MOS DATA BOOK

DYNAMIC RAMS	1
DRAM MODULES	2
MULTIPORT DRAMS	3
STATIC RAMS	4
SYNCHRONOUS SRAMS	5
SRAM MODULES	6
CACHE DATA SRAMS	7
FIFO MEMORIES	8
APPLICATION/TECHNICAL INFORMATION	9
MILITARY INFORMATION	10
PACKAGE INFORMATION	11
SALES INFORMATION	12

MOS DATA BOOK

2805 East Columbia Road Boise, Idaho 83706 Telephone: (208) 368-3900 FAX: (208) 368-4617

©1991, Micron Technology, Inc. Printed in the U.S.A.

Micron Technology, Inc., reserves the right to change products or specifications without notice.

IMPORTANT NOTICE

Micron Technology, Inc. reserves the right to change products or specifications without notice. Customers are advised to obtain the latest versions of product specifications, which should be considered in evaluating a product's appropriateness for a particular use. There is no assurance that Micron's semiconductors are appropriate for any application by a customer.

MICRON TECHNOLOGY, INC. MAKES NO WARRANTIES EXPRESSED OR IMPLIED OTHER THAN COMPLIANCE WITH MICRON'S SPECIFICATION SHEET FOR THE COMPONENT AT THE TIME OF DELIVERY. ANY CLAIM AGAINST MICRON MUST BE MADE WITHIN NINETY (90) DAYS FROM THE DATE OF SHIPMENT FROM MICRON, AND MICRON HAS NO LIABILITY THEREAFTER. ANY MICRON LIABILITY IS LIMITED TO REPLACEMENT OF DEFECTIVE ITEMS OR RETURN OF AMOUNTS PAID FOR DEFECTIVE ITEMS (AT THE BUYER'S ELECTION).

MICRON'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COM-PONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF MICRON TECHNOLOGY, INC. AS USED HEREIN:

A. LIFE SUPPORT DEVICES OR SYSTEMS ARE DEVICES OR SYSTEMS WHICH (1) ARE INTENDED FOR SURGICAL IMPLANT INTO THE BODY, OR (2) SUPPORT OR SUSTAIN LIFE AND WHOSE FAILURE TO PERFORM WHEN PROPERLY USED IN ACCORDANCE WITH INSTRUCTIONS FOR USE PROVIDED IN THE LABELING CAN BE REASONABLY EXPECTED TO RESULT IN A SIGNIFICANT INJURY TO THE USER.

B. CRITICAL COMPONENT IS ANY COMPONENT OF A LIFE SUPPORT DEVICE OR SYSTEM WHOSE FAILURE TO PERFORM CAN BE REASONABLY EXPECTED TO CAUSE THE FAILURE OF THE LIFE SUPPORT DEVICE OR SYSTEM OR TO AFFECT ITS SAFETY OR EFFECTIVENESS.

The MOS Data Book has been organized into 11 sections and includes complete detailed specifications on our growing, high-performance CMOS and NMOS product line.

Sections 1 through 8 cover individual product families. Each section contains a product selection guide followed by data sheets. Three different types of data sheets are used: Advance Information, which contains initial descriptions of products still under development; Preliminary Information, which contains initial device characterization limits that are subject to change upon full characterization of production devices; and Final Information, which contains minimum and maximum limits specified over the complete power supply and temperature range for production devices.

Section 9 contains application and technical information.

Section 10 contains selected information about Micron's growing Defense Electronics product offering.

Section 11 contains packaging information.

Section 12 contains ordering information, product quality and reliability information and a list of sales representatives and distributors by geographical location for the North American Continent, Europe and Asia.

Additional or updated information on any Micron product is available from:

MICRON TECHNOLOGY, INC. Marketing Department 2805 East Columbia Road

Boise, Idaho 83706

Telephone: (208) 368-3900

FAX: (208) 368-4617

YNAMIC RAMS			PAGI
Product Selection Guide			
MT4264	64K x 1	PM	. 1-1
MT1259	256K x 1	PM	. 1-9
MT4C1024	1 Meg x 1	FPM	. 1-19
MT4C1026	1 Meg x 1	SC	. 1-31
MT4C1027		FPM, LP	. 1-43
MT4C1004	4 Meg x 1	FPM	. 1-55
MT4C1006		SC	. 1-67
MT4C10016	16 Meg x 1	FPM	. 1-79
MT4C10017	16 Meg x 1	SC	. 1-79
MT4067	64K x 4	PM	. 1-81
MT4C4256	256K x 4	FPM	. 1-91
MT4C4258	256K x 4	SC	. 1-103
MT4C4259	256K x 4	FPM, QCP	. 1-115
MT4C4260	256K x 4	FPM, LP	. 1-129
MT4C4001	1 Meg x 4	FPM	. 1-14
MT4C4003	1 Meg x 4	SC	. 1-153
MT4C4004		QCP	. 1-16
MT4C4005		FPM, WPB	
MT4C40004		FPM	. 1-191
MT4C40005		SC	. 1-19
MT4C8512	0	FPM	. 1-193
MT4C8513	512K x 8	FPM, WPB	
MT4C1664	64K x 16	FPM, DW	. 1-202
MT4C1665	64K x 16	FPM, WPB	. 1-207
MT4C1668	64K x 16	FPM, LP, DW	. 1-223
MT4C1669	64K x 16	FPM, LP, WPB	
MT4C1670	64K x 16	SC, DW	
MT4C1671	64K x 16	SC, WPB	
MT4C1672	64K x 16	FPM, DC	. 1-257
MT4C16256		FPM, DW	. 1-259
MT4C16257		FPM, DW, WPB	
MT4C16258	256K x 16	FPM, DC	
MT4C16259		FPM, DC, WPB	
PM		QCPQUAD CAS I	
FPM		WPB	
LP	LOW POWER	DC	AL CAS

DRAM MODULES]	PAGE
Product Selection Guide			
MT2D2568	256K x 8	FPM	2-1
MT8D18	1 Meg x 8	FPM	2-11
MT2D18	1 Meg x 8	FPM	2-21
MT8D48		FPM	2-31
MT3D2569	256K x 9	FPM, PM	2-41
MT9D19	1 Meg x 9	FPM	2-51
MT3D19	1 Meg x 9	FPM	2-61
MT9D49	4 Meg x 9	FPM	2-71
MT8D25632	256K x 32	FPM	2-81
MT16D51232	512K x 32	FPM	2-91
MT8D132	1 Meg x 32	FPM	2-101
MT16D232	2 Meg x 32	FPM	2-111
MT9D25636	256K x 36	FPM	2-121
MT10D25636	256K x 36	FPM	2-131
MT18D51236	512K x 36	FPM	2-141
MT20D51236	512K x 36	FPM	2-151
MT9D136	1 Meg x 36	FPM	2-161
MT18D236	2 Meg x 36	FPM	2-171
PM		FPMFAST PAGE	MODE
MULTIPORT DYNAMIC	RAMS		
Product Selection Guide			
MT42C4064		PM	
MT42C42552	· •	FPM	
MT42C42562	•	FPM, BW	
MT42C812712		FPM	
MT42C81281		FPM, BW	
MT42C82562		FPM, BW	
MT43C42572		FPM, BW	
MT43C42582	•	FPM, BW	
MT43C812812	•	FPM, BW	
MT43C812912	28K x 8 / 256 x 8	FPM, BW	3-215
PM		FPMFAST PAGE	MODE
BW	BLOCK WRITE	* DRAM/5	SAM(S)

STATIC RAMS	, P	AGE
Product Selection Guide		
MT5C160116K x 1	CE only	4-1
MT5C640164K x 1	CE only	
MT5C2561256K x 1	CE only	
MT5C10011 Meg x 1	CE only	4-25
MT5C16044K x 4	CE only	4-33
MT5C16054K x 4	CE & OE	4-41
MT5C16064K x 4	SI/O, OT	4-49
MT5C16074K x 4	SI/O, HZ	4-49
MT5C640416K x 4	CE only	4-57
MT5C640516K x 4	CE & OE	4-65
MT5C640616K x 4	SI/O, OE, CE1, CE2 & OT	
MT5C640716K x 4	SI/O, HZ	4-73
MT5C256464K x 4	CE only	4-81
MT5C256564K x 4	CE & OE	4-89
MT5C1005256K x 4	CE & OE	
MT5C16082K x 8	CE & OE	
MT5C64088K x 8	OE, CE1 & CE2	
MT5C256832K x 8	CE & OE	
MT5C1008128K x 8	OE, CE1 & CE2	
MT5C251616K x 16	Latched Address/Data	
MT5C281816K x 18	Latched Address/Data	
IT/AT/XT SPECIFICATIONS		4-165
CE	SI/OSEPARATE DATA INPUTS AND OUT HZHIGH IMPEDANCE OUTPUTS DURING V	
OTOUTPUTS TRACK INPUTS DURING WRITE		
SYNCHRONOUS SRAMS		
Product Selection Guide		
MT58C161616K x 16	SR, STW	5-1
MT58C161816K x 18	SR, STW	
CD SYNICHDONIOUS PEADS	,	

SRAM MODULES	P	AGE
Product Selection Guide		
MT4S1288128K x 8	CE & OE	6-1
MT2S321632K x 16	CE & OE	
MT4S641664K x 16	CE & OE	6-17
MT8S163216K x 32	CE & OE	6-25
MT8S643264K x 32	CE & OE	6-33
MT4S12832128K x 32	CE & OE	6-41
MT8S25632256K x 32	CE & OE	6-49
CECHIP ENABLE	OEWITH OUTPUT EN	ABLE
CACHE DATA STATIC RAMS		
Product Selection Guide		
MT56C0816 dual 4K x 16 or single 8K x 16	A0-A11 LATCH	7-1
MT56C3816 dual 4K x 16 or single 8K x 16	A0-A12 LATCH	7-11
MT56C0818dual 4K x 18 or single 8K x 18	A0-A11 LATCH	7-21
MT56C2818dual 4K x 18 or single 8K x 18	80486/80485 SPECIFIC	7-31
MT56C3818dual 4K x 18 or single 8K x 18	A0-A12 LATCH	
FIFO (FIRST-IN FIRST-OUT) MEMORI	ES	
Product Selection Guide		
MT52C9005512 x 9	E	8-1
MT52C9007512 x 9	PF, E	8-13
MT52C90101K x 9	E	
MT52C90121K x 9	PF, E	8-41
MT52C90202K x 9	E	
MT52C90222K x 9	PF, E	8-69
EEXPANDABLE DEPTH AND WIDTH	PFPROGRAMMABLE	FLAG

APPLICATION/TECHNICAL INFORMATION P	AGE
Product Selection Guide	
TN-04-01DRAM Power-Up and Refresh Constraints	9-1
TN-04-02MT4C1664 and MT4C1665 Compatibilities	
TN-04-03MT4C1664: 256 Kilobyte Memory System with Four RAS Lines	9-5
TN-04-04MT4C1664: 256 Kilobyte Memory System with Four CAS Lines	9-7
TN-04-054 Meg DRAM — Direct 1 Meg Compatibility	9-9
TN-04-06Understanding DRAM LATE-WRITE Cycles	9-11
TN-43-01MT43C4257/MT43C4258 Comparison	
TN-05-02SRAM Bus Contention Design Considerations	
TN-05-03SRAM Capacitive Loading	9-19
TN-05-061 Meg Fast SRAM Typical Operating Curves	9-21
TN-05-07256K Fast SRAM Typical Operating Curves	
TN-05-0864K Fast SRAM Typical Operating Curves	9-25
AN-56-01MT56C0816 Cache Data SRAM Family	
MILITARY INFORMATION	
General Information	10-1
Product Assurance Flow	
Product Description Guide	
PACKAGE INFORMATION	
	44.4
Index	11-1
SALES INFORMATION	
Ordering Information and Examples	12-1
Product Numbering System	
Product Reliability	
North American Sales Representatives and Distributors	
International Sales Representatives and Distributors	
1	

NUMERICAL INDEX		PAGE
Part #		
10D25636	DRAM MODULE	 . 2-131
1259	DRAM	 . 1-9
16D232	DRAM MODULE	 . 2-111
16D51232	DRAM MODULE	 . 2-91
18D236		
18D51236		
20D51236		
2D18		
2D2568		
2S3216		 . 6-9
3D19		
3D2569		
4067		
4264		
42C4064		
42C4255		
42C4256		
42C8127		
42C8128		
42C8256		
43C4257		
43C4258		
43C8128		
43C8129		
4C10016		
4C10017		
4C1001/		
4C1004		
4C1024		
4C1026		
4C1027		
4C16256		
4C16257		
4C16258		
4C16259		
4C1664		
4C1665		
4C1668		
4C1669		
4C1670		
4C1671		
4C1672	DRAM	 . 1-257

NUMERICAI	L INDEX (Continued)		PAGE
Part #			
4C40004	DRAM		. 1-191
4C40005	DRAM		. 1-191
4C4001	DRAM		. 1-141
4C4003	DRAM		. 1-153
	DRAM		. 1-165
4C4005	DRAM	•••••	. 1-179
4C4256	DRAM		. 1-91
4C4258	DRAM		. 1-103
4C4259	DRAM		
4C4260	DRAM		. 1-129
4C8512	DRAM		. 1-193
4C8513	DRAM		. 1-193
4S12832	SRAM MODULE		
4S1288	SRAM MODULE		. 6-1
4S6416	SRAM MODULE		. 6-17
52C9005	FIFO		
52C9007	FIFO		. 8-13
	FIFO		. 8-29
52C9012	FIFO		. 8-41
52C9020	FIFO		. 8-57
	FIFO		. 8-69
	CACHE DATA SRAM		. 7-1
	CACHE DATA SRAM		. 7-21
	CACHE DATA SRAM		
	CACHE DATA SRAM		. 7-11
	CACHE DATA SRAM		. 7-41
	SYNCHRONOUS SRAM		. 5-1
	SYNCHRONOUS SRAM		. 5-11
	SRAM		
	SRAM		. 4-97
	SRAM		

NUMERICAL I	NDEX (Continued)		PAGE
Part #			
5C2818	SRAM		. 4-151
5C6401	SRAM		. 4-9
5C6404	SRAM	•••••	. 4-57
	SRAM		
	SRAM	•••••	
5C6407	SRAM	•••••	. 4-73
5C6408	SRAM		. 4-113
8D132	DRAM MODULE		. 2-101
	DRAM MODULE	•••••	. 2-11
8D25632	DRAM MODULE		. 2-81
	DRAM MODULE		
8S1632	SRAM MODULE	•••••	
	SRAM MODULE		
8S6432	SRAM MODULE		. 6-33
9D136	DRAM MODULE		. 2-161
9D19	DRAM MODULE		. 2-51
9D25636	DRAM MODULE	•••••	. 2-121
9D49	DRAM MODULE		2-71

DYNAMIC RAMS	1
DRAM MODULES	2
MULTIPORT DRAMS	3
STATIC RAMS	4
SYNCHRONOUS SRAMS	5
SRAM MODULES	6
CACHE DATA SRAMS	7
FIFO MEMORIES	8
APPLICATION/TECHNICAL INFORMATION	9
MILITARY INFORMATION	10
PACKAGE INFORMATION	11
SALES INFORMATION	12

DRAM PRODUCT SELECTION GUIDE

Memory	Optional	Part	Access	Power Di	ssipation		Packa	ge and N	lumber d				
Configuration	Access Cycle	Number	Time (ns)	Standby	Active	PDIP	ZIP	PLCC	201	CDIP	TSOP	Process	Page
64K x 1	PM	MT4264	100, 120, 150	15mW	75mW	16	-	-	-	16	<u> </u>	NMOS	1-1
256K x 1	PM	MT1259	100, 120, 150	15mW	150mW	16	16	18	-	16	-	NMOS	1-9
1 Meg x 1	FPM	MT4C1024	70, 80 ,100	3mW	175mW	18	20	-	20	18	*	CMOS	1-19
1 Meg x 1	SC	MT4C1026	70, 80, 100	3mW	175mW	18	20	-	20	18	*	CMOS	1-31
1 Meg x 1	FPM, LP	MT4C1027	70, 80, 100	1mW	150mW	18	20	-	20	18	*	CMOS	1-43
4 Meg x 1	FPM	MT4C1004	60, 70, 80	3mW	225mW	-	20	-	20	18	*	CMOS	1-55
4 Meg x 1	sc	MT4C1006	60, 70, 80	3mW	225mW	-	20	-	20	18	*	CMOS	1-67
16 Meg x 1	FPM	MT4C10016	50, 60, 70, 80	3mW	250mW	-	24	-	24	*	*	CMOS	1-79
16 Meg x 1	SC	MT4C10017	50, 60 ,70, 80	3mW	250mW	-	24	-	24	*	*	CMOS	1-79
64K x 4	PM	MT4067	100, 120, 150	15mW	150mW	18	20	18	-	18		NMOS	1-81
256K x 4	FPM	MT4C4256	70, 80, 100	3mW	175mW	20	20	-	20	20	*	CMOS	1-91
256K x 4	SC	MT4C4258	70, 80, 100	3mW	175mW	20	20	-	20	20	*	CMOS	1-103
256K x 4	FPM, QCP	MT4C4259	70, 80, 100	3mW	175mW	20	20	-	20	20	*	CMOS	1-115
256K x 4	FPM, LP	MT4C4260	70, 80, 100	1mW	150mW	20	20	-	20	20	*	CMOS	1-129
1 Meg x 4	FPM	MT4C4001	60, 70, 80	3mW	225mW	-	20	-	20	20	*	CMOS	1-141
1 Meg x 4	SC	MT4C4003	60, 70, 80	3mW	225mW	-	20	-	20	20	*	CMOS	1-153
1 Meg x 4	FPM, QCP	MT4C4004	60, 70, 80	3mW	225mW	-	20	-	20	20	*	CMOS	1-165
1 Meg x 4	FPM, WPB	MT4C4005	60, 70, 80	3mW	225mW	-	20	-	20	20	*	CMOS	1-179
4 Meg x 4	FPM	MT4C40004	50, 60, 70, 80	3mW	250mW	-	20	-	20	20	*	CMOS	1-191
4 Meg x 4	SC	MT4C40005	50, 60, 70, 80	3mW	250mW	-	24	-	24	*	*	CMOS	1-191
512K x 8	FPM	MT4C8512	70, 80, 100	3mW	350mW	-	-	-	24	*	*	CMOS	1-193
512K x 8	FPM, WPB	MT4C8513	70, 80, 100	3mW	350mW	-	-	-	28	-	*	CMOS	1-193
64K x 16	FPM, DW	MT4C1664	70, 80, 100	3mW	225mW	-	40	-	40	-	*	CMOS	1-207
64K x 16	FPM, WPB	MT4C1665	70, 80, 100	3mW	225mW	-	40	-	40	-	*	CMOS	1-207
64K x 16	FPM, LP, DW	MT4C1668	70, 80, 100	2mW	200mW	·	40	-	40	-	*	CMOS	1-223
64K x 16	FPM, LP, WPB	MT4C1669	70, 80, 100	2mW	200mW	-	40	-	40	-	*	CMOS	1-223
64K x 16	SC, DW	MT4C1670	70, 80, 100	3mW	225mW	-	40	-	40	-	*	CMOS	1-239
64K x 16	SC, WPB	MT4C1671	70, 80, 100	3mW	225mW	-	40	-	40	-	*	CMOS	1-239
64K x 16	FPM, DC	MT4C1672	70, 80, 100	3mW	350mW	-	40	-	40	-	*	CMOS	1-257
256K x 16	FPM, DW	MT4C16256	70, 80, 100	3mW	350mW	 -	*	-	40	1-	 •	CMOS	1-259
256K x 16	FPM, DW, WPB	MT4C16257	70, 80, 100	3mW	350mW	† -	*	-	40	-	*	CMOS	1-259
256K x 16	FPM, DC	MT4C16258	70, 80, 100	3mW	350mW	† -	+	-	40	T-	*	CMOS	1-259
256K x 16	FPM, DC, WPB	MT4C16259	70, 80, 100	3mW	350mW	 -	*	-	40	-	*	CMOS	1-259

PM = Page Mode, FPM = Fast Page Mode, SC = Static Column, LP = Low Power, QCP = Quad CAS Parity, WPB = Write Per Bit, DW = Dual WE, DC = Dual CAS *Consult factory on availability of TSOP packages

DRAM

64K x 1 DRAM

PAGE MODE

FEATURES

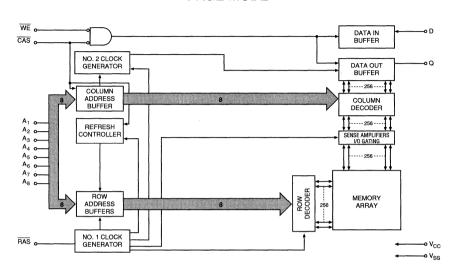
- Industry standard pinout, functions and timing
- Single +5V ±10% power supply
- Low power, 15mW standby; 75mW active, typical
- Common I/O using EARLY-WRITE
- Q held indefinitely by CAS
- 256-cycle refresh in 4ms
- Fully compatible with MT1259 (256K)
- Optional PAGE MODE access cycle

OPTIONS	MARKING
 Timing 	
100ns access	-10
120ns access	-12
150ns access	-15
200ns access	-20
• Packages	
Plastic DIP	None
Ceramic DIP	C

PIN ASSIGNMENT (Top View) 16-Pin DIP (A-1, B-1) 16 🛮 Vss 15 CAS WE 3 14 🛮 Q RAS 4 13 🛚 A6 A0 🛛 5 12 A3 11 🛮 A4 A2 [] 6 10 🛮 A5 A1 🛛 7 Vcc□8

GENERAL DESCRIPTION

The MT4264 is a randomly accessed solid-state memory containing 65,536 bits organized in a x1 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 16 address bits, which are entered 8 bits (A0-A7) at a time. RAS is used to latch the first 8 bits and \overline{CAS} the latter 8 bits. A READ or WRITE cycle is selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of WE or CAS, whichever occurs last. If WE goes LOW prior to CAS going LOW, the output pin(s) remain open (High-Z) until the next CAS cycle. If WE goes LOW after data reaches the output pin(s), data out (Q) is activated and retains the selected cell data as long as CAS remains LOW (regardless of WE or RAS). This late WE pulse results in a READ-WRITE cycle.


PAGE MODE operations allow faster data operations

(READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A7) defined page boundary. The PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobingin different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the PAGE MODE operation.

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any \overline{RAS} cycle (READ, WRITE, \overline{RAS} -ONLY or HIDDEN REFRESH) so that all 256 combinations of \overline{RAS} addresses (A0-A7) are executed at least every 4ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM PAGE MODE

TRUTH TABLE

	540	0.00	WE	Addr	esses	
Function	RAS	CAS	WE	^t R	tC.	
Standby	Η	Х	Х	Х	Х	High Impedance
READ	L	L	H	ROW	COL	Data Out
WRITE (EARLY-WRITE)	L	L	L	ROW	COL	Data In
READ-WRITE	L	L	H→L→H	ROW	COL	Valid Data Out, Valid Data In
PAGE-MODE READ	L	H→L→H	Н	ROW	COL	Valid Data Out, Valid Data Out
PAGE-MODE WRITE	L	H→L→H	L	ROW	COL	Valid Data In, Valid Data In
PAGE-MODE READ-WRITE	L	H→L→H	H→L→H	ROW	COL	Valid Data Out, Valid Data In
RAS-ONLY REFRESH	L	Н	Х	ROW	n/a	High Impedance
HIDDEN REFRESH	L→H→L	L	Н	ROW	COL	Valid Data Out
CAS-BEFORE- RAS REFRESH	H→L	L	Х	Х	Х	High Impedance

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V to +7.0
Operating Temperature, TA(Ambient) 0°C to +70°C
Storage Temperature (Ceramic)65°C to +150°C
Storage Temperature (Plastic)55°C to +150°C
Power Dissipation1V
Short Circuit Output Current50m.

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 2, 3, 4, 6) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1
INPUT LEAKAGE Input leakage current, any input (0V \leq VIN \leq Vcc); I all other pins not under test = 0V	lı .	-10	10	μΑ	
OUTPUT LEAKAGE Output leakage current (Q is disabled; 0V ≤ Vouт ≤ Vcc)	loz	-10	10	μΑ	
OUTPUT LEVELS	Vон	2.4		V	
Output High (Logic 1) Voltage (Iout = -5mA) Output Low (Logic 0) Voltage (Iout = 5mA)	Vol		0.4	V	1

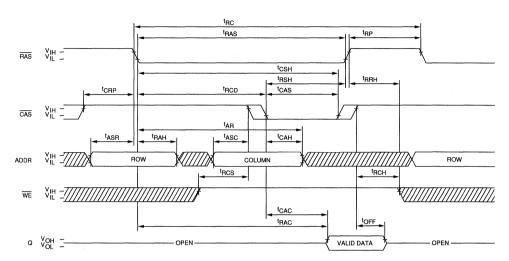
PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
STANDBY CURRENT (RAS = CAS = VIH after 8 RAS cycles)	lcc1		4	mA	
OPERATING CURRENT (RAS and CAS Cycling)	lcc2		30	mA	2
RAS-ONLY REFRESH CURRENT (CAS = VIH)	lcc3		20	mA	2
PAGE MODE CURRENT (RAS = VIL; CAS = Cycling)	Icc4		30	mA	2

CAPACITANCE

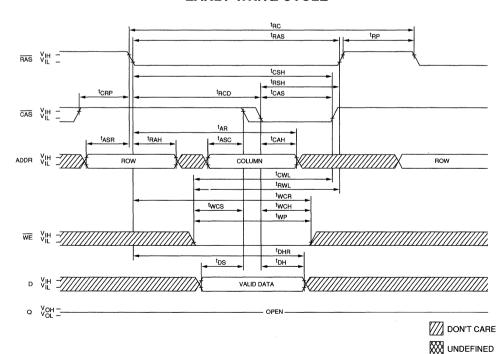
PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A7, D	C _I 1		5	pF	18
Input Capacitance: RAS, CAS, WE	C ₁₂		8	pF	18
Output Capacitance: Q	Co		8	pF	18

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes: 3, 4, 5, 10, 11, 17, 18) (0°C \leq T $_{A}$ \leq 70°C; Vcc = 5.0V $\pm10\%$)

A.C. CHARACTERISTICS		-	10	-	12		15	-20			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	195		230		260		330		ns	6, 7
READ-MODIFY-WRITE cycle time	tRWC	220		255		295		370		ns	
PAGE-MODE cycle time	^t PC	90		100		120		170		ns	6, 7
Access time from RAS	†RAC		100		120		150		200	ns	7, 8
Access time from CAS	tCAC		50		60		75		120	ns	7, 9
RAS pulse width	^t RAS	100	10,000	120	10,000	150	10,000	200	10,000	ns	
RAS hold time	^t RSH	50		60		75		100		ns	
RAS precharge time	^t RP	80	20,000	90	20,000	100	20,000	120	20,000	ns	
CAS pulse width	tCAS	50	10,000	60	10,000	75	10,000	120	10,000	ns	
CAS hold time	tCSH	100		120		150		200		ns	
CAS precharge time	^t CPN	25		25		30		35		ns	19
CAS precharge time (PAGE MODE)	^t CP	30		30		35		40		ns	
RAS to CAS delay time	tRCD	25	50	25	60	25	75	30	80	ns	13
Row address setup time	†ASR	0		0		0		0		ns	
Row address hold time	^t RAH	15		15		20		25		ns	
Column address setup time	†ASC	0		0		0		0		ns	
Column address hold time	tCAH	20		20		25		50		ns	
Column address hold time referenced to RAS	^t AR	70		80		100		130		ns	
READ command setup time	tRCS	0		0		0		0		ns	
READ command hold time referenced to CAS	tRCH	0		0		0		0		ns	14
READ command hold time referenced to RAS	^t RRH	0		0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	30	0	30	0	35	0	40	ns	12
WE command setup time	twcs	0		0		0		0		ns	16
WRITE command hold time	¹WCH	35		40		45		60		ns	
WRITE command hold time referenced to RAS	†WCR	85		100		120		140		ns	
WRITE command pulse width	tWP	35		40		45		50		ns	
WRITE command to RAS lead time	tRWL	35	1	40	†	45		55		ns	
WRITE command to CAS lead time	tCWL	35		40		45		55		ns	
Data-in setup time	tDS	0		0		0		0		ns	15
Data-in hold time	tDH	35		40		45		55		ns	15
Data-in hold time referenced to RAS	^t DHR	85		100		120		135		ns	
CAS to WE delay	tCWD	40		50		60		100		ns	16
RAS to WE delay	tRWD	90		110		135		180		ns	16
Transition time (rise or fall)	†T	3	100	3	100	3	100	3	100	ns	5, 17
Refresh period (256 cycles)	†REF		4		4		4		4	ms	
CAS to RAS setup time	tCRP	10		15		20		20		ns	

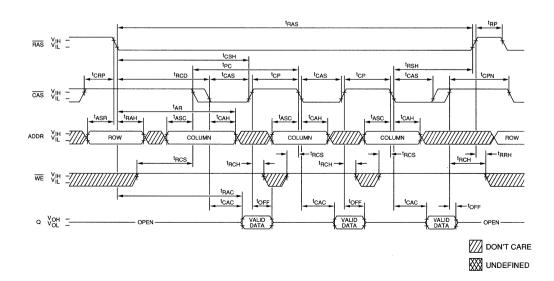

NOTES

- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 4. AC characteristics assume ^tT = 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a load equivalent to 2 TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 11. If $\overline{\text{CAS}}$ = V_{IL}, data output may contain data from the last valid READ cycle.
- 12. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.

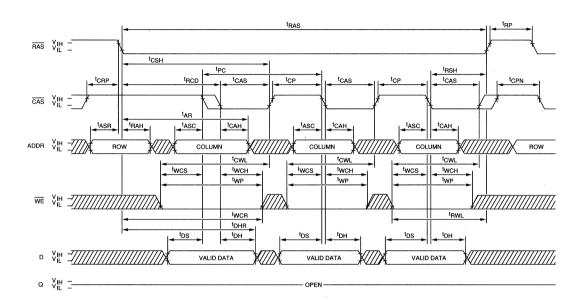

- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. ${}^{t}RCH$ is referenced to the first rising edge of \overline{RAS} or \overline{CAS} .
- These parameters are referenced to CAS leading edge in early WRITE cycles and WE leading edge in late WRITE or READ-WRITE cycles.
- 16. tWCS, tRWD and tCWD are restrictive operating parameters in late READ-WRITE and READ-MODIFY-WRITE cycles only. If tWCS ≥ tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If tCWD ≥ tCWD (MIN) and tRWD ≥ tRWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of Q (at access time and until CAS goes back to Vih) is indeterminate.
- 17. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VII. and VIH) in a monotonic manner.
- 18. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 19. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for tCPN.

READ CYCLE

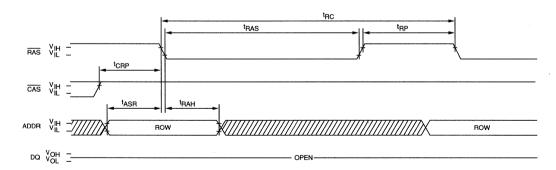
EARLY-WRITE CYCLE



READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)



PAGE-MODE READ CYCLE



PAGE-MODE EARLY-WRITE CYCLE

DON'T CARE
UNDEFINED

DRAM

256K x 1 DRAM

PAGE MODE

16-Pin DIP

FEATURES

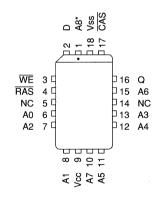
- Industry standard pinout, timing and functions
- All inputs, outputs, and clocks are fully TTL compatible
- Single +5V±10% power supply
- Low power, 15mW standby; 150mW active, typical
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- 256-cycle refresh in 4ms
- Optional PAGE MODE access cycle

MARKING
-10
-12
-15
None
С
Z
EJ

GENERAL DESCRIPTION

The MT1259 is a randomly accessed solid-state memory containing 262,144 bits organized in a x1 configuration. The 18 address bits are entered 9 bits at a time using \overline{RAS} to latch the first 9 bits and \overline{CAS} the latter 9 bits. If the \overline{WE} pin goes LOW prior to \overline{CAS} going LOW, the output pin remains open until the next \overline{CAS} cycle. If \overline{WE} goes LOW after data reaches the output pin, the output pin is activated and retains the selected cell data as long as \overline{CAS} remains LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-MODIFY-WRITE cycle. Data-in (D) is latched when \overline{WE} strobes LOW.

By holding RAS LOW, CAS may be toggled to execute several faster READ, WRITE, LATE-WRITE or READ-MODIFY-WRITEcycles within the RAS address defined page boundary. Returning RAS HIGH terminates the memory

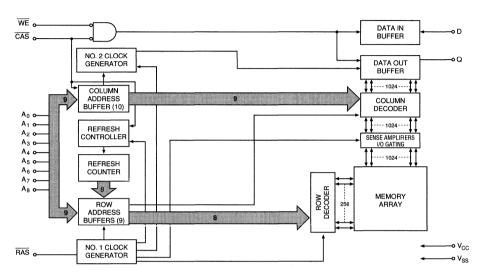

PIN ASSIGNMENT (Top View)

16-Pin ZIP

(A-1, B	-1)		(C-	l)	
WE 3 14 RAS 4 13	CAS Q D A6 D A3 D A4 D A5	A6 CAS A8* WE A0 A1 A7 A4	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	12	Q Vss D RAS A2 Vcc A5 A3

18-Pin PLCC

(D-1)



*Address not used for RAS-ONLY refresh

cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} high time. Memory cell data is retained in its correct state by maintaining power and executing a \overline{RAS} (refresh) cycle so that all 256 combinations of \overline{RAS} addresses are executed at least every 4ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity.

FUNCTIONAL BLOCK DIAGRAM PAGE MODE

TRUTH TABLE

				Addr	esses	
Function	RAS	CAS	WE	^t R	^t C	
Standby	H	Х	Х	Х	Х	High Impedance
READ	L	L	Ι	ROW	COL	Data Out
WRITE (EARLY-WRITE)	L	L	L	ROW	COL	Data In
READ-WRITE	L	L	H→L→H	ROW	COL	Valid Data Out, Valid Data In
PAGE-MODE READ	L	H→L→H	Н	ROW	COL	Valid Data Out, Valid Data Out
PAGE-MODE WRITE	L	H→L→H	L	ROW	COL	Valid Data In, Valid Data In
PAGE-MODE READ-WRITE	L	H→L→H	H→L→H	ROW	COL	Valid Data Out, Valid Data In
RAS-ONLY REFRESH	L	Н	Х	ROW	n/a	High Impedance
HIDDEN REFRESH	L→H→L	L	Н	ROW	COL	Valid Data Out
CAS-BEFORE- RAS REFRESH	H→L	L	Х	Х	Х	High Impedance

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V to +7.0
Operating Temperature, TA(Ambient)0°C to +70°C
Storage Temperature (Ceramic)65°C to +150°C
Storage Temperature (Plastic)55°C to +150°C
Power Dissipation1V
Short Circuit Output Current50m/

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 2, 3, 4, 6) (0°C \leq T_{Δ} \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1
INPUT LEAKAGE Input leakage current, any input (0V \leq VIN \leq Vcc), all other pins not under test = 0V	lı	-10	10	μΑ	
OUTPUT LEAKAGE Output leakage current (Q is disabled, 0V ≤ Vout ≤ Vcc)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High (Logic 1) Voltage (lout = -5mA)	Vон	2.4		٧	4
Output Low (Logic 1) Voltage (IOUT = 5mA)	Vol		0.4	٧	'

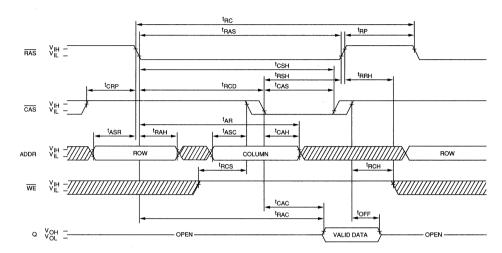
			MAX]	
PARAMETER/CONDITION	SYMBOL	-10	-12	-15	UNITS	NOTES
STANDBY CURRENT: TTL input levels (RAS = \overline{CAS} = VIH after 8 \overline{RAS} cycles)	lcc1	5	5	5	mA	
OPERATING CURRENT: Random READ/WRITE (RAS and $\overline{\text{CAS}}$ = Cycling; ${}^{\text{t}}\text{RC} = {}^{\text{t}}\text{RC}$ (MIN))	lcc2	55	55	45	mA	2
OPERATING CURRENT: PAGE MODE (RAS = VIL; CAS = Cycling: [†] PC = [†] PC (MIN))	lcc3	55	55	45	mA	2
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = V _{IH} ; ^t RC = ^t RC (MIN))	Icc4	40	40	35	mA	2
REFRESH CURRENT: \overline{CAS} -BEFORE- \overline{RAS} (\overline{RAS} and \overline{CAS} = Cycling; ${}^{t}RC$ = ${}^{t}RC$ (MIN))	lcc5	55	55	45	mA	2, 20

CAPACITANCE

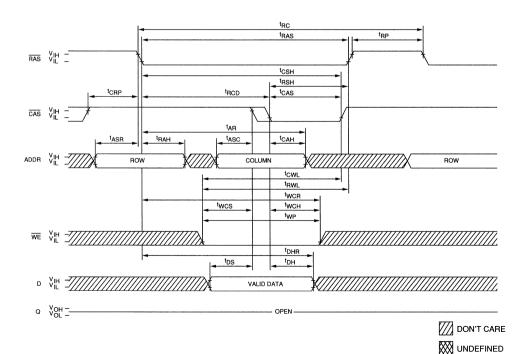
PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8, D	Ci1		5	pF	18
Input Capacitance: RAS, CAS, WE	C ₁₂		8	рF	18
Output Capacitance: Q	Co		7	pF	18

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes: 3, 4, 5, 10, 11, 17, 18) (0°C \leq T $_A$ \leq 70°C; Vcc = 5.0V \pm 10%)

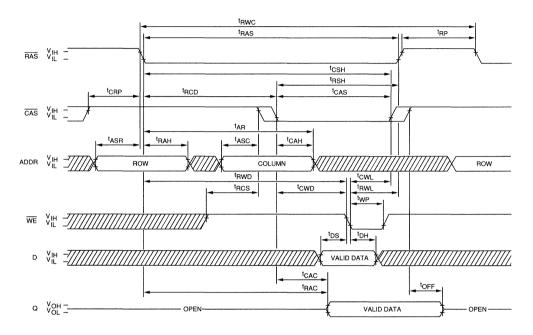
A.C. CHARACTERISTICS		-10		-12		-15	15		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	tRC	190		220		260		ns	6, 7
READ-MODIFY-WRITE cycle time	^t RWC	220		255		295		ns	
PAGE-MODE cycle time	^t PC	90		100		120		ns	6, 7
Access time from RAS	^t RAC		100		120		150	ns	7, 8
Access time from CAS	^t CAC		50		60		75	ns	7, 9
RAS pulse width	^t RAS	100	10,000	120	10,000	150	10,000	ns	
RAS hold time	^t RSH	50		60		75		ns	
RAS precharge time	^t RP	80		90		100		ns	
CAS pulse width	^t CAS	50	10,000	60	10,000	75	10,000	ns	
CAS hold time	tCSH	100		120		150		ns	
CAS precharge time	^t CPN	25		25		30		ns	19
CAS precharge time (PAGE MODE)	^t CP	30		30		35		ns	
RAS to CAS delay time	tRCD	25	50	25	60	25	75	ns	13
CAS to RAS setup time	tCRP	15		20		20		ns	
Row address setup time	†ASR	0		0		0		ns	
Row address hold time	^t RAH	15		15		15		ns	
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	20		20		25		ns	
Column address hold time	tAR.	70		80		100		ns	
referenced to RAS									
READ command setup time	tRCS	0		0		0		ns	
READ command hold time	tRCH	0		0		0		ns	14
referenced to CAS		1		1]				
READ command hold time	tRRH.	0		0		0		ns	
referenced to RAS									
Output buffer turn-off delay	^t OFF	0	30	0	30	0	35	ns	12
WE command setup time	tWCS	0		0		0		ns	1
WRITE command hold time	tWCH	35		40		45		ns	
WRITE command hold time	tWCR	85		100		120		ns	-
referenced to RAS									
WRITE command pulse width	tWP	35		40		45		ns	
WRITE command to RAS lead time	^t RWL	35		40		45		ns	
WRITE command to CAS lead time	tCWL	35		40		45		ns	
Data-in setup time	^t DS	0		0		0		ns	15
Data-in hold time	tDH	35		40		45		ns	15
Data-in hold time	^t DHR	85		100		120		ns	
referenced to RAS									
CAS to WE delay	tCMD	40		50		60		ns	16
RAS to WE delay	^t RWD	90		110		135		ns	16
Transition time (rise or fall)	t _T	3	100	3	100	3	100	ns	5, 17
Refresh period (256 cycles)	^t REF		4		4		4	ms	21
CAS hold time	^t CHR	20	1	25		30	1	ns	20
(CAS-BEFORE-RAS refresh)	toop	1.5	-		-	00			- 00
CAS setup time (CAS-BEFORE-RAS) refresh	[†] CSR	15		20		20		ns	20
RAS to CAS precharge time	^t RPC	0		0		0		ns	20


NOTES

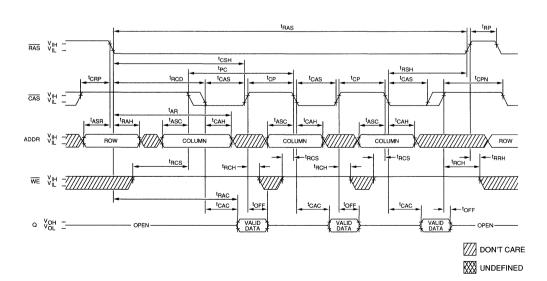
- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- An initial pause of 100μs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 4ms refresh requirement is exceeded.
- AC characteristics assume ^tT = 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a load equivalent to 2 TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 11. If $\overline{\text{CAS}} = V_{\text{IL}}$, data output may contain data from the last valid READ cycle.
- 12. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voн or Vol.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the


- specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. ${}^{t}RCH$ is referenced to the first rising edge of \overline{RAS} or \overline{CAS} .
- These parameters are referenced to CAS leading edge in early WRITE cycles and to the WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 16. tWCS, tCWD and tRWD are restrictive operating parameters in READ-WRITE and READ-MODIFY-WRITE cycles only. If tWCS ≥ tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If tCWD ≥ tCWD (MIN) and tRWD ≥ tRWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of Q (at access time and until CAS goes back to VIH) is indeterminate.
- 17. In addition to meeting the transition rate specification, all input signals must transit between Vih and Vil (or between Vil and Vih) in a monotonic manner.
- 18. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 19. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCP. Note 8 applies to determine valid data out.
- 20. On-chip refresh and address counters are enabled.
- 21. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$.

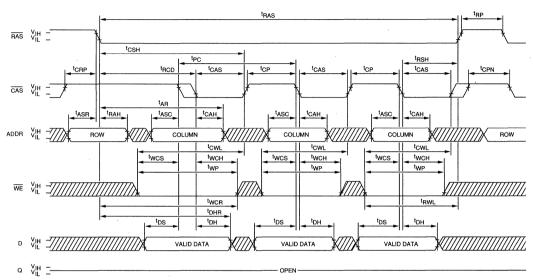
READ CYCLE



EARLY-WRITE CYCLE

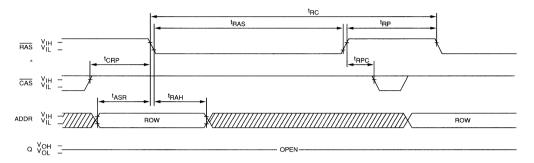


READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)

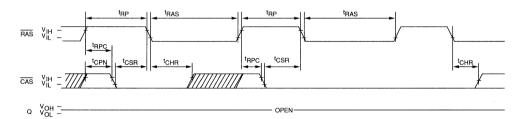


PAGE-MODE READ CYCLE

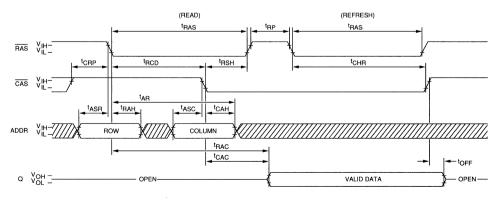
PAGE-MODE EARLY-WRITE CYCLE


DON'T CARE

W UNDEFINED


RAS-ONLY REFRESH CYCLE

(ADDR = $A_0 - A_7$; A_8 and $\overline{WE} = DON'T CARE$)


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_8 \text{ and } \overline{WE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{21}$

DON'T CARE

W UNDEFINED

DRAM

1 MEG x 1 DRAM

FAST PAGE MODE

FEATURES

OPTIONS

- Industry standard x1 pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- Low power, 3mW standby; 175mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 512-cycle refresh in 8ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN

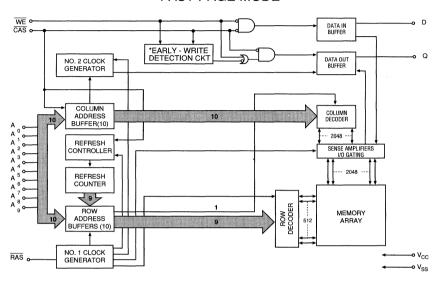
MARKING

Optional FAST PAGE MODE access cycle

Timing	
70ns access	- 7
80ns access	- 8
100ns access	-10
Packages	
Plastic DIP (300mil)	None
Ceramic DIP (300mil)	C
Plastic ZIP (350mil)	Z
Plastic SOJ (300mil)	DJ
Plastic TSOP (***)	VG
Operating Temperature, TA	
Commercial (0° C to + 70° C)	None
Industrial (-40°C to +85°C)	IT

GENERAL DESCRIPTION

The MT4C1024 is a randomly accessed solid-state memory containing 1,048,576 bits organized in a x1 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. RAS is used to latch the first 10 bits and CAS the latter 10 bits. A READ or WRITE cycle is selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of WE or CAS, whichever occurs last. If WE goes LOW prior to CAS going LOW, the output pin, data out (Q), remains open (High-Z) until the next CAS cycle. If WE goes LOW after data reaches the output pin, Q is activated and retains the selected cell data as long as CAS remains LOW (regardless of WE or RAS). This late WE pulse results in a READ-WRITE cycle.


PIN ASSIGNMENT (Top View) 18-Pin DIP 20-Pin ZIP (A-3, B-2) (C-2)A9* D 1 18 Vss 2 CAS Q 17 Q WE 2 Vss D RAS 3 16 CAS WE 6 RAS 8 TF** **TF 🛛 4 15 A9* NC 9 5 8 TF* NC 9 5 10 NC A0 11 5 12 A1 VC 15 5 1 16 A4 A5 17 5 1 18 A6 A7 19 5 20 A8 NC 9 NC A0 ☐5 14 A8 A1 ☐6 13 A7 12 A6 11 A5 A2 47 АЗ Д8 Vcc ☐9 10 A4 20-Pin SOJ (E-1)D [1 · WE [2 RAS [3 · TF [4 NC [5 26] Vss 25] Q 24] CAS A0 [9 A1 [10 A2 [11 A3 [12 Vcc [13 17 A7 *Address not used for RAS-ONLY refresh **TF = Test Function, Vin must not exceed Vcc+1V for normal operation ***Consult factory on availability of TSOP packages

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may be toggled by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HID-DEN REFRESH) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8ms, regardless of sequence. The CAS-BEFORE-RAS refresh will increment the refresh counter for automatic RAS addressing.

FUNCTIONAL BLOCK DIAGRAM FAST PAGE MODE

*NOTE: $\overline{\text{WE}}$ LOW prior to $\overline{\text{CAS}}$ LOW, EW detection CKT output is a HIGH (EARLY WRITE) $\overline{\text{CAS}}$ LOW prior to $\overline{\text{WE}}$ LOW, EW detection CKT output is a LOW (LATE WRITE)

TRUTH TABLE

					Add	ress	DA	TA
Function	Function		CAS	WE	^t R	tC	D (Data In)	Q (Data Out)
Standby		Н	Х	Х	Х	Х	Don't Care	High-Z
READ		L	L	Н	ROW	COL	Don't Care	Data Out
EARLY-WRITE		L	L	L	ROW	COL	Data In	High-Z
READ-WRITE		L	L	H→L	ROW	COL	Valid Data In	Valid Data Out
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	ROW	COL	Don't Care	Valid Data Out
READ	2nd Cycle	L	H→L	Н	n/a	COL	Don't Care	Valid Data Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	ROW	COL	Valid Data In	High-Z
EARLY-WRITE	2nd Cycle	L	H→L	L	n/a	COL	Valid Data In	High-Z
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	ROW	COL	Valid Data In	Valid Data Out
READ-WRITE	2nd Cycle	L	H→L	H→L	n/a	COL	Valid Data In	Valid Data Out
RAS-ONLY REFRES	SH	L	Н	Х	ROW	n/a	Don't Care	High-Z
HIDDEN	READ	L→H→L	L	н	ROW	COL	Don't Care	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Valid Data In	High-Z
CAS-BEFORE-RAS REFRESH			اـ	Х	Х	х	Don't Care	High-Z

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V to	o +7.0V
Storage Temperature (Ceramic)55°C to	+150°C
Storage Temperature (Plastic)55°C to	+150°C
Power Dissipation	600mW
Soldering Temperature (soldering 10 sec)	260°C
Short Circuit Output Current	50m A

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (Vcc = $5.0V \pm 10\%$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, All Inputs	VIH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-2.0	0.8	V	1, 25
INPUT LEAKAGE CURRENT any input $(0V \le V_{IN} \le 6.5V$, all other pins not under test = 0V)	lı .	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (Iout = -5mA)	Vон	2.4		V	
Output Low Voltage (Iout = -3IIIA)	Vol		0.4	٧	

			MAX		1	
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
STANDBY CURRENT: (TTL) $(\overline{RAS} = \overline{CAS} = V_{IH})$	Icc1	2	2	2	mA	
STANDBY CURRENT: (CMOS) $(\overline{RAS} = \overline{CAS} = Vcc -0.2V)$	Icc2	1	1	1	mA	24
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	Іссз	80	70	60	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL; CAS, Address Cycling: ^t PC = ^t PC (MIN))	Icc4	60	50	40	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling; CAS=VIH: RC = RC (MIN))	lcc5	80	70	60	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	Icc6	80	70	60	mA	3, 5

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A9, D	Cl1		5	pF	2
Input Capacitance: RAS, CAS, WE	Cl2		7	pF	2
Output Capacitance: Q	Со		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

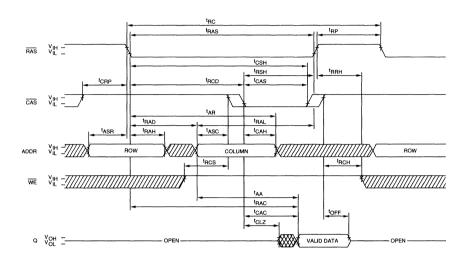
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc = $5.0V \pm 10\%$)

A.C. CHARACTERISTICS			-7		-8	-	10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		150		180		ns	
READ-WRITE cycle time	^t RWC	155		175		205		ns	
FAST-PAGE-MODE READ	^t PC	40		45		55		ns	
or WRITE cycle time									
FAST-PAGE-MODE READ-WRITE	^t PRWC	65		70		85		ns	
cycle time			1						
Access time from RAS	tRAC		70		80		100	ns	14
Access time from CAS	^t CAC		20		20		25	ns	15
Access time from column address	^t AA		35	, , , , , , , , , , , , , , , , , , , ,	40		50	ns	
Access time from CAS precharge	^t CPA		40		45		50	ns	
RAS pulse width	^t RAS	70	100,000	80	100,000	100	100,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	tRSH	20		20		25		ns	
RAS precharge time	^t RP	50		60		70		ns	
CAS pulse width	^t CAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	tCSH	70		80		100		ns	
CAS precharge time	^t CPN	10		10		15		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	tRCD	20	50	20	60	25	75	ns	17
CAS to RAS precharge time	^t CRP	5		5		5		ns	
Row address setup time	†ASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
RAS to column	^t RAD	15	35	15	40	20	50	ns	18
address delay time									
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	
Column address hold time	^t AR	55		60		70		ns	
(referenced to RAS)									
Column address to	†RAL	35		40		50		ns	
RAS lead time									
Read command setup time	tRCS	0		0		0		ns	
Read command hold time	†RCH	0		0		0		ns	19
(referenced to CAS)									
Read command hold time	^t RRH	0		0		0		ns	19
(referenced to RAS)									
CAS to output in Low-Z	^t CLZ	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	20
WE command setup time	tWCS	0		0		0		ns	21

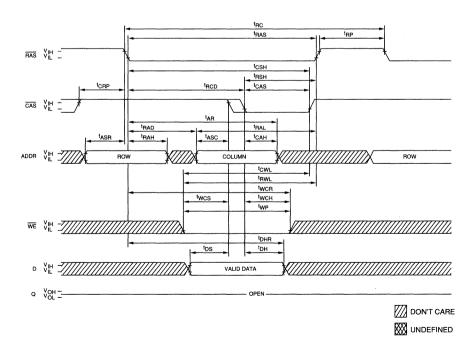
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc = 5.0V ± 10%)

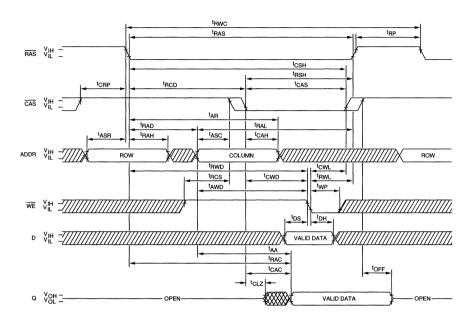
A.C. CHARACTERISTICS		-7			-8		10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command hold time	tWCH	15		15		20		ns	
Write command hold time (referenced to RAS)	tWCR	55		60		75		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	^t RWL	20		20		25		ns	
Write command to CAS lead time	^t CWL	20		20		25		ns	
Data-in setup time	tDS	0		0		0		ns	22
Data-in hold time	tDH	15		15		20		ns	22
Data-in hold time (referenced to RAS)	^t DHR	55		60		75		ns	
RAS to WE delay time	tRWD	70		80		100		ns	21
Column address to WE delay time	^t AWD	35		40		50		ns	21
CAS to WE delay time	tCWD	20		20		25		ns	21
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	9, 10
Refresh period (512-cycles)	tREF		8		8		8	ms	
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	^t CSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS refresh)	^t CHR	15		15		15		ns	5


NOTES

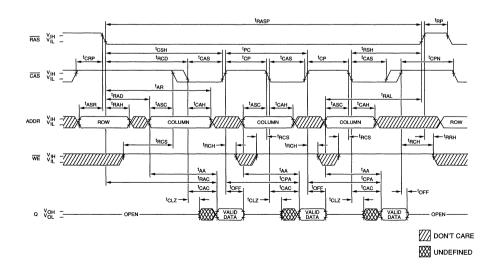
- 1. All voltages referenced to Vss.
- This parameter is sampled. Capacitance is calculated from the equation C = I^{dt}/dv with dv = 3V and VCC = 5V.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = VIH$, data output is high impedance.
- 12. If CAS = V_{IL}, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to 2 TTL gates and 100pF
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for tCPN.


- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE, and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the cycle is a LATE-WRITE and the state of Q is indeterminate. (at access time and until CAS goes back to VIH)
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, \overline{WE} = LOW.
- 24. All other inputs equal Vcc -0.2V.
- 25. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5V for a period of less than 20ns and the signal's total duration is 25ns or less; or a -0.3V signal of any duration is presented (DC).

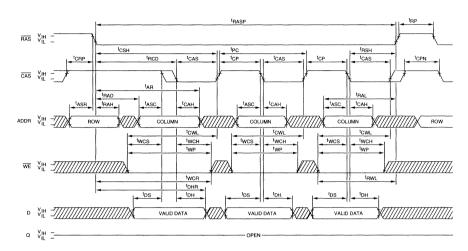
READ CYCLE



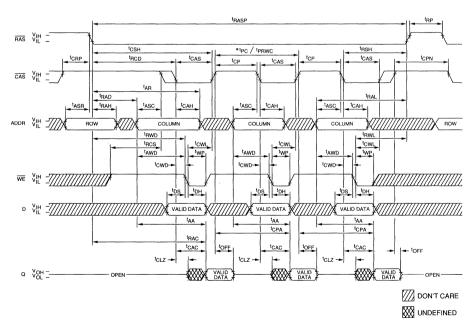
EARLY-WRITE CYCLE



READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)

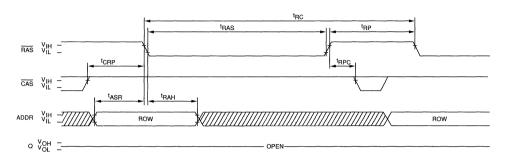


FAST-PAGE-MODE READ CYCLE

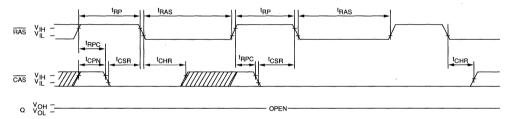


FAST-PAGE-MODE EARLY-WRITE CYCLE

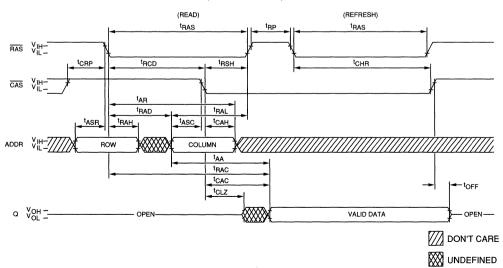
FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



^{*&}lt;sup>t</sup>PC is for LATE-WRITE only.

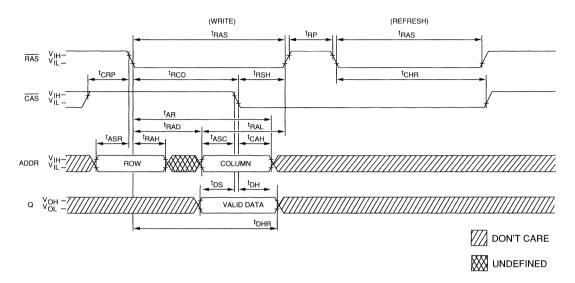

RAS-ONLY REFRESH CYCLE

 $(ADDR = A_0 - A_8; A_9 \text{ and } \overline{WE} = DONT \text{ CARE})$


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_9 \text{ and } \overline{WE} = DON'T \text{ CARE})$

HIDDEN REFRESH CYCLE


 $(\overline{WE} = HIGH)^{23}$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = LOW)$

DRAM

1 MEG x 1 DRAM

STATIC COLUMN

FEATURES

- Industry standard x1 pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- Low power, 3mW standby; 175mW active, typical
- · All inputs, outputs and clocks are fully TTL and CMOS compatible
- 512-cycle refresh in 8ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and
- Optional STATIC COLUMN access cycle

OPTIONS	MARKING
Timing	
70ns access	- 7
80ns access	- 8
100ns access	-10
• Packages	
Plastic DIP (300mil)	None
Ceramic DIP (300mil)	C
Plastic ZIP (350mil)	Z
Plastic SOJ (300mil)	DJ
Plastic TSOP (***)	VG
Operating Temperature, TA	
Commercial (0°C to +70°C)	None
Industrial (-40°C to +85°C)	IT

GENERAL DESCRIPTION

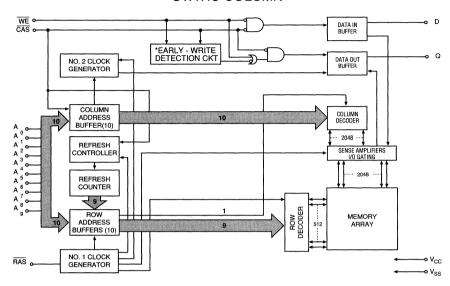
The MT4C1026 is a randomly accessed solid-state memory containing 1,048,576 bits organized in a x1 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. \overline{RAS} is used to latch the first 10 bits and CAS the latter 10 bits. A READ or WRITE cycle is selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of WE or CAS, whichever occurs last. If WE goes LOW prior to CAS going LOW, the output pin, data out (Q) remains open (High-Z) until the next CAS cycle. If WE goes LOW after data reaches the output pin, Q is activated and retains the selected cell data as long as CAS remains LOW (regardless of WE or RAS). This late WE pulse results in a READ-WRITE cycle.

PIN ASSIGNMENT (Top View)

18-Pin DIP (A-3, B-2)	20-Pin ZIP (C-2)
	A9* 1 5 2 CAS Q 3 5 4 Vss D 5 5 6 6 WE RAS 7 7 6 10 NC A0 11 7 1 12 A1 A2 13 7 14 A3 Vcc 15 7 16 16 A4 A5 17 17 16 18 A6 A7 19 18 A6 A7 19 19 10 20 A8 n SOJ
D [1 • WE I 2 FAS I 3 • **TF I 4 NC I 5	26 J Vss 25 J C 25 J C 37 J NC 22 J A9* 18 J A8 17 J A7 16 J A6 15 J A5

*Address not used for RAS-ONLY refresh

**TF = Test Function, Vin must not exceed Vcc+1V for normal operation


***Consult factory on availability of TSOP packages

STATIC COLUMN operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A9) defined page boundary. The STATIC COLUMN cycle is always initiated with a row address strobed-in by RAS followed by a column address strobedin by CAS. CAS may be toggled by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the STATIC COLUMN operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HID-DEN REFRESH) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8ms, regardless of sequence. The CAS-BEFORE-RAS refresh will increment the refresh counter for automatic RAS addressing.

FUNCTIONAL BLOCK DIAGRAM STATIC COLUMN

*NOTE: $\overline{\text{WE}}$ LOW prior to $\overline{\text{CAS}}$ LOW, EW detection CKT output is a HIGH (EARLY WRITE) $\overline{\text{CAS}}$ LOW prior to $\overline{\text{WE}}$ LOW, EW detection CKT output is a LOW (LATE WRITE)

TRUTH TABLE

					Addı	ress	DA.	TA	
Function		RAS	CAS	WE	^t R	^t C	D (Data In)	Q (Data Out)	
Standby		Н	Х	Х	Х	Х	Don't Care	High-Z	
READ		L	L	Н	ROW	COL	Don't Care	Data Out	
EARLY-WRITE		L	L	Ļ	ROW	COL	Data In	High-Z	
READ-WRITE		L	L	H→L	ROW	COL	Valid Data In	Valid Data Out	
STATIC COLUMN	1st Cycle	L	L	Н	ROW	COL	Don't Care	Valid Data Out	
READ	2nd Cycle	L	L	Н	n/a	COL	Don't Care	Valid Data Out	
STATIC COLUMN	1st Cycle	L	L	L	ROW	COL	Valid Data In	High-Z	
EARLY-WRITE	2nd Cycle	L	L	H→L	n/a	COL	Valid Data In	High-Z	
STATIC COLUMN	1st Cycle	L	L	H→L	ROW	COL	Valid Data In	Valid Data Out	
READ-WRITE	2nd Cycle	L	L	H→L	n/a	COL	Valid Data In	Valid Data Out	
RAS-ONLY REFRE	SH	L	Н	Х	ROW	n/a	Don't Care	High-Z	
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Don't Care	Valid Data Out	
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Valid Data In	High-Z	
CAS-BEFORE-RAS REFRESH	CAS-BEFORE-RAS REFRESH		L	Х	X	Х	Don't Care	High-Z	

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Storage Temperature (Ceramic)	55°C to +150°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	600mW
Soldering Temperature (soldering 10 s	sec)260°C
Short Circuit Output Current	50m A

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) ($Vcc = 5.0V \pm 10\%$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-2.0	0.8	٧	1, 25
INPUT LEAKAGE CURRENT any input $(0V \le V_{IN} \le 6.5V)$, all other pins not under test = 0V)	h	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS	Vон	2.4		V	
Output High Voltage (Ιουτ = -5mA) Output Low Voltage (Ιουτ = 4.2mA)	Vol		0.4	V	

			MAX]	
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
STANDBY CURRENT: (TTL) $(\overline{RAS} = \overline{CAS} = V_{IH})$	Icc1	2	2	2	mA	
STANDBY CURRENT: (CMOS) $(\overline{RAS} = \overline{CAS} = Vcc - 0.2V)$	lcc2	1	1	1	mA	24
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	Іссз	80	70	60	mA	3, 4
OPERATING CURRENT: STATIC COLUMN Average power supply current (RAS = VIL; CAS, Address Cycling: ^t PC = ^t PC (MIN))	Icc4	60	50	40	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling; CAS = Vih: ¹RC = ¹RC (MIN))	lcc5	80	70	60	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	Icc6	80	70	60	mA	3, 5

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A9, D	C _{I1}		5	pF	2
Input Capacitance: RAS, CAS, WE	Cl2		7	pF	2
Output Capacitance: Q	Со		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

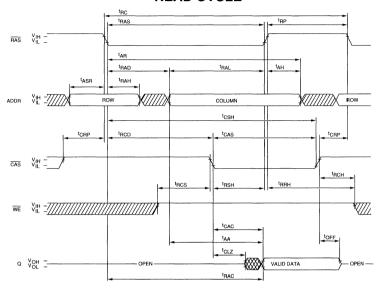
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = 5.0V \pm 10\%$)

A.C. CHARACTERISTICS			-7		-8	-	·10	<u> </u>	
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	†RC	130		150		180		ns	
READ-WRITE cycle time	^t RWC	155		175		205		ns	
STATIC-COLUMN READ	tSC	40		45		55		ns	
or WRITE cycle time			1 1						
STATIC-COLUMN READ-WRITE	tSRMC	70		80		100		ns	
cycle time									
Access time from RAS	^t RAC		70		80		100	ns	14
Access time from CAS	†CAC		20		20		25	ns	15
Access time from column address	^t AA		35		40		50	ns	
Access time from CAS precharge	^t CPA		40		45		50	ns	
RAS pulse width	†RAS	70	100,000	80	100,000	100	100,000	ns	
RAS pulse width (STATIC COLUMN)	†RASC	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	^t RSH	20		20		25		ns	
RAS precharge time	tRP	50		60		70		ns	
CAS pulse width	†CAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	tCSH	70		80		100		ns	
CAS precharge time	[†] CPN	10		10		15		ns	16
CAS precharge time (STATIC COLUMN)	^t CP	10		10		10		ns	
RAS to CAS delay time	†RCD	20	50	20	60	25	75	ns	17
CAS to RAS precharge time	¹ CRP	5		5		5		ns	
Row address setup time	†ASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
RAS to column	^t RAD	15	35	15	40	20	50	ns	18
address delay time									
Column address setup time	tASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	
Column address hold time	tAR	55		60		70		ns	
(referenced to RAS)									
Column address to	^t RAL	35		40		50		ns	
RAS lead time			1						
Read command setup time	tRCS	0		0		0		ns	
Read command hold time	^t RCH	0		0		0		ns	19
(referenced to CAS)									
Read command hold time	^t RRH	0		0		0		ns	19
(referenced to RAS)									
CAS to output in Low-Z	[†] CLZ	0		0		0		ns	
Output buffer turn-off delay	†OFF	0	20	0	20	0	20	ns	20
WE command setup time	¹WCS	0		0		0		ns	21

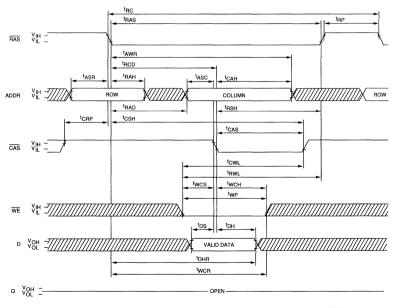
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = 5.0V \pm 10\%$)

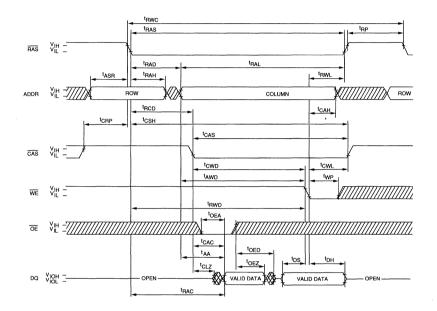
A.C. CHARACTERISTICS		-	7		8		10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN -	MAX	UNITS	NOTES
Write command hold time	tWCH	15		15		20		ns	
Write command hold time (referenced to RAS)	tWCR	55		60		75		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	^t RWL	20		20		25		ns	
Write command to CAS lead time	^t CWL	20		20		25		ns	
Data-in setup time	^t DS	0		0		0		ns	22
Data-in hold time	^t DH	15		15		20		ns	22
Data-in hold time (referenced to RAS)	^t DHR	55		60		75		ns	
RAS to WE delay time	tRWD	70		80		100		ns	21
Column address to WE delay time	tAWD	35		40		50		ns	21
CAS to WE delay time	tCWD	20		20		25		ns	21
Transition time (rise or fall)	tΤ	3	50	3	50	3	50	ns	9, 10
Refresh period (512 cycles)	^t REF		8		8		8	ms	
RAS to CAS precharge time	tRPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	tCSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS refresh)	tCHR	15		15		15		ns	5
Write inactive time	tWI	10		10		10		ns	
Last WRITE to column address delay time	tLWAD	20	30	20	35	25	45	ns	
Last WRITE to column address hold time	^t AHLW	65		75		95		ns	
RAS hold time referenced to OE	^t ROH	10		10		10		ns	
Output data hold time from column address	^t AOH	5		5		5		ns	
Output data enable from WRITE	tOW	^t AA		†AA		^t AA		ns	
Access time from last WRITE	tALW	65		75		95		ns	
Column address hold time referenced to RAS HIGH	^t AH	5		5		10		ns	
CAS pulse width in STATIC-COLUMN mode	tCSC	^t CAS		†CAS		t _{CAS}		ns	
Output data hold from WRITE	tWOH	0		0		0		ns	I

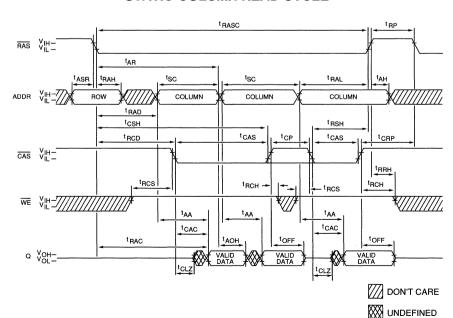

NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/dv$ with dv = 3V and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates.
 Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VII. and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- If CAS = VIL, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to 2 TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCPN.

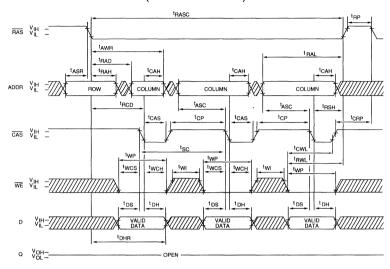

- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. ¹WCS, ¹RWD, ¹AWD and ¹CWD are restrictive operating parameters in LATE-WRITE, and READ-MODIFY-WRITE cycles only. If ¹WCS ≥ ¹WCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ¹RWD ≥ ¹RWD (MIN), ¹AWD ≥ ¹AWD (MIN) and ¹CWD ≥ ¹CWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the cycle is a LATE-WRITE and the state of Q is indeterminate. (at access time and until CAS goes back to VIH)
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$.
- 24. All other inputs equal Vcc -0.2V.
- 25. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5V for a period of less than 20ns and the signal's total duration is 25ns or less; or a -0.3V signal of any duration is presented (DC).

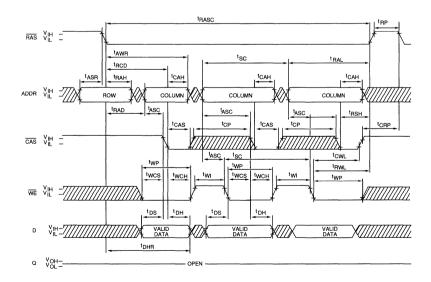
READ CYCLE


EARLY-WRITE CYCLE


DON'T CARE

READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)

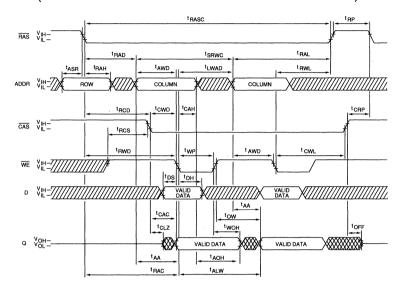

STATIC-COLUMN READ CYCLE


STATIC-COLUMN EARLY-WRITE CYCLE

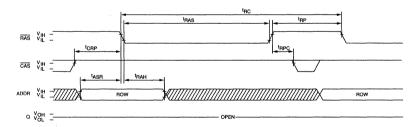
(CAS Controlled)

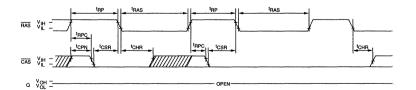
STATIC-COLUMN EARLY-WRITE CYCLE

(WE Controlled)



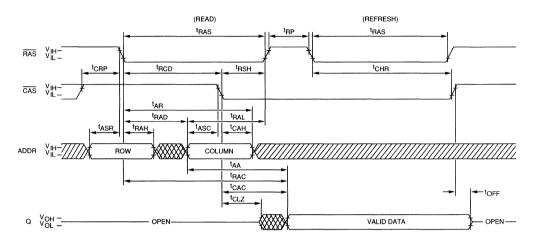
DON'T CARE



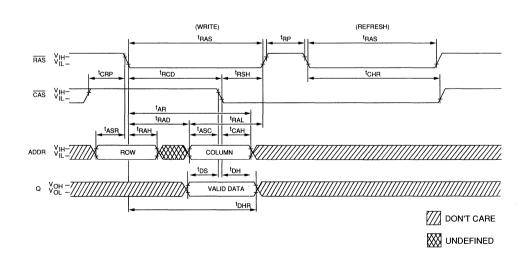

STATIC-COLUMN READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)

$\overline{\text{RAS}}\text{-}\text{ONLY REFRESH CYCLE}$ (ADDR = A₀ - A₈; A₀ and $\overline{\text{WE}}$ = DON'T CARE)

CAS-BEFORE-RAS REFRESH CYCLE $(A_0 - A_0 \text{ and } \overline{WE} = \text{DON'T CARE})$



DON'T CARE
UNDEFINED



HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{23}$

HIDDEN REFRESH CYCLE (WE = LOW)

DRAM

1 MEG x 1 DRAM

LOW POWER, FAST PAGE MODE

FEATURES

OPTIONS

- Industry standard x1 pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- Low power, 1.0mW standby; 150mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 512-cycle refresh in 64ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- Optional FAST PAGE MODE access cycle
- Low CMOS STANDBY CURRENT, 200μA maximum

MARKING

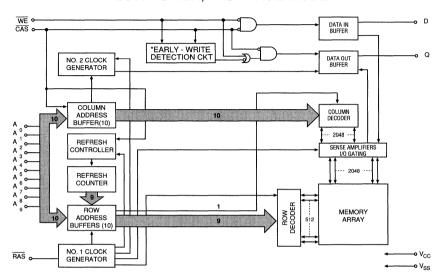
Timing	
70ns access	- 7
80ns access	- 8
100ns access	-10
• Packages	
Plastic DIP (300mil)	None
Ceramic DIP (300mil)	C
Plastic ZIP (350mil)	Z
Plastic SOJ (300mil)	DJ
Plastic TSOP (***)	VG
• Operating Temperature, TA	
Commercial (0°C to +70°C)	None
Industrial (- 40° C to + 85° C)	IT

GENERAL DESCRIPTION

The MT4C1027 is a randomly accessed solid-state memory containing 1,048,576 bits organized in a x1 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. \overline{RAS} is used to latch the first 10 bits and CAS the latter 10 bits. A READ or WRITE cycle is selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of WE or CAS, whichever occurs last. If WE goes LOW prior to CAS going LOW, the output pin, data out (Q), remains open (High-Z) until the next CAS cycle. If WE goes LOW after data reaches the output pin, Q is activated and retains the selected cell data as long as CAS remains LOW (regardless of $\overline{\text{WE}}$ or $\overline{\text{RAS}}$). This late $\overline{\text{WE}}$ pulse results in a READ-WRITE cycle.

18-Pin DIP (A-3, B-2)	MENT (Top View) 20-Pin ZIP (C-2)
	A9* 1
D (1 WE 12 FAS 13 NC 15 S	25 1 Q 24 1 CAS 23 1 NC 22 1 A9*
A0 [] 9 A1 [] 11 A2 [] 1 A3 [] 1: Vcc [] 1:	1 16 🛘 A6 2 15 🕽 A5

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may be toggled by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.


**TF = Test Function, VIN must not exceed Vcc+1V for normal operation

***Consult factory on availability of TSOP packages

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HID-DEN REFRESH) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 64ms, regardless of sequence. The CAS-BEFORE-RAS refresh will increment the refresh counter for automatic RAS addressing.

FUNCTIONAL BLOCK DIAGRAM LOW POWER, FAST PAGE MODE

*NOTE: WE LOW prior to CAS LOW, EW detection CKT output is a HIGH (EARLY WRITE) CAS LOW prior to WE LOW, EW detection CKT output is a LOW (LATE WRITE)

TRUTH TABLE

					Add	ress	DA	TA
Function		RAS	CAS	WE	^t R	tC.	D (Data In)	Q (Data Out)
Standby		Н	Х	Х	Х	Х	Don't Care	High-Z
READ		L	L	Н	ROW	COL	Don't Care	Data Out
EARLY-WRITE		L	L	L	ROW	COL	Data In	High-Z
READ-WRITE		L	L	H→L	ROW	COL	Valid Data In	Valid Data Out
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	ROW	COL	Don't Care	Valid Data Out
READ	2nd Cycle	L	H→L	Н	n/a	COL	Don't Care	Valid Data Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	ROW	COL	Valid Data In	High-Z
EARLY-WRITE	2nd Cycle	L	H→L	L	n/a	COL	Valid Data In	High-Z
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	ROW	COL	Valid Data In	Valid Data Out
READ-WRITE	2nd Cycle	L	H→L	H→L	n/a	COL	Valid Data In	Valid Data Out
RAS-ONLY REFRES	SH	L	Н	Х	ROW	n/a	Don't Care	High-Z
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Don't Care	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Valid Data In	High-Z
CAS-BEFORE-RAS REFRESH		H→L	L	х	х	Х	Don't Care	High-Z

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC supply relative to Vss1.0V to +7.0V
Storage Temperature (Ceramic)55°C to +150°C
Storage Temperature (Plastic)55°C to +150°C
Power Dissipation600mW
Soldering Temperature (soldering 10 sec)260°C
Short Circuit Output Current50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) ($Vcc = 5.0V \pm 10\%$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-2.0	0.8	V	1, 25
INPUT LEAKAGE CURRENT any input (0V \leq VIN \leq 6.5V, all other pins not under test = 0V)	lı	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (lour - 5m4)	Vон	2.4		V	
Output High Voltage (Ioυτ = -5mA) Output Low Voltage (Iουτ = 4.2mA)	Vol		0.4	V	

			MAX			
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	Icc1	2	2	2	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Vcc -0.2V)	Icc2	1	1	1	mA	24
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Single Address Cycling: ^t RC = ^t RC (MIN))	lcc3	75	65	60	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL; CAS, Address Cycling: [†] PC = [†] PC (MIN))	Icc4	55	45	40	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling; CAS=V _{IH} : ^t RC = ^t RC (MIN))	lcc5	200	200	200	μА	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: tRC = tRC (MIN))	Icc6	75	65	60	mA	3, 5
BATTERY BACKUP REFRESH CURRENT Average power supply current during battery backup refresh: CAS = 0.2V or CAS-BEFORE-RAS cycling; RAS = ^t RAS (MIN) of 1μs; WE, A0-A9 and D in = Vcc -0.2V or 0.2V (D in may be left OPEN), ^t RC = 125μs (512 rows at 125μs = 64ms)	lcc7	200	200	200	μА	5

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A9, D	Cl1		5	pF	2
Input Capacitance: RAS, CAS, WE	CI2		7	pF	2
Output Capacitance: Q	Со		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

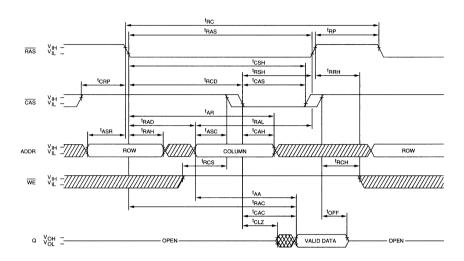
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc = 5.0V ± 10%)

A.C. CHARACTERISTICS			-7		-8	-	10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		150		180		ns	
READ-WRITE cycle time	†RWC	155		175		205		ns	
FAST-PAGE-MODE READ	^t PC	40		45		55		ns	
or WRITE cycle time									
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	65		70		85		ns	
Access time from RAS	†RAC		70		80		100	ns	14
Access time from CAS	†CAC		20	***************************************	20		25	ns	15
Access time from column address	^t AA		35		40		50	ns	
Access time from CAS precharge	^t CPA		40	***************************************	45		50	ns	
RAS pulse width	tRAS	70	100,000	80	100,000	100	100,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	†RSH	20		20		25		ns	
RAS precharge time	^t RP	50		60		70		ns	
CAS pulse width	†CAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	^t CSH	70		80		100		ns	
CAS precharge time	^t CPN	10		10		15		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	tRCD	20	50	20	60	25	75	ns	17
CAS to RAS precharge time	^t CRP	5		5		5		ns	
Row address setup time	tASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
RAS to column- address delay time	^t RAD	15	35	15	40	20	50	ns	18
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	
Column address hold time (referenced to RAS)	^t AR	55		60		70		ns	
Column address to RAS lead time	^t RAL	35		40		50		ns	
Read command setup time	tRCS	0		0		0		ns	
Read command hold time (referenced to CAS)	tRCH	0		0		0		ns	19
Read command hold time (referenced to RAS)	tRRH	0		0		0		ns	19
CAS to output in Low-Z	^t CLZ	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	20
WE command setup time	twcs	0		0	1	0		ns	21

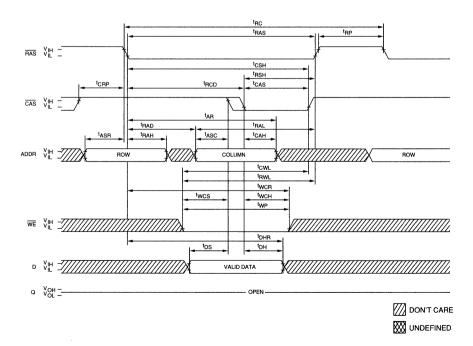
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc = $5.0V \pm 10\%$)

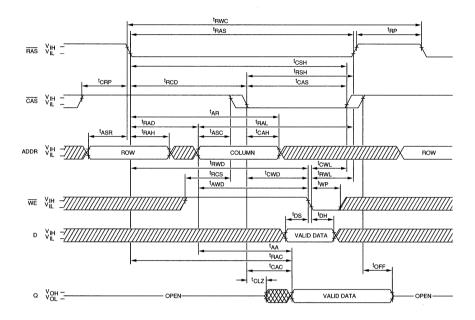
A.C. CHARACTERISTICS		-7		-8		-10			
PARAMETER	SYM	MiN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command hold time	tWCH	15		15		20		ns	
Write command hold time (referenced to RAS)	tWCR	55		60		75		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	^t RWL	20		20		25		ns	
Write command to CAS lead time	tCWL	20		20		25		ns	
Data-in setup time	tDS	0		0		0		ns	22
Data-in hold time	^t DH	15		15		20		ns	22
Data-in hold time (referenced to RAS)	^t DHR	55		60		75		ns	
RAS to WE delay time	tRWD	70		80		100		ns	21
Column address to WE delay time	tAWD	35		40		50		ns	21
CAS to WE delay time	tCWD	20		20		25		ns	21
Transition time (rise or fall)	^t T	3	50	3	50	3	50	ns	9, 10
Refresh period (512-cycles)	tREF.		64		64		64	ms	
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	tCSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS refresh)	^t CHR	15		15		15		ns	5


NOTES

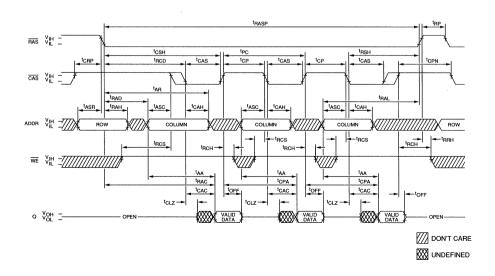
- 1. All voltages referenced to Vss.
- This parameter is sampled. Capacitance is calculated from the equation C = I^{dt}/_{dv} with dv = 3V and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 64ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between V_{IL} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 12. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to 2 TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCPN.


- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. ¹WCS, ¹RWD, ¹AWD and ¹CWD are restrictive operating parameters in LATE-WRITE, and READ-MODIFY-WRITE cycles only. If ¹WCS ≥ ¹WCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ¹RWD ≥ ¹RWD (MIN), ¹AWD ≥ ¹AWD (MIN) and ¹CWD ≥ ¹CWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the cycle is a LATE-WRITE and the state of Q is indeterminate. (at access time and until CAS goes back to VIH)
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$.
- 24. All other inputs equal Vcc -02V.
- 25. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5V for a period of less than 20ns and the signal's total duration is 25ns or less; or a -0.3V signal of any duration is presented (DC).

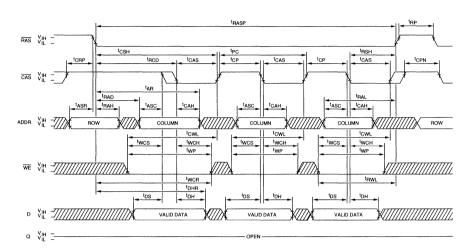
READ CYCLE



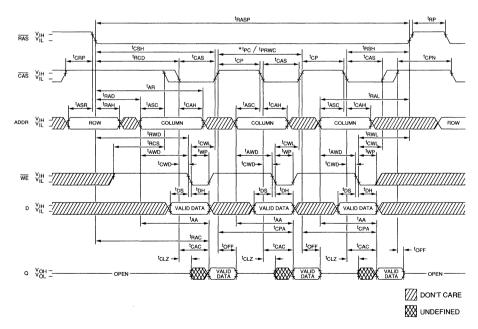
EARLY-WRITE CYCLE



READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)

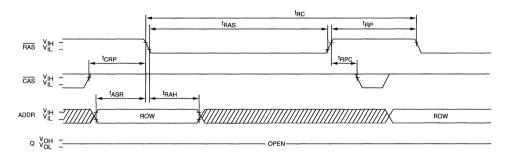


FAST-PAGE-MODE READ CYCLE

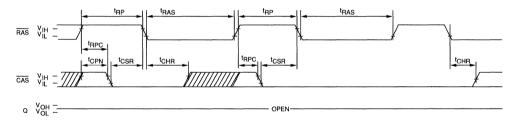


FAST-PAGE-MODE EARLY-WRITE CYCLE

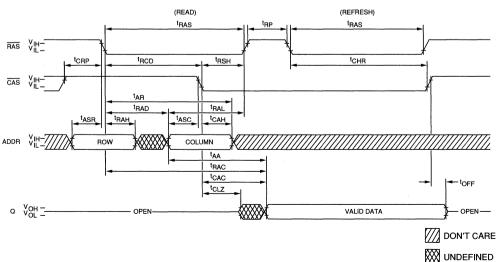
FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



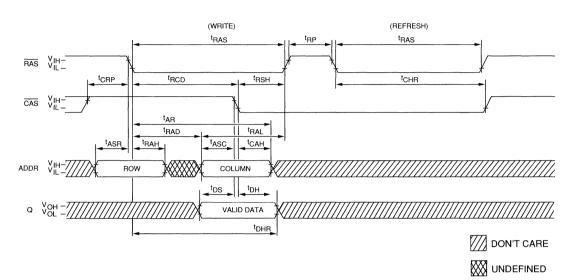
^{*}tPC is for LATE-WRITE only.


RAS-ONLY REFRESH CYCLE

(ADDR = $A_0 - A_8$; A_9 and \overline{WE} = DON'T CARE)


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_0)$ and $\overline{WE} = DON'T CARE)$


HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{23}$

HIDDEN REFRESH CYCLE (WE = LOW)

DRAM

4 MEG x 1 DRAM

FAST PAGE MODE

FEATURES

- Industry standard x1 pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- Low power, 3mW standby; 225mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 1024-cycle refresh distributed across 16ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR), and HIDDEN
- FAST PAGE MODE access cycle
- 300 and 350 mil wide SOJ packages
- Two CBR options: CBR with WE a don't care (1 Meg compatible) and CBR with WE a HIGH (JEDEC test mode capable via WCBR)

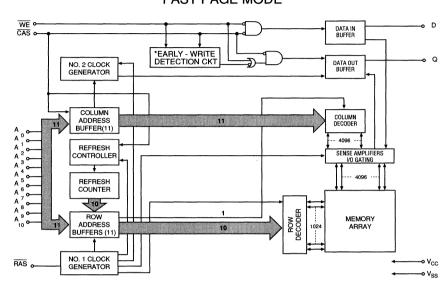
G

MARKIN
-6
-7
-8
CN
С
Z
DJ
DJW
TG
None
J

GENERAL DESCRIPTION

The MT4C1004 is a randomly accessed solid-state memory containing 4,194,304 bits organized in a x1 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 22 address bits, which are entered 11 bits (A0-A10) at a time. \overline{RAS} is used to latch the first 11 bits and \overline{CAS} the latter 11 bits. A READ or WRITE cycle is selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READmode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin remains open (High-Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after

PIN ASSIGNMENT (Top View)							
18-Pin CDIP (B-2, B-3)	20-Pin ZIP (C-3)						
D [1 18] Vss WE 2 17 Q RAS 3 16 CAS *A10 4 15 DA9 A0 5 14 DA8 A1 6 13 DA7 A2 7 12 DA6 A3 8 11 DA5 Vcc 9 10 DA4	A9 1 2 CAS Q 3 2 4 Vss D 5 2 6 6 WE RAS 7 7 8 A10' NC 9 7 10 NC A0 11 7 12 A1 A2 13 7 14 A3 Vcc 15 2 16 A4 A5 17 7 18 A6 A7 19 7 18 A6 A7 19 7 18 A6 CE-1, E-2)						
	D						
*Address not used for RAS-ONLY refresh **Consult factory on availability of TSOP packages							


data reaches the output pin, data out (Q) is activated and retains the selected cell data as long as \overline{CAS} remains LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-WRITE cycle.

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A10) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HID-DEN REFRESH) so that all 1024 combinations of RAS addresses (A0-A9) are executed at least every 16ms, regardless of sequence. The CAS-BEFORE-RAS cycle will invoke the refresh counter for automatic RAS addressing.

FUNCTIONAL BLOCK DIAGRAM FAST PAGE MODE

*NOTE: $\overline{\text{WE}}$ LOW prior to $\overline{\text{CAS}}$ LOW, EW detection CKT output is a HIGH (EARLY WRITE) $\overline{\text{CAS}}$ LOW prior to $\overline{\text{WE}}$ LOW, EW detection CKT output is a LOW (LATE WRITE)

TRUTH TABLE

					Add	ress	DA	TA	
Function		RAS	CAS	WE	^t R	tC	D (Data In)	Q (Data Out)	
Standby		Н	Х	Х	Х	Х	Don't Care	High Impedance	
READ		L	L	Н	ROW	COL	Don't Care	Data Out	
EARLY-WRITE		L	L	L	ROW	COL	Data In	High Impedance	
READ-WRITE		L	L	H→L	ROW	COL	Valid Data In	Valid Data Out	
FAST-PAGE-	1st Cycle	L	H→L	Н	ROW	COL	Don't Care	Valid Data Out	
MODE READ	2nd Cycle	L	H→L	Н	n/a	COL	Don't Care	Valid Data Out	
FAST-PAGE-	1st Cycle	L	H→L	L	ROW	COL	Valid Data In	High Impedance	
MODE WRITE	2nd Cycle	L	H→L	L	n/a	COL	Valid Data In	High Impedance	
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	ROW	COL	Valid Data In	Valid Data Out	
READ-WRITE	2nd Cycle	L	H→L	H→L	n/a	COL	Válid Data In	Valid Data Out	
RAS-ONLY REFRES	SH	L	Н	Х	ROW	n/a	Don't Care	High Impedance	
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Don't Care	Valid Data Out	
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Valid Data In	High Impedance	
CAS-BEFORE-	Standard	H→L	L	Х	Х	Х	Don't Care	High Impedance	
RAS REFRESH	"J" Option	H→L	L	Н	Х	X	Don't Care	High Impedance	

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Operating Temperature, TA(Ambient)	0°C to +70°C
Storage Temperature (Ceramic)	-65°C to +150°C
Storage Temperature (Plastic)	-55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0° C $\leq T_{\Delta} \leq 70^{\circ}$ C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1
INPUT LEAKAGE CURRENT any input (0V \leq VIN \leq 6.5V, all other pins not under test = 0V)	lı	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS	Vон	2.4		٧	
Output High Voltage (Iουτ = -5mA) Output Low Voltage (Ιουτ = 4.2mA)	Vol		0.4	V	

			MAX]	
PARAMETER/CONDITION	SYMBOL	-6	-7	-8	UNITS	NOTES
STANDBY CURRENT: (TTL) $(\overline{RAS} = \overline{CAS} = V_{H})$	Icc1	2	2	2	mA	
STANDBY CURRENT: (CMOS) $(\overline{RAS} = \overline{CAS} = Vcc - 0.2V)$	lcc2	1	1	1	mA	24
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	Іссз	110	100	90	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC (MIN))	Icc4	80	70	60	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=VIH: ^t RC = ^t RC (MIN))	Icc5	110	100	90	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: [†] RC = [†] RC (MIN))	Icc6	110	100	90	mA	3

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A10, D	C ₁₁		5	pF	2
Input Capacitance: RAS, CAS, WE	Cl2		7	pF	2
Output Capacitance: Q	Со		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

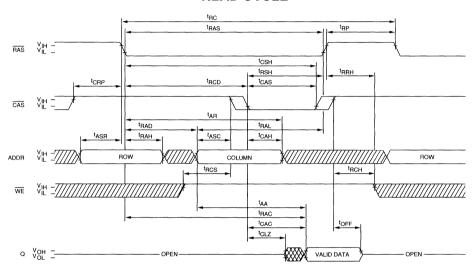
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = 5.0V \pm 10\%$)

A.C. CHARACTERISTICS	-6		-7			-8			
PARAMETER	SYM	MIN	MAX	MiN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	110		130		150		ns	
READ-WRITE cycle time	^t RWC	135		155		175		ns	
FAST-PAGE-MODE	^t PC	40		40		45		ns	
READ or WRITE cycle time									
FAST-PAGE-MODE	^t PRWC	60		65		70		ns	
READ-WRITE cycle time									
Access time from RAS	†RAC		60		70		80	ns	14
Access time from CAS	†CAC		15		20		20	ns	15
Access time from column address	^t AA		30		35		40	ns	
Access time from CAS precharge	^t CPA		40		40		45	ns	25
RAS pulse width	tRAS	60	100,00	70	100,00	80	100,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	60	100,00	70	100,00	80	100,000	ns	
RAS hold time	^t RSH	15		20		20		ns	
RAS precharge time	^t RP	45		50		60		ns	
CAS pulse width	†CAS	15	100,000	20	100,000	20	100,000	ns	
CAS hold time	^t CSH	60		70		80		ns	
CAS precharge time	^t CPN	10		10		10		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	†RCD	15	45	20	50	20	60	ns	17
CAS to RAS precharge time	^t CRP	5		5		5		ns	
Row address setup time	†ASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		10		ns	
RAS to column	†RAD	15	30	15	35	15	40	ns	18
address delay time									
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	10		15		15		ns	
Column address hold time (referenced to RAS)	^t AR	50		55		60		ns	
Column address to RAS lead time	†RAL	30		35		40		ns	
Read command setup time	tRCS	0		0		0		ns	
Read command hold time (referenced to CAS)	tRCH	0		0		0		ns	19
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	†CLZ	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	20
WE command setup time	twcs	0	1	0		0		ns	21

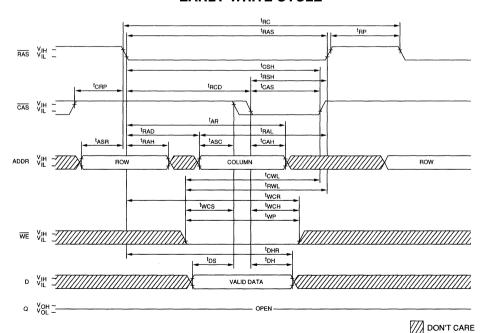
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = 5.0V \pm 10\%$)

A.C. CHARACTERISTICS		-	6		-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command hold time	†WCH	10		15		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		60		ns	
Write command pulse width	tWP	10		15		15		ns	
Write command to RAS lead time	tRWL	15		20		20		ns	
Write command to CAS lead time	tCWL	15		20		20		ns	
Data-in setup time	tDS	0		0		0		ns	22
Data-in hold time	^t DH	10		15		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		ns	
RAS to WE delay time	^t RWD	60		70		80		ns	21
Column address to WE delay time	tAWD	30		35		40		ns	21
CAS to WE delay time	tCWD	15		15		20		ns	21
Transition time (rise or fall)	^t T	3	50	3	50	3	50	ns	9, 10
Refresh period (1024 cycles)	†REF		16		16		16	ms	
RAS to CAS precharge time	tRPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	^t CSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS refresh)	^t CHR	15		15		15		ns	5
WE hold time (CAS-BEFORE-RAS refresh)	^t WRH	10		10		10		ns	24
WE setup time (CAS-BEFORE-RAS refresh)	†WRP	10		10		10		ns	24
WE hold time (WCBR test cycle)	^t WTH	10		10		10		ns	24
WE setup time (WCBR test cycle)	tWTS	10		10		10		ns	24

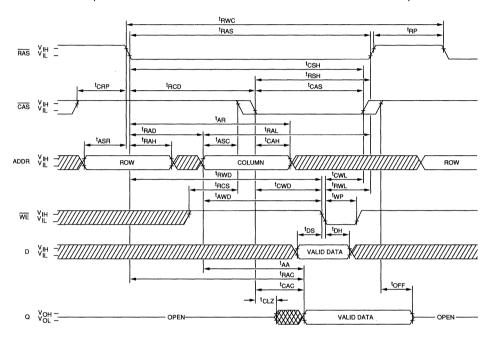

NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and VCC = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS-ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 16ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 12. If $\overline{\text{CAS}} = \text{Vil.}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to 2 TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCPN.

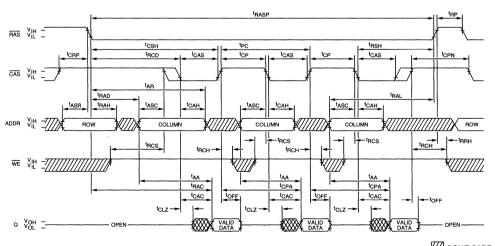

- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in late WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an early WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the cycle is a LATE-WRITE and the state of data out is indeterminate. (at access time and until CAS goes back to Vih)
- 22. These parameters are referenced to CAS leading edge in early WRITE cycles and WE leading edge in late WRITE or READ-WRITE cycles.
- 23. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$.
- 24. ^tWTS and ^tWTH are set up and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of ^tWRP and ^tWRH in the CBR refresh cycle.

READ CYCLE

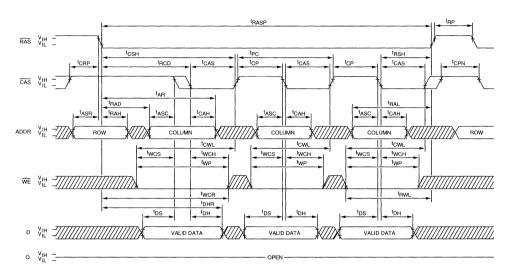
EARLY-WRITE CYCLE

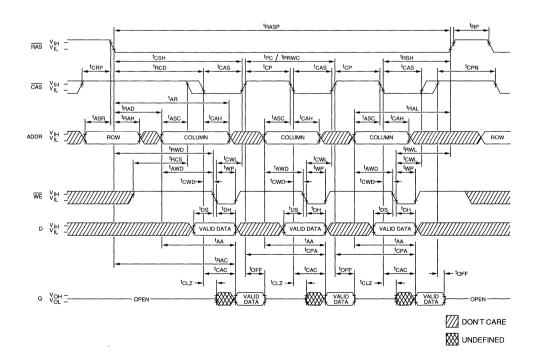


1-61

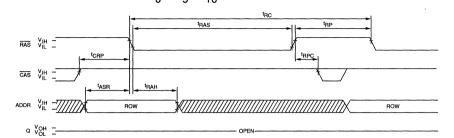

₩ undefined

READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)

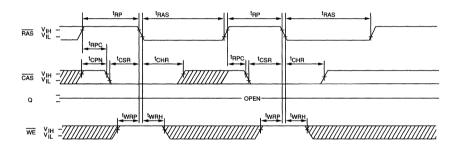

FAST-PAGE-MODE READ CYCLE


DON'T CARE
UNDEFINED

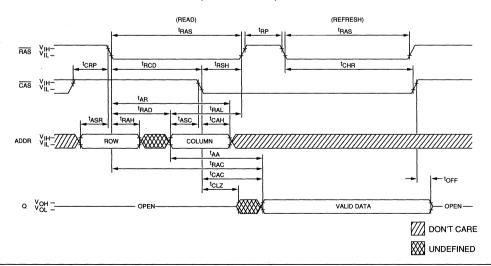
FAST-PAGE MODE EARLY-WRITE CYCLE



FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



$\overline{\text{RAS-ONLY REFRESH CYCLE}}$ (ADDR = A₀ - A₉; A₁₀ and $\overline{\text{WE}}$ = DON'T CARE)


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_{10} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{23}$

4 MEG POWER-UP AND REFRESH CONSTRAINTS

The JEDEC 4 Meg DRAM introduces two potential incompatibilities compared to the previous generation 1 Meg DRAM. The incompatibilities involve refresh and power-up. Understanding these incompatibilities and providing for them will offer the designer and system user greater compatibility between the 1 Meg and 4 Meg.

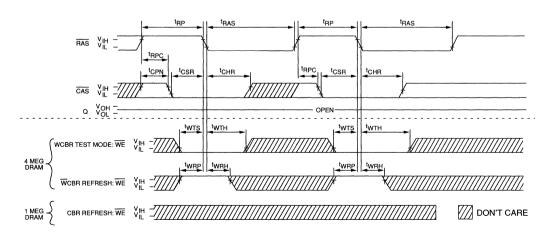
REFRESH

The most commonly used refresh mode of the 1 Meg is the CBR ($\overline{\text{CAS}}$ -BEFORE- $\overline{\text{RAS}}$) REFRESH cycle. The CBR for the 1 Meg specifies the $\overline{\text{WE}}$ pin as a don't care. The 4 Meg, on the other hand, specifies the CBR REFRESH mode to be a $\overline{\text{WCBR}}$, which is CBR with the $\overline{\text{WE}}$ pin held at a logical HIGH level.

The reason for $\overline{W}CBR$ instead of CBR on the 4 Meg is that a CBR cycle with \overline{WE} LOW will put the 4 Meg into the JEDEC specified test mode ($\overline{W}CBR$). In contrast, the 1 Meg test mode is entered by applying a HIGH signal to the test pin (pin 4 on DIP, pin 5 on SOJ and pin 8 on ZIP). This HIGH signal is usually a "supervoltage" (V in \geq 7.5V) so normal TTL or CMOS HIGH levels will not cause the part to enter the test mode.

POWER-UP

The 4 Meg $\overline{W}CBR$ constraint may also introduce another problem. The 1 Meg POWER-UP cycle requires a 100µs delay followed by any 8 \overline{RAS} cycles. The 4 Meg POWER-UP is more restrictive in that 8 \overline{RAS} -ONLY or CBR REFRESH (\overline{WE} held HIGH) cycles must be used. The


restriction is needed since the 4 Meg may power-up in the JEDEC specified test mode and must exit out of the test mode. The only way to exit the 4 Meg JEDEC test mode is with either a RAS-ONLY or a WCBR REFRESH cycle.

SUMMARY

- 1. The optional 1 Meg test pin is the A10 pin on the 4 Meg.
- For optional test mode, the 1 Meg requires a valid HIGH on the test pin while the 4 Meg requires a CBR cycle with WE LOW.
- The 1 Meg CBR REFRESH allows the WE pin to be "don't care" while the 4 Meg CBR requires WE to be HIGH (WCBR).
- The 8 RAS wake-up cycles on the 1 Meg may be any valid RAS cycle while the 4 Meg may only use RAS-ONLY or WCBR REFRESH cycles.

SPECIAL FEATURE

A memory system currently using 1 Meg DRAMs with WE as a don't care during CBR REFRESH does not allow for direct upgrading to 4 Meg DRAMs. Micron, realizing some applications will have this situation, provides a special feature on its 4 Meg DRAM, that requires "supervoltage" to access the 4 Meg JEDEC WCBR test function. This allows the Micron 4 Meg DRAM to be refreshed in the same manner as any 1 MEG DRAM. Note that the eight power-up cycles should only be refresh cycles in order to guarantee that any 4 Meg DRAM, including Micron's, does not inadvertently power-up in the test mode.

COMPARISON OF 4 MEG TEST MODE AND WCBR TO 1 MEG CBR

DRAM

4 MEG x 1 DRAM

STATIC COLUMN

FEATURES

- Industry standard x1 pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- · Low power, 3mW standby; 225mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 1024-cycle refresh distributed across 16ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR), and HIDDEN
- STATIC COLUMN access cycle
- 300 and 350 mil wide SOJ packages
- Two CBR options: CBR with WE a don't care (1 Meg compatible) and CBR with WE a HIGH (JEDEC test mode capable via WCBR)

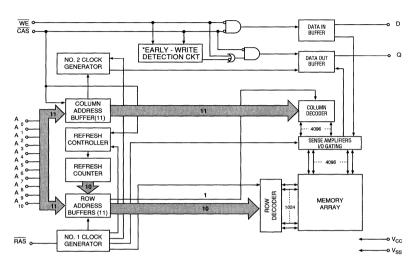
OPTIONS	MARKIN
Timing	
60ns access	-6
70ns access	-7
80ns access	-8
Packages	
Ceramic DIP (300mil)	C
Ceramic DIP (400mil)	CN
Plastic ZIP (350mil)	Z
Plastic SOJ (300mil)	DJ
Plastic SOJ (350mil)	DJW
Plastic TSOP (**)	TG
• CAS-BEFORE-RAS refresh	
CBR with $\overline{\text{WE}}$ a don't care	None
CBR with $\overline{\text{WE}}$ a HIGH	J

GENERAL DESCRIPTION

The MT4C1006 is a randomly accessed solid-state memory containing 4,194,304 bits organized in a x1 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 22 address bits, which are entered 11 bits (A0-A10) at a time. \overline{RAS} is used to latch the first 11 bits and \overline{CAS} the latter 11 bits. A READ or WRITE cycle is selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READmode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin remains open (High-Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after

PIN ASSI	GNMENT (Top View)
18-Pin CDIP (B-2, B-3)	20-Pin ZIP (C-3)
D 1 1 18 Vss WE 2 17 Q RAS 3 16 CAS *A10 4 15 A9 A0 5 14 A8 A1 6 13 A7 A2 7 12 A6 A3 8 11 A5 Vcc 9 10 A4	A9 1 1 2 2 CAS 2 3 2 2 CAS 2 5 4 4 Vss 5 5 2 4 6 WE 7 2 6 WE 7 2 6 10 NC 9 2 14 10 NC A0 11 2 1 12 A1 Vcc 15 2 14 A3 Vcc 15 2 14 A3 Vcc 15 2 14 A3 A5 17 2 18 A6 A7 19 2 2 0 A8
	D [1 - 28] Vss WE
*Address not used for RA	S-ONLY refresh

data reaches the output pin, data out (Q) is activated and retains the selected cell data as long as \overline{CAS} remains LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-WRITE cycle.


**Consult factory on availability of TSOP packages

STATIC COLUMN operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A10) defined page boundary. The STATIC COLUMN cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the STATIC COLUMN operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS ONLY, CAS-BEFORE-RAS, or HID-DEN REFRESH) so that all 1024 combinations of RAS addresses (A0-A9) are executed at least every 16ms, regardless of sequence. The CAS-BEFORE-RAS cycle will invoke the refresh counter for automatic RAS addressing.

FUNCTIONAL BLOCK DIAGRAM STATIC COLUMN

*NOTE: WE LOW prior to CAS LOW, EW detection CKT output is a HIGH (EARLY WRITE) CAS LOW prior to WE LOW, EW detection CKT output is a LOW (LATE WRITE)

TRUTH TABLE

					Add	ress	DATA		
Function		RAS	CAS	WE	^t R	^t C	D (Data In)	Q (Data Out)	
Standby		Н	Х	Х	Х	Х	Don't Care	High Impedance	
READ		L	L	н	ROW	COL	Don't Care	Data Out	
EARLY-WRITE		L	L	L	ROW	COL	Data In	High Impedance	
READ-WRITE		L	L	H→L	ROW	COL	Valid Data In	Valid Data Out	
STATIC COLUMN	1st Cycle	L	L	Н	ROW	COL	Don't Care	Valid Data Out	
READ	2nd Cycle	L	L	Н	n/a	COL	Don't Care	Valid Data Out	
STATIC COLUMN	1st Cycle	L	L	L	ROW	COL	Valid Data In	High Impedance	
WRITE	2nd Cycle	L	L	H→L	n/a	COL	Valid Data In	High Impedance	
STATIC COLUMN	1st Cycle	L	L	H→L	ROW	COL	Valid Data In	Valid Data Out	
READ-WRITE	2nd Cycle	L	L	H→L	n/a	COL	Valid Data In	Valid Data Out	
RAS-ONLY REFRE	SH	L	Н	Х	ROW	n/a	Don't Care	High Impedance	
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Don't Care	Valid Data Out	
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Valid Data In	High Impedance	
CAS-BEFORE-	Standard	H→L	L	X	Х	×	Don't Care	High Impedance	
RAS REFRESH	"J" Option	H→L	L	Н	Х	Х	Don't Care	High Impedance	

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V to	+7.0V
Operating Temperature, TA(Ambient)0°C to	+70°C
Storage Temperature (Ceramic)65°C to	+150°C
Storage Temperature (Plastic)55°C to	+150°C
Power Dissipation	1W
Short Circuit Output Current	50m A

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	V	1
INPUT LEAKAGE CURRENT any input $(0V \le V_{IN} \le 6.5V$, all other pins not under test = 0V)	lı .	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vout ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (Iout = -5mA)	Vон	2.4		V	
Output Low Voltage (Iout = 4.2mA)	Vol		0.4	V	

			MAX]	
PARAMETER/CONDITION	SYMBOL	-6	-7	-8	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	Icc1	2	2	2	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Vcc -0.2V)	ICC2	1	1	1	mA	24
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: tRC = tRC (MIN))	lcc3	110	100	90	mA	3, 4
OPERATING CURRENT: STATIC COLUMN Average power supply current (RAS = VIL, CAS, Address Cycling: PC = PC (MIN))	ICC4	80	70	60	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=VIH: ^t RC = ^t RC (MIN))	lcc5	110	100	90	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: tRC = tRC (MIN))	Icc6	110	100	90	mA	3

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A10, D	Cl1		5	pF	2
Input Capacitance: RAS, CAS, WE	CI2		7	pF	2
Output Capacitance: Q	Co		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = 5.0V \pm 10\%$)

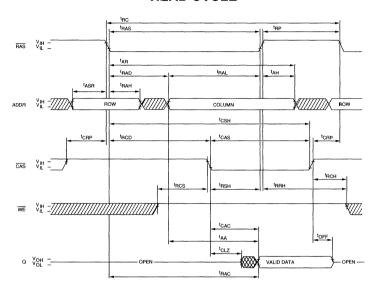
A.C. CHARACTERISTICS	ARACTERISTICS -6 -7		-7		-8				
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	tRC	110		130		150		ns	
READ-WRITE cycle time	tRWC	135		155		175		ns	
STATIC-COLUMN READ or WRITE cycle time	tSC	40		40		45		ns	
STATIC-COLUMN READ-WRITE cycle time	^t SRMC	65		70		75		ns	
Access time from RAS	tRAC		60		70		80	ns	14
Access time from CAS	^t CAC		15		20		20	ns	15
Access time from column address	^t AA		30		35		40	ns	
Access time from CAS precharge	^t CPA		40		40		45	ns	25
RAS pulse width	tRAS	60	100,00	70	100,00	80	100,000	ns	
RAS pulse width (STATIC COLUMN)	tRASC	60	100,00	70	100,00	80	100,000	ns	
RAS hold time	tRSH	15		20		20		ns	
RAS precharge time	tRP	45		50		60		ns	
CAS pulse width	†CAS	15	100,000	20	100,000	20	100,000	ns	
CAS hold time	tCSH	60		70		80		ns	1
CAS precharge time	^t CPN	10		10		10		ns	16
CAS precharge time (STATIC COLUMN)	^t CP	10		10		10		ns	
RAS to CAS delay time	tRCD	15	45	20	50	20	60	ns	17
CAS to RAS precharge time	tCRP	5		5		5		ns	
Row address setup time	t _{ASR}	0		0		0		ns	
Row address hold time	^t RAH	10		10		10		ns	
RAS to column address delay time	^t RAD	15	30	15	35	15	40	ns	18
Column address setup time	tASC	0		0		0		ns	
Column address hold time	^t CAH	10		15		15		ns	
Column address hold time (referenced to RAS)	†AR	50		55		60		ns	
Column address to RAS lead time	^t RAL	30		35		40		ns	
Read command setup time	tRCS	0		0		0		ns	
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	†CLZ	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	nş	20
WE command setup time	twcs	0		0		0		ns	21

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

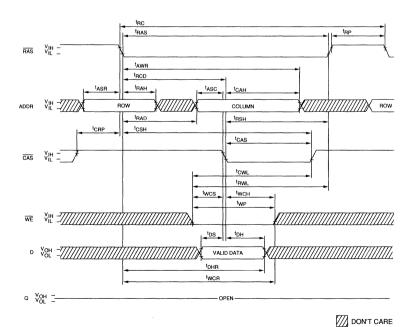
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = 5.0V \pm 10\%$)

A.C. CHARACTERISTICS		-	6		7		8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command hold time	tWCH	10	4	15		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		60		ns	
Write command pulse width	tWP	10		15		15		ns	
Write command to RAS lead time	tRWL	15		20		20		ns	
Write command to CAS lead time	tCWL	15		20		20		ns	
Data-in setup time	t _{DS}	0		0		0		ns	22
Data-in hold time	tDH	10		15		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		ns	
RAS to WE delay time	^t RWD	60		70		80		ns	21
Column address to WE delay time	^t AWD	30	!	35		40		ns	21
CAS to WE delay time	tCWD	15		15		20		ns	21
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	9, 10
Refresh period (1024 cycles)	†REF		16		16		16	ms	
RAS to CAS precharge time	tRPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	^t CSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS refresh)	[†] CHR	15		15		15		ns	5
WE hold time (CAS-BEFORE-RAS refresh)	^t WRH	10	***************************************	10		10		ns	24
WE setup time (CAS-BEFORE-RAS refresh)	tWRP	10		10		10		ns	24
WE hold time (WCBR test cycle)	^t WTH	10		10		10		ns	24
WE setup time (WCBR test cycle)	^t WTS	10		10		10		ns	24
Write inactive time	tWI	10		10		10		ns	
Last WRITE to column address delay time	tLWAD	15	25	20	30	20	35	ns	
Last WRITE to column address hold time	^t AHLW	55		65		75		ns	
RAS hold time referenced to OE	^t ROH	10		10		10		ns	
Output data hold time from column address	HOA	5		5		5		ns	
Output data enable from WRITE	tOW	20		20		20		ns	
Access time from last WRITE	^t ALW	55		65		75		ns	
Column address hold time referenced to RAS HIGH	^t AH	5		5		10		ns	
CAS pulse width in STATIC-COLUMN mode	tCSC	^t CAS		†CAS		†CAS		ns	
Output data hold from WRITE	tWOH	0		0		0		ns	

DRAM

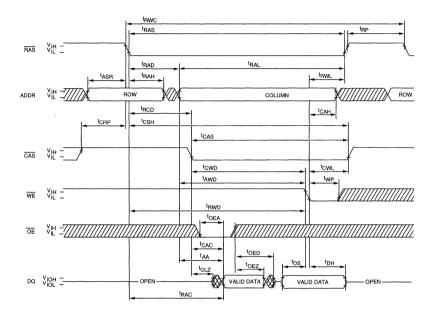

NOTES

- 1. All voltages referenced to Vss.
- This parameter is sampled. Capacitance is calculated from the equation C = I^{dt}/_{dv} with dv = 3V and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates.
 Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS-ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 16ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between V_{II} and V_{II} (or between V_{II} and V_{II}) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 12. If CAS = VIL, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to 2 TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for tCPN.

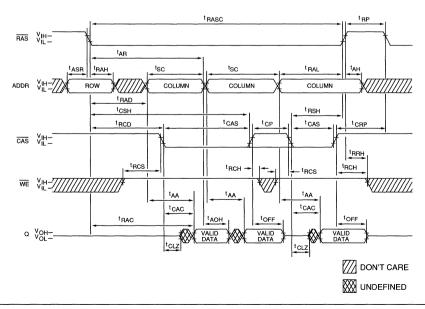

- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the tRAD (MAX) limit ensures that tRCD (MAX) can be met. tRAD (MAX) is specified as a reference point only; if tRAD is greater than the specified tRAD (MAX) limit, then access time is controlled exclusively by tAA.
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. ¹WCS, ¹RWD, ¹AWD and ¹CWD are restrictive operating parameters in late WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If ¹WCS ≥ ¹WCS (MIN), the cycle is an early WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ¹RWD ≥ ¹RWD (MIN), ¹AWD ≥ ¹AWD (MIN) and ¹CWD ≥ ¹CWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the cycle is a LATE-WRITE and the state of data out is indeterminate. (at access time and until CAS goes back to Vih)
- 22. These parameters are referenced to CAS leading edge in early WRITE cycles and WE leading edge in late WRITE or READ-WRITE cycles.
- 23. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- 24. WTS and tWTH are set up and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR refresh cycle.

READ CYCLE

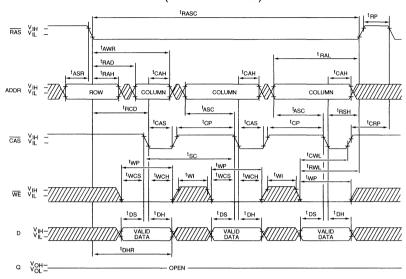
EARLY-WRITE CYCLE

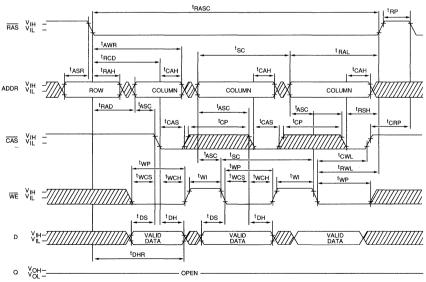


1-73


₩ undefined

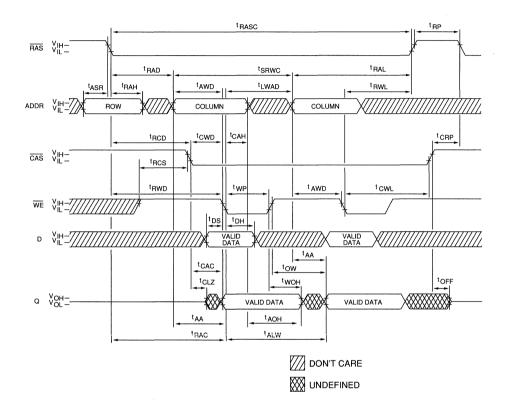
READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)


STATIC-COLUMN READ CYCLE

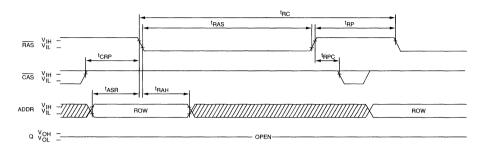

STATIC-COLUMN EARLY-WRITE CYCLE

(CAS controlled)

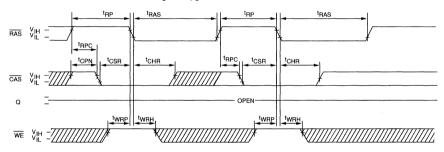
STATIC-COLUMN EARLY-WRITE CYCLE


(WE controlled)

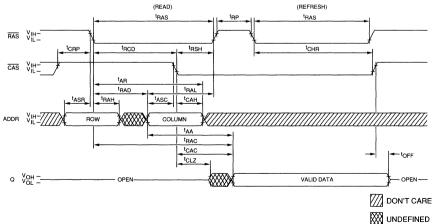
DON'T CARE



STATIC-COLUMN READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



$\overline{\text{RAS-ONLY REFRESH CYCLE}}$ (ADDR = A₀ - A₉; A₁₀ and $\overline{\text{WE}}$ = DON'T CARE)


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_{10} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{23}$

4 MEG POWER-UP AND REFRESH CONSTRAINTS

The 4 Meg DRAM introduces two potential incompatibilities compared to the previous generation 1 Meg DRAM. The incompatibilities involve refresh and power-up. Understanding these incompatibilities and providing for them will offer the designer and system user greater compatibility between the 1 Meg and 4 Meg.

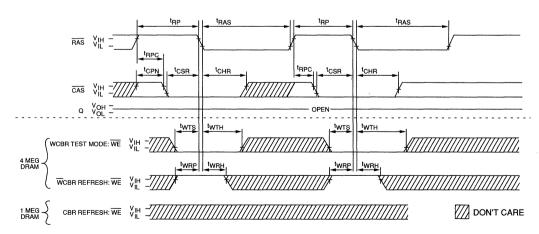
REFRESH

The most commonly used refresh mode of the 1 Meg is the CBR ($\overline{\text{CAS}}$ -BEFORE- $\overline{\text{RAS}}$) REFRESH cycle. The CBR for the 1 Meg specifies the $\overline{\text{WE}}$ pin as a don't care. The 4Meg, on the other hand, specifies the CBR REFRESH mode to be a $\overline{\text{WCBR}}$, which is CBR with the $\overline{\text{WE}}$ pin held at a logical HIGH level.

The reason for $\overline{W}CBR$ instead of CBR on the 4 Meg is that a CBR cycle with \overline{WE} LOW will put the 4 Meg into the JEDEC specified test mode ($\overline{W}CBR$). In contrast, the 1 Meg test mode is entered by applying a HIGH signal to the test pin (pin 4 on DIP, pin 5 on SOJ and pin 8 on ZIP). This HIGH signal is usually a "supervoltage" (V in \geq 7.5V) so normal TTL or CMOS HIGH levels will not cause the part to enter the test mode.

POWER-UP

The 4 Meg \overline{W} CBR constraint may also introduce another problem. The 1 Meg POWER-UP cycle requires a 100 μ s delay followed by any 8 \overline{RAS} cycles. The 4 Meg POWER-UP is more restrictive in that 8 \overline{RAS} -ONLY or \overline{W} CBR REFRESH (\overline{WE} held HIGH) cycles must be used. The restriction is needed


since the 4 Meg may power-up in the JEDEC specified test mode and must exit out of the test mode. The only way to exit the 4 Meg JEDEC test mode is with either a \overline{RAS} -ONLY or a \overline{W} CBR REFRESH cycle.

SUMMARY

- 1. The optional 1 Meg test pin is the A10 pin on the 4 Meg.
- For optional test mode, the 1 Meg requires a valid HIGH on the test pin while the 4 Meg requires a CBR cycle with WE LOW.
- 3. The 1 Meg CBR REFRESH allows the WE pin to be "don't care" while the 4 Meg CBR requires WE to be HIGH (WCBR).
- The 8 RAS wake-up cycles on the 1 Meg may be any valid RAS cycle while the 4 Meg may only use RAS-ONLY or WCBR REFRESH cycles.

SPECIAL FEATURE

A memory system currently using 1 Meg DRAMs with WE as a don't care during CBR REFRESH does not allow for direct upgrading to 4 Meg DRAMs. Micron, realizing some companies will have this situation, provides a special feature on its 4 Meg DRAM, that requires "supervoltage" to access the 4 Meg JEDEC WCBR test function. This allows the Micron 4 Meg DRAM to be refreshed in the same manner as any 1 MEG DRAM. Note that the eight power-up cycles should only be refresh cycles in order to guarantee that any 4 Meg DRAM, including Micron's, does not inadvertently power-up in the test mode.

COMPARISON OF 4 MEG TEST MODE AND WCBR TO 1 MEG CBR

DRAM

16 MEG x 1 DRAM

FAST PAGE MODE: MT4C10016 STATIC COLUMN: MT4C10017

FEATURES

- Industry standard x1 pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single power supply: $+5V\pm10\%$ or $+3.3V\pm10\%$
- Low power, 3mW standby; 250mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR), and HIDDEN
- · 4096-cycle refresh distributed across 64ms

OPTIONS	MARKING
Timing	
50ns access	- 5
60ns access	-6
70ns access	-7
80ns access	-8
Packages	
Plastic ZIP (475mil)	Z
Plastic SOJ (400mil)	DJ
Plastic TSOP (*)	TG
Refresh Period	
4096 cycles @ 64ms	None
• Operating Temperature, TA	
Commercial (0°C to +70°C)	None
Industrial (- 40° C to + 85° C)	IT
Power Supply	
+5V±10%	None
+3.3V±10%	V

GENERAL DESCRIPTION

The MT4C10016/7 are randomly accessed solid-state memories containing 16,777,216 bits organized in a x1 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 24 address bits, which are entered 12 bits (A0-A11) at a time. \overline{RAS} is used to latch the first 12 bits and \overline{CAS} the latter 12 bits. A READ or WRITE cycle is selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin

PIN ASSIGNMI	ENT (Top View)
24-Pin SOJ (E-7)	24-Pin ZIP
Voc 1 • 28 Vss D 2 27 Q Q Q Q Q Q Q Q Q	A9 1 3 2 NC CAS 3 3 4 4 NC Q 5 5 6 6 Vss Vcc 7 7 1 8 D NC 9 1 8 D NC 9 1 10 WE RAS 11 1 1 12 A11 A10 13 1 14 A0 A3 17 1 18 Vcc Vss 19 1 18 Vcc Vss 19 1 20 A4 A5 21 1 22 A4 A7 22 1 24 A8

remains open (High-Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after data reaches the output pin, data out (Q) is activated and retains the selected cell data as long as \overline{CAS} remains LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-WRITE cycle.

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A11) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} high time. Memory cell data is retained in its correct state by maintaining power and executing any \overline{RAS} cycle (READ, WRITE, \overline{RAS} -ONLY, \overline{CAS} -BEFORE- \overline{RAS} (CBR), or HIDDEN REFRESH) so that all 2048/4096 combinations of \overline{RAS} addresses (A0-A10/A11) are executed at least every 32ms/64ms, regardless of sequence. The CBR refresh cycle will invoke the refresh counter for automatic \overline{RAS} addressing.

The $\overline{\text{MT4C10016}/7}$ are available with either 2048 cycles or 4096 cycles of refreshing. If CBR refresh is used, the 2048-cycle version will work in either a 2048 or a 4096 cycle application.

DRAM

64K x 4 DRAM

PAGE MODE

FEATURES

OPTIONS

• Timing

- Industry standard pinout, timing and functions
- All inputs, outputs, and clocks are fully TTL compatible
- Single +5V±10% power supply
- Low power, 15mW standby; 150mW active, typical
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN

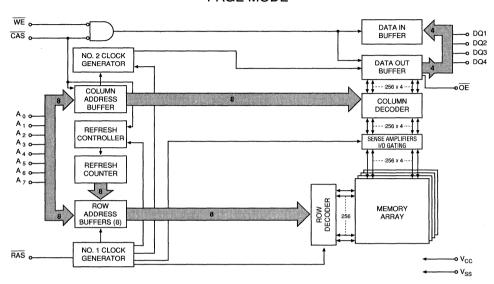
MARKING

- 256-cycle refresh in 4ms
- Optional PAGE MODE access cycle

- 11111111125	
100ns access	-10
120ns access	-12
150ns access	-15
Packages	
Plastic DIP	None
Ceramic DIP	C
Plastic ZIP	Z
PLCC	Eī

GENERAL DESCRIPTION

The MT4067 is a randomly accessed solid-state memory containing 262,144 bits organized in a x4 configuration. The 16 address bits are entered 8 bits at a time using \overline{RAS} to latch the first 8 bits and \overline{CAS} the latter 8 bits. If the \overline{WE} pin goes LOW prior to \overline{CAS} going LOW, the output pin remains open until the next \overline{CAS} cycle. If \overline{WE} goes LOW after data reaches the output pin, the output pin is activated and retains the selected cell data as long as \overline{CAS} remains LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-MODIFY-WRITE cycle. Data-in (D) is latched when \overline{WE} strobes LOW.


By holding \overline{RAS} LOW, \overline{CAS} may be toggled to execute several faster READ, WRITE, READ-WRITE or READ-

PIN ASSIGNMENT (Top View) 18-Pin DIP 20-Pin ZIP (A-2, B-2) (C-2)DQ3 OE 1 18 Vss CAS DQ4 3 17 DQ4 DQ1 02 Vss OF 5 DQ2 []3 16 CAS DQ1 DQ2 7 WE WE [4 15 DQ3 8 RAS 9 NC 10 RAS 5 14 A0 NC 11 12 A6 A6 □6 13 🛚 A1 A5 13 14 Α4 A5 🛛 7 12 A2 Vcc 15 16 Α7 A3 17 A4 🛛 8 11 A3 18 A2 19 Α1 Vcc ☐9 10 □ A7 20 Α0 18-Pin PLCC (D-1)일 문 왕 4 2 1 4 4 7 DQ2 3 [16 CAS WE 15 DQ3 4 E RAS 5 🗆 14 A0 A6 6 4 13 A1 12 A2 Α5 8 6 5 5 A 7 6 A 4 A 3 A 4 A 5 C A 4 A 5 C A 4 A 5 C A 5

MODIFY-WRITE cycles within the \overline{RAS} address defined page boundary. Returning \overline{RAS} HIGH terminates the memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} HIGH time. Memory cell data is retained in its correct state by maintaining power and executing a \overline{RAS} (refresh) cycle so that all 256 combinations of \overline{RAS} addresses are executed at least every 4ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity.

