } R}$ | ${ }^{\text {t } R C}$ |  |  | ns | 4,11 |

## LOW Vcc DATA RETENTION WAVEFORM



## DON'T CARE

READ CYCLE NO. $1^{8,9}$


READ CYCLE NO. $2^{7,8,10}$


WRITE CYCLE NO. 1
(Write Enable Controlled) 7, 12


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{12}$


Z/Z don't care
UNDEFINED

## SRAM

## 128K x 8 SRAM

## WITH OUTPUT ENABLE

## FEATURES

- High speed: 25, 35, and 45ns
- High-performance, low-power, CMOS double metal process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}} 1, \mathrm{CE} 2$ and $\overline{\mathrm{OE}}$ options
- All inputs and outputs are TTL compatible
- Fast Output Enable access time: 8ns


## OPTIONS

- Timing
$25 n s$ access
MARKING

35ns access
$45 n s$ access

- Packages

Plastic DIP ( 400 mil )
Plastic DIP ( 600 mil )
Ceramic DIP ( 400 mil )
Ceramic DIP ( 600 mil )
Plastic SOJ ( 400 mil )
Ceramic LCC (32 pin)

- Two Volt Data Retention

None
W
C
CW
DJ
EC

L

## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers dual chip enables ( $\overline{\mathrm{CE}} 1, \mathrm{CE} 2$ ). This enhancement can place the outputs in a high impedance state for additional flexibility in system design.

Writing to these devices is accomplished when write enable ( $\overline{\mathrm{WE}}$ ) and $\overline{\mathrm{CE}} 1$ inputs are both LOW and CE2 is HIGH. Reading is accomplished when $\overline{W E}$ and CE2 remain HIGH and CE1 goes LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5 V power supply and all inputs and outputs are fully TTL compatible.

## PIN ASSIGNMENT (Top View)

32L/400/600 DIP
(A-12, A-13, B-12, B-13)

| NC ${ }_{1}$ | 32 Vcc |
| :---: | :---: |
| A16 [ 2 | ${ }_{31} \mathrm{~A} 15$ |
| A14 3 | 30 CE2 / NC* |
| A12 4 | ${ }_{29} 5 \overline{W E}$ |
| A7 [ 5 | 28.10 |
| A6 [6 | ${ }_{27}$ A8 |
| A5 $\mathrm{l}_{7}$ | 26 A9 |
| A4 [ 8 | 25.111 |
| A3 [9 | ${ }_{24} \bar{O} \overline{O E}$ |
| A2 10 | 23.110 |
| A1 11 | $22 . \overline{\mathrm{CE}} 1$ |
| A0 [12 | 21. DQ8 |
| DQ1 [13 | 20. DQ7 |
| DQ2 14 | 19. DQ6 |
| DQ3 15 | 18. DQ5 |
| Vss 16 | 17.104 |


| NC 1 | 32 | Vcc |
| :---: | :---: | :---: |
| A16 2 | 31 | A15 |
| A14 3 | 30 | CE2 / NC* |
| A12 4 | 29 | $\square$ WE |
| A7 5 | 28 | A13 |
| A6 6 | 27 | A8 |
| A5 7 | 26 | - A9 |
| A4 8 | 25 | A11 |
| A3 9 | 24 | $\overline{\mathrm{OE}}$ |
| A2 10 | 23 | A10 |
| A1 11 | 22 | $\overline{\mathrm{CE}} 1$ |
| A0 12 | 21 | D DQ8 |
| DQ1 13 | 20 | ] DQ7 |
| DQ2 14 | 19 | P DQ6 |
| DQ3 15 | 18 | $\square$ DQ5 |
| Vss 16 | 17 | DQ4 |

[^1]
## FUNCTIONAL BLOCK DIAGRAM



NOTE: The two least significant row address bits (A8 and A6) are encoded using a gray code.

TRUTH TABLE

| MODE | రE | CE1 | CE2 | WE | DQ | POWER |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| STANDBY | X | H | X | X | HIGH-Z | STANDBY |
| STANDBY | X | X | L | X | HIGH-Z | STANDBY |
| READ | L | L | H | H | Q | ACTIVE |
| READ | H | L | H | H | HIGH-Z | ACTIVE |
| WRITE | X | L | H | L | D | ACTIVE |

ABSOLUTE MAXIMUM RATINGS*
Voltage on Vcc supply relative to Vss ..... -1.0 V to +7.0 V
Storage Temperature (Ceramic) ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..... 1W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | Vcc +1 | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | OV $\leq \mathrm{VIN} \leq \mathrm{Vcc}$ | ILI | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled, <br> OV $\leq$ Vout $\leq \mathrm{Vcc}$ | ILo | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | IOH $=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | IoL $=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |


| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply <br> Current: Operating | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{IL}} ; \mathrm{VCC}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t}_{\mathrm{RC}}, \\ \text { Outputs Open } \end{gathered}$ | Icc |  | 120 | mA | 3 |
| Power Supply Current: Standby | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathbf{I}} ; \mathrm{VcC}^{\prime}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 /{ }^{\mathrm{t} R C}, \\ \text { Outputs Open } \end{gathered}$ | IsB1 |  | 30 | mA |  |
|  | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{Vcc}=\mathrm{MAX} \\ \mathrm{VIL} \leq \mathrm{Vss}+0.2 \mathrm{~V} ; \\ \mathrm{V} \mathrm{HH} \geq \mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{f}=0 \\ \hline \end{gathered}$ | Isb2 |  | 7 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} \\ \mathrm{VcC}=5 \mathrm{~V} \end{gathered}$ | Cl |  | 8 | pF | 4 |
| Output Capacitance |  | Co |  | 8 | pF | 4 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS <br> (Note 5,14$)\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right.$ )

| DESCRIPTION |  | -25 |  | -35 |  | -45 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |

## READ Cycle

| READ cycle time | ${ }^{\text {t }} \mathrm{RC}$ | 25 |  | 35 |  | 45 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }}$ A |  | 25 |  | 35 |  | 45 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 25 |  | 35 |  | 45 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Enable to output in Low-Z | t LZCE | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Disable to output in High-Z | thZCE |  | 10 |  | 15 |  | 18 | ns | 6,7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | ${ }^{\text {tPD }}$ |  | 25 |  | 35 |  | 45 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 8 |  | 12 |  | 15 | ns |  |
| Output Enable to output in Low-Z | tLZOE | 0 |  | 0 |  | 0 |  | ns |  |
| Output Disable to output in High-Z | ${ }^{\text {t }} \mathrm{HZOE}$ |  | 10 |  | 12 |  | 15 | ns | 6 |

## WRITE Cycle

| WRITE cycle time | tWC | 25 |  | 35 |  | 45 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 15 |  | 20 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 15 |  | 20 |  | 25 |  | ns |  |
| Data setup time | tDS | 10 |  | 15 |  | 20 |  | ns |  |
| Data hold time | tDH | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | t LZWE | 0 |  | 0 |  | 0 |  | ns |  |
| Write Enable to output in High-Z | thZWE | 0 | 10 | 0 | 15 | 0 | 18 | ns | 6 |

## AC TEST CONDITIONS

Input pulse levels Vss to 3.0 V
Input rise and fall times 5 ns
Input timing reference levels 1.5 V

Output reference levels .....................................1.5V
Output load See Figures 1 and 2

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\mathrm{t}} \mathrm{HZCE},{ }^{\mathrm{t}} \mathrm{HZOE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=5 \mathrm{pF}$ as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZCE}$, and ${ }^{\mathrm{t}} \mathrm{HZWE}$ is less than ${ }^{\mathrm{t}}$ LZWWE.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{\mathrm{WE}}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables and output enable held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. ${ }^{\mathrm{t} R C}=$ Read Cycle Time.
12. CE2 timing is the same as $\overline{\mathrm{CE}} 1$ timing. The wave form is inverted.
13. Chip enable ( $\overline{\mathrm{CE}} 1, \mathrm{CE} 2$ ) and write enable ( $\overline{\mathrm{WE}})$ can initiate and terminate a WRITE cycle.
14. For automotive, industrial and extended temperature specifications refer to page 4-171.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{gathered} \overline{\mathrm{CE}} \geq(\text { Vcc }-0.2 \mathrm{~V} \text { ) } \\ \text { or CE2 } \leq \text { (Vss }+0.2 \mathrm{~V} \text { ) } \\ \mathrm{VIN} \geq \text { (Vcc }-0.2 \mathrm{~V}) \\ \text { or } \leq 0.2 \mathrm{~V} \end{gathered}$ | $\mathrm{Vcc}=2 \mathrm{v}$ | ICCDR |  | 95 | 500 | $\mu \mathrm{A}$ |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{v}$ |  |  | 350 | 750 | $\mu \mathrm{A}$ |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{t} \mathrm{CDR}$ | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {tR }}$ | ${ }^{\text {t }} \mathrm{C}$ |  |  | ns | 4,11 |

LOW Vcc DATA RETENTION WAVEFORM


READ CYCLE NO. $1^{\text {8, }} 9$


READ CYCLE NO. $\mathbf{2}^{7,8,10,12}$


KZ Dont care
UNDEFINED

## WRITE CYCLE NO. 1

(Write Enable Controlled) ${ }^{7}$, 12, 13


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{12,13}$


D/A dont care
UNDEFINED

## SRAM

## 16K x 16 SRAM

WITH ADDRESS / DATA INPUT LATCHES

## FEATURES

- Fast access times: 15, 17, 20 and 25ns
- Fast output enable: 6, 8 and 10 ns
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Separate, electrically isolated output buffer power supply and ground (VccQ, VssQ)
- Optional $+3.3 \mathrm{~V}( \pm 10 \%)$ output buffer operation
- Separate Data Input Latch
- Common Data Inputs and Data Outputs
- BYTE WRITE capability via Dual Write Strobes
- Address and Chip Enable input latches


## OPTIONS

MARKING

- Timing

15ns access -15
17 ns access -17
20 ns access -20
25ns access -25

- Packages

52-pin PLCC
EJ
52-pin PQFP LG

- Density
$16 \mathrm{~K} \times 16$
MT5C2516


## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

The MT5C2516 SRAM integrates a 16K x 16 SRAM core with advanced peripheral circuitry consisting of address and data input latches, latched active HIGH and active LOW chip enables, separate upper and lower byte write strobes and a fast output enable. The device is ideally suited for "pipelined" systems and systems that benefit from a wide data bus.

Address and chip enable latches are provided. When address latch enable (ALE) is HIGH, the address and chip enable latches are transparent, allowing the input to flow through the latch. If ALE is LOW, the address and chip

enable latch inputs are disabled. This input latch simplifies READ and WRITE cycles by guaranteeing address hold time in a simple fashion.

Dual write strobes ( $\overline{\mathrm{BWL}}$ and $\overline{\mathrm{BWH}}$ ) allow individual bytes to be written. $\overline{\mathrm{BWL}}$ controls DQ1-DQ8 the lower bits. While $\overline{\mathrm{BWH}}$ controls DQ9-DQ16 the upper bits.

A data input latch is provided. When data latch enable (DLE) is HIGH, the data latches are in the transparent mode and input data flows through the latch. When DLE is LOW, the data latch inputs are disabled. The data input latch simplifies WRITE cycles by guaranteeing data hold times.

The MT5C 2516 operates from a +5 V power supply. Separate and electrically isolated output buffer power (VccQ) and ground (VssQ) pins are provided to allow either +3.3 V or +5 V TTL operation of the output drivers.

FUNCTIONAL BLOCK DIAGRAM


PIN DESCRIPTIONS

| PLCC and PQFP PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} 33,32,31,30,29,26,25, \\ 24,23,22,7,6,49,48 \end{gathered}$ | A0-A13 | Input | Address Inputs: These inputs are either latched or unlatched depending on the state of ALE. |
| 52 | $\overline{W E}$ | Input | Write Enable: This input determines if the cycle is a READ or WRITE cycle. WE is LOW for a WRITE cycle and HIGH for a READ cycle |
| 51 | ALE | Input | Address Latch Enable: This signal latches the address, CE, and $\overline{\mathrm{CE}}$ inputs on its falling edge. When ALE is HIGH, the latch is transparent. |
| 3, 4 | $\overline{\overline{\mathrm{BWL}}} \overline{\overline{\mathrm{BWH}}}$ | Input | Byte Write Enables: These active LOW inputs allow individual bytes to be written. When BWL is LOW, data is written to the lower byte, D1-D8. When BWH is LOW, data is written to the upper byte, D9-D16. When both BWH and BWL are HIGH and meet the required setup time to the falling edge of $\overline{\mathrm{WE}}$, then the WRITE cycle is aborted. |
| 5,47 | $\overline{\text { CE, CE }}$ | Input | Chip Enables: These signals are used to enable the device. Both active HIGH (CE) and active LOW (CE) enables are supplied to provide on-chip address decoding when multiple devices are used, as in a dual bank configuration. |
| 50 | $\overline{\mathrm{OE}}$ | Input | Output Enable: This active LOW input enables the output drivers. |
| 21 | DLE | Input | Data Latch Enable: When DLE is HIGH, the data latch is transparent. Input data is latched into the on-chip data latch on the falling edge of DLE. |
| 20,46 | NC | Input/ Output | Parity Data I/O: These signals are no connects (NC). No connects are not internally bonded. |
| 34, 35, 38, 39, 40, <br> 41, 44, 45, 8, 9, 12 <br> $13,14,15,18,19$ | DQ1-DQ16 | Input/ Output | SRAM Data I/O: Lower byte is DQ1-DQ8; Upper byte is DQ9-DQ16. When data is latched, DQ1-DQ16 must meet the required setup and hold times around DLE. |
| 2, 28 | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 10, 17, 36, 43 | VccQ | Supply | Isolated Output Buffer Supply: $+5 \mathrm{~V} \pm 10 \%$ or $3.3 \mathrm{~V} \pm 10 \%$ |
| 11, 16, 37, 42 | VssQ | Supply | Isolated Output Buffer Ground: GND |
| 1,27 | Vss | Supply | Ground: GND |

MT5C2516

## TRUTH TABLE

| OPERATION | CE | $\overline{\text { CE }}$ | WE | BWL | BWH | ALE | DLE | $\overline{\text { OE }}$ | DQ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Deselected cycle | L | X | X | X | X | X | X | X | High-Z |
| Deselected | X | H | X | X | X | X | X | X | High-Z |
| READ | H | L | H | X | X | H | X | H | High-Z |
| READ | H | L | H | X | X | H | X | L | Q1-Q16 |
| LATCHED READ | H | L | H | X | X | L | X | L | Q1-Q16 |
| WORD WRITE DQ1-DQ16 transparent data-in | H | L | L | L | L | H | H | X | D1-D16 |
| LATCHED WORD WRITE DQ1-DQ16 transparent data-in | H | L | L | L | L | L | H | X | D1-D16 |
| WORD WRITE DQ1-DQ16 latched data-in | H | L | L | L | L | H | L | X | D1-D16 |
| LATCHED WORD WRITE DQ1-DQ16 latched data-in | H | L | L | L | L | L | L | X | D1-D16 |
| ABORTED WRITE | H | L | L | H | H | X | X | X | High-Z |
| BYTE WRITE DQ1-DQ8 transparent data-in | H | L | L | L | H | H | H | X | D1-D8 |
| LATCHED BYTE WRITE DQ1-DQ8 transparent data-in | H | L | L | L | H | L | H | X | D1-D8 |
| BYTE WRITE DQ9-DQ16 transparent data-in | H | L | L | H | L | H | H | X | D9-D16 |
| LATCHED BYTE WRITE DQ9-DQ16 transparent data-in | H | L | L | H | L | L | H | X | D9-D16 |
| BYTE WRITE DQ1-DQ8 latched data-in | H | L | L | L | H | H | L | X | D1-D8 |
| LATCHED BYTE WRITE DQ1-DQ8 latched data-in | H | L | L | L | H | L | L | X | D1-D8 |
| BYTE WRITE <br> DQ9-DQ16 latched data-in | H | L | L | H | L | H | L | X | D9-D16 |
| LATCHED BYTE WRITE DQ9-DQ16 latched data-in | H | L | L | H | L | L | L | X | D9-D16 |

NOTE: 1. Latched inputs (Addresses, CE, and $\overline{\mathrm{CE}}$ ) must satisfy the specified setup and hold times around the falling edge of ALE. Data-in must satisfy the specified setup and hold times for DLE.
2. A transparent WRITE cycle is defined by DLE HIGH during the ${ }^{\text {t }}$ DLW time.
3. A latched WRITE cycle is defined by DLE transitioning LOW during the WRITE cycle and data satisfying the specified setup and hold times for DLE.

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc/Vcce supply relative to Vss/VssQ -1.0 V to +7.0 V
Storage Temperature (Plastic) ................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation 1.5W

Short Circuit Output Current ................................... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{Vss}=\mathrm{VssQ}\right.$, Unless Otherwise Noted)

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | $\mathrm{OV} \leq \mathrm{Vin} \leq \mathrm{Vcc}$ | ILI | -10 | 10 | $\mu \mathrm{A}$ |  |
| Output Leakage Current | Output(s) Disabled, $\mathrm{OV} \leq$ Vout $\leq \mathrm{Vcc}$ | ILo | -10 | 10 | $\mu \mathrm{A}$ |  |
| Output High Voltage | $\mathrm{loH}=-4.0 \mathrm{~mA}$ | Vor | 2.4 |  | V | 1 |
| Output Low Voltage | $\mathrm{loL}=8.0 \mathrm{~mA}$ | Vol |  | 0.4 | V | 1 |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V | 1 |
| Output Buffer Supply Voltage | 5.0V TTL Compatible | Vcca | 4.5 | 5.5 | V | 1 |


| DESCRIPTION | CONDITIONS | SYMBOL | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Current: Operating | $\overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{CE} \geq \mathrm{V}_{\mathrm{IH}} ;$ Vcc = MAX; Outputs Open $f=M A X=1 /{ }^{\text {t }} R C$ | Icc | 150 | 250 | mA | 3 |
| Power Supply Current: Standby | $\begin{gathered} \mathrm{CE} \leq \mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}} ; \mathrm{Vcc}_{\mathrm{Cc}}=\mathrm{MAX} \\ \text { Outputs Open } \\ \mathrm{f}=\mathrm{MAX}=1 /{ }^{\mathrm{t}} \mathrm{RC} \end{gathered}$ | ${ }_{\text {Isb1 }}$ | 20 | 30 | mA |  |
|  | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{Vcc}-0.2 ; \mathrm{CE} \leq \mathrm{Vss}+0.2, \\ \mathrm{Vcc}=M A X ; V_{\mathrm{LL}} \leq V \mathrm{Vs}+0.2, \\ V_{\mathrm{H}} \geq \mathrm{Vcc}^{2}-0.2 ; f=0 \end{gathered}$ | ISB2 | 8 | 10 | mA |  |
|  | $\mathrm{CE} \leq \mathrm{V}_{\mathrm{IL}} ; \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}} ; \mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$ <br> $f=0$; Outputs Open | IsB3 | 10 | 15 | mA |  |

CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathbf{f}=1 \mathrm{MHz}$ | $\mathrm{Cl}_{\mathrm{I}}$ |  | 6 | pF | 4 |
|  | Input/Output Capacitance (D/Q) | $\mathrm{VCc}=5 \mathrm{~V}$ | $\mathrm{Cl} / \mathrm{o}$ |  | 8 | pF |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Note 5) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=\mathrm{VccQ}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | SYM | -15 |  | -17 |  | -20 |  | -25 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| ADDRESS LATCH |  |  |  |  |  |  |  |  |  |  |  |
| Latch cycle time | t LC | 15 |  | 17 |  | 20 |  | 25 |  | ns |  |
| Latch high time | teH | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Address / Chip Enable setup to latch LOW | tS | 2 |  | 2 |  | 2 |  | 2 |  | ns |  |
| Address / Chip Enable hold from latch LOW | ${ }^{\text {t }}$ LH | 3 |  | 3 |  | 3 |  | 3 |  | ns |  |
| Address / Chip Enable setup to latch HIGH | thS | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Latch HIGH to output active (Low-Z) | tLZL | 2 |  | 2 |  | 2 |  | 2 |  | ns | 6, 7, 4 |
| Latch HIGH to output in High-Z | ${ }^{\text {t }} \mathrm{HZL}$ | 2 | 7 | 2 | 7 | 2 | 7 | 2 | 10 | ns | 6, 7, 4 |

## READ CYCLE

| READ cycle time | ${ }^{\text {t }} \mathrm{RC}$ | 15 |  | 17 |  | 20 |  | 25 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }}$ A |  | 15 |  | 17 |  | 20 |  | 25 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 15 |  | 17 |  | 20 |  | 25 | ns |  |
| Output hold from address change | ${ }^{\text {toh }}$ | 4 |  | 4 |  | 4 |  | 4 |  | ns |  |
| Chip Enable to output in Low-Z | tLZCE | 2 |  | 2 |  | 2 |  | 2 |  | ns | 6, 7, 4 |
| Chip Disable to output in High-Z | thZCE | 2 | 7 | 2 | 7 | 2 | 7 | 2 | 10 | ns | 6, 7, 4 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | tPD |  | 15 |  | 17 |  | 20 |  | 25 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 6 |  | 7 |  | 8 |  | 10 | ns |  |
| Output Enable to output in Low-Z | tLZOE | 2 |  | 2 |  | 2 |  | 2 |  | ns | 6, 7, 4 |
| Output Disable to output in High-Z | ${ }^{\text {t }} \mathrm{HZOE}$ | 2 | 6 | 2 | 7 | 2 | 8 | 2 | 10 | ns | 6, 7, 4 |

## WRITE Cycle

| WRITE cycle time | tWC | 15 |  | 17 |  | 20 |  | 25 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }}$ CW | 13 |  | 14 |  | 15 |  | 20 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 13 |  | 14 |  | 15 |  | 20 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 13 |  | 14 |  | 15 |  | 20 |  | ns |  |
| Data setup time | ${ }^{\text {t }}$ DS | 6 |  | 7 |  | 8 |  | 10 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Mrite Disable to output in Low $Z$ | tiL ㄱNTE | 5 |  | 5 |  | 5 |  | 5 |  | iis | 6, 7, 4 |
| Write Enable to output in High-Z | tHZWE | 0 | 7 | 0 | 7 | 0 | 7 | 0 | 10 | ns | 6, 7, 4 |
| Byte write enable setup time | tBWS | 6 |  | 7 |  | 8 |  | 10 |  | ns |  |
| Byte write enable hold time | ${ }^{\text {tBWH }}$ | 2 |  | 2 |  | 2 |  | 2 |  | ns |  |
| Byie write disabie setup time | 'BWDS | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Data setup to DLE LOW | ${ }^{\text {t DLS }}$ | 1 |  | 1 |  | 1 |  | 1 |  | ns | 9 |
| Data hold from DLE LOW | ${ }^{\text {t DLH }}$ | 3 |  | 3 |  | 3 |  | 3 |  | ns | 9 |
| DLE HIGH to end of write | ${ }^{\text {t DLW }}$ | 6 |  | 7 |  | 8 |  | 10 |  | ns | 8 |
| End of write to DLE HIGH | ${ }^{\text {t }}$ WDLH | 0 |  | 0 |  | 0 |  | 0 |  | ns | 9 |
| End of write to ALE HIGH | tWLH | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| ALE HIGH setup time to write enable LOW | t'WS | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| ALE HIGH to end of write | tLW | 13 |  | 14 |  | 15 |  | 20 |  | ns |  |

## AC TEST CONDITIONS



## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. Output loading is specified with $\mathrm{CL}=5 \mathrm{pF}$ as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{t} H Z C E$ is less than ${ }^{t}$ LZCE, and ${ }^{\text {t }} \mathrm{HZOE}$ is less than ${ }^{t}$ LZOE.
8. A transparent WRITE cycle is defined by DLE being HIGH during the WRITE cycle.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
9. A latched WRITE cycle is defined by DLE transitioning LOW during the WRITE cycle and data satisfying the specified setup and hold time with respect to DLE.
10. Any combination of write enable ( $\overline{\mathrm{WE})}$ and chip enable ( $\overline{\mathrm{CE}}$ ) can initiate and terminate a WRITE cycle.
11. $\overline{\mathrm{WE}}$ is HIGH for READ cycle.
12. Device is continuously selected. All chip enables held in their active state.
13. Address valid prior to or coincident with the latest occurring chip enable.
14. CE timing is the same as $\overline{C E}$ timing. The wave form is inverted.

READ CYCLE NO. $1^{11,12}$


READ CYCLE NO. $\mathbf{2}^{7,11,13,14}$


ITh dont care
UNDEFINED

## READ CYCLE NO. 3

(ALE=DLE=HIGH $)^{7,11,14}$


WRITE CYCLE NO. 1
Chip Enable Controlled
$(A L E=D L E=H I G H)^{10,14}$


Z/Z dont care
UNDEFINED

WRITE CYCLE NO. 2
Write Enable Initiated / Chip Enable Terminate (ALE=DLE=HIGH) ${ }^{10,14}$


V/A don't care
UNDEFINED

## WRITE CYCLE NO. 3

(ALE=DLE=HIGH) $7,10,14$


ADVANCE

WRITE CYCLE NO. $4^{7,10,14}$


## SRAM

## 16K x 18 SRAM

WITH ADDRESS / DATA INPUT LATCHES

## FEATURES

- Fast access times: 15, 17, 20 and 25 ns
- Fast output enable: 6,8 and 10 ns
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Separate, electrically isolated output buffer power supply and ground (VccQ, VssQ)
- Optional $+3.3 \mathrm{~V}( \pm 10 \%)$ output buffer operation
- Separate Data Input Latch
- Common Data Inputs and Data Outputs
- BYTE WRITE capability via Dual Write Strobes
- Parity bits
- Address and Chip Enable input latches


## OPTIONS

- Timing

15 ns access -15
17 ns access -17
20ns access -20
25ns access -25

- Packages

52-pin PLCC
EJ
52-pin PQFP LG

- Density
$16 \mathrm{~K} \times 18$
MT5C2818


## GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

The MT5C2818 SRAM integrates a $16 \mathrm{~K} \times 18$ SRAM core with advanced peripheral circuitry consisting of address and data input latches, latched active HIGH and active LOW chip enables, separate upper and lower byte write strobes and a fast output enable. The device is ideally suited for "pipelined" systems and systems that benefit from a wide data bus. Parity bits are provided for added data integrity.

Address and chip enable latches are provided. When address latch enable (ALE) is HIGH, the address and chip enable latches are transparent, allowing the input to flow through the latch. If ALE is LOW, the address and chip

PIN ASSIGNMENT (Top View)

> 52-Pin PLCC (D-3) 52-Pin PQFP (D-5)

enable latch inputs are disabled. This input latch simplifies READ and WRITE cycles by guaranteeing address hold time in a simple fashion.

Dual writestrobes ( $\overline{\mathrm{BWL}}$ and $\overline{\mathrm{BWH}})$ allow individual bytes to be written. BWL controls DQ1-DQ8 and DQP1, the lower bits. While $\overline{B W H}$ controls DQ9-DQ16 and DQP2, the upper bits.

A data input latch is provided. When data latch enable (DLE) is HIGH , the data latches are in the transparent mode and input data flows through the latch. When DLE is LOW, the data latch inputs are disabled. The data input latch simplifies WRITE cycles by guaranteeing data hold times.
The MT5C2818 operates from a +5 V power supply. Separate and electrically isolated output buffer power (VccQ) and ground $(\mathrm{VssQ})$ pins are provided to allow either +3.3 V or +5 V TTL operation of the output drivers.

FUNCTIONAL BLOCK DIAGRAM


## PIN DESCRIPTIONS

| PLCC and PQFP PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} 33,32,31,30,29,26,25 \\ 24,23,22,7,6,49,48 \end{gathered}$ | A0-A13 | Input | Address Inputs: These inputs are either latched or unlatched depending on the state of ALE. |
| 52 | $\overline{\text { WE }}$ | Input | Write Enable: This input determines if the cycle is a READ or WRITE cycle. $\overline{\text { WE }}$ is LOW for a WRITE cycle and HIGH for a READ cycle |
| 51 | ALE | Input | Address Latch Enable: This signal latches the address, CE, and $\overline{\mathrm{CE}}$ inputs on its falling edge. When ALE is HIGH, the latch is transparent. |
| 3, 4 | $\overline{\overline{\mathrm{BWL}}} \overline{\mathrm{BWH}}$ | Input | Byte Write Enables: These active LOW inputs allow individual bytes to be written. When BWL is LOW, data is written to the lower byte, D1-D8, DQP1. When BWH is LOW, data is written to the upper byte, D9-D16, DQP2. When both BWH and BWL are HIGH and meet the required setup time to the falling edge of $\overline{\text { WE, }}$ then the WRITE cycle is aborted. |
| 5,47 | $\overline{\mathrm{CE}}, \mathrm{CE}$ | Input | Chip Enables: These signals are used to enable the device. Both active HIGH (CE) and active LOW (CE) enables are supplied to provide on-chip address decoding when multiple devices are used, as in a dual bank configuration. |
| 50 | $\overline{\mathrm{OE}}$ | Input | Output Enable: This active LOW input enables the output drivers. |
| 21 | DLE | Input | Data Latch Enable: When DLE is HIGH, the data latch is transparent. Input data is latched into the on-chip data latch on the falling edge of DLE. |
| 20, 46 | $\begin{aligned} & \hline \text { DQP1 } \\ & \text { DQP2 } \end{aligned}$ | Input/ Output | Parity Data I/O: These signals are data parity bits. The DQP1 is the parity bit for the lower byte, DQ1-DQ8. DQP2 is the parity bit for the upper byte, DQ9-DQ16. |
| $\begin{gathered} 34,35,38,39,40 \\ 41,44,45,8,9,12 \\ 13,14,15,18,19 \end{gathered}$ | DQ1-DQ16 | Input/ Output | SRAM Data I/O: Lower byte is DQ1-DQ8; Upper byte is DQ9-DQ16. When data is latched, DQ1-DQ16 must meet the setup and hold times around DLE. |
| 2, 28 | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 10, 17, 36, 43 | VccQ | Supply | Isolated Output Buffer Supply: $+5 \mathrm{~V} \pm 10 \%$ or $3.3 \mathrm{~V} \pm 10 \%$ |
| 11, 16, 37, 42 | VssQ | Supply | Isolated Output Buffer Ground: GND |
| 1,27 | Vss | Supply | Ground: GND |

## TRUTH TABLE

| OPERATION | CE | $\overline{\mathbf{C E}}$ | WE | BWL | BWH | ALE | DLE | $\overline{\mathrm{OE}}$ | DQ | DQP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Deselected cycle | L | X | X | X | X | X | X | X | High-Z | High-Z |
| Deselected | X | H | X | X | X | X | X | X | High-Z | High-Z |
| READ | H | L | H | X | X | H | X | H | High-Z | High-Z |
| READ | H | L | H | X | X | H | X | L | Q1-Q16 | QP1, QP2 |
| LATCHED READ | H | L | H | X | X | L | X | L | Q1-Q16 | QP1, QP2 |
| WORD WRITE DQ1-DQ16 transparent data-in | H | L | L | L | L | H | H | X | D1-D16 | DP1, DP2 |
| LATCHED WORD WRITE DQ1-DQ16 transparent data-in | H | L | L | L | L | L | H | X | D1-D16 | DP1, DP2 |
| WORD WRITE <br> DQ1-DQ16 latched data-in | H | L | L | L | L | H | L | X | D1-D16 | DP1, DP2 |
| LATCHED WORD WRITE DQ1-DQ16 latched data-in | H | L | L | L | L | L | L | X | D1-D16 | DP1, DP2 |
| ABORTED WRITE | H | L | L | H | H | X | X | X | High-Z | High-Z |
| BYTE WRITE <br> DQ1-DQ8 transparent data-in | H | L | L | L | H | H | H | X | D1-D8 | DP1 |
| LATCHED BYTE WRITE DQ1-DQ8 transparent data-in | H | L | L | L | H | L | H | X | D1-D8 | DP1 |
| BYTE WRITE <br> DQ9-DQ16 transparent data-in | H | L | L | H | L | H | H | X | D9-D16 | DP2 |
| LATCHED BYTE WRITE DQ9-DQ16 transparent data-in | H | L | L | H | L | L | H | X | D9-D16 | DP2 |
| BYTE WRITE <br> DQ1-DQ8 latched data-in | H | L | L | L | H | H | L | X | D1-D8 | DP1 |
| LATCHED BYTE WRITE DQ1-DQ8 latched data-in | H | L | L | L | H | L | L | X | D1-D8 | DP1 |
| BYTE WRITE <br> DQ9-DQ16 latched data-in | H | L | L | H | L | H | L | X | D9-D16 | DP2 |
| LATCHED BYTE WRITE DQ9-DQ16 latched data-in | H | L | L | H | L | L | L | X | D9-D16 | DP2 |

NOTE: 1. Latched inputs (Addresses, CE, and $\overline{\mathrm{CE}}$ ) must satisfy the specified setup and hold times around the falling edge of ALE. Data-in must satisfy the specified setup and hold times for DLE.
2. A transparent WRITE cycle is defined by DLE HIGH during the tDLW time.
3. A latched WRITE cycle is defined by DLE transitioning LOW during the WRITE cycle and data satisfying the specified setup and hold times for DLE.ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc/Vcce supply relativeto Vss/VssQ
$\qquad$ -1.0 V to +7.0 V
Storage Temperature (Plastic) $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..... 1.5W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right.$; Vss = Vssa, Unless Otherwise Noted)

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | OV $\leq \mathrm{VIN} \leq \mathrm{Vcc}$ | ILI | -10 | 10 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled, <br> $0 \mathrm{OV} \leq$ VouT $\leq \mathrm{Vcc}$ | ILo | -10 | 10 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | $\mathrm{IOH}=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | loL $=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V | 1 |
| Output Buffer Supply Voltage | 5.0 V TTL Compatible | VccQ | 4.5 | 5.5 | V | 1 |


| DESCRIPTION | CONDITIONS | SYMBOL | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Current: Operating | $\overline{\mathrm{CE}} \leq \mathrm{VIL}^{2}, \mathrm{CE} \geq \mathrm{VIH}_{\mathrm{H}} ; \mathrm{Vcc}=\mathrm{MAX}$ Outputs Open $f=M A X=1 /{ }^{t} R C$ | Icc | 150 | 250 | mA | 3 |
| Power Supply Current: Standby | $\mathrm{CE} \leq \mathrm{VIL}, \overline{\mathrm{CE}} \geq \mathrm{V} \mathrm{H} ; \mathrm{Vcc}=\mathrm{MAX}$ Outputs Open $f=M A X=1 /{ }^{\text {t } R C}$ | IsB1 | 20 | 30 | mA |  |
|  | $\begin{gathered} \hline \overline{\mathrm{CE}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{CE} \leq \mathrm{Vss}+0.2 \mathrm{~V}, \\ \mathrm{Vcc}=\mathrm{MAX} ; \mathrm{VIL} \leq \mathrm{Vss}+0.2 \mathrm{~V}, \\ \mathrm{VIH} \geq \mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{f}=0 \end{gathered}$ | IsB2 | 8 | 10 | mA |  |
|  | $\begin{gathered} \overline{C E} \leq V_{I L} ; \overline{C E} \geq V_{I H} ; V_{c C}=M A X \\ f=0 ; \text { Outputs Open } \end{gathered}$ | IsB3 | 10 | 15 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\begin{gathered} T_{A}=25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz} \\ V C c=5 \mathrm{~V} \end{gathered}$ | $\mathrm{Cl}_{1}$ |  | 6 | pF | 4 |
| Input/Output Capacitance (D/Q) |  | $\mathrm{Cl} / \mathrm{O}$ |  | 8 | pF | 4 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5 ) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=\mathrm{VccQ}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION |  | -15 |  | -17 |  | -20 |  | -25 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| ADDRESS LATCH |  |  |  |  |  |  |  |  |  |  |  |
| Latch cycle time | ${ }^{\text {t }} \mathrm{C}$ | 15 |  | 17 |  | 20 |  | 25 |  | ns |  |
| Latch high time | ter | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Address / Chip Enable setup to latch LOW | tLS | 2 |  | 2 |  | 2 |  | 2 |  | ns |  |
| Address / Chip Enable hold from latch LOW | ti | 3 |  | 3 |  | 3 |  | 3 |  | ns |  |
| Address / Chip Enable setup to latch HIGH | thS | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Latch HIGH to output active (Low-Z) | t L L | 2 |  | 2 |  | 2 |  | 2 |  | ns | 6,7,4 |
| Latch HIGH to output in High-Z | ${ }^{\text {t }} \mathrm{HZL}$ | 2 | 7 | 2 | 7 | 2 | 7 | 2 | 10 | ns | 6, 7, 4 |
| READ CYCLE |  |  |  |  |  |  |  |  |  |  |  |
| READ cycle time | ${ }^{\text {tr }}$ C | 15 |  | 17 |  | 20 |  | 25 |  | ns |  |
| Address access time | ${ }^{\text {t }}$ A |  | 15 |  | 17 |  | 20 |  | 25 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 15 |  | 17 |  | 20 |  | 25 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 4 |  | 4 |  | 4 |  | 4 |  | ns |  |
| Chip Enable to output in Low-Z | ${ }^{\text {t }}$ LZCE | 2 |  | 2 |  | 2 |  | 2 |  | ns | 6, 7, 4 |
| Chip Disable to output in High-Z | thZCE | 2 | 7 | 2 | 7 | 2 | 7 | 2 | 10 | ns | 6, 7, 4 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | ${ }^{\text {tPD }}$ |  | 15 |  | 17 |  | 20 |  | 25 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 6 |  | 7 |  | 8 |  | 10 | ns |  |
| Output Enable to output in Low-Z | ${ }^{\text {t }}$ LZOE | 2 |  | 2 |  | 2 |  | 2 |  | ns | 6, 7, 4 |
| Output Disable to output in High-Z | ${ }^{\text {t }} \mathrm{HZOE}$ | 2 | 6 | 2 | 7 | 2 | 8 | 2 | 10 | ns | 6, 7, 4 |
| WRITE Cycle |  |  |  |  |  |  |  |  |  |  |  |
| WRITE cycle time | tWC | 15 |  | 17 |  | 20 |  | 25 |  | ns |  |
| Chip Enable to end of write | ${ }^{\text {t }}$ CW | 13 |  | 14 |  | 15 |  | 20 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 13 |  | 14 |  | 15 |  | 20 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{t} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | ${ }^{\text {t }}$ WP | 13 |  | 14 |  | 15 |  | 20 |  | ns |  |
| Data setup time | ${ }^{\text {t }}$ DS | 6 |  | 7 |  | 8 |  | 10 |  | ns |  |
| Data hold time | $t$ | 0 |  | 0 |  | 0 |  | ט |  | ns |  |
| Write Disable to output in Low-Z | t LZWE | 5 |  | 5 |  | 5 |  | 5 |  | ns | 6, 7, 4 |
| Write Enable to output in High-Z | thZWE | 0 | 7 | 0 | 7 | 0 | 7 | 0 | 10 | ns | 6, 7, 4 |
| Byte write enable setup time | ${ }^{\text {t }}$ BWS | 6 |  | 7 |  | 8 |  | 10 |  | ns |  |
| Byte write enable hold time | tBWH | 2 |  | 2 |  | 2 |  | 2 |  | ns |  |
| Byte write disable setup time | ${ }^{\text {t }}$ BWDS | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Data setup to DLE LOW | t DLS | 1 |  | 1 |  | 1 |  | 1 |  | ns | 9 |
| Data hold from DLE LOW | ${ }^{\text {t DLH }}$ | 3 |  | 3 |  | 3 |  | 3 |  | ns | 9 |
| DLE HIGH to end of write | ${ }^{\text {t DLW }}$ | 6 |  | 7 |  | 8 |  | 10 |  | ns | 8 |
| End of write to DLE HIGH | ${ }^{\text {t WDLH }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns | 9 |
| End of write to ALE HIGH | tWLH | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| ALE HIGH setup time to write enable LOW | t LWS | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| ALE HIGH to end of write | tLW | 13 |  | 14 |  | 15 |  | 20 |  | ns |  |

## AC TEST CONDITIONS

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. Output loading is specified with $\mathrm{CL}=5 \mathrm{pF}$ as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZCE}$, and ${ }^{\mathrm{t}} \mathrm{HZOE}$ is less than ${ }^{\text {t }}$ LZOE.
8. A transparent WRITE cycle is defined by DLE being HIGH during the WRITE cycle.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
9. A latched WRITE cycle is defined by DLE transitioning LOW during the WRITE cycle and data satisfying the specified setup and hold time with respect to DLE.
10. Any combination of write enable ( $\overline{\mathrm{WE}}$ ) and chip enable ( $\overline{\mathrm{CE}}$ ) can initiate and terminate a WRITE cycle.
11. $\overline{\mathrm{WE}}$ is HIGH for READ cycle.
12. Device is continuously selected. All chip enables held in their active state.
13. Address valid prior to or coincident with the latest occurring chip enable.
14. CE timing is the same as $\overline{\mathrm{CE}}$ timing. The wave form is inverted.

## READ CYCLE NO. $1^{11,12}$



READ CYCLE NO. $\mathbf{2}^{7,11,13,14}$


ZZand dont care UNDEFINED

READ CYCLE NO. 3
$(\mathrm{ALE}=\mathrm{DLE}=\mathrm{HIGH})^{7,11,14}$


WRITE CYCLE NO. 1
Chip Enable Controlled
(ALE=DLE=HIGH) ${ }^{10,14}$


WRITE CYCLE NO. 2
Write Enable Initiated / Chip Enable Terminate (ALE=DLE=HIGH) ${ }^{10,14}$


V/Z DON't care
UNDEFINED

## WRITE CYCLE NO. 3

(ALE=DLE=HIGH) ${ }^{7,10,14}$


WRITE CYCLE NO. $4^{7,10,14}$


## IT/AT/XT** SPECIFICATION - 16K SRAM FAMILY

## ABSOLUTE MAXIMUM RATINGS* <br> Voltage on Vcc supply relative to Vss <br> $\qquad$ -1.0 V to +7.0 V <br> Storage Temperature (Ceramic) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ <br> Storage Temperature (Plastic) ................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ <br> Power Dissipation .. 1W <br> Short Circuit Output Current ..................................... 50 mA <br> *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
${ }^{* *}$ IT $-\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$,
AT- $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$,
XT- $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} ;-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} ;-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | $\mathrm{OV} \leq \mathrm{Vin} \leq \mathrm{Vcc}$ | ILI | -5 | 5 | $\mu \mathrm{A}$ |  |
| Output Leakage Current | Output(s) Disabled, $\mathrm{OV} \leq \mathrm{Vout} \leq \mathrm{Vcc}$ | ILo | -5 | 5 | $\mu \mathrm{A}$ |  |
| Output High Voltage | $\mathrm{loH}=-4.0 \mathrm{~mA}$ | Vor | 2.4 |  | V | 1 |
| Output Low Voltage | $\mathrm{loL}=8.0 \mathrm{~mA}$ | Vol |  | 0.4 | V | 1 |


|  |  |  | MAX |  |  |  |  |  | UNITS | notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION | CONDITIONS | SYMBOL | -12 | -15 | -20 | -25 | -30 | -35 |  |  |
| Power Supply Current: Operating | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{LL}} ; \mathrm{VCC}_{\mathrm{C}}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 /{ }^{\mathrm{t} R C}, \\ \text { Outputs Open } \end{gathered}$ | Icc | 150 | 135 | 120 | 110 | 110 | 110 | mA | 3 |
| Power Supply Current: Standby | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{VIH} ; \mathrm{Vcc}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 /{ }^{\mathrm{t} R C}, \\ \text { Outputs Open } \\ \hline \end{gathered}$ | IsB1 | 55 | 50 | 45 | 40 | 40 | 40 | mA |  |
|  | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{VCc}-0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{cc}}=\mathrm{MAX} \\ \mathrm{VIL}_{\mathrm{IL}} \leq \mathrm{Vss}_{\mathrm{ss}}+0.2 \mathrm{~V} ; \\ \mathrm{V}_{\mathrm{IH}} \geq \mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{f}=0 \end{gathered}$ | Isb2 | 3 | 3 | 3 | 3 | 3 | 3 | mA |  |


| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply <br> Current: Data Retention | $\overline{\mathrm{CE}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V})$ | $\mathrm{Vcc}=2 \mathrm{~V}$ | ICCDR |  | 150 | 300 | mA |  |
|  | $\begin{gathered} \mathrm{Vin} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \quad \text { or } \leq-0.2 \mathrm{~V} \end{gathered}$ | $\mathrm{Vcc}=3 \mathrm{~V}$ |  |  | 450 | 550 | mA |  |

CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\begin{gathered} \mathrm{T}_{A}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} \\ \mathrm{VCC}=5 \mathrm{~V} \end{gathered}$ | Cl |  | 7 | pF | 4 |
| Output Capacitance |  | Co |  | 7 | pF | 4 |

## MCADN IT/AT/XT** SPECIFICATION - 16K SRAM FAMILY

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Note 5) $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} ;-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} ;-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} ; \mathrm{VcC}=5.0 \pm 10 \%\right.$ )

|  | -12 |  | -15 |  | -20 |  | -25 |  | -30 |  | -35 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SYM | MIN | MAX | UNITS |

## READ Cycle

| READ cycle time | ${ }^{\text {t }} \mathrm{RC}$ | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }} \mathrm{AA}$ |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Chip Enable access time | ${ }^{t} A C E$ |  | 11 |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | ns |  |
| Chip Enable to output in Low-Z | tLZCE | 3 |  | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Disable to output in High-Z | tHZCE |  | 7 |  | 7 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6,7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | tPD |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Output enable access time | ${ }^{\text {t }} \mathrm{AOE}$ |  | 7 |  | 7 |  | 9 |  | 10 |  | 15 |  | 20 | ns |  |
| Output Enable to output in Low-Z | tLZOE | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Output Disable to output in High-Z | ${ }^{\text {t }}$ HZOE |  | 6 |  | 6 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6 |

## WRITE Cycle

| WRITE cycle time | tWC | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 12 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Data setup time | ${ }^{\text {t }} \mathrm{DS}$ | 9 |  | 9 |  | 10 |  | 12 |  | 15 |  | 15 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | tLZWE | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | ns |  |
| Write Enable to output in High-Z | tHZWE |  | 6 |  | 6 |  | 8 |  | 10 |  | 12 |  | 15 | ns | 6 |
| Write Enable to output valid | ${ }^{\text {t }}$ AWE |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Data valid to output valid | ${ }^{\text {t }}$ ADV |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |

## MEAON IT/AT/XT** SPECIFICATION - 64K SRAM FAMILY

ABSOLUTE MAXIMUM RATINGS*
Voltage on Vcc supply relative to Vss $\qquad$ -1.0 V to +7.0 V
Storage Temperature (Ceramic) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) ................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation
Short Circuit Output Current 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
${ }^{* *}$ IT $-\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$,
AT- $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$,
XT- $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} ;-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} ;-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} ; \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%\right)$| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | Vcc +1 | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1, 2 |
| Input Leakage Current | $\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{Vcc}$ | 1 LI | -5 | 5 | $\mu \mathrm{A}$ |  |
| Output Leakage Current | Output(s) Disabled, $\mathrm{OV} \leq \mathrm{VOUT} \leq \mathrm{Vcc}$ | ILo | -5 | 5 | $\mu \mathrm{A}$ |  |
| Output High Voltage | $1 \mathrm{OH}=-4.0 \mathrm{~mA}$ | Vон | 2.4 |  | V | 1 |
| Output Low Voltage | $1 \mathrm{lL}=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |


|  |  |  | MAX |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION | CONDITIONS | SYMBOL | -12 | -15 | -20 | -25 | -30 | -35 | UNITS | notes |
| Power Supply Current: Operating | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{LL}} ; \mathrm{VCC}_{\mathrm{L}}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 /{ }^{\mathrm{t} R C}, \\ \text { Outputs Open } \end{gathered}$ | Icc | 150 | 140 | 130 | 120 | 110 | 110 | mA | 3 |
| Power Supply Current: Standby | $\begin{gathered} \overline{C E} \geq V_{I H} ; V_{c C}=M A X \\ f=M A X=1 /{ }^{t} R C, \\ \text { Outputs Open } \end{gathered}$ | IsB1 | 60 | 50 | 45 | 40 | 40 | 40 | mA |  |
|  |  | IsB2 | 5 | 5 | 5 | 5 | 5 | 5 | mA |  |


| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply | $\overline{\mathrm{CE}} \geq$ (Vcc -0.2V) | $\mathrm{Vcc}=2 \mathrm{~V}$ | ICCDR |  | 150 | 300 | mA |  |
| Current: Data Retention | $\begin{gathered} \mathrm{Vin} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \text { or } \leq-0.2 \mathrm{~V} \end{gathered}$ | $\mathrm{Vcc}=3 \mathrm{~V}$ |  |  | 450 | 550 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | $\mathrm{C}_{\mathrm{I}}$ |  | 7 | pF | 4 |
|  | $\mathrm{Vcc}=5 \mathrm{~V}$ | Co |  | 7 | pF | 4 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} ;-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} ;-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \pm 10 \%\right)$

| DESCRIPTION |  | -12 |  | -15 |  | -20 |  | -25 |  | -30 |  | -35 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | UNITS | NOTES |

## READ Cycle

| READ cycle time | ${ }^{\text {t }} \mathrm{C}$ | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }}$ A |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Chip Enable access time | ${ }^{\text {t }} \mathrm{ACE}$ |  | 12 |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 | ns |  |
| Output hold from address change | ${ }^{\mathrm{t}} \mathrm{OH}$ | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | ns |  |
| Chip Enable to output in Low-Z | tLZCE | 3 |  | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Disable to output in High-Z | thZCE |  | 7 |  | 7 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6, 7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | ${ }^{\text {tPD }}$ |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Output Enable access time | ${ }^{\text {t }} \mathrm{AOE}$ |  | 7 |  | 7 |  | 9 |  | 10 |  | 15 |  | 20 | ns |  |
| Output Enable to output in Low-Z | tLZOE | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Output Disable to output in High-Z | ${ }^{\text {t }} \mathrm{HZOE}$ |  | 6 |  | 6 |  | 10 |  | 10 |  | 15 |  | 20 | ns | 6 |

## WRITE Cycle

| WRITE cycle time | ${ }^{\text {t }}$ WC | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{t} \mathrm{CW}$ | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 12 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ S | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 10 |  | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | ns |  |
| Data setup time | ${ }^{\text {t }}$ DS | 9 |  | 9 |  | 10 |  | 12 |  | 15 |  | 15 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | tLZWE | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | ns |  |
| Write Enable to output in High-Z | ${ }^{\text {tha }}$ WWE |  | 6 |  | 6 |  | 8 |  | 10 |  | 12 |  | 15 | ns | 6 |
| Write Enable to output valid | ${ }^{\text {t }}$ AWE |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |
| Data valid to output valid | ${ }^{\text {t }}$ ADV |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 | ns |  |

## MIE-GN IT/AT/XT** SPECIFICATION - 256K SRAM FAMILY

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss.. -1.0 V to +7.0 V
Storage Temperature (Ceramic) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation .. 1 W
Short Circuit Output Current 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
${ }^{* *}$ IT- $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$,
AT- $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$,
XT $-\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} ;-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} ;-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} ; \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | $\mathrm{OV} \leq \mathrm{Vin}_{\text {IN }} \leq \mathrm{Vcc}$ | ILI | -5 | 5 | $\mu \mathrm{A}$ |  |
| Output Leakage Current | Output(s) Disabled, $0 \mathrm{~V} \leq \mathrm{Vout} \leq \mathrm{Vcc}$ | ILo | -5 | 5 | $\mu \mathrm{A}$ |  |
| Output High Voltage | $1 \mathrm{OH}=-4.0 \mathrm{~mA}$ | Vor | 2.4 |  | V | 1 |
| Output Low Voltage | $\mathrm{loL}=8.0 \mathrm{~mA}$ | Vol |  | 0.4 | V | 1 |


|  |  |  | MAX |  |  |  |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION | CONDITIONS | SYMBOL | -20 | -25 | -30 | -35 | -40 |  |  |
| Power Supply Current: Operating | $\begin{gathered} \hline \overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{LL}} ; \mathrm{VCc}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 /^{\mathrm{t} R C}, \\ \text { Outputs Open } \\ \hline \end{gathered}$ | Icc | 120 | 110 | 100 | 100 | 100 | mA | 3 |
| Power Supply Current: Standby | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{VIH} ; \mathrm{VCC}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t}^{\mathrm{R} C}, \\ \text { Outputs Open } \end{gathered}$ | Is81 | 30 | 30 | 30 | 30 | 30 | mA |  |
|  | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{VCc}-0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{cc}}=\mathrm{MAX} \\ \mathrm{~V}_{\mathrm{IL}} \leq \mathrm{V} \text { Ss }+0.2 \mathrm{~V} ; \\ \mathrm{V} \geq \mathrm{Vcc}-0.2 \mathrm{~V} ; \mathrm{f}=0 \end{gathered}$ | IsB2 | 8 | 8 | 8 | 8 | 8 | mA |  |


| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | Units | notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply <br> Current: Data Retention | $\overline{\mathrm{CE}} \geq$ (Vcc-0.2V) | $\mathrm{Vcc}=2 \mathrm{~V}$ | Iccor |  | 95 | 500 | mA |  |
|  | $\begin{gathered} \mathrm{Vin} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \quad \text { or } \leq-0.2 \mathrm{~V} \end{gathered}$ | $\mathrm{Vcc}=3 \mathrm{~V}$ |  |  | 300 | 900 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | CI |  | 7 | pF | 4 |
|  | Output Capacitance | $\mathrm{VcC}=5 \mathrm{~V}$ | Co |  | 5 | pF |
|  |  |  |  |  |  |  |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} ;-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} ;-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} ; \mathrm{VcC}=5.0 \pm 10 \%\right)$

| DESCRIPTION |  | -20 |  | -25 |  | -30 |  | -35 |  | -45 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | UNITS | NOTES |

READ Cycle

| READ cycle time | ${ }^{\text {t }} \mathrm{RC}$ | 20 |  | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }} \mathrm{AA}$ |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Enable to output in Low-Z | ${ }^{\text {t }}$ LZCE | 6 |  | 6 |  | 6 |  | 6 |  | 6 |  | ns |  |
| Chip Disable to output in High-Z | ${ }^{\text {t }} \mathrm{HZCE}$ |  | 9 |  | 9 |  | 12 |  | 15 |  | 18 | ns | 6,7 |
| Chip Enable to power-up time | tpu | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | tPD |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 10 |  | 10 |  | 12 |  | 15 |  | 15 | ns |  |
| Output Enable to output in Low-Z | ${ }^{\text {t }}$ LZOE | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Output Disable to out put in High-Z | thZOE |  | 7 |  | 7 |  | 10 |  | 12 |  | 15 | ns |  |

## WRITE Cycle

| WRITE cycle time | tWC | 20 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 15 |  | 18 |  | 20 |  | 20 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 15 |  | 18 |  | 20 |  | 20 |  | 25 |  | ns |  |
| Address setup time | ${ }^{t} A S$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | ${ }^{\text {t }}$ WP | 15 |  | 18 |  | 20 |  | 20 |  | 25 |  | ns |  |
| Data setup time | ${ }^{\text {t }}$ DS | 10 |  | 12 |  | 15 |  | 15 |  | 20 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | t LZWE | 5 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Write Enable to output in High-Z | tHZWE |  | 10 |  | 10 |  | 12 |  | 15 |  | 18 | ns | 6 |

## MIEACN IT／AT／XT＊＊SPECIFICATION－ 1 MEG SRAM FAMILY

ABSOLUTE MAXIMUM RATINGS＊

Voltage on Vcc supply relative to Vss $\qquad$ .-1.0 V to +7.0 V Storage Temperature（Ceramic） $\qquad$ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Storage Temperature（Plastic） $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Power Dissipation$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Short Circuit Output Current．1W
$\ldots .50 \mathrm{~mA}$ ＊Stresses greater than those listed under＂Absolute Maxi－ mum Ratings＂may cause permanent damage to the device．

This is a stress rating only and functional operation of the device at these or any other conditions above those indi－ cated in the operational sections of this specification is not implied．Exposure to absolute maximum rating conditions for extended periods may affect reliability．
${ }^{* *}$ IT $-\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ ，
AT－$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ ，
XT－$\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} ;-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} ;-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} ; \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High（Logic 1）Voltage |  | VIH | 2.2 | $\mathrm{VCC}+1$ | V | 1 |
| Input Low（Logic 0）Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | $\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{Vcc}$ | ILI | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output（s）Disabled， <br> $0 \mathrm{~V} \leq \mathrm{VouT} \leq \mathrm{VCC}$ | ILO | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | $\mathrm{IOH}=-4.0 \mathrm{~mA}$ | VOH | 2.4 |  | V | 1 |
| Output Low Voltage | $\mathrm{IoL}=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |


| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Current：Operating | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{LL}} ; \mathrm{VCC}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} \mathrm{RC}, \\ \text { Outputs Open } \end{gathered}$ |  | Icc |  | 120 | mA | 3 |
| Power Supply Current：Standby | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{H}} ; V_{C C}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 /{ }^{\mathrm{t} R C}, \\ \text { Outputs Open } \end{gathered}$ |  | Isb1 |  | 30 | mA |  |
|  | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{Cc}}-0.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{cc}}=\mathrm{MAX} \\ \mathrm{~V}_{\mathrm{IL}} \leq \mathrm{V}_{\mathrm{SS}}+0.2 \mathrm{~V} ; \\ \mathrm{V} \mathrm{VCC}-0.2 \mathrm{~V} ; \mathrm{f}=0 \end{gathered}$ |  | Isb2 |  | 7 | mA |  |
| Power Supply <br> Current：Data Retention | $\begin{gathered} \overline{C E} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \mathrm{VIN} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \quad \text { or } \leq-0.2 \mathrm{~V} \end{gathered}$ | $\mathrm{Vcc}=2 \mathrm{~V}$ | ICCDR |  | 500 | mA |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{~V}$ |  |  | 750 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | $\mathrm{Cl}^{2}$ |  | 8 | pF | 4 |
| $n n$ | Output Capacitance | $\mathrm{Vcc}=5 \mathrm{~V}$ | Co |  | 8 | pF |

## MIE-GN IT/AT/XT** SPECIFICATION - 1 MEG SRAM FAMILY

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Note 5) $\left(-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} ;-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} ;-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right.$ )

| DESCRIPTION |  | -25 |  | -35 |  | -45 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |

## READ Cycle

| READ cycle time | ${ }^{\text {tRC }}$ | 25 |  | 35 |  | 45 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }}$ A |  | 25 |  | 35 |  | 45 | ns |  |
| Chip Enable access time | ${ }^{\text {t }} \mathrm{ACE}$ |  | 25 |  | 35 |  | 45 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Enable to output in Low-Z | ${ }^{\text {t }}$ LZCE | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Disable to output in High-Z | ${ }^{\text {t }} \mathrm{HZCE}$ |  | 10 |  | 15 |  | 18 | ns | 6,7 |
| Chip Enable to power-up time | tPU | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Disable to power-down time | tPD |  | 25 |  | 35 |  | 45 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 8 |  | 12 |  | 15 | ns |  |
| Output Enable to output in Low-Z | tLZOE | 0 |  | 0 |  | 0 |  | ns |  |
| Output Disable to output in High-Z | ${ }^{\text {thzOE }}$ |  | 10 |  | 12 |  | 15 | ns | 6 |

## WRITE Cycle

| WRITE cycle time | tWC | 25 |  | 35 |  | 45 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }}$ CW | 15 |  | 20 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 15 |  | 20 |  | 25 |  | ns |  |
| Address setup time | tAS | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{t} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 15 |  | 20 |  | 25 |  | ns |  |
| Data setup time | tDS | 10 |  | 15 |  | 20 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write Disable to output in Low-Z | t L ZWE | 0 |  | 0 |  | 0 |  | ns |  |
| Write Enable to output in High-Z | tHZWE | 0 | 10 | 0 | 15 | 0 | 18 | ns | 6,7 |

DYNAMIC RAMS ..... 1
DRAM MODULES ..... 2
MULTIPORT DRAMS ..... 3
STATIC RAMS ..... 4
SYNCHRONOUS SRAMS ..... 5
SRAM MODULES ..... 6
CACHE DATA SRAMS ..... 2/2
FIFO MEMORIES ..... 8
APPLICATION/TECHNICAL INFORMATION ..... 9
MILITARY INFORMATION ..... 10
PACKAGE INFORMATION ..... 11
SALES INFORMATION ..... 12

## SYNCHRONOUS SRAM PRODUCT SELECTION GUIDE

| Memory Configuration | Control Functions | Part Number | Access <br> Time (ns) | Package |  | Process | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | PLCC | PQFP |  |  |
| Dual 16K x 16 | Registered Address, Write Control, Dual Chip Enable; Data Input Latch | MT58C1616 | 15, 17, 20, 25 | 52 | 52 | CMOS | 5-1 |
| Dual 16K x 18 | Registered Address, Write Control, Dual Chip Enable; Data Input Latch | MT58C1618 | 15, 17, 20, :25 | 52 | 52 | CMOS | 5-11 |

## SYNCHRONOUS SRAM

# 16K x 16 SRAM <br> WITH CLOCKED, REGISTERED INPUTS 

## FEATURES

- Fast access times: 15, 17, 20, and 25ns
- Fast Output Enable: 6, 7, 8, and 10ns
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Separate, electrically isolated output buffer power supply and ground (VccQ, VssQ)
- Optional $+3.3 \mathrm{~V}( \pm 10 \%)$ output buffer operation
- Data Input Latch
- Common Data Inputs and Data Outputs
- BYTE WRITE capability via Dual Write Strobes
- Clock controlled registered address, Write Control and Dual Chip Enables


## OPTIONS

- Timing 15 ns access -15
17 ns access
20 ns access
25 ns access
- Packages

52-pin PLCC
52-pin PQFP

## MARKING

- Density 16K x 16 MT58C1616


## GENERAL DESCRIPTION

The Micron Synchronous SRAM family employs high speed, low power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.
The MT58C1616 SRAM integrates a 16K $\times 16$ SRAM core with advanced synchronous peripheral circuitry. All synchronous inputs pass through registers controlled by a positive-edge-triggered single clock input (CLK). The synchronous inputs include all addresses, the two chip selects ( $\overline{\mathrm{SCE}}, \mathrm{SCE})$ and the synchronous write enable $(\overline{\mathrm{SWE}})$. Asynchronous inputs include the byte write enables ( $\overline{\mathrm{WEL}}$, $\overline{\mathrm{WEH}})$, output enable $(\overline{\mathrm{OE}})$, data latch enable (DLE) and the clock. Input data can be asynchronously latched by DLE to provide simplified data-in (D) timing during WRITE cycles. Data-out ( Q ), enabled by $\overline{\mathrm{OE}}$ during READ cycles, is asynchronous. The entire data word (DQ1-DQ16) is output during each READ cycle. The devices are ideally suited for "pipelined" systems and those systems which benefit from a wide data bus.


Address and write control are registered on-chip to simplify WRITE cycles. Dual write enables allow individual bytes to be written. WEL controls DQ1-DQ8 while WEH controls DQ9-DQ16. $\overline{\mathrm{WEL}} / \overline{\mathrm{WEH}}$ allow late WRITE cycles to be aborted if they are both HIGH during the LOW period of the clock. Dual chip enables (SCE, $\overline{\mathrm{SCE}}$ ) allow on-chip address decoding to be accomplished when the devices are used in a dual bank mode.

A data input latch is provided. When DLE is HIGH, the data latches are in the transparent mode and input data flows through the latch. When DLE is LOW, the data latch inputs are disabled. The data input latch simplifies WRITE cycles by guaranteeing data hold times.

The MT58C1616 operates from a +5 V power supply. Separateand electrically isolated outputbuffer power(VccQ) and ground ( VssQ ) pins are provided to allow either +3.3 V or +5 V TTL operation of the output drivers.

FUNCTIONAL BLOCK DIAGRAM


## PIN DESCRIPTIONS

| PLCC and PQFP PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} 33,32,31,30,29,26,25, \\ 24,23,22,7,6,49,48 \end{gathered}$ | A0-A13 | Input | Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK. |
| 52 | SWE | Input | Synchronous Write Enable: This input is a synchronous write enable and must meet the setup and hold times around the rising edge of CLK. SWE is LOW for a WRITE cycle and HIGH for a READ cycle |
| 51 | CLK | Input | Clock: This signal registers the address, SCE, SCE, and SWE inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge. |
| 3, 4 | $\overline{\text { WEL, }}$ $\overline{W E H}$ | Input | Asynchronous Write Enables: These asynchronous, active LOW inputs allow individual bytes to be written. When WEL is LOW, data is written to the lower byte, D1-D8. When WEH is LOW, data is written to the upper byte, D9-D16. A late WRITE cycle can be aborted if both WEL and WEH are HIGH during the LOW period of CLK. |
| 5,47 | $\overline{\text { SCE, SCE }}$ | Input | Synchronous Chip Selects: These synchronous signals are used to enable the device. Both active HIGH (SCE) and active LOW (SCE) enables are supplied to provide on-chip address decoding when multiple devices are used, as in a dual bank configuration. |
| 50 | $\overline{\mathrm{OE}}$ | Input | Output Enable: This active LOW input enables the output drivers. |
| 21 | DLE | Input | Data Latch Enable: When DLE is HIGH the latch is transparent. Input data is latched asynchronously into the on-chip data latch on the falling edge of DLE. DLE must meet the setup and hold times around CLK if data is latched. |
| 20,46 | $\begin{aligned} & \text { NC } \\ & \text { NC } \end{aligned}$ | Input/ Output | These pins are no connects (NC). No connects are not internally bonded. |
| $\begin{gathered} 34,35,38,39,40 \\ 41,44,45,8,9,12 \\ 13,14,15,18,19 \end{gathered}$ | DQ1-DQ16 | Input/ Output | SRAM Data I/O: Lower byte is DQ1-DQ8; Upper byte is DQ9DQ16. Input data must meet the setup and hold time around DLE when being latched. |
| 2,28 | Vcc | Supply | Power Supply: +5V $\pm 10 \%$ |
| 10, 17, 36, 43 | VccQ | Supply | Isolated Output Buffer Supply: $+5 \mathrm{~V} \pm 10 \%$ or $3.3 \mathrm{~V} \pm 10 \%$ |
| 11, 16, 37, 42 | VssQ | Supply | Isolated Output Buffer Ground: GND |
| 1,27 | Vss | Supply | Ground: GND |

TRUTH TABLE

| OPERATION | SCE | SCE | SWE | WEL | WEH | DLE | $\overline{O E}$ | DQ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Deselected Cycle | L | X | X | X | X | X | X | High-Z |
| Deselected Cycle | X | H | X | X | X | X | X | High-Z |
| Read Cycle | H | L | H | X | X | X | H | High-Z |
| Read Cycle | H | L | H | X | X | X | L | Q1-Q16 |
| Word Write Cycle DQ1-DQ16 <br> Transparent data-in | H | L | L | L | L | H | X | D1-D16 |
| Word Write Cycle DQ1-DQ16 Latched data-in | H | L | L | L | L | L | X | D1-D16 |
| Aborted Write Cycle | H | L | L | H | H | X | X | High-Z |
| Byte Write Cycle DQ1-DQ8 <br> Transparent data-in | H | L | L | L | H | H | X | D1-D8 |
| Byte Write Cycle DQ9-DQ16 <br> Transparent data-in | H | L | L | H | L | H | X | D9-D16 |
| Byte Write Cycle DQ1-DQ8 <br> Latched data-in | H | L | L | L | H | L | X | D1-D8 |
| Byte Write Cycle DQ9-DQ16 <br> Latched data-in | H | L | L | H | L | L | X | D9-D16 |

NOTE: 1. Registered inputs (Addresses, $\overline{\text { SWE, SCE, and }} \overline{\text { SCE }}$ ) must satisfy the specified setup and hold times around the rising edge of clock (CLK). Data-in must satisfy the specified setup and hold times for DLE.
2. A transparent WRITE cycle is defined by DLE HIGH during the WRITE cycle.
3. A latched WRITE cycle is defined by DLE transitioning LOW during the WRITE cycle and satisfying the specified setup and hold times.