FUNCTIONAL BLOCK DIAGRAM PAGE MODE

TRUTH TABLE

					Addre	esses	
Function	RAS	CAS	WE	ŌĒ	^t R	ίC	
Standby	Н	Х	Х	Х	Х	Х	High Impedance
READ	L	L	Н	L	ROW	COL	Data Out
WRITE (EARLY-WRITE)	L	L	L	Х	ROW	COL	Data In
READ-WRITE	L	L	H→L→H	L→H	ROW	COL	Valid Data Out, Valid Data In
PAGE-MODE READ	L	H→L→H	Н	L	ROW	COL	Valid Data Out, Valid Data Out
PAGE-MODE WRITE	L	H→L→H	L	Н	ROW	COL	Valid Data In, Valid Data In
PAGE-MODE READ-WRITE	L	H→L→H	H→L→H	L→H	ROW	COL	Valid Data Out, Valid Data In
RAS-ONLY REFRESH	L	Н	X	Н	ROW	n/a	High Impedance
HIDDEN REFRESH	L→H→L	L	Х	Н	ROW	COL	Valid Data Out
CAS-BEFORE- RAS REFRESH	H→L	L	×	Н	Х	Х	High Impedance

ABSOLUTE MAXIMUM RATINGS*

 *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 2 ,3, 4, 6) (0°C \leq $T_{\Delta} \leq$ 70°C; Vcc = 5.0V $\pm 10\%$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	
Input High (Logic 1) Voltage, All Inputs	Vıн	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1
INPUT LEAKAGE Input leakage current, any input (0V \leq VIN \leq Vcc), all other pins not under test = 0V	lı	-10	10	μА	
OUTPUT LEAKAGE Output leakage current (Q is disabled, 0V ≤ Vouт ≤ Vcc)	loz	-10	10	μΑ	
OUTPUT LEVELS	V oн	2.4		٧	
Output High (Logic 1) voltage (lout = -5mA) Output Low (Logic 0) voltage (lout = 5mA)	Vol		0.4	V	1

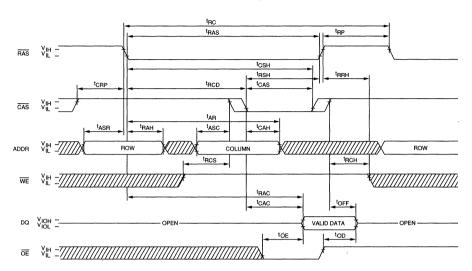
			MAX			
PARAMETER/CONDITION	SYMBOL	-10	-12	-15	UNITS	NOTES
STANDBY CURRENT: TTL input levels (RAS = CAS = VIH after 8 RAS cycles)	lcc1	5	5	5	mA	
OPERATING CURRENT: Random READ/WRITE (RAS and CAS = Cycling: [†] RC = [†] RC (MIN))	lcc2	55	55	45	mA	2
OPERATING CURRENT: PAGE MODE (RAS = VIL; CAS = Cycling: PC = PC (MIN))	Іссз	55	55	45	mA	2
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = Vih: tRC = tRC (MIN))	Icc4	40	40	35	mA	2
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS = Cycling: tRC = tRC (MIN))	lcc5	55	55	45	mA	2, 22

CAPACITANCE

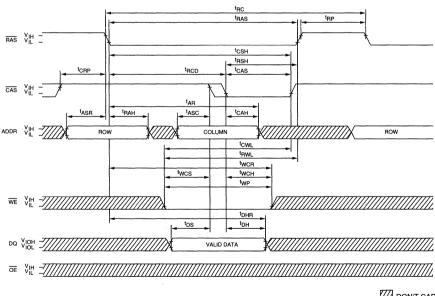
PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	C ₁₁		5	pF	18
Input Capacitance: RAS, CAS, WE, OE	Cı2		8	pF	18
Input/Output Capacitance: DQ	Сю		7	pF	18

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes: 3, 4, 5, 10, 11, 17, 18) (0°C \leq T $_A$ \leq 70°C; Vcc = 5.0V \pm 10%)

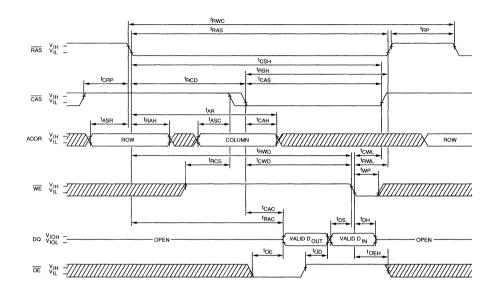
A.C. CHARACTERISTICS		-10		-12		-	15		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	tRC	190		220		260		ns	6, 7
READ-MODIFY-WRITE cycle time	tRWC	250		295		345		ns	
PAGE-MODE cycle time	^t PC	90		100		120		ns	6, 7
Access time from RAS	†RAC		100		120		150	ns	7, 8
Access time from CAS	^t CAC		50		60		75	ns	7, 9
Output Enable	^t OE		25		30		40	ns	
RAS pulse width	†RAS	100	10,000	120	10,000	150	10,000	ns	
RAS hold time	^t RSH	50		60		75		ns	
RAS precharge time	tRP	80		90		100		ns	
CAS pulse width	^t CAS	50	10,000	60	10,000	75	10,000	ns	
CAS hold time	tCSH	100		120		150		ns	
CAS precharge time	^t CPN	25		25		30		ns	19
CAS precharge time (PAGE MODE)	^t CP	30		30		35		ns	
RAS to CAS delay time	^t RCD	25	50	25	60	25	75	ns	13
CAS to RAS setup time	tCRP	15		20		20		ns	
Row address setup time	tASR	0		0		0		ns	
Row address hold time	†RAH	15		15		15		ns	
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	20		20		25		ns	
Column address hold time referenced to RAS	^t AR	70		80		100		ns	
READ command setup time	tRCS	0		0		0		ns	
READ command hold time referenced to CAS	^t RCH	0		0		0		ns	14
READ command hold time referenced to RAS	^t RRH	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	30	0	30	0	35	ns	12
Output Disable	^t OD		30		30		35	ns	
WE command setup time	tWCS	0		0		0		ns	16
WRITE command hold time	tWCH	35		40		45		ns	
WRITE command hold time referenced to RAS	†WCR	85		100		120		ns	
WRITE command pulse width	tWP	35		40		45		ns	
WRITE command to RAS lead time	tRWL	35		40		45		ns	
WRITE command to CAS lead time	tCWL	35		40		45		ns	
Data-in setup time	t _{DS}	0		0		0		ns	15
Data-in hold time	tDH	35		40		45		ns	15
Data-in hold time referenced to RAS	^t DHR	60		65		70		ns	
CAS to WE delay	tCWD	70		90		110		ns	16
RAS to WE delay	^t RWD	120		150		185		ns	16
Transition time (rise or fall)	tŢ	3	100	3	100	3	100	ns	5, 17
Refresh period (256 cycles)	tREF.		4		4		4	ms	22
CAS hold time (CAS-BEFORE-RAS refresh)	tCHR	20		25		30		ns	21
CAS setup time (CAS-BEFORE-RAS) refresh	^t CSR	15		20		20		ns	21
RAS to CAS precharge time	†RPC	0		0		0		ns	21


NOTES

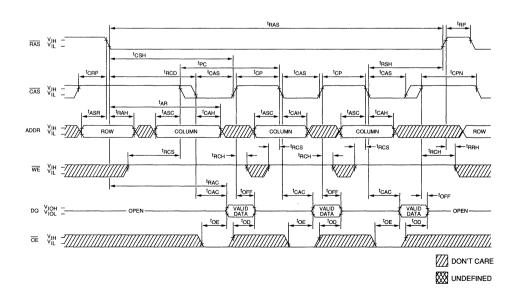
- 1. All voltages referenced to Vss.
- 2. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- An initial pause of 100μs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 4ms refresh requirement is exceeded.
- 4. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_Δ ≤ 70°C) is assured.
- Measured with a load equivalent to 2 TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 11. If $\overline{\text{CAS}} = V_{\text{IL}}$, data output may contain data from the last valid READ cycle.
- 12. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. ^tRCH is referenced to the first rising edge of RAS or CAS.


- 15. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in early WRITE cycles and to the $\overline{\text{WE}}$ leading edge in late WRITE or READ-MODIFY-WRITE cycles.
- 16. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE, and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit through out the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE controlled) cycle. (at access time and until CAS or OE goes back to VIH)
- In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 18. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 19. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCP. Note 8 applies to determine valid data out.
- 20. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, (VIH) Q goes open. If OE is tied permanently LOW, a READ-MODIFY-WRITE operation is not possible.
- 21. On-chip refresh and address counters are enabled.
- 22. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, \overline{WE} = LOW and \overline{OE} = HIGH.

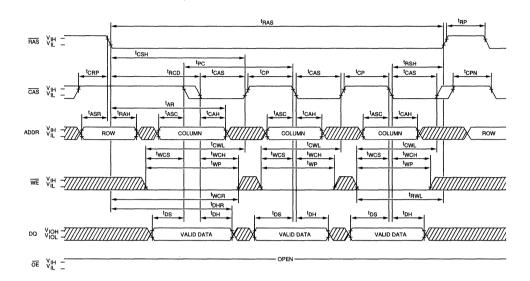
READ CYCLE



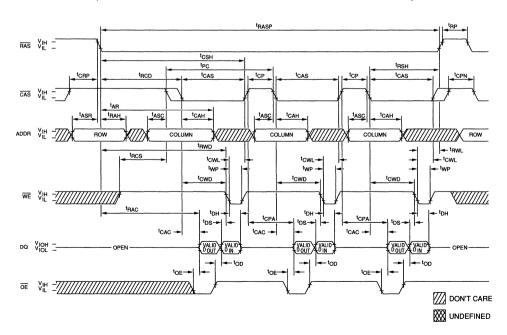
EARLY-WRITE CYCLE



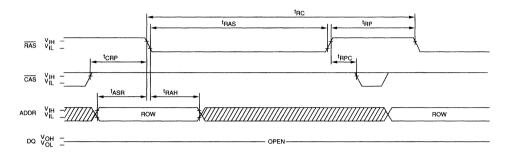
READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



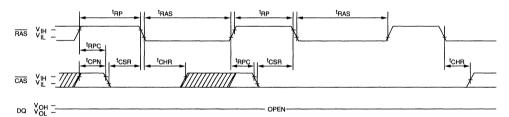
PAGE-MODE READ CYCLE



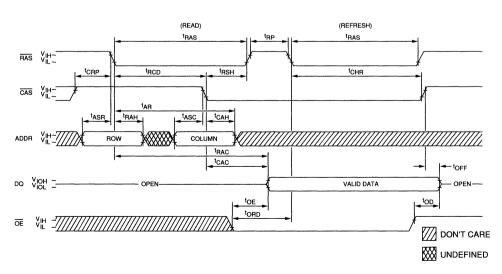
PAGE-MODE EARLY-WRITE CYCLE



PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



$\overline{\text{RAS-ONLY}}$ REFRESH CYCLE (ADDR = A₀ - A₇; $\overline{\text{WE}}$ = DON'T CARE)


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_7, \overline{WE}, \overline{OE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{22}$

DRAM

256K x 4 DRAM

FAST PAGE MODE

FEATURES

- Industry standard x4 pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- Low power, 3mW standby; 175mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 512-cycle refresh in 8ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- Optional FAST PAGE MODE access cycle

OPTIONS

MARKING

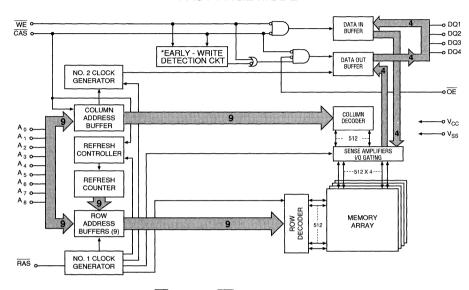
Timing	
70ns access	- 7
80ns access	- 8
100ns access	-10
Packages	
Plastic DIP (300mil)	None
Ceramic DIP (300mil)	C
Plastic ZIP (350mil)	Z
Plastic SOJ (300mil)	DJ
Plastic TSOP (*)	VG
Operating Temperature, TA	
Commercial (0°C to +70°C)	None
Industrial (- 40° C to + 85° C)	IT

GENERAL DESCRIPTION

The MT4C4256 is a randomly accessed solid-state memory containing 1,048,576 bits organized in a x4 configuration. During READ or WRITE cycles each bit is uniquely addressed through the 18 address bits which are entered 9 bits (A0-A8) at a time. RAS is used to latch the first 9 bits and CAS the latter 9 bits. A READ or WRITE cycle is selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of WE or CAS, whichever occurs last. If WE goes LOW prior to CAS going LOW, the output pin(s) remain open (High-Z) until the next CAS cycle. If WE goes LOW after data reaches the output pin, data out (Q) is activated and retains the selected cell data as long as CAS remains LOW (regardless of $\overline{\text{WE}}$ or $\overline{\text{RAS}}$). This late $\overline{\text{WE}}$ pulse results in a READ-WRITE cycle. The four data inputs and four data outputs are routed

PIN ASSIGNMENT (Top	View)
------------------	-----	-------

	` ' '	
20-Pin DIP (A-5, B-4)	20-Pin ZIP (C-2)	
DQ1 1 20 Vss DQ2 2 19 DQ4 WE 3 18 DQ3 RAS 4 17 CAS NC 5 16 OE A0 6 15 A8 A1 7 14 DA7 A2 8 13 A6 A3 9 12 DA5 Vcc 10 11 A4	OE 1 5 2 CAS DQ3 3 5 4 DQ4 VSS 5 5 6 6 DQ1 DQ2 7 5 8 WE RAS 9 5 12 A1 NC A2 13 5 14 A3 Vcc 15 5 14 A3 Vcc 15 5 5 16 A4 A5 17 5 18 A6 5 17 5 18 A6 5 17 5 18 A6 5 17 5 2 20 A8	
20-Pin SOJ (E-1)		
	DQ1 [1: 26] Vss DQ2 [2 25] DQ4 WE [3 24] DQ3 FAS [4 23] CAS NC [5 22] DŒ	
	A0 L 9 18 A8 A1 L 10 17 A7 A2 L 11 16 A6 A3 L 12 15 A5 Vcc L 13 14 A4	
*Consult factory on availability of TSOP packages		


through four pins using common I/O, and pin direction is controlled by \overline{WE} and \overline{OE} .

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A8) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE cycle.

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} high time. Memory cell data is retained in its correct state by maintaining power and executing any \overline{RAS} cycle (READ, WRITE, \overline{RAS} -ONLY, \overline{CAS} -BEFORE- \overline{RAS} , or HID-DEN refresh) so that all 512 combinations of \overline{RAS} addresses (A0-A8) are executed at least every 8ms, regardless of sequence. The \overline{CAS} -BEFORE- \overline{RAS} refresh will increment the refresh counter for automatic \overline{RAS} addressing.

FUNCTIONAL BLOCK DIAGRAM FAST PAGE MODE

*NOTE: WE LOW prior to CAS LOW, EW detection CKT output is a HIGH (EARLY WRITE) CAS LOW prior to WE LOW, EW detection CKT output is a LOW (LATE WRITE)

TRUTH TABLE

					Add	ress		DATA IN / OUT
Function		RAS	CAS	WE	^t R	ţC	ŌĒ	DQ1-4 (IO)
Standby		Н	Х	Х	Х	Х	Χ	High-Z
READ		L	L	Н	ROW	COL	L	Valid Data Out
EARLY-WRITE		L	L	L	ROW	COL	Х	Valid Data In
READ-WRITE		L	L	H→L	ROW	COL	L→H	Valid Data Out, Data In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	ROW	COL	L	Valid Data Out
READ	2nd Cycle	L	H→L	Н	n/a	COL	L	Valid Data Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	ROW	COL	Х	Valid Data In
EARLY-WRITE	2nd Cycle	L	H→L	L	n/a	COL	Χ	Valid Data In
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	ROW	COL	L→H	Valid Data Out, Data In
READ-WRITE	2nd Cycle	L	H→L	H→L	n/a	COL	L→H	Valid Data Out, Data In
RAS-ONLY REFRES	Н	L	Η	X	ROW	n/a	Х	High-Z
HIDDEN	READ	L→H→L	L	Н	ROW	COL	L	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Х	Valid Data In
CAS-BEFORE-RAS REFRESH		H→L	L	Х	Х	Х	Х	High-Z

ABSOLUTE MAXIMUM RATINGS*

 *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) ($Vcc = 5.0V \pm 10\%$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-2.0	0.8	٧	1, 28
INPUT LEAKAGE CURRENT any input $(0V \le V_{IN} \le 6.5V$, all other pins not under test = 0V)	lı .	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT: (Q is disabled; 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (lour EmA)	Vон	2.4		٧	
Output High Voltage (Ιουτ = -5mA) Output Low Voltage (Ιουτ = 4.2mA)	Vol		0.4	٧	

			MAX]	
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
STANDBY CURRENT: (TTL) $(\overline{RAS} = \overline{CAS} = V_{IH})$	Icc1	2	2	2	mA	
STANDBY CURRENT: (CMOS) $(\overline{RAS} = \overline{CAS} = Vcc - 0.2V)$	Icc2	1	1	1	mA	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	lcc3	80	70	60	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: [†] PC = [†] PC (MIN))	Icc4	60	50	40	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=VIH: ^t RC = ^t RC (MIN))	lcc5	80	70	60	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	Icc6	80	70	60	mA	3, 5

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	C ₁₁		5	pF	2
Input Capacitance: RAS, CAS, WE, OE	Cı2		7	pF	2
~ Input/Output Capacitance: DQ	Cio		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

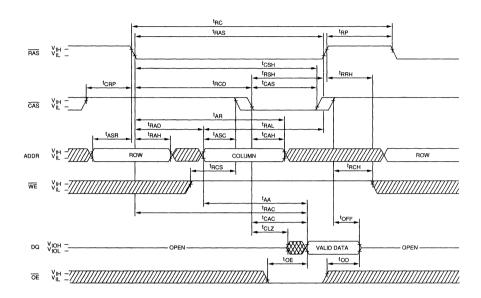
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = 5.0V ± 10%)

A.C. CHARACTERISTICS		-	-7		-8		-10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		150		180		ns	
READ-WRITE cycle time	^t RWC	185		205		245		ns	
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	40		45		55		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	95		100		115		ns	
Access time from RAS	†RAC		70		80		100	ns	14
Access time from CAS	†CAC		20		20		25	ns	15
Output Enable	†OE		20		20		25	ns	
Access time from column address	^t AA		35		40		50	ns	
Access time from CAS precharge	^t CPA		40		45		50	ns	
RAS pulse width	†RAS	70	100,000	80	100,000	100	100,000	ns	
RAS pulse width (FAST PAGE MODE)	^t RASP	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	^t RSH	20		20		25		ns	
RAS precharge time	^t RP	50		60		70		ns	
CAS pulse width	^t CAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	^t CSH	70	1	80		100		ns	
CAS precharge time	^t CPN	10		10		15		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	^t RCD	20	50	20	60	25	75	ns	17
CAS to RAS precharge time	tCRP	5		5		5	***************************************	ns	
Row address setup time	tASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
RAS to column address delay time	^t RAD	15	35	15	40	20	50	ns	18
Column address setup time	tASC	0	1	0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	
Column address hold time (referenced to RAS)	^t AR	55		60		70		ns	
Column address to RAS lead time	^t RAL	35		40		50		ns	
Read command setup time	†RCS	0		0		0		ns	
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	^t CLZ	0		0		0		ns	

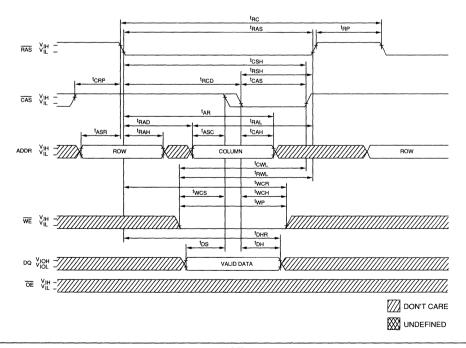
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = 5.0V ± 10%)

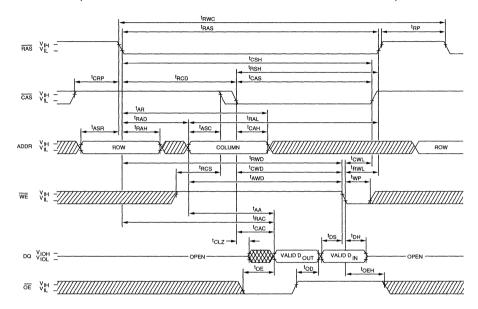
A.C. CHARACTERISTICS		-	7		-8	-	10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	20, 27
Output Disable	[‡] OD		20		20		20	ns	27
WE command setup time	tWCS	0		0		0		ns	21
Write command hold time	†WCH	15		15		20		ns	
Write command hold time (referenced to RAS)	†WCR	55		60		75		ns	
Write command pulse width	tWP	15		15		20	-	ns	
Write command to RAS lead time	†RWL	20		20		25		ns	
Write command to CAS lead time	tCWL	20		20		25		ns	
Data-in setup time	^t DS	0		0		0		ns	22
Data-in hold time	tDH	15		15	}	20		ns	22
Data-in hold time (referenced to RAS)	^t DHR	55		60		75		ns	
RAS to WE delay time	^t RWD	100		110		130		ns	21
Column address to WE delay time	tAWD	65		70		80		ns	21
CAS to WE delay time	tCWD	50		55		60		ns	21
Transition time (rise or fall)	t T	3	50	3	50	3	50	ns	9, 10
Refresh period (512 cycles)	^t REF		8		8		8	ms	
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	^t CSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS refresh)	^t CHR	15		15		15		ns	5
OE hold time from WE during READ-MODIFY-WRITE cycle	†OEH	20		20		20		ns	26
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		0		ns	24


NOTES

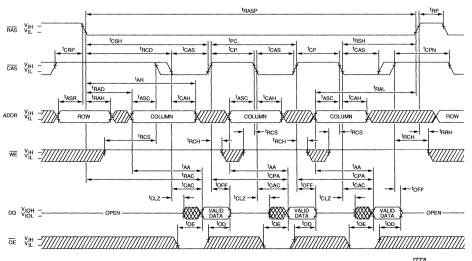
- 1. All voltages referenced to Vss.
- This parameter is sampled. Capacitance is calculated from the equation C = I dt/dv with dv = 3V and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIH and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 12. If $\overline{\text{CAS}} = V_{IL}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to 2 TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.


- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE, and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit through out the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE controlled) cycle.
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- If OE is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$ and $\overline{OE} = HIGH$.
- 25. All other inputs at Vcc -0.2V.
- 26. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 27. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS goes HIGH first, OE becomes a don't care. If OE goes HIGH and CAS stays LOW, OE is not a don't care; and the DQs will provide the previously read data if OE is taken back LOW (while CAS remains LOW).
- 28. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5V for a period of less than 20ns and the signal's total duration is 25ns or less; or a -0.3V signal of any duration is presented (DC).

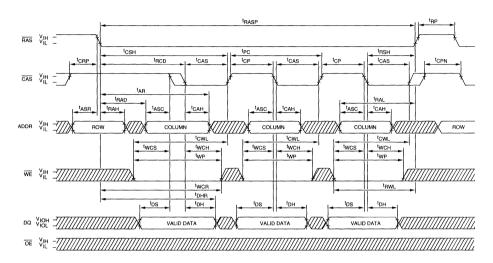
READ CYCLE



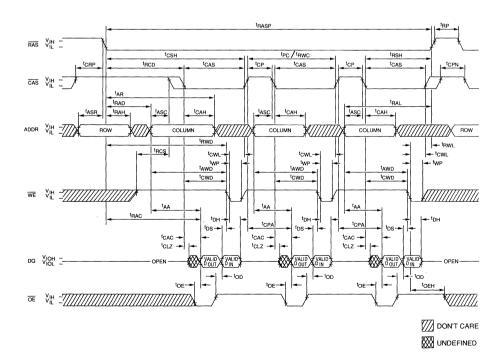
EARLY-WRITE CYCLE



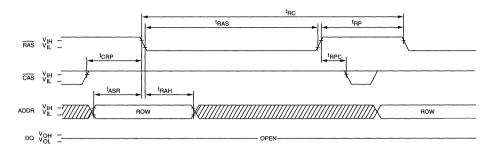
READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)



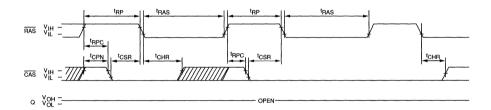
FAST-PAGE-MODE READ CYCLE

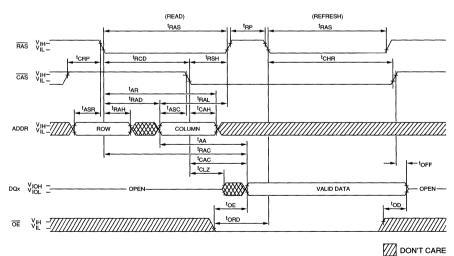


FAST-PAGE-MODE EARLY-WRITE CYCLE

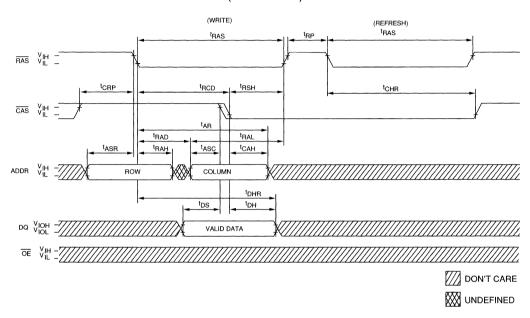


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)




$\overline{\text{RAS-ONLY}}$ REFRESH CYCLE (ADDR = A₀ - A₈; $\overline{\text{WE}}$ = DON'T CARE)

$\overline{\text{CAS-BEFORE-RAS}}$ REFRESH CYCLE (A₀ - A₈, $\overline{\text{WE}}$ and $\overline{\text{OE}}$ = DON'T CARE)



HIDDEN REFRESH CYCLE (WE = HIGH, OE = LOW) ²⁴

$\begin{aligned} \textbf{HIDDEN REFRESH CYCLE} \\ (\overline{WE} = LOW) \end{aligned}$

DRAM

256K x 4 DRAM

STATIC COLUMN

FEATURES

OPTIONS

- Industry standard x4 pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- Low power, 3mW standby; 175mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 512-cycle refresh in 8ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN

MARKING

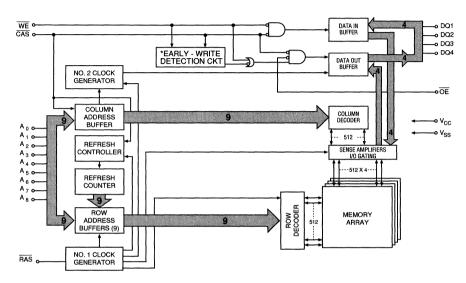
Optional STATIC COLUMN access cycle

TAXEATORICAL AC
- 7
- 8
-10
None
C
Z
DJ
VĞ
None
IT

GENERAL DESCRIPTION

The MT4C4258 is a randomly accessed solid-state memory containing 1,048,576 bits organized in a x4 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 18 address bits, which are entered 9 bits (A0-A8) at a time. RAS is used to latch the first 9 bits and CAS the latter 9 bits. A READ or WRITE cycle is selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of WE or CAS, whichever occurs last. If WE goes LOW prior to CAS going LOW, the output pin(s) remain open (High-Z) until the next CAS cycle. If WE goes LOW after data reaches the output pin(s), data out (Q) is activated and retains the selected cell data as long as CAS remains LOW (regardless of $\overline{\text{WE}}$ or $\overline{\text{RAS}}$). This late $\overline{\text{WE}}$ pulse results in a READ-WRITE cycle. The four data inputs and four data outputs are routed

PIN ASS	SIGNMENT (Top View)
20-Pin DIP (A-5, B-4)	20-Pin ZIP (C-2)
DO1 1 2 20 Vss DO2 2 19 DO4 WE 13 18 DO3 RAS 4 17 DCAS NC 15 16 DOE A0 6 15 DA8 A1 7 14 DA7 A2 8 13 DA6 A3 9 12 DA5 Vcc 4 10 11 DA4	OE 1
	DOI 1 - 26) Vss DO2 2 2 25) DO4 WE 1 3 24) DO3 RAS 1 4 23 DAS NC 1 5 22 DE
*Consult factors on a series	A1
Consult factory on avail	ability of TSOP packages


through four pins using common I/O and pin direction is controlled by \overline{WE} and \overline{OE} .

STATIC COLUMN operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A9) defined page boundary. The STATIC COLUMN cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the STATIC COLUMN operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HID-DEN refresh) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8ms, regardless of sequence. The CAS-BEFORE-RAS refresh will increment the refresh counter for automatic RAS addressing.

FUNCTIONAL BLOCK DIAGRAM STATIC COLUMN

*NOTE: $\overline{\text{WE}}$ LOW prior to $\overline{\text{CAS}}$ LOW, EW detection CKT output is a HIGH (EARLY WRITE) $\overline{\text{CAS}}$ LOW prior to $\overline{\text{WE}}$ LOW, EW detection CKT output is a LOW (LATE WRITE)

TRUTH TABLE

					Addr	ess		DATA IN / OUT
Function		RAS	CAS	WE	^t R	tC	ŌĒ	DQ1-4 (IO)
Standby		Н	Х	Х	×	Х	Х	High-Z
READ		L	L	Н	ROW	COL	L	Valid Data Out
EARLY-WRITE		L	L	L	ROW	COL	Х	Valid Data In
READ-WRITE		L	L	H→L	ROW	COL	L→H	Valid Data Out, Data In
STATIC COLUMN	1st Cycle	L	L	Н	ROW	COL	L	Valid Data Out
READ	2nd Cycle	L	L	Н	n/a	COL	L	Valid Data Out
STATIC COLUMN	1st Cycle	L,	L	L	ROW	COL	Х	Valid Data In
EARLY-WRITE	2nd Cycle	L	L	H→L	n/a	COL	Х	Valid Data In
STATIC COLUMN	1st Cycle	L	L	H→L	ROW	COL	L→H	Valid Data Out, Data In
READ-WRITE	2nd Cycle	L	L	H→L	n/a	COL	L→H	Valid Data Out, Data In
RAS-ONLY REFRE	SH	L	Н	X	ROW	n/a	×	High-Z
HIDDEN	READ	L→H→L	L	Н	ROW	COL	L	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Х	Valid Data In
CAS-BEFORE-RAS REFRESH		H→L	L	Х	Х	Х	Х	High-Z

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Storage Temperature (Ceramic)	65°C to +150°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) ($Vcc = 5.0V \pm 10\%$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, All Inputs	Vih	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-2.0	0.8	٧	1, 28
INPUT LEAKAGE CURRENT any input (0V \leq VIN \leq 6.5V, all other pins not under test = 0V)	lı	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (Iout = -5mA)	Vон	2.4		٧	
Output Low Voltage (Iout = 4.2mA)	Vol		0.4	V	

			MAX		1	
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	Icc1	2	2	2	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Vcc -0.2V)	lcc2	1	1	1	mA	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	lcc3	80	70	60	mA	3, 4
OPERATING CURRENT: STATIC COLUMN Average power supply current (RAS = VIL, CAS, Address Cycling: [†] PC = [†] PC (MIN))	Icc4	60	50	40	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=VIH: RC = RC (MIN))	lcc5	80	70	60	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: ¹RC = ¹RC (MIN))	Icc6	80	70	60	mA	3, 5

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	C ₁₁		5	pF	2
Input Capacitance: RAS, CAS, WE, OE	Cı2		7	pF	2
Input/Output Capacitance: DQ	Сю		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = 5.0V \pm 10\%$)

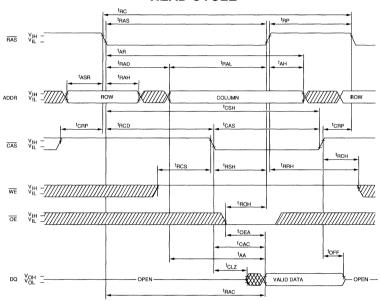
A.C. CHARACTERISTICS			-7		-8	-	10		
PARAMETER	SYM	MIN	MAX	MiN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		150		180		ns	
READ-WRITE cycle time	tRWC	185		205		245		ns	
STATIC-COLUMN READ or WRITE	tSC	40		45		55		ns	
cycle time					1				
STATIC-COLUMN READ-WRITE	tSRMC	100		110		135		ns	
cycle time							1	İ	
Access time from RAS	tRAC		70		80		100	ns	14
Access time from CAS	tCAC		20		20		25	ns	15
Output Enable	^t OE		20		20		25	ns	
Access time from column address	^t AA		35		40		50	ns	
Access time from CAS precharge	^t CPA		40		45		50	ns	
RAS pulse width	tRAS	70	100,000	80	100,000	100	100,000	ns	
RAS pulse width (STATIC COLUMN)	†RASC	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	^t RSH	20		20		25		ns	
RAS precharge time	^t RP	50		60		70		ns	
CAS pulse width	tCAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	^t CSH	70		80		100		ns	
CAS precharge time	^t CPN	10		10		15		ns	16
CAS precharge time (STATIC COLUMN)	^t CP	10		10		10		ns	
RAS to CAS delay time	†RCD	20	50	20	60	25	75	ns	17
CAS to RAS precharge time	†CRP	5		5		5		ns	
Row address setup time	tASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
RAS to column	^t RAD	15	35	15	40	20	50	ns	18
address delay time							1		
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	
Column address hold time	^t AR	55		60		70		ns	
(referenced to RAS)									
Column address to	^t RAL	35		40		50		ns	
RAS lead time							1		
Read command setup time	^t RCS	0		0		0		ns	
Read command hold time (referenced to CAS)	tRCH	0		0		0		ns	19
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	†CLZ	0		0		0	1	ns	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

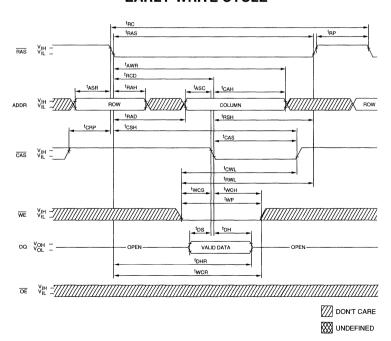
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = 5.0V \pm 10\%$)

A.C. CHARACTERISTICS		-	7	-	-8	-	10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	20, 27
Output Disable	dO _t		20		20		20	ns	27
WE command setup time	tWCS	0		0		0		ns	21
Write command hold time	tWCH	15		15		20		ns	
Write command hold time (referenced to RAS)	tWCR	55		60		75		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	^t RWL	20		20		25		ns	
Write command to CAS lead time	^t CWL	20		20		25		ns	
Data-in setup time	^t DS	0		0		0		ns	22
Data-in hold time	tDH	15		15		20		ns	22
Data-in hold time (referenced to RAS)	†DHR	55		60		75		ns	
RAS to WE delay time	^t RWD	100		110		130		ns	21
Column address to WE delay time	^t AWD	65		70		80		ns	21
CAS to WE delay time	tCMD	50		55		60		ns	21
Transition time (rise or fall)	tT T	3	50	3	50	3	50	ns	9, 10
Refresh period (512 cycles)	tREF.		8		8		8	ms	
RAS to CAS precharge time	tRPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	^t CSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS refresh)	tCHR	15		15		15		ns	5
OE hold time from WE during READ-MODIFY-WRITE cycle	†OEH	20		20		20		ns	26
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		0		ns	24
Write inactive time	tWI	10		10		10		ns	
Last WRITE to column address delay time	^t LWAD	20	30	20	35	25	45	ns	
Last WRITE to column address hold time	^t AHLW	65		75		95		ns	
RAS hold time referenced to OE	^t ROH	10		10		10		ns	
Output data hold time from column address	^t AOH	5		5	-	5		ns	
Output data enable from WRITE	WO [†]	^t AA		^t AA		t AA		ns	
Access time from last WRITE	†ALW	65		75		95		ns	
Column address hold time referenced to RAS HIGH	^t AH	5		5		10		ns	
CAS pulse width in STATIC-COLUMN mode	tCSC	^t CAS		^t CAS		†CAS		ns	

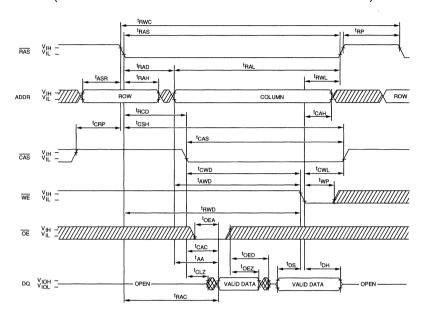
DRAM


NOTES

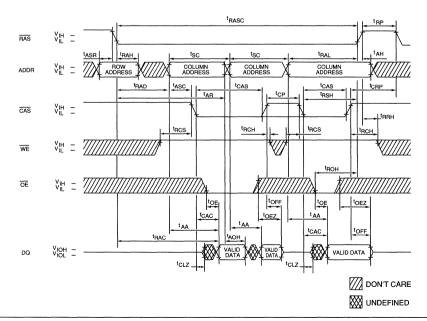
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates.
 Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- If CAS = VIL, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to 2 TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (max) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.


- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE, and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit through out the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE controlled) cycle.
- 22. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in EARLY-WRITE cycles and $\overline{\text{WE}}$ leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- If OE is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
- A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE=HIGH.
- 25. All other inputs at Vcc -0.2V.
- 26. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 27. The DQs open during READ cycles once ^tOD or ^tOFF occur. If \overline{CAS} goes HIGH first, \overline{OE} becomes a don't care. If \overline{OE} goes HIGH and \overline{CAS} stays LOW, \overline{OE} is not a don't care; and the DQs will provide the previously read data if \overline{OE} is taken back LOW (while \overline{CAS} remains LOW).
- 28. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5V for a period of less than 20ns and the signal's total duration is 25ns or less; or a -0.3V signal of any duration is presented (DC).

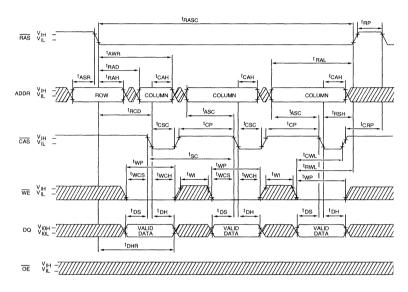
READ CYCLE

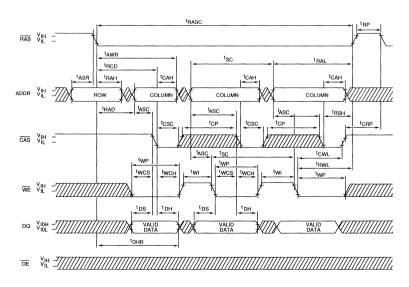


EARLY-WRITE CYCLE



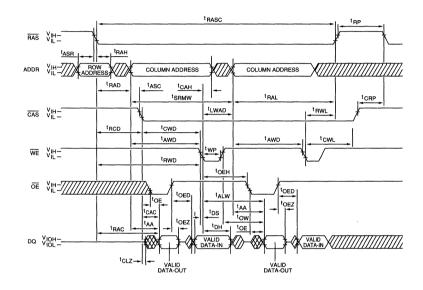
READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)

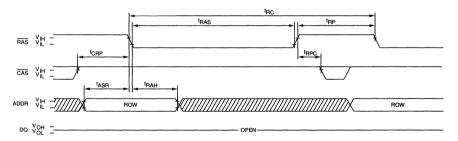

STATIC-COLUMN READ CYCLE

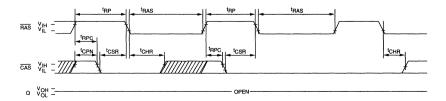

STATIC-COLUMN EARLY-WRITE CYCLE

(CAS controlled)

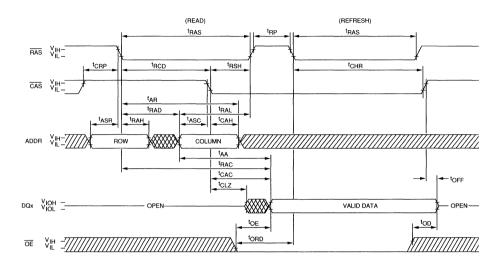
STATIC-COLUMN EARLY-WRITE CYCLE


 $(\overline{WE} \text{ controlled})$

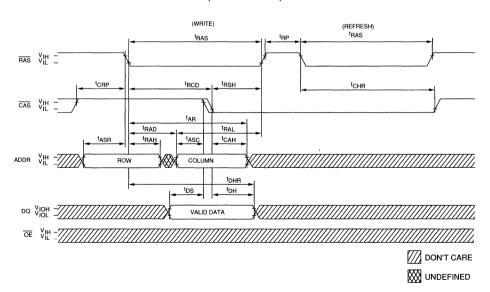



STATIC-COLUMN READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)

$\overline{\text{RAS-ONLY REFRESH CYCLE}}$ (ADDR = A₀ - A₈; $\overline{\text{WE}}$ = DON'T CARE)



$\overline{\text{CAS-BEFORE-RAS}}$ REFRESH CYCLE $(A_0 - A_8, \overline{\text{WE}} \text{ and } \overline{\text{OE}} = \text{DON'T CARE})$



HIDDEN REFRESH CYCLE (WE = HIGH, OE = LOW) 24

HIDDEN REFRESH CYCLE (WE = LOW)

DRAM

256K x 4 DRAM

QUAD CAS PARITY, FAST PAGE MODE

FEATURES

- Four independent CAS controls offer individual manipulation to each of the four data Input/Output ports (DQ1 through DQ4).
- Offers a single-chip solution to byte-level parity for 36bit words when using 256K x 4 DRAMs for memory.
- Emulates write-per-bit, at design-in level, with simplified timing constraints.
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- Low power, 3mW standby; 175mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 512-cycle refresh in 8ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- Optional FAST PAGE MODE access cycle

OPTIONS MARKING • Timing - 7 70ns access - 8 80ns access -10 100ns access Packages Plastic SOI (300mil) DI • Operating Temperature, TA Commercial (0°C to +70°C) None Industrial (-40°C to +85°C) IT

GENERAL DESCRIPTION

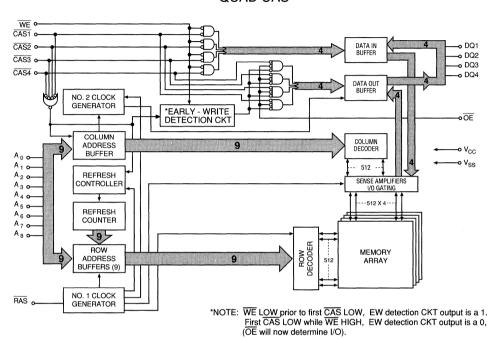
The MT4C4259 is a randomly accessed solid-state memory containing 1,048,576 bits organized in a x4 configuration. This 256K x 4 DRAM is unique in that each $\overline{\text{CAS}}$ ($\overline{\text{CASI}}$ through $\overline{\text{CAS4}}$) controls its corresponding data I/O port in conjunction with $\overline{\text{OE}}$ (eg. $\overline{\text{CASI}}$ controls DQ1 I/O port, $\overline{\text{CAS2}}$ controls DQ2, $\overline{\text{CAS3}}$ controls DQ3 and $\overline{\text{CAS4}}$ controls DQ4).

The best way to view the Quad \overline{CAS} function is to imagine the \overline{CAS} inputs going into an AND gate to obtain an internally generated \overline{CAS} signal functioning in an identical manner to the single \overline{CAS} input on a standard 256K x 4 DRAM device. The key difference is each \overline{CAS} controls its corresponding DQ tristate logic (in conjunction with \overline{OE} and \overline{WE}) on the Quad \overline{CAS} DRAM.

During READ or WRITE cycles, each bit is uniquely addressed through the 18 address bits, which are entered 9 bits (A0-A8) at a time. RAS is used to latch the first 9 bits and

PIN ASSIGNMENT (Top View) 24-Pin SOJ (E-5)

the first $\overline{\text{CAS}}$ the latter 9 bits. A READ or WRITE cycle is selected with the $\overline{\text{WE}}$ input. A logic HIGH on $\overline{\text{WE}}$ dictates READ mode while a logic LOW on $\overline{\text{WE}}$ dictates WRITE mode.


During a WRITE cycle, data in (Dx) is latched by the falling edge of \overline{WE} or the first \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to the first \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after data reaches the output buffer, data out (Q) is activated and retains the selected cell data until the trailing edge of its corresponding \overline{CAS} occurs (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-WRITE cycle (\overline{OE} switching the device from a READ to a WRITE function). The four data inputs and four data outputs are routed through four pins using common I/O, with pin direction controlled by \overline{WE} and \overline{OE} .

FAST PAGE MODÉ operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A8) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by the first CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation features.

Returning RAS and all four CAS controls HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HIDDEN REFRESH) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8ms, regardless of sequence. The CAS-BEFORE-RAS cycle will invoke the refresh counter for automatic and sequential row addressing.

FUNCTIONAL BLOCK DIAGRAM QUAD CAS

TRUTH TABLE

INO III IADI				r					
				ŧ			Addresses		
Function		RAS	CASx	CASy	WE	ŌĒ	^t R	^t C	DQx (DQy always High-Z)
Standby		Η	Х	X	Х	X	Х	Х	High-Z
READ		L	L	Н	Н	L	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	Н	L	X	ROW	COL	Valid Data In
READ-WRITE		L	L	Н	H→L	L→H	ROW	COL	Valid Data Out, Data In
PAGE-MODE	1st Cycle	L	H→L	Н	Н	L	ROW	COL	Valid Data Out
READ	2nd Cycle	L	H→L	H	Н	L	n/a	COL	Valid Data Out
PAGE-MODE	1st Cycle	L	H→L	Н	L	Х	ROW	COL	Valid Data In
EARLY-WRITE	2nd Cycle	L	H→L	Н	L	Х	n/a	COL	Valid Data In
PAGE-MODE	1st Cycle	L	H→L	Н	H→L	L→H	ROW	COL	Valid Data Out, Data In
READ-WRITE	2nd Cycle	L	H→L	Н	H→L	L→H	n/a	COL	Valid Data Out, Data In
HIDDEN	READ	L→H→L	L	Н	Н	L	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	Н	L	X	ROW	COL	Valid Data In
RAS-ONLY		L	Н	Н	Х	Х	ROW	n/a	High-Z
REFRESH									-
CAS-BEFORE-	-	H→L	L	Н	Х	Х	Х	Х	High-Z
RAS REFRESI	+						1		

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Storage Temperature (Ceramic)	65°C to +150°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) ($Vcc = 5.0V \pm 10\%$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-2.0	0.8	V	1, 39
INPUT LEAKAGE CURRENT any input $(0V \le V_{IN} \le 6.5V,$ all other pins not under test = 0V)	lı	-2	2	μА	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS	Vон	2.4		V	
Output High Voltage (Ιουτ = -5mA) Output Low Voltage (Ιουτ = 4.2mA)	Vol		0.4	V	

			MAX]	
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	Icc1	2	2	2	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Vcc -0.2V)	lcc2	1	1	1	mA	26
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: tRC = tRC (MIN))	Іссз	80	70	60	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ¹PC = ¹PC (MIN))	Icc4	60	50	40	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=VIH: TRC = TRC (MIN))	lcc5	80	70	60	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: tRC = tRC (MIN))	lcc6	80	70	60	mA	3, 5

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	Cl1		5	pF	2
Input Capacitance: RAS, CAS1-4, WE, OE	CI2		7	pF	2
Input/Output Capacitance: DQ	Сю		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = 5.0V \pm 10\%$)

A.C. CHARACTERISTICS		-	-7		-8	-10			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		150		180		ns	
READ-WRITE cycle time	†RWC	185		205		220		ns	
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	40		45		55		ns	31
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	95		100		115		ns	31
Access time from RAS	tRAC		70		80		100	ns	14
Access time from CAS	^t CAC		20		20		25	ns	15, 29
Output Enable	^t OE		20		20		25	ns	33
Access time from column address	^t AA		35		40		50	ns	
Access time from CAS precharge	^t CPA		40		45		50	ns	29
RAS pulse width	tRAS	70	100,000	80	100,000	100	100,000	ns	
RAS pulse width (FAST PAGE MODE)	^t RASP	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	tRSH	20		20		25		ns	27
RAS precharge time	^t RP	55		60		70		ns	
CAS pulse width	^t CAS	20	100,000	20	100,000	25	100,000	ns	34
CAS hold time	tCSH	70		80		100		ns	28
CAS precharge time	tCPN	10	<u> </u>	10		15		ns	16, 32
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	32
RAS to CAS delay time	tRCD	20	50	20	60	25	75	ns	17, 27
CAS to RAS precharge time	^t CRP	5		5		5		ns	28
Row address setup time	tASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
RAS to column address delay time	^t RAD	15	35	15	40	20	50	ns	18
Column address setup time	tASC	0		0		0		ns	27
Column address hold time	^t CAH	15		15		20		ns	27
Column address hold time (referenced to RAS)	^t AR	55		60		70		ns	
Column address to RAS lead time	^t RAL	35		40		50		ns	
Read command setup time	†RCS	0		0		0		ns	27
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19, 28
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	^t CLZ	0		0	 	0	+	ns	29

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

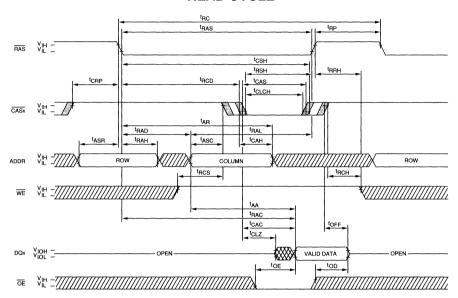
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = 5.0V \pm 10\%$)

A.C. CHARACTERISTICS		_	7		-8		10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	20, 29, 38
Output disable	^t OD		20		20		20	ns	34, 38
WE command setup time	twcs	0		0		0		ns	21, 27
Write command hold time	tWCH	15		15		20		ns	36
Write command hold time (referenced to RAS)	tWCR	55		60		75		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	tRWL	20		20		25		ns	
Write command to CAS lead time	tCWL	20		20		25		ns	28
Data-in setup time	^t DS	0		0		0		ns	22, 29
Data-in hold time	^t DH	15		15		20		ns	22, 29
Data-in hold time (referenced to RAS)	^t DHR	55		60		75		ns	
RAS to WE delay time	tRWD	100		110		130		ns	21
Column address to WE delay time	^t AWD	65		70		80		ns	21
CAS to WE delay time	tCWD	50		55		60		ns	21, 27
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	9, 10
Refresh period (512 cycles)	tREF.		8		8		8	ms	
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	tCSR	10		10		10		ns	5, 27
CAS hold time (CAS-BEFORE-RAS refresh)	^t CHR	15		15		15		ns	5, 28
Last CAS going LOW to first CAS to return HIGH	tCLCH	10		10		10		ns	30
OE hold time from WE during READ-MODIFY-WRITE cycle	†OEH	20		20		20		ns	37
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		0		ns	

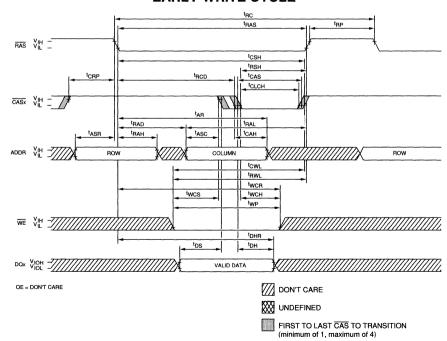
NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and VCC = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates.
 Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial 100µs pause is required after power-up

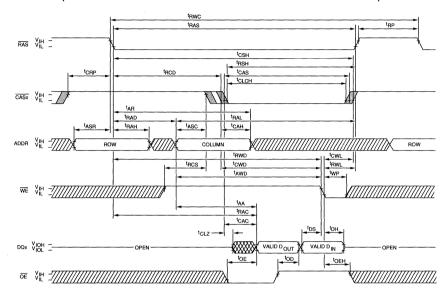
- followed by any eight \overline{RAS} cycles before proper device operation is assured. The eight \overline{RAS} cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between $V_{\rm IL}$ and $V_{\rm IL}$ (or between $V_{\rm IL}$ and $V_{\rm IH}$) in a monotonic manner.
- 11. If $\overline{CASx} = V_{IH}$, data output (x) is high impedance.


NOTES

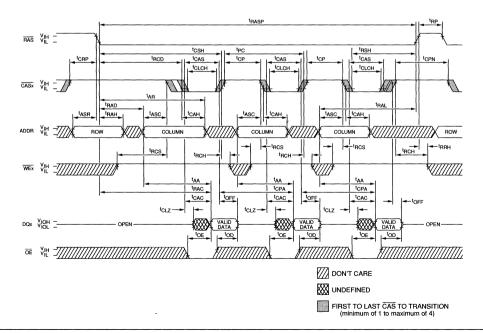
- 12. If $\overline{\text{CAS}}$ x = V_{IL}, data output (x) may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to 2 TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If at least one CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, all four CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in EARLY-WRITE and READ-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-WRITE CYCLE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE controlled) cycle.
- 22. These parameters are referenced to CASx leading edge in early WRITE cycles and WE leading edge in late WRITE or READ-WRITE cycles.
- 23. If OE is tied permanently LOW, READ-WRITE or READ-MODIFY-WRITE operations are not possible.


- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case \overline{WE} = LOW and \overline{OE} = HIGH.
- 25. One to three CAS controls may be HIGH throughout any given CAS cycle, even though the timing waveforms show all CAS going LOW. If any one does go LOW, it must meet all the timing requirements listed or the data for that I/O buffer may be invalid. At least one of the four CAS controls must be LOW for a valid CAS cycle to occur.
- 26. All other inputs at Vcc -0.2V.
- 27. The first \overline{CASx} edge to transition LOW.
- 28. The last \overline{CASx} edge to transition HIGH.
- 29. Output parameter (DQx) is referenced to corresponding CASx input; DQ1 by CAS1, DQ2 by CAS2 etc.
- 30. Last falling CASx edge to first rising CASx edge.
- Last rising CASx edge to next cycle's last rising CASx edge.
- 32. Last rising \overline{CASx} edge to first falling \overline{CASx} edge.
- 33. First DQx controlled by the first \overline{CASx} to go LOW.
- 34. Last \underline{DQx} controlled by the last \overline{CASx} to go HIGH.
- 35. Each CASx must meet minimum pulse width.
- 36. Last CASx to go LOW.
- 37. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If the last CASx goes HIGH prior to OE going back LOW, the DQs will remain open.
- 38. The DQs open during READ cycles once OD or OFF occur. If the last CASx goes HIGH first, OE becomes a don't care. If OE goes HIGH and CASx stays LOW, OE is not a don't care; and the DQs will provide the previously read data if OE is taken back LOW (while CASx remains LOW).
- 39. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5V for a period of less than 20ns and the signal's total duration is 25ns or less; or a -0.3V signal of any duration is presented (DC).

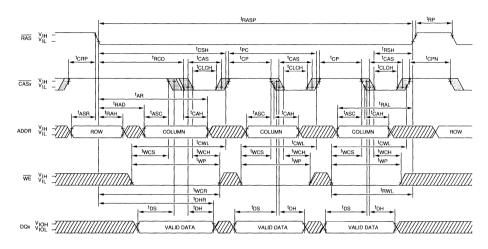
READ CYCLE



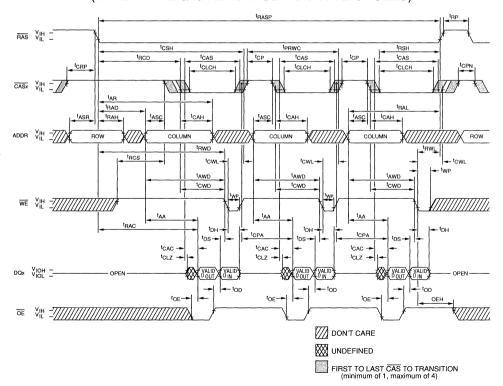
EARLY-WRITE CYCLE



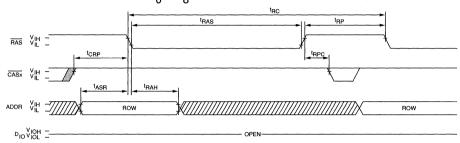
READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)

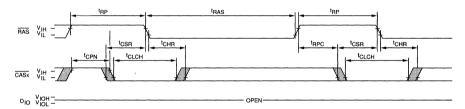


FAST-PAGE-MODE READ CYCLE

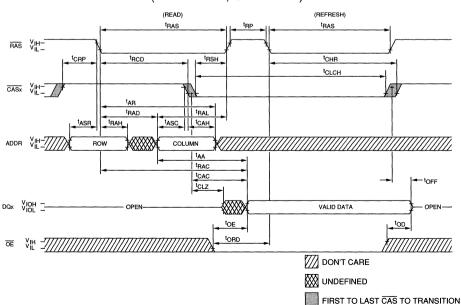


FAST-PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)


RAS-ONLY REFRESH CYCLE

 $(ADDR = A_0 - A_8; \overline{WE} \text{ and } \overline{OE} = DON'T CARE)$

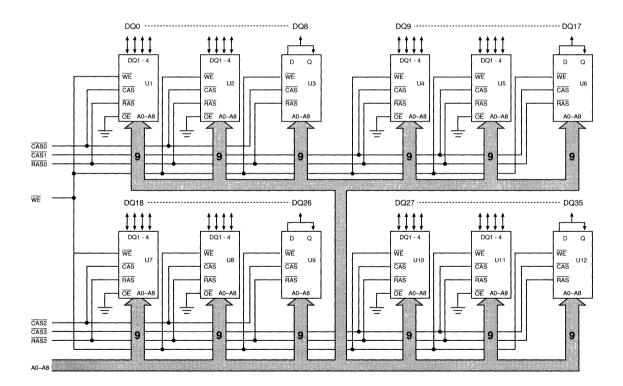

CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_8, \overline{WE} \text{ and } \overline{OE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH, \overline{OE} = LOW)^{24}$

(minimum of 1, maximum of 4)

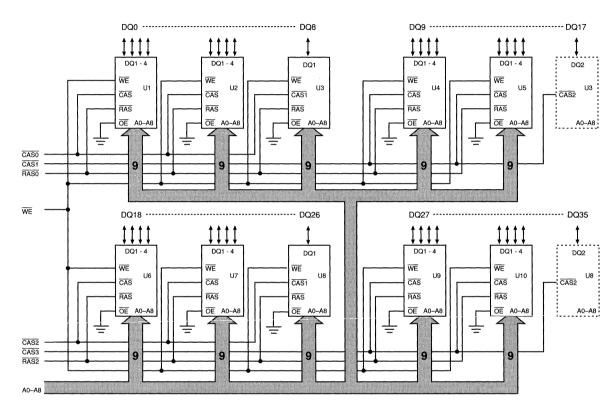

QUAD CAS MODULE UPGRADE

The MT4C4259 (QUAD CAS DRAM) was developed to eliminate the 256K DRAMs used in the current 256K and 512K x 36 DRAM modules and to add total CMOS performance (FAST-PAGE-MODE and faster access speeds: 70ns and 80ns). The MT4C4259 is a 256K x 4 CMOS FAST-PAGE-MODE DRAM with four CAS input controls. The four individual CAS inputs allow each I/O buffer (DQ) to be separately controlled, just as if there were four separate 256K x 1 DRAMs. Most 256K x 1 DRAMs use older NMOS technology and do not have the access speeds of the newer CMOS 1 Meg (256K x 4), nor FAST-PAGE-MODE capability.

The MT4C4259 will reduce chip count on a x36 module,

improving reliability, reducing power consumption and lowering cost. The $256K \times 36$ will have four $256K \times 1$ DRAMs replaced by either one or two QUAD CAS DRAMs, depending on whether $\overline{RAS0}$ and $\overline{RAS1}$ must be separate or can be connected together. The $512K \times 36$ will have eight $256K \times 1$ DRAMs replaced by either two or four QUAD CAS DRAMs, depending on whether $\overline{RAS0}$, $\overline{RAS1}$, $\overline{RAS2}$, and $\overline{RAS3}$ must be split or can be connected together.

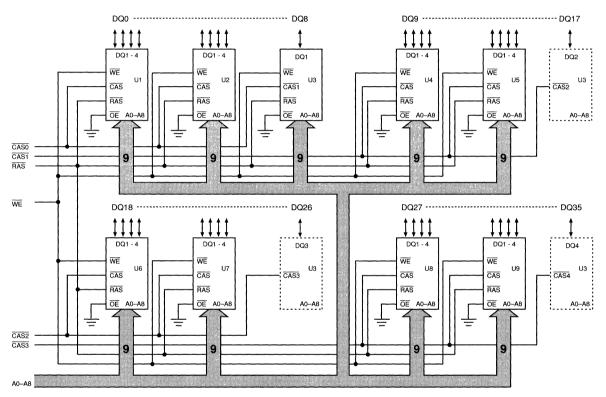
The current 256K x 36 DRAM Module is shown with 256K x 1 DRAMs in Figure 1 below. Figures 2 and 3 show how the same module will be realized with the QUAD CAS DRAM for both the split \overline{RAS} (Figure 2) and the common \overline{RAS} (Figure 3) modules.



U1, U2, U4, U5, U7, U8, U10, U11 = MT4C4256DJ U3, U6, U9, U12 = MT1259EJ

Figure 1 256K x 36 WITH 256K x 1 FOR PARITY BIT

QUAD CAS ENHANCED x36 MODULES



U1, U2, U4, U5, U6, U7, U9, U10 = MT4C4256DJ U3, U8 = MT4C4259EJ

Figure 2
256K x 36 WITH QUAD CAS FOR PARITY BIT AND SPLIT RAS CONTROL

QUAD CAS ENHANCED x36 MODULES

U1, U2, U4, U5, U6, U7, U8, U9 = MT4C4256DJ U3, = MT4C4259EJ

Figure 3 256K x 36 WITH QUAD $\overline{\text{CAS}}$ FOR PARITY BIT AND COMMON $\overline{\text{RAS}}$ CONTROL

DRAM

256K x 4 DRAM

LOW POWER, FAST PAGE MODE

FEATURES

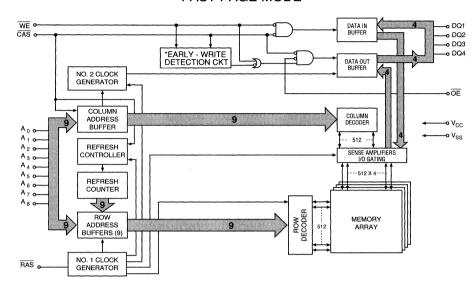
- Industry standard x4 pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- Low power, 1mW standby; 150mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 512-cvcle refresh in 64ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- Optional FAST PAGE MODE access cycle
- Low CMOS STANDBY CURRENT, 200µA Maximum

OPTIONS	MARKING
Timing	
70ns access	- 7
80ns access	- 8
100ns access	-10
Packages	
Plastic DIP (300mil)	None
Ceramic DIP (300mil)	C
Plastic ZIP (350mil)	Z
Plastic SOJ (300mil)	DJ
Plastic TSOP (*)	VG
Operating Temperature, TA	
Commercial (0°C to +70°C)	None
Industrial (-40°C to +85°C)	IT

GENERAL DESCRIPTION

The MT4C4260 is a randomly accessed solid-state memory containing 1,048,576 bits organized in a x4 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 18 address bits, which are entered 9 bits (A0-A8) at a time. RAS is used to latch the first 9 bits and CAS the latter 9 bits. A READ or WRITE cycle is selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of WE or CAS, whichever occurs last. If WE goes LOW prior to CAS going LOW, the output pin(s) remain open (High-Z) until the next CAS cycle. If WE goes LOW after data reaches the output pin, data out (Q) is activated and retains the selected cell data as long as CAS remains LOW (regardless of $\overline{\text{WE}}$ or $\overline{\text{RAS}}$). This late $\overline{\text{WE}}$ pulse results in a READ-WRITE cycle. The four data inputs and four data outputs are routed

PIN ASS	SIGNMENT (Top View)
20-Pin DIP (A-5, B-4)	20-Pin ZIP (C-2)
DQ1 1 1 20 Vss DQ2 2 19 DQ4 WE 3 18 DQ3 RAS 4 17 CAS NC 5 16 OE A0 6 15 A8 A1 7 14 A7 A2 8 13 A6 A3 9 12 A5 Vcc 10 11 A4	OE 1 5 2 CAS DO3 3 5 4 DQ4 Vss 5 5 6 6 DQ1 DQ2 7 6 8 WE RAS 9 6 18 WE A0 11 6 12 A1 A2 13 6 12 A1 Vcc 15 6 16 A4 A5 17 6 18 A6 A7 19 6 18 A6 20-Pin SOJ (E-1)
	DO1 [1 · 26] Vss DO2 [2 · 25] DO4 WE [3 · 24] DO3 FAS [4 · 23] CAS NC [5 · 22] OE
	A0 0 9 18 1A8 A1 0 10 17 1A7 A2 0 1 16 1A6 A3 0 12 15 1A5 Vcc 0 13 14 1A4
*Consult factory on ava	illability of TSOP packages


through four pins using common I/O, and pin direction is controlled by \overline{WE} and \overline{OE} .

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A8) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by \overline{RAS} followed by a column address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE cycle.

Returning RÁS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HID-DEN REFRESH) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 64ms, regardless of sequence. The CAS-BEFORE-RAS refresh will increment the refresh counter for automatic RAS addressing.

FUNCTIONAL BLOCK DIAGRAM FAST PAGE MODE

*NOTE: WE LOW prior to CAS LOW, EW detection CKT output is a HIGH (EARLY WRITE) CAS LOW prior to WE LOW, EW detection CKT output is a LOW (LATE WRITE)

TRUTH TABLE

					Add	ress		DATA IN / OUT
Function		RAS	CAS	WE	^t R	ĵ.	ŌĒ	DQ1-4 (IO)
Standby		Н	Х	Х	X	Х	Х	High-Z
READ		L	L	Н	ROW	COL	L	Valid Data Out
EARLY-WRITE		L	L	L	ROW	COL	Х	Valid Data In
READ-WRITE		L	L	H→L	ROW	COL	L→H	Valid Data Out, Data In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	ROW	COL	L	Valid Data Out
READ	2nd Cycle	L	H→L	Н	n/a	COL	L	Valid Data Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	ROW	COL	Х	Valid Data In
EARLY-WRITE	2nd Cycle	L	H→L	L	n/a	COL	Х	Valid Data In
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	ROW	COL	L→H	Valid Data Out, Data In
READ-WRITE	2nd Cycle	L	H→L	H→L	n/a	COL	L→H	Valid Data Out, Data In
RAS-ONLY REFRES	Н	L	Н	Х	ROW	n/a	X	High-Z
HIDDEN	READ	L→H→L	L	Н	ROW	COL	L	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Х	Valid Data In
CAS-BEFORE-RAS REFRESH		H→L	L	Х	Х	Х	Х	High-Z

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.	0V to +7.0V
Storage Temperature (Ceramic)65°	C to +150°C
Storage Temperature (Plastic)55°	C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50m A

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) ($Vcc = 5.0V \pm 10\%$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	Vıн	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-2.0	0.8	V	1, 28
INPUT LEAKAGE CURRENT any input (0V \leq Vin \leq 6.5V, all other pins not under test = 0V)	lı .	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT: (Q is disabled; 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μА	
OUTPUT LEVELS	Vон	2.4		V	
Output High Voltage (Ιουτ = -5mA) Output Low Voltage (Ιουτ = 4.2mA)	Vol		0.4	٧	

			MAX]	
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
STANDBY CURRENT: (TTL) $(\overline{RAS} = \overline{CAS} = V_{IH})$	Icc1	2	2	2	mA	
STANDBY CURRENT: (CMOS) $(\overline{RAS} = \overline{CAS} = Vcc -0.2V)$	lcc2	200	200	200	μА	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Single Address Cycling: ^t RC = ^t RC (MIN))	lcc3	75	65	55	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC (MIN))	Icc4	55	45	40	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=VIH: ^t RC = ^t RC (MIN))	lcc5	75	65	55	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	lcc ₆	75	65	60	mA	3, 5
BATTERY BACKUP REFRESH CURRENT: Average power supply current during battery backup refresh: CAS = 0.2V or CAS-BEFORE-RAS cycling; RAS = tRAS (MIN) of 1µs; WE, A0-A9 and D in = Vcc -0.2V or 0.2V (D in may be left OPEN), tRC = 125µs (512 rows at 125µs = 64ms)	lcc7	200	200	200	μΑ	3, 5, 7

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	Ci1		5	pF	2
Input Capacitance: RAS, CAS, WE, OE	Cı2		7	pF	2
Input/Output Capacitance: DQ	Сю		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

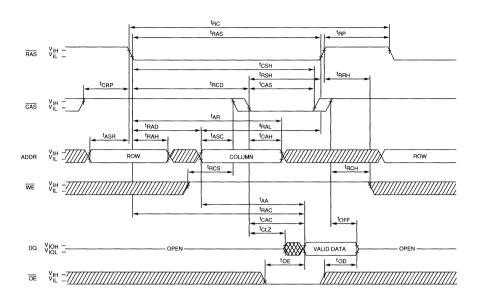
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = 5.0V \pm 10\%$)

A.C. CHARACTERISTICS			-7		-8		-10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	tRC	130		150		180		ns	
READ-WRITE cycle time	^t RWC	185		205		245		ns	
FAST-PAGE-MODE READ or WRITE	^t PC	40		45		55		ns	
cycle time							1		
FAST-PAGE-MODE READ-WRITE	^t PRWC	95		100		115		ns	
cycle time			1				1		
Access time from RAS	†RAC		70		80		100	ns	14
Access time from CAS	^t CAC		20		20		25	ns	15
Output Enable	†OE		20		20		25	ns	
Access time from column address	^t AA		35		40		50	ns	
Access time from CAS precharge	^t CPA		40		45		50	ns	
RAS pulse width	†RAS	70	100,000	80	100,000	100	100,000	ns	44.
RAS pulse width (FAST PAGE MODE)	^t RASP	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	^t RSH	20		20		25		ns	
RAS precharge time	^t RP	50		60		70		ns	
CAS pulse width	†CAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	tCSH	70		80		100		ns	
CAS precharge time	^t CPN	10		10		15		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	†RCD	20	50	20	60	25	75	ns	17
CAS to RAS precharge time	tCRP	5		5		5		ns	
Row address setup time	†ASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
RAS to column	^t RAD	15	35	15	40	20	50	ns	18
address delay time					}			l	
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	
Column address hold time (referenced to RAS)	^t AR	55		60		70		ns	
Column address to RAS lead time	†RAL	35		40		50		ns	
Read command setup time	tRCS	0		0		0		ns	
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	†CLZ	0		0		0		ns	

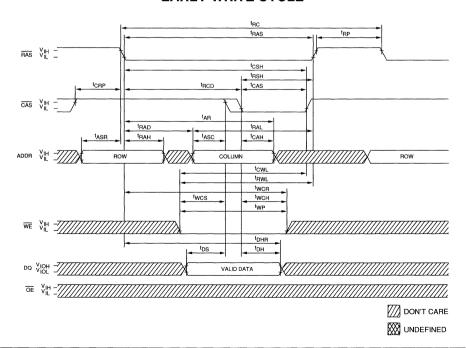
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = 5.0V \pm 10\%$)

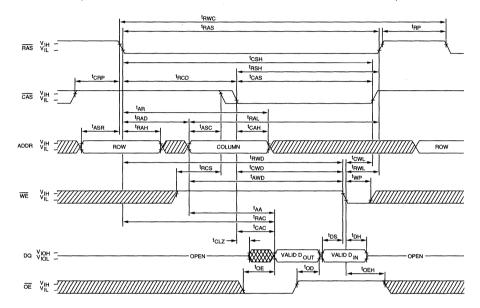
A.C. CHARACTERISTICS		-	7		-8	-	10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	20, 27
Output Disable	dO [†]		20		20		20	ns	27
WE command setup time	tWCS	0		0		0		ns	21
Write command hold time	tWCH	15		15		20		ns	
Write command hold time (referenced to RAS)	tWCR	55		60		75		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	^t RWL	20		20		25		ns	
Write command to CAS lead time	tCWL	20		20		25		ns	
Data-in setup time	†DS	0		0		0		ns	22
Data-in hold time	^t DH	15		15		20		ns	22
Data-in hold time (referenced to RAS)	tDHR	55		60		75		ns	
RAS to WE delay time	†RWD	100		110		130		ns	21
Column address to WE delay time	tAWD	65		70		80		ns	21
CAS to WE delay time	tCWD	50		55		60		ns	21
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	9, 10
Refresh period (512 cycles)	tREF		64		64		64	ms	
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	tCSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS refresh)	^t CHR	15		15		15		ns	5
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	20		20		20		ns	26
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		0		ns	24


NOTES

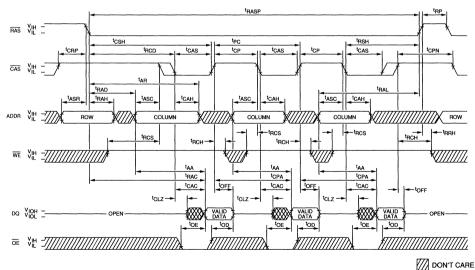
- 1. All voltages referenced to Vss.
- This parameter is sampled. Capacitance is calculated from the equation C = I^{dt}/_{dv} with dv = 3V and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates.
 Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100μs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 64ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VII. and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = VIH$, data output is high impedance.
- 12. If CAS = VIL, data output may contain data from the last valid READ cycle.
- Measured with a load equivalent to 2 TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.


- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. ¹WCS, ¹RWD, ¹AWD and ¹CWD are restrictive operating parameters in LATE-WRITE, and READ-MODIFY-WRITE cycles only. If ¹WCS ≥ ¹WCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit through out the entire cycle. If ¹RWD ≥ ¹RWD (MIN), ¹AWD ≥ ¹AWD (MIN) and ¹CWD ≥ ¹CWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE controlled) cycle.
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- If OE is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
- A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE=HIGH.
- 25. All other inputs at Vcc -0.2V.
- 26. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 27. The DQs open during READ cycles once ^tOF or ^tOFF occur. If CAS goes HIGH first, OE becomes a don't care. If OE goes HIGH and CAS stays LOW, OE is not a don't care; and the DQs will provide the previously read data if OE is taken back LOW (while CAS remains LOW).
- 28. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5V for a period of less than 20ns and the signal's total duration is 25ns or less; or a -0.3V signal of any duration is presented (DC).

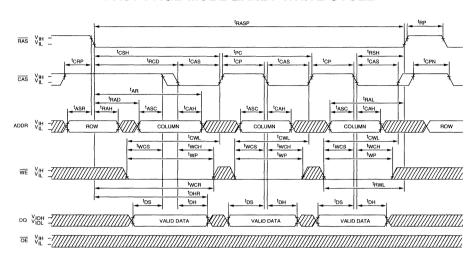
READ CYCLE



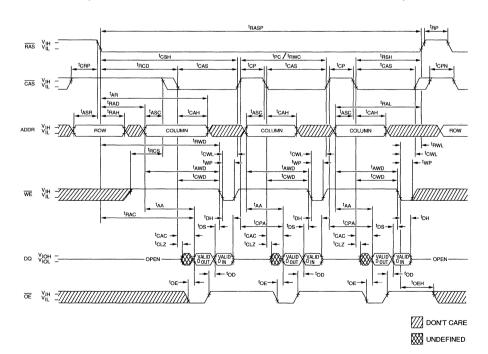
EARLY-WRITE CYCLE



READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)

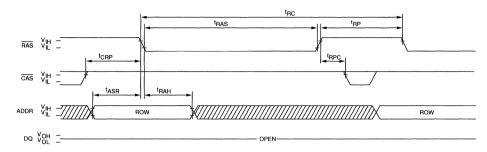


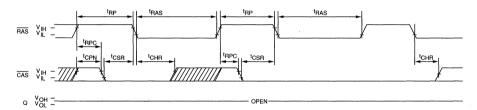
FAST-PAGE-MODE READ CYCLE



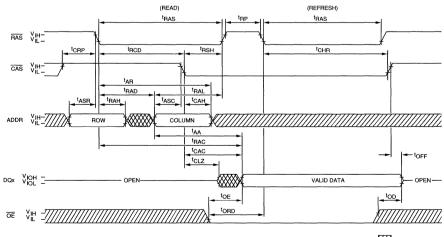
FAST-PAGE-MODE EARLY-WRITE CYCLE

FAST-PAGE-MODE READ-WRITE CYCLE


(LATE-WRITE and READ-MODIFY-WRITE CYCLES)


RAS-ONLY REFRESH CYCLE

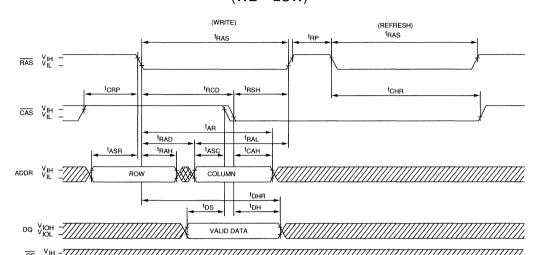
 $(ADDR = A_0 - A_8; \overline{WE} = DON'T CARE)$


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_8, \overline{WE} \text{ and } \overline{OE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH, \overline{OE} = LOW)^{24}$



DON'T CARE

₩ UNDEFINED

HIDDEN REFRESH CYCLE (WE = LOW)

DON'T CARE

₩ UNDEFINED

DRAM

1 MEG x 4 DRAM

FAST PAGE MODE

FEATURES

- Industry standard x4 pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- Low power, 3mW standby; 225mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 1024-cycle refresh distributed across 16ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR), and HIDDEN
- FAST PAGE MODE access cycle
- 300 and 350 mil wide SOI packages
- Two CBR options: CBR with WE a don't care (1 Meg compatible) and CBR with WE a HIGH (JEDEC test mode capable via WCBR)

OPTIONS MARKING Timing 60ns access -6 70ns access -7 -8 80ns access · Packages Ceramic DIP (300mil) CN Ceramic DIP (400mil) C \mathbf{Z} Plastic ZIP (350mil) Plastic SOJ (300mil) DI Plastic SOI (350mil) DIW Plastic TSOP (*) TG • CAS-BEFORE-RAS refresh CBR with WE a don't care None CBR with WE a HIGH • Operating Temperature, TA Commercial (0°C to +70°C) None Industrial (-40°C to +85°C) IT

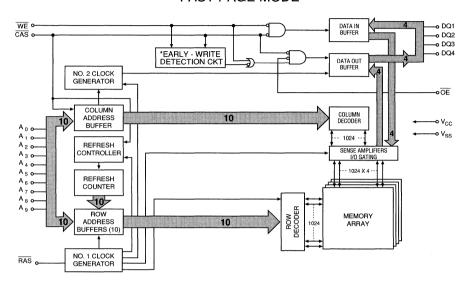
GENERAL DESCRIPTION

The MT4C4001 is a randomly accessed solid-state memory containing 4,194,304 bits organized in a x4 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. \overline{RAS} is used to latch the first 10 bits and \overline{CAS} the latter 10 bits. A READ or WRITE cycle is selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode.

PIN ASSIGNMENT (Top View)

20-Pin CDIP (B-4, B-5)	20-Pin ZIP (C-3)	20-Pin SOJ (E-1, E-2)
DO1 11 20 JVss DQ2 2 19 JDQ4 WE 3 18 JDQ3 RAS 4 17 CAS A9 5 16 JOE A0 6 15 JA8 A1 7 14 JA7 A2 8 13 JA6 A3 9 12 JA5 Vcc 10 11 JA4	OE 1	DOI [1 · 26] Vss DO2 [2 25] DO4 WE [3 24] DO3 RAS [4 23] CAS AS [5 22] OE AO [9 18] A8 A1 [10 17] A7 A2 [11 16] A6 A3 [12 15] A5 Vcc [13 14] A4

*Consult factory on availability of TSOP packages


During a WRITE cycle, data in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after data reaches the output pin(s), The Qs are activated and retain the selected cell data as long as \overline{CAS} remains low (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-WRITE cycle. The four data inputs and four data outputs are routed through four pins using common I/O, and pin direction is controlled by \overline{WE} and \overline{OE} .

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HID-DEN refresh) so that all 1024 combinations of RAS addresses (A0-A9) are executed at least every 16ms, regardless of sequence. The CBR refresh cycle will invoke the internal refresh counter for automatic RAS addressing.

FUNCTIONAL BLOCK DIAGRAM FAST PAGE MODE

*NOTE: $\overline{\text{WE}}$ LOW prior to $\overline{\text{CAS}}$ LOW, EW detection CKT output is a HIGH (EARLY WRITE) $\overline{\text{CAS}}$ LOW prior to $\overline{\text{WE}}$ LOW, EW detection CKT output is a LOW (LATE WRITE)

TRUTH TABLE

					Add	ress		DATA IN / OUT
Function		RAS	CAS	WE	^t R	^t C	ŌĒ	DQ1-4
Standby		Н	Х	Х	Х	Х	Х	High-Z
READ		L	L	Н	ROW	COL	L	Valid Data Out
EARLY-WRITE		L	L	L	ROW	COL	х	Valid Data In
READ-WRITE		L	L	H→L	ROW	COL	L→H	Valid Data Out, Data In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	ROW	COL	L	Valid Data Out
READ	2nd Cycle	L	H→L	Н	n/a	COL	L	Valid Data Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	ROW	COL	Х	Valid Data In
EARLY-WRITE	2nd Cycle	L	H→L	L	n/a	COL	Х	Valid Data In
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	ROW	COL	L→H	Valid Data Out, Data In
READ-WRITE	2nd Cycle	L	H→L	H→L	n/a	COL	L→H	Valid Data Out, Data In
RAS-ONLY REFRES	Н	Н	X	Х	ROW	n/a	X	High-Z
HIDDEN	READ	L→H→L	L	Н	ROW	COL	L	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Х	Valid Data In
CAS-BEFORE-	Standard	H→L	L	Х	Х	Х	Х	High-Z
RAS REFRESH	"J" Option	H→L	L	Н	Х	Х	Х	High-Z

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Storage Temperature (Ceramic)	65°C to +150°C
Storage Temperature (Plastic)	
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (Vcc = $5.0V \pm 10\%$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1
INPUT LEAKAGE CURRENT any input $(0V \le V_{IN} \le 6.5V,$ all other pins not under test = 0V)	lı	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS	Vон	2.4		V	
Output High Voltage (Ιουτ = -5mA) Output Low Voltage (Ιουτ = 4.2mA)	Vol		0.4	٧	

			MAX			
PARAMETER/CONDITION	SYMBOL	-6	-7	-8	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	lcc1	2	2	2	mA	
STANDBY CURRENT: (CMOS) $(\overline{RAS} = \overline{CAS} = \text{Other Inputs} = Vcc -0.2V)$	lcc2	1	1	1	mA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ¹RC = ¹RC (MIN))	Іссз	110	100	90	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ¹PC = ¹PC (MIN))	Icc4	80	70	60	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=VIH: ^t RC = ^t RC (MIN))	lcc5	110	100	90	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	Icc6	110	100	90	mA	3, 5

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A10	C ₁₁		5	pF	2
Input Capacitance: RAS, CAS, WE, OE	CI2		7	pF	2
Input/Output Capacitance: DQ	Сю		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

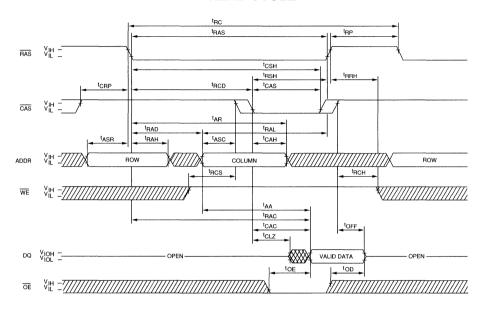
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = 5.0V \pm 10\%$)

A.C. CHARACTERISTICS		-	-6	-7		7 -8			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	110		130		150		ns	
READ-WRITE cycle time	tRWC	165		185		205		ns	
FAST-PAGE-MODE	tPC	40		40		45		ns	
READ or WRITE cycle time									
FAST-PAGE-MODE	^t PRWC	90		95		100		ns	
READ-WRITE cycle time									
Access time from RAS	^t RAC		60		70		80	ns	14
Access time from CAS	^t CAC		15		20		20	ns	15
Access time from column address	^t AA		30		35		40	ns	
Access time from CAS precharge	^t CPA		40		40		45	ns	
RAS pulse width	^t RAS	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	60	100,000	70	100,000	80	100,000	ns	
RAS hold time	tRSH	15		20		20		ns	
RAS precharge time	tRP	45		50		60		ns	
CAS pulse width	^t CAS	15	100,000	20	100,000	20	100,000	ns	
CAS hold time	tCSH	60		70		80		ns	
CAS precharge time	tCPN	10		10		10		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	tRCD	15	45	20	50	20	60	ns	17
CAS to RAS precharge time	tCRP	5		5		5		ns	
Row address setup time	tASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		10		ns	
RAS to column	^t RAD	15	30	15	35	15	40	ns	18
address delay time									
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	10		15		15		ns	
Column address hold time (referenced to RAS)	^t AR	50		55		60		ns	
Column address to RAS lead time	^t RAL	30		35		40		ns	
Read command setup time	†RCS	0		0		0		ns	
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	†CLZ	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	20
WE command setup time	twcs	0		0		0		ns	21, 27

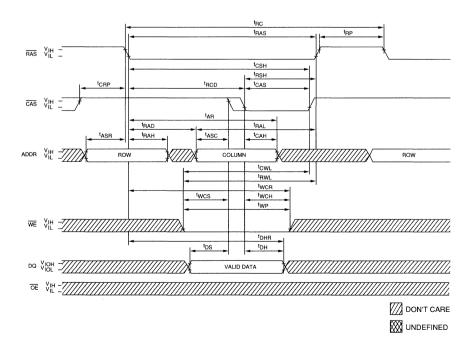
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = 5.0V ± 10%)

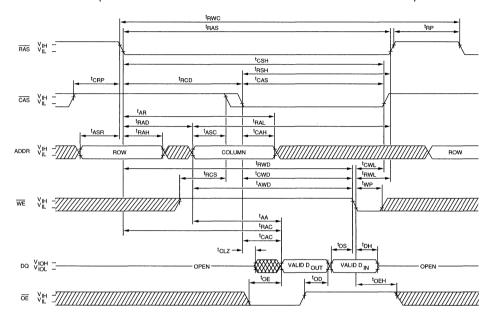
A.C. CHARACTERISTICS		-	6		-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command hold time	tWCH	10		15		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		60		ns	
Write command pulse width	tWP	10		15		15		ns	
Write command to RAS lead time	^t RWL	15		20		20		ns	
Write command to CAS lead time	^t CWL	15		20		20		ns	
Data-in setup time	^t DS	0		0		0		ns	22
Data-in hold time	^t DH	10		15		15		ns	22
Data-in hold time (referenced to RAS)	†DHR	45		55		60		ns	
RAS to WE delay time	†RWD	90		100		110		ns	21
Column address to WE delay time	^t AWD	60		65		70		ns	21
CAS to WE delay time	tCWD	45		50		50		ns	21
Transition time (rise or fall)	tΤ	3	50	3	50	3	50	ns	9, 10
Refresh period (1024 cycles)	tREF		16		16		16	ms	
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	^t CSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS refresh)	^t CHR	15		15		15		ns	5
WE hold time (CAS-BEFORE-RAS refresh)	tWRH	10		10		10		ns	25
WE setup time (CAS-BEFORE-RAS refresh)	^t WRP	10		10		10		ns	25
WE hold time (WCBR test cycle)	^t WTH	10		10		10		ns	25
WE setup time (WCBR test cycle)	twts	10		10		10		ns	25
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		0		ns	
Output disable	tOD	15		20		20		ns	27
Output enable	[†] OE	15		20		20		ns	23
OE hold time from WE during READ-MODIFY-WRITE cycle	[†] OEH	15		20		20		ns	26


NOTES

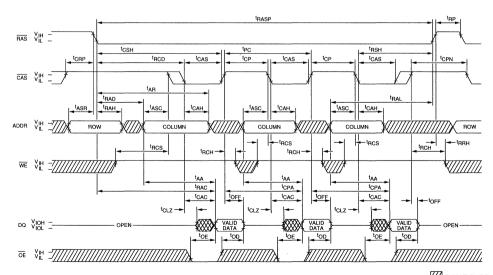
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and $V_{CC} = 5V$.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of $100\mu s$ is required after power-up followed by eight \overline{RAS} refresh cycles (\overline{RAS} -ONLY or CBR with \overline{WE} HIGH) before proper device operation is assured. The eight \overline{RAS} cycle wake-up should be repeated any time the 16ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VII. and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 12. If $\overline{\text{CAS}} = \text{Vil.}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to 2 TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the


- specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in late WRITE, and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit through out the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE controlled) cycle.
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. If OE is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, \overline{WE} = LOW and \overline{OE} =HIGH.
- 25. tWTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR refresh cycle.
- 26. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS remains LOW and OE is taken back LOW after 'OEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 27. The DQs open during READ cycles once ^tOD or ^tOFF occur. If \overline{CAS} goes HIGH first, \overline{OE} becomes a don't care. If \overline{OE} goes HIGH and \overline{CAS} stays LOW, \overline{OE} is not a don't care; and the DQs will provide the previously read data if \overline{OE} is taken back LOW (while \overline{CAS} remains LOW).

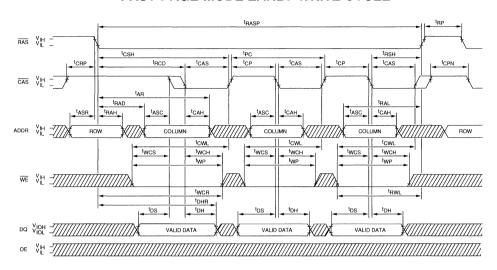
READ CYCLE



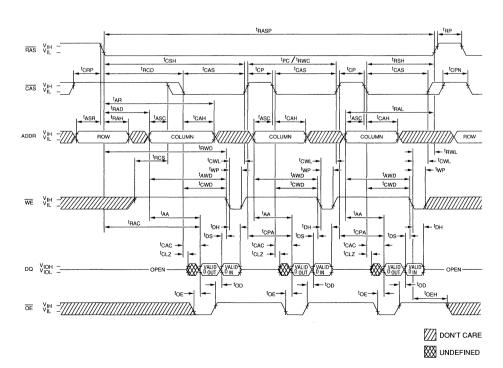
EARLY-WRITE CYCLE



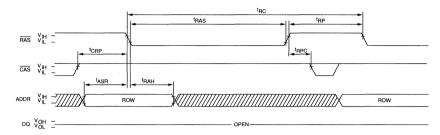
READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)



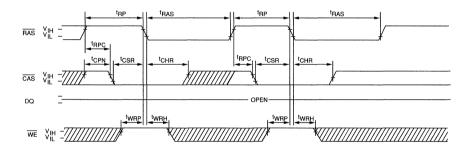
FAST-PAGE-MODE READ CYCLE

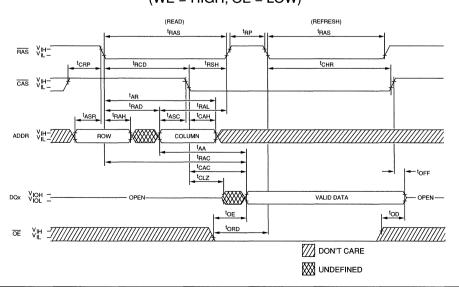


FAST-PAGE-MODE EARLY-WRITE CYCLE



FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)




$\overline{\text{RAS-ONLY}}$ REFRESH CYCLE (ADDR = A₀ - A₀; $\overline{\text{WE}}$ = DON'T CARE)

$\overline{\text{CAS-BEFORE-RAS}}$ REFRESH CYCLE $(A_0 - A_0, \text{ and } \overline{\text{OE}} = \text{DON'T CARE})$

HIDDEN REFRESH CYCLE $(\overline{WE} = HIGH; \overline{OE} = LOW)^{24}$

4 MEG POWER-UP AND REFRESH CONSTRAINTS

The JEDEC 4 Meg DRAM introduces two potential incompatibilities compared to the previous generation 1 Meg DRAM. The incompatibilities involve refresh and power-up. Understanding these incompatibilities and providing for them will offer the designer and system user greater compatibility between the 1 Meg and 4 Meg.

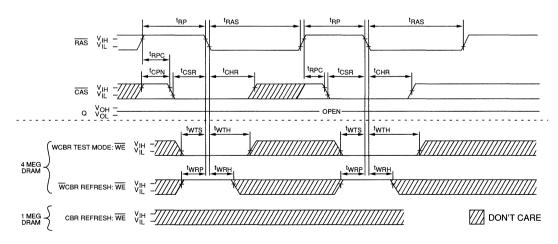
REFRESH

The most commonly used refresh mode of the 1 Meg is the CBR ($\overline{\text{CAS-BEFORE-RAS}}$) REFRESH cycle. The CBR for the 1 Meg specifies the $\overline{\text{WE}}$ pin as a don't care. The 4 Meg, on the other hand, specifies the CBR REFRESH mode to be a $\overline{\text{WCBR}}$, which is CBR with the $\overline{\text{WE}}$ pin held at a logical HIGH level.

The reason for $\overline{W}CBR$ instead of CBR on the 4 Meg is that a CBR cycle with \overline{WE} LOW will put the 4 Meg into the JEDEC specified test mode ($\overline{W}CBR$). In contrast, the 1 Meg test mode is entered by applying a HIGH signal to the test pin (pin 4 on DIP, pin 5 on SOJ and pin 8 on ZIP). This HIGH signal is usually a "supervoltage" (V in \geq 7.5V) so normal TTL or CMOS HIGH levels will not cause the part to enter the test mode.

POWER-UP

The 4 Meg $\overline{W}CBR$ constraint may also introduce another problem. The 1 Meg POWER-UP cycle requires a 100 μ s delay followed by any 8 \overline{RAS} cycles. The 4 Meg POWER-UP is more restrictive in that 8 \overline{RAS} -ONLY or CBR REFRESH (\overline{WE} held HIGH) cycles must be used. The restriction is needed since


the 4 Meg may power-up in the JEDEC specified test mode and must exit out of the test mode. The only way to exit the 4 Meg JEDEC test mode is with either a RAS-ONLY or a CBR REFRESH cycle.

SUMMARY

- 1. The optional 1 Meg test pin is the A10 pin on the 4 Meg.
- For optional test mode, the 1 Meg requires a valid HIGH on the test pin while the 4 Meg requires a CBR cycle with WE LOW.
- The 1 Meg CBR REFRESH allows the WE pin to be don't care while the 4 Meg CBR requires WE to be HIGH (WCBR).
- The 8 RAS wake-up cycles on the 1 Meg may be any valid RAS cycle while the 4 Meg may only use RAS-ONLY or CBR REFRESH cycles.

SPECIAL FEATURE

A memory system currently using 1 Meg DRAMs with WE as a don't care during CBR REFRESH does not allow for direct upgrading to 4 Meg DRAMs. Micron, realizing some companies will have this situation, provides a special feature on its 4 Meg DRAM, that requires "supervoltage" to access the 4 Meg JEDEC WCBR test function. This allows the Micron 4 Meg DRAM to be refreshed in the same manner as any 1 MEG DRAM. Note that the eight power-up cycles should only be refresh cycles in order to guarantee that any 4 Meg DRAM, including Micron's, does not inadvertently power-up in the test mode.

COMPARISON OF 4 MEG TEST MODE AND WCBR TO 1 MEG CBR

DRAM

1 MEG x 4 DRAM

STATIC COLUMN

FEATURES

- Industry standard x4 pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- Low power, 3mW standby; 225mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 1024-cycle refresh distributed across 16ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR), and HIDDEN
- STATIC COLUMN access cycle
- 300 and 350 mil wide SOJ packages
- Two CBR options: CBR with WE a don't care (1 Meg compatible) and CBR with WE a HIGH (JEDEC test mode capable via WCBR)

OPTIONS	MARKING
Timing	
60ns access	-6
70ns access	-7
80ns access	-8
Packages	
Ceramic DIP (300mil)	CN
Ceramic DIP (400mil)	C
Plastic ZIP (350mil)	Z
Plastic SOJ (300mil)	DJ
Plastic SOJ (350mil)	DJW
Plastic TSOP (*)	TG
• CAS-BEFORE-RAS refresh	
CBR with $\overline{\text{WE}}$ a don't care	None
CBR with $\overline{\text{WE}}$ a HIGH	J
Operating Temperature, TA	
Commercial (0°C to +70°C)	None
Industrial (-40°C to +85°C)	IT

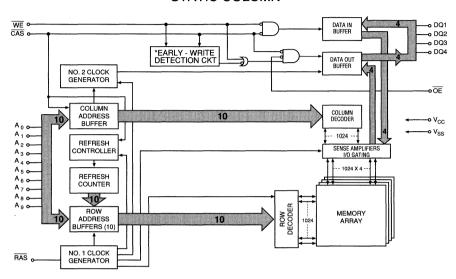
GENERAL DESCRIPTION

The MT4C4003 is a randomly accessed solid-state memory containing 4,194,304 bits organized in a x4 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. \overline{RAS} is used to latch the first 10 bits and \overline{CAS} the latter 10 bits. A READ or WRITE cycle is selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode.

PIN ASSIGNMENT (Top View)

20-Pin CDIP (B-4, B-5)	20-Pin ZIP (C-3)	20-Pin SOJ (E-1, E-2)
DO1 17 20 IVss DO2 12 19 IDO4 WE 13 18 IDO3 RAS 14 17 ICAS A9 15 16 IOE A0 16 15 IA8 A1 17 14 IA7 A2 18 13 IA6 A3 19 12 IA5 Voc 10 11 IA4	OE 1 73 2 CAS DO3 3 53 4 DO4 Vss 5 5 5 4 DO4 DO2 7 5 6 8 WE RAS 9 1 1 10 A9 A0 11 1 2 12 A1 A2 13 5 1 14 A3 Vcc 15 7 16 16 A6 A7 19 2 18 A6 A7 19 2 18 A6	DO1 (1 · 26) Vss DO2 (2 2 25) DO4 WE (3 2 4 1003 RAS (1 4 20) CAS A9 (5 22) DE A0 (1 9 18) A8 A1 (1 10 17) A7 A2 (1 11 16) A6 A3 (1 2 15) A4 Vcc (1 13 14) A4

*Consult factory on availability of TSOP packages


During a WRITE cycle, data in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after data reaches the output pin(s), data out (Q) is activated and retains the selected cell data as long as \overline{CAS} remains low (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-WRITE cycle. The four data inputs and four data outputs are routed through four pins using common I/O and pin direction is controlled by \overline{WE} and \overline{OE} .

STATIC COLUMN operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A9) defined page boundary. The STATIC COLUMN cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the STATIC COLUMN operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HID-DEN refresh) so that all 1024 combinations of RAS addresses (A0-A9) are executed at least every 16ms, regardless of sequence. The CBR refresh cycle will invoke the internal refresh counter for automatic RAS addressing.

FUNCTIONAL BLOCK DIAGRAM STATIC COLUMN

*NOTE: WE LOW prior to CAS LOW, EW detection CKT output is a HIGH (EARLY WRITE) CAS LOW prior to WE LOW, EW detection CKT output is a LOW (LATE WRITE)

TRUTH TABLE

					Addı	ress		DATA IN / OUT
Function		RAS	CAS	WE	^t R	tC.	ŌĒ	DQ1-4
Standby		Н	Х	Х	Х	Х	Х	High-Z
READ		L	L	Н	ROW	COL	L	Valid Data Out
EARLY-WRITE		L	L	L	ROW	COL	Х	Valid Data In
READ-WRITE		L	L	H→L	ROW	COL	L→H	Valid Data Out, Data In
STATIC COLUMN	1st Cycle	Γ	L	Н	ROW	COL	L	Valid Data Out
READ	2nd Cycle	L	L	Н	n/a	COL	L	Valid Data Out
STATIC COLUMN	1st Cycle	L	L	L	ROW	COL	Х	Valid Data In
EARLY-WRITE	2nd Cycle	L	L	H→L	n/a	COL	Х	Valid Data In
STATIC COLUMN	1st Cycle	L	L	H→L	ROW	COL	L→H	Valid Data Out, Data In
READ-WRITE	2nd Cycle	L	L	H→L	n/a	COL	L→H	Valid Data Out, Data In
RAS-ONLY REFRES	Н	Η	X	Х	ROW	n/a	Х	High-Z
HIDDEN	READ	L→H→L	L	Н	ROW	COL	L	Valid Data Out
REFRESH	WRITE	L→H→L	٦	L	ROW	COL	Х	Valid Data In
CAS-BEFORE-	Standard	H→L	L	X	Х	X	X	High-Z
RAS REFRESH	"J" Option	H→L	L	Н	Х	Х	Х	High-Z

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC supply relative to Vss	1.0V to +7.0V
Storage Temperature (Ceramic)	65°C to +150°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) ($Vcc = 5.0V \pm 10\%$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	Vih	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1
INPUT LEAKAGE CURRENT any input (0V \leq V _{IN} \leq 6.5V, all other pins not under test = 0V)	lı	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS	Vон	2.4		V	
Output High Voltage (Ιουτ = -5mA) Output Low Voltage (Ιουτ = 4.2mA)	Vol		0.4	V	

			MAX	JIII (FIX 91		
PARAMETER/CONDITION	SYMBOL	-6	-7	-8	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	Icc1	2	2	2	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Other Inputs = Vcc -0.2V)	ICC2	1	1	1	mA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: [†] RC = [†] RC (MIN))	lcc3	110	100	90	mA	3, 4
OPERATING CURRENT: STATIC COLUMN Average power supply current (RAS = VIL, CAS, Address Cycling: PC = PC (MIN))	Icc4	80	70	60	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=VIH: TRC = TRC (MIN))	lcc5	110	100	90	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	Icc6	110	100	90	mA	3, 5

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A10	C _{I1}		5	pF	2
Input Capacitance: RAS, CAS, WE, OE	C12		7	pF	2
Input/Output Capacitance: DQ	Cio		7	рF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

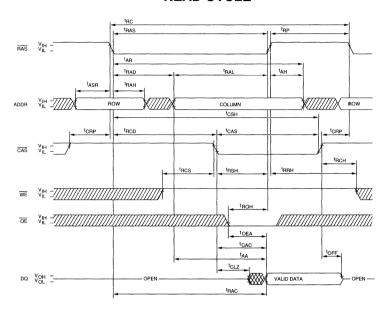
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = 5.0V ± 10%)

A.C. CHARACTERISTICS		-6		-7		-8			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	tRC	110		130		150		ns	
READ-WRITE cycle time	tRWC	165		185		205		ns	
STATIC-COLUMN	tSC	40		40		45		ns	
READ or WRITE cycle time									
STATIC-COLUMN	^t SRMC	95		100		110		ns	
READ-WRITE cycle time									
Access time from RAS	^t RAC		60		70		80	ns	14
Access time from CAS	^t CAC		15		20		20	ns	15
Access time from column address	^t AA		30		35		40	ns	
Access time from CAS precharge	tCPA		40		40		45	ns	
RAS pulse width	tRAS	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width (STATIC COLUMN)	†RASC	60	100,000	70	100,000	80	100,000	ns	
RAS hold time	tRSH	15		20		20		ns	
RAS precharge time	tRP	45		50		60		ns	
CAS pulse width	tCAS	15	100,000	20	100,000	20	100,000	ns	
CAS hold time	tCSH	60		70		80		ns	
CAS precharge time	^t CPN	10		10		10		ns	16
CAS precharge time (STATIC COLUMN)	^t CP	10		10		10		ns	
RAS to CAS delay time	tRCD	15	45	20	50	20	60	ns	17
CAS to RAS precharge time	tCRP	5		5		5		ns	
Row address setup time	†ASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		10		ns	
RAS to column	tRAD	15	30	15	35	15	40	ns	18
address delay time	<u> </u>								
Column address setup time	^t ASC	0		0		0		ns	
Column address hold time	^t CAH	10		15		15		ns	
Column address hold time	^t AR	50		55		60		ns	
(referenced to RAS)									
Column address to	†RAL	30		35		40		ns	
RAS lead time									
Read command setup time	tRCS	0		0		0		ns	
Read command hold time	^t RCH	0	1	0		0		ns	19
(referenced to CAS)									
Read command hold time	^t RRH	0		0		0		ns	19
(referenced to RAS)									
CAS to output in Low-Z	^t CLZ	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	20
WE command setup time	twcs	0		0		0		ns	21, 27
Write command hold time	¹WCH	10		15		15		ns	
Write command hold time	†WCR	45		55		60		ns	
(referenced to RAS)									
Write command pulse width	tWP	10		15		15		ns	
Write command to RAS lead time	^t RWL	15		20		20		ns	
Write command to CAS lead time	tCWL	15		20		20		ns	

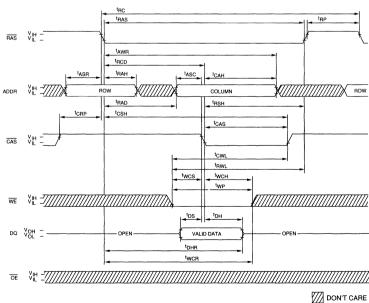
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = 5.0V \pm 10\%$)

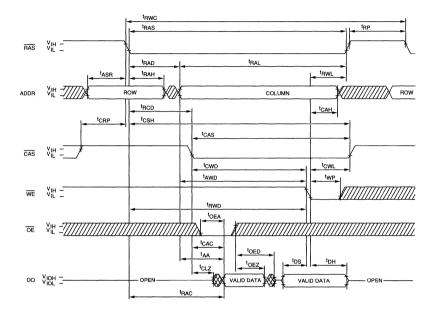
A.C. CHARACTERISTICS PARAMETER		-6		-7		-8		1	
	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Data-in setup time	tDS	0		0		0		ns	22
Data-in hold time	tDH	10		15		15		ns	22
Data-in hold time	^t DHR	45		55		60		ns	
(referenced to RAS)									
RAS to WE delay time	^t RWD	90		100		110		ns	21
Column address to WE delay time	tAWD	60		65		70		ns	21
CAS to WE delay time	tCMD	45		50		50		ns	21
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	9, 10
Refresh period (1024 cycles)	^t REF		16		16		16	ms	
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	^t CSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS refresh)	tCHR	15		15		15		ns	5
WE hold time (CAS-BEFORE-RAS refresh)	™RH	10		10		10		ns	25
WE setup time (CAS-BEFORE-RAS refresh)	^t WRP	10		10		10		ns	25
WE hold time (WCBR test cycle)	tWTH	10		10		10		ns	25
WE setup time (WCBR test cycle)	†WTS	10		10		10		ns	25
OE setup prior to RAS during HIDDEN REFRESH cycle	†ORD	0		0		0		ns	
Output disable	tOD	15		20		20		ns	27
Output enable	^t OE	15		20		20		ns	23
OE hold time from WE during READ-MODIFY-WRITE cycle	†OEH	15		20		20		ns	26
Write inactive time	tWI	10		10		10		ns	
Last WRITE to column address delay time	^t LWAD	15	25	20	30	20	35	ns	
Last WRITE to column address hold time	tAHLW	55		65		75		ns	
RAS hold time referenced to OE	†ROH	10		10		10		ns	
Output data hold time from column address	†AOH	5		5		5		ns	
Output data enable from WRITE	tow	20		20		20		ns	
Access time from last WRITE	tALW	55		65		75		ns	
Column address hold time referenced to RAS HIGH	^t AH	5		5		10		ns	
CAS pulse width in STATIC-COLUMN mode	tcsc	^t CAS		†CAS		^t CAS		ns	


NOTES

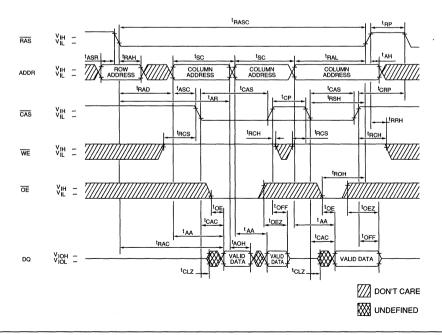
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS-ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 16ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIH and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 12. If $\overline{CAS} = V\pi$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to 2 TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the


- specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in late WRITE, and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit through out the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE controlled) cycle.
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. If $\overline{\text{OE}}$ is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE=HIGH.
- 25. WTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR refresh cycle.
- 26. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 27. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS goes HIGH first, OE becomes a don't care. If OE goes HIGH and CAS stays LOW, OE is not a don't care; and the DQs will provide the previously read data if OE is taken back LOW (while CAS remains LOW).

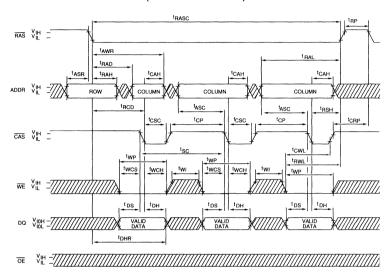
READ CYCLE

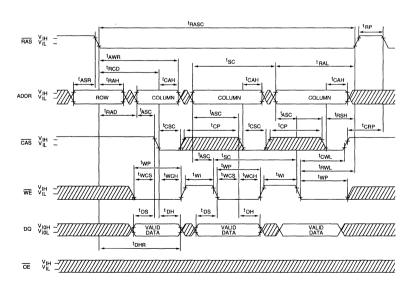


EARLY-WRITE CYCLE



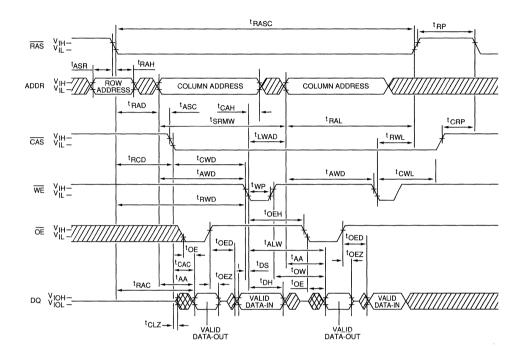
READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)

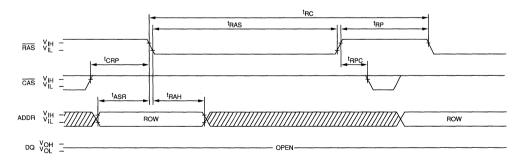

STATIC-COLUMN READ CYCLE


STATIC-COLUMN EARLY-WRITE CYCLE

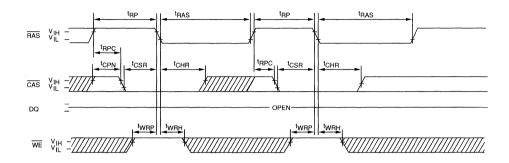
(CAS Controlled)

STATIC-COLUMN EARLY-WRITE CYCLE

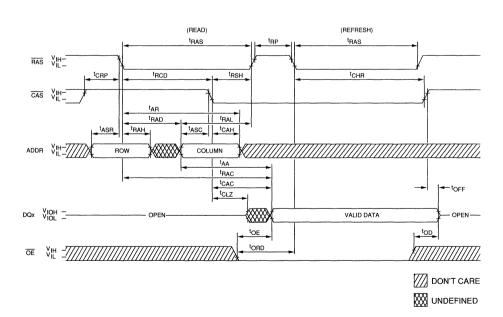

(WE Controlled)


DON'T CARE

STATIC-COLUMN READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



DON'T CARE
UNDEFINED


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_9)$, and $\overline{OE} = DON'T CARE$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH; \overline{OE} = LOW)^{24}$

4 MEG POWER-UP AND REFRESH CONSTRAINTS

The JEDEC 4 Meg DRAM introduces two potential incompatibilities compared to the previous generation 1 Meg DRAM. The incompatibilities involve refresh and power-up. Understanding these incompatibilities and providing for them will offer the designer and system user greater compatibility between the 1 Meg and 4 Meg.

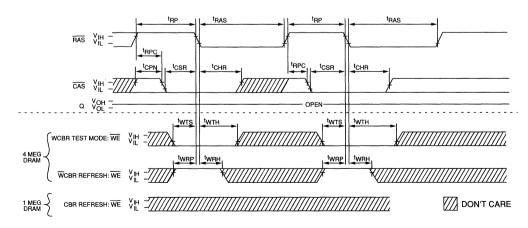
REFRESH

The most commonly used refresh mode of the 1 Meg is the CBR ($\overline{\text{CAS}}$ -BEFORE- $\overline{\text{RAS}}$) REFRESH cycle. The CBR for the 1 Meg specifies the $\overline{\text{WE}}$ pin as a don't care. The 4Meg, on the other hand, specifies the CBR REFRESH mode to be a $\overline{\text{WCBR}}$, which is CBR with the $\overline{\text{WE}}$ pin held at a logical HIGH level.

The reason for $\overline{W}CBR$ instead of CBR on the 4 Meg is that a CBR cycle with \overline{WE} LOW will put the 4 Meg into the JEDEC specified test mode ($\overline{W}CBR$). In contrast, the 1 Meg test mode is entered by applying a HIGH signal to the test pin (pin 4 on DIP, pin 5 on SOJ and pin 8 on ZIP). This HIGH signal is usually a "supervoltage" (V in \geq 7.5V) so normal TTL or CMOS HIGH levels will not cause the part to enter the test mode.

POWER-UP

The 4 Meg \overline{W} CBR constraint may also introduce another problem. The 1 Meg POWER-UP cycle requires a 100 μ s delay followed by any 8 \overline{RAS} cycles. The 4 Meg POWER-UP is more restrictive in that 8 \overline{RAS} -ONLY or CBR REFRESH (\overline{WE} held HIGH) cycles must be used. The restriction is needed since


the 4 Meg may power-up in the JEDEC specified test mode and must exit out of the test mode. The only way to exit the 4 Meg JEDEC test mode is with either a $\overline{\text{RAS}}$ -ONLY or a $\overline{\text{WCBR}}$ REFRESH cycle.

SUMMARY

- 1. The optional 1 Meg test pin is the A10 pin on the 4 Meg.
- For optional test mode, the 1 Meg requires a valid HIGH on the test pin while the 4 Meg requires a CBR cycle with WE LOW.
- The 1 Meg CBR REFRESH allows the WE pin to be don't care while the 4 Meg CBR requires WE to be HIGH (WCBR).
- The 8 RAS wake-up cycles on the 1 Meg may be any valid RAS cycle while the 4 Meg may only use RAS-ONLY or WCBR REFRESH cycles.

SPECIAL FEATURE

A memory system currently using 1 Meg DRAMs with WE as a don't care during CBR REFRESH does not allow for direct upgrading to 4 Meg DRAMs. Micron, realizing some companies will have this situation, provides a special feature on its 4 Meg DRAM, that requires "supervoltage" to access the 4 Meg JEDEC WCBR test function. This allows the Micron 4 Meg DRAM to be refreshed in the same manner as any 1 MEG DRAM. Note that the eight power-up cycles should only be refresh cycles in order to guarantee that any 4 Meg DRAM, including Micron's, does not inadvertently power-up in the test mode.

COMPARISON OF 4 MEG TEST MODE AND WCBR TO 1 MEG CBR

DRAM

1 MEG x 4 DRAM

QUAD CAS PARITY, FAST PAGE MODE

FEATURES

- Four independent CAS controls, allowing individual manipulation to each of the four data Input/Output ports (DQ1 through DQ4).
- Offers a single chip solution to byte level parity for 36bit words when using 1 Meg x 4 DRAMs for memory
- Emulates write-per-bit, at design-in level, with simplified timing constraints
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- Low power, 3mW standby; 225mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 1024-cycle refresh in 16ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- CAS-BEFORE-RAS cycles with WE as a don't care

OPTIONS	MARKINO
Timing	
70ns access	- 7
80ns access	- 8
100ns access	-10
Packages	
Plastic SOJ (300mil)	DJ
Plastic SOJ (350mil)	DJW
Operating Temperature, TA	
Commercial (0°C to +70°C)	None

GENERAL DESCRIPTION

The MT4C4004 is a randomly accessed solid-state memory containing 4,194,304 bits organized in a x4 configuration. This 1 Meg x 4 DRAM is unique in that each $\overline{\text{CAS}}$ ($\overline{\text{CASI}}$ through $\overline{\text{CAS4}}$) controls its corresponding data I/O port in conjunction with $\overline{\text{OE}}$ (eg. $\overline{\text{CAS1}}$ controls DQ1 I/O port, $\overline{\text{CAS2}}$ controls DQ2, $\overline{\text{CAS3}}$ controls DQ3 and $\overline{\text{CAS4}}$ controls DQ4).

The best way to view the Quad \overline{CAS} function is to imagine the \overline{CAS} inputs going into an AND gate to obtain an internally generated \overline{CAS} signal functioning in an identical manner to the single \overline{CAS} input on a standard 1 Meg x 4 DRAM device. The key difference is each \overline{CAS} controls its corresponding DQ tristate logic (in conjunction with \overline{OE} and \overline{WE}) on the Quad CAS DRAM.

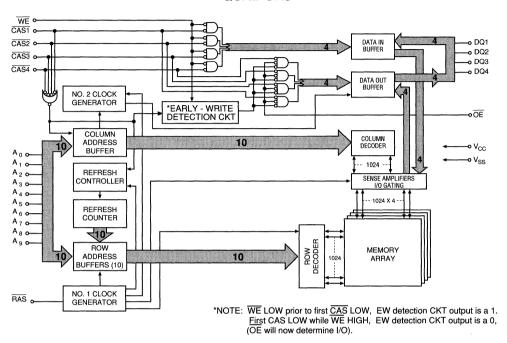
During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. RAS is used to latch the first 10 bits,

PIN ASSIGNMENT (Top View) 24-Pin SOJ (E-5, E-6)

	DQ1 d	1 •	26) Vss
	DQ2 D	2	25	DQ4
	WED	3	24	DQ3
	RAS D	4	23	CAS4
	CAST L	5	22	OE.
	CAS2 L	6	21	CAS3
	A9 [8	19	I NC
	A0 [9	18	3 A8
	A1 C	10	17	3 A7
	A2 [11	16	A6
	A3 [12	15	A5
= Pin is a 'no connect'	Vcc [13	14	A4

NC

and the first $\overline{\text{CAS}}$ the latter 10 bits. A READ or WRITE cycle is selected with the $\overline{\text{WE}}$ input. A logic HIGH on $\overline{\text{WE}}$ dictates READ mode while a logic LOW on $\overline{\text{WE}}$ dictates WRITE mode.


During a WRITE cycle, data-in (Dx) is latched by the falling edge of \overline{WE} or the first \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to the first \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after data reaches the output buffer, data out (Q) is activated and retains the selected cell data until the trailing edge of its corresponding \overline{CAS} occurs (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-WRITE cycle \overline{OE} switching the device from a READ to a WRITE function). The four data inputs and four data outputs are routed through four pins using common I/O, with pin direction controlled by \overline{WE} and \overline{OE} .

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by the first CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

Returning RAS and all four CAS controls HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS or HIDDEN refresh) so that all 1024 combinations of RAS addresses (A0-A9) are executed at least every 16ms, regardless of sequence. The CAS-BEFORE-RAS cycle will invoke the refresh counter for automatic and sequential row addressing.

FUNCTIONAL BLOCK DIAGRAM QUAD CAS

TRUTH TABLE

							Addresses		
Function		RAS	CASx	CASy	WE	ŌĒ	^t R	t _C	DQx (DQy always High-Z)
Standby		Н	Х	Х	Х	Х	Х	Х	High-Z
READ		L	٦	Н	Н	L	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	Н	L	Х	ROW	COL	Valid Data In
READ-WRITE		L	L	Н	H→L	L→H	ROW	COL	Valid Data Out, Data In
PAGE-MODE	1st Cycle	L	H→L	Н	Н	L	ROW	COL	Valid Data Out
READ	2nd Cycle	L	H→L	Н	Н	L	n/a	COL	Valid Data Out
PAGE-MODE	1st Cycle	L	H→L	Н	L	Х	ROW	COL	Valid Data In
EARLY-WRITE	2nd Cycle	٦	H→L	Н	L	Х	n/a	COL	Valid Data In
PAGE-MODE	1st Cycle	L	H→L	Н	H→L	L→H	ROW	COL	Valid Data Out, Data In
READ-WRITE	2nd Cycle	L	H→L	Н	H→L	L→H	n/a	COL	Valid Data Out, Data In
HIDDEN	READ	L→H→L	L	Н	Н	L	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	Н	L	Х	ROW	COL	Valid Data In
RAS-ONLY REFRESH		L	Н	Н	Х	Х	ROW	n/a	High-Z
CAS-BEFORE- RAS REFRESI		H→L	L	Н	X	Х	Х	Х	High-Z

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V to +7.0V
Storage Temperature (Ceramic)65°C to +150°C
Storage Temperature (Plastic)55°C to +150°C
Power Dissipation1W
Short Circuit Output Current50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) ($Vcc = 5.0V \pm 10\%$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	V cc	4.5	5.5	V	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1
INPUT LEAKAGE CURRENT any input (0V \leq VIN \leq 6.5V, all other pins not under test = 0V)	lı	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μА	
OUTPUT LEVELS Output High Voltage (lout = -5mA)	Vон	2.4		V	
Output Low Voltage (lout = 4.2mA)	Vol		0.4	V	

	MAX					
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	lcc1	2	2	2	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Vcc -0.2V)	lcc2	1	1	1	mA	26
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC= ^t RC (MIN))	Іссз	100	90	80	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL; CAS, Address Cycling: tPC= tPC (MIN))	ICC4	70	60	50	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=V _{IH} : ^t RC= ^t RC (MIN))	lcc5	100	90	80	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: ^t RC= ^t RC (MIN))	Icc6	100	90	80	mA	3, 5

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A9	C11		5	pF	2
Input Capacitance: RAS, CAS1-4, WE, OE	C12		7	рF	2
Input/Output Capacitance: DQ	Сю		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

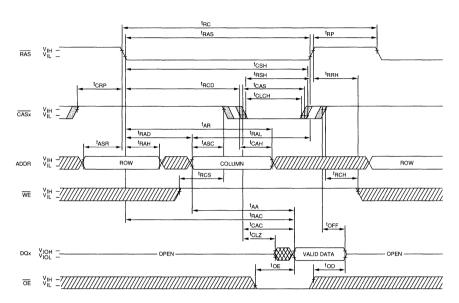
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc = $5.0V \pm 10\%$)

A.C. CHARACTERISTICS			-7		-8		-10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	tRC	130		150		180		ns	
READ-WRITE cycle time	tRWC	185		205		220		ns	
FAST-PAGE-MODE READ or WRITE	^t PC	40		45		55		ns	31
cycle time			1						
FAST-PAGE-MODE READ-WRITE	^t PRWC	95		100		115		ns	31
cycle time			1						
Access time from RAS	^t RAC		70		80		100	ns	14
Access time from CAS	^t CAC		20		20		25	ns	15, 29
Output Enable	^t OE		20		20		25	ns	33
Access time from column address	^t AA		35		40		50	ns	
Access time from CAS precharge	^t CPA		40		45		50	ns	29
RAS pulse width	tRAS	70	100,000	80	100,000	100	100,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	^t RSH	20		20		25		ns	27
RAS precharge time	tRP	50		60		70	1	ns	
CAS pulse width	†CAS	20	100,000	20	100,000	25	100,000	ns	34
CAS hold time	tCSH	70		80		100	1	ns	28
CAS precharge time	^t CPN	10		10		15		ns	16, 32
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	32
RAS to CAS delay time	tRCD	20	50	20	60	25	75	ns	17, 27
CAS to RAS precharge time	^t CRP	5		5		5		ns	28
Row address setup time	tASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
RAS to column address delay time	^t RAD	15	35	15	40	20	50	ns	18
Column address setup time	tASC	0	1	0		0		ns	27
Column address hold time	tCAH	15	1	15	1	20	+	ns	27
Column address hold time (referenced to RAS)	tAR	55		60		70		ns	
Column address to RAS lead time	^t RAL	35		40		50		ns	
Read command setup time	tRCS	0		0		0		ns	27
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19, 28
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	†CLZ	0		0		0		ns	29

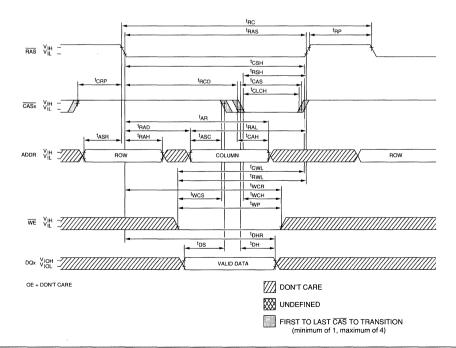
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = 5.0V \pm 10\%$)

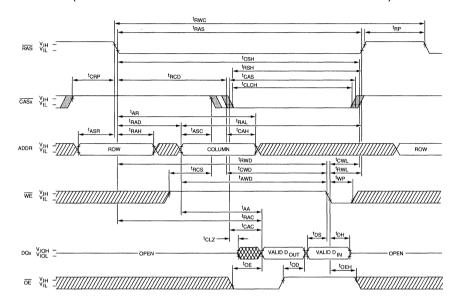
A.C. CHARACTERISTICS		_	7		-8	_	10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	†OFF	0	20	0	20	0	20	ns	20, 29, 38
Output disable	dO [‡]		20		20		20	ns	34, 38
WE command setup time	tWCS	0		0		0		ns	21, 27
Write command hold time	tWCH	15		15		20		ns	36
Write command hold time (referenced to RAS)	tWCR	55		60		75		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	^t RWL	20		20		25		ns	
Write command to CAS lead time	^t CWL	20		20		25		ns	28
Data-in setup time	^t DS	0		0		0		ns	22, 29
Data-in hold time	^t DH	15		15		20		ns	22, 29
Data-in hold time (referenced to RAS)	^t DHR	55		60		75		ns	
RAS to WE delay time	tRWD	100		110		130		ns	21
Column address to WE delay time	^t AWD	65		70		80		ns	21
CAS to WE delay time	tCWD	50		55		60		ns	21, 27
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	9, 10
Refresh period (512 cycles)	†REF		16		16		16	ms	
RAS to CAS precharge time	tRPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	tCSR	10		10		10		ns	5, 27
CAS hold time (CAS-BEFORE-RAS refresh)	^t CHR	15		15		15		ns	5, 28
Last CAS going LOW to first CAS to return HIGH	†CLCH	10		10		10		ns	30
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	20		20		20		ns	37
OE setup prior to RAS during HIDDEN refresh cycle	^t ORD	0		0		0		ns	


NOTES

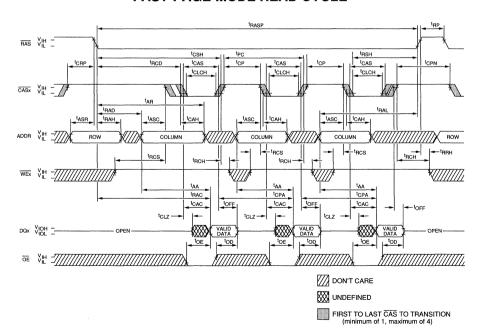
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates.
 Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- An initial 100µs pause is required after power-up followed by eight RAS refresh cycles (RAS-ONLY or CBR) before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CASx} = VIH$, data output (Qx) is high impedance.
- If CASx = Vil., Qx may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to 2 TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If at least one CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, all four CAS controls must be pulsed HIGH for CPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (max) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.


- 21. ¹WCS, ¹RWD, ¹AWD and ¹CWD are restrictive operating parameters in EARLY-WRITE and READ-WRITE cycles only. If ¹WCS ≥ ¹WCS (min), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ¹RWD ≥ ¹RWD (MIN), ¹AWD ≥ ¹AWD (MIN) and ¹CWD ≥ ¹CWD (MIN), the cycle is a READ-WRITE cycle, and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE controlled) cycle. (at access time and until CAS or OE goes back to VIH)
- These parameters are referenced to CASx leading edge in early WRITE cycles and WE leading edge in late WRITE or READ-WRITE cycles.
- If OE is tied permanently LOW, READ-WRITE or READ-MODIFY-WRITE operations are not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, \overline{WE} = LOW and \overline{OE} = HIGH.
- 25. One to three \(\overline{CAS}\) controls may be HIGH throughout any given \(\overline{CAS}\) cycle, even though the timing waveforms show all \(\overline{CAS}\) controls going LOW. If any one does go LOW, it must meet all the timing requirements listed or the data for that I/O buffer may be invalid. At least one of the four \(\overline{CAS}\) controls must be LOW for a valid \(\overline{CAS}\) cycle to occur.
- 26. All other inputs at Vcc -0.2V.
- 27. The first CASx edge to transition LOW.
- 28. The last CASx edge to transition HIGH.
- Output parameter (DQx) is referenced to corresponding CASx input; DQ1 by CAS1, DQ2 by CAS2, etc.
- 30. Last falling CASx edge to first rising CASx edge.
- 31. Last rising CASx edge to next cycle's last rising CASx edge.
- 32. Last rising CASx edge to first falling CASx edge.
- 33. First DQx controlled by the first \overline{CASx} to go LOW.
- 34. Last DQx controlled by the last CASx to go HIGH.
- 35. Each CASx must meet minimum pulse width.
- 36. Last CASx to go LOW.
- 37. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If the last CASx goes HIGH prior to OE going back LOW, the DQs will remain open.
- 38. The DQs open during READ cycles once OD or OFF occur. If the last CASx goes HIGH first, OE becomes a don't care. If OE goes HIGH and CASx stays LOW, OE is not a don't care; and the DQs will provide the previously read data if OE is taken back LOW (while CASx remains LOW).

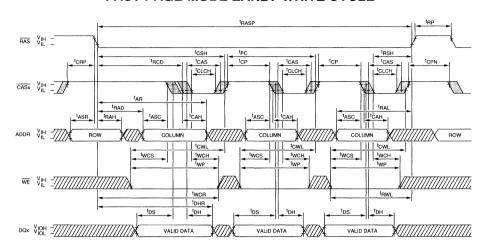
READ CYCLE



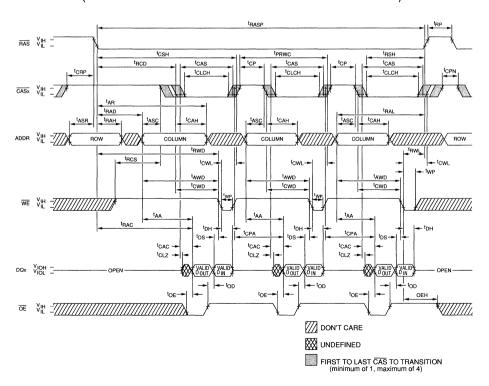
EARLY-WRITE CYCLE



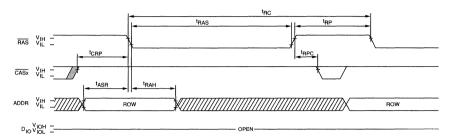
READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)

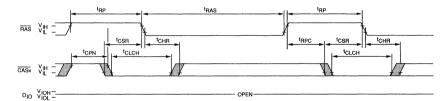


FAST-PAGE-MODE READ CYCLE

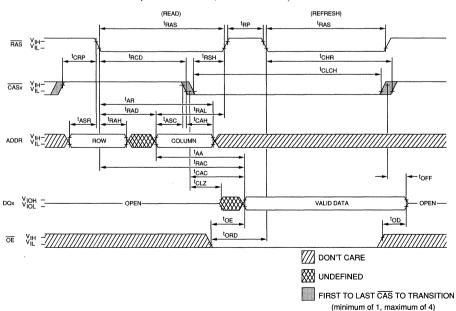


FAST PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)


RAS-ONLY REFRESH CYCLE

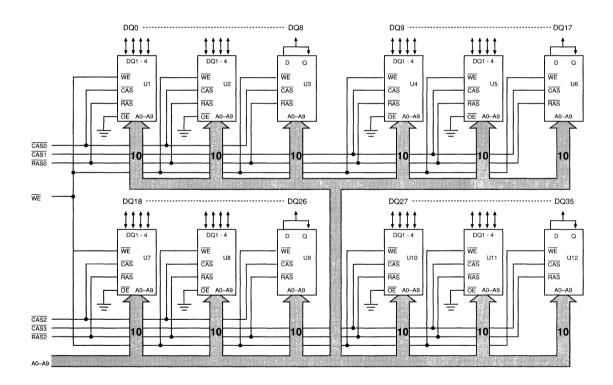
 $(ADDR = A_0 - A_8; \overline{WE} \text{ and } \overline{OE} = DON'T CARE)$


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_8, \overline{WE} \text{ and } \overline{OE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

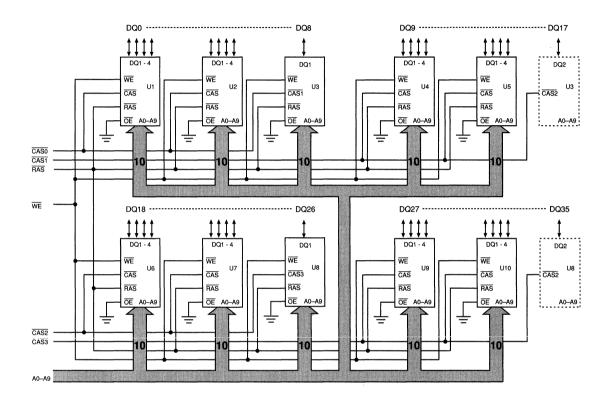
 $(\overline{WE} = HIGH, \overline{OE} = LOW)^{24}$


OUAD CAS MODULE UPGRADE

The MT4C4004 (Quad CAS DRAM) was developed to supersede the 1 Meg DRAMs used in the current 1 Meg and 2 Meg x 36 DRAM modules and to add leading-edge CMOS performance. The MT4C4004 is a 1 Meg x 4 CMOS FAST-PAGE-MODE DRAM with four CAS input controls. The four individual CAS inputs allow each I/O buffer (DQ) to be separately controlled, just as if there were four separate 1 Meg x 1 DRAMs. Most 1 Meg x 1 DRAMs use older CMOS technology and do not have the access speeds of the newer CMOS 4 Meg (1 Meg x 4).

The MT4C4004 will reduce chip count on a x36 module; improving reliability, reducing power consumption and

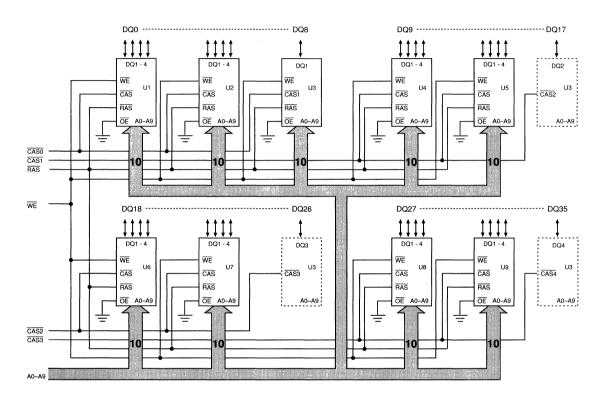
lowering cost. The 1 Meg x 36 will have four 1 Meg x 1 DRAMs replaced by either one or two Quad CAS DRAMs, depending on whether $\overline{RAS0}$ and $\overline{RAS1}$ must be separate or can be connected together. The 2 Meg x 36 will have eight 1 Meg x 1 DRAMs replaced by either two or four Quad CAS DRAMs, depending on whether $\overline{RAS0}$, $\overline{RAS1}$, $\overline{RAS2}$, and $\overline{RAS3}$ must be split or can be connected together.


The current 1 Meg x 36 DRAM Module is shown with 256K x 1 DRAMs in Figure 1 below. Figures 2 and 3 show how the same module will be realized with the Quad CAS DRAM for both the split \overline{RAS} (Figure 2) and the common \overline{RAS} (Figure 3) modules.

U1, U2, U4, U5, U7, U8, U10, U11 = MT4C4256DJ U3, U6, U9, U12 = MT1259EJ

Figure 1
1 MEG x 36 WITH 1 MEG x 1 FOR PARITY BIT

QUAD CAS ENHANCED x36 MODULES



U1, U2, U4, U5, U6, U7, U8, U9 = MT4C4256DJ U3 = MT4C4259EJ

Figure 2 1 MEG x 36 WITH QUAD CAS FOR PARITY BIT AND SPLIT RAS CONTROL

QUAD CAS ENHANCED x36 MODULES

U1, U2, U4-U9 = MT4C4256DJ U3 = MT4C4259EJ

Figure 3
1 MEG x 36 WITH QUAD CAS FOR PARITY BIT AND COMMON RAS CONTROL

DRAM

1 MEG x 4 DRAM

FAST PAGE MODE, WRITE-PER-BIT

FEATURES

- Industry standard x4 pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- Low power, 3mW standby; 225mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- 1024-cycle refresh distributed across 16ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR), and HIDDEN
- WRITE-PER-BIT access cycle (nonpersistent)
- 300 and 350 mil wide SOJ packages
- Two CBR options: CBR with WE a don't care (1 Meg compatible) and CBR with WE a HIGH (JEDEC test mode capable via WCBR)

OPTIONS	MARKING
Timing	
60ns access	-6
70ns access	-7
80ns access	-8
• Packages	
Ceramic DIP (400mil)	C
Plastic ZIP (350mil)	Z
Plastic SOJ (300mil)	DJ
Plastic SOJ (350mil)	DJW
Plastic TSOP (*)	TG
• CAS-BEFORE-RAS refresh	
CBR with $\overline{\text{WE}}$ a don't care	None
CBR with $\overline{\text{WE}}$ a HIGH	J
Operating Temperature, TA	
Commercial (0°C to +70°C)	None
Industrial (-40°C to +85°C)	IT

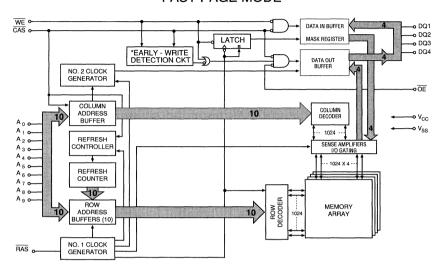
GENERAL DESCRIPTION

The MT4C4005 is a randomly accessed solid-state memory containing 4,194,304 bits organized in a x4 configuration. During READ or WRITE cycles each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. RAS is used to latch the first 10 bits and CAS the latter 10 bits. A READ or WRITE cycle is selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling

PIN ASSIGNMENT (Top View)

20-Pin CDIP (B-5)	20-Pin ZIP (C-3)	20-Pin SOJ (E-1, E-2)
DO1 1 20 Vss DO2 12 19 DO4 WE 13 18 DO3 FAS 14 17 CAS A9 15 16 DOE A0 16 15 DA8 A1 17 14 DA7 A2 DA 13 DA6 A3 19 12 A5 Vcc 10 11 PA4	OE 1 2 CAS DO3 3 2 4 DO4 Vss 5 6 DO1 DO2 7 3 6 WE RAS 9 2 12 A1 Vcc 15 2 16 A3 A5 17 2 18 A6 A7 19 2 2 0 A8	DO1 (1 - 26) Vss DO2 (2 - 25) D04 WE (3 - 24) D03 MAS (4 - 23) DCAS AS (5 - 22) DCF AS (1 - 24) D03 AS (1 - 24

*Consult factory on availability of TSOP packages


edge of \overline{WE} or \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after data reaches the output pin(s), data out (Q) is activated and retains the selected cell data as long as \overline{CAS} remains low (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-WRITE cycle. The four data inputs and four data outputs are routed through four pins using common I/O, and pin direction is controlled by \overline{WE} and \overline{OE} . The WRITE-PER-BIT feature allows the user to define WRITE MASK during a WRITE cycle when \overline{RAS} goes LOW, depending on the state of \overline{WE} .

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HIDDEN refresh) so that all 1024 combinations of RAS addresses (A0-A9) are executed at least every 16ms, regardless of sequence. The CBR refresh cycle will invoke the internal refresh counter for automatic RAS addressing.

FUNCTIONAL BLOCK DIAGRAM FAST PAGE MODE

*NOTE: WE LOW prior to CAS LOW, EW detection CKT output is a HIGH (EARLY WRITE)

CAS LOW prior to WE LOW, EW detection CKT output is a LOW (LATE WRITE)

TRUTH TABLE

					Addre	esses		DATA IN / OUT	
Function		RAS	CAS	WE	^t R	tC	ŌĒ	DQ1-4	NOTES
Standby		Н	Χ	Х	Х	Х	Х	High-Z	
READ		L	L	Н	ROW	COL	L	Valid Data Out	
EARLY-WRITE		L	L	L	ROW	COL	Х	Valid Data In	1
READ-WRITE		L	L	H→L	ROW	COL	L→H	Valid Data Out, Data In	1
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	ROW	COL	L	Valid Data Out	
READ	2nd Cycle	L	H→L	Н	n/a	COL	L	Valid Data Out	
FAST-PAGE-MODE	1st Cycle	L	H→L	L	ROW	COL	Х	Valid Data In	1
EARLY-WRITE	2nd Cycle	L	H→L	L	ņ/a	COL	Х	Valid Data In	1
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	ROW	COL	L→H	Valid Data Out, Data In	1
READ-WRITE	2nd Cycle	L	H→L	H→L	n/a	COL	L→H	Valid Data Out, Data In	1
RAS-ONLY REFRESI	Н	Н	Х	Х	ROW	n/a	Х	High-Z	
HIDDEN	READ	L→H→L	L	Н	ROW	COL	L	Valid Data Out	
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Х	Valid Data In	1
CAS-BEFORE-	Standard	H→L	L	Х	х	Х	Х	High-Z	
RAS REFRESH	"J" Option	H→L	L	Н	Х	Х	Х	High-Z	

NOTE: 1. Data-in will be dependent on the mask provided. Refer to Figure 1.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V to +7.0V
Storage Temperature (Ceramic)65°C to +150°C
Storage Temperature (Plastic)55°C to +150°C
Power Dissipation1W
Short Circuit Output Current50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) ($Vcc = 5.0V \pm 10\%$)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1
INPUT LEAKAGE CURRENT any input $(0V \le V_{IN} \le 6.5V$, all other pins not under test = 0V)	lı	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS	Vон	2.4		V	
Output High Voltage (Ιουτ = -5mA) Output Low Voltage (Ιουτ = 4.2mA)	Vol		0.4	٧	

			MAX			
PARAMETER/CONDITION	SYMBOL	-6	-7	-8	UNITS	NOTES
STANDBY CURRENT: (TTL) $(\overline{RAS} = \overline{CAS} = V_{IH})$	Icc1	2	2	2	mA	
STANDBY CURRENT: (CMOS) $(\overline{RAS} = \overline{CAS} = \text{Other Inputs} = Vcc -0.2V)$	Icc2	1	1	1	mA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ¹RC = ¹RC (MIN))	lcc3	110	100	90	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC (MIN))	lcc4	80	70	60	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=VIH: [†] RC = [†] RC (MIN))	lcc5	110	100	90	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	Icc6	110	100	90	mA	3, 5

MASKED WRITE ACCESS CYCLE

Every WRITE access cycle can be a MASKED WRITE, depending on the state of \overline{WE} at \overline{RAS} time. A MASKED WRITE is selected when \overline{WE} is LOW at \overline{RAS} time and mask data is supplied on the DQ pins.

The mask data present on the DQ1-DQ4 inputs at RAS time will be written to an internal mask data register and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic

"1") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At \overline{CAS} time, the bits present on the DQ1-DQ4 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).

For nonpersistent MASK WRITEs, new mask data must be supplied each time a MASKED WRITE cycle is initiated.

Figure 1 illustrates the MT4C4005 MASKED WRITE operation (Note: RAS or CAS time refers to the time at which RAS or CAS transition from HIGH to LOW).

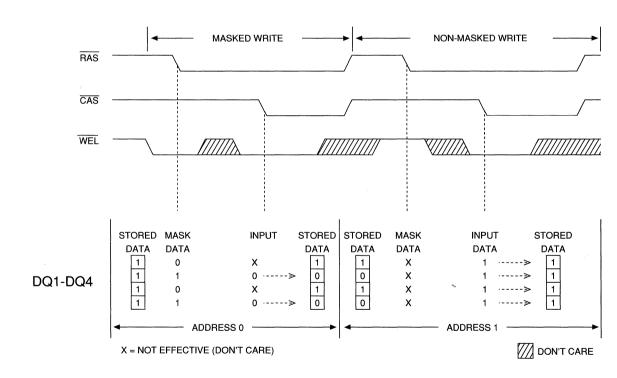


Figure 1
MT4C4005 MASKED WRITE EXAMPLE

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A10	Cıı		5	pF	2
Input Capacitance: RAS, CAS, WE, OE	Cı2		7	pF	2
Input/Output Capacitance: DQ	Cıo		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

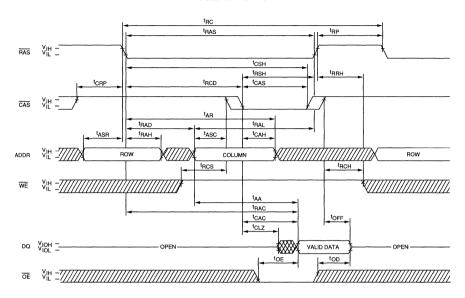
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) ($Vcc = 5.0V \pm 10\%$)

A.C. CHARACTERISTICS			-6		-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	110		130		150		ns	
READ-WRITE cycle time	tRWC	165		185		205		ns	
FAST-PAGE-MODE	^t PC	40		40		45		ns	
READ or WRITE cycle time									
FAST-PAGE-MODE	^t PRWC	90		95		100		ns	
READ-WRITE cycle time									
Access time from RAS	†RAC		60		70		80	ns	14
Access time from CAS	^t CAC		15		20		20	ns	15
Access time from column address	^t AA		30		35		40	ns	
Access time from CAS precharge	^t CPA		40		40		45	ns	
RAS pulse width	†RAS	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	60	100,000	70	100,000	80	100,000	ns	
RAS hold time	tRSH	15		20		20		ns	
RAS precharge time	tRP	45		50		60		ns	
CAS pulse width	tCAS	15	100,000	20	100,000	20	100,000	ns	
CAS hold time	tCSH	60		70		80		ns	
CAS precharge time	tCPN	10		10		10		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	tRCD	15	45	20	50	20	60	ns	17
CAS to RAS precharge time	tCRP	5		5		5		ns	
Row address setup time	†ASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		10		ns	
RAS to column	tRAD	15	30	15	35	15	40	ns	18
address delay time	1		1						
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	10		15		15		ns	
Column address hold time (referenced to RAS)	tAR	50		55		60		ns	
Column address to RAS lead time	^t RAL	30		35		40		ns	
Read command setup time	tRCS	0		0		0		ns	
Read command hold time (referenced to CAS)	†RCH	0		0		0		ns	19
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	†CLZ	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	20
WE command setup time	twcs	0		0		0		ns	21, 27

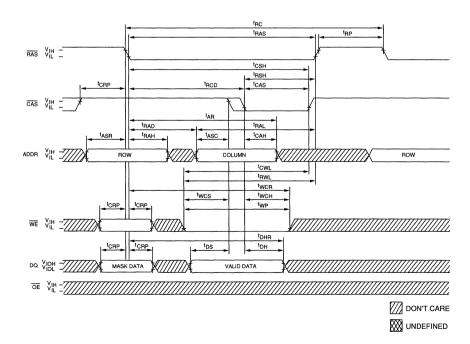
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (Vcc = 5.0V ± 10%)

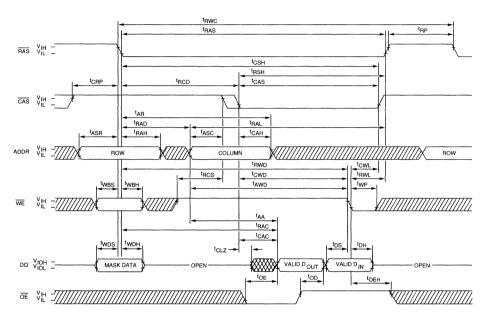
A.C. CHARACTERISTICS		-	6		-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command hold time	tWCH	10		15		15		ns	
Write command hold time (referenced to RAS)	^t WCR	45		55		60		ns	
Write command pulse width	tWP	10		15		15		ns	
Write command to RAS lead time	^t RWL	15		20		20		ns	
Write command to CAS lead time	tCWL	15		20		20		ns	
Data-in setup time	t _{DS}	0		0		0		ns	22
Data-in hold time	tDH	10		15		15		ns	22
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		ns	
RAS to WE delay time	^t RWD	90		100		110		ns	21
Column address to WE delay time	tAWD	60		65		70		ns	21
CAS to WE delay time	^t CWD	45		50		50		ns	21
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	9, 10
Refresh period (1024 cycles)	^t REF		16		16		16	ms	
RAS to CAS precharge time	tRPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	tCSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS refresh)	^t CHR	15		15		15		ns	5
WE hold time (CAS-BEFORE-RAS refresh)	^t WRH	10		10		10		ns	25
WE setup time (CAS-BEFORE-RAS refresh)	tWRP	10		10		10		ns	25
WE hold time (WCBR test cycle)	tWTH	10		10		10		ns	25
WE setup time (WCBR test cycle)	twts	10		10		10		ns	25
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		0		ns .	
Output disable	^t OD	15		20		20		ns	27
Output enable	†OE	15		20		20	 	ns	23
OE hold time from WE during READ-MODIFY-WRITE cycle	[†] OEH	15		20		20		ns	26
WRITE-PER-BIT setup time	tWBS	0		0		0	<u> </u>	ns	
WRITE-PER-BIT hold time	tWBH	10		10		10		ns	
WRITE-PER-BIT mask setup time	tWDS	0		0	1	0	1	ns	
WRITE-PER-BIT mask hold time	tWDH	10	<u> </u>	10	<u> </u>	10	 	ns	


NOTES

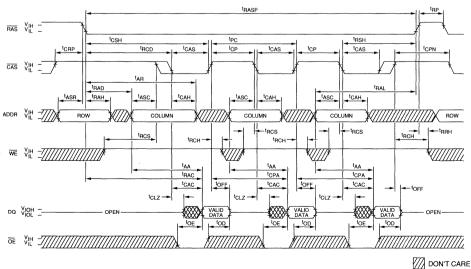
- 1. All voltages referenced to Vss.
- This parameter is sampled. Capacitance is calculated from the equation C = I dt/dv with dv = 3V and Vcc = 5V.
- Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates.
 Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range is assured.
- 7. An initial pause of 100μs is required after power-up followed by eight RAS refresh cycles (RAS-ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 16ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 12. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to 2 TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the


- specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. tWCS, tRWD, tAWD and tCWD are restrictive operating parameters in late WRITE, and READ-MODIFY-WRITE cycles only. If tWCS ≥ tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit through out the entire cycle. If tRWD ≥ tRWD (MIN), tAWD ≥ tAWD (MIN) and tCWD ≥ tCWD (MIN), the cycle is a READ-MODIFY-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE controlled) cycle.
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. If $\overline{\text{OE}}$ is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW and OE=HIGH.
- 25. WTS and tWTH are setup and hold specifications for the WE pin being held LOW to enable the JEDEC test mode (with CBR timing constraints). These two parameters are the inverts of tWRP and tWRH in the CBR refresh cycle.
- 26. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 27. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS goes HIGH first, OE becomes a don't care. If OE goes HIGH and CAS stays LOW, OE is not a don't care; and the DQs will provide the previously read data if OE is taken back LOW (while CAS remains LOW).

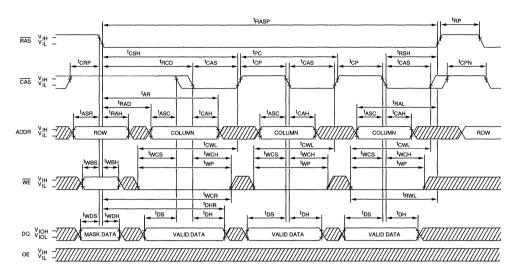
READ CYCLE



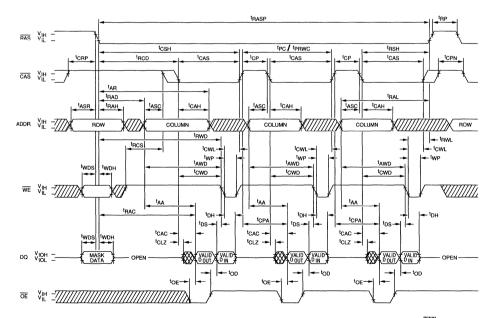
EARLY-WRITE CYCLE



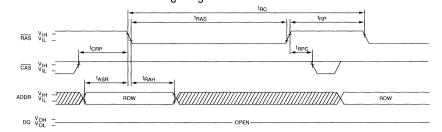
READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



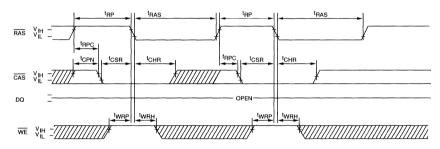
FAST-PAGE-MODE READ CYCLE



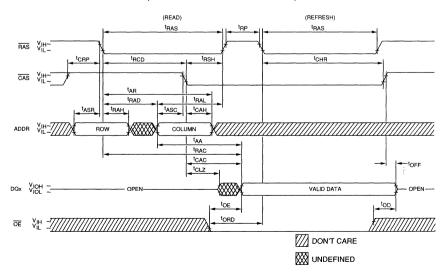
FAST-PAGE-MODE EARLY-WRITE CYCLE



FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



$\overline{\text{RAS-ONLY REFRESH CYCLE}}$ (ADDR = A₀ - A₉; $\overline{\text{WE}}$ = DON'T CARE)


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_9, \text{ and } \overline{OE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH; \overline{OE} = LOW)^{24}$

4 MEG POWER-UP AND REFRESH CONSTRAINTS

The JEDEC 4 Meg DRAM introduces two potential incompatibilities compared to the previous generation 1 Meg DRAM. The incompatibilities involve refresh and power-up. Understanding these incompatibilities and providing for them will offer the designer and system user greater compatibility between the 1 Meg and 4 Meg.

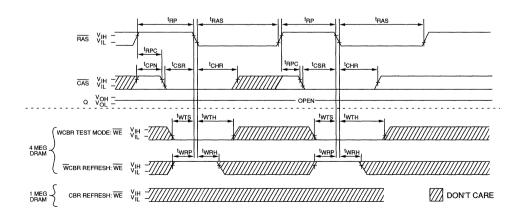
REFRESH

The most commonly used refresh mode of the 1 Meg is the CBR ($\overline{\text{CAS}}$ -BEFORE- $\overline{\text{RAS}}$) REFRESH cycle. The CBR for the 1 Meg specifies the $\overline{\text{WE}}$ pin as a don't care. The 4 Meg, on the other hand, specifies the CBR REFRESH mode to be a $\overline{\text{WCBR}}$, which is CBR with the $\overline{\text{WE}}$ pin held at a logical HIGH level.

The reason for $\overline{W}CBR$ instead of CBR on the 4 Meg is that a CBR cycle with \overline{WE} LOW will put the 4 Meg into the JEDEC specified test mode ($\overline{W}CBR$). In contrast, the 1 Meg test mode is entered by applying a HIGH signal to the test pin (pin 4 on DIP, pin 5 on SOJ and pin 8 on ZIP). This HIGH signal is usually a "supervoltage" (V in \geq 7.5V) so normal TTL or CMOS HIGH levels will not cause the part to enter the test mode.

POWER-UP

The 4 Meg $\overline{W}CBR$ constraint may also introduce another problem. The 1 Meg POWER-UP cycle requires a 100 μ s delay followed by any 8 \overline{RAS} cycles. The 4 Meg POWER-UP is more restrictive in that 8 \overline{RAS} -ONLY or CBR REFRESH (\overline{WE} held HIGH) cycles must be used. The restriction is needed since the 4 Meg may power-up in the JEDEC specified test mode


and must exit out of the test mode. The only way to exit the 4 Meg JEDEC test mode is with either a \overline{RAS} -ONLY or a \overline{W} CBR REFRESH cycle.

SUMMARY

- 1. The optional 1 Meg test pin is the A10 pin on the 4 Meg (x1 only).
- For optional test mode, the 1 Meg requires a valid HIGH on the test pin while the 4 Meg requires a CBR cycle with WE LOW.
- The 1 Meg CBR REFRESH allows the WE pin to be don't care while the 4 Meg CBR requires WE to be HIGH (WCBR).
- The 8 RAS wake-up cycles on the 1 Meg may be any valid RAS cycle while the 4 Meg may only use RAS-ONLY or WCBR REFRESH cycles.

SPECIAL FEATURE

A memory system currently using 1 Meg DRAMs with WEas a don't care during CBR REFRESH does not allow for direct upgrading to 4 Meg DRAMs. Micron, realizing some companies will have this situation, provides a special feature on its 4 Meg DRAM, that requires "supervoltage" to access the 4 Meg JEDEC WCBR test function. This allows the Micron 4 Meg DRAM to be refreshed in the same manner as any 1 MEG DRAM. Note that the eight power-up cycles should only be refresh cycles in order to guarantee that any 4 Meg DRAM, including Micron's, does not inadvertently power-up in the test mode.

COMPARISON OF 4 MEG TEST MODE AND WCBR TO 1 MEG CBR

DRAM

4 MEG x 4 DRAM

FAST PAGE MODE: MT4C40004 STATIC COLUMN: MT4C40005

FEATURES

- Industry standard x4 pinout, timing, functions and packages
- High performance, CMOS silicon gate process
- Single power supply: $+5V\pm10\%$ or $+3.3V\pm10\%$
- Low power, 5mW standby; 250mW active, typical
- · All inputs, outputs and clocks are fully TTL and CMOS compatible
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS (CBR), and HIDDEN
- 2048-cycle refresh distributed across 32ms or 4096-cycle refresh distributed across 64ms

OPTIONS	MARKING
• Timing	_
50ns access	-5
60ns access	-6
70ns access	-7
80ns access	-8
• Packages	
Plastic ZIP (475mil)	Z
Plastic SOJ (400mil)	DJ
Plastic TSOP (*)	TG
Refresh Period	
2048 cycles @ 32ms	R
4096 cycles @ 64ms	None
Operating Temperature, TA	
Commercial (0°C to +70°C)	None
Industrial (-40°C to +85°C)	IT
Power Supply	
+5V±10%	None
+3.3V±10%	V

GENERAL DESCRIPTION

The MT4C40004/5 are randomly accessed solid-state memories containing 16,777,216 bits organized in a x4 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 22 address bits, which are entered 10-12 bits (A0-A11) at a time. RAS is used to latch the first 11/12 bits and \overline{CAS} the latter 10/11 bits. A READ or WRITE cycle is selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of WE or CAS, whichever occurs last. If WE goes LOW prior to CAS going LOW, the output

PIN ASSIGNMEN	IT (Top View)
24-Pin SOJ (E-7)	24-Pin ZIP
Vcc 日 ・ 28	A9 1 2 OE CAS 3 2 4 DQ3 DQ4 5 2 6 Vss

Voc 1 28 Vos A9 1 31 2 OE DO1 1 2 2 7 DO4 CAS 3 3 4 DO3 D02 1 3 26 DO3 DO4 5 3 4 DO3 WE 1 4 25 CAS Vcc 7 1 8 DO1 A11/NC 1 6 23 DA9 RAS 11 3 10 WE A10 1 9 20 A8 A1 15 1 14 A0 A10 1 9 20 A8 A1 15 1 16 A2 A10 1 1 1 1 1 1 1 1 A10 1 1 1 1 1 1 1 A2 1 1 1 1 1 1 A3 1 3 1 1 1 1 A3 1 3 1 1 1 1 A3 1 3 1 1 1 1 Vcc 1 1 1 1 1 Vss A7 22 1 22 A6 CAS 3 1 1 1 1 CAS 1 CAS 1 1 CAS 1 CAS	DO4
---	-----

*Consult factory on availablity of TSOP packages

pins remain open (High-Z) until the next CAS cycle. If WE goes LOW after data reaches the output pins, data out (Q), is activated and retains the selected cell data as long as $\overline{\text{CAS}}$ remains LOW (regardless of $\overline{\text{WE}}$ or $\overline{\text{RAS}}$). This late WE pulse results in a READ-WRITE cycle. The four data inputs and the four data outputs are routed through four pins using common I/O, and pin direction is controlled by $\overline{\text{WE}}$ and $\overline{\text{OE}}$.

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a rowaddress (A0-A10/11) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS (CBR), or HIDDEN refresh) so that all 2048/4096 combinations of RAS addresses (A0-A10/A11) are executed at least every 32ms/ 64ms, regardless of sequence. The CBR refresh cycle will invoke the refresh counter for automatic RAS addressing.

The MT4C40004/5 are available with either 2048 cycles or 4096 cycles of refreshing. If CBR refresh is used, the number of cycles is a "don't care."

DRAM

512K x 8 DRAM

FAST PAGE MODE

FEATURES

OPTIONS

- Industry standard x8 pinouts, timing, functions and packages
- Address entry: 10 row addresses, nine column addresses
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- Low power, 3mW standby; 350mW active, typical
- All device pins are fully TTL and CMOS compatible
- 1024-cycle refresh in 16ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS and HIDDEN
- Optional FAST PAGE MODE access cycle
- NONPERSISTENT MASKED WRITE access cycle (MT4C8513 only)

MARKING

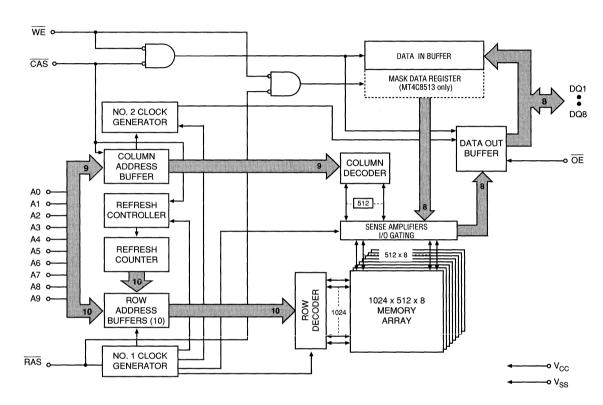
Timing	
70ns access	- 7
80ns access	- 8
100ns access	-10
Masked Write	
Not available	MT4C8512
Available	MT4C8513
• Packages	
Plastic SOJ (400mil)	DJ
Plastic TSOP (*)	TG

GENERAL DESCRIPTION

The MT4C8512/3 are randomly accessed solid-state memories containing 4,194,304 bits organized in a x8 configuration. Each byte is uniquely addressed through the 19 address bits during READ or WRITE cycles. The address is entered by \overline{RAS} latching the first 10 bits (A0-A9) and \overline{CAS} latching the latter 9 bits (A0-A8).

 $\label{thm:conversion} The MT4C8513 ^has NONPERSISTENT MASKED WRITE \\ allowing it to perform WRITE-PER-BIT accesses.$

PIN ASSIGNMENT (Top View)


28-Pin SOJ (E-9)

Vcc [1	28	□ Vss
DQ1 [2	27	DQ8
DQ2	3	26	DQ7
DQ3 [4	25	DQ6
DQ4	5	24	DQ5
NC 🗆	6	23	CAS
WE [7	22	OE
RAS	8	21	D NC
A9 🗖	9	20	□ A8
A0 🗆	10	19	A 7
A1 🗖	11	18	□ A6
A2 🗆	12	17	□ A5
A3 🗖	13	16	□ A 4
Vcc [14	15	Vss

NC = No Connect

*Consult factory for availability of TSOP packages

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

SOJ PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
8	RAS	Input	Row Address Strobe: RAS is used to clock-in the 10 row-address bits and as a strobe for the WE and DQs in the MASKED WRITE mode (MT4C8513 only).
23	CAS	Input	Column Address Strobe: CAS is used to clock in the 9-column address bits, enable the DRAM output buffers, and as a strobe for the data inputs on WRITE cycles.
7	WE	Input	Write Enable: WE is used to select a READ (WE = HIGH) or WRITE (WE = LOW) cycle. WE also serves as a Mask Enable (WE = LOW) at the falling edge of RAS in a MASKED-WRITE cycle (MT4C8513).
22	ŌĒ	Input	Output Enable: OE enables the output buffers when taken LOW during a READ access cycle. RAS and CAS must be LOW and WE must be HIGH before OE will control the output buffers. Otherwise the output buffers are in a high-impedance state.
10-13, 16-20, 9	A0 to A9	Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS to select one byte out of the 512K available words.
2-5, 24-27	DQ1-DQ8	Input	Data I/O: Includes inputs, outputs or high-impedance and/or Output masked data input (for MASKED WRITE cycle only).
6	NC	-	No Connect: These pins should be either left unconnected or tied to ground.
1, 14	Vcc	Supply	Power Supply: +5V ± 10%
15, 28	Vss	Supply	Ground

FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 19 address bits during READ or WRITE cycles. RAS is used to latch the first ten bits (A0-A9) and CAS the latter nine bits (A0-A8).

The $\overline{\text{CAS}}$ control also determines whether the cycle will be a refresh cycle ($\overline{\text{RAS}}$ -ONLY) or an active cycle (READ, WRITE or READ-WRITE) once $\overline{\text{RAS}}$ goes LOW.

READ or WRITE cycles are selected by \overline{WE} . A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. Taking \overline{WE} LOW will initiate a WRITE cycle, selecting DQ1 through DQ8. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after \overline{CAS} goes LOW and data reaches the output pins, data out (Q) is activated and retains the selected cell data as long as \overline{CAS} and \overline{OE} remain LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-WRITE cycle.

The eight data inputs and eight data outputs are routed through eight pins using common I/O, and pin direction is controlled by \overrightarrow{OE} and \overrightarrow{WE} .

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the

RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HID-DEN REFRESH) so that all 1024 combinations of RAS addresses (A0-A9) are executed at least every 16ms, regardless of sequence. The CAS-BEFORE-RAS refresh cycle will also invoke the refresh counter and controller for row address control.

MASKED WRITE ACCESS CYCLE (MT4C8513 ONLY)

Every WRITE access cycle can be a MASKED WRITE, depending on the state of \overline{WE} at \overline{RAS} time. A MASKED WRITE is selected when \overline{WE} is LOW at \overline{RAS} time and mask data is supplied on the DQ pins.

The mask data present on the DQ1-DQ8 inputs at RAS time will be written to an internal mask data register and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At CAS time, the bits present on the DQ1-DQ8 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).

In nonpersistent MASKED WRITEs, new mask data must be supplied each time a MASKED WRITE cycle is initiated.

Figure 1 illustrates the MT4C8513 MASKED WRITE operation (Note: RAS or CAS time refers to the time at which RAS or CAS transition from HIGH to LOW).

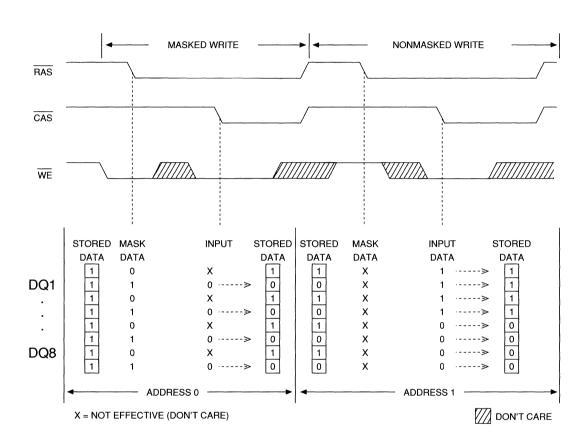


Figure 1
MT4C8513 MASKED WRITE EXAMPLE

DRAM

TRUTH TABLE

						Addresses			
Function		RAS	CAS	WE	ŌĒ	^t R	^t C	DQs	NOTES
Standby		Н	Х	Х	Х	Х	Х	High-Z	
READ		L	L	Η	L	ROW	COL	Valid Data Out	
EARLY-WRITE		L	L	L	х	ROW	COL	Valid Data In	1
READ-WRITE		L	L	H→L	L→H	ROW	COL	Valid Data Out, Data In	1
FAST-PAGE-	1st Cycle	L	H→L	Н	L	ROW	COL	Valid Data Out	
MODE READ	2nd Cycle	L	H→L	Н	L	n/a	COL	Valid Data Out	
FAST-PAGE- MODE WRITE	1st Cycle	L	H→L	L	Х	ROW	COL	Valid Data In	1
	2nd Cycle	L	H→L	L	X	n/a	COL	Valid Data In	1
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	ROW	COL	Valid Data Out, Data In	1
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	n/a	COL	Valid Data Out, Data In	1
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Valid Data Out	
REFRESH	WRITE	L→H→L	L	L	Х	ROW	COL	Valid Data In	1, 2
RAS-ONLY REFRESH		L	Н	Х	Х	ROW	n/a	High-Z	
CAS-BEFORE- RAS REFRESH		H→L	L	Х	Х	Х	Х	High-Z	

NOTE: 1. Data In will be dependent on the mask provided (MT4C8513 only). Refer to Figure 1.

2. EARLY WRITE only.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V to +7.0V
Operating Temperature, Ta(Ambient) 0°C to +70°C
Storage Temperature (Ceramic)65°C to +150°C
Storage Temperature (Plastic)55°C to +150°C
Power Dissipation1W
Short Circuit Output Current

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0°C \leq $T_{A} \leq$ 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1
INPUT LEAKAGE CURRENT any input $(0V \le VIN \le VCC)$, all other pins not under test = 0V)	lı	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vout ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (Iout = -5mA)	Vон	2.4		٧	
Output Low Voltage (Iout = 4.2mA)	Vol		0.4	V	

			MAX			
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
STANDBY CURRENT: TTL (RAS = CAS = VIH)	Icc1	2	2	2	mA	
STANDBY CURRENT: CMOS $(\overline{RAS} = \overline{CAS} = Vcc - 0.2V)$	lcc2	1	1	1	mA	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	lcc3	110	100	90	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC (MIN))	Icc4	80	70	60	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS = Vih: †RC = †RC (MIN))	lcc5	110	100	90	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: ¹ RC = ¹ RC (MIN))	Icc6	110	100	90	mA	3

CAPACITANCE

(Note: 2)

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A9	Cii		5	рF	2
Input Capacitance: RAS, CAS,WE, OE	CI2		7	pF	2
Input/Output Capacitance: DQ	Cio		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

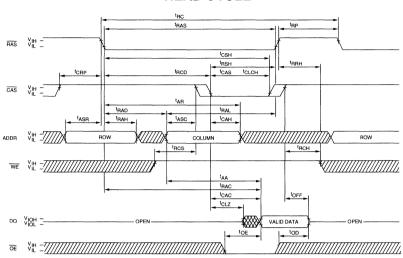
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C $\leq T_A \leq +70$ °C; Vcc = $5.0V \pm 10$ %)

A.C. CHARACTERISTICS			-7	-8			·10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		145		170		ns	
READ-WRITE cycle time	^t RWC	175		185		220		ns	
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	40		45		55		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	95		100		110		ns	
Access time from RAS	tRAC		70		80		100	ns	14
Access time from CAS	†CAC		20		20		25	ns	15
Output Enable time	^t OE	***************************************	20		20		25	ns	
Access time from column address	†AA		35		40		45	ns	
Access time from CAS precharge	^t CPA		40		45	· · · · · · · · · · · · · · · · · · ·	50	ns	
RAS pulse width	^t RAS	70	100,000	80	100,000	100	100,000	ns	
RAS pulse width (FAST PAGE MODE)	tRASP	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	tRSH	20		20	1	25	1	ns	
RAS precharge time	^t RP	50		55		60		ns	
CAS pulse width	†CAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	tCSH	70		80		100		ns	
CAS precharge time	^t CPN	10		10		10		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	tRCD	20	45	20	50	25	65	ns	17
CAS to RAS precharge time	^t CRP	5		5		5		ns	
Row address setup time	†ASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
RAS to column address delay time	^t RAD	15	35	15	40	15	50	ns	18
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	
Column address hold time (referenced to RAS)	^t AR	55		60		70		ns	
Column address to RAS lead time	^t RAL	35		40		50		ns	
Read command setup time	†RCS	0		0		0		ns	26
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19, 26
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	†CLZ	0		0	1	0		ns	

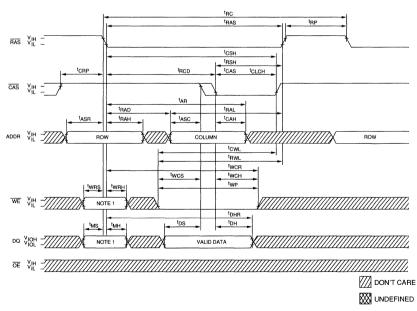
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($0^{\circ}C \le T_{\Delta} \le +70^{\circ}C$; Vcc = 5.0V ± 10%)

A.C. CHARACTERISTICS		-	7		-8	-	10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	0	15	0	15	0	20	ns	20, 29
Output disable time	[‡] OD		10		12		20	ns	29
Write command setup time	tWCS	0		0		0		ns	21, 26
Write command hold time	tWCH	15		15		15		ns	26
Write command hold time (referenced to RAS)	†WCR	50		55		65		ns	26
Write command pulse width	^t WP	10		10		15		ns	26
Write command to RAS lead time	^t RWL	20		20		20		ns	26
Write command to CAS lead time	tCWL	20		20		20		ns	26
Data-in setup time	^t DS	0		0		0		ns	22
Data-in hold time	^t DH	15		15		20		ns	22
Data-in hold time (referenced to RAS)	^t DHR	50		55		65		ns	
RAS to WE delay time	^t RWD	90		100		125		ns	21
Column address to WE delay time	^t AWD	60		65		80		ns	21
CAS to WE delay time	tCWD	45		45		60		ns	21
Transition time (rise or fall)	t T	3	50	3	50	3	50	ns	9, 10
Refresh period (1,024 cycles)	^t REF		16		16		16	ms	28
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	^t CSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS refresh)	^t CHR	10		10		10		ns	5
MASKED WRITE command to RAS setup time	^t WRS	0		0		0		ns	26, 27
MASKED WRITE command to RAS hold time	^t WRH	10		10		15		ns	26, 27
Mask data to RAS setup time	tMS	0		0		0		ns	26, 27
Mask data to RAS hold time	^t MH	10		10		15		ns	26, 27
OE hold time from WE during READ-MODIFY-WRITE cycle	†OEH	10		10		20		ns	28
OE setup prior to RAS during HIDDEN REFRESH cycle	[†] ORD	0		0		0		ns	

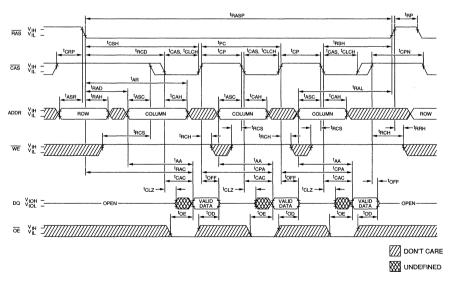

NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/d_v$ with dv = 3V; Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C \leq T $_{\Delta}$ \leq 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by eight RAS refresh cycles (RAS -ONLY or CBR) before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 16ms refresh requirement is exceeded.
- 8. AC characteristics assume ^tT = 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 12. If $\overline{\text{CAS}} = V_{IL}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to 2 TTL gates and 50pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.


- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition, not a reference to VOH or VOL.
- 21. tWCS, tRWD, tAWD and tCWD are restrictive operating parameters in LATE-WRITE and READ-MODIFY-WRITE cycles only. If tWCS ≥ tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If tRWD ≥ tRWD (MIN), tAWD ≥ tAWD (MIN) and tCWD ≥ tCWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE controlled) cycle.
- 22. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. During a READ cycle, if \overline{OE} is LOW then taken HIGH before \overline{CAS} goes HIGH, Q goes open. If \overline{OE} is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case WE = LOW and OE = HIGH.
- 25. All other inputs at Vcc -0.2V.
- 26. Write command is defined as $\overline{\text{WE}}$ going LOW.
- 27. MT4C8513 only.
- 28. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 29. The DQs open during READ cycles once 'OD or 'OFF occur. If $\overline{\text{CAS}}$ goes HIGH first, $\overline{\text{OE}}$ becomes a don't care. If $\overline{\text{OE}}$ goes HIGH and $\overline{\text{CAS}}$ stays LOW, $\overline{\text{OE}}$ is not a don't care; and the DQs will provide the previously read data if $\overline{\text{OE}}$ is taken back LOW (while $\overline{\text{CAS}}$ remains LOW).

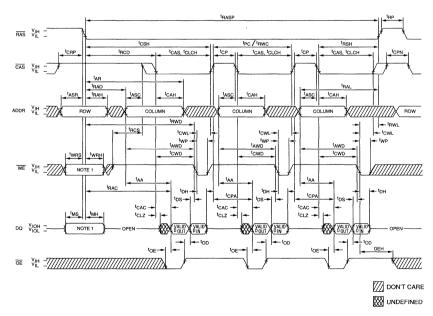
READ CYCLE


EARLY-WRITE CYCLE

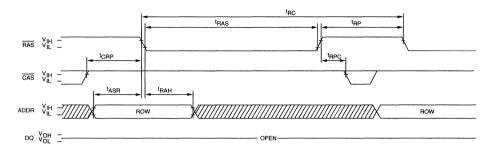

NOTE: 1. Applies to MT4C8513 only; WE and DQ inputs on MT4C8512 are don't care at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are don't care for a normal WRITE, WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.

READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)

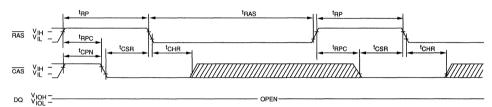
FAST-PAGE-MODE READ CYCLE


NOTE: 1. Applies to MT4C8513 only; WE and DQ inputs on MT4C8512 are don't care at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are don't care for a normal WRITE, WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.

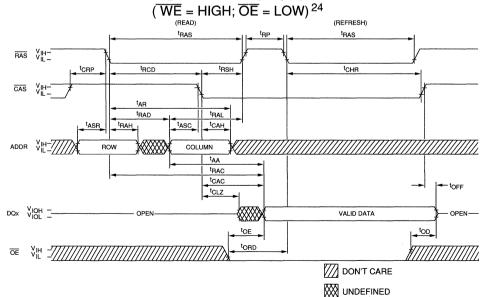
FAST-PAGE-MODE EARLY-WRITE CYCLE


FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)

NOTE: 1. Applies to MT4C8513 only; WE and DQ inputs on MT4C8512 are don't care at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are don't care for a normal WRITE, WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.



RAS-ONLY REFRESH CYCLE (OE and WE = DON'T CARE)



CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_8; \overline{WE} \text{ and } \overline{OE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

DRAM

64K x 16 DRAM

FAST PAGE MODE

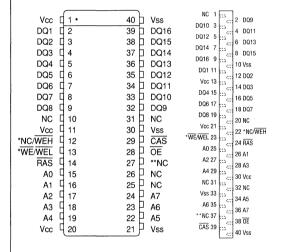
FEATURES

OPTIONS

- Industry standard x16 pinouts, timing, functions and packages
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- Low power, 3mW standby; 225mW active, typical
- All device pins are fully TTL and CMOS compatible
- 256-cycle refresh in 4ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS and HIDDEN
- Optional FAST PAGE MODE access cycle
- 2 TTL Load output drive capability
- BYTE WRITE access cycle (MT4C1664 only)
- NONPERSISTENT MASKED WRITE access cycle (MT4C1665 only)

MARKING

01 110110	1411 111111111
 Timing 	
70ns access	- 7
80ns access	- 8
100ns access	-10
Write Enable	
Byte or Word	MT4C1664
Word only	MT4C1665
Mask Enable	
Not Available	MT4C1664
Always Available	MT4C1665
Packages	
Plastic SOJ (400mil)	DJ
Plastic ZIP (450mil)	Ž

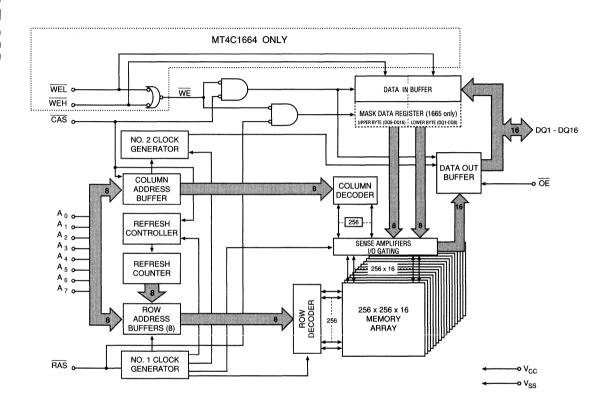

GENERAL DESCRIPTION

The MT4C1664/5 are randomly accessed solid-state memories containing 1,048,576 bits organized in a x16 configuration. The MT4C1664 has both BYTE and WORD WRITE access cycles while the MT4C1665 has only WORD WRITE access cycles.

The MT4C1664 functions in a similar manner to the MT4C1665 except that replacing \overline{WE} with \overline{WEL} and \overline{WEH} allows for BYTE WRITE access cycles. \overline{WEL} and \overline{WEH} function in an identical manner to \overline{WE} : either \overline{WEL} or \overline{WEH} will generate an internal \overline{WE} through an AND gate (Inverted NOR gate).

PIN ASSIGNMENT (Top View)

40-Pin SOJ	40-Pin Zip
(E-12)	(C-6)


- * MT4C1665/MT4C1664
- ** NC = No Connect

The MT4C1664 " $\overline{\text{WE}}$ " function and timing are determined by the first BYTE WRITE ($\overline{\text{WEL}}$ or $\overline{\text{WEH}}$) to transition LOW and the last to transition back HIGH. Use of only one of the two results in a BYTE WRITE cycle: $\overline{\text{WEL}}$ transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) or $\overline{\text{WEH}}$ transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16).

 $\label{eq:thm:maskedwrite} \begin{tabular}{ll} The MT4C1665 has NONPERSISTENT MASKED WRITE cycles. \end{tabular}$

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

4 F	MBOL RAS	TYPE Input	DESCRIPTION ROW Address Strobe: RAS is used to clock in the 8 row address
	RAS	Input	
9 (bits and as a strobe for the WEL, WEH and DQ inputs for the MASKED WRITE function.
	CAS	Input	Column Address Strobe: CAS is used to clock in the 8 column address bits, enable the DRAM output buffers, and as a strobe for the data inputs on WRITE cycles.
8	ŌĒ	Input	Output Enable: OE enables the output buffers when taken LOW during a READ access cycle. RAS and CAS must be LOW and WEL and WEH must be HIGH before OE will control the output buffers. Otherwise the output buffers are in a high impedance state.
3 WE	WEL*	Input	WRITE Enable Lower Byte: WEL on MT4C1664 is WE control for the DQ1 through DQ8 inputs. WE on MT4C1665 controls DQ1 through DQ16 inputs. If (WEL or WEH)/WE is LOW, the access is a WRITE cycle. The DQ outputs for the byte not being written will remain in a high impedance state (byte WRITE cycle only).
2 NC/	/WEH*	Input	Write Enable Upper Byte: WEH on MT4C1664 is WE control for the DQ9 through DQ16 inputs. If (WEL or WEH)/WE is LOW, the access is a WRITE cycle. This pin is a no connect on the MT4C1665 as it has only WORD WRITE access cycles.
6, 27 A0 9, 34 36	to A7	Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS to select one 16-bit word out of the 64K available words.
2, 14 6, 17 19, 3 6, 7, 8	1-DQ16	Input/ Output	Data I/O: For WRITE cycles, DQ1-DQ16 act as inputs to the addressed DRAM location. BYTE WRITEs can be performed by using WEL or WEH to select the byte to be written. For READ access cycles, DQ1-DQ16 act as outputs for the addressed DRAM location. All sixteen I/Os are active for READ cycles (there is no BYTE READ cycle).
), 31 37	NC	-	No Connect: These pins should be either left unconnected or tied to ground.
1,30	Vcc	Supply	Power Supply: +5V ± 10%
3, 40	Vss	Supply	Ground
	3 WE 2 NC 6, 27 A0 9, 34 36 2, 14 DQ: 19, 3 6, 7, 8 9 0, 31 37 1, 30	3 WE/WEL* 2 NC/WEH* 6, 27 A0 to A7 9, 34 36 2, 14 DQ1-DQ16 6, 17 19, 3 6, 7, 8 0, 31 NC 37 NC 1, 30 Vcc	8

NOTE: *MT4C1665/MT4C1664

FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 16 address bits during READ or WRITE cycles. These are entered 8 bits (A0-A7) at a time. \overline{RAS} is used to latch the first 8 bits and \overline{CAS} the latter 8 bits.

READ or WRITE cycles on the MT4C1665 are selected with the $\overline{\text{WE}}$ input while either $\overline{\text{WEL}}$ or $\overline{\text{WEH}}$ perform the " $\overline{\text{WE}}$ " on the MT4C1664. The MT4C1664 " $\overline{\text{WE}}$ " function is determined by the first byte WRITE ($\overline{\text{WEL}}$ or $\overline{\text{WEH}}$) to transition LOW and the last one to transition back HIGH.

A logic HIGH on $\overline{\text{WE}}$ dictates READ mode while a logic LOW on $\overline{\text{WE}}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{\text{WE}}$ or $\overline{\text{CAS}}$, whichever occurs last. Taking $\overline{\text{WE}}$ LOW will initiate a WRITE cycle, selecting DQ1 through DQ16. If $\overline{\text{WE}}$ goes LOW prior to $\overline{\text{CAS}}$ going LOW, the output pin(s) remain open (High-Z) until the next $\overline{\text{CAS}}$ cycle. If $\overline{\text{WE}}$ goes LOW after $\overline{\text{CAS}}$ goes LOW and data reaches the output pins, data out (Q) is activated and retains the selected cell data as long as $\overline{\text{CAS}}$ and $\overline{\text{OE}}$ remain LOW (regardless of $\overline{\text{WE}}$ or $\overline{\text{RAS}}$). This late $\overline{\text{WE}}$ pulse results in a READ-WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O, and pin direction is controlled by \overline{OE} , \overline{WEL} and \overline{WEH} (MT4C1664) or \overline{WE} (MT4C1665).

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A7) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HID-DEN refresh) so that all 256 combinations of RAS addresses (A0-A7) are executed at least every 4ms, regardless of sequence. The CAS-BEFORE-RAS refresh cycle will also

invoke the refresh counter and controller for row address control.

BYTE WRITE DESCRIPTION (MT4C1664 ONLY)

The byte WRITE mode is determined by the use of WEL and WEH. Enabling WEL will select a lower BYTE WRITE cycle (DQ1-DQ8) while enabling WEH will select an upper BYTE WRITE (DQ9-DQ16). Enabling both WEL and WEH selects a WIRD WRITE cycle.

The MT4C1664 can be viewed as two 64K x 8 DRAMs which have common input controls, with the exception of the WE input. Figure 1 illustrates the MT4C1664 BYTE and WORD WRITE cycles.

MASKED WRITE DESCRIPTION (MT4C1665 ONLY)

Every WRITE access cycle can be a MASKED WRITE, depending on the state of \overline{WE} at \overline{RAS} time. A MASKED WRITE is selected when mask data is supplied on the DQ pins and \overline{WE} is LOW at \overline{RAS} time. The MT4C1665 is only word selectable when \overline{WE} is LOW at \overline{RAS} time (the MT4C1664 does not have MASKED WRITE cycle function).

The data (mask data) present on the DQ1-DQ16 inputs at $\overline{\text{RAS}}$ time will be written to an internal bit mask data register and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the following WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At $\overline{\text{CAS}}$ time, the bits present on the DQ1-DQ16 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).

New mask data must be supplied each time a MASKED WRITE cycle is initiated, even if the previous cycle's mask was the same mask.

Figure 2 illustrates the MT4C1665* MASKED WRITE operation (Note: \overline{RAS} or \overline{CAS} time refers to the time at which \overline{RAS} or \overline{CAS} transition from HIGH to LOW).

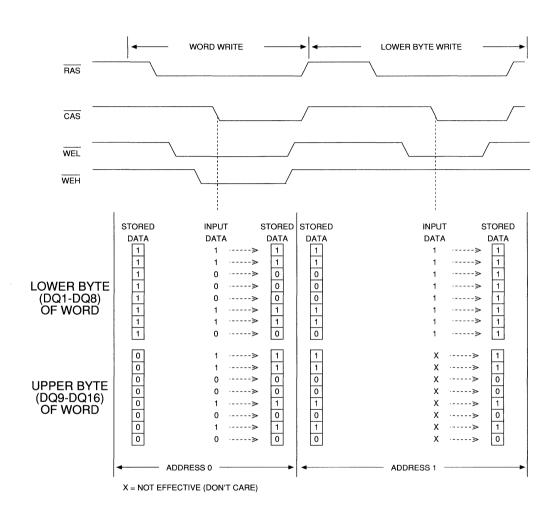


Figure 1
MT4C1664 WORD AND BYTE WRITE EXAMPLE



Figure 2 MT4C1665 MASKED WRITE EXAMPLE

TRUTH TABLE: MT4C1664

							Addre	sses		
Function		RAS	CAS	WEL	WEH	ŌĒ	^t R	t _C	DQs	NOTES
Standby		Н	X	X	Х	X	Х	Х	High-Z	
READ		L	L	Н	Н	L	ROW	COL	Valid Data Out	
WRITE: WORD (EARLY-WRITE)		L	L	L	L	Х	ROW	COL	Valid Data In	
WRITE: LOWER BYTE (EARLY)		L	L	L	Н	Х	ROW	COL	Lower Byte, Valid Data In Upper Byte, High-Z	
WRITE: UPPER BYTE (EARLY)		L	L	Н	L	Х	ROW	COL	Lower Byte, High-Z Upper Byte, Valid Data In	
READ-WRITE		┙	L	H→L	H→L	L→H	ROW	COL	Valid Data Out, Data In	1
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	Н	L	ROW	COL	Valid Data Out	
READ	2nd Cycle	L	H→L	Н	Н	L	n/a	COL	Valid Data Out	
FAST-PAGE-MODE	1st Cycle	L	H→L	L	L	Х	ROW	COL	Valid Data In	1
EARLY-WRITE	2nd Cycle	L	H→L	L	L	Х	n/a	COL	Valid Data In	1
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	H→L	L→H	ROW	COL	Valid Data Out, Data In	1
READ-WRITE	2nd Cycle	L	H→L	H→L	H→L	L→H	n/a	COL	Valid Data Out, Data In	1
HIDDEN	READ	L→H→L	L	Н	Н	L	ROW	COL	Valid Data Out	
REFRESH	WRITE	L→H→L	L	L	L	Х	ROW	COL	Valid Data In	1, 2
RAS-ONLY REFRESH		L	Н	Х	Х	Х	ROW	n/a	High-Z	
CAS-BEFORE- RAS REFRESH		H→L	L	Х	Х	Х	Х	Х	High-Z	

NOTE:

- 1. These cycles may also be byte WRITE cycles (either WEL or WEH active).
- 2. EARLY-WRITE only.

TRUTH TABLE: MT4C1665

						Addre	sses		
Function		RAS	CAS	WE	ŌĒ	^t R	^t C	DQs	NOTES
Standby		Н	Х	Х	Х	Х	Х	High-Z	
READ		L	L	Н	L	ROW	COL	Valid Data Out	
WRITE: WORD (EARLY-WRITE)		L	L	L	Х	ROW	COL	Valid Data In	1
READ-WRITE		L	L	H→L	L→H	ROW	COL	Valid Data Out, Data In	1
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	L	ROW	COL	Valid Data Out	
READ	2nd Cycle	L	H→L	Н	L	n/a	COL	Valid Data Out	
FAST-PAGE-MODE	1st Cycle	L	H→L	L	Х	ROW	COL	Valid Data In	1
EARLY-WRITE	2nd Cycle	L	H→L	L	Х	n/a	COL	Valid Data In	1
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	ROW	COL	Valid Data Out, Data In	1
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	n/a	COL	Valid Data Out, Data In	1
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Valid Data Out	
REFRESH	WRITE	L→H→L	L	L	Х	ROW	COL	Valid Data In	1, 2
RAS-ONLY REFRESH		L	Н	X	Х	ROW	n/a	High-Z	
CAS-BEFORE- RAS REFRESH		H→L	L	Х	Х	Х	X	High-Z	

NOTE:

1. Data In will be dependent on the mask provided. Refer to Figure 2.

2. EARLY-WRITE only.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss.	1.0V to +7.0V
Operating Temperature, TA(Ambient).	0°C to +70°C
Storage Temperature (Ceramic)	65°C to +150°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	V	1
INPUT LEAKAGE CURRENT any input (0V \leq VIN \leq Vcc, all other pins not under test = 0V)	lı .	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (Iout = -5mA)	V он	2.4		V	
Output Low Voltage (Iout = 4.2mA)	Vol		0.4	V	

			MAX			
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
STANDBY CURRENT: (TTL) $(\overline{RAS} = \overline{CAS} = V_{\text{IH}})$	lcc1	2	2	2	mA	
STANDBY CURRENT: (CMOS) $(\overline{RAS} = \overline{CAS} = Vcc - 0.2V)$	lcc2	1	1	1	mA	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ¹RC = ¹RC (MIN))	lcc3	110	100	90	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: [†] PC = [†] PC (MIN))	Icc4	80	70	60	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=VIH: TRC = TRC (MIN))	lcc5	110	100	90	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: ¹ RC = ¹ RC (MIN))	Icc6	110	100	90	mA	3, 5

CAPACITANCE

(Note: 2)

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A7	Cl1		5	pF	2
Input Capacitance: RAS, CAS,(WEL, WEH)/ WE, OE	Ci2		7	pF	2
Input/Output Capacitance: DQ	Cio		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (0°C \leq T $_{A}$ \leq +70 °C; Vcc = 5.0V \pm 10%)

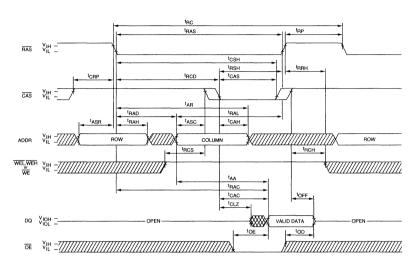
A.C. CHARACTERISTICS			-7		-8		-10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		145		170		ns	
READ-WRITE cycle time	^t RWC	175		185		220		ns	
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	45		50		60		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	95		100		120		ns	
Access time from RAS	†RAC		70		80		100	ns	14
Access time from CAS	^t CAC		20		25		30	ns	15
Output Enable time	^t OE		20		25		30	ns	
Access time from column address	†AA		40	***************************************	45		50	ns	
Access time from CAS precharge	^t CPA		45		50		55	ns	
RAS pulse width	†RAS	70	100,000	80	100,000	100	100,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	tRSH	20		20		25		ns	
RAS precharge time	^t RP	50		55		60		ns	
CAS pulse width	^t CAS	25	100,000	30	100,000	30	100,000	ns	
CAS hold time	tCSH	70		80		100		ns	
CAS precharge time	^t CPN	10		10		15		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	^t RCD	20	45	20	50	25	60	ns	17
CAS to RAS precharge time	tCRP	5		5		5		ns	
Row address setup time	tASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		10		ns	
RAS to column address delay time	^t RAD	15	35	15	40	15	50	ns	18
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		15		ns	
Column address hold time (referenced to RAS)	^t AR	55		60		70		ns	
Column address to RAS lead time	^t RAL	35		40		50		ns	
Read command setup time	tRCS	0		0		0		ns	26
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19, 26
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	†CLZ	0		0	1	0		ns	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

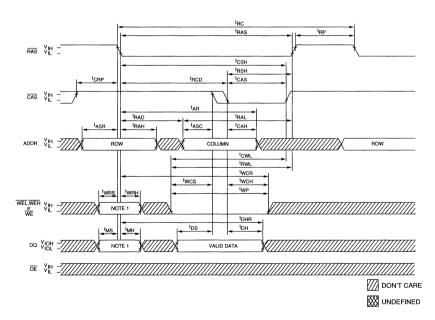
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (0°C \leq T_A \leq +70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS		-	7		-8	-	10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	20, 30
Output disable time	^t OD		10		12		20	ns	30
Write command setup time	twcs	0		0		0		ns	21, 26
Write command hold time	^t WCH	15		15		15		ns	26
Write command hold time (referenced to RAS)	†WCR	50		55		65		ns	26
Write command pulse width	tWP	15		15		15		ns	26
Write command to RAS lead time	^t RWL	20		20		20		ns	26
Write command to CAS lead time	tCWL	20		20		20		ns	26
Data-in setup time	^t DS	0		0		0		ns	22
Data-in hold time	^t DH	15		15		20		ns	22
Data-in hold time (referenced to RAS)	^t DHR	50		55		65		ns	
RAS to WE delay time	^t RWD	90		100		125		ns	21
Column address to WE delay time	^t AWD	65		70		80		ns	21
CAS to WE delay time	tCWD	50		55		70		ns	21
Transition time (rise or fall)	tΤ	3	50	3	50	3	50	ns	9, 10
Refresh period (256 cycles)	^t REF		4		4		4	ms	28
RAS to CAS precharge time	†RPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	^t CSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS refresh)	[†] CHR	15		15		15		ns	5
MASKED WRITE command to RAS setup time	†WRS	0		0		0		ns	26, 27
MASKED WRITE command to RAS hold time	^t WRH	15		15		15		ns	26, 27
Mask data to RAS setup time	tMS	0		0		0		ns	26
Mask data to RAS hold time	^t MH	15		15		15		ns	26
OE hold time from WE during READ-MODIFY-WRITE cycle	[†] OEH	10		10		20		ns	29
OE setup prior to RAS during HIDDEN REFRESH cycle	[†] ORD	0		0		0		ns	

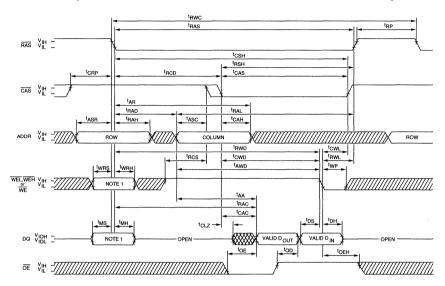
DRAM

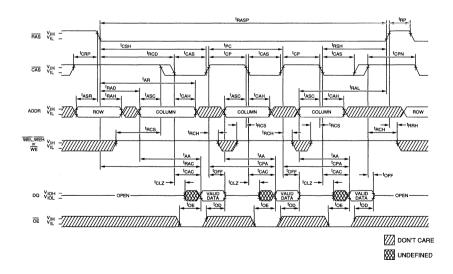

NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V; Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates.
 Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- In addition to meeting the transition rate specification, all input signals must transit between VIH and VII. (or between VII. and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 12. If $\overline{\text{CAS}} = \text{Vil.}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to 2 TTL gates and 50pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.

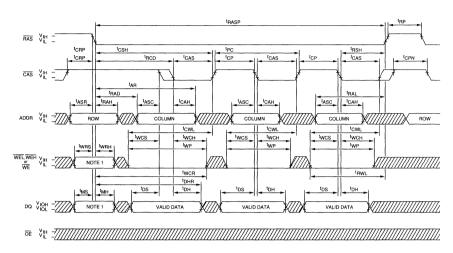

- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a LATE-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE controlled) cycle.
- 22. These parameters are referenced to CAS leading edge in early WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. If $\overline{\text{OE}}$ is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
- A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case WE = LOW and OE=HIGH.
- 25. All other inputs at Vcc -0.2V.
- 26. Write command is defined as either WEL or WEH or both going LOW on the MT4C1664. Write command is defined as WE going LOW on the MT4C1665.
- Must be held LOW to ensure MASKED WRITE is enabled and must be held HIGH to ensure MASKED WRITE is disabled.
- 28. The refresh period may be extended to 8ms without experiencing problems.
- 29. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 30. The DQs open during READ cycles once OD or OFF occur. If CAS goes HIGH first, OE becomes a don't care. If OE goes HIGH and CAS stays LOW, OE is not a don't care; and the DQs will provide the previously read data if OE is taken back LOW (while CAS remains LOW).

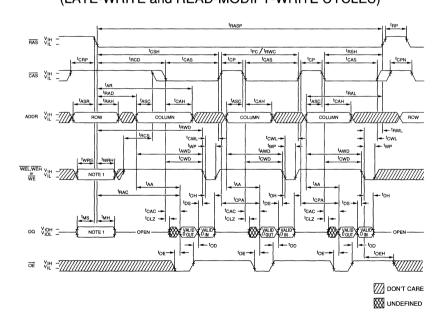
READ CYCLE


EARLY-WRITE CYCLE


NOTE: 1. Applies to MT4C1665 only; WEL, WEH and DQ inputs on MT4C1664 are don't care at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are don't care for a normal WRITE, WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.

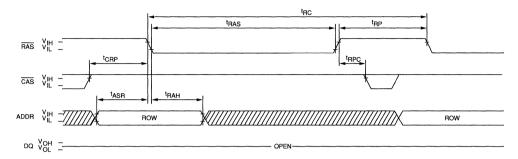
READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)


FAST-PAGE-MODE READ CYCLE


NOTE: 1. Applies to MT4C1665 only; WEL, WEH and DQ inputs on MT4C1664 are don't care at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are don't care for a normal WRITE, WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.

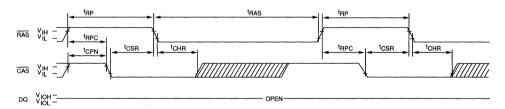
FAST-PAGE-MODE EARLY-WRITE CYCLE

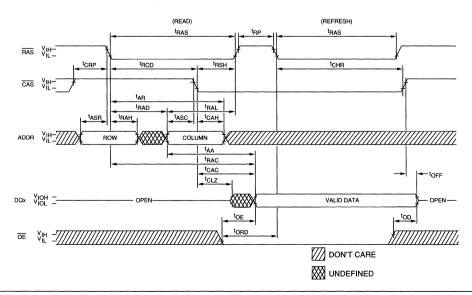
FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



NOTE:

1. Applies to MT4C1665 only; WEL, WEH and DQ inputs on MT4C1664 are don't care at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are don't care for a normal WRITE, WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.




CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_7; \overline{WEL}, \overline{WEH} \text{ or } \overline{WE}, \text{and } \overline{OE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WEL}, \overline{WEH} \text{ or } \overline{WE} = HIGH; \overline{OE} = LOW)^{24}$

DRAM

64K x 16 DRAM

LOW POWER, FAST PAGE MODE

FEATURES

- Industry standard x16 pinouts, timing, functions and packages
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- Low power, 2mW standby; 200mW active, typical
- All device pins are fully TTL and CMOS compatible
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS and HIDDEN
- Optional FAST PAGE MODE access cycle
- 2 TTL load output drive capability
- BYTE WRITE access cycle (MT4C1668 only)
- NONPERSISTENT MASKED WRITE access cycle (MT4C1669 only)
- Reduced CMOS STANDBY CURRENT
- Reduced operating and refresh currents
- Extended refresh: 256 cycles over 32ms (125µs cycles)

OPTIONS	MARKING
 Timing 	
70ns access	- 7
80ns access	- 8
100ns access	-10
Write Enable	
Byte or Word	MT4C1668
Word only	MT4C1669
Mask Enable	
Not available	MT4C1668
Always available	MT4C1669
• Packages	
Plastic SOJ (400mil)	DJ
Plastic ZIP (450mil)	Z

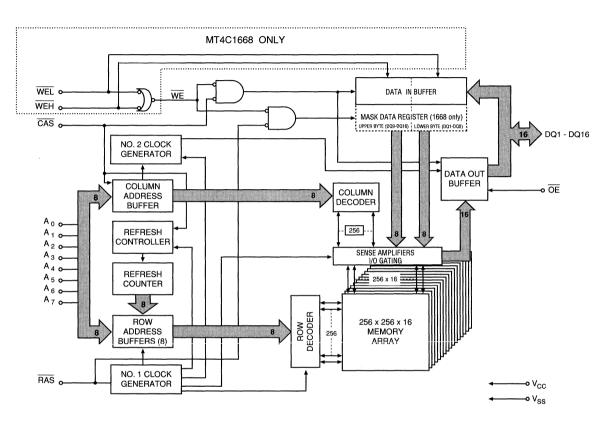
GENERAL DESCRIPTION

The MT4C1668/9 are randomly accessed solid-state memories containing 1,048,576 bits organized in a x16 configuration. The MT4C1668 has both BYTE and WORD WRITE access cycles while the MT4C1669 has only WORD WRITE access cycles.

The MT4C1668 functions in a similar manner to the MT4C1669 except that replacing $\overline{\text{WE}}$ with $\overline{\text{WEL}}$ and $\overline{\text{WEH}}$ allows for BYTE WRITE access cycles. WEL and WEH function in an identical manner to WE: either WEL or

40-Pin S (E-12)	40-Pin SOJ (E-12)			
Vcc	40	NC 1 1 1 2 1 1 1 1 1 1		

WEH will generate an internal WE through an AND gate (inverted NOR gate).


The MT4C1668 "WE" function and timing are determined by the first BYTE WRITE (WEL or WEH) to transition LOW and the last to transition back HIGH. Use of only one of the two results in a BYTEWRITE cycle: WEL transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) or WEH transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16).

The MT4C1669 has NONPERSISTENT MASKED WRITE capability.

The extended refresh of the MT4C1668/9 provides a factor-of-eight reduction of refresh intervals required, as compared to a standard 64K x 16 DRAM (MT4C1664/5). The MT4C1668/9 offers lower operating power as well as the reduced refresh current and standby current. The MT4C1668/9 are the same devices as the MT4C1664/5, but with the low power capabilites.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

SOJ PIN	ZIP PIN			
NUMBER(S)	NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
14	24	RAS	Input	Row Address Strobe: RAS is used to clock-in the 8 row-address bits and as a strobe for the WEL, WEH and DQ inputs for the MASKED WRITE function.
29	39	CAS	Input	Column Address Strobe: CAS is used to clock-in the 8 column- address bits, enable the DRAM output buffers, and as a strobe for the data inputs on WRITE cycles.
28	38	ŌĒ	Input	Output Enable: OE enables the output buffers when taken LOW during a READ access cycle. RAS and CAS must be LOW and WEL and WEH must be HIGH before OE will control the output buffers. Otherwise the output buffers are in a high-impedance state.
13	23	WE/WEL*	Input	Write Enable Lower Byte: WEL on MT4C1668 is WE control for the DQ1 through DQ8 inputs. WE on MT4C1669 controls DQ1 through DQ16 inputs. If (WEL or WEH)/WE is LOW, the access is a WRITE cycle. The DQ outputs for the byte not being written will remain in a high impedance state (BYTE WRITE cycle only).
12	22	NC/WEH*	Input	Write Enable Upper Byte: WEH on MT4C1668 is WE control for the DQ9 through DQ16 inputs. If (WEL or WEH)/WE is LOW, the access is a WRITE cycle. This pin is a no connect on the MT4C1669 as it has only WORD WRITE access cycles.
15, 16, 17 18, 19, 22 23, 24	25, 26, 27 28, 29, 34 35, 36	A0 to A7	Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS to select one 16-bit word out of the 64K available words.
2, 3, 4, 5, 6 7, 8, 9, 32, 33 34, 35, 36 37, 38, 39	11, 12, 14 15, 16, 17 2, 18, 19, 3 4, 5, 6, 7, 8 9	DQ1-DQ16	Input/ Output	Data I/O: For WRITE cycles, DQ1-DQ16 act as inputs to the addressed DRAM location. BYTE WRITEs can be performed by using WEL or WEH to select the byte to be written. For READ access cycles, DQ1-DQ16 act as outputs for the addressed DRAM location. All 16 I/Os are active for READ cycles (there is no Byte READ cycle).
10, 25, 26 27, 31	1, 20, 31 32, 37	NC	-	No Connect: These pins should be either left unconnected or tied to ground.
1, 11, 20	13, 21, 30	Vcc	Supply	Power Supply: +5V ± 10%
21, 30, 40	10, 33, 40	Vss	Supply	Ground

NOTE: *MT4C1669/MT4C1668

FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 16 addressbits during READ or WRITE cycles. These are entered 8 bits (A0-A7) at a time. RAS is used to latch the first 8 bits and CAS the latter 8 bits.

READ or WRITE cycles on the MT4C1669 are selected with the $\overline{\text{WE}}$ input while either $\overline{\text{WEL}}$ or $\overline{\text{WEH}}$ perform the "WE" on the MT4C1668. The MT4C1668 "WE" function is determined by the first BYTE WRITE (WEL or WEH) to transition LOW and the last one to transition back HIGH.

A logic HIGH on $\overline{\text{WE}}$ dictates READ mode while a logic LOW on $\overline{\text{WE}}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{\text{WE}}$ or $\overline{\text{CAS}}$, whichever occurs last. Taking $\overline{\text{WE}}$ LOW will initiate a WRITE cycle, selecting DQ1 through DQ16. If $\overline{\text{WE}}$ goes LOW prior to $\overline{\text{CAS}}$ going LOW, the output pin(s) remain open (High-Z) until the next $\overline{\text{CAS}}$ cycle. If $\overline{\text{WE}}$ goes LOW after $\overline{\text{CAS}}$ goes LOW and data reaches the output pins, data out (Q) is activated and retains the selected cell data as long as $\overline{\text{CAS}}$ and $\overline{\text{OE}}$ remain LOW (regardless of $\overline{\text{WE}}$ or $\overline{\text{RAS}}$). This late $\overline{\text{WE}}$ pulse results in a READ-WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O, and pin direction is controlled by OE, WEL and WEH (MT4C1668) or WE (MT4C1669).

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A7) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HID-DEN REFRESH) so that all 256 combinations of RAS addresses (A0-A7) are executed at least every 32ms, regardless of sequence. The CAS-BEFORE-RAS refresh cycle will

also invoke the refresh counter and controller for row address control.

BYTE WRITE DESCRIPTION (MT4C1668 ONLY)

The BYTE WRITE mode is determined by the use of WEL and WEH. Enabling WEL will select a lower BYTE WRITE cycle (DQ1-DQ8) while enabling WEH will select an upper BYTE WRITE (DQ9-DQ16). Enabling both WEL and WEH selects a WORD WRITE cycle.

The MT4C1668 may be viewed as two 64K x 8 DRAMs which have common input controls, with the exception of the WE input. Figure 1 illustrates the MT4C1668 BYTE and WORD WRITE cycles.

MASKED WRITE DESCRIPTION (MT4C1669 ONLY)

Every WRITE access cycle may be a MASKED WRITE, depending on the state of \overline{WE} at \overline{RAS} time. A MASKED WRITE is selected when mask data is supplied on the DQ pins and \overline{WE} is LOW at \overline{RAS} time. The MT4C1669 is only word selectable when \overline{WE} is LOW at \overline{RAS} time (the MT4C1668 does not have a MASKED WRITE cycle function)

The data (mask data) present on the DQ1-DQ16 inputs at RAS time will be written to an internal bit mask data register and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At CAS time, the bits present on the DQ1-DQ16 inputs will be written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).

New mask data must be supplied each time a MASKED WRITE cycle is initiated, even if the previous cycle's mask was the same mask.

Figure 2 illustrates the MT4C1669 MASKED WRITE operation (Note: RAS or CAS time refers to the time at which RAS or CAS transition from HIGH to LOW).

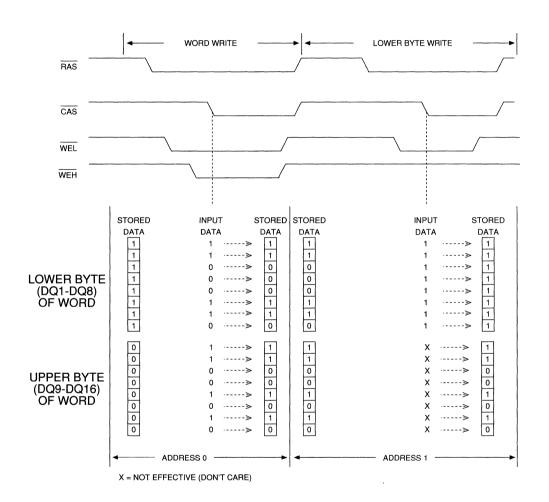


Figure 1
MT4C1668 WORD AND BYTE WRITE EXAMPLE

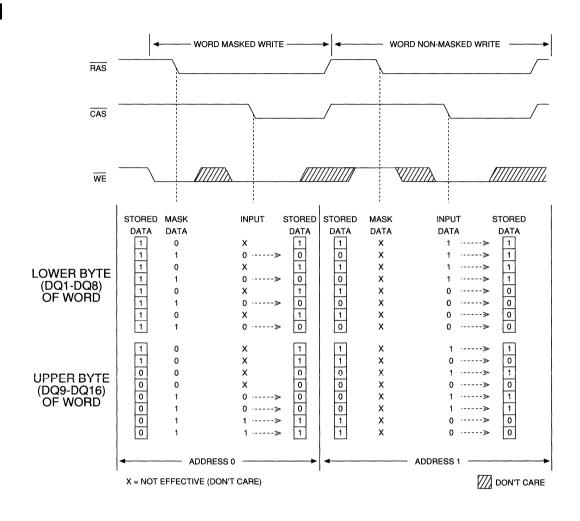


Figure 2
MT4C1669 MASKED WRITE EXAMPLE

TRUTH TABLE: MT4C1668

							Addre	esses		
Function		RAS	CAS	WEL	WEH	ŌĒ	^t R	^t C	DQs	NOTES
Standby		Н	Χ	Х	Х	X	Х	Х	High-Z	
READ		L	L	Н	Н	L	ROW	COL	Valid Data Out	
WRITE: WORD (EARLY-WRITE)		L	L	L	L	Х	ROW	COL	Valid Data In	
WRITE: LOWER BYTE (EARLY)		L	L	L	Н	Х	ROW	COL	Lower Byte, Valid Data In Upper Byte, High-Z	
WRITE: UPPER BYTE (EARLY)		L	L	Н	L	Х	ROW	COL	Lower Byte, High-Z Upper Byte, Valid Data In	
READ-WRITE		L	L	H→L	H→L	L→H	ROW	COL	Valid Data Out, Data In	1
FAST-PAGE-MODE READ	1st Cycle 2nd Cycle	L	H→L H→L	H	H H	L L	ROW n/a	COL	Valid Data Out Valid Data Out	
FAST-PAGE-MODE EARLY-WRITE	1st Cycle 2nd Cycle	L	H→L H→L	L	L L	X	ROW n/a	COL	Valid Data In Valid Data In	1
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	H→L	L→H	ROW	COL	Valid Data Out, Data In	1
READ-WRITE	2nd Cycle		H→L	H→L	H→L	L→H	n/a	COL	Valid Data Out, Data In	1
HIDDEN	READ	L→H→L	L	Н	Н	L	ROW	COL	Valid Data Out	
REFRESH	WRITE	L→H→L	L	L	L	Х	ROW	COL	Valid Data In	1, 2
RAS-ONLY REFRESH		L	Н	Х	Х	Х	ROW	n/a	High-Z	
CAS-BEFORE- RAS REFRESH		H→L	L	Х	Х	Х	Х	Х	High-Z	

NOTE:

- 1. These cycles may also be BYTE WRITE cycles (either $\overline{\text{WEL}}$ or $\overline{\text{WEH}}$ active).
- 2. EARLY-WRITE only.

TRUTH TABLE: MT4C1669

						Addre	sses		
Function		RAS	CAS	WE	ŌĒ	^t R	tC	DQs	NOTES
Standby		Н	Х	Х	Х	Х	Х	High-Z	
READ		L	L	Н	L	ROW	COL	Valid Data Out	
WRITE: WORD (EARLY-WRITE)		L	L	L	Х	ROW	COL	Valid Data In	1
READ-WRITE		L	L	H→L	L→H	ROW	COL	Valid Data Out, Data In	1
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	L	ROW	COL	Valid Data Out	
READ	2nd Cycle	L	H→L	Н	L	n/a	COL	Valid Data Out	
FAST-PAGE-MODE	1st Cycle	L	H→L	L	Х	ROW	COL	Valid Data In	1
EARLY-WRITE	2nd Cycle	L	H→L	L	Х	n/a	COL	Valid Data In	1
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L→H	ROW	COL	Valid Data Out, Data In	1
READ-WRITE	2nd Cycle	L	H→L	H→L	L→H	n/a	COL	Valid Data Out, Data In	1
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Valid Data Out	
REFRESH	WRITE	L→H→L	L	L	Х	ROW	COL	Valid Data In	1, 2
RAS-ONLY REFRESH		L	Н	Х	Х	ROW	n/a	High-Z	
CAS-BEFORE- RAS REFRESH		H→L	L	Х	Х	Х	Х	High-Z	

NOTE:

1. Data-In will be dependent on the mask provided. Refer to Figure 2.

2. EARLY-WRITE only.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V to	+7.0V
Operating Temperature, TA(Ambient)0°C to	+70°C
Storage Temperature (Ceramic)65°C to	+150°C
Storage Temperature (Plastic)55°C to	+150°C
Power Dissipation	1W
Short Circuit Output Current	50m A

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (Notes: 1, 3, 4, 6, 7) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	Vıн	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1
INPUT LEAKAGE CURRENT any input $(0V \le V_{IN} \le V_{CC},$ all other pins not under test = 0V)	lı	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS	Vон	2.4		٧	
Output High Voltage (Ιουτ = -5mA) Output Low Voltage (Ιουτ = 4.2mA)	Vol		0.4	V	

			MAX]	
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
STANDBY CURRENT: (TTL) $(\overline{RAS} = \overline{CAS} = V_{\text{IH}})$	lcc ₁	2	2	2	mA	
STANDBY CURRENT: (CMOS) $(\overline{RAS} = \overline{CAS} = Vcc - 0.2V)$	lcc2	650	650	650	μА	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	lcc3	100	90	80	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL; CAS, Address Cycling: tPC = tPC (MIN))	Icc4	75	65	65	mA	3,4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=VIH: RC = RC (MIN))	lcc5	100	90	80	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: tRC = tRC (MIN))	lcc ₆	100	90	80	mA	3, 5
REFRESH CURRENT: BATTERY BACK-UP (extended refresh cycles). Average power supply current with $\overline{\text{CAS}}$ = 0.2V or CBR; $\overline{\text{RAS}}$ has minimum ${}^{\text{t}}\text{RAS}$ of 1 μ s; A0-A7, $\overline{\text{WE}}$, $\overline{\text{OE}}$ and DQs = Vcc -0.2V or 0.2V (DQs may float); ${}^{\text{t}}\text{RC}$ = 125 μ s	Icc7	800	800	800	μА	3

CAPACITANCE

(Note: 2)

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A7	C ₁₁		5	pF	2
Input Capacitance: RAS, CAS,(WEL, WEH)/ WE, OE	CI2		7	pF	2
Input/Output Capacitance: DQ	Сю		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

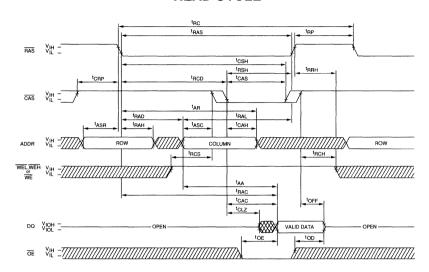
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (0°C $\leq T_A \leq +70$ °C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS			-7		-8		-10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		145		170		ns	
READ-WRITE cycle time	tRWC	175		185		220		ns	
FAST-PAGE-MODE READ or WRITE	^t PC	45		50		60		ns	
cycle time									
FAST-PAGE-MODE READ-WRITE	^t PRWC	95		100		120		ns	
cycle time									
Access time from RAS	†RAC		70		80		100	ns	14
Access time from CAS	†CAC		20		25		30	ns	15
Output Enable time	^t OE		20		25		30	ns	
Access time from column address	t _{AA}		40		45		50	ns	
Access time from CAS precharge	^t CPA	***************************************	45		50		55	ns	
RAS pulse width	†RAS	70	100,000	80	100,000	100	100,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	†RSH	20		20		25		ns	
RAS precharge time	^t RP	50		55		60		ns	
CAS pulse width	†CAS	25	100,000	30	100,000	30	100,000	ns	
CAS hold time	^t CSH	70		80		100		ns	
CAS precharge time	^t CPN	10		10		15		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	tRCD	20	45	20	50	25	60	ns	17
CAS to RAS precharge time	^t CRP	5		5		5		ns	
Row address setup time	tASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		10		ns	
RAS to column address delay time	†RAD	15	35	15	40	15	50	ns	18
<u> </u>	tage				-		-		
Column address setup time	tASC	0	ļ	0	-	0		ns	
Column address hold time	tCAH	15		15		15		ns	
Column address hold time (referenced to \overline{RAS})	^t AR	55		60		70		ns	
Column address to RAS lead time	^t RAL	35		40		50		ns	
Read command setup time	^t RCS	0		0		0		ns	26
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19, 26
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	^t CLZ	0		0		0		ns	

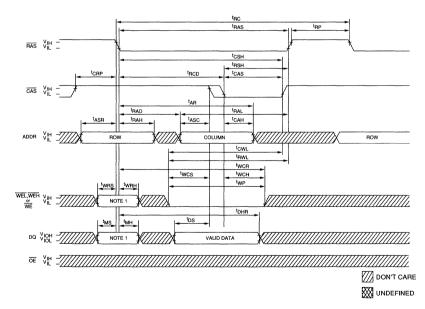
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (0°C \leq T_A \leq +70°C; Vcc = 5.0V \pm 10%)

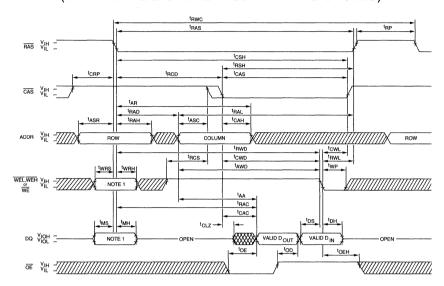
A.C. CHARACTERISTICS PARAMETER	-7		.7	-8		-10			
	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	20, 30
Output disable time	^t OD		10		12		20	ns	30
Write command setup time	tWCS	0		0		0		ns	21, 26
Write command hold time	tWCH	15		15		15		ns	26
Write command hold time (referenced to RAS)	^t WCR	50		55		65		ns	26
Write command pulse width	tWP	15		15		15		ns	26
Write command to RAS lead time	†RWL	20		20		20		ns	26
Write command to CAS lead time	^t CWL	20		20		20		ns	26
Data-in setup time	t _{DS}	0		0		0		ns	22
Data-in hold time	tDH	15		15		20		ns	22
Data-in hold time (referenced to RAS)	^t DHR	50		55		65		ns	
RAS to WE delay time	^t RWD	90		100		125		ns	21
Column address to WE delay time	^t AWD	65		70		80		ns	21
CAS to WE delay time	tCWD	50		55		70	1	ns	21
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	9, 10
Refresh period (256 cycles)	^t REF		32		32		32	ms	28
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	^t CSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS refresh)	[†] CHR	15		15		15		ns	5
MASKED WRITE command to RAS setup time	^t WRS	0		0		0		ns	26, 27
MASKED WRITE command to RAS hold time	^t WRH	15		15		15		ns	26, 27
Mask data to RAS setup time	tMS	0		0		0		ns	26
Mask data to RAS hold time	^t MH	15		15		15		ns	26
OE hold time from WE during READ-MODIFY-WRITE cycle	†OEH	10		10		20		ns	29
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		0		ns	


NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_Δ ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 32ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between Vih and Vil (or between Vil and Vih) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 12. If $\overline{\text{CAS}} = \text{Vil.}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to 2 TTL gates and 50pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, data out (Q) will bemaintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.

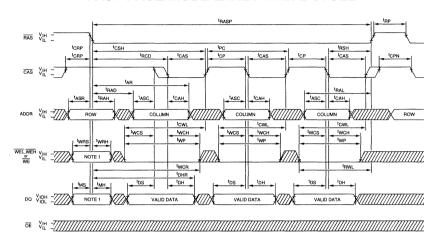

- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a LATE-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE controlled) cycle.
- 22. These parameters are referenced to CAS leading edge in early WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. If $\overline{\text{OE}}$ is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case WE = LOW and OE=HIGH.
- 25. All other inputs at Vcc -0.2V.
- 26. WRITE command is defined as either WEL or WEH or both going LOW on the MT4C1668. WRITE command is defined as WE going LOW on the MT4C1669.
- 27. Must be held LOW to ensure MASKED WRITE is enabled and must be held HIGH to ensure MASKED WRITE is disabled.
- 28. The refresh period may be extended to 8ms without experiencing problems.
- 29. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 30. The DQs open during READ cycles once ^tOD or ^tOFF occur. If \overline{CAS} goes HIGH first, \overline{OE} becomes a don't care. If \overline{OE} goes HIGH and \overline{CAS} stays LOW, \overline{OE} is not a don't care; and the DQs will provide the previously read data if \overline{OE} is taken back LOW (while \overline{CAS} remains LOW).

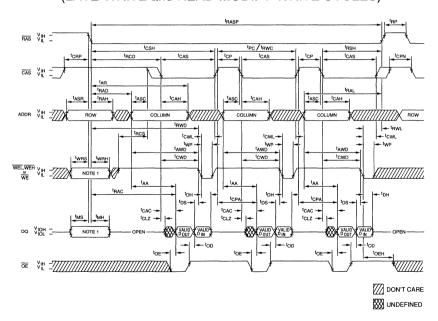
READ CYCLE


EARLY-WRITE CYCLE


NOTE: 1. Applies to MT4C1669 only; WEL, WEH and DQ inputs on MT4C1668 are don't care at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are don't care for a normal WRITE, WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.

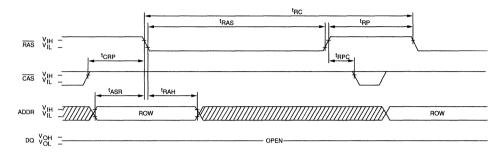
READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)


FAST-PAGE-MODE READ CYCLE

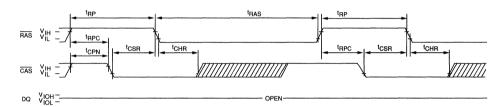

NOTE: 1. Applies to MT4C1669 only; WEL, WEH and DQ inputs on MT4C1668 are don't care at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are don't care for a normal WRITE, WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.

FAST-PAGE-MODE EARLY-WRITE CYCLE

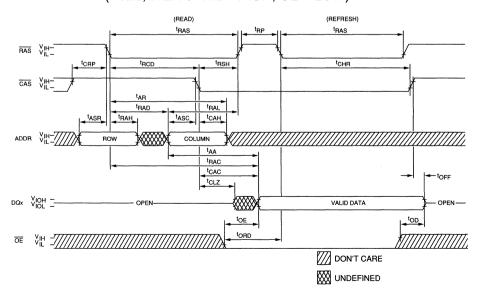
FAST-PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



NOTE: 1. Applies to MT4C1669 only; WEL, WEH and DQ inputs on MT4C1668 are don't care at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are don't care for a normal WRITE, WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.


RAS-ONLY REFRESH CYCLE

 $(ADDR = A_0 - A_7, \overline{OE}; \overline{WEL}, \overline{WEH} \text{ or } \overline{WE} = DON'T \text{ CARE})$


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_7; \overline{WEL}, \overline{WEH} \text{ or } \overline{WE}, \text{and } \overline{OE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

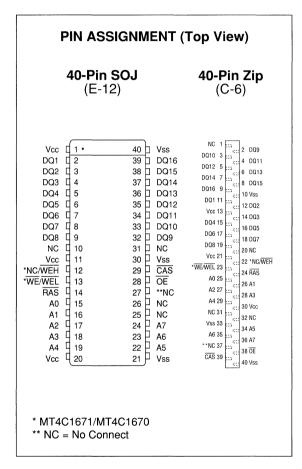
 $(\overline{WEL}, \overline{WEH} \text{ or } \overline{WE} = HIGH; \overline{OE} = LOW)^{24}$

DRAM

64K x 16 DRAM

STATIC COLUMN MODE

FEATURES

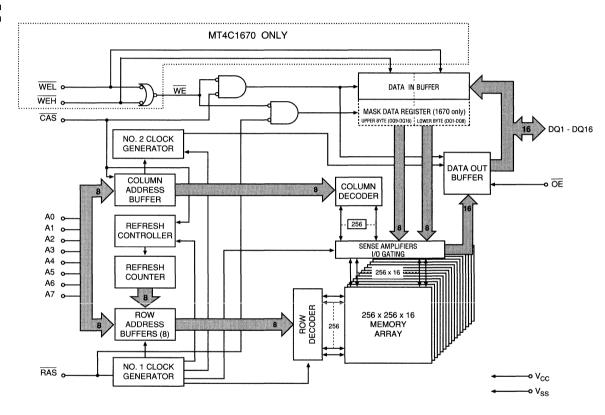

- Industry standard x16 pinouts, timing, functions and packages
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- Low power, 3mW standby; 225mW active, typical
- All device pins are fully TTL and CMOS compatible
- 256 cycle refresh in 4ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS and HIDDEN
- Optional STATIC COLUMN MODE access cycle
- 2 TTL Load output drive capability
- BYTE WRITE access cycle (MT4C1670 only)
- NONPERSISTENT MASKED WRITE access cycle (MT4C1671 only)

OPTIONS	MARKING
Timing	
70ns access	- 7
80ns access	- 8
100ns access	-10
Write Enable	
Byte or Word	MT4C1670
Word only	MT4C1671
 Mask Enable 	
Not Available	MT4C1670
Always Available	MT4C1671
• Packages	
Plastic SOJ (400mil)	DJ
Plastic ZIP (450mil)	Z

GENERAL DESCRIPTION

The MT4C1670/1 are randomly accessed solid-state memories containing 1,048,576 bits organized in a \times 16 configuration. The MT4C1670 has both BYTE and WORD WRITE access cycles while the MT4C1671 has only WORD WRITE access cycles.

The MT4C1670 functions in a similar manner to the MT4C1671 except that replacing \overline{WE} with \overline{WEL} and \overline{WEH} allows for BYTE WRITE access cycles. \overline{WEL} and \overline{WEH} function in an identical manner to \overline{WE} : either \overline{WEL} or \overline{WEH} will generate an internal \overline{WE} through an AND gate (Inverted NOR gate).



The MT4C1670 "WE" function and timing are determined by the first BYTE WRITE (WEL or WEH) to transition LOW and the last to transition back HIGH. Use of only one of the two results in a BYTE WRITE cycle: WEL transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) or WEH transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16).

The MT4C1671 has NONPERSISTENT MASKED WRITE capability.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

SOJ PIN NUMBER(S)	ZIP PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
14	24	RAS	Input	Row Address Strobe: \overline{RAS} is used to clock-in the 8 row-address bits and as a strobe for the \overline{WEL} , \overline{WEH} and DQ inputs for the MASKED WRITE function.
29	39	CAS	Input	Column Address Strobe: CAS is used to clock-in the 8 column- address bits, enable the DRAM output buffers, and as a strobe for the data inputs on WRITE cycles.
28	38	ŌĒ	Input	Output Enable: OE enables the output buffers when taken LOW during a READ access cycle. RAS and CAS must be LOW and WEL and WEH must be HIGH before OE will control the output buffers. Otherwise the output buffers are in a high-impedance state.
13	23	WE/WEL*	Input	Write Enable Lower Byte: WEL on MT4C1670 is the WE control for the DQ1 through DQ8 inputs. WE on MT4C1671 controls DQ1 through DQ16 inputs. If (WEL or WEH)/WE is LOW, the access is a WRITE cycle. The DQ outputs for the byte not being written will remain in a high-impedance state (BYTE WRITE cycle only).
12	22	NC/WEH*	Input	Write Enable Upper Byte: WEH on MT4C1670 is WE control for the DQ9 through DQ16 inputs. If (WEL or WEH)/WE is LOW, the access is a WRITE cycle. This pin is a no connect on the MT4C1671 as it has only WORD WRITE access cycles.
15, 16, 17 18, 19, 22 23, 24	25, 26, 27 28, 29, 34 35, 36	A0 to A7	Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS to select one 16-bit word out of the 64K available words.
2, 3, 4, 5, 6 7, 8, 9, 32, 33 34, 35, 36 37, 38, 39	11, 12, 14 15, 16, 17 2, 18, 19, 3 4, 5, 6, 7, 8	DQ1-DQ16	Input/ Output	Data I/O: For WRITE cycles, DQ1-DQ16 act as inputs to the addressed DRAM location. BYTE WRITEs can be performed by using WEL or WEH to select the byte to be written. For READ access cycles, DQ1-DQ16 act as outputs for the addressed DRAM location. All 16 I/Os are active for READ cycles (there is no BYTE READ cycle).
10, 25, 26 27, 31	1, 20, 31 32, 37	NC	-	No Connect: These pins should be either left unconnected or tied to ground.
1, 11, 20	13, 21, 30	Vcc	Supply	Power Supply: +5V ± 10%
21, 30, 40	10, 33, 40	Vss	Supply	Ground

NOTE: *MT4C1671/MT4C1670

FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 16 addressbits during READ or WRITE cycles. These are entered 8 bits (A0-A7) at a time. RAS is used to latch the first 8 bits and CAS the latter 8 bits.

READ or WRITE cycles on the MT4C1671 are selected with the $\overline{\text{WE}}$ input while either $\overline{\text{WEL}}$ or $\overline{\text{WEH}}$ perform the " $\overline{\text{WE}}$ " on the MT4C1670. The MT4C1670 " $\overline{\text{WE}}$ " function is determined by the first BYTE WRITE ($\overline{\text{WEL}}$ or $\overline{\text{WEH}}$) to transition LOW and the last one to transition back HIGH.

A logic HIGH on $\overline{\text{WE}}$ dictates READ mode while a logic LOW on $\overline{\text{WE}}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{\text{WE}}$ or $\overline{\text{CAS}}$, whichever occurs last. Taking $\overline{\text{WE}}$ LOW will initiate a WRITE cycle, selecting DQ1 through DQ16. If $\overline{\text{WE}}$ goes LOW prior to $\overline{\text{CAS}}$ going LOW, the output pin(s) remain open (High-Z) until the next $\overline{\text{CAS}}$ cycle. If $\overline{\text{WE}}$ goes LOW after $\overline{\text{CAS}}$ goes LOW and data reaches the output pins, data out (Q) is activated and retains the selected cell data as long as $\overline{\text{CAS}}$ and $\overline{\text{OE}}$ remain LOW (regardless of $\overline{\text{WE}}$ or $\overline{\text{RAS}}$). This late $\overline{\text{WE}}$ pulse results in a READ-WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O, and pin direction is controlled by OE, WEL and WEH (MT4C1670) or WE (MT4C1671).

STATIC COLUMN operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A7) defined page boundary. The STATIC COLUMN cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. By holding RAS and CAS LOW, different column addresses may be given for executing faster STATIC COLUMN WRITE cycles must have CAS or WE toggled strobing-in the different column addresses. Returning RAS HIGH terminates the STATIC COLUMN operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. The chip is also preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HID-DEN REFRESH) so that all 256 combinations of RAS addresses (A0-A7) are executed at least every 4ms, regardless

of sequence. The <u>CAS</u>-BEFORE-<u>RAS</u> refresh cycle will also invoke the refresh counter and controller for row address control.

BYTE WRITE ACCESS CYCLE (MT4C1670 ONLY)

The BYTE WRITE mode is determined by the use of WEL and WEH. Enabling WEL will select a lower BYTE WRITE cycle (DQ1-DQ8) while Enabling WEH will select an upper BYTE WRITE (DQ9-DQ16). Enabling both WEL and WEH selects a WORD WRITE cycle.

The MT4C1670 may be viewed as two 64K x 8 DRAMS, which have common input controls, with the exception of the WE input. Figure 1 illustrates the MT4C1670 BYTE and WORD WRITE cycles.

MASKED WRITE DESCRIPTION (MT4C1671 ONLY)

Every WRITE access cycle may be a MASKED WRITE, depending on the state of \overline{WE} at \overline{RAS} time. A MASKED WRITE is selected when mask data is supplied on the DQ pins and \overline{WE} is LOW at \overline{RAS} time. The MT4C1671 is only word selectable when \overline{WE} is LOW at \overline{RAS} time (the MT4C1670 does not have a MASKED WRITE cycle function).

The data (mask data) present on the DQ1-DQ16 inputs at RAS time will be written to an internal bit mask data register and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At CAS time, the bits present on the DQ1-DQ16 inputs will be written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).

New mask data must be supplied each time a MASKED WRITE cycle is initiated, even if the previous cycle's mask was the same mask.

Figure 2 illustrates the MT4C1671 MASKED WRITE operation (Note: \overline{RAS} or \overline{CAS} time refers to the time at which \overline{RAS} or \overline{CAS} transition from HIGH to LOW).

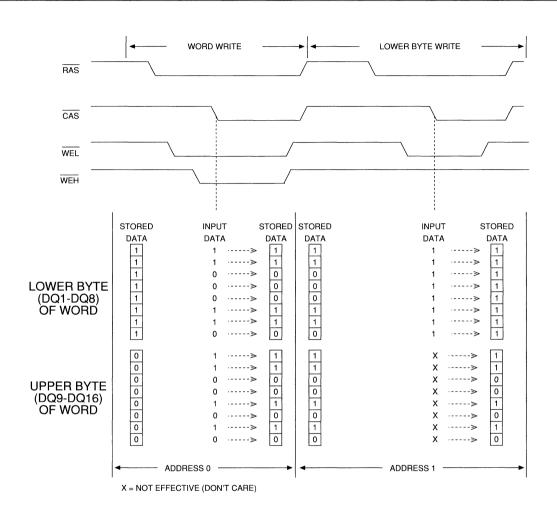


Figure 1
MT4C1670 WORD AND BYTE WRITE EXAMPLE

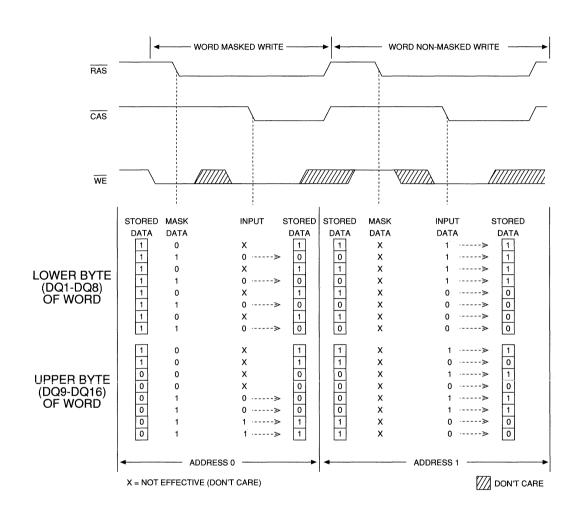


Figure 2
MT4C1671 MASKED WRITE EXAMPLE

TRUTH TABLE: MT4C1670

							Addre	sses	i	
Function		RAS	CAS	WEL	WEH	ŌĒ	^t R	†C	DQs	NOTES
Standby		Н	Х	Х	Х	Х	Х	Х	High-Z	
READ		L	L	Η	Н	L	ROW	COL	Valid Data Out	
WRITE: WORD (EARLY-WRITE)		L	L	L	L	Х	ROW	COL	Valid Data In	
WRITE: LOWER BYTE (EARLY)		L	L	L	Н	Х	ROW	COL	Lower Byte, Valid Data In Upper Byte, High-Z	
WRITE: UPPER BYTE (EARLY)		L	L	Н	L	Х	ROW	COL	Lower Byte, High-Z Upper Byte, Valid Data In	
READ-WRITE		L	L	H→L	H→L	L→H	ROW	COL	Valid Data Out, Data In	1
STATIC COLUMN	1st Cycle	L	L	I	Н	L	ROW	COL	Valid Data Out	
READ	2nd Cycle	L	L	Н	Н	L	n/a	COL	Valid Data Out	
STATIC COLUMN	1st Cycle	L	L	L	L	X	ROW	COL	Valid Data In	1
EARLY-WRITE	2nd Cycle	L	*L	*L	*L	X	n/a	COL	Valid Data In	1, 3
STATIC COLUMN	1st Cycle	L	L	H→L	H→L	L→H	ROW	COL	Valid Data Out, Data In	1
READ-WRITE	2nd Cycle	L	L	H→L	H→L	L→H	n/a	COL	Valid Data Out, Data In	1
HIDDEN	READ	L→H→L	L	Н	Н	L	ROW	COL	Valid Data Out	
REFRESH	WRITE	L→H→L	L	L	L	Х	ROW	COL	Valid Data In	1, 2
RAS-ONLY REFRESH		L	Η	×	X	Х	ROW	n/a	High-Z	
CAS-BEFORE- RAS REFRESH		H→L	L	Х	Х	Х	Х	Х	High-Z	

NOTE:

- 1. These cycles may also be BYTE WRITE cycles (either $\overline{\text{WEL}}$ or $\overline{\text{WEH}}$ active).
- EARLY-WRITE only.
 Either CAS or WEL / WEH must latch in each additional column address and input data.

TRUTH TABLE: MT4C1671

						Addre	sses		
Function		RAS	CAS	WE	ŌĒ	^t R	t _C	DQs	NOTES
Standby		Н	Х	Х	Х	Х	Х	High-Z	
READ		L	L	Н	L	ROW	COL	Valid Data Out	
WRITE: WORD (EARLY-WRITE)		L	L	Ļ	Х	ROW	COL	Valid Data In	1
READ-WRITE		L	L	H→L	L→H	ROW	COL	Valid Data Out, Data In	1
STATIC COLUMN	1st Cycle	L	L	Н	L	ROW	COL	Valid Data Out	
READ	2nd Cycle	L	L	Н	L	n/a	COL	Valid Data Out	
STATIC COLUMN	1st Cycle	L	L	L	Х	ROW	COL	Valid Data In	1
EARLY-WRITE	2nd Cycle	L	*L	*L	Х	n/a	COL	Valid Data In	1, 3
STATIC COLUMN	1st Cycle	L	L	H→L	L→H	ROW	COL	Valid Data Out, Data In	1
READ-WRITE	2nd Cycle	L	L	H→L	L→H	n/a	COL	Valid Data Out, Data In	1
HIDDEN	READ	L→H→L	L	Н	L	ROW	COL	Valid Data Out	
REFRESH	WRITE	L→H→L	L	L	Х	ROW	COL	Valid Data In	1, 2
RAS-ONLY REFRESH		L	Н	Х	Х	ROW	n/a	High-Z	
CAS-BEFORE- RAS REFRESH		H→L	L	×	Х	Х	Х	High-Z	

NOTE:

- 1. Data-in will be dependent on the mask provided. Refer to Figure 2.
- EARLY-WRITE only.
 Either CAS or WEL / WEH must latch in each additional column address and input data.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V t	o +7.0V
Operating Temperature, TA(Ambient)0°C t	o +70°C
Storage Temperature (Ceramic)65°C to	+150°C
Storage Temperature (Plastic)55°C to	+150°C
Power Dissipation	1W
Short Circuit Output Current	50m A

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1
INPUT LEAKAGE CURRENT any input $(0V \le V_{IN} \le V_{CC},$ all other pins not under test = 0V)	lı	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled; 0V ≤ Vouт ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS	Vон	2.4		V	
Output High Voltage (Ιουτ = -5mA) Output Low Voltage (Ιουτ = 4.2mA)	Vol		0.4	V	

			MAX			
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
STANDBY CURRENT: (TTL) $(\overline{RAS} = \overline{CAS} = V_{IH})$	Icc1	2	2	2	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Vcc -0.2V)	lcc2	1	1	1	mA	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	lcc3	110	100	90	mA	3, 4
OPERATING CURRENT: STATIC COLUMN Average power supply current (RAS = VIL; CAS, Address Cycling: PC = PC (MIN))	Icc4	80	70	60	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=VIH: RC = RC (MIN))	lcc5	110	100	90	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: tRC = tRC (MIN))	Icc6	110	100	90	mA	3, 5

CAPACITANCE

(Note: 2)

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A7	C ₁₁		5	рF	2
Input Capacitance: RAS, CAS,(WEL, WEH)/ WE, OE	Cl2		7	pF	2
Input/Output Capacitance: DQ	Cıo		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (0°C \leq $T_{\mbox{\scriptsize A}} \leq$ +70°C; Vcc = 5.0V \pm 10%)

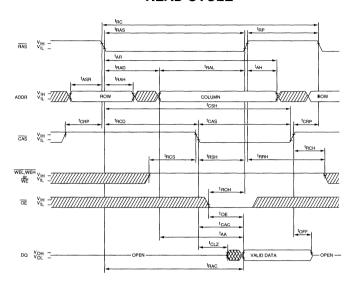
A.C. CHARACTERISTICS			-7		-8	-	-10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		145		170		ns	
READ-WRITE cycle time	tRWC	175		185		220		ns	
STATIC-COLUMN READ or WRITE	tSC	45		50		60		ns	
cycle time									
STATIC-COLUMN READ-WRITE	tSRMC	95		100		120		ns	
cycle time			1 -						
Access time from RAS	^t RAC		70		80		100	ns	14
Access time from CAS	^t CAC		25		30		35	ns	15
Output Enable time	^t OE		20		25		30	ns	
Access time from column address	^t AA		40		45		50	ns	
Access time from CAS precharge	^t CPA		45		50		55	ns	
RAS pulse width	†RAS	70	100,000	80	100,000	100	100,000	ns	
RAS pulse width (STATIC COLUMN)	†RASC	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	^t RSH	20		20		25		ns	
RAS precharge time	^t RP	50		55		60		ns	
CAS pulse width	tCAS	25	100,000	30	100,000	30	100,000	ns	
CAS hold time	tCSH	70		80		100		ns	
CAS precharge time	^t CPN	10		10		15		ns	16
CAS precharge time (STATIC COLUMN)	^t CP	10		10		10		ns	
RAS to CAS delay time	^t RCD	20	45	20	50	25	60	ns	17
CAS to RAS precharge time	^t CRP	5		5		5		ns	
Row address setup time	tASR	0		0		0		ns	
Row address hold time	^t RAH	10		12		12		ns	
RAS to column	^t RAD	15	35	15	40	15	50	ns	18
address delay time									
Column address setup time	tASC	0		0		0		ns	
Column address hold time	tCAH	15		15		15		ns	
Column address hold time (referenced to RAS)	^t AR	55		60		70		ns	
Column address to	^t RAL	35		40		50		ns	
Read command setup time	†RCS	0		0		0		ns	26
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19, 26
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	^t CLZ	0		0		0		ns	
Output buffer turn-off delay	¹OFF	0	20	0	20	0	20	ns	20, 30

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

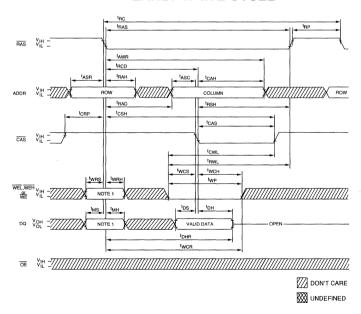
(Notes: 6, 7, 8, 9, 10, 11, 12, 13, 23) (0°C \leq T_{Δ} \leq +70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS		-			8		10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output Disable time	[‡] OD		10		12		20	ns	30
Write command setup time	tWCS	0		0		0		ns	21, 26
Write command hold time	tWCH	15		15		15		ns	26
Write command hold time	tWCR	50		55		65		ns	26
(referenced to RAS)									
Write command pulse width	tWP	15		15		15		ns	26
Write command to RAS lead time	^t RWL	20		20		20		ns	26
Write command to CAS lead time	tCWL	20		20		20		ns	26
Data-in setup time	^t DS	0		0		0		ns	22
Data-in hold time	^t DH	15		15		20		ns	22
Data-in hold time (referenced to RAS)	^t DHR	50		55		65		ns	
RAS to WE delay time	tRWD	90	L	100		125	 	ns	21
Column address	tAWD	65		70		80		ns	21
to WE delay time	,,,,,								
CAS to WE delay time	tCMD	50		55		70	<u> </u>	ns	21
Transition time (rise or fall)	tΤ	3	50	3	50	3	50	ns	9, 10
Refresh period (256 cycles)	tREF		4		4	1	4	ms	28
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	^t CSR	10		10		10		ns	5
CAS hold time	^t CHR	15		15		15		ns	5
(CAS-BEFORE-RAS refresh)									_
MASKED WRITE command to RAS	tWRS	0		0		0		ns	26, 27
setup time		_					İ		,
MASKED WRITE command to RAS	tWRH	15		15	<u> </u>	15	 	ns	26, 27
hold time									,
Mask data to RAS setup time	tMS	0		0		0		ns	26
Mask data to RAS hold time	tMH	15		15	 	15	 	ns	26
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	10		10		20		ns	29
OE setup prior to RAS during HIDDEN REFRESH cycle	^t ORD	0		0		0		ns	
Last WRITE to column address	^t LWAD	20	30	20	35	25	45	ns	
Last WRITE to column address hold time	tAHLW	65		75		95		ns	
Access time from last WRITE	t _{ALW}	65		75		95		ns	
Output data enable from WRITE	tow	^t AA		t _{AA}		^t AA		ns	
Output data hold time from column address	^t AOH	5		5		5		ns	
RAS hold time referenced to OE	^t ROH	10		10		10	 	ns	
Column address hold time referenced to RAS HIGH	tAH	5		5		10		ns	
CAS pulse width in STATIC-COLUMN mode	tCSC	^t CAS		†CAS		†CAS		ns	
	tWI	10		10		10			

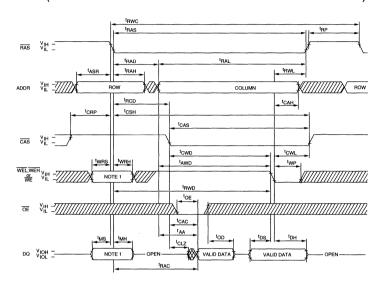
DRAM

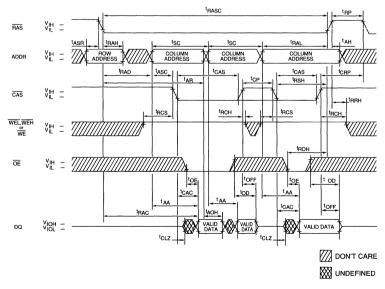

NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates.
 Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 4ms refresh requirement is exceeded.
- 8. AC characteristics assume ^tT = 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIH and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 12. If CAS = Vπ, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to 2 TTL gates and 50pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, data out (Q) will bemaintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.

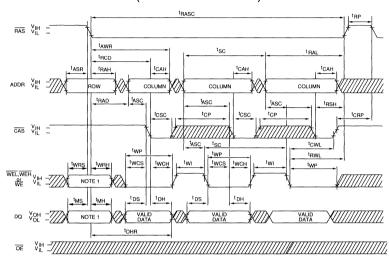

- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. ^tWCS, ^tRWD, ^tAWD and ^tCWD are restrictive operating parameters in LATE-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ^tRWD ≥ ^tRWD (MIN), ^tAWD ≥ ^tAWD (MIN) and ^tCWD ≥ ^tCWD (MIN), the cycle is a LATE-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out are indeterminate. OE held HIGH and WE taken LOW after CAS goes LOW results in a LATE-WRITE (OE controlled) cycle.
- These parameters are referenced to CAS leading edge in early WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. If $\overline{\text{OE}}$ is tied permanently LOW, LATE-WRITE or READ-MODIFY-WRITE operations are not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case \overline{WE} = LOW and \overline{OE} =HIGH.
- 25. All other inputs at Vcc -0.2V.
- 26. WRITE command is defined as either WEL or WEH or both going LOW on the MT4C1670. WRITE command is defined as WE going LOW on the MT4C1671.
- Must be held LOW to ensure MASKED WRITE is enabled and must be held HIGH to ensure MASKED WRITE is disabled.
- 28. The refresh period may be extended to 8ms without experiencing problems.
- 29. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 30. The DQs open during READ cycles once ^tOD or ^tOFF occur. If CAS goes HIGH first, OE becomes a don't care. If OE goes HIGH and CAS stays LOW, OE is not a don't care; and the DQs will provide the previously read data if OE is taken back LOW (while CAS remains LOW).

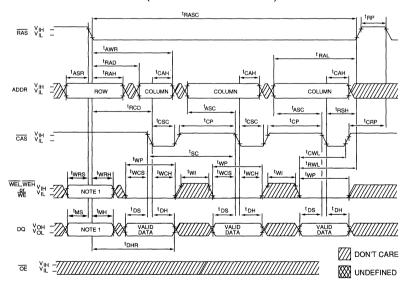
READ CYCLE


EARLY-WRITE CYCLE

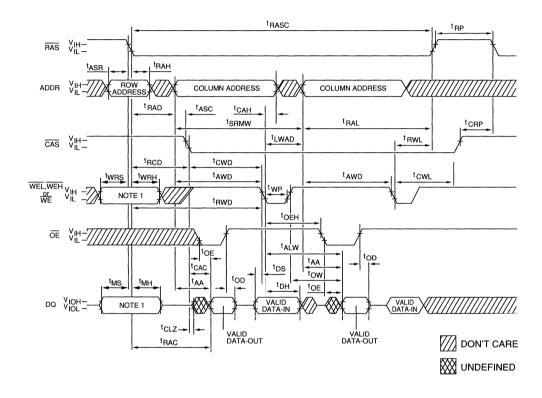

NOTE: 1. Applies to MT4C1671 only; WEL, WEH and DQ inputs on MT4C1670 are don't care at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are don't care for a normal WRITE, WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.

READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)


STATIC-COLUMN READ CYCLE

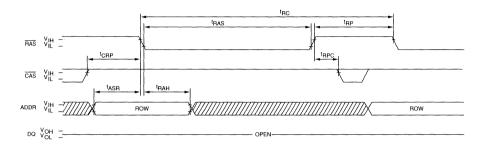

NOTE: 1. Applies to MT4C1671 only; WEL, WEH and DQ inputs on MT4C1670 are don't care at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are don't care for a normal WRITE, WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.

STATIC-COLUMN EARLY-WRITE CYCLE (WE CONTROLLED)

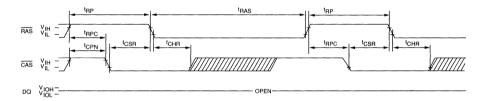

STATIC-COLUMN EARLY-WRITE CYCLE (CAS CONTROLLED)

NOTE: 1. Applies to MT4C1671 only; WEL, WEH and DQ inputs on MT4C1670 are don't care at RAS time. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are don't care for a normal WRITE, WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.

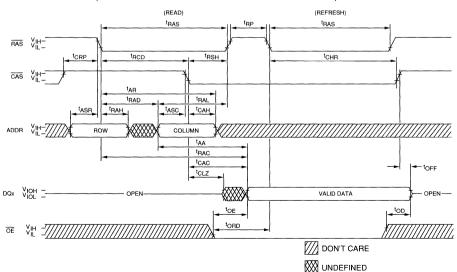
STATIC COLUMN READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)


1. Applies to MT4C1671 only; WEL, WEH and DQ inputs on MT4C1670 are don't care at RAS time. WE NOTE: selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are don't care for a

normal WRITE, WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE, WE LOW at RAS time.


RAS-ONLY REFRESH CYCLE

 $(ADDR = A_0 - A_7, \overline{OE}; \overline{WEL}, \overline{WEH} \text{ or } \overline{WE} = DON'T CARE)$


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_7; \overline{WEL}, \overline{WEH} \text{ or } \overline{WE}, \text{and } \overline{OE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WEL}, \overline{WEH} \text{ or } \overline{WE} = HIGH; \overline{OE} = LOW)^{24}$

DRAM

64K x 16 DRAM

FAST PAGE MODE, DUAL CAS

FEATURES

- Industry standard x16 pinouts, timing, functions and packages
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- Low power, 3mW standby; 350mW active, typical
- All device pins are fully TTL and CMOS compatible
- 256-cycle refresh in 4ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS and HIDDEN
- Optional FAST PAGE MODE access cycle
- 2 TTL Load output drive capability
- BYTE WRITE access cycle via two CAS control pins

OPTIONS	MARKING
Timing	
70ns access	- 7
80ns access	- 8
100ns access	-10
• Packages	
Plastic SOJ (400mil)	DJ
Plastic ZIP (475mil)	Ž

GENERAL DESCRIPTION

The MT4C1672 is a randomly accessed solid-state memories containing 1,048,576 bits organized in a \times 16 configuration. The MT4C1672 has both byte and word write access cycles.

The MT4C1672 functions in a similar manner to the MT4C1664 except that the BYTE WRITE cycles are determined by two CAS controls rather than two WE controls.

The MT4C1672 has the same pinout as the MT4C1664 except \overline{WEL} is replaced by \overline{WE} , \overline{WEH} is replaced by \overline{CASH} and \overline{CAS} is replaced by \overline{CASL} . These changes allow for the \overline{CAS} controlled byte WRITE access cycles.

The MT4C1672 CAS function and timing are determined by the first BYTE WRITE (CASL or CASH) to transition LOW and the last to transition back HIGH. Use of only one of the two results in a BYTE WRITE cycle: CASL transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) and CASH transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16).

40-Pin (E-		40-Pin ZIP (C-6)
Vcc	40	NC 1 1 1 2 1 1 1 1 1 1

The MT4C1672 does not have BYTE READ cycles. All 16 DQs are active regardless whether $\overline{\text{CASL}}$ or $\overline{\text{CASH}}$ is active. $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$ function in an identical manner to $\overline{\text{CAS}}$: either $\overline{\text{CASL}}$ or $\overline{\text{CASH}}$ will generate an internal $\overline{\text{CAS}}$. The first $\overline{\text{CAS}}$ ($\overline{\text{CASL}}$ or $\overline{\text{CASH}}$) to transition LOW and the last to transition back HIGH determines the $\overline{\text{CAS}}$ timing for all 16 DQs during READ cycles.

The MT4C1672 specifications are exactly the same as the MT4C1664 specifications. Reference to the MT4C1664 data sheet will provide all the specifications needed for the MT4C1672.

DRAM

256K x 16 DRAM

FAST PAGE MODE

FEATURES

ODTIONS

- Industry standard x16 pinouts, timing, functions and packages
- High performance, CMOS silicon gate process
- Single +5V±10% power supply
- Low power, 3mW standby; 350mW active, typical
- All device pins are fully TTL and CMOS compatible
- 512 cycle refresh in 8ms (9 rows and 9 columns)
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS and HIDDEN
- Optional FAST PAGE MODE access cycle, 512 locations wide
- BYTE WRITE access cycle
- BYTE READ access cycle (MT4C16257/9 only)
- NONPERSISTENT MASKED WRITE access cycle (MT4C16258/9 only)

MADEINO

OPTIONS	MAKKING
• Timing 70ns access 80ns access 100ns access	- 7 - 8 -10
Write Cycle Access Byte or Word via WE Byte or Word via CAS	MT4C16256, MT4C16258 MT4C16257, MT4C16259
 Masked Write Not Available Available 	MT4C16256, MT4C16257 MT4C16258, MT4C16259
 Packages Plastic SOJ Plastic TSOP (*) 	DJ TG

GENERAL DESCRIPTION

The MT4C16256/7/8/9 are randomly accessed solid-state memories containing 4,194,304 bits organized in a x16 configuration. The MT4C16256 and MT4C16258 have both byte and word write access cycles via two write enable pins. The MT4C16257 and MT4C16259 have both byte and word write access cycles via two $\overline{\text{CAS}}$ pins. The MT4C16258 and MT4C16259 are also able to perform WRITE-PER-BIT accesses.

The MT4C16256 and MT4C16257 function in the same manner except that \overline{WEL} and \overline{WEH} on MT4C16256 and \overline{CASL} and \overline{CASH} on MT4C16257 control the selection of byte WRITE access cycles. \overline{WEL} and \overline{WEH} function in an

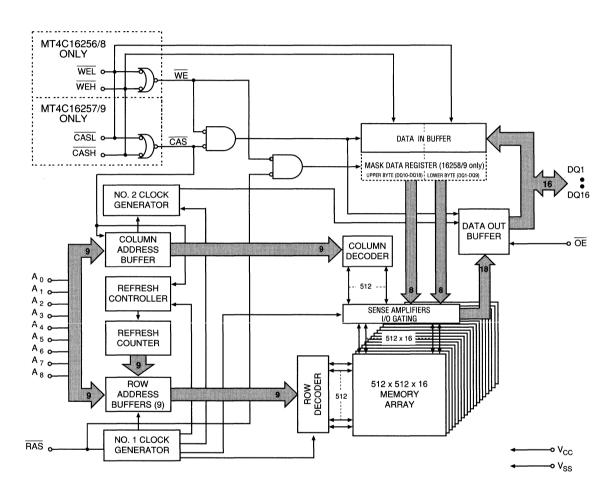
PIN ASSIGNMENT (Top View) 40-Pin SOJ

(E-12)

Vcc d 1 •	40 🛘 Vss	Vcc ☐ 1 •	40 Vss
DQ1 [2	39 DQ16	DQ1 2	39 DQ16
DQ2 [3	38 DQ15	DQ2 🛚 3	38 🛭 DQ15
DQ3 [4	37 DQ14	DQ3 🛮 4	37 DQ14
DQ4 [5	36 DQ13	DQ4 🛭 5	36 DQ13
vcc d 6	35 🕽 VSS	VCC 🛚 6	35 D VSS
DQ5 🛘 7 🚾	34 DQ12	DQ5 🛘 7	20 34 ☐ DQ12
DQ6 🛚 8 🗳	33 DQ11	DQ6 🛚 8	N 33 □ DQ11
DQ5 [7	32 DQ10	DQ7 🛘 9	34 D DQ12 33 D DQ11 32 D DQ10 30 D NC 29 D CASH 27 D OE 28 D CASH 26 D A8
DQ8 🗓 10 🔀	31 DQ9	DQ8 🖺 10	31 DQ9
NC 411 9	30 ₽ NC	NC 🛚 11	90 P NC
WEL 4 12	29 P NC	NC 4 12	29 P CASL
WEH 4 13	28 CAS	WE 🛚 13	28 CASH
RAS 4 14	27 P OE	RAS C 14	27 OE
WEH 112 WEH 113 RAS 114 NC 115	26 P A8	NC 🖺 15	= 26 □ A8
A0 🖣 16	25 A7	A0 🛭 16	25 A7
A1 🖣 17	24 🛭 A6	A1 🛭 17	24 P A6
A2 🖣 18	23 A5	A2 🖣 18	23 P A5
A3 🖣 19	22 P A4	A3 🖣 19	22 P A4
Vcc 4 20	21 Vss	Vcc 4 20	21 P Vss
-			

NC = No Connect
*Consult factory for availability of TSOP packages

identical manner to \overline{WE} in that either \overline{WEL} or \overline{WEH} will generate an internal \overline{WE} . \overline{CASL} and \overline{CASH} function in an identical manner to \overline{CAS} in that either \overline{CASL} or \overline{CASH} will generate an internal \overline{CAS} .


The MT4C16256 "WE" function and timing are determined by the first WE (WEL or WEH) to transition LOW and by the last to transition back HIGH. Use of only one of the two results in a BYTE WRITE cycle. WEL transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) and WEH transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16).

The MT4C16257 "CAS" function and timing are determined by the first CAS (CASL or CASH) to transition LOW and by the last to transition back HIGH. Use of only one of the two results in a BYTE WRITE cycle. CASL transitioning LOW selects a WRITE cycle for the lower byte (DQ1-DQ8) and CASH transitioning LOW selects a WRITE cycle for the upper byte (DQ9-DQ16). BYTE READ cycles are achieved through CASL or CASH in the same manner during READ cycles for the MT4C16257.

The MT4C16258 and MT4C16259 function in the same manner as MT4C16256 and MT4C16257, respectively; and they have NONPERSISTENT, MASKED WRITE cycles capabilities. This option allows the MT4C16258 and MT4C16259 to operate with either normal WRITE cycles or with NONPERSISTENT, MASKED WRITE cycles.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

SOJ PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
14	RAS	Input	ROW Address Strobe: \overline{RAS} is used to latch in the 9 row address bits and as a strobe for the \overline{WE} and DQ's on the MASKED WRITE option (MT4C16258 and MT4C16259 only).
28	CAS/ CASH	Input	Column Address Strobe: CAS (MT4C16256/8) is used to latch in the 9 column address bits, enable the DRAM output buffers, and as a strobe for the data inputs on WRITE cycles. CAS controls DQ1 through DQ16.Column Address Strobe Upper Byte: CASH (MT4C16257/9) is the CAS control for DQ9 through DQ16. The DQs for the byte not being accessed will remain in a High-Z (high impedance) state during either a READ or a WRITE access cycle.
27	ŌĒ	Input	Output Enable: $\overline{\text{OE}}$ enables the output buffers when taken LOW during a READ access cycle. $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ (MT4C16256/8) or $\overline{\text{CASL}}$ / $\overline{\text{CASH}}$ (MT4C16257/9) must be LOW and $\overline{\text{WEL}}$ / $\overline{\text{WEH}}$ (MT4C16256/8) or $\overline{\text{WE}}$ (MT4C16257/9) must be HIGH before $\overline{\text{OE}}$ will control the output buffers. Otherwise the output buffers are in a high impedance state.
13	WEH/WE	Input	Write Enable Upper Byte: WEH (MT4C16256/8) is WE control forthe DQ9 through DQ16 inputs. If WEL or WEH is LOW, the access is a WRITE cycle. The DQs for the byte not being written will remain in a high impedance state (byte WRITE cycle only). Write Enable: WE (MT4C16257/9) controls DQ1 through DQ16 inputs. If WE is LOW, the access is a WRITE cycle. The MT4C16258/9 also use WE to enable the MASK register during RAS time.
12	WEL/NC	Input	Write Enable Lower Byte: WEL (MT4C16256/8) is the WE control for DQ1 through DQ8 inputs. If WEL or WEH is LOW, the access is a WRITE cycle. The DQs for the byte not being written will remain in a high impedance state (byte WRITE cycle only).
29	NC/CASL	Input	Column Address Strobe Low Byte: CASL (MT4C16257/9) is the CAS control for DQ1 through DQ8. The DQs for the byte not being accessed will remain in a high impedance state during either a READ or a WRITE access cycle.
16-19 22-26	A0 to A8	Input	Address Inputs: These inputs are multiplexed and clocked by RAS and CAS (or CASL / CASH) to select one 16-bit word (or 8-bit byte) out of the 256K available words.
2-5, 7-10 31-34, 36-39	DQ1-DQ16	Input/ Output	Data I/O: For WRITE cycles, DQ1-DQ16 act as inputs to the addressed DRAM location. Byte writes can be performed by using WEL / WEH (MT4C16256/8) or CASL / CASH (MT4C16257/8) to select the byte to be written. For READ access cycles, DQ1-DQ16 act as outputs for the addressed DRAM Location. All sixteen I/O's are active for READ cycles (MT4C16256/8). The MT4C16257/9 allow for Byte READ cycles.
11, 15, 30	NC		No Connect: These pins should be either left unconnected or tied to ground.
1, 6, 20	Vcc	Supply	Power Supply: +5V ± 10%
21, 35, 40	Vss	Supply	Ground

FUNCTIONAL DESCRIPTION

Each bit is uniquely addressed through the 18 address bits during READ or WRITE cycles. These are entered nine bits (A0-A8) at a time. \overline{RAS} is used to latch the first nine bits and \overline{CAS} the latter nine bits.

The $\overline{\text{CAS}}$ control also determines whether the cycle will be a refresh cycle ($\overline{\text{RAS}}$ -ONLY) or an active cycle (READ, WRITE or READ-WRITE) once $\overline{\text{RAS}}$ goes low. The MT4C16256 and MT4C16258 each have one $\overline{\text{CAS}}$ control while the MT4C16257 and MT4C16259 have two: $\overline{\text{CASL}}$ and $\overline{\text{CASH}}$.

The CASL and CASH inputs internally generate a CAS signal functioning in an identical manner to the single CAS input on the other 256K x 16 DRAMs. The key difference is each CAS controls its corresponding DQ tristate logic (in conjunction with OE and WE). CASL controls DQ1 through DQ8 and CASH controls DQ9 through DQ16.

The MT4C16257 and MT4C16259 " $\overline{\text{CAS'}}$ " function is determined by the first $\overline{\text{CAS}}$ ($\overline{\text{CASL}}$ or $\overline{\text{CASH}}$) to transition LOW and the last one to transition back HIGH. The two $\overline{\text{CAS}}$ controls give the MT4C16257 and MT4C16259 both byte READ and byte WRITE cycle capabilities.

A READ or WRITE cycle on the MT4C16257 or MT4C16259 is selected with the \overline{WE} input while either \overline{WEL} or \overline{WEH} perform the " \overline{WE} " on the MT4C16256 or MT4C16258. The MT4C16256 and MT4C16258 " \overline{WE} " function is determined by the first byte WRITE (\overline{WEL} or \overline{WEH}) to transition LOW and the last one to transition back HIGH.

A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. Taking \overline{WE} LOW will initiate a WRITE cycle, selecting DQ1 through DQ16. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle. If \overline{WE} goes LOW after \overline{CAS} goes LOW and data reaches the output pins, data out (Q) is activated and retains the selected cell data as long as \overline{CAS} and \overline{OE} remain LOW (regardless of \overline{WE} or \overline{RAS}). This late \overline{WE} pulse results in a READ-WRITE cycle.