## MT58C1616

ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc/Vcce supply relativeto Vss/Vsso
$\qquad$ -1.0 V to +7.0 V
Storage Temperature (Plastic) . $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..... 1.5W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \% ; \mathrm{Vs}=\mathrm{V}\right.$ ssQ, Unless Otherwise Noted)| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | $\mathrm{VCC}+1$ | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | $\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{Vcc}$ | ILI | -10 | 10 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled, <br> $0 \mathrm{~V} \leq \mathrm{VouT} \leq \mathrm{Vcc}$ | ILo | -10 | 10 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | $\mathrm{IOH}=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | $\mathrm{IoL}=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V | 1 |
| Output Buffer Supply Voltage | 5.0 V TTL Compatible | Vcca | 4.5 | 5.5 | V | 1 |


| DESCRIPTION | CONDITIONS | SYMBOL | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Current: Operating | $\overline{S C E} \leq V_{\mathrm{IL}} ; S C E \geq \mathrm{V}_{\mathrm{IH}} ; \mathrm{f}=\mathrm{MAX}$, Vcc = MAX; Outputs Open | Icc | 150 | 300 | mA | 3 |
| Power Supply Current: Standby | $\begin{aligned} f=M A X ; & S C E \leq V_{I L} ; \overline{S C E} \geq V_{I H}, \\ V_{c C} & =M A X \end{aligned}$ | IsB1 | 20 | 50 | mA |  |
|  |  | ISB2 | 8 | 15 | mA |  |
|  | $\begin{gathered} f=0 ; S C E \leq V_{\mathrm{IL}} ; \overline{\mathrm{SCE}} \leq \mathrm{VIH}_{\mathrm{IH}}, \\ V c \mathrm{MAX} \end{gathered}$ | Isb3 | 10 | 25 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\begin{gathered} T_{A}=25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz} \\ V C C=5 V \end{gathered}$ | $\mathrm{Cl}_{1}$ |  | 6 | pF | 4 |
| Input/Output Capacitance (D/Q) |  | Co |  | 8 | pF | 4 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=\mathrm{VccQ}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION |  | -15 |  | -17 |  | -20 |  | -25 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| Clock |  |  |  |  |  |  |  |  |  |  |  |
| Clock cycle time | ${ }^{\text {t }} \mathrm{KC}$ | 15 |  | 17 |  | 20 |  | 25 |  | ns |  |
| Clock high time | tKH | 4 |  | 4 |  | 4 |  | 4 |  | ns |  |
| Clock low time | tKL | 8 |  | 8 |  | 8 |  | 8 |  | ns |  |
| Chip Enable |  |  |  |  |  |  |  |  |  |  |  |
| SCE/SCE setup time | tSCES | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |
| SCE/SCE hold time | ${ }^{\text {t }}$ SCEH | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |
| Address |  |  |  |  |  |  |  |  |  |  |  |
| Address setup time | 'SAS | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |
| Address hold time | ${ }^{\text {t }}$ SAH | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |
| READ Cycle |  |  |  |  |  |  |  |  |  |  |  |
| READ cycle time | ${ }^{\text {t } R C}$ | 15 |  | 17 |  | 20 |  | 25 |  | ns | 11 |
| Clock to output valid | ${ }^{\text {t KQ }}$ |  | 15 |  | 17 |  | 20 |  | 25 | ns |  |
| Clock to output invalid | ${ }^{\text {tKQX }}$ | 3 |  | 3 |  | 3 |  | 3 |  | ns | 10 |
| Clock to output in Low-Z | ${ }^{\text {t } K Q L Z ~}$ | 10 |  | 10 |  | 10 |  | 10 |  | ns | 6,7 |
| Clock to output in High-Z | ${ }^{\text {t }} \mathrm{KQHZ}$ | 3 | 8 | 3 | 8 | 3 | 8 | 3 | 12 | ns | 6,7 |
| SWE setup time | ${ }^{\text {t }}$ SWNS | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |
| SWE hold time | ${ }^{\text {t }}$ SWNH | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |
| $\overline{\mathrm{OE}}$ to output valid | ${ }^{\text {'OEQ }}$ |  | 6 |  | 7 |  | 8 |  | 10 | ns |  |
| $\overline{\mathrm{OE}}$ to output in Low-Z | ${ }^{\text {t O }}$, ${ }^{\text {OLZ }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns | 6,7 |
| $\overline{\text { OE }}$ to output in High-Z | ${ }^{\text {t }}$ OEHZ |  | 8 |  | 8 |  | 8 |  | 8 | ns | 6,7 |
| WRITE Cycle |  |  |  |  |  |  |  |  |  |  |  |
| WRITE cycle time | tWC | 15 |  | 17 |  | 20 |  | 25 |  | ns | 11 |
| SWE setup time | ${ }^{\text {t }}$ SWES | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |
| SWE hold time | ${ }^{\text {t }}$ SWEH | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |
| Data setup time | ${ }^{\text {t }} \mathrm{DS}$ | 5 |  | 6 |  | 6 |  | 7 |  | ns | 8,10 |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 2 |  | 2 |  | 2 |  | 2 |  | ns | 8,10 |
| Data to DLE not setup time | ${ }^{\text {t }}$ LNS | 1 |  | 1 |  | 1 |  | 1 |  | ns | 9,10 |
| Data to DLE not hold time | ${ }^{t}$ DLNH | 3 |  | 3 |  | 3 |  | 3 |  | iis | 3, i0 |
| DLE setup time | ${ }^{\text {t DLS }}$ | 6 |  | 6 |  | 6 |  | 7 |  | ns | 9,10 |
| DLE hold time | ${ }^{\text {t DLH }}$ | 2 |  | 2 |  | 2 |  | 2 |  | ns | 9,10 |
| $\overline{\text { WEL }} / \overline{\mathrm{WEH}}$ setup time | ${ }^{\text {theS }}$ | 6 |  | 6 |  | 6 |  | 7 |  | ns | 10 |
| WEL / WEH hold time | tWEH | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |
| WEL / WEH not setup time | tWNS |  | 0 |  | 0 |  | 0 |  | 0 | ns | 10 |
| $\overline{\text { WEL / }}$ WEH not hold time | ${ }^{\text {t }}$ WNH | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |

## AC TEST CONDITIONS



## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. Output loading is specified with $\mathrm{CL}=5 \mathrm{pF}$ as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{KQHZ}$ is less than ${ }^{\mathrm{t}} \mathrm{KQLZ}$ and ${ }^{\mathrm{t}} \mathrm{OEHZ}$ is less than ${ }^{t}$ OELZ.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. A transparent WRITE cycle is defined by DLE being HIGH during the WRITE cycle.
9. A latched WRITE cycle is defined by DLE transitioning LOW during the WRITE cycle and satisfying the specified setup and hold time with respect to the rising edge of clock (CLK).
10. This is a synchronous device. All synchronous inputs must meet the setup and hold times with stable logic levels for all falling edges of address latch enable (ALE) and data latch enable (DLE).
11. ${ }^{\mathrm{t}} \mathrm{RC}={ }^{\mathrm{t}} \mathrm{WC}={ }^{\mathrm{t}} \mathrm{KC}$

## READ TIMING ${ }^{2}$



NOTE: 1. When synchronous chip enables (SCE, $\overline{\text { SCE }}$ ) are inactive, the part is deselected.
2. WEL/WEH are Don't Care signals during a READ cycle.
3. Data out $(Q)$ is disabled whenever asynchronous output enable ( $\overline{(O E)}$ is inactive, during a READ cycle.

MT58C1616

## WRITE TIMING



NOTE: 1. Data is latched when DLE transitions from HIGH to LOW. When DLE is HIGH, the latch is transparent and data flows through the latch.
2. Asynchronous write enables ( $\overline{\mathrm{WEH}}, \overline{\mathrm{WEL}})$ are available for use as byte write enables at the system level. They are also available to perform a late WRITE cycle abort.
3. When synchronous chip enables (SCE, $\overline{\text { SCE }}$ ) are inactive, the part is deselected.

ADVANCE

READ/WRITE TIMING


## SYNCHRONOUS SRAM

# 16K x 18 SRAM <br> WITH CLOCKED, REGISTERED INPUTS 

## FEATURES

- Fast access times: 15, 17, 20, and 25ns
- Fast Output Enable: 6,7,8, and 10ns
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Separate, electrically isolated output buffer power supply and ground (VccQ, VssQ)
- Optional $+3.3 \mathrm{~V}( \pm 10 \%)$ output buffer operation
- Data Input Latch
- Common Data Inputs and Data Outputs
- BYTE WRITE capability via Dual Write Strobes
- Parity Bits
- Clock controlled registered address, Write Control and Dual Chip Enables


## OPTIONS

- Timing

15ns access
17 ns access
20ns access
25ns access

- Packages

52-pin PLCC
52-pin PQFP

- Density

16K x 18

## GENERAL DESCRIPTION

The Micron Synchronous SRAM family employs high speed, low power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.

The MT58C1618 SRAM integrates a $16 \mathrm{~K} \times 18$ SRAM core with advanced synchronous peripheral circuitry. All with advanced synchronous peripheral circuitry. All
synchronous inputs pass through registers controlled by a positive-edge-triggered single clock input (CLK). The synchronous inputs include all addresses, the two chip
selects ( $\overline{\mathrm{SCE}}, \mathrm{SCE})$ and the synchronous write enable $\overline{\mathrm{SWE})}$. synchronous inputs include all addresses, the two chip
selects $(\overline{\mathrm{SCE}}, \mathrm{SCE})$ and the synchronous write enable $(\overline{\mathrm{SWE}})$. Asynchronous inputs include the byte write enables ( $\overline{\mathrm{WEL}}$, $\overline{\mathrm{WEH}})$, output enable $(\overline{\mathrm{OE}})$, data latch enable (DLE) and the clock. Input data can be asynchronously latched by DLE to provide simplified data-in (D) timing during WRITE cycles. Data-out (Q), enabled by $\overline{\mathrm{O}} \overline{\mathrm{E}}$ during READ cycles, is asynchronous. The entire data word (DQ1-DQ16, DQP1/2) asynchronous. The entire data word (DQ1-DQ16,DQP1/2)
is output during each READ cycle. The devices are ideally suited for "pipelined" systems and those systems which benefit from a wide data bus.

MARKING
-15
-17
-20
-25

EJ
LG

MT58C1618 Asynchronous inputs include the byte write enables (WEL, $\overline{\text { MT58C1618 }}$ REV. 1/91

FUNCTIONAL BLOCK DIAGRAM


ADVANCE

## PIN DESCRIPTIONS

| PLCC and PQFP PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} 33,32,31,30,29,26,25, \\ 24,23,22,7,6,49,48 \end{gathered}$ | A0-A13 | Input | Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK. |
| 52 | $\overline{\text { SWE }}$ | Input | Synchronous Write Enable: This input is a synchronous write enable and must meet the setup and hold times around the rising edge of CLK. SWE is LOW for a WRITE cycle and HIGH for a READ cycle |
| 51 | CLK | Input | Clock: This signal latches the address, SCE, $\overline{\text { SCE }}$, and SWE inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge. |
| 3, 4 | WEL, $\overline{W E H}$ | Input | Asynchronous Write Enables: These asynchronous, active LOW inputs allow individual bytes to be written. When WEL is LOW, data is written to the lower byte, D1-D8, DQP1. When WEH is LOW, data is written to the upper byte, D9-D16, DQP2. A late WRITE cycle can be aborted if both WEL and WEH are HIGH during the LOW period of CLK. |
| 5,47 | SCE,SCE | Input | Synchronous Chip Selects: These synchronous signals are used to enable the device. Both active HIGH (SCE) and active LOW (SCE) enables are supplied to provide on-chip address decoding when multiple devices are used, as in a dual bank configuration. |
| 50 | $\overline{\mathrm{OE}}$ | Input | Output Enable: This active LOW input enables the output drivers. |
| 21 | DLE | Input | Data Latch Enable: When DLE is HIGH the latch is transparent. Input data is latched asynchronously into the on-chip data latch on the falling edge of DLE. DLE must meet the setup and hold times around DLE if data is latched. |
| 20,46 | $\begin{aligned} & \text { DQP1 } \\ & \text { DQP2 } \end{aligned}$ | Input/ Output | Parity Data I/O: These signals are data parity bits. The DQP1 is the parity bit for the lower byte, DQ1-DQ8. DQP2 is the parity bit for the upper byte, DQ9-DQ16. Parity data must meet the setup and hold time around DLE when being latched. |
| 34, 35, 38, 39, 40, $41,44,45,8,9,12$ $13,14,15,18,19$ | DQ1-DQ16 | Input/ Output | SRAM Data I/O: Lower byte is DQ1-DQ8; Upper byte is DQ9DQ16. Input data must meet the setup and hold time around DLE when being latched. |
| 2, 28 | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 10, 17, 36, 43 | VccQ | Supply | Isolated Output Buffer Supply: $+5 \mathrm{~V} \pm 10 \%$ or $3.3 \mathrm{~V} \pm 10 \%$ |
| 11, 16, 37, 42 | VssQ | Supply | Isolated Output Buffer Ground: GND |
| 1,27 | Vss | Supply | Ground: GND |

## MT58C1618

## TRUTH TABLE

| OPERATION | SCE | SCE | SWE | WEL | WEH | DLE | OE | DQ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Deselected Cycle | L | X | X | X | X | X | X | High-Z |
| Deselected Cycle | X | H | X | X | X | X | X | High-Z |
| Read Cycle | H | L | H | X | X | X | H | High-Z |
| Read Cycle | H | L | H | X | X | X | L | Q1-Q16, QP1, QP2 |
| Word Write Cycle DQ1-DQ16, DQP1, DQP2 Transparent data-in | H | L | L | L | L | H | X | D1-D16, DP1, DP2 |
| Word Write Cycle DQ1-DQ16, DQP1, DQP2 Latched data-in | H | L | L | L | L | L | X | D1-D16, DP1, DP2 |
| Aborted Write Cycle | H | L | L | H | H | X | X | High-Z |
| Byte Write Cycle DQ1-DQ8, DQP1 Transparent data-in | H | L | L | L | H | H | X | D1-D8, DP1 |
| Byte Write Cycle DQ9-DQ16, DQP2 Transparent data-in | H | L | L | H | L | H | X | D9-D16, DP2 |
| Byte Write Cycle DQ1-DQ8, DQP1 Latched data-in | H | L | L | L | H | L | X | D1-D8, DP1 |
| Byte Write Cycle DQ9-DQ16, DQP2 Latched data-in | H | L | L | H | L | L | X | D9-D16, DP2 |

NOTE: 1. Registered inputs (Addresses, SWE, SCE, and $\overline{\text { SCE }}$ ) must satisfy the specified setup and hold times around the rising edge of clock (CLK). Data-in must satisfy the specified setup and hold times for DLE.
2. A transparent WRITE cycle is defined by DLE HIGH during the WRITE cycle.
3. A latched WRITE cycle is defined by DLE transitioning LOW during the WRITE cycle and satisfying the specified setup and hold times.
ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc/Vcce supply relativeto Vss/VssQ-1.0 V to +7.0 V
Storage Temperature (Plastic) ..... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..... 1.5W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCc}=5.0 \mathrm{~V} \pm 10 \%\right.$; Vss = VssQ, Unless Otherwise Noted)

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | $\mathrm{V}_{\mathrm{H}}$ | 2.2 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1, 2 |
| Input Leakage Current | $\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{Vcc}$ | ILI | -10 | 10 | $\mu \mathrm{A}$ |  |
| Output Leakage Current | Output(s) Disabled, OV $\leq$ Vout $\leq$ Vcc | ILo | -10 | 10 | $\mu \mathrm{A}$ |  |
| Output High Voltage | $\mathrm{loH}=-4.0 \mathrm{~mA}$ | VOH | 2.4 |  | V | 1 |
| Output Low Voltage | $\mathrm{loL}=8.0 \mathrm{~mA}$ | Vol |  | 0.4 | V | 1 |
| Supply Voltage |  | Vcc | 4.5 | 5.5 | V | 1 |
| Output Buffer Supply Voltage | 5.0V TTL Compatible | Vcco | 4.5 | 5.5 | V | 1 |


| DESCRIPTION | CONDITIONS | SYMBOL | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Current: Operating | $\overline{S C E} \leq V_{I L} ; S C E \geq V_{I H} ; f=M A X ;$ Vcc = MAX; Outputs Open | Icc | 150 | 300 | mA | 3 |
| Power Supply Current: Standby | $\begin{aligned} & \text { SCE } \leq V_{I L} ; \overline{\operatorname{SCE}} \geq \mathrm{V}_{\mathrm{IH}} ; \\ & \mathrm{VCC}=\mathrm{MAX} ; \mathrm{f}=\mathrm{MAX} \end{aligned}$ | IsB1 | 20 | 50 | mA |  |
|  | $\begin{gathered} \overline{\text { SCE }} \geq \text { Vcc }-0.2 ; \text { SCE } \leq \text { Vss }+0.2 ; \\ \text { Vcc }=M A X ; \text { VIL } \leq V s s+0.2 ; \\ \text { VIH } \geq \text { Vcc }-0.2 ; f=0 \end{gathered}$ | IsB2 | 8 | 15 | mA |  |
|  | $\begin{gathered} f=0, \overline{S C E} \leq V_{\mathrm{IL}} ; \overline{\mathrm{SCE}} \leq \mathrm{VIH} ; \\ V \mathrm{MCC}=\mathrm{MAX} \end{gathered}$ | IsB3 | 10 | 25 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$ |  | $\mathrm{Cl}_{\mathrm{I}}$ |  | 6 | pF |
|  | $\mathrm{VCC}=5 \mathrm{~V}$ | Co |  | 8 |  |  |
| Input/Output Capacitance (D/Q) |  | 8 | pF | 4 |  |  |

## ADVANCE

## MT58C1618

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS <br> (Note 5 ) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=\mathrm{VccQ}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | SYM | -15 |  | -17 |  | -20 |  | -25 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| Clock |  |  |  |  |  |  |  |  |  |  |  |
| Clock cycle time | ${ }^{\text {t }} \mathrm{KC}$ | 15 |  | 17 |  | 20 |  | 25 |  | ns |  |
| Clock high time | ${ }^{\text {t }} \mathrm{KH}$ | 4 |  | 4 |  | 4 |  | 4 |  | ns |  |
| Clock low time | ${ }^{\text {tKL }}$ | 8 |  | 8 |  | 8 |  | 8 |  | ns |  |
| Chip Enable |  |  |  |  |  |  |  |  |  |  |  |
| SCE/ $\overline{\text { SCE }}$ setup time | ${ }^{\text {t }}$ SCES | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |
| SCE/SCE hold time | ${ }^{\text {t }}$ SCEH | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |
| Address |  |  |  |  |  |  |  |  |  |  |  |
| Address setup time | tsAS | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |
| Address hold time | ${ }^{\text {'SAH }}$ | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |
| READ Cycle |  |  |  |  |  |  |  |  |  |  |  |
| READ cycle time | ${ }^{\text {tr }}$ C | 15 |  | 17 |  | 20 |  | 25 |  | ns | 11 |
| Clock to output valid | ${ }^{\text {t KQ }}$ |  | 15 |  | 17 |  | 20 |  | 25 | ns |  |
| Clock to output invalid | tKQX | 3 |  | 3 |  | 3 |  | 3 |  | ns | 10 |
| Clock to output in Low-Z | ${ }^{\text {t KQLZ }}$ | 10 |  | 10 |  | 10 |  | 10 |  | ns | 6,7 |
| Clock to output in High-Z | ${ }^{\text {t }}$ KQHZ | 3 | 8 | 3 | 8 | 3 | 8 | 3 | 12 | ns | 6,7 |
| SWE setup time | tSWNS | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |
| SWE hold time | tSWNH | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |
| $\overline{\mathrm{OE}}$ to output valid | ${ }^{\text {t }}$ OEQ |  | 6 |  | 7 |  | 8 |  | 10 | ns |  |
| $\overline{O E}$ to output in Low-Z | ${ }^{\text {t O }}$ ' ${ }^{\text {OLZ }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns | 6,7 |
| $\overline{\mathrm{OE}}$ to output in High-Z | ${ }^{\text {t }}$ OEHZ |  | 8 |  | 8 |  | 8 |  | 8 | ns | 6,7 |
| WRITE Cycle |  |  |  |  |  |  |  |  |  |  |  |
| WRITE cycle time | ${ }^{\text {t }}$ WC | 15 |  | 17 |  | 20 |  | 25 |  | ns | 11 |
| SWE setup time | ${ }^{\text {t }}$ SWES | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |
| SWE hold time | ${ }^{\text {t }}$ SWEH | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |
| Data setup time | ${ }^{\text {t }}$ DS | 5 |  | 6 |  | 6 |  | 7 |  | ns | 8,10 |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 2 |  | 2 |  | 2 |  | 2 |  | ns | 8,10 |
| Data to DLE not setup time | ${ }^{\text {t }}$ DLNS | 1 |  | 1 |  | 1 |  | 1 |  | ns | 9,10 |
| Data to DLE not hold time | ${ }^{\text {t }}$ DLNH | 3 |  | 3 |  | 3 |  | 3 |  | ns | 9,10 |
| DLEE seiup iille | \% T LS | $\bigcirc$ |  | $\bigcirc$ |  | $\bigcirc$ |  | 1 |  | ns | 9, 10 |
| DLE hold time | t DLH | 2 |  | 2 |  | 2 |  | 2 |  | ns | 9,10 |
| $\overline{\text { WEL }}$ / $\overline{\text { WEH }}$ setup time | tWES | 6 |  | 6 |  | 6 |  | 7 |  | ns | 10 |
| WEL / WEH hold time | ${ }^{\text {tWEH }}$ | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |
| $\overline{\text { WEL / WEH }}$ not setup time | tWNS |  | 0 |  | 0 |  | 0 |  | 0 | ns | 10 |
| WEL / WEH not hold time | tWNH | 2 |  | 2 |  | 2 |  | 2 |  | ns | 10 |

## AC TEST CONDITIONS

Input pulse levels ..... Vss to 3.0 V
Input rise and fall times ..... 3ns
Input timing reference levels ..... 1.5 V
Output reference levels ..... 1.5 V
Output load ..... See Figures 1 and 2

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. Output loading is specified with $\mathrm{CL}=5 \mathrm{pF}$ as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{KQHZ}$ is less than ${ }^{\mathrm{t}} \mathrm{KQLZ}$ and ${ }^{\mathrm{t}} \mathrm{OEHZ}$ is less than ${ }^{t}$ OELZ.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. A transparent WRITE cycle is defined by DLE being HIGH during the WRITE cycle.
9. A latched WRITE cycle is defined by DLE transitioning LOW during the WRITE cycle and satisfying the specified setup and hold time with respect to the rising edge of clock (CLK).
10. This is a synchronous device. All synchronous inputs must meet the setup and hold times with stable logic levels for all falling edges of address latch enable (ALE) and data latch enable (DLE).
11. ${ }^{\mathrm{t}} \mathrm{RC}={ }^{\mathrm{t}} \mathrm{WC}={ }^{\mathrm{t}} \mathrm{KC}$

READ TIMING ${ }^{2}$


NOTE: 1. When synchronous chip enables (SCE, $\overline{\text { SCE }}$ ) are inactive, the part is deselected.
2. WEL/ WEH are Don't Care signals during a READ cycle.
3. Data out ( $Q$ ) is disabled whenever asynchronous output enable ( $\overline{(O E)}$ is inactive, during a READ cycle.

## WRITE TIMING



NOTE: 1. Data is latched when DLE transitions from HIGH to LOW. When DLE is HIGH, the latch is transparent and data flows through the latch.
2. Asynchronous write enables ( $\overline{\mathrm{WEH}}, \overline{\mathrm{WEL}})$ are available for use as byte write enables at the system level. They are also available to perform a late WRITE cycle abort.
3. When synchronous chip enables (SCE, $\overline{\text { SCE }}$ ) are inactive, the part is deselected.

## READ/WRITE TIMING



## MCRON

DYNAMIC RAMS ..... 1
DRAM MODULES ..... 2
MULTIPORT DRAMS3
STATIC RAMS4
SYNCHRONOUS SRAMS5
SRAM MODULES ..... 6
CACHE DATA SRAMS7
FIFO MEMORIES8
APPLICATION/TECHNICAL INFORMATION ..... 9
MILITARY INFORMATION ..... 10
PACKAGE INFORMATION ..... 11
SALES INFORMATION12

## SRAM MODULE PRODUCT SELECTION GUIDE

| Memory <br> Configuration | Optional Access Cycle | Part <br> Number | Access <br> Time (ns) | Package and No. of Pins |  | Process | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | DIP | ZIP |  |  |
| $128 \mathrm{~K} \times 8$ | CE \& OE | MT4S1288 | 30, 35, 45 | 32 | - | CMOS | 6-1 |
| $32 \mathrm{~K} \times 16$ | CE \& OE | MT2S3216 | 30, 35, 45 | 40 | - | CMOS | 6-9 |
| $64 \mathrm{~K} \times 16$ | CE \& OE | MT4S6416 | 30, 35, 45 | 40 | - | CMOS | 6-17 |
| $16 \mathrm{~K} \times 32$ | CE \& OE | MT8S1632 | 15, 20, 25, 30, 35, 45 | - | 64 | CMOS | 6-25 |
| $64 \mathrm{~K} \times 32$ | CE \& OE | MT8S6432 | 20, 25, 30, 35, 45 | - | 64 | CMOS | 6-33 |
| $128 \mathrm{~K} \times 32$ | CE \& OE | MT4S12832 | 25, 35, 45 | - | 64 | CMOS | 6-41 |
| $256 \mathrm{~K} \times 32$ | CE \& OE | MT8S25632 | 25, 35, 45 | - | 64 | CMOS | 6-49 |

## SRAM MODULE

## 128K x 8 SRAM

## FEATURES

- High speed: $30 \mathrm{~ns}, 35 \mathrm{~ns}$, and 45 ns
- High-performance, low-power CMOS process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ function
- All inputs and outputs are TTL compatible
- Pin compatible with monolithic 1 Meg SRAM


## OPTIONS

- Timing

30 ns access
-30

## 35ns access

-3545ns access ..... -45

- Packages

32-pin DIP ( 600 mil )

- 2 V data retention L (Available in 45 ns , CMOS decoder version only)


## GENERAL DESCRIPTION

The MT4S1288 is a high-speed SRAM memory module containing 131,072 words organized in a x8-bit configuration. The module consists of four $32 \mathrm{~K} \times 8$ fast static RAMs and a single decoder mounted on a 32-pin DIP,FR4 printed circuit board. Depending upon the speed of the module, the decoder will be either TTL ( 30 ns and 35 ns ) or CMOS ( 45 ns ).

The decoder interprets the higher order address bits (A15 and A16) to select one of the four fast static RAMs. Data is written into the SRAM memory when both write enable ( $\overline{\mathrm{WE}}$ ) and chip enable ( $\overline{\mathrm{CE}}$ ) inputs are LOW. Reading is accomplished when $\overline{W E}$ remains HIGH, and $\overline{C E}$ and output

## PIN ASSIGNMENT (Top View)

## 32-Pin DIP (K-1)


enable ( $\overline{\mathrm{OE}}$ ) are LOW. $\overline{\mathrm{CE}}$ sets the output in a high impedance state for additional system design flexibility, and memory expansion may be achieved through use of the $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ functions.
The Micron SRAM family uses high-speed, low-power CMOS designs featuring a four-transistor memory cell and double-layer metal, double-layer polysilicon technology. All module components may be powered from a single +5 V DC supply and all inputs and outputs are fully TTL compatible. The "L" option offers reduced-voltage operation for systems with low standby power requirements.

## FUNCTIONAL BLOCK DIAGRAM



TRUTH TABLE

| MODE | $\mathbf{O E}$ | $\mathbf{C E}$ | WE | DQ | POWER |
| :--- | :---: | :---: | :---: | :---: | :---: |
| STANDBY | X | H | X | HIGH-Z | STANDBY |
| READ | L | L | H | Q | ACTIVE |
| READ | H | L | H | HIGH-Z | ACTIVE |
| WRITE | X | L | L | D | ACTIVE |

## MT4S1288

ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc supply relative to Vss ......... -1.0 V to +7.0 VStorage Temperature ............................... -1.0 V to +7.0 V$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Power Dissipation1W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

|  |  |  |  | MAX |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION | CONDITIONS | SYMBOL | MIN | -30, -35 | -45 | UNITS | NOTES |
| Operating Current: <br> TTL Input Levels | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{VIL} ; V_{c C}=M A X ; \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} R C, \\ \text { Outputs Open } \end{gathered}$ | Icc |  | 190 | 180 | mA | 3 |
| Standby Current: TTL Input Levels | $\begin{gathered} \overline{C E} \geq V_{I H}, V C C=M A X \\ f=M A X=1 /{ }^{t} R C, \\ \text { Outputs Open } \end{gathered}$ | Isb1 |  | 120 | 100 | mA |  |
| Standby Current: CMOS Input Levels | $\begin{gathered} C \bar{E} \geq V_{c C}-0.2 ; V_{c c}=M A X \\ V_{I L} \leq V_{\text {SS }}+0.2, \\ V_{H} \geq V_{c c}-0.2 ; f=0 \end{gathered}$ | Isb2 |  | 40 | 20 | mA |  |

CAPACITANCE

| CAPACITANCE |  |  |  | MAX |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION | CONDITIONS | SYMBOL | MIN | -30, -35 | -45 | UNITS | NOTES |
| Input Capacitance: AO-A14 WE, \& $\overline{\mathrm{OE}}$ | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} \\ \mathrm{VCC}=5 \mathrm{~V} \end{gathered}$ | $\mathrm{Cl}_{11}$ |  | 28 | 28 | pF | 4 |
| Input Capacitance: A15, A16, \& $\overline{\mathrm{CE}}$ |  | $\mathrm{Cl}_{12}$ |  | 5 | 4.5 | pF | 4 |
| Input/Output Capacitance: DQ1-DQ8 |  | Cıo |  | 28 | 28 | pF | 4 |

MT4S1288

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS <br> (Note 5) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | SYM | -30 |  | -35 |  | -45 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| READ Cycle |  |  |  |  |  |  |  |  |  |
| READ cycle time | ${ }^{\text {t } R C}$ | 30 |  | 35 |  | 45 |  | ns |  |
| Address access time | ${ }^{\text {t }}$ A |  | 30 |  | 35 |  | 45 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 30 |  | 35 |  | 45 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Enable LOW to output in Low-Z | tLZCE | 5 |  | 5 |  | 5 |  | ns | 7 |
| Chip Enable to output in High-Z | thZCE |  | 20 |  | 20 |  | 25 | ns | 6, 7 |
| Chip Enable LOW to power-up time | tPU | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Enable HIGH to power-down time | tPD |  | 30 |  | 35 |  | 45 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 10 |  | 12 |  | 15 | ns |  |
| Output Enable LOW to output in Low-Z | tLZOE | 0 |  | 0 |  | 0 |  | ns |  |
| Output Enable HIGH to output in High-Z | thZOE |  | 10 |  | 12 |  | 15 | ns | 6 |

## WRITE Cycle

| WRITE cycle time | ${ }^{\text {t }}$ WC | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 25 |  | 30 |  | 30 |  | ns |  |
| Audu'uess vailid to end of write | ${ }^{\text {t }}$ AW | 18 |  | 20 |  | 25 |  | ns |  |
| Address setup time | t AS | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{t} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 25 |  | 25 |  | 30 |  | ns |  |
| Data setup time | ${ }^{\text {t }}$ D | 15 |  | 15 |  | 20 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write Enable LOW to output in Low-Z | tLZWE | 0 |  | 0 |  | 0 |  | ns | 7 |
| Write Enable HIGH to output in High-Z | tHZWE |  | 12 |  | 15 |  | 18 | ns | 6, 7 |

## AC TEST CONDITIONS

Input pulse levels ...................................Vss to 3.0V
Input rise and fall times .......................................5ns
Input timing reference levels ............................. 1.5 V
Output reference levels .....................................1.5V
Output load See Figures 1 and 2


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\mathrm{t}} \mathrm{HZCE},{ }^{\mathrm{t}} \mathrm{HZOE}$, and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=$ 5 pF as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\text {t }} \mathrm{LZCE}$, ${ }^{\text {t }} \mathrm{HZWE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZWE}$.
8. $\overline{\mathrm{WE}}$ is HIGH for READ cycle.
9. Device is continuously selected. All $\overline{\mathrm{CEs}}$ held in their active state.
10. Address valid prior to or coincident with latest occurring $\overline{\mathrm{CE}}$.
11. The ouptut will be in the High- Z state if $\overline{\mathrm{OE}}$ is High.
12. The first falling edge of either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ will initiate a WRITE cycle, and the first rising edge of either $\overline{\mathrm{CE}}$ or $\overline{\text { WE }}$ will terminate a WRITE cycle.

## DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{gathered} \overline{\mathrm{CE}} \geq(\text { Vcc }-0.2 \mathrm{~V}) \\ \mathrm{VIN} \geq(\text { Vcc }-0.2 \mathrm{~V}) \\ \text { or } \leq 0.2 \mathrm{~V} \end{gathered}$ | $V c c=2 v$ | ICCDR |  | 0.5 | 2 | mA |  |
|  |  | $V c c=3 v$ |  |  | 1.5 | 3 | mA |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{\text {t }} \mathrm{CDR}$ | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {t }} \mathrm{R}$ | ${ }^{\text {tRC }}$ |  |  | ns | 4,10 |

## LOW Vcc DATA-RETENTION WAVEFORM



## READ CYCLE NO. $1^{\text {8, }} 9$



## READ CYCLE NO. $2^{7,8,10}$



WRITE CYCLE NO. 1
(Write Enable Controlled) ${ }^{11,12}$


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{11,12}$


D/A don't care
UX UNDEFINED

## SRAM MODULE

## 32K x 16 SRAM

## FEATURES

- High speed: $30 \mathrm{~ns}, 35 \mathrm{~ns}$ and 45 ns
- High-performance, low-power CMOS process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ function
- Upper and Lower Byte Select
- All inputs and outputs are TTL compatible


## OPTIONS

- Timing

30ns access
-30
35ns access
45ns access

- Packages

40-pin DIP ( 600 mil )
D

- 2V data retention L
(Available in 45 ns , CMOS decoder versions only)


## GENERAL DESCRIPTION

The MT2S3216 is a high-speed SRAM memory module containing 32,768 words organized in a x16-bit configuration. The module consists of two $32 \mathrm{~K} \times 8$ fast static RAMs and a single decoder mounted on a 40-pin DIP, FR4 printed circuit board. Depending upon the speed of the module, the decoder will be either TTL (30ns and 35ns) or CMOS (45ns).

Data is written into the SRAM memory when both write enable ( $\overline{\mathrm{WE}})$ and chip enable $(\overline{\mathrm{CE}})$ inputs are LOW. Reading occurs when $\overline{W E}$ remains HIGH, and $\overline{C E}$ and output enable $(\overline{\mathrm{OE}})$ are LOW. $\overline{\mathrm{LB}}$ and $\overline{\mathrm{UB}}$ control the lower and upper byte

PIN ASSIGNMENT (Top View) 40-Pin DIP (K-2)


* Address A15 must be connected to Vss
selection. $\overline{\mathrm{CE}}$ sets the output in a high impedance state for additional system design flexibility, and memory expansion may be achieved through use of the $\overline{\mathrm{CE}}$ functions.

The Micron SRAM family uses high-speed, low-power CMOS designs featuring a four-transistor memory cell and double-layer metal, double-layer polysilicon technology. All module components may be powered from a single +5 V DC supply and all inputs and outputs are fully TTL compatible. The "L" option offers reduced-voltage operation for systems with low standby power requirements.

FUNCTIONAL BLOCK DIAGRAM


## TRIITH TARIE

| MODE | CE | UB | $\overline{L B}$ | OE | WE | A15 | DQ OPERATION | POWER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STANDBY | H | X | X | X | X | L | HIGH-Z | STANDBY |
| STANDBY | L | H | H | X | X | L | HIGH-Z | STANDBY |
| READ: WORD | L | L | L | L | H | L | Q (1-16) | ACTIVE (x16) |
| READ: LOWER BYTE | L | H | L | L | H | L | Q (1-8) | ACTIVE (x8) |
| READ: UPPER BYTE | L | L | H | L | H | L | Q (9-16) | ACTIVE (x8) |
| READ: WORD | L | L | L | H | H | L | HIGH-Z | ACTIVE (x16) |
| READ: LOWER BYTE | L | H | L | H | H | L | HIGH-Z | ACTIVE (x8) |
| READ: UPPER BYTE | L | L | H | H | H | L | HIGH-Z | ACTIVE (x8) |
| WRITE: WORD | L | L | L | X | L | L | D (1-16) | ACTIVE (x16) |
| WRITE: LOWER BYTE | L | H | L | X | L | L | D (1-8) | ACTIVE (x8) |
| WRITE: UPPER BYTE | L | L | H | X | L | L | D (9-16) | ACTIVE (x8) |

ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc supply relative to Vss .........-1.0V to +7.0 VStorage Temperature ................................ $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Power Dissipation2W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$


|  |  |  |  |  | M |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION |  | CONDITIONS | SYMBOL | MIN | -30, -35 | -45 | UNITS | NOTES |
| Operating Current: TTL Input Levels | (x16) | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{VLL}^{2} \mathrm{VCC}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 /{ }^{\mathrm{t} R C}, \\ \text { Outputs Open } \end{gathered}$ | Icc |  | 210 | 200 | mA | 3 |
|  | (x8) |  |  |  | 140 | 130 |  |  |
| Standby Current: TTL Input Levels |  | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{V}_{1 H} ; \mathrm{VCC}^{\prime}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} R \mathrm{C} \\ \text { Outputs Open } \end{gathered}$ | Isb1 |  | 70 | 50 | mA |  |
| Standby Current: CMOS Input Levels |  | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{Cc}}-0.2 ; \mathrm{Vcc}=\mathrm{MAX} \\ \mathrm{VIL} \leq \mathrm{Vss}^{2}+0.2, \\ \mathrm{VIH} \geq \mathrm{Vcc}_{\mathrm{cc}}-0.2 ; \mathrm{f}=0 \end{gathered}$ | IsB2 |  | 35 | 15 | mA |  |

CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | -30, -35 | -45 | units | notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: A0-A14, WE, $\overline{O E}$ | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} \\ \mathrm{VCC}=5 \mathrm{~V} \end{gathered}$ | $\mathrm{Cl}_{11}$ |  | 14 | 14 | pF | 4 |
| Input Capacitance: A15, $\overline{\mathrm{CE}}$ |  | Cl 2 |  | 10 | 9 | pF | 4 |
| Input Capacitance: $\overline{\mathrm{UB}}, \overline{\mathrm{LB}}$ |  | $\mathrm{Cl}_{13}$ |  | 5 | 4.5 | pF | 4 |
| Input/Output Capacitance: DQ |  | $\mathrm{ClO}_{1}$ |  | 7 | 7 | pF | 4 |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | SYM | -30 |  | -35 |  | -45 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | MAX | MIN | MAX | MIN | MAX |  |  |

## READ Cycle

| READ cycle time | ${ }^{\text {t }} \mathrm{C}$ | 30 |  | 35 |  | 45 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }} \mathrm{AA}$ |  | 30 |  | 35 |  | 45 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 30 |  | 35 |  | 45 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Enable LOW to output in Low-Z | t LZCE | 5 |  | 5 |  | 5 |  | ns | 7 |
| Chip Enable to output in High-Z | thZCE |  | 20 |  | 20 |  | 25 | ns | 6,7 |
| Chip Enable LOW to power-up time | tPU | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Enable HIGH to power-down time | tPD |  | 30 |  | 35 |  | 45 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 10 |  | 12 |  | 15 | ns |  |
| Output Enable LOW to output in Low-Z | tLZOE | 0 |  | 0 |  | 0 |  | ns |  |
| Output Enable HIGH to output in High-Z | thZOE |  | 10 |  | 12 |  | 15 | ns | 6 |

## WRITE Cycle

| WRITE cycle time | tWC | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 25 |  | 30 |  | 30 |  | ns |  |
| Address valid to end of writc | ALW | 18 |  | 20 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }}$ A ${ }^{\text {H}}$ | 0 |  | 0 |  | 0 |  | ns |  |
| WRITE command pulse width | tWP | 25 |  | 25 |  | 30 |  | ns |  |
| Data setup time | ${ }^{\text {t }}$ DS | 15 |  | 15 |  | 20 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write Enable LOW to output in Low-Z | tLZWE | 0 |  | 0 |  | 0 |  | ns | 7 |
| Write Enable HIGH to output in High-Z | tHZWE |  | 12 |  | 15 |  | 18 | ns | 6,7 |

## AC TEST CONDITIONS

Input pulse levels Vss to 3.0 V
Input rise and fall times .........................................5ns
Input timing reference levels 1.5V
Output reference levels ....................................... 1.5V
Output load See Figures 1 and 2

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\text {t }} \mathrm{HZCE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=5 \mathrm{pF}$ as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\mathrm{t} L Z C E} \mathrm{t}^{\mathrm{t}} \mathrm{HZWE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZWE}$.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{W E}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. The ouptut will be in the High- $Z$ state if $\overline{\mathrm{OE}}$ is High.
12. The first falling edge of either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ will initiate a WRITE cycle, and the first rising edge of either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ will terminate a WRITE cycle.

## DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{gathered} \overline{\mathrm{CE}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \mathrm{Vin} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \text { or } \leq 0.2 \mathrm{~V} \end{gathered}$ | $\mathrm{Vcc}=2 \mathrm{v}$ | ICCDR |  | 0.3 | 1.0 | mA |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{v}$ |  |  | 0.8 | 1.6 | mA |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{\text {t }}$ CDR | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {tR }}$ | ${ }^{\text {tRC }}$ |  |  | ns | 4 |

LOW Vcc DATA-RETENTION WAVEFORM


READ CYCLE NO. $1^{\text {8, } 9}$


READ CYCLE NO. $2^{7,8,10}$


## MT2S3216

(REPLACES: MT85C1632)
WRITE CYCLE NO. 1
(Write Enable Controlled) ${ }^{11,12}$


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{11,12}$


5 Santrane
XX UNDEFINED

MT4S6416

## SRAM MODULE

## FEATURES

- High speed: 30ns, 35ns and 45ns
- High-performance, low-power, CMOS process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ function
- Upper and Lower Byte Select
- All inputs and outputs are TTL compatible

OPTIONS<br>- Timing 30ns access -30<br>35ns access -35<br>45 ns access -45<br>- Packages<br>40-pin DIP ( 600 mil )<br>- 2 V data retention L (Available in the 45 ns, CMOS decoder version only)

## GENERAL DESCRIPTION

The MT4S6416 is a high-speed SRAM memory module containing 65,536 words organized in a x16-bit configuration. The module consists of four $32 \mathrm{~K} \times 8$ fast static RAMs and a single decoder mounted on a 40 -pin DIP, doublesided FR4 printed circuit board. Depending upon the speed of the module, the decoder will be either TTL ( 30 ns and 35 ns ) or CMOS (45ns).

The decoder interprets the higher order address bit (A15) to select two of the four fast static RAMs. Data is written into the SRAM memory when both write enable ( $\overline{\mathrm{WE})}$ and chip enable $(\overline{\mathrm{CE}})$ inputs are LOW. Reading occurs when $\overline{\mathrm{WE}}$ remains HIGH, and $\overline{\mathrm{CE}}$ and output enable $(\overline{\mathrm{OE}})$ are LOW.

## 64K x 16 SRAM

FUNCTIONAL BLOCK DIAGRAM


## TRUTH TABLE

| MODE | $\overline{C E}$ | $\overline{\text { UB }}$ | LB | $\overline{O E}$ | WE | DQ OPERATION | POWER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STANDBY | H | X | X | X | X | HIGH-Z | STANDBY |
| STANDBY | L | H | H | X | X | HIGH-Z | STANDBY |
| READ: WORD | L | L | L | L | H | Q (1-16) | ACTIVE (x16) |
| READ: LOWER BYTE | L | H | L | L | H | Q (1-8) | ACTIVE (x8) |
| READ: UPPER BYTE | L | L | H | L | H | Q (9-16) | ACTIVE (x8) |
| READ: WORD | L | L | L | H | H | HIGH-Z | ACTIVE (x16) |
| READ: LOWER BYTE | L | H | L | H | H | HIGH-Z | ACTIVE (x8) |
| READ: UPPER BYTE | L | L | H | H | H | HIGH-Z | ACTIVE (x8) |
| WRITE: WORD | L | L | L | X | L | D (1-16) | ACTIVE (x16) |
| WRITE: LOWER BYTE | L | H | L | X | L | D (1-8) | ACTIVE (x8) |
| WRITE: UPPER BYTE | L | L | H | X | L | D (9-16) | ACTIVE (x8) |


*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | -30, -35 | -45 | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | A0-A14, WE, $\overline{O E}$ | VIH | 2.2 | Vcc+1 | $\mathrm{Vcc}+1$ | V |  |
|  |  | A15, $\overline{C E}, \overline{\mathrm{UB}}, \overline{\mathrm{LB}}$ | $\mathrm{V}_{\mathrm{H}}$ | 2.0 | Vcc+1 | $\mathrm{Vcc}+1$ | V |  |
| Input Low (Logic 0) Voltage |  | A0-A14, $\overline{W E}, \overline{O E}$ | VIL | -0.5 | 0.8 | 0.8 | V | 1,2 |
|  |  | A15, $\overline{C E}, \overline{U B}, \overline{L B}$ | VIL | -0.5 | 0.8 | 1.3 | V | 1,2 |
| Input Leakage Current | $\mathrm{OV} \leq \mathrm{Vin} \leq \mathrm{Vcc}$ | A0-A14 | ILI | -40 | 40 | 40 | $\mu \mathrm{A}$ |  |
|  |  | A15, $\overline{C E}$ |  |  | 1200 | 1.0 | $\mu \mathrm{A}$ |  |
|  |  | $\overline{\mathrm{UB}}, \overline{\mathrm{LB}}$ |  |  | 600 | 1.0 | $\mu \mathrm{A}$ |  |
| Output Leakage Current | Output(s) Disabled $0 \mathrm{~V} \leq \mathrm{VOUT}^{\leq} \mathrm{V}$ cc |  | ILo | -20 | 20 | 20 | $\mu \mathrm{A}$ |  |
| Output High Voltage | $1 \mathrm{OH}=-4.0 \mathrm{~mA}$ |  | Vон | 2.4 |  |  | V | 1 |
| Output Low Voltage | $\mathrm{loL}=8.0 \mathrm{~mA}$ |  | Vol |  | 0.4 | 0.4 | V | 1 |


|  |  |  |  |  | MAX |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION |  | CONDITIONS | SYMBOL | MIN | -30, -35 | -45 | UNITS | NOTES |
| Operating Current: <br> TTL Input Levels | (x16) | $\begin{gathered} \overline{C E} \leq V_{I L}, V C C=M A X \\ f=M A X=1 / \mathrm{t} R C \\ \text { Outputs Open } \end{gathered}$ | Icc |  | 210 | 250 | mA | 3 |
|  | (x8) |  |  |  | 105 | 150 |  |  |
| Standby Current: TTL Input Levels |  | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{VCC}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 /{ }^{\mathrm{t} C}, \\ \text { Outputs Open } \end{gathered}$ | IsB1 |  | 120 | 100 | mA |  |
| Standby Current: CMOS Input Levels |  | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{cc}}-0.2, \mathrm{Vcc}=\mathrm{MAX} \\ \mathrm{~V}_{\mathrm{IL}} \leq \mathrm{V}_{\mathrm{SS}}+0.2, \\ \mathrm{~V}_{\mathrm{H}} \geq \mathrm{Vcc}_{\mathrm{cc}}-0.2, \mathrm{f}=0 \end{gathered}$ | IsB2 |  | 40 | 20 | mA |  |



## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS <br> (Note 5) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | SYM | -30 |  | -35 |  | -45 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | MAX | MIN | MAX | MIN | MAX |  |  |

## READ Cycle

| READ cycle time | ${ }^{\text {t }} \mathrm{RC}$ | 30 |  | 35 |  | 45 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Address access time | ${ }^{\text {t }} \mathrm{AA}$ |  | 30 |  | 35 |  | 45 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 30 |  | 35 |  | 45 | ns |  |
| Output hold from address change | ${ }^{\text {toh }}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Enable LOW to output in Low-Z | t LZCE | 5 |  | 5 |  | 5 |  | ns | 7 |
| Chip Enable to output in High-Z | tHZCE |  | 20 |  | 20 |  | 25 | ns | 6, 7 |
| Chip Enable LOW to power-up time | tPU | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Enable HIGH to power-down time | tPD |  | 30 |  | 35 |  | 45 | ns |  |
| Output Enable access time | ${ }^{\text {t }} \mathrm{AOE}$ |  | 20 |  | 20 |  | 25 | ns |  |
| Output Enable LOW to output in Low-Z | tLZOE | 0 |  | 0 |  | 0 |  | ns |  |
| Output Enable HIGH to output in High-Z | ${ }^{\text {t }} \mathrm{HZOE}$ |  | 20 |  | 20 |  | 30 | ns | 6 |
| WRITE Cycle |  |  |  |  |  |  |  |  |  |
| WRITE cycle time | tWC | 30 |  | 35 |  | 45 |  | ns |  |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 25 |  | 30 |  | 30 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 25 |  | 25 |  | 30 |  | ns |  |
| Address setup time | t'AS | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }} \mathrm{AH}$ | 2 |  | 2 |  | 2 |  | ns |  |
| Write command pulse width | tWP | 25 |  | 25 |  | 30 |  | ns |  |
| Data setup time | ${ }^{\text {t }}$ DS | 15 |  | 15 |  | 18 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write Enable LOW to output in Low-Z | tLZWE | 0 |  | 0 |  | 0 |  | ns | 7 |
| Write Enable HIGH to output in High-Z | tHZWE |  | 20 |  | 15 |  | 15 | ns | 6,7 |

## AC TEST CONDITIONS

Input pulse levels .................................... Vss to 3.0 V
Input rise and fall times ........................................5ns
Input timing reference levels ............................... 1.5 V
Output reference levels ......................................... 1.5 V
Output load .............................. See Figures 1 and 2

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\mathrm{t}} \mathrm{HZCE},{ }^{\mathrm{t}} \mathrm{HZOE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=$ 5 pF as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are less than ${ }^{\mathrm{t}} \mathrm{LZCE}$ and ${ }^{\mathrm{t}} \mathrm{LZWW}$ respectively.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{W E}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. The ouptut will be in the High-Z state if $\overline{\mathrm{OE}}$ is High.
12. The first falling edge of either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ will initiate a WRITE cycle, and the first rising edge of either $\overline{\mathrm{CE}}$ or $\overline{\text { WE }}$ will terminate a WRITE cycle.

## DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{aligned} & C E \geq(\text { Vcc }-0.2 \mathrm{~V}) \\ & \mathrm{Vin} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \text { or } \leq 0.2 \mathrm{~V} \end{aligned}$ | $\mathrm{Vcc}=2 \mathrm{v}$ |  |  | 0.5 | 2 | mA |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{v}$ |  |  | 1.5 | 3 | mA |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{\text {t }}$ CDR | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {t }} \mathrm{R}$ | ${ }^{\text {tRC }}$ |  |  | ns | 4 |

## LOW Vcc DATA-RETENTION WAVEFORM



READ CYCLE NO. $1^{\text {8, }} 9$


READ CYCLE NO. $2^{7,8,10}$

$7 / \triangle$ DON'T CARE
UNDEFINED

WRITE CYCLE NO. 1
(Write Enable Controlled) ${ }^{11,12}$


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{11,12}$

$V / \Delta$ DON'T CARE
UNDEFINED

## SRAM MODULE

## 16K x 32 SRAM

## FEATURES

- High speed: $15 \mathrm{~ns}, 20 \mathrm{~ns}, 25 \mathrm{~ns}, 30 \mathrm{~ns}, 35 \mathrm{~ns}$ and 45 ns
- High-performance, low-power, CMOS process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ functions
- Low profile (. 50 inches MAX height)
- All inputs and outputs are TTL compatible
- Industry standard pinout
- Pin compatible with $64 \mathrm{~K} \times 32,128 \mathrm{~K} \times 32$ and $256 \mathrm{~K} \times 32$ modules


## OPTIONS

- Timing

15ns access -15
20ns access -20
25ns access -25
30ns access -30
35ns access -35
45 ns access -45

- Packages

64-pin ZIP

- 2 V data retention

MARKING

25

Z
L

## GENERAL DESCRIPTION

The MT8S1632 is a high-speed SRAM memory module containing 16,384 words organized in a $\times 32$-bit configuration. The module consists of eight $16 \mathrm{~K} \times 4$ fast static RAMs mounted on a 64 -pin ZIP, double-sided, FR4 printed circuit board.

Data is written into to the SRAM memory when write enable ( $\overline{\mathrm{WE}}$ ) and chip enable ( $\overline{\mathrm{CE})}$ inputs are both LOW. Reading is accomplished when WE remains HIGH and $\overline{\mathrm{CE}}$ and output enable ( $\overline{\mathrm{OE}}$ ) are LOW. $\overline{\mathrm{CE}}$ can set the output in a high-impedance state for additional flexibility in system design, and memory expansion is accomplished by use of the $\overline{\mathrm{OE}}$ function.

| 64-Pin ZIP <br> (J-1) |
| :---: |
|  |  |
|  |  |

PD0 and PD1 identify the module's density, allowing interchangeable use of alternate-density, industry standard modules. Four chip enable inputs, ("CE1, $\overline{\mathrm{CE}} 2, \overline{\mathrm{CE}} 3$ and $\overline{\mathrm{CE}} 4$ ), are used to enable the module's 4 bytes independently.
The Micron SRAM family uses a high-speed, low-power CMOS design in a four-transistor memory cell featuring double-layer metal, double-layer polysilicon technology. All module components may be powered from a single +5 VDC supply and all inputs and outputs are fully TTL compatible. The "L" option offers reduced-voltage operation for systems with low standby power requirements.

FUNCTIONAL BLOCK DIAGRAM


PRESENCE DETECT
PDO = Vss
PD1 = No Connect

TRUTH TABLE

| MODE | $\overline{\mathbf{O E}}$ | $\overline{\text { CE }}$ | WE | DQ | POWER |
| :--- | :---: | :---: | :---: | :---: | :---: |
| STANDBY | X | H | X | HIGH-Z | STANDBY |
| READ | L | L | H | Q | ACTIVE |
| READ | H | L | H | HIGH-Z | ACTIVE |
| WRITE | X | L | L | D | ACTIVE |

## ABSOLUTE MAXIMUM RATINGS*


*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | $\mathrm{OV} \leq \mathrm{V}$ IN $\leq \mathrm{Vcc}$ | IL | -40 | 40 | $\mu \mathrm{A}$ |  |
| Output Leakage Current | Output(s) Disabled $\mathrm{OV} \leq \mathrm{Vout}^{\leq} \mathrm{Vcc}$ | ILo | -5 | 5 | $\mu \mathrm{A}$ |  |
| Output High Voltage | $\mathrm{loH}=-4.0 \mathrm{~mA}$ | Vor | 2.4 |  | V | 1 |
| Output Low Voltage | $\mathrm{loL}=8.0 \mathrm{~mA}$ | Vol |  | 0.4 | V | 1 |


|  |  |  | MAX |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION | CONDITIONS | SYMBOL | -15 | -20 | -25 | -30, -35, -45 | UNITS | NOTES |
| Operating Current: <br> TTL Input Levels | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{VIL}, \mathrm{VCC}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 /{ }^{\mathrm{t} R C}, \\ \text { Outputs Open } \end{gathered}$ | Icc | 1040 | 960 | 880 | 800 | mA | 3 |
| Standby Current: TTL Input Levels | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{V} I H, \mathrm{VCC}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} \mathrm{RC}, \\ \text { Outputs Open } \end{gathered}$ | Isb1 | 400 | 320 | 240 | 240 | mA |  |
| Power Supply Current: Standby | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{Vcc}_{\mathrm{cc}}-0.2, \mathrm{Vcc}=\mathrm{MAX} \\ \mathrm{~V}_{\mathrm{IL}} \leq \mathrm{Vss}^{2}+0.2, \\ \mathrm{~V}_{\mathrm{H}} \geq \mathrm{V}_{\mathrm{cc}}-0.2, \mathrm{f}=0 \end{gathered}$ | Isb2 | 40 | 40 | 40 | 40 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: Ao-A13, WE, $\overline{\mathrm{CE}}, \overline{\mathrm{OE}}$ | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz} \\ \mathrm{Vcc}=5 \mathrm{~V} \end{gathered}$ | $\mathrm{Cl}_{1}$ |  | 70 | pF | 4 |
| Input/Output Capacitance: DQ1-DQ32 |  | CI/o |  | 15 | pF | 4 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
（Note 5）$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION |  | －15 |  | －20 |  | －25 |  | －30 |  | －35 |  | －45 |  |  | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | UNITS |  |
| READ Cycle |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| READ cycle time | ${ }^{\text {tRC }}$ | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Address access time | ${ }^{t} A A$ |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Chip Enable access time | ${ }^{\text {t }} \mathrm{ACE}$ |  | 12 |  | 15 |  | 20 |  | 25 |  | 30 |  | 40 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | 3 |  | ns |  |
| Chip Enable LOW to output in Low－Z | t LZCE | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns | 7 |
| Chip Enable to output in High－Z | ${ }^{\text {tha }}$（ |  | 7 |  | 10 |  | 10 |  | 15 |  | 20 |  | 20 | ns | 6， 7 |
| Chip Enable LOW to power－up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Enable HIGH to power－down time | tPD |  | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 7 |  | 9 |  | 10 |  | 15 |  | 20 |  | 20 | ns |  |
| Output Enable LOW to output in Low－Z | t LZOE | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Output Enable HIGH to output in High－Z | thZOE |  | 6 |  | 10 |  | 10 |  | 15 |  | 20 |  | 20 | ns | 6 |
| WRITE Cycle |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| WRITE cycle time | tw | 15 |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | 30 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | 30 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ S | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{t} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write command pulse width | tWP | 12 |  | 15 |  | 20 |  | 25 |  | 25 |  | 30 |  | ns |  |
| Data setup time | tDS | 8 |  | 10 |  | 10 |  | 15 |  | 15 |  | 20 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Enable LOW to output in Low－Z | tLZWE | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | ns | 7 |
| Write Enable HIGH to output in High－Z | tHZWE |  | 6 |  | 8 |  | 10 |  | 12 |  | 15 |  | 20 | ns | 6，7 |

## AC TEST CONDITIONS



## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\mathrm{t}} \mathrm{HZCE},{ }^{\mathrm{t}} \mathrm{HZOE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=$ 5 pF as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZCE}$, and ${ }^{\mathrm{t}} \mathrm{HZWE}$ is less than ${ }^{\text {t }}$ LZWE.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{W E}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. The ouptut will be in the High-Z state if $\overline{\mathrm{OE}}$ is High.
12. The first falling edge of either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ will initiate a WRITE cycle, and the first rising edge of either $\overline{\mathrm{CE}}$ or $\overline{\text { WE }}$ will terminate a WRITE cycle.

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 | - | V |  |  |
| Data Retention Current | $\begin{gathered} \overline{\mathrm{CE}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \mathrm{VIN} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \quad \text { or } \leq 0.2 \mathrm{~V} \end{gathered}$ | $\mathrm{Vcc}=2 \mathrm{v}$ | ICCDR |  | 0.8 | 4 | mA |  |
|  |  | $V c c=3 v$ |  |  | 2.8 | 6 | mA |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{\text {t }}$ CDR | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {t }}$ R | ${ }^{\text {t }} \mathrm{RC}$ |  |  | ns | 4 |

## LOW Vcc DATA-RETENTION WAVEFORM



READ CYCLE NO. $1^{\text {8, }} 9$


READ CYCLE NO. $2^{7,8,10}$


## MT8S1632

WRITE CYCLE NO. 1
(Write Enable Controlled) ${ }^{11,12}$


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{11,12}$


Z/Z dont care
UNDEFINED

## SRAM MODULE

## 64K x 32 SRAM

## FEATURES

- Industry compatible pinout
- High speed: $20 \mathrm{~ns}, 25 \mathrm{~ns}, 30 \mathrm{~ns}, 35 \mathrm{~ns}$ and 45 ns
- High-performance, low-power, CMOS process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ function
- Low profile (. 50 inches MAX height)
- All inputs and outputs are TTL compatible


## OPTIONS

- Timing 20ns access -20
25ns access -25
30ns access -30
35ns access -35
45 ns access $\quad-45$
- Packages

64-pin ZIP

- 2 V data retention


## MARKING

-20-30-45
## GENERAL DESCRIPTION

The MT8S6432 is a high-speed SRAM memory module containing 65,536 words organized in a 332 -bit configuration. The module consists of eight $64 \mathrm{~K} x 4$ fast static RAMs mounted on a 64-pin ZIP, double-sided, FR4 printed circuit board.

Data is written into to the SRAM memory when write enable ( $\overline{\mathrm{WE}}$ ) and chip enable ( $\overline{\mathrm{CE}}$ ) inputs are both LOW. Reading is accomplished when $\overline{W E}$ remains HIGH and $\overline{\mathrm{CE}}$ and output enable $(\overline{\mathrm{OE}})$ are LOW. $\overline{\mathrm{CE}}$ can set the output in a highimpedance state for additional flexibility in system design, and memory expansion is accomplished by use of the $\overline{\mathrm{OE}}$ function.

PD0 and PD1 identify the module's density allowing inter-

changeable use of alternate density, industry-standard modules. Four chip enable inputs, ( $\overline{\mathrm{CE}} 1, \overline{\mathrm{CE}} 2, \overline{\mathrm{CE}} 3$ and $\overline{\mathrm{CE}} 4$ ) are used to enable the module's 4 bytes independently.

The Micron SRAM family uses a high-speed, lowpower CMOS design in a four-transistor memory cell featuring double-layer metal, double-layer polysilicon technology. All module components may be powered from a single +5 VDC supply and all inputs and outputs are fully TTL compatible. The "L" option offers reducedvoltage operation for systems with low standby power requirements.

FUNCTIONAL BLOCK DIAGRAM


U1-U8 = MT5C2565DJ

PRESENCE DETECT
PDO = No Connect
$\mathrm{PD} 1=\mathrm{Vss}$

TRUTH TABLE

| MODE | $\mathbf{O E}$ | $\mathbf{C E}$ | WE | DQ | POWER |
| :--- | :---: | :---: | :---: | :---: | :---: |
| STANDBY | X | H | X | HIGH-Z | STANDBY |
| READ | L | L | H | Q | ACTIVE |
| READ | H | L | H | HIGH-Z | ACTIVE |
| WRITE | X | L | L | D | ACTIVE |

## MT8S6432

ABSOLUTE MAXIMUM RATINGS*
Voltage on Vcc supply relative to Vss .-1.0 V to +7.0 V
Storage Temperature $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ....................... 8 W
Short Circuit Output Current ......................................50mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | $\mathrm{VCC}+1$ | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | OV $\leq$ VIN $\leq$ Vcc | ILI | -40 | 40 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled <br> OV $\leq$ VouT $\leq \mathrm{Vcc}$ | ILO | -5 | 5 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | loH $=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | loL $=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |


|  |  |  | MAX |  |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION | CONDITIONS | SYMBOL | -20 | -25, -30 | -35, -45 |  |  |
| Operating Current: TTL Input Levels | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{VC}_{\mathrm{C}}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} \mathrm{RC}, \\ \text { Outputs Open } \end{gathered}$ | Icc | 840 | 760 | 720 | mA | 3 |
| Standby Current: TTL Input Levels | $\begin{gathered} \overline{C E} \geq V_{I H}, V C C=M A X \\ f=M A X=1 /{ }^{t} R C, \\ \text { Outputs Open } \end{gathered}$ | IsB1 | 240 | 200 | 200 | mA |  |
| Power Supply Current: Standby | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{Vcc}-0.2, \mathrm{Vcc}=\mathrm{MAX} \\ \mathrm{VIL} \leq \mathrm{V} S \mathrm{SS}+0.2, \\ \mathrm{~V} H \geq \mathrm{Vcc}-0.2, \mathrm{f}=0 \end{gathered}$ | IsB2 | 40 | 40 | 56 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: Ao-A13, $\overline{\mathrm{WE}}, \overline{\mathrm{CE}}, \overline{\mathrm{OE}}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | $\mathrm{Cl}_{\mathrm{I}}$ |  | 72 | pF | 4 |
|  | $\mathrm{Vcc}=5 \mathrm{~V}$ | $\mathrm{C}_{1} / \mathrm{o}$ |  | 15 | pF | 4 |

MT8S6432

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Note 5) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | SYM | -20 |  | -25 |  | -30 |  | -40 |  | -45 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | MAX |  |  |
| READ Cycle |  |  |  |  |  |  |  |  |  |  |  |  |  |
| READ cycle time | ${ }^{t} \mathrm{RC}$ | 20 |  | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Address access time | ${ }^{\text {t }} \mathrm{A} A$ |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Chip Enable access time | ${ }^{t} A C E$ |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Output hold from address change | ${ }^{\mathrm{t}} \mathrm{OH}$ | 3 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Enable LOW to output in Low-Z | t LZCE | 6 |  | 6 |  | 6 |  | 6 |  | 6 |  | ns | 7 |
| Chip Enable to output in High-Z | ${ }^{\text {thzCE }}$ |  | 9 |  | 9 |  | 12 |  | 15 |  | 18 | ns | 6,7 |
| Chip Enable LOW to power-up time | tPU | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Enable HIGH to power-down time | ${ }^{\text {tPD }}$ |  | 20 |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 8 |  | 8 |  | 10 |  | 12 |  | 15 | ns |  |
| Output Enable LOW to output in Low-Z | tLZOE | 2 |  | 2 |  | 2 |  | 2 |  | 2 |  | ns |  |
| Output Enable HIGH to output in High-Z | thZOE |  | 7 |  | 7 |  | 10 |  | 12 |  | 15 | ns | 6 |

## WRITE Cycle

| WRITE cycle time | tWC | 20 |  | 20 |  | 25 |  | 30 |  | 35 |  | ns |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 15 |  | 15 |  | 18 |  | 20 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 15 |  | 15 |  | 18 |  | 20 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ S | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{t} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 15 |  | 15 |  | 18 |  | 20 |  | 25 |  | ns |  |
| Data setup time | ${ }^{\text {t }}$ S | 10 |  | 10 |  | 12 |  | 15 |  | 20 |  | ns |  |
| Data hold time | ${ }^{\text {t }}$ DH | 0 |  | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Write Enable LOW to output in Low-Z | tLZWE | 5 |  | 5 |  | 5 |  | 5 |  | 5 |  | ns | 7 |
| Write Enable HIGH to output in High-Z | ${ }^{\text {th }}$ IZWE | 0 | 10 | 0 | 10 | 0 | 10 | 0 | 12 | 0 | 15 | ns | 6,7 |

## MT8S6432

## AC TEST CONDITIONS



## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\mathrm{t}} \mathrm{HZCE},{ }^{\mathrm{t}} \mathrm{HZOE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=$ 5 pF as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ and ${ }^{\mathrm{t}} \mathrm{HZOE}$ are less than ${ }^{\mathrm{t}} \mathrm{LZWE}$.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{\mathrm{WE}}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. The ouptut will be in the High- $Z$ state if $\overline{\mathrm{OE}}$ is High.
12. The first falling edge of either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ will initiate a WRITE cycle, and the first rising edge of either $\overline{\mathrm{CE}}$ or $\overline{\text { WE }}$ will terminate a WRITE cycle.

DATA RETENTION ELECTRICAL CHARACTERISTICS (-L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | Vor | 2 |  | - | V |  |
| Data Retention Current | $\begin{aligned} & \overline{\overline{\mathrm{CE}}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \mathrm{VIN} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ & \quad \text { or } \leq 0.2 \mathrm{~V} \end{aligned}$ | $\mathrm{Vcc}=2 \mathrm{v}$ | ICCDR |  | 0.8 | 4 | mA |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{v}$ |  |  | 3 | 6 | mA |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{\text {t }}$ CDR | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {tR }}$ | ${ }^{\text {tRC }}$ |  |  | ns | 4 |

## LOW Vcc DATA-RETENTION WAVEFORM



V/A DON'T CARE
UNDEFINED

## READ CYCLE NO. $1^{\text {8,9 }}$



READ CYCLE NO. $\mathbf{2}^{7,8,10}$


WRITE CYCLE NO. 1
(Write Enable Controlled) ${ }^{11,12}$


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{11,12}$

$0 / 2 \mathrm{DONTCARE}$
XXX UNDEFINED

## SRAM MODULE

## 128K x 32 SRAM

## FEATURES

- Industry compatible pinout
- High speed: $25 \mathrm{~ns}, 35 \mathrm{~ns}$ and 45 ns
- High-density 512 KB design
- High-performance, low-power, CMOS process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ function
- Low profile (. 600 inches MAX height)
- All inputs and outputs are TTL compatible


## OPTIONS

- Timing

25ns access -25
35ns access -35
45 ns access

- Packages

64-pin ZIP

- Optional, 2V data retention


## MARKING

## GENERAL DESCRIPTION

The MT4S12832 is a high-speed SRAM memory module containing 131,072 words organized in a x32-bit configuration. The module consists of four $128 \mathrm{~K} \times 8$ fast static RAMs mounted on a 64 -pin ZIP, double-sided, FR4 printed circuit board.

Data is written into the SRAM memory when write enable $(\overline{\mathrm{WE}})$ and chip enable ( $\overline{\mathrm{CE}})$ inputs are both LOW. Reading is accomplished when $\overline{\mathrm{WE}}$ remains HIGH and $\overline{\mathrm{CE}}$ and output enable ( $\overline{\mathrm{OE}})$ are LOW. $\overline{\mathrm{CE}}$ can set the output in a high-impedance state for additional flexibility in system design. Memory expansion is accomplished by use of the $\overline{\mathrm{OE}}$ function.

PD0 and PD1 identify the module's density allowing inter-

## PIN ASSIGNMENT (Top View)

64-Pin ZIP (J-2)

changeable use of alternate density, industry-standard modules. Four chip enable inputs, ( $\overline{\mathrm{CE}} 1, \overline{\mathrm{CE}} 2, \overline{\mathrm{CE}} 3$ and $\overline{\mathrm{CE}} 4$ ) are used to enable the module's 4 bytes independently.

The Micron SRAM family uses a high-speed, lowpower CMOS design in a four-transistor memory cell featuring double-layer metal, double-layer polysilicon technology. All module components may be powered from a single +5 VDC supply and all inputs and outputs are fully TTL compatible. The "L" option offers reducedvoltage operation for systems with low standby power requirements.

FUNCTIONAL BLOCK DIAGRAM


U1-U4 $=$ MT5C1008

PRESENCE DETECT
PDO = No Connect
PD1 = No Connect

TRUTH TABLE

| MODE | $\mathbf{O E}$ | $\mathbf{C E}$ | WE | DQ | POWER |
| :--- | :---: | :---: | :---: | :---: | :---: |
| STANDBY | X | H | X | HIGH-Z | STANDBY |
| READ | L | L | H | Q | ACTIVE |
| READ | H | L | H | HIGH-Z | ACTIVE |
| WRITE | X | L | L | D | ACTIVE |

## ABSOLUTE MAXIMUM RATINGS*


*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  | VIH | 2.2 | Vcc +1 | V | 1 |
| Input Low (Logic 0) Voltage |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | OV $\leq$ VIN $\leq$ Vcc | ILI | -20 | 20 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | Output(s) Disabled <br> OV $\leq$ VouT $\leq \mathrm{Vcc}$ | ILO | -20 | 20 | $\mu \mathrm{~A}$ |  |
| Output High Voltage | IOH $=-4.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |
| Output Low Voltage | loL $=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |


|  |  |  | MAX |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION | CONDITIONS | SYMBOL | -25 | -35 | -45 | UNITS | NOTES |
| Operating Current: <br> TTL Input Levels | $\begin{gathered} \hline \overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{VCC}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} R C, \\ \text { Outputs Open } \\ \hline \end{gathered}$ | Icc | 480 | 480 | 480 | mA | 3 |
| Standby Current: TTL Input Levels | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{V}_{1 H}, \mathrm{VCC}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 / \mathrm{t} R C, \\ \text { Outputs Open } \end{gathered}$ | ISB1 | 100 | 100 | 100 | mA |  |
| Standby Current: CMOS Input Levels | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{Vcc}-0.2, \mathrm{VCC}=\mathrm{MAX} \\ \mathrm{VIL} \leq \mathrm{V} s \mathrm{~S}+0.2, \\ \mathrm{~V}_{\mathrm{H}} \geq \mathrm{Vcc}-0.2, \mathrm{f}=0 \end{gathered}$ | ISB2 | 28 | 28 | 28 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance: Ao-A13, $\overline{\mathrm{WE}, \overline{\mathrm{OE}}}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | Cl |  | 32 | pF | 4 |
|  | Input/Output Capacitance: DQ1-DQ32 | $\mathrm{Vcc}=5 \mathrm{~V}$ | $\mathrm{Cl}^{2} / \mathrm{o}$ |  | 8 | pF |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | SYM | -25 |  | -35 |  | -45 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| READ Cycle |  |  |  |  |  |  |  |  |  |
| READ cycle time | ${ }^{\text {tRC }}$ | 25 |  | 35 |  | 45 |  | ns |  |
| Address access time | ${ }^{\text {t }}$ A |  | 25 |  | 35 |  | 45 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 25 |  | 35 |  | 45 | ns |  |
| Output hold from address change | ${ }^{\mathrm{t}} \mathrm{OH}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Enable LOW to output in Low-Z | t LZCE | 5 |  | 5 |  | 5 |  | ns | 7 |
| Chip Enable to output in High-Z | thZCE |  | 10 |  | 15 |  | 18 | ns | 6, 7 |
| Chip Enable LOW to power-up time | tpu | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Enable HIGH to power-down time | tPD |  | 25 |  | 35 |  | 45 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 8 |  | 12 |  | 15 | ns |  |
| Output Enable LOW to output in Low-Z | t LZOE | 0 |  | 0 |  | 0 |  | ns |  |
| Output Enable HIGH to output in High-Z | thZOE |  | 10 |  | 12 |  | 15 | ns | 6 |
| WRITE Cycle |  |  |  |  |  |  |  |  |  |
| WRITE cycle time | twC | 25 |  | 35 |  | 45 |  | ns |  |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Address valid to end of write | tâuv | 15 |  | 20 |  | 25 |  | ns |  |
| Address setup time | ${ }^{t}$ AS | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{t} A H$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write command pulse width | tWP | 15 |  | 20 |  | 25 |  | ns |  |
| Data setup time | ${ }^{\text {t }} \mathrm{DS}$ | 10 |  | 15 |  | 20 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write Enable LOW to output in Low-Z | tLZWE | 0 |  | 0 |  | 0 |  | ns | 7 |
| Write Enable HIGH to output in High-Z | thZWE |  | 10 |  | 15 |  | 18 | ns | 6,7 |

## MT4S12832

## AC TEST CONDITIONS

Input pulse levels ..... Vss to 3.0 V
Input rise and fall times ..... 5 ns
Input timing reference levels ..... 1.5 V
Output reference levels ..... 1.5 V
Output load See Figures 1 and 2


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\mathrm{t}} \mathrm{HZCE},{ }^{\mathrm{t}} \mathrm{HZOE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=$ 5 pF as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{t} \mathrm{HZCE}$ and ${ }^{\mathrm{t}} \mathrm{HZOE}$ are less than ${ }^{\mathrm{t}} \mathrm{LZWE}$.
8. $\overline{W E}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. The ouptut will be in the High- $Z$ state if $\overline{\mathrm{OE}}$ is High.
12. The first falling edge of either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ will initiate a WRITE cycle, and the first rising edge of either $\overline{\mathrm{CE}}$ or $\overline{\text { WE }}$ will terminate a WRITE cycle.

## LOW Vcc DATA-RETENTION WAVEFORM



READ CYCLE NO. $1^{\text {8, }} 9$


READ CYCLE NO. $2^{7,8,10}$


WRITE CYCLE NO. 1
(Write Enable Controlled) ${ }^{11,12}$


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{11,12}$


Z/A dont care
UNDEFINED

## SRAM MODULE

## 256K x 32 SRAM

## FEATURES

- Industry compatible pinout
- High speed: $25 \mathrm{~ns}, 35 \mathrm{~ns}$ and 45 ns
- High-density 1 MB design
- High-performance, low-power, CMOS process
- Single $+5 \mathrm{~V}( \pm 10 \%)$ power supply
- Easy memory expansion with $\overline{\mathrm{CE}}$ function
- Low profile (. 600 inches MAX height)
- All inputs and outputs are TTL compatible


## OPTIONS

- Timing

25ns access -25
35ns access -35
45 ns access -45

- Packages

64-pin ZIP

- Optional, 2V data retention


## MARKING

-45

Z
L

## GENERAL DESCRIPTION

The MT8S25632 is a high-speed SRAM memory module containing 262,144 words organized in a x32-bit configuration. The module consists of eight $256 \mathrm{~K} \times 4$ fast static RAMs mounted on a 64 -pin ZIP, double-sided, FR4 printed circuit board.

Data is written into the SRAM memory when write enable ( $\overline{\mathrm{WE}}$ ) and chip enable ( $\overline{\mathrm{CE}}$ ) inputs are both LOW. Reading is accomplished when $\overline{W E}$ remains HIGH and $\overline{\mathrm{CE}}$ and output enable ( $\overline{\mathrm{OE}})$ are LOW. $\overline{\mathrm{CE}}$ can set the output in a high impedance state for additional flexibility in system design, and memory expansion is accomplished by use of the $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ functions.

PD0 and PD1 identify the module's density allowing inter-

## PIN ASSIGNMENT (Top View)

64-Pin ZIP (J-3)

changeable use of alternate density, industry-standard modules. Four chip enable inputs, ( $\overline{\mathrm{CE}} 1, \overline{\mathrm{CE}} 2, \overline{\mathrm{CE}} 3$ and $\overline{\mathrm{CE}} 4$ ) are used to enable the module's 4 bytes independently.

The Micron SRAM family uses a high-speed, lowpower CMOS design in a four-transistor memory cell featuring double-layer metal, double-layer polysilicon technology. All module components may be powered from a single +5 VDC supply and all inputs and outputs are fully TTL compatible. The "L" option offers reducedvoltage operation for systems with low standby power requirements.

FUNCTIONAL BLOCK DIAGRAM


TRUTH TABLE

| MODE | $\overline{\text { OE }}$ | $\overline{\text { CE }}$ | WE | DQ | POWER |
| :--- | :---: | :---: | :---: | :---: | :---: |
| STANDBY | X | H | X | HIGH-Z | STANDBY |
| READ | L | L | H | Q | ACTIVE |
| READ | H | L | H | HIGH-Z | ACTIVE |
| WRITE | X | L | L | D | ACTIVE |

## ABSOLUTE MAXIMUM RATINGS*


*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input High (Logic 1) Voltage |  |  | VIH | 2.2 | Vcc+1 | V | 1 |
| Input Low (Logic 0) Voltage |  |  | VIL | -0.5 | 0.8 | V | 1,2 |
| Input Leakage Current | $\mathrm{OV} \leq \mathrm{Vin} \leq \mathrm{V}$ |  | ILI | -5 | 5 | $\mu \mathrm{A}$ |  |
| Input/Output Leakage Current | Output(s) Disabled, OV $\leq$ Vout $\leq \mathrm{Vcc}$ | DQ1-DQ32 | ILo | -5 | 5 | $\mu \mathrm{A}$ |  |
| Output High Voltage | $\mathrm{loH}=-4.0 \mathrm{~m}$ |  | VOH | 2.4 |  | V | 1 |
| Output Low Voltage | $\mathrm{loL}=8.0 \mathrm{~m}$ |  | VoL |  | 0.4 | V | 1 |


|  |  |  | MAX |  |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DESCRIPTION | CONDITIONS | SYMBOL | -25 | -35 | -45 |  |  |
| Operating Current: TTL Input Levels | $\begin{gathered} \overline{\mathrm{CE}} \leq \mathrm{V}_{\mathrm{IL}} ; \mathrm{VCC}_{\mathrm{C}}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 /{ }^{\mathrm{t} R C} ; \\ \text { Outputs Open } \end{gathered}$ | Icc | 960 | 960 | 960 | mA | 3 |
| Standby Current: TTL Input Levels | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{VIH} ; \mathrm{VCC}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 /{ }^{\mathrm{t} R C} ; \\ \text { Outputs Open } \end{gathered}$ | Isb1 | 200 | 200 | 200 | mA |  |
| Standby Current: CMOS Input Levels | $\begin{gathered} \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 ; \mathrm{V}_{\mathrm{Cc}}=\mathrm{MAX} \\ \mathrm{~V}_{\mathrm{IL}} \leq \mathrm{Vss}^{2}+0.2, \\ \mathrm{~V}_{\mathrm{H}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 ; \mathrm{f}=0 \end{gathered}$ | IsB2 | 56 | 56 | 56 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance; A0-A17, $\overline{\mathrm{WE}}, \overline{\mathrm{OE}}$ | $\begin{gathered} \mathrm{T}_{A}=25^{\circ} \mathrm{C} ; f=1 \mathrm{MHz} \\ \mathrm{Vcc}=5 \mathrm{~V} \end{gathered}$ | $\mathrm{Cl}_{11}$ |  | 64 | pF | 4 |
| Input Capacitance; $\overline{\mathrm{CE}} 1-\overline{\mathrm{CE}} 4$ |  | $\mathrm{Cl}_{12}$ |  | 16 | pF | 4 |
| Input/Output Capacitance: DQ1-DQ32 |  | $\mathrm{Cl} / \mathrm{O}$ |  | 8 | pF | 4 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Note 5) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | SYM | -25 |  | -35 |  | -45 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| READ Cycle |  |  |  |  |  |  |  |  |  |
| READ cycle time | ${ }^{\text {t }} \mathrm{RC}$ | 25 |  | 35 |  | 45 |  | ns |  |
| Address access time | ${ }^{\text {t }} \mathrm{AA}$ |  | 25 |  | 35 |  | 45 | ns |  |
| Chip Enable access time | ${ }^{\text {t }} \mathrm{ACE}$ |  | 25 |  | 35 |  | 45 | ns |  |
| Output hold from address change | ${ }^{\mathrm{t}} \mathrm{OH}$ | 5 |  | 5 |  | 5 |  | ns |  |
| Chip Enable LOW to output in Low-Z | tLZCE | 5 |  | 5 |  | 5 |  | ns | 7 |
| Chip Enable to output in High-Z | thZCE |  | 10 |  | 15 |  | 18 | ns | 6, 7 |
| Chip Enable LOW to power-up time | tPU | 0 |  | 0 |  | 0 |  | ns |  |
| Chip Enable HIGH to power-down time | tPD |  | 25 |  | 35 |  | 45 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 8 |  | 12 |  | 15 | ns |  |
| Output Enable LOW to output in Low-Z | tLZOE | 0 |  | 0 |  | 0 |  | ns |  |
| Output Enable HIGH to output in High-Z | ${ }^{\text {thzoE }}$ |  | 10 |  | 12 |  | 15 | ns | 6 |
| WRITE Cycle |  |  |  |  |  |  |  |  |  |
| WRITE cycle time | twC | 25 |  | 35 |  | 45 |  | ns |  |
| Chip Enable to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 15 |  | 20 |  | 25 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 15 |  | 20 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ S | 0 |  | 0 |  | 0 |  | ns |  |
| Address hold from end of write | ${ }^{\text {t }} \mathrm{AH}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write pulse width | tWP | 15 |  | 20 |  | 25 |  | ns |  |
| Data setup time | ${ }^{t}$ DS | 10 |  | 15 |  | 20 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write Enable LOW to output in Low-Z | tLZWE | 0 |  | 0 |  | 0 |  | ns | 7 |
| Write Enable HIGH to output in High-Z | ${ }^{\text {t }} \mathrm{HZWE}$ |  | 10 |  | 15 |  | 18 | ns | 6, 7 |

## AC TEST CONDITIONS

| Input pulse levels ...............................Vss to 3.0V |  |
| :---: | :---: |
| Input rise and fall times ..................................5ns |  |
| Input timing reference | .........1.5V |
| Output reference levels | .........1.5V |
| Output load | gures 1 and 2 |

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
6. ${ }^{\text {t }} \mathrm{HZCE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=5 \mathrm{pF}$ as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, ${ }^{\mathrm{t}} \mathrm{HZCE}$ is less than ${ }^{\mathrm{t}} \mathrm{LZCE}$ and ${ }^{\mathrm{t}} \mathrm{HZWE}$ is less than ${ }^{t}$ LZWE.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
8. $\overline{\mathrm{WE}}$ is HIGH for READ cycle.
9. Device is continuously selected. All chip enables held in their active state.
10. Address valid prior to or coincident with latest occurring chip enable.
11. The ouptut will be in the High- Z state if $\overline{\mathrm{OE}}$ is High.
12. The first falling edge of either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ will initiate a WRITE cycle, and the first rising edge of either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ will terminate a WRITE cycle.

DATA RETENTION ELECTRICAL CHARACTERISTICS (-L Version Only)

| DESCRIPTION | CONDITIONS |  | SYMBOL | MIN | TYP | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vcc for Retention Data |  |  | VDR | 2 |  | - | V |  |
| Data Retention Current | $\begin{gathered} \overline{\mathrm{CE}} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \mathrm{VIN} \geq(\mathrm{Vcc}-0.2 \mathrm{~V}) \\ \quad \text { or } \leq 0.2 \mathrm{~V} \end{gathered}$ | $\mathrm{Vcc}=2 \mathrm{v}$ | ICCDR |  | 0.8 | 4 | mA |  |
|  |  | $\mathrm{Vcc}=3 \mathrm{v}$ |  |  | 2.8 | 6 | mA |  |
| Chip Deselect to Data Retention Time |  |  | ${ }^{\text {t }}$ CDR | 0 |  | - | ns | 4 |
| Operation Recovery Time |  |  | ${ }^{\text {t }} \mathrm{R}$ | ${ }^{\text {t }} \mathrm{RC}$ |  |  | ns | 4 |

LOW Vcc DATA-RETENTION WAVEFORM


READ CYCLE NO. $1^{\text {8, } 9}$


READ CYCLE NO. $2^{7,8,10}$


## MT8S25632

WRITE CYCLE NO. 1
(Write Enable Controlled) ${ }^{11,12}$


WRITE CYCLE NO. 2
(Chip Enable Controlled) ${ }^{11,12}$


DON'T CARE
UNDEFINED
DYNAMIC RAMS ..... 1
DRAM MODULES ..... 2
MULTIPORT DRAMS ..... 3
STATIC RAMS ..... 4
SYNCHRONOUS SRAMS ..... 5
SRAM MODULES ..... 6
CACHE DATA SRAMS ..... 7
FIFO MEMORIES ..... 8
APPLICATION/TECHNICAL INFORMATION ..... 9
MILITARY INFORMATION ..... 10
PACKAGE INFORMATION ..... 11
SALES INFORMATION ..... 12

CACHE DATA SRAM PRODUCT SELECTION GUIDE

| Memory Configuration | Control Functions | Part <br> Number | Access <br> Time (ns) | Package |  | Process | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | PLCC | PQFP |  |  |
| $\begin{gathered} \text { Dual } 4 \mathrm{~K} \times 16 \\ \text { or } \\ \text { Single } 8 \mathrm{~K} \times 16 \\ \hline \end{gathered}$ | Mode, Byte Select CE, OE <br> Address Latch (A0-A11) | MT56C0816 | 20, 25, 35 | 52 | 52 | CMOS | 7-1 |
| $\begin{gathered} \text { Dual } 4 \mathrm{~K} \times 16 \\ \text { or } \\ \text { Single } 8 \mathrm{~K} \times 16 \\ \hline \end{gathered}$ | Mode, Byte Select CE, OE <br> Address Latch (A0-A12) | MT56C3816 | 20, 25, 35 | 52 | 52 | CMOS | 7-11 |
| $\begin{gathered} \text { Dual } 4 \mathrm{~K} \times 18 \\ \text { or } \\ \text { Single } 8 \mathrm{~K} \times 18 \end{gathered}$ | Mode, Byte Select CE, OE <br> Address Latch (A0-A11) | MT56C0818 | 20, 25, 35 | 52 | 52 | CMOS | 7-21 |
| $\begin{gathered} \text { Dual } 4 \mathrm{~K} \times 18 \\ \text { or } \\ \text { Single } 8 \mathrm{~K} \times 18 \end{gathered}$ | Mode, Byte Select CE, OE <br> Synchronous Write Enable | MT56C2818 | 24, 28 | 52 | 52 | CMOS | 7-31 |
| $\begin{gathered} \text { Dual } 4 \mathrm{~K} \times 18 \\ \text { or } \\ \text { Single } 8 \mathrm{~K} \times 18 \end{gathered}$ | Mode, Byte Select CE, OE <br> Address Latch (A0-A12) | MT56C3818 | 20, 25, 35 | 52 | 52 | CMOS | 7-41 |

## CACHE DATA STATIC RAM

## DUAL 4K x 16 SRAM, SINGLE 8K x 16 SRAM CONFIGURABLE CACHE DATA SRAM

## FEATURES

- Operates as two $4 \mathrm{~K} \times 16$ SRAMs with common addresses and data; also configurable as a single $8 \mathrm{~K} \times 16$ SRAM
- Built-in input address latches
- Separate upper and lower Byte Select
- Fast access times: 20ns, 25ns and 35 ns allow operation with 40,33 and 25 MHz microprocessor systems
- Fast Output Enable: 8ns
- Directly interfaces with the Intel 82385 cache controller as well as other 80386 cache memory controllers


## OPTIONS

- Timing

20 ns access ( 40 MHz )
$25 n s$ access ( 33 MHz )
35 ns access ( 25 MHz )

- Packages

52-pin PLCC
52-pin PQFP

MARKING
-20
-25
-35

EJ
LG

## GENERAL DESCRIPTION

The MT56C0816 is one of a family of fast SRAM cache memories. It employs a high-speed, low-power design using a four-transistor memory cell. It is fabricated using double-layer polysilicon, double-layer metal CMOS technology.

The MT56C0816 is a highly integrated cache data memory building block. It easily interfaces with cache controllers for the Intel 80386 in either the DIRECT MAPPED or TWO-WAY SET ASSOCIATIVE MODE. A mode control pin (MODE) determines the configuration of the memory. When this pin is held LOW, the device functions as an 8 K word by 16-bit SRAM. When the mode pin is HIGH, the device is configured as a dual 4 K -word by 16 -bit SRAM.

Input addresses are latched in the on-chip register on the negative edge of the CALEN signal. This register is functionally equivalent to a 74LS373.

The memory functions are controlled by the chip select $(\overline{\mathrm{CE}}, \overline{\mathrm{CS}} 0$ and $\overline{\mathrm{CS1}})$, output enable ( $\overline{\mathrm{COEA}}$ and $\overline{\mathrm{COEB}})$ and write enable ( (CWEA and $\overline{\mathrm{CWEB}})$ signals.


In either the DIRECTMAPPED (direct) orTWO-WAYSET ASSOCIATIVE (dual) operational modes, $\overline{\mathrm{CE}}$ is a global chip enable, while $\overline{\mathrm{CS} 0}$ and $\overline{\mathrm{CS1}}$ control lower and upper byte selection for READ and WRITE operations.

Outputs are enabled on a HIGH to LOW transition of $\overline{\mathrm{COEA}}$ or $\overline{\mathrm{COEB}}$. In the dual mode, bank " A " or bank " B " may beenabled. In the direct mode, $\overline{\mathrm{COEA}}$ and $\overline{\mathrm{COEB}}$ should be connected together externally and used as a single output enable. Alternately $\overline{\text { COEA }}$ or $\overline{\mathrm{COEB}}$ can be tied LOW externally, allowing the other signal to control the outputs.

Write enable is activated on a HIGH to LOW transition of $\overline{\text { CWEA }}$ or CWEB. In the dual mode, data may be written to bank " A " or bank " B ". In the direct mode, $\overline{\mathrm{CWEA}}$ and $\overline{\text { CWEB }}$ should be connected together externally and used as a single write enable. Alternately $\overline{\text { CWEA }}$ or $\overline{\text { CWEB }}$ can be tied LOW externally, allowing the other signal to control the write function.

The MT56C 0816 operates from $\mathrm{a}+5 \mathrm{~V}$ power supply and all inputs and outputs are fully TTL compatible.

FUNCTIONAL BLOCK DIAGRAM

DUAL 4K x 16
(TWO-WAY SET ASSOCIATIVE)


FUNCTIONAL BLOCK DIAGRAM
8K x 16
(DIRECT MAP)


## PIN DESCRIPTIONS

| PLCC PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 8,7,6,5,4,3,2, \\ & 51,50,49,48,47 \end{aligned}$ | A0-A11 | Input | Address Inputs: These inputs are clocked by CALEN and stored in a latch. |
| 46 | A12 | Input | Address Input: This input is the high order address bit in the direct $8 \mathrm{~K} \times 16$ configuration. It is not used in the dual $4 \mathrm{~K} \times 16$ configuration. |
| 52 | CALEN | Input | Address Latch Enable: When CALEN is HIGH, the latch is transparent. The negative edge latches the current address inputs (AO-A11). |
| 31 | MODE | Input | Mode Select: This controls the device configuration. When this pin is tied HIGH, the device is in the dual $4 \mathrm{~K} \times 16$ configuration. When the pin is tied LOW, the device is configured as an $8 \mathrm{~K} \times 16$ SRAM. |
| 23, 30 | $\overline{\mathrm{CSO}}, \overline{\mathrm{CST}}$ | Input | Chip Selects: These signals are used to select the upper and lower bytes for both READ and WRITE operations. When CSO is LOW, DQ1-DQ8 are enabled. When CS1 is LOW, DQ9-DQ16 are enabled. |
| 45 | $\overline{\mathrm{CE}}$ | Input | Chip Enable: When $\overline{\mathrm{CE}}$ is LOW, the device is enabled. It is a global control signal that activates both bank $A$ and bank $B$ for READ or WRITE operations. |
| 28, 29 | COEA, $\overline{C O E B}$ | Input | Output Enable: In the dual configuration the signal that is LOW enables bank A or B. Simultaneous LOW assertion will deselect both banks. In the DIRECT mode, these signals should be externally connected, and, when asserted LOW, allow A12 to determine which memory bank is enabled. Alternately COEA or $\overline{\mathrm{COEB}}$ can be tied LOW externally, allowing the other signal to control the output. |
| 25, 24 | CWEA, CWEB | Input | Write Enable: In the dual configuration the signal that is LOW enables a data WRITE to the addressed memory location. In the DIRECT mode, these signals should be externally connected, and. when asserted LOW; allnw A12 to determine which momor'; bank is written. Alternately $\overline{\text { CWEA }}$ or $\overline{\mathrm{CWEB}}$ can be tied LOW externally, allowing the other signal to control the write function. |
| $\begin{gathered} 11,12,13,14,16 \\ 17,18,19,35,36,37 \\ 38,40,41,42,43 \\ \hline \end{gathered}$ | DQ1-DQ16 | Input/ Output | SRAM Data I/O: lower byte is DQ1-DQ8; upper byte is DQ9DQ16. |
| 1, 21, 22, 32, 33, | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 5 \%$ |
| 9, 10, 15, 26, 27, 39, 44 | Vss | Supply | Ground: GND |

## TRUTH TABLE

DUAL 4K x 16 (MODE PIN = HIGH)

| OPERATION | $\overline{C E}$ | CSO | CS1 | COEA | COEB | CWEA | CWEB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Outputs High-Z, WRITE disabled | H | X | X | X | X | X | X |
| Outputs High-Z, WRITE disabled | X | H | H | X | X | X | X |
| Outputs High-Z | X | X | X | H | H | X | X |
| Outputs High-Z | X | X | X | L | L | X | X |
| READ DQ1 - DQ8 bank A | L | L | H | L | H | H | H |
| READ DQ1 - DQ8 bank B | L | L | H | H | L | H | H |
| READ DQ9 - DQ16 bank A | L | H | L | L | H | H | H |
| READ DQ9 - DQ16 bank B | L | H | L | H | L | H | H |
| READ DQ1 - DQ16 bank A | L | L | L | L | H | H | H |
| READ DQ1 - DQ16 bank B | L | L | L | H | L | H | H |
| WRITE DQ1 - DQ8 bank A | L | L | H | X | X | L | H |
| WRITE DQ1 - DQ8 bank B | L | L | H | X | X | H | L |
| WRITE DQ9 - DQ16 bank A | L | H | L | X | X | L | H |
| WRITE DQ9-DQ16 bank B | L | H | L | X | X | H | L |
| WRITE DQ1 - DQ16 bank A | L | L | L | X | X | L | H |
| WRITE DQ1 - DQ16 bank B | L | L | L | X | X | H | L |
| WRITE DQ1 - DQ8 bank A \& B | L | L | H | X | X | L | L |
| WRITE DQ9 - DQ16 bank A \& B | L | H | L | X | X | L | L |
| WRITE DQ1 - DQ16 bank A \& B | L | L | L | X | X | L | L |

NOTE: $\overline{\mathrm{CE}}$, when taken inactive while $\overline{\mathrm{CWEA}}$ or $\overline{\mathrm{CWEB}}$ remain active, allows a chip-enable-controlled WRITE to be performed.

## TRUTH TABLE

$8 \mathrm{~K} \times 16$ (MODE PIN = LOW)

| OPERATION | $\overline{\text { CE }}$ | CS0 | CS1 | COEA | $\overline{\text { COEB }}$ | CWEA | CWEB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Outputs High-Z, WRITE disabled | H | X | X | X | X | X | X |
| Outputs High-Z, WRITE disabled | X | H | H | X | X | X | X |
| Outputs High-Z | X | X | X | H | H | X | X |
| READ DQ1 - DQ8 | L | L | H | L | L | H | H |
| READ DQ9 - DQ16 | L | H | L | L | L | H | H |
| READ DQ1 - DQ16 | L | L | L | L | L | H | H |
| WRITE DQ1 - DQ8 | L | L | H | X | X | L | L |
| WRITE DQ9 - DQ16 | L | H | L | X | X | L | L |
| WRITE DQ1 - DQ16 | L | L | L | X | X | L | L |

NOTE: $\overline{C E}$, when taken inactive while $\overline{C W E A}$ and $\overline{\text { CWEB }}$ remain active, allows a chip-enable-controlled WRITE to be performed.
$\overline{\mathrm{COEA}}$ and $\overline{\mathrm{COEB}}$ must both be LOW to enable outputs. However, one signal can be tied LOW externally, allowing the other signal to control the outputs. Similarly CWEA and CWEB must both be LOW to enable a WRITE cycle. Either CWEA or $\overline{\text { CWEB }}$ can be tied LOW externally, allowing the other signal to control the WRITE function.

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss .1 .0 V to +7.0 V
Storage Temperature $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (PLCC)
.1.2W
Power Dissipation (PQFP) .............................................1.2W
Short Circuit Output Current .50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Voltage |  | Vcc | 4.75 | 5.25 | V |  |
| Input High Voltage |  | VIH | 2.2 | $\mathrm{Vcc}+0.3$ | V | 1 |
| Input Low Voltage |  | VIL | -0.3 | 0.8 | V | 1,2 |
| Input Leakage Current | $\mathrm{VIN}=\mathrm{GND}$ to Vcc | ILI | -10 | 10 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | $\mathrm{V} / \mathrm{O}=\mathrm{GND}$ to Vcc <br> Output(s) Disabled | ILo | -10 | 10 | $\mu \mathrm{~A}$ |  |
| Output Low Voltage | loL $=4.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |
| Output High Voltage | $\mathrm{IOH}=-1.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |


| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Current: Average Operating Current | 100\% Duty cycle $\mathrm{VIN}=\mathrm{GND}$ to Vcc | Icc1 |  | 220 | mA |  |
| Power Supply Current: Average Operating Current | $\begin{aligned} & 50 \% \text { Duty cycle } \\ & \text { VIN }=\text { GND to Vcc } \end{aligned}$ | Icc2 |  | 120 | mA |  |
| Power Supply Current: CMOS Standby |  | IsB |  | 20 | mA |  |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | CIN |  | 6 | pF | 3 |
| Output Capacitance | $\mathrm{V} \subset \mathrm{C}=5 \mathrm{~V}$ | $\mathrm{CI} / \mathrm{o}$ |  | 6 | pF | 3 |

PQFP THERMAL CONSIDERATIONS

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Thermal resistance - Junction to Ambient | Still Air | $\varnothing_{\text {JA }}$ |  | 100 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |
| Thermal resistance - Junction to Case |  | $\varnothing_{\mathrm{JC}}$ |  | 45 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |
| Maximum Case Temperature |  | Tc |  | 110 | ${ }^{\circ} \mathrm{C}$ |  |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%\right)$

| DESCRIPTION |  | -20 |  | -25 |  | -35 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| READ Cycle |  |  |  |  |  |  |  |  |  |
| READ cycle time | ${ }^{\text {tr }}$ C | 20 |  | 25 |  | 35 |  | ns | 4, 5 |
| Address access time (A0-A11) | ${ }^{\text {t }}$ A |  | 20 |  | 25 |  | 35 | ns |  |
| A12 address access time | ${ }^{\text {t/A12A }}$ |  | 15 |  | 17 |  | 25 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 20 |  | 20 |  | 25 | ns |  |
| Chip Select access time | ${ }^{\text {t }}$ ACS |  | 20 |  | 25 |  | 35 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 8 |  | 10 |  | 13 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 3 |  | 3 |  | 3 |  | ns |  |
| Chip Select to output Low-Z | ${ }^{\text {t LZCS }}$ | 3 |  | 3 |  | 3 |  | ns |  |
| Output Enable to output Low-Z | ${ }^{\text {t L Z }}$ | 2 |  | 2 |  | 2 |  | ns |  |
| Chip deselect to output High-Z | thZCS |  | 15 |  | 15 |  | 25 | ns | 6 |
| Output disable to output High-Z | ${ }^{\text {thZOE }}$ |  | 10 |  | 10 |  | 14 | ns | 6 |
| Address latch enable pulse width | ${ }^{\text {t }}$ CALEN | 8 |  | 8 |  | 10 |  | ns |  |
| Address setup to latch LOW | ${ }^{\text {t }}$ ASL | 4 |  | 4 |  | 6 |  | ns |  |
| Address hold from latch LOW | ${ }^{\text {t }}$ AHL | 5 |  | 5 |  | 5 |  | ns |  |
| WRITE Cycle |  |  |  |  |  |  |  |  |  |
| WRITE cycle time | ${ }^{\text {t }}$ WC | 20 |  | 25 |  | 35 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 15 |  | 18 |  | 25 |  | ns |  |
| A12 address valid to end of write | ${ }^{\text {t }} \mathrm{A} 12 \mathrm{~W}$ | 15 |  | 18 |  | 25 |  | ns |  |
| Chip Select to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 15 |  | 18 |  | 25 |  | ns |  |
| Data valid to end of write | ${ }^{\text {t }}$ WW | 10 |  | 10 |  | 10 |  | ns |  |
| Data hold from end of write | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write Enable output in High-Z | tHZWE |  | 12 |  | 15 |  | 15 | ns | 6 |
| Write disable to output in Low-Z | tLZWE | 3 |  | 3 |  | 3 |  | ns |  |
| Write pulse width | ${ }^{\text {t }} \mathrm{W}$ P | 15 |  | 18 |  | 25 |  | ns |  |
| $\overline{\mathrm{CE}}$ pulse width (during Chip Enable controlled write) | ${ }^{t} \mathrm{CP}$ | 15 |  | 18 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | ns |  |
| Write recovery time | ${ }^{\text {t }}$ WR | 0 |  | 0 |  | 0 |  | ns |  |
| Address latch enable pulse width | ${ }^{\text {t CALEN }}$ | 8 |  | 8 |  | 10 |  | ns |  |
| Address setup to latch LOW | ${ }^{\text {t }}$ ASL | 4 |  | 4 |  | 6 |  | ns |  |
| Address hold from latch LOW | ${ }^{t} \mathrm{AHL}$ | 5 |  | 5 |  | 5 |  | ns |  |

## AC TEST CONDITIONS



## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. This parameter is sampled.
4. $\overline{\mathrm{CWE}}$ is HIGH for a READ cycle.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
5. All READ cycle timings are referenced from the last valid address to the first transitioning address.
6. ${ }^{\mathrm{t}} \mathrm{HZCS},{ }^{\mathrm{t}} \mathrm{HZOE}$, and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=$ 5 pF as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.

READ CYCLE NO. 1
(Address Controlled)
$\overline{\mathrm{CWEA}}=\overline{\mathrm{CWEB}}=\mathrm{V}_{\mathrm{IH}} ; \overline{\mathrm{COEA}}$ and/or $\overline{\mathrm{COEB}}=\mathrm{V}_{\mathrm{IL}}$


READ CYCLE NO. 2
(CALEN Controlled)
$\overline{\mathrm{CWEA}}=\overline{\mathrm{CWEB}}=\mathrm{VIH}_{\mathrm{I}} ; \overline{\mathrm{COEA}}$ and/or $\overline{\mathrm{COEB}}=\mathrm{VIL}$


Z/D dont care
undefined

READ CYCLE NO. 3
$\overline{\mathrm{CWEA}}=\overline{\mathrm{CWEB}}=\mathrm{V} \mathrm{V}$


Z/A don't care
UNDEFINED

WRITE CYCLE NO． 1
（Write Enable Controlled）


WRITE CYCLE NO． 2
（Chip Select Controlled）


## CACHE DATA STATIC RAM

## FEATURES

- Operates as two $4 \mathrm{~K} \times 16$ SRAMs with common addresses and data; also configurable as a single 8K $\times 16$ SRAM
- Built-in input address latches (A0-A12)
- Separate upper and lower Byte Select
- Fast access times: $20 \mathrm{~ns}, 25 \mathrm{~ns}$ and 35 ns allow operation with 40,33 and 25 MHz microprocessor systems
- Fast Output Enable: 8ns
- Directly interfaces with the Intel 82385 cache controller as well as other 80386 and 80486 cache memory controllers


## OPTIONS

- Timing

20 ns access ( 40 MHz )
MARKING

25 ns access ( 33 MHz )
-20
35 ns access ( 25 MHz )

- Packages

52-pin PLCC
EJ
52-pin PQFP

## GENERAL DESCRIPTION

The MT56C3816 is one of a family of fast SRAM cache memories. It employs a high-speed, low-power design using a four-transistor memory cell. It is fabricated using double-layer polysilicon, double-layer metal CMOS technology.

The MT56C3816 is a highly integrated cache data memory building block. It easily interfaces with cache controllers for the Intel 80386 in either the DIRECT MAPPED or TWO-WAY SET ASSOCIATIVE MODE. A mode control pin (MODE) determines the configuration of the memory. When this pin is held LOW, the device functions as an 8 K word by 16 -bit SRAM. When the mode pin is HIGH, the device is configured as a dual 4 K -word by 16 -bit SRAM.

Input addresses are latched in the on-chip register on the negative edge of the CALEN signal. This register is functionally equivalent to a 74LS373.

The memory functions are controlled by the chip select ( $\overline{\mathrm{CE}}, \overline{\mathrm{CSO}}$ and $\overline{\mathrm{CS1}}$ ), output enable ( $\overline{\mathrm{COEA}}$ and $\overline{\mathrm{COEB}}$ ) and write enable ( (CWEA and $\overline{\mathrm{CWEB}})$ signals.

# DUAL 4K x 16 SRAM, SINGLE 8K x 16 SRAM CONFIGURABLE CACHE DATA SRAM 

In either the DIRECTMAPPED (direct) orTWO-WAYSET ASSOCIATIVE (dual) operational modes, $\overline{\mathrm{CE}}$ is a global chip enable, while $\overline{\mathrm{CS0}}$ and $\overline{\mathrm{CS1}}$ control lower and upper byte selection for READ and WRITE operations.

Outputs are enabled on a HIGH to LOW transition of $\overline{\text { COEA }}$ or $\overline{\text { COEBB }}$. In the dual mode, bank " $A$ " or bank " $B$ " may be enabled. In the direct mode, $\overline{\mathrm{COEA}}$ and $\overline{\mathrm{COEB}}$ should be connected together externally and used as a single output enable. Alternately, $\overline{\text { COEA }}$ or $\overline{\text { COEB }}$ can be tied LOW externally, allowing the other signal to control the outputs.
Write enable is activated on a HIGH to LOW transition of $\overline{C W E A}$ or $\overline{C W E B}$. In the dual mode, data may be written to bank "A" or bank " B ". In the direct mode, $\overline{\text { CWEA }}$ and $\overline{\text { CWEB }}$ should be connected together externally and used as a single write enable. Alternately, $\overline{\text { CWEA }}$ or $\overline{\text { CWEB }}$ can be tied LOW externally, allowing the other signal to control the write function.

The MT56C3816 operates from a +5 V power supply and all inputs and outputs are fully TTL compatible.

FUNCTIONAL BLOCK DIAGRAM
DUAL 4K x 16
(TWO-WAY SET ASSOCIATIVE)


## FUNCTIONAL BLOCK DIAGRAM

8K x 16
(DIRECT MAP)


## PIN DESCRIPTIONS



## TRUTH TABLE

DUAL 4K x 16 (MODE PIN = HIGH)

| OPERATION | $\overline{C E}$ | cso | CS1 | COEA | COEB | CWEA | CWEB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Outputs High-Z, WRITE disabled | H | X | X | X | X | X | X |
| Outputs High-Z, WRITE disabled | X | H | H | X | X | X | X |
| Outputs High-Z | X | X | X | H | H | X | X |
| Outputs High-Z | X | X | X | L | L | X | X |
| READ DQ1 - DQ8 bank A | L | L | H | L | H | H | H |
| READ DQ1 - DQ8 bank B | L | L | H | H | L | H | H |
| READ DQ9 - DQ16 bank A | L | H | L | L | H | H | H |
| READ DQ9 - DQ16 bank B | L | H | L | H | L | H | H |
| READ DQ1-DQ16 bank A | L | L | L | L | H | H | H |
| READ DQ1 - DQ16 bank B | L | L | L | H | L | H | H |
| WRITE DQ1-DQ8 bank A | L | L | H | X | X | L | H |
| WRITE DQ1 - DQ8 bank B | L | L | H | X | X | H | L |
| WRITE DQ9 - DQ16 bank A | L | H | L | X | X | L | H |
| WRITE DQ9 - DQ16 bank B | L | H | L | X | X | H | L |
| WRITE DQ1 - DQ16 bank A | L | L | L | X | X | L | H |
| WRITE DQ1 - DQ16 bank B | L | L | L | X | X | H | L |
| WRITE DQ1 - DQ8 bank A \& B | L | L | H | X | X | L | L |
| WRITE DQ9 - DQ16 bank A \& B | L | H | L | X | X | L | L |
| WRITE DQ1 - DQ16 bank A \& B | L | L | L | X | X | L | L |

NOTE: $\overline{\mathrm{CE}}$, when taken inactive while $\overline{\mathrm{CWEA}}$ or $\overline{\mathrm{CWEB}}$ remain active, allows a chip-enable-controlled WRITE to be performed.

## TRUTH TABLE

$8 \mathrm{~K} \times 16$ (MODE PIN = LOW)

| OPERATION | $\overline{\text { CE }}$ | CSO | $\overline{\text { CS1 }}$ | COEA | COEB | CWEA | CWEB |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Outputs High-Z, WRITE disabled | H | X | X | X | X | X | X |
| Outputs High-Z, WRITE disabled | X | H | H | X | X | X | X |
| Outputs High-Z | X | X | X | H | H | X | X |
| READ DQ1 - DQ8 | L | L | H | L | L | H | H |
| READ DQ9 - DQ16 | L | H | L | L | L | H | H |
| READ DQ1 - DQ16 | L | L | L | L | L | H | H |
| WRITE DQ1 - DQ8 | L | L | H | X | X | L | L |
| WRITE DQ9 - DQ16 | L | H | L | X | X | L | L |
| WRITE DQ1 - DQ16 | L | L | L | X | X | L | L |

NOTE: $\overline{\mathrm{CE}}$, when taken inactive while $\overline{\mathrm{CWEA}}$ and $\overline{\mathrm{CWEB}}$ remain active, allows a chip-enable-controlled WRITE to be performed.
$\overline{\mathrm{COEA}}$ and $\overline{\mathrm{COEB}}$ must both be LOW to enable outputs. However, one signal can be tied LOW externally, allowing the other signal to control the outputs. Similarly $\overline{\text { CWEA }}$ and $\overline{\text { CWEB }}$ must both be LOW to enable a WRITE cycle. Either $\overline{\text { CWEA }}$ or $\overline{\text { CWEB }}$ can be tied LOW externally, allowing the other signal to control the WRITE function.

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss . -1.0 V to +7.0 V
Storage Temperature ... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (PLCC) ..............................................1.2W
Power Dissipation (PQFP) .............................................1.2W
Short Circuit Output Current ....................................... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Power Supply Voltage |  | Vcc | 4.75 | 5.25 | V |  |
| Input High Voltage |  | VIH | 2.2 | $\mathrm{Vcc}+0.3$ | V | 1 |
| Input Low Voltage |  | VIL | -0.3 | 0.8 | V | 1,2 |
| Input Leakage Current | $\mathrm{VIN}=$ GND to Vcc | ILI | -10 | 10 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | VIIo $=$ GND to Vcc <br> Output(s) Disabled | ILo | -10 | 10 | $\mu \mathrm{~A}$ |  |
| Output Low Voltage | loL $=4.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |
| Output High Voltage | IoH $=-1.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |

$\left.\begin{array}{|l|c|c|c|c|c|c|}\hline \text { DESCRIPTION } & \text { CONDITIONS } & \text { SYMBOL } & \text { MIN } & \text { MAX } & \text { UNITS } & \text { NOTES } \\ \hline \text { Power Supply Current: } & \begin{array}{c}100 \% \text { Duty Cycle } \\ \text { Average Operating Current }\end{array} & \text { VCC1 } & & 220 & \mathrm{~mA} & \\ \hline \text { Power Supply Current: } & \begin{array}{c}50 \% \text { Duty cycle } \\ \text { Average Operating Current }\end{array} & \mathrm{VIN}=\text { GND to Vcc }\end{array}\right]$

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ |  |  |  |  |  |
| $\mathrm{Vcc}=5 \mathrm{~V}$ | CIN |  | 6 | pF | 3 |  |
| Output Capacitance |  | $\mathrm{CI} / \mathrm{o}$ |  | 6 | pF | 3 |

## PQFP THERMAL CONSIDERATIONS

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Thermal resistance - Junction to Ambient | Still Air | $\varnothing_{J A}$ |  | 100 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |
| Thermal resistance - Junction to Case |  | ${ }^{\circ} \mathrm{JC}$ |  | 45 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |
| Maximum Case Temperature |  | Tc |  | 110 | ${ }^{\circ} \mathrm{C}$ |  |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}\right.$; $\left.\mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%\right)$

| DESCRIPTION |  | -20 |  | -25 |  | -35 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| READ Cycle |  |  |  |  |  |  |  |  |  |
| READ cycle time | ${ }^{\text {t }}$ RC | 20 |  | 25 |  | 35 |  | ns | 4,5 |
| Address access time (A0-A12) | ${ }^{\text {t }}$ A |  | 20 |  | 25 |  | 35 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 20 |  | 20 |  | 25 | ns |  |
| Chip Select access time | ${ }^{\text {t }}$ ACS |  | 20 |  | 25 |  | 35 | ns |  |
| Output Enable access time | ${ }^{\text {t }} \mathrm{AOE}$ |  | 8 |  | 10 |  | 13 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 3 |  | 3 |  | 3 |  | ns |  |
| Chip Select to output Low-Z | tLZCS | 3 |  | 3 |  | 3 |  | ns |  |
| Output Enable to output Low-Z | tLZOE | 2 |  | 2 |  | 2 |  | ns |  |
| Chip deselect to output High-Z | thZCS |  | 15 |  | 15 |  | 25 | ns | 6 |
| Output disable to output High-Z | ${ }^{\text {t HZOE }}$ |  | 10 |  | 10 |  | 14 | ns | 6 |
| Address latch enable pulse width | ${ }^{\text {t CALEN }}$ | 8 |  | 8 |  | 10 |  | ns |  |
| Address setup to latch LOW | ${ }^{\text {t }}$ ASL | 4 |  | 4 |  | 6 |  | ns |  |
| Address hold from latch LOW | ${ }^{t}$ AHL | 5 |  | 5 |  | 5 |  | ns |  |
| WRITE Cycle |  |  |  |  |  |  |  |  |  |
| WRITE cycle time | ${ }^{\text {t }}$ WC | 20 |  | 25 |  | 35 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 15 |  | 18 |  | 25 |  | ns |  |
| Chip Select to end of write | ${ }^{\text {t }}$ CW | 15 |  | 18 |  | 25 |  | ns |  |
| Data valid to end of write | ${ }^{\text {t }}$ DW | 10 |  | 10 |  | 10 |  | ns |  |
| Data hold from end of write | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | ns | * |
| Write Enable output in High-Z | ${ }^{\text {thaw }}$ |  | 12 |  | 15 |  | 15 | ns | 6 |
| Write disable to output in Low-Z | tLZWE | 3 |  | 3 |  | 3 |  | ns |  |
| Write pulse width | ${ }^{\text {t }}$ WP | 15 |  | 18 |  | 25 |  | ns |  |
| $\overline{C E}$ pulse width (during Chip Enable controlled write) | ${ }^{t} \mathrm{CP}$ | 15 |  | 18 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | ns |  |
| Write recovery time | tWR | 0 |  | 0 |  | 0 |  | ns |  |
| Address latch enable pulse width | ${ }^{\text {t CALEN }}$ | 8 |  | 8 |  | 10 |  | ns |  |
| Address setup to latch LOW | ${ }^{\text {t }}$ ASL | 4 |  | 4 |  | 6 |  | ns |  |
| Address hold from latch LOW | ${ }^{t}$ AHL | 5 |  | 5 |  | 5 |  | ns |  |

## AC TEST CONDITIONS

Input pulse levels ....................................................................................................................................................................................................
Input rise and fall times 1 and 2

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. This parameter is sampled.
4. $\overline{\mathrm{CWE}}$ is HIGH for a READ cycle.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
5. All READ cycle timings are referenced from the last valid address to the first transitioning address.
6. ${ }^{\mathrm{t}} \mathrm{HZCS},{ }^{\mathrm{t}} \mathrm{HZOE}$, and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=$ 5 pF as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.

READ CYCLE NO. 1
(Address Controlled)
$\overline{\mathrm{CWEA}}=\overline{\mathrm{CWEB}}=\mathrm{V}_{\mathrm{IH}} ; \overline{\mathrm{COEA}}$ and/or $\overline{\mathrm{COEB}}=\mathrm{V}_{\mathrm{IL}}$


READ CYCLE NO. 2
(CALEN Controlled)
$\overline{\mathrm{CWEA}}=\overline{\mathrm{CWEB}}=\mathrm{VIH} ; \overline{\mathrm{COEA}}$ and/or $\overline{\mathrm{COEB}}=\mathrm{VIL}$


READ CYCLE NO. 3
$\overline{\mathrm{CWEA}}=\overline{\mathrm{CWEB}}=\mathrm{V}_{1 \mathrm{H}}$


42 DONt cane
UNDEFINED

## WRITE CYCLE NO. 1

(Write Enable Controlled)


WRITE CYCLE NO. 2
(Chip Select Controlled)


## CACHE DATA STATIC RAM

## FEATURES

- Operates as two $4 \mathrm{~K} \times 18$ SRAMs with common addresses and data; also configurable as a single $8 \mathrm{~K} \times 18$ SRAM
- Built-in input address latches
- Separate upper and lower Byte Select
- Fast access times: $20 \mathrm{~ns}, 25 \mathrm{~ns}$ and 35 ns allow operation with 40,33 and 25 MHz microprocessor systems
- Fast Output Enable: 8ns
- Directly interfaces with the Intel 82385 cache controller as well as other 80386 cache memory controllers
- Parity bits provided for large cache applications such as secondary cache for the Intel 80486 microprocessors


## OPTIONS

- Timing

20 ns access ( 40 MHz )

## MARKING

25 ns access ( 33 MHz )
-20
35 ns access ( 25 MHz )
-25

$$
-35
$$

- Packages

52-pin PLCC
EJ
52-pin PQFP
LG

## GENERAL DESCRIPTION

The MT56C0818 is one of a family of fast SRAM cache memories. It employs a high-speed, low-power design using a four-transistor memory cell. It is fabricated using double-layer polysilicon, double-layer metal CMOS technology.

The MT56C0818 is a highly integrated cache data memory building block. It easily interfaces with cache controllers for the Intel 80386 in either the DIRECT MAPPED or TWO-WAY SET ASSOCIATIVE mode. A mode control pin (MODE) determines the configuration of the memory. When this pin is held LOW, the device functions as an 8 K -word by 18 -bit SRAM. When the mode pin is HIGH, the device is configured as a dual 4 K -word by 18 -bit SRAM.

Input addresses are latched in the on-chip register on the negative edge of the CALEN signal. This register is functionally equivalent to a 74LS373.

The memory functions are controlled by the chip select $(\overline{\mathrm{CE}}, \overline{\mathrm{CS} 0}$ and $\overline{\mathrm{CS1}})$, output enable $(\overline{\mathrm{COEA}}$ and $\overline{\mathrm{COEB}})$ and write enable ( $\overline{\mathrm{CWEA}}$ and $\overline{\mathrm{CWEB}})$ signals.

## DUAL 4K x 18 SRAM, SINGLE 8K x 18 SRAM CONFIGURABLE CACHE DATA SRAM

| PIN ASSIGNMENT (Top View) |  |  |
| :---: | :---: | :---: |
| 52-Pin PLCC (D-3) |  |  |
|  |  |  |
| A0 $\square^{\circ}$ | $865432{ }_{1} 725150494847$ | 46 A 12 |
| Vss |  | $45 \square \overline{\mathrm{CE}}$ |
| Vss $\square$ |  | 44.7 vss |
| DQ1 5 |  | 43 DQ16 |
| DQ2 |  | $42 \square$ DQ15 |
| DQ3 5 |  | 41 D D 14 |
| DQ4 5 |  | 40 D DQ13 |
| Vss $[$ |  | $39 \square$ Vss |
| D05 |  | 38 DQ12 |
| DQ6 5 |  | 37 DQ11 |
| D07 |  | 367 DQ10 |
| DQ8 |  | 35 D DQ9 |
| DQP1 1 |  | 34 D DPP2 |
| 21222324252627282930313233 |  |  |
|  |  |  |

In either the DIRECTMAPPED (direct) or TWO-WAYSET ASSOCIATIVE (dual) operational modes, $\overline{\mathrm{CE}}$ is a global chip enable, while $\overline{\mathrm{CSO}}$ and $\overline{\mathrm{CS1}}$ control lower and upper byte selection for READ and WRITE operations.

Outputs are enabled on a HIGH to LOW transition of $\overline{\text { COEA }}$ or $\overline{\text { COEB. In }}$. the dual mode, bank " A " or bank " B " may be enabled. In the direct mode, $\overline{\mathrm{COEA}}$ and $\overline{\mathrm{COEB}}$ should be connected together externally and used as a single output enable. Alternately, $\overline{\text { COEA }}$ or $\overline{\text { COEB }}$ can be tied LOW externally, allowing the other signal to control the outputs.

Write enable is activated on a HIGH to LOW transition of $\overline{\text { CWEA }}$ or $\overline{\text { CWEB. }}$. In the dual mode, data may be written to bank " A " or bank " B ". In the direct mode, $\overline{\mathrm{CWEA}}$ and $\overline{\text { CWEB }}$ should be connected together externally and used as a single write enable. Alternately, $\overline{\text { CWEA }}$ or $\overline{\text { CWEB }}$ can be tied LOW externally, allowing the other signal to control the write function.

The MT56C 0818 operates from a +5 V power supply and all inputs and outputs are fully TTL compatible.

FUNCTIONAL BLOCK DIAGRAM

DUAL 4K x 18
(TWO-WAY SET ASSOCIATIVE)


## FUNCTIONAL BLOCK DIAGRAM

$8 \mathrm{~K} \times 18$
(DIRECT MAP)


## PIN DESCRIPTIONS

| PLCC PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 8,7,6,5,4,3,2, \\ & 51,50,49,48,47 \end{aligned}$ | A0-A11 | Input | Address Inputs: These inputs are clocked by CALEN and stored in a latch. |
| 46 | A12 | Input | Address Input: This input is the high order address bit in the direct $8 \mathrm{~K} \times 18$ configuration. It is not used in the dual $4 \mathrm{~K} \times 18$ configuration. |
| 52 | CALEN | Input | Address Latch Enable: When CALEN is HIGH, the latch is transparent. The negative edge latches the current address inputs (A0-A11). |
| 31 | MODE | Input | Mode Select: This controls the device configuration. When this pin is tied HIGH, the device is in the dual $4 \mathrm{~K} \times 18$ configuration. When the pin is tied LOW, the device is configured as an $8 \mathrm{~K} \times 18$ SRAM. |
| 23, 30 | $\overline{\mathrm{CSO}}, \overline{\mathrm{CS} 1}$ | Input | Chip Selects: These signals are used to select the upper and lower bytes for both READ and WRITE operations. When $\overline{\mathrm{CSO}}$ is LOW, DQ1-DQ8 and DQP1 are enabled. When CS1 is LOW, DQ9-DQ16 and DQP2 are enabled. |
| 45 | $\overline{C E}$ | Input | Chip Enable: When $\overline{C E}$ is LOW, the device is enabled. It is a global control signal that activates both bank $A$ and bank $B$ for READ or WRITE operations. |
| 28,29 | COEA, $\overline{C O E B}$ | Input | Output Enable: In the dual configuration the signal that is LOW enables bank A or B . Simultaneous LOW assertion will deselect both banks. In the direct mode, these signals should be externally connected, and, when asserted LOW, allow A12 to determine which memory bank is enabled. Alternately, $\overline{\text { COEA }}$ or $\overline{\mathrm{COEB}}$ can be tied LOW externally, allowing the other signal to control the outputs. |
| 25, 24 | CWEA, CWEB | Input | Write Enable: In the dual configuration the signal that is LOW enables a data write to the addressed memory location. In the direct mode, these signals should be externally connected, and, when asserted LOW, allow A12 to determine which memory hank is written. Alternately, CWEA or CWEB can be tied LOW externally, allowing the other signal to control the write function. |
| $\begin{gathered} 11,12,13,14,16 \\ 17,18,19,35,36,37 \\ 38,40,41,42,43 \\ \hline \end{gathered}$ | DQ1-DQ16 | Input/ Output | SRAM Data I/O: lower byte is DQ1-DQ8; upper byte is DQ9DQ16. |
| 20,34 | $\begin{aligned} & \text { DQP1 } \\ & \text { DQP2 } \end{aligned}$ | Input/ Output | Parity Data I/O: DQP1 is the parity bit for the lower byte. DQP2 is the parity bit for the upper byte. |
| 1, 21, 22, 32, 33, | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 5 \%$ |
| 9, 10, 15, 26, 27, 39, 44 | Vss | Supply | Ground: GND |

## TRUTH TABLE

DUAL 4K x 18 (MODE PIN = HIGH)

| OPERATION | $\overline{\text { CE }}$ | $\overline{\text { CSO }}$ | $\overline{\text { CS1 }}$ | $\overline{\text { COEA }}$ | $\overline{\text { COEB }}$ | $\overline{\text { CWEA }}$ | $\overline{\text { CWEB }}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Outputs High-Z, WRITE disabled | H | X | X | X | X | X | X |
| Outputs High-Z, WRITE disabled | X | H | H | X | X | X | X |
| Outputs High-Z | X | X | X | H | H | X | X |
| Outputs High-Z | X | X | X | L | L | X | X |
| READ DQ1 - DQ8, DQP1 bank A | L | L | H | L | H | H | H |
| READ DQ1 - DQ8, DQP1 bank B | L | L | H | H | L | H | H |
| READ DQ9 - DQ16, DQP2 bank A | L | H | L | L | H | H | H |
| READ DQ9 - DQ16, DQP2 bank B | L | H | L | H | L | H | H |
| READ DQ1 - DQ16, DQP1, DQP2 bank A | L | L | L | L | H | H | H |
| READ DQ1 - DQ16, DQP1, DQP2 bank B | L | L | L | H | L | H | H |
| WRITE DQ1 - DQ8, DQP1 bank A | L | L | H | X | X | L | H |
| WRITE DQ1 - DQ8, DQP1 bank B | L | L | H | X | X | H | L |
| WRITE DQ9 - DQ16, DQP2 bank A | L | H | L | X | X | L | H |
| WRITE DQ9 - DQ16, DQP2 bank B | L | H | L | X | X | H | L |
| WRITE DQ1 - DQ16, DQP1, DQP2 bank A | L | L | L | X | X | L | H |
| WRITE DQ1 - DQ16, DQP1, DQP2 bank B | L | L | L | X | X | H | L |
| WRITE DQ1 - DQ8, DQP1 bank A \& B | L | L | H | X | X | L | L |
| WRITE DQ9 - DQ16, DQP2 bank A \& B | L | H | L | X | X | L | L |
| WRITE DQ1 - DQ16, DQP1, DQP2 bank A \& B | L | L | L | X | X | L | L |

NOTE: $\overline{C E}$, when taken inactive while $\overline{C W E A}$ or $\overline{C W E B}$ remain active, allows a chip-enable-controlled WRITE to be performed.

## TRUTH TABLE

8K x 18 (MODE PIN = LOW)

| OPERATION | $\overline{\text { CE }}$ | $\overline{\text { CSO }}$ | $\overline{\text { CS1 }}$ | $\overline{\text { COEA }}$ | $\overline{\text { COEB }}$ | $\overline{\text { CWEA }}$ | $\overline{\text { CWEB }}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Outputs High-Z, WRITE disabled | H | X | X | X | X | X | X |
| Outputs High-Z, WRITE disabled | X | H | H | X | X | X | X |
| Outputs High-Z | X | X | X | H | H | X | X |
| READ DQ1 - DQ8, DQP1 | L | L | H | L | L | H | H |
| READ DQ9 - DQ16, DQP2 | L | H | L | L | L | H | H |
| READ DQ1 - DQ16, DQP1, DQP2 | L | L | L | L | L | H | H |
| WRITE DQ1 - DQ8, DQP1 | L | L | H | X | X | L | L |
| WRITE DQ9 - DQ16, DQP2 | L | H | L | X | X | L | L |
| WRITE DQ1 - DQ16, DQP1, DQP2 | L | L | L | X | X | L | L |

NOTE: $\overline{C E}$, when taken inactive while $\overline{C W E A}$ and $\overline{C W E B}$ remain active, allows a chip-enable-controlled WRITE to be performed.
$\overline{C O E A}$ and $\overline{C O E B}$ must both be LOW to enable outputs. However, one signal can be tied LOW externally, allowing the other signal to control the outputs. Similarly CWEA and CWEB must both be LOW to enable a WRITE cycle. Either CWEA or $\overline{\mathrm{CWEB}}$ can be tied LOW externally, allowing the other signal to control the WRITE function.

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%\right)$| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Voltage |  | VcC | 4.75 | 5.25 | V |  |
| Input High Voltage |  | VIH | 2.2 | $\mathrm{Vcc}+0.3$ | V | 1 |
| Input Low Voltage |  | VIL | -0.3 | 0.8 | V | 1,2 |
| Input Leakage Current | $\mathrm{VIN}=\mathrm{GND}$ to Vcc | ILI | -10 | 10 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | $\mathrm{V} / \mathrm{O}=\mathrm{GND}$ to Vcc <br> Output(s) Disabled | ILO | -10 | 10 | $\mu \mathrm{~A}$ |  |
| Output Low Voltage | $\mathrm{IoL}=4.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |
| Output High Voltage | $\mathrm{IOH}=-1.0 \mathrm{~mA}$ | VOH | 2.4 |  | V | 1 |


| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Current: <br> Average Operating Current | $100 \%$ Duty cycle <br> VIN $=$ GND to Vcc | Icc1 |  | 220 | mA |  |
| Power Supply Current: <br> Average Operating Current | $50 \%$ Duty cycle <br> VIN $=$ GND to Vcc | Icc2 |  | 120 | mA |  |
| Power Supply Current: <br> CMOS Standby | $\overline{\mathrm{CSO}}=\overline{\mathrm{CST}} \geq$ Vcc -0.2 V <br> Vcc $=$ MAX <br> VIL $\leq \mathrm{Vss}+0.2 \mathrm{~V}$ <br> ViH $\geq$ Vcc -0.2 V | IsB |  | 20 | mA |  |

CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | CIN |  | 6 | pF | 3 |
|  | Output Capacitance | $\mathrm{VCC}=5 \mathrm{~V}$ | $\mathrm{Cl} / \mathrm{o}$ |  | 6 | pF |

PQFP THERMAL CONSIDERATIONS

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Thermal resistance - Junction to Ambient | Still Air | ${ }^{\text {®JA }}$ |  | 100 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |
| Thermal resistance - Junction to Case |  | ${ }^{\text {® }} \mathrm{JC}$ |  | 45 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |
| Maximum Case Temperature |  | Tc |  | 110 | ${ }^{\circ} \mathrm{C}$ |  |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%\right)$

| DESCRIPTION |  | -20 |  | -25 |  | -35 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| READ Cycle |  |  |  |  |  |  |  |  |  |
| READ cycle time | ${ }^{\text {tr }} \mathrm{C}$ | 20 |  | 25 |  | 35 |  | ns | 4,5 |
| Address access time (A0-A11) | ${ }^{\text {t }} \mathrm{A}$ A |  | 20 |  | 25 |  | 35 | ns |  |
| A12 address access time | ${ }^{\text {t }}$ A12A |  | 15 |  | 17 |  | 25 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 20 |  | 20 |  | 25 | ns |  |
| Chip Select access time | ${ }^{\text {t }}$ ACS |  | 20 |  | 25 |  | 35 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 8 |  | 10 |  | 13 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 3 |  | 3 |  | 3 |  | ns |  |
| Chip Select to output Low-Z | tLZCS | 3 |  | 3 |  | 3 |  | ns |  |
| Output Enable to output Low-Z | tzoe | 2 |  | 2 |  | 2 |  | ns |  |
| Chip deselect to output High-Z | thZCS |  | 15 |  | 15 |  | 25 | ns | 6 |
| Output disable to output High-Z | thZOE |  | 10 |  | 10 |  | 14 | ns | 6 |
| Address latch enable pulse width | ${ }^{\text {t CALLEN }}$ | 8 |  | 8 |  | 10 |  | ns |  |
| Address setup to latch LOW | ${ }^{\text {t }}$ ASL | 4 |  | 4 |  | 6 |  | ns |  |
| Address hold from latch LOW | ${ }^{t} \mathrm{AHL}$ | 5 |  | 5 |  | 5 |  | ns |  |
| WRITE Cycle |  |  |  |  |  |  |  |  |  |
| WRITE cycle time | ${ }^{\text {t }}$ WC | 20 |  | 25 |  | 35 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 15 |  | 18 |  | 25 |  | ns |  |
| A12 address valid to end of write | ${ }^{\text {t }} \mathrm{A} 12 \mathrm{~W}$ | 15 |  | 18 |  | 25 |  | ns |  |
| Chip Select to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 15 |  | 18 |  | 25 |  | ns |  |
| Data valid to end of write | tDW | 10 |  | 10 |  | 10 |  | ns |  |
| Data hold from end of write | ${ }^{\text {t }}$ D H | 0 |  | 0 |  | 0 |  | ns |  |
| Write enable output in High-Z | tHZWE |  | 12 |  | 15 |  | 15 | ns | 6 |
| Write disable to output in Low-Z | LZWE | 3 |  | 3 |  | 3 |  | ns |  |
| Write pulse width | ${ }^{\text {th }}$ WP | 15 |  | 18 |  | 25 |  | ns |  |
| $\overline{C E}$ pulse width (during Chip Enable controlled write) | ${ }^{\text {t }} \mathrm{CP}$ | 15 |  | 18 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ S | 0 |  | 0 |  | 0 |  | ns |  |
| Write recovery time | ${ }^{\text {t }}$ WR | 0 |  | 0 |  | 0 |  | ns |  |
| Address latch enable pulse width | ${ }^{\text {t CALLEN }}$ | 8 |  | 8 |  | 10 |  | ns |  |
| Address setup to latch LOW | ${ }^{\text {t }}$ ASL | 4 |  | 4 |  | 6 |  | ns |  |
| Address hold from latch LOW | ${ }^{\text {t }}$ AHL | 5 |  | 5 |  | 5 |  | ns |  |

## AC TEST CONDITIONS

Input pulse levels Vss to 3.0 V
Input rise and fall times ......................................3ns
Input timing reference levels 1.5V

Output reference levels $\qquad$
Output load $\qquad$ .See Figures 1 and 2

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. This parameter is sampled.
4. $\overline{\mathrm{CWE}}$ is HIGH for a READ cycle.


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT

## MT56C0818

READ CYCLE NO. 1
(Address Controlled)
$\overline{\mathrm{CWEA}}=\overline{\mathrm{CWEB}}=\mathrm{V}_{\mathrm{IH}} ; \overline{\mathrm{COEA}}$ and/or $\overline{\mathrm{COEB}}=\mathrm{VIL}$


READ CYCLE NO. 2
(CALEN Controlled)
$\overline{\mathrm{CWEA}}=\overline{\mathrm{CWEB}}=\mathrm{VIH}_{\mathrm{I}} ; \overline{\mathrm{COEA}}$ and $/$ or $\overline{\mathrm{COEB}}=\mathrm{VIL}$

dont care
UNDEFINED

MT56C0818

READ CYCLE NO. 3
$\overline{\mathrm{CWEA}}=\overline{\mathrm{CWEB}}=\mathrm{V}_{\mathrm{V}}$


D/D DON'T CARE
UNDEFINED

## WRITE CYCLE NO. 1

 (Write Enable Controlled)
## CACHE DATA STATIC RAM

## FEATURES

- Automatic WRITE cycle completion
- Operates as two $4 \mathrm{~K} \times 18$ SRAMs with common addresses and data; also configurable as a single $8 \mathrm{~K} \times 18$ SRAM
- Automatically controlled input address latches
- Built-in input data latches
- Separate upper and lower Byte Select
- Fast access times: 24 ns and 28 ns allow operation with 33 MHz and 25 MHz microprocessor systems
- Fast Output Enable: 8ns
- Parity bits provided for large cache applications such as secondary cache for the Intel 80486 microprocessor
- Directly compatible with the Intel 82485 cache controller


## OPTIONS

- Timing

24ns access ( 33 MHz )
28 ns access ( 25 MHz )
MARKING

- Packages

52-pin PLCC
EJ
52-pin PQFP

## GENERAL DESCRIPTION

The MT56C2818 is one of a family of fast SRAM cache memories. It employs a high-speed, low-power design using a four-transistor memory cell. It is fabricated using double-layer polysilicon, double-layer metal CMOS technology.

The MT56C2818 is a highly integrated cache data memory building block. A mode control pin (MODE) determines the configuration of the memory. When this pin is held LOW, the device functions as an 8 K -word by 18 -bit SRAM. When the mode pin is HIGH, the device is configured as a dual 4 K -word by 18 -bit SRAM.

Strobe $(\overline{\mathrm{S}})$ controls the on-chip address and data latches. During READ and WRITE cycles the address latch is always transparent except for the time period ${ }^{\text {t }} \mathrm{ALO}$ following the rising edge of $\overline{\mathrm{S}}$. The addresses are "locked out" during this time.
$\overline{\mathrm{S}}$ has no effect on the data latch during a READ cycle. During a WRITE cycle, data is latched on the rising edge of $\overline{\mathrm{S}}$. The rising edge of $\overline{\mathrm{S}}$ also initiates the completion of the WRITE cycle.

## DUAL 4K x 18 SRAM, SINGLE $8 \mathrm{~K} \times 18$ SRAM CONFIGURABLE CACHE DATA SRAM



The memory functions are controlled by the chip select $(\overline{\mathrm{CE}}, \overline{\mathrm{CSO}}$ and $\overline{\mathrm{CS1}})$, output enable ( $\overline{\mathrm{COEA}}$ and $\overline{\mathrm{COEB}})$ and write enable ( $\overline{\text { CWEA }}$ and $\overline{\text { CWEB }})$ signals.

In either theDIRECTMAPPED (direct) or TWO-WAYSET ASSOCIATIVE (dual) operational modes, $\overline{\mathrm{CE}}$ is a global chip enable, while $\overline{\mathrm{CS} 0}$ and $\overline{\mathrm{CS1}}$ control lower and upper byte selection for READ and WRITE operations. Power consumption may be reduced by keeping either $\overline{\mathrm{CE}}$ inactive (HIGH), or $\overline{\mathrm{CS} 0}$ and $\overline{\mathrm{CS} 1}$ inactive (HIGH) as much as possible.

Outputs are enabled on a HIGH to LOW transition of $\overline{\text { COEA }}$ or $\overline{\text { COEB. In }}$. the dual mode, bank " A " or bank " B " may beenabled. In the direct mode, $\overline{\mathrm{COEA}}$ and $\overline{\mathrm{COEB}}$ should be connected together externally and used as a single output enable. Alternately, $\overline{\text { COEA }}$ or $\overline{\text { COEB }}$ can be tied LOW externally, allowing the other signal to control the outputs.

Write enable is activated on HIGH to LOW transition of $\overline{\text { CWEA }}$ or $\overline{C W E B}$. In the dual mode, data may be written to bank "A" or bank "B". In the direct mode, CWEA and $\overline{C W E B}$ should be connected together externally and used as a single write enable. Alternately, $\overline{\text { CWEA }}$ or $\overline{\text { CWEB }}$ can be tied LOW externally, allowing the other signal to control the write function.

The MT56C2818 operates from a +5 V power supply and all inputs and outputs are fully TTL compatible.