The 16 data inputs and 16 data outputs are routed through 16 pins using common I/O, and pin direction is controlled by OE, WEL and WEH (MT4C16256 and MT4C16258) or WE (MT4C16257 and MT4C16259).

FAST PAGE MODE operations allow faster data operations (READ, WRITE or READ-MODIFY-WRITE) within a row address (A0-A8) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed in by RAS followed by a column address strobed in by CAS. By holding RAS LOW, CAS may be toggled strobing in different column addresses and executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level.

The chip is also preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HID-DEN refresh) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8ms, regardless of sequence. The CAS-BEFORE-RAS refresh cycle will also invoke the refresh counter and controller for ROW address control.

BYTE ACCESS CYCLE

The byte WRITE mode is determined by the use of WEL and WEH or CASL and CASH. Enabling WEL/CASL will select a lower byte WRITE cycle (DQ1-DQ8) while Enabling WEH or CASH will select an upper byte WRITE cycle (DQ9-DQ16). Enabling both WEL and WEH or CASL and CASH selects a word WRITE cycle.

The MT4C16256, MT4C16257, MT4C16258 and MT4C16259 can be viewed as two 256K x 8 DRAMS which have common input controls, with the exception of the WE or the CAS inputs. Figure 1 illustrates the MT4C16256 byte and word WRITE cycles and Figure 2 illustrates the MT4C16257 byte and word WRITE cycles.

The MT4C16257 also has byte and word READ cycles since it uses two $\overline{\text{CAS}}$ inputs to control its byte accesses. Figure 3 illustrates the MT4C16257 byte and word READ cycles.

MASKED WRITE ACCESS CYCLE (MT4C16258/9 Only)

The MASKED WRITE mode control input selects normal WRITE access or MASKED WRITE access cycles. Every WRITE access cycle can be a MASKED WRITE, depending on the state of $\overline{\text{WE}}$ at $\overline{\text{RAS}}$ time. A MASKED WRITE is selected when mask data is supplied on the DQ pins and $\overline{\text{WE}}$ is LOW at $\overline{\text{RAS}}$ time. The MT4C16256 and MT4C16257 do not have the MASKED WRITE cycle function).

The data (mask data) present on the DQ1-DQ16 inputs at RAS time will be written to an internal bit mask data register and will then act as an individual write enable for each of the corresponding DQ inputs. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the following WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows normal WRITE operations to proceed. At CAS time, the bits present on the DQ1-DQ16 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW).

New mask data must be supplied each time a MASKED WRITE cycle is initiated (non-persistent), even if the previous cycle's mask was the same mask.

Figure 4 illustrates the MT4C16258 and MT4C16259 MASKED WRITE operation (Note: RAS or CAS time refers to the time at which RAS or CAS transition from HIGH to LOW).

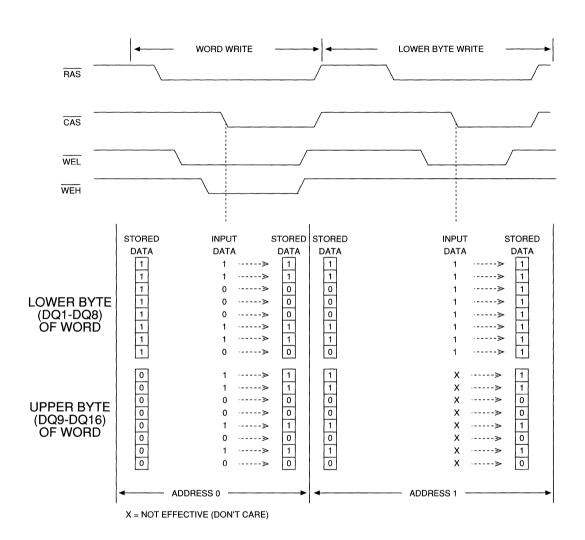


Figure 1
MT4C16256/8 WORD AND BYTE WRITE EXAMPLE

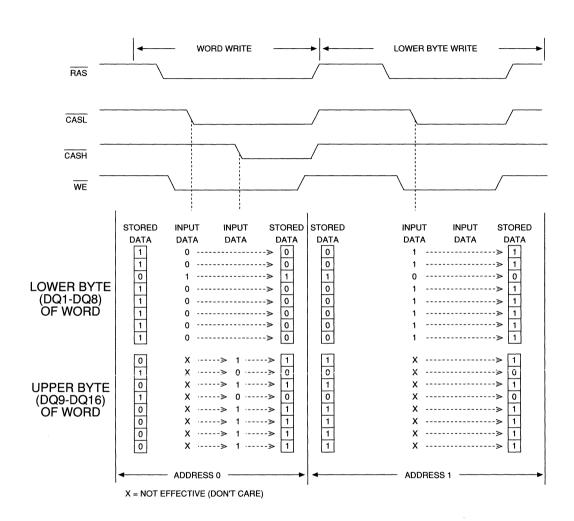


Figure 2
MT4C16257/9 WORD AND BYTE WRITE EXAMPLE

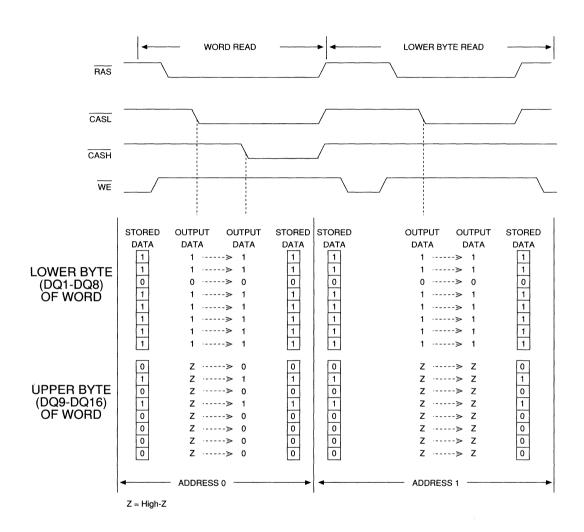


Figure 3
MT4C16257/9 WORD AND BYTE READ EXAMPLE

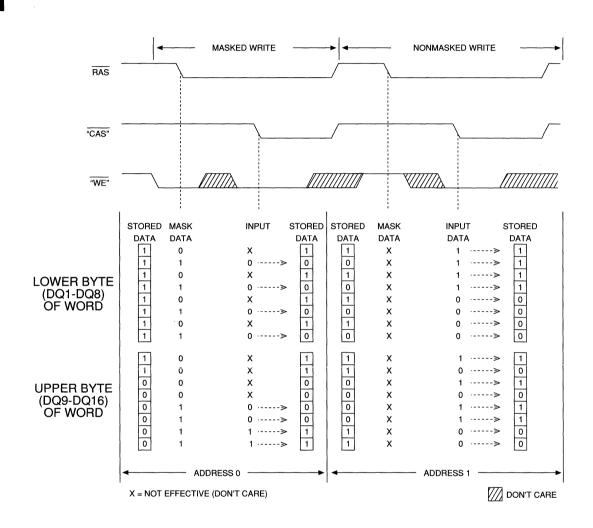


Figure 4
MT4C16258/9 MASKED WRITE EXAMPLE

TRUTH TABLE: MT4C16256/8

							Addre	sses		
Function		RAS	CAS	WEL	WEH	ŌĒ	^t R	tC	DQs	NOTES
Standby		Н	Х	Х	Х	Х	Х	Х	High-Z	
READ		L	L	Н	Н	L	ROW	COL	Valid Data Out	
WRITE: WORD (EARLY-WRIT		L	L	L	L	Х	ROW	COL	Valid Data In	3
WRITE: LOWE BYTE (EARLY		L	L	L	Н	Х	ROW	COL	Lower Byte, Valid Data In Upper Byte, High-Z	3
WRITE: UPPE BYTE (EARLY		L	L	Н	L	Х	ROW	COL	Lower Byte, High-Z Upper Byte, Valid Data In	3
READ-WRITE		L	L	H→L	H→L	L→H	ROW	COL	Valid Data Out, Data In	1, 3
PAGE-MODE	1st Cycle	L	H→L	Н	Н	L	ROW	COL	Valid Data Out	
READ	2nd Cycle	L	H→L	Н	Н	L	n/a	COL	Valid Data Out	
PAGE-MODE	1st Cycle	L	H→L	L	L	Х	ROW	COL	Valid Data In	1, 3
WRITE	2nd Cycle	L	H→L	L	L	X	n/a	COL	Valid Data In	1, 3
PAGE-MODE	1st Cycle	L	H→L	H→L	H→L	L→H	ROW	COL	Valid Data Out, Data In	1, 3
READ-WRITE	2nd Cycle	L	H→L	H→L	H→L	L→H	n/a	COL	Valid Data Out, Data In	1, 3
HIDDEN	READ	L→H→L	L	Н	Н	L	ROW	COL	Valid Data Out	
REFRESH	WRITE	L→H→L	L	L	L	Х	ROW	COL	Valid Data In	1, 2, 3
RAS-ONLY REFRESH		L	Н	Х	×	Х	ROW	n/a	High-Z	
CAS-BEFORE RAS REFRESI		H→L	L	Х	Х	Х	Х	Х	High-Z	

NOTE:

- 1. These cycles may also be byte WRITE cycles (either WEL or WEH active).
- 2. EARLY-WRITE only.
- 3. Data in will be dependent on the mask provided (MT4C16258 only). Refer to Figure 4.

DRAM

TRUTH TABLE: MT4C16257/9

							Addresses			
Function		RAS	CASL	CASH	WE	ŌĒ	^t R	ţC	DQs	NOTES
Standby		Н	Х	Х	Х	Х	Х	Х	High-Z	
READ: WORD		L	L	L	Н	L	ROW	COL	Valid Data Out	
READ: LOWER	RBYTE	L	L	Н	Н	L	ROW	COL	Lower Byte,Valid Data Out Upper Byte, High-Z	
READ: UPPER	BYTE	L	Н	L	Н	L	ROW	COL	Lower Byte, High-Z Upper Byte,Valid Data Out	
WRITE: WORE (EARLY-WRIT	-	L	L	L	L	Х	ROW	COL	Valid Data In	5
WRITE: LOWE BYTE (EARLY	. ,	L	L	Н	L	Х	ROW	COL	Lower Byte, Valid Data In Upper Byte, High-Z	5
WRITE: UPPE BYTE (EARLY	-	L	Н	L	L	Х	ROW	COL	Lower Byte, High-Z Upper Byte, Valid Data In	5
READ-WRITE		L	L	L	H→L	L→H	ROW	COL	Valid Data Out, Data In	1, 2, 5
PAGE-MODE	1st Cycle	L	H→L	H→L	Н	L	ROW	COL	Valid Data Out	2
READ	2nd Cycle	L	H→L	H→L	H	L	n/a	COL	Valid Data Out	2
PAGE-MODE	1st Cycle	L	H→L	H→L	L	X	ROW	COL	Valid Data In	1, 5
WRITE	2nd Cycle	L	H→L	H→L	L	Х	n/a	COL	Valid Data In	1,5
PAGE-MODE	1st Cycle	L	H→L	H→L	H→L	L→H	ROW	COL	Valid Data Out, Data In	1, 2, 5
READ-WRITE	2nd Cycle	L	H→L	H→L	±	L→H	n/a	COL	Valid Data Out, Data In	1, 2, 5
HIDDEN	READ	L→H→L	L	L	Н	L	ROW	COL	Valid Data Out	2
REFRESH	WRITE	L→H→L	L	L	L	Х	ROW	COL	Valid Data In	1, 3, 5
RAS-ONLY REFRESH		L	Н	Н	Х	Х	ROW	n/a	High-Z	
CAS-BEFORE RAS REFRESI		H→L	L	L	Х	Х	Х	Х	High-Z	4

NOTE:

- 1. These WRITE cycles may also be byte WRITE cycles (either CASL or CASH active).
- 2. These READ cycles may also be byte READ cycles (either CASL or CASH active).
- 3. EARLY-WRITE only.
- 4. Only one of the two CAS must be active (CASL or CASH).
- 3. Data in will be dependent on the mask provided (MT4C16259 only). Refer to Figure 4.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V to +7.0V
Operating Temperature, Ta (Ambient)0°C to +70°C
Storage Temperature (Ceramic)65°C to +150°C
Storage Temperature (Plastic)55°C to +150°C
Power Dissipation
Short Circuit Output Current 50m A

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1
INPUT LEAKAGE CURRENT any input (0V ≤ V _{IN} ≤ V _{CC} , all other pins not under test = 0V)	lı	-2	2	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vout ≤ 5.5V)	loz	-10	10	μΑ	
OUTPUT LEVELS Output High Voltage (Iout = -5mA)	Vон	2.4		V	
Output Low Voltage (Iout = 4.2mA)	Vol		0.4	V	

			MAX]	
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
STANDBY CURRENT: (TTL) (RAS = CAS = VIH)	Icc1	2	2	2	mA	
STANDBY CURRENT: (CMOS) (RAS = CAS = Vcc -0.2V)	lcc2	1	1	1	mA	25
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: tRC = tRC (MIN))	lcc3	120	110	100	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: ^t PC = ^t PC (MIN))	lcc4	90	80	70	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=VIH: RC = RC (MIN))	lcc5	120	110	100	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	lcc6	120	110	100	mA	3

CAPACITANCE

(Note: 2)

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	C ₁₁		5	pF	2
Input Capacitance: RAS, CAS/(CASL,CASH), (WEL, WEH)/ WE, OE	Cl2		7	pF	2
Input/Output Capacitance: DQ	Cio		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) $(0^{\circ}C \le T_{A} \le +70^{\circ}C; Vcc = 5.0V \pm 10\%)$

A.C. CHARACTERISTICS			-7		-8		-10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		145		170		ns	
READ-WRITE cycle time	^t RWC	175		185		220		ns	
FAST-PAGE-MODE READ or WRITE	^t PC	40		45		55		ns	35
cycle time									
FAST-PAGE-MODE READ-WRITE	^t PRWC	95		100		120		ns	35
cycle time									
Access time from RAS	^t RAC		70		80		100	ns	14
Access time from CAS	^t CAC		20		20		30	ns	15, 33
Output enable time	^t OE		20		20		30	ns	33
Access time from column address	^t AA		35		40		50	ns	
Access time from CAS precharge	^t CPA		40		45		50	ns	33
RAS pulse width	^t RAS	70	100,000	80	100,000	100	100,000	ns	***************************************
RAS pulse width (PAGE MODE)	^t RASP	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	^t RSH	20		20		25		ns	40
RAS precharge time	^t RP	50		55		60	1	ns	
CAS pulse width	†CAS	20	100,000	20	100,000	30	100,000	ns	39
CAS hold time	^t CSH	70		80		100		ns	32
CAS precharge time	^t CPN	10		10		10		ns	16, 36
CAS precharge time (PAGE MODE)	^t CP	10		10	1	10	T	ns	36
RAS to CAS delay time	^t RCD	20	45	20	50	25	60	ns	17, 31
CAS to RAS precharge time	tCRP	5		5		5		ns	32
Row address set-up time	†ASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		10		ns	
RAS to column address delay time	^t RAD	15	35	15	40	15	50	ns	18
Column address set-up time	†ASC	0		0	 	0	T	ns	31
Column address hold time	tCAH	15	-	15		15		ns	31
Column address hold time (referenced to RAS)	^t AR	55		60		70		ns	
Column address to RAS lead time	^t RAL	35		40		50		ns	
Read command set-up time	^t RCS	0		0		0		ns	26, 31
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19, 26 ,32
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in low-Z	†CLZ	0		0		0		ns	33

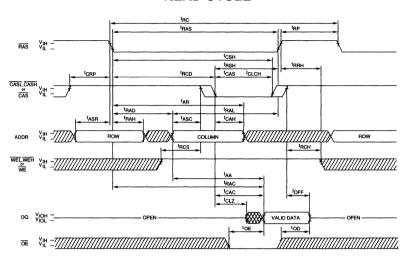
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq $T_{\mbox{\scriptsize A}}^{} \leq$ +70°C; Vcc = 5.0V \pm 10%)

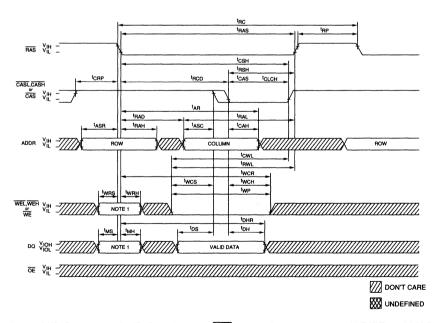
A.C. CHARACTERISTICS	-7				-8	-	10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	0	15	0	15	0	20	ns	20, 29, 33
Output disable time	tOD		10		12		20	ns	29, 41
Write command setup time	tWCS	0		0		0		ns	21, 26, 31
Write command hold time	†WCH	15		15		15		ns	26, 40
Write command hold time (referenced to RAS)	[†] WCR	50		55		65		ns	26
Write command pulse width	†WP	10		10		15		ns	26
Write command to RAS lead time	^t RWL	20		20		20		ns	26
Write command to CAS lead time	tCML	20		20		20		ns	26, 32
Data-in setup time	^t DS	0		0		0		ns	22, 33
Data-in hold time	^t DH	15		15		20		ns	22, 33
Data-in hold time (referenced to RAS)	^t DHR	50		55		65		ns	
RAS to WE delay time	tRWD	90		100		125		ns	21
Column address to WE delay time	^t AWD	60		65		80		ns	21
CAS to WE delay time	tCWD	45		45		60		ns	21, 31
Transition time (rise or fall)	tΤ	3	50	3	50	3	50	ns	9, 10
Refresh period (512 cycles)	^t REF		8		8		8	ms	28
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	^t CSR	10		10		10		ns	5, 31
CAS hold time (CAS-BEFORE-RAS refresh)	[†] CHR	10		10		10		ns	5, 32
MASKED WRITE command to RAS setup time	^t WRS	0		0		0		ns	26, 27
MASKED WRITE command to RAS hold time	^t WRH	15		15		15		ns	26, 27
Mask data to RAS setup time	tMS	0		0		0		ns	26, 27
Mask data to RAS hold time	^t MH	15		15		15		ns	26, 27
OE hold time from WE during READ-MODIFY-WRITE cycle	[†] OEH	10		10		20		ns	28
OE setup prior to RAS during hidden refresh cycle	^t ORD	0		0		0		ns	
Last CAS going low to first CAS to return high	†CLCH	10		10		10		ns	34

NOTES

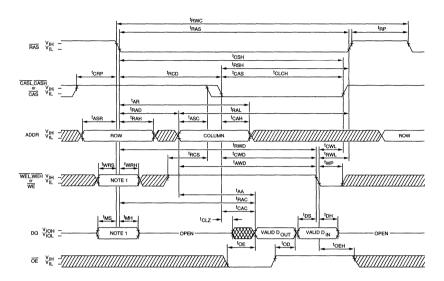
- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/dv$ with dv = 3V and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- 4. Icc is dependent on output loading and cycle rates.
- Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C \leq T_A \leq 70°C) is assured.

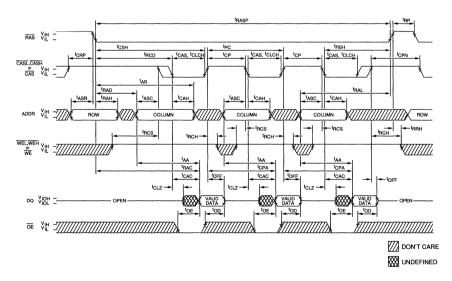

NOTES

- 7. An initial pause of $100\mu s$ is required after power-up followed by eight \overline{RAS} refresh cycles (\overline{RAS} -ONLY or CBR) before proper device operation is assured. The eight \overline{RAS} cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5ns$.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between V_{IL} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 12. If CAS = V_{IL}, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to 2 TTL gates and 50pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition, not a reference to VOH or VOL.
- 21. ¹WCS, ¹RWD, ¹AWD and ¹CWD are restrictive operating parameters in LATE-WRITE and READ-MODIFY-WRITE cycles only. If ¹WCS ≥ ¹WCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle. If ¹RWD ≥ ¹RWD (MIN), ¹AWD ≥ ¹AWD (MIN) and ¹CWD ≥ ¹CWD (MIN), the cycle is a READ-WRITE and the data output will contain data

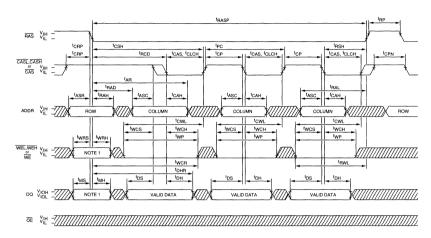

- read from the selected cell. If neither of the above conditions is met, the state of Q (at access time and until \overline{CAS} or \overline{OE} goes back to V_{IH}) is indeterminate. \overline{OE} held HIGH and \overline{WE} taken LOW after \overline{CAS} goes LOW results in a LATE-WRITE (\overline{OE} Controlled) cycle.
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in LATE-WRITE or READ-MODIFY-WRITE cycles.
- 23. During a READ cycle, if OE is LOW then taken HIGH before CAS goes HIGH, Q goes open. If OE is tied permanently LOW, a LATE-WRITE or READ-MODIFY-WRITE operation is not possible.
- 24. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case \overline{WE} = LOW and \overline{OE} = HIGH.
- 25. All other inputs at Vcc -0.2V.
- 26. Write command is defined as either WEL or WEH or both going LOW on the MT4C16256/8. Write command is defined as WE going LOW on the MT4C16257/9.
- 27. MT4C16258/9 only.
- 28. LATE-WRITE and READ-MODIFY-WRITE cycles must have both ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide the previously read data if CAS remains LOW and OE is taken back LOW after ^tOEH is met. If CAS goes HIGH prior to
- OE going back LOW, the DQs will remain open. 29. The DQs open during READ cycles once ^tOD or ^tOFF
- occur. If \overline{CAS} goes HIGH first, \overline{OE} becomes a don't care. If \overline{OE} goes HIGH and \overline{CAS} stays LOW, \overline{OE} is not a don't care; and the DQs will provide the previously read data if \overline{OE} is taken back LOW (while \overline{CAS} remains LOW).
- 30. Notes 31 through 41 apply to MT4C16257/9 only (*):
- 31. *The first CASx edge to transition low.
- 32. *The last CASx edge to transition high.
- 33. *Output parameter (DQx) is referenced to corresponding CAS input; DQ1-DQ8 by CASL and DQ1-DQ8 by CASH.
- 34. *Last falling \overline{CASx} edge to first rising \overline{CASx} edge.
- 35. *Last rising CASx edge to next cycle's last rising CASx edge.
- 36. *Last rising CASx edge to first falling CASx edge.
- 37. *First DQs controlled by the first CASx to go LOW.
- 38. *Last DQs controlled by the last \overline{CASx} to go HIGH.
- 39. *Each CASx must meet minimum pulse width.
- 40. *Last CASx to go LOW.
- 41. *All DOs controlled, regardless CASL and CASH

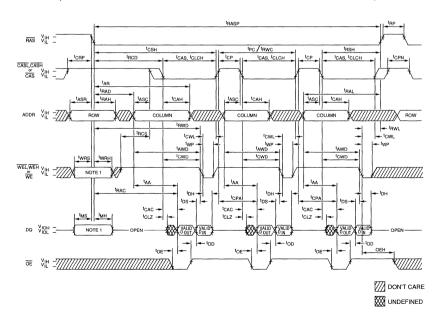
READ CYCLE


EARLY-WRITE CYCLE


NOTE: 1. Applies to MT4C16258 and MT4C16259 only. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE: WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE: WE LOW at RAS time. WEL, WEH and DQ inputs on MT4C16256 and MT4C16257 are "don't care" at RAS time.

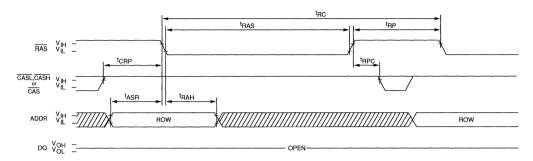
READ-WRITE CYCLE(LATE-WRITE and READ-MODIFY-WRITE CYCLES)


FAST PAGE-MODE READ CYCLE

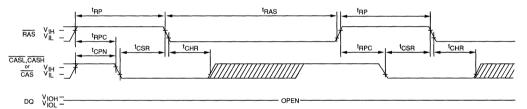

NOTE:
1. Applies to MT4C16258 and MT4C16259 only. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE: WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE: WE LOW at RAS time. WEL, WEH and DQ inputs on MT4C16256 and MT4C16257 are "don't care" at RAS time.

FAST PAGE-MODE EARLY-WRITE CYCLE

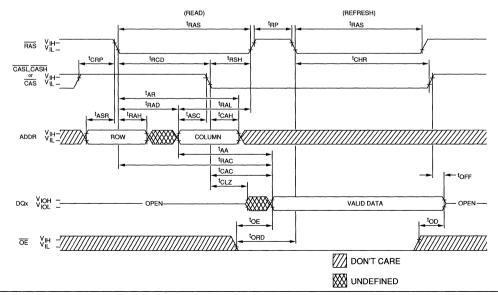
FAST PAGE-MODE READ-WRITE CYCLE (LATE-WRITE and READ-MODIFY-WRITE CYCLES)



NOTE:
1. Applies to MT4C16258 and MT4C16259 only. WE selects between normal WRITE and MASKED WRITE at RAS time. The DQ inputs are "don't care" for a normal WRITE: WE HIGH at RAS time. The DQ inputs provide the mask data at RAS time for a MASKED WRITE: WE LOW at RAS time. WEL, WEH and DQ inputs on MT4C16256 and MT4C16257 are "don't care" at RAS time.


RAS ONLY REFRESH CYCLE

(ADDR = $A_0 - A_7$, \overline{OE} ; \overline{WEL} , \overline{WEH} or \overline{WE} = DON'T CARE)


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_7; \overline{WEL}, \overline{WEH} \text{ or } \overline{WE}, \text{and } \overline{OE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WEL}, \overline{WEH} \text{ or } \overline{WE} = HIGH; \overline{OE} = LOW)^{24}$

MICHON

DYNAMIC RAMS	
DRAM MODULES	2
MULTIPORT DRAMS	: 193 ···
STATIC RAMS	4
SYNCHRONOUS SRAMS	5.
SRAM MODULES	6
CACHE DATA SRAMS	7
FIFO MEMORIES	** * 8 * **
APPLICATION/TECHNICAL INFORMATION	9.4
MILITARY INFORMATION	10
PACKAGE INFORMATION	11
SALES INFORMATION	12

DRAM MODULE PRODUCT SELECTION GUIDE

Memory	Optional	Part	Access	Power	Dissipation		Packag	е		
Configuration	Access Cycle	Number	Time (ns)	Standby	Active	SIP	SIMM	ZIP	Process	Page
256K x 8	Fast Page Mode	MT2D2568	70, 80,100,120	6mW	350mW	30	30	•	CMOS	2-1
1 Meg x 8	Fast Page Mode	MT8D18	70, 80, 100	24mW	1,400mW	30	30	-	CMOS	2-11
1 Meg x 8	Fast Page Mode	MT2D18	60, 70, 80, 100	5mW	450mW	30	30	-	CMOS	2-21
4 Meg x 8	Fast Page Mode	MT8D48	60, 70, 80	24mW	1,800mW	30	30	-	CMOS	2-31
256K x 9	Fast Page/Page Mode	MT3D2569	70, 80, 100,120	9mW	625mW	30	30	-	C/NMOS	2-41
1 Meg x 9	Fast Page Mode	MT9D19	70, 80, 100	27mW	1,575mW	30	30		CMOS	2-51
1 Meg x 9	Fast Page Mode	MT3D19	70, 80, 100	9mW	625mW	30	30	-	CMOS	2-61
4 Meg x 9	Fast Page Mode	MT9D49	60, 70, 80	27mW	2,025mW	30	30	-	CMOS	2-71
256K x 32	Fast Page Mode	MT8D25632	70, 80, 85,100	24mW	1,400mW	-	72	72	CMOS	2-81
512K x 32	Fast Page Mode	MT16D51232	70, 80, 85, 100	48mW	2,800mW	-	72	72	CMOS	2-91
1 Meg x 32	Fast Page Mode	MT8D132	70, 80, 100	24mW	1,800mW	-	72	72	CMOS	2-101
2 Meg x 32	Fast Page Mode	MT16D232	70, 80, 100	48mW	3,600mW	-	72	72	CMOS	2-111
256K x 36	Fast Page Mode	MT9D25636	70, 80, 85,100	27mW	1,515mW	-	72	72	CMOS	2-121
256K x 36	Fast Page Mode	MT10D25636	70, 80, 85,100	30mW	1,750mW	-	72	72	CMOS	2-131
512K x 36	Fast Page Mode	MT18D51236	70, 80, 85,100	54mW	3,150mW	-	72	72	CMOS	2-141
512K x 36	Fast Page Mode	MT20D51236	70, 80, 85,100	60mW	1,780mW	-	72	72	CMOS	2-151
1 Meg x 36	Fast Page Mode	MT9D136	70, 80, 100	27mW	2,175mW	-	72	72	CMOS	2-161
2 Meg x 36	Fast Page Mode	MT18D236	70, 80, 100	54mW	4,500mW	-	72	72	CMOS	2-171

30-Pin SIP

(H-1)

(REPLACES: MT8C8256)

DRAM MODULE

256K x 8 DRAM

PIN ASSIGNMENT (Top View)

FAST PAGE MODE

30-Pin SIMM

(I-1)

FEATURES

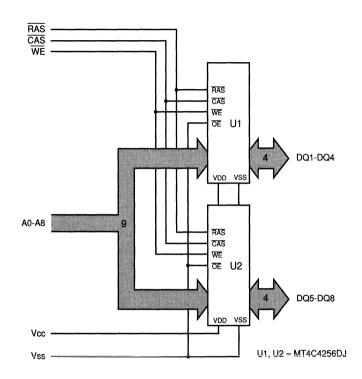
ODTIONIC

- Industry standard pinout in a 30-pin single-in-line memory module
- High-performance, CMOS silicon gate process
- Single 5V ±10% power supply
- Low power, 6mW standby; 350mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Optional FAST PAGE MODE access cycle
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- 512-cycle refresh distributed across 8ms

OPTIONS	MAKKING
 Timing 	
70ns access	- 7
80ns access	- 8
100ns access	-10
120ns access	-12
• Packages	
Leadless 30-pin SIMM	M
Leaded 30-pin SIP	N

Vcc CAS DQ1 A0 A1 DQ2 DQ2 A2 A3 Vss DQ3 A3 = NAADIZINIC Vec = DO3 = MT2D2568N A5 13 DQ4 DQ4 A6 A7 DQ5 A8 NC 14 15 16 17 Α6 18 NC = 19 NC = DQ6 WE 20 DQ6 WF Vss = DQ7 DQ7 23 24 25 26 27 28 29 24 25 26 27 28 29 NC DQ8 NC RAS NC = DQ8 RAS

GENERAL DESCRIPTION


The MT2D2568 is a randomly accessed solid-state memory containing 262,144 words organized in a x8 configuration. During READ or WRITE cycles, each word is uniquely addressed through the 18 address bits, which are entered 9 bits (A0-A8) at a time. \overline{RAS} is used to latch the first 9 bits and \overline{CAS} the latter 9 bits. READ or WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. EARLY-WRITE occurs when \overline{WE} goes LOW prior to \overline{CAS} going LOW, and the output pins remain open (High-Z) until the next \overline{CAS} cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row address (A0-A8)

defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by \overline{RAS} followed by a column address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column addresses, thus executing faster memory cycles.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HIDDEN REFRESH) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

					Addresses		
Function		RAS	CAS	WE	^t R	t _C	DQ1-8
Standby		Н	Х	Х	Х	Х	High Impedance
READ		L	L	Н	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	L	ROW	COL	Valid Data In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	ROW	COL	Valid Data Out
READ	2nd Cycle	L	H→L	Н	n/a	COL	Valid Data Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	ROW	COL	Valid Data In
WRITE	2nd Cycle	L	H→L	L	n/a	COL	Valid Data In
RAS-ONLY REFRESH	ł	L	Н	Х	ROW	n/a	High Impedance
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Valid Data In
CAS-BEFORE-RAS REFRESH		H→L	L	Х	Х	Х	High Impedance

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Operating Temperature, TA(Ambient)	0°C to +70°C
Storage Temperature	55°C to +150°C
Power Dissipation	2W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	PARAMETER/CONDITION				UNITS	NOTES
Supply Voltage			4.5	5.5	V	
Input High (Logic 1) Voltage, All Inputs	AND THE RESIDENCE OF THE PARTY	VIH	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, All Inputs	, , , , , , , , , , , , , , , , , , ,	VIL	-2.0	0.8	V	1, 22
INPUT LEAKAGE Any Input 0V ≤ Vin ≤ Vcc (All other pins not under test = 0V)	A0-A8, RAS, CAS, WE	lı .	-4	4	μА	
OUTPUT LEAKAGE (Q is disabled, 0V ≤ Vout ≤ Vcc)	DQ1-8	loz	-12	12	μА	
OUTPUT LEVELS		Vон	2.4		٧	1
Output High (Logic 1) Voltage (Iout = -5n Output Low (Logic 0) Voltage (Iout = 5nd		Vol		0.4	V	

			M	AX			
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	-12	UNITS	NOTES
STANDBY CURRENT: TTL Input Levels (RAS = CAS = VIH)	lcc1	4	4	4	4	mA	
STANDBY CURRENT: CMOS Input Levels (RAS = CAS = Vcc -0.2V)	lcc2	2	2	2	2	mA	
OPERATING CURRENT (RAS and CAS = Cycling; ^t RC = ^t RC (MIN))	lcc3	160	140	120	100	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL; CAS = Cycling; tPC = tPC (MIN))	Icc4	120	100	80	60	mA	3, 4
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = VIH; TRC = TRC (MIN))	lcc5	160	140	120	100	mA	3, 4
REFRESH CURRENT: CAS-BEFORE-RAS	Icc6	160	140	120	100	mA	3, 4

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	Cl1		10	pF	18
Input Capacitance: RAS, CAS, WE	C12		14	pF	18
Input/Output Capacitance: DQ	Cio		14	pF	18

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) $(0^{\circ}C \le T_{A} \le +70^{\circ}C; Vcc = 5.0V \pm 10\%)$

A.C. CHARACTERISTICS			-7		-8		-10		-12	1	
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	135		150		180		220		ns	
READ-WRITE cycle time	tRWC	n/a		n/a		n/a		n/a		n/a	21
FAST-PAGE-MODE READ or WRITE	^t PC	40		45		55		70		ns	
cycle time										l	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	n/a		n/a		n/a		n/a		n/a	21
Access time from RAS	†RAC		70		80		100		120	ns	14
Access time from CAS	^t CAC		20		20		25		30	ns	15
Output Enable	^t OE		20		20		25		30	ns	1
Access time from column address	^t AA		35		40		50		60	ns	
Access time from CAS precharge	^t CPA		35		40		50		65	ns	
RAS pulse width	†RAS	70	100,000	80	100,000	100	100,000	120	100,000	ns	
RAS pulse width (FAST PAGE MODE)	tRASP	70	100,000	80	100,000	100	100,000	120	100,000	ns	
RAS hold time	^t RSH	20		20		25		30		ns	
RAS precharge time	tRP	50		60		70		90		ns	
CAS pulse width	tCAS	20	100,000	20	100,000	25	100,000	30	100,000	ns	
CAS hold time	^t CSH	70		80		100		120		ns	
CAS precharge time	tCPN	10		10		15		20		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		15		ns	
RAS to CAS delay time	^t RCD	20	50	20	60	25	75	25	90	ns	17
CAS to RAS precharge time	tCRP	5		5		5		10		ns	
Row address setup time	†ASR	0		0		0		0		ns	
Row address hold time	^t RAH	10		10		15		15		ns	
RAS to column address delay time	^t RAD	15	35	15	40	20	50	20	60	ns	18
Column address setup time	†ASC	0		0		0		0		ns	
Column address hold time	^t CAH	15		15		20		25		ns	
Column address hold time (referenced to RAS)	^t AR	55		60		70		85		ns	
Column address to RAS lead time	^t RAL	35		40		50		60		ns	
Read command setup time	tRCS	0		0		0		0		ns	
Read command hold time (referenced to CAS)	^t RCH	0		0		0		0		ns	19
Read command hold time (referenced to RAS)	^t RRH	0		0		0		0		ns	19
CAS to output in Low-Z	†CLZ	0		0		0	†	0		ns	1

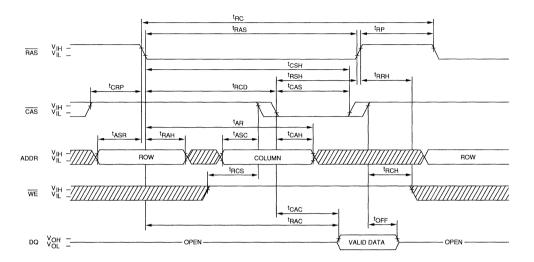
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5.0V \pm 10%)

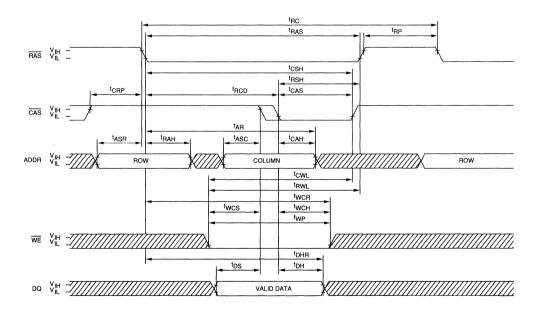
A.C. CHARACTERISTICS		-7		-1	В	-1	0	-12			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	0	35	ns	20
Output Disable	^t OD		20		20		20		20	ns	
WE command setup time	twcs	0		0		0		0		ns	
Write command hold time	tWCH	15		15		20		25		ns	
Write command hold time (referenced to RAS)	tWCR	55		60	}	75		85		ns	
Write command pulse width	tWP	15		15		20		25		ns	
Write command to RAS lead time	^t RWL	20		20		25		30		ns	
Write command to CAS lead time	tCWL	20		20		25		30		ns	
Data-in setup time	^t DS	0		0		0		0		ns	
Data-in hold time	^t DH	15		15		20		25		ns	
Data-in hold time (referenced to RAS)	^t DHR	55		60		75		90		ns	
RAS to WE delay time	[†] RWD	n/a		n/a		n/a		n/a		n/a	21
Column address to WE delay time	^t AWD	n/a		n/a		n/a		n/a		n/a	21
CAS to WE delay time	tCWD	n/a		n/a		na		n/a		n/a	21
Transition time (rise or fall)	t _T	3	50	3	50	3	50	3	50	ns	5, 16
Refresh period (512 cycles)	t _{REF}		8		8		8		8	ms	20
RAS to CAS precharge time	tRPC	0		0		0		0		ns	19
CAS setup time (CAS-BEFORE-RAS REFRESH)	tCSR	10		10		10		10		ns	19
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	15		15		15		15		ns	19
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	n/a		n/a		n/a		n/a		n/a	21

MICHON

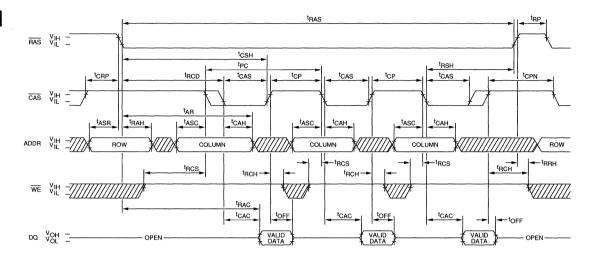
(REPLACES: MT8C8256)


NOTES

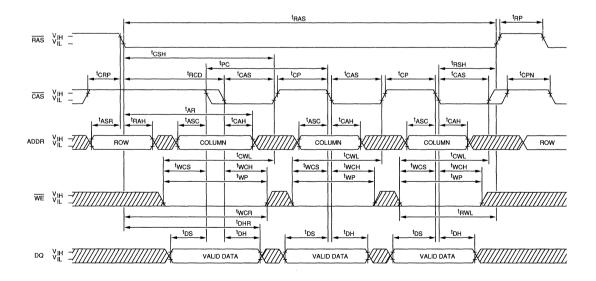
- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of $100\mu s$ is required after power-up followed by any eight \overline{RAS} cycles before proper device operation is assured. The eight \overline{RAS} cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- AC characteristics assume ^tT = 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 11. If $\overline{\text{CAS}} = V_{\text{IL}}$, data output may contain data from the last valid READ cycle.
- *OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 13. Operation within the ^tRCD (MAX) limit ensures that


- ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. ${}^{t}RCH$ is referenced to the first rising edge of \overline{RAS} or \overline{CAS} .
- 15. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles.
- In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCP. Note 8 applies to determine valid data out.
- 19. On-chip refresh and address counters are enabled.
- A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- 21. LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to \overline{OE} being grounded on U1 and U2.
- 22. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5V for a period of less than 20ns and the signal's total duration is 25ns or less; or a -0.3V signal of any duration is presented (DC).

READ CYCLE

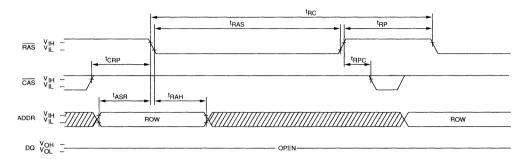


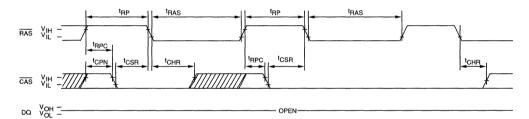
EARLY-WRITE CYCLE



FAST-PAGE-MODE READ CYCLE

FAST-PAGE-MODE EARLY-WRITE CYCLE


DON'T CARE


RAS-ONLY REFRESH CYCLE

 $(ADDR = A_0 - A_8; and \overline{WE} = DON'T CARE)$

CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_8 \text{ and } \overline{WE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{20}$

DON'T CARE

₩ undefined

DRAM MODULE

1 MEG x 8 DRAM

PIN ASSIGNMENT (Top View)

FAST PAGE MODE

FEATURES

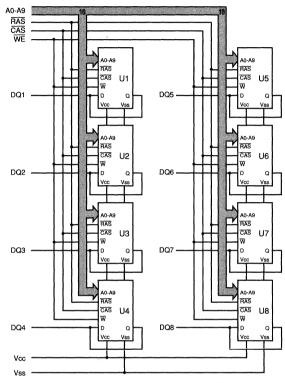
- Industry standard pinout in a 30-pin single-in-line package
- High-performance CMOS silicon gate process
- Single 5V ±10% power supply
- Low power, 24mW standby; 1400mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- 512-cycle refresh distributed across 8ms
- Optional FAST PAGE MODE access cycle

OPTIONS	MARKING
Timing	
70ns access	- 7
80ns access	- 8
100ns access	-10
Packages	
Leadless 30-pin SIMM	M
Leaded 30-pin SIP	N

30-Pin SIMM 30-Pin SIP (1-3)(H-3)Vcc CAS DQ1 A0 A1 DQ2 A2 A3 DQ2 А3 Vss Vss DQ3 DO3 = Α5 12 DQ4 13 DQ4 = A6 A7 DQ5 A8 A9 14 A6 = 15 A7 = 16 DQ5 = 18 A9 = NC 19 NC = DQ6 WE DO6 Vss = DQ7 DO7 NC DQ8 NC: DO8 NC RAS NC: RAS NC NC NC:

GENERAL DESCRIPTION

The MT8D18 is a randomly accessed solid-state memory containing 1,048,576 words organized in a x8 configuration. During READ or WRITE cycles, each word is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. \overline{RAS} is used to latch the first 10 bits and \overline{CAS} the latter 10 bits. READ or WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. Early WRITE occurs when \overline{WE} goes LOW prior to \overline{CAS} going LOW, and the output pins remain open (High-Z) until the next \overline{CAS} cycle.


FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A9)

defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by \overline{RAS} followed by a column address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column addresses, thus executing faster memory cycles.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycles (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HIDDEN REFRESH) so that all 512 combinations of RAS addresses (A0-A9) are executed at least every 8ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

U1 - U8 = MT4C1024DJ

					Addresses		
Function		RAS	CAS	WE	^t R	^t A	DQ1-8
Standby		Н	Х	Х	Х	Х	High Impedance
READ		L	L	Н	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	L	ROW	COL	Valid Data In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	ROW	COL	Valid Data Out
READ	2nd Cycle	L	H→L	Ι	n/a	COL	Valid Data Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	ROW	COL	Valid Data In
WRITE	2nd Cycle	L	H→L	L	n/a	COL	Valid Data In
RAS-ONLY REFRES	Н	L	Н	Х	ROW	n/a	High Impedance
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Valid Data In
CAS-BEFORE-RAS		H→L	L	Х	Х	Х	High Impedance
REFRESH							

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss.	1.0V to +7.0V
Operating Temperature, TA(Ambient).	0°C to +70°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	8W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0°C \leq T_{Δ} \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES	
Supply Voltage		Vcc	4.5	5.5	V	
Input High (Logic 1) Voltage, All Inputs		ViH	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, All Inputs		VIL	-2.0	0.8	V	1, 25
INPUT LEAKAGE:	D9, CAS9	lı	-2	2	μΑ	
Any Input $0V \le V_{IN} \le V_{CC}$, (All other pins not under test = $0V$)	A0-A9, RAS, WE	lı	-16	16	μΑ	
OUTPUT LEAKAGE:	Q9	loz	-10	10	μΑ	
(Q is disabled, 0V ≤ Vouт ≤ Vcc)	DQ1-8	loz	-12	12	μА	
OUTPUT LEVELS		Vон	2.4		V	1
Output HighVoltage (IouT = -5mA) Output Low Voltage (IouT = 5mA)		Vol		0.4	V	

			MAX			
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
STANDBY CURRENT: TTL input levels $(\overline{RAS} = \overline{CAS} = V_{IH})$	Icc1	16	16	16	mA	
STANDBY CURRENT: CMOS Input Levels $(\overline{RAS} = \overline{CAS} = Vcc - 0.2V)$	Icc2	8	8	8	mA	
OPERATING CURRENT (\overline{RAS} and \overline{CAS} = Cycling; ${}^{t}RC$ = ${}^{t}RC$ (MIN))	Іссз	640	560	480	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE $(\overline{RAS} = V_{IL}, \overline{CAS} = Cycling; ^tPC = ^tPC (MIN))$	ICC4	480	400	320	mA	3, 4
REFRESH CURRENT: \overline{RAS} -ONLY $(\overline{RAS} = \text{Cycling}; \overline{CAS} = \text{V}_{\text{IH}}; {}^{\text{t}}RC = {}^{\text{t}}RC \text{ (MIN)})$	Icc5	640	560	480	mA	3, 4
REFRESH CURRENT: $\overline{\text{CAS}}$ -BEFORE- $\overline{\text{RAS}}$ ($\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ = Cycling; ${}^{\text{t}}\text{RC}$ = ${}^{\text{t}}\text{RC}$ (MIN))	Icc6	640	560	480	mA	3, 4

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A9	C _{l1}		45	pF	2
Input Capacitance: RAS, CAS, WE	C ₁₂		63	pF	2
Input/Output Capacitance: DQ	Cio		12	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C $\leq T_A \leq 70$ °C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS			-7		-8		10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	†RC	130		150		180		ns	
READ-WRITE cycle time	^t RWC	n/a		n/a		n/a		n/a	24
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	40		40		55		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	n/a		n/a		n/a		n/a	24
Access time from RAS	tRAC		70		80		100	ns	14
Access time from CAS	†CAC		20		20		25	ns	15
Access time from column address	^t AA		35		40		50	ns	
Access time from CAS precharge	^t CPA		35		40		50	ns	
RAS pulse width	†RAS	70	100,000	80	100,000	100	100,000	ns	
RAS pulse width (FAST PAGE MODE)	tRASP	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	tRSH	20		20		25		ns	
RAS precharge time	tRP	50		60		70		ns	
CAS pulse width	^t CAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	tCSH	70		80	1	100		ns	
CAS precharge time	tCPN	10		10		15		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	tRCD	20	60	20	60	25	75	ns	17
CAS to RAS precharge time	tCRP	5		5		5		ns	
Row address setup time	tASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
RAS to column address delay time	†RAD	15	40	15	40	20	50	ns	18
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	
Column address hold time (referenced to RAS)	tAR	55		60		70		ns	
Column address to RAS lead time	†RAL	35		40		50		ns	
Read command setup time	tRCS	0		0		0		ns	
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19

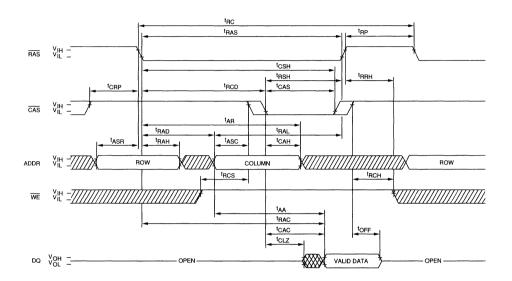
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq $T_{\Delta} \leq$ 75°C; Vcc = 5.0V \pm 10%)

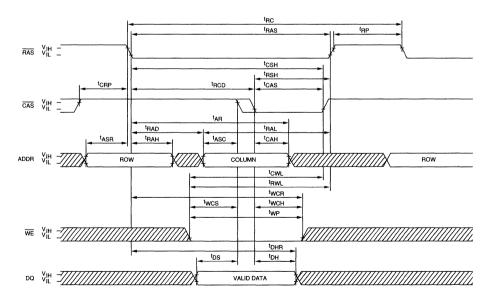
A.C. CHARACTERISTICS		_	7	-	8	_	10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
CAS to output in Low-Z	[†] CLZ	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	20
WE command setup time	twcs	0		0		0		ns	
Write command hold time	†WCH	15		15		20		ns	
Write command hold time (referenced to RAS)	tWCR	55		60		75		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	^t RWL	20		20		25		ns	
Write command to CAS lead time	tCWL	20		20		25		ns	
Data-in setup time	t _{DS}	0		0		0		ns	21
Data-in hold time	tDH	15		15		20		ns	21
Data-in hold time (referenced to RAS)	†DHR	55		60		75		ns	
RAS to WE delay time	†RWD	n/a		n/a		n/a		n/a	25
Column address to WE delay time	tAWD	n/a		n/a		n/a		n/a	25
CAS to WE delay time	tCWD	n/a		n/a		n/a		n/a	25
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	9, 10
Refresh period (512 cycles)	tREF.		8		8		8	ms	
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS REFRESH)	^t CSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	15		15		15		ns	5
OE hold time from WE during READ-MODIFY-WRITE cycle	[‡] OEH	n/a		n/a		n/a		n/a	25

DRAM MODULE

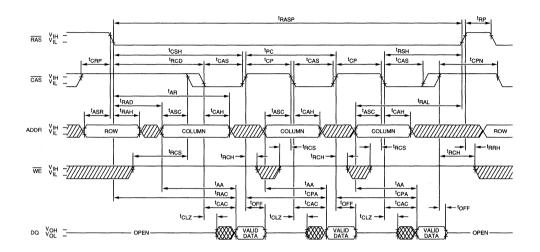
(REPLACES: MT8C8024)

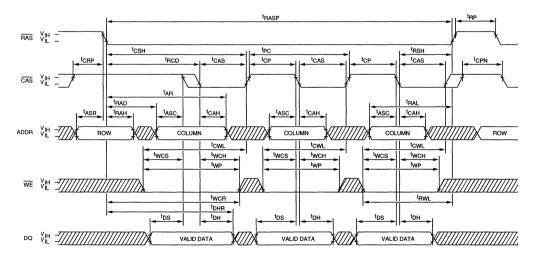

NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates.
 Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 8. A \hat{C} characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between V_{IL} and V_{IL} (or between V_{IL} and V_{IH}) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 12. If $\overline{CAS} = V_{IL}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.


- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in late WRITE or READ-WRITE cycles.
- 22. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, \overline{WE} = LOW.
- 23. All other inputs equal Vcc -0.2V.
- 24. LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to the common DQ configuration of U1-U8.
- 25. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5V for a period of less than 20ns and the signal's total duration is 25ns or less; or a -0.3V signal of any duration is presented (DC).

READ CYCLE

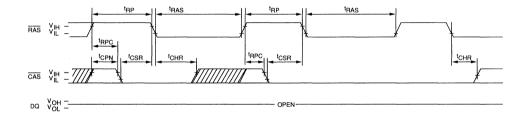

EARLY-WRITE CYCLE


DON'T CARE

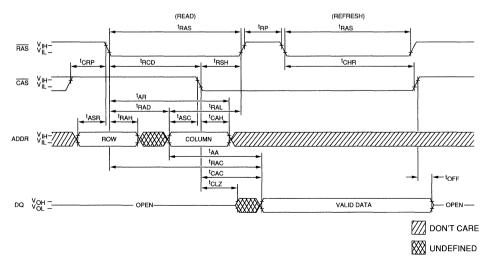
FAST-PAGE-MODE READ CYCLE

FAST-PAGE-MODE EARLY-WRITE CYCLE

DON'T CARE


RAS-ONLY REFRESH CYCLE

 $(ADDR = A_0 - A_8; A_9 \text{ and } \overline{WE} = DON'T CARE)$

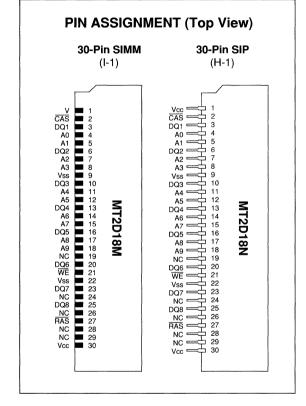

CAS-BEFORE-RAS REFRESH CYCLE

 $(A_n - A_q \text{ and } \overline{WE} = DON'T \text{ CARE})$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{22}$

DRAM MODULE


1 MEG x 8 DRAM

FAST PAGE MODE

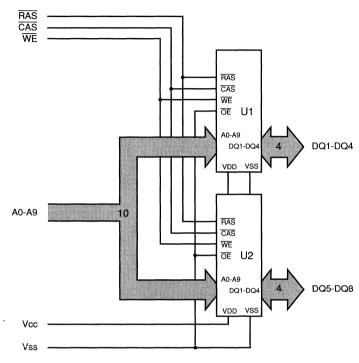
FEATURES

- Industry standard pinout in a 30-pin, single-in-line memory module
- High-performance, CMOS silicon gate process
- Single 5V ±10% power supply
- Low power, 5mW standby; 450mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Optional FAST PAGE MODE access cycle
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- 1,024-cycle refresh distributed across 16ms

OPTIONS	MARKING
Timing	
60ns access	- 6
70ns access	- 7
80ns access	- 8
100ns access	-10
• Packages	
Leadless 30-pin SIMM	M
Leaded 30-pin SIP	N

GENERAL DESCRIPTION

The MT2D18 is a randomly accessed solid-state memory containing 1,048,576 words organized in a x8 configuration. During READ or WRITE cycles, each word is uniquely addressed through 20 address bits, which are entered 10 bits (A0-A9) at a time. \overline{RAS} is used to latch the first 10 bits and \overline{CAS} the latter 10 bits. READ or WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. Early WRITE occurs when \overline{WE} goes LOW prior to \overline{CAS} going LOW, and the output pins remain open (High-Z) until the next \overline{CAS} cycle.


FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row address (A0-A9)

defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by \overline{RAS} followed by a column address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column addresses, thus executing faster memory cycles.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HIDDEN REFRESH) so that all 1,024 combinations of RAS addresses (A0-A9) are executed at least every 16ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

U1, U2 = MT4C4001DJ

TRUTH TABLE

					Addr	esses	•
Function		RAS	CAS	WE	^t R	†C	DQ1-8
Standby		Н	Х	Х	Х	Х	High Impedance
READ		L	L	Н	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	L	ROW	COL	Valid Data In
FAST-PAGE-MODE	1st Cycle	L	H→L	Н	ROW	COL	Valid Data Out
READ	2nd Cycle	L	H→L	Н	n/a	COL	Valid Data Out
FAST-PAGE-MODE	1st Cycle	L	H→L	L	ROW	COL	Valid Data In
WRITE	2nd Cycle	L	H→L	L	n/a	COL	Valid Data In
RAS-ONLY REFRESH		L	Н	Х	ROW	n/a	High Impedance
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Valid Data In
CAS-BEFORE-RAS		H→L	L	Х	Х	Х	High Impedance
REFRESH							

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC supply relative to Vss.	1.0V to +7.0V
Operating Temperature, TA(Ambient).	0°C to +70°C
Storage Temperature	55°C to +150°C
Power Dissipation	2W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

PARAMETER/CONDITION	PARAMETER/CONDITION			MAX	UNITS	NOTES
Supply Voltage Input High (Logic 1) Voltage, All Inputs		Vcc	4.5	5.5	٧	
		ViH	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, All Inputs		VIL	-1.0	0.8	V	1
INPUT LEAKAGE Any Input 0V ≤ V _{IN} ≤ V _{CC} (All other pins not under test = 0V)	A0-A9, RAS, CAS, WE	lı	-4	4	μА	
OUTPUT LEAKAGE (Q is disabled, 0V ≤ Vout ≤ Vcc)	DQ1-DQ8	loz	-12	12	μА	
OUTPUT LEVELS Output High (Logic 1) Voltage (lout = -5m	Δ)	Vон	2.4		V	1
Output Low (Logic 0) Voltage (lout = 5mA		Vol		0.4	٧	

			M				
PARAMETER/CONDITION	SYMBOL	-6	-7	-8	-10	UNITS	NOTES
STANDBY CURRENT: TTL Input Levels (RAS = CAS = VIH)	lcc1	4	4	4	4	mA	
STANDBY CURRENT: CMOS Input Levels (RAS = CAS = Vcc -0.2V)	lcc2	2	2	2	2	mA	
OPERATING CURRENT (RAS and CAS = Cycling; ^t RC = ^t RC (MIN))	lcc3	220	200	180	160	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL; CAS = Cycling; [†] PC = [†] PC (MIN))	Icc4	160	140	120	100	mA	3, 4
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = VIH; tRC = tRC (MIN))	lcc5	220	200	180	160	mA	3, 4
REFRESH CURRENT: CAS-BEFORE-RAS	Icc6	220	200	180	160	mA	3, 4

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A9	Cl1		10	pF	18
Input Capacitance: RAS, CAS, WE	CI2		14	рF	18
Input/Output Capacitance: DQ	Cio		7	рF	18

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

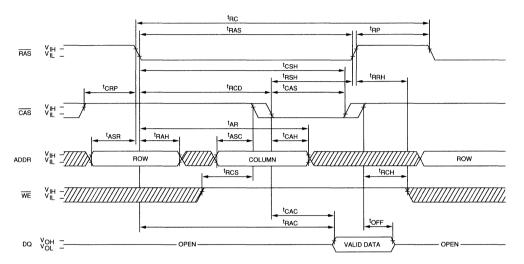
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS		-6		-7		-8		-10			1
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	110		130		150		180		ns	
READ-WRITE cycle time	tRWC	n/a		n/a		n/a		n/a		n/a	21
FAST-PAGE-MODE READ or WRITE	^t PC	40		40		45		55		ns	
cycle time											
FAST-PAGE-MODE READ-WRITE	^t PRWC	n/a		n/a		n/a		n/a		n/a	21
cycle time		1									1
Access time from RAS	^t RAC		60		70		80		100	ns	14
Access time from CAS	^t CAC		15		20		20		25	ns	15
Access time from column address	^t AA		30		35		40		50	ns	
Access time from CAS precharge	^t CPA		40		40		45		50	ns	
RAS pulse width	^t RAS	60	100,000	70	100,000	80	100,000	100	100,000	ns	
RAS pulse width (FAST PAGE MODE)	^t RASP	60	100,000	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	^t RSH	15		20		20		25		ns	
RAS precharge time	^t RP	45		50		60		70		ns	
CAS pulse width	tCAS	15	100,000	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	^t CSH	60		70		80		100		ns	
CAS precharge time	^t CPN	10		10		10		15		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		10		ns	
RAS to CAS delay time	^t RCD	15	45	20	50	20	60	25	75	ns	17
CAS to RAS precharge time	tCRP	5		5		5		5		ns	
Row address setup time	^t ASR	0		0		0		0		ns	
Row address hold time	^t RAH	10		10		10		15		ns	
RAS to column	^t RAD	15	30	15	35	15	40	20	50	ns	18
address delay time									<u> </u>		
Column address setup time	†ASC	0		0		0		0		ns	
Column address hold time	^t CAH	10		15		15		20		ns	
Column address hold time	^t AR	50		55		60		70		ns	
(referenced to RAS)											
Column address to	^t RAL	30		35		40		50		ns	
RAS lead time											<u> </u>
Read command setup time	^t RCS	0		0		0		0		ns	
Read command hold time	†RCH	0		0		0		0		ns	19
(referenced to CAS)											
Read command hold time	^t RRH	0		0		0		0		ns	19
(referenced to RAS)											
CAS to output in Low-Z	^t CLZ	0		0		0		0		ns	

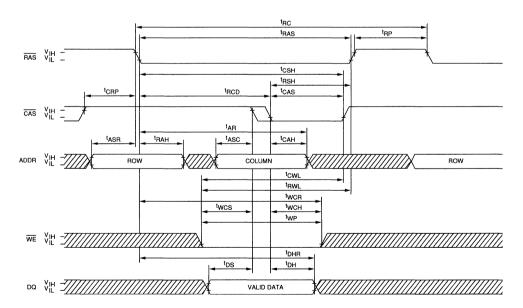
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) $(0^{\circ}C \le T_{A} \le +70^{\circ}C; Vcc = 5.0V \pm 10\%)$

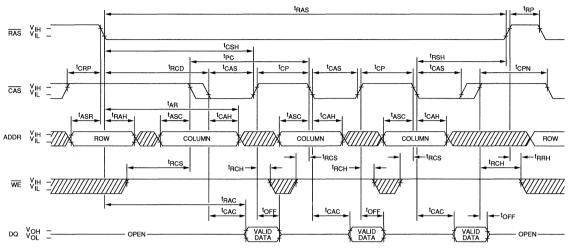
A.C. CHARACTERISTICS		-6		-7		-8		-10			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	0	20	ns	20
WE command setup time	twcs	0		0		0		0		ns	
Write command hold time	†WCH	10		15		15		20		ns	
Write command hold time (referenced to RAS)	†WCR	45		55		60		70		ns	
Write command pulse width	tWP	10	I	15		15		20		ns	
Write command to RAS lead time	^t RWL	15	[20		20		25		ns	
Write command to CAS lead time	tCWL	15		20		20		25		ns	
Data-in setup time	t _{DS}	0		0		0		0		ns	
Data-in hold time	tDH	10	li	15		15	<u> </u>	20		ns	
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		70		ns	
RAS to WE delay time	†RWD	n/a		n/a		n/a		n/a		n/a	21
Column address to WE delay time	^t AWD	n/a		n/a		n/a		n/a		n/a	21
CAS to WE delay time	tCWD	n/a		n/a		n/a		n/a		n/a	21
Transition time (rise or fall)	^t T	3	50	3	50	3	50	3	50	ns	5, 16
Refresh period (512 cycles)	^t REF		16		16		16		16	ms	20
RAS to CAS precharge time	^t RPC	0		0		0		0		ns	19
CAS setup time (CAS-BEFORE-RAS REFRESH)	^t CSR	10		10		10		10		ns	19
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	15		15		15		15		ns	19
OE hold time from WE during READ-MODIFY-WRITE cycle	†OEH	n/a		n/a		n/a		n/a		n/a	21


NOTES

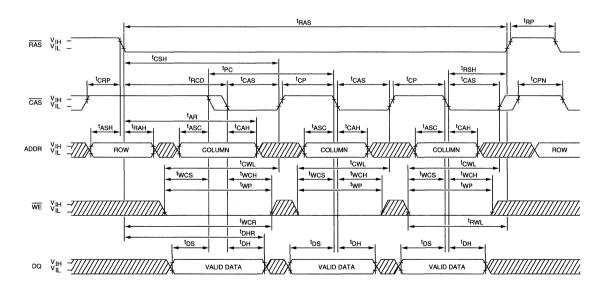
- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- An initial pause of 100µs is required after power-up followed by any eight RAS REFRESH cycles (RAS-ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 16ms refresh requirement is exceeded.
- 4. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. Measured with a load equivalent to 2 TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = VIH$, data output is high impedance.
- 11. If $\overline{CAS} = VIL$, data output may contain data from the last valid READ cycle.
- *OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.


- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. ^tRCH is referenced to the first rising edge of RAS or CAS.
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles.
- 16. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIL and VIH) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCP. Note 8 applies to determine valid data out.
- 19. On-chip refresh and address counters are enabled.
- 20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- 21. LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to \overline{OE} being grounded on U1 and U2.

READ CYCLE

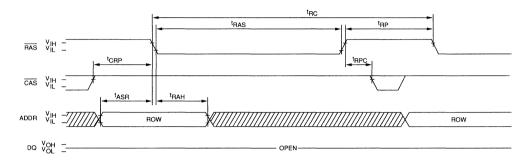


EARLY-WRITE CYCLE

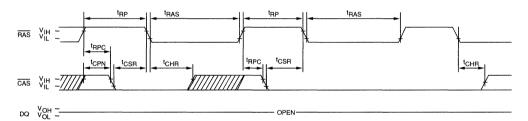


DON'T CARE
UNDEFINED

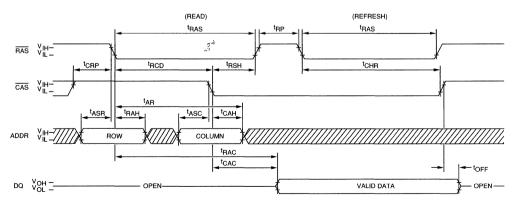
FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE

DON'T CARE



$\overline{\text{RAS-ONLY}}$ REFRESH CYCLE (ADDR = A₀ - A₉; $\overline{\text{WE}}$ = DON'T CARE)


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_9 \text{ and } \overline{WE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{20}$

DON'T CARE

₩ undefined

MICHON TECHNOLOGY, INC.

DRAM MODULE

4 MEG x 8 DRAM

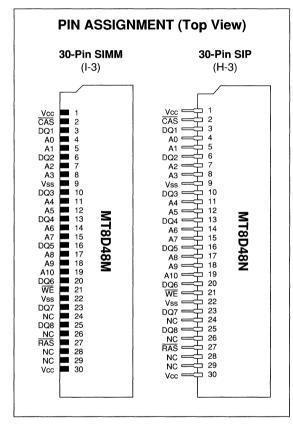
FAST PAGE MODE

FEATURES

OPTIONS

- Industry standard pinout in a 30-pin single-in-line package
- High-performance CMOS silicon gate process
- Single 5V ±10% power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 24mW standby; 1,800mW active, typical
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN

MARKING

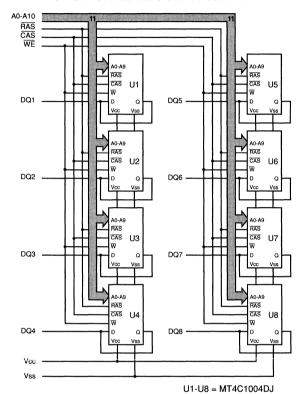

- 1,024-cycle refresh distributed across 16ms
- Optional FAST PAGE MODE access cycle

Timing	
60ns access	- 6
70ns access	- 7
80ns access	- 8
• Packages	
Leadless 30-pin SIMM	M
Leaded 30-pin SIP	N

GENERAL DESCRIPTION

The MT8D48 is a randomly accessed solid-state memory containing 4,194,304 words organized in a x8 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 22 address bits which are entered 11 bits (A0-A10) at a time. \overline{RAS} is used to latch the first 11 bits and \overline{CAS} the latter 11 bits. A READ or WRITE cycle is selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode, while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle. EARLY-WRITE occurs when \overline{WE} goes LOW prior to \overline{CAS} going LOW, and the output remains open (High-Z) until the next \overline{CAS} cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A10) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\text{RAS}}$



followed by a column address strobed-in by $\overline{\text{CAS}}$. $\overline{\text{CAS}}$ may be toggled-in by holding $\overline{\text{RAS}}$ LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning $\overline{\text{RAS}}$ HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HIDDEN REFRESH) so that all 1,024 combinations of RAS addresses (A0-A10) are executed at least every16ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

						Addresses		
Function		RAS	CAS	CAS9	WE	^t R	^t A	DQ1-8
Standby		Н	Х	Х	Х	Х	Х	High Impedance
READ	, , , , , , , , , , , , , , , , , , , ,	L	L	L	Н	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	L	L	ROW	COL	Valid Data In
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	Н	ROW	COL	Valid Data Out
READ	2nd Cycle	L	H→L	H→L	Н	n/a	COL	Valid Data Out
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L	ROW	COL	Valid Data In
WRITE	2nd Cycle	L	H→L	H→L	L	n/a	COL	Valid Data In
RAS-ONLY REFRES	Н	L	Н	Н	Х	ROW	n/a	High Impedance
HIDDEN	READ	L→H→L	L	L	Н	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	L	ROW	COL	Valid Data In
CAS-BEFORE- RAS REFRESH	Standard	H→L	L	L	Х	Х	Х	High Impedance

ABSOLUTE MAXIMUM RATINGS*

 *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage			4.5	5.5	V	1
Input High (Logic 1) Voltage, All Inputs			2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, All Inputs			-1.0	0.8	٧	1
INPUT LEAKAGE CURRENT Any Input: $0V \le V_{IN} \le 6.5V$ (All other pins not under test = $0V$)	A0-A10, WE, CAS, RAS	lı	-16	16	μА	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vout ≤ 5.5V)	DQ1-DQ8	loz	-12	12	μА	
OUTPUT LEVELS			2.4		٧	
Output High Voltage (Iout = -5mA) Output Low Voltage (Iout = 4.2mA)		Vol		0.4	V	

			MAX]	
PARAMETER/CONDITION	SYMBOL	-6	-7	-8	UNITS	NOTES
STANDBY CURRENT (TTL) $(\overline{RAS} = \overline{CAS} = V_{IH})$	Icc1	16	16	16	mA	
STANDBY CURRENT (CMOS) $(\overline{RAS} = \overline{CAS} = Vcc - 0.2V)$	Icc2	8	8	8	mA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	lcc3	880	800	720	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: tPC = tPC (MIN))	Icc4	640	560	480	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=VIH: RC = RC (MIN))	lcc5	880	800	720	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: [†] RC = [†] RC (MIN))	Icc6	880	800	720	mA	3

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A10	Cl1		45	pF	2
Input Capacitance: RAS, WE	Cl2		63	pF	2
Output Capacitance: Q	Co		7	pF	2
Input Capacitance: D	Сіз		7	pF	2
Input/Output Capacitance: DQ	Cıo		12	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

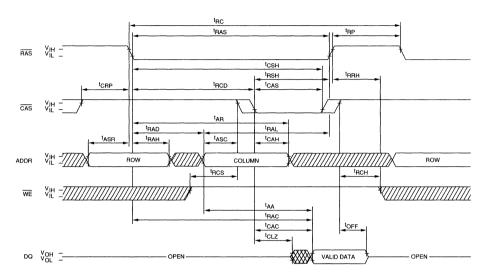
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = 5.0V \pm 10\%$)

A.C. CHARACTERISTICS	-6		-7			-8			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	110		130		150		ns	
READ-WRITE cycle time	†RWC	n/a		n/a		n/a		n/a	24
FAST-PAGE-MODE READ	^t PC	40		40		45		ns	
or WRITE cycle time									
FAST-PAGE-MODE READ-WRITE	^t PRWC	n/a		n/a		n/a		n/a	24
cycle time									
Access time from RAS	^t RAC		60		70		80	ns	14
Access time from CAS	^t CAC		15		20		20	ns	15
Access time from column address	tAA .		30		35		40	ns	
Access time from CAS precharge	^t CPA		40		40		45	ns	25
RAS pulse width	tRAS	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	60	100,000	70	100,000	80	100,000	ns	
RAS hold time	tRSH	15		20		20		ns	
RAS precharge time	tRP	45		50		60		ns	
CAS pulse width	†CAS	15	100,000	20	100,000	20	100,000	ns	
CAS hold time	tCSH	60		70	-	80		ns	
CAS precharge time	^t CPN	10		10		10		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	tRCD	15	45	20	50	20	60	ns	17
CAS to RAS precharge time	tCRP	5		5		5		ns	
Row address setup time	†ASR	0		0		0		ns	********
Row address hold time	^t RAH	10		10		10		ns	
RAS to column	†RAD	15	30	15	35	15	40	ns	18
address delay time									
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	10		15		15		ns	
Column address hold time	tAR.	50		55		60		ns	
(referenced to RAS)									
Column address to	^t RAL	30		35		40		ns	
RAS lead time									
Read command setup time	tRCS	0		0		0		ns	
Read command hold time	tRCH	0	T	0		0		ns	19
(referenced to CAS)									
Read command hold time	tRRH	0		0		0		ns	19
(referenced to RAS)									
CAS to output in Low-Z	^t CLZ	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	20
WE command setup time	twcs	0		0	1	0		ns	21

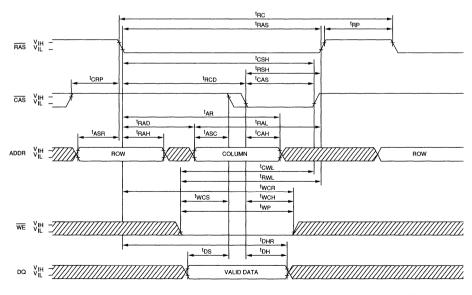
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc = 5.0V ± 10%)

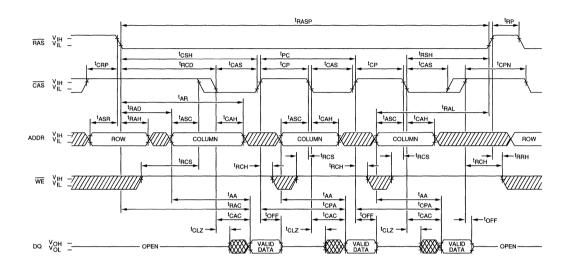
A.C. CHARACTERISTICS	HARACTERISTICS		6		-7	-8			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command hold time	†WCH	10		15		15		ns	
Write command hold time (referenced to RAS)	†WCR	45		55		60		ns	
Write command pulse width	tWP	10		15		15		ns	
Write command to RAS lead time	^t RWL	15		20		20		ns	
Write command to CAS lead time	^t CWL	20		20		20		ns	
Data-in setup time	tDS	0		0		0		ns	21
Data-in hold time	†DH	10		15		15		ns	21
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		ns	
RAS to WE delay time	tRWD	n/a		n/a		n/a		n/a	24
Column address to WE delay time	tAWD	n/a		n/a		n/a		n/a	24
CAS to WE delay time	tCWD	n/a		n/a		n/a		n/a	24
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	9, 10
Refresh period (1,024 cycles)	tREF.		16		16		16	ms	
RAS to CAS precharge time	tRPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS REFRESH)	tCSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	15		15		15		ns	5


NOTES

- 1. All voltages referenced to Vss.
- This parameter is sampled. Capacitance is calculated from the equation C = I dt/dv with dv = 3V and Vcc = 5V.
- Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates.
 Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by any eight RAS refresh cycles (RAS-ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 16ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIH and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 12. If CAS = VIL, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater


- than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the tRAD (MAX) limit ensures that tRCD (MAX) can be met. tRAD (MAX) is specified as a reference point only; if tRAD is greater than the specified tRAD (MAX) limit, then access time is controlled exclusively by tAA.
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. These parameters are referenced to CAS leading edge in EARLY-WRITE cycles.
- 22. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- 23. All other inputs equal Vcc -0.2V.
- 24. LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to the common DQ configuration of U1-U8.

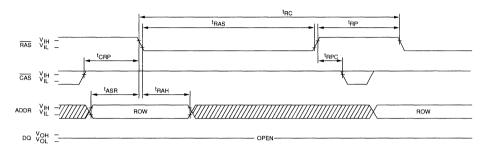
READ CYCLE


EARLY-WRITE CYCLE

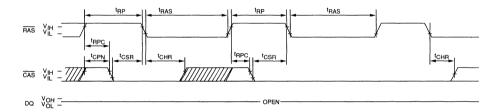

DON'T CARE

FAST-PAGE-MODE READ CYCLE

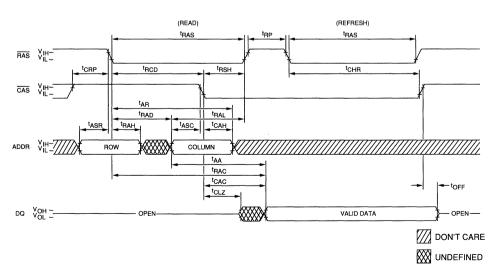
FAST-PAGE-MODE EARLY-WRITE CYCLE


DON'T CARE

W UNDEFINED


RAS-ONLY REFRESH CYCLE

 $(ADDR = A_0 - A_9; A_{10} \text{ and } \overline{WE} = DON'T CARE)$


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_{10} \text{ and } \overline{WE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{23}$

DRAM MODULE

256K x 9 DRAM

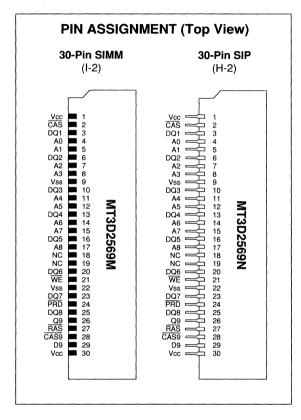
FAST PAGE MODE/PAGE MODE

FEATURES

OPTIONS

- Industry standard pinout in a 30-pin single-in-line memory module
- High-performance, CMOS silicon gate process
- Single 5V ±10% power supply
- Low power, 9mW standby; 625mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Optional FAST PAGE MODE access cycle
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN

MARKING

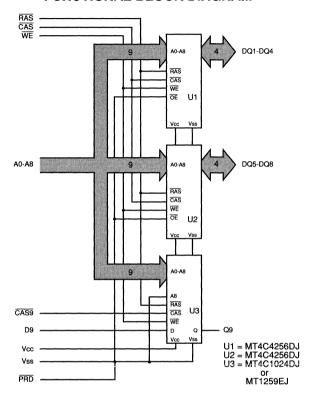

• 512-cycle refresh distributed across 8ms

Timing	
70ns access	- 7
80ns access	- 8
100ns access	-10
120ns access	-12
Access Mode FAST PAGE MODE PAGE MODE	P NONE
 Packages Leadless 30-pin SIMM Leaded 30-pin SIP 	M N

GENERAL DESCRIPTION

The MT3D2569 is a randomly accessed solid-state memory containing 262,144 words organized in a x9 configuration. During READ or WRITE cycles, each word is uniquely addressed through the 18 address bits, which are entered nine bits (A0-A8) at a time. \overline{RAS} is used to latch the first nine bits and \overline{CAS} the latter nine bits. A READ or WRITE cycle is selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. EARLY-WRITE occurs when \overline{WE} goes LOW prior to \overline{CAS} going LOW, and the output pins remain open (High-Z) until the next \overline{CAS} cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row address (A0-A8)



defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by \overline{RAS} followed by a column address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column addresses, thus executing faster memory cycles.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HIDDEN REFRESH) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

						Addresses		!
Function	į	RAS	CAS	CAS9	WE	^t R	^t C	DQ1-8, D9, Q9
Standby		Н	Х	Х	Х	Х	Х	High Impedance
READ		L	L	L	Н	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	L	L	ROW	COL	Valid Data In
PAGE-MODE	1st Cycle	L	H→L	H→L	Н	ROW	COL	Valid Data Out
READ	2nd Cycle	L	H→L	H→L	Н	n/a	COL	Valid Data Out
PAGE-MODE	1st Cycle	L	H→L	H→L	L	ROW	COL	Valid Data In
WRITE	2nd Cycle	L	H→L	H→L	L	n/a	COL	Valid Data In
RAS-ONLY RE	FRESH	L	н	Н	Х	ROW	n/a	High Impedance
HIDDEN	READ	L→H→L	L	L	Н	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	L	ROW	COL	Valid Data In
CAS-BEFORE	RAS	H→L	L	L	Х	Х	Х	High Impedance
REFRESH								

ABSOLUTE MAXIMUM RATINGS*

 *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧		
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1	
Input Low (Logic 0) Voltage, All Inputs	VIL	-2.0	0.8	٧	1, 22	
INPUT LEAKAGE	D9, CAS9	11	-2	2	μΑ	
Any Input $0V \le V_{IN} \le V_{CC}$, (All other pins not under test = $0V$)	A0-A8, RAS, WE	lı	-6	6	μΑ	
OUTPUT LEAKAGE	Q9	loz	-10	10	μΑ	
(Q is disabled, $0V \le V_{OUT} \le V_{CC}$)	DQ1-DQ8	loz	-12	12	μА	
OUTPUT LEVELS			2.4		V	1
Output High (Logic 1) Voltage (Ιουτ = -5mA) Output Low (Logic 0) Voltage (Ιουτ = 5mA)		Vol		0.4	V	

		MAX					
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	-12	UNITS	NOTES
STANDBY CURRENT: TTL Input Levels (RAS = CAS = VIH)	lcc1	6	6	6	6	mA	
STANDBY CURRENT: CMOS Input Levels (RAS = CAS = Vcc -0.2V)	lcc2	3	3	3	3	mA	
OPERATING CURRENT (RAS and CAS = Cycling; ^t RC = ^t RC (MIN))	Іссз	240	210	180	150	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL, CAS = Cycling; tPC = tPC (MIN))	Icc4	180	150	120	90	mA	3, 4
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = VIH; TRC = TRC (MIN))	Icc5	240	210	180	150	mA	3, 4
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS = Cycling; ^t RC = ^t RC (MIN))	Icc6	240	210	180	150	mA	3, 4

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	CI1		15	pF	18
Input Capacitance: RAS, CAS, WE	C ₁₂		27	pF	18
Input Capacitance: D	Сіз		7	pF	18
Input/Output Capacitance: DQ	Cio		12	pF	18
Output Capacitance: Q	Co		7	pF	18

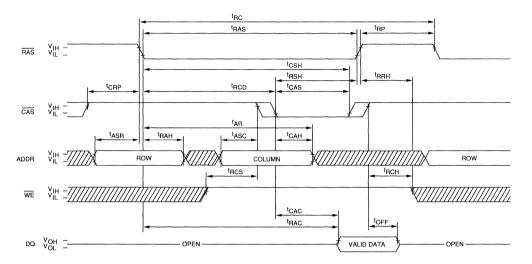
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS			-7		-8		10 -12				
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	135		150		180		220		ns	
READ-WRITE cycle time	^t RWC	n/a		n/a		n/a		n/a		n/a	21
FAST-PAGE-MODE READ or WRITE	^t PC	40		45		55		70		ns	
cycle time											
PAGE-MODE READ or WRITE	^t PC	n/a		n/a		90		100		ns	
cycle time											
Access time from RAS	^t RAC		70		80		100		120	ns	14
Access time from CAS (FAST PAGE MODE)	^t CAC		20		20		25		30	ns	15
Access time from CAS (PAGE MODE)	^t CAC		n/a		n/a		50		60	ns	
Output Enable	^t OE		20		20		25		30	ns	
Access time from column address	^t AA		35		40		50		60	ns	
Access time from CAS precharge	^t CPA		35		40		50		65	ns	
RAS pulse width	^t RAS	70	100,000	80	100,000	100	100,000	120	100,000	ns	
RAS pulse width (FAST PAGE MODE)	^t RASP	70	100,000	80	100,000	100	100,000	120	100,000	ns	
RAS hold time	^t RSH	20		20		25		30		ns	
RAS precharge time	^t RP	50		60		70		90		ns	
CAS pulse width	tCAS	20	100,000	20	100,000	25	100,000	30	100,000	ns	
CAS hold time	tCSH	70		80		100		120		ns	
CAS precharge time	tCPN	10		10		15		20		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		15		ns	
CAS precharge time (PAGE MODE)	^t CP	n/a		n/a		30		30		ns	
RAS to CAS delay time	^t RCD	20	50	20	60	25	75	25	90	ns	17
CAS to RAS precharge time	tCRP	5		5		5		10		ns	
Row address setup time	^t ASR	0		0		0		0		ns	
Row address hold time	^t RAH	10		10		15		15		ns	
RAS to column	^t RAD	15	35	15	40	20	50	20	60	ns	18
address delay time											
Column address setup time	†ASC	0		0		0		0		ns	
Column address hold time	tCAH	15		15		20		25		ns	
Column address hold time	^t AR	55		60		70		85		ns	
(referenced to RAS)	'										
Column address to	tRAL.	35		40		50		60		ns	
RAS lead time											
Read command setup time	^t RCS	0		0		0		0		ns	
Read command hold time	^t RCH	0		0		0		0		ns	19
(referenced to CAS)											
Read command hold time	^t RRH	0		0		0		0		ns	19
(referenced to RAS)											
CAS to output in Low-Z	^t CLZ	0		0		0		0		ns	

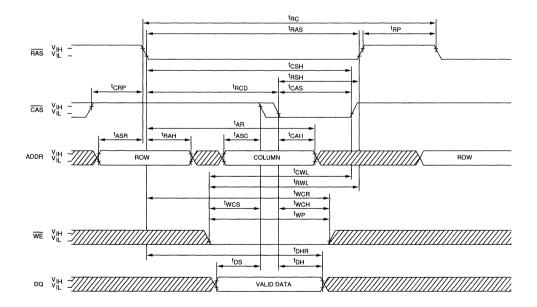
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C $\leq T_{\Delta} \leq +70$ °C; Vcc = 5.0V \pm 10%)

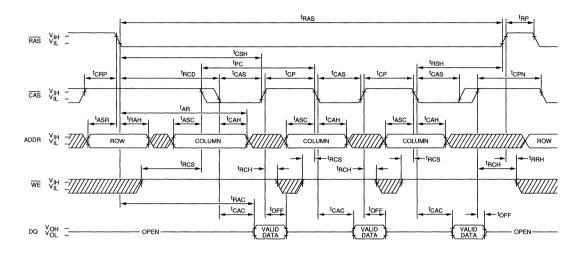
A.C. CHARACTERISTICS	` A	J -7	7	1 -	0	-1	^	T .	12	Т	Т
	OVE									LINUTO	NOTEO
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	†OFF	0	20	0	20	0	20	0	35	ns	20
Output Disable	^t OD		20		20		20		20	ns	
WE command setup time	twcs	0		0	İ	0		0		ns	
Write command hold time	†WCH	15		15		20		25		ns	
Write command hold time (referenced to RAS)	^t WCR	55		60		75		85		ns	
Write command pulse width	tWP	15		15		20		25		ns	
Write command to RAS lead time	tRWL	20		20		25		30		ns	
Write command to CAS lead time	tCWL	20		20		25		30		ns	
Data-in setup time	^t DS	0		0		0		0		ns	
Data-in hold time	^t DH	15		15		20		25		ns	
Data-in hold time (referenced to RAS)	^t DHR	55		60		75		90		ns	
RAS to WE delay time	^t RWD	n/a		n/a		n/a		n/a		n/a	21
Column address to WE delay time	^t AWD	n/a		n/a		n/a		n/a		n/a	21
CAS to WE delay time	tCWD	n/a		n/a		n/a		n/a		n/a	21
Transition time (rise or fall)	tT.	3	50	3	50	3	50	3	50	ns	5, 16
Refresh period (512 cycles)	†REF		8		8		8		8	ms	20
RAS to CAS precharge time	tRPC	0		0		0		0		ns	19
CAS setup time (CAS-BEFORE-RAS REFRESH)	tCSR	10		10		10		10		ns	19
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	15		15		15		15		ns	19
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	n/a		n/a		n/a		n/a		n/a	21

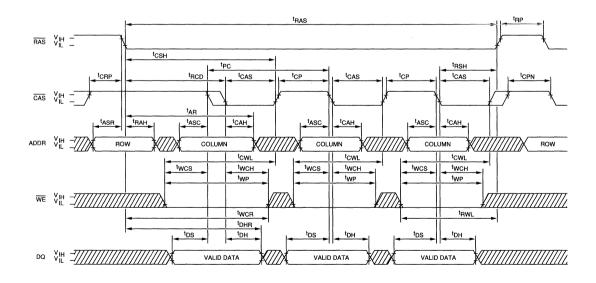

NOTES

- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 4. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 11. If CAS = V_{IL}, data output may contain data from the last valid READ cycle.
- 12. tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 13. Operation within the ^tRCD (MAX) limit ensures that

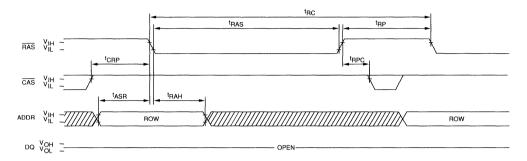

- ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. tRCH is referenced to the first rising edge of RAS or CAS
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles.
- 16. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIL and VIH) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCP. Note 8 applies to determine valid data out.
- 19. On-chip refresh and address counters are enabled.
- 20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- 21. LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to \overline{OE} being grounded on U1 and U2.
- 22. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5V for a period of less than 20ns and the signal's total duration is 25ns or less; or a -0.3V signal of any duration is presented (DC).

READ CYCLE

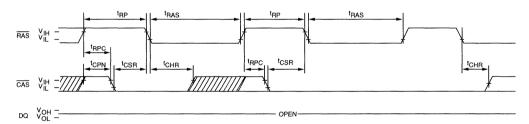

EARLY-WRITE CYCLE


DON'T CARE

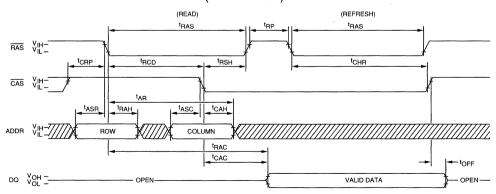
PAGE/FAST-PAGE-MODE READ CYCLE


PAGE/FAST-PAGE-MODE EARLY-WRITE CYCLE

DON'T CARE



$\overline{\text{RAS}}\text{-}\text{ONLY REFRESH CYCLE}$ (ADDR = A_0 - A_8 ; $\overline{\text{WE}}$ = DON'T CARE)


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_8 \text{ and } \overline{WE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

(WE = HIGH) ²⁰

DON'T CARE

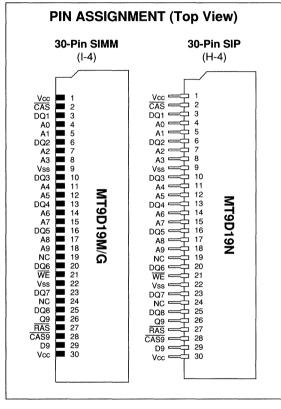
W UNDEFINED

DRAM MODULE

1 MEG x 9 DRAM

FAST PAGE MODE

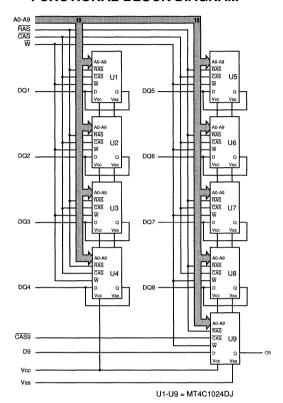
FEATURES


- Industry standard pinout in a 30-pin single-in-line package
- · High-performance, CMOS silicon gate process
- Single 5V ±10% power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 27mW standby; 1,575mW active, typical
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- 512-cycle refresh distributed across 8ms
- Optional FAST PAGE MODE access cycle

OPTIONS MARKING • Timing 70ns access - 7 80ns access - 8 100ns access -10 • Packages Leadless 30-pin SIMM M Leadless 30-pin SIMM (Gold) G Leaded 30-pin SIP N

GENERAL DESCRIPTION

The MT9D19 is a randomly accessed solid-state memory containing 1,048,576 words organized in a x9 configuration. During READ or WRITE cycles, each word is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. \overline{RAS} is used to latch the first 10 bits and \overline{CAS} the latter 10 bits. A READ or WRITE cycle is selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. EARLY-WRITE occurs when \overline{WE} goes LOW prior to \overline{CAS} going LOW, and the output pins remain open (High-Z) until the next \overline{CAS} cycle.


FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A9)

defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles.

Returning \overline{RAS} and \overline{CAS} HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the \overline{RAS} high time. Memory cell data is retained in its correct state by maintaining power and executing any \overline{RAS} cycle (READ, WRITE, \overline{RAS} -ONLY, \overline{CAS} -BEFORE- \overline{RAS} , or HIDDEN REFRESH) so that all 512 combinations of \overline{RAS} addresses (A0-A9) are executed at least every 8ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

						Addr	esses	
Function	-	RAS	CAS	CAS9	WE	^t R	^t A	DQ1-8, D9, Q9
Standby		Н	Х	х	Х	Х	Х	High Impedance
READ		L	L	L	Н	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	L	L	ROW	COL	Valid Data In
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	Н	ROW	COL	Valid Data Out
READ	2nd Cycle	L	H→L	H→L	Ι	n/a	COL	Valid Data Out
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L	ROW	COL	Valid Data In
WRITE	2nd Cycle	L	H→L	H→L	L	n/a	COL	Valid Data In
RAS-ONLY REFRES	SH.	L	Н	Н	Х	ROW	n/a	High Impedance
HIDDEN	READ	L→H→L	L	L	Н	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	L	ROW	COL	Valid Data In
CAS-BEFORE-RAS REFRESH		H→L	L	L	Х	Х	Х	High Impedance

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Operating Temperature, TA(Ambient)	0°C to +70°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	9W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	4.5	5.5	٧	
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1	
Input Low (Logic 0) Voltage, All Inputs	VIL	-2.0	0.8	V	1, 25	
INPUT LEAKAGE: Any Input 0V ≤ Vin ≤ Vcc	D9, CAS9	lı .	-2	2	μΑ	
(All other pins not under test = 0V)	A0-A9, RAS, WE	lı	-18	18	μΑ	
OUTPUT LEAKAGE: (Q is disabled, 0V ≤ Vout ≤ Vcc)	Q9	loz	-10	10	μΑ	
(Q is disabled, 0V \(\sigma\) vooi \(\sigma\)	DQ1-8	loz	-12	12	μΑ	
OUTPUT LEVELS Output High Voltage (Iout = -5mA)	Vон	2.4		٧	1	
Output Low Voltage (lout = 5mA)		Vol		0.4	٧	

			MAX			
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
STANDBY CURRENT: TTL Input Levels (RAS = CAS = ViH)	lcc1	18	18	18	mA	
STANDBY CURRENT: CMOS Input Levels (RAS = CAS = Vcc -0.2V)	lcc2	9	9	9	mA	
OPERATING CURRENT: (RAS and CAS = Cycling; ^t RC = ^t RC (MIN))	lcc3	720	630	540	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE (RAS = V _I L, CAS = Cycling; ^t PC = ^t PC (MIN))	Icc4	540	450	360	mA	3, 4
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = Vih; tRC = tRC (MIN))	lcc5	720	630	540	mA	3, 4
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS = Cycling; tRC = tRC (MIN))	Icc6	720	630	540	mA	3, 4

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	Cl1		45	pF	2
Input Capacitance: RAS, CAS, WE	Cl2		63	pF	2
Input Capacitance: D	Сіз		7	pF	2
Input/Output Capacitance: DQ	Cio		12	pF	2
Output Capacitance: Q	Co		7	pF	2

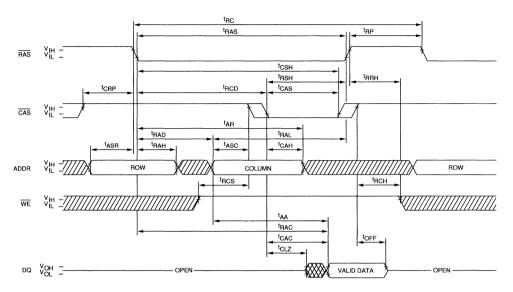
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS			-7		-8		10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		150		180		ns	
READ-WRITE cycle time	^t RWC	n/a		n/a		n/a		n/a	25
FAST-PAGE-MODE READ or WRITE cycle time	^t PC	40		40		55		ns	
FAST-PAGE-MODE READ-WRITE cycle time	^t PRWC	n/a		n/a		n/a		n/a	25
Access time from RAS	†RAC		70		80		100	ns	14
Access time from CAS	tCAC		20		20	***************************************	25	ns	15
Access time from column address	^t AA		35		40		50	ns	-
Access time from CAS precharge	^t CPA		35		40		50	ns	
RAS pulse width	tRAS	70	100,000	80	100,000	100	100,000	ns	
RAS pulse width (FAST PAGE MODE)	tRASP	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	tRSH	20		20		25		ns	
RAS precharge time	tRP	50		60		70		ns	_
CAS pulse width	^t CAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	tCSH	70		80		100		ns	
CAS precharge time	^t CPN	10		10		15		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	tRCD	20	60	20	60	25	75	ns	17
CAS to RAS precharge time	tCRP	5		5		5		ns	
Row address setup time	†ASR	0		0		0		ns	
Row address hold time	†RAH	10		10		15		ns	
RAS to column address delay time	tRAD	15	40	15	40	20	50	ns	18
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	-
Column address hold time (referenced to RAS)	^t AR	55		60		70		ns	
Column address to RAS lead time	^t RAL	35		40		50		ns	
Read command setup time	tRCS	0		0		0		ns	
Read command hold time (referenced to CAS)	^t RCH	0		0		0		ns	19
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19

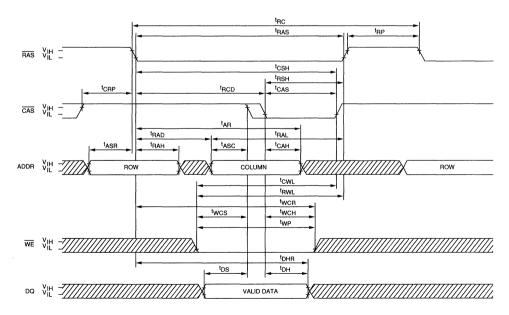
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C $\leq T_A \leq 75$ °C; Vcc = 5.0V \pm 10%)

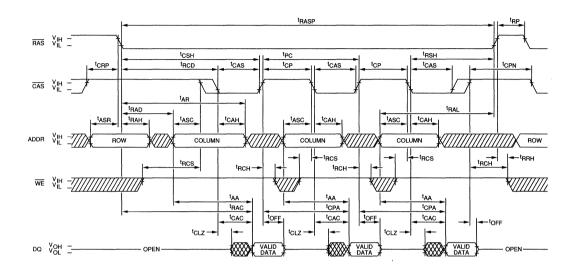
A.C. CHARACTERISTICS		-	7	-	8	-	10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
CAS to output in Low-Z	†CLZ	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	20
WE command setup time	tWCS	0		0		0		ns	
Write command hold time	tWCH	15		15		20		ns	
Write command hold time (referenced to RAS)	tWCR	55		60		75		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	^t RWL	20		20		25		ns	
Write command to CAS lead time	tCWL	20		20		25		ns	
Data-in setup time	†DS	0		0		0		ns	21
Data-in hold time	tDH	15		15		20		ns	21
Data-in hold time (referenced to RAS)	^t DHR	55		60		75		ns	
RAS to WE delay time	^t RWD	n/a		n/a		n/a		n/a	24
Column address to WE delay time	^t AWD	n/a		n/a		n/a		n/a	24
CAS to WE delay time	tCMD	n/a		n/a		n/a		n/a	24
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	9, 10
Refresh period (512 cycles)	t _{REF}		8		8		8	ms	
RAS to CAS precharge time	tRPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS REFRESH)	tCSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	15		15		15		ns	5
OE hold time from WE during READ-MODIFY-WRITE cycle	[†] OEH	n/a		n/a		n/a		n/a	24

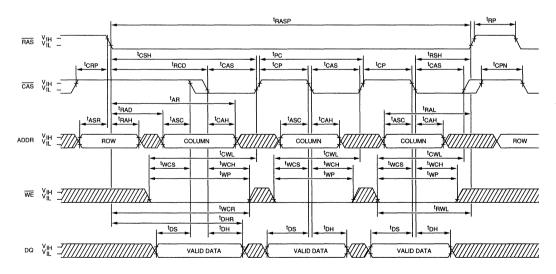

NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- In addition to meeting the transition rate specification, all input signals must transit between Vih and Vil (or between Vil and Vih) in a monotonic manner.
- 11. If $\overline{CAS} = VIH$, data output is high impedance.
- 12. If CAS = VIL, data output may contain data from the last valid READ cycle.
- Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.


- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and WE leading edge in late WRITE or READ-WRITE cycles.
- 22. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, \overline{WE} = LOW.
- 23. All other inputs equal Vcc -0.2V.
- LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to the common DQ configuration of U1-U8.
- 25. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5V for a period of less than 20ns and the signal's total duration is 25ns or less; or a -0.3V signal of any duration is presented (DC).

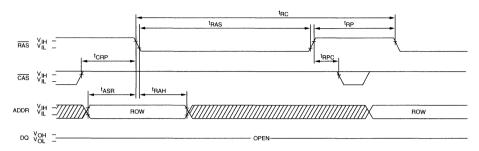
READ CYCLE


EARLY-WRITE CYCLE

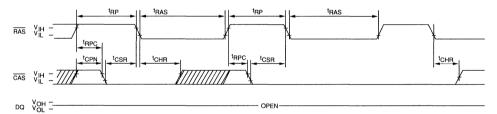

DON'T CARE
UNDEFINED

FAST-PAGE-MODE READ CYCLE

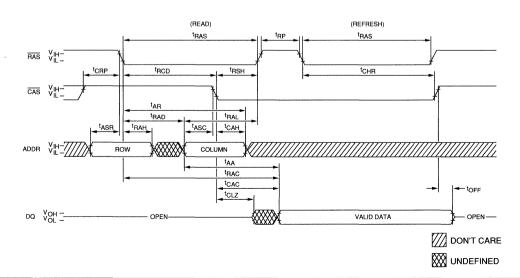
FAST-PAGE-MODE EARLY-WRITE CYCLE



DON'T CARE
UNDEFINED


RAS-ONLY REFRESH CYCLE

 $(ADDR = A_0 - A_8; A_9 \text{ and } \overline{WE} = DON'T CARE)$


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_9 \text{ and } \overline{WE} = \text{DON'T CARE})$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{22}$

DRAM MODULE

1 MEG x 9 DRAM

FAST PAGE MODE

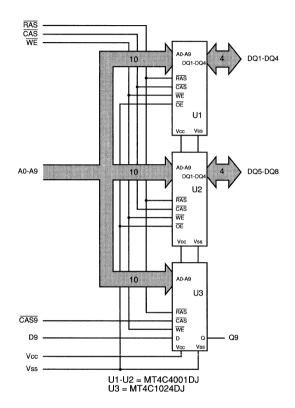
FEATURES

- Industry standard pinout in a 30-pin single-in-line memory module
- High-performance, CMOS silicon gate process
- Single 5V ±10% power supply
- Low power, 9mW standby; 625mW active, typical
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Optional FAST PAGE MODE access cycle
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- 1,024-cycle refresh distributed across 16ms

OPTIONS	MARKING
Timing	
70ns access	- 7
80ns access	- 8
100ns access	-10
Packages	
Leadless 30-pin SIMM	M
Leadless 30-pin SIMM (Gold)	G
Leaded 30-pin SIP	N

PIN ASSIGNMENT (Top View) 30-Pin SIP 30-Pin SIMM (1-2)(H-2) \bigcirc \bigcirc Vcc Vcc DQ1 DQ1 ÃΟ A0 DQ2 A2 A3 Δ2 **A**3 Vss Vss DQ3 10 A4 A5 DQ4 11 12 13 14 15 11 12 13 14 15 16 17 18 MT3D19M/G Δ5 DQ4 A6 A6 Α7 DQ5 16 17 18 19 DQ5 A8 A9 NC A8 = Α9 DQ6 WE 20 21 22 23 22 23 24 25 Vee DQ7 NC DQ8 DQ7 NC 25 26 27 28 DQ8 Q9 RAS CAS9 Q9 BAS CAS9 28 D9 D9 29 Vcc 30 \bigcirc \bigcirc

GENERAL DESCRIPTION


The MT3D19 is a randomly accessed solid-state memory containing 1,048,576 words organized in a x9 configuration. During READ or WRITE cycles, each word is uniquely addressed through 20 address bits, which are entered 10 bits (A0-A9) at a time. \overline{RAS} is used to latch the first 10 bits and \overline{CAS} the latter 10 bits. A READ or WRITE cycle is selected with the $\overline{\text{WE}}$ input. A logic HIGH on $\overline{\text{WE}}$ dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. EARLY WRITE occurs when \overline{WE} goes LOW prior to \overline{CAS} going LOW, and the output pins remain open (High-Z) until the next CAS cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS or HIDDEN REFRESH) so that all 1,024 combinations of RAS addresses (A0-A9) are executed at least every 16ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

						Addresses		
Function		RAS	CAS	CAS9	WE	^t R	t _C	DQ1-8, D9, Q9
Standby		Н	Х	Х	х	Х	Х	High Impedance
READ		L	L	L	Н	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	L	L	ROW	COL	Valid Data In
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	Н	ROW	COL	Valid Data Out
READ	2nd Cycle	L	H→L	H→L	Н	n/a	COL	Valid Data Out
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L	ROW	COL	Valid Data In
WRITE	2nd Cycle	L	H→L	H→L	L	n/a	COL	Valid Data In
RAS-ONLY REFRES	Н	L	Н	Н	X	ROW	n/a	High Impedance
HIDDEN	READ	L→H→L	L	L	Н	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	L	ROW	COL	Valid Data In
CAS-BEFORE-RAS REFRESH		H→L	L	L	×	Х	Х	High Impedance

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss.	1.0V to +7.0V
Operating Temperature, TA(Ambient)	0°C to +70°C
Storage Temperature	55°C to +150°C
Power Dissipation	3W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (0°C \leq T $_{A}$ \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	4.5	5.5	٧	
Input High (Logic 1) Voltage, All Inputs		ViH	2.4	Vcc+1	V	1
Input Low (Logic 0) Voltage, All Inputs		VIL	-1.0	0.8	٧	1
INPUT LEAKAGE Any Input 0V ≤ VIN ≤ Vcc (All other pins not under test = 0V)	D9, CAS9	lı	-2	2	μА	
	A0-A9, RAS, WE	lı	-6	6	μА	
OUTPUT LEAKAGE (Q is disabled, 0V ≤ Vouт ≤ Vcc)	Q9	loz	-10	10	μA	
	DQ1-DQ8	loz	-12	12	μА	
OUTPUT LEVELS Output High (Logic 1) Voltage (Iout = -5mA) Output Low (Logic 0) Voltage (Iout = 5mA)		Vон	2.4		٧	1
		Vol		0.4	v	

			MAX			
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
STANDBY CURRENT: TTL Input Levels (RAS = CAS = ViH)	Icc1	6	6	6	mA	
STANDBY CURRENT: CMOS Input Levels (RAS = CAS = Vcc -0.2V)	lcc2	3	3	3	mA	
OPERATING CURRENT (\overline{RAS} and \overline{CAS} = Cycling; ${}^{t}RC = {}^{t}RC$ (MIN))	Іссз	280	250	220	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL, CAS = Cycling; [†] PC = [†] PC (MIN))	ICC4	200	170	140	mA	3, 4
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = VIH; TRC = TRC (MIN))	lcc5	280	250	220	mA	3, 4
REFRESH CURRENT: \overline{CAS} -BEFORE- \overline{RAS} (\overline{RAS} and \overline{CAS} = Cycling; ${}^{t}RC = {}^{t}RC$ (MIN))	Icc6	280	250	220	mA	3, 4

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A9	Ci1		15	pF	18
Input Capacitance: RAS, CAS, WE	Ci2		21	pF	18
Input Capacitance: D	Сіз		7	pF	18
Input/Output Capacitance: DQ	Cı/o		7	pF	18
Output Capacitance: Q	Co		7	pF	18

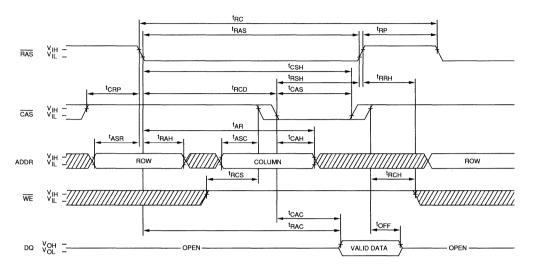
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T $_{A}$ \leq +70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS		-7		-8		-10			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		150		180		ns	
READ-WRITE cycle time	^t RWC	n/a		n/a		n/a		n/a	21
FAST-PAGE-MODE READ or WRITE	^t PC	40		45		55		ns	
cycle time									
FAST-PAGE-MODE READ-WRITE	^t PRWC	n/a		n/a		n/a		n/a	21
cycle time									
Access time from RAS	^t RAC		70		80		100	ns	14
Access time from CAS	^t CAC		20		20		25	ns	15
Access time from column address	tAA		35		40		50	ns	
Access time from CAS precharge	^t CPA		40		45		50	ns	
RAS pulse width	tRAS	70	100,000	80	100,000	100	100,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	^t RSH	20		20		25		ns	
RAS precharge time	t _{RP}	50		60		70		ns	
CAS pulse width	†CAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	^t CSH	70		80		100		ns	
CAS precharge time	^t CPN	10		10		15		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	^t RCD	20	50	20	60	25	75	ns	17
CAS to RAS precharge time	tCRP	5		5		5		ns	
Row address setup time	tASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
RAS to column	tRAD.	15	35	15	40	20	50	ns	18
address delay time	İ								
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	
Column address hold time	t _{AR}	55		60		70		ns	
(referenced to RAS)									
Column address to	tRAL.	35		40		50		ns	
RAS lead time							1]	
Read command setup time	tRCS	0		0		0		ns	
Read command hold time	tRCH	0		0		0		ns	19
(referenced to CAS)									
Read command hold time	tRRH	0		0		0		ns	19
(referenced to RAS)									
CAS to output in Low-Z	^t CLZ	0		0		0		ns	

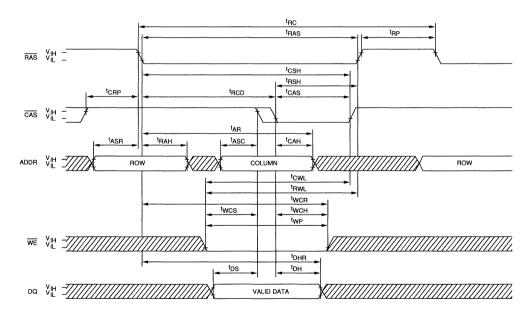
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5.0V \pm 10%)

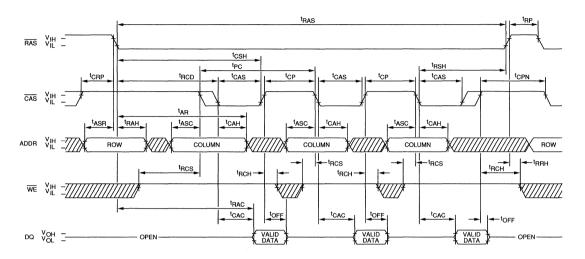
A.C. CHARACTERISTICS	-7				B	-10			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	20
WE command setup time	¹WCS	0		0		0		ns	
Write command hold time	†WCH	15		15		20		ns	
Write command hold time (referenced to RAS)	^t WCR	55		60		70		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	^t RWL	20		20		25		ns	
Write command to CAS lead time	^t CWL	20		20		25		ns	
Data-in setup time	t _{DS}	0		0		0		ns	
Data-in hold time	tDH	15		15		20		ns	
Data-in hold time (referenced to RAS)	^t DHR	55		60		70		ns	
RAS to WE delay time	^t RWD	n/a		n/a		n/a		n/a	21
Column address to WE delay time	t AW D	n/a		n/a	ĺ	n/a		n/a	21
CAS to WE delay time	tCWD	n/a		n/a		n/a		n/a	21
Transition time (rise or fall)	^t T	3	50	3	50	3	50	ns	5, 16
Refresh period (1,024 cycles)	tREF		16		16		16	ms	20
RAS to CAS precharge time	^t RPC	0		0		0		ns	19
CAS setup time (CAS-BEFORE-RAS REFRESH)	^t CSR	10		10		10		ns	19
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	15		15		15		ns	19
OE hold time from WE during READ-MODIFY-WRITE cycle	^t OEH	n/a		n/a		n/a		n/a	21

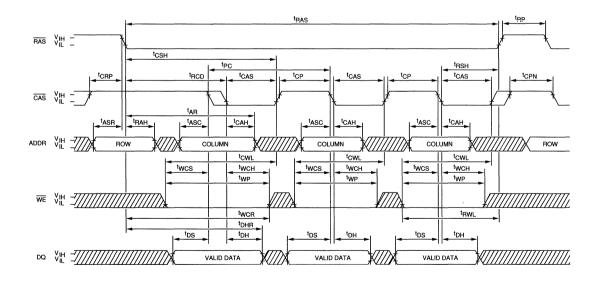

NOTES

- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of 100µs is required after power-up followed by any eight RAS REFRESH cycles (RAS-ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 16ms refresh requirement is exceeded.
- 4. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- Assumes that ^tRCD ≥ ^tRCD (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 11. If $\overline{\text{CAS}} = V_{IL}$, data output may contain data from the last valid READ cycle.
- 12. OFF (MAX) defines the time at which the output

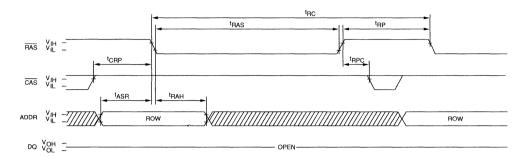

- achieves the open circuit condition and is not referenced to Voh or Vol.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. ${}^{t}RCH$ is referenced to the first rising edge of \overline{RAS} or \overline{CAS} .
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles.
- In addition to meeting the transition rate specification, all input signals must transit between Vih and Vil (or between Vil and Vih) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the Q buffer, CAS must be pulsed HIGH for ^tCP. Note 8 applies to determine valid data out.
- 19. On-chip refresh and address counters are enabled.
- A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- 21. LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to $\overline{\text{OE}}$ being grounded on U1 and U2.

READ CYCLE

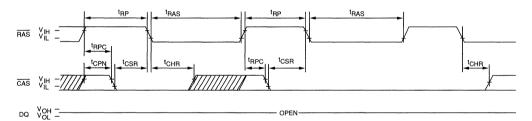

EARLY-WRITE CYCLE


DON'T CARE
UNDEFINED

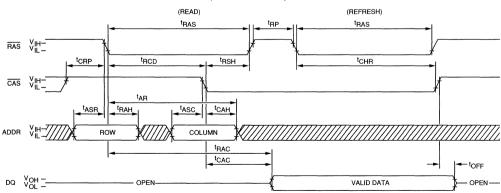
FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE

DON'T CARE



$\overline{\text{RAS-ONLY}}$ REFRESH CYCLE (ADDR = A₀ - A₀; $\overline{\text{WE}}$ = DON'T CARE)


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_9 \text{ and } \overline{WE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{20}$

DON'T CARE

₩ undefined

DRAM MODULE

4 MEG x 9 DRAM

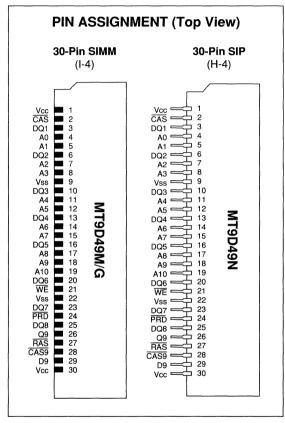
FAST PAGE MODE

FEATURES

OPTIONS

- Industry standard pinout in a 30-pin single-in-line package
- High-performance, CMOS silicon gate process
- Single 5V ±10% power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 27mW standby; 2,025mW active, typical
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN

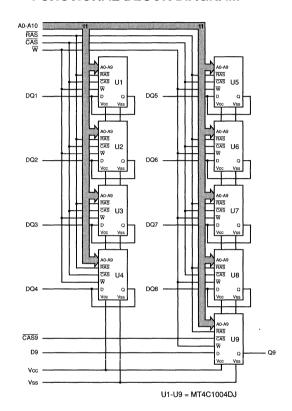
MARKING


- 1,024-cycle refresh distributed across 16ms
- Optional FAST PAGE MODE access cycle

Timing	
60ns access	- 6
70ns access	- 7
80ns access	- 8
• Packages Leadless 30-pin SIMM	M
Leadless 30-pin SIMM (Gold)	Ğ
Leaded 30-pin SIP	N

GENERAL DESCRIPTION

The MT9D49 is a randomly accessed solid-state memory containing 4,194,304 words organized in a x9 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 22 address bits which are entered 11 bits (A0-A10) at a time. \overline{RAS} is used to latch the first 11 bits and \overline{CAS} the latter 11 bits. A READ or WRITE cycle is selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} going LOW, and the ouput remains open (High-Z) until the next \overline{CAS} cycle.


FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A10) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by $\overline{\text{RAS}}$

followed by a column address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HIDDEN REFRESH) so that all 1,024 combinations of RAS addresses (A0-A10) are executed at least every 16ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

						Addr	esses	
Function		RAS	CAS	CAS9	WE	^t R	^t A	DQ1-8, D9, Q9
Standby		Н	Х	Х	Х	Х	Х	High Impedance
READ		L	L	L	Н	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	L	L	ROW	COL	Valid Data In
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	Η	ROW	COL	Valid Data Out
READ	2nd Cycle	L	H→L	H→L	Н	n/a	COL	Valid Data Out
FAST-PAGE-MODE	1st Cycle	L	H→L	H→L	L	ROW	COL	Valid Data In
WRITE	2nd Cycle	L	H→L	H→L	L	n/a	COL	Valid Data In
RAS-ONLY REFRES	Н	L	Н	Н	X	ROW	n/a	High Impedance
HIDDEN	READ	L→H→L	L	L	Н	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	L	ROW	COL	Valid Data In
CAS-BEFORE-RAS	Standard	H→L	L	L	Х	Х	Х	High Impedance
REFRESH								

ABSOLUTE MAXIMUM RATINGS*

 *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES	
Supply Voltage		Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs		ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs		VIL	-1.0	0.8	٧	1
INPUT LEAKAGE CURRENT	A9, CAS9	h	-2	2	μА	
Any Input: $0V \le V \text{In} \le 6.5V$ (All other pins not under test = $0V$)	A0-A10, WE, CAS, RAS	lı	-18	18	μА	
OUTPUT LEAKAGE CURRENT	Q9	loz	-10	10	μΑ	
(Q is disabled, 0V ≤ Vouт ≤ 5.5V)	DQ1-DQ8	loz	-12	12	μА	
OUTPUT LEVELS	Vон	2.4		V		
Output High Voltage (Ioυτ = -5mA) Output Low Voltage (Ioυτ = 4.2mA)		Vol		0.4	V	

			MAX		Ī	
PARAMETER/CONDITION	SYMBOL	-6	-7	-8	UNITS	NOTES
STANDBY CURRENT (TTL) (RAS = CAS = ViH)	Icc ₁	18	18	18	mA	
STANDBY CURRENT (CMOS) (RAS = CAS = Vcc -0.2V)	lcc2	9	9	9	mA	
OPERATING CURRENT: Random READ/WRITE Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	lcc3	990	900	810	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE Average power supply current (RAS = VIL, CAS, Address Cycling: tPC = tPC (MIN))	Icc4	720	630	540	mA	3, 4
REFRESH CURRENT: RAS-ONLY Average power supply current (RAS Cycling, CAS=VIH: TRC = TRC (MIN))	lcc5	990	900	810	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS Average power supply current (RAS, CAS, Address Cycling: ^t RC = ^t RC (MIN))	lcc ₆	990	900	810	mA	3

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A10	Cl1		45	pF	2
Input Capacitance: RAS, WE	Cl2		63	pF	2
Input Capacitance: D9	Сіз		7	pF	2
Input/Output Capacitance: DQ	Cio		12	pF	2
Output Capacitance: Q9	Co		7	pF	2

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

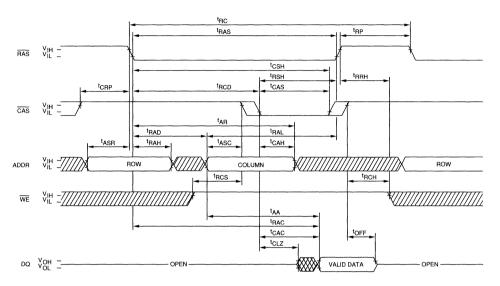
(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($Vcc = 5.0V \pm 10\%$)

A.C. CHARACTERISTICS			-6		-7		-8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	†RC	110		130		150		ns	
READ-WRITE cycle time	†RWC	n/a		n/a		n/a		n/a	24
FAST-PAGE-MODE READ	^t PC	40		40		45		ns	
or WRITE cycle time									
FAST-PAGE-MODE READ-WRITE	†PRWC	n/a		n/a		n/a		n/a	24
cycle time									
Access time from RAS	tRAC		60		70		80	ns	14
Access time from CAS	^t CAC		15		20		20	ns	15
Access time from column address	^t AA		30		35		40	ns	
Access time from CAS precharge	tCPA		40		40		45	ns	25
RAS pulse width	tRAS	60	100,000	70	100,000	80	100,000	ns	
RAS pulse width (FAST PAGE MODE)	†RASP	60	100,000	70	100,000	80	100,000	ns	
RAS hold time	tRSH	15		20		20		ns	
RAS precharge time	tRP	45		50		60		ns	
CAS pulse width	†CAS	15	100,000	20	100,000	20	100,000	ns	
CAS hold time	tCSH	60		70		80		ns	
CAS precharge time	^t CPN	10		10		10		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	tRCD	15	45	20	50	20	60	ns	17
CAS to RAS precharge time	tCRP	5		5		5		ns	
Row address setup time	tASR	0		0		0		ns	
Row address hold time	tRAH	10		10		10		ns	
RAS to column	^t RAD	15	30	15	35	15	40	ns	18
address delay time							1		
Column address setup time	†ASC	0		0		. 0		ns	
Column address hold time	^t CAH	10		15		15		ns	
Column address hold time	^t AR	50		55		60		ns	
(referenced to RAS)									
Column address to	†RAL	30		35		40		ns	
RAS lead time									
Read command setup time	†RCS	0		0		0		ns	
Read command hold time	tRCH	0		0		0		ns	19
(referenced to CAS)									
Read command hold time	tRRH	0		0		0		ns	19
(referenced to RAS)									
CAS to output in Low-Z	†CLZ	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	20
WE command setup time	tWCS	0		0		0		ns	21

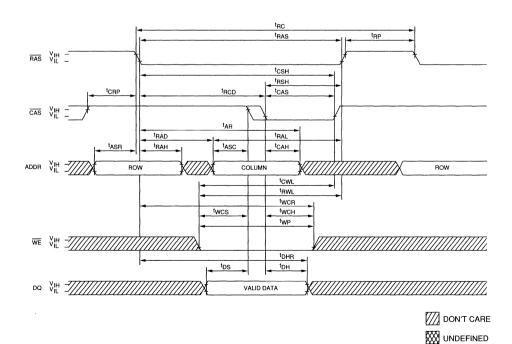
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (Vcc = $5.0V \pm 10\%$)

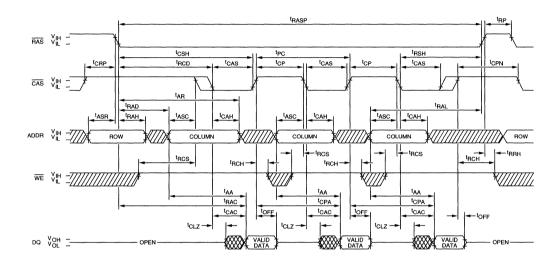
A.C. CHARACTERISTICS		-	6	-	7	-	8		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command hold time	tWCH	10		15		15		ns	
Write command hold time (referenced to RAS)	tWCR	45		55		60		ns	
Write command pulse width	tWP	10		15		15		ns	
Write command to RAS lead time	tRWL	15		20		20		ns	
Write command to CAS lead time	tCWL	15		20		20		ns	
Data-in setup time	^t DS	0		0		0		ns	21
Data-in hold time	^t DH	10		15		15		ns	21
Data-in hold time (referenced to RAS)	^t DHR	45		55		60		ns	
RAS to WE delay time	tRWD	n/a		n/a		n/a		n/a	24
Column address to WE delay time	^t AWD	n/a		n/a		n/a		n/a	24
CAS to WE delay time	tCWD	n/a		n/a		n/a		n/a	24
Transition time (rise or fall)	^t T	3	50	3	50	3	50	ns	9, 10
Refresh period (1,024 cycles)	tREF		16		16		16	ms	
RAS to CAS precharge time	tRPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS REFRESH)	tCSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	15		15		15		ns	5


NOTES

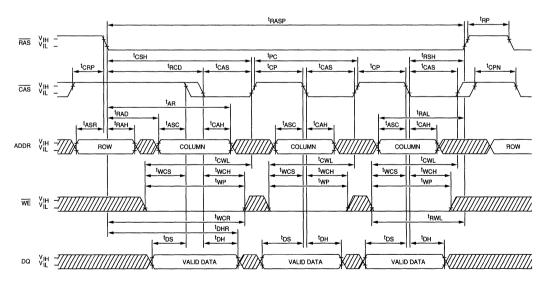
- All voltages referenced to Vss.
- This parameter is sampled. Capacitance is calculated from the equation C = I ^{dt}/_{dv} with dv = 3V and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading and cycle rates.
 Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by any eight RAS refresh cycles (RAS-ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 16ms refresh requirement is exceeded.
- 8. $A\bar{C}$ characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{CAS} = VIH$, data output is high impedance.
- 12. If $\overline{\text{CAS}} = \text{Vil.}$, data output may contain data from the last valid READ cycle.
- 13. Measured with a load equivalent to two TTL gates and 100pF.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this


- table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, Q will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles.
- 22. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$.
- 23. All other inputs equal Vcc -0.2V.
- 24. LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to the common DQ configuration of U1-U8.

READ CYCLE

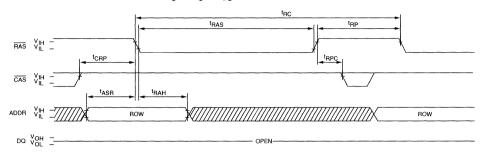


EARLY-WRITE CYCLE

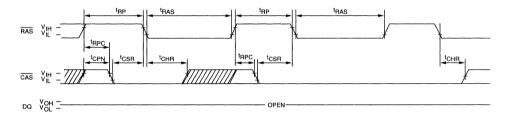


FAST-PAGE-MODE READ CYCLE

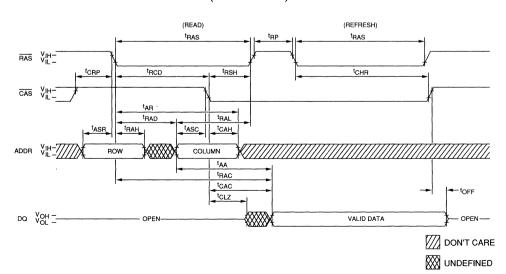
FAST-PAGE-MODE EARLY-WRITE CYCLE


DON'T CARE

₩ UNDEFINED


RAS-ONLY REFRESH CYCLE

 $(ADDR = A_0 - A_9; A_{10} \text{ and } \overline{WE} = DON'T CARE)$


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_{10} \text{ and } \overline{WE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{23}$

DRAM MODULE

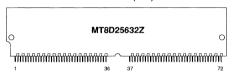
256K x 32 DRAM

FAST PAGE MODE

FEATURES

- Industry standard pinout in a 72-pin single-in-line package
- High-performance CMOS silicon gate process.
- Single 5V ±10% power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 24mW standby; 1,400mW active, typical
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- 512-cycle refresh distributed across 8ms
- Optional FAST PAGE MODE access cycle

OPTIONS	MARKING
Timing	
70ns access	- 7
80ns access	- 8
85ns access	-85
100ns access	-10
Packages	
Leadless 72 -pin SIMM	M
Leadless 72 -pin SIMM (Gold)	G
Leaded 72-pin ZIP	Z

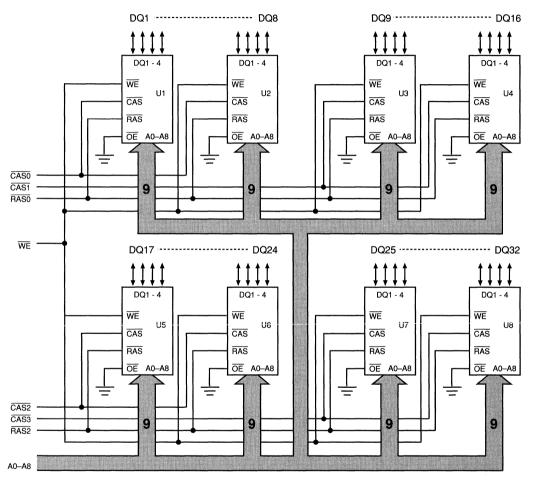

GENERAL DESCRIPTION

The MT8D25632 is a randomly accessed solid-state memory containing 262,144 words organized in a x32 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 18 address bits which are entered 9 bits (A0-A8) at a time. RAS is used to latch the first 9 bits and CAS the latter 9 bits. A READ or WRITE cycle is selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. If WE goes LOW prior to CAS going LOW, the output pin(s) remain open (High-Z) until the next CAS cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A8) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by \overline{RAS}

PIN ASSIGNMENT (Top View)

72-Pin ZIP (J-4)


PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	19	NC	37	NC	55	DQ12
2	DQ1	20	DQ5	38	NC	56	DQ28
3	DQ17	21	DQ21	39	Vss	57	DQ13
4	DQ2	22	DQ6	40	CAS0	58	DQ29
5	DQ18	23	DQ22	41	CAS2	59	Vcc
6	DQ3	24	DQ7	42	CAS3	60	DQ30
7	DQ19	25	DQ23	43	CAS1	61	DQ14
8	DQ4	26	DQ8	44	RAS0	62	DQ31
9	DQ20	27	DQ24	45	NC	63	DQ15
10	Vcc	28	A7	46	NC	64	DQ32
11	NC	29	NC	47	WE	65	DQ16
12	A0	30	Vcc	48	NC	66	NC
13	A1	31	A8	49	DQ8	67	PRD1
14	A2	32	NC	50	DQ25	68	PRD2
15	A3	33	NC	51	DQ10	69	PRD3
16	A4	34	RAS2	52	DQ26	70	PRD4
17	A5	35	NC	53	DQ11	71	NC
18	A6	36	NC	54	DQ27	72	Vss

followed by a column address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HIDDEN REFRESH) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

U1-U8 = MT4C4256DJ

TRUTH TABLE

i					Addr	esses	
Function		RAS	CAS	WE	^t R	t _C	DQ1-32
Standby		Н	Х	Х	Х	Х	High Impedance
READ	· · · · · · · · · · · · · · · · · · ·	L	L	Н	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	L	ROW	COL	Valid Data In
FAST-PAGE-	1st Cycle	L	H→L→H	Н	ROW	COL	Valid Data Out
MODE READ	2nd Cycle	L	H→L→H	Н	n/a	COL	Valid Data Out
FAST-PAGE-	1st Cycle	L	H→L→H	L	ROW	COL	Valid Data In
MODE WRITE	2nd Cycle	L	H→L→H	L	n/a	COL	Valid Data In
RAS-ONLY RE	FRESH	L	Н	Х	ROW	n/a	High Impedance
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Valid Data In
CAS-BEFORE-	RAS	H→L	L	Х	Х	Х	High Impedance
REFRESH							

PRESENCE DETECT

SYMBOL	-7	-8	-85	-10
PRD1	NC	vss	VSS	vss
PRD2	NC	NC	NC	NC
PRD3	vss	vss	NC	vss
PRD4	vss	NC	VSS	vss

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Operating Temperature, TA(Ambient)	0°C to +70°C
Storage Temperature (Plastic)	-55°C to +150°C
Power Dissipation	8W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (Notes: 1, 3, 4, 6, 7) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	¢	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	4.5	5.5	V	
Input High (Logic 1) Voltage, All Inputs		Vıн	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs		VIL	-2.0	0.8	٧	1, 22
INPUT LEAKAGE CURRENT Any input: $0V \le V_{IN} \le V_{CC}$ (All other pins not under test = 0V) For each package input	A0-A8, WE	lı .	-16	16	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vout ≤ Vcc) For each package input	DQ1-DQ32	loz	-12	12	μА	
OUTPUT LEVELS		Vон	2.4		V	1
Output High Voltage (Ιουτ = -5mA) Output Low Voltage (Ιουτ = 5mA)		Vol		0.4	V	'

					ı	
			MAX			
PARAMETER/CONDITION	SYMBOL	-7	-8, -85	-10	UNITS	NOTES
OPERATING CURRENT (\overline{RAS} and \overline{CAS} = Cycling: ${}^{t}RC$ = ${}^{t}RC$ (MIN))	Icc1	640	560	480	mA	2
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL, CAS = Cycling: PC = PC (MIN))	lcc2	480	400	320	mA	2
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = VIH after 8 RAS cycles (MIN))	lcc3	16	16	16	mA	
STANDBY CURRENT: CMOS INPUT LEVELS Power supply standby current (RAS = CAS = Vcc -0.2V after 8 RAS cycles (MIN)). (All other inputs at Vcc -0.2V or Vss +0.2V)	Icc4	8	8	8	mA	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling: CAS = ViH)	lcc5	640	560	480	mA	2
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS = Cycling)	lcc ₆	640	560	480	mA	2

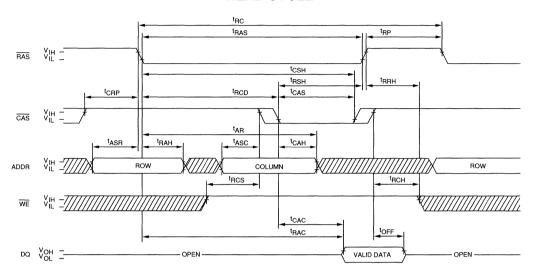
CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	Cl1		40	рF	17
Input Capacitance: WE	CI2		56	pF	17
Input Capacitance: RAS0	Сіз		28	рF	17
Input Capacitance: CAS0-CAS3	CI4		14	pF	17
Input/Output Capacitance: DQ1-DQ32	Cio		7	pF	17

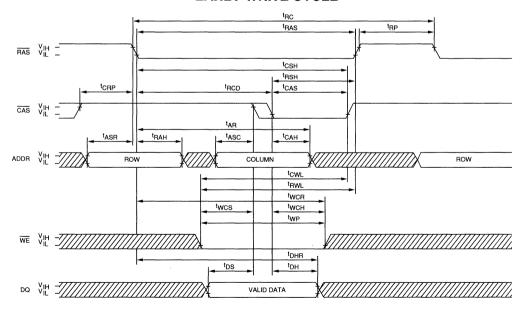
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 10, 11, 16, 17) (0°C \leq T_{Δ} \leq 70°C; Vcc = 5.0V \pm 10%)

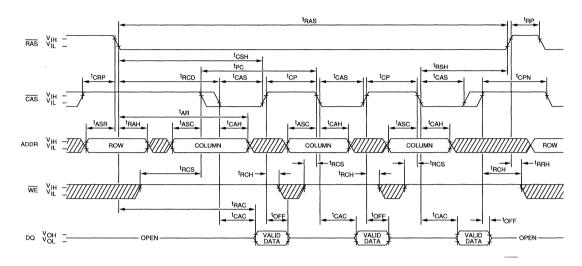
A.C. CHARACTERISTICS -7 -8, -85					10				
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	135		150		180		ns	6, 7
FAST-PAGE-MODE cycle time	^t PC	40		45		55		ns	6, 7
Access time from RAS	tRAC		70		80		100	ns	7, 8
Access time from CAS	^t CAC		20		20		25	ns	7, 9
RAS pulse width	tRAS	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	tRSH	20		20		25		ns	
RAS precharge time	tRP	50		60		70		ns	
CAS pulse width	^t CAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	tCSH	70		80		100		ns	
CAS precharge time	^t CPN	10		10		15		ns	18
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	^t RCD	20	40	20	60	25	75	ns	13
CAS to RAS setup time	^t CRP	5		5		5		ns	
Row address setup time	tASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
Column address setup time	tASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	
Column address hold time referenced to RAS	^t AR	55		60		70		ns	
Read command setup time	tRCS	0		0		0		ns	
Read command hold time referenced to CAS	^t RCH	0		0		0		ns	14
Read command hold time referenced to RAS	^t RRH	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	12
WE command setup time	twcs	0		0		0		ns	
Write command hold time	†WCH	15		15		20		ns	
Write command hold time referenced to RAS	^t WCR	55		60		75		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	^t RWL	20		20		25		ns	
Write command to CAS lead time	tCWL	20		20		25		ns	
Data-in setup time	^t DS	0		0		0		ns	15
Data-in hold time	^t DH	15		15		20	1	ns	15
Data-in hold time referenced to RAS	^t DHR	55		60		75		ns	
Transition time (rise or fall)	tΤ	3	50	3	50	3	50	ns	16
Refresh period (256 cycles)	^t REF		8		8		8	ms	20
CAS hold time (CAS-before-RAS REFRESH)	^t CHR	15		15		15		ns	19
CAS setup time (CAS-BEFORE-RAS REFRESH)	tCSR	10		10		10		ns	19
RAS to CAS precharge time	tRPC	0		0		0		ns	19

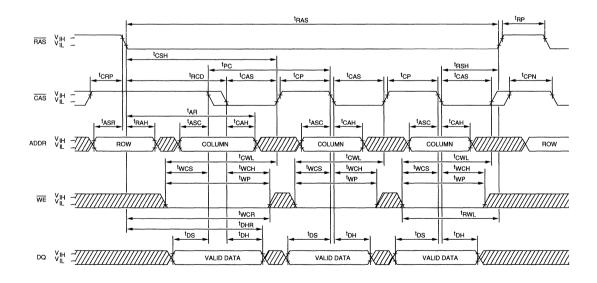

NOTES

- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- AC characteristics assume ^tT = 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 11. If $\overline{\text{CAS}} = V_{\text{IL}}$, data output may contain data from the last valid READ cycle.
- 12. OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 13. Operation within the ^tRCD (MAX) limit ensures that


- ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. ^tRCH is referenced to the first rising edge of RAS or CAS.
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles.
- 16. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIII and VIH) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and V = 5V.
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for tCP. Note 8 applies to determine valid data out.
- 19. On-chip refresh and address counters are enabled.
- 20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- 21. LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to $\overline{\text{OE}}$ being grounded on U1-U8.
- 22. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5V for a period of less than 20ns and the signal's total duration is 25ns or less; or a -0.3V signal of any duration is presented (DC).