## FUNCTIONAL BLOCK DIAGRAM

DUAL 4K x 18
(TWO-WAY SET ASSOCIATIVE)


FUNCTIONAL BLOCK DIAGRAM ( $\overline{\mathrm{COEA}}=\overline{\mathrm{COEB}} ; \overline{\mathrm{CWEA}}=\overline{\mathrm{CWEB}}$ )

8K x 18
(DIRECT MAP)


## PIN DESCRIPTIONS

| PLCC PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 8,7,6,5,4,3,2, \\ & 51,50,49,48,47 \end{aligned}$ | A0-A11 | Input | Address Inputs: A0-A11 are always sampled (transparent latch) except for the time ${ }^{\mathrm{t}} \mathrm{WAH}$ and ${ }^{\mathrm{t}} \mathrm{ALO}$ following the rising edge of $\overline{\mathrm{S}}$. |
| 46 | A12 | Input | Address Input: This input is the high order address bit in the direct $8 \mathrm{~K} \times 18$ configuration. It is not used in the dual $4 \mathrm{~K} \times 18$ configuration. |
| 52 | $\bar{S}$ | Input | Strobe: This signal controls the internal data and address latches. The address latch is always transparent except for the time period ${ }^{\mathrm{t}} \mathrm{ALO}$ following the rising edge of $\overline{\mathrm{S}}$. The addresses are "locked out" during this time period. <br> $\overline{\mathrm{S}}$ does not affect the data latch during a READ cycle. During a WRITE cycle the rising edge of $\overline{\mathrm{S}}$ latches the data. The rising edge also initiates the termination of the WRITE cycle. |
| 31 | MODE | Input | Mode Select: This controls the device configuration. When this pin is tied HIGH, the device is in the dual $4 \mathrm{~K} \times 18$ configuration. When the pin is tied LOW, the device is configured as an $8 \mathrm{~K} \times 18$ SRAM. |
| 23, 30 | $\overline{\mathrm{CSO}}, \overline{\mathrm{CS} 1}$ | Input | Chip Selects: These signals are used to select the upper and lower bytes for both READ and WRITE operations. When $\overline{\mathrm{CSO}}$ is LOW, DQ1-DQ8 and DQP1 are enabled. When $\overline{\mathrm{CS} 1}$ is LOW, DQ9-DQ16 and DQP2 are enabled. Significant power savings can be achieved by keeping $\overline{\text { CSO }}$ and $\overline{\text { CS1 }}$ inactive as much as possible. |
| 45 | $\overline{\mathrm{CE}}$ | Input | Chip Enable: When $\overline{C E}$ is LOW, the device is enabled. It is a global control signal that activates both bank " A " and bank " B " for READ or WRITE operations. Significant power savings can be achieved by keeping $\overline{\mathrm{CE}}$ inactive as much as possible. |
| 28, 29 | COEA, COEB | Input | Output Enable: In the dual configuration, the signal that is LOW enables bank " $A$ " or " $B$ ". Simultaneous LOW assertion will deselect both banks. In the direct mode, these signals should be externally connected and, when asserted LOW, allow A12 to determine which memory bank is enabled. Alternately, COEA or $\overline{\mathrm{COEB}}$ can be tied LOW externally, allowing the other signal to control the outputs. |
| 25, 24 | CWEA, CWEB | Input | Write Enable: In the dual configuration, the signal that is LOW enables a data write to the addressed memory location. In the direct mode, these signals should be externally connected and, when asserted LOW, allow A12 to determine which memory bank is written. Alternately, CWEA or CWEB can be tied LOW externally, allowing the other signal to control the write function. |
| 20,34 | DQP1, DQP2 | Input/ Output | Parity Data I/O: DQP1 is the parity bit for the lower byte. DQP2 is the parity bit for the upper byte. |
| $\begin{gathered} 11,12,13,14,16 \\ 17,18,19,35,36,37 \\ 38,40,41,42,43 \end{gathered}$ | DQ1-DQ16 | Input/ Output | SRAM Data I/O: lower byte is DQ1-DQ8; upper byte is DQ9DQ16. |
| 1, 21, 22, 32, 33, | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 5 \%$ |
| 9, 10, 15, 26, 27, 39, 44 | Vss | Supply | Ground: GND |

## TRUTH TABLE

DUAL 4K x 18 (MODE PIN = HIGH)

| OPERATION | CE | Cso | CS1 | COEA | $\overline{\text { COEB }}$ | CWEA | CWEB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Outputs High-Z, WRITE disabled | H | X | X | X | X | X | X |
| Outputs High-Z, WRITE disabled | X | H | H | X | X | X | X |
| Outputs High-Z | X | X | X | H | H | X | X |
| Outputs High-Z | X | X | X | L | L | X | X |
| READ DQ1 - DQ8, DQP1 bank A | L | L | H | L | H | H | H |
| READ DQ1 - DQ8, DQP1 bank B | L | L | H | H | L | H | H |
| READ DQ9 - DQ16, DQP2 bank A | L | H | L | L | H | H | H |
| READ DQ9 - DQ16, DQP2 bank B | L | H | L | H | L | H | H |
| READ DQ1 - DQ16, DQP1, DQP2 bank A | L | L | L | L | H | H | H |
| READ DQ1 - DQ16, DQP1, DQP2 bank B | L | L | L | H | L | H | H |
| WRITE DQ1 - DQ8, DQP1 bank A | L | L | H | X | X | L | H |
| WRITE DQ1 - DQ8, DQP1 bank B | L | L | H | X | X | H | L |
| WRITE DQ9 - DQ16, DQP2 bank A | L | H | L | X | X | L | H |
| WRITE DQ9 - DQ16, DQP2 bank B | L | H | L | X | X | H | L |
| WRITE DQ1 - DQ16, DQP1, DQP2 bank A | L | L | L | X | X | L | H |
| WRITE DQ1 - DQ16, DQP1, DQP2 bank B | L | L | L | X | X | H | L |
| WRITE DQ1 - DQ8, DQP1 bank A \& B | L | L | H | X | X | L | L |
| WRITE DQ9 - DQ16, DQP2 bank A \& B | L | H | L | X | X | L | L |
| WRITE DQ1 - DQ16, DQP1, DQP2 bank A \& B | L | L | L | X | X | L | L |

## TRUTH TABLE

8K x 18 (MODE PIN = LOW)

| OPERATION | $\overline{\text { CE }}$ | Cso | CS1 | COEA | COEB | CWEA | CWEB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Outputs High-Z, WRITE disabled | H | X | X | X | X | X | X |
| Outputs High-Z, WRITE disabled | X | H | H | X | X | X | X |
| Outputs High-Z | X | X | X | H | H | X | X |
| READ DQ1 - DQ8, DQP1 | L | L | H | L | L | H | H |
| READ DQ9 - DQ16, DQP2 | L | H | L | L | L | H | H |
| READ DQ1 - DQ16, DQP1, DQP2 | L | L | L | L | L | H | H |
| WRITE DQ1 - DQ8, DQP1 | L | L | H | X | X | L | L |
| WRITE DQ9 - DQ16, DQP2 | L | H | L | X | X | L | L |
| WRITE DQ1 - DQ16, DQP1, DQP2 | L | L | L | X | X | L | L |

NOTE: When mode pin is LOW, $\overline{C O E A}$ and $\overline{C O E B}$ must both be LOW to enable outputs. However, one signal can be tied LOW externally, allowing the other signal to control the outputs. Similarly CWEA and CWEB must both be LOW to enable a WRITE cycle. Either CWEA or $\overline{\text { CWEB }}$ can be tied LOW externally, allowing the other signal to control the WRITE function.

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss .........-1.0V to +7.0 V
Storage Temperature (Plastic) ................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (PLCC) .........................................1.2W
Power Dissipation (PQFP) .........................................1.2W
Short Circuit Output Current ................................... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Voltage |  | Vcc | 4.75 | 5.25 | V |  |
| Input High Voltage |  | VIH | 2.2 | Vcc +0.3 | V | 1 |
| Input Low Voltage |  | VIL | -0.3 | 0.8 | V | 1,2 |
| Input Leakage Current | $\mathrm{VIN}=$ GND to Vcc | IL | -10 | 10 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | VI/o $=$ GND to Vcc <br> Output(s) Disabled | ILo | -10 | 10 | $\mu \mathrm{~A}$ |  |
| Output Low Voltage | loL =4.0mA | VoL |  | 0.4 | V | 1 |
| Output High Voltage | loH $=-1.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |


| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Power Supply Current: <br> Average Operating Current | $100 \%$ Duty cycle <br> VIN $=$ GND to Vcc | Icc1 |  | 220 | mA |  |
| Power Supply Current: <br> Average Operating Current | $50 \%$ Duty cycle <br> VIN $=$ GND to Vcc | Icc2 |  | 120 | mA |  |
| Power Supply Current: <br> CMOS Standby | CS1 $\geq$ Vcc -0.2 V and <br> CS0 $\geq$ Vc- -0.2 V or <br> Vcc $=$ MAX, $=0$, <br> VIL $\leq$ Vss +0.2 V, <br> VIH $\geq$ Vcc -0.2 V | CE $\leq$ Vss +0.2 V | IsB1 |  | 20 | mA |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\begin{gathered} T_{A}=25^{\circ} \mathrm{C} ; \mathrm{Vcc}=5 \mathrm{~V} \\ f=1 \mathrm{MHz}, \end{gathered}$ | CIN |  | 6 | pF | 3 |
| Input/Output Capacitance |  | CI/o |  | 6 | pF | 3 |

## PQFP THERMAL CONSIDERATIONS

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Thermal resistance - Junction to Ambient | Still Air | $\varnothing_{\text {JA }}$ |  | 100 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |
| Thermal resistance - Junction to Case |  | $\emptyset_{J C}$ |  | 45 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |
| Maximum Case Temperature |  | Tc |  | 110 | ${ }^{\circ} \mathrm{C}$ |  |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 8) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 5 \%\right)$

| DESCRIPTION |  | -24 |  | -28 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | MIN | MAX |  |  |
| READ Cycle |  |  |  |  |  |  |  |
| READ cycle time | ${ }^{\text {tr }}$ C | 24 |  | 28 |  | ns | 4, 5 |
| Address access time (A0-A11) | ${ }^{\text {t }}$ A |  | 24 |  | 28 | ns | 4,5 |
| A12 address access time | ${ }^{\text {t }}$ A12A |  | 17 |  | 19 | ns |  |
| Chip Enable access time | ${ }^{\text {t}}$ ACE |  | 23 |  | 26 | ns |  |
| Chip Select access time | ${ }^{\text {t }}$ ACS |  | 23 |  | 26 | ns |  |
| Output Enable access time | ${ }^{\text {taOE }}$ |  | 8 |  | 10 | ns |  |
| Output hold from address change | ${ }^{\text {t }} \mathrm{OH}$ | 3 |  | 3 |  | ns |  |
| Chip select/chip enable to output Low-Z | tLZCS | 3 |  | 3 |  | ns |  |
| Output Enable to output Low-Z | t LZOE | 2 |  | 2 |  | ns |  |
| Chip deselect/chip disable to output High-Z | thZCS |  | 15 |  | 15 | ns | 6 |
| Output disable to output High-Z | thZOE | 2 | 10 | 2 | 10 | ns | 6 |
| WRITE Cycle |  |  |  |  |  |  |  |
| WRITE cycle time | ${ }^{\text {t }}$ WC | 24 |  | 28 |  | ns |  |
| $\overline{\text { S }}$ strobe HIGH level width | ${ }^{\text {t }}$ SWH | 11 |  | 14 |  | ns | 7 |
| $\overline{\text { S }}$ strobe LOW level width | ${ }^{\text {t }}$ SWL | 11 |  | 14 |  | ns | 7 |
| WRITE, Chip Enable/Write Enable to $\overline{\text { S }}$ strobe setup | ${ }^{\text {t }}$ WSS | 10 |  | 12 |  | ns | 7 |
| WRITE, Chip Enable/Write Enable to $\overline{\text { S }}$ strobe hold | ${ }^{\text {t }}$ WSH | 2 |  | 2 |  | ns | 7 |
| WRITE, address setup to $\overline{\mathrm{S}}$ strobe | 'WAS | 13 |  | 16 |  | ns | 7 |
| WRITE, address hold to $\overline{\text { S }}$ strobe | ${ }^{\text {t }}$ WAH | 2 |  | 2 |  | ns | 7 |
| Address latch closed | ${ }^{\text {taLO }}$ |  | 8 |  | 8 | ns | 7 |
| Chip Select to $\overline{\text { S }}$ strobe setup | ${ }^{\text {t CSS }}$ | 13 |  | 16 |  | ns | 7 |
| Chip Select to $\overline{\mathrm{S}}$ strobe hold | ${ }^{\text {t }} \mathrm{CSH}$ | 2 |  | 2 |  | ns | 7 |
| Data to $\overline{\mathrm{S}}$ strobe setup | tDSS | 5 |  | 5 |  | ns | 7 |
| Data to $\overline{\text { S }}$ strobe hold | ${ }^{\text {t }}$ DSH | 3 |  | 3 |  | ns | 7 |
| Write Enable to output in High-Z | tHZWE |  | 15 |  | 15 | ns | 6 |
| Write Enable to output in Low-Z | t L WWE | 8 |  | 8 |  | ns |  |

## AC TEST CONDITIONS

Input pulse levels Vss to 3.0 V
Input rise and fall times ...........................................3ns
Input timing reference levels .1.5V
Output reference levels 1.5 V

Output load .................................... Reference Figure 1
(see notes 6 and 8).


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. This parameter is sampled.
4. $\overline{\mathrm{CWE}}$ is HIGH for a READ cycle.
5. All READ cycle timings are referenced from the last valid address to the first transitioning address.
6. ${ }^{\mathrm{t}} \mathrm{HZCS},{ }^{\mathrm{t}} \mathrm{HZOE}$, and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=$ 5 pF as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. Self-timed WRITE parameter.
8. Output timing should be derated by 1 ns for each additional 30pf of capacitive loading.

READ CYCLE NO． 1
（CWEA $=\overline{\mathrm{CWEB}}=\mathrm{V}_{\mathrm{I}}$ ）


## READ CYCLE NO. 2

( $\overline{\text { COEA }}$ and $/$ or $\overline{\text { COEB }}=\mathrm{V} \mathrm{IL}$ ) ( $\overline{\mathrm{CWEA}}=\overline{\mathrm{CWEB}}=\mathrm{V}^{\mathrm{V}}$ )


WRITE CYCLE NO. 1
(Write Enable/Chip Enable controlled)


WRITE CYCLE NO. 2
(Chip Select Controlled)


## CACHE DATA STATIC RAM

## FEATURES

- Operates as two $4 \mathrm{~K} \times 18$ SRAMs with common addresses and data; also configurable as a single 8K x 18 SRAM
- Built-in input address latches (A0-A12)
- Separate upper and lower Byte Select
- Fast access times: 20ns, 25 ns and 35 ns allow operation with 40,33 and 25 MHz microprocessor systems
- Fast Output Enable: 8ns
- Directly interfaces with the Intel 82385 cache controller as well as other 80386 and 80486 cache memory controllers
- Parity bits provided for large cache applications such as secondary cache for the Intel 80486 microprocessors


## OPTIONS

- Timing

20 ns access ( 40 MHz )
MARKING

25 ns access ( 33 MHz )
-20

35 ns access ( 25 MHz )

- Packages

52-pin PLCC
52-pin PQFP
EJ
LG

## GENERAL DESCRIPTION

The MT56C3818 is one of a family of fast SRAM cache memories. It employs a high-speed, low-power design using a four-transistor memory cell. It is fabricated using double-layer polysilicon, double-layer metal CMOS technology.

The MT56C3818 is a highly integrated cache data memory building block. It easily interfaces with cache controllers for the Intel 80386 in either the DIRECT MAPPED or TWO-WAY SET ASSOCIATIVE mode. A mode control pin (MODE) determines the configuration of the memory. When this pin is held LOW, the device functions as an 8 K -word by 18 -bit SRAM. When the mode pin is HIGH, the device is configured as a dual 4 K -word by 18 -bit SRAM.

Input addresses are latched in the on-chip register on the negative edge of the CALEN signal. This register is functionally equivalent to a 74LS373.

The memory functions are controlled by the chip select $(\overline{\mathrm{CE}}, \overline{\mathrm{CS} 0}$ and $\overline{\mathrm{CS1}})$, output enable $(\overline{\mathrm{COEA}}$ and $\overline{\mathrm{COEB}})$ and write enable ( $\overline{C W E A}$ and $\overline{\mathrm{CWEB}}$ ) signals.

## DUAL 4K x 18 SRAM, SINGLE 8K x 18 SRAM CONFIGURABLE CACHE DATA SRAM

## FUNCTIONAL BLOCK DIAGRAM

DUAL 4K x 18
(TWO-WAY SET ASSOCIATIVE)


FUNCTIONAL BLOCK DIAGRAM
8K x 18
(DIRECT MAP)


## PIN DESCRIPTIONS

| PLCC PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 8,7,6,5,4,3,2, \\ & 51,50,49,48,47 \end{aligned}$ | A0-A11 | Input | Address Inputs: These inputs are clocked by CALEN and stored in a latch. |
| 46 | A12 | Input | Address Input: This input is the high order address bit in the direct $8 \mathrm{~K} \times 18$ configuration. It is not used in the dual $4 \mathrm{~K} \times 18$ configuration. This input is latched by the negative edge of CALEN. |
| 52 | CALEN | Input | Address Latch Enable: When CALEN is HIGH, the latch is transparent. The negative edge latches the current address inputs (A0-A12). |
| 31 | MODE | Input | Mode Select: This controls the device configuration. When this pin is tied HIGH, the device is in the dual $4 \mathrm{~K} \times 18$ configuration. When the pin is tied LOW, the device is configured as an $8 \mathrm{~K} \times 18$ SRAM. |
| 23,30 | $\overline{\mathrm{CSO}}, \overline{\mathrm{CS1}}$ | Input | Chip Selects: These signals are used to select the upper and lower bytes for both READ and WRITE operations. When CSO is LOW, DQ1-DQ8 and DQP1 are enabled. When $\overline{\mathrm{CS} 1}$ is LOW, DQ9-DQ16 and DQP2 are enabled. |
| 45 | $\overline{\mathrm{CE}}$ | Input | Chip Enable: When $\overline{\mathrm{CE}}$ is LOW, the device is enabled. It is a global control signal that activates both bank $A$ and bank $B$ for READ or WRITE operations. |
| 28, 29 | COEA, $\overline{\text { COEB }}$ | Input | Output Enable: In the dual configuration the signal that is LOW enables bank A or B. Simultaneous LOW assertion will deselect both banks. In the direct mode, these signals should be externally connected, and, when asserted LOW, allow A12 to determine which memory bank is enabled. Alternately, $\overline{\text { COEA }}$ or $\overline{\text { COEB }}$ can be tied LOW externally, allowing the other signal to control the outputs. |
| 25, 24 | CWEA, CWEB | Input | Write Enable: In the dual configuration the signal that is LOW enables a data write to the addressed memory location. In the direct mode, these signals should be externally connected, and, when asserted LOW, allow A12 to determine which memory bank is written. Alternately, CWEA or CWEB can be tied LOW externally, allowing the other signal to control the write function. |
| $\begin{gathered} 11,12,13,14,16 \\ 17,18,19,35,36,37 \\ 38,40,41,42,43 \end{gathered}$ | DQ1-DQ16 | Input/ Output | SRAM Data I/O: lower byte is DQ1-DQ8; upper byte is DQ9DQ16. |
| 20,34 | $\begin{aligned} & \hline \text { DQP1 } \\ & \text { DQP2 } \end{aligned}$ | Input/ Output | Parity Data I/O: DQP1 is the parity bit for the lower byte. DQP2 is the parity bit for the upper byte. |
| 1, 21, 22, 32, 33, | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 5 \%$ |
| 9, 10, 15, 26, 27, 39, 44 | Vss | Supply | Ground: GND |

## PRELIMINARY

## MT56C3818

## TRUTH TABLE

DUAL 4K x 18 (MODE PIN = HIGH)

| OPERATION | $\overline{\text { CE }}$ | $\overline{\text { CSO }}$ | $\overline{\text { CS1 }}$ | $\overline{\text { COEA }}$ | COEB | CWEA | CWEB |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Outputs High-Z, WRITE disabled | H | X | X | X | X | X | X |
| Outputs High-Z, WRITE disabled | X | H | H | X | X | X | X |
| Outputs High-Z | X | X | X | H | H | X | X |
| Outputs High-Z | X | X | X | L | L | X | X |
| READD DQ1 - DQ8,DQP1 bank A | L | L | H | L | H | H | H |
| READD DQ1 - DQ8, DQP1 bank B | L | L | H | H | L | H | H |
| READ DQ9 - DQ16, DQP2 bank A | H | L | L | H | H | H |  |
| READ DQ9 - DQ16, DQP2 bank B | L | H | L | H | L | H | H |
| READ DQ1 - DQ16, DQP1, DQP2 bank A | L | L | L | L | H | H | H |
| READ DQ1 - DQ16, DQP1, DQP2 bank B | L | L | L | H | L | H | H |
| WRITE DQ1 - DQ8, DQP1 bank A | L | L | H | X | X | L | H |
| WRITE DQ1 - DQ8, DQP1 bank B | L | L | H | X | X | H | L |
| WRITE DQ9 - DQ16, DQP2 bank A | L | H | L | X | X | L | H |
| WRITE DQ9 - DQ16, DQP2 bank B | L | H | L | X | X | H | L |
| WRITE DQ1 - DQ16, DQP1, DQP2 bank A | L | L | L | X | X | L | H |
| WRITE DQ1 - DQ16, DQP1, DQP2 bank B | L | L | L | X | X | H | L |
| WRITE DQ1 - DQ8, DQP1 bank A \& B | L | L | H | X | X | L | L |
| WRITE DQ9 - DQ16, DQP2 bank A \& B | L | H | L | X | X | L | L |
| WRITE DQ1 - DQ16, DQP1, DQP2 bank A \& B | L | L | L | X | X | L | L |

NOTE: $\overline{\mathrm{CE}}$, when taken inactive while $\overline{\mathrm{CWEA}}$ or $\overline{\mathrm{CWEB}}$ remain active, allows a chip-enable-controlled WRITE to be performed.

## TRUTH TABLE

$8 \mathrm{~K} \times 18$ (MODE PIN = LOW)

| OPERATION | CE | CSO | CS1 | COEA | COEB | CWEA | CWEB |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Outputs High-Z, WRITE disabled | H | X | X | X | X | X | X |
| Outputs High-Z, WRITE disabled | X | H | H | X | X | X | X |
| Outputs High-Z | X | X | X | H | H | X | X |
| READ DQ1 - DQ8, DQP1 | L | L | H | L | L | H | H |
| READ DQ9 - DQ16, DQP2 | L | H | L | L | L | H | H |
| READ DQ1 - DQ16, DQP1, DQP2 | L | L | L | L | L | H | H |
| WRITE DQ1 - DQ8, DQP1 | L | L | H | X | X | L | L |
| WRITE DQ9 - DQ16, DQP2 | L | H | L | X | X | L | L |
| WRITE DQ1 - DQ16, DQP1, DQP2 | L | L | L | X | X | L | L |

NOTE: $\overline{\mathrm{CE}}$, when taken inactive while $\overline{\mathrm{CWEA}}$ and $\overline{\mathrm{CWEB}}$ remain active, allows a chip-enable-controlled WRITE to be performed.
$\overline{C O E A}$ and $\overline{C O E B}$ must both be LOW to enable outputs. However, one signal can be tied LOW externally, allowing the other signal to control the outputs. Similarly CWEA and CWEB must both be LOW to enable a WRITE cycle. Either CWEA or CWEB can be tied LOW externally, allowing the other signal to control the WRITE function.

## ABSOLUTE MAXIMUM RATINGS*


*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Voltage |  | Vcc | 4.75 | 5.25 | V |  |
| Input High Voltage |  | VIH | 2.2 | $\mathrm{Vcc}+0.3$ | V | 1 |
| Input Low Voltage |  | VIL | -0.3 | 0.8 | V | 1,2 |
| Input Leakage Current | $\mathrm{VIN}=\mathrm{GND}$ to Vcc | ILI | -10 | 10 | $\mu \mathrm{~A}$ |  |
| Output Leakage Current | $\mathrm{V} / \mathrm{O}=\mathrm{GND}$ to Vcc <br> Output(s) Disabled | ILo | -10 | 10 | $\mu \mathrm{~A}$ |  |
| Output Low Voltage | $\mathrm{IoL}=4.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |
| Output High Voltage | $\mathrm{IOH}=-1.0 \mathrm{~mA}$ | VoH | 2.4 |  | V | 1 |


| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Current: <br> Average Operating Current | $100 \%$ Duty cycle <br> VIN $=$ GND to Vcc | Icc1 |  | 220 | mA |  |
| Power Supply Current: <br> Average Operating Current | $50 \%$ Duty cycle <br> VIN $=$ GND to Vcc | Icc2 |  | 120 | mA |  |
| Power Supply Current: <br> CMOS Standby | $\overline{\mathrm{CSO}=\overline{\mathrm{CST}} \geq \text { Vcc -0.2V }}$Vcc $=$ MAX <br> VI $\leq$ Vss +0.2 V <br> VIH $\geq$ Vcc -0.2 V | IsB |  | 20 | mA |  |

CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | CIN |  | 6 | pF | 3 |
|  | Output Capacitance | $\mathrm{Vcc}=5 \mathrm{~V}$ | $\mathrm{CI} / \mathrm{o}$ |  | 6 | pF |
|  |  |  |  |  |  |  |

## PQFP THERMAL CONSIDERATIONS

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Thermal resistance - Junction to Ambient | Still Air | ${ }^{\text {JA }}$ |  | 100 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |
| Thermal resistance - Junction to Case |  | $\emptyset_{J C}$ |  | 45 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |  |
| Maximum Case Temperature |  | Tc |  | 110 | ${ }^{\circ} \mathrm{C}$ |  |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 5 \%\right)$

| DESCRIPTION |  | -20 |  | -25 |  | -35 |  | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | SYM | MIN | MAX | MIN | MAX | MIN | MAX |  |  |
| READ Cycle |  |  |  |  |  |  |  |  |  |
| READ cycle time | ${ }^{\text {tRC }}$ | 20 |  | 25 |  | 35 |  | ns | 4,5 |
| Address access time (A0-A12) | ${ }^{\text {t }}$ A |  | 20 |  | 25 |  | 35 | ns |  |
| Chip Enable access time | ${ }^{\text {t }}$ ACE |  | 20 |  | 20 |  | 25 | ns |  |
| Chip Select access time | ${ }^{\text {t }}$ ACS |  | 20 |  | 25 |  | 35 | ns |  |
| Output Enable access time | ${ }^{\text {t }}$ AOE |  | 8 |  | 10 |  | 13 | ns |  |
| Output hold from address change | ${ }^{\text {toH }}$ | 3 |  | 3 |  | 3 |  | ns |  |
| Chip Select to output Low-Z | tLZCS | 3 |  | 3 |  | 3 |  | ns |  |
| Output Enable to output Low-Z | tLZOE | 2 |  | 2 |  | 2 |  | ns |  |
| Chip deselect to output High-Z | thZCS |  | 15 |  | 15 |  | 25 | ns | 6 |
| Output disable to output High-Z | ${ }^{\text {t }} \mathrm{HZOE}$ |  | 10 |  | 10 |  | 14 | ns | 6 |
| Address latch enable pulse width | ${ }^{\text {t CALEN }}$ | 8 |  | 8 |  | 10 |  | ns |  |
| Address setup to latch LOW | ${ }^{\text {t }}$ ASL | 4 |  | 4 |  | 6 |  | ns |  |
| Address hold from latch LOW | ${ }^{\text {t }}$ AHL | 5 |  | 5 |  | 5 |  | ns |  |
| WRITE Cycle |  |  |  |  |  |  |  |  |  |
| WRITE cycle time | ${ }^{\text {t }}$ WC | 20 |  | 25 |  | 35 |  | ns |  |
| Address valid to end of write | ${ }^{\text {t }}$ AW | 15 |  | 18 |  | 25 |  | ns |  |
| Chip Select to end of write | ${ }^{\text {t }} \mathrm{CW}$ | 15 |  | 18 |  | 25 |  | ns |  |
| Data valid to end of write | tDW | 10 |  | 10 |  | 10 |  | ns |  |
| Data hold from end of write | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | ns |  |
| Write Enable output in High-Z | tHZWE |  | 12 |  | 15 |  | 15 | ns | 6 |
| Write disable to output in Low-Z | t LZWE | 3 |  | 3 |  | 3 |  | ns |  |
| Write pulse width | ${ }^{\text {t }}$ WP | 15 |  | 18 |  | 25 |  | ns |  |
| $\overline{\text { CE pulse width (during Chip Enable controlled write) }}$ | ${ }^{t} \mathrm{CP}$ | 15 |  | 18 |  | 25 |  | ns |  |
| Address setup time | ${ }^{\text {t }}$ AS | 0 |  | 0 |  | 0 |  | ns |  |
| Write recovery time | tWR | 0 |  | 0 |  | 0 |  | ns |  |
| Address latch enable pulse width | ${ }^{\text {t CALEN }}$ | 8 |  | 8 |  | 10 |  | ns |  |
| Address setup to latch LOW | ${ }^{\text {t }}$ ASL | 4 |  | 4 |  | 6 |  | ns |  |
| Address hold from latch LOW | ${ }^{\text {t }}$ AHL | 5 |  | 5 |  | 5 |  | ns |  |

## AC TEST CONDITIONS

## Input pulse levels

$\qquad$ Vss to 3.0 V
Input rise and fall times. .3ns
Input timing reference levels ..............................1.5V
Output reference levels 1.5 V

Output load .................................See Figures 1 and 2

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. This parameter is sampled.
4. $\overline{\text { CWE is HIGH for a READ cycle. }}$


Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT
5. All READ cycle timings are referenced from the last valid address to the first transitioning address.
6. ${ }^{\mathrm{t}} \mathrm{HZCS}, \mathrm{t} \mathrm{HZOE}$, and ${ }^{\mathrm{t}} \mathrm{HZWE}$ are specified with $\mathrm{CL}=$ 5 pF as in Fig. 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.

READ CYCLE NO. 1
(Address Controlled)
$\overline{\mathrm{CWEA}}=\overline{\mathrm{CWEB}}=\mathrm{VIH}_{\mathrm{I}} ; \overline{\mathrm{COEA}}$ and/or $\overline{\mathrm{COEB}}=\mathrm{VIL}$


READ CYCLE NO. 2
(CALEN Controlled)
$\overline{\mathrm{CWEA}}=\overline{\mathrm{CWEB}}=\mathrm{V} \boldsymbol{\mathrm { H }} ; \overline{\mathrm{COEA}}$ and/or $\overline{\mathrm{COEB}}=\mathrm{VIL}$


READ CYCLE NO. 3
$\overline{\mathrm{CWEA}}=\overline{\mathrm{CWEB}}=\mathrm{V}_{\mathrm{IH}}$


V/A don't care
UNDEFINED

## CACHE DATA SRAM

## WRITE CYCLE NO. 1 (Write Enable Controlled)



WRITE CYCLE NO. 2
(Chip Select Controlled)


## MICAON

DYNAMIC RAMS1
DRAM MODULES2
MULTIPORT DRAMS ..... 3
STATIC RAMS ..... 4
SYNCHRONOUS SRAMS ..... 5
SRAM MODULES6
CACHE DATA SRAMS ..... 7
FIFO MEMORIES ..... 8
APPLICATION/TECHNICAL INFORMATION ..... 9
MILITARY INFORMATION ..... 10
PACKAGE INFORMATION ..... 11
SALES INFORMATION ..... 12

## FIFO PRODUCT SELECTION GUIDE

| Memory Configuration | Control Functions | Part Number | Cycle <br> Time (ns) | Package and Number of Pins |  |  |  |  | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | PDIP | CDIP | LCC | PLCC | SOJ |  |
| $512 \times 9$ | E | MT52C9005 | 15, 20, 25, 35 | 28 | 28 | 32 | 32 | 28 | 8-1 |
| $512 \times 9$ | PF, E | MT52C9007 | 15, 20, 25, 35 | 28 | 28 | 32 | 32 | 28 | 8-13 |
| $1 \mathrm{~K} \times 9$ | E | MT52C9010 | 15, 20, 25, 35 | 28 | 28 | 32 | 32 | 28 | 8-29 |
| 1K x 9 | PF, E | MT52C9012 | 15, 20, 25, 35 | 28 | 28 | 32 | 32 | 28 | 8-41 |
| 2K x 9 | E | MT52C9020 | 15, 20, 25, 35 | 28 | 28 | 32 | 32 | 28 | 8-57 |
| 2K x 9 | PF, E | MT52C9022 | 15, 20, 25, 35 | 28 | 28 | 32 | 32 | 28 | 8-69 |

E = Expandable Depth and Width, PF = Programmable Flag

## FIFO

## $512 \times 9$ FIFO

## FEATURES

- Very high speed: 15, 20, 25 and 35 ns access
- High-performance, low-power CMOS process
- Single $+5 \mathrm{~V} \pm 10 \%$ supply
- Low power: 5 mW typ. (standby); 350mW typ. (active)
- TTL compatible inputs and outputs
- Asynchronous READ and WRITE
- Empty, Half-Full and Full Flags
- Half-full flag in STAND ALONE mode
- Auto-retransmit capability
- Fully expandable by width and depth
- Pin and function compatible with higher density standard FIFOs


## OPTIONS

- Timing

15 ns access time $\quad-15$
20ns access time
25ns access time -25
35ns access time -35

- Packages

Plastic DIP ( 300 mil )
Plastic DIP ( 600 mil )
Ceramic DIP ( 600 mil )
PLCC
Ceramic LCC
SOJ (300 mil)
-20
MARKING
None
W
C
EJ
EC
DJ
flag is asserted, further reads are inhibited and the outputs remain in a high-impedance state. Expansion out, expansion in, and first load pins are provided to expand the depth of the FIFO memory array, with no performance degradation. A retransmit pin allows data to be re-sent on the receiver's request when the FIFO is in the STAND ALONE mode.

The depth and/or width of the FIFO can be expanded by cascading multiple devices. Also, the MT52C9005 is speed, function and pin compatible with higher density FIFOs from Micron. This upward compatibility with 1 K and 2 K FIFOs provides a single-chip, depth-expansion solution.

## PIN ASSIGNMENT (Top View) 28L DIP (A-9, B-9) 28L SOJ (E-8)

32L LCC (F-4)

32L PLCC
(D-2)



## GENERAL DESCRIPTION

The Micron FIFO family employs high-speed,low-power CMOS designs using a true dual port, six-transistor memory cell with resistor loads.
These devices are written and read in a first-in-first-out (FIFO) sequence. Dual read and write pointers handle the internal addressing, so no external address generation is required. Information can be written to and read from the FIFO asynchronously and independently at the input and output ports. This allows information to be transferred independently in and out of the FIFO at varying data rates. Visibility of the memory volume is given through empty, half-full and full flags. While the full flag is asserted, attempted writes are inhibited. Likewise, while the empty

## FUNCTIONAL BLOCK DIAGRAM



## PIN DESCRIPTIONS

| LCC PIN NUMBER(S) | DIP PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| 25 | 22 | $\overline{\text { RS }}$ | Input | Reset: Taking $\overline{\mathrm{RS}}$ LOW will reset the FIFO by initializing the read and write pointers and all flags. After the device is powered up, it must be reset before any writes can take place. |
| 2 | 1 | W | Input | Write Strobe: $\bar{W}$ is taken LOW to write data from the input port (D1-D9) into the FIFO memory array. |
| 18 | 15 | $\overline{\mathrm{R}}$ | Input | Read Strobe: $\overline{\mathrm{R}}$ is taken LOW to read data from the FIFO memory array to the output port (Q1-Q9). |
| 8 | 7 | $\overline{\text { XI }}$ | Input | Expansion In: This pin is used for DEPTH EXPANSION mode. In SINGLE DEVICE mode, it should be grounded. In EXPANDED mode, it should be connected to Expansion-Out (XO) of the previous device in the daisy chain. |
| 26 | 23 | FL/RT | Input | First Load: Acts as first load signal in DEPTH EXPANSION mode. FL, if low, will enable the device as the first to be loaded (enables read and write pointers). <br> $\overline{\text { FL should be tied LOW for the first FIFO in the chain, tied HIGH }}$ for all other FIFOs in the chain. <br> Retransmit: Acts as retransmit signal in STAND ALONE mode. $\overline{\mathrm{RT}}$ is used to enable the RETRANSMIT cycle. When taken LOW, $\overline{\mathrm{RT}}$ resets the read pointer to the first data location and the FIFO is then ready to retransmit data on the following READ operation(s). The flags will be affected according to specific data conditions. |
| $\begin{aligned} & 7,6,5,4,31, \\ & 30,29,28,3 \end{aligned}$ | $\begin{aligned} & 6,5,4,3,27 \\ & 26,25,24,2 \\ & \hline \end{aligned}$ | D1-D9 | Input | Data Inputs |
| 24 | 21 | $\overline{\mathrm{EF}}$ | Output | Empty Flag: Indicates empty FIFO memory when LOW, inhibiting further READ cycles. |
| 9 | 8 | FF | Output | Full Flag: Indicates full FIFO memory when LOW, inhibiting further WRITE cycles. |
| 23 | 20 | $\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$ | Output | Expansion Out: Acts as expansion out pin in DEPTH EXPANSION mode. XO will pulse LOW on the last physical WRITE or the last physical READ. $\overline{\text { XO }}$ should be connected to $\overline{\mathrm{XI}}$ of the next FIFO in the daisy chain. <br> Half-full Flag: Acts as Half Full Flag in STAND ALONE mode. $\overline{\mathrm{FF}}$ goes LOW when the FIFO becomes more than Half-full; will stay LOW until the FIFO becomes Half-full or less. |
| $\begin{array}{r} 10,11,13,14, \\ 19,20,21,22,15 \\ \hline \end{array}$ | $\begin{array}{\|c} 9,10,11,12,16 \\ 17,18,19,13 \\ \hline \end{array}$ | Q1-Q9 | Output | Data Output: Output or high impedance. |
| 32 | 28 | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 16 | 14 | Vss | Supply | Ground |

## FUNCTIONAL DESCRIPTION

The MT52C9005 uses a dual port SRAM memory cell array with separate read and write pointers. This results in a flexible length FIFO buffer memory, with independent, asynchronous READ and WRITE capabilities and with no fall-through or bubble-through time constraints.

## Note: For dual function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing the half-full flag the $\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$ pin will be shown as $(\overline{\mathrm{XO}}) / \overline{H F}$.

## RESET

After Vcc is stable, RESET ( $\overline{\mathrm{RS}}$ ) must be taken LOW to initialize the read and write pointers and flags. During the reset pulse, the state of the $\overline{\mathrm{XI}}$ pin will determine if the FIFO will operate in the STAND ALONE or DEPTH EXPANSION mode. The STAND ALONE mode is entered if $\overline{\mathrm{XI}}$ is LOW. If $\overline{\mathrm{XI}}$ is connected to $\overline{\mathrm{XO}}$ of another FIFO, the DEPTH EXPANSION mode is selected.

## WRITING THE FIFO

Data is written into the FIFO when the writestrobe $(\overline{\mathrm{W}})$ pin is taken LOW, while $\overline{\mathrm{FF}}$ is HIGH. The WRITE cycle is initiated by the falling edge of $\bar{W}$ and data on the D1-D9 pins are latched on the rising edge. If the location to be written is the last empty location in the FIFO, the $\overline{\mathrm{FF}}$ will be asserted (LOW) after the falling edge of $\overline{\mathrm{W}}$. While $\overline{\mathrm{FF}}$ is LOW, any attempted writes will be inhibited, with no loss of data already stored in the FIFO. When a device is used in the STAND ALONE mode, $(\overline{\mathrm{XO}}) / \overline{\mathrm{HF}}$ is asserted when the half-full-plus-one location ( $512 / 2+1$ ) is written. It will stay asserted until the FIFO becomes half-full or less. The first WRITE to an empty FIFO will cause $\overline{\mathrm{EF}}$ to go HIGH after the rising edge of $\bar{W}$. When operating in the DEPTH EXPANSION mode, the last location write to a FIFO will cause $\overline{\mathrm{XO}} /$ $(\overline{\mathrm{H}})$ to pulse LOW. This will enable writes to the next FIFO in the chain.

## READING THE FIFO

Information is read from the FIFO when the read strobe $(\overline{\mathrm{R}})$ pin is taken LOW and theFIFO is notempty ( $\overline{\mathrm{EF}}$ is HIGH). The data-out (Q1-Q9) pins will go active (Low-Z) ${ }^{\text {t RLZ }}$ after the falling edge of $\bar{R}$ and valid data will appear ${ }^{t} A$ after the falling edge of $\bar{R}$. After the last available data word is read, $\overline{\mathrm{EF}}$ will go LOW upon the falling edge of $\overline{\mathrm{R}}$. While $\overline{\mathrm{EF}}$ is asserted LOW, any attempted reads will be inhibited and the outputs will stay inactive (High-Z). When the FIFO is being used in the SINGLE DEVICE mode and the half-full-plus-one location is read, $(\overline{\mathrm{XO}}) / \overline{\mathrm{HF}}$ will go HIGH after the rising edge of $\overline{\mathrm{R}}$. When the FIFO is full ( $\overline{\mathrm{FF}} \mathrm{LOW}$ ) and a read is initiated, $\overline{\mathrm{FF}}$ will goHIGH after the rising edge of $\overline{\mathrm{R}}$. When operating in the EXPANDED mode, the last location read to a FIFO will cause $\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$ to pulse LOW. This will enable further reads from the next FIFO in the chain.

## RETRANSMIT

In the STAND ALONE mode, the MT52C9005 allows the receiving device to request that the data read earlier from the FIFO to be repeated, when less than 512 writes have been performed between resets. When the $(\overline{\mathrm{FL}}) / \overline{\mathrm{RT}}$ pin is taken LOW, the read pointer is reset to the first location while the write pointer is not affected. The receiver may again start reading the data from the beginning of the FIFO tRTR after $(\overline{\mathrm{FL}}) / \overline{\mathrm{RT}}$ is taken HIGH. The empty, half-full and full flags will be affected as specified for the data volume.

## DATA FLOW-THROUGH

Data flow-through is a method of writing and reading the FIFO at its full and empty boundaries, respectively. By holding $\bar{W}$ LOW when the FIFO is full, a WRITE can be initiated from the next ensuing READ pulse. This is referred to as a FLOW-THROUGH WRITE. FLOW-THROUGH WRITEs are initiated from the rising edge of $\overline{\mathrm{R}}$. When the FIFO is empty, a FLOW-THROUGH READ can be done by holding $\overline{\mathrm{R}}$ LOW and letting the next WRITE initiate the READ. FLOW-THROUGH READs are initiated from the rising edge of $\bar{W}$ and access time is measured from the rising edge of $\overline{\mathrm{EF}}$.


Figure 1
DEPTH EXPANSION

## WIDTH EXPANSION

The FIFO word width can be expanded, in increments of 9 bits, using either the stand alone or groups of expandeddepth mode FIFOs. Expanded-width operation is achieved by tying devices together with all control lines ( $\bar{W}, \bar{R}$, etc.) in common. The flags are monitored from one device or one expanded-depth group (Figure 1) when expanding depth and width.

## DEPTH EXPANSION

Multiple MT52C9005s may be cascaded to expand the depth of the FIFO buffer. Three pins are used to expand the memory depth, $\overline{\mathrm{XI}}, \overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ and $\overline{\mathrm{FL}} /(\overline{\mathrm{RT}})$. Figure 1 illustrates a typical three-device expansion. The DEPTH EXPANSION mode is entered during a RESET cycle, by tying the $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ pin of each device to the $\overline{\mathrm{XI}}$ pin of the next device in the chain. The first device to be loaded will have its $\overline{\mathrm{FL}} /(\overline{\mathrm{RT}})$ pin grounded. The remaining devices in the chain will have $\overline{\mathrm{FL}} /(\overline{\mathrm{RT}})$ tied HIGH. During RESET cycle, $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ of each device is held HIGH, disabling reads and
writes to all FIFOs, except the first load device. When the last physical location of the first device is written, the $\overline{\mathrm{XO}} /$ $(\overline{\mathrm{HF}})$ pin will pulse LOW on the falling edge of $\bar{W}$. This will "pass" the write pointer to the next device in the chain, enabling writes to that device and disabling writes to the first MT52C9005. The writes will continue to go to the second device until last location WRITE. Then it will "pass" the write pointer to the third device.

The full condition of the entire FIFO array is signaled by "OR-ing" all the $\overline{\mathrm{FF}}$ pins. On the last physical READ of the first device, its $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ will pulse again. On the falling edge of $\bar{R}$, the read pointer is "passed" to the second device. The read pointer will, in effect, "chase" the write pointer through the extended FIFO array. The read pointer never overtakes the write pointer. An empty condition is signaled by OR-ing all of the $\overline{\mathrm{EF}}$ pins. This inhibits further reads. While in the DEPTH EXPANSION mode, the half-full flag and retransmit functions are not available.

## TRUTH TABLE 1

SINGLE-DEVICE CONFIGURATION/WIDTH-EXPANSION Mode

| MODE | INPUTS |  |  | INTERNAL STATUS |  |  | OUTPUTS |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{R S}$ | $\mathbf{R T}$ | $\mathbf{X I}$ | Read Pointer | Write Pointer | $\mathbf{E F}$ | $\mathbf{F F}$ | $\mathbf{H F}$ |  |
| RESET | 0 | X | 0 | Location Zero | Location Zero | 0 | 1 | 1 |  |
| RETRANSMIT | 1 | 0 | 0 | Location Zero | Unchanged | 1 | X | X |  |
| READ/WRITE | 1 | 1 | 0 | Increment (1) | Increment (1) | X | X | X |  |

NOTE: 1. Pointer will increment if flag is HIGH.

## TRUTH TABLE 2

DEPTH-EXPANSION/COMPOUND-EXPANSION Mode

| MODE | INPUTS |  |  | INTERNAL STATUS |  | OUTPUTS |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\text { RS }}$ | $\overline{\mathrm{FL}}$ | $\overline{\mathbf{X I}}$ | Read Pointer | Write Pointer | $\mathbf{E F}$ | $\mathbf{F F}$ |
| RESET <br> First Device | 0 | 0 | $(1)$ | Location Zero | Location Zero | 0 | 1 |
| RESET <br> All other Devices | 0 | 1 | $(1)$ | Location Zero | Location Zero | 0 | 1 |
| READ/WRITE | 1 | X | (1) | X | X | X | X |

NOTE: 1. XI is connected to $\overline{X O}$ of previous device.
$\overline{\mathrm{RS}}=$ Reset Input, $\overline{\mathrm{FL} / R T} / \mathrm{DIR}=$ First Load/Retransmit, $\overline{\mathrm{EF}}=$ Empty Flag Output, $\overline{\mathrm{FF}}=$ Full Flag Output, $\overline{\mathrm{XI}}=$ Expansion Input, $\overline{\mathrm{HF}}=$ Half Full Flag Output.

## MT52C9005

ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc supply relative to Vss
$\qquad$ -0.5 V to +7.0 V
Operating Temperature $\mathrm{T}_{\mathrm{A}}$ (ambient) $\qquad$ $.0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) .................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation1W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.0 | Vcc +1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL $^{2}$ | -0.5 | 0.8 | V | 1,2 |

## DC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Current: Operating | $\bar{W}, \bar{R} \leq V_{\text {IL }} ; V_{c c}=$ MAX Outputs Open | Icc |  | 100 | mA | 3 |
|  | W, $\overline{\mathrm{R}} \geq \mathrm{V}$ ін; $\mathrm{Vcc}=\mathrm{MAX}$ | Isb1 |  | 15 | mA |  |
| Power Supply Current: Standby | $\begin{gathered} \overline{\mathrm{W}}, \overline{\mathrm{R}} \geq \mathrm{VCc}_{\mathrm{Cc}}-0.2 ; \mathrm{Vcc}^{2}=\mathrm{MAX} \\ \mathrm{VIL}^{\leq} \mathrm{Vss}+0.2, \\ \mathrm{VIH}^{2} \geq \mathrm{Vcc}-0.2 ; \mathrm{f}=0 \end{gathered}$ | IsB2 |  | 5 | mA |  |
| Input Leakage Current | $\mathrm{OV} \leq \mathrm{Vin} \leq \mathrm{Vcc}$ | 1 LI | -10 | 10 | $\mu \mathrm{A}$ |  |
| Output Leakage Current | Output(s) Disabled, OV $\leq$ Vout $\leq \mathrm{Vcc}$ | ILo | -10 | 10 | $\mu \mathrm{A}$ |  |
| Output High Voltage | $\mathrm{loH}=-2.0 \mathrm{~mA}$ | Vor | 2.4 |  | V | 1 |
| Output Low Voltage | $\mathrm{loL}=8.0 \mathrm{~mA}$ | Vol |  | 0.4 | V | 1 |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathfrak{f}=1 \mathrm{MHz}$ | $\mathrm{Cl}_{\mathrm{I}}$ |  | 8 | pF | 4 |
|  | $\mathrm{Vcc}=5 \mathrm{~V}$ | Co |  | 8 | pF | 4 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -15 |  | -20 |  | -25 |  | -35 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Shift Frequency | Fs |  | 40 |  | 33.3 |  | 28.5 |  | 22.2 | MHz |  |
| Access time | ${ }^{\text {t }}$ A |  | 15 |  | 20 |  | 25 |  | 35 | ns |  |
| Read cycle time | ${ }^{\text {tRC }}$ | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Read command recovery time | tRR | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| Read command pulse width | tRPW | 15 |  | 20 |  | 25 |  | 35 |  | ns | 6 |
| Read LOW to Low-Z | ${ }^{\text {tr }}$ LZ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Read to HIGH to High-Z | ${ }^{\text {t }} \mathrm{HHZ}$ |  | 15 |  | 15 |  | 18 |  | 20 | ns |  |
| Data hold from $\overline{\mathrm{R}}$ HIGH | ${ }^{\text {t }} \mathrm{OH}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Write cycle time | ${ }^{\text {tWC }}$ | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Write command pulse width | tWPW | 15 |  | 20 |  | 25 |  | 35 |  | ns | 6 |
| Write command recovery time | tWR | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| Write HIGH to Low-Z | tWLZ | 5 |  | 5 |  | 5 |  | 5 |  | ns | 5 |
| Data setup time | ${ }^{\text {t }}$ DS | 10 |  | 12 |  | 15 |  | 20 |  | ns |  |
| Data hold time | ${ }^{\text {t }}$ D H | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Reset cycle time | ${ }^{\text {tRSC }}$ | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Reset pulse width | ${ }^{\text {tRSP }}$ | 15 |  | 20 |  | 25 |  | 35 |  | ns | 6 |
| Reset recovery time | ${ }^{\text {tRSR}}$ | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| Read HIGH to Reset HIGH | ${ }^{\text {tRRS }}$ | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Write HIGH to Reset HIGH | tWRS | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Retransmit cycle time | ${ }^{\text {tRTC }}$ | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Retransmit pulse width | ${ }^{\text {tR }}$ T | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Retransmit recovery time | ${ }^{\text {tRTR }}$ | 10 |  | 10 |  | 10 |  | 12 |  | ns |  |
| Retransmit setup time | ${ }^{\text {tRTS }}$ | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Reset to EF LOW | tEFL |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Reset to $\overline{\text { HF FF HIGH }}$ | ${ }^{\text {thFH, }}{ }^{\text {t }}$, ${ }^{\text {che }}$ |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Read LOW to EF LOW | ${ }^{\text {tREF }}$ |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| Read HIGH to FF HIGH | tRFF |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| Write LOW to FF LOW | tWFF |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| Write HIGH to EF HIGH | tWEF |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| Write LOW to $\overline{\text { HF }}$ LOW | tWHF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Read HIGH to HF HIGH | trHF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Read pulse after EF HIGH | tRPE | 15 |  | 20 |  | 25 |  | 35 |  | ns | 5 |
| Write pulse width after $\overline{\mathrm{FF}}$ HIGH | tWPF | 15 |  | 20 |  | 25 |  | 35 |  | ns | 5 |
| Read/Write to $\overline{\mathrm{XO}}$ LOW | ${ }^{\text {t }}$ XOL |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| Read/Write to $\overline{\mathrm{XO}} \mathrm{HIGH}$ | ${ }^{\text {t }} \mathrm{XOH}$ |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| $\overline{\text { XI pulse width }}$ | ${ }^{\text {t }}$ IP | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| $\overline{\mathrm{XI}}$ setup Time | ${ }^{\text {t }}$ IIS | 10 |  | 12 |  | 15 |  | 15 |  | ns |  |
| $\overline{\text { XI recovery time }}$ | ${ }^{\text {t }}$ IR | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Flow-through mode only.
6. Pulse widths less than minimum are not allowed.

## AC TEST CONDITIONS

| Input pulse level .................................... 0 to 3.0V |  |
| :---: | :---: |
| Input rise and fall times |  |
| Input timing reference | V |
| Output reference | ...1.5V |
| Output load | Figure 2 |



Fig. 2
OUTPUT LOAD EQUIVALENT

RESET


ASYNCHRONOUS READ AND WRITE


UNDEFINED

## EMPTY FLAG



FULL FLAG


HALF-FULL FLAG


## EXPANSION MODE ( $\overline{\mathbf{X O}})$



NOTE: $\overline{\mathrm{XO}}$ of the Device 1 is connected to $\overline{\mathrm{XI}}$ of Device 2.

## EXPANSION MODE (到)




WRITE FLOW-THROUGH


READ FLOW-THROUGH

D1-D9


## FIFO

## $512 \times 9$ FIFO WITH PROGRAMMABLE FLAGS

## FEATURES

- Very high speed: 15, 20, 25 and 35ns access
- High-performance, low-power CMOS process
- Single $+5 \mathrm{~V} \pm 10 \%$ supply
- Low power: 5 mW typical (standby); 350 mW typical (active)
- TTL compatible inputs and outputs
- Asynchronous READ and WRITE
- Two fully configurable Almost Full and Almost Empty Flags
- Programmable Half Full Flag or Full/Empty Flag option eliminates external counter requirement
- Register loading via the input or output pins
- Auto-retransmit capability in single-device mode
- Fully expandable by width and depth
- Pin and function compatible with standard FIFOs


## OPTIONS

- Timing

15 ns access time
20ns access time
25 ns access time
35 ns access time
MARKING
-15
-20
-25
-35

- Packages

Plastic DIP ( 300 mil )
Plastic DIP ( 600 mil )
None
Ceramic DIP ( 600 mil ) W

PLCC
Ceramic LCC
Plastic SOJ

## GENERAL DESCRIPTION

TheMicron FIFO family employs high-speed, low-power CMOS designs using a true dual-port, six-transistor memory cell with resistor loads.

These devices are written and read in a first-in-first-out (FIFO) sequence. Dual read and write pointers handle the internal addressing, so no external address generation is required. Information may be written to and read from the FIFO asynchronously and independently at the input and output ports. This allows information to be transferred independently in and out of the FIFO at varying data rates.

When not configured, the MT52C9007 defaults to a standard FIFO with empty ( $\overline{\mathrm{EF}}$ ), full $(\overline{\mathrm{FF}})$ and half-full

| PIN ASSIGNMENT (Top View) |  |  |
| :---: | :---: | :---: |
| $\begin{gathered} \text { 28L/DIP } \\ (\text { A-9, B-9) } \end{gathered}$ | $\begin{gathered} \text { 28L/SOJ } \\ (E-8) \end{gathered}$ |  |
| $\overline{\mathrm{W}} \stackrel{\square}{1 \cdot{ }^{\circ} 28 \mathrm{l} \text { vcc }}$ | $\overline{\mathrm{w}} \sqrt{1}$ | ${ }^{28} \mathrm{e} \mathrm{vcc}$ |
|  | $\mathrm{Da}^{\mathrm{D}} \mathrm{L}^{2}$ | ${ }^{27}$ 27 ${ }^{\text {D }}$ |
|  |  | ${ }_{25}^{26}{ }^{26}$ |
|  | ${ }^{0} 25^{5}$ | ${ }^{24}{ }^{24} \mathrm{DB}$ |
| $024524{ }^{24}$ |  | ${ }_{22}^{23} \mathrm{FLSARTDR}$ |
|  | FFFAFF ${ }^{\text {a }} 8$ | ${ }_{21}^{21}$ |
| FF/AIEF ${ }^{\text {P/ }}$ | ${ }^{121} 9$ | ${ }^{20} 9$ |
|  | ${ }^{\text {a }}$ - ${ }^{11}$ | 18 ¢ 07 |
| Q2-10 1908 |  | ${ }^{17}{ }_{16}{ }^{\text {a }}$ O6 |
| Q3 $41118{ }^{18}$ | GND $¢ 14$ | ${ }^{15} \mathrm{f}$ |
| Q4 41217 O6 |  |  |
|  |  |  |
|  |  |  |
| $\begin{gathered} \text { 32L/LCC } \\ (\mathrm{F}-4) \end{gathered}$ | $\begin{gathered} \text { 32L/PLCC } \\ \text { (D-2) } \end{gathered}$ |  |
|  |  |  |
| +33132330 |  |  |
|  | - $02.4{ }^{0}$ |  |
|  |  |  |
|  | 01410 |  |
|  | ${ }^{02}{ }^{11}$ |  |
|  |  | ${ }^{108}$ |
|  |  |  |
|  |  |  |

( $\overline{\mathrm{HF}}$ ) flag pins. The MT52C9007 can be configured for programmable flags by loading the internal flag registers (as described under "Register Load Mode" on page 8-17). In configured mode, up to three flags are provided. The first two are the almost empty flag ( $\overline{\mathrm{AEF}}$ ) and the almost full flag ( $\overline{\mathrm{AFF}}$ ) with independently programmable offsets. The third one is either an $\overline{\mathrm{HF}}$ or a full and empty ( $\overline{\mathrm{FE})}$ flag, depending on the bit configuration of the registers. A retransmit pin allows data to be re-sent on the receiver's request when the FIFO is in the STAND ALONE mode.

The depth and / or width of the FIFO can be expanded by cascading multiple devices. Also, the MT52C9007 is speed, function and pin compatible with higher density FIFOs from Micron. This upward compatibility with 1 K and 2 K FIFOs provides a single-chip depth-expansion solution.

## FUNCTIONAL BLOCK DIAGRAM



PIN DESCRIPTIONS

| LCC PIN NUMBER(S) | DIP PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| 25 | 22 | $\overline{\mathrm{RS}}$ | Input | Reset: This pin is used to reset the device and load internal flag registers. During device reset, all internal pointers and registers are cleared. |
| 2 | 1 | $\bar{W}$ | Input | Write: A LOW on this pin loads data into the device. The internal write pointer is incremented after the rising edge of the write input. |
| 18 | 15 | $\overline{\mathrm{R}}$ | Input | Read: A LOW on this pin puts the oldest valid data byte in the memory array on the output bus. The internal read pointer is incremented at the rising edge of the read signal. Outputs are High-Z when this pin is HIGH. |
| 8 | 7 | $\overline{\text { XI }}$ | Input | Expansion In: This pin is used for DEPTH EXPANSION mode. In SINGLE DEVICE mode, it should be grounded. In EXPANDED mode, it should be connected to Expansion-Out ( $\overline{\mathrm{XO}}$ ) of the previous device in the daisy chain. |
| 26 | 23 | FL/RT/DIR | Input | First Load/Retransmit/Direction: When in single-device mode, this pin can be used to initiate a reread of the previously read data. When in REGISTER LOAD mode, the pin is used for register loading direction. When it is LOW, registers are loaded through the data output pins. When it is HIGH, registers are loaded through the data input pins. In DEPTH EXPANSION mode, this pin should be tied LOW if the device is the first one in the chain and tied HIGH if it is not the first one. |
| $\begin{gathered} 7,6,5,4,31,30 \\ 29,28,3 \end{gathered}$ | $\begin{aligned} & 6,5,4,3,27 \\ & 26,25,24,2 \end{aligned}$ | D1-D9 | Input | Data Inputs: Data on these lines are stored in the memory array or flag registers during array WRITE or register programming, respectively. |
| 24 | 21 | $\overline{\mathrm{EF}} / \overline{\mathrm{AEF}}$ | Output | Empty Flag/Almost Empty Flag: This output pin indicates the FIFO status. When in NONCONFIGURED mode, this pin is an Empty Flag output. When in CONFIGURED mode, it is an Almost Empty Flag output. This pin is active LOW. |
| 9 | 8 | $\overline{\mathrm{FF}} / \overline{\mathrm{AFF}}$ | Output | Full Flag/Almost Full Flags: This output pin indicates the FIFO status. When in NONCONFIGURED mode, this pin is a Full Flag output. When in CONFIGURED mode, it is an Almost Full Flag output. This pin is active LOW. |
| 23 | 20 | $\overline{\mathrm{XO}} / \overline{\mathrm{HF}} / \overline{\mathrm{FE}}$ | Output | Expansion Out/Half Full/Full/Empty: This pin's function is determined by its operation mode. When in SINGLE DEVICE mode, this pin is either HF Flag or a Full/Empty Flag, depending on the state of the most significant bit of Almost Full Flag Register. The pin is an $\overline{X O}$ output when the part is in DEPTH EXPANSION mode. This pin defaults to $\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$ in NONCONFIGURED mode. |
| $\begin{gathered} 10,11,13,14 \\ 19,20,21,22,15 \end{gathered}$ | $\begin{gathered} 9,10,11,12,16 \\ 17,18,19,13 \end{gathered}$ | Q1-Q9 | 1/O | Data Output: These pins may be used for data retrieval. The pins become inputs during register loading with DIR input HIGH. The outputs are disabled (High-Z) during device idle ( $\overline{\mathrm{R}}=$ HIGH). |
| 32 | 28 | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 16 | 14 | GND | Supply | Ground |

## FUNCTIONAL DESCRIPTION

The MT52C9007 uses a dual port SRAM memory cell array with separate read and write pointers. This results in a flexible-length FIFO buffer memory with independent, asynchronous READ and WRITE capabilities and with no fall-through or bubble-through time constraints.

Note: For multiple function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing half-full flags, the


## RESET

After Vcc is stable, Reset ( $\overline{\mathrm{RS}}$ ) must be taken LOW with both $\bar{R}$ and $\overline{\mathrm{W}}$ HIGH to initialize the read and write pointers and flags. This also clears all internal registers. During the reset pulse, the state of the $\overline{\text { XI }}$ pin will determine if the FIFO will operate in the STAND ALONE or DEPTH EXPANSION mode. The STAND ALONE mode is entered if $\overline{\mathrm{XI}}$ is tied LOW. If $\overline{\mathrm{XI}}$ is connected to $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ of another FIFO, the DEPTH EXPANSION mode is selected.

## WRITING THE FIFO

Data is written into the FIFO when the writestrobe $(\overline{\mathrm{W}})$ pin is taken LOW and the FIFO is not full. The WRITE cycle is initiated by the falling edge of $\bar{W}$. Data on the D1-D9 pins are latched on the rising edge. If the location to be written is the lastempty location in the FIFO, $\overline{\mathrm{FF}}$ will beasserted (LOW) after the falling edge of $\bar{W}$. While the $\overline{\mathrm{FF}}$ is asserted, all writes are inhibited and previously stored data are unaffected. The first WRITE to an empty FIFO will cause EF to go HIGH after the rising edge of $\bar{W}$. When operating in the DEPTH EXPANSION mode, the last location write to a FIFO will cause $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ to pulse LOW. This will enable writes to the next FIFO in the chain.

## READING THE FIFO

Information is read from the FIFO when the read strobe $(\overline{\mathrm{R}})$ pin is taken LOW and FIFO is not empty ( $\overline{\mathrm{EF}}$ is High). The data-out (Q1-Q9) pins will go active (Low-Z) ${ }^{\text {t }}$ RLZ after the falling edge of $\overline{\mathrm{R}}$. Valid data will appear ${ }^{\text {t }} \mathrm{A}$ after the falling edge of $\overline{\mathrm{R}}$. After the last available data word is read, $\overline{\mathrm{EF}}$ will go LOW upon the falling edge of $\overline{\mathrm{R}}$. While the $\overline{\mathrm{EF}}$ is asserted LOW, any attempted reads will be inhibited and the outputs will stay inactive (High-Z). When the FIFO is full and a READ is initiated, the $\overline{\mathrm{FF}}$ will go HIGH after the rising edge of $\overline{\mathrm{R}}$. When operating in the expanded mode, the last location read from a FIFO will cause $\overline{\mathrm{XO}} /(\overline{\mathrm{HF})}$ to pulse LOW. This will enable further reads from the next FIFO in the chain.

## RETRANSMIT

In the STAND ALONE mode, the MT52C9007 allows the receiving device to request that data just read from the FIFO be repeated, when less than 512 writes have been performed between resets. When the $(\overline{\mathrm{FL}}) / \overline{\mathrm{RT}} /(\mathrm{DIR})$ pin is taken LOW, the read pointer is reset to the first location while the write pointer is not affected. The receiver may start reading the data from the beginning of the FIFO ${ }^{\text {tRTR }}$ after ( $\overline{\mathrm{FL}}) / / \mathrm{RT} /(\mathrm{DIR})$ is taken HIGH. Some or all flags may be affected depending on the location of the read and write pointers before and after the retransmit.

## DATA FLOW-THROUGH

Data flow-through is a method of writing and reading the FIFO at its full and empty boundaries, respectively. By holding $\overline{\mathrm{W}}$ LOW when the FIFO is full, a WRITE can be initiated from the next ensuing READ pulse. This is referred to as a FLOW-THROUGH WRITE. FLOW-THROUGH WRITEs are initiated from the rising edge of $\overline{\mathrm{R}}$. When the FIFO is empty, a flow-through READ can be done by holding $\overline{\mathrm{R}}$ LOW and letting the next WRITE initiate the READ. Flow-through reads are initiated from the rising edge of $\bar{W}$, and access time is measured from the rising edge of the empty flag.

## REGISTER LOAD MODE

This mode of operation is used to reset the device and program the internal flag registers. This yields an almost full and an almost empty flag (DIP package pins 8 and 21 respectively) and a half-full or $\bar{F} / \bar{E}$ flag (DIP package pin 20).

Two 9-bit internal registers have been provided for flag configuration. One is the almost full flag register (AFFR) and the other is the almost empty flag register (AEFR). Bit configurations of the two registers are shown below.

REGISTER SET FOR MT52C9007


Almost Empty Flag Register (AEFR)


Note that bits $0-5$ are used for offset setting. The offset value ranges from 1 to 63 words. Each offset value corresponds to a 2-byte increment. This provides a maximum offset of 126 bytes.

Bits 6 and 7 are reserved for future offset expansion. Bit 8 of the AFFR is used for configuration of $\overline{\mathrm{HF}} / \overline{\mathrm{FE}}$ pin. When this bit is set LOW, the HF/ $\overline{\mathrm{FE}}$ pin is configured as an $\overline{\mathrm{HF}}$ flag output. When it is set high, the $\mathrm{HF} / \overline{\mathrm{FE}}$ is configured as an $\bar{F} / \bar{E}$ flag output.

Bit 8 of the AEFR is used for reset locking. When this bit is set LOW, subsequent device RESET or REGISTER LOADING cycles reset the device. When the bit is programmed HIGH, subsequent RESET cycles are ignored. In this mode, the flag registers may be reconfigured without device reset. The part may be reset by cycling power to the device or by writing zero ( 0 ) into bit 8 of the AEFR register followed by a DEVICE RESET or REGISTER LOAD.

Flag registers are loaded by bringing $\overline{\mathrm{RS}}$ LOW followed by the $\overline{\mathrm{R}}$ input. The $\overline{\mathrm{R}}$ pin should be brought LOW ${ }^{\mathrm{t} R S}$ after
the $\overline{\mathrm{RS}}$ becomes LOW. The registers may be loaded via the input pins or the output pins depending on the status of the DIR control input. Data is latched into the registers at the rising edge of the $\bar{W}$ control pin. The first WRITE loads the AFFR while the second WRITE loads the AEFR. This loading order is fixed.

## BIDIRECTIONAL MODE

Applications requiring data buffering between two systems (each system capable of READ and WRITE operations) can be achieved by using two MT52C9007s. Care must be taken to assure that the appropriate flag is monitored by each system (i.e. $\overline{\mathrm{FF}}$ is monitored on the device where $\bar{W}$ is used; $\overline{E F}$ is monitored on the device where $\bar{R}$ is used). Both depth expansion and width expansion may be used in this mode.

## FLAG TIMING

A total of three flag outputs are provided in either CONFIGURED or NONCONFIGURED mode. In the NONCONFIGURED mode, the three flags are $\overline{\mathrm{HF}}, \overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$. The $\overline{\mathrm{HF}}$ flag goes active when more than half the FIFO is full. The flag goes inactive when the FIFO is half full or less.
The full and empty flags are asserted when the last byte is written to or read out of the FIFO, respectively. They are deasserted when the first byte is loaded into an empty FIFO or read out of a full FIFO, respectively. All three flag outputs are active LOW.
When the device is programmed, the $\overline{\mathrm{AFF}}$ and $\overline{\mathrm{AEF}}$ go active after a READ/WRITE cycle initiation of the location corresponding to the programmed offset value. For example, if the AEFR is programmed with a 10-byte offset (loading a Hex value of 05), the $\overline{\mathrm{AEF}}$ flag goes active while reading the 10th location before the FIFO is empty. The flag goes inactive when there are 10 or more bytes left in the FIFO. The assertion timing and deassertion timing of the $\overline{\mathrm{AFF}}$ are the same.
The third flag in the PROGRAM mode is either $\overline{\mathrm{HF}}$ or $\bar{F} / \overline{\mathrm{E}}$ flag depending on the state of the highest bit of the AFFR. If the device is programmed for $\overline{\mathrm{HF}}$ flag, it functions like the $\overline{\mathrm{HF}}$ flag in NONPROGRAMMED mode. If the device is configured for $\bar{F} / \bar{E}$ flag, the pin will be active (LOW) when the FIFO is either empty or full. The condition of the FIFO is determined by the state of $\bar{F} / \bar{E}$ together with states of $\overline{\mathrm{AFF}}$ and $\overline{\mathrm{AEF}}$ (example: if $\overline{\mathrm{F}} / \overline{\mathrm{E}}$ is LOW and $\overline{\mathrm{AFF}}$ is LOW but $\overline{\mathrm{AEF}}$ is HIGH, the FIFO is full).