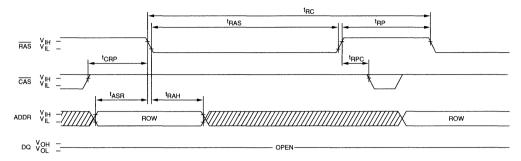
READ CYCLE


EARLY-WRITE CYCLE

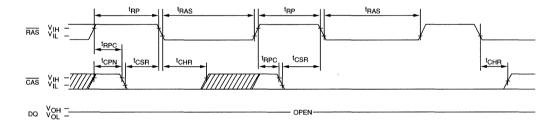


FAST-PAGE-MODE READ CYCLE

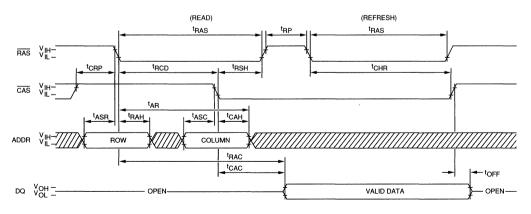
FAST-PAGE-MODE EARLY-WRITE CYCLE


DON'T CARE

₩ undefined


RAS-ONLY REFRESH CYCLE

 $(ADDR = A_0 - A_7; A_8 \text{ and } \overline{WE} = DON'T CARE)$


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_8, \overline{WE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{20}$

DON'T CARE

₩ UNDEFINED

DRAM MODULE

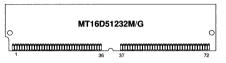
512K x 32 DRAM

FAST PAGE MODE

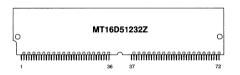
FEATURES

- Industry standard pinout in a 72-pin single-in-line package
- High-performance CMOS silicon gate process.
- Single 5V ±10% power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 48mW standby; 2,800mW active, typical
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- 512-cycle refresh distributed across 8ms
- Optional FAST PAGE MODE access cycle

OPTIONS	MARKING
Timing	
70ns access	- 7
80ns access	- 8
85ns access	-85
100ns access	-10
• Packages	
Leadless 72-pin SIMM	M
Leadless 72 -pin SIMM (Gold)	G
Leaded 72-pin ZIP	Z


GENERAL DESCRIPTION

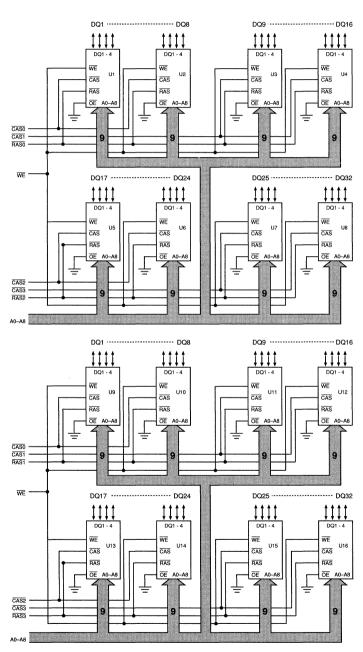
The MT16D51232 is a randomly accessed solid-state memory containing 524,288 words organized in a x32 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 18 address bits which are entered 9 bits (A0-A8) at a time. RAS is used to latch the first 9 bits and CAS the latter 9 bits. READ or WRITE cycles are selected with the $\overline{\text{WE}}$ input. A logic HIGH on $\overline{\text{WE}}$ dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. EARLY WRITE occurs when WE goes LOW prior to CAS going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle.


FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A8) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may

PIN ASSIGNMENT (Top View)

72-Pin SIMM (I-6)

72-Pin ZIP (J-5)


PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	19	NC	37	NC	55	DQ12
2	DQ1	20	DQ5	38	NC	56	DQ28
3	DQ17	21	DQ21	39	Vss	57	DQ13
4	DQ2	22	DQ6	40	CASO	58	DQ29
5	DQ18	23	DQ22	41	CAS2	59	Vcc
6	DQ3	24	DQ7	42	CAS3	60	DQ30
7	DQ19	25	DQ23	43	CAS1	61	DQ14
8	DQ4	26	DQ8	44	RAS0	62	DQ31
9	DQ20	27	DQ24	45	RAS1	63	DQ15
10	Vcc	28	A7	46	NC	64	DQ32
11	NC	29	NC	47	WE	65	DQ16
12	A0	30	Vcc	48	NC	66	NC
13	A1	31	A8	49	DQ9	67	PRD1
14	A2	32	NC	50	DQ25	68	PRD2
15	A3	33	RAS3	51	DQ10	69	PRD3
16	A4	34	RAS2	52	DQ26	70	PRD4
17	A5	35	NC	53	DQ11	71	NC
18	A6	36	NC	54	DQ27	72	Vss

be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST-PAGE-MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HIDDEN REFRESH) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

U1-U16 = MT4C4256DJ

TRUTH TABLE

					Addr	esses	
Function		RAS	CAS	WE	^t R	tC	DQ1-32
Standby		Н	х	Х	Х	Х	High Impedance
READ		L	L	Н	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	L	ROW	COL	Valid Data In
FAST-PAGE-	1st Cycle	L	H→L→H	Н	ROW	COL	Valid Data Out
MODE READ	2nd Cycle	L	H→L→H	Н	n/a	COL	Valid Data Out
FAST-PAGE-	1st Cycle	L	H→L→H	L	ROW	COL	Valid Data In
MODE WRITE	2nd Cycle	L	H→L→H	L	n/a	COL	Valid Data In
RAS-ONLY RE	FRESH	L	Н	Х	ROW	n/a	High Impedance
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Valid Data In
CAS-BEFORE-RAS		H→L	L	Х	Х	Х	High Impedance
REFRESH							

PRESENCE DETECT

SYMBOL	-7	-8	-85	-10
PRD1	VSS	NC	NC	NC
PRD2	VSS	VSS	vss	vss
PRD3	NC	vss	NC	VSS
PRD4	NC	NC	VSS	VSS

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Operating Temperature, TA(Ambient)	0°C to +70°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	16W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (Notes: 1, 3, 4, 6, 7) (0°C \leq T $_{A} \leq$ 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	4.5	5.5	٧	
Input High (Logic 1) Voltage, All Inputs		Vін	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VıL	-2.0	0.8	٧	1, 22	
INPUT LEAKAGE CURRENT Any Input: $0V \le V_{IN} \le V_{CC}$ (All other pins not under test = 0V) For each package input	A0-A8, WE	lı .	-32	32	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vout ≤ Vcc) For each package input	DQ1-32	loz	-24	24	μΑ	
OUTPUT LEVELS Output High Voltage (Iout = -5mA)		Vон	2.4		٧	1
Output Low Voltage (Iout = 5mA)		V OL		0.4	٧	'

					1	
			MAX			
PARAMETER/CONDITION	SYMBOL	-7	-8, -85	-10	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC (MIN))	lcc1	656	576	496	mA	2
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL, CAS = Cycling: PC = PC (MIN))	lcc2	496	416	336	mA	2
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = Vih after 8 RAS cycles (MIN))	lcc3	32	32	32	mA	
STANDBY CURRENT: CMOS INPUT LEVELS Power supply standby current (RAS = CAS = Vcc -0.2V after 8 RAS cycles (MIN)). (All other inputs at Vcc -0.2V or Vss +0.2V)	Icc4	16	16	16	mA	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling: CAS = ViH)	Icc5	656	576	496	mA	2
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS = Cycling)	lcc6	656	576	496	mA	2

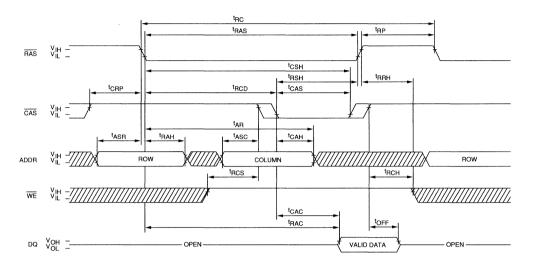
CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	Cıı		80	pF	17
Input Capacitance: WE	CI2		112	pF	17
Input Capacitance: CASO-CAS3, RASO-RAS3	CI4		28	pF	17
Input/Output Capacitance: DQ1-DQ32	Сю		14	pF	17

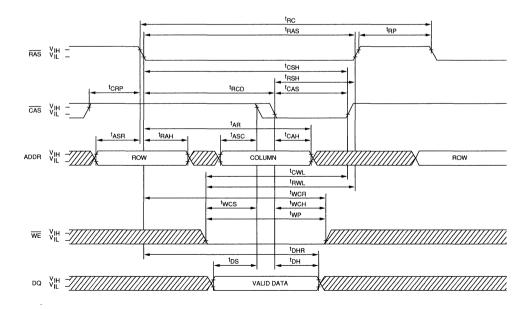
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 10, 11, 16, 17) (0°C \leq $T_{\mbox{\scriptsize A}} \leq$ 70°C; Vcc = 5.0V \pm 10%)

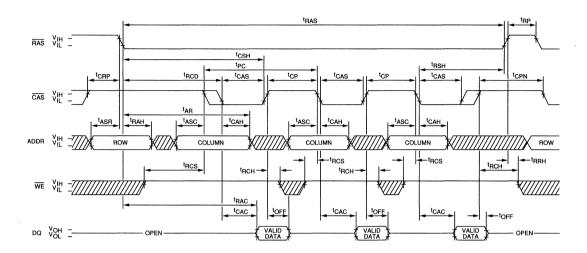
A.C. CHARACTERISTICS		-7		-8, 85			10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	135		150		180		ns	6, 7
FAST-PAGE-MODE cycle time	^t PC	40		45		55		ns	6, 7
Access time from RAS	^t RAC		70		80		100	ns	7, 8
Access time from CAS	^t CAC		20		20		25	ns	7, 9
RAS pulse width	^t RAS	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	^t RSH	20		20		25		ns	
RAS precharge time	^t RP	50		60		70		ns	
CAS pulse width	^t CAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	tCSH	70		80		100		ns	
CAS precharge time	^t CPN	10		10		15		ns	18
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	^t RCD	20	40	20	60	25	75	ns	13
CAS to RAS setup time	tCRP	5		5		5		ns	
Row address setup time	^t ASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	
Column address hold time referenced to RAS	^t AR	55		60		70		ns	
Read command setup time	tRCS	0		0		0		ns	
Read command hold time referenced to CAS	^t RCH	0		0		0		ns	14
Read command hold time referenced to RAS	^t RRH	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	12
WE command setup time	twcs	0		0		0		ns	
Write command hold time	tWCH	15		15		20		ns	
Write command hold time referenced to RAS	tWCR	55		60		75		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	tRWL	20		20		25		ns	
Write command to CAS lead time	^t CWL	20		20		25		ns	
Data-in setup time	^t DS	0		0		0		ns	15
Data-in hold time	^t DH	15		15		20		ns	15
Data-in hold time referenced to RAS	^t DHR	55		60		75		ns	
Transition time (rise or fall)	tΤ	. 3	50	3	50	3	50	ns	16
Refresh period (256 cycles)	†REF		8		8		8	ms	20
CAS hold time (CAS-before-RAS REFRESH)	^t CHR	15		15		15		ns	19
CAS setup time (CAS-BEFORE-RAS REFRESH)	^t CSR	10		10		10		ns	19
RAS to CAS precharge time	^t RPC	0		0		0		ns	19

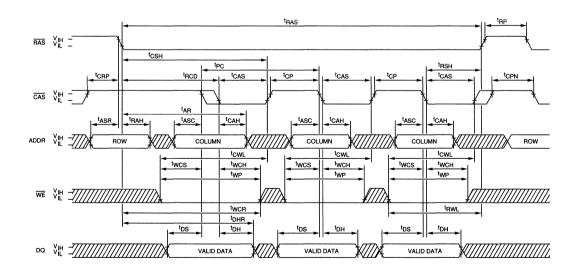

NOTES

- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 4. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 11. If $\overline{\text{CAS}} = \text{Vil.}$, data output may contain data from the last valid READ cycle.
- *OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as

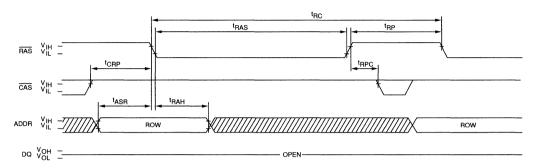

- a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. ^tRCH is referenced to the first rising edge of RAS or CAS
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles.
- In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VII. and VIH) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP. Note 8 applies to determine valid data out.
- 19. On-chip refresh and address counters are enabled.
- A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- 21. LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to \overline{OE} being grounded on U1-U16.
- 22. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5V for a period of less than 20ns and the signal's total duration is 25ns or less; or a -0.3V signal of any duration is presented (DC).

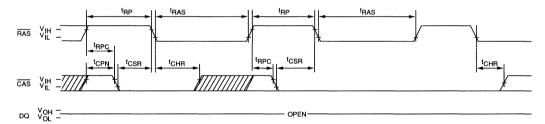
READ CYCLE


EARLY-WRITE CYCLE

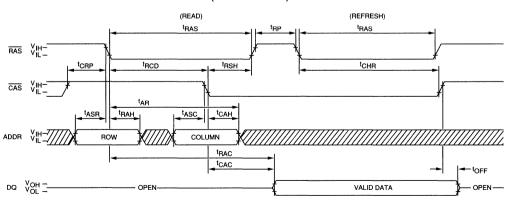

DON'T CARE

FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE


RAS-ONLY REFRESH CYCLE

 $(ADDR = A_0 - A_7; A_8 \text{ and } \overline{WE} = DON'T CARE)$


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_8, \overline{WE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{20}$

DON'T CARE

W UNDEFINED

DRAM MODULE

1 MEG x 32 DRAM

FAST PAGE MODE

FEATURES

OPTIONS

- Industry standard pinout in a 72-pin single-in-line package
- High-performance CMOS silicon gate process.
- Single 5V ±10% power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 24mW standby; 1,800mW active, typical
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN

MARKING

- 1.024-cycle refresh distributed across 16ms
- Optional FAST PAGE MODE access cycle

Timing	
70ns access	- 7
80ns access	- 8
100ns access	-10
 Packages Leadless 72-pin SIMM Leadless 72-pin SIMM (Gold) Leaded 72-pin ZIP 	M G Z

GENERAL DESCRIPTION

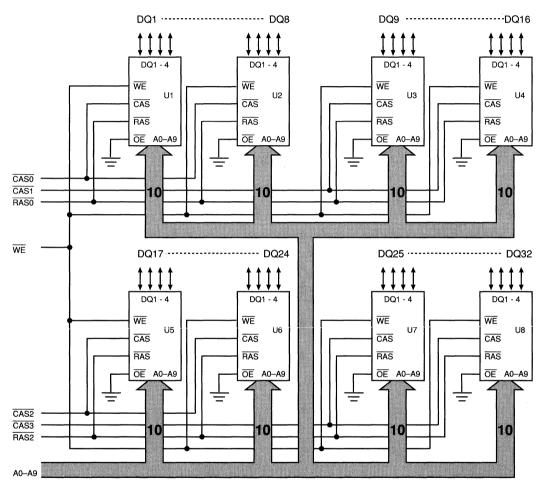
The MT8D132 is a randomly accessed solid-state memory containing 1,048,576 words organized in a x32 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits which are entered 10 bits (A0-A9) at a time. \overline{RAS} is used to latch the first 10 bits and \overline{CAS} the latter 10 bits. A READ or WRITE cycle is selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by \overline{RAS}

PIN ASSIGNMENT (Top View)

72-Pin SIMM (I-5)

72-Pin ZIP (J-4)


PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	19	NC	37	NC	55	DQ12
2	DQ1	20	DQ5	38	NC	56	DQ28
3	DQ17	21	DQ21	39	Vss	57	DQ13
4	DQ2	22	DQ6	40	CASO	58	DQ29
5	DQ18	23	DQ22	41	CAS2	59	Vcc
6	DQ3	24	DQ7	42	CAS3	60	DQ30
7	DQ19	25	DQ23	43	CAS1	61	DQ14
8	DQ4	26	DQ8	44	RAS0	62	DQ31
9	DQ20	27	DQ24	45	NC	63	DQ15
10	Vcc	28	A7	46	NC	64	DQ32
11	NC	29	NC	47	WE	65	DQ16
12	A0	30	Vcc	48	NC	66	NC
13	A1	31	A8	49	DQ9	67	PRD1
14	A2	32	A9	50	DQ25	68	PRD2
15	A3	33	NC	51	DQ10	69	PRD3
16	A4	34	RAS2	52	DQ26	70	PRD4
17	A5	35	NC	53	DQ11	71	NC
18	A6	36	NC	54	DQ27	72	Vss

followed by a column address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HIDDEN REFRESH) so that all 1,024 combinations of RAS addresses (A0-A9) are executed at least every 16ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

U1-U8 = MT4C4001DJ

TRUTH TABLE

					Addresses		
Function		RAS	CAS	WE	^t R	tC	DQ1-32
Standby		Н	Х	X	X	X	High Impedance
READ		L	L	Н	ROW	COL	Valid Data Out
EARLY-WRITE	ARLY-WRITE		L	L	ROW	COL	Valid Data In
FAST-PAGE-	1st Cycle	L	H→L	Н	ROW	COL	Valid Data Out
MODE READ	2nd Cycle	L	H→L	Н	n/a	COL	Valid Data Out
FAST-PAGE-	1st Cycle	L	H→L	L	ROW	COL	Valid Data In
MODE WRITE	2nd Cycle	L	H→L	L	n/a	COL	Valid Data In
RAS-ONLY RE	FRESH	L	Н	Х	ROW	n/a	High Impedance
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Valid Data In
CAS-BEFORE-RAS		H→L	L	Х	Х	Х	High Impedance
REFRESH							

PRESENCE DETECT

SYMBOL	-7	-8	-10
PRD1	NC	VSS	NC
PRD2	VSS	VSS	NC
PRD3	vss	NC	NC
PRD4	NC	VSS	NC

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC supply relative to Vss	1.0V to +7.0V
Operating Temperature, TA(Ambient)	0°C to +70°C
Storage Temperature (Plastic)	-55°C to +150°C
Power Dissipation	8W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (Notes: 1, 3, 4, 6, 7) (0°C \leq T $_{A} \leq$ 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧		
Input High (Logic 1) Voltage, All Inputs		ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1	
INPUT LEAKAGE CURRENT Any input: $0V \le V_{IN} \le V_{CC}$ (All other pins not under test = 0V) For each package input	A0-A8, WE	1	-16	16	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vouт ≤ Vcc) For each package input	DQ1-DQ32	loz	-12	12	μА	
OUTPUT LEVELS Output High Voltage (Iout = -5mA)		Vон	2.4		٧	4
Output Low Voltage (Iout = 5mA)	Vol		0.4	٧]	

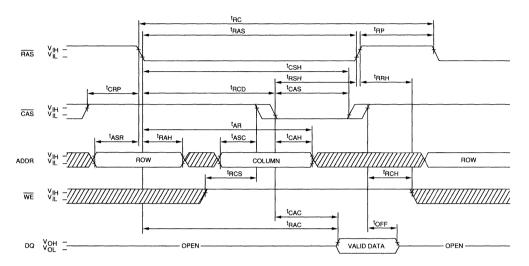
			MAX			
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
OPERATING CURRENT (\overline{RAS} and \overline{CAS} = Cycling: ${}^{t}RC = {}^{t}RC$ (MIN))	lcc1	800	720	640	mA	2
OPERATING CURRENT: FAST PAGE MODE $(\overline{RAS} = V_{IL}, \overline{CAS} = Cycling: {}^{t}PC = {}^{t}PC (MIN))$	lcc2	560	480	400	mA	2
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = VIH after 8 RAS cycles MIN)	Іссз	16	16	16	mA	
STANDBY CURRENT: CMOS INPUT LEVELS Power supply standby current (RAS = CAS = Vcc -0.2V after 8 RAS cycles MIN All other inputs at Vcc -0.2V or Vss +0.2V)	lcc4	8	8	8	mA	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling: CAS = ViH)	lcc5	800	720	640	mA	2
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS = Cycling)	Icc6	800	720	640	mA	2

CAPACITANCE

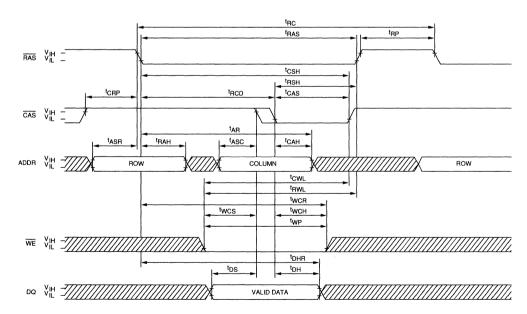
PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	Ci1		40	pF	17
Input Capacitance: WE	Cı2		56	pF	17
Input Capacitance: RAS0, RAS2	Сіз		28	pF	17
Input Capacitance: CASO, CASO, CAS2, CAS3	C14		14	pF	17
Input/Output Capacitance: DQ1-DQ32	Cio		7	pF	17

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes: 3, 4, 5, 10, 11, 16, 17) (0°C \leq T $_A$ \leq 70°C; Vcc = 5.0V \pm 10%)

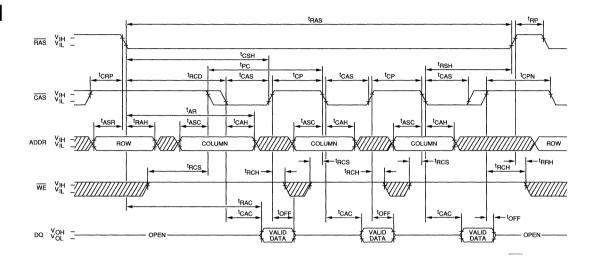
A.C. CHARACTERISTICS			-7		-8		-10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	†RC	130		150		180		ns	6, 7
FAST-PAGE-MODE cycle time	^t PC	40		45		55	1	ns	6, 7
Access time from RAS	^t RAC		70		80		100	ns	7, 8
Access time from CAS	^t CAC		20		20		25	ns	7, 9
RAS pulse width	tRAS	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	^t RSH	20		20		25	1	ns	
RAS precharge time	^t RP	50		60		70		ns	
CAS pulse width	^t CAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	tCSH	70		80		100		ns	
CAS precharge time	^t CPN	10		10		15		ns	18
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	^t RCD	20	50	20	50	25	75	ns	13
CAS to RAS setup time	tCRP	5		5		20		ns	
Row address setup time	^t ASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	
Column address hold time referenced to RAS	^t AR	55		60		70		ns	
Read command setup time	^t RCS	0		0		0		ns	
Read command hold time referenced to CAS	^t RCH	0		0		0		ns	14
Read command hold time referenced to RAS	^t RRH	0		0		0		ns	
Output buffer turn-off delay	[†] OFF	0	20	0	20	0	20	ns	12
WE command setup time	twcs	0		0		0		ns	
Write command hold time	tWCH	15		15		20		ns	
Write command hold time referenced to RAS	^t WCR	55		60		75		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	tRWL	20		20		25		ns	
Write command to CAS lead time	^t CWL	20		20		25		ns	
Data-in setup time	t _{DS}	0		0		0		ns	15
Data-in hold time	^t DH	15		15		20		ns	15
Data-in hold time referenced to RAS	^t DHR	55		60		75		ns	
Transition time (rise or fall)	tΤ	3	50	3	50	3	50	ns	16
Refresh period (256 cycles)	^t REF		16		16		16	ms	20
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	15		15		15		ns	19
CAS setup time (CAS-BEFORE-RAS REFRESH)	^t CSR	10		10		10		ns	19
RAS-to-CAS precharge time	tRPC	0		0		0		ns	19

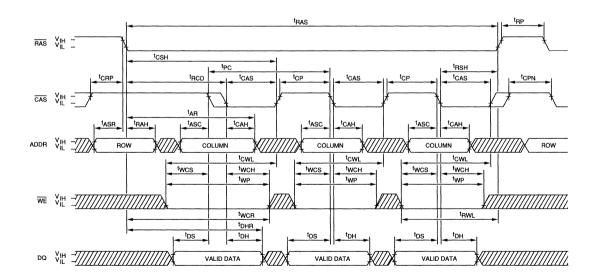

NOTES

- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of 100µs is required after power-up followed by any eight RAS REFRESH cycles (RAS-ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 16ms refresh requirement is exceeded.
- 4. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- Assumes that ^tRCD ≥ ^tRCD (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 11. If $\overline{\text{CAS}} = \text{Vil.}$, data output may contain data from the last valid READ cycle.
- 12. tOFF (MAX) defines the time at which the output

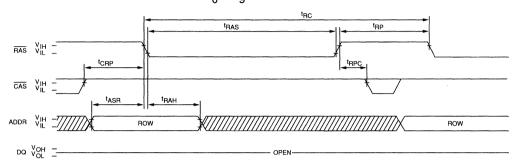

- achieves the open circuit condition and is not referenced to Voh or Vol.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. ${}^{t}RCH$ is referenced to the first rising edge of \overline{RAS} or \overline{CAS} .
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles.
- 16. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/d_{v}$ with dv = 3V and Vcc = 5V.
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for tCP. Note 8 applies to determine valid data out.
- 19. On-chip refresh and address counters are enabled.
- A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to OE being grounded on U1-U8.

READ CYCLE

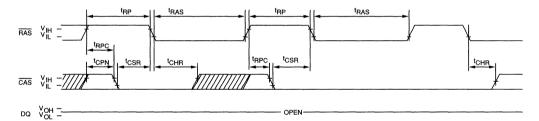

EARLY-WRITE CYCLE



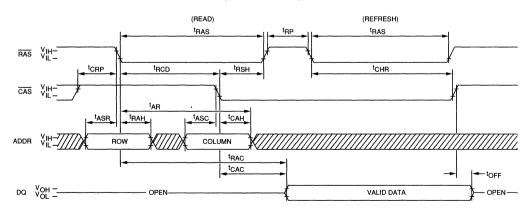
FAST-PAGE-MODE READ CYCLE



FAST-PAGE-MODE EARLY-WRITE CYCLE



\overline{RAS} -ONLY REFRESH CYCLE (ADDR = A₀ - A₀; \overline{WE} = DON'T CARE)


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_9, \overline{WE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{20}$

DRAM **MODULE**

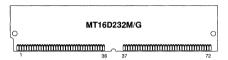
2 MEG x 32 DRAM

FAST PAGE MODE

FEATURES

- Industry standard pinout in a 72-pin single-in-line package
- High-performance, CMOS silicon gate process.
- Single 5V ±10% power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 48mW standby; 3600mW active, typical
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS and HIDDEN
- 1.024-cycle refresh distributed across 16ms
- Optional FAST PAGE MODE access cycle

OPTIONS	MARKING
Timing	
70ns access	- 7
80ns access	- 8
100ns access	-10
• Packages	
Leadless 72-pin SIMM	M
Leadless 72-pin SIMM (Gold)	G
Leaded 72-pin ZIP	Z


GENERAL DESCRIPTION

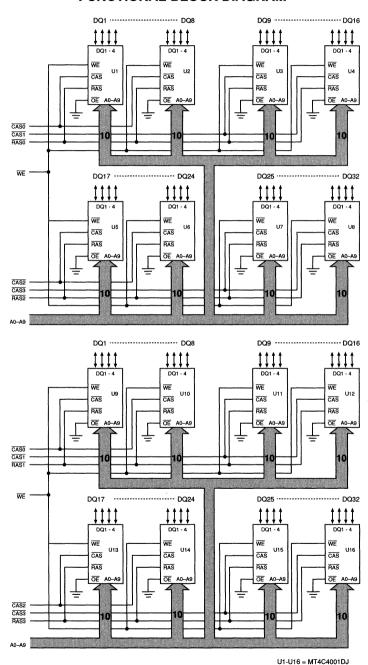
The MT16D232 is a randomly accessed solid-state memory containing 2,097,152 words organized in a x32 configuration. During READ or WRITE cycles each bit is uniquely addressed through the 20 address bits, which are entered 10 bits (A0-A9) at a time. \overline{RAS} is used to latch the first 10 bits and CAS the latter 10 bits. A READ or WRITE cycle is selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. EARLY-WRITE occurs when WE goes LOW prior to CAS going LOW, the output pin(s) remain open (High-Z) until the next CAS cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may

PIN ASSIGNMENT (Top View)

72-Pin SIMM (I-6)

72-Pin ZIP (J-5)


PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	19	NC	37	NC	55	DQ12
2	DQ1	20	DQ5	38	NC	56	DQ28
3	DQ17	21	DQ21	39	Vss	57	DQ13
4	DQ2	22	DQ6	40	CASO	58	DQ29
5	DQ18	23	DQ22	41	CAS2	59	Vcc
6	DQ3	24	DQ7	42	CAS3	60	DQ30
7	DQ19	25	DQ23	43	CAS1	61	DQ14
8	DQ4	26	DQ8	44	RAS0	62	DQ31
9	DQ20	27	DQ24	45	RAS1	63	DQ15
10	Vcc	28	A7	46	NC	64	DQ32
11	NC	29	NC	47	WE	65	DQ16
12	A0	30	Vcc	48	NC	66	NC
13	A1	31	A8	49	DQ9	67	PRD1
14	A2	32	A9	50	DQ25	68	PRD2
15	A3	33	RAS3	51	DQ10	69	PRD3
16	A4	34	RAS2	52	DQ26	70	PRD4
17	A5	35	NC	53	DQ11	71	NC
18	A6	36	NC	54	DQ27	72	Vss

be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HIDDEN REFRESH) so that all 1,024 combination of RAS addresses (A0-A9) are executed at least every 16ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

					Addresses		
Function		RAS	CAS	WE	^t R	^t C	DQ1-32
Standby		Н	Х	Х	Х	Х	High Impedance
READ		L	L	Н	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	L	ROW	COL	Valid Data In
FAST-PAGE-	1st Cycle	L	H→L	Н	ROW	COL	Valid Data Out
MODE READ	2nd Cycle	L	H→L	Н	n/a	COL	Valid Data Out
FAST-PAGE-	1st Cycle	L	H→L	L	ROW	COL	Valid Data In
MODE WRITE	2nd Cycle	L	H→L	L	n/a	COL	Valid Data In
RAS-ONLY RE	FRESH	L	Н	Х	ROW	n/a	High Impedance
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Valid Data In
CAS-BEFORE-RAS REFRESH		H→L	L	Х	х	Х	High Impedance

PRESENCE DETECT

SYMBOL	-7	-8	-10
PRD1	NC	VSS	NC
PRD2	NC	VSS	NC
PRD3	vss	vss	NC
PRD4	NC	NC	NC

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V	to +7.0V
Operating Temperature, TA(Ambient)0°C	to +70°C
Storage Temperature (Plastic)55°C to	+150°C
Power Dissipation	16W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (Notes: 1, 3, 4, 6, 7) (0°C \leq T $_{A}$ \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	4.5	5.5	٧	
Input High (Logic 1) Voltage, All Inputs			2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs		ViL	-1.0	0.8	٧	1
INPUT LEAKAGE CURRENT Any Input $0V \le V_{IN} \le V_{CC}$ (All other pins not under test = 0V) For each package input	A0-A9, WE	lı .	-32	32	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, $0V \le V_{OUT} \le V_{CC}$) For each package input	DQ1-DQ32	loz	-24	24	μА	
OUTPUT LEVELS Output High Voltage (Iout = -5mA) Output Low Voltage (Iout = 5mA)		Vон	2.4		٧	4
		Vol		0.4	٧] '

			MAX			
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
OPERATING CURRENT (RAS and \overline{CAS} = Cycling: ${}^{t}RC = {}^{t}RC$ (MIN))	lcc ₁	816	736	656	mA	2
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL, CAS = Cycling: PC = PC (MIN))	lcc2	576	496	416	mA	2
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = ViH after 8 RAS cycles (MIN))	lcc3	32	32	32	mA	
STANDBY CURRENT: CMOS INPUT LEVELS Power supply standby current (RAS = CAS = Vcc -0.2V after 8 RAS cycles (MIN)). (All other inputs at Vcc -0.2V or Vss +0.2V)	Icc4	16	16	16	mA	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling: CAS = ViH)	lcc5	816	736	656	mA	2
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS = Cycling)	Icc6	816	736	656	mA	2

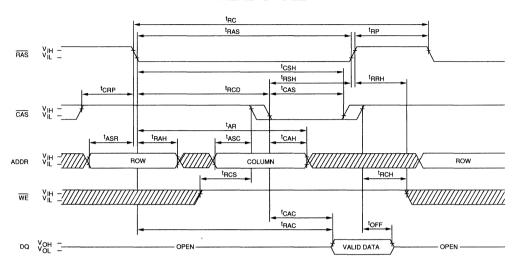
CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A9	C _{I1}		80	pF	17
Input Capacitance: WE	C12		112	pF	17
Input Capacitance: CASO-CAS3, RASO-RAS3	C14		28	pF	17
Input/Output Capacitance: DQ1-DQ32	Cio		14	pF	17

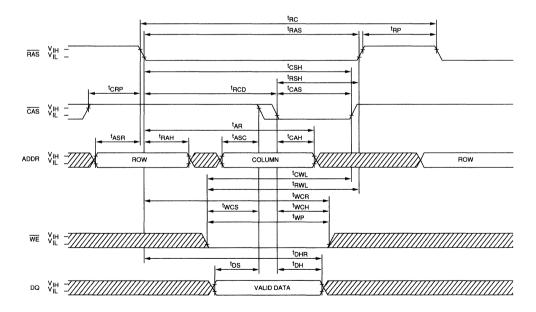
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 10, 11, 16, 17) ($0^{\circ}C \le T_{A} \le 70^{\circ}C$; $Vcc = 5.0V \pm 10\%$)

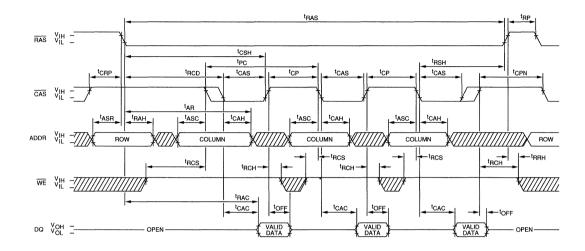
A.C. CHARACTERISTICS			-7	-8		-10			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		150		180		ns	6, 7
FAST-PAGE-MODE cycle time	tPC	40		45		55		ns	6, 7
Access time from RAS	tRAC		70		80		100	ns	7, 8
Access time from CAS	^t CAC		20		20		25	ns	7, 9
RAS pulse width	tRAS	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	tRSH	20		20		25		ns	
RAS precharge time	^t RP	50		60		70		ns	
CAS pulse width	^t CAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	tCSH	70		80		100		ns	
CAS precharge time	tCPN	10		10		15		ns	18
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	tRCD	20	50	20	60	25	75	ns	13
CAS to RAS setup time	tCRP	5		5		20		ns	
Row address setup time	tASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	
Column address hold time referenced to RAS	^t AR	55		60		70		ns	
Read command setup time	tRCS	0		0		0		ns	
Read command hold time referenced to CAS	^t RCH	0		0		0		ns	14
Read command hold time referenced to RAS	^t RRH	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	12
WE command setup time	twcs	0		0		0		ns	
Write command hold time	tWCH	15		15		20		ns	
Write command hold time referenced to RAS	^t WCR	55		60		75		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	^t RWL	15		20		25		ns	
Write command to CAS lead time	tCWL	15		20		25		ns	
Data-in setup time	t _{DS}	0		0		0		ns	15
Data-in hold time	^t DH	15		15		20		ns	15
Data-in hold time referenced to RAS	^t DHR	55		60		75		ns	
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	16
Refresh period (256 cycles)	^t REF		16		16		16	ms	20
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	15		15		15		ns	19
CAS set-up time (CAS-BEFORE-RAS REFRESH)	[†] CSR	10		10		10		ns	19
RAS to CAS precharge time	^t RPC	0		0		0		ns	19

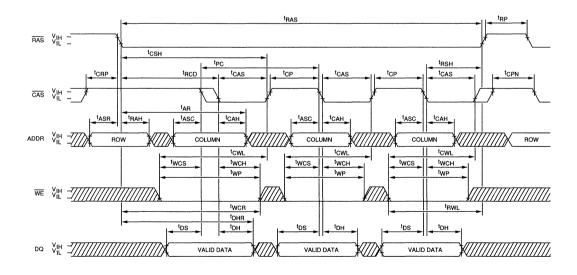

NOTES

- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of 100µs is required after power-up followed by eight RAS REFRESH cycles (RAS-ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 16ms refresh requirement is exceeded.
- AĈ characteristics assume ^tT = 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 11. If $\overline{\text{CAS}} = \text{Vil.}$, data output may contain data from the last valid READ cycle.
- 12. tOFF (MAX) defines the time at which the output

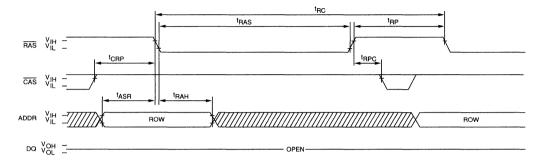

- achieves the open circuit condition and is not referenced to VOH or VOL.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. ${}^{t}RCH$ is referenced to the first rising edge of \overline{RAS} or \overline{CAS} .
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles.
- 16. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for tCP. Note 8 applies to determine valid data out.
- 19. On-chip refresh and address counters are enabled.
- 20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$.
- LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to OE being grounded on U1-U16.

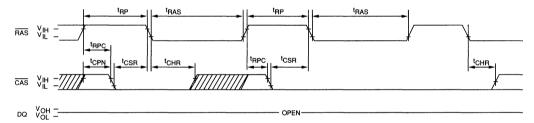
READ CYCLE


EARLY-WRITE CYCLE

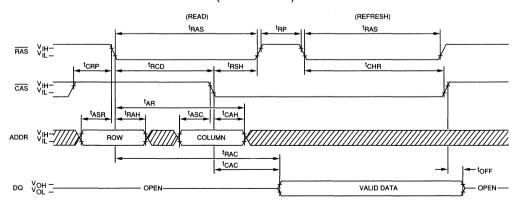

DON'T CARE
UNDEFINED

FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE



$\overline{\text{RAS-ONLY REFRESH CYCLE}}$ (ADDR = A₀ - A₉; $\overline{\text{WE}}$ = DON'T CARE)


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_9, \overline{WE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{20}$

DON'T CARE

W UNDEFINED

DRAM MODULE

256K x 36 DRAM

FAST PAGE MODE

FEATURES

- Common RAS control pinout in a 72-pin single-in-line package
- High-performance CMOS silicon gate process.
- Single 5V ±10% power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 27mW standby; 1,515mW active, typical
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- 512-cycle refresh distributed across 8ms
- Optional FAST PAGE MODE access cycle

OPTIONS	
---------	--

MARKING

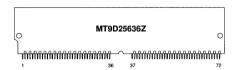
Timing	
70ns access	- 7
80ns access	- 8
85ns access	-85
100ns access	-10
	70ns access 80ns access 85ns access

Packages

Leadless 72-pin SIMM	M
Leadless 72-pin SIMM (Gold)	G
Leaded 72-pin ZIP	Z

GENERAL DESCRIPTION

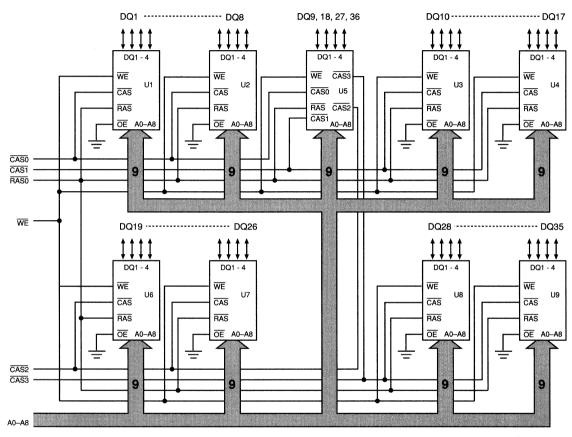
The MT9D25636 is a randomly accessed solid-state memory containing 262,144 words organized in a x36 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 18 address bits which are entered 9 bits (A0-A8) at a time. $\overline{\text{RAS}}$ is used to latch the first 9 bits and $\overline{\text{CAS}}$ the latter 9 bits. READ or WRITE cycles are selected with the $\overline{\text{WE}}$ input. A logic HIGH on $\overline{\text{WE}}$ dictates READ mode while a logic LOW on $\overline{\text{WE}}$ dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of $\overline{\text{WE}}$ or $\overline{\text{CAS}}$, whichever occurs last. If $\overline{\text{WE}}$ goes LOW prior to $\overline{\text{CAS}}$ going LOW, the output pin(s) remain open (High-Z) until the next $\overline{\text{CAS}}$ cycle.


FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A8) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may

PIN ASSIGNMENT (Top View)

72-Pin SIMM (1-7)

72-Pin ZIP (J-6)


PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	19	NC	37	DQ18	55	DQ13
2	DQ1	20	DQ5	38	DQ36	56	DQ31
3	DQ19	21	DQ23	39	Vss	57	DQ14
4	DQ2	22	DQ6	40	CASO	58	DQ32
5	DQ20	23	DQ24	41	CAS2	59	Vcc
6	DQ3	24	DQ7	42	CAS3	60	DQ33
7	DQ21	25	DQ25	43	CAS1	61	DQ15
8	DQ4	26	DQ8	44	RAS0	62	DQ34
9	DQ22	27	DQ26	45	NC	63	DQ16
10	Vcc	28	A7	46	NC	64	DQ35
11	NC	29	NC	47	WE	65	DQ17
12	A0	30	Vcc	48	NC	66	NC
13	A1	31	A8	49	DQ10	67	PRD1
14	A2	32	NC	50	DQ28	68	PRD2
15	A3	33	NC	51	DQ11	69	PRD3
16	A4	34	RAS0	52	DQ29	70	PRD4
17	A5	35	DQ27	53	DQ12	71	NC
18	A6	36	DQ9	54	DQ30	72	Vss

be toggled-in by holding \overline{RAS} LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HIDDEN REFRESH) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

U1-U4, U6-U9 = MT4C4256DJ U5 = MT4C4259DJ

NOTE: Due to the use of a Quad \overline{CAS} parity DRAM, \overline{RASO} is common to all devices.

TRUTH TABLE

					Addr	esses	
Function		RAS	CAS	WE	^t R	t _C	DQ1-36
Standby		Н	х	Х	×	Х	High Impedance
READ		L	L	Н	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	L	ROW	COL	Valid Data In
FAST-PAGE-	1st Cycle	L	H→L→H	Н	ROW	COL	Valid Data Out
MODE READ	2nd Cycle	L	H→L→H	Н	n/a	COL	Valid Data Out
FAST-PAGE-	1st Cycle	L	H→L→H	L	ROW	COL	Valid Data In
MODE WRITE	2nd Cycle	L	H→L→H	L	n/a	COL	Valid Data In
RAS-ONLY RE	FRESH	L	Н	Х	ROW	n/a	High Impedance
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Valid Data In
CAS-BEFORE-RAS REFRESH		H→L	L	Х	Х	х	High Impedance

PRESENCE DETECT

SYMBOL	-7	-8	-85	-10
PRD1	NC	vss	vss	VSS
PRD2	NC	NC	NC	NC
PRD3	VSS	vss	NC	VSS
PRD4	VSS	NC	vss	VSS

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Operating Temperature, TA(Ambient)	0°C to +70°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	9W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (Notes: 1, 3, 4, 6, 7) (0°C \leq T $_{A} \leq$ 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION			MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	4.5	5.5	٧	
Input High (Logic 1) Voltage, All Inputs			2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs		VIL	-2.0	0.8	٧	1, 22
INPUT LEAKAGE CURRENT Any Input 0V ≤ Vin ≤ Vcc (All other pins not under test = 0V) For each package input	A0-A8, WE	lı	-18	18	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vout ≤ Vcc) For each package input	DQ1-DQ36	loz	-12	12	μА	
OUTPUT LEVELS Output High Voltage (Iouт = -5mA) Output Low Voltage (Iouт = 5mA)		Vон	2.4		٧	
		Vol		0.4	٧] '

			MAX			
PARAMETER/CONDITION	SYMBOL	-7	-8, -85	-10	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC (MIN))	Icc1	720	630	540	mA	2
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL, CAS = Cycling: PC = PC (MIN))	Icc2	540	450	360	mA	2
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = VIH after 8 RAS cycles (MIN))	lcc3	18	18	18	mA	
STANDBY CURRENT: CMOS INPUT LEVELS Power supply standby current (RAS = CAS = Vcc -0.2V after 8 RAS cycles (MIN)). (All other inputs at Vcc -0.2V or Vss +0.2V)	Icc4	9	9	9	mA	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling: CAS = ViH)	Icc5	720	630	540	mA	2
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS = Cycling)	Icc6	720	630	540	mA	2

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	C _{I1}		45	pF	17
Input Capacitance: WE	Cl2		63	pF	17
Input Capacitance: RAS0	Сіз		63	pF	17
Input Capacitance: CASO, CAS1, CAS2, CAS3	C14		21	pF	17
Input/Output Capacitance: DQ1-DQ36	Cio		7	pF	17

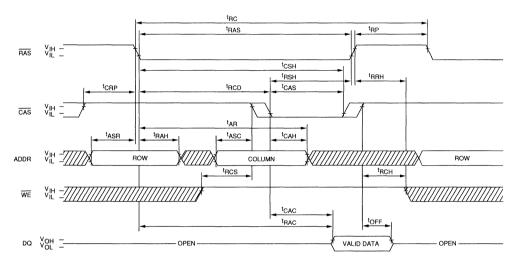
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 10, 11, 16, 17) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

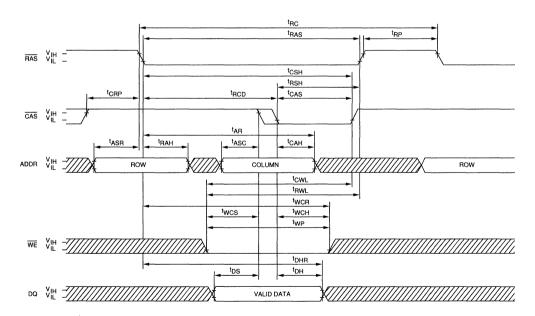
A.C. CHARACTERISTICS			-7	-8	3, -85		-10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	135		150		180		ns	6, 7
FAST-PAGE-MODE cycle time	^t PC	40		45		55		ns	6, 7
Access time from RAS	^t RAC		70		80		100	ns	7, 8
Access time from CAS	^t CAC		20		20		25	ns	7, 9
RAS pulse width	^t RAS	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	^t RSH	20		20		25		ns	
RAS precharge time	^t RP	50		60		70		ns	
CAS pulse width	^t CAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	^t CSH	70		80		100		ns	
CAS precharge time	^t CPN	10		10		15		ns	18
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	^t RCD	20	40	20	60	25	75	ns	13
CAS to RAS setup time	^t CRP	5		5		5		ns	
Row address setup time	^t ASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
Column address setup time	^t ASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	
Column address hold time referenced to RAS	^t AR	55		60		70		ns	
Read command setup time	tRCS	0		0		0		ns	
Read command hold time referenced to CAS	^t RCH	0		0		0		ns	14
Read command hold time referenced to RAS	^t RRH	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	12
WE command setup time	tWCS	0		0		0		ns	
Write command hold time	^t WCH	15		15		20		ns	
Write command hold time referenced to RAS	tWCR	55		60		75		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	^t RWL	20		20		25		ns	
Write command to CAS lead time	^t CWL	20		20		25		ns	
Data-in setup time	^t DS	0		0		0		ns	15
Data-in hold time	tDH	15		15		20		ns	15
Data-in hold time referenced to RAS	^t DHR	55		60		75		ns	
Transition time (rise or fall)	tΤ	3	50	3	50	3	50	ns	16
Refresh period (256 cycles)	tREF		8		8		8	ms	20
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	15		15		15		ns	19
CAS setup time (CAS-BEFORE-RAS REFRESH)	^t CSR	10		10		10		ns	19
RAS to CAS precharge time	^t RPC	0		0		0		ns	19

MCRON

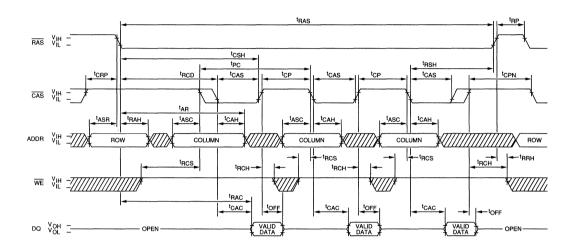
(REPLACES: MT8C36256)

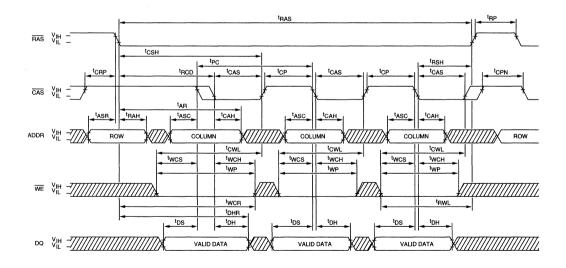

NOTES

- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- AC characteristics assume ^tT = 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 11. If $\overline{\text{CAS}} = \text{Vil.}$, data output may contain data from the last valid READ cycle.
- tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 13. Operation within the tRCD (MAX) limit ensures that


- ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. ${}^{t}RCH$ is referenced to the first rising edge of \overline{RAS} or \overline{CAS} .
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles.
- 16. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VII. and VIH) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP. Note 8 applies to determine valid data out.
- 19. On-chip refresh and address counters are enabled.
- 20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, $\overline{WE} = LOW$.
- 21. LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to \overline{OE} being grounded on U1-U9.
- 22. The device shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5V for a period of less than 20ns and the signal's total duration is 25ns or less; or a -0.3V signal of any duration is presented (DC).

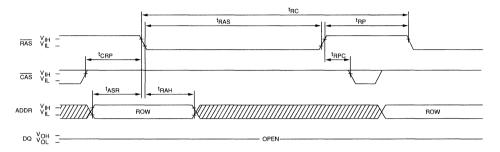
READ CYCLE

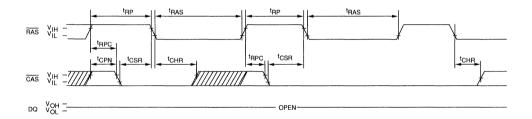

EARLY-WRITE CYCLE


DON'T CARE
UNDEFINED

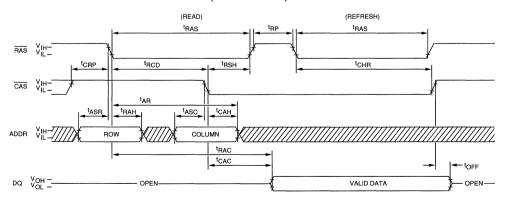
FAST-PAGE-MODE READ CYCLE

FAST-PAGE-MODE EARLY-WRITE CYCLE




RAS-ONLY REFRESH CYCLE

 $(ADDR = A_0 - A_7; A_8 \text{ and } \overline{WE} = DON'T CARE)$


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_8, \overline{WE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{20}$

DRAM MODULE

256K x 36 DRAM

FAST PAGE MODE

FEATURES

- Industry standard pinout in a 72-pin single-in-line package
- High-performance CMOS silicon gate process.
- Single 5V ±10% power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 30mW standby; 1,750mW active, typical
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- 512-cycle refresh distributed across 8ms
- Optional FAST PAGE MODE access cycle

OPTIONS MARKING Timing 70ns access - 7 80ns access - 8 85ns access -85 -10 100ns access Packages Leadless 72-pin SIMM M Leadless 72-pin SIMM (Gold) G \mathbf{Z} Leaded 72-pin ZIP

GENERAL DESCRIPTION

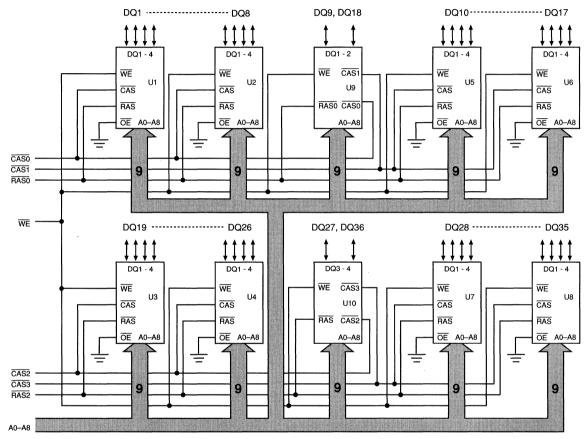
The MT10D25636 is a randomly accessed solid-state memory containing 262,144 words organized in a x36 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 18 address bits, which are entered 9 bits (A0-A8) at a time. RAS is used to latch the first 9 bits and CAS the latter 9 bits. READ or WRITE cycles are selected with the WE input. A logic HIGH on WE dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. If WE goes LOW prior to CAS going LOW, the output pin(s) remain open (High-Z) until the next CAS cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A8) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS followed by a column address strobed-in by CAS. CAS may

PIN ASSIGNMENT (Top View)

72-Pin SIMM (I-9)

72-Pin ZIP (J-8)



PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	19	NC	37	DQ18	55	DQ13
2	DQ1	20	DQ5	38	DQ36	56	DQ31
3	DQ19	21	DQ23	39	Vss	57	DQ14
4	DQ2	22	DQ6	40	CASO	58	DQ32
5	DQ20	23	DQ24	41	CAS2	59	Vcc
6	DQ3	24	DQ7	42	CAS3	60	DQ33
7	DQ21	25	DQ25	43	CAS1	61	DQ15
8	DQ4	26	DQ8	44	RAS0	62	DQ34
9	DQ22	27	DQ26	45	NC	63	DQ16
10	Vcc	28	A7	46	NC	64	DQ35
11	NC	29	NC	47	WE	65	DQ17
12	A0	30	Vcc	48	NC	66	NC
13	A1	31	A8	49	DQ10	67	PRD1
14	A2	32	NC	50	DQ28	68	PRD2
15	A3	33	NC	51	DQ11	69	PRD3
16	A4	34	RAS2	52	DQ29	70	PRD4
17	A5	35	DQ27	53	DQ12	71	NC
18	A6	36	DQ9	54	DQ30	72	Vss

be toggled-in by holding \overline{RAS} LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS HIGH time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HIDDEN REFRESH) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

U1-U8 = MT4C4256DJ U9 & U10 = MT4C4259DJ

TRUTH TABLE

					Addresses		
Function		RAS	CAS	WE	^t R	^t C	DQ1-36
Standby		Н	х	Х	Х	Х	High Impedance
READ		L	L	Н	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	L	ROW	COL	Valid Data In
FAST-PAGE-	1st Cycle	L	H→L→H	Н	ROW	COL	Valid Data Out
MODE READ	2nd Cycle	L	H→L→H	Н	n/a	COL	Valid Data Out
FAST-PAGE-	1st Cycle	L	H→L→H	L	ROW	COL	Valid Data In
MODE WRITE	2nd Cycle	L	H→L→H	L	n/a	COL	Valid Data In
RAS-ONLY RE	FRESH	L	Н	Х	ROW	n/a	High Impedance
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Valid Data In
CAS-BEFORE-RAS REFRESH		H→L	L	Х	Х	Х	High Impedance

PRESENCE DETECT

SYMBOL	-7	-8	-85	-10
PRD1	NC	vss	vss	VSS
PRD2	NC	NC	NC	NC
PRD3	vss	vss	NC	VSS
PRD4	VSS	NC	vss	vss

ABSOLUTE MAXIMUM RATINGS*

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (Notes: 1, 3, 4, 6, 7) (0°C \leq T $_{A} \leq$ 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES	
Supply Voltage	Vcc	4.5	5.5	٧		
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1	
Input Low (Logic 0) Voltage, All Inputs	VIL	-2.0	0.8	٧	1, 22	
INPUT LEAKAGE CURRENT Any Input $0V \le V \ln \le V \cos$ (All other pins not under test = $0V$) for each package input	A0-A8, WE	lı .	-20	20	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, $0V \le V_{OUT} \le V_{CC}$) for each package input	DQ1-DQ36	loz	-12	12	μА	
OUTPUT LEVELS		Vон	2.4		٧	4
Output High Voltage (Ιουτ = -5mA) Output Low Voltage (Ιουτ = 5mA)	Vol		0.4	٧	'	

			MAX			
PARAMETER/CONDITION	SYMBOL	-7	-8, -85	-10	UNITS	NOTES
OPERATING CURRENT (\overline{RAS} and \overline{CAS} = Cycling: ${}^{t}RC = {}^{t}RC$ (MIN))	Icc1	800	700	600	mA	2
OPERATING CURRENT: FAST PAGE MODE (RAS = V _{IL} , CAS = Cycling: [†] PC = [†] PC (MIN))	Icc2	600	500	400	mA	2
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = VIH after 8 RAS cycles (MIN))	lcc3	20	20	20	mA	
STANDBY CURRENT: CMOS INPUT LEVELS Power supply standby current (RAS = CAS = Vcc -0.2V after 8 RAS cycles (MIN)). (All other inputs at Vcc -0.2V or Vss +0.2V)	Icc4	10	10	10	mA	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling: CAS = ViH)	Icc5	800	700	600	mA	2
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS = Cycling)	Icc6	800	700	600	mA	2

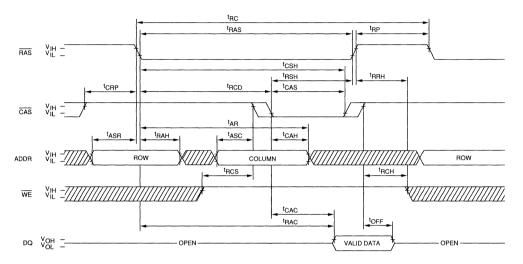
CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	Cıı		50	pF	17
Input Capacitance: WE	C ₁₂		70	pF	17
Input Capacitance: RASO, RAS2	Сіз		35	pF	17
Input Capacitance: CASO, CAS1, CAS2, CAS3	C14		21	pF	17
Input/Output Capacitance: DQ1-DQ36	Cio		7	pF	17

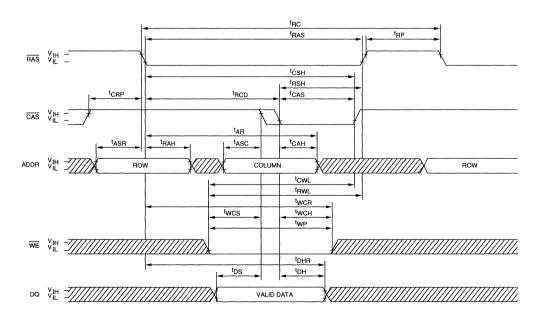
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 10, 11, 16, 17) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

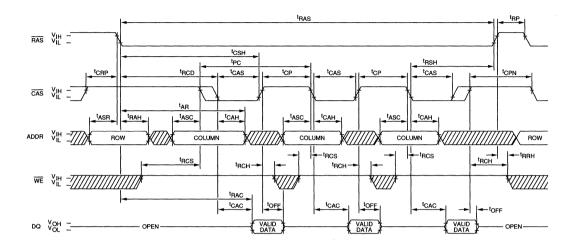
A.C. CHARACTERISTICS			-7	-8	-8, -85 -10		-10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	135		150		180		ns	6, 7
FAST-PAGE-MODE cycle time	^t PC	40		45		55		ns	6, 7
Access time from RAS	tRAC		70		80		100	ns	7, 8
Access time from CAS	†CAC		20		20		25	ns	7, 9
RAS pulse width	^t RAS	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	tRSH	20		20		25		ns	
RAS precharge time	^t RP	50		60		70		ns	
CAS pulse width	tCAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	^t CSH	70		80		100		ns	
CAS precharge time	^t CPN	10		10		15		ns	18
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	^t RCD	20	50	20	60	25	75	ns	13
CAS to RAS setup time	^t CRP	5		5		5		ns	
Row address setup time	^t ASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	
Column address hold time referenced to RAS	^t AR	55		60		70		ns	
Read command setup time	tRCS	0		0		0		ns	
Read command hold time referenced to CAS	^t RCH	0		0		0		ns	14
Read command hold time referenced to RAS	^t RRH	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	12
WE command setup time	twcs	0		0		0		ns	
Write command hold time	†WCH	15		15		20		ns	
Write command hold time referenced to RAS	^t WCR	55		60		75		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	^t RWL	20		20		25		ns	
Write command to CAS lead time	tCWL	20		20		25		ns	
Data-in setup time	t _{DS}	0		0		0		ns	15
Data-in hold time	tDH	15		15		20		ns	15
Data-in hold time referenced to RAS	^t DHR	55		60		75		ns	
Transition time (rise or fall)	^t T	3	- 50	3	50	3	50	ns	16
Refresh period (256 cycles)	^t REF		8		8		8	ms	20
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	15		15		15		ns	19
CAS setup time (CAS-BEFORE-RAS REFRESH)	tCSR	10		10		10		ns	19
RAS to CAS precharge time	^t RPC	0		0		0		ns	19


NOTES

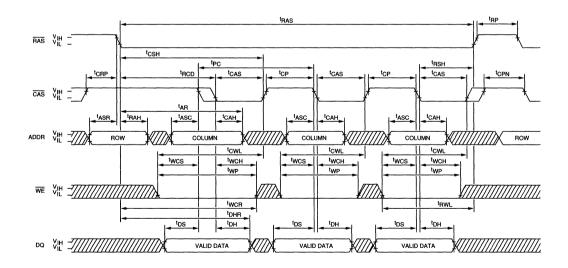
- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 4. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 11. If $\overline{\text{CAS}} = \text{Vil.}$, data output may contain data from the last valid READ cycle.
- 12. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 13. Operation within the ^tRCD (MAX) limit ensures that


- ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. ${}^{t}RCH$ is referenced to the first rising edge of \overline{RAS} or \overline{CAS} .
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles.
- 16. In addition to meeting the transition rate specification, all input signals must transit between Vih and Vil (or between Vil and Vih) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP. Note 8 applies to determine valid data out.
- 19. On-chip refresh and address counters are enabled.
- 20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- 21. LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to $\overline{\text{OE}}$ being grounded on U1-U9.
- 22. The module shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5V for a period of less than 20ns and the signal's total duration is 25ns or less; or a -0.3V signal of any duration is presented (DC).

READ CYCLE



EARLY-WRITE CYCLE

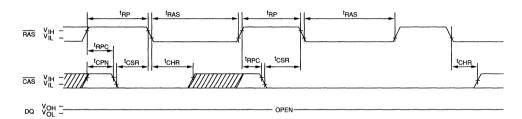


FAST-PAGE-MODE READ CYCLE

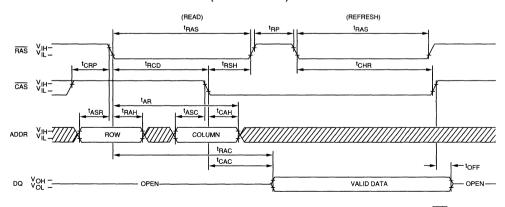
FAST-PAGE-MODE EARLY-WRITE CYCLE



DON'T CARE



$\overline{\text{RAS-ONLY REFRESH CYCLE}}$ (ADDR = A $_0$ - A $_7$; A $_8$ and $\overline{\text{WE}}$ = DON'T CARE)


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_8, \overline{WE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{20}$

DON'T CARE

₩ UNDEFINED

MICHON

DRAM MODULE

512K x 36 DRAM

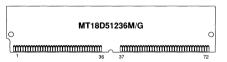
FAST PAGE MODE

FEATURES

- Common RAS control per side pinout in a 72-pin single-in-line package
- High performance CMOS silicon gate process.
- Single 5V ±10% power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 54mW standby; 3,150mW active, typical
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- 512-cycle refresh distributed across 8ms
- Optional FAST PAGE MODE access cycle

OPTIONS MARKING • Timing - 7 70ns access 80ns access - 8 85ns access -85 100ns access -10 Packages Leadless 72-pin SIMM M Leadless 72-pin SIMM (Gold) G

GENERAL DESCRIPTION


Leaded 72-pin ZIP

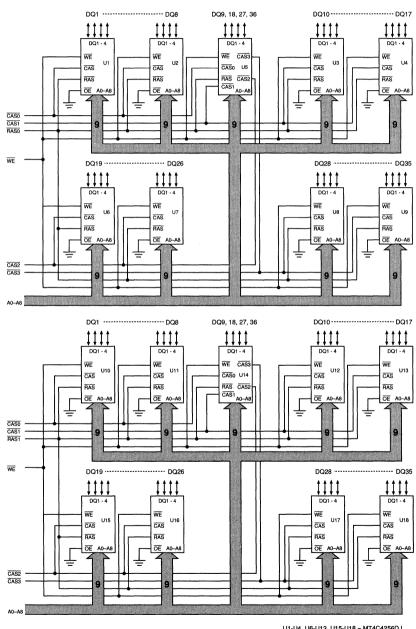
The MT18D51236 is a randomly accessed solid-state memory containing 524,288 words organized in a x36 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 18 address bits, which are entered 9 bits (A0-A8) at a time. \overline{RAS} is used to latch the first 9 bits and \overline{CAS} the latter 9 bits. READ or WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. EARLY WRITE occurs when \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle.


FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A8) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS

PIN ASSIGNMENT (Top View)

72-Pin SIMM (1-8)

72-Pin ZIP (J-7)


PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	19	NC	37	DQ18	55	DQ13
2	DQ1	20	DQ5	38	DQ36	56	DQ31
3	DQ19	21	DQ23	39	Vss	57	DQ14
4	DQ2	22	DQ6	40	CAS0	58	DQ32
5	DQ20	23	DQ24	41	CAS2	59	Vcc
6	DQ3	24	DQ7	42	CAS3	60	DQ33
7	DQ21	25	DQ25	43	CAS1	61	DQ15
8	DQ4	26	DQ8	44	RAS0	62	DQ34
9	DQ22	27	DQ26	45	RAS1	63	DQ16
10	Vcc	28	A7	46	NC	64	DQ35
11	NC	29	NC	47	WE	65	DQ17
12	A0	30	Vcc	48	NC	66	NC
13	A1	31	A8	49	DQ10	67	PRD1
14	A2	32	NC	50	DQ28	68	PRD2
15	A3	33	RAS1	51	DQ11	69	PRD3
16	A4	34	RAS0	52	DQ29	70	PRD4
17	A5	35	DQ27	53	DQ12	71	NC
18	A6	36	DQ9	54	DQ30	72	Vss

followed by a column address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HIDDEN REFRESH) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8ms, regardless of sequence.

MICHON

FUNCTIONAL BLOCK DIAGRAM

U1-U4, U6-U13, U15-U18 = MT4C4256DJ U5, U14 = MT4C4259DJ

NOTE: Due to the use of a Quad CAS parity DRAM, RASO is common to side 1 and RAS1 is common to side 2.

TRUTH TABLE

	- Value - Valu				Addresses		
Function		RAS	CAS	WE	^t R	tC	DQ1-36
Standby		Н	х	Х	х	Х	High Impedance
READ		L	L	Н	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	L	ROW	COL	Valid Data In
FAST-PAGE-	1st Cycle	L	H→L→H	Н	ROW	COL	Valid Data Out
MODE READ	2nd Cycle	L	H→L→H	Н	n/a	COL	Valid Data Out
FAST-PAGE-	1st Cycle	L	H→L→H	L	ROW	COL	Valid Data In
MODE WRITE	2nd Cycle	L	H→L→H	L	n/a	COL	Valid Data In
RAS-ONLY RE	FRESH	L	Н	Х	ROW	n/a	High Impedance
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Valid Data In
CAS-BEFORE-	RAS	H→L	L	Х	Х	Х	High Impedance
REFRESH							

PRESENCE DETECT

SYMBOL	-7	-8	-85	-10
PRD1	VSS	NC	NC	NC
PRD2	VSS	VSS	VSS	vss
PRD3	NC	VSS	NC	vss
PRD4	NC	NC	VSS	vss

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss.	1.0V to +7.0V
Operating Temperature, TA(Ambient)	0°C to +70°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	18W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(Notes: 1, 3, 4, 6, 7) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES	
Supply Voltage		Vcc	4.5	5.5	٧	
Input High (Logic 1) Voltage, All Inputs		Vін	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs		VIL	-2.0	0.8	٧	1, 22
INPUT LEAKAGE CURRENT Any Input 0V ≤ Vin ≤ Vcc (All other pins not under test = 0V) For each package input	A0-A8, WE	lı .	-36	36	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Voυτ ≤ Vcc) For each package input	DQ1-DQ36	loz	-24	24	μА	
OUTPUT LEVELS		Vон	2.4		٧	
Output High Voltage (Ιουτ = -5mA) Output Low Voltage (Ιουτ = 5mA)		Vol		0.4	٧	'

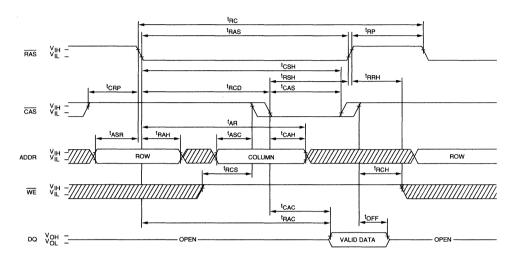
			MAX			
PARAMETER/CONDITION	SYMBOL	-7	-8, -85	-10	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC (MIN))	Icc1	738	648	558	mA	2
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL, CAS = Cycling: ^t PC = ^t PC (MIN))	lcc2	558	468	378	mA	2
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = VIH after 8 RAS cycles (MIN))	lcc3	36	36	36	mA	
STANDBY CURRENT: CMOS INPUT LEVELS Power supply standby current (RAS = CAS = Vcc -0.2V after 8 RAS cycles (MIN)). (All other inputs at Vcc -0.2V or Vss +0.2V)	Icc4	18	18	18	mA	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling: CAS = VIH)	lcc5	738	648	558	mA	2
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS = Cycling)	Icc6	738	648	558	mA	2

CAPACITANCE

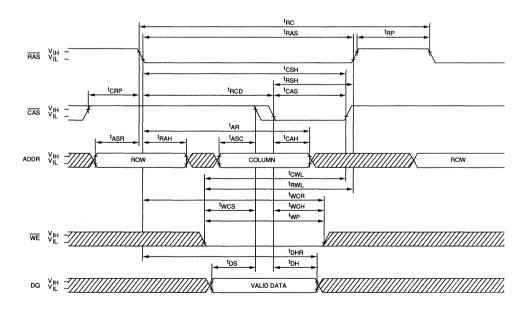
PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	C _{I1}		90	pF	17
Input Capacitance: WE	Cı2		126	pF	17
Input Capacitance: RASO, RAS1	Сіз		63	pF	17
Input Capacitance: CAS0, CAS1, CAS2, CAS3	C ₁₄		42	pF	17
Input/Output Capacitance: DQ1-DQ36	Сю		14	pF	17

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes: 3, 4, 5, 10, 11, 16, 17) (0°C \leq T $_A$ \leq 70°C; Vcc = 5.0V \pm 10 %)

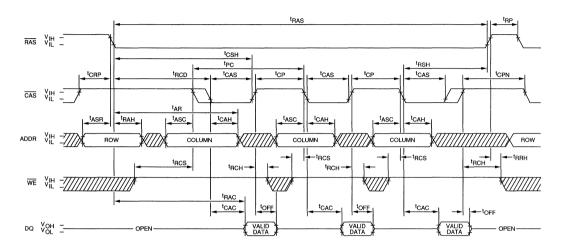
A.C. CHARACTERISTICS	ERISTICS -7 -8, -85 -10								
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	†RC	135		150		180		ns	6, 7
FAST-PAGE-MODE cycle time	^t PC	40		45		55		ns	6, 7
Access time from RAS	†RAC		70		80		100	ns	7, 8
Access time from CAS	^t CAC		20		20		25	ns	7, 9
RAS pulse width	^t RAS	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	^t RSH	20		20		25		ns	
RAS precharge time	^t RP	50		60		70		ns	
CAS pulse width	^t CAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	tCSH	70		80		100		ns	
CAS precharge time	^t CPN	10		10		15		ns	18
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	^t RCD	20	40	20	60	25	75	ns	13
CAS to RAS setup time	tCRP	5		5		5		ns	
Row address setup time	^t ASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	tCAH	15		15		20		ns	
Column address hold time referenced to RAS	^t AR	55		60		70		ns	
Read command setup time	†RCS	0		0		0		ns	
Read command hold time referenced to CAS	^t RCH	0		0		0		ns	14
Read command hold time referenced to RAS	^t RRH	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	12
WE command setup time	twcs	0		0		0		ns	
Write command hold time	†WCH	15		15		20		ns	
Write command hold time referenced to RAS	tWCR	55		60		75		ns	
Write command pulse width	^t WP	15		15		20		ns	
Write command to RAS lead time	†RWL	20		20		25	1	ns	
Write command to CAS lead time	tCWL	20		20		25		ns	
Data-in setup time	tDS	0		0		0		ns	15
Data-in hold time	^t DH	15		15		20		ns	15
Data-in hold time referenced to RAS	^t DHR	55		60		75		ns	
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	16
Refresh period (256 cycles)	^t REF		8		8		8	ms	20
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	15		15		15		ns	19
CAS setup time CAS-BEFORE-RAS REFRESH)	tCSR	10		10		10		ns	19
RAS to CAS precharge time	†RPC	0		0		0	†	ns	19


NOTES

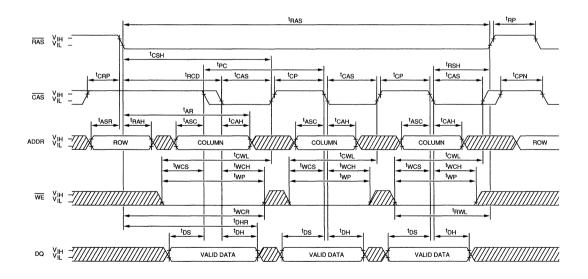
- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 4. AC characteristics assume ^tT = 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 11. If $\overline{\text{CAS}} = V_{\text{IL}}$, data output may contain data from the last valid READ cycle.
- tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voн or Vol.
- 13. Operation within the ^tRCD (MAX) limit ensures that


- ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. ^tRCH is referenced to the first rising edge of RAS or CAS.
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles.
- 16. In addition to meeting the transition rate specification, all input signals must transit between Vih and Vil (or between Vil and Vih) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/d_v$ with dv = 3V and Vcc = 5V.
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for tCP. Note 8 applies to determine valid data out.
- 19. On-chip refresh and address counters are enabled.
- 20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to OE being grounded on U1-U18.
- 22. The module shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5V for a period of less than 20ns and the signal's total duration is 25ns or less; or a -0.3V signal of any duration is presented (DC).

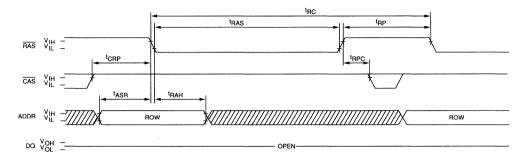
READ CYCLE



EARLY-WRITE CYCLE

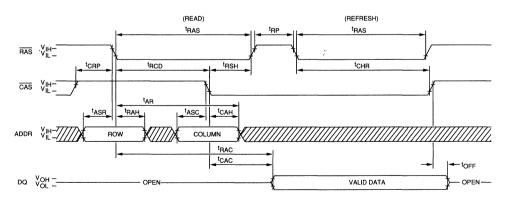


FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE

DON'T CARE
UNDEFINED

\overline{RAS} -ONLY REFRESH CYCLE (ADDR = A₀ - A₇; A₈ and \overline{WE} = DON'T CARE)


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_8, \overline{WE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{20}$

DON'T CARE

DRAM **MODULE**

512K x 36 DRAM

FAST PAGE MODE

FEATURES

- Industry standard pinout in a 72-pin single-in-line package
- High performance CMOS silicon gate process.
- Single 5V ±10% power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 60mW standby; 1,780mW active, typical
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- 512-cycle refresh distributed across 8ms
- Optional FAST PAGE MODE access cycle

OPTIONS	MARKING
Timing	
70ns access	- 7
80ns access	- 8
85ns access	-85
100ns access	-10
• Packages	
Leadless 72-pin SIMM	M
Leadless 72-pin SIMM (Gold)	G
Leaded 72-pin ZIP	Z

GENERAL DESCRIPTION

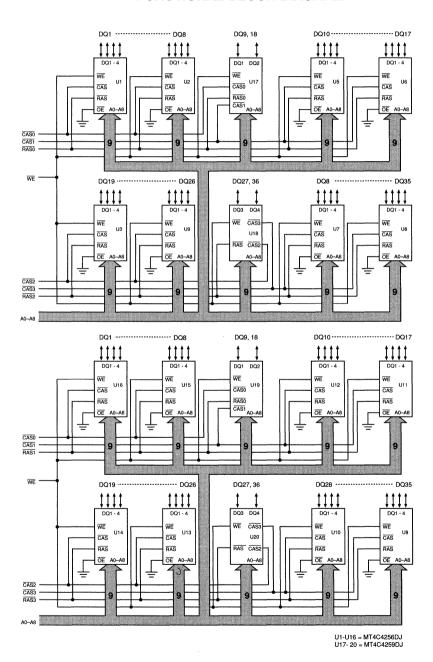
The MT20D51236 is a randomly accessed solid-state memory containing 524,288 words organized in a x36 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 18 address bits, which are entered 9 bits (A0-A8) at a time. RAS is used to latch the first 9 bits and CAS the latter 9 bits. READ or WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on WE dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of WE or CAS, whichever occurs last. EARLY WRITE occurs when WE goes LOW prior to CAS going LOW, the output pin(s) remain open (High-Z) until the next CAS cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A8) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS

PIN ASSIGNMENT (Top View)

72-Pin SIMM (I-10)

72-Pin ZIP (J-9)


PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	19	NC	37	DQ18	55	DQ13
2	DQ1	20	DQ5	38	DQ36	56	DQ31
3	DQ19	21	DQ23	39	Vss	57	DQ14
4	DQ2	22	DQ6	40	CASO	58	DQ32
5	DQ20	23	DQ24	41	CAS2	59	Vcc
6	DQ3	24	DQ7	42	CAS3	60	DQ33
7	DQ21	25	DQ25	43	CAS1	61	DQ15
8	DQ4	26	DQ8	44	RAS0	62	DQ34
9	DQ22	27	DQ26	45	RAS1	63	DQ16
10	Vcc	28	A7	46	NC	64	DQ35
11	NC	29	NC	47	WE	65	DQ17
12	A0	30	Vcc	48	NC	66	NC
13	A1	31	A8	49	DQ10	67	PRD1
14	A2	32	NC	50	DQ28	68	PRD2
15	A3	33	RAS3	51	DQ11	69	PRD3
16	A4	34	RAS2	52	DQ29	70	PRD4
17	A5	35	DQ27	53	DQ12	71	NC
18	A6	36	DQ9	54	DQ30	72	Vss

followed by a column address strobed-in by $\overline{\text{CAS}}.\overline{\text{CAS}}$ may be toggled-in by holding RAS LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning RAS HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HIDDEN REFRESH) so that all 512 combinations of RAS addresses (A0-A8) are executed at least every 8ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

					Addresses		
Function		RAS	CAS	WE	^t R	tC	DQ1-36
Standby		Н	Х	Х	Х	Х	High Impedance
READ		L	L	Н	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	L	ROW	COL	Valid Data In
FAST-PAGE-	1st Cycle	L	H→L→H	Н	ROW	COL	Valid Data Out
MODE READ	2nd Cycle	L	H→L→H	Н	n/a	COL	Valid Data Out
FAST-PAGE-	1st Cycle	L	H→L→H	L	ROW	COL	Valid Data In
MODE WRITE	2nd Cycle	L	H→L→H	L	n/a	COL	Valid Data In
RAS-ONLY RE	FRESH	L	Н	Х	ROW	n/a	High Impedance
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Valid Data In
CAS-BEFORE-	RAS	H→L	L	Х	Х	Х	High Impedance
REFRESH							

PRESENCE DETECT

SYMBOL	-7	-8	-85	-10
PRD1	vss	NC	NC	NC
PRD2	VSS	VSS	VSS	VSS
PRD3	NC	vss	NC	VSS
PRD4	NC	NC	vss	VSS

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Operating Temperature, TA(Ambient)	0°C to +70°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	20W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (Notes: 1, 3, 4, 6, 7) (0°C \leq T $_{A}$ \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES	
Supply Voltage		Vcc	4.5	5.5	٧	
Input High (Logic 1) Voltage, All Inputs		ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-2.0	0.8	٧	1, 22	
INPUT LEAKAGE CURRENT Any Input $0V \le V_{IN} \le V_{CC}$ (All other pins not under test = 0V) for each package input	A0-A8, WE	lı .	-40	40	μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vouт ≤ Vcc) for each package input	DQ1-DQ36	loz	-24	24	μА	
OUTPUT LEVELS		Vон	2.4		٧	
Output High Voltage (Ιουτ = -5mA) Output Low Voltage (Ιουτ = 5mA)		Vol		0.4	V	'

					i	
			MAX			
PARAMETER/CONDITION	SYMBOL	-7	-8, -85	-10	UNITS	NOTES
OPERATING CURRENT (\overline{RAS} and \overline{CAS} = Cycling: ${}^{t}RC = {}^{t}RC$ (MIN))	ICC1	820	720	620	mA	2
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL, CAS = Cycling: tPC = tPC (MIN))	lcc2	620	520	420	mA	2
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = VIH after 8 RAS cycles (MIN))	lcc3	40	40	40	mA	
STANDBY CURRENT: CMOS INPUT LEVELS Power supply standby current (RAS = CAS = Vcc -0.2V after 8 RAS cycles (MIN)). (All other inputs at Vcc -0.2V or Vss +0.2V)	Icc4	20	20	20	mA	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling: CAS = ViH)	lcc5	820	720	620	mA	2
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS = Cycling)	Icc6	820	720	620	mA .	2

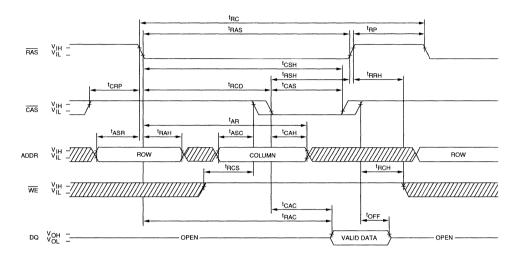
CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	C _I 1		100	pF	17
Input Capacitance: WE	Cı2		140	pF	17
Input Capacitance: RASO, RAS1, RAS2, RAS3	Сіз		35	pF	17
Input Capacitance: CAS0, CAS1, CAS2, CAS3	Cı4		42	pF	17
Input/Output Capacitance: DQ1-DQ36	Cio		14	pF	17

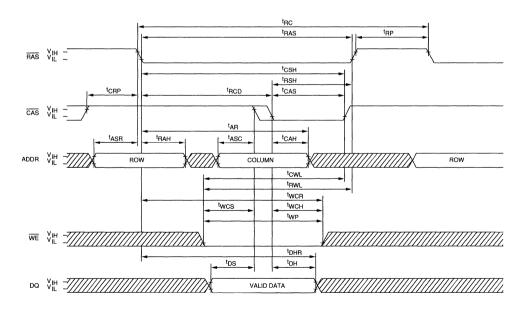
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 10, 11, 16, 17) ($0^{\circ}C \le T_{A} \le 70^{\circ}C$; Vcc = 5.0V \pm 10 %)

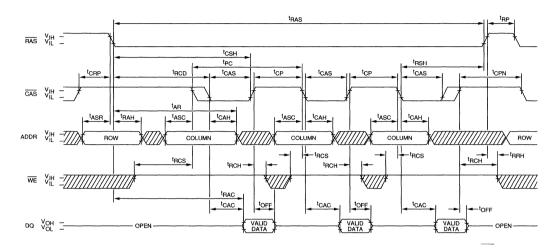
A.C. CHARACTERISTICS			-7 -8, -85			-10			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	135		150		180		ns	6, 7
FAST PAGE MODE cycle time	^t PC	40		45		55		ns	6, 7
Access time from RAS	^t RAC		70		80		100	ns	7, 8
Access time from CAS	tCAC		20		20		25	ns	7, 9
RAS pulse width	†RAS	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	^t RSH	20		20		25		ns	
RAS precharge time	tRP	50		60		70		ns	
CAS pulse width	tCAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	^t CSH	70		80		100		ns	
CAS precharge time	^t CPN	10		10		15		ns	18
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	^t RCD	20	50	20	60	25	75	ns	13
CAS to RAS setup time	^t CRP	5		5		5		ns	
Row address setup time	tASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	
Column address hold time referenced to RAS	^t AR	55		60		70		ns	
Read command setup time	tRCS	0		0	1	0		ns	
Read command hold time referenced to CAS	^t RCH	0		0		0		ns	14
Read command hold time referenced to RAS	^t RRH	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	12
WE command setup time	tWCS	0		0		0		ns	
Write command hold time	tWCH	15		15		20		ns	***************************************
Write command hold time referenced to RAS	tWCR	55		60		75		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	tRWL	20		20		25		ns	
Write command to CAS lead time	tCWL	20		20		25		ns	
Data-in setup time	^t DS	0		0		0		ns	15
Data-in hold time	^t DH	15		15		20		ns	15
Data-in hold time referenced to RAS	^t DHR	55		60		75		ns	
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	16
Refresh period (256 cycles)	^t REF		8		8		8	ms	20
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	15		15		15		ns	19
CAS setup time CAS-BEFORE-RAS REFRESH)	tCSR	10		10		10		ns	19
RAS to CAS precharge time	^t RPC	0		0		0		ns	19

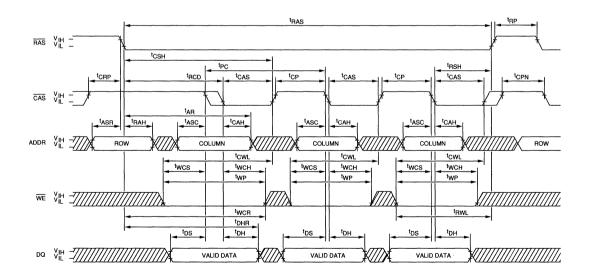

NOTES

- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- AC characteristics assume ^tT = 5ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- If CAS = Vil., data output may contain data from the last valid READ cycle.
- 12. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VoH or VoL.
- 13. Operation within the ^tRCD (MAX) limit ensures that


- ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. ${}^{t}RCH$ is referenced to the first rising edge of \overline{RAS} or \overline{CAS} .
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles.
- 16. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIL and VIH) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/d_v$ with dv = 3V and Vcc = 5V.
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP. Note 8 applies to determine valid data out.
- 19. On-chip refresh and address counters are enabled.
- A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to OE being grounded on U1-U18.
- 22. The module shall meet all functional requirements when a -2.0 signal is applied provided the signal is not more negative than -1.5V for a period of less than 20ns and the signal's total duration is 25ns or less; or a -0.3V signal of any duration is presented (DC).

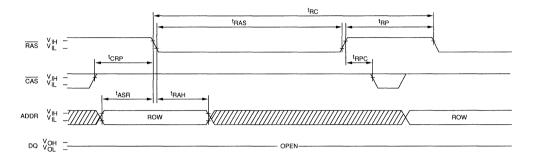
READ CYCLE


EARLY-WRITE CYCLE

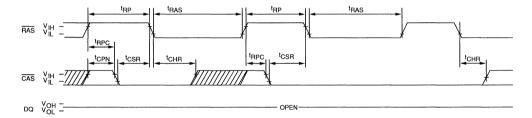

DON'T CARE
UNDEFINED

FAST-PAGE-MODE READ CYCLE

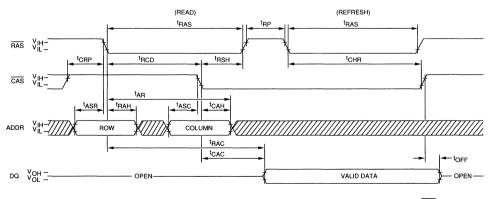
FAST-PAGE-MODE EARLY-WRITE CYCLE



DON'T CARE


RAS-ONLY REFRESH CYCLE

 $(ADDR = A_0 - A_7; A_8 \text{ and } \overline{WE} = DON'T CARE)$


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_8, \overline{WE} = DONT CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{20}$

DON'T CARE

₩ UNDEFINED

DRAM MODULE

1 MEG x 36 DRAM

FAST PAGE MODE

FEATURES

- Common RAS control pinout in a 72-pin single-in-line package
- High-performance, CMOS silicon gate process.
- Single 5V ±10% power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 27mW standby; 2,175mW active, typical
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- 1,024-cycle refresh distributed across 16ms
- Optional FAST PAGE MODE access cycle

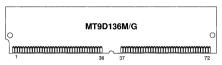
OPTIONS

MARKING

Timing	
70ns access	- 7
80ns access	- 8
100ns access	-10

Packages

Leadless 72 -pin SIMM	M
Leadless 72-pin SIMM (Gold)	G
Leaded 72-pin ZIP	Z


GENERAL DESCRIPTION

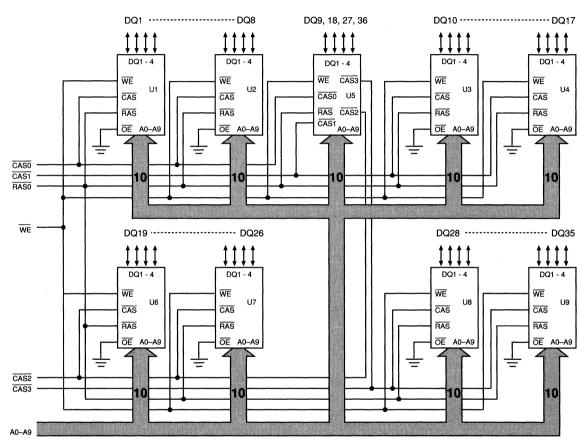
The MT9D136 is a randomly accessed solid-state memory containing 1,048,576 words organized in a x36 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits which are entered 10 bits (A0-A9) at a time. \overline{RAS} is used to latch the first 10 bits and \overline{CAS} the latter 10 bits. READ or WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. If \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS

PIN ASSIGNMENT (Top View)

72-Pin SIMM (I-7)

72-Pin ZIP (J-6)



PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	19	NC	37	DQ18	55	DQ13
2	DQ1	20	DQ5	38	DQ36	56	DQ31
3	DQ19	21	DQ23	39	Vss	57	DQ14
4	DQ2	22	DQ6	40	CASO	58	DQ32
5	DQ20	23	DQ24	41	CAS2	59	Vcc
6	DQ3	24	DQ7	42	CAS3	60	DQ33
7	DQ21	25	DQ25	43	CAS1	61	DQ15
8	DQ4	26	DQ8	44	RASO	62	DQ34
9	DQ22	27	DQ26	45	NC	63	DQ16
10	Vcc	28	A7	46	NC	64	DQ35
11	NC	29	NC	47	WE	65	DQ17
12	A0	30	Vcc	48	NC	66	NC
13	A1	31	A8	49	DQ10	67	PRD1
14	A2	32	A9	50	DQ28	68	PRD2
15	A3	33	NC	51	DQ11	69	PRD3
16	A4	34	RAS0	52	DQ29	70	PRD4
17	A5	35	DQ27	53	DQ12	71	NC
18	A6	36	DQ9	54	DQ30	72	Vss

followed by a column address strobed-in by $\overline{\text{CAS}}$. $\overline{\text{CAS}}$ may be toggled-in by holding $\overline{\text{RAS}}$ LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning $\overline{\text{RAS}}$ HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HIDDEN REFRESH) so that all 1,024 combinations of RAS addresses (A0-A9) are executed at least every 16ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

U1-U4, U6-U9 = MT4C4001DJ U5 = MT4C4004DJ

NOTE: Due to the use of a Quad CAS DRAM, RASO is common to all devices.

TRUTH TABLE

					Addresses		
Function		RAS	CAS	WE	^t R	^t C	DQ1-36
Standby		Н	Х	×	Х	Х	High Impedance
READ		L	L	Н	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	L	ROW	COL	Valid Data In
FAST-PAGE-	1st Cycle	L	H→L	Н	ROW	COL	Valid Data Out
MODE READ	2nd Cycle	L	H→L	Н	n/a	COL	Valid Data Out
FAST-PAGE-	1st Cycle	L	H→L	L	ROW	COL	Valid Data In
MODE WRITE	2nd Cycle	L	H→L	L	n/a	COL	Valid Data In
RAS-ONLY RE	FRESH	L	Η	Х	ROW	n/a	High Impedance
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Valid Data In
CAS-BEFORE-RAS REFRESH		H→L	L	Х	Х	Х	High Impedance

PRESENCE DETECT

SYMBOL	-7	-8	-10
PRD1	NC	VSS	NC
PRD2	vss	VSS	NC
PRD3	vss	NC	NC
PRD4	NC	VSS	NC

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Operating Temperature, TA(Ambient)	0°C to +70°C
Storage Temperature (Plastic)	-55°C to +150°C
Power Dissipation	9W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

MT9D136

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (Notes: 1, 3, 4, 6, 7) (0°C \leq T $_A$ \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES	
Supply Voltage		Vcc	4.5	5.5	٧	
Input High (Logic 1) Voltage, All Inputs		ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1	
INPUT LEAKAGE CURRENT Any input $0V \le V \text{In} \le V \text{cc}$ (All other pins not under test = 0V) For each package input	A0-A8, WE	lı .	-18	18	μА	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vout ≤ Vcc) For each package input	DQ1-DQ36	loz	-12	12	μА	
OUTPUT LEVELS		Vон	2.4		٧	
Output High Voltage (lout = -5mA) Output Low Voltage (lout = 5mA)		Vol		0.4	٧	1 1

					_	
			MAX			
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC (MIN))	Icc ₁	900	810	720	mA	2
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL, CAS = Cycling: ^t PC = ^t PC (MIN))	lcc2	630	540	450	mA	2
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = VIH after 8 RAS cycles (MIN))	lссз	18	18	18	mA	
STANDBY CURRENT: CMOS INPUT LEVELS Power supply standby current (RAS = CAS = Vcc -0.2V after 8 RAS cycles (MIN)). (All other inputs at Vcc -0.2V or Vss +0.2V)	Icc4	9	9	9	mA	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling: CAS = ViH)	Icc5	900	810	720	mA .	2
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS = Cycling)	Icc6	900	810	720	mA	2

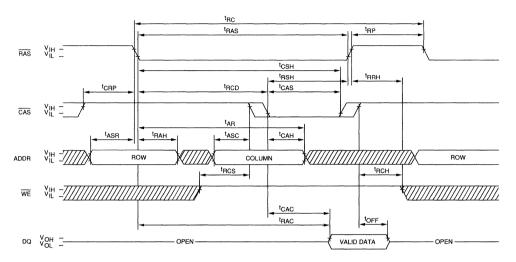
CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	CI1		45	pF	17
Input Capacitance: WE	CI2		63	pF	17
Input Capacitance: RAS0	Сіз		63	pF	17
Input Capacitance: CAS0, CAS1, CAS2, CAS3	Cı4		21	pF	17
Input/Output Capacitance: DQ1-DQ36	Cio		7	pF	17

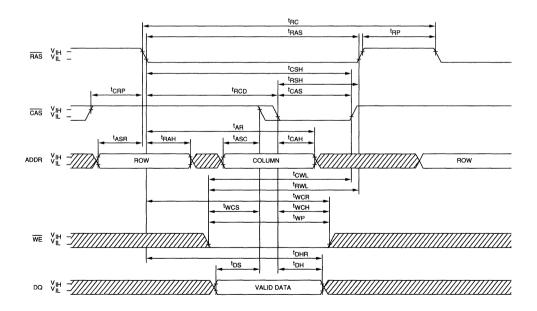
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 10, 11, 16, 17) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

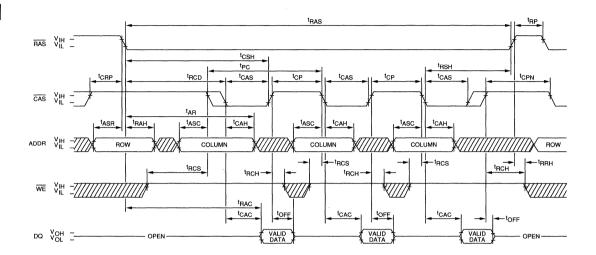
A.C. CHARACTERISTICS			-7		-8	-	-10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		150		180		ns	6, 7
FAST-PAGE-MODE cycle time	^t PC	40		45		55		ns	6, 7
Access time from RAS	^t RAC		70		80		100	ns	7, 8
Access time from CAS	^t CAC		20		20		25	ns	7, 9
RAS pulse width	^t RAS	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	^t RSH	20		20		25		ns	
RAS precharge time	tRP	50		60		70		ns	
CAS pulse width	^t CAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	tCSH	70		80		100		ns	
CAS precharge time	^t CPN	10	1	10		15		ns	18
CAS precharge time (FAST PAGE MODE)	tCP	10	}	10		10		ns	
RAS to CAS delay time	^t RCD	20	50	20	60	25	75	ns	13
CAS to RAS setup time	^t CRP	5		5		20		ns	
Row address setup time	tASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
Column address setup time	^t ASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	
Column address hold time referenced to RAS	^t AR	55		60		70		ns	
Read command setup time	tRCS	0		0		0		ns	
Read command hold time referenced to CAS	^t RCH	0		0		0		ns	14
Read command hold time referenced to RAS	^t RRH	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	20	ns	12
WE command setup time	twcs	0		0		0		ns	
Write command hold time	†WCH	15		15		20		ns	
Write command hold time referenced to RAS	tWCR	55		60		75		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	†RWL	20		20		25		ns	
Write command to CAS lead time	^t CWL	20		20		25		ns	
Data-in setup time	^t DS	0		0		0		ns	15
Data-in hold time	tDH	15		15		20		ns	15
Data-in hold time referenced to RAS	^t DHR	55		60		75		ns	
Transition time (rise or fall)	^t T	3	50	3	50	3	50	ns	16
Refresh period (256 cycles)	tREF		16		16		16	ms	20
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	15		15		15		ns	19
CAS setup time (CAS-BEFORE-RAS REFRESH)	^t CSR	10		10		10		ns	19
RAS to CAS precharge time	^t RPC	0		0		0		ns	19


NOTES

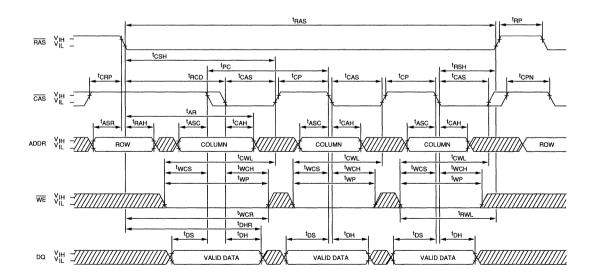
- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of 100µs is required after power-up followed by any eight RAS REFRESH cycles (RAS-ONLY or CBR with WE HIGH) before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 16ms refresh requirement is exceeded.
- 4. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- Assumes that ^tRCD ≥ ^tRCD (MAX).
- 10. If $\overline{CAS} = V_{IH}$, data output is high impedance.
- 11. If $\overline{\text{CAS}} = V_{\text{IL}}$, data output may contain data from the last valid READ cycle.
- 12. tOFF (MAX) defines the time at which the output


- achieves the open circuit condition and is not referenced to VOH or VOL.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. ${}^{t}RCH$ is referenced to the first rising edge of \overline{RAS} or \overline{CAS}
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles.
- 16. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIL and VIH) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for ^tCP. Note 8 applies to determine valid data out.
- 19. On-chip refresh and address counters are enabled.
- A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to OE being grounded on U1-U9.

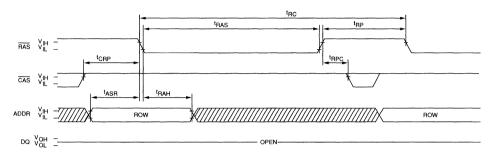
READ CYCLE

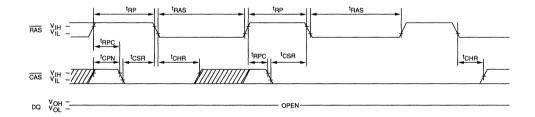


EARLY-WRITE CYCLE

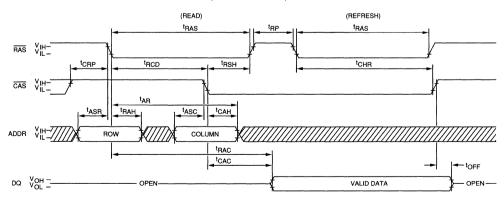


FAST-PAGE-MODE READ CYCLE


FAST-PAGE-MODE EARLY-WRITE CYCLE


RAS-ONLY REFRESH CYCLE

 $(ADDR = A_0 - A_9; \overline{WE} = DON'T CARE)$


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_0, \overline{WE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{20}$

DON'T CARE

DRAM MODULE

2 MEG x 36 DRAM

FAST PAGE MODE

FEATURES

OPTIONS

- Common RAS control per side pinout in a 72-pin single-in-line package
- High-performance CMOS silicon gate process.
- Single 5V ±10% power supply
- All inputs, outputs and clocks are fully TTL and CMOS compatible
- Low power, 54mW standby; 4,500mW active, typical
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN

MARKING

- 1.024-cycle refresh distributed across 16ms
- Optional FAST PAGE MODE access cycle

• Timing 70ns access 80ns access 100ns access	- 7 - 8 -10
 Packages Leadless 72-pin SIMM Leadless 72-pin SIMM (Gold) Leaded 72-pin ZIP 	M G Z

GENERAL DESCRIPTION

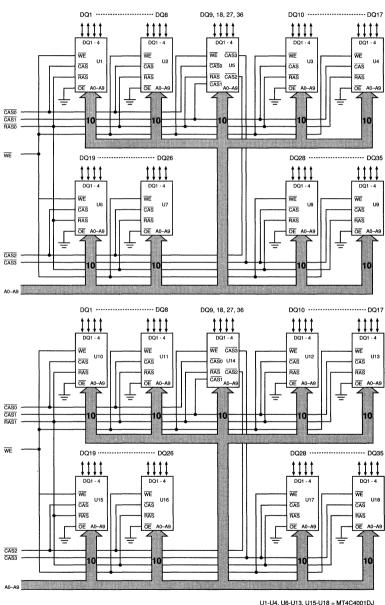
The MT18D236 is a randomly accessed solid-state memory containing 2,097,152 words organized in a x36 configuration. During READ or WRITE cycles, each bit is uniquely addressed through the 20 address bits which are entered 10 bits (A0-A9) at a time. \overline{RAS} is used to latch the first 10 bits and \overline{CAS} the latter 10 bits. READ or WRITE cycles are selected with the \overline{WE} input. A logic HIGH on \overline{WE} dictates READ mode while a logic LOW on \overline{WE} dictates WRITE mode. During a WRITE cycle, data-in (D) is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs last. EARLY WRITE occurs when \overline{WE} goes LOW prior to \overline{CAS} going LOW, the output pin(s) remain open (High-Z) until the next \overline{CAS} cycle.

FAST PAGE MODE operations allow faster data operations (READ or WRITE) within a row-address (A0-A9) defined page boundary. The FAST PAGE MODE cycle is always initiated with a row address strobed-in by RAS

PIN ASSIGNMENT (Top View)

72-Pin SIMM (I-8)

72-Pin ZIP (J-7)


PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL	PIN#	SYMBOL
1	Vss	19	NC	37	DQ18	55	DQ13
2	DQ1	20	DQ5	38	DQ36	56	DQ31
3	DQ19	21	DQ23	39	Vss	57	DQ14
4	DQ2	22	DQ6	40	CASO CASO	58	DQ32
5	DQ20	23	DQ24	41	CAS2	59	Vcc
6	DQ3	24	DQ7	42	CAS3	60	DQ33
7	DQ21	25	DQ25	43	CAS1	61	DQ15
8	DQ4	26	DQ8	44	RAS0	62	DQ34
9	DQ22	27	DQ26	45	RAS1	63	DQ16
10	Vcc	28	A7	46	NC	64	DQ35
11	NC	29	NC	47	WE	65	DQ17
12	A0	30	Vcc	48	NC	66	NC
13	A1	31	A8	49	DQ10	67	PRD1
14	A2	32	A9	50	DQ28	68	PRD2
15	A3	33	RAS1	51	DQ11	69	PRD3
16	A4	34	RAS0	52	DQ29	70	PRD4
17	A5	35	DQ27	53	DQ12	71	NC
18	A6	36	DQ9	54	DQ30	72	Vss

followed by a column address strobed-in by \overline{CAS} . \overline{CAS} may be toggled-in by holding \overline{RAS} LOW and strobing-in different column addresses, thus executing faster memory cycles. Returning \overline{RAS} HIGH terminates the FAST PAGE MODE operation.

Returning RAS and CAS HIGH terminates a memory cycle and decreases chip current to a reduced standby level. Also, the chip is preconditioned for the next cycle during the RAS high time. Memory cell data is retained in its correct state by maintaining power and executing any RAS cycle (READ, WRITE, RAS-ONLY, CAS-BEFORE-RAS, or HIDDEN REFRESH) so that all 1,024 combinations of RAS addresses (A0-A9) are executed at least every 16ms, regardless of sequence.

FUNCTIONAL BLOCK DIAGRAM

U1-U4, U6-U13, U15-U18 = MT4C4001DJ U5, U14 = MT4C4004DJ

Due to the use of a Quad \overline{CAS} parity DRAM, \overline{RASO} is common to side 1 and $\overline{RAS1}$ is common to side 2. NOTE:

TRUTH TABLE

					Addresses		
Function		RAS	CAS	WE	^t R	tC	DQ1-36
Standby		Н	Х	×	X	Х	High Impedance
READ		L	L	Н	ROW	COL	Valid Data Out
EARLY-WRITE		L	L	L	ROW	COL	Valid Data In
FAST-PAGE-	1st Cycle	L	H→L	Н	ROW	COL	Valid Data Out
MODE READ	2nd Cycle	L	H→L	Н	n/a	COL	Valid Data Out
FAST-PAGE-	1st Cycle	L	H→L	L	ROW	COL	Valid Data In
MODE WRITE	2nd Cycle	L	H→L	L	n/a	COL	Valid Data In
RAS-ONLY RE	FRESH	L	Н	Х	ROW	n/a	High Impedance
HIDDEN	READ	L→H→L	L	Н	ROW	COL	Valid Data Out
REFRESH	WRITE	L→H→L	L	L	ROW	COL	Valid Data In
CAS-BEFORE-	RAS	H→L	L	Х	Х	Х	High Impedance
REFRESH							

PRESENCE DETECT

SYMBOL	-7	-8	-10
PRD1	NC	VSS	NC
PRD2	NC	VSS	NC
PRD3	vss	VSS	NC
PRD4	NC	NC	NC

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V to	+7.0V
Operating Temperature, TA(Ambient)0°C to -	⊦70°C
Storage Temperature (Plastic)55°C to +	150°C
Power Dissipation	.18W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS (Notes: 1, 3, 4, 6, 7) (0°C \leq T $_{A}$ \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION		SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage		Vcc	4.5	5.5	٧	
Input High (Logic 1) Voltage, All Inputs	Vih	2.4	Vcc+1	٧	1	
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1	
INPUT LEAKAGE CURRENT Any Input: 0V ≤ V _{IN} ≤ V _{CC} (All other pins not under test = 0V) For each package input	$V \le V_{IN} \le V_{CC}$ A0-A9, \overline{WE}				μΑ	
OUTPUT LEAKAGE CURRENT (Q is disabled, 0V ≤ Vouт ≤ Vcc) For each package input	DQ1-DQ36	loz	-24	24	μΑ	
OUTPUT LEVELS		Vон	2.4		٧	
Output High Voltage (Ιουτ = -5mA) Output Low Voltage (Ιουτ = 5mA)		Vol		0.4	٧	1 1

			MAX			
PARAMETER/CONDITION	SYMBOL	-7	-8	-10	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC (MIN))	lcc1	918	828	738	mA	2
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL, CAS = Cycling: PC = PC (MIN))	lcc2	648	558	468	mA	2
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = VIH after 8 RAS cycles (MIN))	lcc3	36	36	36	mA	
STANDBY CURRENT: CMOS INPUT LEVELS Power supply standby current (RAS = CAS = Vcc -0.2V after 8 RAS cycles (MIN)). (All other inputs at Vcc -0.2V or Vss +0.2V)	Icc4	18	18	18	mA	
REFRESH CURRENT: \overline{RAS} -ONLY $(\overline{RAS} = \text{Cycling: } \overline{CAS} = \text{V}\text{IH})$	lcc5	918	828	738	mA	2
REFRESH CURRENT: \overline{CAS} -BEFORE- \overline{RAS} (\overline{RAS} and \overline{CAS} = Cycling)	Icc6	918	828	738	mA	2

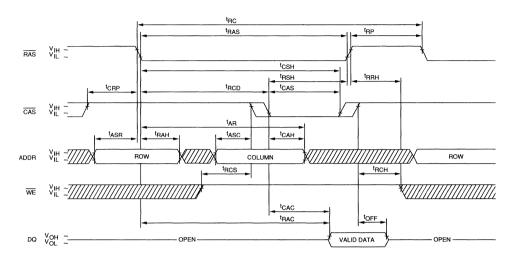
CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A9	Ci1		90	pF	17
Input Capacitance: WE	Cı2		126	pF	17
Input Capacitance: RAS0, RAS1	Сіз		63	pF	17
Input Capacitance: CASO, CAS1, CAS2, CAS3	C ₁₄		42	pF	17
Input/Output Capacitance: DQ1-DQ36	Сю		14	pF	17

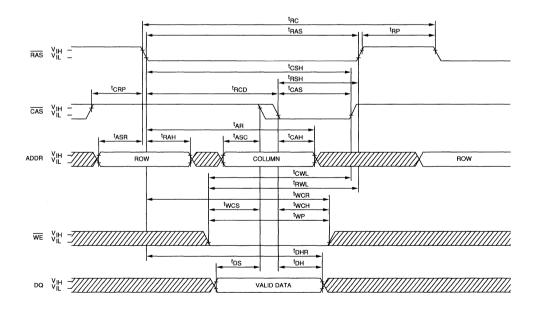
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 3, 4, 5, 10, 11, 16, 17) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

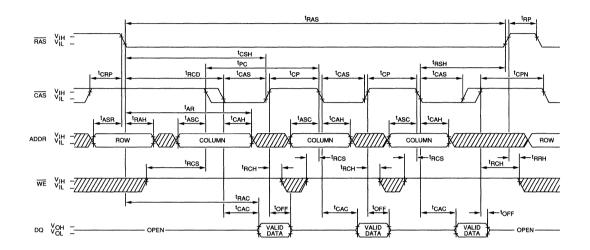
A.C. CHARACTERISTICS			-7		-8		-10		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MiN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	130		150		180		ns	6, 7
FAST-PAGE-MODE cycle time	tPC	40		45		55		ns	6, 7
Access time from RAS	^t RAC		70		80		100	ns	7, 8
Access time from CAS	^t CAC		20		20		25	ns	7, 9
RAS pulse width	^t RAS	70	100,000	80	100,000	100	100,000	ns	
RAS hold time	^t RSH	20		20		25		ns	
RAS precharge time	^t RP	50		60		70		ns	
CAS pulse width	^t CAS	20	100,000	20	100,000	25	100,000	ns	
CAS hold time	tCSH	70		80		100		ns	
CAS precharge time	^t CPN	10		10		15		ns	18
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		10		ns	
RAS to CAS delay time	tRCD	20	50	20	60	25	75	ns	13
CAS to RAS setup time	^t CRP	5		5		20		ns	
Row address setup time	tASR	0		0		0		ns	
Row address hold time	^t RAH	10		10		15		ns	
Column address setup time	†ASC	0		0		0		ns	
Column address hold time	^t CAH	15		15		20		ns	
Column address hold time referenced to RAS	^t AR	55		60		70		ns	
Read command setup time	^t RCS	0		0		0		ns	
Read command hold time referenced to CAS	tRCH	0		0		0		ns	14
Read command hold time referenced to RAS	^t RRH	0		0		0		ns	
Output buffer turn-off delay	†OFF	0	20	0	20	0	20	ns	12
WE command setup time	tWCS	0		0		0		ns	
Write command hold time	tWCH	15		15		20		ns	
Write command hold time referenced to RAS	™CR	55		60		75		ns	
Write command pulse width	tWP	15		15		20		ns	
Write command to RAS lead time	^t RWL	15		20		25		ns	
Write command to CAS lead time	tCWL	15		20		25		ns	
Data-in setup time	t _{DS}	0		0		0		ns	15
Data-in hold time	^t DH	15		15		20		ns	15
Data-in hold time referenced to RAS	^t DHR	55		60		75		ns	
Transition time (rise or fall)	tΤ	3	50	3	50	3	50	ns	16
Refresh period (256 cycles)	^t REF		16		16		16	ms	20
CAS hold time (CAS-BEFORE-RAS REFRESH)	[†] CHR	15		15		15		ns	19
CAS setup time (CAS-BEFORE-RAS REFRESH)	^t CSR	10		10		10		ns	19
RAS to CAS precharge time	tRPC	0	†	0		0	1	ns	19

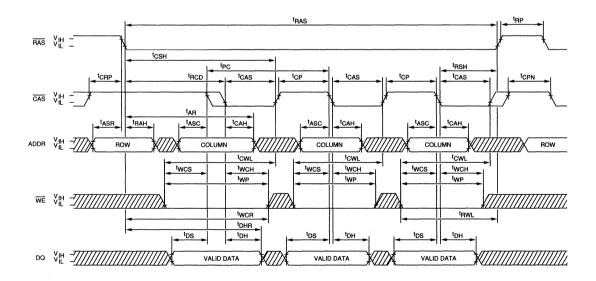

NOTES

- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of $100\mu s$ is required after power-up followed by any eight \overline{RAS} REFRESH cycles (\overline{RAS} -ONLY or CBR with \overline{WE} HIGH) before proper device operation is assured. The eight \overline{RAS} cycle wake-up should be repeated any time the 16ms refresh requirement is exceeded.
- 4. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a load equivalent to two TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{CAS} = VIH$, data output is high impedance.
- 11. If $\overline{CAS} = V_{IL}$, data output may contain data from the last valid READ cycle.
- 12. tOFF (MAX) defines the time at which the output


- achieves the open circuit condition and is not referenced to Voh or Vol.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. ^tRCH is referenced to the first rising edge of RAS or CAS.
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles.
- 16. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 17. This parameter is sampled. Capacitance is calculated from the equation $C = I^{dt}/_{dv}$ with dv = 3V and Vcc = 5V.
- 18. If CAS is LOW at the falling edge of RAS, data-out (Q) will be maintained from the previous cycle. To initiate a new cycle and clear the data-out buffer, CAS must be pulsed HIGH for tCP. Note 8 applies to determine valid data out.
- 19. On-chip refresh and address counters are enabled.
- 20. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case, WE = LOW.
- 21. LATE-WRITE, READ-WRITE or READ-MODIFY-WRITE cycles are not available due to $\overline{\text{OE}}$ being grounded on U1-U18.

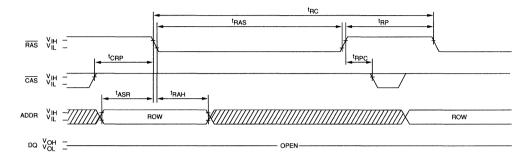
READ CYCLE


EARLY-WRITE CYCLE


DON'T CARE
UNDEFINED

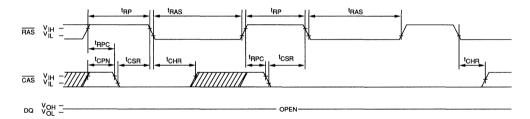
FAST-PAGE-MODE READ CYCLE

FAST-PAGE-MODE EARLY-WRITE CYCLE

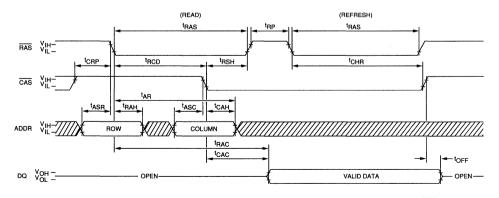


DON'T CARE

W UNDEFINED



RAS-ONLY REFRESH CYCLE (ADDR = $A_0 - A_0$; WE = DON'T CARE)


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_9, \overline{WE} = DON'T CARE)$

HIDDEN REFRESH CYCLE

 $(\overline{WE} = HIGH)^{20}$

DON'T CARE

₩ UNDEFINED

MCRON

DYNAMIC RAMS	1
DRAM MODULES	2
MULTIPORT DRAMS	3
STATIC RAMS	4
SYNCHRONOUS SRAMS	5
SRAM MODULES	6
CACHE DATA SRAMS	7
FIFO MEMORIES	8
APPLICATION/TECHNICAL INFORMATION	9 -
MILITARY INFORMATION	10
PACKAGE INFORMATION	
SALES INFORMATION	12

DUAL PORT DRAM PRODUCT SELECTION GUIDE

Memory	Access	Part	Access	Power D	issipation	Package and Number of Pins				┛_	
Configuration	Cycle	Number	Time (ns)	Standby	Active	PDIP	ZIP	SOJ	CDIP	Process	Page
64K x 4	PM	MT42C4064	100,120,150	15mW	250mW	24	24	-	24	CMOS	3-1
256K x 4	FPM	MT42C4255	80,100,120	15mW	200mW	-	28	28	-	CMOS	3-27
256K x 4	FPM, BW	MT42C4256	80,100,120	15mW	200mW	-	28	28	-	CMOS	3-61
128K x 8	FPM	MT42C8127	100,120	15mW	200mW	-	-	40	-	CMOS	3-97
128K x 8	FPM, BW	MT42C8128	80,100,120	15mW	275mW	-	40	40	-	CMOS	3-131
256K x 8	FPM, BW	MT42C8256	70, 80,100	20mW	300mW	-	-	40	-	CMOS	3-167

PM = Page Mode, FPM = Fast Page Mode, BW = Block Write

TRIPLE PORT DRAM PRODUCT SELECTION GUIDE

Memory	Access	Part	Access	Power D	Power Dissipation		Package and Number of Pins			
Configuration	Cycle	Number	Time (ns)	Standby	Active	ZIP	SOJ	PLCC	Process	Page
256K x 4	FPM, BW, QSF pin	MT43C4257	80,100,120	15mW	450mW	•	40	-	CMOS	3-169
256K x 4	FPM, BW, SSF pin	MT43C4258	80,100,120	15mW	450mW	-	40	-	CMOS	3-169
128K x 8	FPM, BW, QSF pin	MT43C8128	80,100,120	15mW	450mW	•	-	52	CMOS	3-215
128K x 8	FPM, BW, SSF pin	MT43C8129	80,100,120	15mW	450mW	-	-	52	CMOS	3-215

PM = Page Mode, FPM = Fast Page Mode, BW = Block Write

VRAM

64K x 4 DRAM WITH 256 x 4 SAM

FEATURES

OPTIONS

- Industry standard pinout, timing and functions
- High performance CMOS silicon gate process
- Single +5V ±10% power supply
- Inputs and outputs are fully TTL and CMOS compatible
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS, and HIDDEN
- 256-cycle refresh within 4ms
- Optional PAGE MODE access cycles
- Dual port organization: 64K x 4 DRAM port 256 x 4 SAM port
- Bit MASKED WRITE mode capability on DRAM port
- No refresh required for Serial Access Memory
- Low power: 15mW standby; 250mW active, typical

MARKING

• Fast access times – 100ns parallel, 33ns serial

 Timing (DRAM, SAM) 	
100ns, 33ns	-10
120ns, 40ns	-12
150ns, 60ns	-15
• Packages	
Plastic DIP (400 mil)	None
Ceramic DIP (400 mil)	C
Plastic ZIP	Z

PIN ASSIGNMENT (Top View)

24-Pii (A-8,		7	2 4-Pin ZI (C-4)	Р
SC 1 1 • SDQ1 2 SDQ2 3 TR/OE 4 DQ1 5 DQ2 6 ME/WE 7 RAS 8 A6 9 A5 10 A4 11 Vcc 12	24 Vss 23 SDQ4 22 SDQ3 21 SE 20 DQ4 19 DQ3 18 CAS 17 A0 16 A1 15 A2 14 A3 13 A7	DQ3 SE SDQ4 SC SDQ2 DQ1 ME/WE A6 A4 A7 A2 A0	1 5 6 2 2 3 5 6 6 7 9 5 6 10 10 11 15 5 6 16 16 17 15 6 16 18 18 12 12 12 12 12 12 12 12 12 12 12 12 12	DQ4 SDQ3 Vss SDQ1 TR/OE DQ2 RAS A5 Vcc A3 A1 CAS

GENERAL DESCRIPTION

The MT42C4064 is a high speed, dual port CMOS dynamic random access memory, or video RAM (VRAM) containing 262,144 bits. They may be accessed by a four bit wide DRAM port or by a 256×4 bit serial access memory (SAM) port. Data may be transferred bidirectionally between the DRAM and the SAM.

The DRAM portion of the VRAM is functionally identical to the MT4067 (64K x 4) bit DRAM. Four 256-bit data registers make up the serial access memory portion of the VRAM. Data I/O and internal data transfer are accomplished using three separate bidirectional data paths: the 4-bit random access I/O port, the four internal 256 bit wide paths between the DRAM and the SAM, and the 4-bit serial I/O

port for the SAM. The rest of the circuitry consists of the control, timing, and address-decoding logic.

Each of the ports may be operated asynchronously and independently of the other except when data is being transferred internally between them. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 256 combinations of \overline{RAS} addresses are executed at least every 4ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. The SAM portion of the VRAM is fully static and does not require any refresh.

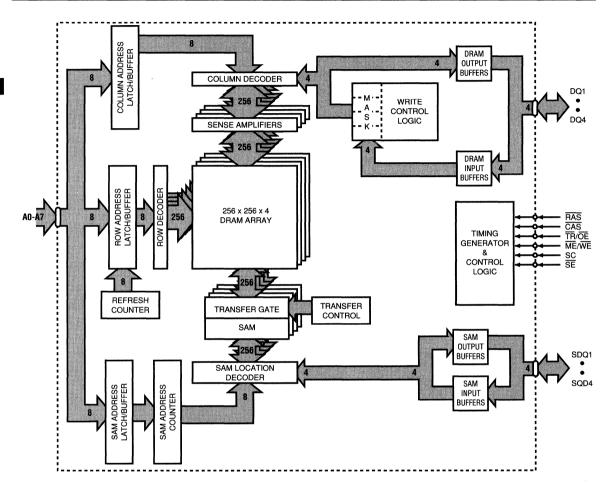


Figure 1
MT42C4064 BLOCK DIAGRAM

PIN DESCRIPTIONS

DIP PIN NUMBER(S)	ZIP PIN Number(s)	SYMBOL	TYPE	DESCRIPTION
1	7	SC	Input	Serial Clock: Clock input to the serial address counter for the SAM registers.
4	8, 9, 4, 5	TR/OE	Input	Transfer Enable: Enables an internal TRANSFER operation at $\overline{\text{RAS}}$ (H \rightarrow L), or Output Enable: Enables the DRAM output buffers when taken LOW after $\overline{\text{RAS}}$ goes LOW ($\overline{\text{CAS}}$ must also be LOW); otherwise, the output buffers are in a High-Z.
7	13	ME/WE	Input	Mask Enable: If $\overline{\text{ME/WE}}$ is LOW at the falling edge of $\overline{\text{RAS}}$ a MASKED WRITE cycle is performed, or Write Enable: $\overline{\text{WE}}$ is used to select a READ ($\overline{\text{WE}}$ = H) or WRITE ($\overline{\text{WE}}$ = L) cycle when accessing the DRAM. This includes a DRAM-TO-SAM TRANSFER ($\overline{\text{WE}}$ = H) or SAM-TO-DRAM TRANSFER ($\overline{\text{WE}}$ = L).
8	14	RAS	Input	Row Address Strobe: RAS is used to clock in the 8 row-address bits and as a strobe for the MASK ENABLE and TRANSFER functions.
9, 10, 11, 13, 14, 15, 16, 17	23, 22, 21, 20 17, 16, 15, 19	A0 to A7	Input	Address Inputs: For the DRAM operation, these inputs are multiplexed and clocked by RAS and CAS to select 4 bits out of the 64K available. During TRANSFER operations, A0 to A7 indicate the DRAM row being accessed (when RAS goes LOW) and the SAM start address (when CAS goes LOW).
18	24	CAS	Input	Column Address Strobe: CAS is used to clock in the 8 column-address bits and enable the DRAM output buffers (TR/OE must also be LOW).
21	3	SE	Input	Serial Port Enable: SE enables the serial I/O buffers and allows a serial READ or WRITE operation to occur, otherwise the output buffers are in a High-Z state.SE is also used during a TRANSFER operation to indicate whether a SAM-TO-DRAM TRANSFER or a SERIAL-INPUT-MODE ENABLE cycle is performed.
5, 6, 19, 20	11,12,1,2	DQ1 - DQ4	Input/ Output	DRAM Data I/O: Inputs, Outputs, or High-Z, and/or Mask Data Inputs: For MASKED WRITE cycle only.
2, 3, 22, 23	8,9,4,5	SDQ1 - SDQ4	Input/ Output	Serial Data I/O: Input, Output, or High-Z.
12	18	Vcc	Supply	Power Supply: +5V ±10%
24	6	Vss	Supply	Ground

FUNCTIONAL DESCRIPTION

The VRAM can be divided into three functional blocks (see Figure 1); the DRAM, the transfer control circuitry, and the serial access memory (SAM). All of the operations described below are also shown in the AC Timing Diagrams section of this data sheet, and are summarized in the Truth Table.

Note:

For dual function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing transfer operations the $\overline{TR}/\overline{OE}$ pin will be shown as $\overline{TR}/(\overline{OE})$.

DRAM OPERATION

The DRAM portion of the VRAM is functionally identical to standard 64K x 4 DRAMs. However, because several of the DRAM control pins are used for additional functions on this part, several conditions that were undefined or "don't care" states for the DRAM are specified for the VRAM. These conditions are highlighted in the following discussion.

READ/WRITE Cycles

The 16 address bits that are used to select a 4-bit word from the 65,536 available are latched into the chip using the A0-A7, \overline{RAS} , and \overline{CAS} inputs. First, the 8 row-address bits are set up on the address inputs and clocked into the part when \overline{RAS} transitions from HIGH to LOW. Next, the 8 column-address bits are set up on the address inputs and clocked-in when \overline{CAS} goes from HIGH to LOW.

For single port DRAMs the \overline{OE} pin is a "don't care" when \overline{RAS} goes LOW. For the VRAM, $\overline{(TR)}/\overline{OE}$ is used, when \overline{RAS} goes LOW, to select between an internal transfer operation and a DRAM operation. $\overline{(TR)}/\overline{OE}$ must be HIGH at the \overline{RAS} HIGH to LOW transition for a DRAM port READ or WRITE operation.

If $(\overline{\text{ME}})/\overline{\text{WE}}$ is HIGH when $\overline{\text{CAS}}$ goes LOW, a DRAM READ operation is performed and the data from the memory cells selected will appear at the DQ1 - DQ4 port. The $(\overline{\text{TR}})/\overline{\text{OE}}$ input must be LOW to enable the DRAM output port.

For single port DRAMs, WE is a "don't care" when RAS goes LOW. For the VRAM, (ME)/WE is used, when RAS goes LOW, to select between a MASKED WRITE cycle and anormal WRITE cycle. If (ME)/WE is LOW at the RAS HIGH to LOW transition, a MASKED WRITE operation is selected. For a normal DRAM WRITE operation, (ME)/WE must be HIGH at the RAS HIGH to LOW transition. (ME)/WE is a "don't care" at the RAS HIGH to LOW transition for a DRAM READ cycle.

If (ME)/WE is LOW when CAS goes LOW, a DRAM WRITE operation is performed and the data present on the DQ1 - DQ4 port will be written into the selected memory cells. If ME/(WE) is LOW when RAS goes LOW, the input data will be "masked" before being stored in the DRAM.