Figure 1
DEPTH EXPANSION

## WIDTH EXPANSION

The FIFO word width can be expanded, in increments of 9 bits, using either the STAND ALONE or groups of EXPANDED DEPTH modeFIFOs. Expanded width operation is achieved by tying devices together with all control lines ( $\bar{W}, \bar{R}$, etc.) in common. The flags are monitored from one device or one expanded-depth group (Figure 1), when expanding depth and width.

## DEPTH EXPANSION

Multiple MT52C9007s may be cascaded to expand the depth of the FIFO buffer. Three pins are used to expand the memory depth, $\overline{\mathrm{XI}}, \overline{\mathrm{XO}} /(\overline{\mathrm{HF}} / \overline{\mathrm{FE}})$ and $\overline{\mathrm{FL}} /(\overline{\mathrm{RT}} / \mathrm{DIR})$. Figure 1 illustrates a typical three-deviceexpansion. Thedepthexpansion mode is entered by tying the $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}} / \overline{\mathrm{F}} \overline{\mathrm{E}})$ pin of each device to the $\overline{\mathrm{XI}}$ pin of the next device in the chain. The first device to be loaded will have its $\overline{\mathrm{FL}} /(\overline{\mathrm{RT}} / \mathrm{DIR})$ pin grounded. The remaining devices in the chain will have $\overline{\mathrm{FL}} /(\overline{\mathrm{RT}} / \mathrm{DIR})$ tied HIGH. Upon a reset, reads and writes to all FIFO s are disabled, except the first load device. When the
last physical location of the first device is written, the $\overline{\mathrm{XO}}$ / $(\overline{\mathrm{HF}})$ pin will pulse LOW on the falling edge of $\bar{W}$. This will "pass" the write pointer to the next device in the chain, enabling writes to that device and disabling writes to the first MT52C9007. The writes will continue to go to the second device until last location write. Then it will "pass" the write pointer to the third device. The full condition of the entire FIFO array is signaled when all the $\overline{\mathrm{FF}} /(\overline{\mathrm{AFF}})$ pins are LOW.

On the last physical READ of the first device, its $\overline{\mathrm{XO}}(\overline{\mathrm{HF}})$ will pulse again. On the falling edge of $\bar{R}$, the read pointer is "passed" to the second device. The read pointer will, in effect, "chase" the write pointer through the extended FIFO array. The read pointer never overtakes the write pointer. On the last READ, an empty condition is signaled by all of the EF pins being LOW. This inhibits further reads. While in the depth-expansion mode, the half-full flag and retransmit functions are not available.

TRUTH TABLE 1
SINGLE-DEVICE CONFIGURATION/WIDTH-EXPANSION Mode

| MODE | INPUTS |  |  | INTERNAL STATUS |  | OUTPUTS |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{R S}$ | $\overline{R T}$ | $\overline{\mathbf{X I}}$ | Read Pointer | Write Pointer | $\overline{\mathrm{EF}}$ | $\overline{\mathrm{FF}}$ | $\overline{\mathrm{HF}}$ |
| RESET | 0 | X | 0 | Location Zero | Location Zero | 0 | 1 | 1 |
| RETRANSMIT | 1 | 0 | 0 | Location Zero | Unchanged | 1 | X | X |
| READ/WRITE | 1 | 1 | 0 | Increment (1) | Increment (1) | X | X | X |

NOTE: 1. Pointer will increment if flag is HIGH.

## TRUTH TABLE 2

DEPTH-EXPANSION/COMPOUND-EXPANSION Mode

| MODE | INPUTS |  |  | INTERNAL STATUS |  | OUTPUTS |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathbf{R S}}$ | $\overline{\mathrm{FL}}$ | $\overline{\mathbf{X I}}$ | Read Pointer | Write Pointer | $\overline{\mathrm{EF}}$ | $\overline{\mathrm{FF}}$ |
| RESET <br> First Device | 0 | 0 | $(1)$ | Location Zero | Location Zero | 0 | 1 |
| RESET <br> All other Devices | 0 | 1 | $(1)$ | Location Zero | Location Zero | 0 | 1 |
| READ/WRITE | 1 | X | $(1)$ | X | X | X | X |

NOTE: 1. XI is connected to $\overline{\mathrm{XO}}$ of previous device.
$\overline{\mathrm{RS}}=$ Reset Input, $\overline{\mathrm{FL} / R T} / \mathrm{DIR}=$ First Load/Retransmit, $\overline{\mathrm{EF}}=$ Empty Flag Output, $\overline{\mathrm{FF}}=$ Full Flag Output, $\overline{\mathrm{XI}}=$ Expansion Input, $\overline{\mathrm{HF}}=$ Half Full Flag Output.
ABSOLUTE MAXIMUM RATINGS*
Voltage on Vcc supply relative to Vss

$\qquad$ ..... -0.5 V to +7.0 V
Operating Temperature $\mathrm{T}_{\mathrm{A}}$ (ambient) $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$Storage Temperature (Ceramic) .$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..... 1W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS
$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | $\mathrm{VIH}_{\mathrm{H}}$ | 2.0 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -0.5 | 0.8 | V | 1,2 |

## DC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | -15 | -20 | -25 | -35 | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Current: Operating | $\bar{W}, \bar{R} \leq V_{\mathrm{IL}} ; \mathrm{Vcc}_{\mathrm{Cl}}=\mathrm{MAX}$ $f=M A X=1 /{ }^{\mathrm{t}} R C$ Outputs Open | Icc |  | 120 | 115 | 110 | 100 | mA | 3 |
|  | $\begin{gathered} \overline{\mathrm{W}}, \overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}} ; V_{c C}=\mathrm{MAX} \\ \mathrm{f}=\mathrm{MAX}=1 / /^{\mathrm{t}} \mathrm{RC} \end{gathered}$ | Iss1 |  | 15 | 15 | 15 | 15 | mA |  |
| Power Supply Current: Standby | $\begin{gathered} \bar{W}, \bar{R} \geq V_{c c}-0.2 ; V_{c c}=\text { MAX } \\ V_{\text {IL }} \leq V_{\text {Ss }}+0.2, \\ V_{H} \geq \text { Vcc }-0.2 ; f=0 \end{gathered}$ | IsB2 |  | 5 | 5 | 5 | 5 | mA |  |
| Input Leakage Current | $0 \mathrm{~V} \leq \mathrm{Vin} \leq \mathrm{Vcc}$ | ILI | -10 | 10 | 10 | 10 | 10 | $\mu \mathrm{A}$ |  |
| Output Leakage Current | Output(s) Disabled $\mathrm{OV} \leq \mathrm{Vout}^{\leq} \mathrm{V}$ cc | ILo | -10 | 10 | 10 | 10 | 10 | $\mu \mathrm{A}$ |  |
| Output High Voltage | $\mathrm{loH}=-2.0 \mathrm{~mA}$ | Vон | 2.4 |  |  |  |  | V | 1 |
| Output Low Voltage | $\mathrm{loL}=8.0 \mathrm{~mA}$ | VoL |  |  |  |  | 0.4 | V | 1 |

## CAPACITANCE

(VIN = OV; Vout $=0 \mathrm{~V}$ )

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathfrak{f}=1 \mathrm{MHz}$ | CI |  | 8 | pF | 4 |
|  | $\mathrm{Vcc}=5 \mathrm{~V}$ | Co |  | 8 | pF | 4 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Applicable for configured and nonconfigured modes) $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%\right.$ )

| A.C. CHARACTERISTICS |  | -15 |  | -20 |  | -25 |  | -35 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| READ Cycle |  |  |  |  |  |  |  |  |  |  |  |
| Shift frequency | ${ }^{\text {t }}$ RF |  | 40 |  | 33.3 |  | 28.5 |  | 22.2 | MHz |  |
| READ cycle time | ${ }^{\text {tr }}$ C | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Access time | ${ }^{\text {t }}$ A |  | 15 |  | 20 |  | 25 |  | 35 | ns | 6 |
| READ recovery time | ${ }^{\text {t } R \text { R }}$ | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| Read pulse width | tRPW | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Read LOW to Low-Z | trLZ | 5 |  | 5 |  | 5 |  | 5 |  | ns | 7 |
| Read to HIGH to High-Z | trHZ |  | 15 |  | 15 |  | 18 |  | 20 | ns | 7 |
| Data HOLD from $\overline{\mathrm{R}}$ HIGH | ${ }^{\text {t }} \mathrm{OH}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| WRITE Cycle |  |  |  |  |  |  |  |  |  |  |  |
| WRITE cycle time | ${ }^{\text {t }}$ WC | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Write pulse width | tWPW | 15 |  | 20 |  | 25 |  | 35 |  | ns | 6 |
| WRITE recovery time | ${ }^{\text {t }}$ WR | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| Write HIGH to Low-Z | ${ }^{\text {t }}$ WLZ | 5 |  | 5 |  | 5 |  | 5 |  | ns | 5, 7 |
| Data setup time | ${ }^{\text {t }}$ DS | 10 |  | 12 |  | 15 |  | 18 |  | ns |  |
| Data hold time | tD | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| RETRANSMIT Cycle |  |  |  |  |  |  |  |  |  |  |  |
| Restransmit cycle time | tRTC | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Retransmit pulse width | ${ }^{\text {tRT }}$ | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Retransmit recovery time | tRTR | 10 |  | 10 |  | 10 |  | 12 |  | ns |  |
| Retransmit command setup time | tRTS | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| RESET Cycle |  |  |  |  |  |  |  |  |  |  |  |
| RESET cycle time (no register programming) | ${ }^{\text {tRSC }}$ | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Reset pulse width | ${ }^{\text {tr RSP }}$ | 15 |  | 20 |  | 25 |  | 35 |  | ns | 6 |
| Reset recovery time | ${ }^{\text {tRSR }}$ | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{RS}}$ LOW to $\overline{\mathrm{R}}$ LOW | ${ }^{\text {tRS }}$ | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Reset and register programming cycle time | ${ }^{\text {tRSPC }}$ | 85 |  | 100 |  | 115 |  | 145 |  | ns |  |
| $\overline{\mathrm{R}}$ LOW to DIR valid (register load cycle) | ${ }^{\text {t RDV }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| $\overline{\mathrm{R}}$ LOW to register load | ${ }^{\text {t }}$ RW | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { W HIGH to } \overline{\mathrm{RS}} \text { LOW }}$ | ${ }^{\text {the }}$ WRS | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\bar{R}}$ HIGH to $\overline{\mathrm{RS}}$ LOW | tRRS | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Data flow-through data mode only.
6. Pulse widths less than minimum are not allowed.
7. Values guaranteed by design, not currently tested.
8. $\bar{R}$ and DIR signals must go inactive (HIGH) coincident with $\overline{\mathrm{RS}}$ going inactive (HIGH).
9. DIR must become valid before $\bar{W}$ goes active (LOW).

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS <br> (Applicable for configured mode only) ( $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -15 |  | -20 |  | -25 |  | -35 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Expansion Mode Timing |  |  |  |  |  |  |  |  |  |  |  |
| $\overline{\mathrm{R}} \overline{\mathrm{W}}$ to XO LOW | ${ }^{\text {t }}$ XOL |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| $\overline{\mathrm{R}} \overline{\bar{W}}$ to $\overline{\mathrm{XO}} \mathrm{HIGH}$ | ${ }^{\text {t }} \mathrm{XOH}$ |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| $\overline{\text { XI }}$ pulse width | ${ }^{\text {t }}$ IP | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| $\overline{\mathrm{XI}}$ command setup time to $\overline{\mathrm{R}} / \overline{\mathrm{W}}$ | ${ }^{\text {t }}$ IS | 10 |  | 12 |  | 15 |  | 15 |  | ns |  |
| $\overline{\mathrm{XI}}$ command recovery time | ${ }^{\text {t }}$ IR | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| Flags Timing |  |  |  |  |  |  |  |  |  |  |  |
| $\overline{\text { W }}$ HIGH to Flags Valid | 'WFV |  | 15 |  | 15 |  | 15 |  | 15 | ns |  |
| $\overline{\mathrm{RS}}$ to $\overline{\mathrm{EF}}$ LOW | ${ }^{\text {t EFL }}$ |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\mathrm{R}}$ LOW to EF LOW | ${ }^{\text {t REF }}$ |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| $\overline{\text { W }}$ HIGH to EF HIGH | tWEF |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| $\overline{\bar{R}}$ pulse after $\overline{\mathrm{EF}}$ HIGH | ${ }^{\text {t RPE }}$ | 15 |  | 20 |  | 25 |  | 35 |  | ns | 5 |
| $\overline{\mathrm{RS}}$ to $\overline{\mathrm{HF}}, \overline{\mathrm{FF}}$ HIGH | ${ }^{\text {thFH, }}{ }^{\text {t }}$ FFH |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\mathrm{R}}$ HIGH to $\overline{\mathrm{FF}}$ | trFF |  | 15 |  | 20 |  | 25 |  | 30 | ns |  |
| $\overline{\text { W LOW }}$ to FF LOW | tWFF |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| $\overline{\text { W }}$ pulse width after $\overline{\mathrm{FF}}$ HIGH | 'WPF | 15 |  | 20 |  | 25 |  | 35 |  | ns | 5 |
| $\overline{\text { W LOW to } \overline{\text { HF }} \text { LOW }}$ | tWHF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\text { R HIGH to } \overline{\mathrm{HF}} \mathrm{HIGH}}$ | ${ }^{\text {t } R H F}$ |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\bar{R}} \mathrm{HIGH}$ to $\overline{\text { AFF }}$ | traFF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\mathrm{W}}$ LOW to $\overline{\mathrm{AFF}}$ | ${ }^{\text {t }}$ WAFF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\mathrm{R}}$ LOW to $\overline{\text { AEF }}$ LOW | ${ }^{\text {t }}$ RAEF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\text { W }}$ HIGH to $\overline{\text { AEF }}$ | WAEF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |

## AC TEST CONDITIONS




Figure 2
OUTPUT LOAD EQUIVALENT

RESET
(WITH NO REGISTER PROGRAMMING)


ASYNCHRONOUS READ AND WRITE

$V / \Delta$ don't care
UNDEFINED

## EMPTY FLAG



FULL FLAG


HALF-FULL FLAG (FOR CONFIGURED AND NONCONFIGURED MODES)


## EXPANSION MODE (XO)



NOTE: 1. $\overline{X O}$ of the Device 1 is connected to $\overline{X I}$ of Device 2.

## EXPANSION MODE (XI)




WRITE FLOW-THROUGH


READ FLOW-THROUGH

D1-D9


V/A DON'T CARE
UXX UNDEFINED

RESET/REGISTER PROGRAMMING CYCLE TIME 8,9


ALMOST FULL FLAG (2-BYTE OFFSET)


## ALMOST EMPTY FLAG (10-BYTE OFFSET)



## 1K x 9 FIFO

## FEATURES

- Very high speed: $15,20,25$ and 35 ns access
- High-performance, low-power CMOS process
- Single $+5 \mathrm{~V} \pm 10 \%$ supply
- Low power: 5 mW typ. (standby); 350 mW typ. (active)
- TTL compatible inputs and outputs
- Asynchronous and simultaneous READ and WRITE
- Empty, Half-Full and Full Flags
- Half-Full Flag capability in STAND ALONE mode
- Auto-retransmit capability
- Fully expandable by width and depth
- Pin and function compatible with higher density standard FIFOs


## OPTIONS

- Timing 15 ns access time -15
20ns access time -20
25ns access time -25
35ns access time -35
- Packages

Plastic DIP (300 mil)
Plastic DIP ( 600 mil )
Ceramic DIP ( 600 mil )
PLCC
Ceramic LCC
SOJ ( 300 mil )

## MARKING

$$
-15
$$

$$
-20
$$

$$
\begin{aligned}
& -20 \\
& -35
\end{aligned}
$$

None


W
EJ
EC
DJ

## GENERAL DESCRIPTION

TheMicron FIFO family employs high-speed, low-power CMOS designs using a true dual port, six-transistor memory cell with resistor loads.
These devices are written and read in a first-in-first-out (FIFO) sequence. Dual read and write pointers handle the internal addressing, so no external address generation is required. Information can be written to and read from the FIFO asynchronously and independently at the input and output ports. This allows information to be transferred independently in and out of the FIFO at varying data rates. Visibility of the memory volume is given through empty, half-full and full flags. While the full flag is asserted, attempted writes are inhibited. Likewise, while the empty

## PIN ASSIGNMENT (Top View)

28L DIP (A-9, B-9)


## 32L LCC (F-4)



28L SOJ
(E-8)

| $\bar{W}-1$ | 28 | Vcc |
| :---: | :---: | :---: |
| D9 2 | 27 | D5 |
| D4 3 | 26 | D6 |
| D3 4 | 25 | D7 |
| D2 5 | 24 | D8 |
| D1 6 | 23 | $\square \overline{\mathrm{FL}} / \overline{\mathrm{RT}}$ |
| XI $\square^{7}$ | 22 | $\square \overline{\mathrm{RS}}$ |
| $\overline{\mathrm{FF}} \mathrm{C} 8$ | 21 | $\bigcirc \overline{E F}$ |
| Q1 9 | 20 | $\square \overline{\mathrm{XO}} / \overline{\mathrm{HF}}$ |
| Q2 10 | 19 | Q8 |
| Q3 11 | 18 | Q7 |
| Q4 12 | 17 | Q6 |
| Q9 - 13 | 16 | Q5 |
| Vss 14 | 15 | $\bigcirc \bar{R}$ |

## 32L PLCC (D-2)


flag is asserted, further reads are inhibited and the outputs remain in a high-impedance state. Expansion out, expansion in, and first load pins are provided to expand the depth of the FIFO memory array, with no performance degradation. A retransmit pin allows data to be re-sent on the receiver's request when the FIFO is in the STAND ALONE mode.

The depth and/or width of the FIFO can be expanded by cascading multiple devices. Also, the MT52C9010 is speed, function and pin compatible with higher density FIFOs from Micron. This upward compatibility with the $2 \mathrm{~K} \times 9$ FIFO provides a single-chip, depth-expansion solution.

## FUNCTIONAL BLOCK DIAGRAM



PIN DESCRIPTIONS

| LCC PIN NUMBER(S) | DIP PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| 25 | 22 | $\overline{\text { RS }}$ | Input | Reset: Taking $\overline{\text { RS }}$ LOW will reset the FIFO by initializing the read and write pointers and all flags. After the device is powered up, it must be reset before any writes can take place. |
| 2 | 1 | W | Input | Write Strobe: $\bar{W}$ is taken LOW to write data from the input port (D1-D9) into the FIFO memory array. |
| 18 | 15 | $\overline{\mathrm{R}}$ | Input | Read Strobe: $\overline{\mathrm{R}}$ is taken LOW to read data from the FIFO memory array to the output port (Q1-Q9). |
| 8 | 7 | XI | Input | Expansion In: This pin is used for DEPTH EXPANSION mode. In SINGLE DEVICE mode, it should be grounded. In EXPANDED mode, it should be connected to Expansion-Out ( $\overline{\mathrm{XO}}$ ) of the previous device in the daisy chain. |
| 26 | 23 | $\overline{\mathrm{FL}} / \mathrm{RT}$ | Input | First Load: Acts as first load signal in DEPTH EXPANSION mode. FL if low, will enable the device as the first to be loaded (enables read and write pointers). <br> $\overline{\text { FL should be tied low for the first FIFO in the chain, tied high for }}$ all other FIFOs in the chain <br> Retransmit: Acts as retransmit signal in STAND ALONE mode. $\overline{R T}$ is used to enable the RETRANSMIT cycle. When taken LOW, $\overline{\mathrm{RT}}$ resets the read pointer to the first data location and the FIFO is then ready to retransmit data on the following READ operation(s). The flags will be affected according to specific data conditions. |
| $\begin{gathered} 7,6,5,4,31, \\ 30,29,28,3 \end{gathered}$ | $\begin{aligned} & 6,5,4,3,27 \\ & 26,25,24,2 \end{aligned}$ | D1-D9 | Input | Data Inputs |
| 24 | 21 | $\overline{\mathrm{EF}}$ | Output | Empty Flag: Indicates empty FIFO memory when LOW, inhibiting further READ cycles. |
| 9 | 8 | FF | Output | Full Flag: Indicates full FIFO memory when LOW, inhibiting further WRITE cycles. |
| 23 | 20 | $\overline{\mathrm{XO}} / \mathrm{HF}$ | Output | Expansion Out: Acts as expansion out pin in DEPTH EXPANSION mode. $\overline{\text { XO }}$ will pulse LOW on the last physical WRITE or the last physical read. $\overline{X O}$ should be connected to $\overline{X I}$ of the next FIFO in the daisy chain. <br> Half-Full Flag: Acts as Half Full Flag in STAND ALONE mode. $\overline{\mathrm{HF}}$ goes LOW when the FIFO becomes more than half-full; will stay LOW until the FIFO becomes half-full or less. |
| $\begin{array}{\|c\|} \hline 10,11,13,14, \\ 19,20,21,22,15 \\ \hline \end{array}$ | $\begin{gathered} 9,10,11,12,16 \\ 17,18,19,13 \end{gathered}$ | Q1-Q9 | Output | Data Output: Output or high impedance. |
| 32 | 28 | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 16 | 14 | Vss | Supply | Ground |

## FUNCTIONAL DESCRIPTION

The MT52C9010 uses a dual port SRAM memory cell array with separate read and write pointers. This results in a flexible length FIFO buffer memory, with independent, asynchronous READ and WRITE capabilities and with no fall-through or bubble-through time constraints.

> Note: For dual function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing the half-full flags the $\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$ pin will be shown as $(\overline{\mathrm{XO}}) / \overline{\mathrm{HF}}$.

## RESET

After Vcc is stable, RESET ( $\overline{\mathrm{RS}}$ ) must be taken LOW to initialize the read and write pointers and flags. During the reset pulse, the state of the $\overline{\text { XI }}$ pin will determine if the FIFO will operate in the STAND ALONE or DEPTH EXPANSION mode. The STAND ALONE mode is entered if $\overline{\mathrm{XI}}$ is LOW. If $\overline{\overline{\mathrm{I}}}$ is tied to $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ of another FIFO, the DEPTH EXPANSION mode is selected.

## WRITING THE FIFO

Data is written into the FIFO when the write strobe $(\overline{\mathrm{W}})$ pin is taken LOW, while $\overline{\text { FF }}$ is HIGH. The WRITE cycle is initiated by the falling edge of $\bar{W}$ and data on the D1-D9 pins are latched on the rising edge. If the location to be written is the last empty location in the FIFO, the $\overline{\mathrm{FF}}$ will be asserted (LOW) after the falling edge of $\overline{\mathrm{W}}$. While $\overline{\mathrm{FF}}$ is LOW, any attempted writes will be inhibited, with no loss of data already stored in the FIFO. When a device is used in the STAND ALONE mode, $(\overline{\mathrm{XO}}) / \overline{\mathrm{HF}}$ is asserted when the half-full-plus-one location ( $1024 / 2+1$ ) is written. It will stay asserted until the FIFO becomes half-full or less. The first WRITE to an empty FIFO will cause $\overline{\mathrm{EF}}$ to go HIGH after the rising edge of $\bar{W}$. When operating in the DEPTH EXPANSION mode, write to the last location of the FIFO will cause $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ to pulse LOW. This will enable writes to the next FIFO in the chain.

## READING THE FIFO

Information is read from the FIFO when the read strobe $(\overline{\mathrm{R}})$ pin is taken LOW and the FIFO is notempty ( $\overline{\mathrm{EF}}$ is HIGH). The data-out (Q1-Q9) pins will go active (Low-Z) ${ }^{\text {t }}$ LLZ after the falling edge of $\overline{\mathrm{R}}$ and valid data will appear ${ }^{\mathrm{t}} \mathrm{A}$ after the falling edge of $\overline{\mathrm{R}}$. After the last available data word is read, $\overline{\mathrm{EF}}$ will go LOW upon the falling edge of $\overline{\mathrm{R}}$. While $\overline{\mathrm{EF}}$ is asserted LOW, any attempted reads will be inhibited and the outputs will stay inactive (High-Z). When the FIFO is being used in the SINGLE DEVICE mode and the half-full-plus-one location is read, $(\overline{\mathrm{XO}}) / \overline{\mathrm{HF}}$ will go HIGH after the rising edge of $\overline{\mathrm{R}}$. When the FIFO is full ( $\overline{\mathrm{FF}}$ LOW) and a read is initiated, $\overline{\mathrm{FF}}$ will go HIGH after the rising edge of $\overline{\mathrm{R}}$. When operating in the EXPANDED mode, the lastlocation read to a FIFO will cause $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ to pulse LOW. This will enable further reads from the next FIFO in the chain.

## RETRANSMIT

In the STAND ALONE mode, the MT52C9010 allows the receiving device to request that the data read earlier from the FIFO to be repeated, when less than 1024 writes have been performed between resets. When the $(\overline{\mathrm{FL}}) / \overline{\mathrm{RT}}$ pin is taken LOW, the read pointer is reset to the first location while the write pointer is not affected. The receiver may again start reading the data from the beginning of the FIFO ${ }^{\text {t RTR }}$ after $(\overline{\mathrm{FL}}) / \overline{\mathrm{RT}}$ is taken HIGH. The empty, half-full and full flags will be affected as specified for the data volume (useful only in SINGLE mode with no wraparound).

## DATA FLOW-THROUGH

Data flow-through is a method of writing and reading the FIFO at its full and empty boundaries, respectively. By holding $\bar{W}$ LOW when the FIFO is full, a WRITE can be initiated from the next ensuing READ pulse. This is referred to as a FLOW-THROUGH WRITE. FLOW-THROUGH WRITEs are initiated from the rising edge of $\overline{\mathrm{R}}$. When the FIFO is empty, a FLOW-THROUGH READ can be done by holding $\overline{\mathrm{K}}$ LOW and letting the next WRITE initiate the READ. FLOW-THROUGH READs are initiated from the rising edge of $\overline{\mathrm{W}}$ and access time is measured from the rising edge of EF .


Figure 1
DEPTH EXPANSION

## WIDTH EXPANSION

The FIFO word width can be expanded, in increments of 9 bits, using either the stand alone or groups of expandeddepth mode FIFOs. Expanded-width operation is achieved by tying devices together with all control lines ( $\bar{W}, \bar{R}$, etc.) in common. The flags are monitored from one device or one expanded-depth group (Figure 1) when expanding depth and width.

## DEPTH EXPANSION

Multiple MT52C9010s may be cascaded to expand the depth of the FIFO buffer. Three pins are used to expand the memory depth, $\overline{\mathrm{XI}}, \overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ and $\overline{\mathrm{FL}} /(\overline{\mathrm{RT}})$. Figure 1 illustrates a typical three-device expansion. The DEPTH EXPANSION mode is entered during a RESET cycle, by tying the $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ pin of each device to the $\overline{\mathrm{XI}}$ pin of the next device in the chain. The first device to be loaded will have its $\overline{\mathrm{FL}} /(\overline{\mathrm{RT}})$ pin grounded. The remaining devices in the chain will have $\overline{\mathrm{FL}} /(\overline{\mathrm{RT}})$ tied HIGH. During RESET cycle, $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ of each device is held HIGH, disabling reads and
writes to all FIFOs, except the first load device. When the last physical location of the first device is written, the $\overline{\mathrm{XO}} /$ $(\overline{\mathrm{HF}})$ pin will pulse LOW on the falling edge of $\bar{W}$. This will "pass" the write pointer to the next device in the chain, enabling writes to that device and disabling writes to the first MT52C9010. The writes will continue to go to the second device until last location WRITE. Then it will "pass" the write pointer to the third device.

The full condition of the entire FIFO array is signaled by "OR-ing" all the $\overline{\mathrm{FF}}$ pins. On the last physical READ of the first device, its $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ will pulse again. On the falling edge of $\bar{R}$, the read pointer is "passed" to the second device. The read pointer will, in effect, "chase" the write pointer through the extended FIFO array. The read pointer never overtakes the write pointer. An empty condition is signaled by OR-ing all of the EF pins. This inhibits further reads. While in the DEPTH EXPANSION mode, the half-full flag and retransmit functions are not available.

## TRUTH TABLE 1

SINGLE-DEVICE CONFIGURATION/WIDTH-EXPANSION Mode

| MODE | INPUTS |  |  | INTERNAL STATUS |  | OUTPUTS |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathbf{R S}}$ | $\overline{\mathbf{R T}}$ | $\overline{\mathbf{X}}$ | Read Pointer | Write Pointer | $\overline{\mathbf{E F}}$ | $\overline{\mathbf{F F}}$ | $\overline{\mathbf{H F}}$ |
| RESET | 0 | X | 0 | Location Zero | Location Zero | 0 | 1 | 1 |
| RETRANSMIT | 1 | 0 | 0 | Location Zero | Unchanged | 1 | X | X |
| READ/WRITE | 1 | 1 | 0 | Increment (1) | Increment (1) | X | X | X |

NOTE: 1. Pointer will increment if flag is HIGH.

## TRUTH TABLE 2

DEPTH-EXPANSION/COMPOUND-EXPANSION Mode

| MODE | INPUTS |  |  | INTERNAL STATUS |  | OUTPUTS |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathbf{R S}}$ | $\overline{\mathrm{FL}}$ | $\overline{\mathbf{X I}}$ | Read Pointer | Write Pointer | $\overline{\mathrm{EF}}$ | $\overline{\mathrm{FF}}$ |
| RESET <br> First Device | 0 | 0 | $(1)$ | Location Zero | Location Zero | 0 | 1 |
| RESET <br> All other Devices | 0 | 1 | $(1)$ | Location Zero | Location Zero | 0 | 1 |
| READ/WRITE | 1 | X | $(1)$ | X | X | X | X |

NOTE: 1. XI is connected to $\overline{\mathrm{XO}}$ of previous device.
$\overline{\mathrm{RS}}=$ Reset Input, $\overline{\mathrm{FL} / R T} / \mathrm{DIR}=$ First Load/Retransmit, $\overline{\mathrm{EF}}=$ Empty Flag Output, $\overline{\mathrm{FF}}=$ Full Flag Output, $\overline{\mathrm{XI}}=$ Expansion Input, $\overline{\mathrm{HF}}=$ Half Full Flag Output.

## ABSOLUTE MAXIMUM RATINGS*


*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | $\mathrm{V}_{\text {IH }}$ | 2.0 | $\mathrm{~V}_{\mathrm{cc}}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | $\mathrm{VIL}^{\text {IL }}$ | -0.5 | 0.8 | V | 1,2 |

## DC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Current: Operating | $\bar{W}, \bar{R} \leq V_{L L} ; V_{c c}=$ MAX Outputs Open | Icc |  | 100 | mA | 3 |
|  | $\mathrm{W}, \overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{H}} ; \mathrm{Vcc}=\mathrm{MAX}$ | Isb1 |  | 15 | mA |  |
| Power Supply Current: Standby | $\overline{\mathrm{W}}, \overline{\mathrm{R}} \geq \mathrm{Vcc}-0.2 ; \mathrm{Vcc}=\mathrm{MAX}$ <br> $\mathrm{V}_{\mathrm{IL}} \leq \mathrm{V}_{\mathrm{ss}}+0.2$, <br> $\mathrm{V}_{\mathrm{IH}} \geq \mathrm{Vcc}-0.2 ; \mathrm{f}=0$ | Isb2 |  | 5 | mA |  |
| Input Leakage Current | $0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{cc}}$ | ILI | -10 | 10 | $\mu \mathrm{A}$ |  |
| Output Leakage Current | Output(s) Disabled, $\mathrm{OV} \leq \mathrm{Vout} \leq \mathrm{Vcc}$ | ILo | -10 | 10 | $\mu \mathrm{A}$ |  |
| Output High Voltage | $\mathrm{IOH}=-2.0 \mathrm{~mA}$ | Vor | 2.4 |  | V | 1 |
| Output Low Voltage | $1 \mathrm{loL}=8.0 \mathrm{~mA}$ | VoL |  | 0.4 | V | 1 |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | Cl |  | 8 | pF | 4 |
|  | Output Capacitance | $\mathrm{Vcc}=5 \mathrm{~V}$ | Co |  | 8 | pF |
|  |  |  | 4 |  |  |  |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS <br> $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -15 |  | -20 |  | -25 |  | -35 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Shift Frequency | Fs |  | 40 |  | 33.3 |  | 28.5 |  | 22.2 | MHz |  |
| Access time | ${ }^{\text {t }}$ A |  | 15 |  | 20 |  | 25 |  | 35 | ns |  |
| Read cycle time | ${ }^{\text {tr }}$ C | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Read command recovery time | tRR | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| Read command pulse width | trPW | 15 |  | 20 |  | 25 |  | 35 |  | ns | 6 |
| Read LOW to Low-Z | trLZ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Read to HIGH to High-Z | trHZ |  | 15 |  | 15 |  | 18 |  | 20 | ns |  |
| Data hold from $\overline{\mathrm{R}} \mathrm{HIGH}$ | ${ }^{\text {t }} \mathrm{OH}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Write cycle time | ${ }^{\text {t }} \mathrm{WC}$ | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Write command pulse width | ${ }^{\text {t }}$ WPW | 15 |  | 20 |  | 25 |  | 35 |  | ns | 6 |
| Write command recovery time | ${ }^{\text {t }}$ WR | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| Write HIGH to Low-Z | tWLZ | 5 |  | 5 |  | 5 |  | 5 |  | ns | 5 |
| Data setup time | ${ }^{\text {t }}$ DS | 10 |  | 12 |  | 15 |  | 20 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Reset cycle time | ${ }^{\text {tRSC }}$ | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Reset pulse width | ${ }^{\text {tRSP }}$ | 15 |  | 20 |  | 25 |  | 35 |  | ns | 6 |
| Reset recovery time | ${ }^{\text {tRSR }}$ | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| Read HIGH to Reset HIGH | tRRS | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Write HIGH to Reset HIGH | tWRS | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Retransmit cycle time | tRTC | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Retransmit pulse width | ${ }^{\text {tRT }}$ | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Retransmit recovery time | ${ }^{\text {tRTR }}$ | 10 |  | 10 |  | 10 |  | 12 |  | ns |  |
| Retransmit setup time | ${ }^{\text {tR }}$ TS | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Reset to EF LOW | ${ }^{\text {teFL }}$ |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Reset to $\overline{\text { FF FF HIGH }}$ | ${ }^{\text {thFH, }}{ }^{\text {tr FFH }}$ |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Read LOW to EF LOW | treF |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| Read HIGH to FF HIGH | trFF |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| Write LOW to FF LOW | tWFF |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| Write HIGH to EF HIGH | tWEF |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| Write LOW to $\overline{\text { HF }}$ LOW | tWHF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Read HIGH to HF HIGH | trHF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Read pulse after EF HIGH | ${ }^{\text {t }}$ RPE | 15 |  | 20 |  | 25 |  | 35 |  | ns | 5 |
| Write pulse width after FF HIGH | tWPF | 15 |  | 20 |  | 25 |  | 35 |  | ns | 5 |
| Read/Write to XO LOW | ${ }^{\text {t }} \mathrm{XOL}$ |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| Read/Write to $\overline{\mathrm{XO}} \mathrm{HIGH}$ | ${ }^{\text {t }} \mathrm{XOH}$ |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| $\overline{\text { XI }}$ pulse width | ${ }^{\text {t }}$ IP | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| $\overline{\text { XI setup Time }}$ | ${ }^{\text {t }}$ IS | 10 |  | 12 |  | 15 |  | 15 |  | ns |  |
| $\overline{\text { XI recovery time }}$ | ${ }^{\text {t }}$ IR | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Flow-through mode only.
6. Pulse widths less than minimum are not allowed.

## AC TEST CONDITIONS




Fig. 2
OUTPUT LOAD EQUIVALENT

RESET


ASYNCHRONOUS READ AND WRITE


Z/Z dont care
UNDEFINED

## EMPTY FLAG



FULL FLAG


HALF-FULL FLAG


## EXPANSION MODE ( $\overline{\mathrm{XO}})$



NOTE: $\overline{X O}$ of the Device 1 is connected to $\bar{X}$ of Device 2.

## EXPANSION MODE (位)




## FIFO

## $1 \mathrm{~K} \times 9$ FIFO WITH PROGRAMMABLE FLAGS

## FEATURES

- Very high speed: 15, 20, 25 and 35 ns access
- High-performance, low-power CMOS process
- Single $+5 \mathrm{~V} \pm 10 \%$ supply
- Low power: 5 mW typical (standby); 350 mW typical (active)
- TTL compatible inputs and outputs
- Asynchronous READ and WRITE
- Two fully configurable Almost Full and Almost Empty Flags
- Programmable Half Full Flag or Full/Empty Flag option eliminates external counter requirement
- Register loading via the input or output pins
- Auto-retransmit capability in single-device mode
- Fully expandable by width and depth
- Pin and function compatible with standard FIFOs


## OPTIONS

- Timing

15ns access time
20 ns access time
25 ns access time
35 ns access time

- Packages

Plastic DIP (300 mil)
Plastic DIP ( 600 mil )
Ceramic DIP ( 600 mil )
PLCC
Ceramic LCC
Plastic SOJ

None
MARKING
-15
-20
-25
-35

None
W
C
EJ
EC
DJ

## GENERAL DESCRIPTION

The Micron FIFO family employs high-speed, low-power CMOS designs using a true dual-port, six-transistor memory cell with resistor loads.
These devices are written and read in a first-in-first-out (FIFO) sequence. Dual read and write pointers handle the internal addressing, so no external address generation is required. Information may be written to and read from the FIFO asynchronously and independently at the input and output ports. This allows information to be transferred independently in and out of the FIFO at varying data rates.

When not configured, the MT52C9012 defaults to a standard FIFO with empty ( $\overline{\mathrm{EF}}$ ), full ( $\overline{\mathrm{FF}}$ ) and half-full

( $\overline{\mathrm{HF}}$ ) flag pins. The MT52C9012 can be configured for programmable flags by loading the internal flag registers (as described under "Register Load Mode" on page 8-45). In CONFIGURED mode, up to three flags are provided. The first two are the almostempty flag ( $\overline{\mathrm{AEF}})$ and the almost full flag ( $\overline{\mathrm{AFF}}$ ) with independently programmable offsets. The third one is either an $\overline{\mathrm{HF}}$ or a full and empty ( $\overline{\mathrm{FE}}$ ) flag, depending on the bit configuration of the registers. A retransmit pin allows data to be re-sent on the receiver's request when the FIFO is in the stand-alone mode.
The depth and/or width of the FIFO can be expanded by cascading multiple devices. Also, the MT52C9012 is speed, function and pin compatible with higher and lower density FIFOs from Micron. This upward compatibility with 2 K FIFOs provides a single-chip depth-expansion solution.

FUNCTIONAL BLOCK DIAGRAM


## PIN DESCRIPTIONS

| LCC PIN NUMBER(S) | DIP PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| 25 | 22 | $\overline{\mathrm{RS}}$ | Input | Reset: This pin is used to reset the device and load internal flag registers. During device reset, all internal pointers and registers are cleared. |
| 2 | 1 | W | Input | Write: A LOW on this pin loads data into the device. The internal write pointer is incremented after the rising edge of the write input. |
| 18 | 15 | $\overline{\mathrm{R}}$ | Input | Read: A LOW on this pin puts the oldest valid data byte in the memory array on the output bus. The internal read pointer is incremented at the rising edge of the read signal. Outputs are High-Z when this pin is HIGH. |
| 8 | 7 | $\overline{\mathrm{XI}}$ | Input | Expansion In: This pin is used for DEPTH EXPANSION mode. In SINGLE DEVICE mode, it should be grounded. In EXPANDED mode, it should be connected to Expansion-Out ( $\overline{\mathrm{XO}}$ ) of the previous device in the daisy chain. |
| 26 | 23 | FL/RT/DIR | Input | First Load/Retransmit/Direction: When in single-device mode, this pin can be used to initiate a reread of the previously read data. When in REGISTER LOAD mode, the pin is used for register loading direction. When it is LOW, registers are loaded through the data output pins. When it is HIGH, registers are loaded through the data input pins. In DEPTH EXPANSION mode, this pin should be tied LOW if the device is the first one in the chain and tied HIGH if it is not the first one. |
| $\begin{gathered} 7,6,5,4,31,30 \\ 29,28,3 \end{gathered}$ | $\begin{aligned} & 6,5,4,3,27 \\ & 26,25,34 \end{aligned}$ | D1-D9 | Input | Data Inputs: Data on these lines are stored in the memory array or flag registers during array WRITE or register programming, respectively. |
| 24 | 21 | EF/AEF | Output | Empty Flag/Almost Empty Flag: This output pin indicates the FIFO status. When in NONCONFIGURED mode, this pin is an Empty Flag output. When in CONFIGURED mode, it is an Almost Empty Flag output. This pin is active LOW. |
| 9 | 8 | FF/AFF | Output | Full Flag/Almost Full Flags: This output pin indicates the FIFO status. When in NONCONFIGURED mode, this pin is a Full Flag output. When in CONFIGURED mode, it is an Almost Full Flag output. This pin is active LOW. |
| 23 | 20 | $\overline{\mathrm{XO}} / \overline{\mathrm{HF}} / \overline{\mathrm{FE}}$ | Output | Expansion Out/Half Full/Full/Empty: This pin's function is determined by its operation mode. When in SINGLE DEVICE mode, this pin is either HF Flag or a Full/Empty Flag, depending on the state of the most significant bit of Almost Full Flag Register. The pin is an $\overline{X O}$ output when the part is in DEPTH EXPANSION mode. This pin defaults to $\overline{\mathrm{XO}} / \mathrm{HF}$ in NONCONFIGURED mode. |
| $\begin{gathered} 10,11,13,14 \\ 19,20,21,22,15 \end{gathered}$ | $\begin{gathered} 9,10,11,12,16 \\ 17,18,19,13 \end{gathered}$ | Q1-Q9 | 1/0 | Data Output: These pins may be used for data retrieval. The pins become inputs during register loading with DIR input HIGH. The outputs are disabled (High-Z) during device idle ( $\overline{\mathrm{R}}=\mathrm{HIGH}$ ). |
| 32 | 28 | Vcc | Supply | Power Supply: +5V $\pm 10 \%$ |
| 16 | 14 | GND | Supply | Ground |

## FUNCTIONAL DESCRIPTION

The MT52C9012 uses a dual port SRAM memory cell array with separate read and write pointers. This results in a flexible-length FIFO buffer memory with independent, asynchronous READ and WRITE capabilities and with no fall-through or bubble-through time constraints.

Note: For multiple function pins, the function that is not being discussed will be surrounded by parentheses.
For example, when discussing half-full flags, the


## RESET

After Vcc is stable, Reset ( $\overline{\mathrm{RS}})$ must be taken LOW with both $\overline{\mathrm{R}}$ and $\bar{W}$ HIGH to initialize the read and write pointers and flags. This also clears all internal registers. During the reset pulse, the state of the $\overline{\mathrm{XI}}$ pin will determine if the FIFO will operate in the STAND ALONE or DEPTH EXPANSION mode. The STAND ALONE mode is entered if $\overline{\mathrm{XI}}$ is tied LOW. If $\overline{\mathrm{XI}}$ is connected to $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ of another FIFO, the DEPTH EXPANSION mode is selected.

## WRITING THE FIFO

Data is written into theFIFO when the write strobe $(\overline{\mathrm{W}})$ pin is taken LOW and if the FIFO is not full. The WRITE cycle is initiated by the falling edge of $\overline{\mathrm{W}}$. Data on the D1-D9 pins are latched on the rising edge. If the location to be written is the lastempty location in the FIFO, $\overline{\mathrm{FF}}$ will be asserted (LOW) after the falling edge of $\bar{W}$. While $\overline{\mathrm{FF}}$ is asserted, all writes are inhibited and previously stored data are unaffected. The first WRITE to an empty FIFO will cause $\overline{\text { EF }}$ to go HIGH after the rising edge of $\bar{W}$. When operating in the DEPTH EXPANSION mode, the last location write to a FIFO will cause $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ to pulse LOW. This will enable writes to the next FIFO in the chain.

## READING THE FIFO

Information is read from the FIFO when the read strobe $(\overline{\mathrm{R}})$ pin is taken LOW and FIFO is not empty ( $\overline{\mathrm{EF}}$ is HIGH). The data-out (Q1-Q9) pins will go active (Low-Z) 'RLZafter the falling edge of $\bar{R}$. Valid data will appear ${ }^{t} \mathrm{~A}$ after the falling edge of $\overline{\mathrm{R}}$. After the last available data word is read, $\overline{\mathrm{EF}}$ will go LOW upon the falling edge of $\overline{\mathrm{R}}$. While $\overline{\mathrm{EF}}$ is asserted LOW, any attempted reads will be inhibited and the outputs will stay inactive (High-Z). When the FIFO is full and a READ is initiated, the $\overline{\mathrm{FF}}$ will go HIGH after the rising edge of $\overline{\mathrm{R}}$. When operating in the expanded mode, the last location read from a FIFO will cause $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ to pulse LOW. This will enable further reads from the next FIFO in the chain.

## RETRANSMIT

In the STAND ALONE mode, the MT52C9012 allows the receiving device to request that data just read from the FIFO be repeated, when less than 1024 writes have been performed between resets. When the ( $\overline{\mathrm{FL}}) / \overline{\mathrm{RT}} /$ (DIR) pin is taken LOW, the read pointer is reset to the first location while the write pointer is not affected. The receiver may start reading the data from the beginning of the FIFO ${ }^{\text {tRTR }}$ after $(\overline{\mathrm{FL}}) / \overline{\mathrm{RT}} /$ (DIR) is taken HIGH. Some or all flags may be affected depending on the location of the read and write pointers before and after the retransmit.

## DATA FLOW-THROUGH

Data flow-through is a method of writing and reading the FIFO at its full and empty boundaries, respectively. By holding $\bar{W}$ LOW when the FIFO is full, a WRITE can be initiated from the next ensuing READ pulse. This is referred to as a FLOW-THROUGH WRITE. FLOW-THROUGH WRITEs are initiated from the rising edge of $\overline{\bar{R}}$. When the FIFO is empty, a FLOW-THROUGH READ can be done by holding $\overline{\mathrm{R}}$ LOW and letting the next WRITE initiate the READ. Flow-through reads are initiated from the rising edge of $\bar{W}$, and access time is measured from the rising edge of the empty flag.

## REGISTER LOAD MODE

This mode of operation is used to reset the device and program the internal flag registers. This yields an almost full and an almost empty flag (DIP package pins 8 and 21 respectively) and a half-full or $\bar{F} / \overline{\mathrm{E}}$ flag (DIP package pin 20).

Two 9-bit internal registers have been provided for flag configuration. One is the almost full flag register (AFFR) and the other is the almost empty flag register (AEFR). Bit configurations of the two registers are shown below.

# REGISTER SET FOR MT52C9012 



Note that bits 0-6 are used for offset setting. The offset value ranges from 1 to 127 words. Each offset value corresponds to a 2-byte increment. This provides a maximum offset of 254 bytes.

Bits 6 and 7 are reserved for future offset expansion. Bit 8 of the AFFR is used for configuration of $\overline{\mathrm{HF}} / \overline{\mathrm{FE}}$ pin. When this bit is set LOW, the HF/ $\overline{\mathrm{F}} \overline{\mathrm{E}}$ pin is configured as an $\overline{\mathrm{HF}}$ flag output. When it is set high, the HF/ $\overline{\mathrm{FE}}$ is configured as an $\bar{F} / \bar{E}$ flag output.

Bit 8 of the AEFR is used for reset locking. When this bit is set LOW, subsequent device RESET or REGISTER LOADING cycles reset the device. When the bit is programmed HIGH, subsequent RESET cycles are ignored. In this mode, the flag registers can be reconfigured without device reset. The part can be reset by cycling power to the device or by writing zero (0) into bit 8 of the AEFR register followed by a DEVICE RESET or REGISTER LOAD.

Flag registers are loaded by bringing $\overline{\mathrm{RS}} \mathrm{LOW}$ followed by the $\overline{\mathrm{R}}$ input. The $\overline{\mathrm{R}}$ pin should be brought LOW ${ }^{\text {t }} \mathrm{RS}$ after
the $\overline{\mathrm{RS}}$ becomes LOW. The registers may be loaded via the input pins or the output pins depending on the status of the DIR control input. Data is latched into the registers at the rising edge of the $\bar{W}$ control pin. The first WRITE loads the AFFR while the second WRITE loads the AEFR. This loading order is fixed.

## BIDIRECTIONAL MODE

Applications requiring data buffering between two systems (each system capable of READ and WRITE operations) can be achieved by using two MT52C9012s. Care must be taken to assure that the appropriate flag is monitored by each system (i.e. $\overline{\mathrm{FF}}$ is monitored on the device where $\bar{W}$ is used; $\overline{\mathrm{EF}}$ is monitored on the device where $\overline{\mathrm{R}}$ is used). Both depth expansion and width expansion may be used in this mode.

## FLAG TIMING

A total of three flag outputs are provided in either CONFIGURED or NONCONFIGURED mode. In the NONCONFIGURED mode, the three flags are $\overline{\mathrm{HF}}, \overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$. The $\overline{\mathrm{HF}}$ flag goes active when more than half the FIFO is full. The flag goes inactive when the FIFO is half full or less.

The full and empty flags are asserted when the last byte is written to or read out of the FIFO, respectively. They are deasserted when the first byte is loaded into an empty FIFO or read out of a full FIFO, respectively. All three flag outputs are active LOW.

When the device is programmed, the $\overline{\mathrm{AFF}}$ and $\overline{\mathrm{AEF}}$ go active after a READ/WRITE cycle initiation of the location corresponding to the programmed offset value. For example, if the AEFR is programmed with a 10-byte offset (loading a Hex value of 05), the $\overline{\mathrm{AEF}}$ flag goes active while reading the 10th location before the FIFO is empty. The flag goes inactive when there are 10 or more bytes left in the FIFO. The assertion timing and deassertion timing of the $\overline{\mathrm{AFF}}$ are the same.

The third flag in the PROGRAM mode is either $\overline{\mathrm{HF}}$ or $\bar{F} / \bar{E}$ flag depending on the state of the highest bit of the AFFR. If the device is programmed for $\overline{\mathrm{HF}}$ flag, it functions like the $\overline{\mathrm{HF}}$ flag in NONPROGRAMMED mode. If the device is configured for $\bar{F} / \bar{E}$ flag, the pin will be active (LOW) when the FIFO is either empty or full. The condition of the FIFO is determined by the state of $\bar{F} / \bar{E}$ together with states of $\overline{\mathrm{AFF}}$ and $\overline{\mathrm{AEF}}$ (example: if $\overline{\mathrm{F}} / \overline{\mathrm{E}}$ is LOW and $\overline{\mathrm{AFF}}$ is LOW but $\overline{\mathrm{AEF}}$ is HIGH, the FIFO is full).


Figure 1
DEPTH EXPANSION

## WIDTH EXPANSION

The FIFO word width can be expanded, in increments of 9 bits, using either the STAND ALONE or groups of EXPANDEDDEPTH mode FIFOs. Expanded width operation is achieved by tying devices together with all control lines ( $\overline{\mathrm{W}}, \overline{\mathrm{R}}, \mathrm{etc}$.) in common. The flags are monitored from one device or one expanded-depth group (Figure 1), when expanding depth and width.

## DEPTH EXPANSION

Multiple MT52C9012s may be cascaded to expand the depth of the FIFO buffer. Three pins are used to expand the memory depth, $\overline{\mathrm{XI}}, \overline{\mathrm{XO}} /(\overline{\mathrm{HF}} / \overline{\mathrm{FE}})$ and $\overline{\mathrm{FL}} /(\overline{\mathrm{RT}} / \mathrm{DIR})$. Figure 1 illustrates a typical three-device expansion. The depthexpansion mode is entered by tying the $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}} / \overline{\mathrm{FE}})$ pin of each device to the $\overline{\mathrm{XI}}$ pin of the next device in the chain. The first device to be loaded will have its $\overline{\mathrm{FL}} /(\overline{\mathrm{RT}} / \mathrm{DIR}$ ) pin grounded. The remaining devices in the chain will have $\overline{\mathrm{FL}} /(\overline{\mathrm{RT}} / \mathrm{DIR})$ tied HIGH. Upon a reset, reads and writes to all FIFOs are disabled, except the first load device. When the
last physical location of the first device is written, the $\overline{\mathrm{XO}} /$ $(\overline{\mathrm{HF}})$ pin will pulse LOW on the falling edge of $\overline{\mathrm{W}}$. This will "pass" the write pointer to the next device in the chain, enabling writes to that device and disabling writes to the first MT52C9012. The writes will continue to go to the second device until last location write. Then it will "pass" the write pointer to the third device. The full condition of the entire FIFO array is signaled when all the $\overline{\mathrm{FF}} /(\overline{\mathrm{AFF}})$ pins are LOW.

On the last physical READ of the first device, its $\overline{\mathrm{XO}}(\overline{\mathrm{HF}})$ will pulse again. On the falling edge of $\overline{\mathrm{R}}$, the read pointer is "passed" to the second device. The read pointer will, in effect, "chase" the write pointer through the extended FIFO array. The read pointer never overtakes the write pointer. On the last READ, an empty condition is signaled by all of the $\overline{E F}$ pins being LOW. This inhibits further reads. While in the depth-expansion mode, the half-full flag and retransmit functions are not available.

TRUTH TABLE 1
SINGLE-DEVICE CONFIGURATION/WIDTH-EXPANSION Mode

| MODE | INPUTS |  |  | INTERNAL STATUS |  |  | OUTPUTS |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathbf{R S}}$ | $\overline{\mathbf{R T}}$ | $\overline{\mathbf{X I}}$ | Read Pointer | Write Pointer | $\overline{\mathbf{E F}}$ | $\overline{\mathrm{FF}}$ | $\overline{\mathrm{HF}}$ |  |
| RESET | 0 | X | 0 | Location Zero | Location Zero | 0 | 1 | 1 |  |
| RETRANSMIT | 1 | 0 | 0 | Location Zero | Unchanged | 1 | X | X |  |
| READ/WRITE | 1 | 1 | 0 | Increment (1) | Increment (1) | X | X | X |  |

NOTE: 1. Pointer will increment if flag is HIGH.

TRUTH TABLE 2
DEPTH-EXPANSION/COMPOUND-EXPANSION Mode

| MODE | INPUTS |  |  | INTERNAL STATUS |  | OUTPUTS |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathbf{R S}}$ | $\overline{\mathrm{FL}}$ | $\overline{\mathbf{X I}}$ | Read Pointer | Write Pointer | $\overline{\mathrm{EF}}$ | $\overline{\mathrm{FF}}$ |
| RESET <br> First Device | 0 | 0 | $(1)$ | Location Zero | Location Zero | 0 | 1 |
| RESET <br> All other Devices | 0 | 1 | $(1)$ | Location Zero | Location Zero | 0 | 1 |
| READ/WRITE | 1 | X | $(1)$ | X | X | X | X |

NOTE: 1. XI is connected to $\overline{\mathrm{XO}}$ of previous device.
$\overline{\mathrm{RS}}=$ Reset Input, $\overline{\mathrm{FL} / R T} / \mathrm{DIR}=$ First Load/Retransmit, $\overline{\mathrm{EF}}=$ Empty Flag Output, $\overline{\mathrm{FF}}=$ Full Flag Output, $\overline{\mathrm{XI}}=$ Expansion Input, $\overline{\mathrm{HF}}=$ Half Full Flag Output.

## MT52C9012

ABSOLUTE MAXIMUM RATINGS*Voltage on Vcc supply relative to Vss-0.5 V to +7.0 V
Operating Temperature $\mathrm{T}_{\mathrm{A}}$ (ambient) ..... $.0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic) ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) ..... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..... 1W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | $\mathrm{VIH}^{\prime}$ | 2.0 | Vcc +1 | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | $\mathrm{VIL}^{\prime}$ | -0.5 | 0.8 | V | 1,2 |

## DC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | -15 | -20 | -25 | -35 | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Current: Operating | $\begin{gathered} \bar{W}, \bar{R} \leq V \mathrm{VL} ; V \mathrm{VcC}=M A X \\ f=M A X=1 /{ }^{\text {t } R C} \\ \text { Outputs Open } \end{gathered}$ | Icc |  | 120 | 115 | 110 | 100 | mA | 3 |
|  | $\begin{gathered} \bar{W}, \bar{R} \geq V_{I H} ; V_{C C}=M A X \\ f=M A X=1 /{ }^{t} R C \end{gathered}$ | Iss1 |  | 15 | 15 | 15 | 15 | mA |  |
| Power Supply Current: Standby | $\overline{\mathrm{W}}, \overline{\mathrm{R}} \geq \mathrm{Vcc}-0.2 ; \mathrm{Vcc}_{\mathrm{c}}=\mathrm{MAX}$ <br> $\mathrm{VIL} \leq \mathrm{Vss}+0.2$, <br> $\mathrm{V}_{\mathrm{IH}} \geq \mathrm{Vcc}-0.2 ; \mathrm{f}=0$ | ISB2 |  | 5 | 5 | 5 | 5 | mA |  |
| Input Leakage Current | $\mathrm{OV} \leq \mathrm{Vin} \leq \mathrm{Vcc}$ | ILI | -10 | 10 | 10 | 10 | 10 | $\mu \mathrm{A}$ |  |
| Output Leakage Current | Output(s) Disabled OV $\leq$ Vout $\leq \mathrm{Vcc}$ | ILo | -10 | 10 | 10 | 10 | 10 | $\mu \mathrm{A}$ |  |
| Output High Voltage | $\mathrm{IOH}=-2.0 \mathrm{~mA}$ | Vor | 2.4 |  |  |  |  | V | 1 |
| Output Low Voltage | $1 \mathrm{loL}=8.0 \mathrm{~mA}$ | Vol |  |  |  |  | 0.4 | V | 1 |

## CAPACITANCE

$(\mathrm{VIN}=0 \mathrm{~V}$; Vout $=0 \mathrm{~V})$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | $\mathrm{Cl}_{\mathrm{I}}$ |  | 8 | pF | 4 |
|  |  | Co |  | 8 | pF | 4 |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Applicable for configured and nonconfigured modes) $\left(0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -15 |  | -20 |  | -25 |  | -35 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| READ Cycle |  |  |  |  |  |  |  |  |  |  |  |
| Shift frequency | ${ }^{\text {t }} \mathrm{RF}$ |  | 40 |  | 33.3 |  | 28.5 |  | 22.2 | MHz |  |
| READ cycle time | ${ }^{\text {tRC }}$ | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Access time | ${ }^{t} \mathrm{~A}$ |  | 15 |  | 20 |  | 25 |  | 35 | ns | 6 |
| READ recovery time | ${ }^{\text {tRR }}$ | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| Read pulse width | ${ }^{\text {t }}$ RPW | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Read LOW to Low-Z | ${ }^{\text {tRLZ }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns | 7 |
| Read to HIGH to High-Z | trHZ |  | 15 |  | 15 |  | 18 |  | 20 | ns | 7 |
| Data HOLD from $\overline{\mathrm{R}}$ HIGH | ${ }^{\text {t }} \mathrm{OH}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| WRITE Cycle |  |  |  |  |  |  |  |  |  |  |  |
| WRITE cycle time | tWC | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Write pulse width | tWPW | 15 |  | 20 |  | 25 |  | 35 |  | ns | 6 |
| WRITE recovery time | ${ }^{\text {t }}$ WR | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| Write HIGH to Low-Z | ${ }^{\text {t }}$ WLZ | 5 |  | 5 |  | 5 |  | 5 |  | ns | 5, 7 |
| Data setup time | ${ }^{\text {t }}$ DS | 10 |  | 12 |  | 15 |  | 18 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| RETRANSMIT Cycle |  |  |  |  |  |  |  |  |  |  |  |
| Restransmit cycle time | ${ }^{\text {tRTC }}$ | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Retransmit pulse width | ${ }^{\text {tRT }}$ | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Retransmit recovery time | tRTR | 10 |  | 10 |  | 10 |  | 12 |  | ns |  |
| Retransmit command setup time | tRTS | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| RESET Cycle |  |  |  |  |  |  |  |  |  |  |  |
| RESET cycle time (no register programming) | ${ }^{\text {t } R S C}$ | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Reset pulse width | ${ }^{\text {tRSP }}$ | 15 |  | 20 |  | 25 |  | 35 |  | ns | 6 |
| Reset recovery time | ${ }^{\text {t } R S R}$ | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{RS}}$ LOW to $\overline{\mathrm{R}}$ LOW | trs | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Reset and register programming cycle time | ${ }^{\text {t RSPC }}$ | 85 |  | 100 |  | 115 |  | 145 |  | ns |  |
| $\overline{\mathrm{R}}$ LOW to DIR valid (register load cycle) | ${ }^{\text {t } R D V}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| $\overline{\mathrm{R}}$ LOW to register load | ${ }^{\text {tr }}$, | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { W HIGH to } \overline{\mathrm{RS}} \text { LOW }}$ | tWRS | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\mathrm{R}} \mathrm{HIGH}$ to $\overline{\mathrm{RS}}$ LOW | ${ }^{\text {t RRS }}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |

## NOTES

1. All voltages referenced to Vss (GND).
2. -3.0 V for pulse width $<20 \mathrm{~ns}$.
3. Icc is dependent on output loading and cycle rates.
4. This parameter is sampled.
5. Data flow-through data mode only.
6. Pulse widths less than minimum are not allowed.
7. Values guaranteed by design, not currently tested.
8. $\bar{R}$ and DIR signals must go inactive (HIGH) coincident with $\overline{\mathrm{RS}}$ going inactive (HIGH).
9. DIR must become valid before $\bar{W}$ goes active (LOW).

## MT52C9012

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Applicable for configured mode only) $\left(T_{A}=0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -15 |  | -20 |  | -25 |  | -35 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Expansion Mode Timing |  |  |  |  |  |  |  |  |  |  |  |
| $\overline{\mathrm{R}} \overline{\mathrm{W}}$ to $\overline{\mathrm{XO}} \mathrm{LOW}$ | ${ }^{\text {t }}$ XOL |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| $\overline{\mathrm{R}} / \overline{\mathrm{W}}$ to $\overline{\mathrm{XO}} \mathrm{HIGH}$ | ${ }^{\text {t }}$ OOH |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| $\overline{\text { XI pulse width }}$ | ${ }^{\text {t }}$ IP | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| $\overline{\mathrm{XI}}$ command setup time to $\overline{\mathrm{R}} / \overline{\mathrm{W}}$ | ${ }^{\text {t }}$ IIS | 10 |  | 12 |  | 15 |  | 15 |  | ns |  |
| $\overline{\mathrm{XI}}$ command recovery time | ${ }^{\text {t }}$ IR | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| Flags Timing |  |  |  |  |  |  |  |  |  |  |  |
| $\overline{\text { W }}$ HIGH to Flags Valid | tWFV |  | 15 |  | 15 |  | 15 |  | 15 | ns |  |
| $\overline{\mathrm{RS}}$ to EF LOW | ${ }^{t} \mathrm{EFL}$ |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\mathrm{R}}$ LOW to EF LOW | treF |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| $\overline{\text { W }}$ HIGH to EF HIGH | tWEF |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| $\overline{\bar{R}}$ pulse after $\overline{\mathrm{EF}} \mathrm{HIGH}$ | trPE | 15 |  | 20 |  | 25 |  | 35 |  | ns | 5 |
| $\overline{\mathrm{RS}}$ to $\overline{\mathrm{HF}}$, $\overline{\mathrm{FF}} \mathrm{HIGH}$ | ${ }^{\text {tHFH, }}{ }^{\text {t }}$ ' ${ }^{\text {a }}$ |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\mathrm{R}} \mathrm{HIGH}$ to $\overline{\mathrm{FF}}$ | ${ }^{\text {t RFF }}$ |  | 15 |  | 20 |  | 25 |  | 30 | ns |  |
| $\bar{W}$ LOW to FF LOW | tWFF |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| $\overline{\text { W }}$ pulse width after $\overline{\mathrm{FF}}$ HIGH | tWPF | 15 |  | 20 |  | 25 |  | 35 |  | ns | 5 |
| $\bar{W}$ LOW to $\overline{\text { HF }}$ LOW | tWHF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\mathrm{R}} \mathrm{HIGH}$ to $\overline{\mathrm{HF}} \mathrm{HIGH}$ | trHF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\mathrm{R}} \mathrm{HIGH}$ to $\overline{\mathrm{AFF}}$ | trafF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\mathrm{W}}$ LOW to $\overline{\mathrm{AFF}}$ | ${ }^{\text {t WAFF }}$ |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\mathrm{R}}$ LOW to $\overline{\mathrm{AEF}}$ LOW | ${ }^{\text {t RAEF }}$ |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
|  | tWAEF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |

## AC TEST CONDITIONS

Input pulse level 0 to 3.0 V
Input rise and fall times .........................................5ns
Input timing reference level .1.5V
Output reference level .........................................1.5V
Output load .See Figure 2


Figure 2
OUTPUT LOAD EQUIVALENT

RESET
(WITH NO REGISTER PROGRAMMING)


## ASYNCHRONOUS READ AND WRITE



V/A DON'T CARE
UNDEFINED

## EMPTY FLAG



FULL FLAG


HALF-FULL FLAG (FOR CONFIGURED AND NONCONFIGURED MODES)


## EXPANSION MODE ( $\overline{\mathbf{X O}})$



NOTE: 1. $\overline{\mathrm{XO}}$ of the Device 1 is connected to $\overline{\mathrm{XI}}$ of Device 2.

## EXPANSION MODE (XI)




## WRITE FLOW-THROUGH



READ FLOW-THROUGH


RESET/REGISTER PROGRAMMING CYCLE TIME 8,9


## ALMOST FULL FLAG (2-BYTE OFFSET)



## ALMOST EMPTY FLAG (10-BYTE OFFSET)



## FIFO

## 2K x 9 FIFO

## FEATURES

- Very high speed: 15, 20, 25 and 35ns access
- High-performance, low-power CMOS process
- Single $+5 \mathrm{~V} \pm 10 \%$ supply
- Low power: 5 mW typ. (standby); 350mW typ. (active)
- TTL compatible inputs and outputs
- Asynchronous and simultaneous READ and WRITE
- Empty, Half-Full and Full Flags
- Half-Full Flag in STAND ALONE mode
- Auto-retransmit capability
- Fully expandable by width and depth
- Pin and function compatible with other standard FIFOs


## OPTIONS

- Timing

15ns access time -15
20ns access time -20
25ns access time -25
35ns access time -35

- Packages

Plastic DIP ( 300 mil )
Plastic DIP ( 600 mil )
Ceramic DIP (600 mil)
PLCC
Ceramic LCC
SOJ (300 mil)

MARKING
-35
None
W
C
EJ
EC
DJ

## GENERAL DESCRIPTION

The Micron FIFO family employs high-speed,low-power CMOS designs using a true dual port, six-transistor memory cell with resistor loads.

These devices are written and read in a first-in-first-out (FIFO) sequence. Dual read and write pointers handle the internal addressing, so no external address generation is required. Information can be written to and read from the FIFO asynchronously and independently at the input and output ports. This allows information to be transferred independently in and out of the FIFO at varying data rates. Visibility of the memory volume is given through empty,

half-full and full flags. While the full flag is asserted, attempted writes are inhibited. Likewise, while the empty flag is asserted, further reads are inhibited and the outputs remain in a high-impedance state. Expansion out, expansion in, and first load pins are provided to expand the depth of the FIFO memory array, with no performance degradation. A retransmit pin allows data to be re-sent on the receiver's request when the FIFO is in the STAND ALONE mode.

The depth and/or width of the FIFO can be expanded by cascading multiple devices.

## FUNCTIONAL BLOCK DIAGRAM



## PIN DESCRIPTIONS

| LCC PIN NUMBER(S) | DIP PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| 25 | 22 | $\overline{\mathrm{RS}}$ | Input | Reset: Taking $\overline{\mathrm{RS}}$ LOW will reset the FIFO by initializing the read and write pointers and all flags. After the device is powered up, it must be reset before any writes can take place. |
| 2 | 1 | W | Input | Write Strobe: $\bar{W}$ is taken LOW to write data from the input port (D1-D9) into the FIFO memory array. |
| 18 | 15 | $\overline{\mathrm{R}}$ | Input | Read Strobe: $\overline{\mathrm{R}}$ is taken LOW to read data from the FIFO memory array to the output port (Q1-Q9). |
| 8 | 7 | XI | Input | Expansion In: This pin is used for DEPTH EXPANSION mode. In SINGLE DEVICE mode, it should be grounded. In EXPANDED mode, it should be connected to Expansion-Out ( $\overline{\mathrm{XO}})$ of the previous device in the daisy chain. |
| 26 | 23 | FL/RT | Input | First Load: Acts as first load signal in DEPTH EXPANSION mode. FL if low, will enable the device as the first to be loaded (enables read and write pointers). <br> FL should be tied low for the first FIFO in the chain, and tied high for all other FIFOs in the chain <br> Retransmit: Acts as retransmit signal in STAND ALONE mode. $\overline{\mathrm{RT}}$ is used to enable the RETRANSMIT cycle. When taken LOW, $\overline{\mathrm{RT}}$ resets the read pointer to the first data location and the FIFO is then ready to retransmit data on the following READ operation(s). The flags will be affected according to specific data conditions. |
| $\begin{aligned} & 7,6,5,4,31, \\ & 30,29,28,3 \end{aligned}$ | $\begin{aligned} & 6,5,4,3,27 \\ & 26,25,24,2 \\ & \hline \end{aligned}$ | D1-D9 | Input | Data Inputs |
| 24 | 21 | $\overline{\mathrm{EF}}$ | Output | Empty Flag: Indicates empty FIFO memory when LOW, inhibiting further READ cycles. |
| 9 | 8 | $\overline{\text { FF }}$ | Output | Full Flag: Indicates full FIFO memory when LOW, inhibiting further WRITE cycles. |
| 23 | 20 | $\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$ | Output | Expansion Out: Acts as expansion out pin in DEPTH EXPANSION mode. $\overline{X O}$ will pulse LOW on the last physical WRITE or the last physical read. $\overline{\mathrm{XO}}$ should be connected to $\overline{\mathrm{XT}}$ of the next FIFO in the daisy chain. <br> Half-full Flag: Acts as Half Full Flag in STAND ALONE mode. $\overline{\mathrm{HF}}$ goes LOW when the FIFO becomes more than Half-Full; will stay LOW until the FIFO becomes Half-Full or less. |
| $\begin{array}{r} 10,11,13,14, \\ 19,20,21,22,15 \\ \hline \end{array}$ | $\begin{gathered} 9,10,11,12,16 \\ 17,18,19,13 \end{gathered}$ | Q1-Q9 | Output | Data Output: Output or high impedance. |
| 32 | 28 | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 16 | 14 | Vss | Supply | Ground |

## FUNCTIONAL DESCRIPTION

The MT52C9020 uses a dual port SRAM memory cell array with separate read and write pointers. This results in a flexible length FIFO buffer memory, with independent, asynchronous READ and WRITE capabilities and with no fall-through or bubble-through time constraints.