The VRAM can perform all the normal DRAM cycles including EARLY-WRITE, LATE-WRITE, READ-WRITE, READ-MODIFY-WRITE, PAGE-MODE READ, PAGE-MODE WRITE, and PAGE-MODEREAD-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in this data sheet for more details on these operations.

REFRESH

The MT42C4064 supports \overline{RAS} ONLY, \overline{CAS} -BEFORE- \overline{RAS} , and HIDDEN types of refresh cycles. All 256 row-address combinations must be accessed within 4ms. For the \overline{CAS} -BEFORE- \overline{RAS} refresh mode, the row addresses are generated internally and the user need not supply them as he must in \overline{RAS} ONLY refresh. $\overline{TR}/(\overline{OE})$ must be HIGH when \overline{RAS} goes LOW for the \overline{RAS} ONLY and \overline{CAS} -BEFORE- \overline{RAS} types of refresh cycles. Any READ, WRITE, or TRANS-FER operation also refreshes the DRAM row that is being accessed.

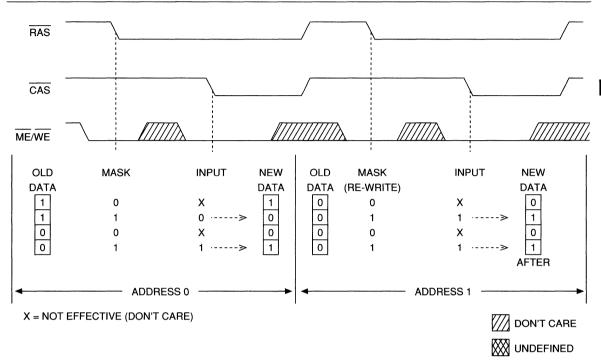


Figure 2 MT42C4064 MASKED WRITE

MASKED WRITE

If $\overline{\text{ME}}/(\overline{\text{WE}})$ is LOW at the $\overline{\text{RAS}}$ HIGH to LOW transition, the data (mask data) present on the DQ1 - DQ4 inputs will be written into the bit mask data register. The mask data acts as an individual write enable for each of the four DQ1 - DQ4 pins. If a LOW (logic 0) is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic 1) on a mask data register bit enables the input port and allows normal WRITE operations to proceed. Note that $\overline{\text{CAS}}$ is still HIGH. When

CAS goes LOW, the bits present on the DQ1 - DQ4 inputs will be written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW). The DRAM contents that correspond to the masked bits will not be changed during the WRITE cycle. Since the mask data register is reset (to all 1's) at the end of every MASKED WRITE cycle, new mask data must be supplied at the beginning of each MASKED WRITE cycle. An example of a typical MASKED WRITE cycle is shown in Figure 2.

TRANSFER OPERATION DRAM-TO-SAM TRANSFER (READ TRANSFER)

A TRANSFER operation is initiated when $\overline{TR}/(\overline{OE})$ is LOW at \overline{RAS} (HIGH to LOW) time. $\overline{(ME)}/\overline{WE}$ indicates the direction of the transfer and must be HIGH as RAS goes LOW for a DRAM-TO-SAM TRANSFER. In this case, the row address bits indicate the four 256-bit DRAM rows that are to be transferred to the four SAM data registers, and the column address bits indicate the start address, or Tap, of the next SERIAL OUTPUT cycle from the SAM data registers. RAS and CAS are used to strobe the address bits into the part. To complete the TRANSFER, $\overline{TR}/(\overline{OE})$ is taken HIGH while RAS and CAS are still LOW. The 1024 bits of DRAM data are then written into the SAM data registers and the serial shift start address is stored in an internal 8-bit register. There must be no rising edges on the serial clock (SC) input while a normal READ TRANSFER is taking place (refer to the AC timing diagrams for READ TRANSFER). A REAL-TIME READ-TRANSFER cycle is the only time when SC must be synchronized with the DRAM RAS and CAS timing (by using $\overline{TR}/(\overline{OE})$ is to fire the TRANSFER, LOW to HIGH transition). See the REAL-TIME READ-TRANSFER AC timing waveforms. If \overline{SE} is LOW, the first bits of the new row data will appear at the serial outputs with the first SC clock pulse. SE enables the serial outputs and may be either HIGH or LOW during this operation.

SAM-TO-DRAM TRANSFER (WRITE TRANSFER)

The SAM-TO-DRAM TRANSFER operation is identical to the DRAM-TO-SAM TRANSFER described above except that $(\overline{\text{ME}})/\overline{\text{WE}}$ and $\overline{\text{SE}}$ must be LOW when $\overline{\text{RAS}}$ goes LOW. The row address indicates the DRAM row that the SAM data registers will be written to and the column address indicates the Tap address of the next SERIAL INPUT cycle for the SAM data registers. If $\overline{\text{SE}}$ is HIGH when $\overline{\text{RAS}}$ goes LOW, a SERIAL-INPUT-MODE ENABLE cycle is performed.

SAM OPERATION SERIAL INPUT/OUTPUT MODE CONTROL

The SAM port is automatically placed in the serial output mode after a DRAM-TO-SAM TRANSFER operation. Conversely, after a SAM-TO-DRAM TRANSFER, the SAM port will be in the serial input mode.

SERIAL-INPUT-MODE ENABLE (PSEUDO WRITE TRANSFER)

It is possible to change the direction of the SAM port from output to input without performing a SAM-TO-DRAM TRANSFER. This operation, called a SERIAL-INPUT-MODE ENABLE cycle, is simply a SAM-TO-DRAM TRANSFER cycle with SE held HIGH instead of LOW. The DRAM data will not be disturbed and the data registers will be ready to accept input data.

The only way to put the SAM port in the serial output mode is to do a DRAM-TO-SAM TRANSFER.

SERIAL INPUT and SERIAL OUTPUT

The control inputs for SERIAL INPUT and SERIAL OUTPUT are SC and \overline{SE} . The rising edge of SC increments the serial address counter and provides access to the next SAM location. \overline{SE} enables or disables the serial input/output buffers.

Serial output of the SAM data register contents will start at the tap start address that was loaded during the DRAM-TO-SAM TRANSFER cycle. The SC input increments the address counter and presents the contents of the next SAM location to the 4-bit port. $\overline{\rm SE}$ is used as an output enable during the SAM output operation. The serial address is automatically incremented with every SC LOW to HIGH transition, regardless of whether $\overline{\rm SE}$ is HIGH or LOW, and will wrap around to location 0 after reaching its maximum count of 255.

SC is also used to clock-in data when the device is in the serial input mode. As in the serial output operation, the serial address register contents, which was loaded when the serial input mode were enabled, will determine the serial address to which the first bit will be written. \overline{SE} acts as an enable for serial data input and must be LOW for normal serial input. If \overline{SE} is HIGH, the data inputs are disabled and the SAM contents will not be modified. The serial address register is incremented with every $L \rightarrow H$ transition of SC, regardless of the logic level on the \overline{SE} input.

TRUTH TABLE

DRAM Operations (SC, SE, and SDQ1 — SDQ4 are "don't care")

Eurotion	DAC	CAC	ME	WE	TR	/OE	Addre	esses	DQ1	Nata
Function	RAS	CAS	tR*	tC*	tR*	tC*	tR*	tC*	to DQ4	Notes
Standby	Н	Н	Х	Х	Х	Х	Х	Х	High-Z	
READ	L	L	Х	Н	Н	H→L	ROW	COL	Data Out	
WRITE (EARLY-WRITE)	L	L	Н	L	Н	Х	ROW	COL	Data In	1
MASKED WRITE	H→L	L	L	L	Н	Х	ROW	COL	Mask Data In, Valid Data In	
READ-WRITE	L	L	Н	H→L	Н	L→H	ROW	COL	Valid Data Out	1
PAGE-MODE READ	L	H→L→H, H→L→H	Н	Н	Н	H→L	ROW	COL	Valid Data Out	
PAGE-MODE WRITE	L	H→L→H, H→L→H	Н	L	Н	Х	ROW	COL	Valid Data In	
PAGE-MODE READ-WRITE	L	H→L→H, H→L→H	Н	H→L	Н	L→H	ROW	COL	Valid Data Out, Valid Data In	1
RAS-ONLY REFRESH	L	Н	Х	n/a	Н	n/a	ROW	n/a	High-Z	
HIDDEN REFRESH	L→H→L	L	Х	Н	Х	L	ROW	COL	Valid Data Out	
CAS-BEFORE- RAS REFRESH	H→L	L	Х	Х	Х	Х	Х	Х	High-Z	

TRANSFER Operations (DQ1 — DQ4 are "don't care")

Function	RAS	CAS	ME/WE		TR/OE		Addresses		SC	SE	SDQ1	Notes
		CAS	tR*	tC*	tR*	tC*	tR*	tC*			SDQ4	Holes
DRAM-TO-SAM TRANSFER	L	L	Н	Х	L	L	ROW	TAP**	Х	Х	Х	2
SAM-TO-DRAM TRANSFER	L	L	L	Х	L	Х	ROW	TAP**	Х	L	Х	3
SERIAL-INPUT- MODE ENABLE	L	L	L	Х	L	Х	ROW	TAP**	Х	Н	Х	4

- * tR = when RAS goes from HIGH to LOW
- tC = when CAS goes from HIGH to LOW
- ** TAP = Tap Address, the serial address to which the next serial input or output cycle will start.
- Notes: 1. Any type of WRITE cycle may also be a MASKED WRITE cycle.
 - 2. The SAM will be in a SERIAL OUTPUT mode after a DRAM-TO- SAM TRANSFER.
 - 3. The SAM will be in a SERIAL INPUT mode after a SAM-TO-DRAM TRANSFER.
 - The SAM will be put in the SERIAL INPUT mode but the SAM-TO-DRAM TRANSFER will not occur.

TRUTH TABLE

Serial I/O Operations (RAS, CAS, ME/WE, TR/OE, and DQ1 - DQ4 are "don't care")

Function	SC	SE	SDQ1 — SDQ4	Notes
SERIAL OUTPUT	L→H	L	Valid Data Out	5
SERIAL INPUT	L→H	L	Valid Data In	6

Notes: 5. The SAM must be in the SERIAL OUTPUT mode.

6. The SAM must be in the SERIAL INPUT mode.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Operating Temperature, Ta(Ambient)	0°C to +70°C
Storage Temperature (Plastic)	-55°C to +150°C
Power Dissipation	1 W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{{\color{blue}A}} \leq 70^{\circ}C)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	Vін	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
INPUT LEAKAGE CURRENT (any input (0V≤Vιν≤Vcc), all other pins not under test = 0V).	lı.	-10	10	μА	
OUTPUT LEAKAGE CURRENT (DQ, SDQ disabled, 0V≤Vout≤Vcc).	loz	-10	10	μА	
OUTPUT LEVELS Output High Voltage (lout = -5mA)	Vон	2.4		V	
Output Low Voltage (Ιουτ = 5mA)	Vol		0.4	V	1

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: Ao-A7	Ci1		5	pF	18
Input Capacitance: RAS, CAS, WE, OE, SC, SE	Cı2		7	pF	18
Output Capacitance: DQ, SDQ	Co		7	pF	18

CURRENT DRAIN, SAM IN STANDBY (Notes 2, 3) (0°C \leq T_A \leq 70°C, Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION OF DRAM	SYMBOL	MIN	MAX	UNITS	NOTES
OPERATING CURRENT (\overline{RAS} and \overline{CAS} = Cycling; ${}^{t}RC$ = ${}^{t}RC$ (MIN)).	Icc1		40	mA	
OPERATING CURRENT: PAGE MODE $(\overline{RAS} = V_{IL}, \overline{CAS} = Cycling; {}^{t}PC = {}^{t}PC (MIN)).$	lcc2		40	mA	
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = VIH after 8 RAS cycles MIN).	lcc3		10	mA	
STANDBY CURRENT: CMOS INPUT LEVELS Power supply standby current (RAS = CAS = Vcc-0.2V after 8 RAS cycles MIN. All other inputs at Vcc-0.2V or Vss + 0.2V).	ICC4		4	mA	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = Vih).	lcc5		30	mA	
REFRESH CURRENT: \overline{CAS} -BEFORE- \overline{RAS} (\overline{RAS} and \overline{CAS} = Cycling).	Icc6		30	mA	22
SAM/DRAM DATA TRANSFER	lcc7		60	mA	

CURRENT DRAIN, SAM ACTIVE (t SC = MIN) (Notes 2, 3) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION OF DRAM	SYMBOL	MIN	MAX	UNITS	NOTES
OPERATING CURRENT (\overline{RAS} and \overline{CAS} = Cycling; ${}^{t}RC = {}^{t}RC$ (MIN)).	Icc8		60	mA	
OPERATING CURRENT: PAGE MODE (RAS = VIL, CAS = Cycling; [†] PC = [†] PC (MIN)).	lcc9		60	mA	
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current ($\overline{RAS} = \overline{CAS} = VIH$ after 8 \overline{RAS} cycles MIN).	lcc10		30	mA	
STANDBY CURRENT: CMOS INPUT LEVELS Power supply standby current ($\overline{RAS} = \overline{CAS} = Vcc-0.2V$ after 8 \overline{RAS} cycles MIN. All other inputs at Vcc-0.2V or Vss + 0.2V).	Icc11		25	mA	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = VIH).	ICC12		50	mA	
REFRESH CURRENT: $\overline{\text{CAS}}$ -BEFORE- $\overline{\text{RAS}}$ ($\overline{\text{RAS}}$ and $\overline{\text{CAS}}$ = Cycling).	Icc13		50	mA	22
SAM/DRAM DATA TRANSFER	Icc14		90	mA	

DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes 3, 4, 5, 6, 10, 11, 17) (0°C \leq T_A \leq + 70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS		-	10	-	12	-	15		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	t _{RC}	190		220		260		ns	
READ-MODIFY-WRITE cycle time	t _{RWC}	250		295		345		ns	20, 21
PAGE-MODE READ or WRITE	t _{PC}	75		90		110		ns	6
cycle time									
PAGE-MODE READ-MODIFY-WRITE	^t PRWC	125		150		175		ns	20, 21
cycle time									
Access time from RAS	t _{RAC}		100		120		150	ns	7, 8
Access time from CAS	t _{CAC}		50		60		75	ns	7, 9
RAS pulse width	t _{RAS}	100	10,000	120	10,000	150	10,000	ns	
RAS pulse width (PAGE MODE)	t _{RASP}	100	100,000	120	100,000	150	100,000	ns	
RAS hold time	t _{RSH}	50		60		75		ns	
RAS precharge time	t _{RP}	80		90		100		ns	
CAS pulse width	tCAS	50	10,000	60	10,000	75	10,000	ns	
CAS hold time	tcsh	100		120		150		ns	
CAS precharge time	t _{CPN}	15		20		25		ns	
CAS precharge time (PAGE MODE)	t _{CP}	15		20		25		ns	19
RAS to CAS delay	t _{RCD}	15	50	15	60	15	75	ns	13
CAS to RAS precharge time	tCRP	10		10		10		ns	
Row address setup time	t _{ASR}	0		0		0		ns	
Row address hold time	t _{RAH}	15		15		15		ns	
Column address setup time	t _{ASC}	0		0		0		ns	
Column address hold time	t _{CAH}	20		20		25		ns	
Column address hold time	t _{AR}	45		70		80		ns	
(referenced to RAS)									
READ command setup time	tRCS	0		0		0		ns	
READ command hold time	tRCH	0		0		0		ns	14
(referenced to CAS)									
READ command hold time	t _{RRH}	0		0		0		ns	
(referenced to RAS)									
WE command setup time	twcs	0		0		0		ns	16
WRITE command hold time	twcH	20		25		30		ns	
WRITE command hold time	tWCR	70		80		90		ns	
(referenced to RAS)									
WRITE command pulse width	t _{WP}	20		25		30		ns	
WRITE command to RAS lead time	t _{RWL}	25		30		35		ns	
WRITE command to CAS lead time	t _{CWL}	25		30		35		ns	
Data-in setup time	t _{DS}	0		0		0		ns	15
Data-in hold time	t _{DH}	15		20		25		ns	15
Data-in hold time (referenced to RAS)	t _{DHR}	70		80		90		ns	
CAS to WE delay	tCWD	65		80		95		ns	16, 20
RAS to WE delay	t _{RWD}	120		150		185		ns	16, 20
ME/WE to RAS setup time	twsR	0		0		0		ns	

DRAM TIMING PARAMETERS (Continued) ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes 3, 4, 5, 6, 10, 11, 17) (0°C \leq $T_{\mbox{A}}$ \leq + 70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS			10		12	-1	5	T	
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
ME/WE to RAS Hold Time	t _{RWH}	10		10		15	ns		
Mask Data (DQ_) to RAS setup time	t _{MS}	0		0		0		ns	
Mask Data (DQ) to RAS hold time	^t MH	20		20		25		ns	
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	
Refresh period (256 cycles)	t _{REF}		4		4		4	ms	
RAS to CAS precharge time	t _{RPC}		0		0		0	ns	
CAS setup time (CAS-BEFORE-RAS REFRESH)	tCSR	10		10		10		ns	
CAS hold time (CAS-BEFORE-RAS REFRESH)	tCHR	20		25		30		ns	22
CAS to output in Low-Z	t _{CLZ}	5		5		5		ns	
Output buffer turn-off delay	t _{OFF}	0	25	0	25	0	30	ns	7, 12
Access time from (TR)/OE	t _{OE}		25		25		30	ns	
Output Disable	tod	0	25	0	25	0	30_	ns	
Output Disable hold time from start of WRITE	t _{OEH}		25		25		30	ns	
Output Enable to RAS delay	t _{ORD}		0		0		0	ns	

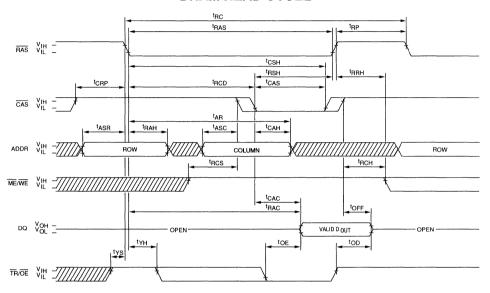
TRANSFER AND MODE CONTROL TIMING PARAMETERS ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes 3, 4, 5, 6, 17) (0° C \leq T_A \leq + 70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS		-	10	-1	12	-1	5		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
TRANSFER command to RAS setup time	^t TS	0		0		0		ns	23
TRANSFER command to RAS hold time	^t RTH	80		90		100		ns	23
TRANSFER command to CAS hold time	^t CTH	30		30		35		ns	23
TRANSFER command to SC lead time	t _{TSL}	5		5		10		ns	23
TRANSFER command to RAS lead time	^t TRL	10		10		10		ns	23
TRANSFER command to RAS delay time	^t TRD	15		15		20		ns	23
TRANSFER command to CAS time	t _{TCL}	10		10		10		ns	23
TRANSFER command to CAS delay time	^t TCD	15		15		20		ns	23
First SC edge to TRANSFER command delay time	^t TSD	10		10		20		ns	23
CAS to first SC delay	t _{RSD}		95		105		115	ns	
RAS to first SC delay	t _{CSD}		25		35		45	ns	
SAM-TO-DRAM (WRITE) transfer command to RAS hold time	^t RTHW	15		15		15		ns	
Serial output buffer turn-off delay from RAS	^t SDZ	10	40	10	50	10	60	ns	
SC to RAS setup time	t _{SRS}	35		40		45		ns	
RAS to SC delay time	^t SRD	25		30		35		ns	
Serial data input to SE delay time	t _{SZE}	0		0		0		ns	
RAS to SD buffer turn-on time	t _{SRO}	0		0		0		ns	
Serial data input delay from RAS	t _{SDD}	50		55		60		ns	
Serial data input to RAS delay time	tszs	0		0		0		ns	
SERIAL INPUT MODE ENABLE (SE) to RAS setup time	^t EŞR	0		0		0		ns	
SERIAL INPUT MODE ENABLE (SE) to RAS hold time	t _{REH}	15		15		15		ns	
NONTRANSFER command to RAS setup time	t _{YS}	0		0		0		ns	24
NONTRANSFER command to RAS hold time	^t YH	15		15		20		ns	24

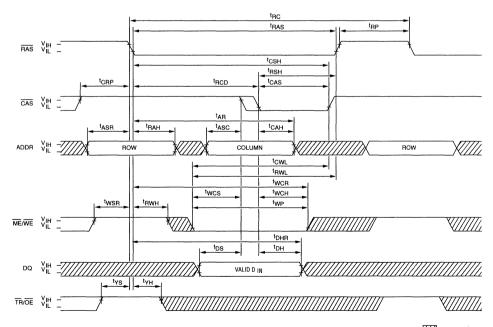
SAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes 3, 4, 5, 17, 25) (0° C \leq T $_{A}$ \leq + 70°C, Vcc = 5.0V \pm 10%)

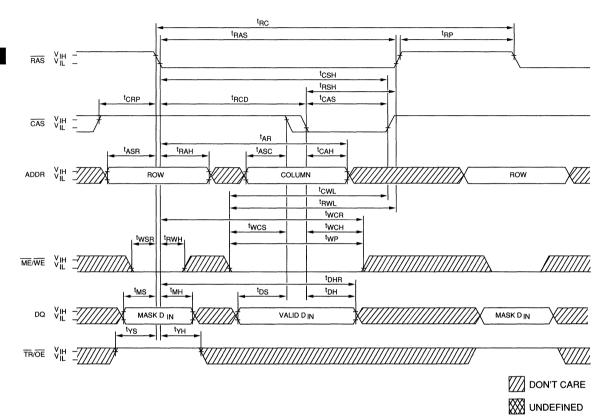
A.C. CHARACTERISTICS		-	10		-12 -		15		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Serial clock cycle time	tsc t	33	50000	40	50000	60	50000	ns	
Access time from SC	t _{SAC}		33		40		60	ns	25
SC precharge time	^t SP	10		10		20		ns	
SC pulse width	t _{SAS}	10		10		20		ns	
Access time from SE	^t SEA		25		30		40	ns	25
SE precharge time	t _{SEP}	10		15		20		ns	
SE pulse width	^t SE	15		15		20		ns	
Serial data out hold time after SC high	^t soH	10		10		10		ns	25
Serial output buffer turn off delay from SE	t _{SEZ}	0	15	0	25	0	30	ns	25
Serial data in setup time	t _{SDS}	0		0		0		ns	
Serial data in hold time	^t SDH	15		20		25			
SERIAL INPUT (Write) Enable setup time	tsws	0		0		0		ns	
SERIAL INPUT (Write) Enable hold time	^t swH	20		35		45		ns	
SERIAL INPUT (Write) Disable setup time	tswis	0		0		0		ns	
SERIAL INPUT (Write) Disable hold time	^t swiH	20		35		45		ns	


NOTES

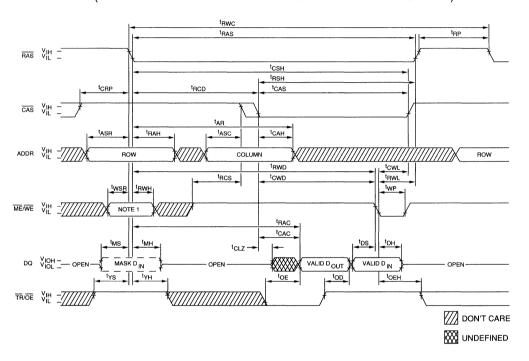
- 1. All voltages referenced to Vss.
- Icc is dependent on output loading and cycle rates. Specified values are obtained with minimum cycle time and the output open.
- 3. An initial pause of 100µs is required after power-up followed by any eight RAS cycles and 1 SC cycle, before proper device operation is assured. The RAS cycle wake-up should be repeated any time the 4ms static refresh require-ment is exceeded.
- 4. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- Measured with a load equivalent to 2 TTL gates and 100pF.
- Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 9. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 10. If $\overline{\text{CAS}} = \text{ViH}$, DRAM data output is high impedance.
- 11. If $\overline{CAS} = V_{IL}$, DRAM data output may contain data from the last valid READ cycle.
- *OFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 13. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 14. ^tRCH is referenced to the first rising edge of RAS or CAS
- 15. These parameters are referenced to $\overline{\text{CAS}}$ leading edge


- in EARLY WRITE cycles and to $\overline{\text{WE}}$ leading edge in LATE WRITE or READ-MODIFY-WRITE cycles.
- 16. ^tWCS, ^tCWD and ^tRWD are restrictive operating parameters in READ-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain open circuit throughout the entire cycle. If ^tCWD ≥ ^tCWD (MIN) and ^tRWD ≥ ^tRWD (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of data out (at access time and until CAS goes back toVIH) is indeterminate. If ^tWCS ≤ ^tWCS, the cycle is a LATE WRITE [(ME)/WE falls after CAS] ^tWCS, ^tCWD and ^tRWD do not apply.
- In addition to meeting the transition rate specification, all input signals must transit between Vih and Vil (or between Vil and Vih) in a monotonic manner.
- 18. Capacitance calculated from the equation $C = \underline{I\Delta t}$ ΔV with $\Delta V = 3V$ and Vcc = 5V. This parameter is sampled.
- 19. If CAS is LOW at the falling edge of RAS, DQ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCP. Note 8 applies to determine valid data out.
- 20. Includes the $\overline{\text{OE}}$ delay time (30ns for the -10, 40ns for the -12, and 50ns for the -15).
- 21. During a READ cycle, if \overline{OE} is LOW then taken HIGH (VIH) DQ goes open. If \overline{OE} is tied permanently LOW a READ-MODIFY-WRITE operation is not possible.
- 22. Enables on-chip refresh and address counters.
- 23. TRANSFER command means that $\overline{TR}/(\overline{OE})$ is LOW when \overline{RAS} goes LOW.
- 24. NONTRANSFER command means that $\overline{TR}/\overline{OE}$) is HIGH when \overline{RAS} goes LOW.
- Measured with a load equivalent to 2 TTL gates and 50pF.

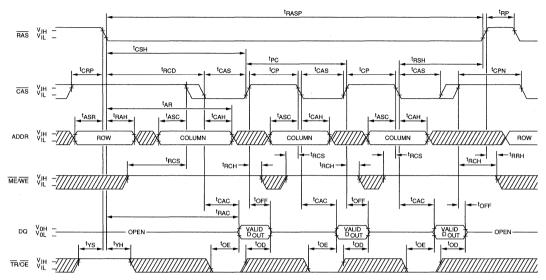
DRAM READ CYCLE

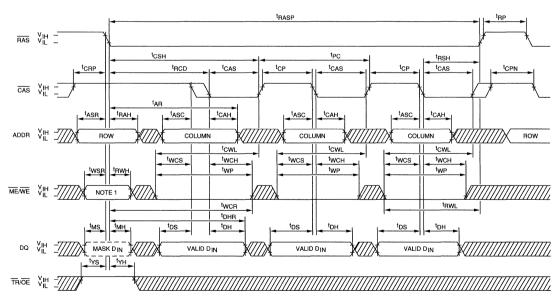


DRAM EARLY-WRITE CYCLE



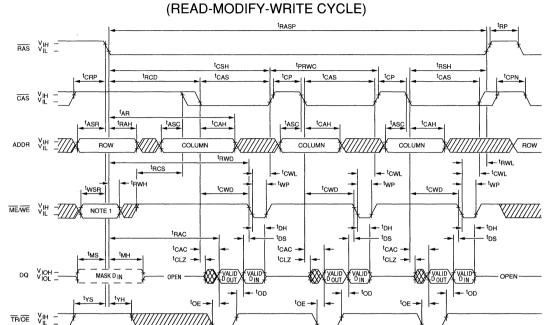
DRAM MASKED WRITE CYCLE


DRAM READ-WRITE CYCLE (READ-MODIFY-WRITE CYCLE and LATE-WRITE CYCLE)


NOTE: If ME/WE is LOW, a MASKED WRITE cycle will be performed.

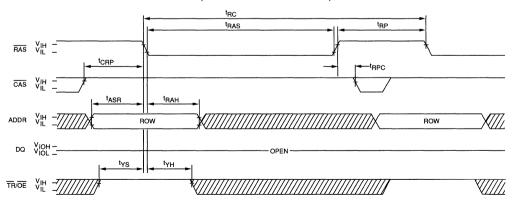
DRAM PAGE-MODE READ CYCLE

DRAM PAGE-MODE EARLY-WRITE CYCLE


DON'T CARE

₩ undefined

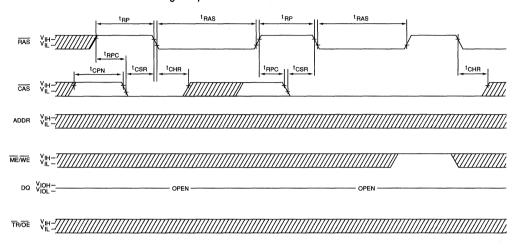
NOTE: If ME/WE is LOW, a MASKED WRITE cycle will be performed.


DRAM PAGE-MODE READ-WRITE CYCLE

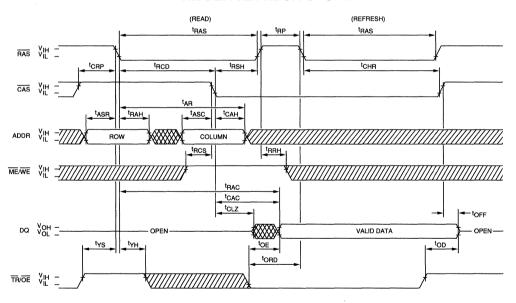
NOTE: 1. If ME/WE is LOW, a MASKED WRITE cycle will be performed.

RAS-ONLY REFRESH CYCLE

 $(\overline{ME}/\overline{WE} = Don't Care)$



DON'T CARE

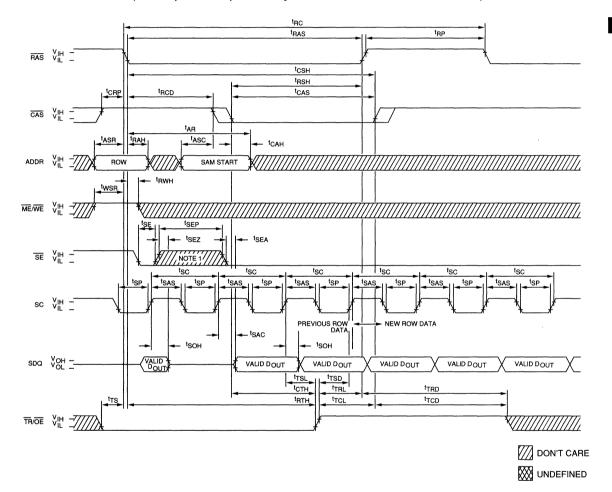


CAS-BEFORE-RAS REFRESH CYCLE

 $(A_0 - A_7 \text{ and } \overline{ME}/\overline{WE} \text{ are Don't Care.})$

HIDDEN REFRESH CYCLE

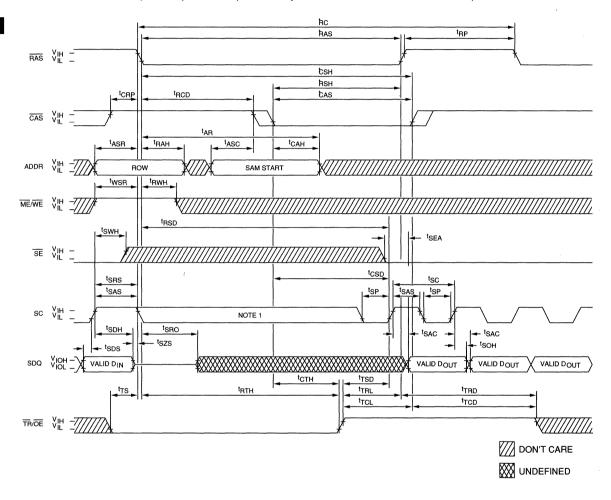
DON'T CARE


W UNDEFINED

NOTE: A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case ME/WE = LOW (when CAS goes LOW) and TR/OE = HIGH.

DRAM-TO-SAM TRANSFER (READ TRANSFER)

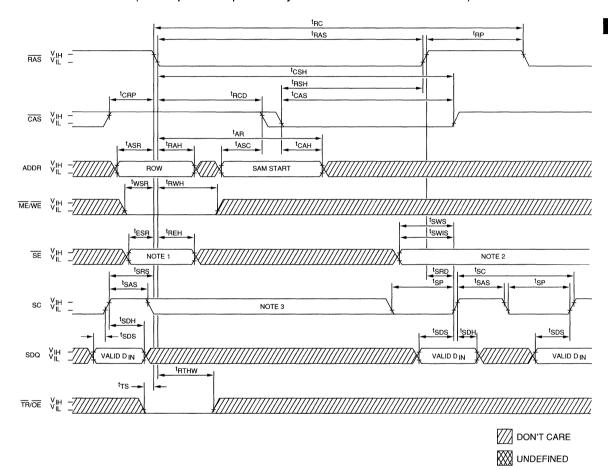
(When part was previously in the SERIAL OUTPUT mode.)



NOTE: This SE pulse is shown to illustrate the SERIAL OUTPUT ENABLE and DISABLE timing. It is not required.

DRAM-TO-SAM TRANSFER (READ TRANSFER)

(When part was previously in the SERIAL INPUT mode.)

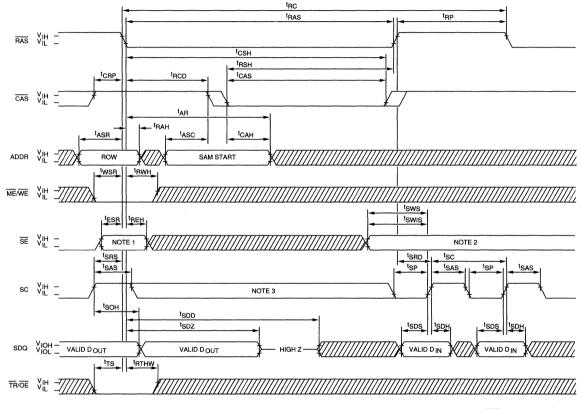


NOTE: There must be no rising edges on the SC input during this time.

SAM-TO-DRAM TRANSFER (WRITE TRANSFER)

(When part was previously in the SERIAL INPUT mode.)

NOTE: 1. If SE is LOW, the SAM data will be transferred to the DRAM.


If SE is HIGH, the SAM data will not be transferred to the DRAM (SERIAL INPUT MODE ENABLE cycle).

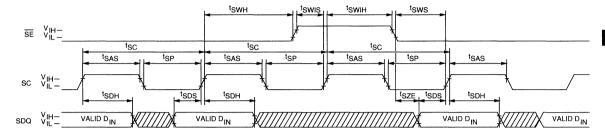
- 2. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
- 3. There must be no rising edges on the SC input during this time.

SAM-TO-DRAM TRANSFER (WRITE TRANSFER)

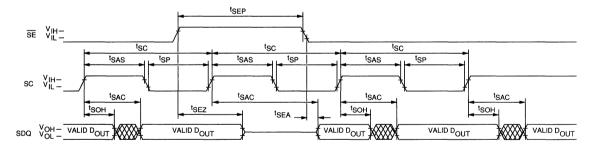
(When part was previously in the SERIAL OUTPUT mode.)

DON'T CARE

₩ undefined


NOTE: 1. If SE is LOW, the SAM data will be transferred to the DRAM.

If SE is HIGH, the SAM data will not be transferred to the DRAM (SERIAL INPUT MODE ENABLE cycle).


- SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless
 of SE.
- 3. There must be no rising edges on the SC input during this time.

SAM SERIAL INPUT

SAM SERIAL OUTPUT

DON'T CARE

₩ undefined

VRAM

256K x 4 DRAM WITH 512 x 4 SAM

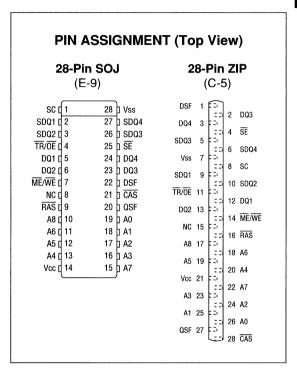
FEATURES

- Industry standard pinout, timing and functions
- High performance CMOS silicon gate process
- Single +5V ±10% power supply
- Inputs and outputs are fully TTL and CMOS compatible
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- 512-cycle refresh within 8ms
- Optional FAST PAGE MODE access cycles
- Dual port organization: 256K x 4 DRAM port 512 x 4 SAM port
- No refresh required for Serial Access Memory
- Low power: 15mW standby; 275mW active, typical
- Fast access times 80ns random, 25ns serial

SPECIAL FUNCTIONS

- IEDEC Standard Function set
- PERSISTENT MASKED WRITE
- SPLIT READ TRANSFER
- WRITE TRANSFER/SERIAL INPUT
- ALTERNATE WRITE TRANSFER

OPTIONS	MARKING				
 Timing (DRAM, SAM) 					
80ns, 25ns	- 8				
100ns, 30ns	-10				
120ns, 35ns	-12				
Packages					
Plastic SOJ	DJ				


GENERAL DESCRIPTION

Plastic ZIP

The MT42C4255 is a high speed, dual port CMOS dynamic random access memory or video RAM (VRAM) containing 1,048,576 bits. These bits may be accessed either by a 4-bit wide DRAM port or by a 512 x 4-bit serial access memory (SAM) port. Data may be transferred bidirectionally between the DRAM and the SAM.

Ź

The DRAM portion of the VRAM is functionally identical to the MT4C4256 (256K x 4-bit DRAM). Four 512-bit data registers make up the serial access memory portion of the VRAM. Data I/O and internal data transfer are accomplished using three separate bidirectional data paths: the 4-bit random access I/O port, the four internal 512 bit wide paths between the DRAM and the SAM, and the 4-bit serial I/O port for the SAM. The rest of the circuitry consists of the control, timing, and address decoding logic.

Each of the ports may be operated asynchronously and independently of the other except when data is being transferred internally between them. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of \overline{RAS} addresses are executed at least every 8ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. The SAM portion of the VRAM is fully static and does not require any refresh.

The operation and control of the MT42C4255 is compatible with (and can be identical to) the operation of the MT42C4064 (64K x 4 VRAM). However, the MT42C4255 offers several additional functions that may be used to increase system performance or ease critical timing requirements. These "special functions" are described in detail in the following section.

3-28

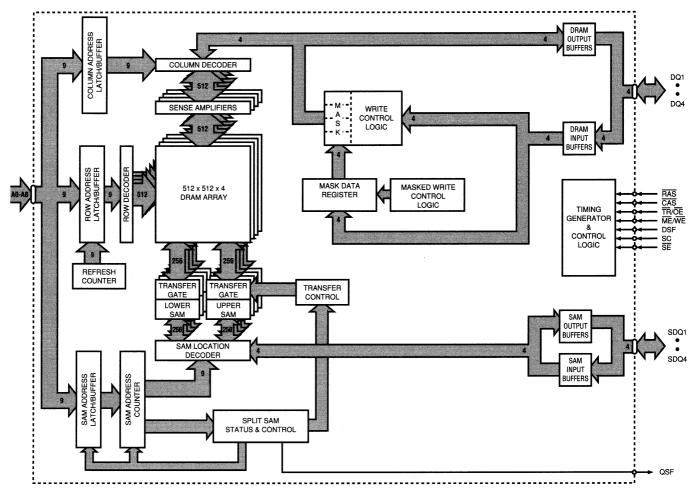


Figure 1 MT42C4255 BLOCK DIAGRAM

PIN DESCRIPTIONS

SOJ PIN Numbers	ZIP PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
1	8	SC	Input	Serial Clock: Clock input to the serial address counter for the SAM registers.
4	11	TR/OE	Input	Transfer Enable: Enables an internal TRANSFER operation at RAS (H → L), or Output Enable: Enables the DRAM output buffers when taken LOW after RAS goes LOW (CAS must also be LOW), otherwise the output buffers are in the High-Z state.
7	14	ME/WE	Input	Mask Enable: If ME/WE is LOW at the falling edge of RAS a MASKED WRITE cycle is performed, or Write Enable: ME/WE is also used to select a READ (ME/WE = H) or WRITE (ME/WE = L) cycle when accessing the DRAM. This includes a READ TRANSFER (ME/WE = H) or WRITE TRANSFER (ME/WE = L).
25	4	SE	Input	Serial Port Enable: SE enables the serial I/O buffers and allows a serial READ or WRITE operation to occur; otherwise, the output buffers are in the High-Z state. SE is also used during a WRITE TRANSFER operation to indicate whether a WRITE TRANSFER or a PSEUDO WRITE TRANSFER cycle is performed.
22	1	DSF	Input	Special Function Select: DSF is used to indicate which special functions (MASKED WRITE vs. PERSISTENT MASKED WRITE, etc.) are used on a particular access cycle.
9	16	RAS	Input	Row Address Strobe: RAS is used to clock in the 9 row-address bits and as a strobe for the ME/WE, TR/OE, DSF, and DQ inputs.
21	28	CAS	Input	Column Address Strobe: CAS is used to clock in the 9 column-address bits and enable the DRAM output buffers (DQs) (along with TR/OE).
19, 18, 17, 16, 13, 12, 11, 15, 10	26, 25, 24, 23, 20, 19, 18, 22, 17	A0 to A8	Input	Address Inputs: For the DRAM operation, these inputs are multiplexed and clocked by RAS and CAS to select 4 bits out of the 262,144 available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when RAS goes LOW) and the SAM start address (when CAS goes LOW). A8 = "don't care" for the start address when doing SPLIT TRANSFERS.
5, 6, 23, 24	12, 13, 2, 3	DQ1 - DQ4	Input/ Output	DRAM Data I/O: Data Input/Output for DRAM cycles; inputs for the LOAD MASK REGISTER cycles.
2, 3, 26, 27	9, 10, 5, 6	SDQ1 - SDQ4	Input/ Output	Serial Data I/O: Input/Output for SAM access cycles or High-Z, when $\overline{\text{SE}}$ = HIGH.
20	27	QSF	Output	Split SAM Status: QSF indicates which half of the SAM is being accessed. LOW if address 0 to 255, HIGH if address 256 to 511.
8	15	NC	_	No Connect: This pin should be left either unconnected or tied to ground.
14	21	Vcc	Supply	Power Supply: +5V ±10%
28	7	Vss	Supply	Ground

FUNCTIONAL DESCRIPTION

The MT42C4255 may be divided into three functional blocks (see Figure 1): the DRAM, the transfer circuitry, and the serial access memory (SAM). All of the operations described below are shown in the AC Timing Diagrams section of this data sheet and summarized in the Truth Table.

Note:

For dual function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing transfer operations the $\overline{TR}/\overline{OE}$ pin will be shown as $\overline{TR}/(\overline{OE})$.

DRAM OPERATION

DRAM REFRESH

Like any DRAM based memory, the MT42C4255 VRAM must be refreshed to retain data. All 512 row-address combinations must be accessed within 8ms. The MT42C4255 supports CAS-BEFORE-RAS, RAS-ONLY and HIDDEN types of refresh cycles.

For the CAS-BEFORE-RAS REFRESH cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data, and simply must perform 512 CAS-BEFORE-RAS cycles within the 8ms time period.

The refresh address must be generated externally and applied to A0-A8 inputs for RAS-ONLY REFRESH cycles. The DQ pins remain in a High-Z state for both the RAS-ONLY and CAS-BEFORE-RAS cycles.

HIDDEN REFRESH cycles are performed by toggling RAS (and keeping CAS LOW) after a READ or WRITE cycle. This performs CAS-BEFORE-RAS cycles but does not disturb the DQ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row that is being accessed. The SAM portion of the MT42C4255 is fully static and does not require any refreshing.

DRAM READ AND WRITE CYCLES

The DRAM portion of the VRAM is nearly identical to standard 256K x 4 DRAMs. However, because several of the DRAM control pins are used for additional functions on this part, several conditions that were undefined or "don't

care" states for the DRAM are specified for the VRAM. These conditions are highlighted in the following discussion. In addition, the VRAM has several special functions that can be used when writing to the DRAM.

The 18 address bits that are used to select a 4-bit word from the 262,144 available are latched into the chip using the A0-A8, RAS and CAS inputs. First, the 9 row-address bits are set-up on the address inputs and clocked into the part when RAS transitions from HIGH to LOW. Next, the 9 column-address bits are set-up on the address inputs and clocked-in when CAS goes from HIGH to LOW.

For single port DRAMS, the $\overline{\text{OE}}$ pin is a "don't care" when $\overline{\text{RAS}}$ goes LOW. However, for the VRAM, when $\overline{\text{RAS}}$ goes LOW, $\overline{\text{TR}}/\overline{\text{OE}}$ selects between DRAM access or TRANS-FER cycles. $\overline{\text{TR}}/\overline{\text{OE}}$ must be HIGH at the $\overline{\text{RAS}}$ HIGH-to-LOW transition for all DRAM operations (except $\overline{\text{CAS-BEFORE-RAS}}$).

If $(\overline{ME})/\overline{WE}$ is HIGH when \overline{CAS} goes LOW, a DRAM READ operation is performed and the data from the memory cells selected will appear at the DQ1-DQ4 port. The $(\overline{TR})/\overline{OE}$ input must transition from HIGH to LOW sometime after \overline{RAS} falls to enable the DRAM output port.

For single port normal DRAMs, WE is a "don't care" when RAS goes LOW. For the VRAM, ME/(WE) is used, when RAS goes LOW, to select between a MASKED WRITE cycle and a normal WRITE cycle. If ME/(WE) is LOW at the RAS HIGH-to-LOW transition, a MASKED WRITE operation is selected. For any DRAM access cycle (READ or WRITE), ME/(WE) must be HIGH at the RAS HIGH-to-LOW transition. If (ME)/WE is LOW before CAS goes LOW, a DRAM EARLY-WRITE operation is performed and the data present on the DQ1-DQ4 data port will be written into the selected memory cells. If (ME)/WE goes LOW after CAS goes LOW, a DRAM LATE-WRITE operation is performed. Refer to the AC timing diagrams.

The VRAM can perform all the normal DRAM cycles including READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE (Late or Early), and FAST-PAGE-MODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

NONPERSISTENT MASKED WRITE

The MASKED WRITE feature eliminates the need to do a READ-MODIFY-WRITE cycle when changing only specific bits within a 4-bit word. The MT42C4255 supports two types of MASKED WRITE cycles, NONPERSISTENT MASKED WRITE and PERSISTENT MASKED WRITE.

If ME/(WE) and DSF are LOW at the RAS HIGH-to-LOW transition, a NONPERSISTENT MASKED WRITE is performed and the data (mask data) present on the DQ1-DQ4 inputs will be written into the mask data register. The mask data acts as an individual WRITE ENABLE for each of the four DQ1-DQ4 pins. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the following WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows

normal WRITE operation to proceed. Note that \overline{CAS} is still HIGH. When \overline{CAS} goes LOW, the bits present on the DQ1-DQ4 inputs will be either written to the DRAM (if the mask data bit is HIGH) or ignored (if the mask data bit is LOW). The DRAM contents that correspond to masked input bits will not be changed during the WRITE cycle. The MASKED WRITE is non-persistent (must be re-entered at every \overline{RAS} cycle) if DSF is LOW when \overline{RAS} goes LOW. The mask data register is cleared at the end of every NONPERSISTENT MASKED WRITE. FAST PAGE MODE can be used with NONPERSISTENT MASKED WRITE to write several column locations in an addressed row. The same mask is used during the entire FAST-PAGE-MODE \overline{RAS} cycle. An example NONPERSISTENT MASKED WRITE cycle is shown in Figure 2.

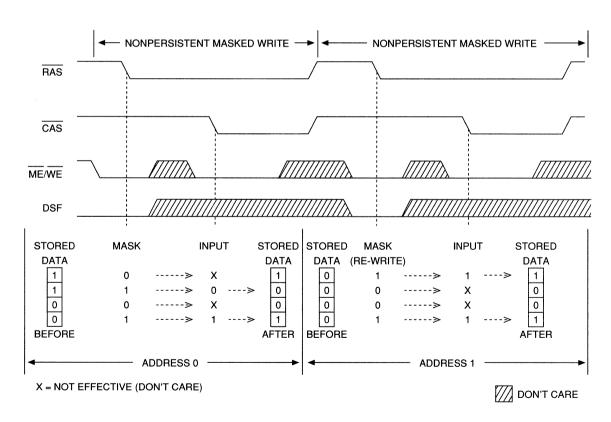


Figure 2
NONPERSISTENT MASKED WRITE EXAMPLE

PERSISTENT MASKED WRITE

The PERSISTENT MASKED WRITE feature eliminates the need to rewrite the mask data before each MASKED WRITE cycle if the same mask data is being used repeatedly. To initiate a PERSISTENT MASKED WRITE, a LOAD MASK REGISTER cycle is performed by taking $\overline{\text{ME}}/(\overline{\text{WE}})$ and DSF HIGH when $\overline{\text{RAS}}$ goes LOW. The mask data is loaded into the internal register when $\overline{\text{CAS}}$ goes LOW. Mask data may also be loaded into the mask register by performing a NONPERSISTENT MASKED WRITE before the PERSISTENT MASKED WRITE.

PERSISTENT MASKED WRITE cycles may then be performed by taking $\overline{\text{ME}}/(\overline{\text{WE}})$ LOW and DSF HIGH when RAS goes LOW. The contents of the mask data register will then be used as the mask data for the DRAM inputs. Unlike the NONPERSISTENT MASKED WRITE, the data present on the DQ inputs is not loaded into the mask register when RAS falls, and the mask data register will not be cleared at the end of the cycle. Any number of PERSISTENT MASKED WRITE cycles, to any address, may be performed without having to reload the mask data register. Figure 3 shows the LOAD MASK REGISTER and two PERSISTENT MASKED WRITE cycles in operation. The LOAD MASK REGISTER and PERSISTENT MASKED WRITE cycles allow controllers that cannot provide mask data to the DQ pins at RAS time to perform MASKED WRITE operations. PERSISTENT MASKED WRITE operations can be performed during FAST PAGE MODE and the same mask will apply to all addressed columns in the addressed row.

LOAD MASK DATA REGISTER

The LOAD MASK REGISTER operation and timing are identical to a normal WRITE cycle except that DSF is HIGH when \overline{RAS} goes LOW. As shown in the Truth Table, the combination of $\overline{TR}/(\overline{OE})$, $\overline{ME}/(\overline{WE})$, and DSF being HIGH when \overline{RAS} goes LOW indicates the cycle is a REGISTER load cycle. DSF is used when \overline{CAS} goes LOW to select the register to be loaded and must be LOW for a LOAD MASK REGISTER cycle. The data present on the DQ lines will then be written to the mask data register.

Note: For a normal DRAM WRITE cycle, the mask data register is disabled but not modified. The contents of mask data register will not be changed unless NONPERSISTENT MASKED WRITE or LOAD MASK REGISTER cycles are performed.

The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

The mask data register contents are used during PERSIS-TENT MASKED WRITE cycles to selectively enable writes to the four DQ planes.

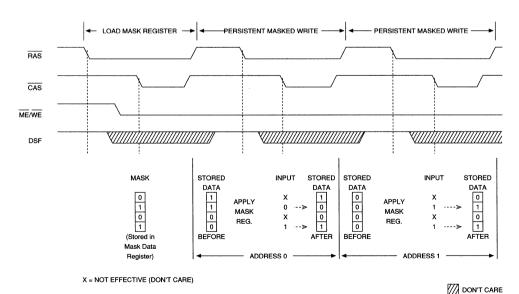


Figure 3
PERSISTENT MASKED WRITE EXAMPLE

TRANSFER OPERATIONS

TRANSFER operations are initiated when $\overline{\text{TR}}/\overline{\text{(OE)}}$ is LOW then $\overline{\text{RAS}}$ goes LOW. The state of $\overline{\text{(ME)}}/\overline{\text{WE}}$ when $\overline{\text{RAS}}$ goes LOW indicates the direction of the TRANSFER (to or from the DRAM), and DSF is used to select between NORMAL TRANSFER, SPLIT READ TRANSFER, and ALTERNATE WRITE TRANSFER cycles. Each of the TRANSFER cycles available is described below.

READ TRANSFER (DRAM-TO-SAM TRANSFER)

If $(\overline{\text{ME}})/\overline{\text{WE}}$ is HIGH and DSF is LOW when $\overline{\text{RAS}}$ goes LOW, a READ TRANSFER cycle is selected. The row address bits indicate the four 512-bit DRAM row planes that are to be transferred to the four SAM data register planes. The column address bits indicate the start address (or Tap address) of the serial output cycle from the SAM data registers. $\overline{\text{CAS}}$ must fall for every TRANSFER in order to load a valid Tap address. A read transfer may be accom-

plished two ways. If the transfer is to be synchronized with SC (REAL-TIME READ TRANSFER), $\overline{TR}/(\overline{OE})$ is taken HIGH after CAS goes LOW. If the transfer does not have to be synchronized with SC (READ TRANSFER), $\overline{TR}/(\overline{OE})$ may go HIGH before CAS goes LOW (refer to the AC Timing Diagrams). The 2048 bits of DRAM data are written into the SAM data registers and the serial shift start address is stored in an internal 9-bit register. OSF will be LOW if access is from the lower half (addresses 0 through 255), and HIGH if access is from the upper half (256 through 511). If SE is LOW, the first bits of the new row data will appear at the serial outputs with the first SC clock pulse. SE enables the serial outputs and may be either HIGH or LOW during this operation. The SAM address pointer will increment with the SC LOW-to-HIGH transition, regardless of the state of SE. Performing a READ TRANSFER cycle sets the direction of the SAM I/O buffers to the output mode.

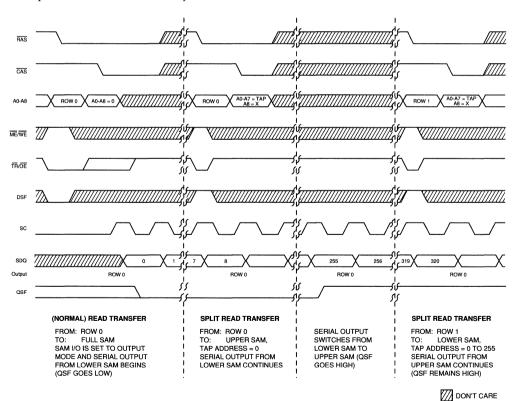


Figure 5
TYPICAL SPLIT READ TRANSFER INITIATION SEQUENCE

SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)

The SPLIT READ TRANSFER cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream. When using normal TRANSFER cycles, the REAL-TIME READ TRANSFER cycle has to occur immediately after the last bit of "old data" was clocked out of the SAM port.

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data can be transferred to the other half. The transfer can occur at any time while the other half is sending data and need not be synchronized with the SC clock.

The $\overline{TR}/(\overline{OE})$ timing is also relaxed for SPLITTRANSFER cycles. The rising edge of $\overline{TR}/(\overline{OE})$ is not used to complete the TRANSFER cycle and therefore is independent of the rising edges of \overline{RAS} or \overline{CAS} . The transfer timing is generated internally for SPLIT TRANSFER cycles.

A normal, non-split READ TRANSFER cycle must precede any sequence of SPLIT READ TRANSFER cycles to provide a reference to which half of the SAM the access will begin. Then SPLIT READ TRANSFERS may be initiated by taking DSF HIGH when $\overline{\text{RAS}}$ goes LOW during the TRANSFER cycle. As in non-split transfers, the row address is used to specify the DRAM row to be transferred. The column address, A0-A7, is used to input the SAM Tap address. Address pin A8 is a "don't care" when the Tap address is loaded at the HIGH to LOW transition of $\overline{\text{CAS}}$. It is internally generated so that the SPLIT TRANSFER will be to the SAM half not currently being accessed.

Figure 5 shows a typical SPLIT READ TRANSFER initiation sequence. The normal READ TRANSFER is first performed, followed by a SPLIT READ TRANSFER of the same row to the upper half of the SAM. The purpose of the SPLIT TRANSFER of the same data is to initiate the split SAM operating mode and load the Tap address. Serial access continues, and when the SAM address counter reaches 255 ("A8"=0, A0-A7=1) the new Tap address is loaded for the next half ("A8"=1, A0-A7=Tap) and the QSF output goes HIGH. Once the serial access has switched to the upper SAM, new data may be transferred to the lower SAM. The controller must wait for the state of QSF to change and then the new data may be transferred to the SAM half not being accessed. For example, the next step in Figure 5 would be to wait until QSF went LOW (indicating that row-1 data is shifting out the lower SAM) and then transfer the upper half of row 1 to the upper SAM.

WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of the WRITE TRANSFER is identical to the READ TRANSFER described previously, except $\overline{\text{ME}}/\overline{\text{WE}}$ and $\overline{\text{SE}}$ must be LOW when $\overline{\text{RAS}}$ goes LOW. The row address indicates the DRAM row to which the SAM data registers will be written. The column address (Tap) indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. A WRITE TRANSFER changes the direction of the SAM I/O buffers to the input mode. QFS is LOW if access is to the lower half of the SAM, and HIGH if access is to the upper half.

PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE ENABLE)

The PSEUDO WRITE TRANSFER cycle is used to change the direction of SAM port from output to input without performing a WRITE TRANSFER cycle. A PSEUDO WRITE TRANSFER is a WRITE TRANSFER with SE held HIGH instead of LOW. The DRAM data will not be disturbed and the SAM will be ready to accept input data.

ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of the ALTERNATE WRITE TRANSFER is identical to the WRITE TRANSFER except that the DSF pin is HIGH and $(\overline{\text{ME}})/\overline{\text{WE}}$ is LOW when RAS goes LOW, allowing $\overline{\text{SE}}$ to be a "don't care." This allows the outputs to be disabled using $\overline{\text{SE}}$ during a WRITE TRANSFER cycle.

POWER UP AND INITIALIZATION

When Vcc is initially supplied or when refresh is interrupted for more than 8ms, the MT42C4255 must be initialized.

After Vcc is at specified operating conditions, for 100 μ s minimum, 8 \overline{RAS} cycles and 1 SC cycle must be executed to initialize the memory array. When the device is initialized, the DRAM I/O pins (DQs) are in a High-Z state, regardless of the state of $(\overline{TR})/\overline{OE}$. The DRAM array will contain random data.

The SAM portion of the MT42C4255 is completely static in operation and does not require refresh or initialization. The SAM port will power-up in the serial input mode (WRITE TRANSFER) and the I/O pins (SDQ's) will be High- Z, regardless of the state of $\overline{\text{SE}}$ a,b. The mask register will contain random data after power-up.

MULTIPORT DRAM

TRUTH TABLE

CODE	FUNCTION		RAS	FALLING	EDGE		A0 -	A8 ¹	DQ1 - DQ4 ²		
		CAS	TR / OE	ME/WE	DSF	SE	RAS	CAS A8=X	RAS	CAS ³	MASK REGISTER
	DRAM OPERATIONS										
CBR	CAS-BEFORE-RAS REFRESH	0	Х	Х	Х	Х	_	х	_	х	х
ROR	RAS-ONLY REFRESH	1	1	х	Х	х	ROW	_	Х	_	х
RW	NORMAL DRAM READ OR WRITE	1	1	1	0	Х	ROW	COLUMN	Х	VALID DATA	x
RWNM	NONPERSISTENT (LOAD AND USE) MASKED WRITE TO DRAM	1	1	0	0	Х	ROW	COLUMN	WRITE MASK	VALID DATA	LOAD & USE
RWOM	PERSISTENT (USE REGISTER) MASKED WRITE TO DRAM	1	1	0	1	х	ROW	COLUMN	Х	VALID DATA	USE
	REGISTER OPERATIONS										
LMR	LOAD MASK REGISTER	1	1	1	1	Х	ROW ⁴	х	Х	WRITE MASK	LOAD
	TRANSFER OPERATIONS										
RT	READ TRANSFER (DRAM-TO-SAM TRANSFER)	1	0	1	0	Х	ROW	TAP ⁵	Х	х	Х
SRT	SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)	1	0	1	1	х	ROW	TAP ⁵	х	х	х
WT	WRITE TRANSFER (SAM-TO-DRAM TRANSFER)	1	0	0	0	0	ROW	TAP⁵	х	×	X
PWT	PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE ENABLE)	1	0	0	0	1	ROW ⁴	TAP⁵	х	х	X
AWT	ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)	1	0	0	1	Х	ROW	TAP⁵	Х	х	x

- NOTE: 1. These columns show what must be present on the A0-A8 inputs when RAS falls and when CAS falls.
 - 2. These columns show what must be present on the DQ1-DQ4 inputs when \overline{RAS} falls and when \overline{CAS} falls.
 - 3. On WRITE cycles, the input data is latched at the falling edge of CAS or ME/WE, whichever is later. Similarly, on READ cycles, the output data is latched at the falling edge of CAS or TR/OE, whichever is later.
 - 4. The ROW that is addressed will be refreshed, but no particular ROW address is required.
 - 5. This is the first SAM address location that the first SC cycle will access. For Split SAM transfers, the Tap will be the first address location accessed of the "new" SAM half after the boundary of the current half is reached (255 for lower half, 511 for upper half).

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss.	1.0V to +7.0V
Operating Temperature, Ta(Ambient).	0°C to +70°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1 W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{A} \leq 70^{\circ}C)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
INPUT LEAKAGE CURRENT (any input (0V≤Vıν≤Vcc), all other pins not under test = 0V)	IL	-10	10	μА	
OUTPUT LEAKAGE CURRENT (DQ, SDQ disabled, 0V≤Vo∪t≤Vcc)	loz	-10	10	μА	
OUTPUT LEVELS Output High Voltage (Iout = -2.5mA)	Vон	2.4		v	
Output Low Voltage (Ιουτ = 5mA)	Vol		0.4	V	1

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: Ao-As	CI1		5	pF	2
Input Capacitance: RAS, CAS, ME/WE, TR/OE, SC, SE, DSF			8	pF	2
Input/Output Capacitance: DQ, SDQ	C _{I/O}		9	pF	2
Output Capacitance: QSF	Co		9	pF	2

CURRENT DRAIN, SAM IN STANDBY

$(0^{\circ}C \le I_{A} \le 70^{\circ}C; \ Vcc = 5.0V \pm 10\%)$		MAX				
PARAMETER/CONDITION	SYMBOL	-8	-10	-12	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC (MIN))	lcc ₁	90	80	70	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL; CAS = Cycling: [†] PC = [†] PC (MIN))	lcc2	70	60	50	mA	3, 4
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS=CAS=VIH after 8 RAS cycles min)	Іссз	10	10	10	mA	
REFRESH CURRENT: RAS-ONLY (RAS=Cycling; CAS=VIH)	Icc4	90	80	70	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS=Cycling)	lcc5	80	70	60	mA	3, 5
SAM/DRAM DATA TRANSFER	Icc6	95	85	75	mA	3

CURRENT DRAIN, SAM ACTIVE (*SC = MIN)(0°C < T. < 70°C: Vcc = 5.0V + 10%)

$(0^{\circ}C \le I_{A} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$			MAX			
PARAMETER/CONDITION	SYMBOL	-8	-10	-12	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC (MIN))	lcc7	130	120	110	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL; CAS = Cycling: [†] PC = [†] PC (MIN))	lcc8	110	100	90	mA	3, 4
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS=CAS=VIH after 8 RAS cycles min)	Icc9	50	45	40	mA	3, 4
REFRESH CURRENT: RAS-ONLY (RAS=Cycling; CAS=Vih)	Icc10	130	120	110	mA	3, 4
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS=Cycling)	Icc11	120	110	100	mA	3, 4, 5
SAM/DRAM DATA TRANSFER	ICC12	135	125	115	mA	3, 4

DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5.0V \pm 10%)

PARAMETER	A.C. CHARACTERISTICS			-8	_	10	_	12		
READ-MODIFY-WRITE cycle time	PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
FAST-PAGE-MODE READ or WRITE cycle time	Random READ or WRITE cycle time	t _{RC}	150		180		210		ns	
Cycle time	READ-MODIFY-WRITE cycle time	t _{RWC}	205		235		280		ns	
FAST-PAGE-MODE READ-MODIFY-WRITE cycle time	FAST-PAGE-MODE READ or WRITE	t _{PC}	45		55		65		ns	
Access time from RAS	cycle time									
Access time from RAS	FAST-PAGE-MODE READ-MODIFY-WRITE	tPRWC	100		110		140		ns	
Access time from CAS CAC 25 30 35 ns 15 Access time from (TR)/OE COE 20 25 30 ns Access time from column address CAC 40 50 60 ns Access time from CAS precharge CPA 45 55 65 ns Access time from CAS precharge CPA 45 55 65 ns RAS pulse width CAS CAC CAC CAC CAC RAS pulse width CAS CAC CAC CAC RAS pulse width CAS CAC CAC RAS pulse width CAS CAC CAC RAS pulse width CAS CAC CAC RAS pulse width CAS CAC CAC RAS pulse width CAS CAC CAC RAS pulse width CAS CAC CAC CAS pulse width CAS CAC CAS pulse width CAS CAC CAS pulse width CAS CAC CAS pulse width CAS CAC CAS pulse width CAS CAC CAS pulse width CAS CAC CAS pulse width CAS CAC CAS pulse width CAS CAC CAS pulse width CAS CAC CAS pulse width CAS CAC CAS pulse width CAS CAC CAS pulse width CAS CAC CAS precharge time CAS CAC CAS precharge time CAS CAC CAS precharge time CAS CAC CAS precharge time CAS CAC CAS precharge time CAS CAC CAS precharge time CAS CAC CAS precharge time CAS CAC CAS precharge time CAS CAC CAS precharge time CAS CAC CAS precharge time CAC CAC CAS precharge time CAS CAC CAS precharge time CAS CAC CAS precharge time CAS CAC CAS precharge time CAS CAC CAS precharge time CAS CAC CAS precharge time CAS CAC CAS precharge time CAS CAC CAS precharge time CAS CAC CAS precharge time CAS CAC CAS precharge time CAS CAC CAS precharge time CAS CAC CAS to RAS precharge time CAS CAC CAS to RAS precharge time CAS CAC CAS to RAS precharge time CAS CAS to RAS precharge time CAS CAC CAS to RAS precharge	cycle time									
Access time from (TR)/OE	Access time from RAS	tRAC		80		100		120	ns	14
Access time from column address	Access time from CAS			25		30		35	ns	15
Access time from CAS precharge	Access time from (TR)/OE	^t OE		20		25		30	ns	
RAS pulse width	Access time from column address	^t AA		40		50		60	ns	
RAS pulse width (FAST PAGE MODE)	Access time from CAS precharge	t _{CPA}		45		55		65	ns	
RAS hold time	RAS pulse width	t _{RAS}	80	10,000	100	10,000	120	10,000	ns	
RAS precharge time	RAS pulse width (FAST PAGE MODE)	^t RASP	80	100,000	100	100,000	120	100,000	ns	
CAS pulse width ¹CAS 25 10,000 30 10,000 35 10,000 ns CAS hold time ¹CSH 80 100 120 ns 16 CAS precharge time ¹CPN 15 15 20 ns 16 CAS precharge time (FAST PAGE MODE) ¹CP 10 10 15 ns 16 RAS to CAS delay time ¹RCD 20 55 20 70 25 85 ns 17 CAS to RAS precharge time ¹ASR 0 0 0 0 ns 17 Row address setup time ¹ASR 0 0 0 0 ns 17 RAS to column address hold time ¹RAH 12 15 15 ns 18 Column address setup time ¹ASC 0 0 0 ns 18 Column address hold time ¹AR 60 70 85 ns ns Column address to RAS) 1 RAR<	RAS hold time	t _{RSH}	25		30		35		ns	
CAS hold time ¹CSH 80 100 120 ns CAS precharge time ¹CPN 15 15 20 ns 16 CAS precharge time (FAST PAGE MODE) ¹CP 10 10 15 ns 16 CAS to CAS delay time ¹RCD 20 55 20 70 25 85 ns 17 CAS to RAS precharge time ¹CRP 5 5 5 10 ns 17 Row address setup time ¹ASR 0 0 0 ns 18 Row address shold time ¹RAH 12 15 15 ns 18 RAS to column ¹RAH 12 15 15 ns 18 RAS to column address setup time ¹ASC 0 0 0 ns 18 Column address shold time ¹CAH 20 20 25 ns 18 Column address hold time ¹AR 60 70 85 ns 10	RAS precharge time	t _{RP}	60		70		80		ns	
CAS precharge time ¹CPN 15 15 20 ns 16 CAS precharge time (FAST PAGE MODE) ¹CP 10 10 15 ns RAS to CAS delay time ¹RCD 20 55 20 70 25 85 ns 17 CAS to RAS precharge time ¹CRP 5 5 10 ns 17 A0 20 55 20 70 25 85 ns 17 A0 20 55 20 70 25 85 ns 17 A0 20 0 0 ns 18 17 A0 20 0 0 ns 18	CAS pulse width	t _{CAS}	25	10,000	30	10,000	35	10,000	ns	
CAS precharge time (FAST PAGE MODE) ¹CP 10 10 15 ns RAS to CAS delay time ¹RCD 20 55 20 70 25 85 ns 17 CAS to RAS precharge time ¹CRP 5 5 10 ns 17 Row address setup time ¹ASR 0 0 0 ns 18 RAS to column address shold time ¹RAH 12 15 15 ns 18 Column address setup time ¹ASC 0 0 0 0 ns 18 Column address shold time ¹ASC 0 0 0 0 ns 0 0 ns 0 0 ns 18 0 0 0 0 ns 18 0 0 0 0 0 ns 18 0 0 0 0 ns 18 0 0 0 0 ns 18 0 0 0 0 0 </td <td>CAS hold time</td> <td>tCSH</td> <td>80</td> <td></td> <td>100</td> <td></td> <td>120</td> <td></td> <td>ns</td> <td></td>	CAS hold time	tCSH	80		100		120		ns	
RAS to CAS delay time	CAS precharge time	t _{CPN}	15		15		20		ns	16
CAS to RAS precharge time ICRP 5 5 10 ns Row address setup time IASR 0 0 0 0 ns Row address hold time IRAH 12 15 15 ns RAS to column IRAD 17 40 20 50 20 60 ns 18 Column address delay time IASC 0 0 0 0 ns 18 Column address setup time IASC 0 0 0 0 ns Column address hold time IAR 60 70 85 ns 18 Column address to RAS IAR 60 70 85 ns 18 Column address to RAS IAR 40 50 60 ns 18 Column address to RAS IAR 40 50 60 ns 18 Read command setup time IRAR 40 50 0 0 ns 19	CAS precharge time (FAST PAGE MODE)	^t CP	10		10		15		ns	
Row address setup time	RAS to CAS delay time	tRCD	20	55	20	70	25	85	ns	17
Row address hold time	CAS to RAS precharge time	tCRP	5		5		10		ns	
RAS to column address delay time tRAD 17 40 20 50 20 60 ns 18 Column address setup time tASC 0 0 0 0 ns Column address hold time (referenced to RAS) tAR 60 70 85 ns Column address to RAS lead time tRAL 40 50 60 ns Read command setup time tRCS 0 0 0 ns Read command hold time (referenced to CAS) tRCH 0 0 0 ns 19 Read command hold time (referenced to RAS) tRRH 0 0 0 ns 19 CAS to output in Low-Z tCLZ 0 0 0 ns 20 Output buffer turn-off delay tOFF 0 20 0 20 0 30 ns 23 Output Disable hold time from start of write tOEH 15 15 20 ns 27	Row address setup time	t _{ASR}	0		0		0		ns	
Address delay time	Row address hold time	t _{RAH}	12		15		15		ns	
Column address setup time tASC 0 0 0 ns Column address hold time tCAH 20 20 25 ns Column address hold time (referenced to RAS) tAR 60 70 85 ns Column address to RAS lead time tRAL 40 50 60 ns Read command setup time tRCS 0 0 0 ns Read command hold time (referenced to CAS) tRCH 0 0 0 ns 19 Read command hold time (referenced to RAS) tCLZ 0 0 0 ns 19 CAS to output in Low-Z tCLZ 0 0 0 ns 20 0 30 ns 20, 23 0 0 30 ns 20, 23 0	RAS to column	t _{RAD}	17	40	20	50	20	60	ns	18
Column address hold time tCAH 20 20 25 ns Column address hold time (referenced to RAS) tAR 60 70 85 ns Column address to RAS lead time tRAL 40 50 60 ns Read command setup time tRCS 0 0 0 ns Read command hold time (referenced to CAS) tRCH 0 0 0 ns 19 Read command hold time (referenced to RAS) tRRH 0 0 0 ns 19 CAS to output in Low-Z tCLZ 0 0 0 ns 20 Output buffer turn-off delay tOFF 0 20 0 30 ns 23 Output Disable tOEH 15 15 20 ns 27	address delay time			ľ						
Column address hold time (referenced to RAS) t AR 60 70 85 ns Column address to RAS lead time t RAL 40 50 60 ns Read command setup time t RCS 0 0 0 ns Read command hold time (referenced to CAS) t RCH 0 0 0 ns 19 Read command hold time (referenced to RAS) t RRH 0 0 0 ns 19 CAS to output in Low-Z t CLZ 0 0 0 ns 20 Output buffer turn-off delay t OFF 0 20 0 30 ns 20 Output Disable t OD 0 20 0 30 ns 23 Output Disable hold time from start of write t OEH 15 15 20 ns 27	Column address setup time	t _{ASC}	0		0		0		ns	
(referenced to RAS) tRAL 40 50 60 ns RAS lead time tRAS 0 0 0 ns Read command setup time tRCS 0 0 0 ns Read command hold time (referenced to CAS) tRCH 0 0 0 ns 19 Read command hold time (referenced to RAS) tRRH 0 0 0 ns 19 CAS to output in Low-Z tCLZ 0 0 0 ns 20 Output buffer turn-off delay tOFF 0 20 0 30 ns 20 Output Disable tOD 0 20 0 30 ns 23 Output Disable hold time from start of write tOEH 15 15 20 ns 27	Column address hold time	t _{CAH}	20		20		25		ns	
Column address to RAS lead time tRAL 40 50 60 ns Read command setup time tRCS 0 0 0 ns Read command hold time (referenced to CAS) tRCH 0 0 0 ns 19 Read command hold time (referenced to RAS) tRRH 0 0 0 ns 19 CAS to output in Low-Z tCLZ 0 0 0 ns 20 Output buffer turn-off delay tOFF 0 20 0 30 ns 20 Output Disable tOD 0 20 0 30 ns 23 Output Disable hold time from start of write tOEH 15 15 20 ns 27		^t AR	60		70		85		ns	
RAS lead time tRCS 0 0 0 ns Read command setup time tRCS 0 0 0 ns Read command hold time (referenced to RAS) tRRH 0 0 0 ns 19 CAS to output in Low-Z tCLZ 0 0 0 ns 0 Output buffer turn-off delay tOFF 0 20 0 30 ns 20 Output Disable tOD 0 20 0 30 ns 23 Output Disable hold time from start of write tOEH 15 15 20 ns 27		tpai	40		F0	-		-		-
Read command hold time (referenced to CAS)		HAL	40		50		60		ris	
(referenced to CAS) Image: CAS of the context of write Image: CAS	Read command setup time	t _{RCS}	0		0		0		ns	
Read command hold time (referenced to RAS)	Read command hold time	tRCH	0		0		0		ns	19
CAS to output in Low-Z tCLZ 0 0 0 ns Output buffer turn-off delay tOFF 0 20 0 30 ns 20, 23 Output Disable tOD 0 20 0 30 ns 23 Output Disable hold time from start of write tOEH 15 15 20 ns 27	(referenced to CAS)									
CAS to output in Low-Z tCLZ 0 0 0 ns Output buffer turn-off delay tOFF 0 20 0 20 0 30 ns 20, 20 Output Disable tOD 0 20 0 20 0 30 ns 23 Output Disable hold time from start of write tOEH 15 15 20 ns 27		tRRH	0		0		0		ns	19
Output buffer turn-off delay top 0 20 0 20 0 30 ns 20, 20 Output Disable top 0 0 20 0 20 0 30 ns 23 Output Disable hold time from start of write top 15 15 20 ns 27		tCLZ	0	†	0	1	0	†	ns	
Output Disable t OD 0 20 0 20 0 30 ns 23 Output Disable hold time from start of write t OEH 15 15 20 ns 27				20		20		30		20 23
Output Disable hold time from start of write to the disable hold time from the disable hold time from start of write to the disable hold time from start of write to the disable hold time from start of write to the disable hold time from start of write to the disable hold time from start of write to the disable hold time from start of write to the disable hold time from start of write to the disable hold time from start of write to the disable hold time from										
			<u> </u>		<u> </u>			+		-
Output Enable to RAS delay TORD 0 0 ns		tORD		0		0		~		† - '-

DRAM TIMING PARAMETERS (Continued)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq $T_{\mbox{\scriptsize A}} \leq$ +70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS		-	8	-1	10		12		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command setup time	twcs	0		0		0		ns	21
Write command hold time	tWCH	15		20		25		ns	
Write command hold time (referenced to RAS)	^t WCR	60		70		85		ns	
Write command pulse width	t _{WP}	15		15		20		ns	
Write command to RAS lead time	t _{RWL}	20		20		25		ns	
Write command to CAS lead time	tCWL	20		20		25		ns	
Data-in setup time	t _{DS}	0		0		0		ns	22
Data-in hold time	^t DH	20		20		25		ns	22
Data-in hold time (referenced to RAS)	^t DHR	60		70		90		ns	
RAS to WE delay time	^t RWD	110		130		160		ns	21
Column address to WE delay time	^t AWD	70		80		100		ns	21
CAS to WE delay time	t _{CWD}	55		60		65		ns	21
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	9, 10
Refresh period (512 cycles)	t _{REF}		8		8		8	ms	
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS REFRESH)	^t CSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	30		30		30		ns	5
ME/WE to RAS setup time	twsR	0		0		0		ns	
ME/WE to RAS hold time	^t RWH	12		15		15		ns	
Mask Data to RAS setup time	t _{MS}	0		0		0		ns	
Mask Data to RAS hold time	^t MH	12		15		15		ns	

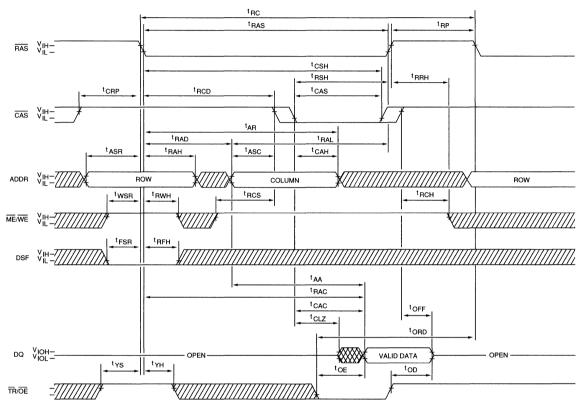
TRANSFER AND MODE CONTROL TIMING PARAMETERS ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes 6, 7, 8, 9, 10) (0° C \leq T_A \leq + 70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS			-8		10	_	12		T
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
TRANSFER command to RAS setup time	t _{TLS}	0		0		0		ns	25
TRANSFER command to RAS hold time	t _{TLH}	12	10,000	15	10,000	15	10,000	ns	25
TRANSFER command to RAS hold time (REAL-TIME READ TRANSFER only)	t _{RTH}	70	10,000	80	10,000	90	10,000	ns	25
TRANSFER command to CAS hold time (REAL-TIME READ TRANSFER only)	t _{CTH}	20		25		30		ns	25
TRANSFER command to column address hold time (for REAL TIME READ TRANSFER only)	t _{ATH}	25		30		35		ns	25
TRANSFER command to SC lead time	tTSL	5		5		5		ns	25
TRANSFER command to RAS lead time	tTRL	0		0		0		ns	25
TRANSFER command to RAS delay time	t _{TRD}	15		15		15		ns	25
TRANSFER command to CAS time	tTCL	0		0		0		ns	25
TRANSFER command to CAS delay time	^t TCD	15		15		15		ns	25
First SC edge to TRANSFER command delay time	^t TSD	10		10		10		ns	25
Serial output buffer turn-off delay from RAS	^t SDZ	10	35	10	40	10	50	ns	
SC to RAS setup time	t _{SRS}	30		30		40		ns	
RAS to SC delay time	t _{SRD}	20		25		30		ns	
Serial data input to SE delay time	t _{SZE}	0		0		0		ns	
RAS to SD buffer turn-on time	t _{SRO}	10		15		15		ns	
Serial data input delay from RAS	t _{SDD}	45		50		55		ns	
Serial data input to RAS delay time	t _{SZS}	0		0		0		ns	
Serial-input-mode enable (SE) to RAS setup time	t _{ESR}	0		0		0		ns	
Serial-input-mode enable (SE) to RAS hold time	^t REH	12		15		15		ns	
NONTRANSFER command to RAS setup time	tys	0		0		0		ns	26
NONTRANSFER command to RAS hold time	tYH	12		15		15		ns	26
DSF to RAS setup time	t _{FSR}	0		0		0		ns	
DSF to RAS hold time	t _{RFH}	12		15		15		ns	1
SC to QSF delay time	tSQD		25		30		35	ns	
SPLIT TRANSFER setup time	tSTS	30		35		40		ns	
SPLIT TRANSFER hold time	t _{STH}	30		35		40		ns	
RAS to QSF delay time	^t RQD		65		85		105	ns	
TR/OE to QSF delay time	tTQD		25		30		35	ns	
CAS to QSF delay time	tCQD		35		40		45	ns	
RAS to first SC delay	t _{RSD}	80		95		105		ns	
CAS to first SC delay	tCSD	20		25		35		ns	
Column address valid to first SC delay	^t ASD	45		55		65		ns	

SAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes 6, 7, 8, 9, 10) (0° C \leq T $_{A}$ \leq + 70°C; Vcc = 5.0V \pm 10%)

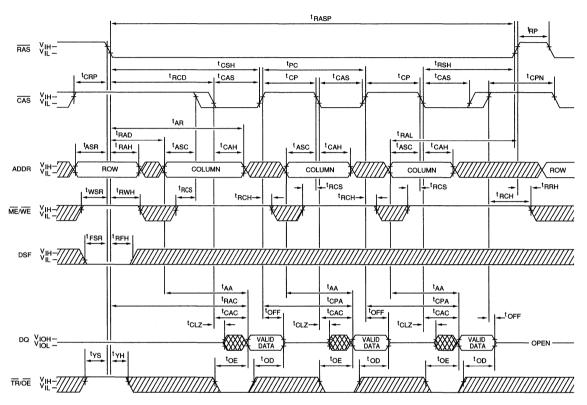
A.C. CHARACTERISTICS		-	8	-1	0	-12			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Serial clock cycle time	t _{SC}	25		30		35		ns	
Access time from SC	t _{SAC}		25		30		35	ns	24
SC precharge time (SC LOW time)	t _{SP}	10		10		12		ns	
SC pulse width (SC HIGH time)	t _{SAS}	10		10		12		ns	
Access time from SE	t _{SEA}		15		20		30	ns	24
SE precharge time	t _{SEP}	10		15		15		ns	
SE pulse width	t _{SE}	10		15		15		ns	
Serial data-out hold time after SC high	t _{SOH}	5		5		5		ns	24
Serial output buffer turn-off delay from SE	^t SEZ	0	12	0	15	0	25	ns	24
Serial data-in setup time	tSDS	0		0		0		ns	24
Serial data-in hold time	^t SDH	10		15		20		ns	24
SERIAL INPUT (Write) Enable setup time	tsws	0		0		0		ns	
SERIAL INPUT (Write) Enable hold time	^t swH	10		15		20		ns	
SERIAL INPUT (Write) Disable setup time	tswis	0		0		0		ns	
SERIAL INPUT (Write) Disable hold time	tswih	10		15		20		ns	


NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = \underline{I\Delta t}$ with $\Delta V = 3V$ and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by any eight RAS cycles and 1 SC cycle before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{\text{CAS}} = \text{V}_{\text{IH}}$, DRAM data output (DQ1-DQ4) is high impedance.
- 12. If $\overline{CAS} = VIL$, DRAM data output (DQ1-DQ4) may contain data from the last valid READ cycle.
- 13. DRAM output timing measured with a load equivalent to 2 TTL gates and 100pF. Output reference levels: VoH = 2.4V; VoL = 0.4V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, DQ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as

- a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. tWCS, tRWD, tAWD and tCWD are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If $^{t}WCS \ge {}^{t}WCS$ (min), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{TR}/\overline{OE}$. If $^{t}WCS \leq ^{t}WCS$ (MIN), the cycle is a LATE-WRITE and $\overline{TR}/\overline{OE}$ must control the output buffers during the write to avoid data contention. If ^tRWD ≥ ^tRWD (MIN), ${}^{t}AWD \ge {}^{t}AWD$ (MIN) and ${}^{t}CWD \ge {}^{t}CWD$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of the output buffers (at access time and until CAS goes back to VIH) is indeterminate but the WRITE will be valid, if ^tOD and ^tOEH are met. See the LATE-WRITE AC Timing diagram.
- These parameters are referenced to CAS leading edge in early WRITE cycles and ME/WE leading edge in late WRITE or READ-WRITE cycles.
- 23. During a READ cycle, if TR/OE is LOW then taken HIGH, DQ goes open. The DQs will go open with OE or CAS, whichever goes HIGH first.
- 24. SAM output timing is measured with a load equivalent to 2 TTL gate and 50pF. Output reference levels: Voh = 2.0V; Vol = 0.8V.
- 25. TRANSFER command means that $\overline{TR}/\overline{OE}$ is LOW when \overline{RAS} goes LOW.
- 26. NONTRANSFER command means that $\overline{TR}/\overline{OE}$ is HIGH when \overline{RAS} goes LOW.
- 27. LATE-WRITE and READ-MODIFY-WRITE cycles must have ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if CAS remains LOW and OE is taken LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.

DRAM READ CYCLE



DON'T CARE

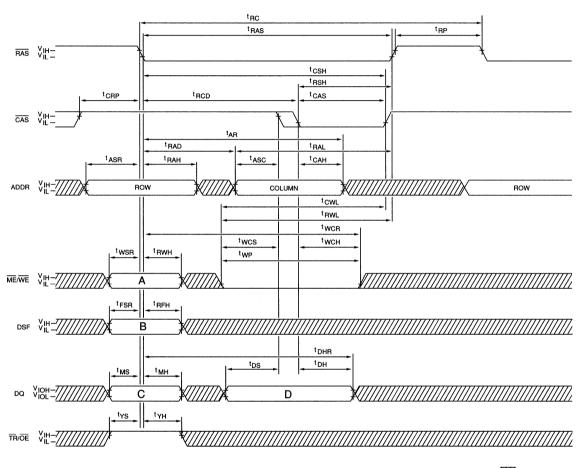
₩ undefined

DRAM FAST-PAGE-MODE READ CYCLE

DON'T CARE

W UNDEFINED

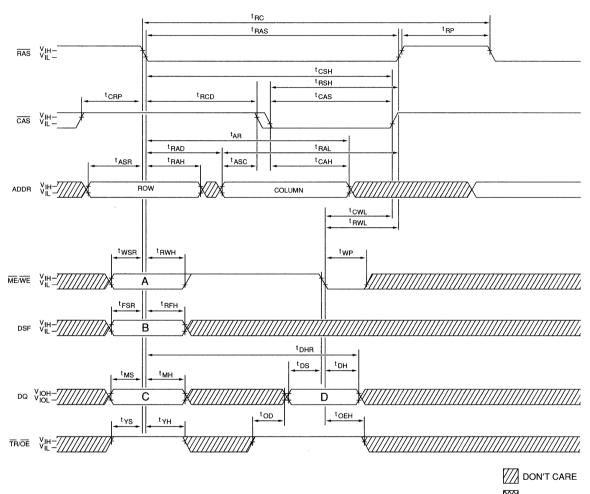
NOTE: WRITE or READ-MODIFY-WRITE cycles may be mixed with READ cycles while in FAST PAGE MODE.


WRITE CYCLE FUNCTION TABLE

	LO	GIC STATE	S	
RAS Falling Edge			CAS Falling Edge	FUNCTION
A ME/WE	B DSF	C DQ (Input)	D DQ (Input)	. Gilonon
1	0	Х	DRAM Data	Normal DRAM WRITE
0	0	Write Mask	DRAM Data (Masked)	NONPERSISTENT (Load and Use Register) MASKED WRITE to DRAM
0	1	Х	DRAM Data (Masked)	PERSISTENT (Use Register) MASKED WRITE to DRAM
1	1	Х	Write Mask	Load Mask Register

NOTE: Refer to this function table to determine the logic states of "A", "B", "C", and "D" for the WRITE cycle timing diagrams on the following pages.

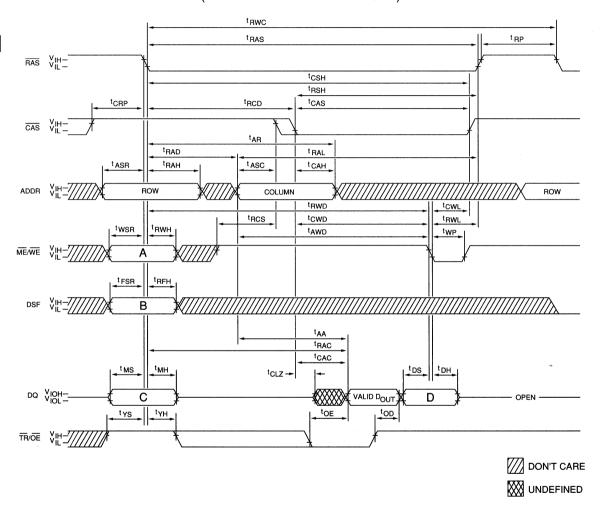
DRAM EARLY-WRITE CYCLE


DON'T CARE

W UNDEFINED

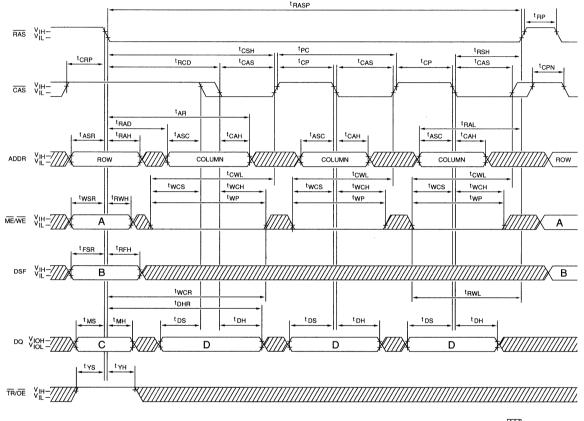
NOTE: The logic states of "A", "B", "C", and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM LATE-WRITE CYCLE



W UNDEFINED

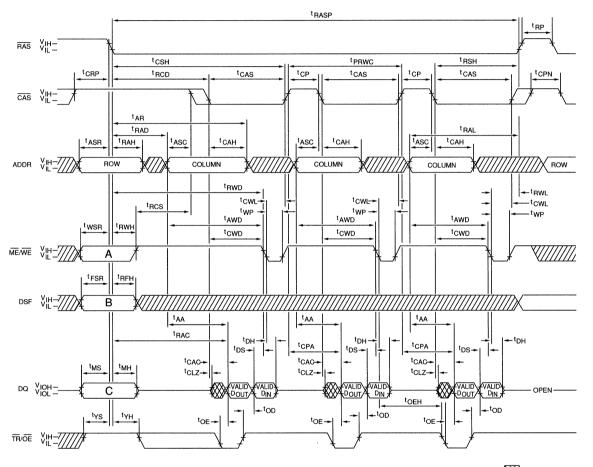
NOTE: The logic states of "A", "B", "C", and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.


DRAM READ-WRITE CYCLE (READ-MODIFY-WRITE CYCLE)

NOTE: The logic states of "A", "B", "C", and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE

DON'T CARE

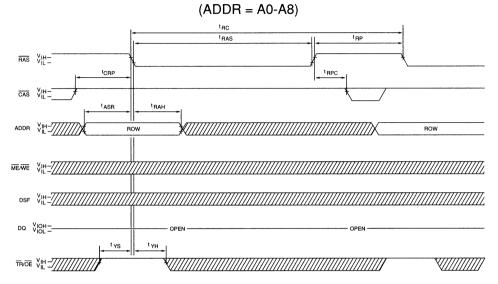

W UNDEFINED

NOTE:

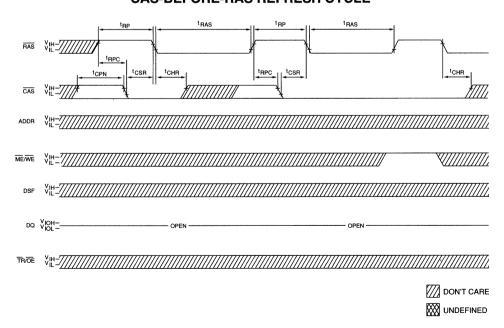
- READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST PAGE MODE.
- 2. The logic states of "A", "B", "C", and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM FAST-PAGE-MODE READ-WRITE CYCLE (READ-MODIFY-WRITE or LATE-WRITE CYCLES)

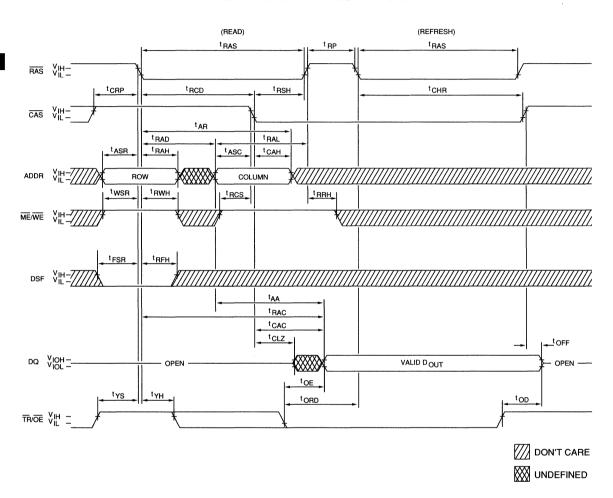
DON'T CARE


₩ undefined

NOTE:

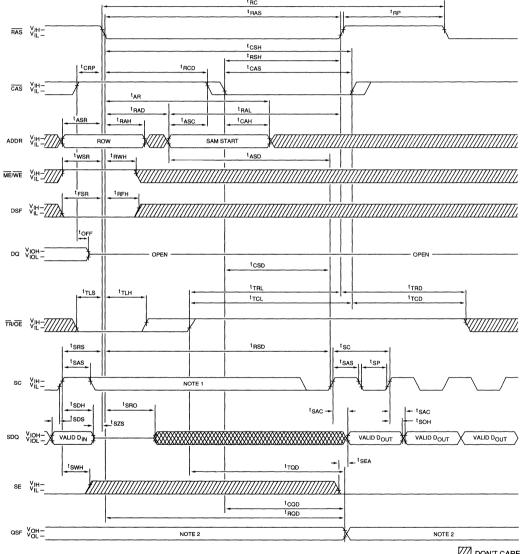

- 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST PAGE MODE. Use the Write Function Table to determine the proper DSF state for the desired WRITE operation.
- 2. The logic states of "A", "B" and "C" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM RAS-ONLY REFRESH CYCLE



CAS-BEFORE-RAS REFRESH CYCLE

DRAM HIDDEN-REFRESH CYCLE

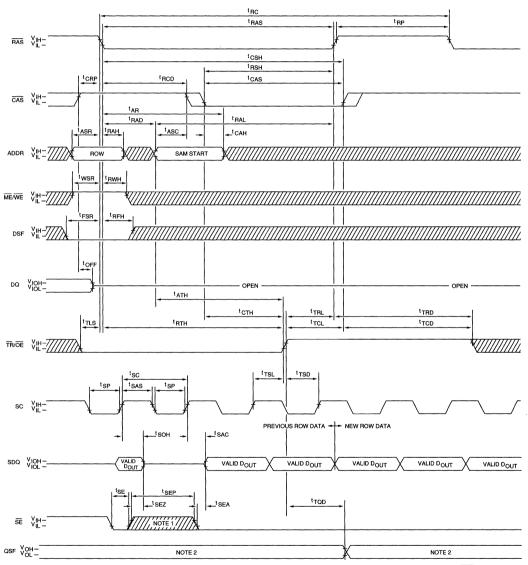


NOTE: A HIDDEN REFRESH may also be performed after a WRITE or TRANSFER cycle. In the WRITE case, ME/WE = LOW (when CAS goes LOW) and TR/OE = HIGH. In the TRANSFER case, TR/OE = LOW (when RAS goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of TR/OE.

READ TRANSFER (DRAM-TO-SAM TRANSFER)

(When part was previously in the SERIAL INPUT mode)

DON'T CARE


NOTE: 1

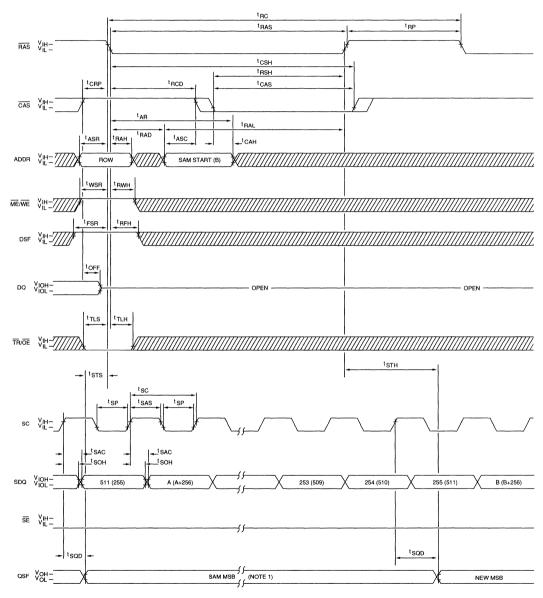
- 1. There must be no rising edges on the SC input during this time period.
- QSF = 0 when the Lower SAM (bits 0–255) is being accessed.
 QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

REAL-TIME READ TRANSFER (DRAM-TO-SAM TRANSFER)

(When part was previously in the SERIAL OUTPUT mode)

NOTE:

 The SE pulse is shown to illustrate the SERIAL OUTPUT ENABLE and DISABLE timing. It is not required.

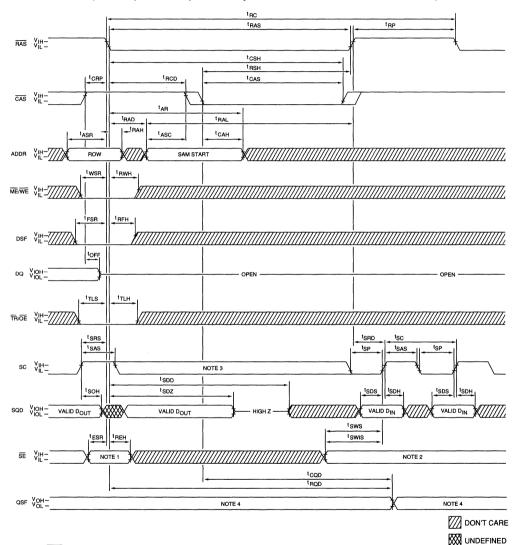

QSF = 0 when the Lower SAM (bits 0–255) is being accessed.
 QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

DON'T CARE

₩ UNDEFINED

SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)

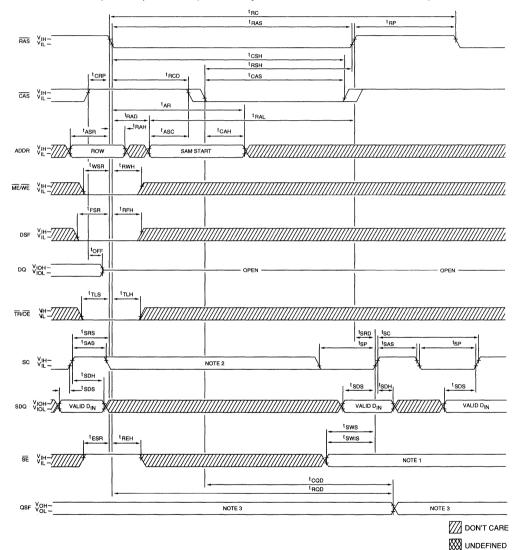
DON'T CARE


₩ UNDEFINED

NOTE: 1. QSF = 0 when the Lower SAM (bits 0–255) is being accessed. QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

WRITE TRANSFER and PSEUDO WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

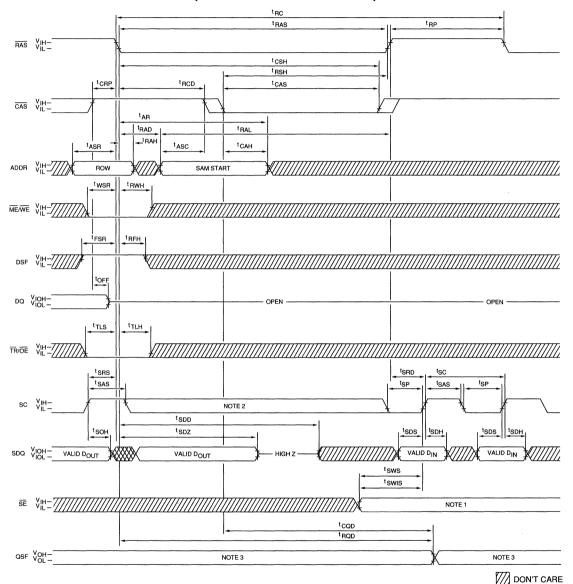
(When part was previously in the SERIAL OUTPUT mode)


NOTE:

- 1. If SE is LOW, the SAM data will be transferred to the DRAM.
 - If SE is HIGH, the SAM data will not be transferred to the DRAM (SERIAL-INPUT-MODE ENABLE cycle).
- 2. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of the state of SE.
- 3. There must be no rising edges on the SC input during this time period.
- QSF = 0 when the Lower SAM (bits 0–255) is being accessed.
 QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

(When part was previously in the SERIAL INPUT mode)

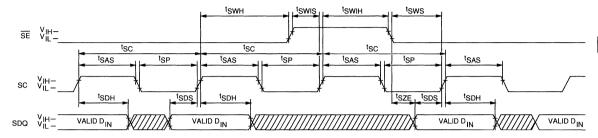

NOTE:

- SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
- 2. There must be no rising edges on the SC input during this time period.
- QSF = 0 when the Lower SAM (bits 0–255) is being accessed.
 QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

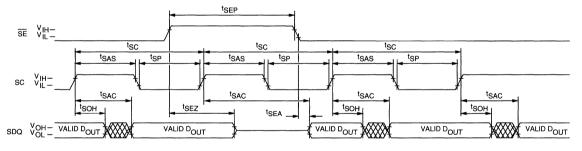
UNDEFINED

ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

NOTE:


 SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of the state of SE.

2. There must be no rising edges on the SC input during this time period.


QSF = 0 when the Lower SAM (bits 0–255) is being accessed.
 QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

SAM SERIAL INPUT

SAM SERIAL OUTPUT

DON'T CARE

W UNDEFINED

VRAM

256K x 4 DRAM WITH 512 x 4 SAM

FEATURES

- Industry standard pinout, timing and functions
- High-performance CMOS silicon gate process
- Single +5V ±10% power supply
- Inputs and outputs are fully TTL and CMOS compatible
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- 512-cycle refresh within 8ms
- Optional FAST PAGE MODE access cycles
- Dual port organization: 256K x 4 DRAM port 512 x 4 SAM port
- No refresh required for Serial Access Memory
- Low power: 15mW standby; 275mW active, typical
- Fast access times 80ns random, 25ns serial

SPECIAL FUNCTIONS

- JEDEC Standard Function set
- PERSISTENT MASKED WRITE
- SPLIT READ TRANSFER
- WRITE TRANSFER/SERIAL INPUT
- ALTERNATE WRITE TRANSFER
- BLOCK WRITE

OPTIONS	MARKING	
• Timing (DRAM, SAM)		
80ns, 25ns	- 8	
100ns, 30ns	-10	
120ns, 35ns	-12	
Packages		
Plastic SOJ	DJ	
Plastic ZIP	Ż	

GENERAL DESCRIPTION

The MT42C4256 is a high-speed, dual port CMOS dynamic random access memory or video RAM (VRAM) containing 1,048,576 bits. These bits may be accessed by a 4-bit wide DRAM port or by a 512 x 4-bit serial access memory (SAM) port. Data may be transferred bidirectionally between the DRAM and the SAM.

The DRAM portion of the VRAM is functionally identical to the MT4C4256 (256K \times 4 DRAM). Four 512-bit data registers make up the SAM portion of the VRAM. Data I/O and internal data transfer are accomplished using three separate bidirectional data paths; the 4-bit random access I/O port, the four internal 512 bit wide paths between the DRAM and the SAM, and the 4-bit serial I/O port for the

	n SOJ	28-Pin ZIP		
(E	-9)	(C-5)		
SC [1	28] Vss	DSF 1 = 2 DQ3		
SDQ1 [2 SDQ2 [3	27] SDQ4 26] SDQ3	DQ4 3 = 4 SE SDQ3 5 = 4		
TR/OE (4	25 SE	Vss 7 = 6 SDQ4		
DQ1 [5 DQ2 [6	24 D DQ4 23 D DQ3	SDQ1 9 = 8 SC = 10 SDQ2		
ME/WE [7	22 DSF	TR/OE 11 == 12 DQ1		
NC [8 RAS [9	21) CAS 20) QSF	DQ2 13 = 14 ME/WE		
A8 [10	19 A0	A8 17 E3 16 RAS		
A6 [11 A5 [12	18 þ A1 17 þ A2	A5 19 = 18 A6		
A4 [13	16] A3 15] A7	Vcc 21 == 20 A4		
Vcc [14	15 J A7	A3 23 5 24 A2		
		A1 25 = 1 26 A0		

SAM. The rest of the circuitry consists of the control, timing and address decoding logic.

Each of the ports may be operated asynchronously and independently of the other except when data is being transferred internally between them. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of \overline{RAS} addresses are executed at least every 8ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. The SAM portion of the VRAM is fully static and does not require any refresh

The operation and control of the MT42C4256 is compatible with (and can be identical to) the operation of the MT42C4064 (64K x 4 VRAM). However, the MT42C4256 offers several additional functions that may be used to increase system performance or ease critical timing requirements. These "special functions" are described in detail in the following sections.

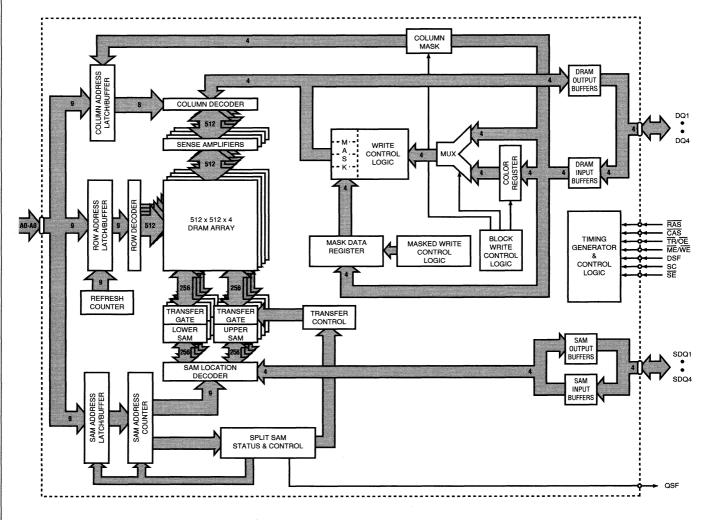


Figure 1
MT42C4256 BLOCK DIAGRAM

PIN DESCRIPTIONS

SOJ PIN Numbers	ZIP PIN Numbers	SYMBOL	TYPE	DESCRIPTION		
1	8	SC	Input	Serial Clock: Clock input to the serial address counter for the SAM registers.		
4	11	TR/OE	Input	Transfer Enable: Enables an internal TRANSFER operation at RAS (H → L), or Output Enable: Enables the DRAM output buffers when taken LOW after RAS goes LOW (CAS must also be LOW), otherwise the output buffers are in a High-Z state.		
7	14	ME/WE	Input	Mask Enable: If ME/WE is LOW at the falling edge of RAS a MASKED WRITE cycle is performed, or Write Enable: ME/WE is also used to select a READ (ME/WE = H) or WRITE (ME/WE = L) cycle when accessing the DRAM. This includes a READ TRANSFER (ME/WE = H) or WRITE TRANSFER (ME/WE = L).		
25	4	SE	Input	Serial Port Enable: SE enables the serial I/O buffers and allows a serial READ or WRITE operation to occur, otherwise the output buffers are in a High-Z state. SE is also used during a WRITE TRANSFER operation to indicate whether a WRITE TRANSFER or a SERIAL INPUT MODE ENABLE cycle is performed.		
22	1	DSF	Input	Special Function Select: DSF is used to indicate which special functions (BLOCK WRITE, MASKED WRITE vs. PERSISTENT MASKED WRITE, etc.) are used on a particular access cycle.		
9	16	RAS	Input	Row Address Strobe: \overline{RAS} is used to clock in the 9 row-address bits and as a strobe for the $\overline{ME/WE}$, $\overline{TR/OE}$, DSF, \overline{SE} , \overline{CAS} and DQ inputs.		
21	28	CAS	Input	Column Address Strobe: \overline{CAS} is used to clock in the 9 column-address bits, enable the DRAM output buffers (along with $\overline{TR}/\overline{OE}$), and as a strobe for the DSF input.		
19, 18, 17, 16, 13, 12, 11, 15, 10	26, 25, 24, 23, 20, 19, 18, 22, 17	A0 to A8	Input	Address Inputs: For the DRAM operation, these inputs are multiplexed and clocked by RAS and CAS to select one 4-bit word out of the 256K available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when RAS goes LOW) and the SAM start address (when CAS goes LOW).		
5, 6, 23, 24	12, 13, 2, 3	DQ1 - DQ4	Input/ Output	DRAM Data I/O: DRAM input/Output for DRAM cycles; inputs for Mask Data Register and Color Register load cycles, and Bit and Column Mask inputs for BLOCK WRITE.		
2, 3, 26, 27	9, 10, 5, 6	SDQ1 - SDQ4	Input/ Output	Serial Data I/O: Input, output, or High-Z.		
20	27	QSF	Output	Split SAM Status: QSF indicates which half of the SAM is being accessed. LOW if address is 0-255, HIGH if address is 256-511.		
8	15	NC	-	No Connect: This pin should be left either unconnected or tied to ground.		
14	21	Vcc	Supply	Power Supply: +5V ±10%		
28	7	Vss	Supply	Ground		

FUNCTIONAL DESCRIPTION

The MT42C4256 may be divided into three functional blocks (see Figure 1): the DRAM, the transfer circuitry, and the SAM. All of the operations described below are shown in the AC Timing Diagrams section of this data sheet and summarized in the Truth Table.

Note:

For dual-function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing transfer operations the $\overline{TR}/\overline{OE}$ pin will be shown as $\overline{TR}/(\overline{OE})$.

DRAM OPERATION

DRAM REFRESH

Like any DRAM based memory, the MT42C4256 VRAM must be refreshed to retain data. All 512 row address combinations must be accessed within 8ms. The MT42C4256 supports CAS-BEFORE-RAS, RAS-ONLY and HIDDEN types of refresh cycles.

For the CAS-BÉFORE-RAS REFRESH cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data, and simply must perform 512 CAS-BEFORE-RAS cycles within the 8ms time period.

The refresh address must be generated externally and applied to A0-A8 inputs for \overline{RAS} -ONLY refresh cycles. The DQ pins remain in a High-Z state for both the \overline{RAS} -ONLY and \overline{CAS} -BEFORE- \overline{RAS} refresh cycles.

HIDDEN REFRESH cycles are performed by toggling RAS (and keeping CAS LOW) after a READ or WRITE cycle. This performs CAS-BEFORE-RAS cycles but does not disturb the DQ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row that is being accessed. The SAM portion of the MT42C4256 is fully static and does not require any refreshing.

DRAM READ AND WRITE CYCLES

The DRAM portion of the VRAM is nearly identical to standard 256K×4DRAMs. However, because several of the DRAM control pins are used for additional functions on this part, several conditions that were undefined or in

"don't care" states for the DRAM are specified for the VRAM. These conditions are highlighted in the following discussion. In addition, the VRAM has several special functions that can be used when writing to the DRAM.

The 18 address bits that are used to select a 4-bit word from the 262,144 available are latched into the chip using the A0-A8, \overline{RAS} and \overline{CAS} inputs. First, the 9 row-address bits are set up on the address inputs and clocked into the part when \overline{RAS} transitions from HIGH to LOW. Next, the 9 column address bits are set up on the address inputs and clocked-in when \overline{CAS} goes from HIGH to LOW.

For single port DRAMS, the \overline{OE} pin is a "don't care" when \overline{RAS} goes LOW. However, for the VRAM, when \overline{RAS} goes LOW, $(\overline{TR})/\overline{OE}$ selects between DRAM access or TRANSFER cycles. $(\overline{TR})/\overline{OE}$ must be HIGH at the \overline{RAS} HIGH-to-LOW transition for all DRAM operations (except \overline{CAS} -BEFORE- \overline{RAS}).

If $(\overline{ME})/\overline{WE}$ is HIGH when \overline{CAS} goes LOW, a DRAM READ operation is performed and the data from the memory cells selected will appear at the DQ1-DQ4 port. The $(\overline{TR})/\overline{OE}$ input must transition from HIGH to LOW sometime after \overline{RAS} falls to enable the DRAM output port.

For single port normal DRAMs, WE is a "don't care" when RAS goes LOW. For the VRAM, ME/(WE) is used, when RAS goes LOW, to select between a MASKED WRITE cycle and a normal WRITE cycle. If ME/(WE) is LOW at the RAS HIGH-to-LOW transition, a MASKED WRITE operation is selected. For any DRAM access cycle (READ or WRITE), ME/(WE) must be HIGH at the RAS HIGH-to-LOW transition. If (ME)/WE is LOW before CAS goes LOW, a DRAM EARLY-WRITE operation is performed and the data present on the DQ1-DQ4 data port will be written into the selected memory cells. If (ME)/WE goes LOW after CAS goes LOW, a DRAM LATE-WRITE operation is performed. Refer to the AC timing diagrams.

The VRAM can perform all the normal DRAM cycles including READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE (Late or Early), and FAST-PAGE-MODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

NON PERSISTENT MASKED WRITE

The MASKED WRITE feature eliminates the need to do a READ-MODIFY-WRITE cycle when changing only specific bits within a 4-bit word. The MT42C4256 supports two types of MASKED WRITE cycles, NONPERSISTENT MASKED WRITE and PERSISTENT MASKED WRITE.

If $\overline{\text{ME}}/(\overline{\text{WE}})$ and DSF are LOW at the $\overline{\text{RAS}}$ HIGH to LOW transition, a NONPERSISTENT MASKED WRITE is performed and the data (mask data) present on the DQ1-DQ4 inputs will be written into the mask data register. The mask data acts as an individual write enable for each of the four DQ1-DQ4 pins. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the following WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows

normal WRITE operation to proceed. Note that \overline{CAS} is still HIGH. When \overline{CAS} goes LOW, the bits present on the DQ1-DQ4 inputs will be either written to the DRAM (if the mask data bit is HIGH) or ignored (if the mask data bit is LOW). The DRAM contents that correspond to masked input bits will not be changed during the WRITE cycle. The MASKED WRITE is nonpersistent (must be re-entered at every \overline{RAS} cycle) if DSF is LOW when \overline{RAS} goes LOW. The mask data register is cleared at the end of every NONPERSISTENT MASKED WRITE. FAST PAGE MODE can be used with NONPERSISTENT MASKED WRITE to write several column locations in an addressed row. The same mask is used during the entire FAST-PAGE-MODE \overline{RAS} cycle. An example NON PERSISTENT MASKED WRITE cycle is shown in Figure 2.

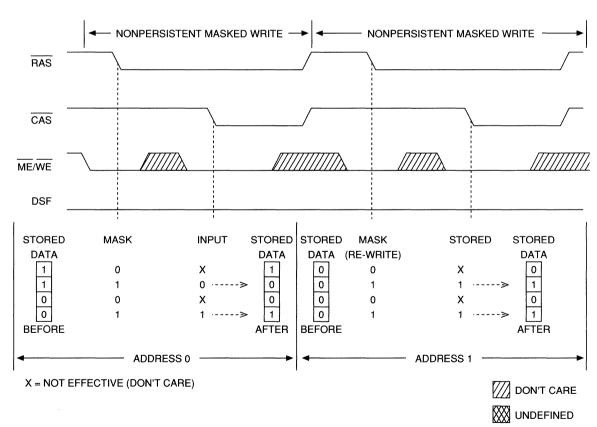


Figure 2
NONPERSISTENT MASKED WRITE EXAMPLE

DON'T CARE

PERSISTENT MASKED WRITE

The PERSISTENT MASKED WRITE feature eliminates the need to rewrite the mask data before each MASKED WRITE cycle if the same mask data is being used repeatedly. To initiate a PERSISTENT MASKED WRITE, a LOAD MASK REGISTER cycle is performed by taking $\overline{\text{ME}}/(\overline{\text{WE}})$ and DSF HIGH when $\overline{\text{RAS}}$ goes LOW. The mask data is loaded into the internal register when $\overline{\text{CAS}}$ goes LOW. Mask data may also be loaded into the mask register by performing a NONPERSISTENT MASKED WRITE cycle before the PERSISTENT MASKED WRITE cycles.

PERSISTENT MASKED WRITE cycles may then be performed by taking $\overline{\text{ME}}/(\overline{\text{WE}})$ LOW and DSF HIGH when $\overline{\text{RAS}}$ goes LOW. The contents of the mask data register will then be used as the mask data for the DRAM inputs. Unlike the NONPERSISTENT MASKED WRITE cycle, the data

present on the DQ inputs is not loaded into the mask register when \$\overline{RAS}\$ falls, and the mask data register will not be cleared at the end of the cycle. Any number of PERSISTENT MASKED WRITE cycles, to any address, may be performed without having to reload the mask data register. Figure 3 shows the LOAD MASK REGISTER and two PERSISTENT MASKED WRITE cycles in operation. The LOAD MASK REGISTER and PERSISTENT MASKED WRITE cycles allow controllers that cannot provide mask data to the DQ pins at \$\overline{RAS}\$ time to perform MASKED WRITE operations. PERSISTENT MASKED WRITE operations. PERSISTENT MASKED WRITE operations may be performed during FAST PAGE MODE cycles and the same mask will apply to all addressed columns in the addressed row.

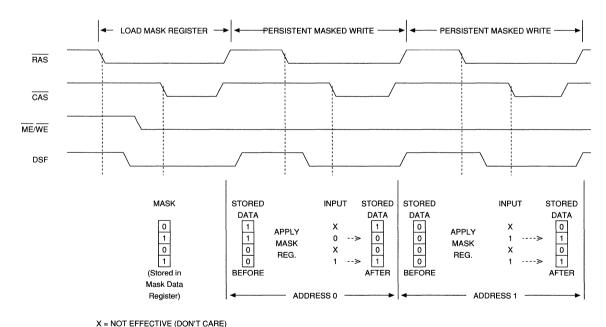


Figure 3
PERSISTENT MASKED WRITE EXAMPLE

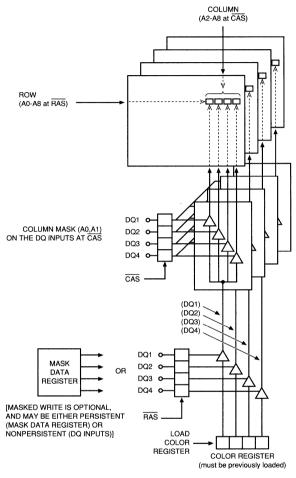


Figure 4
BLOCK WRITE EXAMPLE

BLOCK WRITE

If DSF is HIGH when $\overline{\text{CAS}}$ goes LOW, the MT42C4256 will perform a BLOCK WRITE cycle instead of a normal WRITE cycle. In BLOCK WRITE cycles, the contents of the color register are directly written to four adjacent column locations (see Figure 4). The color register must be loaded prior to beginning BLOCK WRITE cycles (see LOAD COLOR REGISTER).

The row is addressed as in a normal DRAM WRITE cycle, however when \overline{CAS} goes LOW only the A2-A8 inputs are used. A2-A8 specify the "block" of four adjacent column locations that will be accessed. The DQ inputs are then used

to determine what combination of the four column locations will be changed. DQ1 acts as a write enable for column location A0=0, A1=0; DQ2 controls column location A0=1, A1=0; DQ3 controls A0=0, A1=1; and DQ4 controls A0=1, A1=1. The write enable controls are active HIGH; a logic 1 enables and a logic 0 disables the WRITE function.

The contents of the color register will then be written to the column locations enabled. Each DQ location of the color register is written to the four column locations (or any of the four that are enabled) in the corresponding DQ bit plane.

NONPERSISTENT MASKED BLOCK WRITE

The MASKED WRITE functions can also be used during BLOCK WRITE cycles. NONPERSISTENT MASKED BLOCK WRITE operates exactly like the normal NONPERSISTENT MASKED WRITE except the mask is now applied to four column locations instead of just one column location.

Like NONPERSISTENT MASKED WRITE, the combination of ME/(WE) LOW and DSF LOW when RAS goes LOW initiates a NONPERSISTENT MASKED cycle. The DSF pin must be driven HIGH when CAS goes LOW, to perform the NONPERSISTENT MASKED BLOCK WRITE. By using both the column mask input and the MASKED WRITE function, any combination of the four bit planes may be masked and any combination of the four column locations may be masked.

PERSISTENT MASKED BLOCK WRITE

This cycle is also performed exactly like the normal PERSISTENT MASKED WRITE except that DSF is HIGH when $\overline{\text{CAS}}$ goes LOW to indicate the BLOCK WRITE function. Both the mask data register and the color register must be loaded with the appropriate data prior to starting a PERSISTENT MASKED BLOCK WRITE.

LOAD MASK DATA REGISTER

The LOAD MASK REGISTER operation and timing are identical to a normal WRITE cycle except that DSF is HIGH when \overline{RAS} goes LOW. As shown in the Truth Table, the

combination of $\overline{TR}/(\overline{OE})$, $\overline{ME}/(\overline{WE})$, and DSF being HIGH when \overline{RAS} goes LOW indicates the cycle is a LOAD REGISTER cycle. DSF is used when \overline{CAS} goes LOW to select the register to be loaded and must be LOW for a LOAD MASK REGISTER cycle. The data present on the DQ lines will then be written to the mask data register.

Note: For a normal DRAM WRITE cycle, the mask data register is disabled but not modified. The contents of mask data register will not be changed unless a NONPERSISTENT MASKED WRITE cycle or a LOAD MASK REGISTER cycle is performed.

The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

The mask data register contents are used during PERSIS-TENT MASKED WRITE and PERSISTENT MASKED BLOCK WRITE cycles to selectively enable writes to the four DQ planes.

LOAD COLOR REGISTER

A LOAD COLOR REGISTER cycle is identical to the LOAD MASK REGISTER cycle except DSF is HIGH when CAS goes LOW. The contents of the color register are retained until changed by another LOAD COLOR REGISTER cycle (or the part loses power) and are used as data inputs during BLOCK WRITE cycles.

TRANSFER OPERATIONS

TRANSFER operations are initiated when $\overline{TR}/\overline{OE}$) is LOW then \overline{RAS} goes LOW. The state of $\overline{(ME)}/\overline{WE}$ when \overline{RAS} goes LOW indicates the direction of the TRANSFER (to or from the DRAM), and DSF is used to select between NORMAL TRANSFER, SPLIT READ TRANSFER, and ALTERNATE WRITE TRANSFER cycles. Each of the TRANSFER cycles available is described below.

READ TRANSFER (DRAM-TO-SAM TRANSFER)

If (ME)/WE is HIGH and DSF is LOW when RAS goes LOW, a READ TRANSFER cycle is selected. The row address bits indicate the four 512-bit DRAM row planes that are to be transferred to the four SAM data register planes. The column address bits indicate the start address (or Tap address) of the serial output cycle from the SAM data registers. CAS must fall for every TRANSFER in order to load a valid Tap address. A read transfer may be accom-

plished two ways. If the transfer is to be synchronized with SC (REAL-TIME READ TRANSFER), $\overline{TR}/(\overline{OE})$ is taken HIGH after CAS goes LOW. If the transfer does not have to be synchronized with SC (READ TRANSFER), TR/(OE) may go HIGH before CAS goes LOW (refer to the AC Timing Diagrams). The 2048 bits of DRAM data are written into the SAM data registers and the serial shift start address is stored in an internal 9-bit register. QSF will be LOW if access is from the lower half (addresses 0 through 255), and HIGH if access is from the upper half (256 through 511). If SE is LOW, the first bits of the new row data will appear at the serial outputs with the first SC clock pulse. SE enables the serial outputs and may be either HIGH or LOW during this operation. The SAM address pointer will increment with the SC LOW-to-HIGH transition, regardless of the state of SE. Performing a READ TRANSFER cycle sets the direction of the SAM I/O buffers to the output mode.

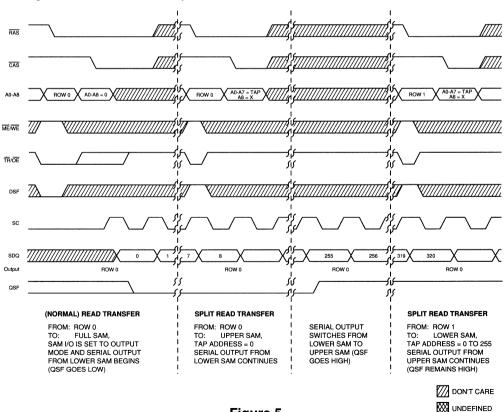


Figure 5
TYPICAL SPLIT READ TRANSFER INITIATION SEQUENCE

SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)

The SPLIT READ TRANSFER (SRT) cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream. When using normal TRANSFER cycles, the REAL-TIME READ TRANSFER cycle has to occur immediately after the last bit of "old data" was clocked out of the SAM port.

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data can be transferred to the other half. The transfer can occur at any time while the other half is sending data and need not be synchronized with the SC clock.

The $\overline{TR}/(\overline{OE})$ timing is also relaxed for SPLITTRANSFER cycles. The rising edge of $\overline{TR}/(\overline{OE})$ is not used to complete the TRANSFER cycle and therefore is independent of the rising edges of \overline{RAS} or \overline{CAS} . The transfer timing is generated internally for SPLIT TRANSFER cycles. A SPLIT READ TRANSFER does not change the direction of the SAM port.

A normal, non-split READ TRANSFER cycle must precede any sequence of SPLIT READ TRANSFER cycles to provide a reference to which half of the SAM the access will begin and set SAM I/O direction. Then SPLIT READ TRANSFERS may be initiated by taking DSF HIGH when RAS goes LOW during the TRANSFER cycle. As in non split transfers, the row address is used to specify the DRAM row to be transferred. The column address, A0-A7, is used to input the SAM tap address. Address pin A8 is a "don't care" when the Tap address is loaded at the HIGH to LOW transition of CAS. It is internally generated so that the SPLIT TRANSFER will be to the SAM half not currently being accessed.

Figure 5 shows a typical SPLIT READ TRANSFER initiation sequence. The normal READ TRANSFER is first performed, followed by a SPLIT READ TRANSFER of the same row to the upper half of the SAM. The purpose of the SPLIT TRANSFER of the same data is to initiate the split SAM operating mode and load the Tap address. Serial access continues, and when the SAM address counter reaches 255 ("A8"=0, A0-A7=1) the new Tap address is loaded for the next half ("A8"=1, A0-A7=Tap) and the QSF output goes HIGH. Once the serial access has switched to the upper SAM, new data may be transferred to the lower SAM. The controller must wait for the state of QSF to change and then the new data may be transferred to the SAM half not being accessed. For example, the next step in Figure 5 would be to wait until QSF went LOW (indicating that row-1 data is shifting out the lower SAM) and then transfer the upper half of row 1 to the upper SAM. If the half boundry is reached, before a SRT is done for the next half, a Tap address of "0" will be used. Access will start at 0 if going to the lower half, 256 if going to the upper. See Figure 6.

WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of the WRITE TRANSFER is identical to the READ TRANSFER described previously except $(\overline{\text{ME}})/\overline{\text{WE}}$ and $\overline{\text{SE}}$ must be LOW when $\overline{\text{RAS}}$ goes LOW. The row address indicates the DRAM row to which the SAM data registers will be written. The column address (Tap) indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. A WRITE TRANSFER changes the direction of the SAM I/O buffers to the input mode. QFS is LOW if access is to the lower half of the SAM, and HIGH if access is to the upper half.

PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE ENABLE)

The PSEUDO WRITE TRANSFER cycle is used to change the direction of SAM port from output to input without performing a WRITE TRANSFER cycle. A PSEUDO WRITE TRANSFER cycle with SE held HIGH instead of LOW. The DRAM data will not be disturbed and the SAM will be ready to accept input data.

ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of the ALTERNATE WRITE TRANSFER is identical to the WRITE TRANSFER except that the DSF pin is HIGH and $(\overline{ME})/\overline{WE}$ is LOW when \overline{RAS} goes LOW, allowing \overline{SE} to be a "don't care." This allows the outputs to be disabled using \overline{SE} during a WRITE TRANSFER cycle.

POWER-UP AND INITIALIZATION

When Vcc is initially supplied or when refresh is interrupted for more than 8ms, the MT42C4256 must be initialized.

After Vcc is at specified operating conditions, for $100\mu s$ minimum, eight \overline{RAS} cycles must be executed to initialize the dynamic memory array. When the device is initialized the DRAM I/O pins (DQs) are in a High-Z state, regardless of the state of $(\overline{TR})/\overline{OE}$. The DRAM array will contain random data. QSF will be drawing data.

The SAM portion of the MT42C4256 is completely static in operation and does not require refresh or initialization. The SAM port will power-up in the serial input mode (WRITETRANSFER) and the I/O pins (SDQs) will be High-Z, regardless of the state of \overline{SE} a,b. The mask and color register will contain random data after power-up.

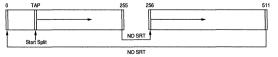


Figure 6
SPLIT SAM TRANSFER

MULTIPORT DRAM

TRUTH TABLE

CODE	FUNCTION		RAS	FALLING	EDGE		CAS FALL	A0 -	A8 ¹	DQ1 - DQ4 ²		REGISTERS	
		CAS	TR / OE	ME / WE	DSF	SE	DSF	RAS	CAS	RAS	CAS ³ WE	MASK	COLOR
•	DRAM OPERATIONS		******										
CBR	CAS-BEFORE-RAS REFRESH	0	X	1	Х	Х	Х		Х	1	Х	Х	Х
ROR	RAS-ONLY REFRESH	1	1	Х	Х	х		ROW	_	Х	_	х	Х
RW	NORMAL DRAM READ OR WRITE	1	1	1	0	Х	0	ROW	COLUMN	Х	VALID	Х	Х
RWNM	NONPERSISTENT (LOAD AND USE) MASKED WRITE TO DRAM		1	0	0	х	0	ROW	COLUMN	WRITE MASK	VALID DATA	LOAD & USE	X
RWOM	PERSISTENT (USE REGISTER) MASKED WRITE TO DRAM	1	1	0	1	Х	0	ROW	COLUMN	Х	VALID DATA	USE	Х
BW	BLOCK WRITE TO DRAM (NO DATA MASK)	1	1	1	0	×	1	ROW	COLUMN (A2 - A8)	, X	COLUMN MASK	х	USE
BWNM	NONPERSISTENT (LOAD & USE) MASKED BLOCK WRITE TO DRAM	1	1	0	0	×	1	ROW	COLUMN	WRITE MASK	COLUMN MASK	LOAD & USE	USE
виом	PERSISTENT (USE MASKED REGISTER) MASKED BLOCK WRITE TO DRAM	1	1	0	1	Х	1	ROW	COLUMN (A2 - A8)	Х	COLUMN MASK	USE	USE
•	REGISTER OPERATIONS												
LMR	LOAD MASK REGISTER	1	1	1	1	х	0	ROW⁴	Х	Х	WRITE MASK	LOAD	Х
LCR	LOAD COLOR REGISTER	1	1	1	1	Х	1	ROW⁴	Х	Х	COLOR DATA	Х	LOAD
	TRANSFER OPERATIONS												
RT	READ TRANSFER (DRAM-TO-SAM TRANSFER)	1	0	1	0	Х	Х	ROW	TAP⁵	Х	Х	Х	X
SRT	SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)	1	0	1	1	Х	Х	ROW	TAP ⁵	Х	Х	Х	Х
WT	WRITE TRANSFER (SAM-TO-DRAM TRANSFER)	1	0	0	0	0	Х	ROW	TAP⁵	Х	Х	х	Х
PWT	PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE ENABLE)	1	0	0	0	1	Х	ROW⁴	TAP ⁵	Х	Х	Х	Х
AWT	ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)	1	0	0	1	Х	х	ROW	TAP⁵	Х	Х	Х	Х

- NOTE: 1. These columns show what must be present on the A0-A8 inputs when RAS falls and when CAS falls.
 - 2. These columns show what must be present on the DQ1-DQ4 inputs when RAS falls and when CAS falls.
 - 3. On WRITE cycles, the input data is latched at the falling edge of CAS or ME/WE, whichever is later. Similarly, on READ cycles, the output data is latched at the falling edge of \overline{CAS} or $\overline{TR}/\overline{OE}$, whichever is later.
 - 4. The ROW that is addressed will be refreshed, but no particular ROW address is required.
 - 5. This is the SAM location that the first SC cycle will access. For Split SAM transfers, the Tap will be the first address location accessed of the "new" SAM half after the boundary of the current half is reached (255 for lower half, 511 for upper half).