## Note: For dual function pins, the function that is not

 being discussed will be surrounded by parentheses. For example, when discussing the half-full flags the $\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$ pin will be shown as $(\overline{\mathrm{XO}}) / \overline{\mathrm{HF}}$.
## RESET

After Vcc is stable, RESET ( $\overline{\mathrm{RS}}$ ) must be taken LOW to initialize the read and write pointers and flags. During the reset pulse, the state of the $\overline{\text { XI }}$ pin will determine if the FIFO will operate in the STAND ALONE or DEPTH EXPANSION mode. The STAND ALONE mode is entered if $\overline{\mathrm{XI}}$ is LOW. If $\overline{\mathrm{XI}}$ is tied to $\overline{\mathrm{XO}}$ of another FIFO, the DEPTH EXPANSION mode is selected.

## WRITING THE FIFO

Data is written into the FIFO when the write strobe $(\overline{\mathrm{W}})$ pin is taken LOW, while $\overline{\mathrm{FF}}$ is HIGH. The WRITE cycle is initiated by the falling edge of $\bar{W}$ and data on the D1-D9 pins are latched on the rising edge. If the location to be written is the last empty location in the FIFO, the $\overline{\mathrm{FF}}$ will be asserted (LOW) after the falling edge of $\bar{W}$. While $\overline{\mathrm{FF}}$ is LOW, any attempted writes will be inhibited, with no loss of data already stored in the FIFO. When a device is used in the STAND ALONE mode, $(\overline{\mathrm{XO}}) / \overline{\mathrm{HF}}$ is asserted when the half-full-plus-one location ( $2048 / 2+1$ ) is written. It will stay asserted until the FIFO becomes half-full or less. The first WRITE to an empty FIFO will cause $\overline{\mathrm{EF}}$ to go HIGH after the rising edge of $\bar{W}$. When operating in the DEPTH EXPANSION mode, the last location write to a FIFO will cause $\overline{\mathrm{XO}} /$ $\overline{\mathrm{HF}}$ to pulse LOW. This will enable writes to the next FIFO in the chain.

## READING THE FIFO

Information is read from the FIFO when the read strobe $(\overline{\mathrm{R}})$ pin is taken LOW and the FIFO is notempty ( $\overline{\mathrm{EF}}$ is HIGH). The data-out (Q1-Q9) pins will go active (Low-Z) ${ }^{\text {t RLZ after }}$ the falling edge of $\bar{R}$ and valid data will appear ${ }^{t} A$ after the falling edge of $\bar{R}$. After the last available data word is read, $\overline{\mathrm{EF}}$ will go LOW upon the falling edge of $\overline{\mathrm{R}}$. While $\overline{\mathrm{EF}}$ is asserted LOW, any attempted reads will be inhibited and the outputs will stay inactive (High-Z). When the FIFO is being used in the SINGLE DEVICE mode and the half-full-plus-one location is read, $(\overline{\mathrm{XO}}) / \overline{\mathrm{HF}}$ will go HIGH after the rising edge of $\bar{R}$. When the FIFO is full ( $\overline{\mathrm{FF}} \mathrm{LOW}$ ) and a READ is initiated, $\overline{\mathrm{FF}}$ will goHIGH after the rising edge of $\overline{\mathrm{R}}$. When operating in the EXPANDED mode, the last location read to a FIFO will cause $\overline{\mathrm{XO}} / \overline{\mathrm{HF}}$ to pulse LOW. This will enable further reads from the next FIFO in the chain.

## RETRANSMIT

In the STAND ALONE mode, the MT52C9020 allows the receiving device to request that the data read earlier from the FIFO to be repeated, when less than 2047 writes have been performed between resets. When the ( $\overline{\mathrm{FL}}) / \overline{\mathrm{RT}}$ pin is taken LOW, the read pointer is reset to the first location while the write pointer is not affected. The receiver may again start reading the data from the beginning of the FIFO ${ }^{\mathrm{t}}$ RTR after $(\overline{\mathrm{FL}}) / \overline{\mathrm{RT}}$ is taken HIGH. The empty, half-full and full flags will be affected as specified for the data volume.

## DATA FLOW-THROUGH

Data flow-through is a method of writing and reading the FIFO at its full and empty boundaries, respectively. By holding $\overline{\mathrm{W}}$ LOW when the FIFO is full, a WRITE can be initiated from the next ensuing READ pulse. This is referred to as a FLOW-THROUGH WRITE. FLOW-THROUGH WRITEs are initiated from the rising edge of $\bar{R}$. When the FIFO is empty, a FLOW-THROUGH READ can be done by holding $\overline{\mathrm{R}}$ LOW and letting the next WRITE initiate the READ. FLOW-THROUGH READs are initiated from the rising edge of $\bar{W}$ and access time is measured from the rising edge of $\overline{\mathrm{EF}}$.


Figure 1 DEPTH EXPANSION

## WIDTH EXPANSION

The FIFO word width can be expanded, in increments of 9 bits, using either the stand alone or groups of expandeddepth mode FIFOs. Expanded-width operation is achieved by tying devices together with all control lines ( $\bar{W}, \bar{R}$, etc.) in common. The flags are monitored from one device or one expanded-depth group (Figure 1) when expanding depth and width.

## DEPTH EXPANSION

Multiple MT52C9020s may be cascaded to expand the depth of the FIFO buffer. Three pins are used to expand the memory depth, $\overline{\mathrm{XI}}, \overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ and $\overline{\mathrm{FL}} /(\overline{\mathrm{RT}})$. Figure 1 illustrates a typical three-device expansion. The DEPTH EXPANSION mode is entered during a RESET cycle, by tying the $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ pin of each device to the $\overline{\mathrm{XI}}$ pin of the next device in the chain. The first device to be loaded will have its $\overline{\mathrm{FL}} /(\overline{\mathrm{RT}})$ pin grounded. The remaining devices in the chain will have $\overline{\mathrm{FL}} /(\overline{\mathrm{RT}})$ tied HIGH. During RESET cycle, $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ of each device is held HIGH, disabling reads and
writes to all FIFOs, except the first load device. When the last physical location of the first device is written, the $\overline{\mathrm{XO}} /$ $(\overline{\mathrm{HF}})$ pin will pulse LOW on the falling edge of $\bar{W}$. This will "pass" the write pointer to the next device in the chain, enabling writes to that device and disabling writes to the first MT52C9020. The writes will continue to go to the second device until last location WRITE. Then it will "pass" the write pointer to the third device.
The full condition of the entire FIFO array is signaled by "OR-ing" all the $\overline{\mathrm{FF}}$ pins. On the last physical READ of the first device, its $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ will pulse again. On the falling edge of $\bar{R}$, the read pointer is "passed" to the second device. The read pointer will, in effect, "chase" the write pointer through the extended FIFO array. The read pointer never overtakes the write pointer. An empty condition is signaled by OR-ing all of the EF pins. This inhibits further reads. While in the DEPTH EXPANSION mode, the half-full flag and retransmit functions are not available.

## TRUTH TABLE 1

SINGLE-DEVICE CONFIGURATION/WIDTH-EXPANSION Mode

| MODE | INPUTS |  |  | INTERNAL STATUS |  | OUTPUTS |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathbf{R S}}$ | $\overline{\mathbf{R T}}$ | $\overline{\mathbf{X I}}$ | Read Pointer | Write Pointer | $\overline{\mathrm{EF}}$ | $\overline{\mathrm{FF}}$ | $\overline{\mathbf{H F}}$ |
| RESET | 0 | X | 0 | Location Zero | Location Zero | 0 | 1 | 1 |
| RETRANSMIT | 1 | 0 | 0 | Location Zero | Unchanged | 1 | X | X |
| READ/WRITE | 1 | 1 | 0 | Increment (1) | Increment (1) | X | X | X |

NOTE: 1. Pointer will increment if flag is HIGH.

## TRUTH TABLE 2

DEPTH-EXPANSION/COMPOUND-EXPANSION Mode

| MODE | INPUTS |  |  | INTERNAL STATUS |  | OUTPUTS |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathbf{R S}}$ | $\overline{\mathrm{FL}}$ | $\overline{\mathbf{X I}}$ | Read Pointer | Write Pointer | $\overline{\mathbf{E F}}$ | $\overline{\mathrm{FF}}$ |
| RESET <br> First Device | 0 | 0 | $(1)$ | Location Zero | Location Zero | 0 | 1 |
| RESET <br> All other Devices | 0 | 1 | $(1)$ | Location Zero | Location Zero | 0 | 1 |
| READ/WRITE | 1 | X | $(1)$ | X | X | X | X |

NOTE: 1. XI is connected to $\overline{\mathrm{XO}}$ of previous device.
$\overline{\mathrm{RS}}=$ Reset Input, $\overline{\mathrm{FL}} / \mathrm{RT} / \mathrm{DIR}=$ First Load/Retransmit, $\overline{\mathrm{EF}}=$ Empty Flag Output, $\overline{\mathrm{FF}}=$ Full Flag Output, $\overline{\mathrm{XI}}=$ Expansion Input, $\overline{\mathrm{HF}}=$ Half Full Flag Output.
ABSOLUTE MAXIMUM RATINGS*
Voltage on Vcc supply relative to Vss ..... -0.5 V to +7.0 V
Operating Temperature $\mathrm{T}_{\mathrm{A}}$ (ambient) ..... $.0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic) ..... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) ..... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation ..... 1W
Short Circuit Output Current ..... 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | $\mathrm{V}_{\mathrm{IH}}$ | 2.0 | $\mathrm{VCC}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | $\mathrm{V}_{\mathrm{IL}}$ | -0.5 | 0.8 | V | 1,2 |

## DC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Current: Operating | $\bar{W}, \bar{R} \leq V_{L L} ; V_{c c}=$ MAX Outputs Open | Icc |  | 100 | mA | 3 |
|  | W, $\overline{\mathrm{R}} \geq \mathrm{V}$ ıн; $\mathrm{Vcc}=\mathrm{MAX}$ | IsB1 |  | 15 | mA |  |
| Power Supply Current: Standby |  | IsB2 |  | 5 | mA |  |
| Input Leakage Current | $0 \mathrm{~V} \leq \mathrm{Vin} \leq \mathrm{Vcc}$ | ILI | -10 | 10 | $\mu \mathrm{A}$ |  |
| Output Leakage Current | Output(s) Disabled, $\mathrm{OV} \leq \mathrm{VOUT}^{\leq} \mathrm{Vcc}$ | ILo | -10 | 10 | $\mu \mathrm{A}$ |  |
| Output High Voltage | $\mathrm{loH}=-2.0 \mathrm{~mA}$ | Vон | 2.4 |  | V | 1 |
| Output Low Voltage | $\mathrm{loL}=8.0 \mathrm{~mA}$ | Vol |  | 0.4 | V | 1 |

## CAPACITANCE

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | $\mathrm{Cl}^{2}$ |  | 8 | pF | 4 |
|  | Output Capacitance | $\mathrm{Vcc}=5 \mathrm{~V}$ | Co |  | 8 | pF |
|  |  |  |  |  |  |  |

## ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS <br> $\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| A.C. CHARACTERISTICS |  | -15 |  | -20 |  | -25 |  | -35 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Shift Frequency | Fs |  | 40 |  | 33.3 |  | 28.5 |  | 22.2 | MHz |  |
| Access time | ${ }^{\text {t }}$ A |  | 15 |  | 20 |  | 25 |  | 35 | ns |  |
| Read cycle time | ${ }^{\text {tR }}$ C | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Read command recovery time | ${ }^{\text {tRR}}$ | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| Read command pulse width | tRPW | 15 |  | 20 |  | 25 |  | 35 |  | ns | 6 |
| Read LOW to Low-Z | ${ }^{\text {tr L }}$ L | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Read to HIGH to High-Z | ${ }^{\text {tr }}$ HZ |  | 15 |  | 15 |  | 18 |  | 20 | ns |  |
| Data hold from $\overline{\text { R HIGH }}$ | ${ }^{\text {toh }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| Write cycle time | tWC | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Write command pulse width | tWPW | 15 |  | 20 |  | 25 |  | 35 |  | ns | 6 |
| Write command recovery time | ${ }^{\text {t }}$ WR | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| Write HIGH to Low-Z | tWLZ | 5 |  | 5 |  | 5 |  | 5 |  | ns | 5 |
| Data setup time | ${ }^{\text {t }}$ DS | 10 |  | 12 |  | 15 |  | 20 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| Reset cycle time | tRSC | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Reset pulse width | tRSP | 15 |  | 20 |  | 25 |  | 35 |  | ns | 6 |
| Reset recovery time | ${ }^{\text {t }}$ RSR | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| Read HIGH to Reset HIGH | tRRS | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Write HIGH to Reset HIGH | tWRS | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Retransmit cycle time | trTC | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Retransmit pulse width | ${ }^{\text {tRT }}$ | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Retransmit recovery time | ${ }^{\text {tRTR }}$ | 10 |  | 10 |  | 10 |  | 12 |  | ns |  |
| Retransmit setup time | tRTS | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Reset to EF LOW | tEFL |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Reset to $\overline{\text { FF FF HIGH }}$ | ${ }^{\text {thFH, }}{ }^{\text {TFFH }}$ |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Read LOW to EF LOW | tREF |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| Read HIGH to FF HIGH | ${ }^{\text {t }}$ RFF |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| Write LOW to FF LOW | tWFF |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| Write HIGH to EF HIGH | tWEF |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| Write LOW to FF LOW | tWHF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Read HIGH to $\overline{\mathrm{HF}} \mathrm{HIGH}$ | trHF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| Read pulse after EF HIGH | trPE | 15 |  | 20 |  | 25 |  | 35 |  | ns | 5 |
| Write pulse width after $\overline{\mathrm{FF}}$ HIGH | tWPF | 15 |  | 20 |  | 25 |  | 35 |  | ns | 5 |
| Read/Write to XO LOW | ${ }^{\text {t }}$ OOL |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| Read/Write to XO HIGH | ${ }^{\text {T }} \mathrm{XOH}$ |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| $\overline{\text { XI pulse width }}$ | ${ }^{\text {t }}$ IP | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| $\overline{\mathrm{XI}}$ setup time | ${ }^{\text {tXIS }}$ | 10 |  | 12 |  | 15 |  | 15 |  | ns |  |
| $\overline{\text { XI recovery time }}$ | ${ }^{\text {t }}$ IIR | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |

## NOTES

1. All voltages referenced to Vss (GND).
2. This parameter is sampled.
3. -3.0 V for pulse width $<20 \mathrm{~ns}$.
4. Flow-through mode only.
5. Icc is dependent on output loading and cycle rates.
6. Pulse widths less than minimum are not allowed.

## AC TEST CONDITIONS

Input pulse level ......................................... 0 to 3.0 V
Input rise and fall times ........................................ 5 ns
Input timing reference level ................................. 1.5 V
Output reference level ............................................ 1.5 V
Output load .................................................ee Figure 2


Fig. 2
OUTPUT LOAD EQUIVALENT

## RESET



ASYNCHRONOUS READ AND WRITE


V/A DON'T CARE
UNDEFINED

## EMPTY FLAG



FULL FLAG


HALF-FULL FLAG


## EXPANSION MODE (XО)



NOTE: $\overline{\mathrm{XO}}$ of the Device 1 is connected to $\overline{\mathrm{XI}}$ of Device 2.

## EXPANSION MODE (XI)




WRITE FLOW-THROUGH


READ FLOW-THROUGH


V/A DON'T CARE
UNDEFINED

## FIFO

## 2K x 9 FIFO

WITH PROGRAMMABLE FLAGS

## FEATURES

- Very high speed: 15, 20, 25 and 35 ns access
- High-performance, low-power CMOS process
- Single $+5 \mathrm{~V} \pm 10 \%$ supply
- Low power: 5 mW typical (standby); 350mW typical (active)
- TTL compatible inputs and outputs
- Asynchronous READ and WRITE
- Two fully configurable Almost Full and Almost Empty Flags
- Programmable Half Full Flag or Full/Empty Flag option eliminates external counter requirement
- Register loading via the input or output pins
- Auto-retransmit capability in single-device mode
- Fully expandable by width and depth
- Pin and function compatible with standard FIFOs


## OPTIONS

- Timing

15ns access time
20 ns access time
25 ns access time
35 ns access time
MARKING

Packages
Plastic DIP ( 300 mil )
Plastic DIP ( 600 mil )
Ceramic DIP ( 600 mil )
PLCC
Ceramic LCC
Plastic SOJ

None W C EJ
EC
DJ

## GENERAL DESCRIPTION

TheMicron FIFO family employs high-speed, low-power CMOS designs using a true dual-port, six-transistor memory cell with resistor loads.

These devices are written and read in a first-in-first-out (FIFO) sequence. Dual read and write pointers handle the internal addressing, so no external address generation is required. Information may be written to and read from the FIFO asynchronously and independently at the input and output ports. This allows information to be transferred independently in and out of the FIFO at varying data rates.

When not configured, the MT52C9022 defaults to a standard FIFO with empty ( $\overline{\mathrm{EF}})$, full ( $\overline{\mathrm{FF}}$ ) and half-full ( $\overline{\mathrm{HF}})$ flag pins. The MT52C9022 can be configured for programmable

flags by loading the internal flag registers (as described under "Register Load Mode" on page 8-73). In configured mode, up to three flags are provided. The first two are the almost empty flag ( $\overline{\mathrm{AEF}}$ ) and the almost full flag ( $\overline{\mathrm{AFF}})$ with independently programmableoffsets. Thethird one is either an $\overline{\mathrm{HF}}$ or a full and empty ( $\overline{\mathrm{F}} \overline{\mathrm{E}})$ flag, depending on the bit configuration of the registers. A retransmit pin allows data to bere-sent on the receiver's request when the FIFO is in the STAND ALONE mode.

The depth and / or width of the FIFO can be expanded by cascading multiple devices. The MT52C9022 is speed, function and pin compatible with lower density FIFOs from Micron.

## FUNCTIONAL BLOCK DIAGRAM



## PIN DESCRIPTIONS

| LCC PIN NUMBER(S) | DIP PIN NUMBER(S) | SYMBOL | TYPE | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
| 25 | 22 | $\overline{\mathrm{RS}}$ | Input | Reset: This pin is used to reset the device and load internal flag registers. During device reset, all internal pointers and registers are cleared. |
| 2 | 1 | W | Input | Write: A LOW on this pin loads data into the device. The internal write pointer is incremented after the rising edge of the write input. |
| 18 | 15 | $\overline{\mathrm{R}}$ | Input | Read: A LOW on this pin puts the oldest valid data byte in the memory array on the output bus. The internal read pointer is incremented at the rising edge of the read signal. Outputs are High-Z when this pin is HIGH. |
| 8 | 7 | XI | Input | Expansion In: This pin is used for DEPTH EXPANSION mode. In SINGLE DEVICE mode, it should be grounded. In EXPANDED mode, it should be connected to Expansion-Out ( $\overline{\mathrm{XO}}$ ) of the previous device in the daisy chain. |
| 26 | 23 | FL/RT/DIR | Input | First Load/Retransmit/Direction: When in single-device mode, this pin can be used to initiate a reread of the previously read data. When in REGISTER LOAD mode, the pin is used for register loading direction. When it is LOW, registers are loaded through the data output pins. When it is HIGH, registers are loaded through the data input pins. In DEPTH EXPANSION mode, this pin should be tied LOW if the device is the first one in the chain and tied HIGH if it is not the first one. |
| $\begin{gathered} 7,6,5,4,31,30 \\ 29,28,3 \end{gathered}$ | $\begin{aligned} & 6,5,4,3,27 \\ & 26,25,24,2 \end{aligned}$ | D1-D9 | Input | Data Inputs: Data on these lines are stored in the memory array or flag registers during array WRITE or register programming, respectively. |
| 24 | 21 | EF/AEF | Output | Empty Flag/Almost Empty Flag: This output pin indicates the FIFO status. When in NONCONFIGURED mode, this pin is an Empty Flag output. When in CONFIGURED mode, it is an Almost Empty Flag output. This pin is active LOW. |
| 9 | 8 | $\overline{\mathrm{FF}} / \overline{\mathrm{AFF}}$ | Output | Full Flag/Almost Full Flags: This output pin indicates the FIFO status. When in NONCONFIGURED mode, this pin is a Full Flag output. When in CONFIGURED mode, it is an Almost Full Flag output. This pin is active LOW. |
| 23 | 20 | $\overline{\mathrm{XO}} / \mathrm{HF} / \overline{\mathrm{FE}}$ | Output | Expansion Out/Half Full/Full/Empty: This pin's function is determined by its operation mode. When in SINGLE DEVICE mode, this pin is either HF Flag or a Full/Empty Flag, depending on the state of the most significant bit of Almost Full Flag Register. The pin is an XO output when the part is in DEPTH EXPANSION mode. This pin defaults to $\overline{X O} / \overline{\mathrm{HF}}$ in NONCONFIGURED mode. |
| $\begin{gathered} \hline 10,11,13,14 \\ 19,20,21,22,15 \end{gathered}$ | $\begin{gathered} 9,10,11,12,16 \\ 17,18,19,13 \end{gathered}$ | Q1-Q9 | 1/0 | Data Output: These pins may be used for data retrieval. The pins become inputs during register loading with DIR input HIGH. The outputs are disabled (High-Z) during device idle ( $\overline{\mathrm{R}}=\mathrm{HIGH}$ ). |
| 32 | 28 | Vcc | Supply | Power Supply: $+5 \mathrm{~V} \pm 10 \%$ |
| 16 | 14 | GND | Supply | Ground |

## FUNCTIONAL DESCRIPTION

The MT52C9022 uses a dual port SRAM memory cell array with separate read and write pointers. This results in a flexible-length FIFO buffer memory with independent, asynchronous READ and WRITE capabilities and with no fall-through or bubble-through time constraints.

Note: For multiple function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing half-full flags, the $\overline{X O} / \overline{H F / \overline{F E}}$ pin will be shown as $(\overline{\mathrm{XO}}) / \overline{H F /} / \overline{\mathrm{FE}})$.

## RESET

After Vcc is stable, Reset ( $\overline{\mathrm{RS}})$ must be taken LOW with both $\bar{R}$ and $\bar{W}$ HIGH to initialize the read and write pointers and flags. This also clears all internal registers. During the reset pulse, the state of the $\overline{X I}$ pin will determine if the FIFO will operate in the STAND ALONE or DEPTH EXPANSION mode. The STAND ALONE mode is entered if $\overline{X I}$ is tied LOW. If $\overline{\mathrm{XI}}$ is connected to $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ of another FIFO, the DEPTH EXPANSION mode is selected.

## WRITING THE FIFO

Data is written into the FIFO when the write strobe $(\overline{\mathrm{W}})$ pin is taken LOW and if the FIFO is not full. The WRITE cycle is initiated by the falling edge of $\bar{W}$. Data on the D1-D9 pins are latched on the rising edge. If the location to be written is the lastempty location in the FIFO, $\overline{\mathrm{FF}}$ will be asserted (LOW) after the falling edge of $\bar{W}$. While the $\overline{F F}$ is asserted, all writes are inhibited and previously stored data are unaffected. The first WRITE to an empty FIFO will cause $\overline{E F}$ to goHIGH after the rising edge of $\bar{W}$. When operating in the DEPTH EXPANSION mode, the last location write to a FIFO will cause $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ to pulse LOW. This will enable writes to the next FIFO in the chain.

## READING THE FIFO

Information is read from the FIFO when the read strobe $(\overline{\mathrm{R}})$ pin is taken LOW and FIFO is not empty ( $\overline{\mathrm{EF}}$ is High). The data-out (Q1-Q9) pins will go active (Low-Z) ${ }^{\text {t RLZ }}$ after the falling edge of $\overline{\mathrm{R}}$. Valid data will appear ${ }^{\mathrm{t}} \mathrm{A}$ after the falling edge of $\bar{R}$. After the last available data word is read, $\overline{\mathrm{EF}}$ will go LOW upon the falling edge of $\overline{\mathrm{R}}$. While $\overline{\mathrm{EF}}$ is asserted LOW, any attempted reads will be inhibited and the outputs will stay inactive (High-Z). When the FIFO is full and a READ is initiated, the $\overline{\mathrm{FF}}$ will go HIGH after the rising edge of $\bar{R}$. When operating in the expanded mode, the last location read from a FIFO will cause $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}})$ to pulse LOW. This will enable further reads from the next FIFO in the chain.

## RETRANSMIT

In the STAND ALONE mode, the MT52C9022 allows the receiving device to request that data just read from the FIFO be repeated, when less than 2047 writes have been performed between resets. When the ( $\overline{\mathrm{FL}}) / \overline{\mathrm{RT}} /(\mathrm{DIR})$ pin is taken LOW, the read pointer is reset to the first location while the write pointer is not affected. The receiver may start reading the data from the beginning of the FIFO ${ }^{\text {tRTR }}$ after $(\overline{\mathrm{FL}}) / \overline{\mathrm{RT}} /(\mathrm{DIR})$ is taken HIGH. Some or all flags may be affected depending on the location of the read and write pointers before and after the retransmit.

## DATA FLOW-THROUGH

Data flow-through is a method of writing and reading the FIFO at its full and empty boundaries, respectively. By holding $\bar{W}$ LOW when the FIFO is full, a WRITE can be initiated from the next ensuing READ pulse. This is referred to as a FLOW-THROUGH WRITE. FLOW-THROUGH WRITEs are initiated from the rising edge of $\overline{\mathrm{R}}$. When the FIFO is empty, a FLOW-THROUGH READ can be done by holding $\overline{\mathrm{R}}$ LOW and letting the next WRITE initiate the READ. Flow-through reads are initiated from the rising edge of $\bar{W}$, and access time is measured from the rising edge of the empty flag.

## REGISTER LOAD MODE

This mode of operation is used to reset the device and program the internal flag registers. This yields an almost full and an almost empty flag (DIP package pins 8 and 21 respectively) and a half-full or $\bar{F} / \bar{E}$ flag (DIP package pin 20).

Two 9-bit internal registers have been provided for flag configuration. One is the almost full flag register (AFFR) and the other is the almost empty flag register (AEFR). Bit configurations of the two registers are shown below.

REGISTER SET FOR MT52C9022


Note that bits 0-7 are used for offset setting. The offset value ranges from 1 to 255 words. Each offset value corresponds to a 2 -byte increment. This provides a maximum offset of 510 bytes.
Bits 6 and 7 are reserved for future offset expansion. Bit 8 of the AFFR is used for configuration of $\overline{\mathrm{HF}} / \overline{\mathrm{FE}} \mathrm{pin}$. When this bit is set LOW, the HF/ $\overline{\mathrm{FE}}$ pin is configured as an $\overline{\mathrm{HF}}$ flag output. When it is set high, the $\mathrm{HF} / \overline{\mathrm{FE}}$ is configured as an $\bar{F} / \bar{E}$ flag output.
Bit 8 of the AEFR is used for reset locking. When this bit is set LOW, subsequent device RESET or REGISTER LOADING cycles reset the device. When the bit is programmed HIGH, subsequent RESET cycles are ignored. In this mode, the flag registers can be reconfigured without device reset. The part can be reset by cycling power to the device or by writing zero ( 0 ) into bit 8 of the AEFR register followed by a DEVICE RESET or REGISTER LOAD.
Flag registers are loaded by bringing $\overline{\mathrm{RS}}$ LOW followed by the $\overline{\mathrm{R}}$ input. The $\overline{\mathrm{R}}$ pin should be brought LOW ${ }^{\text {tRS }}$ after
the $\overline{\mathrm{RS}}$ becomes LOW. The registers may be loaded via the input pins or the output pins depending on the status of the DIR control input. Data is latched into the registers at the rising edge of the $\bar{W}$ control pin. The first WRITE loads the AFFR while the second WRITE loads the AEFR. This loading order is fixed.

## BIDIRECTIONAL MODE

Applications requiring data buffering between two systems (each system capable of READ and WRITE operations) can be achieved by using two MT52C9022s. Care must be taken to assure that the appropriate flag is monitored by each system (i.e. $\overline{\mathrm{FF}}$ is monitored on the device where $\bar{W}$ is used; $\overline{E F}$ is monitored on the device where $\bar{R}$ is used). Both depth expansion and width expansion may be used in this mode.

## FLAG TIMING

A total of three flag outputs are provided in either CONFIGURED or NONCONFIGURED mode. In the NONCONFIGURED mode, the three flags are $\overline{\mathrm{HF}}$ flag, $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$. The $\overline{\mathrm{HF}}$ flag goes active when more than half the FIFO if full. The flag goes inactive when the FIFO is half full or less.

The full and empty flags are asserted when the last byte is written to or read out of the FIFO, respectively. They are deasserted when the first byte is loaded into an empty FIFO or read out of a full FIFO, respectively. All three flag outputs are active LOW.

When the device is programmed, the $\overline{\mathrm{AFF}}$ and $\overline{\mathrm{AEF}}$ go active after a READ/WRITE cycle initiation of the location corresponding to the programmed offset value. For example, if the AEFR is programmed with a 10 -byte offset (loading a Hex value of 05), the $\overline{\mathrm{AEF}}$ flag goes active while reading the 10 th location before the FIFO is empty. The flag goes inactive when there are 10 or more bytes left in the FIFO. The assertion timing and deassertion timing of the $\overline{\mathrm{AFF}}$ are the same.
The third flag in the PROGRAM mode is either $\overline{\mathrm{HF}}$ or $\bar{F} / \bar{E}$ flag depending on the state of the highest bit of the AFFR . If the device is programmed for $\overline{\mathrm{HF}}$ flag, it functions like the $\overline{\mathrm{HF}}$ flag in NONPROGRAMMED mode. If the device is configured for $\bar{F} / \overline{\mathrm{E}}$ flag, the pin will be active (LOW) when the FIFO is either empty or full. The condition of the FIFO is determined by the state of $\bar{F} / \bar{E}$ together with states of $\overline{\mathrm{AFF}}$ and $\overline{\mathrm{AEF}}$ (example: if $\overline{\bar{F}} / \overline{\mathrm{E}}$ is LOW and $\overline{\mathrm{AFF}}$ is LOW but $\overline{\mathrm{AEF}}$ is HIGH , the FIFO is full).


Figure 1 DEPTH EXPANSION

## WIDTH EXPANSION

The FIFO word width can be expanded, in increments of 9 bits, using either the STAND ALONE or groups of EXPANDEDDEPTH mode FIFOs. Expanded width operation is achieved by tying devices together with all control lines ( $\overline{\mathrm{W}}, \overline{\mathrm{R}}$, etc.) in common. The flags are monitored from one device or one expanded-depth group (Figure 1), when expanding depth and width.

## DEPTH EXPANSION

Multiple MT52C9022s may be cascaded to expand the depth of the FIFO buffer. Three pins are used to expand the memory depth, $\overline{\mathrm{XI}}, \overline{\mathrm{XO}} /(\overline{\mathrm{HF}} / \overline{\mathrm{F} E})$ and $\overline{\mathrm{FL}} /(\overline{\mathrm{RT}} / \mathrm{DIR})$. Figure 1 illustrates a typical three-device expansion. The depthexpansion mode is entered by tying the $\overline{\mathrm{XO}} /(\overline{\mathrm{HF}} / \overline{\mathrm{FE}})$ pin of each device to the $\overline{\mathrm{XI}}$ pin of the next device in the chain. The first device to be loaded will have its $\overline{\mathrm{FL}} /(\overline{\mathrm{RT}} / \mathrm{DIR})$ pin grounded. The remaining devices in the chain will have $\overline{\mathrm{FL}} /(\overline{\mathrm{RT}} / \mathrm{DIR})$ tied HIGH. Upon a reset, reads and writes to all FIFOs are disabled, except the first load device. When the
last physical location of the first device is written, the $\overline{\mathrm{XO}} /$ $(\overline{\mathrm{HF}})$ pin will pulse LOW on the falling edge of $\overline{\mathrm{W}}$. This will "pass" the write pointer to the next device in the chain, enabling writes to that device and disabling writes to the first MT52C9022. The writes will continue to go to the second device until last location write. Then it will "pass" the write pointer to the third device. The full condition of the entire FIFO array is signaled when all the $\overline{\mathrm{FF}} /(\overline{\mathrm{AFF}})$ pins are LOW.

On the last physical READ of the first device, its $\overline{\mathrm{XO}}(\overline{\mathrm{HF}})$ will pulse again. On the falling edge of $\overline{\mathrm{R}}$, the read pointer is "passed" to the second device. The read pointer will, in effect, "chase" the write pointer through the extended FIFO array. The READ pointer never overtakes the write pointer. On the last READ, an empty condition is signaled by all of the $\overline{E F}$ pins being LOW. This inhibits further reads. While in the depth-expansion mode, the half-full flag and retransmit functions are not available.

TRUTH TABLE 1
SINGLE-DEVICE CONFIGURATION/WIDTH-EXPANSION Mode

| MODE | INPUTS |  |  | INTERNAL STATUS |  | OUTPUTS |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathbf{R S}}$ | $\overline{\mathbf{R T}}$ | $\overline{\mathbf{X I}}$ | Read Pointer | Write Pointer | $\overline{\mathbf{E F}}$ | $\overline{\mathbf{F F}}$ | $\overline{\mathbf{H F}}$ |
| RESET | 0 | X | 0 | Location Zero | Location Zero | 0 | 1 | 1 |
| RETRANSMIT | 1 | 0 | 0 | Location Zero | Unchanged | 1 | X | X |
| READ/WRITE | 1 | 1 | 0 | Increment (1) | Increment (1) | X | X | X |

NOTE: 1. Pointer will increment if flag is HIGH.

TRUTH TABLE 2
DEPTH-EXPANSION/COMPOUND-EXPANSION Mode

| MODE | INPUTS |  |  | INTERNAL STATUS |  | OUTPUTS |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathbf{R S}}$ | $\overline{\mathrm{FL}}$ | $\overline{\mathbf{X I}}$ | Read Pointer | Write Pointer | $\overline{\mathbf{E F}}$ | $\overline{\mathrm{FF}}$ |
| RESET <br> First Device | 0 | 0 | $(1)$ | Location Zero | Location Zero | 0 | 1 |
| RESET <br> All other Devices | 0 | 1 | $(1)$ | Location Zero | Location Zero | 0 | 1 |
| READ/WRITE | 1 | X | $(1)$ | X | X | X | X |

NOTE: 1. XI is connected to $\overline{\mathrm{XO}}$ of previous device.
$\overline{\mathrm{RS}}=$ Reset Input, $\overline{\mathrm{FL}} / \mathrm{RT} / \mathrm{DIR}=$ First Load/Retransmit, $\overline{\mathrm{EF}}=$ Empty Flag Output, $\overline{\mathrm{FF}}=$ Full Flag Output, $\overline{\mathrm{XI}}=$ Expansion Input, $\overline{\mathrm{HF}}=$ Half Full Flag Output.

## ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss -0.5 V to +7.0 V
Operating Temperature $\mathrm{T}_{\mathrm{A}}$ (ambient) $\ldots . . . . . . . . . .0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature (Ceramic) ................. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature (Plastic) .................... $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation .1W
Short Circuit Output Current 50 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## RECOMMENDED DC OPERATING CONDITIONS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | Vcc | 4.5 | 5.5 | V | 1 |
| Input High (Logic 1) Voltage, All Inputs | VIH | 2.0 | $\mathrm{Vcc}+1$ | V | 1 |
| Input Low (Logic 0) Voltage, All Inputs | VIL | -0.5 | 0.8 | V | 1,2 |

## DC ELECTRICAL CHARACTERISTICS

$\left(0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} ; \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%\right)$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | -15 | -20 | -25 | -35 | UNITS | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Supply Current: Operating | $\begin{gathered} \bar{W}, \bar{R} \leq V_{L L} ; V_{C C}=M A X \\ f=M A X=1 /{ }^{\text {t } R C} \\ \text { Outputs Open } \end{gathered}$ | Icc |  | 120 | 115 | 110 | 100 | mA | 3 |
|  | $\begin{gathered} \bar{W}, \bar{R} \geq V_{I H} ; V_{C C}=M A X \\ f=M A X=1 /{ }^{t} R C \end{gathered}$ | IsB1 |  | 15 | 15 | 15 | 15 | mA |  |
| Power Supply Current: Standby | $\begin{gathered} \bar{W}, \bar{R} \geq V_{c c}-0.2 ; V_{c c}=M A X \\ V_{\text {IL }} \leq V_{\text {ss }}+0.2, \\ V_{I H} \geq V_{c c}-0.2 ; f=0 \end{gathered}$ | IsB2 |  | 5 | 5 | 5 | 5 | mA |  |
| Input Leakage Current | $\mathrm{OV} \leq \mathrm{V}$ in $\leq \mathrm{Vcc}$ | ILI | -10 | 10 | 10 | 10 | 10 | $\mu \mathrm{A}$ |  |
| Output Leakage Current | Output(s) Disabled $0 \mathrm{~V} \leq$ Vout $\leq \mathrm{Vcc}$ | ILo | -10 | 10 | 10 | 10 | 10 | $\mu \mathrm{A}$ |  |
| Output High Voltage | $\mathrm{loH}=-2.0 \mathrm{~mA}$ | VOH | 2.4 |  |  |  |  | V | 1 |
| Output Low Voltage | $\mathrm{lOL}=8.0 \mathrm{~mA}$ | Vol |  |  |  |  | 0.4 | V | 1 |

## CAPACITANCE

$(\mathrm{V}$ IN $=0 \mathrm{~V}$; Vout $=0 \mathrm{~V})$

| DESCRIPTION | CONDITIONS | SYMBOL | MIN | MAX | UNITS | NOTES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Capacitance | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{MHz}$ | $\mathrm{Cl}^{2}$ |  | 8 | pF | 4 |
|  | Output Capacitance | $\mathrm{VCC}=5 \mathrm{~V}$ | Co |  | 8 | pF |
|  |  |  |  |  |  |  |

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Applicable for configured and nonconfigured modes) $\left(0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V} \pm 10 \%\right.$ )

| A.C. CHARACTERISTICS |  | -15 |  | -20 |  | -25 |  | -35 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| READ Cycle |  |  |  |  |  |  |  |  |  |  |  |
| Shift frequency | ${ }^{\text {t }} \mathrm{RF}$ |  | 40 |  | 33.3 |  | 28.5 |  | 22.2 | MHz |  |
| READ cycle time | ${ }^{\text {tr }}$ C | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Access time | ${ }^{\text {t }}$ A |  | 15 |  | 20 |  | 25 |  | 35 | ns | 6 |
| READ recovery time | tRR | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| Read pulse width | tRPW | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Read LOW to Low-Z | ${ }^{\text {t RLZ }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns | 7 |
| Read to HIGH to High-Z | ${ }^{\text {t } \mathrm{RHZ}}$ |  | 15 |  | 15 |  | 18 |  | 20 | ns | 7 |
| Data HOLD from $\overline{\mathrm{R}}$ HIGH | ${ }^{\text {toH }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| WRITE Cycle |  |  |  |  |  |  |  |  |  |  |  |
| WRITE cycle time | tWC | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Write pulse width | tWPW | 15 |  | 20 |  | 25 |  | 35 |  | ns | 6 |
| WRITE recovery time | tWR | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| Write HIGH to Low-Z | ${ }^{\text {t W LZ }}$ | 5 |  | 5 |  | 5 |  | 5 |  | ns | 5, 7 |
| Data setup time | ${ }^{\text {t }}$ S | 10 |  | 12 |  | 15 |  | 18 |  | ns |  |
| Data hold time | ${ }^{\text {t }} \mathrm{DH}$ | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| RETRANSMIT Cycle |  |  |  |  |  |  |  |  |  |  |  |
| Restransmit cycle time | ${ }^{\text {t }}$ RTC | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Retransmit pulse width | ${ }^{\text {tRT }}$ | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Retransmit recovery time | ${ }^{\text {tRTR }}$ | 10 |  | 10 |  | 10 |  | 12 |  | ns |  |
| Retransmit command setup time | tRTS | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| RESET Cycle |  |  |  |  |  |  |  |  |  |  |  |
| RESET cycle time (no register programming) | ${ }^{\text {t }}$ RSC | 25 |  | 30 |  | 35 |  | 45 |  | ns |  |
| Reset pulse width | ${ }^{\text {tr }}$ RP | 15 |  | 20 |  | 25 |  | 35 |  | ns | 6 |
| Reset recovery time | ${ }^{\text {t RSR }}$ | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\mathrm{RS}}$ LOW to $\overline{\mathrm{R}}$ LOW | trs | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| Reset and register programming cycle time | ${ }^{\text {t } R S P C}$ | 85 |  | 100 |  | 115 |  | 145 |  | ns |  |
| $\overline{\bar{R}}$ LOW to DIR valid (register load cycle) | ${ }^{\text {t }}$ RDV | 5 |  | 5 |  | 5 |  | 5 |  | ns |  |
| $\overline{\mathrm{R}}$ LOW to register load | ${ }^{\text {tr }}$ W | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| $\overline{\text { W HIGH to } \overline{\text { RS }} \text { LOW }}$ | ${ }^{\text {th}}$ WRS | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |
| $\overline{\bar{R}}$ HIGH to $\overline{\mathrm{RS}}$ LOW | tRRS | 0 |  | 0 |  | 0 |  | 0 |  | ns |  |

## NOTES

1. All voltages referenced to Vss (GND).
2. Pulse widths less than minimum are not allowed.
3. -3.0 V for pulse width $<20 \mathrm{~ns}$.
4. Values guaranteed by design, not currently tested.
5. Icc is dependent on output loading and cycle rates.
6. This parameter is sampled.
7. $\bar{R}$ and DIR signals must go inactive (HIGH) coincident with $\overline{\mathrm{RS}}$ going inactive (HIGH).
8. Data flow-through data mode only.
9. DIR must become valid before $\bar{W}$ goes active (LOW).

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS
(Applicable for configured mode only) ( $T_{A}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C} ; \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$ )

| A.C. CHARACTERISTICS |  | -15 |  | -20 |  | -25 |  | -35 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | SYM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | NOTES |
| Expansion Mode Timing |  |  |  |  |  |  |  |  |  |  |  |
| $\overline{\mathrm{R}} / \overline{\mathrm{W}}$ to $\overline{\mathrm{XO}}$ LOW | ${ }^{\text {t }}$ XOL |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| $\overline{\mathrm{R}} / \overline{\mathrm{W}}$ to $\overline{\mathrm{XO}} \mathrm{HIGH}$ | ${ }^{\text {t }} \mathrm{OOH}$ |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| $\overline{\text { XI }}$ pulse width | ${ }^{\text {t }}$ IP | 15 |  | 20 |  | 25 |  | 35 |  | ns |  |
| $\overline{\text { XI }}$ command setup time to $\overline{\mathrm{R}} \overline{\mathrm{W}}$ | ${ }^{\text {txis }}$ | 10 |  | 12 |  | 15 |  | 15 |  | ns |  |
| $\overline{\text { XI command recovery time }}$ | ${ }^{\text {t XIR }}$ | 10 |  | 10 |  | 10 |  | 10 |  | ns |  |
| Flags Timing |  |  |  |  |  |  |  |  |  |  |  |
| $\overline{\text { W }}$ HIGH to Flags Valid | tWFV |  | 15 |  | 15 |  | 15 |  | 15 | ns |  |
| $\overline{\mathrm{RS}}$ to $\overline{\mathrm{EF}}$ LOW | ${ }^{\text {t EFL }}$ |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\mathrm{R}}$ LOW to EFF LOW | ${ }^{\text {t REF }}$ |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| $\overline{\text { W HIGH to } \overline{\text { EF }} \text { HIGH }}$ | tWEF |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| $\overline{\mathrm{R}}$ pulse after $\overline{\mathrm{EF}} \mathrm{HIGH}$ | trpe | 15 |  | 20 |  | 25 |  | 35 |  | ns | 5 |
| $\overline{\mathrm{RS}}$ to $\overline{\mathrm{HF}}, \overline{\mathrm{FF}}$ HIGH | ${ }^{\text {t }} \mathrm{HFH}{ }^{\text {t }}$ tFFH |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\mathrm{R}} \mathrm{HIGH}$ to $\overline{\mathrm{FF}}$ | ${ }^{\text {t }}$ RFF |  | 15 |  | 20 |  | 25 |  | 30 | ns |  |
| $\bar{W}$ LOW to FF LOW | tWFF |  | 20 |  | 20 |  | 25 |  | 35 | ns |  |
| $\overline{\text { W }}$ pulse width after $\overline{\mathrm{FF}}$ HIGH | tWPF | 15 |  | 20 |  | 25 |  | 35 |  | ns | 5 |
| $\overline{\mathrm{W}}$ LOW to $\overline{\text { HF }}$ LOW | tWHF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\text { R HIGH }}$ to $\overline{\mathrm{HF}} \mathrm{HIGH}$ | ${ }^{\text {t }}$ RHF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\mathrm{R}} \mathrm{HIGH}$ to $\overline{\mathrm{AFF}}$ | tRAFF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\bar{W}$ LOW to $\overline{\text { AFF }}$ | tWAFF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\mathrm{R}}$ LOW to $\overline{\text { AEF }}$ LOW | ${ }^{\text {t RAEF }}$ |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |
| $\overline{\text { W HIGH }}$ to $\overline{\text { AEF }}$ | tWAEF |  | 25 |  | 30 |  | 35 |  | 45 | ns |  |

## AC TEST CONDITIONS

Input pulse level0 to 3.0 V
Input rise and fall times ..... 5ns
Input timing reference level ..... 1.5 V
Output reference level ..... 1.5 V
Output load ..... See Figure 2


Figure 2
OUTPUT LOAD EQUIVALENT


ASYNCHRONOUS READ AND WRITE

$T / \Delta$ don't care UNDEFINED

## EMPTY FLAG



FULL FLAG


HALF-FULL FLAG
(FOR CONFIGURED AND NONCONFIGURED MODES)


## EXPANSION MODE (XO)



NOTE: 1. $\overline{\mathrm{XO}}$ of the Device 1 is connected to $\overline{\mathrm{XI}}$ of Device 2.

## EXPANSION MODE (XI)




WRITE FLOW-THROUGH


READ FLOW-THROUGH

D1-D9


RESET/REGISTER PROGRAMMING CYCLE TIME 8, 9


## ALMOST FULL FLAG (2-BYTE OFFSET)



MT52C9022

## ALMOST EMPTY FLAG (10-BYTE OFFSET)



5 STontcane
UNDEFINED
DYNAMIC RAMS ..... 1
DRAM MODULES ..... 2
MULTIPORT DRAMS ..... 3
STATIC RAMS ..... 4
SYNCHRONOUS SRAMS ..... 5
SRAM MODULES ..... 6
CACHE DATA SRAMS ..... 7
FIFO MEMORIES ..... 8
APPLICATION/TECHNICAL INFORMATION ..... 9
MILITARY INFORMATION ..... 10
PACKAGE INFORMATION ..... 11
SALES INFORMATION ..... 12

## APPLICATION/TECHNICAL NOTE SELECTION GUIDE

| Application/Technical Note | Title | Page |
| :--- | :--- | :---: |
| TN-04-01 | DRAM POWER-UP AND REFRESH CONSTRAINTS | $9-1$ |
| TN-04-02 | MT4C1664 AND MT4C1665 COMPATIBILITIES | $9-3$ |
| TN-04-03 | MT4C1664: 256 KILOBYTE MEMORY SYSTEM WITH FOUR $\overline{R A S}$ LINES | $9-5$ |
| TN-04-04 | MT4C1664: 256 KILOBYTE MEMORY SYSTEM WITH FOUR $\overline{\text { CAS LINES }}$ | $9-7$ |
| TN-04-05 | 4 MEG DRAM - DIRECT 1 MEG COMPATIBILITY | $9-9$ |
| TN-04-06 | UNDERSTANDING DRAM LATE-WRITE CYCLES | $9-11$ |
| TN-43-01 | MT43C4257/MT43C4258 COMPARISON | $9-13$ |
| TN-05-02 | SRAM BUS CONTENTION DESIGN CONSIDERATIONS | $9-15$ |
| TN-05-03 | SRAM CAPACITIVE LOADING | $9-19$ |
| TN-05-06 | 1 MEG FAST SRAM TYPICAL OPERATING CURVES | $9-21$ |
| TN-05-07 | $256 K ~ F A S T ~ S R A M ~ T Y P I C A L ~ O P E R A T I N G ~ C U R V E S ~$ | $9-23$ |
| TN-05-08 | $64 K ~ F A S T ~ S R A M ~ T Y P I C A L ~ O P E R A T I N G ~ C U R V E S ~$ | $9-25$ |
| AN-56-01 | MT56C0816 CACHE DATA SRAM FAMILY | $9-27$ |

## TECHNICAL NOTE

## DRAM POWER-UP AND REFRESH CONSTRAINTS

## INTRODUCTION

The JEDEC 4 Meg DRAM introduces two potential incompatibilities compared to the previous generation 1 Meg DRAM. The incompatibilities involve refresh and powerup. Understanding and addressing these incompatibilities and providing for them will offer designers and system users greater compatibility between the 1 Meg and 4 Meg .

## REFRESH

The most commonly used refresh mode of the 1 Meg is the CBR ( $\overline{\text { CAS-BEFORE-RAS }}$ ) REFRESH cycle. The CBR for the 1 Meg specifies the $\overline{\mathrm{WE}}$ pin as a "don't care." The 4 Meg , on the other hand, specifies the CBR REFRESH mode to be a $\bar{W} C B R$, which is CBR with the $\overline{W E}$ pin held at a logical HIGH level.
The reason for $\bar{W} C B R$ instead of CBR on the 4 Meg is that a CBR cycle with $\overline{W E}$ LOW will put the the 4 Meg into the JEDEC-specified test mode (WCBR). In contrast, the 1 Meg test mode is entered by applying a HIGH signal to the test pin (pin 4 on DIPs, pin 5 on SOJs and pin 8 on ZIPs). This HIGH signal is usually a "super voltage" (Vin $\geq 7.5 \mathrm{~V}$ ), so normal TTL or CMOS HIGH levels will not cause the part to enter the test mode.

## POWER-UP

The 4 Meg $\bar{W} C B R$ constraint may also introduce another problem. The 1 Meg POWER-UP cycle requires a $100 \mu$ sdelay followed by any eight RAS cycles. The 4 Meg POWER-UP is more restrictive in that eight RAS-ONLY REFRESH or CBR REFRESH ( $\overline{\mathrm{WE}}$ held HIGH) cycles must be used. The restriction is needed since the 4 Meg may power-up in the JEDEC-specified test mode and must exit out of the test mode. The only way to exit the 4 Meg JEDEC test mode is with either a $\overline{R A S}-O N L Y$ or a $\bar{W} C B R$ REFRESH cycle.

## SUMMARY

The 1 Meg and 4 Meg are compatible, with the following exceptions:

1. The 1 Meg test pin is the A10 pin on the 4 Meg .
2. For standard test mode, the 1 Meg requires a vaild HIGH on the test pin while the 4 Meg requires a CBR cycle with $\overline{\mathrm{WE}}$ LOW.
3. The 1 Meg CBR REFRESH allows the $\overline{\mathrm{WE}} \mathrm{p}$ in to be a "don't care" while the 4 Meg CBR requires $\overline{\mathrm{WE}}$ to be HIGH ( $\overline{\mathrm{W}} \mathrm{CBR}$ ).
4. The eight $\overline{\mathrm{RAS}}$ wake-up cycles on the 1 Meg may be any valid RAS cycle while the 4 Meg may use RAS-ONLY REFRESH or $\bar{W} C B R$ REFRESH cycles, exclusively.


COMPARISON OF 4 MEG TEST MODE AND WCBR TO 1 MEG CBR

## TECHNICAL NOTE

## MT4C1664 AND MT4C1665 COMPATIBILITIES

## INTRODUCTION

Micron provides the $64 \mathrm{~K} \times 16$ DRAM in two versions: MT4C1664 and MT4C1665. The MT4C1664 has two WEpins which allow for BYTE-WRITE cycles. It does not support WRITE-PER-BIT. The MT4C1665 has one $\overline{W E}$ pin and offers nonpersistent, WRITE-PER-BIT (MASKED WRITE) cycles.

## COMPATIBILITY

The MT4C1664 and MT4C1665 may be used interchangeably, provided precautions are taken ahead of time. The memory system may not utilize the WRITE-PER-BYTE feature of the MT4C1664 or the WRITE-PER-BIT feature of the MT4C1665 in order to maintain interchangeability.
At the system level, a special timing constraint exists. $\overline{\text { WE }}$ must be held HIGH when $\overline{\text { RAS }}$ transitions from HIGH to LOW (preventing the MT4C1665 from performing WRITE-PER-BIT cycles). The two WE traces must be connected together (pins 12 and 13 on SOJ or pins 22 and 23 on ZIP) in order to ensure that all 16 bits will be written on the MT4C1664.
The MT4C1664 and MT4C1665 are now interchangeable.

The MT4C1664 will have twice the capacitive load on the write enable signal as the MT4C1665 due to its two $\overline{W E}$ pins. Its WE timing will be a "don't care" when RAS transitions from HIGH to LOW while the MT4C1665 will enter a WRITE-PER-BIT cycle if $\overline{\mathrm{WE}}$ is LOW when $\overline{\mathrm{RAS}}$ transitions from HIGH to LOW.

The MT4C1665 can provide the BYTE-WRITE capability of the MT4C1664 by allowing the mask register to be enabled by bytes. However, this may not be practical since it requires additional circuitry.

## SUMMARY

An application that performs 16 -bit word writes will allow either the MT4C1664 or MT4C1665 to be used. The MT4C1664 must have both $\overline{\mathrm{WE}}$ pins connected, doubling capacitance on the write enable signal, but its timing is a "don't care" when RAS goes LOW. On the other hand, the MT4C1665 has only one WE for lower capacitance, but WE must always be held HIGH when RAS transitions from HIGH to LOW (refer to Note 1).


Figure 1
MT4C1665 TIMING CONSTRAINTS
NOTE: 1. Applies to MT4C1665 only. The MT4C1664 specifies these as "don't cares" during this portion of operation.

## TECHNICAL NOTE

## INTRODUCTION

Micron's MT4C1664 64K $\times 16$ DRAM is a great solution for replacing $64 \mathrm{~K} \times 4$ DRAMs in VGA systems. For a 256 kilobyte (KB) memory system, two MT4C1664s replace eight $64 \mathrm{~K} \times 4$ DRAMs, resulting in improved reliability and performance margins, decreased power consumption, reduced costs and board savings, while maintaining state-of-the-art technology.
This application note shows how the MT4C1664 may be interfaced with a 256 KB memory system using four RAS

## MT4C1664: 256 KILOBYTE MEMORY SYSTEM WITH FOUR RAS LINES

controls and EARLY-WRITE cycles ( $\overline{\mathrm{OE}}$ grounded). Reference to the MT4C1664 data sheet will be helpful in understanding how the MT4C1664 functions. The schematic in Figure 1 shows 256 KB memory systems using four RAS controls and EARLY-WRITE cycles and how memory is implemented with both theMT4C1664 and $64 \mathrm{~K} \times 4$ DRAMs.
The same schematic for the MT4C1664 may also be used in systems using LATE-WRITE cycles ( $\overline{\mathrm{OE}}$ controlled).

256KB DRAM Memory System
With Micron's MT4C1664 (2)


256KB DRAM Memory System With $64 \mathrm{~K} \times 4$ devices (8)


Figure 1

## TECHNICAL NOTE

## INTRODUCTION

Micron's MT4C1664 64K $\times 16$ DRAM is a great solution for replacing $64 \mathrm{~K} \times 4$ DRAMs in VGA systems. For a 256 kilobyte (KB) memory system, two MT4C1664s will replace eight $64 \mathrm{~K} \times 4$ DRAMs, resulting in improved reliability and performance margins, decreased power consumption, reduced costs and board savings while maintaining state-of-the-art technology.
This application note shows how the MT4C1664 may interface with a 256 KB memory system using four CAS controls and EARLY-WRITE cycles ( $\overline{\mathrm{OE}}$ grounded).

## MT4C1664: 256 KILOBYTE MEMORY SYSTEM WITH FOUR CAS LINES

Reference to the MT4C1664 data sheet will be helpful in understanding how the MT4C1664 functions. The schematic in Figure 1 shows 256 KB memory systems using four $\overline{\text { CAS }}$ controls and EARLY-WRITE cycles and how memory is implemented with both the MT4C1664 and $64 \mathrm{~K} \times 4$ DRAMs.
The same schematic for the MT4C1664 may also be used in systems using LATE-WRITE cycles ( $\overline{\mathrm{OE}}$ controlled), except Note 1 no longer applies and the two delay paths may be equal.

256KB DRAM Memory System
With Micron's MT4C1664 (2)


256KB DRAM Memory System
With $64 \mathrm{~K} \times 4$ devices ( 8 )


Figure 1

## 256KB EARLY-WRITE MEMORY

NOTE: 1. This delay path needs to be slightly longer than the two NAND gates to ensure the $\overline{\mathrm{WE}}$ to $\overline{\mathrm{CAS}}$ setup time is met. This will guarantee the DRAM will always be in EARLY-WRITE during WRITE cycles.

## TECHNICAL NOTE

## INTRODUCTION

The JEDEC 4 Meg DRAM introduces three potential incompatibilities compared to the previous generation 1 Meg DRAM. The incompatibilities involve refresh and powerup and the JEDEC test mode.
Micron provides two versions of the 4 Meg DRAM. The standard version will not have the JEDEC test mode allowing for 1 Meg DRAM compatibility. The second version will offer the JEDEC test mode.

## REFRESH

The most commonly used refresh mode of the 1 Meg is
 the 1 Meg specifies the $\overline{\mathrm{WE}}$ pin as a "don't care." The 4 Meg , on the other hand, specifies the CBR REFRESH mode to be $\bar{W} C B R$, which is CBR with the $\overline{W E}$ pin held at a logical HIGH level.
The reason for $\bar{W} C B R$ instead of CBR on the 4 Meg is that a CBR cycle with $\overline{\mathrm{WE}}$ LOW will put the 4 Meg into the JEDEC specified test mode (WCBR).

## POWER-UP

The 4 Meg $\bar{W} C B R$ constraint may also introduce another

## 4 MEG DRAM - DIRECT 1 MEG COMPATIBILITY

problem. The 1 Meg POWER-UP cycle requires a $100 \mu \mathrm{~s}$ delay followed by any eight RAS cycles. The 4 Meg POWER-UP cycle is more restrictive in that eight $\overline{\text { RAS-ONLY }}$ REFRESH or $\bar{W} C B R$ REFRESH cycles must be used. The restriction is needed since the 4 Meg may power-up in the JEDEC-specified test mode and must exit out of the test mode for normal operation. The only way to exit the 4 Meg JEDEC test mode is with either a RAS-ONLY or a $\bar{W} C B R$ REFRESH cycle.

## SPECIAL FEATURE

A memory system currently using 1 Meg DRAMs with $\overline{\text { WE as a "don't care" during CBR REFRESH does not allow }}$ for direct upgrading to 4 Meg DRAMs. Micron, realizing some companies will have this situation, provides a special feature on its 4 Meg DRAM requiring "supervoltage" to access the 4 Meg JEDEC WCBR test function. This allows the Micron 4 Meg DRAM to be refreshed in the same manner as any 1 Meg DRAM. Note that the eight POWERUP cycles should be refresh cycles only in order to guarantee that any 4 Meg DRAM, including Micron's, does not inadvertently power-up in the test mode.


MICRON

## TECHNICAL NOTE

## UNDERSTANDING DRAM LATE-WRITE CYCLES

## INTRODUCTION

There are three different cycles possible to write to a DRAM: EARLY-WRITE cycles, READ-MODIFY-WRITE cycles and LATE-WRITE cycles. The industry standards for DRAM WRITE cycles are fairly consistent for both the EARLY-WRITE and READ-MODIFY-WRITE cycles. An exception exists for the "LATE-WRITE" cycle.

## COMMON DQ DRAM

A LATE-WRITE cycle is a READ-MODIFY-WRITE (see Figure 1) except that the READ portion is not utilized. This is accomplished by keeping the outputenable pin ( $\overline{\mathrm{OE}}) \mathrm{HIGH}$ throughout the cycle. The timing parameters ${ }^{t}$ RWD, ${ }^{t}$ AWD and ${ }^{\mathrm{t}} \mathrm{CWD}$ no longer apply since $\overline{\mathrm{OE}}$ is HIGH.

This condition can be viewed as an EARLY-WRITE with ${ }^{\text {t}}$ WCS "sliding" past the $\overline{\text { CAS }}$ time and violating the 0ns setup time (WE going LOW prior to $\overline{\text { CAS }}$ going LOW). But, since the output buffers are not being used ( $\overline{\mathrm{OE}}$ is HIGH), ${ }^{t} W C S$ and ${ }^{t}$ CWD are no longer required.

Becautious anytime $\overline{\mathrm{OE}}$ is brought LOW (possibly a noise spike occurs), as the output buffers could turn on and cause contention with the data bus, which could corrupt input data.

The term used for such a WRITE cycle varies throughout
the industry. The use of " $\overline{\mathrm{OE}}$ controlled WRITE," "Delayed WRITE" and "LATE-WRITE" all signify the same WRITE cycle described above.

## SPLIT D AND Q DRAM

A LATE-WRITE cycle is a READ-MODIFY-WRITE except the READ portion is not guaranteed and the $D$ and $Q$ pins are separate paths ( $D$ and $Q$ cannot be connected together). This is accomplished by ignoring the timing parameters ${ }^{t} R W D,{ }^{t} A W D$ and ${ }^{t} C W D$.

This condition can be viewed as an EARLY-WRITE with ${ }^{\text {tW WCS "sliding" past the CAS time and violating the 0ns }}$ setup time (WE going LOW prior to $\overline{\mathrm{CAS}}$ going LOW). But, since the output buffers area "don't care," tWCS and tCWD are no longer required.

This cycle is not available on applications that have the D and $Q$ connected together as the output will contend with the input.

## SUMMARY

A LATE-WRITE cycle is most useful on common DQ DRAMs. Use caution to ensure the output enable pin is properly controlled.


Figure 1
READ-MODIFY-WRITE (MULTIPLE DQ) TIMING

## TECHNICAL NOTE

## MT43C4257／MT43C4258 COMPARISON

## INTRODUCTION

Micron Technology，Inc．，offers its Triple Port DRAM （TPDRAM）in two versions．The MT43C4257 supports the JEDEC Split SAM Status Function（QSF）pin as defined for VRAMs．The MT43C4258 supports a variation of the QSF function called the Split SAM Special Function（SSF）input function．Other than this difference，the function and per－ formance of the two devices are identical．

## MT43C4257 — QSF OUTPUT

The QSF output pin of the MT43C4257 is identical in function to the QSF pin of the MT42C4255 256K $\times 4$ VRAM． The QSFoutput pin indicates which half of theSAM is being accessed．When data is accessed from the lower half，the QSF is LOW；when data is accessed from the upper half， QSF is HIGH（see Figure 1）．When using the MT43C4257 or any standard VRAM in the split SAM mode，the transition between SAM halves occurs only when the SAM－half boundary is reached by the Address Pointer．This is address count 255 for the lower half and 511 for the upper half． When this boundary is reached，the new Tap Address for
the next SAM－half is loaded（＂ X ＂for the lower，＂$Y$＂for the upper）．The following SC will access data from the new half．

## MT43C4258－SSF INPUT

TheMT43C4258 introduces functionality to the TPDRAM that is not available on standard VRAMs．By making the ＂QSF＂pin an input（SSF），a higher degree of design flexibil－ ity is offered to the system engineer．The SSF applies only to split transfer cycles．It will allow access to be switched from one half of the SAM to the other at will．If SSF is HIGH at the rising edge of serial clock，the split SAM access will be switched to the other half of the SAM（See Figure 2）．

By taking SSF HIGH for the rising edge of a serial clock （location＂$A$＂for the lower half，＂$B$＂for the upper），the access from the current half may be terminated．Data from this clock will appear on the outputs when in serial output mode or will be written if in serial input mode．

The next serial clock will access data at the new Tap Address（＂ X ＂for the lower，＂ Y ＂for the upper）of the next half．The SSF input acts as a＂stop address＂input so the
designer can "force" the access from one half to the next when desired. When operating in the split SAM mode, this option allows different sized "blocks" of data to be input or output from the SAM half regardless of the Tap Address and Stop Point. This feature is useful when performing pans, zooms and scrolling in video-graphics systems and for handling distinct packet sizes in networking or controller applications.

## SUMMARY

The difference between the MT43C4257 and MT43C4258 is only the variance in the functionality of the "QSF" pin.

The MT43C4258 SSF input pin results in more efficient handling and therefore higher throughput of input or output data in either SAM. This improves the performance of video-graphics and networking systems by providing high clock speed and no latency time between reaching the Stop Point of valid data in one half and the loading of the new Tap Address for the next half.

The SSF functionality is also available on the $x 8$ versions of the TPDRAM, the MT43C8128 (QSF) and MT43C8129 (SSF). Refer to the data sheets for detailed timing and functional descriptions.


Figure 2
SSF OPERATION FOR THE MT43C4258 (SERIAL OUTPUT)

## TECHNICAL NOTE

## SRAM BUS CONTENTION DESIGN CONSIDERATIONS

## INTRODUCTION

High-speed SRAM memory systems normally share a common data bus with other memory devices, processors and memory management or caching devices. All of these devices are required to control data bus at one time or another. Turning off a device that is driving the bus before a new device takes control of the bus can be a difficult design problem when these systems are operating at minimum cycle times.

When two or more devices are driving the bus at the same time, a conflict known as "bus contention" occurs. This technical note discusses bus contention design issues and points out features in the design of Micron's fast SRAMs to help minimize bus contention problems.

## BUS CONTENTION EFFECTS

System-design problems caused by bus contention are difficult to analyze. The effects are transient, normally not longer than 5 ns . The most visible result of bus contention is observed as noise on power-supply lines and data lines connecting the contending devices. While these conflicts are not destructive, they potentially reduce long-term system reliability. However, in most cases, they do not affect system performance when all the active components are MOS.

MOS devices are inherently self-current limiting. As the current through a MOS transistor increases, the transistor heats up and its gain decreases. Bipolar transistors have the opposite behavior. When a bipolar transistor's temperature


Figure 1


Figure 2 BUS CONTENTION CURRENT PATH
is elevated, the gain of the device increases, making it possible for the current through the transistor to increase to a destructive level. This phenomenon is known as thermal runaway. If CMOS SRAMs share any data lines with bipolar or BiCMOS output devices, the system should be designed to eliminate any possibility of bus contention.

Figure 2 is a schematic diagram of two contending SRAM output buffers. A high current path has been created by two SRAM output buffers. The current is flowing between the "on" transistor connected to Vcc in the buffer on the left and the transistor connected to ground in the buffer on the right.

## SRAM SPECIFICATIONS

The critical parameters for calculating the amount of bus contention for a high-speed SRAM system design is the time it takes for a device to go to a low-impedance state (logic 1 or 0 ) on its output versus the time required for a contending output to go to a high-impedance state. A typical SRAM has three control signals; chip enable (CE), write enable (WE) and output enable (OE). ${ }^{\text {thZCE, }}{ }^{t}$ LZWE and $\mathrm{L} Z O E$ are the times it takes for the outputs to become active or low impedance upon the assertion of CE, WE and OE. ${ }^{\mathrm{t}} \mathrm{HZCE},{ }^{\mathrm{t}} \mathrm{HZWE}$ and ${ }^{\mathrm{t}} \mathrm{HZOE}$ are the times required for
the outputs to become inactive or high impedance after CE, WE and OE are removed. These times are shown in the READ and WRITE cycle timing diagram (Figure 3).

A preliminary review of a fast SRAM data sheet would imply that the worst case for bus contention could be calculated from the equation:

$$
{ }^{\mathrm{t}} \mathrm{C}={ }^{\mathrm{t}} \mathrm{HZ}(\mathrm{MAX})-\mathrm{t} \mathrm{LZ}(\mathrm{MIN})
$$

where ${ }^{\mathrm{t}} \mathrm{C}$ is equal to the bus-contention overlap time. For an output enable change in an SRAM rated at 20 ns access time, ${ }^{\mathrm{t}} \mathrm{HZ}=7 \mathrm{~ns}$ and $\mathrm{t} \mathrm{LZ}=2 \mathrm{~ns}$; therefore ${ }^{\mathrm{t}} \mathrm{C}=5 \mathrm{~ns}$. If this calculation is correct, there would be a serious bus contention problem. Thus, for a system running with a 20 ns cycle, almost 25 percent of the total cycle would be lost to bus contention and there would be a large increase in power dissipation in the output buffers.

Happily, the previous analysis is not valid because ${ }^{\text {t }} \mathrm{HZ}$ maximum occurs at completely different test conditions than ${ }^{t} \mathrm{LZ}$ minimum. ${ }^{\mathrm{t}} \mathrm{HZ}$ maximum is worst-case at the highest operating temperature and the lowest power-supply voltage. On a commercial data sheet, this would be at $70^{\circ} \mathrm{C}$ and $4.5 \mathrm{~V} .{ }^{\mathrm{t}} \mathrm{LZ}$ minimum is specified at the lowest operating


## UNDEFINED

Figure 3 READ AND WRITE CYCLE TIMING
temperature and the highest voltage. Again, on the commercial data sheet, this would be $0^{\circ} \mathrm{C}$ and 5.5 V . It is not possible for two SRAMs on the same board to be at such diverse temperatures and voltages. In a "real world" system - that is one with an equal operating environment for temperature and power supply voltage - ${ }^{t} \mathrm{HZ}-{ }^{\mathrm{t}} \mathrm{LZ}$ is approximately 0.2 ns .