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V to +7.0V	V
Operating Temperature, Ta(Ambient) 0°C to +70°C	С
Storage Temperature (Plastic)55°C to +150°C	С
Power Dissipation	V
Short Circuit Output Current 50m/	4

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{{\color{blue}A}} \leq 70^{\circ}C)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
INPUT LEAKAGE CURRENT (any input (0V≤VIN≤Vcc), all other pins not under test = 0V)	lL	-10	10	μА	
OUTPUT LEAKAGE CURRENT (DQ, SDQ disabled, 0V≤Vouт≤Vcc)	loz	-10	10	μА	
OUTPUT LEVELS Output High Voltage (Iout = -2.5mA)	Vон	2.4		V	
Output Low Voltage (Iout = 2.5mA)	Vol		0.4	V	1

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: Ao-As	CI1		5	pF	2
Input Capacitance: RAS, CAS, ME/WE, TR/OE, SC, SE, DSF	CI2		8	pF	2
Input/Output Capacitance: DQ, SDQ	CI/O		9	pF	2
Output Capacitance: QSF	Co		9	pF	2

MAN

130

ICC10

120

110

3, 4

mΑ

CURRENT DRAIN, SAM IN STANDBY

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; \ Vcc = 5.0V \pm 10\%)$

· A · · · · · · · · · · · · · · · · · ·		MAX				
PARAMETER/CONDITION	SYMBOL	-8	-10	-12	UNITS	NOTES
OPERATING CURRENT (RAS and \overline{CAS} = Cycling: ${}^{t}RC = {}^{t}RC$ (MIN))	lcc ₁	90	80	70	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL; CAS = Cycling: [†] PC = [†] PC (MIN))	lcc2	70	60	50	mA	3, 4
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS=CAS=VIH after 8 RAS cycles min)	lcc3	10	10	10	mA	
REFRESH CURRENT: RAS-ONLY (RAS=Cycling; CAS=Vih)	Icc4	90	80	70	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS=Cycling)	lcc5	80	70	60	mA	3, 5
SAM/DRAM DATA TRANSFER	Icc6	95	85	75	mA	3

CURRENT DRAIN, SAM ACTIVE (${}^{t}SC = MIN$) ($0^{\circ}C \le T_{\Delta} \le 70^{\circ}C$; Vcc = 5.0V ± 10%)

REFRESH CURRENT: RAS-ONLY

(RAS=Cycling; CAS=VIH)

MAX PARAMETER/CONDITION SYMBOL -8 -10 -12 UNITS NOTES OPERATING CURRENT 110 ICC7 130 120 mΑ 3.4 $(\overline{RAS} \text{ and } \overline{CAS} = \text{Cycling: } {}^{t}RC = {}^{t}RC \text{ (MIN)})$ OPERATING CURRENT: FAST PAGE MODE lcc8 110 100 90 mΑ 3, 4 $(\overline{RAS} = VIL; \overline{CAS} = Cycling: {}^{t}PC = {}^{t}PC (MIN))$ STANDBY CURRENT: TTL INPUT LEVELS Icc9 50 45 40 mΑ 3, 4 Power supply standby current (RAS=CAS=VIH after 8 RAS cycles min)

 REFRESH CURRENT:
 Icc11
 120
 110
 100
 mA
 3, 4, 5

 CAS-BEFORE-RAS (RAS and CAS=Cycling)
 Icc12
 135
 125
 115
 mA
 3, 4

DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS			-8	-	10	_	12		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	tRC	150		180		210		ns	
READ-MODIFY-WRITE cycle time	t _{RWC}	205		235		280		ns	
FAST-PAGE-MODE READ or WRITE	^t PC	45		55		65		ns	
cycle time									
FAST-PAGE-MODE READ-MODIFY-WRITE	tPRWC	100		110		140		ns	-
cycle time									
Access time from RAS	^t RAC		80		100		120	ns	14
Access time from CAS	t _{CAC}		20		25		30	ns	15
Access time from (TR)/OE	t _{OE}		20		25		30	ns	
Access time from column address	^t AA		40		50		60	ns	
Access time from CAS precharge	^t CPA		45		55		65	ns	
RAS pulse width	t _{RAS}	80	10,000	100	10,000	120	10,000	ns	
RAS pulse width (FAST PAGE MODE)	^t RASP	80	100,000	100	100,000	120	100,000	ns	
RAS hold time	^t RSH	20		25		30		ns	
RAS precharge time	t _{RP}	60		70		80		ns	
CAS pulse width	t _{CAS}	20	10,000	25	10,000	30	10,000	ns	
CAS hold time	t _{CSH}	80		100		120		ns	
CAS precharge time	^t CPN	15		15		20		ns	16
CAS precharge time (FAST PAGE MODE)	t _{CP}	10		10		15		ns	
RAS to CAS delay time	tRCD	20	55	20	70	25	85	ns	17
CAS to RAS precharge time	t _{CRP}	5		5		10		ns	
Row address setup time	tASR	0		0		0		ns	1
Row address hold time	^t RAH	12		15		15		ns	
RAS to column	tRAD	17	40	20	50	20	60	ns	18
address delay time									
Column address setup time	^t ASC	0		0		0		ns	
Column address hold time	t _{CAH}	20		20		25		ns	
Column address hold time	t _{AR}	60		70		85		ns	
(referenced to RAS)									
Column address to	t _{RAL}	40		50		60		ns	
RAS lead time			İ						
Read command setup time	t _{RCS}	0		0		0		ns	
Read command hold time	^t RCH	0		0		0		ns	19
(referenced to CAS)									
Read command hold time	t _{RRH}	0		0		0		ns	19
(referenced to RAS)									1
CAS to output in Low-Z	t _{CLZ}	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	30	ns	20, 23
Output Disable	t _{OD}	0	20	0	20	0	30	ns	23
Output Disable hold time from start of write	^t OEH		15		15		20	ns	27
Output Enable to RAS delay	tORD		0		0		0	ns	

DRAM TIMING PARAMETERS (Continued)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) ($0^{\circ}C \le T_{A} \le +70^{\circ}C$; $Vcc = 5.0V \pm 10\%$)

A.C. CHARACTERISTICS		-	8		10	-1	12		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command setup time	twcs	0		0		0		ns	21
Write command hold time	tWCH	15		20		25		ns	
Write command hold time (referenced to RAS)	twcR	60		70		85		ns	
Write command pulse width	^t WP	15		15		20		ns	
Write command to RAS lead time	^t RWL	20		20		25		ns	
Write command to CAS lead time	t _{CWL}	20		20		25		ns	
Data-in setup time	t _{DS}	0		0		0		ns	22
Data-in hold time	t _{DH}	20		20		25		ns	22
Data-in hold time (referenced to RAS)	^t DHR	60		70		90		ns	
RAS to WE delay time	t _{RWD}	110		130		160		ns	21
Column address to WE delay time	^t AWD	70		80		100		ns	21
CAS to WE delay time	t _{CWD}	50		55		70		ns	21
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	9, 10
Refresh period (512 cycles)	t _{REF}		8		8		8	ms	
RAS to CAS precharge time	t _{RPC}	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS REFRESH)	t _{CSR}	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	30		30		30		ns	5
ME/WE to RAS setup time	twsR	0		0		0		ns	
ME/WE to RAS hold time		12		15		15		ns	
Mask Data to RAS setup time		0		0		0		ns	
Mask Data to RAS hold time	^t MH	12		15		15		ns	

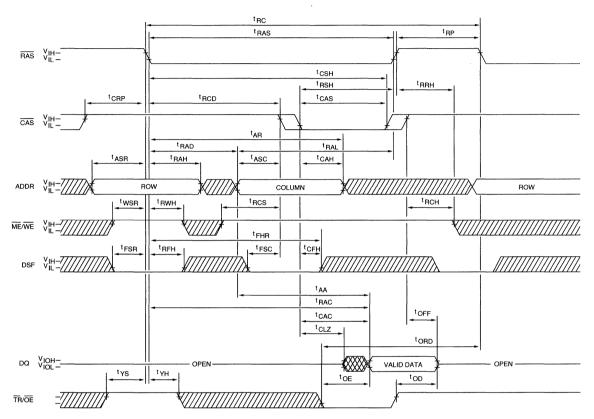
TRANSFER AND MODE CONTROL TIMING PARAMETERS ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes 6, 7, 8, 9, 10) (0° C \leq T_A \leq + 70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS			-8		1.0	-	12		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
TRANSFER command to RAS setup time	tTLS	0		0		0		ns	25
TRANSFER command to RAS hold time	t _{TLH}	12	10,000	15	10,000	15	10,000	ns	25
TRANSFER command to RAS hold time	t _{RTH}	70	10,000	80	10,000	90	10,000	ns	25
(REAL-TIME READ TRANSFER only)									1
TRANSFER command to CAS hold time	t _{CTH}	20		25		30		ns	25
(REAL-TIME READ TRANSFER only)									
TRANSFER command to column address hold	t _{ATH}	25		30		35		ns	25
time (for REAL-TIME READ TRANSFER only)									<u> </u>
TRANSFER command to SC lead time	t _{TSL}	5		5		5		ns	25
TRANSFER command to RAS lead time	t _{TRL}	0		0		0		ns	25
TRANSFER command to RAS delay time	t _{TRD}	15		15		15		ns	25
TRANSFER command to CAS time	t _{TCL}	0		0		0		ns	25
TRANSFER command to CAS delay time	^t TCD	15		15		15		ns	25
First SC edge to Transfer	t _{TSD}	10		10		10		ns	25
command delay time									
Serial output buffer turn-off	t _{SDZ}	10	35	10	40	10	50	ns	<u> </u>
delay from RAS	""	, ,		, ,	'		"		
SC to RAS setup time	t _{SRS}	30		30		40		ns	
RAS to SC delay time	t _{SRD}	20		25		30		ns	
Serial data input to SE delay time	t _{SZE}	0		0		0		ns	
RAS to SD buffer turn-on time	t _{SRO}	10	1	15		15		ns	
Serial data input delay from RAS	tSDD	45		50		55		ns	
Serial data input to RAS delay time	tszs	0		0		0		ns	
Serial-input-mode enable	tESR	0		0	 	0		ns	
(SE) to RAS setup time	20.1			•					
Serial-input-mode enable	t _{REH}	10		15		15		ns	
(SE) to RAS hold time									l
NONTRANSFER command	tys	0	İ	0	1	0	1	ns	26
to RAS setup time				-					
NONTRANSFER command to RAS hold time	tYH	12		15		15		ns	26
DSF to RAS setup time	t _{FSR}	0		0		0		ns	
DSF to RAS hold time	t _{RFH}	12		15		15		ns	
SC to QSF delay time	tSQD		25		30		35	ns	
SPLIT TRANSFER setup time	tSTS	30		35		40		ns	
SPLIT TRANSFER hold time	^t STH	30		35		40		ns	
RAS to QSF delay time	^t RQD		65		85		105	ns	
DSF to RAS hold time	t _{FHR}	60		65				ns	
DSF to CAS Set up time	tFSC	0		0		0		ns	
DSF to CAS hold time	^t CFH	15		20				ns	T
TR/OE to QSF delay time	t _{TQD}		25		30		35	ns	
CAS to QSF delay time	tCQD		35		40		45	ns	1
RAS to first SC delay	tRSD	80		95		105		ns	
CAS to first SC delay	tCSD	20		25		35		ns	1
Column address valid to first SC delay	†ASD	45	1	55		65		ns	

SAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes 6, 7, 8, 9, 10) (0° C \leq T $_{A}$ \leq + 70°C; Vcc = 5.0V \pm 10%)

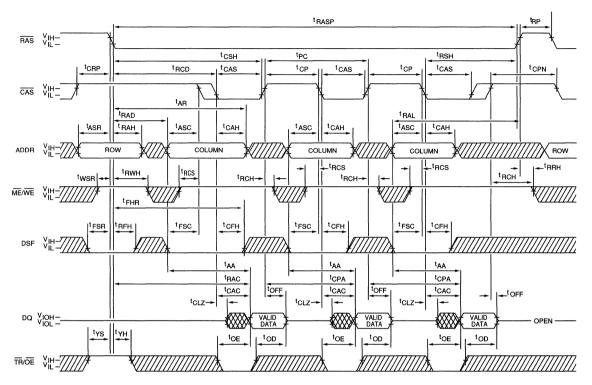
A.C. CHARACTERISTICS		-	-8 -10		10	-12			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Serial clock-cycle time	tsc	25		30		35		ns	
Access time from SC	t _{SAC}		25		25		35	ns	24
SC precharge time (SC LOW time)	t _{SP}	10		10		12		ns	
SC pulse width (SC HIGH time)	t _{SAS}	10		10		12		ns	
Access time from SE	t _{SEA}		15		20		30	ns	24
SE precharge time	t _{SEP}	10		15		15		ns	
SE pulse width	^t SE	10		15		15		ns	
Serial data-out hold time after SC high	t _{SOH}	5		5		5		ns	24
Serial output buffer turn-off delay from SE	^t SEZ	0	12	0	15	0	25	ns	24
Serial data-in setup time	tSDS	0		0		0		ns	24
Serial data-in hold time	^t SDH	10		15		20		ns	24
Serial input (Write) Enable setup time	tsws	0		0		0		ns	
Serial input (Write) Enable hold time	tswh	10		15		20		ns	
Serial input (Write) Disable setup time	tswis	0		0		0		ns	
Serial input (Write) Disable hold time	tswih	10		15		20		ns	


NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = I\Delta t$ with $\Delta V = 3V$ and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{\text{CAS}} = \text{V}_{\text{IH}}$, DRAM data output (DQ1-DQ4) is high impedance.
- 12. If CAS = VIL, DRAM data output (DQ1-DQ4) may contain data from the last valid READ cycle.
- DRAM output timing measured with a load equivalent to 2 TTL gates and 100pF. Output reference levels: Voh = 2.4V; Vol = 0.4V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, DQ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the

- specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. tWCS, tRWD, tAWD and tCWD are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If ^tWCS ≥ tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{TR}/\overline{OE}$. If ${}^{t}WCS \leq$ tWCS (MIN), the cycle is a LATE-WRITE and $\overline{TR}/\overline{OE}$ must control the output buffers during the write to avoid data contention. If ${}^{t}RWD \ge {}^{t}RWD$ (MIN), ${}^{t}AWD \ge {}^{t}AWD$ (MIN) and ${}^{t}CWD \ge {}^{t}CWD$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of the output buffers (at access time and until \overline{CAS} goes back to VIH) is indeterminate but the WRITE will be valid, if ^tOD and ^tOEH are met. See the LATE-WRITE AC Timing diagram.
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and ME/WE leading edge in LATE-WRITE or READ-WRITE cycles.
- During a READ cycle, if TR/OE is LOW then taken HIGH, DQ goes open. The DQs will go open with OE or CAS, whichever goes HIGH first.
- 24. SAM output timing is measured with a load equivalent to 2 TTL gate and 50pF. Output reference levels: Voh = 2.0V; Vol = 0.8V.
- Transfer command means that TR/OE is LOW when RAS goes LOW.
- 26. Non transfer command means that $\overline{TR}/\overline{OE}$ is HIGH when \overline{RAS} goes LOW.
- 27. LATE-WRITE and READ-MODIFY-WRITE cycles must have ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if CAS remains LOW and OE is taken LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.

DRAM READ CYCLE



DON'T CARE

W UNDEFINED

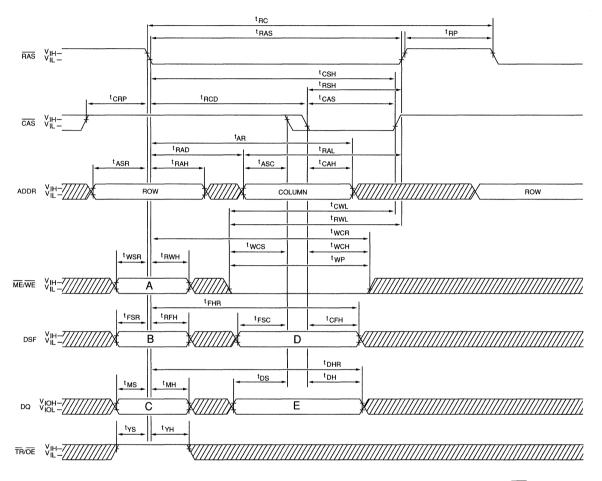
DRAM FAST-PAGE-MODE READ CYCLE

DON'T CARE

₩ UNDEFINED

NOTE: 1. WRITE cycles or READ-MODIFY-WRITE cycles may be mixed with READ cycles while in FAST PAGE MODE.

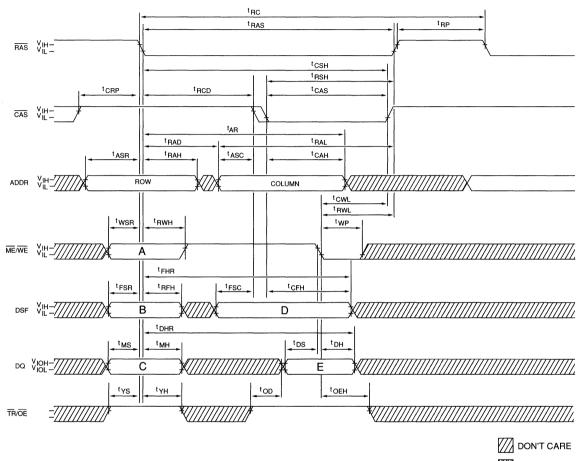
WRITE CYCLE FUNCTION TABLE¹


	LO	GIC STATE	S		
R/	AS Falling Ed	dge	CAS Fal	ling Edge	FUNCTION
A ME/WE	B DSF				. 3.13 113.11
1	0	X	0	DRAM Data	Normal DRAM WRITE (or READ)
0	0	Write Mask	0	DRAM Data (Masked)	NONPERSISTENT (Load and Use) MASKED WRITE to DRAM
0	1	Х	0	DRAM Data (Masked)	PERSISTENT (Use Register) MASKED WRITE to DRAM
1	0	Х	1	Column Mask	BLOCK WRITE to DRAM (No Data Mask)
0	0	Write Mask	1	Column Mask	NONPERSISTENT (Load and Use) MASKED BLOCK WRITE to DRAM
0	1	Х	1	Column Mask	PERSISTENT (Use Register) MASKED BLOCK WRITE to DRAM
1	1	Х	0	Write Mask	Load Mask Register
1	1	х	1	Color	Load Color Register

^{1.} Refer to this function table to determine the logic states of "A", "B", "C", "D" and "E" for the WRITE cycle timing diagrams on the following pages.

^{2.} CAS or ME/WE, whichever occurs later.

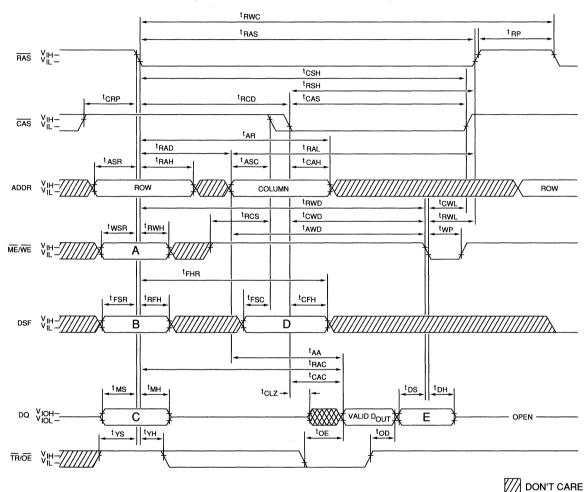
DRAM EARLY-WRITE CYCLE¹


DON'T CARE

W UNDEFINED

NOTE: 1. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

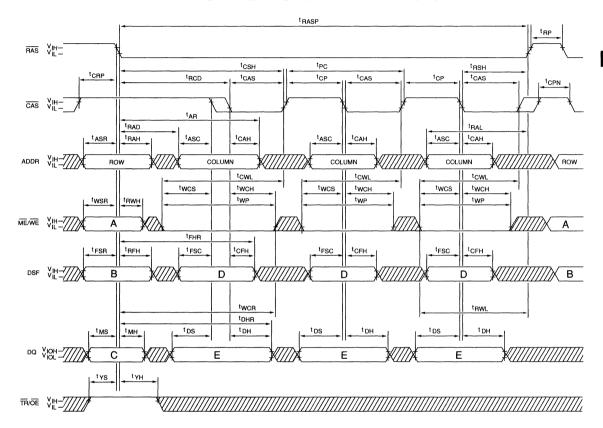
DRAM LATE-WRITE CYCLE¹



₩ UNDEFINED

NOTE: 1. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

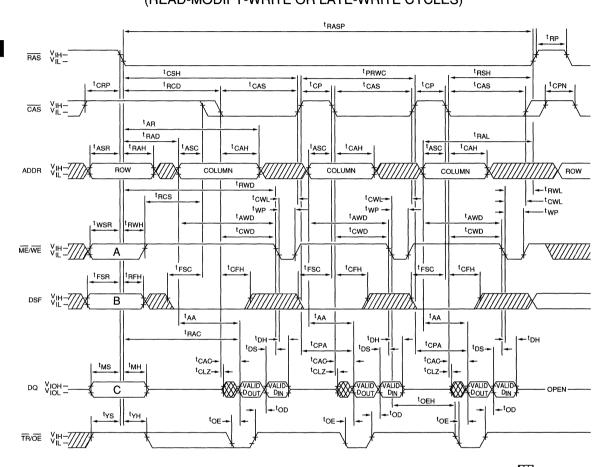
DRAM READ-WRITE CYCLE (READ-MODIFY-WRITE CYCLE)



₩ UNDEFINED

NOTE: 1. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE



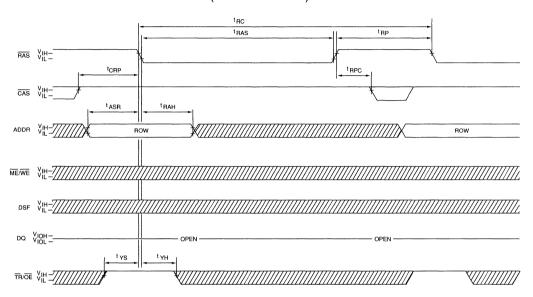
DON'T CARE

- READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST PAGE MODE.
- 2. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM FAST-PAGE-MODE READ-WRITE CYCLE (READ-MODIFY-WRITE OR LATE-WRITE CYCLES)

/// DON'T CARE

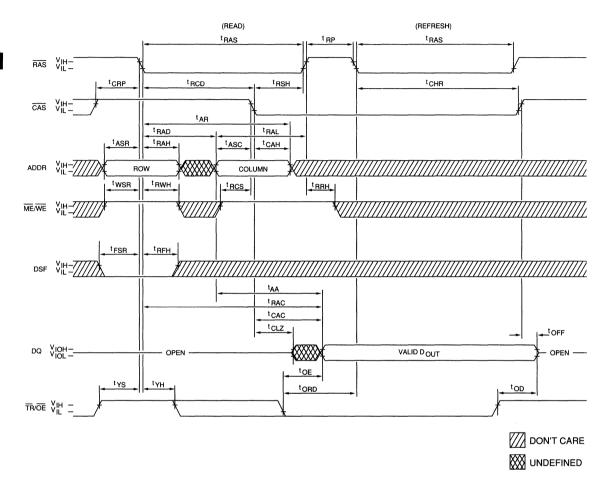
∭ UNDEFINED


- READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST PAGE MODE. Use the Write Function Table to determine the proper DSF state for the desired WRITE operation.
- 2. The logic states of "A", "B" and "C" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DON'T CARE
UNDEFINED

DRAM RAS-ONLY REFRESH CYCLE

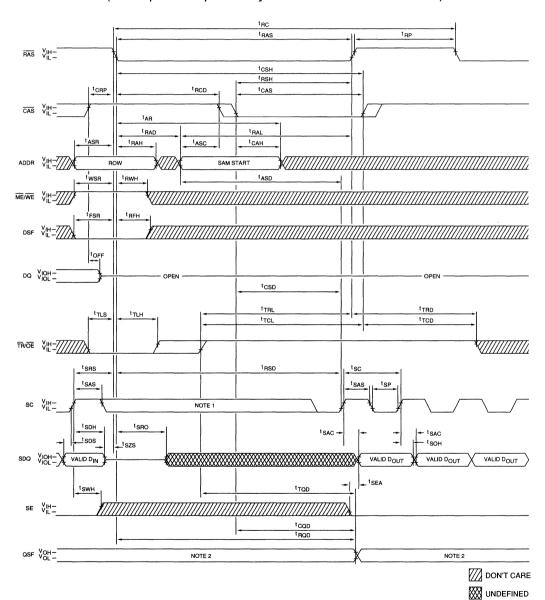
(ADDR = A0-A8)



CAS-BEFORE-RAS REFRESH CYCLE

DRAM HIDDEN-REFRESH CYCLE

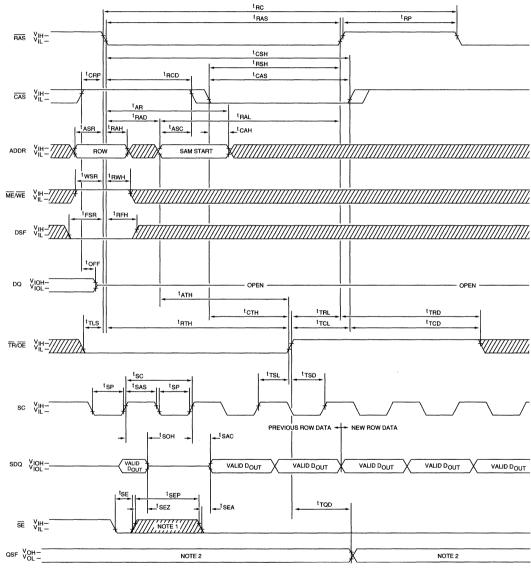
NOTE:


1. A HIDDEN REFRESH may also be performed after a WRITE or TRANSFER cycle. In the WRITE case,

ME/WE = LOW (when CAS goes LOW) and TR/OE = HIGH. In the TRANSFER case, TR/OE = LOW (when RAS goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of TR/OE.

READ TRANSFER (DRAM-TO-SAM TRANSFER)

(When part was previously in the SERIAL INPUT mode.)



- 1. There must be no rising edges on the SC input during this time period.
- QSF = 0 when the Lower SAM (bits 0–255) is being accessed.
 QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

REAL-TIME READ-TRANSFER (DRAM-TO-SAM TRANSFER)

(When part was previously in the SERIAL OUTPUT mode)

NOTE:

 The SE pulse is shown to illustrate the SERIAL OUTPUT ENABLE and DISABLE timing. It is not required.

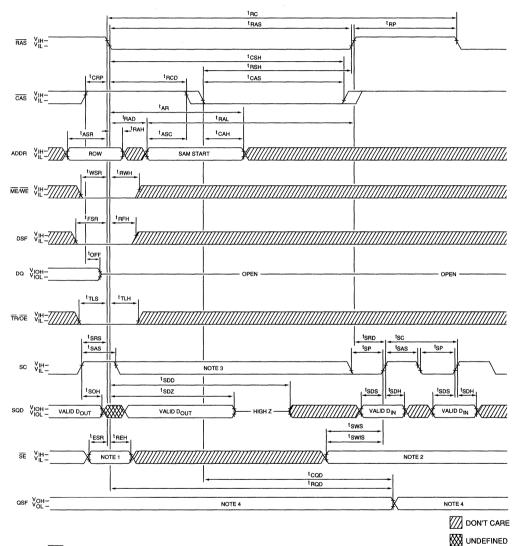
QSF = 0 when the Lower SAM (bits 0–255) is being accessed.
 QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

DON'T CARE

₩ UNDEFINED

SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)

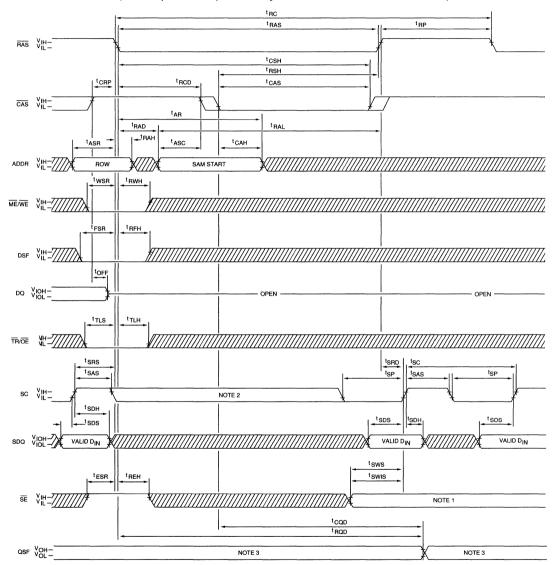
DON'T CARE


₩ UNDEFINED

NOTE: 1. QSF = 0 when the Lower SAM (bits 0–255) is being accessed. QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

WRITE TRANSFER and PSEUDO WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

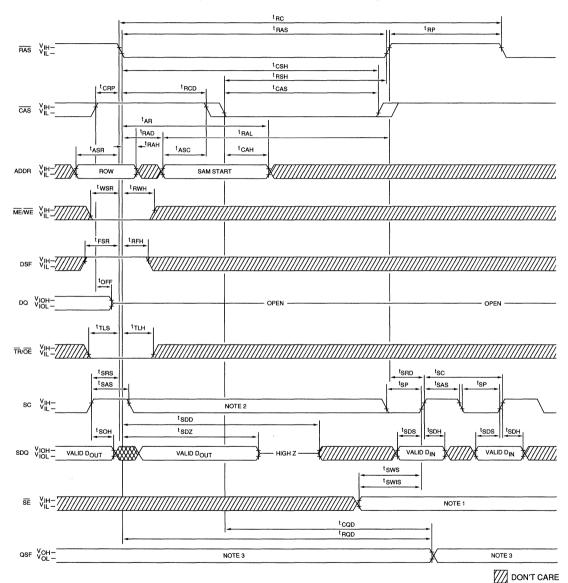
(When part was previously in the SERIAL OUTPUT mode)



- 1. If SE is LOW, the SAM data will be transferred to the DRAM.
 - If SE is HIGH, the SAM data will not be transferred to the DRAM (SERIAL-INPUT-MODE ENABLE cycle).
- 2. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
- 3. There must be no rising edges on the SC input during this time period.
- 4. STS is LOW to select SAMa or HIGH to select SAMb
- QSF = 0 when the Lower SAM (bits 0–255) is being accessed.
 QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

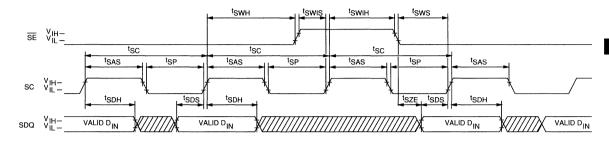
WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

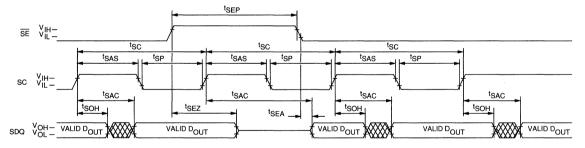
(When part was previously in the SERIAL INPUT mode)


DON'T CARE UNDEFINED

- SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
- 2. There must be no rising edges on the SC input during this time period.
- QSF = 0 when the Lower SAM (bits 0–255) is being accessed.
 QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

₩ UNDEFINED


ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)


- 1. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
- 2. There must be no rising edges on the SC input during this time period.
- 3. QSF = 0 when the Lower SAM (bits 0–255) is being accessed. QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

SAM SERIAL INPUT

SAM SERIAL OUTPUT

DON'T CARE

W UNDEFINED

VRAM

128K x 8 DRAM WITH 256 x 8 SAM

FEATURES

- Industry standard pinout, timing and functions
- High performance CMOS silicon gate process
- Single +5V ±10% power supply
- Inputs and outputs are fully TTL and CMOS compatible
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- 512-cycle refresh within 8ms
- Optional FAST PAGE MODE access cycles
- Dual port organization: 128K x 8 DRAM port 256 x 8 SAM port
- No refresh required for Serial Access Memory
- Low power: 15mW standby; 275mW active, typical
- Fast access times 100ns random, 30ns serial

SPECIAL FUNCTIONS

- JEDEC Standard Function set
- PERSISTENT MASKED WRITE
- SPLIT READ TRANSFER
 - WRITE TRANSFER/SERIAL INPUT
- ALTERNATE WRITE TRANSFER

OPTIONS

MARKING

 Timing (DRAM, SAM) 	
100ns, 30ns	-10
120ns, 35ns	-12

PackagesPlastic SOJDJ

GENERAL DESCRIPTION

The MT42C8127 is a high speed, dual port CMOS dynamic random access memory, or Video RAM (VRAM) containing 1,048,576 bits. These bits may be accessed either by an 8-bit wide DRAM port or by a 256 x 8-bit serial access memory (SAM) port. Data may be transferred bidirectionally between the DRAM and the SAM.

The DRAM portion of the VRAM is functionally identical to the MT4C4256 (256K \times 4-bit DRAM). Eight 256-bit data registers make up the serial access memory portion of the VRAM. Data I/O and internal data transfer are accomplished using three separate bidirectional data paths: the 8-bit random access I/O port, the eight internal 256 bit wide paths between the DRAM and the SAM, and the 8-bit serial I/O port for the SAM. The rest of the circuitry consists of the control, timing, and address decoding logic.

PIN ASSIGNMENT (Top View) 40-Pin SOJ (E-12)SC Vss1 2 39 SDQ8 SDQ1 Ц SDQ2 d 3 38 Ь SDQ7 SDQ3 d 4 37 þ SDQ6 SDQ4 d 36 Ь SDQ5 TR/OE d 35 Ь SE d 7 34 Ь DO8 d 33 Ь DQ2 DO7 DQ3 d 32 Ь DQ6 10 Ь DQ4 31 DQ5 **4** 11 h Vss2 Vcc1 Р ME/WE 29 h DSF 12 NC d 13 28 h NC RAS d 27 Ь CAS 14 ð 26 h OSF NC 15 d 25 h **A8** 16 A0 d 24 h A6 17 Α1 h Д Α5 18 23 A2 d Α4 19 22 h А3 Vcc2 20 21

Each of the ports may be operated asynchronously and independently of the other except when data is being transferred internally between them. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of \overline{RAS} addresses are executed at least every 8ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. The SAM portion of the VRAM is fully static and does not require any refresh.

The operation and control of the MT42C8127 is compatible with (and can be identical to) the operation of the MT42C4064 (64K \times 4 VRAM). However, the MT42C8127 offers several additional functions that may be used to increase system performance or ease critical timing requirements. These "special functions" are described in detail in the following sections.

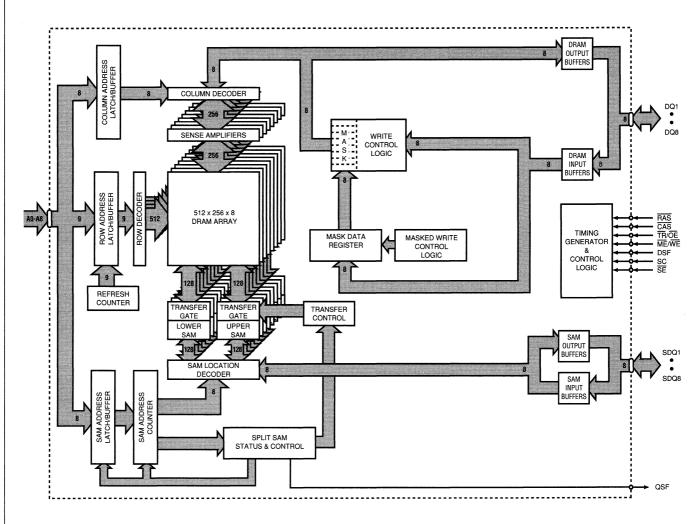


Figure 1
MT42C8127 BLOCK DIAGRAM

PIN DESCRIPTIONS

SOJ PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
1	SC	Input	Serial Clock: Clock input to the serial address counter for the SAM registers.
6	16	TR/OE	Input Transfer Enable: Enables an internal TRANSFER operation at $\overline{\text{RAS}}$ (H \rightarrow L), or Output Enable: Enables the DRAM output buffers when taken LOW after $\overline{\text{RAS}}$ goes LOW ($\overline{\text{CAS}}$ must also be LOW), otherwise the output buffers are in the High-Z state.
12	ME/WE	Input	Mask Enable: If ME/WE is LOW at the falling edge of RAS a MASKED WRITE cycle is performed, or Write Enable: ME/WE is also used to select a READ (ME/WE = H) or WRITE (ME/WE = L) cycle when accessing the DRAM. This includes a READ TRANSFER (ME/WE = H) or WRITE TRANSFER (ME/WE = L).
35	SE	Input	Serial Port Enable: SE enables the serial I/O buffers and allows a serial READ or WRITE operation to occur; otherwise, the output buffers are in the High-Z state. SE is also used during a WRITE TRANSFER operation to indicate whether a WRITE TRANSFER or a PSEUDO WRITE TRANSFER cycle is performed.
29	DSF	Input	Special Function Select: DSF is used to indicate which special functions (MASKED WRITE vs. PERSISTENT MASKED WRITE, etc.) are used for a particular access cycle.
14	RAS	Input	Row Address Strobe: RAS is used to clock in the 9 row-address bits and as a strobe for the ME/WE, TR/OE, DSF, and DQ inputs.
27	CAS	Input	Column Address Strobe: CAS is used to clock in the 8 column-address bits and enable the DRAM output buffers (DQ's) (along with TR/OE).
25, 24, 23, 22, 19, 18, 17, 21, 16	A0 to A8	Input	Address Inputs: For the DRAM operation, these inputs are multiplexed and clocked by RAS and CAS to select one 8-bit word out of the 131,072 available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when RAS goes LOW) and A0-A7 indicate the SAM start address (when CAS goes LOW). A7, A8 = "don't care" for the start address when doing SPLIT TRANSFERS.
7, 8, 9, 10, 31, 32, 33, 34	DQ1 - DQ8	Input/ Output	DRAM Data I/O: Data Input/Output for DRAM cycles; inputs for the LOAD MASK REGISTER cycles.
2, 3, 4, 5, 36 37, 38, 39	SDQ1 - SDQ8	Input/ Output	Serial Data I/O: Input/Output for SAM access cycles or High-Z, when \overline{SE} = HIGH.
26	QSF	Output	Split SAM Status: QSF indicates which half of the SAM is being accessed. LOW if address 0 to 127, HIGH if address 128 to 255.
13, 15, 28	NC	_	No Connect: This pin should be either left unconnected or tied to ground.
11, 20	Vcc	Supply	Power Supply: +5V ±10%
30, 40	Vss	Supply	Ground

FUNCTIONAL DESCRIPTION

The MT42C8127 can be divided into three functional blocks (see Figure 1): the DRAM, the transfer circuitry, and the serial access memory (SAM). All of the operations described below are shown in the AC Timing Diagrams section of this data sheet and summarized in the Truth Table.

Note:

For dual function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing transfer operations, the $\overline{TR}/\overline{OE}$ pin will be shown as $\overline{TR}/(\overline{OE})$.

DRAM OPERATION

DRAM REFRESH

Like any DRAM based memory, the MT42C8127 VRAM must be refreshed to retain data. All 512 row-address combinations must be accessed within 8ms. The MT42C8127 supports $\overline{\text{CAS}}$ -BEFORE- $\overline{\text{RAS}}$, $\overline{\text{RAS}}$ -ONLY and HIDDEN types of refresh cycles.

For the CAS-BEFORE-RAS REFRESH cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data, and simply must perform 512 CAS-BEFORE-RAS cycles within the 8ms time period.

The refresh address must be generated externally and applied to A0-A8 inputs for \overline{RAS} -ONLY REFRESH cycles. The DQ pins remain in a High-Z state for both the \overline{RAS} -ONLY and \overline{CAS} -BEFORE- \overline{RAS} cycles.

HIDDEN REFRESH cycles are performed by toggling RAS (and keeping CAS LOW) after a READ or WRITE cycle. This performs CAS-BEFORE-RAS cycles but does not disturb the DQ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row that is being accessed. The SAM portion of the MT42C8127 is fully static and does not require any refreshing.

DRAM READ AND WRITE CYCLES

The DRAM portion of the VRAM is nearly identical to standard 256K x 4 DRAMs. However, because several of the DRAM control pins are used for additional functions on this part, several conditions that were undefined or "don't

care" states for the DRAM are specified for the VRAM. These conditions are highlighted in the following discussion. In addition, the VRAM has several special functions that can be used when writing to the DRAM.

The 17 address bits that are used to select an 8-bit word from the 131,072 available are latched into the chip using the A0-A8, \overline{RAS} and \overline{CAS} inputs. First, the 9 row-address bits are set-up on the address inputs and clocked into the part when \overline{RAS} transitions from HIGH to LOW. Next, the 8 column-address bits are set-up on the address inputs and clocked-in when \overline{CAS} goes from HIGH to LOW.

For single port DRAMS, the $\overline{\text{OE}}$ pin is a "don't care" when $\overline{\text{RAS}}$ goes LOW. However, for the VRAM, when $\overline{\text{RAS}}$ goes LOW, $(\overline{\text{TR}})/\overline{\text{OE}}$ selects between DRAM access or TRANSFER cycles. $(\overline{\text{TR}})/\overline{\text{OE}}$ must be HIGH at the $\overline{\text{RAS}}$ HIGH-to-LOW transition for all DRAM operations (except $\overline{\text{CAS-BEFORE-RAS}}$).

If $(\overline{\text{ME}})/\overline{\text{WE}}$ is HIGH when $\overline{\text{CAS}}$ goes LOW, a DRAM READ operation is performed and the data from the memory cells selected will appear at the DQ1-DQ8 port. The $(\overline{\text{TR}})/\overline{\text{OE}}$ input must transition from HIGH to LOW sometime after $\overline{\text{RAS}}$ falls to enable the DRAM output port.

For single port normal DRAMs, WE is a "don't care" when RAS goes LOW. For the VRAM, ME/(WE) is used, when RAS goes LOW, to select between a MASKED WRITE cycle and a normal WRITE cycle. If ME/(WE) is LOW at the RAS HIGH to LOW transition, a MASKED WRITE operation is selected. For any DRAM access cycle (READ or WRITE), ME/(WE) must be HIGH at the RAS HIGH-to-LOW transition. If (ME)/WE is LOW before CAS goes LOW, a DRAM EARLY-WRITE operation is performed and the data present on the DQ1-DQ8 data port will be written into the selected memory cells. If (ME)/WE goes LOW after CAS goes LOW, a DRAM LATE-WRITE operation is performed. Refer to the AC timing diagrams.

The VRAM can perform all the normal DRAM cycles including READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE (Late or Early), and FAST-PAGE-MODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

NONPERSISTENT MASKED WRITE

The MASKED WRITE feature eliminates the need to do a READ-MODIFY-WRITE cycle when changing only specific bits within an 8-bit word. The MT42C8127 supports two types of MASKED WRITE cycles, NONPERSISTENT MASKED WRITE and PERSISTENT MASKED WRITE.

If ME/(WE) and DSF are LOW at the RAS HIGH-to-LOW transition, a NONPERSISTENT MASKED WRITE is performed and the data (mask data) present on the DQ1-DQ8 inputs will be written into the mask data register. The mask data acts as an individual WRITE ENABLE for each of the eight DQ1-DQ8 pins. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and

allows normal WRITE operation to proceed. Note that \overline{CAS} is still HIGH. When \overline{CAS} goes LOW, the bits present on the DQ1-DQ8 inputs will be either written to the DRAM (if the mask data bit is HIGH) or ignored (if the mask data bit is LOW). The DRAM contents that correspond to masked input bits will not be changed during the WRITE cycle. The MASKED WRITE is non-persistent (must be re-entered at every \overline{RAS} cycle) if DSF is LOW when \overline{RAS} goes LOW. The mask data register is cleared at the end of every NON-PERSISTENT MASKED WRITE. FAST PAGE MODE can be used with NONPERSISTENT MASKED WRITE to write several column locations in an addressed row. The same mask is used during the entire FAST-PAGE-MODE \overline{RAS} cycle. An example NONPERSISTENT MASKED WRITE cycle is shown in Figure 2.

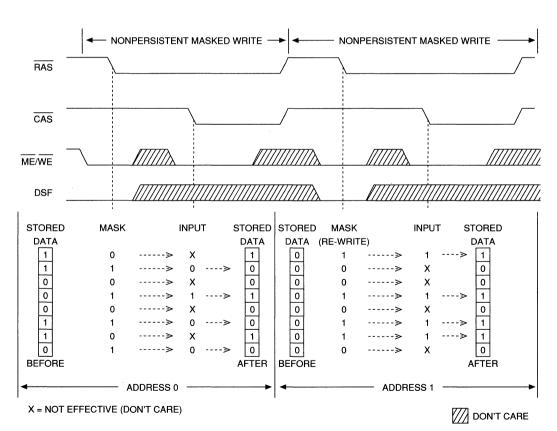


Figure 2
NONPERSISTENT MASKED WRITE EXAMPLE

PERSISTENT MASKED WRITE

The PERSISTENT MASKED WRITE feature eliminates the need to rewrite the mask data before each MASKED WRITE cycle if the same mask data is being used repeatedly. To initiate a PERSISTENT MASKED WRITE, a LOAD MASK REGISTER cycle is performed by taking ME/(WE) and DSF HIGH when RAS goes LOW. The mask data is loaded into the internal register when CAS goes LOW. Mask data may also be loaded into the mask register by performing a NONPERSISTENT MASKED WRITE cycle before the PERSISTENT MASKED WRITE cycles.

PERSISTENT MASKED WRITE cycles may then be performed by taking $\overline{ME}/(\overline{WE})$ LOW and DSF HIGH when RAS goes LOW. The contents of the mask data register will then be used as the mask data for the DRAM inputs. Unlike the NONPERSISTENT MASKED WRITE, the data present on the DO inputs is not loaded into the mask register when RAS falls and the mask data register will not be cleared at the end of the cycle. Any number of PERSISTENT MASKED WRITEs, to any address, may be performed without having to feload the mask data register. Figure 3 shows the LOAD MASK REGISTER and two PERSISTENT MASKED WRITE cycles in operation. The LOAD MASK REGISTER and PERSISTENT MASKED WRITE cycles allow controllers, that cannot provide mask data to the DQ pins at RAS time, to perform MASKED WRITE operations. PERSISTENT MASKED WRITE operations can be performed during

FAST PAGE MODE and the same mask will apply to all addressed columns in the addressed row.

LOAD MASK DATA REGISTER

The LOAD MASK REGISTER operation and timing are identical to a normal WRITE except that DSF is HIGH when RAS goes LOW. As shown in the Truth Table, the combination of TR/(OE), ME/(WE), and DSF being HIGH when RAS goes LOW indicates the cycle is a REGISTER load cycle. DSF is used when CAS goes LOW to select the register to be loaded and must be LOW for a LOAD MASK REGISTER cycle. The data present on the DQ lines will then be written to the mask data register.

Note: For a normal DRAM WRITE cycle, the mask data register is disabled but not modified. The contents of mask data register will not be changed unless a NONPERSISTENT MASKED WRITE cycle or a LOAD MASK REGISTER cycle is performed.

The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

The mask data register contents are used during PERSIS-TENT MASKED WRITE cycles to selectively enable writes to the eight DQ planes.

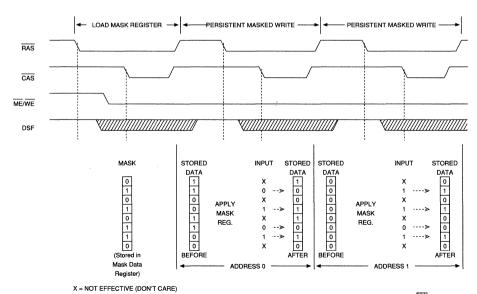


Figure 3
PERSISTENT MASKED WRITE EXAMPLE

DON'T CARE

TRANSFER OPERATIONS

TRANSFER operations are initiated when $\overline{TR}/\overline{OE}$) is LOW then \overline{RAS} goes LOW. The state of $\overline{(ME)}/\overline{WE}$ when \overline{RAS} goes LOW indicates the direction of the TRANSFER (to or from the DRAM), and DSF is used to select between NORMAL TRANSFER, SPLIT READ TRANSFER, and ALTERNATE WRITE TRANSFER cycles. Each of the TRANSFER cycles available is described below.

READ TRANSFER (DRAM-TO-SAM TRANSFER)

If (ME)/WE is HIGH and DSF is LOW when RAS goes LOW, a READ TRANSFER cycle is selected. The row address bits indicate the eight 256-bit DRAM row planes that are to be transferred to the eight SAM data register planes. The column address bits indicate the start address (or Tap address) of the serial output cycle from the SAM data registers. CAS must fall for every TRANSFER in order to load a valid Tap address. A read transfer may be accom-

plished two ways. If the transfer is to be synchronized with SC (REAL-TIME READ TRANSFER), $\overline{TR}/(\overline{OE})$ is taken HIGH after CAS goes LOW. If the transfer does not have to be synchronized with SC (READ TRANSFER), $\overline{TR}/(\overline{OE})$ may go HIGH before CAS goes LOW (refer to the AC Timing Diagrams). The 2048 bits of DRAM data are written into the SAM data registers and the serial shift start address is stored in an internal 8-bit register. QSF will be LOW if access is from the lower half (addresses 0 through 127), and HIGH if access is from the upper half (128 through 255). If \overline{SE} is LOW, the first bits of the new row data will appear at the serial outputs with the first SC clock pulse. SE enables the serial outputs and may be either HIGH or LOW during this operation. The SAM address pointer will increment with the SC LOW to HIGH transition, regardless of the state of SE. Performing a READ TRANSFER cycle sets the direction of the SAM I/O buffers to the output mode.

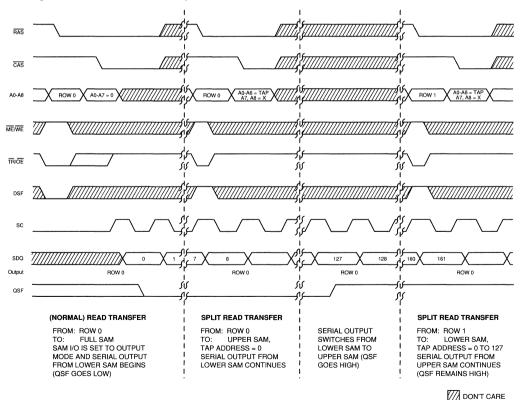


Figure 5
TYPICAL SPLIT READ TRANSFER INITIATION SEQUENCE

SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)

The SPLIT READ TRANSFER cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream. When using normal TRANSFER cycles, the REAL-TIME READ TRANSFER cycle has to occur immediately after the last bit of "old data" was clocked out of the SAM port.

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data can be transferred to the other half. The transfer can occur at any time while the other half is sending data and need not be synchronized with the SC clock.

The $\overline{TR}/(\overline{OE})$ timing is also relaxed for SPLITTRANSFER cycles. The rising edge of $\overline{TR}/(\overline{OE})$ is not used to complete the TRANSFER cycle and therefore is independent of the rising edges of \overline{RAS} or \overline{CAS} . The transfer timing is generated internally for SPLIT TRANSFER cycles.

A normal, non-split READ TRANSFER cycle must precede any sequence of SPLIT READ TRANSFER cycles to provide a reference to which half of the SAM the access will begin. Then SPLIT READ TRANSFERS may be initiated by taking DSF HIGH when RAS goes LOW during the TRANSFER cycle. As in non-split transfers, the row address is used to specify the DRAM row to be transferred. The column address, A0-A6, is used to input the SAM Tap address. Address pins A7 and A8 are "don't care" when the Tap address is loaded at the HIGH to LOW transition of CAS. It is internally generated so that the SPLITTRANSFER will be to the SAM half not currently being accessed.

Figure 5 shows a typical SPLIT READ TRANSFER initiation sequence. The normal READ TRANSFER is first performed, followed by a SPLIT READ TRANSFER of the same row to the upper half of the SAM. The purpose of the SPLIT TRANSFER of the same data is to initiate the split SAM operating mode and load the Tap address. Serial access continues, and when the SAM address counter reaches 127 ("A7"=0, A0-A6=1) the new Tap address is loaded for the next half ("A7"=1, A0-A6=Tap) and the QSF output goes HIGH. Once the serial access has switched to the upper SAM, new data may be transferred to the lower SAM. The controller must wait for the state of QSF to change and then the new data may be transferred to the SAM half not being accessed. For example, the next step in Figure 5 would be to wait until QSF went LOW (indicating that row-1 data is shifting out the lower SAM) and then transfer the upper half of row 1 to the upper SAM.

WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of the WRITE TRANSFER is identical to the READ TRANSFER described previously except $\overline{\text{ME}}/\overline{\text{WE}}$ and $\overline{\text{SE}}$ must be LOW when $\overline{\text{RAS}}$ goes LOW. The row address indicates the DRAM row to which the SAM data registers will be written. The column address (Tap) indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. A WRITE TRANSFER changes the direction of the SAM I/O buffers to the input mode. QSF will indicate the SAM half accessed.

PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE ENABLE)

The PSEUDO WRITE TRANSFER cycle is used to change the direction of SAM port from output to input without performing a WRITE TRANSFER. A PSEUDO WRITE TRANSFER sa WRITE TRANSFER cycle with SE held HIGH instead of LOW. The DRAM data will not be disturbed and the SAM will be ready to accept input data.

ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of the ALTERNATE WRITE TRANSFER is identical to the WRITE TRANSFER except that the DSF pin is HIGH and $(\overline{ME})/\overline{WE}$ is LOW when \overline{RAS} goes LOW, allowing \overline{SE} to be a "don't care." This allows the outputs to be disabled using \overline{SE} during a WRITE TRANSFER cycle.

POWER UP AND INITIALIZATION

When Vcc is initially supplied or when refresh is interrupted for more than 8ms, the MT42C8127 must be initialized.

After Vcc is at specified operating conditions, for 100 μ s minimum, 8 \overline{RAS} cycles and 1 SC cycle must be executed to initialize the memory array. When the device is initialized the DRAM I/O pins (DQ's) are in a High-Z state, regardless of the state of (\overline{TR})/ \overline{OE} . The DRAM array will contain random data.

The SAM portion of the MT42C8127 is completely static in operation and does not require refresh or initialization. The SAM port will power-up in the serial input mode (WRITETRANSFER) and the I/O pins (SDQ's) will be High-Z, regardless of the state of $\overline{\text{SE}}$ a,b. The mask register will contain random data after power-up.

MULTIPORT DRAM

TRUTH TABLE

CODE	FUNCTION		RAS	FALLING	EDGE		A0 -	A8 ¹	DQ1 - DQ8 ²			
		CAS	TR / OE	ME/WE	DSF	SE	RAS	CAS A8=X	RAS	CAS ³	MASK REGISTER	
	DRAM OPERATIONS											
CBR	CAS-BEFORE-RAS REFRESH	0	Х	Х	х	Х	_	Х	_	Х	х	
ROR	RAS-ONLY REFRESH	1	1	Х	х	х	ROW	_	х	_	Х	
RW	NORMAL DRAM READ OR WRITE	1	1	1	0	х	ROW	COLUMN	Х	VALID DATA	Х	
RWNM	NONPERSISTENT (LOAD AND USE) MASKED WRITE TO DRAM	1	1	0	0	Х	ROW	COLUMN	WRITE MASK	VALID DATA	LOAD & USE	
RWOM	PERSISTENT (USE REGISTER) MASKED WRITE TO DRAM	1	1	0	1	Х	ROW	COLUMN	Х	VALID DATA	USE	
	REGISTER OPERATIONS											
LMR	LOAD MASK REGISTER	1	1	1	1	Х	ROW⁴	х	×	WRITE MASK	LOAD	
	TRANSFER OPERATIONS											
RT	READ TRANSFER (DRAM-TO-SAM TRANSFER)	1	0	1	0	Х	ROW	TAP ⁵	Х	Х	Х	
SRT	SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)	1	0	1	1	х	ROW	TAP ⁵	х	Х	X	
WT	WRITE TRANSFER (SAM-TO-DRAM TRANSFER)	1	0	0	0	0	ROW	TAP ⁵	х	х	Х	
PWT	PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE ENABLE)	1	0	0	0	1	ROW ⁴	TAP⁵	Х	Х	Х	
AWT	ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)	1	0	0	1	Х	ROW	TAP⁵	Х	х	х	

- NOTE: 1. These columns show what must be present on the A0-A8 inputs when RAS falls and A0-A7 when CAS falls.
 - 2. These columns show what must be present on the DQ1-DQ8 inputs when \overline{RAS} falls and when \overline{CAS} falls.
 - 3. On WRITE cycles, the input data is latched at the falling edge of CAS or ME/WE, whichever is later. Similarly, on READ cycles, the output data is latched at the falling edge of CAS or TR/OE, whichever is later.
 - 4. The ROW that is addressed will be refreshed, but no particular ROW address is required.
 - 5. This is the first SAM address location that the first SC cycle will access. For Split SAM transfers, the Tap will be the first address location accessed of the "new" SAM half after the boundary of the current half is reached (127 for lower half, 255 for upper half).

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Operating Temperature, Ta(Ambient)	0°C to +70°C
Storage Temperature (Plastic)	-55°C to +150°C
Power Dissipation	1 W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{\Delta} \leq 70^{\circ}C)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_{\Delta} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
INPUT LEAKAGE CURRENT (any input (0V≤Vin≤Vcc), all other pins not under test = 0V)	lL	-10	10	μΑ	
OUTPUT LEAKAGE CURRENT (DQ, SDQ disabled, 0V≤Vouт≤Vcc)	loz	-10	10	μА	
OUTPUT LEVELS Output High Voltage (lout = -2.5mA)	Vон	2.4		V	
Output Low Voltage (Iout = 2.5mA)	Vol		0.4	V	1

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: A0-A8	Cl1		5	pF	2
Input Capacitance: RAS, CAS, ME/WE, TR/OE, SC, SE, DSF	CI2		8	pF	2
Input/Output Capacitance: DQ, SDQ	C1/0		9	pF	2
Output Capacitance: QSF	Co		9	pF	2

CURRENT DRAIN, SAM IN STANDBY

$(0^{\circ}\text{C} \le \text{T}_{A} \le 70^{\circ}\text{C}; \text{ Vcc} = 5.0\text{V} \pm 10\%)$	ſ	M	AX	7	
PARAMETER/CONDITION	SYMBOL	-10	-12	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: Trc = Trc(MIN))	lcc ₁	80	70	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL; CAS = Cycling: TPC = TPC(MIN))	lcc2	60	70	mA	3, 4
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS=CAS=VIH after 8 RAS cycles min)	Іссз	10	10	mA	
REFRESH CURRENT: RAS-ONLY (RAS=Cycling; CAS=Vih)	lcc4	80	70	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS=Cycling)	lcc5	70	60	mA	3, 5
SAM/DRAM DATA TRANSFER	Icc6	85	75	mA	3

CURRENT DRAIN, SAM ACTIVE (tsc = MIN)

$(0^{\circ}\text{C} \le \text{T}_{A} \le 70^{\circ}\text{C}; \text{Vcc} = 5.0\text{V} \pm 10\%)$		M	7		
PARAMETER/CONDITION	SYMBOL	-10	-12	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: Trc = Trc(MIN))	Icc7	120	110	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL; CAS = Cycling: TPC = TPC(MIN))	Icc8	100	90	mA	3, 4
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS=CAS=VIH after 8 RAS cycles min)	lcc9	45	40	mA	3, 4
REFRESH CURRENT: RAS-ONLY (RAS=Cycling; CAS=Vih)	Icc ₁₀	120	110	mA	3, 4
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS=Cycling)	Icc11	110	100	mA	3, 4, 5
SAM/DRAM DATA TRANSFER	ICC12	125	115	mA	3, 4

DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS		-	10	-	12		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	t _{RC}	180		210		ns	
READ-MODIFY-WRITE cycle time	t _{RWC}	235		280		ns	
FAST-PAGE-MODE READ or WRITE	^t PC	55		65		ns	
cycle time							
FAST-PAGE-MODE READ-MODIFY-WRITE	tPRWC	110		140		ns	
cycle time							
Access time from RAS	^t RAC		100		120	ns	14
Access time from CAS	t _{CAC}		30		35	ns	15
Access time from (TR)/OE	t _{OE}		25		30	ns	
Access time from column address	^t AA		50		60	ns	
Access time from CAS precharge	^t CPA		55		65	ns	L
RAS pulse width	t _{RAS}	100	10,000	120	10,000	ns	
RAS pulse width (FAST PAGE MODE)	t _{RASP}	100	100,000	120	100,000	ns	
RAS hold time	t _{RSH}	30		35		ns	
RAS precharge time	t _{RP}	70		80		ns	
CAS pulse width	t _{CAS}	30	10,000	35	10,000	ns	
CAS hold time	t _{CSH}	100		120		ns	
CAS precharge time	^t CPN	15		20		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		15		ns	
RAS to CAS delay time	t _{RCD}	20	70	25	85	ns	17
CAS to RAS precharge time	t _{CRP}	5		10		ns	
Row address setup time	t _{ASR}	0		0		ns	
Row address hold time	^t RAH	15		15		ns	
RAS to column	tRAD	20	50	20	60	ns	18
address delay time							
Column address setup time	tASC	0		0		ns	
Column address hold time	t _{CAH}	20		25		ns	
Column address hold time	^t AR	70		85		ns	
(referenced to RAS)						l	
Column address to	^t RAL	50		60		ns	
RAS lead time							<u> </u>
Read command setup time	t _{RCS}	0		0		ns	
Read command hold time	tRCH	0		0		ns	19
(referenced to CAS)							
Read command hold time	^t RRH	0		0		ns	19
(referenced to RAS)							<u> </u>
CAS to output in Low-Z	[†] CLZ	0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	30	ns	20, 23
Output Disable	^t OD	0	20	0	30	ns	23
Output Disable hold time from start of write	^t OEH		15		20	ns	27
Output Enable to RAS delay	tORD		0		0	ns	

DRAM TIMING PARAMETERS (Continued)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS			10	_1	12		
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command setup time	twcs	0		0		ns	21
Write command hold time	tWCH	20		25		ns	
Write command hold time (referenced to RAS)	twcR	70		85		ns	
Write command pulse width	^t WP	15		20		ns	
Write command to RAS lead time	^t RWL	20		25		ns	
Write command to CAS lead time	^t CWL	20		25		ns	
Data-in setup time	t _{DS}	0		0		ns	22
Data-in hold time	^t DH	20		25		ns	22
Data-in hold time (referenced to RAS)	^t DHR	70		90		ns	
RAS to WE delay time	t _{RWD}	130		160		ns	21
Column address to WE delay time	^t AWD	80		100		ns	21
CAS to WE delay time	t _{CWD}	60		75		ns	21
Transition time (rise or fall)	t _T	3	50	3	50	ns	9, 10
Refresh period (512 cycles)	t _{REF}		8		8	ms	
RAS to CAS precharge time	t _{RPC}	0		0		ns	
CAS setup time (CAS-BEFORE-RAS REFRESH)	^t CSR	10		10		ns	5
CAS hold time (CAS-BEFORE-RAS REFRESH)	tCHR	30		30		ns	5
ME/WE to RAS setup time	twsR	0		0		ns	
ME/WE to RAS hold time	^t RWH	15		15		ns	
Mask Data to RAS setup time	^t MS	0		0		ns	
Mask Data to RAS hold time	^t MH	15		15		ns	

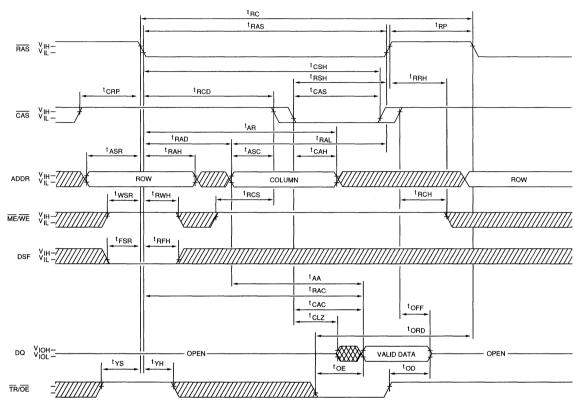
TRANSFER AND MODE CONTROL TIMING PARAMETERS ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes 6, 7, 8, 9, 10) (0° C \leq T_A \leq + 70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS		-10		-12		ļ	
PARAMETER	SYM	MIN	MAX	MIN	MAX	UNITS	NOTE
TRANSFER command to RAS setup time	^t TLS	0		0		ns	25
TRANSFER command to RAS hold time	t _{TLH}	15	10,000	15	10,000	ns	25
TRANSFER command to RAS hold time (REAL-TIME READ TRANSFER only)	^t RTH	80	10,000	90	10,000	ns	25
TRANSFER command to CAS hold time (REAL-TIME READ TRANSFER only)	^t CTH	25		30		ns	25
TRANSFER command to column address hold time (for REAL-TIME READ TRANSFER only)	^t ATH	30		35		ns	25
TRANSFER command to SC lead time	t _{TSL}	5		5		ns	25
TRANSFER command to RAS lead time	tTRL T	0		0		ns	25
TRANSFER command to RAS delay time	^t TRD	15		15		ns	25
TRANSFER command to CAS time	^t TCL	0		0		ns	25
TRANSFER command to CAS delay time	^t TCD	15		15		ns	25
First SC edge to TRANSFER command delay time	^t TSD	10		10		ns	25
Serial output buffer turn-off delay from RAS	^t SDZ	10	40	10	50	ns	
SC to RAS setup time	t _{SRS}	30		40		ns	,
RAS to SC delay time	t _{SRD}	25		30		ns	
Serial data input to SE delay time	^t SZE_	0		0		ns	
RAS to SD buffer turn-on time	t _{SRO_}	15		15		ns	L
Serial data input delay from RAS	t _{SDD}	50		55		ns	
Serial data input to RAS delay time	tszs_	0		0		ns	
Serial-input-mode enable (SE) to RAS setup time	t _{ESR}	0		0		ns	
Serial-input-mode enable (SE) to RAS hold time	^t REH	15		15		ns	
NONTRANSFER command to RAS setup time	^t YS	0		0		ns	26
NONTRANSFER command to RAS hold time	t _{YH}	15		15		ns	26
DSF to RAS setup time	t _{FSR}	0		0		ns	
DSF to RAS hold time	t _{RFH}	15		15		ns	
SC to QSF delay time	t _{SQD}		30		35	ns	1
SPLIT TRANSFER setup time	tstst	35		40		ns	
SPLIT TRANSFER hold time	tSTH.	35		40		ns	-
RAS to first SC delay	t _{RSD}	95		105		ns	<u> </u>
CAS to first SC delay	t _{CSD}	25		35	_	ns	
Column address valid to first SC delay	^t ASD	55		65		ns	
TR/OE to QSF Delay Time	^t TQD		35		40	ns	<u> </u>
CAS to QSF Delay Time	^t CQD		45		50	ns	
RAS to QSF delay time	^t RQD		85		105	ns	

SAM TIMING PARAMETERS

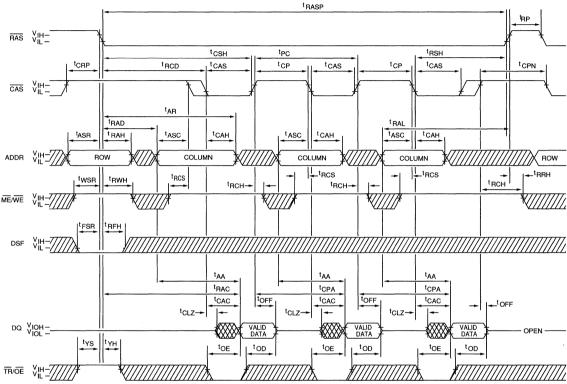
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes 6, 7, 8, 9, 10) (0° C \leq T_A \leq + 70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS		-10		-12			
PARAMETER	SYM	MIN	MAX	UNITS	NOTES		
Serial clock cycle time	tsc	30		35		ns	
Access time from SC	t _{SAC}		30		35	ns	24
SC precharge time (SC LOW time)	t _{SP}	10		12		ns	
SC pulse width (SC HIGH time)	t _{SAS}	10		12		ns	
Access time from SE	t _{SEA}		20		30	ns	24
SE precharge time	t _{SEP}	15		15		ns	
SE pulse width	^t SE	15		15		ns	
Serial data-out hold time after SC high	^t son	5		5		ns	24
Serial output buffer turn-off delay from SE	t _{SEZ}	0	15	0	25	ns	24
Serial data-in setup time	tSDS	0		0		ns	24
Serial data-in hold time	t _{SDH}	15		20		ns	24
SERIAL INPUT (Write) Enable setup time	tsws	0		0		ns	
SERIAL INPUT (Write) Enable hold time	tswH	15		20		ns	
SERIAL INPUT (Write) Disable setup time	tswis	0		0		ns	
SERIAL INPUT (Write) Disable hold time	tswih	15		20		ns	


NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = \underline{I\Delta t}$ with $\Delta V = 3V$ and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_Δ ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by any eight RAS cycle and 1 SC cycle before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{\text{CAS}} = \text{V}_{\text{IH}}$, DRAM data output (DQ1-DQ8) is high impedance.
- 12. If $\overline{\text{CAS}} = \text{V}_{\text{IL}}$, DRAM data output (DQ1-DQ8) may contain data from the last valid READ cycle.
- DRAM output timing measured with a load equivalent to 1 TTL gate and 100pF. Output reference levels: Voh = 2.0V; Vol = 0.8V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, DQ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as

- a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol.
- 21. tWCS, tRWD, tAWD and tCWD are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If t WCS ≥ t WCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{TR}/\overline{OE}$. If t WCS ≤ t WCS (MIN), the cycle is a LATE-WRITE and TR/OE must control the output buffers during the write to avoid data contention. If ${}^{t}RWD \ge {}^{t}RWD$ (MIN), ${}^{t}AWD \ge {}^{t}AWD$ (MIN) and ${}^{t}CWD \ge {}^{t}CWD$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of the output buffers (at access time and until \overline{CAS} goes back to VIH) is indeterminate but the WRITE will be valid, if ^tOD and ^tOEH are met. See the LATE-WRITE AC Timing diagram.
- These parameters are referenced to CAS leading edge in early WRITE cycles and ME/WE leading edge in late WRITE or READ-WRITE cycles.
- 23. During a READ cycle, if TR/OE is LOW then taken HIGH, DQ goes open. The DQs will go open with OE or CAS, whichever goes HIGH first.
- 24. SAM output timing is measured with a load equivalent to 1 TTL gate and 50pF. Output reference levels: Voh = 2.0V; Vol. = 0.8V.
- 25. TRANSFER command means that $\overline{TR}/\overline{OE}$ is LOW when \overline{RAS} goes LOW.
- 26. NONTRANSFER command means that $\overline{TR}/\overline{OE}$ is HIGH when \overline{RAS} goes LOW.
- 27. LATE-WRITE and READ-MODIFY-WRITE cycles must have ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if CAS remains LOW and OE is taken LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.


DRAM READ CYCLE

DON'T CARE

₩ undefined

DRAM FAST-PAGE-MODE READ CYCLE

DON'T CARE

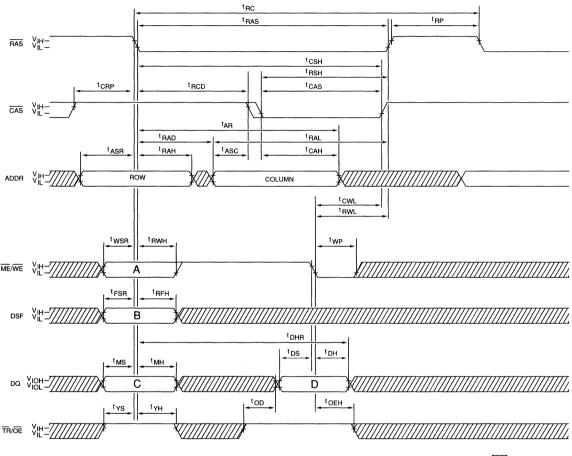
₩ UNDEFINED

WRITE CYCLE FUNCTION TABLE

	LC	OGIC STATE	S	
R/	S Falling E	dge	CAS Falling Edge	FUNCTION
A ME/WE	B DSF	C DQ (Input)	D DQ (Input)	
1	0	х	DRAM Data	Normal DRAM WRITE
0	0	Write Mask	DRAM Data (Masked)	NONPERSISTENT (Load and Use Register) MASKED WRITE to DRAM
0	1	х	DRAM Data (Masked)	PERSISTENT (Use Register) MASKED WRITE to DRAM
1	1	х	Write Mask	Load Mask Register

NOTE: Refer to this function table to determine the logic states of "A", "B", "C", and "D" for the WRITE cycle timing diagrams on the following pages.

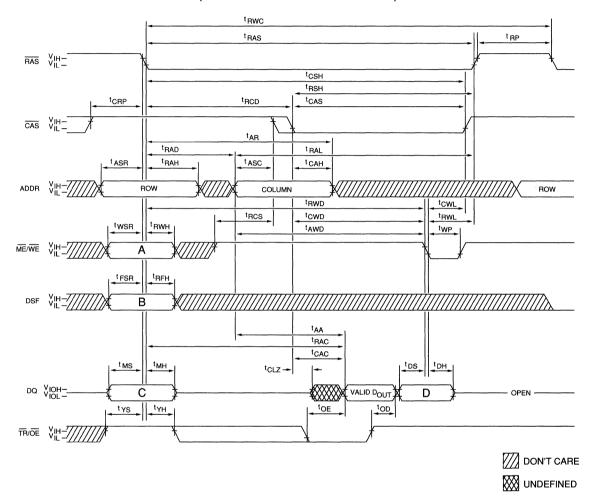
DRAM EARLY-WRITE CYCLE


DON'T CARE

₩ UNDEFINED

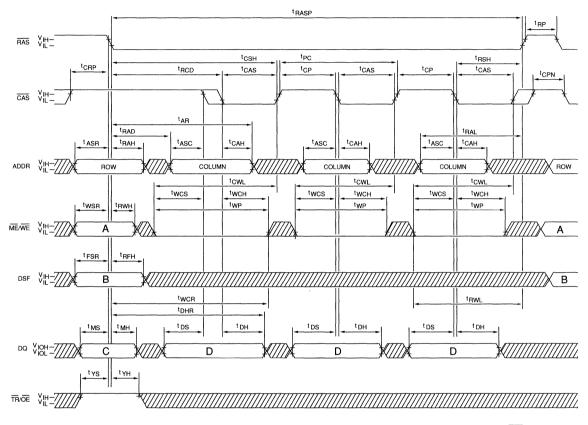
The logic states of "A", "B", "C", and "D" determine the type of WRITE operation performed. See the Write NOTE: Cycle Function Table for a detailed description.

DRAM LATE-WRITE CYCLE


DON'T CARE

₩ UNDEFINED

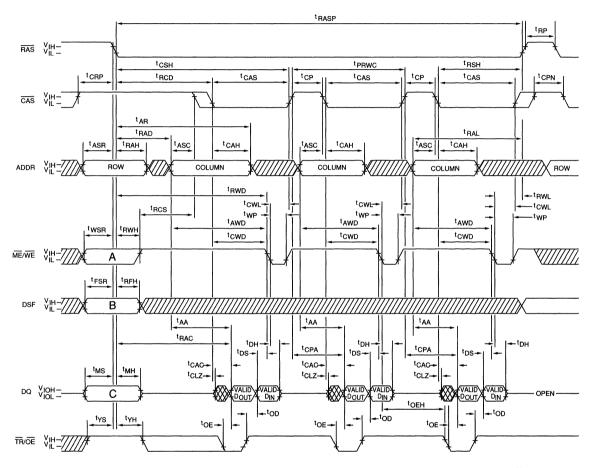
NOTE: The logic states of "A", "B", "C", and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.


DRAM READ-WRITE CYCLE (READ-MODIFY-WRITE CYCLE)

NOTE: The logic states of "A", "B", "C", and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE

DON'T CARE


W UNDEFINED

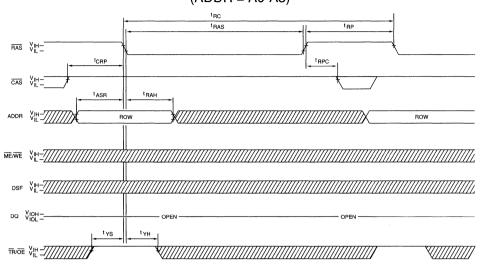
- READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST PAGE MODE.
- 2. The logic states of "A", "B", "C", and "D" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM FAST-PAGE-MODE READ-WRITE CYCLE

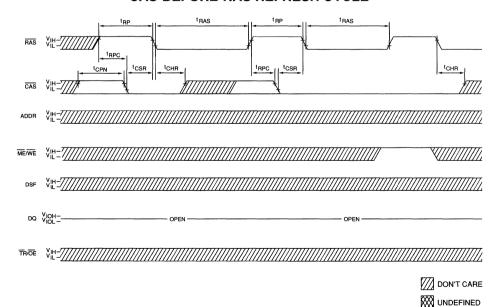
(READ-MODIFY-WRITE or LATE-WRITE CYCLES)

DON'T CARE

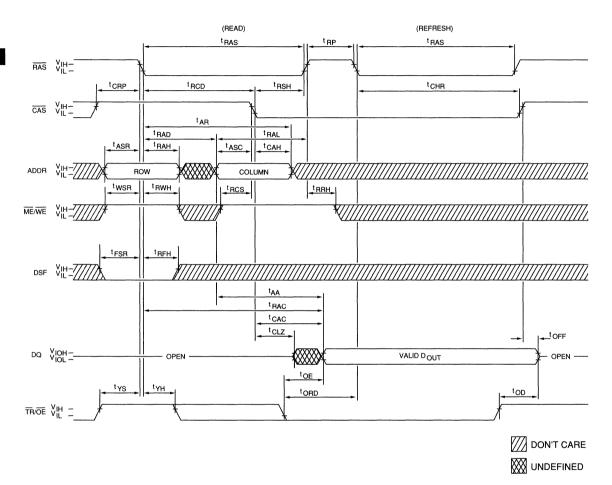
₩ UNDEFINED


NOTE: 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST PAGE MODE.

Use the Write Function Table to determine the proper DSF state for the desired WRITE operation.

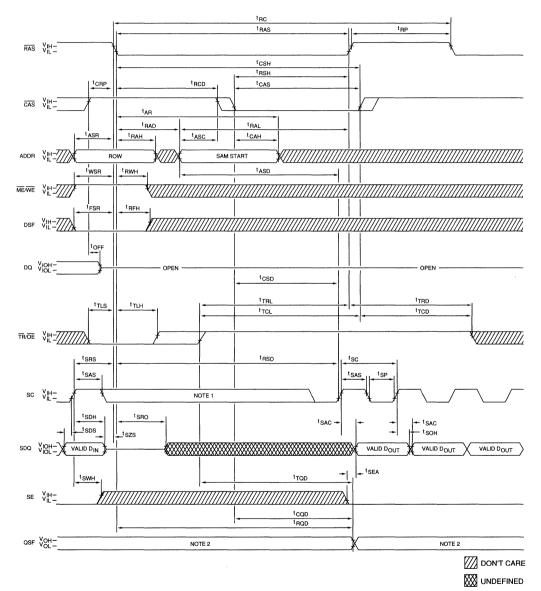

2. The logic states of "A", "B" and "C" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM RAS-ONLY REFRESH CYCLE (ADDR = A0-A8)



CAS-BEFORE-RAS REFRESH CYCLE

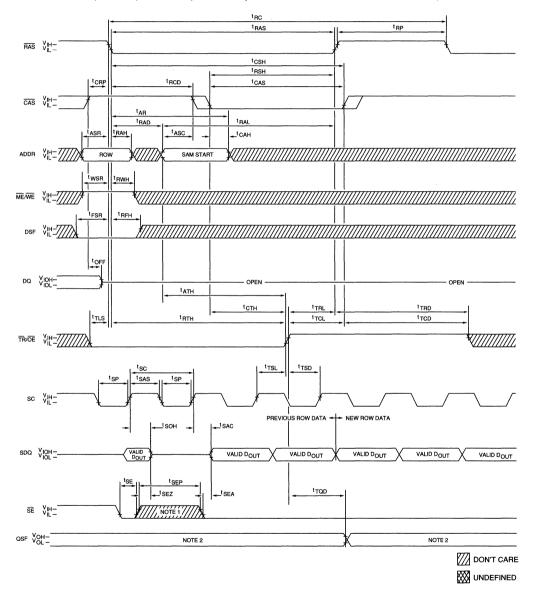
DRAM HIDDEN-REFRESH CYCLE



NOTE: A HIDDEN REFRESH may also be performed after a WRITE or TRANSFER cycle. In the WRITE case, ME/WE = LOW (when CAS goes LOW) and TR/OE = HIGH. In the TRANSFER case, TR/OE = LOW (when RAS goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of TR/OE.

READ TRANSFER (DRAM-TO-SAM TRANSFER)

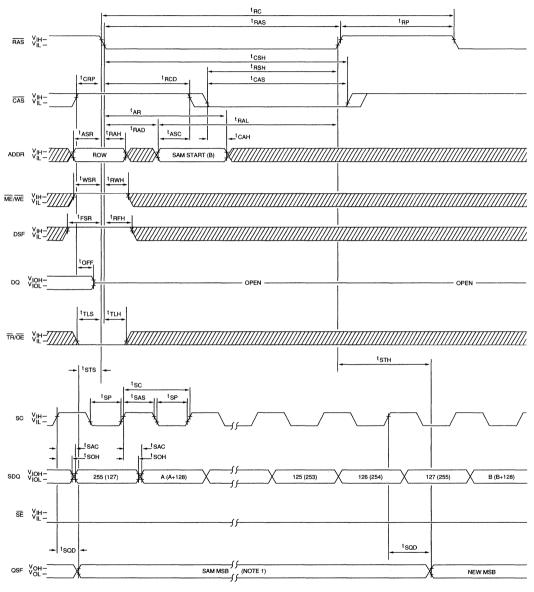
(When part was previously in the SERIAL INPUT mode)



- 1. There must be no rising edges on the SC input during this time period.
- QSF = 0 when the Lower SAM (bits 0–127) is being accessed.
 QSF = 1 when the Upper SAM (bits 128–255) is being accessed.

REAL-TIME READ TRANSFER (DRAM-TO-SAM TRANSFER)

(When part was previously in the SERIAL OUTPUT mode)

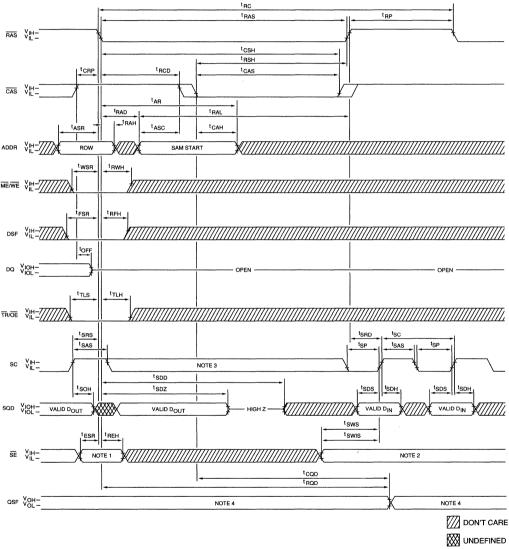


NOTE: 1. The SE pulse is shown to illustrate the SERIAL OUTPUT ENABLE and DISABLE timing. It is not required.

QSF = 0 when the Lower SAM (bits 0–127) is being accessed.
 QSF = 1 when the Upper SAM (bits 128–255) is being accessed.

SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)

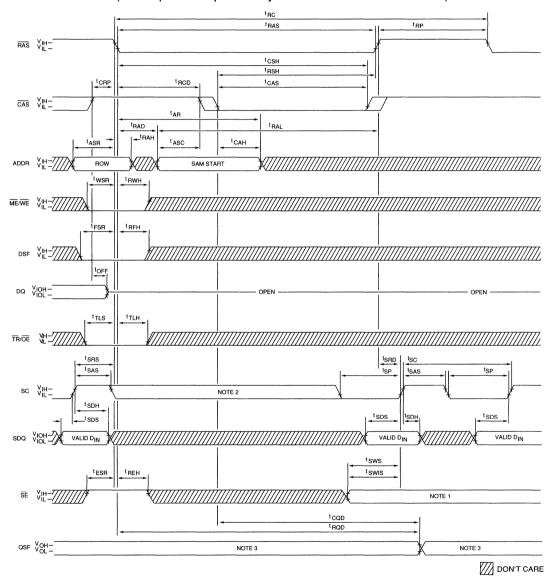
DON'T CARE


W UNDEFINED

NOTE: 1. QSF = 0 when the Lower SAM (bits 0–127) is being accessed. QSF = 1 when the Upper SAM (bits 128–255) is being accessed.

WRITE TRANSFER and PSEUDO WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

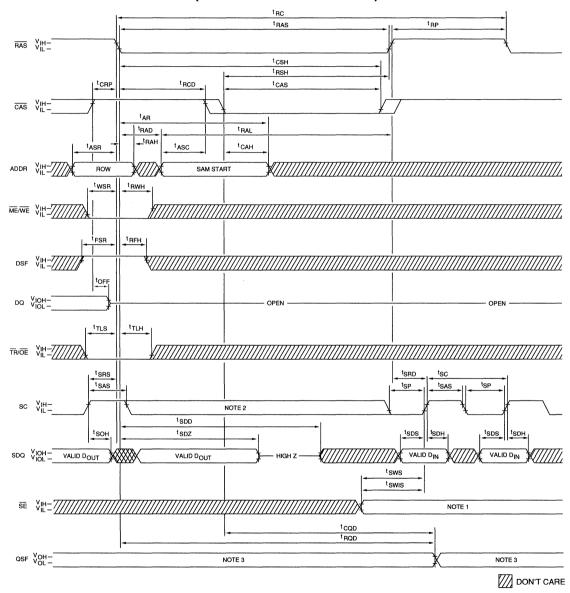
(When part was previously in the SERIAL OUTPUT mode)


- 1. If SE is LOW, the SAM data will be transferred to the DRAM.

 If SE is HIGH, the SAM data will not be transferred to the DRAM (SERIAL INPUT MODE ENABLE cycle).
- 2. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
- 3. There must be no rising edges on the SC input during this time period.
- QSF = 0 when the Lower SAM (bits 0–127) is being accessed.
 QSF = 1 when the Upper SAM (bits 128–255) is being accessed.

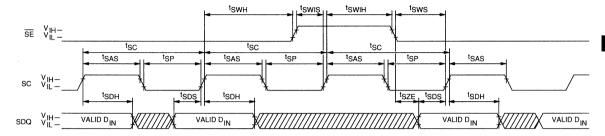
WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

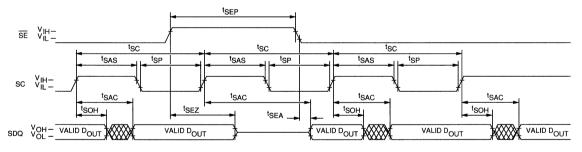
(When part was previously in the SERIAL INPUT mode)



- SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
- 2. There must be no rising edges on the SC input during this time period.
- QSF = 0 when the Lower SAM (bits 0–127) is being accessed.
 QSF = 1 when the Upper SAM (bits 128–255) is being accessed.

W UNDEFINED


ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)


- SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
- 2. There must be no rising edges on the SC input during this time period.
- QSF = 0 when the Lower SAM (bits 0–127) is being accessed.
 QSF = 1 when the Upper SAM (bits 128–255) is being accessed.

SAM SERIAL INPUT

SAM SERIAL OUTPUT

DON'T CARE

₩ undefined

VRAM

128K x 8 DRAM WITH 256 x 8 SAM

FEATURES

- · Industry standard pinout, timing and functions
- · High-performance CMOS silicon gate process
- Single +5V ±10% power supply
- Low power: 15mW standby; 275mW active, typical
- Inputs and outputs are fully TTL and CMOS compatible
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS, and HIDDEN
- 512-cycle refresh within 8ms
- No refresh required for Serial Access Memory
- Optional FAST PAGE MODE access cycles
- Dual port organization: 256K x 4 DRAM port
 512 x 4 SAM port
- Fast access times 80ns random, 25ns serial

SPECIAL FUNCTIONS

- · JEDEC Standard Function set
- PERSISTENT MASKED WRITE
- SPLIT READ TRANSFER
- WRITE TRANSFER/SERIAL INPUT
- ALTERNATE WRITE TRANSFER
- BLOCK WRITE

OPTIONS	MARKING		
• Timing (DRAM, SAM)			
80ns, 25ns	- 8		
100ns, 30ns	-10		
120ns, 35ns	-12		
Packages			
Plastic SOJ	DJ		
Plastic ZIP	Z		

GENERAL DESCRIPTION

The MT42C8128 is a high-speed, dual port CMOS dynamic random access memory or Video RAM (VRAM) containing 1,048,576 bits. These bits may be accessed either by an 8-bit wide DRAM port or by a 256 x 8-bit serial access memory (SAM) port. Data may be transferred bidirectionally between the DRAM and the SAM.

The DRAM portion of the VRAM is functionally identical to the MT4C4256 (256K x 4 DRAM). Eight 256-bit data registers make up the SAM portion of the VRAM. Data I/O and internal data transfer are accomplished using three separate bidirectional data paths: the 8-bit random access I/O port, the eight internal 256 bit wide paths between the DRAM and the SAM, and the 8-bit serial I/O port for the

PIN ASSIGNMENT (Top View)						
	40-Pin (E-12			_	-Pin ZI I (C-6)	P
SC SD01 SD02 SD03 SD04 TR/0E D01 D02 D03 D04 Vcc1 ME/WE NC RAS NA A6 A5 A4 Vcc2	T 1 2 2 3 4 4 5 5 6 6 6 7 7 6 8 6 9 7 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	39	Vss1 SD08 SD07 SD06 SD05 SSE D08 D07 D06 D05 Vss2 SDSF NC CAS SQSF A0 A1 A2 A3 A3 A7	DQ5 DQ7 SE SDQ6 SDQ8 SC SDQ2 SDQ4 DQ1 DQ3 DQ4 ME/WE AB VSS3 A5 NC A7 A2 A0 CAS	1	DQ6 DQ8 SDQ5 SDQ7 VSS1 SDQ1 SDQ3 TR/OE DQ2 VSS2 VCC1 RAS A6 NC A4 VCC2 A3 A1 QSF DSF

SAM. The rest of the circuitry consists of the control, timing and address decoding logic.

Each of the ports may be operated asynchronously and independently of the other except when data is being transferred internally between them. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of \overline{RAS} addresses are executed at least every 8ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. The SAM portion of the VRAM is fully static and does not require any refresh.

The operation and control of the MT42C8128 is compatible with (and can be identical to) the operation of the MT42C4064 (64K \times 4 VRAM). However, the MT42C8128 offers several additional functions that may be used to increase system performance or ease critical timing requirements. These "special functions" are described in detail in the following sections.

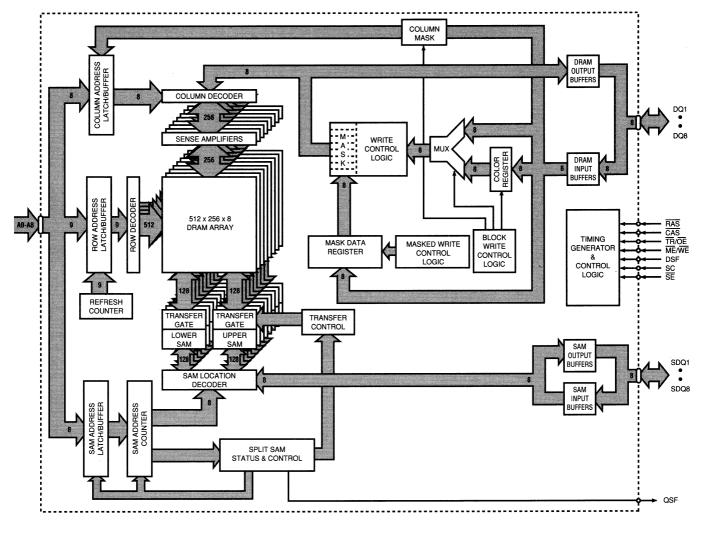


Figure 1 MT42C8128 BLOCK DIAGRAM

MULTIPORT DRAM

PIN DESCRIPTIONS

SOJ PIN	ZIP PIN					
NUMBERS	NUMBERS	SYMBOL	TYPE	DESCRIPTION		
1	11	sc	Input	Serial Clock: Clock input to the serial address counter for the SAM registers.		
6	16	TR/OE	Input	Transfer Enable: Enables an internal TRANSFER operation at RAS (H → L), or Output Enable: Enables the DRAM output buffers when taken LOW after RAS goes LOW (CAS must also be LOW), otherwise the output buffers are in a High-Z state.		
12	23	ME/WE	Input	Mask Enable: If ME/WE is LOW at the falling edge of RAS a MASKED WRITE cycle is performed, or Write Enable: ME/WE is also used to select a READ (ME/WE = H) or WRITE (ME/WE = L) cycle when accessing the DRAM. This includes a READ TRANSFER (ME/WE = H) or WRITE TRANSFER (ME/WE = L).		
35	5	SE	Input	Serial Port Enable: SE enables the serial I/O buffers and allows a serial READ or WRITE operation to occur, otherwise the output buffers are in a High-Z state. SE is also used during a WRITE TRANSFER operation to indicate whether a WRITE TRANSFER or a SERIAL INPUT MODE ENABLE cycle is performed.		
29	40	DSF	Input	Special Function Select: DSF is used to indicate which special functions (BLOCK WRITE, MASKED WRITE vs. PERSISTENT MASKED WRITE, etc.) are used for a particular access cycle.		
14	24	RAS	Input	Row Address Strobe: RAS is used to clock in the 9 row-address bits and as a strobe for the ME/WE, TR/OE, DSF, SE, CAS and DQ inputs.		
27	39	CAS	Input	Column Address Strobe: $\overline{\text{CAS}}$ is used to clock in the 8 columnaddress bits, enable the DRAM output buffers (along with $\overline{\text{TR}/\text{OE}}$), and as a strobe for the DSF input.		
16, 17, 18 19, 21, 22 23, 24, 25	37, 36, 35 34, 30, 29 26, 33, 25	A0 to A8	Input	Address Inputs: For the DRAM operation, these inputs are multiplexed and clocked by \overline{RAS} and \overline{CAS} to select one 8-bit word out of the 128K available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when \overline{RAS} goes LOW) and A0-A7 indicate the SAM start address (when \overline{CAS} goes LOW). A7, A8 = "don't care" for the start address when doing SPLIT TRANSFER.		
7, 8, 9, 10, 31 32, 33, 34	17, 18, 19, 21 1, 2, 3, 4	DQ1 - DQ8	Input/ Output	DRAM Data I/O: DRAM input/Output for DRAM cycles; inputs for Mask Data Register and Color Register load cycles, and Bit and Column Mask inputs for BLOCK WRITE.		
2, 3, 4, 5, 36 37, 38, 39	12, 13, 14, 15 6, 7, 8, 9	SDQ1 - SDQ8	Input/ Output	Serial Data I/O: Input, output, or High-Z.		
26	38	QSF	Output	Split SAM Status: QSF indicates which half of the SAM is being accessed. LOW if address is 0-127, HIGH if address is 128-255.		
28	28, 31	NC	_	No Connect: This pin should be either left unconnected or tied to ground.		
11, 20	22, 32	Vcc	Supply	Power Supply: +5V ±10%		
30, 40	10, 20, 27	Vss	Supply	Ground		

FUNCTIONAL DESCRIPTION

The MT42C8128 can be divided into three functional blocks (see Figure 1): the DRAM, the transfer circuitry, and the SAM. All of the operations described below are shown in the AC Timing Diagrams section of this data sheet and summarized in the Truth Table.

Note:

For dual-function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing transfer operations, the $\overline{\text{TR}/\text{OE}}$ pin will be shown as $\overline{\text{TR}/(\text{OE})}$.

DRAM OPERATION

DRAM REFRESH

Like any DRAM based memory, the MT42C8128 VRAM must be refreshed to retain data. All 512 row address combinations must be accessed within 8ms. The MT42C8128 supports CAS-BEFORE-RAS, RAS ONLY and HIDDEN types of refresh cycles.

For the CAS-BEFORE-RAS REFRESH cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data, and simply must perform 512 CAS-BEFORE-RAS cycles within the 8ms time period.

The refresh address must be generated externally and applied to A0-A8 inputs for RAS-ONLY REFRESH cycles. The DQ pins remain in a High-Z state for both the RAS-ONLY and CAS-BEFORE-RAS cycles.

HIDDEN REFRESH cycles are performed by toggling RAS (and keeping CAS LOW) after a READ or WRITE cycle. This performs CAS-BEFORE-RAS cycles but does not disturb the DQ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row that is being accessed. The SAM portion of the MT42C8128 is fully static and does not require any refreshing.

DRAM READ AND WRITE CYCLES

The DRAM portion of the VRAM is nearly identical to standard 256K×4DRAMs. However, because several of the DRAM control pins are used for additional functions on this part, several conditions that were undefined or in

"don't care" states for the DRAM are specified for the VRAM. These conditions are highlighted in the following discussion. In addition, the VRAM has several special functions that can be used when writing to the DRAM.

The 17 address bits that are used to select a 8-bit word from the 131,072 available are latched into the chip using the A0-A8, \overline{RAS} and \overline{CAS} inputs. First, the nine row-address bits are set up on the address inputs and clocked into the part when \overline{RAS} transitions from HIGH to LOW. Next, the 8 column address bits are set up on the address inputs and clocked-in when \overline{CAS} goes from HIGH to LOW.

For single port DRAMS, the \overline{OE} pin is a "don't care" when \overline{RAS} goes LOW. However, for the VRAM, when \overline{RAS} goes LOW, $(\overline{TR})/\overline{OE}$ selects between DRAM access or TRANSFER cycles. $(\overline{TR})/\overline{OE}$ must be HIGH at the \overline{RAS} HIGH-to-LOW transition for all DRAM operations (except \overline{CAS} -BEFORE- \overline{RAS}).

If $(\overline{ME})/\overline{WE}$ is HIGH when \overline{CAS} goes LOW, a DRAM READ operation is performed and the data from the memory cells selected will appear at the DQ1-DQ8 port. The $(\overline{TR})/\overline{OE}$ input must transition from HIGH to LOW sometime after \overline{RAS} falls to enable the DRAM output port.

For single port normal DRAMs, WE is a "don't care" when RAS goes LOW. For the VRAM, ME/(WE) is used, when RAS goes LOW, to select between a MASKED WRITE cycle and a normal WRITE cycle. If ME/(WE) is LOW at the RAS HIGH to LOW transition, a MASKED WRITE operation is selected. For any DRAM access cycle (READ or WRITE), ME/(WE) must be HIGH at the RAS HIGH-to-LOW transition. If (ME)/WE is LOW before CAS goes LOW, a DRAM EARLY-WRITE operation is performed and the data present on the DQ1-DQ8 data port will be written into the selected memory cells. If (ME)/WE goes LOW after CAS goes LOW, a DRAM LATE-WRITE operation is performed. Refer to the AC timing diagrams.

The VRAM can perform all the normal DRAM cycles including READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE (Late or Early), and FAST-PAGE-MODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

XXX UNDEFINED

NON PERSISTENT MASKED WRITE

The MASKED WRITE feature eliminates the need to do a READ-MODIFY-WRITE cycle when changing only specific bits within a 8-bit word. The MT42C8128 supports two types of MASKED WRITE cycles, NONPERSISTENT MASKED WRITE and PERSISTENT MASKED WRITE.

If ME/(WE) and DSF are LOW at the RAS HIGH-to-LOW transition, a NONPERSISTENT MASKED WRITE is performed and the data (mask data) present on the DQ1-DQ8 inputs will be written into the mask data register. The mask data acts as an individual write enable for each of the eight DQ1-DQ8 pins. If a LOW (logic "0") is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic "1") on a mask data register bit enables the input port and allows

normal WRITE operation to proceed. Note that \overline{CAS} is still HIGH. When \overline{CAS} goes LOW, the bits present on the DQ1-DQ8 inputs will be either written to the DRAM (if the mask data bit is HIGH) or ignored (if the mask data bit is LOW). The DRAM contents that correspond to masked input bits will not be changed during the WRITE cycle. The MASKED WRITE is non persistent (must be re-entered at every \overline{RAS} cycle) if DSF is LOW when \overline{RAS} goes LOW. The mask data register is cleared at the end of every NONPERSISTENT MASKED WRITE. FAST PAGE MODE can be used with NONPERSISTENT MASKED WRITE to write several column locations in an addressed row. The same mask is used during the entire FAST-PAGE-MODE \overline{RAS} cycle. An example NONPERSISTENT MASKED WRITE cycle is shown in Figure 2.

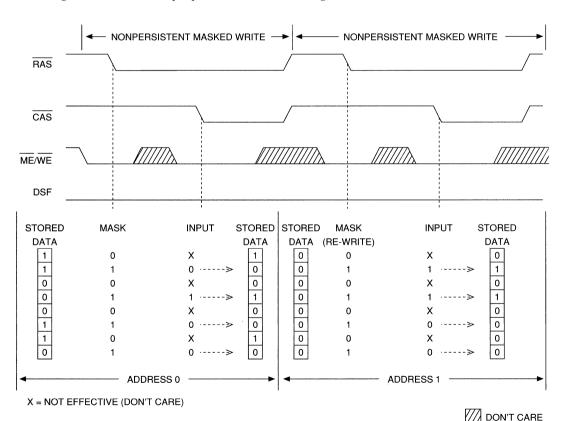


Figure 2
NONPERSISTENT MASKED WRITE EXAMPLE

PERSISTENT MASKED WRITE

The PERSISTENT MASKED WRITE feature eliminates the need to rewrite the mask data before each MASKED WRITE cycle if the same mask data is being used repeatedly. To initiate a PERSISTENT MASKED WRITE, a LOAD MASK REGISTER cycle is performed by taking ME/(WE) and DSF HIGH when RAS goes LOW. The mask data is loaded into the internal register when CAS goes LOW. Mask data may also be loaded into the mask register by performing a NONPERSISTENT MASKED WRITE cycle before the PERSISTENT MASKED WRITE cycles.

PERSISTENT MASKED WRITE cycles may then be performed by taking $\overline{\text{ME}}/(\overline{\text{WE}})$ LOW and DSF HIGH when $\overline{\text{RAS}}$ goes LOW. The contents of the mask data register will then be used as the mask data for the DRAM inputs. Unlike the NONPERSISTENT MASKED WRITE cycle, the data

present on the DQ inputs is not loaded into the mask register when \overline{RAS} falls and the mask data register will not be cleared at the end of the cycle. Any number of PERSISTENT MASKED WRITE cycles, to any address, may be performed without having to reload the mask data register. Figure 3 shows the LOAD MASK REGISTER and two PERSISTENT MASKED WRITE cycles in operation. The LOAD MASK REGISTER and PERSISTENT MASKED WRITE cycles allow controllers, that cannot provide mask data to the DQ pins at \overline{RAS} time, to perform MASKED WRITE operations. PERSISTENT MASKED WRITE operations can be performed during FAST PAGE MODE cycles and the same mask will apply to all addressed columns in the addressed row.

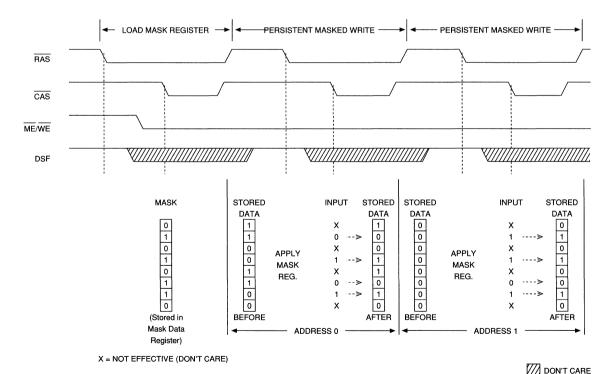


Figure 3
PERSISTENT MASKED WRITE EXAMPLE

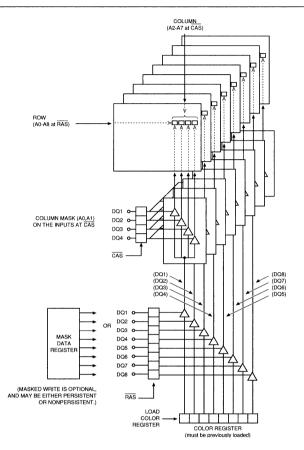


Figure 4
BLOCK WRITE EXAMPLE

BLOCK WRITE

If DSF is HIGH when $\overline{\text{CAS}}$ goes LOW, the MT42C8128 will perform a BLOCK WRITE cycle instead of a normal WRITE cycle. In BLOCK WRITE cycles, the contents of the color register are directly written to four adjacent column locations (see Figure 4). The color register must be loaded prior to beginning BLOCK WRITE cycles (see LOAD COLOR REGISTER).

The ROW is addressed as in a normal DRAM WRITE cycle. However when $\overline{\text{CAS}}$ goes LOW, only the A2-A7 inputs are used. A2-A7 specify the "block" of four adjacent column locations that will be accessed. The DQ inputs (DQ1, 2, 3, and 4) are then used to determine what combination of the four column locations will be changed. The table on this page illustrates how each of the DQ inputs is used to selectively enable or disable individual column

locations within the block. The Write Enable controls are active HIGH; a logic "1" enables the WRITE function and a logic "0" disables the WRITE function.

The contents of the color register will then be written to the column locations enabled. Each DQ location of the color register is written to the four column locations (or any of the four that are enabled) in the corresponding DQ bit plane.

INDUITO	Address (Controlled
INPUTS	A0	A1
DQ1	0	0
DQ2	1	0
DQ3	0	1
DQ4	1	1

NONPERSISTENT MASKED BLOCK WRITE

The MASKED WRITE functions can also be used during BLOCK WRITE cycles. NONPERSISTENT MASKED BLOCK WRITE operates exactly like the normal NON-PERSISTENT MASKED WRITE except the mask is now applied to four column locations instead of just one column location.

Like NONPERSISTENT MASKED WRITE, the combination of ME/(WE) LOW and DSFLOW when RAS goes LOW initiates a NONPERSISTENT MASK cycle. The DSF pin must be driven HIGH when CAS goes LOW, to perform a NONPERSISTENT MASKED BLOCK WRITE. By using both the column mask input and the MASKED WRITE function, any combination of the eight bit planes can be masked and any combination of the four column locations can be masked.

PERSISTENT MASKED BLOCK WRITE

This cycle is also performed exactly like the normal PERSISTENT MASKED WRITE except that DSF is HIGH when $\overline{\text{CAS}}$ goes LOW to indicate the BLOCK WRITE function. Both the mask data register and the color register must be loaded with the appropriate data prior to starting a PERSISTENT MASKED BLOCK WRITE.

LOAD MASK DATA REGISTER

The LOAD MASK REGISTER operation and timing are identical to a normal WRITE cycle except that DSF is HIGH when \overline{RAS} goes LOW. As shown in the Truth Table, the

combination of $\overline{TR}/(\overline{OE})$, $\overline{ME}/(\overline{WE})$, and DSF being HIGH when \overline{RAS} goes LOW indicates the cycle is a LOAD REGISTER cycle. DSF is used when \overline{CAS} goes LOW to select the register to be loaded and must be LOW for a LOAD MASK REGISTER cycle. The data present on the DQ lines will then be written to the mask data register.

Note: For a normal DRAM WRITE cycle, the mask data register is disabled but not modified. The contents of mask data register will not be changed unless a NONPERSISTENT MASKED WRITE cycle or a LOAD MASK REGISTER cycle is performed.

The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

The mask data register contents are used during PERSISTENT MASKED WRITE and PERSISTENT MASKED BLOCK WRITE cycles to selectively enable writes to the eight DQ planes.

LOAD COLOR REGISTER

A LOAD COLOR REGISTER cycle is identical to the LOAD MASK REGISTER cycle except DSF is HIGH when $\overline{\text{CAS}}$ goes LOW. The contents of the color register are retained until changed by another LOAD COLOR REGISTER cycle (or the part loses power) and are used as data inputs during BLOCK WRITE cycles.

₩ UNDEFINED

TRANSFER OPERATIONS

TRANSFER operations are initiated when $\overline{TR}/(\overline{OE})$ is LOW then \overline{RAS} goes LOW. The state of $(\overline{ME})/\overline{WE}$ when \overline{RAS} goes LOW indicates the direction of the TRANSFER (to or from the DRAM), and DSF is used to select between NORMAL TRANSFER, SPLIT READ TRANSFER, and ALTERNATE WRITE TRANSFER cycles. Each of the TRANSFER cycles available is described below.

READ TRANSFER (DRAM-TO-SAM TRANSFER)

If (ME)/WE is HIGH and DSF is LOW when RAS goes LOW, a READ TRANSFER cycle is selected. The row address bits indicate the eight 256-bit DRAM row planes that are to be transferred to the eight SAM data register planes. The column address bits indicate the start address (or Tap address) of the serial output cycle from the SAM data registers. CAS must fall for every TRANSFER in order to load a valid Tap address. A read transfer may be accom-

plished two ways. If the transfer is to be synchronized with SC (REAL-TIME READ TRANSFER), TR/(OE) is taken HIGH after CAS goes LOW. If the transfer does not have to be synchronized with SC(READTRANSFER), TR/(OE) may go HIGH before CAS goes LOW (refer to the AC Timing Diagrams). The 2048 bits of DRAM data are written into the SAM data registers and the serial shift start address is stored in an internal 8-bit register. QSF will be LOW if access is from the lower half (addresses 0 through 127), and HIGH if access is from the upper half (128 through 255). If \overline{SE} is LOW, the first bits of the new row data will appear at the serial outputs with the first SC clock pulse. \overline{SE} enables the serial outputs and may be either HIGH or LOW during this operation. The SAM address pointer will increment with the SC LOW to HIGH transition, regardless of the state of SE. Performing a READ TRANSFER cycle sets the direction of the SAM I/O buffers to the output mode.

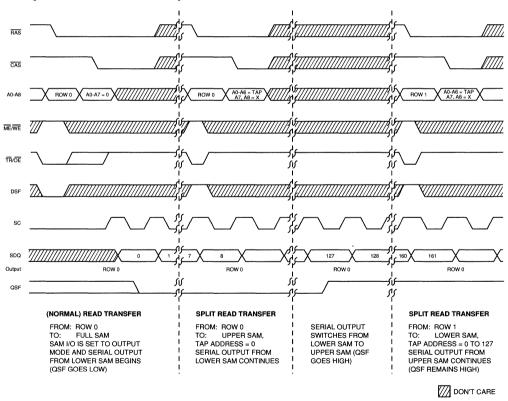


Figure 5
TYPICAL SPLIT-READ-TRANSFER INITIATION SEQUENCE

SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)

The SPLIT READ TRANSFER (SRT) cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream. When using normal TRANSFER cycles, the REAL-TIME READ TRANSFER cycle has to occur immediately after the last bit of "old data" was clocked out of the SAM port.

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data can be transferred to the other half. The transfer can occur at any time while the other half is sending data and need not be synchronized with the SC clock.

The $\overline{TR}/(\overline{OE})$ timing is also relaxed for SPLITTRANSFER cycles. The rising edge of $\overline{TR}/(\overline{OE})$ is not used to complete the TRANSFER cycle and therefore is independent of the rising edges of \overline{RAS} or \overline{CAS} . The transfer timing is generated internally for SPLIT TRANSFER cycles. A SPLIT READ TRANSFER does not change the direction of the SAM port.

A normal, non-split READ TRANSFER cycle must precede any sequence of SPLIT READ TRANSFER cycles to provide a reference to which half of the SAM the access will begin and set SAM I/O direction. Then SPLIT READ TRANSFERS may be initiated by taking DSF HIGH when RAS goes LOW during the TRANSFER cycle. As in non-split transfers, the row address is used to specify the DRAM row to be transferred. The column address, A0-A6, is used to input the SAM Tap address. Address pin A7 is a "don't care" when the Tap address is loaded at the HIGH to LOW transition of CAS. It is internally generated so that the SPLIT TRANSFER will be to the SAM half not currently being accessed.

Figure 5 shows a typical SPLIT-READ-TRANSFER initiation sequence. The normal READ TRANSFER is first performed, followed by a SPLIT READ TRANSFER of the same row to the upper half of the SAM. The purpose of the SPLIT TRANSFER of the same data is to initiate the split SAM operating mode and load the Tap address. Serial access continues, and when the SAM address counter reaches 127 ("A7"=0, A0-A6=1) the new Tap address is loaded for the next half ("A7"=1, A0-A6=Tap) and the QSF output goes HIGH. Once the serial access has switched to the upper SAM, new data may be transferred to the lower SAM. The controller must wait for the state of QSF to change and then the new data may be transferred to the SAM half not being accessed. For example, the next step in Figure 5 would be to wait until QSF went LOW (indicating that row-1 data is shifting out the lower SAM) and then transfer the upper half of row 1 to the upper SAM. if the half boundry is reached, before a SRT is done for the half, a Tap address of "0" will be used. Access will start at 0 if going to the lower half, 128 if going to the upper. See Figure 6.

WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of the WRITE TRANSFER is identical to that of the READ TRANSFER described previously except (ME)/WE and SE must be LOW when RAS goes LOW. The row address indicates the DRAM row to which the SAM data registers will be written. The column address (Tap) indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. A WRITE TRANSFER changes the direction of the SAM I/O buffers to the input mode. QFS is LOW if access is to the lower half of the SAM, HIGH if to the upper.

PSEUDO WRITE TRANSFER (SERIAL-INPUT-MODE ENABLE)

The PSEUDO WRITE TRANSFER cycle is used to change the direction of SAM port from output to input without performing a WRITE TRANSFER cycle. A PSEUDO WRITE TRANSFER cycle with SE held HIGH instead of LOW. The DRAM data will not be disturbed and the SAM will be ready to accept input data.

ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

The operation of the ALTERNATE WRITE TRANSFER is identical to the WRITE TRANSFER except that the DSF pin is HIGH and $(\overline{ME})/\overline{WE}$ is LOW when \overline{RAS} goes LOW, allowing \overline{SE} to be a "don't care." This allows the outputs to be disabled using \overline{SE} during a WRITE TRANSFER cycle.

POWER-UP AND INITIALIZATION

When Vcc is initially supplied or when refresh is interrupted for more than 8ms, the MT42C8128 must be initialized.

After Vcc is at specified operating conditions, for $100\mu s$ minimum, eight \overline{RAS} cycles must be executed to initialize the dynamic memory array. When the device is initialized the DRAM I/O pins (DQs) are in a High-Z state, regardless of the state of $\overline{(TR)}/\overline{OE}$. The DRAM array will contain random data. QSF will be drawing data.

The SAM portion of the MT42C8128 is completely static in operation and does not require refresh or initialization. The SAM port will power-up in the serial input mode (WRITE TRANSFER) and the I/O pins (SDQs) will be High-Z, regardless of the state of $\overline{\text{SE}}$ a,b. The mask and color register will contain random data after power-up.

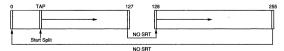


Figure 6
SPLIT SAM TRANSFER

MULTIPORT DRAM

TRUTH TABLE

CODE	FUNCTION		RAS	FALLING	EDGE		CAS FALL	A0 -	A8 ¹	DQ1 -	DQ8 ²	REGISTERS	
			TR / OE	ME/WE	DSF	SE	DSF	RAS	CAS A8 = X	RAS	CAS ³ WE	MASK	COLOR
	DRAM OPERATIONS												
CBR	CAS-BEFORE-RAS REFRESH	0	Х	1	Х	Х	Х		Х		Х	Х	Х
ROR	RAS-ONLY REFRESH	1	1	X	X	X	_	ROW		X	_	Х	X
RW	NORMAL DRAM READ OR WRITE	1	1	1	0	Х	0	ROW	COLUMN	Х	VALID	Х	X
RWNM	NONPERSISTENT (LOAD AND USE) MASKED WRITE TO DRAM	1	1	0	0	х	0	ROW	ROW COLUMN		VALID DATA	LOAD & USE	Х
RWOM	PERSISTENT (USE REGISTER) MASKED WRITE TO DRAM	1	1	0	1	Х	0	ROW	COLUMN	х	VALID DATA	USE	х
BW	BLOCK WRITE TO DRAM (NO DATA MASK)	1	1	1	0	×	1	ROW COLUMN (A2 - A7)		Х	COLUMN MASK	Х	USE
BWNM	NONPERSISTENT (LOAD & USE) MASKED BLOCK WRITE TO DRAM	1	1	0	0	Х	1	ROW COLUMN		WRITE MASK	COLUMN MASK	LOAD & USE	USE
BWOM	PERSISTENT (USE MASKED REGISTER) MASKED BLOCK WRITE TO DRAM	1	1	0	1	Х	1	ROW	COLUMN (A2 - A7)	X	COLUMN MASK	USE	USE
	REGISTER OPERATIONS												
LMR	LOAD MASK REGISTER	1	1	1	1	х	0	ROW⁴	х	х	WRITE MASK	LOAD	X
LCR	LOAD COLOR REGISTER	1	1	1	1	х	1	ROW⁴	х	Х	COLOR DATA	Х	LOAD
	TRANSFER OPERATIONS												
RT	READ TRANSFER (DRAM-TO-SAM TRANSFER)	1	0	1	0	X	Х	ROW	TAP ⁵	Х	Х	Х	Х
SRT	SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)	1	0	1	1	Х	Х	ROW	TAP ⁵	Х	Х	Х	Х
WT	WRITE TRANSFER (SAM-TO-DRAM TRANSFER)	1	0	0	0	0	Х	ROW	TAP ⁵	Х	х	Х	Х
PWT	PSEUDO WRITE TRANSFER (SERIAL-INPUT- MODE ENABLE)	1	0	0	0	1	Х	ROW⁴	TAP ⁵	Х	Х	Х	Х
AWT	ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)	1	0	0	1	Х	х	ROW	TAP ⁵	х	х	Х	х

- NOTE: 1. These columns show what must be present on the A0-A8 inputs when RAS falls and A0-A7 when CAS falls.
 - 2. These columns show what must be present on the DQ1-DQ8 inputs when RAS falls and when CAS falls.
 - 3. On WRITE cycles, the input data is latched at the falling edge of CAS or ME/WE, whichever is later. Similarly, on READ cycles, the output data is latched at the falling edge of CAS or TR/OE, whichever is later.
 - 4. The ROW that is addressed will be refreshed, but no particular ROW address is required.
 - 5. This is the SAM location that the first SC cycle will access. For Split SAM transfers, the Tap will be the first address location accessed of the "new" SAM half after the boundary of the current half is reached (127 for lower half, 255 for upper half).

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Operating Temperature, Ta(Ambient)	0°C to +70°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{A} \leq 70^{\circ}C)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	Vін	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_{\Delta} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
INPUT LEAKAGE CURRENT (any input (0V≤Vin≤Vcc), all other pins not under test = 0V)	lL l	-10	10	μА	
OUTPUT LEAKAGE CURRENT (DQ, SDQ disabled, 0V≤Vouт≤Vcc)	loz	-10	10	μА	
OUTPUT LEVELS Output High Voltage (lout = -2.5mA)	Vон	2.4		V	
Output Low Voltage (Iout = 2.5mA)	Vol		0.4	V	1

CAPACITANCE

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: Ao-As	CI1		5	pF	2
Input Capacitance: RAS, CAS, ME/WE, TR/OE, SC, SE, DSF	CI2		8	pF	2
Input/Output Capacitance: DQ, SDQ	CI/O		9	pF	2
Output Capacitance: QSF	Co		9	pF	2

CURRENT DRAIN, SAM IN STANDBY

$(0^{\circ}C \le I_{A} \le 70^{\circ}C; \ Vcc = 5.0V \pm 10\%)$		MAX				
PARAMETER/CONDITION	SYMBOL	-8	-10	-12	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC (MIN))	Icc1	90	80	70	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL; CAS = Cycling: ^t PC = ^t PC (MIN))	Icc2	70	60	50	mA	3, 4
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS=CAS=VIH after 8 RAS cycles min)	Іссз	10	10	10	mA	
REFRESH CURRENT: RAS-ONLY (RAS=Cycling; CAS=VIH)	Icc4	90	80	70	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS=Cycling)	Icc5	80	70	60	mA	3, 5
SAM/DRAM DATA TRANSFER	Icce	95	85	75	mΔ	3

CURRENT DRAIN, SAM ACTIVE (tSC = MIN)

$(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$			MAX			
PARAMETER/CONDITION	SYMBOL	-8	-10	-12	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling: ^t RC = ^t RC (MIN))	Icc7	130	120	110	mA	3, 4
OPERATING CURRENT: FAST PAGE MODE (RAS = VIL; CAS = Cycling: ^t PC = ^t PC (MIN))	Icc8	110	100	90	mA	3, 4
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS=CAS=VIH after 8 RAS cycles min)	Icc9	50	45	40	mA	3, 4
REFRESH CURRENT: RAS-ONLY (RAS=Cycling; CAS=Viн)	Icc10	130	120	110	mA	3, 4
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS=Cycling)	Icc11	120	110	100	mA	3, 4, 5
SAM/DRAM DATA TRANSFER	ICC12	135	125	115	mA	3, 4

DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS			-8 -10			-	12		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	^t RC	150		180		210		ns	
READ-MODIFY-WRITE cycle time	^t RWC	205		235		280		ns	
FAST-PAGE-MODE READ or WRITE	t _{PC}	45		55		65		ns	
cycle time					1 1			l	
FAST-PAGE-MODE READ-MODIFY-WRITE	tPRWC	100		110		140		ns	
cycle time								ļ	
Access time from RAS	tRAC		80		100		120	ns	14
Access time from CAS	^t CAC		20		25		30	ns	15
Access time from (TR)/OE	^t OE		20		25		30	ns	
Access time from column address	^t AA		40		50		60	ns	
Access time from CAS precharge	t _{CPA}		45		55		65	ns	
RAS pulse width	t _{RAS}	80	10,000	100	10,000	120	10,000	ns	
RAS pulse width (FAST PAGE MODE)	t _{RASP}	80	100,000	100	100,000	120	100,000	ns	
RAS hold time	t _{RSH}	20		25		30		ns	
RAS precharge time	t _{RP}	60		70		80		ns	
CAS pulse width	t _{CAS}	20	10,000	25	10,000	30	10,000	ns	
CAS hold time	t _{CSH}	80		100		120		ns	
CAS precharge time	^t CPN	15		15		20		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		15		ns	
RAS to CAS delay time	^t RCD	20	55	20	70	25	85	ns	17
CAS to RAS precharge time	t _{CRP}	5		5		10		ns	
Row address setup time	t _{ASR}	0		0		0		ns	
Row address hold time	^t RAH	12		15		15		ns	
RAS to column	t _{RAD}	17	40	20	50	20	60	ns	18
address delay time									
Column address setup time	t _{ASC}	0		0		0		ns	
Column address hold time	^t CAH	20		20		25		ns	
Column address hold time	t _{AR}	60		70		85		ns	
(referenced to RAS)									
Column address to	t _{RAL}	40		50		60		ns	
RAS lead time									
Read command setup time	t _{RCS}	0		0		0		ns	
Read command hold time	t _{RCH}	0		0		0		ns	19
(referenced to CAS)									
Read command hold time	f command hold time tRRH 0 0			0		ns	19		
(referenced to RAS)	ferenced to RAS)								
CAS to output in Low-Z	tCLZ	0		0		0		ns	
Output buffer turn-off delay	^t OFF	0	20	0	20	0	30	ns	20, 23
Output Disable	tOD	0	20	0	20	0	30	ns	23
Output Disable hold time from start of write	^t OEH		15		15		20	ns	27
Output Enable to RAS delay	^t ORD		0		0		0	ns	

DRAM TIMING PARAMETERS (Continued)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS			8		10		12		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command setup time	twcs	0		0		0		ns	21
Write command hold time	twch	15		20		25		ns	
Write command hold time (referenced to RAS)	^t WCR	60		70		85		ns	
Write command pulse width	^t WP	15		15		20		ns	
Write command to RAS lead time	t _{RWL}	20		20		25		ns	
Write command to CAS lead time	t _{CWL}	20		20		25		ns	
Data-in setup time	t _{DS}	0		0		0		ns	22
Data-in hold time	t _{DH}	20		20		25		ns	22
Data-in hold time (referenced to RAS)	^t DHR	60		70		90		ns	
RAS to WE delay time	t _{RWD}	110		130		160		ns	21
Column address to WE delay time	^t AWD	70		80		100		ns	21
CAS to WE delay time	tCWD	50		55		70		ns	21
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	9, 10
Refresh period (512 cycles)	t _{REF}		8		8		8	ms	
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS REFRESH)	^t CSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS REFRESH)	^t CHR	30		30		30		ns	5
ME/WE to RAS setup time	twsR	0		0		0		ns	
ME/WE to RAS hold time	^t RWH	10		15		15		ns	
Mask Data to RAS setup time	t _{MS}	0		0		0		ns	
Mask Data to RAS hold time	^t MH	10		15		15		ns	

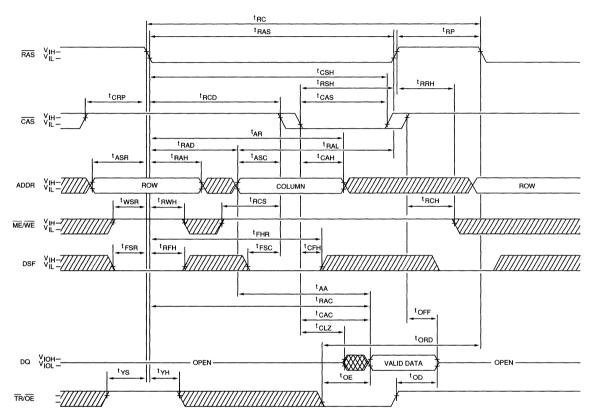
TRANSFER AND MODE CONTROL TIMING PARAMETERS ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes 6, 7, 8, 9, 10) (0° C \leq T $_\Delta$ \leq + 70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS -10 UNITS NOTES PARAMETER MIN MAX MIN MAX MIN MAX SYM TRANSFER command to RAS setup time ^tTLS 0 0 0 25 ns t_{TI H} TRANSFER command to RAS hold time 10.000 10.000 12 15 10.000 15 ns 25 t_{BTH} 90 TRANSFER command to RAS hold time 70 10.000 10.000 10.000 80 ns 25 (REAL-TIME READ-TRANSFER only) TRANSFER command to CAS hold time t_{CTH} 20 25 30 25 ns (REAL-TIME READ-TRANSFER only) TRANSFER command to column address hold ^tATH 25 30 35 25 time (for REAL TIME READ TRANSFER only) t_{TSL} TRANSFER command to SC lead time 5 5 5 ns 25 t_{TRL} TRANSFER command to RAS lead time 0 0 0 25 ns TRANSFER command to RAS delay time ^tTRD 15 15 15 25 ns TRANSFER command to CAS time ^tTCL 0 0 0 25 ns t_{TCD} TRANSFER command to CAS delay time 15 15 15 25 ns TSD First SC edge to Transfer 10 10 10 25 ns command delay time Serial output buffer turn-off t_{SDZ} 10 35 40 50 10 10 ns delay from RAS t_{SRS} SC to RAS setup time 30 30 40 ns ^tSRD RAS to SC delay time 20 25 30 ns Serial data input to SE delay time ^tSZE 0 0 0 ns RAS to SD buffer turn-on time t_{SRO} 10 15 15 ns Serial data input delay from RAS ^tSDD 45 55 50 ns Serial data input to RAS delay time ^tszs 0 0 0 ns t_{ESR} Serial-input-mode enable 0 0 0 ns (SE) to RAS setup time t_{REH} Serial-input-mode enable 12 15 15 ns (SE) to BAS hold time t_{YS} NONTRANSFER command n O 26 0 ns to RAS setup time NONTRANSFER command to RAS hold time ^tYH 12 15 15 26 ^tFSR DSF to RAS setup time 0 0 0 ns t_{RFH} DSF to RAS hold time 12 15 15 ns tsQD SC to QSF delay time 25 30 35 ns SPLIT TRANSFER setup time tsts 30 35 40 ns tSTH SPLIT TRANSFER hold time 30 35 40 ns t_{RQD} RAS to QSF delay time 105 65 85 ns t_{FHR} DSF to RAS hold time 60 65 ns DSF to CAS Set up time †FSC 0 0 0 ns DSF to CAS hold time t_{CFH} 15 20 ns TR/OE to QSF delay time ^tTQD 25 30 35 ns tCQD CAS to QSF delay time 35 40 45 ns RAS to first SC delay t_{RSD} 80 95 105 ns t_{CSD} CAS to first SC delay 20 25 35 ns Column address valid to first SC delay ^tASD 45 55 65 ns

SAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Notes 6, 7, 8, 9, 10) (0° C \leq T $_{A}$ \leq + 70°C; Vcc = 5.0V \pm 10%)

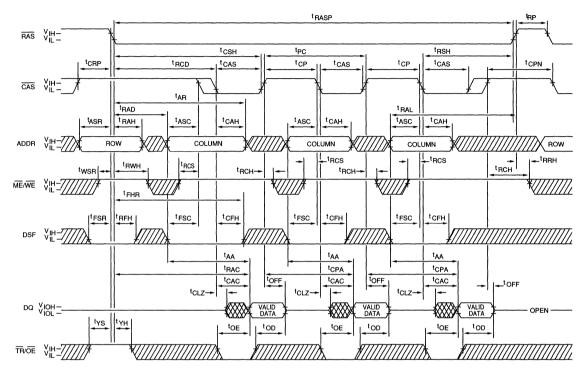
A.C. CHARACTERISTICS	T	_	8		10		12		
PARAMETER	SYM MIN MAX		MIN MAX		MIN MAX		UNITS	NOTES	
Serial clock-cycle time	tsc	25		30		35		ns	
Access time from SC	t _{SAC}		25		25		35	ns	24
SC precharge time (SC LOW time)	t _{SP}	10		10		12		ns	
SC pulse width (SC HIGH time)	t _{SAS}	10		10		12		ns	
Access time from SE	t _{SEA}		15		20		30	ns	24
SE precharge time	t _{SEP}	10		15		15		ns	
SE pulse width	t _{SE}	10		15		15	}	ns))
Serial data-out hold time after SC high	^t soH	5		5		5		ns	24
Serial output buffer turn-off delay from SE	^t SEZ	0	12	0	15	0	25	ns	24
Serial data-in setup time	tSDS	0		0		0		ns	24
Serial data-in hold time	tSDH	10		15		20		ns	24
Serial input (Write) Enable setup time	tsws	0	-	0		0		ns	
Serial input (Write) Enable hold time	tswH	10		15		20		ns	
Serial input (Write) Disable setup time	tswis	0		0		0		ns	
Serial input (Write) Disable hold time	^t swiH	10		15		20		ns	


NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = \underline{I\Delta t}$ with $\Delta V = 3V$ and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the output open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by any eight RAS cycles before proper device operation is assured. The eight RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 8. \overrightarrow{AC} characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- If CAS = VIH, DRAM data output (DQ1-DQ8) is high impedance.
- 12. If $\overline{CAS} = V_{IL}$, DRAM data output (DQ1-DQ8) may contain data from the last valid READ cycle.
- DRAM output timing measured with a load equivalent to 1 TTL gates and 100pF. Output reference levels: VoH = 2.0V; VoL = 0.8V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, DQ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the specified ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as a reference point only; if ^tRAD is greater than the

- specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to Voh or Vol..
- 21. tWCS, tRWD, tAWD and tCWD are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If tWCS ≥ tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{TR}/\overline{OE}$. If ${}^{t}WCS \leq$ $^{
 m t}$ WCS (MIN), the cycle is a LATE-WRITE and $\overline{TR}/\overline{OE}$ must control the output buffers during the write to avoid data contention. If ^tRWD ≥ ^tRWD (MIN), ${}^{t}AWD \ge {}^{t}AWD$ (MIN) and ${}^{t}CWD \ge {}^{t}CWD$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of the output buffers (at access time and until \overline{CAS} goes back to VIH) is indeterminate but the WRITE will be valid, if tOD and tOEH are met. See the LATE-WRITE AC Timing diagram.
- These parameters are referenced to CAS leading edge in EARLY-WRITE cycles and ME/WE leading edge in LATE-WRITE or READ-WRITE cycles.
- 23. During a READ cycle, if TR/OE is LOW then taken HIGH, DQ goes open. The DQs will go open with OE or CAS, whichever goes HIGH first.
- 24. SAM output timing is measured with a load equivalent to 1 TTL gate and 50pF. Output reference levels: Voh = 2.0V; Vol = 0.8V.
- 25. Transfer command means that $\overline{TR}/\overline{OE}$ is LOW when \overline{RAS} goes LOW.
- 26. Non transfer command means that $\overline{TR}/\overline{OE}$ is HIGH when \overline{RAS} goes LOW.
- 27. LATE-WRITE and READ-MODIFY-WRITE cycles must have ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if CAS remains LOW and OE is taken LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.