Futhermore, Micron fast SRAMs have been designed to insure the outputs always turn off faster than the they turn
on when operating at the same voltage and temperature: ${ }^{\mathrm{t}} \mathrm{HZ}<^{\mathrm{t}} \mathrm{LZ}$. Since the devices will normally be mounted on the same board, the bus contention associated with the SRAM control signals has been minimized.

Care must be taken when mutiple vendors' SRAMs share the bus. An analysis of the output turn-off time must be done under the same operating and temperature conditions to insure that bus contention between the devices is minimized.

## TECHNICAL NOTE

## INTRODUCTION

Many high－speed 16－bit and 32－bit microprocessor sys－ tems require fast SRAMs．SRAMs are used either in main memory or caching subsystems．In either case，the SRAMs are typically required to interface with a system bus that is shared by one or moremicroprocessors，severalI／Odevices and other types of memory（i．e．ROM，EPROM，etc．）．

Even though transceivers and／or buffers interface with the actual bus，SRAMs are typically required to drive loads larger than what is specified in the data sheet timing param－ eters．Hence，the access time must be derated to reflect the actual performance of theSRAM under these circumstances．

## SIMILARITY BETWEEN SRAM FAMILIES

Micron＇s $16 \mathrm{~K}, 64 \mathrm{~K}, 256 \mathrm{~K}$ and 1 Meg SRAM families all have the same size output transistors and output architec－ ture．Hence，all devices will have the same drive character－ istics．The actual data presented in this technical note are derived from the 256K SRAM family．


Figure 1
INCREASED ACCESS TIME vs ADDITIONAL OUTPUT LOADING

## SRAM CAPACITIVE LOADING

## COMPARISON OF DEVICES

Figure 1 compares the effects of capacitive loading on the Micron SRAM family with SRAMs from a typical memory supplier and discrete CMOS logic，designed to drive heavy loads．The graph illustrates the additional access time re－ quired to drive various capacitive loads．

As expected，the Micron SRAM family does not drive heavy loads as well as the discrete CMOS logic，but does drive faster than the typical SRAM from other suppliers．

The graph line which represents the Micron SRAM fam－ ily is based on data gathered on the Micron 256K SRAM． Access time measurements were taken with the SRAM subjected to various capacitive loads．In the range covered， the change in access time was seen to be a linear function of the capacitive load．The following equation may be used to determine the access time required for a specific load．

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{AA}}(\text { actual })=\mathrm{T}_{\mathrm{AA}}(\text { data sheet })+\mathrm{T}_{\mathrm{AA}} \text { (additional) } \\
& \mathrm{T}_{\mathrm{AA}} \text { (additional) (ns) }=.022(\mathrm{~ns} / \mathrm{pf}) \mathrm{C}_{\mathrm{a}}
\end{aligned}
$$

This applies where $C_{a}$ is the additional capacitive load expressed in picofarads（pf）．

For example，the access time needed for a 100pf total capacitive load is：

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{AA}}(\text { actual })=20 \mathrm{~ns}+\mathrm{T}_{\mathrm{AA}}(\text { additional })= \\
& 20 \mathrm{~ns}+.022 *(\text { total load }- \text { rated load })= \\
& 20 \mathrm{~ns}+.022 \mathrm{~ns} / \mathrm{pf} *(100 \mathrm{pf}-30 \mathrm{pf})= \\
& 20 \mathrm{~ns}+1.5 \mathrm{~ns}=21.5 \mathrm{~ns}
\end{aligned}
$$

## SUMMARY

The SRAM timing specifications of all major vendors are based upon an industry－standard capacitive load of 30 pf ．In most applications，the SRAMs are required to drive much larger capacitive loads．In addition，today＇s designs are implemented around higher frequencies．This requires the system timing be more precise；hence，loading becomes a more important issue．Understanding how the SRAM will perform under specific loading conditions may result in a more reliable design．

## TECHNICAL NOTE

## 1 MEG FAST SRAM TYPICAL OPERATING CURVES

## INTRODUCTION

These curves represent the typical operating characteristics of Micron's 1 Meg, 25ns SRAM. They may be used to calculate the typical operating parameters of a memory system. For worst-case design limits, the system designer should refer to the individual data sheets in the SRAM section of the data book.










Iol vs. Vol



## TECHNICAL NOTE <br> 256K FAST SRAM TYPICAL OPERATING CURVES

## INTRODUCTION

These curves represent the typical operating characteristics of Micron's $256 \mathrm{~K}, 20 \mathrm{~ns}$ SRAM. They may be used to calculate the typical operating parameters of a memory system. For worst-case design limits, the system designer should refer to the individual data sheets in the SRAM section of the data book.


Temperature ( ${ }^{\circ} \mathrm{C}$ )





Temperature ( ${ }^{\circ} \mathrm{C}$ )

lol vs. Vol

loh vs. Voh


## TECHNICAL NOTE

## 64K FAST SRAM TYPICAL OPERATING CURVES

## INTRODUCTION

These curves represent the typical operating characteristics of Micron's $64 \mathrm{~K}, 12 \mathrm{~ns}$ SRAM. They may be used to calculate the typical operating parameters of a memory system. For worst-case design limits, the system designer
should refer to the individual data sheets in the SRAM should refer to the individual data sheets in the SRAM section of the data book.







lol vs．Vol



Temperature（ ${ }^{\circ} \mathrm{C}$ ）



## APPLICATION NOTE

## INTRODUCTION

The Micron MT56C0816 Cache Data SRAM family was developed in response to a need for compact cache subsystems for the Intel ${ }^{\text {TM }} 80386$ microprocessor. Applications using the 80386 demand maximum performance, and DRAM technology cannot meet the fast access times required for zero-wait-state operation. Statistics show that a small cache subsystem allows the majority of 80386 memory accesses to be completed within the 80386 cycle time. This eliminates the need for wait states ${ }^{1}$ to be added to the memory cycle, allowing the 80386 to operate at its maximum performance level. The cache can be designed using fast commodity SRAMs.

However, the Micron Cache Data SRAM allows cache subsystem designs requiring less space, using less power and offering greater reliability than the fast SRAM implementation. Design and debug times are also reduced, because the Micron MT56C0816 is designed to connect directly to off-the-shelf 80386 cache controllers.

This application note explores why caching is needed. It then discusses how a cache subsystem works, what influences the performance of the cache, and how different cache organizations and architectures compare.

In addition, this application note looks at the most popular off-the-shelf controllers available to implement a cache subsystem. It compares several fast SRAM and cache data SRAM implementations with those controllers. Finally, a summary of the cache data SRAM advantages is shown.

## BACKGROUND

Microprocessors have typically interfaced directly to DRAM (dynamic random-access memory) main memory due to their relatively slow clock speeds and multiple clock instruction cycles. But over the past few years, complex-instruction-set computer (CISC) microprocessors have driven the clock frequencies into the 20, 25 and 33 megahertz ( MHz ) range. The two most dominant CISC architectures are the 80X86 and 680X0. The number of clock cycles needed to execute a specific instruction has steadily decreased and is now approaching a single clock cycle for many instructions.

The introduction of reduced-instruction-set computer (RISC) architectures has fueled the quest for higher clock frequencies and reduced clock cycles for each instruction executed. Some of the predominant RISC architectures include SPARC ${ }^{\text {TM }}, 80960$, R3000, 29000 and 88000 . RISC

## MT56C0816CACHEDATA SRAM FAMILY


architectures requiring the absolute minimum number of clock cycles for each instruction are not only approaching single clock execution, but in some cases are able to sustain multiple instruction execution in a single clock cycle. CISC microprocessors are not far behind, and the competition between the CISC and RISC camps is driving processor designers to continuously reach for maximum performance.

This new era of performance is placing heavy demands on memory subsystems that heretofore have been able to

[^2]keep pace. For example, an 80386 processor operating at 25 MHz requires a memory access time of close to 40 ns if it is to operate at maximum performance (i.e. no wait states):
$2 \times$ clock cycle time - address delay - data setup - decode logic and buffer delay $=(2 * 40)-21-7-10=42 \mathrm{~ns}$

Current DRAM access speeds are in the 70 ns to 80 ns access range. Even with faster access techniques such as FAST PAGE and STATIC COLUMN modes, the DRAM access time is not sufficient to meet zero-wait-state access times.

The alternative to adding wait states to the system and thus degrading performance is to design a system architecture that makes the memory appear faster to the CPU. Approaches that have been implemented include organizing the DRAM in multiple banks, adding some fast SRAM for specific code and data or caching.

The use of a cache is applicable in high-end systems as well as cost-conscious, medium-performance systems. At the high end, where the goal is to maximize performance on every processor cycle, the only alternative to cache is the use of very fast SRAMs as the main memory to achieve zero-wait-state performance. This is a very expensive solution. The medium performance systems must constantly balance performance and cost. A small cache in these systems can achieve much higher performance with a relatively small, incremental cost.


Figure 1
TYPICAL 80386-BASED CACHE SYSTEM

## CACHE OVERVIEW

## WHAT IS A CACHE

A cache is small, fast, local storage for frequently accessed code and data. It consists of high-speed memory (usually SRAM) that resides between the CPU and the main memory (usually DRAM) in a processor system. Figure 1 illustrates a typical block diagram of an 80386-based cache system.

The cache increases the effective speed of the main memory by responding quickly with a copy of the most frequently used items in main memory. The cache control logic checks the address of each memory access and, if it is present in the cache, allows the cache to respond instead of main memory. Accesses to the cache are much faster (typically zero wait states) than accesses to main memory. The more accesses that are made to the cache, the better the overall system performance. Hence the goal in designing a cache is to maximize accesses to the cache (known as the cache hit rate).

## WHY A CACHE WORKS

The theory of a cache is based on two attributes of computer programs: temporal locality and spacial locality. Temporal locality ( locality of time) is an attribute exhibited by computer programs where the same addressed code and data are used repeatedly in a short time. This behavior is typified by program loops, a very prevalent programming structure. Spacial locality (locality of place) is a computer program attribute in which the next needed information is found near the information that was just accessed. This occurs in most programs since related data are stored together (data tables, arrays, etc.) and instructions (code) are typically executed in sequence.

In a cache design, main memory may be thought of as a collection of many small, uniform segments. The cache contains a copy of one or more of these small memory segments that have been used recently. When the processor executes a read from main memory, the cache control determines if that address is contained in one of the small memory segments that are currently resident in the cache memory. If so, the access is completed by the cache. If not, the access is completed by main memory and the memory segment that has just been accessed is placed into the cache for future use. The attribute of spacial locality implies that the information needed next will also be found in the same memory segment just accessed, which is now located in the cache. The attribute of temporal locality implies that the memory location, just accessed, will be used again in the near future.

## PERFORMANCE FACTORS

The performance of the cache（and hence the system）is measured by the cache hit rate，which is the percentage of successful cache accesses．The cache hit rate is determined by specific demands of software being executed and by cache－management policies．

The design factors that influence cache hit rate are：total cache memory size，cache memory organization（associa－ tivity），and cache transfer block size．These factors are all interrelated and each needs attention to obtain the opti－ mum cost－effective result．Each factor presents trade－offs of performance，complexity and cost．One factor may be de－ creased for cost reasons while another may be increased to improve performance．The same or better hit rate may still be obtained．However，the complexity might be increased also．The cache designer must carefully weigh each factor to achieve the best overall cost／performance／complexity ra－ tio．Table 1 compares the cache hit rate of several cache sizes with varying associativity and line sizes．

Table 1

| CACHE HIT RATES |  |  |  |
| :---: | :---: | :---: | :---: |
| Cache Configuration |  |  |  |
| Hit Rate <br> （\％）＊ | Size <br> （KB） | Associativity | Line Size <br> （Bytes） |
| 41 | 1 |  | 4 |
| 73 | 8 | Direct | 4 |
| 81 | 16 | Direct | 4 |
| 86 | 32 | Direct | 4 |
| 87 | 32 | Direct | 4 |
| 88 | 64 | Two－way | Direct |
| 89 | 64 | Two－way | 4 |
| 89 | 64 | Four－way | 4 |
| 89 | 128 | Direct | 4 |
| 89 | 128 | Two－way | 4 |
| 91 | 32 | Direct | 8 |
| 92 | 64 | Direct | 8 |
| 93 | 64 | Two－way | 8 |
| 93 | 128 | Direct | 8 |

＊Rounded to the nearest whole percent．

## COHERENCY

Since the cache is a temporary buffer for a section of main memory，the cache designer must take into consideration how to keep the data consistent between main memory and the cache．This is called cache coherency．

There are instances when an address in the cache might not contain the same information as the same address in main memory．One such situation occurs during a write cycle，where a cache data element is updated to a new value． Now the address in main memory and the same address in the cache have two different values，with the cache contain－
ing the newest value．The main memory needs to be up－ dated to contain the same information．This is controlled by the write policy of the cache．

Another such instance occurs when another processor writes information to a main memory address that is also located in the cache．This situation is handled by＂snooping＂． Snooping occurs when the main memory bus is always watched by the cache logic．If a write occurs to a main memory address identical to a cached address，that cache address is marked invalid．This guarantees that if that address is accessed，it will be updated as main memory is accessed for the requested data．

There are two types of cache write policies：write－through and copy－back．A write－through cache will write to both main memory and the cache on each write cycle whenever the addressed location is found to be resident in the cache． This ensures that the cache and main memory are always coherent，but it requires more main memory accesses，thus increasing bus usage．This also decreases performance due to the large amount of accesses to slower main memory．The main memory accesses may be made more efficient with the addition of write buffers，but this also adds significant complexity and coherency problems in the buffers．

The copy－back policy writes only to the cache，if the address location is present（cache hit），and allows the CPU to proceed．This allows maximum system performance． However，the main memory still needs to be updated．The update of main memory occurs when the line that contains the write address in the cache is replaced by a new line． Main memory write updates occur far less often than the update policy of a write－through design．The copy－back policy also has its drawbacks．Instead of only replacing the data element（possibly one byte）that was written，all the bytes in the line are replaced．This may be as many as four， eight， 16 or more．This can result in a large time penalty when a copy－back occurs．

## CACHE CONTROLLERS

It quickly becomes apparent that all variables in cache design are interrelated and all have trade－offs．For most designs，especially those in the micro arena，caching repre－ sents a new realm and can bog down a design if done from scratch．Fortunately，several companies have designed off－ the－shelf cache controllers，which take into consideration all the trade－offs and performance factors．These controller implementations meet the majority of the needs of the 80386 cache market．

The three most popular 80386 cache controllers－Intel＇s 82385，Austek＇s A38202 and Chips \＆Technologies＇82C307 and Peak ${ }^{\mathrm{m}}$－were designed to interface with standard SRAMs as well as additional address latches and possible transceivers．

## DIRECT-MAPPED VERSUS TWO-WAY-SET IMPLEMENTATION

The use of an off-the-shelf cache controller eliminates most of the decisions that would occur in a discrete design. The trade-offs that have been made include line size, write update policy, and in some cases, even the cache size and associativity. The majority of controllers allow the user to configure only the associativity (direct or two-way set) and the cache size. The controllers support, without additional logic, both the TWO-WAY-SET ASSOCIATIVE and DI-RECT-MAPPED modes.

The trade-off between DIRECT-MAPPED and TWO-WAY-SET ASSOCIATIVE modes is typically one of increased hit rate versus added complexity. Since the controllers have integrated the complexity, it might seem that


DIRECT-MAPPED BLOCK DIAGRAM


TWO-WAY-SET BLOCK DIAGRAM
Figure 2
the only logical choice is to use the TWO-WAY-SET ASSOCIATIVE mode. Assuming a 32 kilobyte (KB) cache, the direct mode will require four $8 \mathrm{~K} \times 8$ SRAMs (one bank of 8 K $x 32$ bits) while two-way mode will require $164 \mathrm{~K} x 4$ SRAMs (two banks of $4 \mathrm{~K} \times 32$ bits). Figure 2 contains typical block diagrams illustrating implementations of DIRECTMAPPED and two-way-set designs.

The trade-off then is in the additional SRAMs for twoway set. This is reflected as incremental cost, power and board space needed to achieve the higher hit rate obtained over the direct-mapped implementation. For the 32 KB cache size, the additional hit rate of the two-way set implementation is generally chosen if the board space is available. In the medium-to-high-end performance market, the extra performance (see Table 1) delivered by the two-way set design is worth the extra cost.

Table 2 compares the board real estate and power requirements of each configuration. The two-way-set implementation requires eight 74 F 245 transceivers to control the flow of data between each bank and the common data bus. Figure 3 illustrates the board space requirements of each implementation.

The assumptions used for the board space comparison were .050 inch chip-to-chip spacing and .050 inch outside border around the circuitry. The power comparison is based on a 25 MHz design assuming 10ns decoding delay. This gives the following equation for the cache $8 \mathrm{~K} \times 8$ SRAM access time:

Cache SRAM available access time $=4 * 386$ CLK2 -386 address delay - 386 ready setup - SRAM enable decode 74 F 373 delay $=(4 * 20 \mathrm{~ns})-21 \mathrm{~ns}-9 \mathrm{~ns}-10 \mathrm{~ns}-9 \mathrm{~ns}=31 \mathrm{~ns}$.

The $8 \mathrm{~K} \times 8$ configuration would require SRAMs with an access time of 25 ns . For the two-way-set configuration, an additional 6 ns must be subtracted for the delay through the 74F245 transceivers. This barely provides 25 ns for the $4 \mathrm{~K} \times 4$ SRAM access time in this latter implementation. Any other delays that exist in the data access path must also be taken into consideration. In the case of the $4 \mathrm{~K} \times 4$ SRAMs, a 20 ns part will probably be required.

Table 2

| 32KB CACHE CONFIGURATION COMPARISON |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Configuration | SRAM | \# SRAMs | Area (in²) | Power (W) |
| Direct-Mapped | $8 \mathrm{~K} \times 8$ | 4 | 3.23 | 2.75 |
| Two-Way-Set | $4 \mathrm{~K} \times 4$ | 16 | 10.57 | $10.55^{*}$ |

[^3]

DIRECT-MAPPED SPACE REQUIREMENT USING 8K x 8 SRAMS


TWO-WAY-SET SPACE REQUIREMENT USING 4K x 4 SRAMS
Figure 3

## MT56C0816 INTEGRATED CACHE SRAM

The MT56C0816 is an application-specific $8 \mathrm{~K} \times 16$ SRAM designed for, but not limited to, cache data SRAM implementations. The MT56C0816 is designed to be used in either direct-mapped or two-way-set designs. It incorporates an on-chip address latch, on-chip multiplexing between the two SRAM banks (for two-way-set mode), fast output enable times, and low-power consumption.

Almost all designs have used the MT56C0816 in the two-way-set mode of operation. This is due to the fact that the MT56C0816 eliminates the major problems in implementing the two-way-set mode architecture, namely the cost, space and power. Before the MT56C0816, a two-way-set implementation required three times the board space and four times the power of a direct-mode design when using standard SRAMs.

Due to the integration of on-chip address latches and multiplexors, often a lower-speed MT56C0816 can be used in place of a higher-speed, more costly standard SRAM. The advantages of the MT56C0816 don't stop here. It is widely second-sourced by other suppliers, the access time has been reduced to 20 ns and it is available in the smaller PQFP package.

Table 3 compares the board space, power and access time requirements of standard SRAMs and both packages of the MT56C0816 in a 32 KB cache design. The numbers pre-

## Table 3

| Cache SRAM Comparison (33MHz) |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Device | Number <br> of Devices | PC Board <br> Area | Power (w) | Access <br> Speed (ns) <br> Required |
| MT56C0816 <br> PQFP | 2 | 1.00 | 2.2 | 25 |
| MT56C0816 <br> PLCC | 2 | 1.94 | 2.2 | 25 |
| 8K x 8 SOJ | 4 | 2.28 | 3.15 | 15 |
| 74F373 SOIC | 2 |  |  |  |
| 8K x 8 DIP <br> 74F373 DIP | 4 | 3.99 | 3.15 | 15 |
| 4K x 4 SOJ | 2 | 16 | 8.58 | $12.15^{*}$ |
| 74F373 SOIC | 2 |  |  | 12 |
| 74F245 SOIC | 8 |  |  |  |
| 4K x 4 DIP | 16 | 13.05 | $12.15^{*}$ | 12 |
| 74F373 DIP | 2 |  |  |  |
| 74F245 DIP | 8 |  |  |  |

[^4]sented are applicable to both direct-mapped and two-wayset implementations for the MT56C0816 and 4K $\times 4$ SRAMs. The use of $8 \mathrm{~K} \times 8$ SRAMs in a two-way configuration requires a minimum of 64 KB in the cache and are not considered in the comparison. The same board area assumptions are used in Table 3 as in Table 2 regarding chip-to-chip and circuitry border spacing. The area values are normalized to the MT56C0816 in the PQFP package.

The SRAM access time and power considerations are based on a 33 MHz 80386 design assuming a 10ns enable decode time. The cache SRAM access time equation is as follows:

Cache SRAM access time $=4 * 386$ CLK2 - 386 address delay - 386 ready setup - SRAM enable decode - 74F373 delay $=(4 * 15 \mathrm{~ns})-15 \mathrm{~ns}-7 \mathrm{~ns}-10 \mathrm{~ns}-9 \mathrm{~ns}=19 \mathrm{~ns}$

This will require $8 \mathrm{~K} \times 8$ SRAMs with a 15 ns access time. The $4 \mathrm{~K} \times 4$ implementation requires that the transceiver delay time ( 6 ns ) also be subtracted, which leaves only 13 ns . Hence, a 12 ns part must be used. The MT56C0816 incorporates the address latch on-board and thus allows 9 ns to be added back into the SRAM access time. This yields a 28 ns access time for a MT56C0816 design, which is easily met by the 25 ns part. This access time is applicable to both the direct mode and two-way set configurations since the data multiplexing is also on-chip.

Figures 4 and 5 illustrate the board space required by the MT56C0816 and the standard SRAM configurations that are summarized in Table 3.

## OPTIMUM SYSTEM

The available, off-the-shelf cache controllers allow very quick and efficient cache subsystem designs for 80386based systems. And an off-the-shelf controller teamed with the MT56C0816 maximizes the system performance/cost ratio. The MT56C0816 allows the controller to be employed in its highest performance mode, two-way-set associativity, without the disadvantages incurred using standard SRAMs.

A two-way-set design using the MT56C0816 requires only two parts versus 10 for an $8 \mathrm{~K} \times 8$ SRAM implementation and 26 for a $4 \mathrm{~K} \times 4$ implementation. A direct-mapped design using theMT56C0816 requires only two parts versus six for an $8 \mathrm{~K} \times 8$ SRAM implementation and 26 for a $4 \mathrm{~K} \times 4$ implementation. In addition to the board-space, power, and integration advantages, the MT56C0816 offers a direct connection to the controllers. This means higher system reliability and easier design and debugging over the standard SRAM implementations. Figure 6 shows a detailed diagram of a system using the MT56C0816.


MT56C0816 PQFP


## 8K x 8 SOJ/SOIC



MT56C0816 PLCC


8K x 8 DIP


Figure 4


4K x 4 DIP
Figure 5


Figure 6

Table 4

| MICRON CACHE SRAM FAMILY |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Part \# | Description | Speed (ns) | Package | Availability |
| MT56C0816 | Dual $4 \mathrm{~K} \times 16$ or $8 \mathrm{~K} \times 16$ <br> Addresses 0 through 11 are latched | 20, 25, 35 | $\begin{aligned} & \text { PLCC } \\ & \text { PQFP } \end{aligned}$ | Now |
| MT56C0818 | Dual $4 \mathrm{~K} \times 18$ or $8 \mathrm{~K} \times 18$ <br> Addresses 0 through 11 are latched | 20,25,35 | $\begin{aligned} & \hline \text { PLCC } \\ & \text { PQFP } \end{aligned}$ | Now |
| MT56C2818 | Dual $4 \mathrm{~K} \times 18$ or $8 \mathrm{~K} \times 18$ 80486 self-timed write; used on Intel Turbocache $486^{\mathrm{TM}}$ module | 24, 28 | $\begin{aligned} & \hline \text { PLCC } \\ & \text { PQFP } \end{aligned}$ | Now |
| MT56C3816 | Dual $4 \mathrm{~K} \times 16$ or $8 \mathrm{~K} \times 16$ Addresses 0 through 12 are latched | 20,25, 35 | $\begin{aligned} & \hline \text { PLCC } \\ & \text { POFP } \end{aligned}$ | Feb. 1991 |
| MT56C3818 | Dual $4 \mathrm{~K} \times 18$ or $8 \mathrm{~K} \times 18$ Addresses 0 through 12 are latched | 20,25, 35 | $\begin{aligned} & \text { PLCC } \\ & \text { PQFP } \end{aligned}$ | Feb. 1991 |
| MT56C1616 | Dual $8 \mathrm{~K} \times 16$ or $16 \mathrm{~K} \times 16$ <br> Addresses 0 through 12 are latched | 15, 20, 25 | $\begin{aligned} & \text { PLCC } \\ & \text { PQFP } \end{aligned}$ | 2H 1991 |
| MT56C1618 | Dual $8 \mathrm{~K} \times 18$ or $16 \mathrm{~K} \times 18$ <br> Addresses 0 through 12 are latched | 15, 20, 25 | $\begin{aligned} & \hline \text { PLCC } \\ & \text { PQFP } \\ & \hline \end{aligned}$ | 2H 1991 |
| MT56C3616 | Dual $8 \mathrm{~K} \times 16$ or $16 \mathrm{~K} \times 16$ Addresses 0 through 13 are latched | 15,20, 25 | $\begin{aligned} & \text { PLCC } \\ & \text { PQFP } \end{aligned}$ | 2H 1991 |
| MT56C3618 | Dual $8 \mathrm{~K} \times 18$ or $16 \mathrm{~K} \times 18$ Addresses 0 through 13 are latched | 15, 20, 25 | $\begin{aligned} & \hline \text { PLCC } \\ & \text { PQFP } \\ & \hline \end{aligned}$ | 2H 1991 |
| MT56C2618 | Dual $8 \mathrm{~K} \times 18$ or $16 \mathrm{~K} \times 18$ 80486 self-timed write | 17, 24, 28 | $\begin{aligned} & \hline \text { PLCC } \\ & \text { PQFP } \end{aligned}$ | 2H 1991 |

## MORE SOLUTIONS

An entire family of cache-specific data SRAMs is available. Table 4 lists the members of the cache SRAM family.

In addition, Micron was the first to introduce the MT56C0816 both in a 20 ns access speed and in the thin, small-outline PQFP package.

## SPECIAL CONSIDERATIONS

The Micron MT56C0816 was designed for a specific generation of cache implementations for the 80386. That generation required a nonlatched A12 address and a faster A12 access time. Since then, designs employing certain off-the-shelf controllers are more efficiently implemented if address line A12 is latched on the cache data SRAM. These designs do not require the faster A12 access time. In order to keep pace with the everchanging design community Micron will introduce in the Q1/1991 time-frame versions of the MT56C0816 and the MT56C0818 with address A12 latched. The part numbers of these new devices are MT56C3816 and MT56C3818 respectively.

The latched A12 version of the cache data SRAM can be appealing in 80386DX designs where the cache uses a two-way-set associative architecture and the cache size is 64 KB or larger. The latched A12 parts are applicable for 80386SX designs where the cache is structured using a two-way-set associative organization and the cache size is 32 KB or larger. Designs using a direct-mapped architecture essentially use the cache data SRAM as an $8 \mathrm{~K} \times 16$ SRAM and as
such the latched version would be advantageous in all cases.

Whether the latched or unlatched A12 version of the cache data SRAM is more advantageous depends entirely on the specifics of each individual design.

## SUMMARY

The Micron MT56C0816 has been as important to 80386 caching solutions as the off-the-shelf controllers from Intel, Austek and Chips \& Technologies. The direct connection of the MT56C0816 to controllers makes the implementation more appealing for the designer from both a design and debug standpoint. The reduced board space, power and comparable cost to commodity SRAM implementations are advantages that make the MT56C0816 the right choice for new designs. Implementations using the MT56C0816 add reliability to the system due to the reduced component count. The MT56C0816 offers other less obvious cost advantages. Reduced board space requirements directly affect board manufacturing costs and allow more components to be placed on the board. Better reliability means lower costs due to fewer returns and fewer board revisions. Other costs that the MT56C0816 minimizes over the standard SRAM solutions are inventory and assembly costs.

Clearly the Micron MT56C0816 is a superior solution to standard SRAMs in cache designs.

## MIERON

DYNAMIC RAMS1
DRAM MODULES ..... 2
MULTIPORT DRAMS ..... 3
STATIC RAMS ..... 4
SYNCHRONOUS SRAMS ..... 5
SRAM MODULES ..... 6
CACHE DATA SRAMS ..... 7
FIFO MEMORIES ..... 8
APPLICATION/TECHNICAL INFORMATION ..... 9
MILITARY INFORMATION ..... 10
PACKAGE INFORMATION ..... 11
SALES INFORMATION12

## GENERAL INFORMATION

As a major supplier to the defense electronics industry, Micron offers an extensive array of speeds and configurations compatible with military-standard pinouts. A wide selection of devices are available to fit both Standard Military Drawings (SMD) and Joint Army-Navy (JAN) Level-B specifications - SRAMs, DRAMs and Multiport DRAMs.

Micron maintains the MIL-M-38510 certification status for all its fabrication facilities. Micron's CMOS and NMOS process technologies are both JAN certified. Our militarygrade SRAM modules meet or exceed the proposed standards of the JEDECJC-13ModuleCommittee. Currently, we are waiting for DESC to announce approval of these MIL-STD-883 standards.

Micron's entire military assembly takes place in Boise, Idaho. Micron produces and tests our military products to specifications that meet or exceed the requirements of MIL-M-38510 and MIL-STD-883, methods 5004 and 5005. Every Micron product is tested on the AMBYX, ${ }^{\text {TM }}$ a unique, intelligent burn-in system designed by Micron to eliminate infant mortalities. Our internal processes provide an extensive data base that allows complete statistical process control and test data in real time.

Many of Micron's military products have received military
qualification, including the 1 Meg VRAM and 1 Meg SRAM. To date, military qualification is pending on Micron's 4 Meg DRAMs and various SRAM modules. Products under development include cache data SRAMs and FIFOs. New package configurations will include a ceramic vertical (CV) package that meets high-density, through-hole designs. Micron is also looking into J-leaded LCC packages for highdensity boards.
Memory devices for military and space-level applications require both radiation tolerance and latch-up immunity. Micron is currently in the process of characterizing select CMOS SRAM and DRAM devices for total dose, dose rate and latch-up immunity.
Micron is continually evaluating and improving our radiation tolerance processes on our military and commercial products for future use on land, sea and in space. We're assessing our 1 Meg SRAM, 4 Meg DRAM and 1 Meg VRAM devices beyond standard MIL-STD-883 and JAN Level-B requirements. Micron is developing a process flow that parallels the requirements of Class-S to be used for products not requiring Class-S compliance. These products will offer the high density and speed necessary in spacelevel applications. For more information, please refer to Micron's Military MOS Data Book.

# MICRON MIL-STD-883C COMPLIANT PRODUCT ASSURANCE FLOW 

## Description of <br> Requirements and Screens

Methods and Test
Conditions

## Comment

Establish and implement a plan for a product assurance program Manufacturer's QA survey Traceable to wafer production lot N/A

Self audit
Computer lot history records Devices manufactured, assembled and tested in Boise, Idaho USA

## MIL-STD 883 Fabrication

5. Incoming Materials
6. Wafer Fabrication
7. Assembly

Receiving inspection
Method 2018, SEM monitors
Process monitors
Statistical process controls

Vendor audits
Sample
Sample
Sample

## MIL-STD 883, Class B, Rev. C, Method 5004 Screening

8. Internal Visual
9. Thermal Shock
10. Constant Acceleration
11. Hermeticity
A. Fine Leak
B. Gross Leak
12. Initial Electricals
13. Burn-in
14. Final Electrical Post

Burn-in Test
15. Marking
16. External Visual
17. Quality Conformance

Inspection
18. Pack/Ship

Method 2010, cond. B 100\%
Method 1010, cond. B 100\%
Method 2001, cond. E 100\%
Method 1014, cond. A 100\%
Method 1014, cond. C 100\%
Manufacturer's documented 100\%
data sheet
Method 1015 100\%
Method 5004, Class B, $\quad 100 \%$
paragraph 3.1.15, 5\% PDA
Method 2015 100\%
Method 2009 100\%
Method 5005 in-line Class B Groups A, B, C, D

Includes C of C, with QCI 100\%
data (attributes only)
Quality Conformance Inspection per Method 5005 (attributes data only)
19. Group A
20. Group B
21. Group C
22. Group D

Manufacturer's documented data sheet
Package functional and construction tests
Die related
Package-related test

Each inspection lot/sublot
Each inspection lot/sublot
Each microcircuit group, every 4 calendar quarters Each package type, every 52 weeks

## DRAM

| Description | Speed | Micron Part Number | SMD Part Number (5962-) | JAN Part Number |
| :---: | :---: | :---: | :---: | :---: |
| $64 \mathrm{~K} \times 1$ CDIP | 120ns | MT4264C-12 883C |  |  |
|  | 150 ns | MT4264C-15 883C | 8201004EX ( $-55^{\circ} \mathrm{C} /+125^{\circ} \mathrm{C}$ ) |  |
|  |  |  | 8201006EX ( $-55^{\circ} \mathrm{C} /+110^{\circ} \mathrm{C}$ ) |  |
|  | 200ns | MT4264C-20 883C | $8201005 \mathrm{EX}\left(-55^{\circ} \mathrm{C} /+125^{\circ} \mathrm{C}\right)$ |  |
|  |  |  | 8201007EX ( $-55^{\circ} \mathrm{C} /+110^{\circ} \mathrm{C}$ ) |  |
| $64 \mathrm{~K} \times 1$ CLCC | 120ns | MT4264EC-12 883C |  |  |
|  | 150 ns | MT4264EC-15 883C | 820100406ZX |  |
|  | 200 ns | MT4264EC-20 883C | 820100607ZX |  |
| $64 \mathrm{~K} \times 1$ Flat Pack | 120 ns | MT4264F-12 883C | No Drawing |  |
|  | 150ns | MT4264F-15 883C | No Drawing |  |
|  | 200 ns | MT4264F-20 883C | No Drawing |  |
| $256 \mathrm{~K} \times 1 \mathrm{CDIP}$ | 100 ns | MT1259C-10 883C | No Drawing |  |
|  | 120 ns | MT1259C-12 883C | 8515203EX | JM38510/2460103BEX |
|  | 150 ns | MT1259C-15 883C | 8515201EX | JM38510/2460204BEX |
| 256K x 1 CLCC | 100 ns | MT1259EC-10 883C | No Drawing |  |
|  | 120 ns | MT1259EC-12 883C | 8515203XX | JM38510/2460103BXX |
|  | 150 ns | MT1259EC-15 883C | 8515201XX | JM38510/2460204BXX |
| $64 \mathrm{~K} \times 4 \mathrm{CDIP}$ | 100 ns | MT4067C-10 883C | 8767604VX |  |
|  | 120 ns | MT4067C-12 883C | 8767601VX |  |
|  | 150 ns | MT4067C-15 883C | 8767602VX |  |
|  | 200ns | MT4067C-20 883C | 8767603VX |  |
| $64 \mathrm{~K} \times 4 \mathrm{CLCC}$ | 100ns | MT4067EC-10 883C | 8767604XX |  |
|  | 120 ns | MT4067EC-12 883C | 8767601XX |  |
|  | 150 ns | MT4067EC-15 883C | 8767602XX |  |
|  | 200ns | MT4067EC-20 883C | 8767603XX |  |
| $1 \mathrm{Meg} \times 1 \mathrm{CDIP}$ | 80 ns | MT4C1024C-8 883C | No Drawing | JM38510/24901BVX |
|  | 100 ns | MT4C1024C-10 883C | No Drawing | JM38510/24902BVX |
|  | 120 ns | MT4C1024C-12 883C | No Drawing | JM38510/24903BVX |
|  | 150 ns | MT4C1024C-15 883C | No Drawing | JM38510/24904BVX |
| $1 \mathrm{Meg} \times 1 \mathrm{CLCC}$ | 80 ns | MT4C1024EC-8 883C |  | JM38510/24901BZX |
|  | 100 ns | MT4C1024EC-10 883C |  | JM38510/24902BZX |
|  | 120 ns | MT4C1024EC-12 883C |  | JM38510/24903BZX |
|  | 150 ns | MT4C1024EC-15 883C |  | JM38510/24904BZX |
| 1 Meg $\times 1$ Flat Pack | 80 ns | MT4C1024F-8 883C |  | JM38510/24901BXX |
|  | 100 ns | MT4C1024F-10 883C |  | JM38510/24902BXX |
|  | 120 ns | MT4C1024F-12 883C |  | JM38510/24903BXX |
|  | 150 ns | MT4C1024F-15 883C |  | JM38510/24904BXX |

## DRAM

| Description | Speed | Micron Part Number | SMD Part Number (5962-) | JAN Part Number (5962-) |
| :---: | :---: | :---: | :---: | :---: |
| $1 \mathrm{Meg} \times 4 \mathrm{CDIP}$ | 80ns | MT4C4001C-8 883C | 90847M_X | 90847B_X |
|  | 100 ns | MT4C4001C-10 883C | 90847M_X | 90847B_X |
|  | 120 ns | MT4C4001C-12 883C | 90847M_X | 90847B_X |
|  | 150 ns | MT4C4001C-15 883C | 90847M_X | 90847B_X |
| $1 \mathrm{Meg} \times 4 \mathrm{LCC}$ | 80ns | MT4C4001EC-8 883C | 90847M_X | 90847B_X |
|  | 100 ns | MT4C4001EC-10 883C | 90847M_X | 90847B_X |
|  | 120 ns | MT4C4001EC-12 883C | 90847M_X | 90847B_X |
|  | 150 ns | MT4C4001EC-15 883C | 90847M_X | 90847B_X |
| 1 Meg $\times 4$ Flat Pack | 80 ns | MT4C4001F-8 883C | 90847M_X | 90847B_X |
|  | 100 ns | MT4C4001F-10 883C | 90847M_X | 90847B_X |
|  | 120 ns | MT4C4001F-12 883C | 90847M_X | 90847B_X |
|  | 150 ns | MT4C4001F-15 883C | 90847M_X | 90847B_X |
| $4 \mathrm{Meg} \times 1$ CDIP | 80 ns | MT4C1004C-8 883C | 90622M_X | 90622B_X |
|  | 100 ns | MT4C1004C-10 883C | 90622M_X | 90622B_X |
|  | 120 ns | MT4C1004C-12 883C | 90622M_X | 90622B_X |
|  | 150 ns | MT4C1004C-15 883C | 90622M_X | 90622B_X |
| $4 \mathrm{Meg} \times 1 \mathrm{LCC}$ | 80ns | MT4C1004EC-8 883C | 90622M_X | 90622B_X |
|  | 100 ns | MT4C1004EC-10 883C | 90622M_X | 90622B_X |
|  | 120 ns | MT4C1004EC-12 883C | 90622M_X | 90622B_X |
|  | 150 ns | MT4C1004EC-15 883C | 90622M_X | 90622B_X |
| $4 \mathrm{Meg} \times 1$ Flat Pack | 80ns | MT4C1004F-8 883C | 90622M_X | 90622B_X |
|  | 100 ns | MT4C1004F-10 883C | 90622M_X | 90622B_X |
|  | 120 ns | MT4C1004F-12 883C | 90622M_X | 90622B_X |
|  | 150 ns | MT4C1004F-15 883C | 90622M_X | 90622B_X |

MILITARY MULTIPORT DRAM

## MULTIPORT DRAM

| Description | Speed | Micron Part Number | SMD Part Number (5962-) | JAN Part Number |
| :---: | :---: | :---: | :---: | :---: |
| $64 \mathrm{~K} \times 4$ CDIP | 100ns | MT42C4064C-10 883C | 89952M_X |  |
|  | 120ns | MT42C4064C-12 883C | 89952M_X |  |
|  | 150ns | MT42C4064C-15 883C | 89952M_X |  |
| $64 \mathrm{~K} \times 4 \mathrm{LCC}$ | 120ns | MT42C4064EC-10 883C | 89952M_X |  |
|  | 150ns | MT42C4064EC-12 883C | 89952M_X |  |
|  | 200ns | MT42C4064EC-15 883C | 89952M_X |  |
| 128K x 8 CDIP | 80 ns | MT42C8128CW-8 883C | No Drawing |  |
|  | 100ns | MT42C8128CW-10 883C | No Drawing |  |
|  | 120ns | MT42C8128CW-12 883C | No Drawing |  |
| 256K x 4 CDIP | 80ns | MT42C4256-8 883C | No Drawing |  |
|  | 100ns | MT42C4256-12 883C | No Drawing |  |
|  | 120 ns | MT42C4256-15 883C | No Drawing |  |

## SRAM

| Description | Speed | Micron Part Number | SMD Part Number (5962-) | JAN Part Number |
| :---: | :---: | :---: | :---: | :---: |
| $128 \mathrm{~K} \times 8 \mathrm{CDIP}$ | 25ns | MT5C1008C-25 883C | 8959837MZX* | 5962-8959837BZX* |
|  | 35ns | MT5C1008C-30 883C | 8959836MZX* | 5962-8959836BZX* |
|  | 45 ns | MT5C1008C-45 883C | 8959835MZX* | 5962-8959835BZX* |
| $256 \mathrm{~K} \times 1$ CDIP | 25ns | MT5C2561C-25 L 883C | 8872505LX | JM38510/29310BLX |
|  | 35ns | MT5C2561C-35 L 883C | 8872501LX | JM38510/29302BLX |
|  | 45 ns | MT5C2561C-45 883C | 8872502LX | JM38510/29301BLX |
| 256K $\times 1$ CLCC | 25ns | MT5C2561EC-25 L 883C | 8872505XX | JM38510/29310BNX |
|  | 35ns | MT5C2561EC-35 L 883C | 8872501XX | JM38510/29302BNX |
|  | 45 ns | MT5C2561EC-45 883C | 8872502XX | JM38510/29301BNX |
| $64 \mathrm{~K} \times 4 \mathrm{CDIP}$ | 25ns | MT5C2564C-25 L 883C | Note 1 | JM38510/29311BLX |
|  | 35ns | MT5C2564C-35 L 883C | 8868101LX | JM38510/29304BLX |
|  | 45ns | MT5C2564C-45 883C | 8868102LX | JM38510/29303BLX |
| $64 \mathrm{~K} \times 4$ CLCC | 25ns | MT5C2564EC-25 L 883C | Note 1 | JM38510/29311BNX |
|  | 35ns | MT5C2564EC-30 L 883C | 8868101XX | JM38510/29304BNX |
|  | 45ns | MT5C2564EC-45 883C | 8868102XX | JM38510/29303BNX |
| $\begin{aligned} & 64 \mathrm{~K} \times 4 \mathrm{CDIP} \\ & \mathrm{w} / \overline{\mathrm{OE}} \end{aligned}$ | 25ns | MT5C2565C-25 L 883C | 8952405XX | JM38510/29312BYX |
|  | 35ns | MT5C2565C-35 L 883C | 8952404XX | JM38510/29315BYX |
|  | 45 ns | MT5C2565C-45 883C | 8952403XX | JM38510/29314BYX |
| $\begin{aligned} & 64 K \times 4 \text { CLCC } \\ & \mathrm{w} / \overline{\mathrm{OE}} \end{aligned}$ | 25ns | MT5C2565EC-25 L 883C | 8952405YX | JM38510/29312BNX |
|  | 35ns | MT5C2565EC-30 L 883C | 8952404YX | JM38510/29315BNX |
|  | 45 ns | MT5C2565EC-45 883C | 8952403YX | JM38510/29314BNX |
| $\begin{aligned} & 32 \mathrm{~K} \times 8 \text { CDIP } \\ & 300 \mathrm{MIL} \end{aligned}$ | 25ns | MT5C2568C-25 L 883C | No Drawing | JM38510/29313BYX |
|  | 35ns | MT5C2568C-30 L 883C | No Drawing | JM38510/29309BYX |
|  | 45ns | MT5C2568C-45 883C | No Drawing | JM38510/29308BYX |
|  | 55ns | MT5C2568C-55 883C | No Drawing | JM38510/29307BYX |
| $\begin{aligned} & 32 \mathrm{~K} \times 8 \text { CDIP } \\ & 600 \mathrm{MIL} \end{aligned}$ | 25ns | MT5C2568CW-25 L 883C | Note 1 | JM38510/29313BXX |
|  | 35ns | MT5C2568CW-35 L 883C | No Drawing | JM38510/29309BXX |
|  | 45ns | MT5C2568CW-45 L 883C | 8866204XX | JM38510/29308BXX |
|  | 55ns | MT5C2568CW-55 L 883C | 8866205XX | JM38510/29307BXX |
| $\begin{aligned} & 32 \mathrm{~K} \times 8 \text { CLCC } \\ & 28 \mathrm{PIN} \end{aligned}$ | 25ns | MT5C2568EC-25 L 883C | Note 1 | JM38510/29313BNX |
|  | 35 ns | MT5C2568EC-35 L 883C | No Drawing | JM38510/29309BNX |
|  | 45 ns | MT5C2568EC-45 L 883C | 8866204UX | JM38510/29308BNX |
|  | 55ns | MT5C2568EC-55 L 883C | 8866205UX | JM38510/29307BNX |

## *Preliminary

Note: 1. The current SMDs are written for the slower grade devices. Micron has submitted new drawings to DESC for faster devices.
$\mathrm{L}: \quad$ Optional 2 V data retention is available on all parts indicated by " L " after speed. Optional low-voltage data retention available on all SRAMs.

## SRAM

| Description | Speed | Micron Part Number | SMD Part Number (5962-) | JAN Part Number |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 32 \mathrm{~K} \times 8 \text { CLCC } \\ & 32 \text { PIN } \end{aligned}$ | 25ns | MT5C2568ECW-25 L 883C | No Drawing | JM38510/29313BTX |
|  | 35ns | MT5C2568ECW-30 L 883C | No Drawing | JM38510/29309BTX |
|  | 45ns | MT5C2568ECW-45 L 883C | 8866204YX | JM38510/29308BTX |
|  | 55ns | MT5C2568ECW-55 L 883C | 8866205YX | JM38510/29307BTX |
| $32 \mathrm{~K} \times 8$ Flat Pack | 25ns | MT5C2568F-25 L 883C | No Drawing | JM38510/29313BMX |
|  | 35ns | MT5C2568F-35 L 883C | No Drawing | JM38510/29309BMX |
|  | 45ns | MT5C2568F-45 L 883 C | 8866204TX | JM38510/29308BMX |
|  | 55ns | MT5C2568F-55 L 883C | 8866205TX | JM38510/29307BMX |
| $64 \mathrm{~K} \times 1$ CDIP | 20ns | MT5C6401C-20 L 883C | Note 1 <br> No Drawing <br> No Drawing <br> 8601501XX |  |
|  | 25ns | MT5C6401C-25 L 883C |  |  |
|  | 30 ns | MT5C6401C-30 L 883C |  |  |
|  | 35ns | MT5C6401C-35 L 883C |  |  |
| $64 \mathrm{~K} \times 1$ CLCC | 20ns | MT5C6401EC-20 L 883C | Note 1 <br> No Drawing <br> No Drawing <br> 8601501ZX |  |
|  | 25ns | MT5C6401EC-25 L 883C |  |  |
|  | 30 ns | MT5C6401EC-30 L 883C |  |  |
|  | 35ns | MT5C6401EC-35 L 883C |  |  |
| 16K $\times 4$ CDIP | 20ns | MT5C6404C-20 L 883C | $\begin{aligned} & 8969204 \mathrm{YX} \\ & 8969202 \mathrm{YX} \end{aligned}$ |  |
|  | 25ns | MT5C6404C-25 L 883C |  |  |
| 16K x 4 CLCC | 20ns | MT5C6404EC-20 L 883C | $\begin{aligned} & 8969204 \mathrm{ZX} \\ & 8969202 \mathrm{ZX} \end{aligned}$ |  |
|  | 25ns | MT5C6404EC-25 L 883C |  |  |
| $\begin{aligned} & 8 \mathrm{~K} \times 8 \text { CDIP } \\ & 300 \mathrm{MIL} \end{aligned}$ | 15 ns | MT5C6408C-15 L 883C | $\begin{aligned} & \text { 3829418MZX } \\ & \text { 3829419MZX } \\ & \text { 8969104ZX or 3829416MZX } \\ & \text { 8969102ZX or 3829414MZX } \\ & \text { No Drawing } \\ & \text { 3829412MZX } \end{aligned}$ |  |
|  | 15ns | MT5C6408C-15 883C |  |  |
|  | 20ns | MT5C6408C-20 L 883C |  |  |
|  | 25 ns | MT5C6408C-25 L 883C |  |  |
|  | 30 ns | MT5C6408C-30 L 883C |  |  |
|  | 35 ns | MT5C6408C-35 L 883C |  |  |
| $\begin{aligned} & 8 \mathrm{~K} \times 8 \mathrm{CDIP} \\ & 600 \mathrm{MIL} \end{aligned}$ | 20ns | MT5C6408CW-20 L 883C | $\begin{aligned} & \text { 8969104XX } \\ & \text { 8969102XX } \end{aligned}$ <br> No Drawing No Drawing |  |
|  | 25ns | MT5C6408CW-25 L 883C |  |  |
|  | 30 ns | MT5C6408CW-30 L 883C |  |  |
|  | 35ns | MT5C6408CW-35 L 883C |  |  |
| $\begin{aligned} & 8 \mathrm{~K} \times 8 \text { CLCC } \\ & 28 \mathrm{PIN} \end{aligned}$ | 15 ns | MT5C6408EC-15 L 883C | 3829418MUX <br> 8969104NX or 3829416MUX <br> 8969102NX or 3829414MUX <br> No Drawing <br> 3829412MUX |  |
|  | 20 ns | MT5C6408EC-20 L 883C |  |  |
|  | 25ns | MT5C6408EC-25 L 883C |  |  |
|  | 30 ns | MT5C6408EC-30 L 883C |  |  |
|  | 35ns | MT5C6408EC-35 L 883C |  |  |

Note: 1. The current SMDs are written for the slower grade devices. Micron has submitted new drawings to DESC for faster devices.
$\mathrm{L}: \quad$ Optional 2V data retention is available on all parts indicated by " L " after speed.
Optional low-voltage data retention available on all SRAMs.

## SRAM

| Description | Speed | Micron Part Number | SMD Part Number | JAN Part Number |
| :---: | :---: | :---: | :---: | :---: |
| $8 \mathrm{~K} \times 8$ Flat Pack | 25ns | MT5C6408F-25 L 883C | 8969102YX |  |
| 32 PIN | 35ns | MT5C6408F-35 L 883C | No Drawing |  |
| $2 \mathrm{~K} \times 8$ CDIP | 20ns | MT5C1608C-20 L 883C | 8969002LX |  |
|  | 25ns | MT5C1608C-25 L 883C | 8969001LX |  |
|  | 30ns | MT5C1608C-30 L 883C | No Drawing |  |
|  | 35ns | MT5C1608C-35 L 883C | No Drawing |  |
| $2 \mathrm{~K} \times 8$ CLCC | 20ns | MT5C1608EC-20 L 883C | 8969002ZX |  |
|  | 25ns | MT5C1608EC-25 L 883C | 8969001ZX |  |
|  | 30 ns | MT5C1608EC-30 L 883C | No Drawing |  |
|  | 35 ns | MT5C1608EC-35 L 883C | No Drawing |  |

## SRAM MODULE

| Description | Speed | Micron Part Number | SMD Part Number | JAN Part Number |
| :--- | :--- | :--- | :--- | :--- |
| $128 \mathrm{~K} \times 8$ CDIP | 35 ns | MT4S1288CW-35 | No Drawing |  |
| $512 \mathrm{~K} \times 8$ CDIP | 35 ns | MT4S5128CW-35 | No Drawing |  |
| $64 \mathrm{~K} \times 16$ CDIP | 35 ns | MT4S6416CW-35 | No Drawing |  |
| $64 \mathrm{~K} \times 32$ CDIP | 35 ns | MT4S6432CW-35 | No Drawing |  |

## CACHE DATA SRAM*

| Description | Speed | Micron Part Number | SMD Part Number | JAN Part Number |
| :--- | :--- | :--- | :--- | :--- |
| $8 \mathrm{~K} \times 16$ CLCC | 20ns | MT56C0816C-20 L 883C | No Drawing |  |
|  | 25ns | MT56C0816C-25 L 883C | No Drawing |  |
|  | 35ns | MT56C0816C-35 L 883C | No Drawing |  |
|  |  |  |  |  |

## *Preliminary

Note: 1. The current SMDs are written for the slower grade devices. Micron has submitted new drawings to DESC for faster devices.
$\mathrm{L}: \quad$ Optional 2 V data retention is available on all parts indicated by " L " after speed.
Optional low-voltage data retention available on all SRAMs.

## FIFO*

| Description | Speed | Micron Part Number | SMD Part Number | JAN Part Number |
| :---: | :---: | :---: | :---: | :---: |
| $512 \times 9$ CLCC | 15ns | MT52C9005EC-15 883C | No Drawing |  |
|  | 20ns | MT52C9005EC-20 883C | No Drawing |  |
|  | 25ns | MT52C9005EC-25 883C | No Drawing |  |
|  | 35ns | MT52C9005EC-35 883C | No Drawing |  |
| 1K x 9 CLCC | 15ns | MT52C9010EC-15 883C | No Drawing |  |
|  | 20ns | MT52C9010EC-20 883C | No Drawing |  |
|  | 25ns | MT52C9010EC-25 883C | No Drawing |  |
|  | 35ns | MT52C9010EC-35 883C | No Drawing |  |
| $2 \mathrm{~K} \times 9$ CLCC | 15ns | MT52C9020EC-15 883C | No Drawing |  |
|  | 20ns | MT52C9020EC-20 883C | No Drawing |  |
|  | 25ns | MT52C9020EC-25 883C | No Drawing |  |
|  | 35ns | MT52C9020EC-35 883C | No Drawing |  |

## MICREN

DYNAMIC RAMS ..... 1
DRAM MODULES ..... 2
MULTIPORT DRAMS ..... 3
STATIC RAMS ..... 4
SYNCHRONOUS SRAMS ..... 5
SRAM MODULES ..... 6
CACHE DATA SRAMS ..... 7
FIFO MEMORIES ..... 8
APPLICATION/TECHNICAL INFORMATION ..... 9
MILITARY INFORMATION ..... 10
PACKAGE INFORMATION ..... 11
SALES INFORMATION ..... 12

| PACKAGE TYPE | PIN COUNT |  | PAGE | PACKAGE TYPE | PIN COU |  | PAGE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PLASTIC DIP . | ........... 16 |  | 11-2 | PLASTIC SOJ .. | .. 20/26 |  | 11-24 |
|  | 18 | ............. | 11-3 |  | 22/26 | ............. | 11-25 |
|  | 20 | ............. | 11-4 |  | 24 |  | 11-25 |
|  | 22 |  | 11-5 |  | 24/26 |  | 11-26 |
|  | 24 |  | 11-6 |  | 24/28 |  | 11-27 |
|  | 28 |  | 11-7 |  | 28 |  | 11-27 |
|  | 32 |  | 11-9 |  | 32 |  | 11-28 |
| CERAMIC DIP . | . 16 |  | 11-10 |  | 40 |  | 11-29 |
|  | 18 | ... | 11-11 | CERAMIC LCC | ............ 18 | ............. | 11-30 |
|  | 20 | ............. | 11-12 |  | 20 |  | 11-31 |
|  | 22 |  | 11-13 |  | 28 |  | 11-32 |
|  | 24 | ............. | 11-14 |  | 32 |  | 11-33 |
|  | 28 | .............. | 11-15 | FLAT PACK .... | ......... 16 |  | 11-35 |
|  | 32 | ............. | 11-17 | FLAT PACK .... | ........ 16 20 |  | 11-35 |
| PLASTIC ZIP | .......... 16 | ... | 11-18 |  | 28 |  | 11-36 |
|  | 20 | ........... | 11-18 |  | 32 |  | 11-36 |
|  | 24 | ............. | 11-19 | MODULE SIP . | ........... 30 |  | 11-37 |
|  | 28 | ........ | 11-20 | MODULE SIP. | .......... 30 |  | 11-37 |
|  | 40 | ... | 11-20 | MODULE SIMM | ............ 30 |  | 11-39 |
| PLCC | ......... 18 |  | 11-21 |  | 72 |  | 11-41 |
|  | 32 | .............. | 11-21 | MODULE ZIP ... | ............ 64 | ............. | 11-44 |
|  | 52 |  | 11-22 |  | 72 |  | 11-46 |
| LPQFP | ........... 52 | ....... | 11-23 | MODULE DIP ... | ............ 32 | . | 11-49 |
|  |  |  |  |  | 40 | ............ | 11-50 |

## 16－PIN PLASTIC DIP

## A－1



All dimensions in inches（millimeters）$\frac{\mathrm{Max}}{\mathrm{Min}}$ or typical where noted．
NOTE：Package width and length do not include mold protrusion，allowable mold protrusion is .01 ＂per side．


18-PIN PLASTIC DIP


NOTE: Package width and length do not include mold protrusion, allowable mold protrusion is .01 " per side.


## 20－PIN PLASTIC DIP



NOTE：Package width and length do not include mold protrusion，allowable mold protrusion is .01 ＂per side．

## 22－PIN PLASTIC DIP

A－6


## 24-PIN PLASTIC DIP




NOTE: Package width and length do not include mold protrusion, allowable mold protrusion is .01 " per side.


## 28-PIN PLASTIC DIP




NOTE: Package width and length do not include mold protrusion, allowable mold protrusion is .01 " per side.

## 28－PIN PLASTIC DIP

A－11


## 32-PIN PLASTIC DIP

## A-12



32-PIN PLASTIC DIP


NOTE: Package width and length do not include mold protrusion, allowable mold protrusion is .01 " per side.

CERAMIC DIP

## 16－PIN CERAMIC DIP



All dimensions in inches（millimeters）$\frac{\mathrm{Max}}{\mathrm{Min}}$ or typical where noted．

## 18-PIN CERAMIC DIP



## 18-PIN CERAMIC DIP

B-3


## 20-PIN CERAMIC DIP

## B-4



## 20-PIN CERAMIC DIP



## 22-PIN CERAMIC DIP

B-6


## 24－PIN CERAMIC DIP

B－7


## 24－PIN CERAMIC DIP

B－8


## 28-PIN CERAMIC DIP

## B-9



## 28-PIN CERAMIC DIP

B-10


## 28-PIN CERAMIC DIP

## B-11



## 32-PIN CERAMIC DIP

B-12


## 32-PIN CERAMIC DIP

B-13


## 16－PIN PLASTIC ZIP



20－PIN PLASTIC ZIP
C－2


All dimensions in inches（millimeters）$\frac{\text { Max }}{\text { Min }}$ or typical where noted．


NOTE：Package width and length do not include mold protrusion，allowable mold protrusion is .01 ＂per side．

20-PIN PLASTIC ZIP
C-3


24-PIN PLASTIC ZIP
C-4


NOTE: Package width and length do not include mold protrusion, allowable mold protrusion is .01 " per side.

## 28－PIN PLASTIC ZIP

C－5


## 40－PIN PLASTIC ZIP

 C－6

NOTE：Package width and length do not include mold protrusion，allowable mold protrusion is .01 ＂per side．

## 18-PIN PLCC

D-1


32-PIN PLCC
D-2


All dimensions in inches (millimeters) $\frac{\mathrm{Max}}{\text { Min }}$ or typical where noted.
NOTE: Package width and length do not include mold protrusion, allowable mold protrusion is .01 " per side.

## 52-PIN PLCC

D-3


NOTE: Package width and length do not include mold protrusion, allowable mold protrusion is .01 " per side.

## 52-PIN LPQFP



52-PIN LPQFP
D-5


All dimensions in inches (millimeters) $\frac{\mathrm{Max}}{\mathrm{Min}}$ or typical where noted.
NOTE: Package width and length do not include mold protrusion, allowable mold protrusion is .01 " per side.

## 20/26-PIN PLASTIC SOJ



## 20/26-PIN PLASTIC SOJ



All dimensions in inches (millimeters) $\frac{\mathrm{Max}}{\mathrm{Min}}$ or typical where noted.
NOTE: Package width and length do not include mold protrusion, allowable mold protrusion is $.01^{\prime \prime}$ per side.

## 22／26－PIN PLASTIC SOJ

## E－3



24－PIN PLASTIC SOJ
E－4


NOTE：Package width and length do not include mold protrusion，allowable mold protrusion is .01 ＂per side．

## 24/26-PIN PLASTIC SOJ <br> E-5



24/26-PIN PLASTIC SOJ
E-6


NOTE: Package width and length do not include mold protrusion, allowable mold protrusion is .01 " per side.

## 24/28-PIN PLASTIC SOJ

E-7


## 28-PIN PLASTIC SOJ

E-8


NOTE: Package width and length do not include mold protrusion, allowable mold protrusion is .01 " per side.

## 28－PIN PLASTIC SOJ

E－9


## 32－PIN PLASTIC SOJ



NOTE：Package width and length do not include mold protrusion，allowable mold protrusion is .01 ＂per side．

## 32-PIN PLASTIC SOJ <br> E-11



40-PIN PLASTIC SOJ
E-12


NOTE: Package width and length do not include mold protrusion, allowable mold protrusion is .01 " per side.

## 18－PIN CERAMIC LCC



F－1


18－PIN CERAMIC LCC


All dimensions in inches（millimeters）$\frac{\mathrm{Max}}{\mathrm{Min}}$ or typical where noted．

## 20-PIN CERAMIC LCC

## F-3



## 28－PIN CERAMIC LCC

F－4


## 28－PIN CERAMIC LCC

F－5


## 32-PIN CERAMIC LCC



F-6



32-PIN CERAMIC LCC
F-7


CERAMIC LCC

## 32-PIN CERAMIC LCC

## F-8



## 16-PIN FLAT PACK



20-PIN FLAT PACK


All dimensions in inches (millimeters) $\frac{\text { Max }}{\text { Min }}$ or typical where noted.

## 28-PIN FLAT PACK



## 32-PIN FLAT PACK

G-4


## 30-PIN MODULE SIP

## H-1



30-PIN MODULE SIP
H-2


All dimensions in inches (millimeters) $\frac{\text { Max }}{M i n}$ or typical where noted.

## 30-PIN MODULE SIP

H-3


## 30-PIN MODULE SIP

H-4


## 30-PIN MODULE SIMM



## 30-PIN MODULE SIMM

I-2


## 30-PIN MODULE SIMM



## 30-PIN MODULE SIMM

I-4


## 72-PIN MODULE SIMM

I-5


## 72-PIN MODULE SIMM

I-6


## 72-PIN MODULE SIMM

I-7


## 72-PIN MODULE SIMM

I-8


## 72-PIN MODULE SIMM



## 72-PIN MODULE SIMM

I-10


## 64-PIN MODULE ZIP

## J-1



64-PIN MODULE ZIP



64-PIN MODULE ZIP
J-3


## 72-PIN MODULE ZIP <br> J-4



72-PIN MODULE ZIP
J-5


## 72-PIN MODULE ZIP



## 72-PIN MODULE ZIP



## 72－PIN MODULE ZIP

J－8


72－PIN MODULE ZIP
J－9


## 32-PIN MODULE DIP

K-1



## 40-PIN MODULE DIP

K-3


## MEACN

DYNAMIC RAMS ..... 1
DRAM MODULES ..... 2
MULTIPORT DRAMS ..... 3
STATIC RAMS ..... 4
SYNCHRONOUS SRAMS ..... 5
SRAM MODULES ..... 6
CACHE DATA SRAMS7
FIFO MEMORIES ..... 8
APPLICATION/TECHNICAL INFORMATION ..... 9
MILITARY INFORMATION ..... 10
PACKAGE INFORMATION ..... 11
SALES INFORMATION ..... 12
$\qquad$

## MICFON

## ORDER INFORMATION

Each Micron component family is manufactured and quality-controlled in the USA at our modern Boise, Idaho, facility employing Micron's low power, high performance CMOS silicon gate process. Micron products are functionally equivalent to other manufacturers' products meeting JEDEC standards. Device functionality is consistently assured over a wider power supply, temperature range and refresh range than specified. Each unit receives continuous

AMBYX ${ }^{\text {TM }}$ system-level testing during many hours of accelerated burn-in prior to final test and shipment.
Please contact the factory for technical, test and application assistance. Micron can also furnish the sales representative and distributors nearest you. Micron's quality assured policy is to offer prompt, accurate and courteous service while assuring reliability and quality.

## ORDER EXAMPLES:

## DRAM

1 Meg x 1,100 ns in Plastic SOJ


MULTIPORT DRAM (VRAM)
256K x 4, 100ns in ZIP


## SRAM

$32 \mathrm{~K} \times 8,45 \mathrm{~ns}$ in Plastic SOJ


Synchronous SRAM
$16 \mathrm{~K} \times 16$, Clocked, Register Inputs, 17ns in Plastic LCC


DRAM MODULE
1 Meg x 8, 120ns Fast Page Mode Access, Leaded SIP


CACHE DATA SRAM
Dual $4 \mathrm{~K} \times 16$, Single $8 \mathrm{~K} \times 16,25 \mathrm{~ns}$ in Plastic LCC


SRAM MODULE
$64 \mathrm{~K} \times 16,25 \mathrm{~ns}$ in DIP Module with 2V Data Retention


FIFO
$512 \times 9$, 15 ns in 300 mil DIP


## Component Product Numbering System

Format $=$ AA BB CC DDDD EEE-FF GG GG*


Module Product Numbering System


## PRODUCT RELIABILITY

## Overview

Product reliability pertains to product performance over time, i.e., a product's ability to perform its intended functions within specified performance limit, while operating under specified environmental conditions, for a specified length of time. This section contains a brief overview of some of the issues that affect the reliability of IC devices, and briefly describes Micron's reliability program. For a more in-depth discussion of reliability, the reader may refer to Micron's Quality/Reliability Literature.

## Reliability Goals

Reliability goals of semiconductor ICs are typically discussed with reference to the traditional reliability curve of component life. The reliability curve, commonly known as the "bathtub curve," is shown in the bottom half of Figure 1, where $h(t)$ is the hazard rate or the probability of a component failing at $t_{0}+1$ in time, given that it has survived at time $t_{0}$.


Figure 1
RELIABILITY CURVE

Figure 1 shows that the significant portion of this curve is the random failure segment. The first exponential segment (infant mortality) is attributed to gross manufacturing defects. Failures that occur in this region are screened out by Micron's in-house burn-in of all production material using the $A M B Y X^{m M}$ intelligent burn-in/test system, which is described in the following section.

## Micron's AMBYX ${ }^{\text {m }}$ Burn-in/Test System

To effectively screen out infant mortalities Micron believes it is critical to have the ability to functionally test devices without removing them from the burn-in oven, and to do so several times during the duration of the burn-in cycle. This enables the manufacturer to determine if the failure rate curves of individual production lots have reached the random failure region of the bathtub curve by the end of the burn-in cycle. Production lots that do not exhibit a stable failure rate towards the end of the burn-in cycle are subjected to additional burn-in. This burn-in flow also alerts the manufacturer to the slightest variation in a product's failure rate, so that any needed corrective action can be taken.

To meet this need for an intelligent burn-in system, Micron developed the AMBYX ${ }^{\mathrm{TM}}$ burn-in/test system. By "burn-in/test" we mean that devices are tested for functionality without removing the DUT (device-under-test) boards from the burn-in oven. This effectively eliminates failures resulting from handling, thereby minimizing "noise" from the test results. During the test phase, the output produced by the devices under test is compared to the pattern expected. If a discrepancy occurs, the $\mathrm{AMBYX}{ }^{\mathrm{TM}}$ system hardware records the failure and provides the following information: bit address, device address, board address, temperature, Vcc voltage, test pattern, time set.

A functional test of the devices is conducted at burn-in conditions $\left(125^{\circ} \mathrm{C}, 7.5 \mathrm{~V} \mathrm{Vcc}\right)$ at the beginning of the burn-in cycle, to verify that the devices under test are being properly exercised. All units that fail this test are screened from the production material. The burn-in cycle then proceeds. For our DRAM family, for example, Micron specifies that all production material is subjected to burn-in in four intervals at the following conditions: $125^{\circ} \mathrm{C}$ at 7.5 V Vcc for the first two intervals and 6.0 V Vcc for the last two intervals, with functional testing of the devices performed at $125^{\circ} \mathrm{C}$ between each interval. During temperature ramping to $125^{\circ} \mathrm{C}$ and back to $25^{\circ} \mathrm{C}$, the $\mathrm{AMBYX}{ }^{\text {TM }}$ system tests for thermal intermittent opens. This flow is illustrated Figure 2.

It is also noteworthy that the stress conditions during the last two intervals of production burn-in (i.e., $125^{\circ} \mathrm{C}$ and 6.0 V Vcc ) are identical to the stress conditions for the extended high-temperature-operating-life (HTOL) test, with which we calculate the random failure rate (described on pages 5-6) of the device during its useful life. The usefulness of this scheme is that it allows for a comparison of the failure rate during the latter part of production burn-in and the HTOL test and, thus, enables Micron to determine whether production material has been effectively screened for infant mortalities. PRODUCT RELIABILITY


Figure 2

## AMBYX ${ }^{\text {m }}$ BURN-IN/TEST FLOW AND TEST RESULTS

## Environmental Process Monitor Program

Micron's environmental process monitor (EPM) program is designed to ensure the reliability of our standard products. Under this program, weekly samples of our various product and package types are subjected to a battery of environmental stress tests. During these tests, the devices are stressed for many hours under conditions designed to simulate years of normal field use. Equations, derived from intricate engineering models are applied to the data collected from these accelerated tests. From these calculations, we are able to predict failure rates under normal use conditions. The conditions for these tests, known as "accelerated environmental stress" tests are described in Figure 3. The EPM program described in this particular figure is for our 1 Meg DRAM.


Figure 3
ENVIRONMENTAL PROCESS MONITOR - 1 MEG DRAM

## Failure Rate Calculation

The failure rate during the useful life of the device is expressed as percent failures per thousand device hours or as FITs (failures in time, per billion device hours), and is calculated as follows:

$$
\text { Failure Rate }=\operatorname{Pn} \div\left[\begin{array}{cc}
\begin{array}{c}
\text { Device hours at } \\
\text { accelerated environment }
\end{array} & \times \quad \begin{array}{c}
\text { A.F. relative to maximum } \\
\text { operating environment }
\end{array}
\end{array}\right]
$$

where: $\mathrm{Pn}=$ Poisson Statistic (at a given confidence level). For the data above, Pn at $60 \%$ confidence level equals 916 . Device hours = sample size multiplied by test time (in hours). In our example, to follow, device hours equal $1.929 \times$ $10^{6}$.
A.F. $=$ acceleration factor between the stress environment and maximum use conditions. For the 1 Meg DRAM, the acceleration factor between $125^{\circ} \mathrm{C}, 6.0 \mathrm{~V}$ (HTOL stress conditions) and $70^{\circ} \mathrm{C}, 5.5 \mathrm{~V}$ (maximum operating conditions) equals 16.5 . (Calculation of this acceleration factor is described in the following section).

Thus, the failure rate of the Micron 1 Meg DRAM family is computed as follows:

$$
\text { Failure Rate }=.916 \div\left(1.929 \times 10^{6}\right)(16.5)=2.878 \times 10^{-8}
$$

where: Total device hours at test conditions $=1.929 \times 10^{6}$.
Equivalent device hours at maximum use conditions ( $70^{\circ} \mathrm{C}, 5.5 \mathrm{~V} \mathrm{Vcc}$ ) using an acceleration factor of $16.5=32 \times 10^{6}$.

To translate the above failure rate into percent failures per thousand device hours, we multiply the failure rate obtained from the equation above by $10^{5}$ :

$$
\text { Failure Rate }=\left(2.878 \times 10^{-8}\right) \times 10^{5}=0.0029 \% \text { per } 1 \mathrm{~K} \text { device hours }
$$

To state the failure rate in FITs, we multiply the failure rate obtained from the equation above by $10^{9}$ :

$$
\text { Failure Rate }=\left(2.878 \times 10^{-8}\right) \times 10^{9}=29 \text { FITs }
$$

NOTE: Typical use conditions for the 1 Meg DRAM are $50^{\circ} \mathrm{C}$ and 5.0 V Vcc. When we calculate the acceleration factor between the stress environment $\left(70^{\circ} \mathrm{C}, 5.5 \mathrm{~V} \mathrm{Vcc}\right)$ and these typical conditions, we find that A.F. equals 125.4 . Using the acceleration factor 125.4 , the FIT rate for the 1 Meg DRAM is calculated as follows:

$$
\begin{aligned}
\text { Failure Rate } & =916 \div\left(1.929 \times 10^{6}\right)(125.4)=3.787 \times 10^{-9} \\
& =\left(3.787 \times 10^{-9}\right) \times 10^{9}=3.787 \\
& =4 \text { FITs }(\text { rounded })
\end{aligned}
$$

## Acceleration Factor Calculation:

Again, using the 1 Meg DRAM for our example, the acceleration factor between high temperature operating life stress conditions $\left(125^{\circ} \mathrm{C}, 6.0 \mathrm{~V}\right)$ and maximum operating conditions $\left(70^{\circ} \mathrm{C}, 5.5 \mathrm{~V}\right)$ is computed using the following models:

## 1. Acceleration factor due to temperature stress:

The acceleration factor due to temperature stress is computed using the Arrhenius equation, which is stated as follows:

$$
\text { A. } \mathrm{F}_{\mathrm{t}^{1 / t^{2}}}=\exp \left[\frac{\mathrm{E}_{\mathrm{a}}}{k T_{1}}-\frac{\mathrm{E}_{\mathrm{a}}}{k T_{2}}\right]
$$

where: $\mathrm{k}=$ Boltzmann's constant , which is equal to $8.617 \times 10^{-5}$
$T_{1}$ and $T_{2}=$ operating and stress temperatures, respectively, in kelvins
$\mathrm{E}=$ activation energy in eV (For oxide defects, which is the most common failure mechanism for the 1 Meg DRAM, used in our example, the activation energy is determined to be 0.3 eV ).

Using these values, the temperature acceleration factor between $125^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$ is computed to be 4.07 .

## 2. Acceleration factor due to voltage stress:

The acceleration factor due to voltage stress is computed using the following model:

$$
\text { A. } F_{v 1 / \mathrm{v} 2}=\exp \left[\beta\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right)\right]
$$

where: $v_{1}$ and $v_{2}=$ stress voltage and operating voltage, respectively, in volts
$\beta=$ constant, the value of which was derived experimentally by running several sessions of Micron's intelligent burnin test sequence at different voltages on large numbers of the device. (For the 1 Meg DRAM, used in our example, $B$ equals 2.8).

Thus, the voltage acceleration factor for the 1 Meg DRAM between 6.0 V (stress condition) and 5.5 V (maximum operating condition) is computed to be 4.06 .

Finally, the overall acceleration factor due to temperature and voltage stress is calculated as the product of the two respective acceleration factors or:

$$
\text { A.F }_{\text {overall }}=\text { A.F }_{\text {temperature }} \times \text { A.F. }{ }_{\text {voltage }}
$$

## Outgoing Product Quality

Before being sent to our finished goods area, where products are prepared for shipping, a special unit within the quality assurance department takes a $1 \%$ sample from each production lot. These samples are subjected to visual and electrical testing in order to measure the AQL (acceptable quality level) of all outgoing product. A flowchart illustrating Micron's AQL test procedure is provided in Figure 4.

Visual or mechanical testing consists of an unaided visual inspection of the sample devices for any physical irregularities which could negatively affect their performance. If a sample device is found to have, for example, a bent lead, a package irregularity or excess solder, the entire lot is returned to our test area for a $100 \%$ visual inspection.

Electrical testing of the sample devices is performed using ATE (automatic test equipment) systems. Testing is conducted at room temperature $\left(\sim 25^{\circ} \mathrm{C}\right)$ and at $70^{\circ} \mathrm{C}$. Should an electrical failure occur, the failing device is turned over to a quality assurance engineer for further testing and analysis. If after completing this analysis the electrical failure is confirmed, the QA engineer determines which production monitor/test should have caught the failure and the entire lot is retested at that point in the test flow. Correlating the failure to the test where it should originally have been detected, and discerning why it was not tested, are important steps in preserving the integrity of our test process.

The percent devices found to be defective in the total number of devices sampled weekly is recorded using a control chart. This control chart, containing AQL data for the previous 52 weeks, is presented in weekly management meetings, where plans for corrective action are made, as needed.


Example of Special Processing: Lot Mounted on Tape \& Reel


Figure 4
AQL TEST FLOW FOR ALL OUTGOING PRODUCT

## Automated Data Capture \& Analysis

Micron has developed a sophisticated data capture and analysis system with a computer network tailored to the needs of quality IC manufacturing. Figure 5 shows the various functional areas that provide the input to our VAX data bases.


Figure 5 STATISTICAL CORRELATION

## Data Capture

Automated, real-time data capture makes real-time charting ( $\overline{\mathrm{X}}$ and R charts, etc.) of all critical operations and processes possible, and ensures that appropriate manufacturing personnel are alerted on a timely basis, should unexpected variation occur. As production lots move through each manufacturing step, detailed information (including step number, lot number, machine number, date/time, and operator number) are entered into the production data base. In addition; automated, highlyprogrammable measurement systems are utilized to capture a host of parameters associated with equipment, on-line process material, and environmental variables.

## Analytical Tools

By using highly flexible, on-line data extraction programs, system users have the ability to tap this vast data base and to design their own correlation and trend analyses. The ability to correlate process variables to product performance allows us to make on-line projections of the quality of our finished product for a given lot or process run. In addition, we can estimate the impact of process improvements on quality well in advance and can make the impact of process deviations more visible to our engineers. This approach allows us to model yield and quality parameters based on on-line parameters. We then use this model to predict the final product results. Following is a description of the various means by which we analyze data:

- GROUP SUMMARIES: Summaries, which provide the means and standard deviations of user-defined parametrics, enable system users to compare the parametric values of production lots as well as special engineering lots.
- TREND ANALYSIS: Trend charts are routinely generated for critical parameters. System users can trend the means and ranges of any probe or parametric data captured throughout the manufacturing process.
- CORRELATION ANALYSIS: Correlation analysis can be performed on any combination of factors; such as equipment, masks, or electrical parameters. One report, regularly produced and disseminated to key personnel, takes two groups of lots (one with a high failure rate, the other with a low failure rate) and identifies all the pieces of equipment that are common to one or the other group. The report, thus, quickly alerts us should there be a correlation between a lot with a high failure rate and a particular piece(s) of equipment in the wafer fabrication or assembly areas.

Another regularly produced report analyzes a user-selected set of database parametrics against an index, such as manufacturing yield. Lots are divided into three sub-groups(upper yielding, middle yielding and lower yielding). The report then correlates the yields with all electrical parametric values taken on individual lots at wafer sort. Thus, the report helps us determine which processing step may have caused the yields to vary among the three subgroups.

- STATISTICAL PROCESS CONTROL CHARTS: SPC control charts are used throughout the company to monitor and evaluate critical process parameters, such as, critical dimensions (CDs), oxide thickness, chemical vapor depositions (CVDs), particle counts, temperature and humidity, and many other critical process and product quality parameters.
- OVERLAYS or WAFER MAPS: Maps, which are produced for all wafers during probe, show various parameters as a function of position on the wafer and are very useful for problem isolation. Maps may be analyzed individually or in groups. For example, wafers from an entire lot may be analyzed in relation to one particular parameter.
- RS/1 DISCOVER/EXPLORE: This analysis software is used for experimental design, and evaluation of results. The statistical approach supported by this software (i.e., the use of $t$ tests, ANOVA tables, multiregression analysis, etc.) has proven invaluable in reducing time expended for product development and for trouble shooting. It is also used to determine the relationships between process output and probe and parametric data. Using multiregression analysis, for example, we are able to determine the relationship between $L$ effective and CD dimensions to the speed of device.

The use of automation in data capture, analysis, and feedback greatly enhances the flexibility and speed with which we are able to view all aspects of the manufacturing process. This effective data analysis and feedback system helps to reduce parametric deviations, improve margin to specifications, increase manufacturing yields, and provide for more accurate fabrication output planning.

## ALABAMA

Representative
Southeast Technical Group
101 Washington, Suite 6
Huntsville, AL 35801
Phone - 205-534-2376
Fax - 205-534-2384

## Distributors

Hall-Mark Electronics Corporation
4900 Bradford Drive
Huntsville, AL 35805
Phone - 205-837-8700
FAX - 205-830-2565
Pioneer Technology 4835 University Square, \#5
Huntsville, AL 35816
Phone - 205-837-9300
FAX - 205-837-9358
Military Distributor
Zeus Components, Inc.
1750 West Broadway, Suite 114
Oviedo, FL 32765
Phone - 407-365-3000
FAX - 407-365-2356

## ARIZONA

Representative
Quatra Associates
4645 South Lakeshore Dr., Ste \#1
Tempe, AZ 85282
Phone - 602-820-7050
FAX - 602-820-7054

## Distributors

Anthem Electronics Incorporated 1555 West 10th Pl., \#101
Tempe, AZ 85281
Phone - 602-966-6600
FAX - 602-966-4826
Hall-Mark Electronics Corporation 4637 S. 36th Place
Phoenix, AZ 85040
Phone -602-437-1200
FAX - 602-437-2348
Wyle Laboratories
4141 E. Raymond St., Ste \#1
Phoenix, AZ 85040
Phone-602-437-2088
FAX -602-437-2124

## Military Distributor

JAN Devices, Inc.
6925 Canby, Bldg. 109
Reseda, CA 91335
Phone - 818-708-1100
FAX - 818-708-7436
Zeus Components, Inc.
6276 San Ignacio Ave., Ste E
San Jose, CA 95119
Phone - 408-629-4789
FAX - 408-629-4892

## ARKANSAS

## Representative

Nova Marketing Incorporated
4924 S. Memorial, Suite 1339
Tulsa, OK 74145
Phone - 918-660-5105
FAX - 918-665-3815

## Distributors

Anthem Electronics, Inc.
651 N. Plano Rd., Suite 429
Richardson, TX 75081
Phone-214-238-7100
FAX - 214-238-0237
Hall-Mark Electronics Corporation
11420 Pagemill Road
Dallas, TX 75243
Phone - 214-553-4300
FAX -214-343-5988
Pioneer Electronics
13765 Beta
Dallas, TX 75244
Phone-214-386-7300
FAX - 214-490-6419
Wyle Laboratories
1810 N. Greenville Avenue
Richardson, TX 75081
Phone - 214-235-9953
FAX - 214-644-5064
Military Distributor
Zeus Components, Inc.
1800 North Glenville, Ste 120
Richardson, TX 75081
Phone - 214-783-7010
FAX - 214-234-4385

## CALIFORNIA

Representatives (Northern California)
Bay Area Electronics Sales, Inc
2001 Gateway Place, Ste 315
San Jose, CA 95110
Phone - 408-452-8133
FAX - 408-452-8139

## Representatives (Southern California)

Jones \& McGeoy Sales Incorporated
801 Parkcenter Drive, Ste 250
Santa Ana, CA 92705
Phone - 714-547-6466
FAX - 714-547-7670
9868 Scranton Road, Suite 414
San Diego, CA 92121
Phone - 619-453-7948
FAX -619-453-0034

## Distributors

Anthem Electronics Incorporated
1040 E. Brokaw Road
San Jose, CA 95131
Phone - 408-453-1200
FAX - 408-452-2281
Anthem Electronics Incorporated
9131 Oakdale Avenue
Chatsworth, CA 91311
Phone - 818-775-1333
FAX - 818-775-1302
Anthem Electronics Incorporated
1 Old Field Drive
East Irvine, CA 92718-2809
Phone - 714-768-4444
FAX - 714-380-4747
Anthem Electronics Incorporated
580 Menlo Drive, Suite 8
Rocklin, CA 95677
Phone - 916-624-9744
Fax - 916-624-9750
Anthem Electronics Incorporated
9369 Carroll Park Drive
San Diego, CA 92121
Phone-619-453-9005
FAX - 619-546-7893
Hall-Mark Electronics Corporation
9420 Topanga Canyon Blvd.
Chatsworth, CA 91311
Phone-818-773-4500
FAX - 818-773-4555
Hall-Mark Electronics Corporation
580 Menlo Drive, Suite 2
Rocklin, CA 95677
Phone-916-624-9781
Fax-916-961-0922
Hall-Mark Electronics Corporation
3878 Ruffin Road, Ste. B
San Diego, CA 92123
Phone-619-268-1201
FAX -619-268-0209

Hall-Mark Electronics Corporation
2105 Lundy Avenue
San Jose, CA 95131
Phone - 408-432-4000
FAX - 408-432-4044
Hall-Mark Electronics Corporation
\#1 Mauchly
Irvine, CA 92718
Phone - 714-727-6000
FAX - 714-727-6066
Pioneer Technologies
134 Rio Robles
San Jose, CA 95134
Phone - 408-954-9100
FAX - 408-954-9113
Wyle Laboratories (Accounting Office Only) 128 Maryland Ave. El Segundo, CA 90245
Phone - 213-322-1763
Wyle Laboratories 3000 Bowers Avenue
Santa Clara, CA 95051
Phone - 408-727-2500
FAX - 408-727-5896
Wyle Laboratories 17872 Cowan Avenue Irvine, CA 92714
Phone-714-863-9953
FAX - 714-863-0473
Wyle Laboratories 2951 Sunrise Blvd, Suite \#175
Rancho Cordova, CA 95742
Phone - 916-638-5282
FAX - 916-638-1491
Wyle Laboratories 9525 Chesapeake Drive
San Diego, CA 92123
Phone-619-565-9171
FAX - 619-565-0512
Wyle Laboratories 26677 W. Agoura Road Calabasas, CA 91302
Phone - 818-880-9000
FAX - 818-880-5510
Military Distributors
JAN Devices, Inc. 6925 Canby, Bldg. 109
Reseda, CA 91335
Phone - 818-708-1100
FAX - 818-708-7436

Zeus Components, Inc.
22700 Savi Ranch Parkway
Yorba Linda, CA 92686
Phone-714-921-9000
FAX - 714-921-2715
Zeus Components, Inc.
5236 Colodny Drive, Suite 102
Agoura Hills, CA 91301
Phone-818-889-3838
FAX - 818-889-2464
Zeus Components, Inc.
5625 Ruffin Road, Ste 200
San Diego, CA 92123
Phone-619-277-9681
FAX - 619-277-7105
Zeus Components, Inc.
6276 San Ignacio Ave., Ste E
San Jose, CA 95119
Phone - 408-629-4789
FAX - 408-629-4892

## CANADA

Representatives
Clark-Hurman Associates
20 Regan Road, Unit \#14
Brampton, Ontario L7A 1C3
Canada
Phone - 416-840-6066
FAX - 416-840-6091
Clark-Hurman Associates
66 Colonnade Road, Ste 205
Nepean, Ontario K2E 7K7
Canada
Phone-613-727-5626
FAX - 613-727-1707
Clark-Hurman Associates
19 Donegani, Suite 5
Pointe Claire, Quebec H9R 2V6
Canada
Phone - 514-426-0453
FAX - 514-426-0455
Davetek Marketing
\#37 4429 Kingsway
Burnaby, B.C. V5H 2 A1
Canada
Phone - 604-430-3680
FAX -604-435-5490
Davetek Marketing
\#206 2723 37th Avenue
N.E. Calgary, AB T1Y 5R8

Canada
Phone 403-291-4984
FAX - 403-250-3445

## Distributor

Semad Electronic
85 Spy Court
Markham, Ontario L3R 4Z4
Canada
Phone-416-475-8500
FAX - 416-475-4158
Semad Electronic
1825 Woodward Dr.
Ottawa, Ontario K2C OR2
Canada
Phone -613-727-8325
FAX - 613-727-9489
Semad Electronic
8563 Government Street
Burnaby, BC V3N 4S9
Canada
Phone - 604-420-9889
FAX - 604-420-0124
Semad Electronic
243 Place Frontenac
Pointe Claire, PQ H9R $4 Z 7$
Canada
Phone - 514-694-0860
FAX - 514-694-0965
Semad Electronic
6120 3rd St. S.E., Unit 9
Calgary, Alberta T2H 1K4
Canada
Phone-403-252-5664
FAX - 403-255-0966

## COLORADO

Representative
Wescom Marketing
4891 Independence St.
Wheatridge, CO 80033
Phone-303-422-8957
FAX - 303-422-9892

## Distributors

Anthem Electronics Incorporated
373 Inverness Drive South
Englewood, CO 80112
Phone - 303-790-4500
FAX - 303-790-4532
Hall-Mark Electronics Corporation
12503 E. Euclid Dr., \#20
Englewood, CO 80111
Phone - 303-790-1662
FAX - 303-790-4991

Wyle Laboratories
451 E 124th Street
Thornton, CO 80241
Phone-303-457-9953
FAX - 303-457-4831
Military Distributor
JAN Devices, Inc. 6925 Canby, Bldg. 109
Reseda, CA 91335
Phone-818-708-1100
FAX - 818-708-7436
Zeus Components, Inc. 6276 San Ignacio Ave., Ste E
San Jose, CA 95119
Phone - 408-629-4789
FAX - 408-629-4892

## CONNECTICUT

Representative
Advanced Tech Sales Incorporated
Westview Office Park
Building 2, Suite 1C
850 N. Main St. Ext.
Wallingford, CT 06492
Phone-203-284-0838
FAX - 203-284-8232

## Distributors

Anthem Electronics
61 Mattatuck Heights
Waterbury, CT 06705
Phone - 203-575-1575
FAX - 203-596-3232
Hall-Mark Electronics Corporation
615 W. Johnson Ave, Bldg. 3
Cheshire, CT 06410
Phone - 203-271-2844
FAX - 203-272-1704
Pioneer Standard
112 Main Street
Norwalk, CT 06851
Phone - 203-853-1515
FAX-203-838-9901
Military Distributor
Zeus Components, Inc.
100 Midland Ave.
Port Chester, NY 10573
Phone - 914-937-7400
FAX -914-937-2553

## DELAWARE

## Representative

Omega Electronic Sales Incorporated
2655 Interplex Drive, Suite 104
Trevose, PA 19047
Phone-215-244-4000
FAX - 215-244-4104

## Distributor

Pioneer Technologies
Keith Valley Business Center
500 Enterprise Road
Horsham, PA 19044
Phone - 215-674-4000
FAX - 215-674-3107

## Military Distributor

Zeus Components, Inc.
8930-A Route 108
Columbia, MD 21045
Phone - 301-997-1118
FAX - 301-964-9784

## DISTRICT OF COLUMBIA

## Representative

Electronic Engineering \& Sales, Inc.
235 Prince George Street
Annapolis, MD 21401
Phone - 301-269-6573
FAX - 301-269-6476

## Distributor

Pioneer Technologies 15810 Gaither Drive
Gaithersburg, MD 20877
Phone - 301-921-0660
FAX - 301-921-3852

## FLORIDA

Representatives
Photon Sales, Inc.
1600 Sarno Rd., Ste \#21
Melbourne, FL 32935
Phone - 407-259-8999
FAX - 407-259-1323

## Distributors

Anthem Electronics Incorporated
2555 Enterprise Rd, Ste \#11-2
Clearwater, FL 34623
Phone - 813-797-2900
FAX - 813-796-4880
Chip Supply
7725 N. Orange Blossom Trail
Orlando, FL 32810-2696
Phone - 407-298-7100
FAX - 407-290-0164

Hall-Mark Electronics Corporation
10491 72nd St. North
Largo, FL 34647
Phone - 800-282-9350
FAX - 813-544-4394
Hall-Mark Electronics Corporation
3161 Southwest 15th Street
Pompano Beach, FL 33069-4806
Phone - 305-971-9280
FAX - 305-971-9339
Hall-Mark Electronics Corporation
489 E Semoran Blvd, \#145
Casselserry, FL 32707
Phone - 407-830-5855
FAX - 407-767-5002
Pioneer Technologies
337 South-North Lake \#1000
Altamonte Springs, FL 32701
Phone - 407-834-9090
FAX - 407-834-0865
Pioneer Technologies 5500 Rio Vista Drive
Clearwater, FL 34620
Phone-813-531-5037
FAX - 918-492-0546
Pioneer Technologies
674 S. Military Trail
Deerfield Beach, FL 33442
Phone-305-428-8877
FAX - 305-481-2950
Military Distributor
Zeus Components, Inc.
1750 W. Broadway, Suite 114
Oviedo, FL 32765
Phone - 407-365-3000
FAX - 407-365-2356

## GEORGIA

Representative
Southeast Technical Group
2620 Deer Isle Cove
Lawrenceville, GA 30244
Phone-404-979-2055
FAX - same

## Distributors

Hall-Mark Electornics Corporation 3425 Corporate Way, Suite A
Ouluth, GA 30136
Phone - 404-623-4400
FAX - 404-476-8806

## Pioneer Technologies

3100F Northwoods Place
Norcross, GA 30071
Phone - 404-448-1711
FAX - 404-446-8270
Military Distributor
Zeus Components, Inc.
1750 West Broadway, Ste 114
Oveido, FL 32765
Phone - 407-365-3000
FAX - 407-365-2356

## HAWAII

## Representative

Bay Area Electronics
2001 Gateway Pl., Ste. 315
San Jose, CA 95110
Phone-408-452-8133
FAX - 408-452-8139

## Distributors

Anthem Electronics Incorporated
1040 E. Brokaw Road
San Jose, CA 95131
Phone - 408-453-1200
FAX - 408-452-2281
Hall-Mark Electronics Corporation 2105 Lundy Avenue
San Jose, CA 95131
Phone - 408-432-4000
FAX - 408-432-4044
Wyle Laboratories
3000 Bowers Avenue
Santa Clara, CA 95051
Phone - 408-727-2500
FAX - 408-727-5896

## IDAHO

## Representative

Contact Micron Component Sales Phone-208-368-3900

## Military Distributor

JAN Devices, Inc.
6925 Canby, Bldg. 109
Reseda, CA 91335
Phone-818-708-1100
FAX - 818-708-7436
Zeus Components, Inc. 6276 San Ignacio Ave., Ste E
San Jose, CA 95119
Phone-408-629-4789
FAX - 408-629-4892

## ILLINOIS

Representatives
Oasis Sales Corporation 1101 Tonne Road
Elk Grove Village, IL 60007
Phone-708-640-1850
FAX - 708-640-9432
Advanced Technical Sales
1810 Craig Road, Ste 213
St. Louis, MO 63146
Phone-314-878-2921
FAX - 314-878-1994

## Distributors

Anthem Electronics Incorporated 1300 Remington, Suite A
Schaumburg, IL 60173
Phone - 708-884-0200
FAX - 708-884-0480
Hall-Mark Electronics Corporation
210 Mittel Drive
Wooddale, IL 60191
Phone - 708-860-3800
FAX - 708-860-0239
Pioneer Standard
2171 Executive Drive, Ste 200
Addison, IL 60101
Phone - 708-495-9680
FAX - 708-495-9831
Military Distributors
Zeus Components, Inc.
100 Midland Ave.
Port Chester, NY 10573
Phone - 914-937-7400
FAX - 914-937-2553
Zeus Components, Inc.
2912 Springboro West, Ste 106
Dayton, OH 45439
Phone-513-293-6162
FAX - 513-293-1781

## INDIANA

Representatives
Electro Reps, Inc.
7240 Shadeland Station
Suite 275
Indianapolis, IN 46256
Phone-317-842-7202
FAX - 317-841-0230
Electro Reps, Inc.
407 Airport North Office Park
Fort Wayne, IN 46825
Phone - 219-489-8502
FAX - 219-489-8408

## Distributors

Hall-Mark Electronics Corporation
4275 W. 96th Street
Indianapolis, IN 46268
Phone-317-872-8875
FAX - 317-876-7165
Pioneer Standard
9350 N. Priority Wy, West Dr
Indianapolis, IN 46240
Phone-317-573-0880
FAX - 317-573-0979
Military Distributors
Zeus Components, Inc.
100 Midland Ave.
Port Chester, NY 10573
Phone-914-937-7400
FAX - 914-937-2553
Zeus Components, Inc.
2912 Springboro West, Ste 106
Dayton, OH 45439
Phone-513-293-6162
FAX - 513-293-1781

## IOWA

## Representative

Advanced Technical Sales
375 Collins Road N.E.
Cedar Rapids, IA 52402
Phone-319-393-8280
FAX - 319-393-7258

## Distributors

Anthem Electronics Incorporated
7646 Golden Triangle Dr.
Eden Prairie, MN 55344
Phone-612-944-5454
FAX - 612-944-3045
Hall-Mark Electronics Corporation
210 Mittel Drive
Wooddale, IL 60191
Phone-708-860-3800
FAX - 708-860-0239
Pioneer Standard
7625 Golden Triangle Drive
Eden Prarie, MN 55344
Phone-612-944-3355
FAX - 612-944-3794
Military Distributor
Zeus Components, Inc.
1800 North Glenville, Ste 120
Richardson, TX 75081
Phone - 214-783-7010
FAX - 214-234-4385

## KANSAS

Representative
Advanced Technical Sales
601 N. Mur-Len, Suite 8
Olathe, KS 66062
Phone-913-782-8702
FAX -913-782-8641

## Distributors

Hall-Mark Electronics Corporation
10809 Lakeview Drive
Lenexa, KS 66215
Phone - 913-888-4747
FAX - 913-888-0523
Pioneer Electronics 2029 Woodland Pkwy., Ste \#101
St. Louis, MO 63146
Phone - 314-432-4350
FAX - 314-432-4854
Military Distributor
Zeus Components, Inc.
1800 North Glenville, Ste 120
Richardson, TX 75081
Phone-214-783-7010
FAX - 214-234-4385

## KENTUCKY

Representatives
Electro Reps., Inc.
7240 Shadeland Station, Ste. 275
Indianapolis, IN 46256
317-842-7202
FAX - 317-489-8408
Scott Electronics, Inc.
10901 Reed-Hartman Hwy., Suite 301
Cincinnati, OH 45242-2821
Phone-513-791-2513
FAX - 513-791-8059

## Distributors

Hall-Mark Electronics Corporation (E. Ky)
400 E Wilson Bridge Rd, Ste S
Worthington, OH 43085
Phone-614-888-3313
FAX - 614-888-0767
Hall-Mark Electronics Corporation (W. Ky)
4275 W. 96th Street
Indianapolis, IN 46268
Phone-317-872-8875
FAX - 317-876-7165
Pioneer Standard (W. Ky)
9350 N. Priority Way, W. Dr.
Indianapolis, IN 46240
Phone-317-573-0880
FAX - 317-573-0979

Pioneer Standard (E. Ky)
4433 Interpoint Boulevard
Dayton, OH 45424
Phone-513-236-9900
FAX - 513-236-8133

## LOUISIANA

## Representative

Nova Marketing Incorporated
8350 Meadow Road Suite 174
Dallas, TX 75231
Phone - 214-750-6082
FAX - 214-750-6068

## Distributors

Hall-Mark Electronics Corporation
11333 Pagemill Road
Dallas, TX 75243
Phone - 214-343-5000
FAX - 214-343-5851
Pioneer Electronics
13765 Beta
Dallas, TX 75244
Phone - 214-386-7300
FAX - 214-490-6419
Wyle Laboratories
1810 North Greenville Avenue
Richardson, TX 75081
Phone - 214-235-9953
FAX - 214-644-5064
Military Distributors
Zeus Components, Inc.
8930-A Route 108
Columbia, MD 21045
Phone - 301-997-1118
FAX - 301-964-9784
Zeus Components, Inc.
1800 North Glenville, Suite 120
Richardson, TX 75081
Phone - 214-783-7010
FAX - 214-234-4385

## MAINE

Representative
Advanced Tech Sales Incorporated
348 Park Street, Ste 102
North Reading, MA 01864
Phone - 508-664-0888
FAX - 508-664-5503
Distributors
Anthem Electronics
36 Jonspin Road
Wilmington, MA 01887
Phone - 508-657-5170
FAX - 508-657-6008

Hall-Mark Electronics Corporation
Pinehurst Park, 6 Cook Street
Billerica, MA 01821
Phone-617-935-9777
FAX - 617-667-4129
Pioneer Standard
44 Hartwell Avenue
Lexington, MA 02173
Phone-617-861-9200
FAX - 617-863-1547

## Military Distributor

Zeus Components, Inc.
11 Lakeside Office Park
607 North Avenue
Wakefield, MA 01880
Phone-617-246-8200
FAX - 617-246-8293

## MARYLAND

Representative
Electronic Engineering \& Sales Inc.
235 Prince George Street
Annapolis, MD 21401
Phone-301-269-6573
FAX - 301-269-6476

## Distributors

Anthem Electronics
9020A Mendenhall Court
Columbia, MD 21045
Phone - 301-995-6640
FAX - 301-381-4379
Hall-Mark Electronics Corporation 10240 Old Columbia Road
Columbia, MD 21046
Phone - 301-988-9800
FAX - 301-381-2036
Pioneer Technologies 15810 Gaither Drive
Gaithersburg, MD 20877
Phone - 301-921-0660
FAX - 301-921-3852
Military Distributor
Zeus Components, Inc.
8930-A Route 108
Columbia, MD 21045
Phone - 301-997-1118
FAX - 301-964-9784

## MASSACHUSETTS

Representative
Advanced Tech Sales 348 Park Street, Ste 102
North Reading, MA 01864
Phone - 508-664-0888
FAX - 508-664-5503

## Distributors

Anthem Electronics, Inc.
36 Jonspin Road
Wilmington, MA 01887
Phone - 508-657-5170
FAX - 508-657-6008
Gerber Electornics
128 Carnegie Row
Norwood, MA 02062
Phone-617-769-6000
FAX - 617-762-8931
Hall-Mark Electronics Corporation
Pinehurst Park, 6 Cook Street
Billerica, MA 01821
Phone - 617-935-9777
FAX - 617-667-4129
Pioneer Standard 44 Hartwell Avenue Lexington, MA 02173
Phone - 617-861-9200
FAX - 617-863-1547
Wyle Laboratories
153 rd Avenue
Burlington, MA 01803
Phone-617-272-7300
FAX - 617-272-6809
Military Distributor
JAN Devices, Inc.
44 Cochrane St.
Melrose, MA 02176
Phone-617-662-3901
Zeus Components, Inc.
11 Lakeside Office Park
Wakefield, MA 01880
Phone 617-246-8200
FAX - 617-246-8293

## MICHIGAN

## Representatives

Rathsburg Associates Incorporated 34605 Twelve Mile Rd.
Farmington Hills, MI 48331-3263
Phone - 313-489-1500
FAX -313-489-1480

Rathsburg Associates Incorporated
2680 Horizon, S.E.
Grand Rapids, MI 49506
Phone -616-949-7400
FAX - 616-949-1909

## Distributors

Hall-Mark Electronics Corporation
38027 Schoolcraft Road
Livonia, MI 48150
Phone - 313-462-1205
FAX - 313-462-1830
Pioneer Standard
4505 Broadmoor Avenue, S.E.
Grand Rapids, MI 49512
Phone - 616-698-1800
FAX - 616-698-1831
Pioneer Standard
13485 Stamford
Livonia, MI 48150
Phone - 313-525-1800
FAX - 313-427 3720
Military Distributors
Zeus Components, Inc.
100 Midland Ave.
Port Chester, NY 10573
Phone - 914-937-7400
FAX - 914-937-2553
Zeus Components, Inc. 2912 Springboro West, Ste 106
Dayton, OH 45439
Phone - 513-293-6162
FAX - 513-293-1781
MINNESOTA
Representative
HMR Incorporated
9065 Lyndale Avenue
Minneapolis, MN 55420-3520
Phone-612-888-2122
FAX - 612-884-4768

## Distributors

Anthem Electronics Inc.
7646 Golden Triangle Dr.
Eden Prairie, MN 55344
Phone -612-944-5454
FAX - 612-944-3045
Hall-Mark Electronics Corporation 10300 Valley View Rd, Ste 101
Eden Prairie, MN 55344
Phone-612-941-2600
FAX - 612-941-5778

Pioneer Standard
7625 Golden Triangle Drive
Eden Prairie, MN 55344
Phone - 612-944-3355
FAX - 612-944-3794
Military Distributors
Zeus Components, Inc. 100 Midland Ave.
Port Chester, NY 10573
Phone -914-937-7400
FAX - 914-937-2553
Zeus Components, Inc.
2912 Springboro West, Ste 106
Dayton, OH 45439
Phone-513-293-6162
FAX - 513-293-1781

## MISSISSIPPI

Representative
Southeast Technical Group
Route 10, Box 368
Meridian, MS 39301
Phone-601-485-7055
FAX - 601-485-7063

## Distributor

Hall-Mark Electronics Corporation
4900 Bradford Drive
Huntsville, AL 35805
Phone - 205-837-8700
FAX - 205-830-2565
Pioneer Technologies
4835 University Square, Ste \#5
Huntsville, AL 35816
Phone - 205-837-9300
FAX - 205-837-9358
Military Distributor
Zeus Components, Inc.
1800 North Glenville, Suite 120
Richardson, TX 75081
Phone - 214-783-7010
FAX - 214-234-4385

## MISSOURI

## Representatives

Advanced Technical Sales
1810 Craig Road, Suite \#213
St. Louis, MO 63146
Phone-314-878-2921
FAX -314-878-1994

## Distributors

Hall-Mark Electronics Corporation 3783 Rider Trail So.
Earth City, MO 63045
Phone - 314-291-5350
FAX - 314-291-0362
Pioneer Standard 2029 Woodland Pkwy \#101
St Louis, MO 63146
Phone-314-432-4350
FAX - 314-432-4854
Military Distributor
Zeus Components, Inc.
1800 North Glenville, Suite 120
Richardson, TX 75081
Phone - 214-783-7010
FAX - 214-234-4385

## MONTANA

## Distributor

Almac Electronics E 10905 Montgomery
Spokane, WA 99206
Phone-509-924-9500
1-800-325-6545
FAX - 509-928-6096
Military Distributor
Zeus Components, Inc. 6276 San Ignacio Ave., Suite E
San Jose, CA 95119
Phone - 408-629-4789
FAX - 408-629-4892

## NEBRASKA

Representative
Advanced Technical Sales
601 North Mur-Len, Suite 8
Olathe, KS 66062
Phone - 913-782-8702
FAX - 913-782-8641

## Distributors

Hall-Mark Electronics Corporation 10809 Lakeview Dr.
Lenexa, KS 66215
Phone - 913-888-4747
FAX - 913-888-0523
Wyle Laboratories
451 E 124th Street
Thornton, CO 80241
Phone - 303-457-9953
FAX - 303-457-4831

Military Distributor
Zeus Components, Inc. 1800 North Glenville, Suite 120
Richardson, TX 75081
Phone - 214-783-7010
FAX - 214-234-4385

## NEVADA

Representative
Bay Area Electronics Sales, Inc
2001 Gateway Place, Suite 315
San Jose, CA 95110
Phone - 408-452-8133
FAX - 408-452-8139

## Distributors

Anthem Electronics Incorporated
580 Menlo Drive, Suite 8
Rocklin, CA 95677
Phone - 916-624-9744
FAX - 916-624-9750
Hall-Mark Electronics Corporation
580 Menlo Dr., Suite 2
Rocklin, CA 95677
Phone - 916-624-9781
FAX - 916-961-0922
Wyle Laboratories
2951 Sunrise Blvd., Suite 175
Rancho Cordova, CA 95742
Phone - 916-638-5282
FAX - 916-638-1491
Military Distributor
JAN Devices, Inc.
44 Cochrane St.
Melrose, MA 02176
Phone-617-662-3901
Zeus Components, Inc.
6276 San Ignacio Ave., Suite E
San Jose, CA 95119
Phone - 408-629-4789
FAX - 408-629-4892
NEW HAMPSHIRE
Representative
Advanced Tech Sales Incorporated
348 Park Street, Ste 102
North Reading, MA 01864
Phone - 508-664-0888
FAX - 508-664-5503
Distributors
Anthem Electronics
36 Jonspin Road
Wilmington, MA 01887
Phone-508-657-5170
FAX - 508-657-6008

Hall-Mark Electronics Corporation
Pinehurst Park, 6 Cook Street
Billerica, MA 01821
Phone -617-935-9777
FAX -617-667-4129
Pioneer Standard
44 Hartwell Avenue
Lexington, MA 02173
Phone -617-861-9200
FAX - 617-863-1547
Military Distributor
Zeus Components, Inc.
11 Lakeside Office Park
607 North Avenue
Wakefield, MA 01880
Phone-617-246-8200
FAX - 617-246-8293

## NEW JERSEY

Representative
Applied Technical Marketing
234 Main St., Suite 2
Huntington, NY 11743
Phone-516-271-0200
FAX - 516-271-4450

## Representative (Southern)

Omega Electronics
2655 Interplex Dr., Suite 104
Trevose, PA 19047
Phone - 215-244-4000
FAX - 215-244-4104
Distributors
Anthem Electronics
26 Chapin Road, Unit K
Pine Brook, NJ 07058
Phone - 201-227-7960
FAX - 201-227-9246
Hall-Mark Electronics Corporation
107 Fairfield Road
Fairfield, NJ 07006
Phone-201-575-4415
FAX - 201-882-9389
Hall-Mark Electronics Corporation
11000 Midlantic Drive, Suite 5
Mt. Laurel, NJ 08054
Phone -609-235-1900
FAX -609-235-3381
Hall-Mark Electronics Corporation
200 Lanidex Plaza, 2nd Fl.
Parsippany, NJ 07054
Phone-201-515-3000
FAX - 201-515-4475

## Military Distributor

Zeus Components, Inc.
100 Midland Ave.
Port Chester, NY 10573
Phone - 914-937-7400
FAX - 914-937-2553
Zeus Components, Inc. 8930-A Route 108 Columbia, MD 21045
Phone - 301-997-1118
FAX - 301-964-9784

## NEW MEXICO

Representative
Quatra Associates Incorporated
600 Autumnwood Place, S.E.
Albuquerque, NM 87123
Phone - 505-296-6781
FAX - 602-820-7054

## Distributors

Anthem Electronics Inc. 1555 W. 10th Pl., Suite \#101
Tempe, AZ 85281
Phone -602-966-6600
FAX - 602-966-4826
Hall-Mark Electronics Corporation
4637 South 36th Place
Phoenix, AZ 85040
Phone-602-437-1200
FAX -602-437-2348
Wyle Laboratories
4141 E. Raymond St., Ste \#1
Phoenix, AZ 85040
Phone-602-437-2088
FAX -602-437-2124

## Military Distributor

JAN Devices, Inc. 6925 Canby, Bldg. 109
Reseda, CA 91335
Phone-818-708-1100
FAX - 818-708-7436
Zeus Components, Inc. 6276 San Ignacio Ave., Suite E
San Jose, CA 95119
Phone - 408-629-4789
FAX - 408-629-4892

## NEW YORK

## Representatives

Applied Technical Marketing
234 Main St., Suite 2
Huntington Village, NY 11743
Phone-516-271-0200
FAX - 516-271-4450

Electra Sales Corporation
3000 Winston Rd. South
Rochester, NY 14623
Phone-716-427-7860
FAX - 716-427-0614
Electra Sales Corporation
1 Alder Drive
East Syracuse, NY 13057
Phone-315-463-1248
FAX -315-463-1717

## Distributors

Anthem Electronics-Military
47 Mall Drive
Commack, NY 11725-5703
Phone-516-864-6600
FAX - 516-493-2244
Hall-Mark Electronics Corporation
6605 Pittsford - Palmyra Road, Suite E8
Fairport, NY 14450
Phone-716-425-3300
FAX - 716-425-7195
Hall-Mark Electronics Corporation
3075 Veterans Memorial Hwy
Ronkonkoma, NY 11779
Phone - 516-737-0600
FAX - 516-737-0838
MAST Distributors, Inc.
710-2 Union Parkway
Ronkonkoma, NY 11799
Phone-516-471-4422
FAX - 516-471-2040
Pioneer Standard
68 Corporate Drive
Binghamton, NY 13904
Phone-607-722-9300
FAX - 607-722-9562
Pioneer Standard
840 Fairport Park
Fairport, NY 14450
Phone-716-381-7070
FAX - 716-381-5955
Pioneer Standard
14A Madison Road
Fairfield, NY 07006
Phone - 201-575-3510
FAX - 201-575-3454
Pioneer Standard
60 Crossways Park West
Woodbury, NY 11797
Phone-516-921-8700
FAX - 516-921-2143

## Military Distributor

Zeus Components, Inc. 100 Midland Ave.
Port Chester, NY 10573
Phone - 914-937-7400
FAX - 914-937-2553
Zeus Components, Inc.
2110 Smithtown Ave.
Ronkonkoma, L.L., NY 11779
Phone - 516-737-4500
FAX - 516-737-4520
Zeus Components, Inc.
2912 Springboro West, Ste 106
Dayton, OH 45439
Phone - 513-293-6162
FAX - 513-293-1781

## NORTH CAROLINA

Representatives
Southeast Technical Group
700 N. Arendell Ave
Zebulon, NC 27597
Phone - 919-269-5589
FAX - 919-269-5670

## Distributors

Hall-Mark Electronics Corporation
5234 Green's Dairy Road
Raleigh, NC 27604
Phone - 919-872-0712
FAX - 919-878-8729
Pioneer Technologies
9401L Southern Pines Blvd
Charlotte, NC 28210
Phone - 704-526-8188
FAX - 704-522-8564
Pioneer Electronics
2810 Meridian Parkway , \#148
Durham, NC 27713
Phone - 919-544-5400
FAX -919-544-5885
Military Distributor
Zeus Components, Inc.
8930-A Route 108
Columbia, MD 21045
Phone - 301-997-1118
FAX - 301-964-9784

## NORTH DAKOTA

Representative
HMR Incorporated
9065 Lyndale Avenue
Minneapolis, MN 55420-3520
Phone-612-888-2122
FAX - 612-884-4768

## Distributors

Anthem Electronics Incorporated 7646 Golden Triangle Dr．
Eden Prairie，MN 55344
Phone－612－944－5454
FAX－612－944－3045
Hall－Mark Electronics Corporation
10300 Valley View Rd，Ste 101
Eden Prairie，MN 55344
Phone－612－941－2600
FAX－612－941－5778
Pioneer Standard 7625 Golden Triangle Drive Eden Prairie，MN 55344
Phone－612－944－3355
FAX－612－944－3794
Military Distributors
Zeus Components，Inc． 100 Midland Ave．
Port Chester，NY 10573
Phone－914－937－7400
FAX－914－937－2553
Zeus Components，Inc． 2912 Springboro West，Ste 106
Dayton，OH 45439
Phone－513－293－6162
FAX－513－293－1781

## OHIO

## Representatives

Scott Electronics，Inc． Corporate Headquarters 360 Alpha Park
Cleveland OH 44143－2240
Phone－216－473－5050
FAX－216－473－5055
Scott Electronics，Inc． 3131 South Dixie Drive Dayton，OH 45439－2223
Phone－513－294－0539
FAX－513－294－4769
Scott Electronics，Inc． 916 Eastwind Drive Westerville，OH 43081－3379
Phone－614－882－6100
FAX－614－882－0900
Scott Electronics，Inc． 10901 Reed Hartman，Ste． 301
Cincinnati，OH 45242－2821
Phone－513－791－2513
FAX－513－791－8059

## Distributors

Hall－Mark Electronics Corporation
5821 Harper Road
Solon，OH 44139
Phone－216－349－4632
FAX－216－248－4803
Hall－Mark Electronics Corporation
400 E．Wilson Bridge Rd，Ste S
Worthington，OH 43085
Phone－614－888－3313
FAX－614－888－0767
Pioneer Standard
4800 E 131st Street
Cleveland，OH 44105
Phone－216－587－3600
FAX－216－587－3906
Pioneer Standard 4433 Interpoint Blvd．
Dayton，OH 45424
Phone－513－236－9900
FAX－513－236－8133
Pioneer Standard
5440 Naiman Parkway
Solon，OH 44139
Phone－216－349－1300
FAX－216－349－0754
Military Distributors
Zeus Components，Inc．
100 Midland Ave．
Port Chester，NY 10573
Phone－914－937－7400
FAX－914－937－2553
Zeus Components，Inc．
2912 Springboro West，Ste 106
Dayton，OH 45439
Phone－513－293－6162
FAX－513－293－1781

## OKLAHOMA

Representative
Nova Marketing Incorporated
4924 S．Memorial，Suite 1339
Tulsa，OK 74145
Phone－918－660－5105
FAX－918－665－3815

## Distributor

Hall－Mark Electronics Corporation
5411 S．125th East Ave．，\＃305
Tulsa，OK 74146
Phone－918－254－6110
FAX－918－254－6207

Military Distributor
Zeus Components，Inc． 1800 N．Glenville，Ste 120
Richardson，TX 75081
Phone－214－783－7010
FAX－214－234－4385

## OREGON

## Representative

Northwest Marketing Associates
6975 SW Sandburg Rd，Ste 330
Portland，OR 97223
Phone－503－620－0441
FAX－503－684－2541

## Distributors

Almac Electronics 1885 N．W．169th Place
Beaverton，OR 97006
Phone－503－629－8090
FAX－503－645－0611
Anthem Electronics Incorporated
9090 S．W．Gemini Drive
Beaverton，OR 97005
Phone－503－643－1114
FAX－503－626－7928
Wyle Laboratories
9640 SW Sunshine Ct，Ste． 200
Beaverton，OR 97005
Phone－503－643－7900
FAX－503－646－5466
Military Distributor
JAN Devices，Inc．
6925 Canby，Bldg． 109
Reseda，CA 91335
Phone－818－708－1100
FAX－818－708－7436
Zeus Components，Inc． 6276 San Ignacio Ave．，Ste E
San Jose，CA 95119
Phone－408－629－4789
FAX－408－629－4892

## PENNSYLVANIA

## Representatives

Omega Electronic Sales Incorporated
2655 Interplex Dr．，\＃104
Trevose，PA 19047
Phone－215－244－4000
FAX－215－244－4104
Scott Electronics，Inc．（W．PA）
360 Alpha Park
Cleveland，OH 44143－2240
Phone－216－473－5050
FAX－216－473－5055

## Distributors

Anthem Electronics，Inc．
355 Business Ctr．Dr．
Horsham，PA 19044
Phone－215－443－5150
FAX－215－675－9875
Hall－Mark Electronics Corporation
11000 Midlantic Drive，Suite 5
Mt．Laurel，NJ 08054
Phone－609－235－1900
FAX－609－235－3381
Hall－Mark Electronics Corporation（W．PA）
5821 Harper Road
Solon，OH 44139
Phone－216－349－4632
FAX－216－248－4803
Pioneer Technologies
500 Enterprise Road
Horsham，PA 19044
Phone－215－674－4000
FAX－215－674－3107
Pioneer Technologies（W．PA）
259 Kappa Drive
Pittsburgh，PA 15238
Phone－412－782－2300
FAX－412－963－8255
Military Distributors
Zeus Components，Inc． 100 Midland Ave．
Port Chester，NY 10573
Phone－914－937－7400
FAX－914－937－2553
Zeus Components，Inc． 2912 Springboro West，Ste 106
Dayton，OH 45439
Phone－513－293－6162
FAX－513－293－1781

## RHODE ISLAND

## Representative

Advanced Tech Sales Incorporated
348 Park Street，Ste 102
North Reading，MA 01864
Phone－508－664－0888
FAX－508－664－5503
Distributors
Anthem Electronics
61 Mattatuck Heights
Waterbury，CT 06705
Phone－203－575－1575
FAX－203－596－3232

Hall－Mark Electronics Corporation 615 W．Johnson Ave．，Bldg． 3
Cheshire，CT 06410
Phone－203－271－2844
FAX－203－272－1704
Pioneer Standard
112 Main Street
Norwalk，CT 06851
Phone－203－853－1515
FAX－203－838－9901
Military Distributor
Zeus Components，Inc．
11 Lakeside Office Park
607 North Avenue
Wakefield，MA 01880
Phone－617－246－8200
FAX－617－246－8293
SOUTH CAROLINA
Representative
Southeast Technical Group
700 N．Arendell Ave．
Zebulon，NC 27597
Phone－919－269－5589
FAX－919－269－5670
Distributor
Pioneer Technologies
9401 L．Southern Pine Blvd
Charotte，NC 28210
Phone－704－526－8188
FAX－704－522－8564
Military Distributor
Zeus Components，Inc．
1750 West Broadway，Ste 114
Oviedo，FL 32765
Phone－407－365－3000
FAX－407－365－2356

## SOUTH DAKOTA

Representative
HMR Incorporated
9065 Lyndale Avenue
Minneapolis，MN 55420－3520
Phone－612－888－2122
FAX－612－884－4768

## Distributors

Anthem Electronics Incorporated 7646 Golden Triangle Dr．
Eden Prairie，MN 55344
Phone－612－944－5454
FAX－612－944－3045

Hall－Mark Electronics Corporation
10300 Valley View Rd，Ste 101
Eden Prairie，MN 55344
Phone－612－941－2600
FAX－612－941－5778
Pioneer Standard
7625 Golden Triangle Drive
Eden Prairie，MN 55344
Phone－612－944－3355
FAX－612－944－3794
Military Distributors
Zeus Components，Inc．
100 Midland Ave．
Port Chester，NY 10573
Phone－914－937－7400
FAX－914－937－2553
Zeus Components，Inc．
2912 Springboro West，Ste 106
Dayton，OH 45439
Phone－513－293－6162
FAX－513－293－1781

## TENNESSEE

## Representative

Southeast Technical Group
700 N．Arendell Ave．
Zebulon，NC 27597
Phone－919－269－5589
FAX－919－269－5670

## Distributors

Hall－Mark Electronics Corporation
4900 Bradford Drive
Huntsville，AL 35805
Phone－205－837－8700
FAX－205－830－2565
Pioneer Technologies
4825 University Square，\＃5
Huntsville，AL 35816
Phone－205－837－9300
FAX－205－837－9358
Military Distributor
Zeus Components，Inc．
8930－A Route 108
Columbia，MD 21045
Phone－301－997－1118
FAX－301－964－9784

## TEXAS

## Representatives

Nova Marketing Incorporated 8350 Meadow Road，Suite 174
Dallas，TX 75231
Phone－214－750－6082
FAX－214－750－6068

Nova Marketing Incorporated
9207 Country Creek \＃206
Houston，TX 77036
Phone－713－988－6082
FAX－713－774－1014
Nova Marketing Incorporated Stillhouse Canyon Office Park 4807 Spicewood Springs Road
Building 3，Suite 3140
Austin，TX 78759
Phone－512－343－2321
FAX－512－343－2487

## Distributors

Anthem Electronics，Inc．
651 N．Plano Road，Suite 429
Richardson，TX 75081
Phone－214－238－7100
FAX－214－238－0237
Hall－Mark Electronics Corporation 12211 Technology Boulevard
Austin，TX 78727
Phone－512－258－8848
FAX－512－258－3777
Hall－Mark Electronics Corporation
11333 Pagemill Road
Dallas，TX 75243
Phone－214－343－5000
FAX－214－343－5851
Hall－Mark Electronics Corporation 11420 Pagemill Road
Dallas，TX 75243
Phone－214－553－4300
FAX－214－343－5988
Hall－Mark Electronics Corporation
8000 Westglen
Houston，TX 77063
Phone－713－781－6100
FAX－713－953－8420
Pioneer Standard
1826 Kramer Lane，Suite D
Austin，TX 78758
Phone－512－835－4000
FAX－512－835－9829
Pioneer Electronics
13765 Beta
Dallas，TX 75244
Phone－214－386－7300
FAX－214－490－6419
Pioneer Standard
10530 Rockley Rd．，Suite 100
Houston，TX 77099
Phone－713－495－4700
FAX－713－495－5642

Wyle Laboratories
4030 W．Braker，Suite 330
Austin，TX 78759
Phone－512－345－8853
FAX－512－834－0981
Wyle Laboratories
1810 N．Greenville Avenue
Richardson，TX 75081
Phone－214－235－9953
FAX－214－644－5064
Wyle Laboratories
11001 S．Wilcrest，Suite 100
Houston，TX 77099
Phone－713－879－9953
FAX－713－879－6540
Military Distributor
Zeus Components，Inc．
1800 N．Glenville，Suite 120
Richardson，TX 75081
Phone－214－783－7010
FAX－214－234－4385

## UTAH

Representative
Wescom Marketing
3500 So．Main，Suite 100
Salt Lake City，UT 84115
Phone－801－269－0419
FAX－801－269－0665

## Distributors

Anthem Electronics Incorporated
1279 West 2200 South
Salt Lake City，UT 84119
Phone－801－973－8555
FAX－801－973－8909
Hall－Mark Electronics Corporation
2265 South 1300 West
West Valley City，UT 84119
Phone－801－972－1008
FAX－303－790－4991
Wyle Laboratories
1325 West 2200 South，Suite E
West Valley City，UT 84119
Phone－801－974－9953
FAX－801－972－2524
Military Distributor
JAN Devices，Inc．
6925 Canby，Bldg． 109
Reseda，CA 91335
Phone－818－708－1100
FAX－818－708－7436

Zeus Components，Inc．
6276 San Ignacio Ave．，Suite E
San Jose，CA 95119
Phone－408－629－4789
FAX－408－629－4892

## VERMONT

## Representative

Advanced Tech Sales Incorporated
348 Park Street，Ste 102
North Reading，MA 01864
Phone－508－664－0888
FAX－508－664－5503

## Distributors

Anthem Electronics
36 Jonspin Road
Wilmington，MA 01887
Phone－508－657－5170
FAX－508－657－6008
Hall－Mark Electronics Corporation
Pinehurst Park， 6 Cook Street
Billerica，MA 01821
Phone－617－935－9777
FAX－617－667－4129
Pioneer Standard
44 Hartwell Avenue
Lexington，MA 02173
Phone－617－861－9200
FAX－617－863－1547

## Military Distributor

Zeus Components，Inc．
11 Lakeside Office Park
607 North Avenue
Wakefield，MA 01880
Phone－617－246－8200
FAX－617－246－8293

## VIRGINIA

## Representative

Electronic Enginnering \＆Sales Incorporated 235 Prince George Street
Annapolis，MD 21401
Phone－301－269－6573
FAX－301－269－6476

## Distributors

Anthem Electronics
9020A Mendenhall Court
Columbia，MD 21045
Phone－301－995－6640
FAX－301－381－4379

Hall-Mark Electronics Corporation
10240 Old Columbia Road
Columbia, MD 21046
Phone-301-988-9800
FAX - 301-381-2036
Pioneer Technologies
15810 Gaither Drive
Gaithersburg, MD 20877
Phone-301-921-0660
FAX - 301-921-3852

## Military Distributor

Zeus Components, Inc.
8930-A Route 108
Columbia, MD 21045
Phone-301-997-1118
FAX - 301-964-9784

## WASHINGTON

## Representative

Northwest Marketing Associates, Inc.
12835 Bel-Red Road, Ste. 330
Bellevue, WA 98005
Phone-206-455-5846
FAX - 206-451-1130
Distributors
Almac Electronics
14360 Southeast Eastgate West
Bellevue, WA 98007
Phone - 206-643-9992
FAX - 206-643-9709
Almac Electronics
East 10905 Montgomery
Spokane, WA 99206
Phone - 509-924-9500
1-800-325-6545
FAX - 509-928-6096
Anthem Electronics Incorporated
19017-120th Ave. N.E:, Ste. 102
Bothell, WA 98011
Phone - 206-483-1700
FAX - 206-486-0571
Hall-Mark Electronics Corporation
250 Northwest 39th, Suite \#4
Seattle, WA 98107
Phone - 206-547-0415
FAX - 314-291-0362
Wyle Laboratories
15385 NE 90th Street
Redmond, WA 98052-3522
Phone - 206-881-1150
FAX - 206-453-0071

## Military Distributor

JAN Devices, Inc. 6925 Canby, Bldg. 109
Reseda, CA 91335
Phone-818-708-1100
FAX - 818-708-7436
Zeus Components, Inc.
6276 San Ignacio Ave., Suite E
San Jose, CA 95119
Phone - 408-629-4789
FAX - 408-629-4892

## WEST VIRGINIA

## Representative

Scott Electronics, Inc.
916 Eastwind Drive
Westerville, OH 43081-3379
Phone-614-882-6100
FAX - 614-882-0900

## Distributor

Hall-Mark Electronics Corporation
400 E Wilson Bridge Rd, Ste S
Worthington, OH 43085
Phone - 614-888-3313
FAX - 614-888-0767
Military Distributor
Zeus Components, Inc.
8930-A Route 108
Columbia, MD 21045
Phone-301-997-1118
FAX - 301-964-9784

## WISCONSIN

## Representative

Oasis Sales Corporation
1305 North Barker Road
Brookfield, WI 53005
Phone - 414-782-6660
FAX - 414-782-7921

## Distributors

Hall-Mark Electronics Corporation 16255 West Lincoln Avenue
New Berlin, Wisconsin 53151
Phone - 414-797-7844
FAX - 414-797-9259
Pioneer Standard
120 Bishops Way, \#163
Brookfield, WI 53005
Phone - 414-784-3480
FAX - 414-784-8207

## Military Distributors

Zeus Components, Inc.
100 Midland Ave.
Port Chester, NY 10573
Phone-914-937-7400
FAX - 914-937-2553
Zeus Components, Inc.
2912 Springboro West, Ste 106
Dayton, OH 45439
Phone-513-293-6162
FAX - 513-293-1781

## WYOMING

## Representative

Wescom Marketing
3500 South Main, Suite 100
Salt Lake City, UT 84115
Phone-801-269-0419
FAX - 801-269-0665

## Distributors

Anthem Electronics Incorporated
1279 West 2200 South
Salt Lake City, UT 84119
Phone - 801-973-8555
FAX - 801-973-8909
Hall-Mark Electronics Coporation
2265 South 1300 West
West Valley City, UT 84119
Phone - 801-972-1008
FAX - 303-790-4991
Wyle Laboratories
1325 West 2200 South, Suite E
West Valley City, UT 84119
Phone-801-974-9953
FAX - 801-972-2524
Military Distributor
JAN Devices, Inc.
6925 Canby, Bldg. 109
Reseda, CA 91335
Phone - 818-708-1100
FAX - 818-708-7436
Zeus Components, Inc. 6276 San Ignacio Ave., Suite E
San Jose, CA 95119
Phone - 408-629-4789
FAX - 408-629-4892

## AUSTRALIA

Representative
Reptechnic Pte. Ltd.
3/36 Bydown Street
Neutral Bay NSW 2089
Australia
Phone - 612-953-9844
FAX - 612-953-9683

## AUSTRIA

## Distributor

Thomas Neuroth Ges. m.b.H.
Hietzinger Hauptstrasse
22/A/2
A-1130 Vienna
Austria
Phone - 431-82-56-45
FAX - 431-82-84-920

## BELGIUM

Representative \& Distributor
MCA - Tronix SPRL
Parc De Recherches Du
Sart Tilman
Av. Des Noisetiers
B-4031 Angleur
Belgium
Phone - 32-41-67-4208
FAX - 32-41-67-6331
DENMARK
Distributor
Henckel Elektronik
Industriparken 4
4960 Holeby
Denmark
Phone-45-53-906333
FAX - 45-53-906422
FINLAND
Representative \& Distributor
Integrated Electronics OY AB
Turkhaudantie 1
P.O. Box 160

00700 Helsinki
Finland
Phone - 358-0-351-3133
FAX - 358-0-351-3134

## FRANCE

Representative
Rep'Tronic, SA
1 bis, Rue Marcel Paul
Batiment A
Z.I. De La Bonde

91300 Massy
Phone - 33-1-60-13-9300
FAX - 33-1-60-13-9198

## Distributors

Datadis
3 bis, rue Rene Cassin
BP 84-Z.I. de la Bonde 91303 Massy Cedex
France
Phone-331-69-204141
FAX - 331-69-204900
LEX Electronics
60-62, rue des Gemeaux-Silic 580
94653 Rungis Cedex
France
Phone - 33-1-49-78-4848
FAX - 33-1-49-78-0699
Paris Sud Electronique
12, rue Rene Cassin
91300 Massy
France
Phone -33-1-69-20-6699
FAX - 33-1-69-20-7532
RTF Diffusion
79 Rue Pierre Semard
92320 Chatillon
France
Phone - 1-49-65-2626
FAX - 1-49-65-2649

## GERMANY

Representative
Advanced Semi Conductor Products
Kapellenstrasse 9
D-8025 Unterhaching
Munich, Germany
Phone-49-89-61-9076
FAX - 49-89-61-9070

## Distributor

Metronik GmBH
Leonhardsweg 2
8025 Unterhaching
Germany
Phone-089-611-08-0
FAX - 089-611-64-68

## HONG KONG

## Representative

Lestina International Ltd.
Rm 405, Park Tower
15 Austin Rd
Tsimshatsui, Kowloon
Hong Kong
Phone - 852-735-1736
FAX - 852-730-7538

## INDIA

Distributor
Silicon Electronics 3350 Scott Blvd.
Suite 1201
Santa Clara, CA 95054
Phone - 408-988-4408
FAX - 408-988-4431

## INDONESIA

Representative
Desner Electronics
(FE) Ltd.
42 Mactaggart Rd.
\#04-01 Mactaggart Bldg.
Singapore, 1336
Phone - 65-285-1566
FAX - 65-284-9466
IRELAND

## Representative

New England Technical Sales Ltd.
The Diamond
Malahide County Dublin
Ireland
Phone-353-1-450635
FAX - 353-1-453625

## Distributor

Lyco, Ltd.
Estuary House
New Street
Malahide, Dublin
Ireland
Phone -353-1-452-020
FAX - 353-1-452-414

## ISRAEL

Representative/Distributor
Rapac Electronic, Ltd.
Mailing Address:
P.O. Box 18053

Tel Aviv, Israel 61180
Office Address:
\#7, Kehilat Saloniki Street
Tel Aviv, Israel 69513
Phone - 972-3-477115
FAX - 972-3-493-272

## ITALY

Representative \& Distributor
Moxel S.R.L.
Via C Frova 34
20092 Cinisello Balsamo
(MI) Italy

Phone-39-261290521
FAX - 39-261-72582

## Distributor

EUR Elettronica S.P.A.
20094 Assago (MI)
Sede: Via E. Fermi, 8
Partita IVA 00883800153
Italy
Phone-02-4880022
FAX - 02-4880275

## JAPAN

## Distributor

Sanyo Electronic Co.
Natsume Bldg., 4th Floor
18-6, 2-Chome
Yushima, Bunkyo-Ku, Tokyo 113
Japan
Phone - 81-3-3818-4330
FAX - 813-3818-1124

## KOREA

Representative
Eastern Electronics, Inc.
3rd Floor, Yoowha Bldg.
995-16, Daechi-Dong
Kangnam-Ku, Seoul, Korea
Phone - 822-553-2997
FAX - 822-553-2998

## THE NETHERLANDS

Distributor
Microtron
Postbus 188
NL - 1243 ZK Graveland
The Netherlands
Phone - 31-35-61834
FAX - 31-35-62709
NEW ZEALAND
Representative
Reptechnic
3/36 Bydown Street
Neutral Bay, NSW 2089
Australia
Phone - 612-953-9844
FAX - 612-953-9683

## NORWAY

Distributor
BIT Elektronikk AS
P.O. Box 36

3401 Lier
Lierbyen, Norway
Phone - 47-3-847099
FAX - 47-3-845510

## PHILLIPINES

Representative
Desner Electronics
(FE) Ltd.
42 Mactaggart Rd.
\#04-01 Mactaggart Bldg.
Singapore, 1336
Phone - 65-285-1566
FAX - 65-284-9466

## PORTUGAL

Representative \& Distributor
ATD Electronica LDA.
Rua dos Lusiadas 5,5.
Sala B/K
1300 Lisboa
Portugal
Phone - 351-1-362-0290
FAX - 361-1-362-1068

## SINGAPORE

Representative
Desner Electronics
(FE) Ltd.
42 Mactaggart Rd. \#04-01 Mactaggart Bldg.
Singapore, 1336
Phone -65-285-1566
FAX - 65-284-9466

## SPAIN

## Distributor

ATD Electronica, S.A.
Plaza Cuidad de Viena, 6
28040 Madrid
Spain
Phone - 341-534-4000
FAX - 341-534-7663

## SWEDEN

Representative \& Distributor
IE Komponenter AB
Box 11113
S161 11
Bromma, Sweden
Phone - 46-8-804685
FAX - 46-8-262286

## SWITZERLAND

Representative
Micron Technology
Casa Fuchs CH-6984
Pura Switzerland
Phone - 41-9171-3785
FAX - 41-9171-3889

## Distributor

Anatec
Sumpfstrasse 7
CH-6300 ZUG
Switzerland
Phone - 41-42-412-441
FAX - 41-42-413-124
Pabstronic AG
Aarauerstrasse 20
5200 Brugg
Switzerland
Phone-41-56-41-7957
FAX - 41-56-41-0792
TAIWAN, R.O.C.
Representative \& Distributor ASEC
7F, No. 344-1 Min-Sheng E Rd
Min-Sheng Commercial Bldg
Taipei, Taiwan R.O.C.
Taiwan
Phone - 886-2-505-7025
FAX - 886-2-501-1524

## UNITED KINGDOM

## Representative

Micron Technology, Inc
European Office
Suite 17
Kinetic Centre
Theobald Street
Borehamwood
Hertfordshire
WD6 4SE United Kingdom
Phone - 44-81-905-1255
FAX - 44-81-905-1126
EURO Rep.
Saville Court, Saville Place, Clifton, Bristol BS8 4EJ
United Kingdom
Phone-44-272-237-594
FAX - 44-272-237-598

## Distributor

Abacus Electronics PLC
Abacus House, Bone Lane
Newbury, Bukshire
RG14 5SF
United Kingdom
Phone - 0635-36222
FAX - 0635-38670
Bytech Computers, Ltd.
12 A Cedarwood, Chineham
Business Park
Crockford Lane, Basingstoke
Hampshire, RG24 OWD
United Kingdom
Phone - 44-256-707-107
FAX -44-256-707-162
Thame Components
Thame Park Road
Thame, Oxon, 0X9 3UQ
United Kingdom
Phone - 44-84-426-1188
'FAX - 44-84-426-1681

Micron Technology, Inc. Marketing Department 2805 East Columbia Road Boise, Idaho 83706
Telephone: (208) 368-3900
FAX: (208) 368-4617


[^0]:    NC = No Connect
    *Consult factory for availibilty of TSOP packages

[^1]:    *Contact factory for no-connect (NC) option on pin 30

[^2]:    ${ }^{1}$ Wait states are one or more additional processor clock cycles added to the memory access cycle. These extra clock cycles keep the processor idling while memory has time to respond to the memory request. For a given processor's clock speed, the number of wait states needed to complete a memory access is directly related to how fast the memory can respond to a read or write request initiated by the microprocessor.

    For example, the 80386 can complete a memory cycle in two clock periods. With a 25 MHz processor, this allows 80 ns for the processor to output its address to the memory array. It also provides time for the decode circuitry to supply the necessary signals to the memory and enables the memory to respond once it has received the necessary signals. In typical applications, the speed of the memory array that is needed to avoid any wait states is 35 ns .

[^3]:    * The $4 \mathrm{~K} \times 4$ configuration incorporates two banks of eight SRAMs each. One bank is active while the other is in standby mode. This fact was used in the power calculations.

[^4]:    * The $4 \mathrm{~K} \times 4$ configuration incorporates two banks of eight SRAMs each. One bank is active while the other is in standby mode. This fact was used in the power calculations.