DRAM READ CYCLE



DON'T CARE

₩ undefined

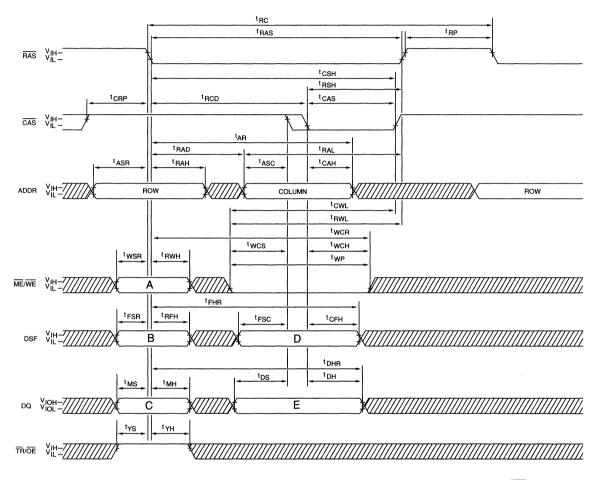
DRAM FAST-PAGE-MODE READ CYCLE

DON'T CARE

₩ UNDEFINED

NOTE: 1. WRITE cycles or READ-MODIFY-WRITE cycles may be mixed with READ cycles while in FAST PAGE MODE.

WRITE CYCLE FUNCTION TABLE¹

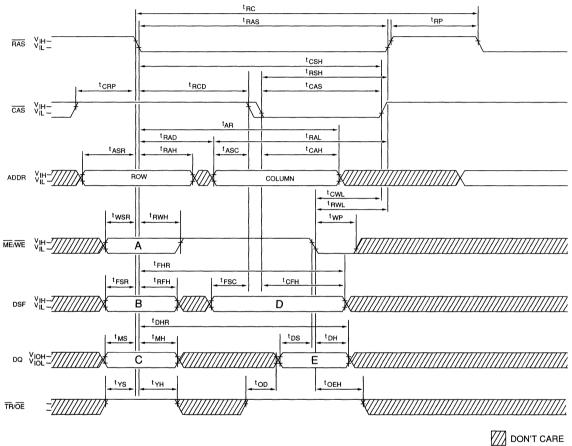

	LO	GIC STATE	S		
R/	S Falling Ed	ige	CAS Fal	ling Edge	FUNCTION
A ME/WE	B DSF	C DQ (Input)	D DSF	E ² DQ (Input)	. 5.1.5.1.5.1
1	0	Х	0	DRAM Data	Normal DRAM WRITE (or READ)
0	0	Write Mask	0	DRAM Data (Masked)	NONPERSISTENT (Load and Use) MASKED WRITE to DRAM
0	1	Х	0	DRAM Data (Masked)	PERSISTENT (Use Register) MASKED WRITE to DRAM
1	0	Х	1	Column Mask	BLOCK WRITE to DRAM (No Data Mask)
0	0	Write Mask	1	Column Mask	NONPERSISTENT (Load and Use) MASKED BLOCK WRITE to DRAM
0	1	Х	1	Column Mask	PERSISTENT (Use Register) MASKED BLOCK WRITE to DRAM
1	1	Х	0	Write Mask	Load Mask Data Register
1	1	х	1	Color Data	Load Color Register

^{1.} Refer to this function table to determine the logic states of "A", "B", "C", "D" and "E" for the WRITE cycle timing diagrams on the following pages.

^{2.} CAS or ME/WE, whichever occurs later.

DRAM EARLY-WRITE CYCLE¹

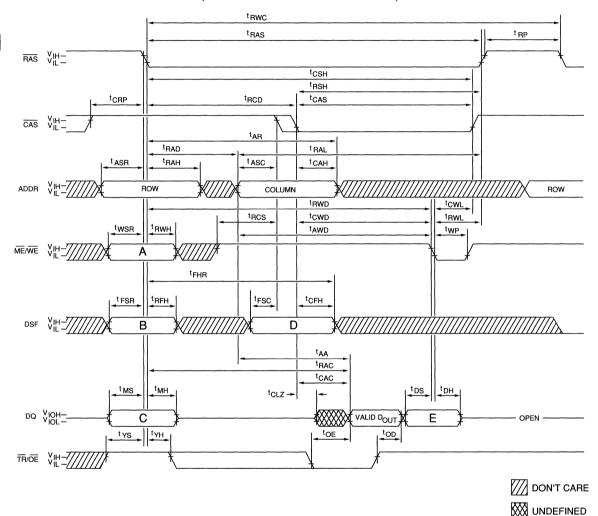
DON'T CARE


₩ undefined

NOTE: 1. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

NOTE:

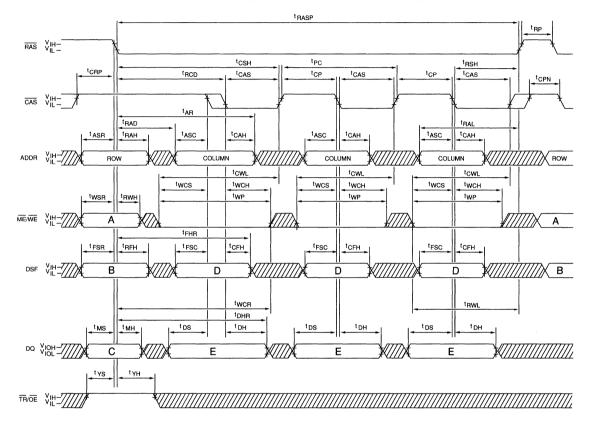
DRAM LATE-WRITE CYCLE



₩ undefined

1. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

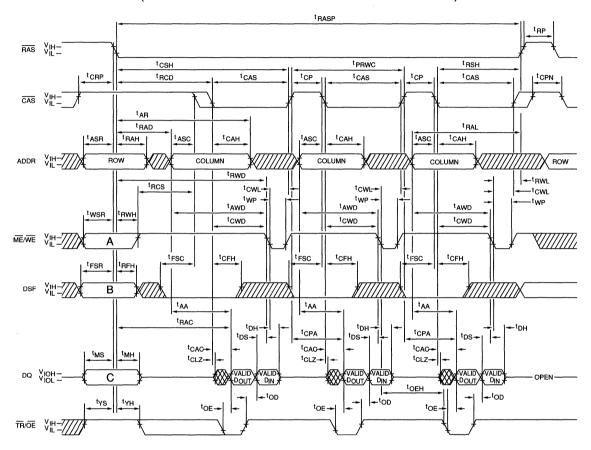
DRAM READ-WRITE CYCLE (READ-MODIFY-WRITE CYCLE)



VYY

NOTE: 1. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

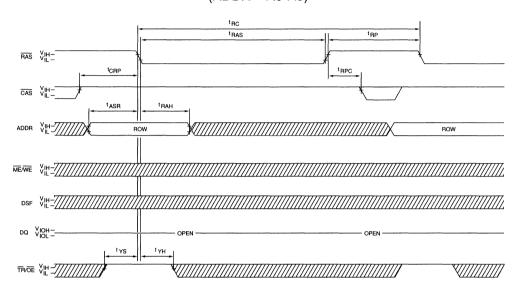
DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE


DON'T CARE

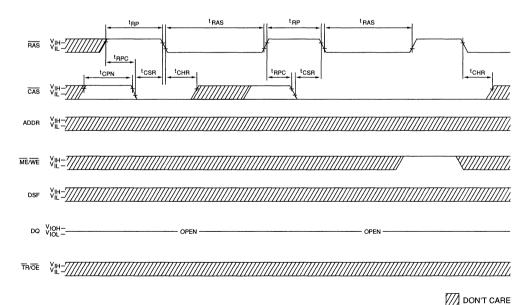
₩ undefined

- READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST PAGE MODE.
- 2. The logic states of "A", "B", "C", "D" and "E" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

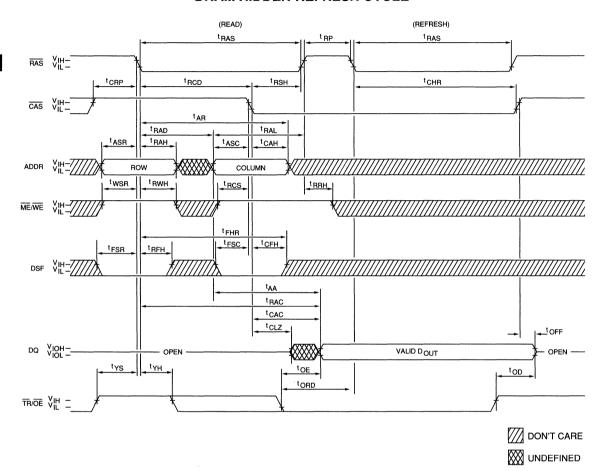
DRAM FAST-PAGE-MODE READ-WRITE CYCLE (READ-MODIFY-WRITE OR LATE-WRITE CYCLES)


DON'T CARE

W UNDEFINED

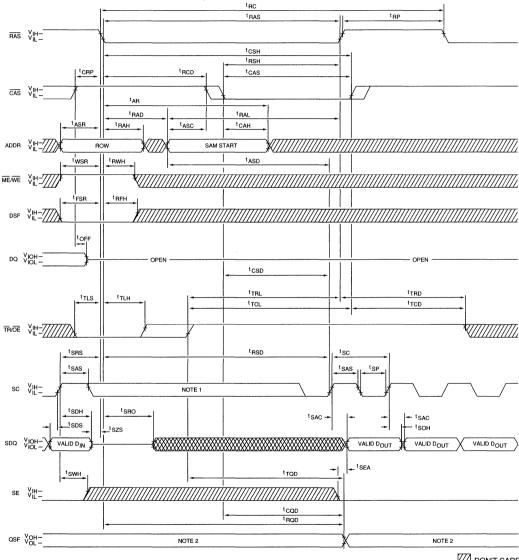

- 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST PAGE MODE. Use the Write Function Table to determine the proper DSF state for the desired WRITE operation.
- The logic states of "A", "B" and "C" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM RAS-ONLY REFRESH CYCLE (ADDR = A0-A8)


CAS-BEFORE-RAS REFRESH CYCLE

₩ UNDEFINED

DRAM HIDDEN-REFRESH CYCLE



NOTE: 1. A HIDDEN REFRESH may also be performed after a WRITE cycle. In this case ME/WE = LOW (when CAS goes LOW) and TR/OE = HIGH.

READ TRANSFER (DRAM-TO-SAM TRANSFER)

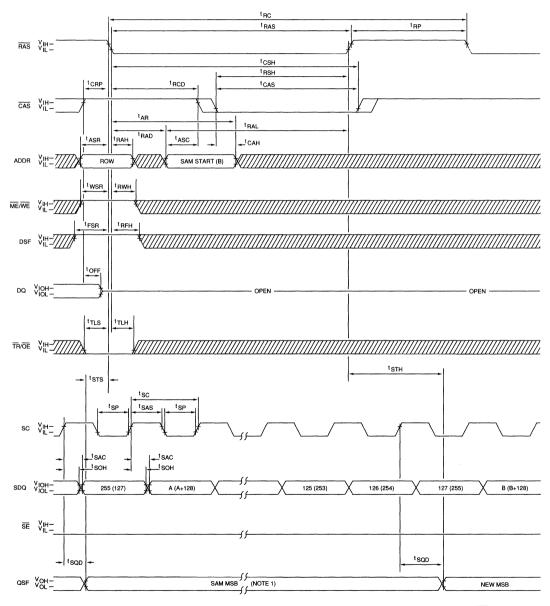
(When part was previously in the SERIAL INPUT mode)

DON'T CARE

- 1. There must be no rising edges on the SC input during this time period.
- 2. QSF = 0 when the Lower SAM (bits 0-127) is being accessed. QSF = 1 when the Upper SAM (bits 128-255) is being accessed.

REAL-TIME READ TRANSFER (DRAM-TO-SAM TRANSFER)

(When part was previously in the SERIAL OUTPUT mode)

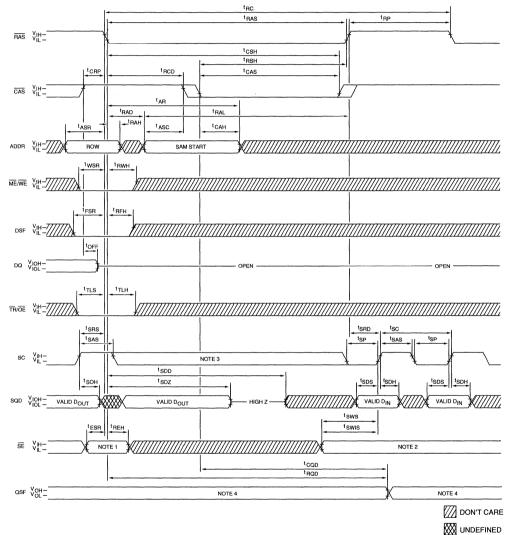

DON'T CARE

NOTE: 1. The SE pulse is shown to illustrate the SERIAL OUTPUT ENABLE and DISABLE timing. It is not required.

QSF = 0 when the Lower SAM (bits 0-127) is being accessed.
 QSF = 1 when the Upper SAM (bits 128-255) is being accessed.

SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)

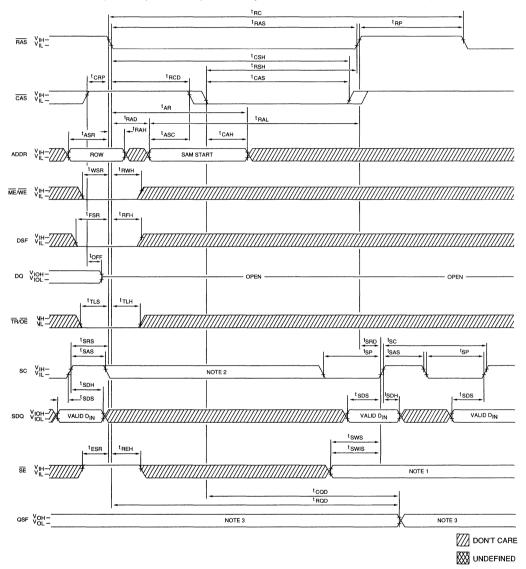
DON'T CARE


₩ undefined

NOTE: 1. QSF = 0 when the Lower SAM (bits 0–127) is being accessed. QSF = 1 when the Upper SAM (bits 128–255) is being accessed.

WRITE TRANSFER and PSEUDO WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

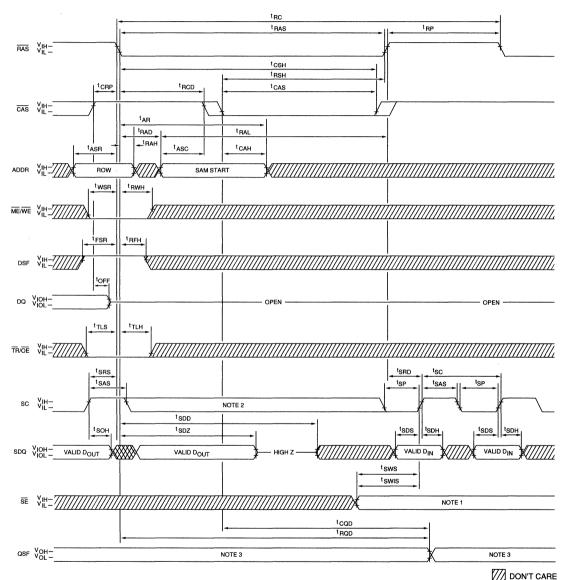
(When part was previously in the SERIAL OUTPUT mode)


- 1. If SE is LOW, the SAM data will be transferred to the DRAM.

 If SE is HIGH, the SAM data will not be transferred to the DRAM (SERIAL-INPUT-MODE ENABLE cycle).
- 2. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
- 3. There must be no rising edges on the SC input during this time period.
- 4. STS is LOW to select SAMa or HIGH to select SAMb
- QSF = 0 when the Lower SAM (bits 0–127) is being accessed.
 QSF = 1 when the Upper SAM (bits 128–255) is being accessed.

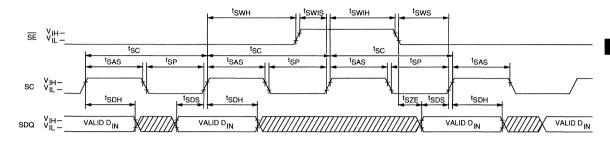
WRITE TRANSFER (SAM-TO-DRAM TRANSFER)

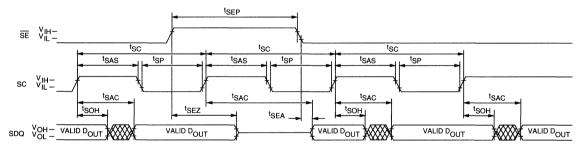
(When part was previously in the SERIAL INPUT mode)



- 1. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
- 2. There must be no rising edges on the SC input during this time period.
- QSF = 0 when the Lower SAM (bits 0–127) is being accessed.
 QSF = 1 when the Upper SAM (bits 128–255) is being accessed.

W UNDEFINED


ALTERNATE WRITE TRANSFER (SAM-TO-DRAM TRANSFER)


- SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
- 2. There must be no rising edges on the SC input during this time period.
- QSF = 0 when the Lower SAM (bits 0–127) is being accessed.
 QSF = 1 when the Upper SAM (bits 128–255) is being accessed.

SAM SERIAL INPUT

SAM SERIAL OUTPUT

DON'T CARE

₩ UNDEFINED

VRAM

256K x 8 DRAM WITH 512 x 8 SAM

FEATURES

- Industry standard pin-out timing, and functions
- High-performance CMOS silicon gate process
- Single +5V ±10% power supply
- Inputs and outputs are fully TTL and CMOS compatible
- Refresh modes: RAS ONLY, CAS-BEFORE-RAS, and HIDDEN
- 512-cycle refresh within 8ms
- Optional FAST PAGE MODE access cycles
- Dual port organization: 256K x 8 DRAM port
 512 x 8 SAM port
- No refresh required for Serial Access Memory
- Low power: 20mW standby; 300mW active, typical
- Fast access times 70ns random, 20ns serial

SPECIAL FUNCTIONS

- JEDEC Standard Manditory Function set
- PERSISTENT MASKED WRITE
- MASKED WRITE TRANSFER/SERIAL INPUT
- MASKED SPLIT WRITE TRANSFER
- BLOCK WRITE (MASK)
- MASKED FLASH WRITE

OPTIONS	MARKING		
• Timing (DRAM, SAM)			
70ns, 20ns	- 7		
80ns, 25ns	- 8		
100ns, 30ns	-10		
Packages			
Plastic SOJ	DJ		

GENERAL DESCRIPTION

The MT42C8256 is a high speed, dual port CMOS dynamic random access memory, or video RAM (VRAM) containing 2,097,152 bits. These bits may be accessed by an 8-bit wide DRAM port or by a 512 x 8 bit serial access memory (SAM) port. Data may be transferred bidirectionally between the DRAM and the SAM.

The DRAM portion of the VRAM is functionally identical to the MT4C4256 (256K \times 8-bit DRAM), with the addition of MASKED WRITE, BLOCK WRITE and FLASH WRITE. Eight 512-bit data registers make up the serial access memory portion of the VRAM. Data I/O and internal data transfer are accomplished using three separate bidirectional data paths: the 8-bit random access I/O port, the eight internal 512 bit wide paths between the DRAM and the SAM, and the 8-bit serial I/O port for the SAM. The rest of

PIN ASSIGNMENT (Top View) 40-Pin SOJ (E-12)40 Vcc Vss SC [2 39 SDQ8 SDQ1 3 38 SDQ7 SDQ2 4 37 SD06 36 SDQ3 5 SDQ5 SDQ4 6 35 □ SE DQ8 TR/OE 7 34 Б 8 33 DO1 DQ7 DQ6
DQ5
Vss 32 DQ2 9 DQ6 DQ3 10 31 DQ5 30 DQ4 11 29 DSF1 Vss [] 12 ME/WE 13 28 □ NC 27 CAS RAS □ 14 1 QSF Α8 15 26 25 Α7 16 Α0 24 A6 17 Α1 23 ∏ A2 **A5** 18 Α4 19 22 А3 20 21 Vss Vcc

the circuitry consists of the control, timing, and address decoding logic.

Each of the ports may be operated asynchronously and independently of the other except when data is being transferred internally between them. As with all DRAMs, the VRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of \overline{RAS} addresses are executed at least every 8ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and the SAM counts as a refresh cycle. The SAM portion of the DPDRAM is fully static and does not require any refresh.

The operation and control of the MT42C8256 is similar to with the operation of the MT42C8128 ($128K \times 8 VRAM$).

TRIPLE PORT DRAM

256K x 4 DRAM WITH **DUAL 512 x 4 SAMS**

FEATURES

- Three asynchronous, independent, data access ports
- Fast access times 80ns random, 25ns serial
- Operation and control compatible with 1 Meg VRAMS
- High performance CMOS silicon gate process
- Low power: 15mW standby; 450mW active, typical
- 512-cycle refresh within 8ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- FAST PAGE MODE access cycles
- Two, bidirectional Serial Access Memories (SAMs)
- Fully static SAM and Mask Register, no refresh required
- 2048-bit Transfer Mask Register
- SERIAL MASK DATA INPUT mode

SPECIAL FUNCTIONS

- MASKED WRITE (Write-Per-Bit)
- PERSISTENT MASKED WRITE
- SPLIT READ and WRITE TRANSFERs
- BLOCK WRITE

• BIT MASKED TRANSFERs

OPTIONS • Timing (DRAM, SAMs)	MARKING
80ns, 25ns	- 8
100ns, 30ns	-10
120ns, 35ns	-12
 Packages Plastic SOJ (400 mil) 	DJ

 Functionality OSF output (indicates SAM-half accessed) 43C4257 SSF input (Split SAM special function, stop count) 43C4258

GENERAL DESCRIPTION

The MT43C4257/8 are high speed, triple port CMOS dynamic random access memories (TPDRAMs) containing 1,048,576 bits. Data may be accessed by a 4 bit wide DRAM port or by either of two independently clocked 512 x 4-bit serial access memory (SAM) ports. Data may be transferred bidirectionally between the DRAM and either SAM.

The DRAM portion of the TPDRAM is functionally identical to the MT4C4256 (256K x 4 DRAM). Eight 512-bit data registers make up the serial access memory portions of the TPDRAM. Data I/O and internal data transfer are accomplished using five separate bidirectional data paths; the 4bit random access I/O port, the pair of internal 2048 bit wide paths between the DRAM and the SAMs, and the pair

PIN ASSIGNMENT (Top View) 40-Pin SOJ (E-12)SDQb1 39 SDQb4 SDQb2 [3 TRM [4 SCa [5 SDQt SEb MKD SDQb3 38 37 36 SDQa1 6 SDQa2 7 35 SD0a4 SDQa2 34 SDQa3 8 33 TR/OF DQ1 32 DQ4 10 DQ2 31 DQ3 30 ME/WE 12 29 QSFb/SSFb * 13 28 14 27 15 DSF2 26 QSFa/SSFa * 16 25 Α0 Δ8 24 17 Α6 Α1 23 A5 18 A2 19 22 А3 Vcc 20 21 * MT43C4257/MT43C4258

of 4-bit serial I/O ports for the SAMs. The rest of the circuitry consists of the control, timing and address decoding logic.

All three ports may be operated asynchronously and independently of the others except when data is being internally transferred between the DRAM and either SAM.

Each of the 2048 bits involved in an internal transfer may be individually masked by performing a BIT MASKED TRANSFER operation. The 512 x 4-bit Bit Mask Data register can be parallel loaded from the DRAM, from either SAM, or serial loaded through the MKD serial input.

As with all DRAMs, the TPDRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of \overline{RAS} addresses are executed at least every 8ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and either SAM counts as a refresh cycle. The SAM portions of the TPDRAM are fully static and do not require refresh.

The operation and control of the MT43C4257/8 are compatible with the operation of the MT42C4256 (256K x 4 Video RAM). However, the MT43C4257/8 offer an additional SAM and special features that may be used to enhance system performance.

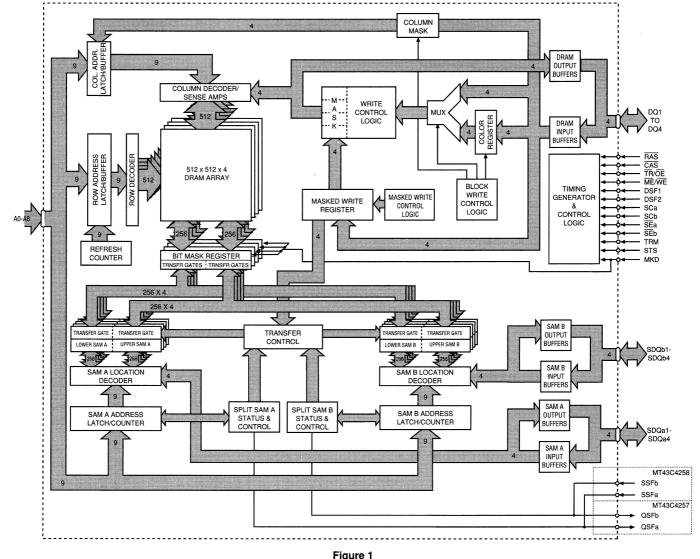


Figure 1 MT43C4257/8 BLOCK DIAGRAM

PIN DESCRIPTIONS

SOJ PIN NUMBER(S)	FUTURE PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
5		SCa	Input	Serial Clock, SAMa: Clock input to the serial address counter for the SAMa registers and strobe for SAMa control and data inputs.
1		SCb	Input	Serial Clock, SAMb: Clock input to the serial address counter for the SAMb registers and strobe for SAMb control and data inputs.
8		TR/OE	Input	Transfer Enable: Enables an internal TRANSFER operation at the falling edge of $\overline{\text{RAS}}$, or
				Output Enable: Enables the DRAM output buffers when taken LOW after RAS goes LOW (CAS must also be LOW), otherwise the output buffers are in a high impedance state.
12 ME/WE II	Input	Mask Enable: If ME/WE is LOW at the falling edge of RAS, a MASKED WRITE cycle is performed, or		
				Write Enable: ME/WE is also used to select a READ (ME/WE = H) or WRITE (ME/WE = L) cycle when accessing the DRAM. This includes a READ TRANSFER (ME/WE = H) or WRITE TRANSFER (ME/WE = L).
33		SEa	Input	Serial Port Enable SAMa: SEa enables Port A serial I/O buffers and allows a serial READ or WRITE operation to occur; otherwise, the output buffers are in a High-Z state. SEa is also used during a TRANSFER operation to indicate whether a WRITE TRANSFER or a SERIAL-INPUT-MODE ENABLE (PSEUDO WRITE TRANSFER) cycle is performed.
37		SEb	Input	Serial Port Enable, SAMb: SEb enables Port B serial I/O buffers and allows a serial READ or WRITE operation to occur; otherwise, the output buffers are in a High-Z state. SEb is also used during a TRANSFER operation to indicate whether a WRITE TRANSFER or a SERIAL-INPUT-MODE ENABLE (PSEUDO WRITE TRANSFER) cycle is performed.
29		DSF1	Input	Special Function (Control) 1: DSF1 is used to indicate which special functions are used on a particular access or transfer cycle See the Functional Truth Table for a detailed description.
15		DSF2	Input	Special Function (Control) 2: DSF2 is used to indicate which special functions are used on a particular access or transfer cycle See the Functional Truth Table for a detailed description.
14		RAS	Input	Row Address Strobe: RAS is used to clock in the 9 row-address bits and as a strobe for control and data inputs.
27		CAS	Input	Column Address Strobe: CAS is used to clock in the 9 column-address bits, enable the DRAM output buffers (along with TR/OE), and as a strobe for control and data inputs.

PIN DESCRIPTIONS (Continued)

SOJ PIN NUMBER(S)	FUTURE PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
25, 24, 23 22, 19, 18 17, 21, 16	•	A0 - A8	Input	Address Inputs: For DRAM operation, these inputs are multiplexed and clocked by RAS and CAS to select one 4-bit word out of the 256K available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when RAS goes LOW) and the SAM start address (when CAS goes LOW).
13		STS	Input	SAM Transfer Select: The state of STS at \overline{RAS} time determines which SAM is involved in a transfer (SAMa=LOW, SAMb=HIGH).
36		MKD	Input	Mask Data Input: MKD is used during BIT MASK REGISTER LOAD cycles to enable or disable the serial mask input mode (SMI). If SMI is enabled (MKD=HIGH at RAS), then MKD is used as mask data input and is clocked by SCb into the mask data register.
4		TRM	Input	Transfer Mask Select: TRM is used to select between NORMAL TRANSFER cycles and BIT MASKED TRANSFER or BIT MASK REGISTER LOAD cycles.
9, 10, 31, 32		DQ1 - DQ4	Input/ Output	DRAM Data I/O: Data inputs and outputs for the DRAM memory array; inputs for the MASK and COLOR REGISTER load cycles; address mask inputs for BLOCK WRITE cycles.
6, 7, 34, 35		SDQa1-SDQa4	Input/ Output	Serial Data I/O, SAMa: Input, Output, or High-Z.
2, 3, 38, 39		SDQb1-SDQb4	Input/ Output	Serial Data I/O, SAMb: Input, Output, or High-Z.
26		QSFa/SSFa	Output	Split SAM Status, SAMa (MT43C4257): QSFa indicates which half of SAMa is being accessed (Lower = LOW, Upper = HIGH).
			Input	Split SAM Special Function, SAMa (MT43C4258): SSFa=HIGH stops access to current half of SAM and will load the Tap address of the next half into the address pointer. SSFa is synchronized with SCa.
28		QSFb/SSFb	Output	Split SAM Status, SAMb (MT43C4257): QSFb indicates which half of SAMb is being accessed. (Lower = LOW, Upper = HIGH).
			Input	Split SAM Special Function, SAMb (MT43C4258): SSFb=HIGH stops access to current half of SAM and will load the Tap address of the next half into the address pointer. SSFb is synchronized with SCb.
11, 20		Vcc	Supply	Power Supply: +5V ±10%
30, 40		Vss	Supply	Ground

FUNCTIONAL DESCRIPTION

The MT43C4257/8 can be divided into four functional blocks (see Figure 1): the DRAM and its special functions, the Bit Mask Register (BMR), the two Serial Access Memories (SAMs), and the DRAM/SAM/BMR transfer circuitry. All the operations described below are also shown in the AC Timing Diagrams section of this data sheet and are summarized in the Functional Truth Table.

Note:

For dual function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing transfer operations the $\overline{TR}/\overline{OE}$ pin will be shown as $\overline{TR}/\overline{OE}$).

DRAM OPERATION

This section describes the operation of the random access port and the special functions associated with the DRAM.

DRAM REFRESH (ROR, CBR, and HR)

Like any DRAM-based memory, the MT43C4257/8 TPDRAM must be refreshed to retain data. All 512 row address combinations must be accessed within 8ms. The MT43C4257/8 supports CAS-BEFORE-RAS, RAS ONLY and HIDDEN types of refresh cycles.

For the CAS-BEFORE-RAS REFRESH cycle, the row-addresses are generated and stored in an internal address counter. The user need not supply any address data and simply must perform 512 CAS-BEFORE-RAS cycles within the 8ms time period.

For RAS-ONLY REFRESH cycles, the refresh address must be generated externally and applied to the A0-A8 inputs . The DQ pins remain in a High-Z state for both the RAS-ONLY and CAS-BEFORE-RAS cycles.

HIDDEN REFRESH (HR) cycles are performed by toggling \overline{RAS} (while keeping \overline{CAS} LOW) after a READ or WRITE cycle. This performs \overline{CAS} -BEFORE- \overline{RAS} REFRESH cycles but does not disturb the DQ lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row that is being accessed. The SAM and Bit Mask Register portions of the MT43C4257/8 are fully static and do not require any refreshing.

DRAM READ AND WRITE CYCLES (RW)

The DRAM portion of the TPDRAM is nearly identical to standard 256K x 4 DRAMs. However, because several of the DRAM control pins are used for additional functions on this device, several conditions that were undefined or "don't care" states for the DRAM are specified for the TPDRAM. These conditions are highlighted in the following discussion. In addition, the TPDRAM has several special functions that may be used when writing to the DRAM.

The 18 address bits used to select a 4-bit word from the 262,144 available are latched into the chip using the A0-A8, \overline{RAS} , and \overline{CAS} inputs. First, the 9 row-address bits are setup on the address inputs and clocked into the part when \overline{RAS} transitions from HIGH to LOW. Next, the 9 column-address bits are setup on the address inputs and clocked in when \overline{CAS} goes from HIGH to LOW.

For single port DRAMS, the \overline{OE} pin is a "don't care" when \overline{RAS} goes LOW. For the TPDRAM, $(\overline{TR})/\overline{OE}$ is used when \overline{RAS} goes LOW, to select between DRAM and TRANSFER cycles. $(\overline{TR})/\overline{OE}$ must be HIGH at the \overline{RAS} HIGH to LOW transition for all DRAM operations.

If (ME)/WE is HIGH when CAS goes LOW, a DRAM READ operation is performed and the data from the memory cells selected will appear at the DQ1-DQ4 port. The (TR)/OE input must transition from HIGH to LOW sometime after RAS falls to enable the DRAM output port.

For single port DRAMs, \overline{WE} is a "don't care" when \overline{RAS} goes LOW. For the TPDRAM, $\overline{ME}/(\overline{WE})$ is used, when \overline{RAS} goes LOW, to select between a MASKED WRITE cycle or a normal WRITE cycle. If $\overline{ME}/(\overline{WE})$ is LOW at the \overline{RAS} HIGH to LOW transition, a MASKED WRITE operation is selected. For any TPDRAM non-masked access cycle (READ or WRITE), $\overline{ME}/(\overline{WE})$ must be HIGH at the \overline{RAS} HIGH to LOW transition. If $\overline{(ME)}/\overline{WE}$ is LOW when \overline{CAS} goes LOW, a DRAM WRITE operation is performed and the data present on the DQ1-DQ4 data port will be written into the selected memory cells.

The TPDRAM can perform all the normal DRAM cycles: READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE, and FAST-PAGE-MODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

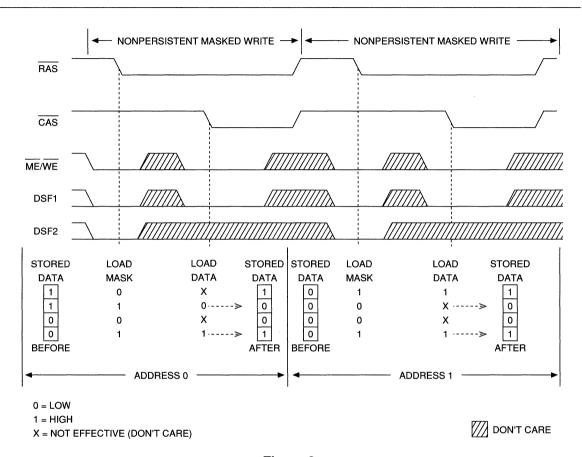


Figure 2
NONPERSISTENT MASKED WRITE EXAMPLE

NONPERSISTENT MASKED WRITE (RWNM)

The MASKED WRITE feature eliminates the need to do a READ-MODIFY-WRITE cycle when changing only certain bits within a 4-bit word. The MT43C4257/8 supports two types of MASKED WRITE cycles, NONPERSISTENT MASKED WRITE and PERSISTENT MASKED WRITE.

If $\overline{\text{ME}}/(\overline{\text{WE}})$, DSF1 and DSF2 are LOW at the $\overline{\text{RAS}}$ HIGH to LOW transition, the data (mask data) present on the DQ1-DQ4 inputs will be written into the mask data register. The mask data acts as an individual write enable for each of the four DQ1-DQ4 pins. If a LOW (logic 0) is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic 1) on a mask data register bit enables the input port and

allows normal WRITE operations to proceed. This convention is used for all masks on the MT43C4257/8. Note that \$\overline{CAS}\$ is still HIGH. When \$\overline{CAS}\$ goes LOW, the bits present on the DQ1-DQ4 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW). The DRAM contents that correspond to the masked bits will not be changed during the WRITE cycle. When using NONPERSISTENT MASKED WRITE, the data present on the DQ inputs is loaded into the mask data register at every falling edge of \$\overline{RAS}\$. FAST PAGE MODE can be used in tandem with NONPERSISTENT MASKED WRITE to write several column locations using the same mask during one \$\overline{RAS}\$ cycle. An example of NONPERSISTENT MASKED WRITE cycle is shown in Figure 2.

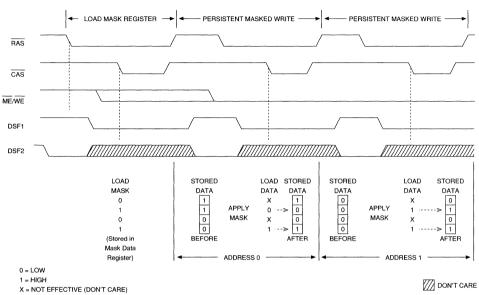
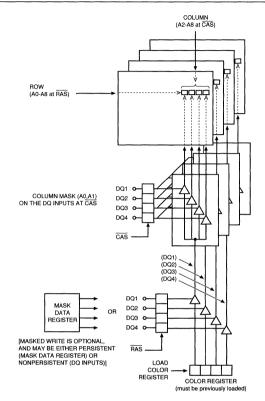


Figure 3
PERSISTENT MASKED WRITE EXAMPLE

PERSISTENT MASKED WRITE (RWOM)

The PERSISTENT MASKED WRITE feature eliminates the need to rewrite the mask data before each MASKED WRITE cycle if the same mask data is being used repeatedly. To initiate a PERSISTENT MASKED WRITE, a LOAD MASK REGISTER cycle is performed by taking $\overline{\text{ME}}/(\overline{\text{WE}})$ and DSF1 HIGH, and DSF2 LOW when $\overline{\text{RAS}}$ goes LOW. The mask data is loaded into the internal register when $\overline{\text{CAS}}$ goes LOW, provided DSF1 is LOW (see the LOAD MASK REGISTER description).

Mask data may also be loaded into the mask register by simply performing a NONPERSISTENT MASKED WRITE before the PERSISTENT MASKED WRITE cycles.


PERSISTENT MASKED WRITE cycles may then be performed by taking ME/(WE) and DSF2 LOW and DSF1 HIGH when RAS goes LOW. The contents of the mask data register will then be used as the mask data for the DRAM inputs. Unlike the NONPERSISTENT MASKED WRITE cycle, the data present at the DQ inputs is not loaded into the mask register when RAS falls. Another PERSISTENT MASKED WRITE cycle may be performed without reloading the register. Figure 3 shows the LOAD MASK REGISTER and PERSISTENT MASKED WRITE cycle operations. The LOAD MASK REGISTER and PERSISTENT MASKED WRITE cycles allow systems that cannot output data at RAS time to perform MASKED WRITE cycles. PERSISTENT MASKED WRITE can also operate in FAST PAGE MODE.

BLOCK WRITE (BW)

If DSF1 is HIGH when $\overline{\text{CAS}}$ goes LOW, the MT43C4257/8 will perform a BLOCK WRITE cycle ($\overline{\text{WE}}$ = "don't care") instead of a normal WRITE cycle. In BLOCK WRITE cycles, the contents of the color register (instead of the DQ inputs) are directly written to four adjacent column locations (see Figure 4). A total of 16 bits will be written simultaneously, improving the normal DRAM fill rate by four times. The color register must be loaded prior to beginning BLOCK WRITE cycles (see LOAD COLOR REGISTER).

The row is addressed as in a normal DRAM WRITE cycle. However, when $\overline{\text{CAS}}$ goes LOW, only the A2-A8 inputs are used. A2-A8 specify the "block" (out of the 128 possible) of four adjacent column locations that will be accessed. When $\overline{\text{CAS}}$ goes LOW, the DQ inputs are then used to determine which combination of the four column locations will be changed. DQ1 acts as a write enable for column location A0=0, A1=0; DQ2 controls column location A0=1, A1=0; DQ3 controls A0=0, A1=1; and DQ4 controls A0=1, A1=1. The write enable controls are active HIGH; a logic 1 enables and a logic 0 disables the WRITE function.

Figure 4 BLOCK WRITE EXAMPLE

The contents of the color register will then be written to the column locations enabled. Each DQ location of the color register is written to the four column locations (or any of the four that are enabled) in the corresponding DQ bit plane. The DQ mask is not used in this mode.

Note: When performing a BLOCK WRITE, WE is a "don't care". This means LATE-WRITEs in the BW mode are not allowed.

NONPERSISTENT MASKED BLOCK WRITE (BWNM)

The MASKED WRITE functions can also be used during BLOCK WRITE cycles. NONPERSISTENT MASKED BLOCK WRITE operates exactly like the normal NONPERSISTENT MASKED WRITE except the mask is now applied to four column locations instead of just one column location.

Like NONPERSISTENT MASKED WRITE, the combination of $\overline{\text{ME}}/(\overline{\text{WE}})$ LOW and DSF1 LOW when $\overline{\text{RAS}}$ goes LOW, initiates a NONPERSISTENT MASK cycle. The DSF pin must be driven HIGH, when $\overline{\text{CAS}}$ goes LOW to perform

a NONPERSISTENT MASKED BLOCK WRITE. By using both the column mask input and the MASKED WRITE function, any combination of the four bit planes may be masked and any combination of the four column locations may be masked.

PERSISTENT MASKED BLOCK WRITE (BWOM)

This cycle is also performed exactly like the normal PERSISTENT MASKED WRITE except that DSF1 is HIGH when CAS goes LOW to indicate the BLOCK WRITE function. Both the mask data register and the color register must be loaded with the appropriate data prior to starting a PERSISTENT MASKED BLOCK WRITE.

DRAM REGISTER OPERATIONS

The MT43C4257/8 contains two 4-bit registers that are used as data registers for special functions. This section describes how to load these registers.

LOAD MASK REGISTER (LMR)

The LOAD MASK REGISTER operation and timing are identical to a normal WRITE cycle except that DSF1 is HIGH when \overline{RAS} goes LOW. As shown in the Truth Table, the combination of $\overline{TR}/(\overline{OE})$, $\overline{ME}/(\overline{WE})$, and DSF1 being HIGH when \overline{RAS} goes LOW indicates the cycle is a REGISTER load cycle. DSF1 is used when \overline{CAS} goes LOW to select the register to be loaded, and must be LOW for a LOAD MASK REGISTER cycle. The data present on the DQ lines will then be written to the mask data register.

Note: For a normal DRAM WRITE cycle, the mask data register is disabled but not modified. The contents of mask data register will not be changed unless a NON-PERSISTENT MASKED WRITE cycle or a LOAD

MASK REGISTER cycle is performed

The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

The mask data register contents are used during PERSISTENT MASKED WRITE and PERSISTENT MASKED BLOCK WRITE cycles to selectively enable writes to the four DQ planes.

LOAD COLOR REGISTER (LCR)

A LOAD COLOR REGISTER cycle is identical to the LOAD MASK REGISTER cycle except DSF1 is HIGH when CAS goes LOW. The contents of the color register are retained until changed by another LOAD COLOR REGISTER cycle (or the part loses power) and are used as data inputs during BLOCK WRITE cycles.

TRANSFER OPERATIONS

This section describes transfer operations between the DRAM and either SAM. The direction of the transfer is specified with respect the DRAM portion of the device. A write is referenced to the DRAM array and a read is referenced from the array.

Note:

The three ports of the TPDRAM are independent and asynchronous to one another. Any or all of the ports may be accessed simultaneously at the maximum allowable frequencies. The only time the ports are synchronized is during transfers to or from the DRAM and SAM portions of the device. A transfer involving a SAM does not affect access from the other SAM port. Both SAMs may be accessed during a DRAM/BMR transfer operation or any other DRAM access cycle other than a SAM transfer.

TRANSFER operations are initiated when $\overline{TR}/\overline{OE}$) is LOW at the falling edge of \overline{RAS} . The state of STS when \overline{RAS} goes LOW indicates which SAM the TRANSFER will address. The state of $\overline{(ME)}/\overline{WE}$ when \overline{RAS} goes LOW indicates the direction of the TRANSFER. At the same time, DSF1 is used to select between normal TRANSFER cycles and SPLIT TRANSFER cycles and DSF2 is used to select between normal TRANSFER cycles and MASKED TRANSFER cycles. A TRANSFER cycle can be performed without dropping \overline{CAS} . In this case, the previously loaded Tap address will be used.

The MT43C4257/8 include a feature called BIT MASKED TRANSFER, which uses a third, 2048-bit data register to individually mask every bit involved in a transfer operation. The BIT MASKED TRANSFER may be applied to either READ or WRITE TRANSFERS. The TRM pin is used to select between NORMAL and BIT MASKED TRANSFER (or BIT MASK REGISTER LOAD) cycles. The type of transfer operation is always selected on the falling edge of RAS.

NORMAL TRANSFERS

The MT43C4257/8 support all of the popular transfer cycles available on the 1 Meg Video RAMs. Each of these is described in the following section.

READ TRANSFER (RT)

A READ TRANSFER cycle is selected if $\overline{\text{ME}}/(\overline{\text{WE}})$ is HIGH, and DSF1 and $\overline{\text{TR}}/(\overline{\text{OE}})$ are LOW when $\overline{\text{RAS}}$ goes LOW. When $\overline{\text{RAS}}$ goes LOW, the READ TRANSFER is to SAMa if STS = LOW, or to SAMb if STS = HIGH. The row address bits indicate the four 512-bit DRAM rows that are to be transferred to the four SAM data registers. The column address bits indicate the start address (or Tap point) of the next serial output cycle from the designated SAM data

registers. QSF indicates the SAM half being accessed; LOW if the lower half, HIGH if the upper. Performing a READ TRANSFER cycle sets the direction of the selected SAM's I/O buffers to the output mode.

To complete a REAL-TIME READ-TRANSFER, $\overline{TR}/(\overline{OE})$ is taken HIGH while RAS and CAS are LOW. In order to synchronize the REAL-TIME READ TRANSFER to the serial clock, the rising edge of $\overline{TR}/(\overline{OE})$ must occur between the rising edges of successive clocks on the SC input (refer to the AC timing diagrams). A "regular" READ TRANSFER is not sychronized with the SC pin of the addressed SAM. This type of RT is performed when $\overline{TR}/(\overline{OE})$ is taken HIGH "early," without regard to the falling edge of CAS. The transfer will be completed internally by the device. The first serial clock must meet the tRSD, tCSD and tASD delays. (see READ TRANSFER AC timing diagram). The 2048 bits of DRAM data are then written into the SAM data registers and the selected SAM's Tap address that was stored in the internal, 9-bit Tap address register is loaded into the address counter. If SE for the SAM selected (SEa for SAMa) is LOW, the first bits of the new row data will appear at the serial outputs with the next SC clock pulse. SE enables the serial outputs, and may be either HIGH or LOW during this operation.

SPLIT READ TRANSFER (SRT)

The SPLIT READ TRANSFER cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream (the "full" READ TRANSFER cycle has to occur immediately after the final bit of "old data," and before the first bit of "new data" is clocked out the SAM port).

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data can be transferred to the other half. The transfer can occur at any time while the other half is sending data and need not be synchronized with the SC clock.

The $\overline{TR}/(\overline{OE})$ timing is relaxed for SRT cycles. The rising edge of $\overline{TR}/(\overline{OE})$ is not used to complete the TRANSFER cycle and therefore is independent of the rising edges of \overline{RAS} and \overline{CAS} . The transfer timing is generated internally for SPLIT TRANSFER cycles.

SPLIT TRANSFERs do not change the SAM I/O direction. A normal (non-split) READ TRANSFER cycle must precede any sequence of SRT cycles to put the SAM I/O in the output mode and provide the initial SAM Tap address (which half). Then an SRT can be initiated by taking DSF1 HIGH and selecting the desired SAM (using STS) when $\overline{\rm RAS}$ goes LOW during the TRANSFER cycle. As in non-split transfers, the row address is used to specify the DRAM row to be transferred. When an SRT cycle is initiated, the half of the SAM not actively being accessed will be the half

that receives the transfer. When \overline{CAS} falls, address pins A0-A7 determine the Tap address for the SAM-half selected; A8 = "don't care." If \overline{CAS} does not fall, the previously loaded Tap address will be reused and the TRANSFER will be to the idle half.

Figure 5 shows a typical SRT initiation sequence. The normal READ TRANSFER is first performed, followed by an SRT of the same row to the upper half of the SAM. The purpose of the SRT from the same row is to initiate the split SAM operating mode and load the Tap address for the upper half of the SAM. For the MT43C4257, serial access continues and when the SAM address counter reaches 255 ("A8"=1, A0-A7=0), the QSF output for that SAM goes HIGH and the Tap address for the upper half is automatically loaded. Since the serial access has now switched to the upper half of the SAM, new data may now be transferred to the lower half. This sequence of waiting for the state of QSF to change and then transferring new data to the SAM half that is not being accessed may now be repeated. For ex-

ample, the next step in Figure 5 would be to wait until QSF went LOW (indicating that row-1 data is shifting out the lower SAM) and then transferring the upper half of row 1 to the upper SAM. \overline{CAS} is used to load the Tap address. If \overline{CAS} does not fall, the last Tap address load for the addressed SAM will be reused.

The split SAM operation is slightly different for the MT43C4258. Instead of having a QSF, this device has a Split SAM Special Function (SSF) input. With this input the serial access may be switched at will from one half of the SAM to the other. In other words, the address count may be stopped on the current half and the Tap address of the next half may be loaded, without waiting for the maximum address count of the current half (255; lower, 511; upper). If no SSF pulse is applied, the Tap address of the next half will be automatically loaded when the maximum count of the current SAM-half is reached. QSF = 0 when the Lower SAM (bits 0–255) is being accessed. QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

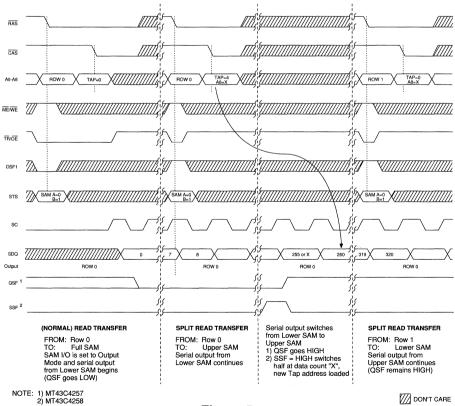


Figure 5
TYPICAL SPLIT READ TRANSFER INITIATION SEQUENCE

WRITE TRANSFER (WT)

The operation of the WRITE TRANSFER is identical to the READ TRANSFER described previously, except $\overline{(ME)/WE}$ and \overline{SE} must be LOW when \overline{RAS} goes LOW. The DSF2 input is used to select between the WT and DQ MASKED WRITE TRANSFER cycles, and must be LOW for the WT cycle. The STS pin is also taken LOW or HIGH to select SAMa or SAMb, respectively, when \overline{RAS} goes LOW. The row address indicates the DRAM row to which the SAM data register will be written, and the Tap address indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. QSF indicates the SAM half being accessed; LOW if the lower half, HIGH if the upper. Performing a WT sets the direction of the SAM I/O buffers to the input mode.

PSEUDO WRITE TRANSFER (PWT)

The PSEUDO WRITE TRANSFER cycle can be used to change the direction of a SAM port from output to input without disturbing the DRAM data in the selected row. A PSEUDO WRITE TRANSFER cycle is a WRITE TRANSFER cycle with the SE of the appropriate SAM held HIGH instead of LOW. The addressed row will be refreshed. A DQ MASKED WRITE TRANSFER (with all bits masked) is an alternate method for changing the direction of the SAM port without disturbing the addressed row data.

DQ MASKED WRITE TRANSFER (DMWT)

The data being transferred from either SAM to the DRAM may be masked by performing a DQ MASKED WRITE TRANSFER cycle. The transfer of data may be selectively enabled for each of the four DQ planes (see Figure 6). The DMWT cycle is identical to the WRITE TRANSFER cycle except DSF2 is HIGH and mask data must be on the DQ inputs at the falling edge of RAS.

The complete SAM register will be transferred to the selected row in each DQ plane if the mask data input is HIGH, and the SAM register will not be transferred if the mask data input for that DQ plane is LOW. DRAM data is not disturbed in masked DQ planes.

SPLIT WRITE TRANSFER (SWT)

The SPLIT WRITE TRANSFER feature makes it possible to input and transfer uninterrupted bit streams. Figure 7 shows a typical initiation sequence for SWT cycles.

Like the SRT, the SPLIT WRITE TRANSFER cycle does not change the state of the SAM I/O buffers. A normal, DQ MASKED or PSEUDO WRITE TRANSFER cycle is required to set the Tap address and set the SAM I/O direction to input mode.

After the WT, a SWT is performed to enter the split SAM operating mode. This sets the Tap for the next half of the SAM. The addressed half of the SAM is immediately trans-

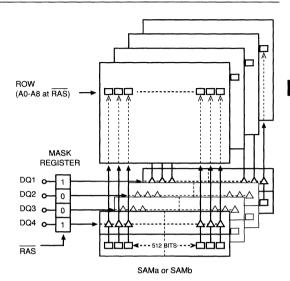


Figure 6
DQ MASKED WRITE TRANSFER

ferred to the first destination row. This half of the SAM may not yet contain valid data. However, another SWT to the same row will normally occur after this is loaded, so the initial invalid data will be overwritten. Another approach would be to initiate an SWT addressed to any DRAM row, but mask (disable) all four of the DQ planes. This method can be used to initiate the SWT sequence without disturbing any DRAM data.

Write mask data must be supplied to the DQ inputs during every SWT cycle at RAS time. The mask data acts as an individual write enable for each of the four DRAM DQ planes. For example, the DQ1 MASKED WRITE bit enables or disables the transfer of the SAMSDQ1 register to the DQ1 plane of the DRAM row selected (see the DQ MASKED WRITE TRANSFER description). As in all other MASKED WRITE operations, a HIGH enables the WRITE TRANSFER and a LOW disables the WRITE TRANSFER. As with SPLIT READ TRANSFER, the half of the SAM not receiving data will be the half transferred and the Tap address (A0-A7) for the other half is loaded when CAS falls (A8 is a "don't care"). If CAS does not fall, the previously loaded Tap address, A0-A7, will be reused. The TRANSFER will be to the idle half. When the serial clock crosses the half-SAM boundary, the new Tap address for that half is automatically loaded.

The QSFa and QSFb output (MT43C4257) indicate which half of SAMa or SAMb, respectively, is currently accepting data. After QSF goes HIGH, indicating that serial input has now switched to the upper SAM, the contents of the lower half of the SAM may be transferred to any DRAM row. The

cycle of checking for a change in QSF and then transferring the half of the SAM just filled may now be repeated. The next step on Figure 7 is to wait for QSF to go LOW and then SWT the contents of the upper half of the SAM to row 0. If the terminal count of the SAM half is reached before an SWT is performed for the next half, the access will be repeated from the same half and previously loaded address (access will not move to the next half).

When operating the MT43C4258 in the SWT mode, the address pointer may be changed, at will, to the new Tap address of the next half when the final desired input data is clocked in. When the final data is input, the SSF input is taken HIGH at the corresponding rising edge of SC. The next SC rising edge will input data into the Tap location of the next half of the SAM. If SSF is not applied, the Tap address will be automatically loaded when the maximum Tap address count is reached for the current half (255 or

511). If SSF is HIGH at SC, before an SWT is performed for the next half, the access will jump to the old Tap address of the same half. Access will not preced to the next half. If terminal count is reached before an SWT, the access will proceed as it does for the MT43C4257.

SERIAL INPUT and SERIAL OUTPUT

The control inputs for SERIAL INPUT and SERIAL OUT-PUT are SCa,b, \overline{SE} a,b and SSFa,b (MT43C4258). The rising edge of SC increments the serial address counter and provides access to the next SAM location. \overline{SE} enables or disables the serial input/output buffers.

Serial output of the SAM contents will start at the serial start address that was loaded during the DRAM-TO-SAM TRANSFER cycle. The SC input increments the address counter and presents the contents of the next SAM location to the 4-bit port. \overline{SE} is used as an output enable during the

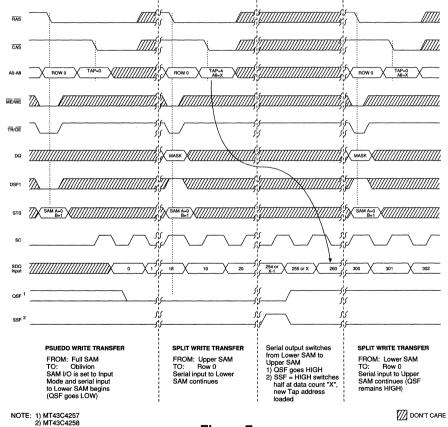


Figure 7

TYPICAL SPLIT WRITE TRANSFER INITIATION SEQUENCE

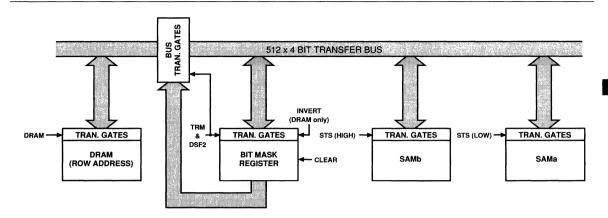


Figure 8
BIT MASKED TRANSFER BLOCK DIAGRAM

SAM output operation. The serial address is automatically incremented with every SC LOW-to-HIGH transition, regardless of whether \overline{SE} is HIGH or LOW. For the MT43C4257, the address progresses through the SAM and will wrap around (after count 255 or 511) to the Tap address of the next half, for split modes. Address count will wrap around (after count 511) to Tap address 0 if in the "full" SAM modes. For the 43C4258, the address count will wrap as the soft of the MT43C4257 or it may be triggered, at will, to the next half by the SSF input (split SAM modes). If SSF is HIGH at a LOW-to-HIGH transition of SC, the Tap address of the next half will be loaded into the address pointer. The following LOW to HIGH transition of SC will clock data from the Tap address of the new half.

SC is also used to clock-in data when the device is in the serial input mode. As in the serial output operation, the contents of the serial address register (loaded when the serial input mode was enabled) will determine the serial address of the first 4-bit word written. \overline{SE} acts as a WRITE ENABLE for serial input data and must be LOW for valid serial input. If \overline{SE} = HIGH, the data inputs are disabled and the SAM contents will not be modified. The serial address counter is incremented with every LOW to HIGH transition of SC, regardless of the logic level on the \overline{SE} input.

BIT MASKED TRANSFERS

This section describes transfers between the DRAM and either of the two SAMs using the BIT MASKED TRANSFER capability. Before performing these BIT MASKED TRANSFERS, the bit mask register must first be loaded with the mask data. See the next section, BIT MASK REGISTER OPERATIONS, for instructions on how to load the Bit Mask Register (BMR).

The BMR is a 2048-bit register that individually controls each of the 2048 transfer gates on the internal 512 x 4 transfer bus (see Figure 8). These bus transfer gates reside between the DRAM array and the three data registers and are set to the "pass-thru" mode for nonmasked transfers. For BIT MASKED TRANSFERs, the data in the BMR is coupled to the control inputs of the bus transfer gates. A logic "1" in the BMR will select the pass-thru (unmasked) mode for the corresponding SAM data bit, while a logic "0" will select the masked mode for that bit.

BIT MASKED TRANSFERS may be incorporated when doing READ, WRITE, SPLIT READ and SPLIT WRITE TRANSFERS. The timing and control required for any particular BIT MASKED TRANSFER cycle is identical to the corresponding normal TRANSFER cycle, except that TRM and DSF2 are HIGH instead of LOW. BIT MASKED TRANSFERs between the DRAM and either of the two SAM registers are possible. Figure 9 illustrates the BIT MASKED TRANSFER functions.

BIT MASKED READ TRANSFER (BMRT)

BIT MASKED READ TRANSFER can be used to transfer any combination of the 2048 bits contained in any DRAM row address to either of the two SAMs. The logic conditions and timing for the BMRT function are identical to the normal READ TRANSFER function except to select the BIT MASKED feature, TRM and DSF2 are HIGH. If a bit in the BMR is a logic "1", the bus connection between the corresponding DRAM bit and the selected SAM bit is enabled and the data at the destination (one of the SAMs for BMRT) will be changed to the source data (the DRAM row for BMRT).

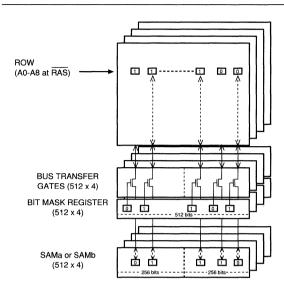


Figure 9
BIT MASK TRANSFER BLOCK DIAGRAM

BIT MASKED SPLIT READ TRANSFER (BMSRT)

The BIT MASKED SPLIT READ TRANSFER operation is identical to the normal SPLIT READ TRANSFER except that the bit mask (stored in the bit mask register) is applied to the transfer data by taking TRM and DSF2 HIGH when RAS falls. The remaining control timing is identical to the requirements for a normal SPLIT READ TRANSFER.

BIT MASKED WRITE TRANSFER (BMWT)

Like WRITE TRANSFER, the BIT MASKED WRITE TRANSFER function may be used to transfer data to any DRAM row address from either of the two SAM registers. In this case, the SAM data will be masked by the contents of the Bit Mask Register before the data is written to the DRAM.

BIT MASKED SPLIT WRITE TRANSFER (BMSWT)

Like the other BIT MASKED TRANSFER cycles, the BMSWT is nearly identical to the SPLIT WRITE TRANSFER, except TRM and DSF2 are HIGH when \overline{RAS} falls. Two masks are applied during a BMSWT operation. Each of the individual bits are masked by the bit mask register and each of the DQ planes are masked by the DQ inputs at \overline{RAS} time. If a DQ input is LOW at \overline{RAS} time, none of the 256 SAM bits for that DQ plane will be transferred to the DRAM row-half selected. If a DQ input is HIGH, the 256 SAM bits for that

row half will be masked by the corresponding 256 mask register bits when written to the selected DRAM row-half. The remaining control timing is identical to the requirements for a normal SPLIT WRITE TRANSFER.

BIT MASK REGISTER OPERATIONS

This section describes how to transfer data to or from the Bit Mask Register (BMR) and how to clear the BMRs contents. Data may also be inverted when being transferred between the BMR and DRAM.

BMR READ TRANSFER (BMR-RT)

Any DRAM row may be transferred to the BMR by using the BMR READ TRANSFER function. When \overline{RAS} falls, $\overline{TR}/\overline{OE}$) is LOW to select a transfer cycle. TRM is HIGH to indicate that the BMR is involved in the TRANSFER cycle, and DSF2 is LOW to indicate that the data is to be transferred to the BMR (as opposed to using the contents of the BMR as bit mask data). The remainder of the timing and control required is identical to a normal READ TRANSFER cycle. No Tap address is loaded in this TRANSFER.

Note that the SAM transfer select (STS) pin is used to select whether non-inverted (STS=LOW) or inverted (STS=HIGH) data is transferred to the bit mask register. For all transfers to or from the bit mask register, the state of the MKD pin when \overline{RAS} falls selects whether the Serial Mask Input (SMI) feature is enabled (see the Functional Truth Table). SMI is a special serial input mode that allows mask information to be clocked into the BMR at the same address location as the data clocked into SAMb (see the SMI mode description). MKD is LOW when \overline{RAS} falls to disable SMI or HIGH to enable SMI. After the transfer is completed, the MKD pin then acts either as a mask data input to the BMR (SMI enabled) or is "don't care" (SMI disabled). The MKD input is tied to the 4 bit-planes, the data on the MKD pin is written to each bit plane simultaneously.

BMR INVERTED READ TRANSFER (BMR-IRT)

If the STS pin is HIGH at RAS time the DRAM data will be inverted before being written to the BMR. All 2048 bits involved in the transfer will be complemented. The functionality and logic levels for the other control inputs are identical to the BMR READ TRANSFER cycle. Note that MKD is still used to enable or disable the SMI mode. There is no added cycle time delay for either the BMR INVERTED READ or BMR INVERTED WRITE TRANSFER cycles.

BMR WRITE TRANSFER (BMR-WT)

The contents of the BMR may also be transferred to any DRAM row by using the BMR WRITE TRANSFER cycle. ($\overline{\text{ME}}$)/ $\overline{\text{WE}}$ and DSF2 are LOW and TRM is HIGH when $\overline{\text{RAS}}$ falls, to select a write transfer from the BMR. The DQ inputs are used to input a DQ bit-plane mask when $\overline{\text{RAS}}$ falls. This allows each of the four DQ planes to be write enabled or disabled during the BMR-WT. The MKD input is used to enable or disable the SMI mode. STS must be LOW at $\overline{\text{RAS}}$ time to transfer non-inverted BMR data to the DRAM row selected.

BMR INVERTED WRITE TRANSFER (BMR-IWT)

As with the BMR INVERTED READ TRANSFER, the 2048 bits involved in the transfer may be inverted while being transferred. Taking STS HIGH at RAS time will cause the BMR data to be inverted before it is stored in the selected DRAM row. The other control and DQ (mask) inputs are the same as the BMR-WT.

SAM-TO-BMR TRANSFER (SAM-BMR)

The contents of either SAM may be transferred to the BMR in the same manner that a DRAM row is transferred. In this case, DSF1 is HIGH to indicate that the SAM is the source of the data instead of the DRAM. $(\overline{ME})/\overline{WE}$ is used to indicate the direction of the transfer and must be LOW, when RAS falls, for a SAM-TO-BMR TRANSFER. STS is no longer used to select between normal and inverted data, it now indicates which SAM is involved in the transfer. Since a SAM-TO-BMR TRANSFER "reads" data from the SAM, the SAM will be placed into input mode by this transfer cycle. The MKD input is still used to determine if the SMI mode will be enabled after the transfer is completed. Since no DRAM access is involved, it is not necessary to provide any particular ROW address at RAS time. However, whichever ROW address is present at RAS time will be used as the address for a RAS-ONLY REFRESH. Since a SAM is involved in the transfer, a new SAM starting Address (or Tap) will be loaded at CAS time. This address will be loaded into the serial address counter of the SAM selected by STS at \overline{RAS} time.

Note:

Any SAM/BMR TRANSFER will take the device out of the split SAM mode, if it was in that mode before the transfer.

BMR-TO-SAM TRANSFER (BMR-SAM)

The contents of the BMR may also be transferred to one of the SAM registers. The (ME)/WE input is used to indicate the direction of the transfer and must be HIGH for a BMR-TO-SAMTRANSFER. STS is LOW to select SAMa or HIGH to select SAMb as the destination for the BMR data. The

remaining inputs and functionality are identical to the SAM-TO-BMR TRANSFER. Since a BMR-TO-SAM TRANSFER writes new data to the selected SAM register, the I/O for the SAM involved will be placed in the output mode and a new Tap address will be loaded when CAS falls.

CLEAR BIT MASK REGISTER (CLR-BMR)

The entire contents of the BMR can be cleared (set all bit LOW) within a single transfer cycle by performing a CLEAR BMR cycle. Unlike the other cycles that access the BMR, TRM is LOW at \overline{RAS} time for the CLEAR BIT MASK REGISTER function. $\overline{TR}/(\overline{OE})$ is LOW to indicate that the cycle is a transfer cycle (although there is really no data transfer involved). The CLR-BMR function is selected when $\overline{ME}/(\overline{WE})$, DSF1 and DSF2 are HIGH when RAS falls.

When the BMR is cleared, all data will be masked when a BIT MASKED TRANSFER cycle is performed.

The BMR INVERTED WRITE and BMR WRITE TRANS-FERS can be used with the CLR-BMR function to set or clear, respectively, any DRAM row. The CLR-BMR function is used to clear the BMR then the BMR TRANSFERS are performed to the addressed DRAM row.

The CLEAR BIT MASK REGISTER function is useful when using the SERIAL MASK INPUT mode. It is automatically performed (when in the SMI mode) when data is transferred from SAMb to the DRAM (see SERIAL MASK INPUT section).

SERIAL MASK INPUT (SMI)

Whenever the BMR is accessed, the MKD input is sensed and latched into the BMR control logic. If the MKD pin is LOW at \overline{RAS} time the Serial Mask Input (SMI) mode is disabled and the BMR may only be loaded via internal transfer cycles. If MKD is HIGH when \overline{RAS} falls, during a BMR access, then the BMR control logic enables the SMI mode and the BMR may be serially loaded via the MKD input.

When SMI is enabled, the MKD input is coupled to all four of the bit mask register's DQ planes (see Figure 10). The SCb clock input and SAMb's address counter are used to input data to SAMb and the BMR. SEb will enable (LOW) or disable (HIGH) input data to SAMb and the BMR, the address count will increment regardless of the state of SEb.

The most common application of the SMI mode is to automatically load a transfer mask with the new data written to SAMb. To initialize the sequence, the BMR is cleared (CLR-BMR) with MKD=HIGH at \overline{RAS} time to enable the SMI mode. Then SAMb is prepared to accept input data by performing PSEUDO WRITE TRANSFER. The SAM starting address loaded will also apply to the BMR. For every address location that data is written to in SAMb, the corresponding address location in the BMR will be written to the value present on MKD (all four planes of the

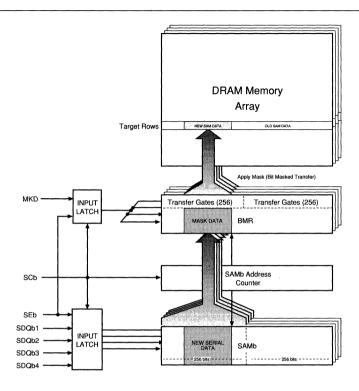


Figure 10
SERIAL-MASK-INPUT MODE BLOCK DIAGRAM

BMR will be written). After the input of data to SAMb is complete, a BIT MASKED WRITE TRANSFER may be done and only the unmasked data from SAMb will be transferred to the DRAM. The BMR will be cleared automatically after a BIT MASKED WRITE TRANSFER from SAMb, if the device is in the SMI mode. A BMSWT from SAMb will clear only half of the BMR. This allows a new mask to be loaded during the next fill of SAMb, without performing a CLR-BMR cycle. If data is to be masked during the BMWT then MKD is held LOW when the corresponding SAMb data is written. If the data is to be written (unmasked) to the DRAM during the BMWT, then MKD is held HIGH when the corresponding SAMb location is written. The function of the MKD pin is dependent on the I/O direction of SAMb. MKD is an input only, if SMI is enabled and SAMb is in input mode. If SMI is enabled and SAMb is in output mode, the MKD input is a "don't care," no new data may be written to the BMR via MKD. MKD is also "don't care" if the SMI mode is disabled. Note that the mask data loaded via SAMb may also be applied to a SAMa TRANSFER cycle, if the mask hasn't been cleared by a SAMb TRANSFER or a CLR-BMR cycle. The BMR will not be cleared after a TRANSFER involving SAMa.

POWER UP INITIALIZATION

When Vcc is initially supplied or when refresh is interrupted for more than 8ms, the device must be initialized.

After Vcc is at specified operating conditions, for 100 μ s (minimum), eight \overline{RAS} cycles must be executed to initalize the dynamic memory array. When the device is initialized the DRAM I/O pins (DQs) are in a High-Z state, regardless of the state of $\overline{(TR)}/\overline{OE}$. The DRAM array will contain random data.

The SAM portion of the device is completely static and does not require an initialization cycle. Both SAM ports will power-up in the serial input mode (WRITE TRANSFERs) and the SAM I/O pins (SDQs) are in a High-Z state, regardless of the state of SE ab. Also, SPLIT TRANSFER and SMI modes are disabled. Both QSF (MT43C4257) outputs are in the High-Z state. Both SAMs, bit mask, color, and DRAM mask registers all contain random data after power-up.

MICHALOSV.NC.

MULTIPORT DRAM

TRUTH TABLE ¹

CODE	FUNCTION			RA	S FAL	LING	EDGE				CAS FALL	A0 -	A8 ²	DQ1 -	DQ4 ³	REGISTERS		
		CAS	TR / OE	ME / WE ¹⁰	DSF1	DSF2	SEa, SEb	TRM	MKD	STS	DSF1	RAS	CAS	RAS	CAS ⁴	MASK	COLOR	
	DRAM OPERATIONS				•													
CBR	CAS-BEFORE-RAS REFRESH	0	111	111	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	
ROR	RAS ONLY REFRESH	1	1	Х	Х	Х	Х	х	х	Х	_	ROW	-	Х	_	Х	Х	
RW	NORMAL DRAM READ OR WRITE	1	1	1	0	011	Х	Х	х	Х	0	ROW	COLUMN	Х	VALID DATA	Х	Х	
RWNM	NONPERSISTENT (LOAD AND USE) MASKED WRITE TO DRAM	1	1	0	0	011	Х	Х	Х	Х	0	ROW	COLUMN	WRITE MASK	VALID DATA	LOAD & USE	Х	
RWOM	PERSISTENT (USE REGISTER) MASKED WRITE TO DRAM	1	1	0	1	011	Х	Х	Х	Х	0	ROW	COLUMN	Х	VALID DATA	USE	Х	
BW	BLOCK WRITE TO DRAM (NO DATA MASK)	1	1	1	0	011	X	Х	Х	Х	1	ROW	COLUMN (A2 - A8)	Х	COLUMN MASK	Х	USE	
BWNM	NONPERSISTENT (LOAD & USE) MASKED BLOCK WRITE TO DRAM	1	1	0	0	011	Х	Х	Х	Х	1	ROW	COLUMN (A2 - A8)	WRITE MASK	COLUMN MASK	LOAD & USE	USE	
BWOM	PERSISTENT (USE MASK REGISTER) MASKED BLOCK WRITE TO DRAM	1	1	0	1	011	Х	Х	Х	Х	1	ROW	COLUMN (A2 - A8)	Х	COLUMN MASK	USE	USE	
	REGISTER OPERATIONS																	
LMR	LOAD MASK REGISTER	1	1	1	1	011	Х	Х	Х	X	0	X ⁵	Х	Х	WRITE MASK	LOAD	Х	
LCR	LOAD COLOR REGISTER	1	1	1	1	011	Х	Х	Х	Х	1	X5	Х	Х	COLOR DATA	Х	LOAD	
•	TRANSFER OPERATIONS							<u> </u>			1				h			
RT	READ TRANSFER (DRAM-TO-SAM TRANSFER)	1	0	1	0	0	Х	0	Х	0=SAMa 1=SAMb	Х	ROW	TAP ⁶	Х	Х	Х	Х	
SRT®	SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)	1	0	1	1	0	Х	0	Х	0=SAMa 1=SAMb	Х	ROW	TAP ⁶	Х	Х	Х	х	
WT	WRITE TRANSFER (SAM-TO-DRAM TRANSFER)	1	0	0	0	0	0	0	Х	0=SAMa 1=SAMb	Х	ROW	TAP ⁶	Х	Х	Х	Х	
PWT	PSEUDO WRITE TRANSFER (SERIAL INPUT MODE ENABLE)	1	0	0	0	0	1	0	Х	0=SAMa 1=SAMb	Х	X5	TAP ⁶	Х	Х	Х	х	
SWT ⁹	SPLIT WRITE TRANSFER (SPLIT SAM- TO-DRAM TRANSFER WITH MASK)	1	0	0	1	0	Х	0	Х	0=SAMa 1=SAMb	х	ROW	TAP ⁶	DQ MASK	х	LOAD & USE	х	
DMWT	DQ MASKED WRITE TRANSFER	1	0	0	0	1	Х	0	х	0=SAMa 1=SAMb	х	ROW	TAP ⁶	DQ MASK	х	LOAD & USE	х	

TRUTH TABLE 1

CODE	FUNCTION			RA	S FAL	LING	EDGE				CAS FALL	A0 -	A8 ²	DQ1 - DQ4 ³		REGISTERS	
		CAS	TR / OE	ME / WE ¹⁰	DSF1	DSF2	SEa, SEb	TRM	MKD	STS	DSF1	RAS	CAS	RAS	CAS ⁴	MASK	COLOR
	BIT MASK REGISTER OPERA	TION	IS														
BMR- RT	BMR READ TRANSFER (DRAM→BMR TRANSFER)	1	0	1	0	0	Х	1	0/17	0	Х	ROW	Х	Х	Х	Х	Х
BMR- IRT	BMR READ TRANSFER (DRAM→INVERT→BMR TRANSFER)	1	0	1	0	0	Х	1	0/17	1	Х	ROW	Х	Х	Х	х	Х
BMR- WT	BMR WRITE TRANSFER (BMR→DRAM TRANSFER)	1	0	0	0	0	Х	1	0/17	0	Х	ROW	Х	DQ MASK	Х	Х	Х
BMR- IWT	BMR WRITE TRANSFER (BMR→INVERT→DRAM TRANSFER)	1	0	0	0	0	Х	1	0/17	1	Х	ROW	Х	DQ MASK	Х	Х	х
SAM- BMR	SAM→BMR TRANSFER	1	0	0	1	0	х	1	0/1 ⁷	0=SAMa 1=SAMb		X ⁵	TAP ⁶	Х	X	Х	х
BMR- SAM	BMR→SAM TRANSFER	1	0	1	1	0	х	1	0/17	0=SAMa 1=SAMb		X ⁵	TAP ⁶	Х	Х	Х	х
CLR- BMR	CLEAR BIT MASK REGISTER (SETS BMR TO ALL "0's")	1	0	1	1	1	х	0	0/17	Х	Х	X ⁵	Х	Х	Х	Х	х
	BIT MASKED TRANSFER OPE	RAT	IONS														
BMRT	BIT MASKED READ TRANSFER (BM DRAM→SAM TRANSFER)	1	0	1	0	1	Х	1	Х	0=SAMa 1=SAMb		ROW	TAP ⁶	Х	Х	X	Х
BMSRT ⁹	BIT MASKED SPLIT READ TRANSFER (BM SPLIT DRAM→SAM TRANSFER)	1	0	1	1	1	Х	1	Х	0=SAMa 1=SAMb		ROW	TAP ⁶	Х	Х	Х	Х
BMWT	BIT MASKED WRITE TRANSFER (BM SAM→DRAM TRANSFER)	1	0	0	0	1	х	1	Χ ⁸	0=SAMa 1=SAMb		ROW	TAP ⁶	Х	Х	Х	X
BMSWT ⁹	BIT MASKED SPLIT WRITE TRANSFER (BM SPLIT SAM→DRAM TRANSFER)	1	0	0	1	1	Х	1	X ₈	0=SAMa 1=SAMb		ROW	TAP ⁶	DQ MASK	Х	LOAD & USE	Х

- **NOTE:** 1. $0 = LOW(V_{\parallel})$, $1 = HIGH(V_{\parallel})$, X = "don't care", = "not applicable"
 - 2. These columns show what must be present on the A0-A8 inputs when RAS falls and when CAS falls.
 - 3. These columns show what must be present on the DQ1-DQ4 inputs when RAS falls and when CAS falls.
 - 4. On WRITE cycles (except BLOCK WRITE), the input data is latched at the falling edge of CAS or ME/WE, whichever is later. Similarly, on READ cycles, the output data is enabled on the falling edge of CAS or TR/OE, whichever is later.
 - 5. The ROW that is addressed will be refreshed, but no particular ROW address is required.
 - 6. Tap Address; this is the SAM location that the first SC cycle will access. For SPLIT TRANSFERS the half receiving the transfer is determined by the MSB of the internal address counter. The SAM half not currently being accessed will be the half receiving the transfer. Column address A8 is a "don't care" for SPLIT TRANSFERS.
 - 7. The Serial Mask Input mode (SMI) is enabled ("1") or disabled ("0") when the BMR is accessed (see BMR OPERATIONS). If SMI is enabled (MKD = "1"), mask data is serially clocked into the BMR with SCb and the BMR is automatically cleared after a BIT MASKED WRITE or BIT MASKED SPLIT WRITE TRANSFER cycle from SAMb. For BIT MASKED READ TRANSFERs to any SAM and BIT MASKED WRITE TRANSFERs from SAMa, the BMR is not cleared automatically.
 - 8. If the SMI mode is enabled, mask data is clocked into the BMR with SCb. A HIGH will allow data from the SAM address location to be written to the DRAM, a LOW will mask data to the DRAM during a BIT MASKED WRITE or BIT MASKED SPLIT WRITE TRANSFER.
 - SPLIT TRANSFERs do not change SAM I/O direction.
 - 10. SAM I/O direction is a function of the state of ME/WE at RAS time. If ME/WE is LOW, then the selected SAM is an input; if ME/WE is HIGH then the SAM is an output.
 - 11. The MT43C4257/8 operates properly if this state is "X", but to allow for future functional enhancements it is recommended that they are driven as shown in the Truth Table.

ABSOLUTE MAXIMUM RATINGS*

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{\Delta} \leq 70^{\circ}C)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-1.0	0.8	٧	1

DC ELECTRICAL CHARACTERISTICS

(Notes 3, 4, 5) (0°C \leq T_{Δ} \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
INPUT LEAKAGE CURRENT (any input (0V≤Vın≤Vcc, all other pins not under test ≈ 0V).	IL	-10	10	μА	
OUTPUT LEAKAGE CURRENT (Dout is disabled, 0V≤Vouт≤Vcc).	loz	-10	10	μА	
OUTPUT LEVELS Output High Voltage (lout = -2.5mA, SDQs; -5mA all other outputs)	Vон	2.4		V	
Output Low Voltage (Iout = 2.5mA, SDQs; 5mA all other outputs)	Vol		0.4	V	1

CAPACITANCE

 $(T_A = 25^{\circ}C; Vcc = 5.0V; f = 1MHz)$

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: Ao-As, TRM, MKD	C ₁₁		5	pF	2
Input Capacitance: RAS, CAS, ME/WE, TR/OE, SCa,b, SEa,b, DSF1,2, STS	CI2		7	pF	2
SSFa,b					
Input/Output Capacitance: DQ, SDQa,b	CI/O		9	pF	2
Output Capacitance: QSFa,b	Co		9	pF	2

CURRENT DRAIN, SAMa and SAMb IN STANDBY

$(0^{\circ}C \le I_{A} \le /0^{\circ}C; Vcc = 5.0V \pm 10\%)$			MAX			
PARAMETER/CONDITION	SYMBOL	-8	-10	-12	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling; ^t RC = ^t RC (MIN))	Icc1	100	90	80	mA	3, 4
OPERATING CURRENT: PAGE MODE (RAS = VIL CAS = Cycling; [†] PC = [†] PC (MIN))	lcc2	90	80	70	mA	3, 4
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current ($\overline{RAS} = \overline{CAS} = V_{IH}$, after 8 \overline{RAS} cycles min)	lcc3	7	7	7	mA	
STANDBY CURRENT: CMOS INPUT LEVELS Power supply standby current (RAS = CAS = Vcc-0.2V, after 8 RAS cycles min). All other inputs at Vcc -0.2V or Vss +0.2V	Icc4	1	1	1	mA	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = Vін)	Icc5	100	90	80	mA	3
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS = Cycling)	Icc6	90	80	70	mA	3, 5
TRANSFER CURRENT: SAM/DRAM DATA TRANSFER	Icc7	110	100	90	mA	3

CURRENT DRAIN, SAMa and SAMb ACTIVE

(Notes 3, 4) $(0^{\circ}C \le T_A \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$			MAX			
PARAMETER/CONDITION	SYMBOL	-8	-10	-12	UNITS	NOTES
OPERATING CURRENT (RAS and CAS = Cycling; ^t RC = ^t RC (MIN))	Icc8	180	170	160	mA	
OPERATING CURRENT: PAGE MODE (RAS = VIL CAS = Cycling; ^t PC = ^t PC (MIN))	Icc9	160	150	140	mA	
STANDBY CURRENT: TTL INPUT LEVELS Power supply standby current (RAS = CAS = ViH, after 8 RAS cycles min)	Icc10	85	85	85	mA	
STANDBY CURRENT: CMOS INPUT LEVELS Power supply standby current (RAS = CAS = Vcc -0.2V, after 8 RAS cycles min). All other inputs at Vcc -0.2V or Vss +0.2V	lcc11	75	75	75	mA	
REFRESH CURRENT: RAS-ONLY (RAS = Cycling; CAS = VIH)	lcc12	180	170	160	mA	
REFRESH CURRENT: CAS-BEFORE-RAS (RAS and CAS = Cycling)	lcc13	170	160	150	mA	5
TRANSFER CURRENT: SAM/DRAM DATA TRANSFER	Icc14	180	170	160	mA	

DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS			-8	-	10	-	12		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	t _{RC}	150		180		210		ns	
READ-MODIFY-WRITE cycle time	t _{RWC}	205		235		280		ns	
FAST PAGE MODE READ or WRITE	t _{PC}	45		55		65		ns	
cycle time								ł	
FAST-PAGE-MODE READ-MODIFY-	^t PRWC	100		110		140		ns	
WRITE cycle time							ŀ		
Access time from RAS	^t RAC		80		100		120	ns	14, 17
Access time from CAS	t _{CAC}		20		25		30	ns	15
Access time from (TR)/OE	^t OE		20		25		30	ns	
Access time from column address	^t AA		40		50		60	ns	
Access time from CAS precharge	^t CPA		45		55		65	ns	
RAS pulse width	^t RAS	80	10,000	100	10,000	120	10,000	ns	
RAS pulse width (FAST PAGE MODE)	t _{RASP}	80	100,000	100	100,000	120	100,000	ns	
RAS hold time	^t RSH	20		25		30		ns	
RAS precharge time	^t RP	60		70		80		ns	
CAS pulse width	t _{CAS}	20	10,000	25	10,000	30	10,000	ns	
CAS hold time	t _{CSH}	80		100		120		ns	
CAS precharge time	^t CPN	15		15		20		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		15		ns	
RAS to CAS delay time	t _{RCD}	20	60	20	75	25	90	ns	17
CAS to RAS precharge time	t _{CRP}	5		5		10		ns	
Row address setup time	t _{ASR}	0		0		0		ns	
Row address hold time	t _{RAH}	12		15		15		ns	
RAS to column	t _{RAD}	17	40	20	50	25	60	ns	18
address delay time									
Column address setup time	tASC	0		0		0		ns	
Column address hold time	t _{CAH}	15		20		25		ns	
Column address hold time (referenced to RAS)	^t AR	60		70		85		ns	
Column address to RAS lead time	^t RAL	40		50		60		ns	
Read command setup time	tRCS	0		0		0		ns	
Read command hold time	tRCH	0		0		0		ns	19
(referenced to CAS)	- Inner				-				
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	^t CLZ	0		0		0		ns	
Output buffer turn-off delay	t _{OFF}	0	20	0	20	0	30	ns	20
Output disable	t _{OD}	0	20	0	20	0	30	ns	
Output disable hold time from start of write	^t OEH		15		15		20	ns	
Output enable to RAS delay	tORD		0		0		0	ns	

DRAM TIMING PARAMETERS (Continued)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C $\leq T_A \leq +70$ °C; Vcc = $5.0V \pm 10$ %)

A.C. CHARACTERISTICS		-	8		10		12		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command setup time	twcs	0		0		0		ns	21
Write command hold time	tWCH	15		20		25		ns	
Write command hold time (referenced to RAS)	twcR	60		75		85		ns	
Write command pulse width	t _{WP}	15		15		20		ns	
Write command to RAS lead time	t _{RWL}	20		20		25		ns	
Write command to CAS lead time	t _{CWL}	20		20		25		ns	
Data-in setup time	t _{DS}	0		0		0		ns	22
Data-in hold time	t _{DH}	20		20		25		ns	22
Data-in hold time (referenced to RAS)	^t DHR	60		70		90		ns	
RAS to WE delay time	^t RWD	110		130		160		ns	21
Column address to WE delay time	^t AWD	70		80		100		ns	21
CAS to WE delay time	tCWD	50		55		70		ns	21
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	9, 10
Refresh period (512 cycles)	t _{REF}		8		8		8	ms	
RAS to CAS precharge time	^t RPC	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	^t CSR	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS refresh)	^t CHR	30		30		30		ns	5
ME/WE to RAS setup time	twsR	0		0		0		ns	
ME/WE to RAS hold time	^t RWH	12		15		15		ns	
Mask data to RAS setup time	^t MS	0		0		0		ns	
Mask data to RAS hold time	^t MH	12		15		15		ns	

TRANSFER AND MODE CONTROL TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) (0° C \leq T_A \leq + 70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS			-8	-	10	-	12		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
TRANSFER command to RAS setup time	t _{TLS}	0		0		0		ns	25
TRANSFER command to RAS hold time	t _{TLH}	12	10,000	15	10,000	15	10,000	ns	25
TRANSFER command to RAS hold time (REAL-TIME READ TRANSFER only)	^t RTH	70	10,000	80	10,000	90	10,000	ns	25
TRANSFER command to CAS hold time (REAL-TIME READ TRANSFER only)	t _{CTH}	20		25		30		ns	25
TRANSFER command to column address hold time (For REAL-TIME READ TRANSFER only)	^t ATH	25		30		35		ns	25
TRANSFER command to SC lead time	tTSL	5		5		5		ns	25
TRANSFER command to RAS HIGH lead time	t _{TRL}	0		0		0		ns	25
TRANSFER command to RAS delay time	t _{TRD}	15		15		15		ns	25
TRANSFER command to CAS HIGH lead time	tTCL	0		0		0		ns	25
TRANSFER command to CAS delay time	t _{TCD}	15		15		15		ns	25
First SC edge to TRANSFER command delay time	t _{TSD}	10		10		10		ns	25
RAS to first SC edge delay time	t _{RSD}	80		95		105		ns	
CAS to first SC edge delay time	tCSD	25		30		35		ns	
Column address to first SC edge delay time	t _{ASD}	50		60		65		ns	
Serial output buffer turn-off delay from RAS	t _{SDZ}	10	35	10	40	10	45	ns	
SC to RAS setup time	t _{SRS}	30		30		40		ns	
RAS to SC delay time	t _{SRD}	20		25		30		ns	
Serial data input to SE delay time	t _{SZE}	0		0		0		ns	
RAS to SD buffer turn on time	t _{SRO}	10		15		15		ns	
Serial data input delay from RAS	t _{SDD}	45		50		55		ns	
Serial data input to RAS delay time	tszs	0		0		0		ns	
Serial-Input-Mode enable (SE) to RAS setup time	tESR	0		0		0		ns	
Serial-Input-Mode enable (SE) to RAS hold time	t _{REH}	12	1	15		15		ns	
NONTRANSFER command	tys	0		0		0		ns	26
to RAS setup time	'		1						
NONTRANSFER command to RAS hold time	tYH	12		15		15		ns	26
DSF, TRM, STS, MKD to RAS setup time	t _{FSR}	0		0		0		ns	
DSF, TRM, STS, MKD to RAS hold time	t _{RFH}	12		15		15		ns	
DSF to RAS hold time	t _{FHR}	60		65		70		ns	
DSF to CAS setup time	t _{FSC}	0		0		0		ns	
DSF to CAS hold time	t _{CFH}	15		20		20		ns	
SC to QSF delay time	tsQD		35		40		45	ns	
RAS to QSF delay time	†RQD		65		85		105	ns	
CAS to QSF delay time	tCQD		35		40		45	ns	
TR/OE to QSF delay time	^t TQD		25		30		35	ns	
SPLIT TRANSFER setup time	tSTS	30		35		40		ns	
SPLIT TRANSFER hold time	t _{STH}	30		35		40		ns	
Split SAM setup time to RAS from last SC	t _{SCR}	30		35		40		ns	29
Split SAM hold time to RAS from first SC	tRSC	30		35		40		ns	29

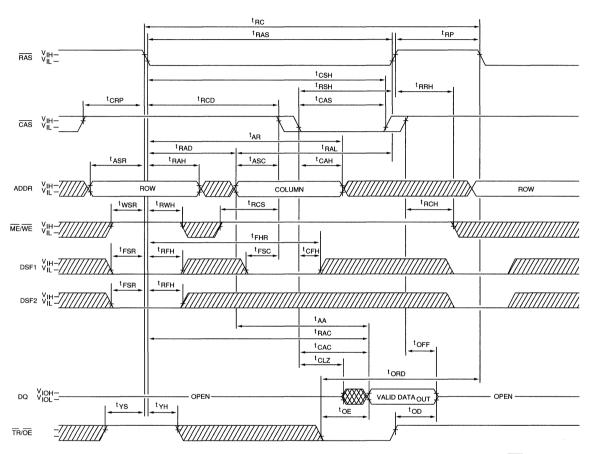
SAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) (0° C \leq T_{Δ} \leq + 70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS			8		10		12		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Serial clock cycle time	tsc t	25		30		35		ns	
Access time from SC	t _{SAC}		25		30		35	ns	24
SC precharge time (SC LOW time)	t _{SP}	10		10		12		ns	
SC pulse width (SC HIGH time)	t _{SAS}	5		10		12		ns	
Access time from SE	t _{SEA}		15		20		30	ns	24
SE precharge time	t _{SEP}	10		15		15		ns	
SE pulse width	t _{SE}	10		15		15		ns	
Serial data out hold time after SC HIGH	^t soH	5		5		5		ns	24
Serial output buffer turn off delay from SE	^t SEZ	0	12	0	15	0	25	ns	24
Serial data in setup time	t _{SDS}	0		0		0		ns	24
Serial data in hold time	^t SDH	10		15		20		ns	24
SERIAL INPUT (Write) Enable setup time	tsws	0		0		0		ns	
SERIAL INPUT (Write) Enable hold time	^t SWH	15		15		25		ns	
SERIAL INPUT (Write) Disable setup time	t _{SWIS}	0		0		0		ns	
SERIAL INPUT (Write) Disable hold time	^t SWIH	15		15		25		ns	
SSF to SC setup time	t _{SFS}	0		0		0		ns	29
SSF to SC hold time	^t SFH	15		20		20		ns	29
SSF LOW to SC HIGH delay	tSFD	0		0		0		ns	29

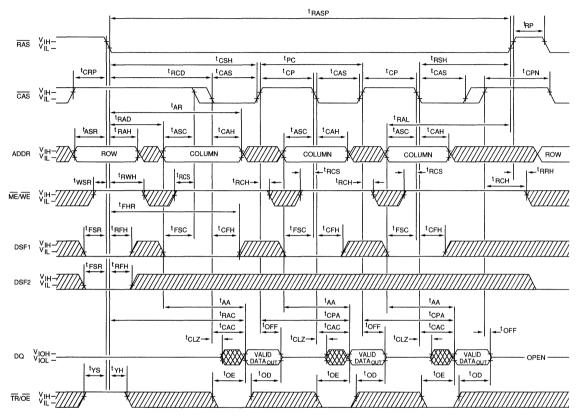
MICHON


NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = \underline{I\Delta t}$ with $\Delta V = 3V$ and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- 6. The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_Δ ≤ 70°C) is assured.
- 7. An initial pause of 100µs is required after power-up followed by any 8 RAS cycles before proper device operation is assured. The 8 RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 8. AC characteristics assume ${}^{t}T = 5$ ns.
- VIH (MIN) and VIL (MAX) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- In addition to meeting the transition rate specification, all input signals must transit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
- 11. If $\overline{\text{CAS}}$ = ViH, DRAM data outputs (DQ1-DQ4) is high impedance.
- 12. If CAS = Vπ, DRAM data outputs (DQ1-DQ4) may contain data from the last valid READ cycle.
- DRAM output timing measured with a load equivalent to 2 TTL gates and 100pF. Output reference levels: Voh = 2.0V; Vol = 0.8V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, DQ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the speci fied ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as

- a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. tWCS, tRWD, tAWD and tCWD are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If ${}^{t}WCS \ge$ ^tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{TR}/\overline{OE}$. If ${}^{t}WCS \leq$ tWCS (MIN), the cycle is a LATE-WRITE and $\overline{TR}/\overline{OE}$ must control the output buffers during the write to avoid data contention. If ${}^{t}RWD \ge {}^{t}RWD$ (MIN), ${}^{t}AWD \ge {}^{t}AWD$ (MIN) and ${}^{t}CWD \ge {}^{t}CWD$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of the output buffers (at access time and until CAS goes back to VIH) is indeterminate but the WRITE will be valid. if ^tOD and ^tOEH are met. See the LATE-WRITE AC Timing diagram.
- 22. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in early WRITE cycles and $\overline{\text{ME}}/\overline{\text{WE}}$ leading edge in late WRITE or READ-WRITE cycles.
- During a READ cycle, if TR/OE is LOW then taken HIGH, DQ goes open. The DQs will go open with OE or CAS, whichever goes HIGH first.
- 24. SAM output timing is measured with a load equivalent to 2 TTL gates and 50pF. Output reference levels: VoH = 2.0V; VoL = 0.8V.
- 25. TRANSFER command means that $\overline{TR}/\overline{OE}$ is LOW when \overline{RAS} goes LOW.
- 26. NONTRANSFER command means that $\overline{TR}/\overline{OE}$ is HIGH when \overline{RAS} goes LOW.
- 27. LATE-WRITE and READ-MODIFY-WRITE cycles must have ^tOD and ^tOEH met (\overline{OE} HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if \overline{CAS} remains LOW and \overline{OE} is taken LOW after ^tOEH is met. If \overline{CAS} goes HIGH prior to \overline{OE} going back LOW, the DQs will remain open.
- 28. Applies to the MT43C4257 only.
- 29. Applies to the MT43C4258 only.

DRAM READ CYCLE



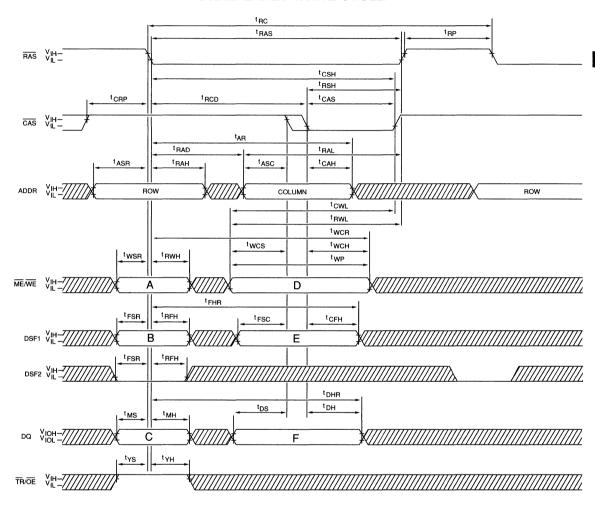
DON'T CARE

₩ undefined

DRAM FAST-PAGE-MODE READ CYCLE

DON'T CARE

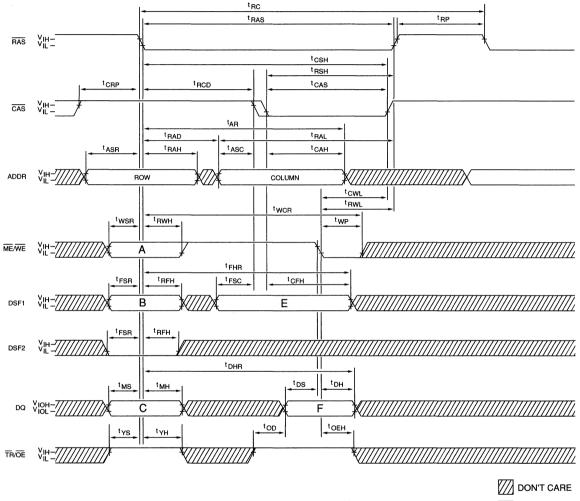
₩ undefined


WRITE CYCLE FUNCTION TABLE 1

		LOGIC ST	ATES ²				
RAS Falling Edge			CAS Falling Edge			FUNCTION	CODE
A ME/WE	B DSF1	C DQ (Input)	D ME/WE	E DSF1	F DQ (Input)	FONCTION	CODE
1	0	Х	0/15	0	DRAM	Normal DRAM WRITE	RW
0	0	Write Mask	0/15	0	DRAM (Masked)	NONPERSISTENT (Load and Use) MASKED WRITE to DRAM	RWNM
0	1	Х	0/15	0	DRAM (Masked)	PERSISTENT (Use Register) MASKED WRITE to DRAM	RWOM
1	0	Х	X ³	1	Column Mask	BLOCK WRITE to DRAM (No Data Mask)	BW
0	0	Write Mask	X ³	1	Column Mask	NONPERSISTENT (Load and Use) MASKED BLOCK WRITE to DRAM	BWNM
0	1	Х	X3	1	Column Mask	PERSISTENT (Use Register) MASKED BLOCK WRITE to DRAM	BWOM
1	1	Х	X ⁴	0	Write Mask	LOAD MASK REGISTER	LMR
1	1	Х	X ⁴	1	Color Data	LOAD COLOR REGISTER	LCR

- 1. Refer to this function table to determine the logic states of "A", "B", "C", "D", "E" and "F" for the WRITE cycle timing diagrams on the following pages.
- 2. TRM, MKD and STS are "don't care" for all WRITE cycles.
- 3. WE is a "don't care" for BLOCK WRITE cycles. It occurs on the falling edge of CAS.
- 4. Register load cycles can be either EARLY or LATE-WRITE cycles.
- 5. If ME/WE is LOW, an EARLY-WRITE is performed; if it is HIGH, a LATE-WRITE is performed if ME/WE falls after CAS.

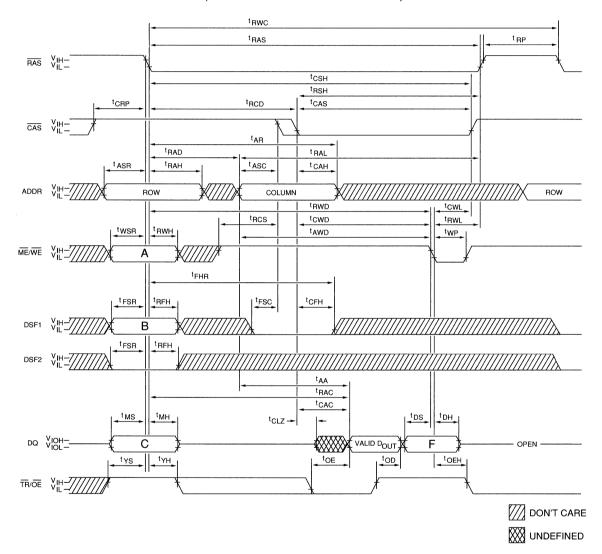
DRAM EARLY-WRITE CYCLE


DON'T CARE

₩ UNDEFINED

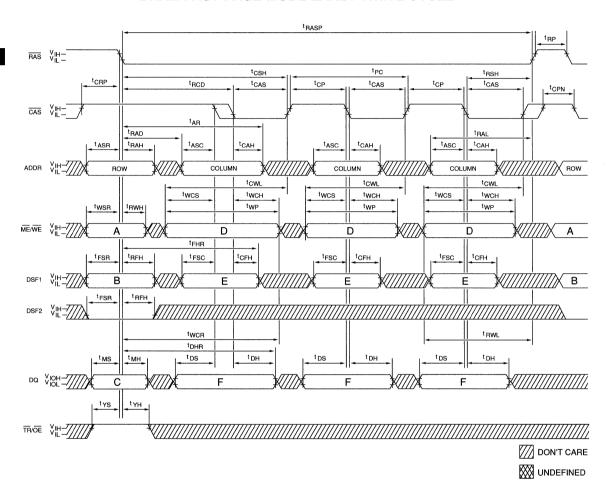
NOTE: 1. The logic states of "A", "B", "C", "E", and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM LATE-WRITE CYCLE 1,2



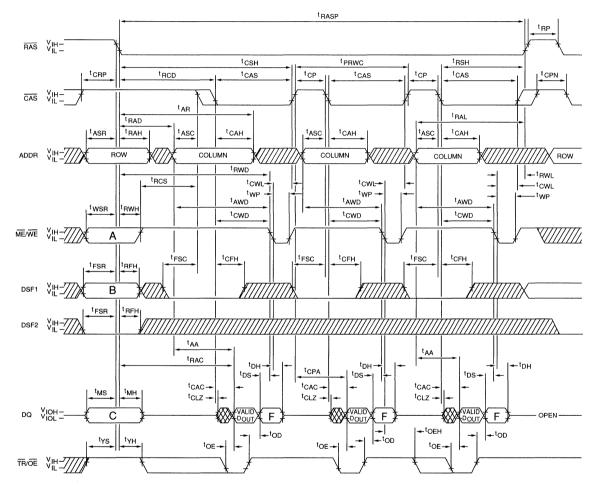
W UNDEFINED

- 1. The logic states of "A", "B", "C", "E", and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.
- 2. LATE-WRITE cycles are not valid for BLOCK WRITEs. (ME)/WE = "don't care" at the falling edge of CAS.


DRAM READ-WRITE CYCLE 1 (READ-MODIFY-WRITE CYCLE)

NOTE: 1. The logic states of "A", "B", "C", and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

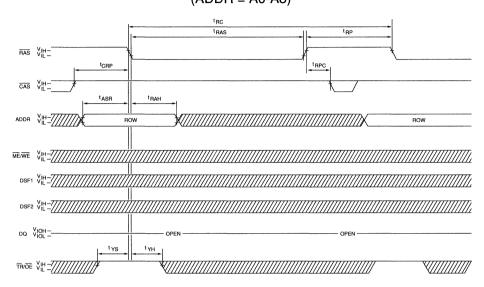
DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE 1,2



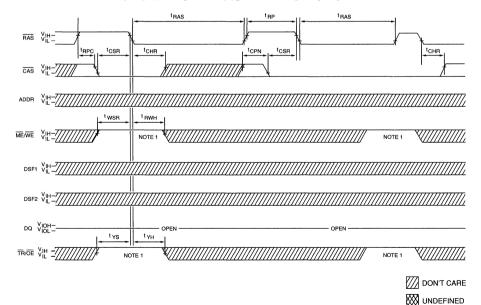
- READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST PAGE MODE.
- 2. The logic states of "A", "B", "C", "D", "E", and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM FAST-PAGE-MODE READ-WRITE CYCLE

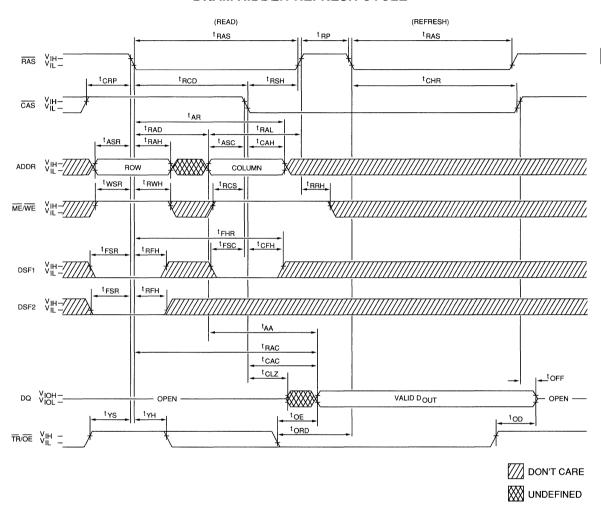
(READ-MODIFY-WRITE or LATE-WRITE CYCLES)


DON'T CARE

₩ undefined

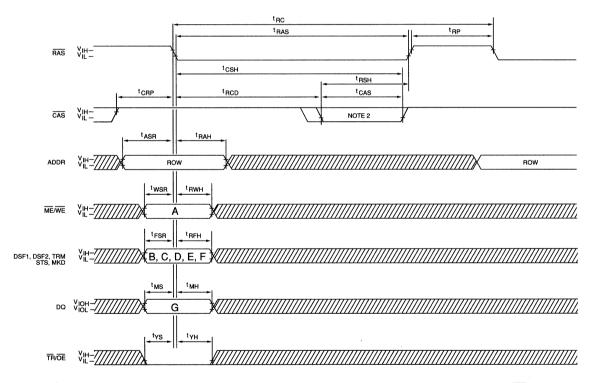

- 1. READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST PAGE MODE. Use the Write Function Table to determine the proper DSF1 state for the desired WRITE operation.
- 2. The logic states of "A", "B", "C", and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

DRAM RAS-ONLY REFRESH CYCLE (ADDR = A0-A8)


CAS-BEFORE-RAS REFRESH CYCLE

NOTE: 1. The MT43C4257/8 operates with this state as "don't care", but to allow for future functional enhancements, it is recommended that they be driven as illustrated for system upgradability.

DRAM HIDDEN-REFRESH CYCLE


NOTE: 1. A HIDDEN REFRESH may also be performed after a WRITE or TRANSFER cycle. In the WRITE case, $\overline{\text{ME}}/\overline{\text{WE}} = \text{LOW}$ (when $\overline{\text{CAS}}$ goes LOW) and $\overline{\text{TR}/\text{OE}} = \text{HIGH}$. In the TRANSFER case, $\overline{\text{TR}/\text{OE}} = \text{LOW}$ (when $\overline{\text{RAS}}$ goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of $\overline{\text{TR}/\text{OE}}$.

DRAM/BMR TRANSFER CYCLE FUNCTION TABLE

LOGIC STATES								CODE
RAS Falling Edge							FUNCTION	
A	В	С	D	E	F	G	TONCTION	
ME/WE	DSF1	DSF2	TRM	STS	MKD	DQ (input)		
1	0	0	1	0	X¹	X	BMR READ TRANSFER (DRAM→BMR TRANSFER)	BMR-RT
1	0	0	1	1	X¹	х	BMR READ TRANSFER (DRAM→invert→BMR TRANSFER)	BMR-IRT
0	0	0	1	0	X¹	MASK	BMR WRITE TRANSFER (BMR→DRAM TRANSFER)	BMR-WT
0	0	0	1	1	X1 ·	MASK	BMR WRITE TRANSFER (BMR→invert→DRAM TRANSFER)	BMR-IWT
1	1	1	0	х	Χ¹	x	CLEAR BMR (CLR-BMR)	CLR- BMR

DRAM/BMR TRANSFERS

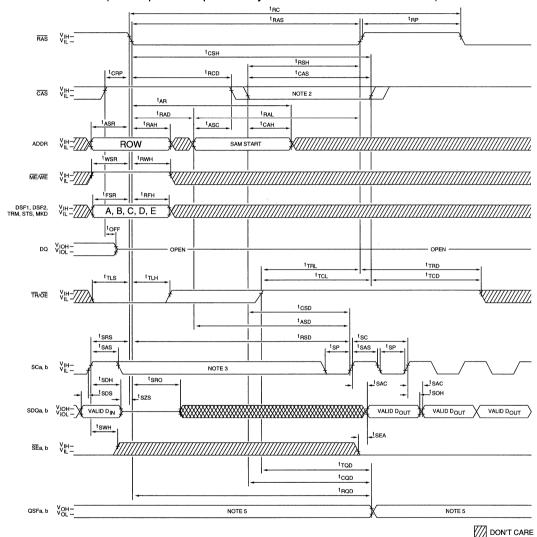
DON'T CARE

₩ UNDEFINED

- 1. Serial Mask Input mode is enabled if MKD = HIGH; disabled if MKD = LOW.
- 2. It is not necessary to drop $\overline{\text{CAS}}$ during a DRAM/BMR TRANSFER.

READ TRANSFER CYCLE FUNCTION TABLE¹

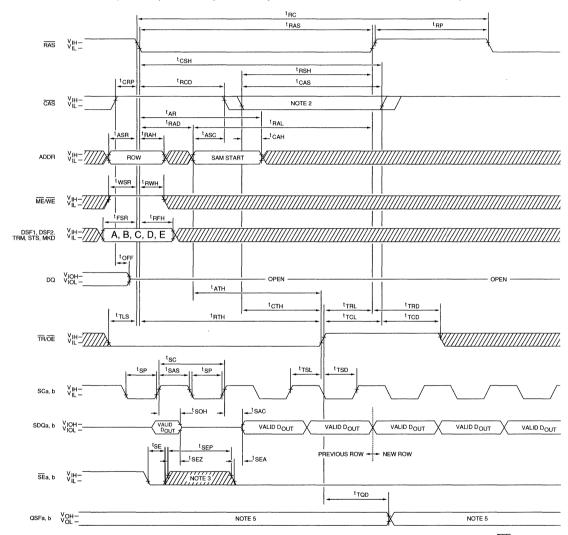
LOGIC STATES ² RAS Falling Edge						CODE
					FUNCTION	
A DSF1	B DSF2	C TRM	D STS	E MKD	FUNCTION	CODE
0	0	0	0/12	Х	READ TRANSFER (DRAM→SAM)	RW
1	0	0	0/12	Х	SPLIT READ TRANSFER (DRAM→SAM)	SRT
0	1	1	0/12	Х	BIT MASKED READ TRANSFER	BMRT
1	1	1	0/12	Х	BIT MASKED SPLIT READ TRANSFER	BMSRT
1	0	1	0/12	0/13	BMR→SAM TRANSFER	BMR-SAM


- 1. Refer to this function table to determine the logic states of "A", "B", "C", "D" and "E" for READ TRANSFER cycle timing diagrams on the following pages.
- 2. The state of STS at the falling edge of RAS determines the SAM involved in the transfer. When STS = LOW the transfer is to SAMa; when STS = HIGH the transfer is to SAMb.
- 3. Serial Mask Input mode is enabled if MKD = HIGH; disabled if MKD = LOW.

₩ undefined

READ TRANSFER^{1,4} (DRAM-TO-SAM TRANSFER)

(When part was previously in the SERIAL INPUT mode)



- 1. QSF = "OPEN"; SSF = "Don't Care"
- CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed SAM will be reused.
- 3. There must be no rising edges on the SC input during this time period.
- 4. The logic states of "A", "B", "C", and "D" determine the type of TRANSFER operation performed. See the Read Transfer Cycle Function Table.
- QSF = 0 when the Lower SAM (bits 0–255) is being accessed.
 QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

REAL-TIME READ TRANSFER^{1,4} (DRAM-TO-SAM TRANSFER)

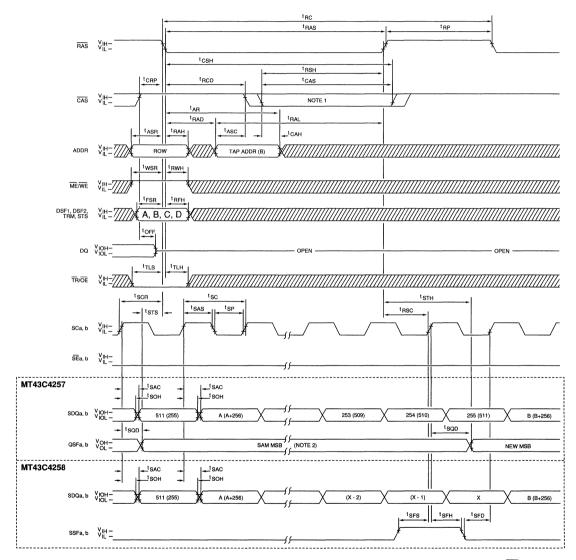
(When part was previously in the SERIAL OUTPUT mode)

NOTE: 1. QSF = "OPEN"; SSF = "Don't Care"

2. CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed

DON'T CARE

W UNDEFINED


- 3. The SE pulse is shown to illustrate the serial output enable and disable timing. It is not required.
- 4. The logic states of "A", "B", "C", and "D" determine the type of TRANSFER operation performed. See the Read Transfer Cycle Function Table.

QSF = 0 when the Lower SAM (bits 0-255) is being accessed.

QSF = 1 when the Upper SAM (bits 256-511) is being accessed.

SPLIT READ TRANSFER³ (SPLIT DRAM-TO-SAM TRANSFER)

DON'T CARE

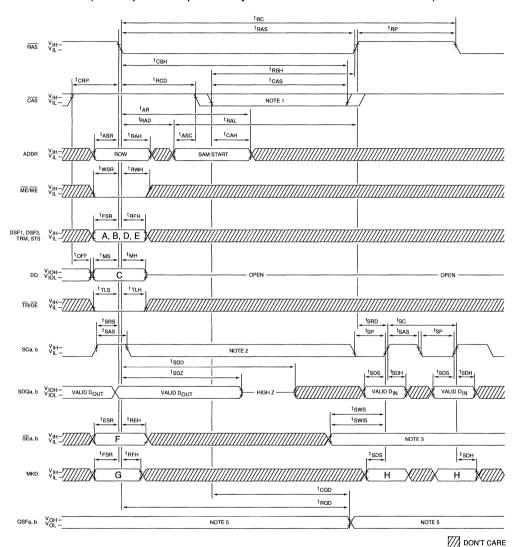
NOTE:

1. CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed SAM will be reused for the idle half.

W UNDEFINED

- QSF = 0 when the Lower SAM (bits 0-255) is being accessed.
 QSF = 1 when the Upper SAM (bits 256-511) is being accessed.
- 3. The logic states of "A", "B", "C", and "D" determine the type of TRANSFER operation performed. See the Read Transfer Cycle Function Table.

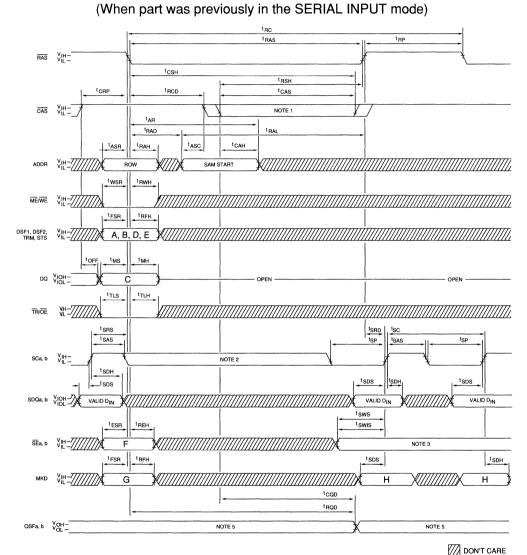
WRITE TRANSFER CYCLE FUNCTION TABLE¹


			LOGIC	CSTAT	ES				
		RAS F	alling E	dge			sc	FUNCTION	CODE
A DSF1	B DSF2	C Q	D TRM	E STS	F SE	G MKD	H MKD	TONOTION	JOBE
0	0	Х	0	0/12	0	Х	-	WRITE TRANSFER (SAM→DRAM)	WT
0	0	Х	0	0/12	1	Х	-	PSEUDO WRITE TRANSFER	PWT
1	0	mask	0	0/12	Х	Х	-	SPLIT WRITE TRANSFER (SAM→DRAM)	SWT
0	1	mask	0	0/12	Х	Х	-	DQ MASKED WRITE TRANSFER (SAM→DRAM)	DMWT
0	1	Х	1	0/12	Х	Х	0/14	BIT MASKED WRITE TRANSFER (SAM-DRAM)	BMWT
1	1	mask	1	0/12	x	Х	0/14	BIT MASKED SPLIT WRITE TRANSFER (SAM→DRAM)	BMSWT
1	0	Х	1	0/12	Х	0/1 ³	-	SAM→BMR TRANSFER	SAM-BMR

- 1. QSF = "OPEN"; SSF = "Don't Care."
 - Refer to this function table to determine the logic states of "A", "B", "C", "D", "E", "F", "G", and "H" for WRITE TRANSFER cycle timing diagrams on the following pages.
- 2. The state of STS at the falling edge of RAS determines the SAM involved in the transfer. When STS = LOW the transfer is to SAMa; when SAM = HIGH the transfer is to SAMb.
- 3. Serial Mask Input (SMI) mode is enabled if MKD = HIGH and disabled if MKD = LOW.
- 4. When in the SMI mode (see BMR transfer waveforms) MKD is the SMI data input. MKD data is clocked into all bit planes of the bit mask register with SCb. A logic "1" on MKD will allow data to pass through the mask; a logic "0" will mask the corresponding location of the SAM during a BIT MASKED TRANSFER. BIT MASKED TRANSFERs to or from SAMa must not take place while mask data is being serially input via SCb and MKD.

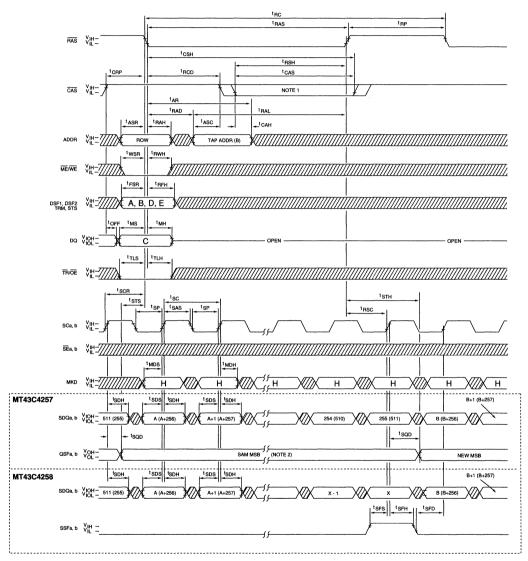
₩ UNDEFINED

WRITE TRANSFER⁴ (When part was previously in the SERIAL OUTPUT mode)


- CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed SAM will be reused.
- 2. There must be no rising edges on the SC input during this time period.
- 3. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
- 4. The logic states of "A", "B", "C", "D", "E", "F", "G" and "H" determine the type of TRANSFER operation performed. See the Write Transfer Cycle Function Table.
- 5. QSF = 0 when the Lower SAM (bits 0–255) is being accessed.

 QSF = 1 when the Upper SAM (bits 256–511) is being accessed. SSFa,b = "don't care" (MT43C4258).

W UNDEFINED

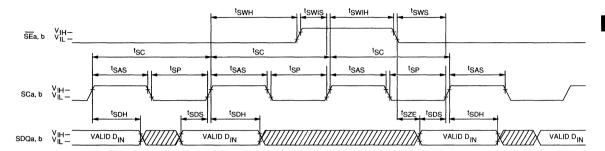

WRITE TRANSFER⁴

- CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed SAM will be reused.
- 2. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
- 3. There must be no rising edges on the SC input during this time period.
- 4. The logic states of "A", "B", "C", "D", "E", "F", "G" and "H" determine the type of TRANSFER operation performed. See the Write Transfer Cycle Function Table.
- 5. QSF = 0 when the Lower SAM (bits 0–255) is being accessed. QSF = 1 when the Upper SAM (bits 256–511) is being accessed. SSFa,b = "don't care" (MT43C4258).

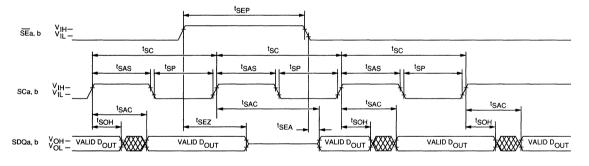
SPLIT WRITE TRANSFER³ (SPLIT SAM-TO-DRAM TRANSFER)

NOTE:

 CAS is used to load the Tap address. If CAS does not fall, the last Tap address load for the addressed SAM will be reused.


QSF = 0 when the Lower SAM (bits 0–255) is being accessed.
 QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

3. The logic states of "A", "B", "C", "D", "E", and "H" determine the type of TRANSFER operation performed. See the Write Transfer Cycle Function Table.



SAMa or SAMb SERIAL INPUT

SAMa or SAMb SERIAL OUTPUT

DON'T CARE

₩ UNDEFINED

NOTE: SEa, SCa and SDQa are used when accessing SAMa and SEb; SCb and SDQb are used when access in SAMb.

TRIPLE PORT DRAM

128K x 8 DRAM WITH DUAL 256 x 8 SAMS

FEATURES

- Three asynchronous, independent, data access ports
- Fast access times 80ns random, 25ns serial
- Operation and control compatible with 1 Meg VRAMS
- High performance CMOS silicon gate process
- Low power: 15mW standby; 450mW active, typical
- 512-cycle refresh within 8ms
- Refresh modes: RAS-ONLY, CAS-BEFORE-RAS, and HIDDEN
- FAST PAGE MODE access cycles
- Two bidirectional Serial Access Memories (SAMs)
- Fully static SAMs and Mask Register, no refresh required
- 2048-bit Transfer Mask Register
- SERIAL MASK DATA INPUT mode

SPECIAL FUNCTIONS

- MASKED WRITE (Write-Per-Bit)
- PERSISTENT MASKED WRITE
- SPLIT READ AND WRITE TRANSFERS
- BLOCK WRITE
- BIT MASKED TRANSFERS

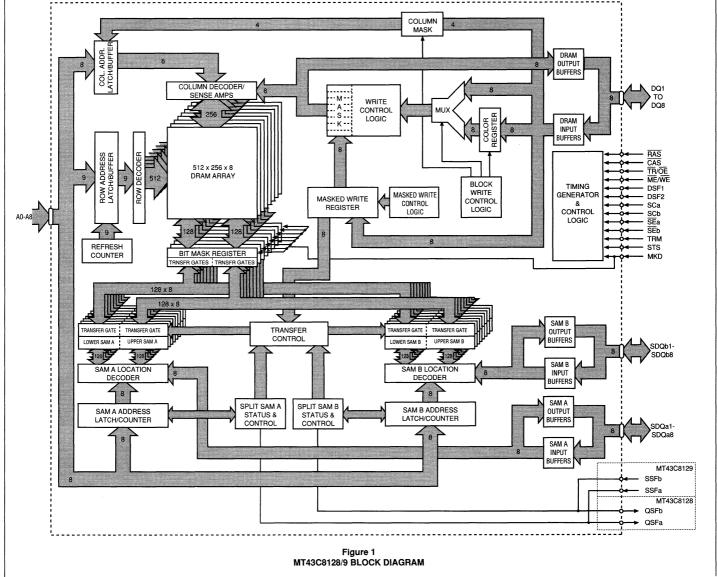
OPTIONS M	IARKING
 Timing (DRAM, SAMs) 	
80ns, 25ns	- 8
100ns, 30ns	-10
120ns, 35ns	-12
• Packages	
Plastic LCC (750 mil)	EJ
Functionality	
QSF output (indicates SAM half accessed)	43C8128
SSF input (Split SAM special function, stop count) 43C8129

GENERAL DESCRIPTION

The MT43C8128/9 are high speed, triple port CMOS dynamic random access memories (TPDRAM) containing 1,048,576 bits. Data may be accessed by an 8 bit wide DRAM port or by either of two independently-clocked 256 x 8-bit serial access memory (SAM) ports. Data may be transferred bidirectionally between the DRAM and the SAMs.

The DRAM portion of the TPDRAM is functionally identical to the MT4C4256 (256K \times 4) DRAM. Sixteen 256-bit data registers make up the serial access memory portions of the TPDRAM. Data I/O and internal data transfer are accomplished using five separate bidirectional data paths; the 8-bit random access I/O port, a pair of internal 2048 bit wide paths between the DRAM and the SAMs, and the pair

PIN ASSIGNMENT (Top View) **52-PIN PLCC (D-3)** SCa SDQ4b SDQ3b SDQ2b SDQ1b SCb VSS1 SDQ8b SDQ7b SDQ7b SDQ6b SDQ6b SDQ6b SDQ6b SDQ6b 7 6 5 4 3 2 52 51 50 49 48 47 SDQ1a B 46 b MKD SDQ2a D 9 45 SDQ8a SDQ3a D 10 SDQ4a I 11 TR/0E I 12 DQ1 I 13 43 SDQ6a 42 SDQ5a 41 SEa DQ2 | 14 DQ3 | 15 DQ4 | 16 40 DQ8 38 DQ6 Vcc1 □ 17 ME/WE □ 18 STS □ 19 RAS □ 20 37 DQ5 35 DSF1 34 QSFb/SSFb* * MT43C8128/MT43C8129


of 8-bit serial I/O ports for the SAMs. The rest of the circuitry consists of the control, timing, and address decoding logic.

All three ports may be operated asynchronously and independently of the others except when data is being internally transferred between the DRAM and either SAM.

Each of the 2048 bits involved in an internal transfer may be individually masked by performing a BIT MASKED TRANSFER operation. The 256×8 -bit, Bit Mask Data Register can be parallel loaded from the DRAM or, either SAM, or it may be serial loaded through the MKD serial input.

As with all DRAMs, the TPDRAM must be refreshed to maintain data. The refresh cycles must be timed so that all 512 combinations of RAS addresses are executed at least every 8ms (regardless of sequence). Micron recommends evenly spaced refresh cycles for maximum data integrity. An internal transfer between the DRAM and either SAM counts as a refresh cycle. The SAM portions of the TPDRAM are fully static and do not require any refresh.

The operation and control of the MT43C8128/9 are compatible with the operation of the MT42C8128 (128K \times 8 Video RAM). However, the MT43C8128/9 offer an additional SAM and special features that may be used to enhance system performance.

MULTIPORT DRAM

PIN DESCRIPTIONS

PLCC PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
7	SCa	Input	Serial Clock, SAMa: Clock input to the serial address counter for the SAMa registers and strobe for SAMa control and data inputs.
1	SCb	Input	Serial Clock, SAMb: Clock input to the serial address counter for the SAMb registers and strobe for SAMb control and data inputs.
12	TR/OE	Input	Transfer Enable: Enables an internal TRANSFER operation at the falling edge of $\overline{\text{RAS}}$, or
			Output Enable: Enables the DRAM output buffers when taken LOW after RAS goes LOW (CAS must also be LOW), otherwise the output buffers are in a high impedance state.
18	ME/WE	Input	Mask Enable: If ME/WE is LOW at the falling edge of RAS, a MASKED WRITE cycle is performed, or
			Write Enable: ME/WE is also used to select a READ (ME/WE = H) or WRITE (ME/WE = L) cycle when accessing the DRAM. This includes a READ TRANSFER (ME/WE = H) or WRITE TRANSFER (ME/WE = L).
41	SEa	Input	Serial Port Enable SAMa: SEa enables Port A serial I/O buffers and allows a serial READ or WRITE operation to occur; otherwise, the output buffers are in a High-Z state. SEa is also used during a TRANSFER operation to indicate whether a WRITE TRANSFER or a SERIAL INPUT MODE ENABLE (PSEUDO WRITE TRANSFER) cycle is performed.
47	SEb	Input	Serial Port Enable, SAMb: SEb enables Port B serial I/O buffers and allows a serial READ or WRITE operation to occur; otherwise, the output buffers are in a High-Z state. SEb is also used during a TRANSFER operation to indicate whether a WRITE TRANSFER or a SERIAL-INPUT-MODE ENABLE (PSEUDO WRITE TRANSFER) cycle is performed.
35	DSF1	Input	Special Function (Control) 1: DSF1 is used to indicate which special functions are used on a particular access or transfer cycle See the Functional Truth Table for a detailed description.
21	DSF2	Input	Special Function (Control) 2: DSF2 is used to indicate which special functions are used on a particular access or transfer cycle See the Functional Truth Table for a detailed description.
20	RAS	Input	Row Address Strobe: RAS is used to clock in the 9 row-address bits and as a strobe for control and data inputs.
33	CAS	Input	Column Address Strobe: CAS is used to clock in the 8 column-address bits, enable the DRAM output buffers (along with TR/OE), and as a strobe for control and data inputs.

PIN DESCRIPTIONS (Continued)

PLCC PIN NUMBERS	SYMBOL	TYPE	DESCRIPTION
31, 30, 29, 28 25, 24, 27, 22 23	A0 - A8	Input	Address Inputs: For DRAM operation, these inputs are multiplexed and clocked by \overline{RAS} and \overline{CAS} to select one 8-bit word out of the 128K available. During TRANSFER operations, A0 to A8 indicate the DRAM row being accessed (when \overline{RAS} goes LOW) and A0-A7 indicate the SAM start address (when \overline{CAS} goes LOW). A7, A8 = "don't care" for the start address when doing SPLIT TRANSFER.
19	STS	Input	SAM Transfer Select: The state of STS at RAS time determines which SAM is involved in a transfer (SAMa=LOW, SAMb=HIGH).
46	MKD	Input	Mask Data Input: MKD is used during BIT MASK REGISTER LOAD cycles to enable or disable the serial mask input mode (SMI). If SMI is enabled (MKD=HIGH at RAS), then MKD is used as mask data input and is clocked by SCb into the mask data register.
6	TRM	Input	Transfer Mask Select: TRM is used to select between NORMAL TRANSFER cycles and BIT MASKED TRANSFER or BIT MASK REGISTER LOAD cycles.
13, 14, 15, 16 37, 38, 39, 40	DQ1 - DQ8	Input/ Output	DRAM Data I/O: Data inputs and outputs for the DRAM memory array; inputs for the MASK and COLOR REGISTER load cycles; address mask inputs for BLOCK WRITE cycles.
8, 9, 10, 11 42, 43, 44, 45	SDQa1-SDQa8	Input/ Output	Serial Data I/O, SAMa: Input, Output, or High-Z.
2, 3, 4, 5 48, 49, 50, 51	SDQb1-SDQb8	Input/ Output	Serial Data I/O, SAMb: Input, Output, or High-Z.
32	QSFa/SSFa	Output	Split SAM Status, SAMa (MT43C8128): QSFa indicates which half of SAMa is being accessed (Lower = LOW, Upper = HIGH).
		Input	Split SAM Special Function, SAMa (MT43C8129): SSFa=HIGH stops access to current half of SAM and will load the Tap address of the next half into the address pointer. SSFa is synchronized with SCa.
34	QSFb/SSFb	Output	Split SAM Status, SAMb (MT43C8128): QSFb indicates which half of SAMb is being accessed (Lower = LOW, Upper = HIGH).
		Input	Split SAM Special Function, SAMb (MT43C8129): SSFb=HIGH stops access to current half of SAM and will load the Tap address of the next half into the address pointer. SSFb is synchronized with SCb.
17, 26	Vcc	Supply	
52, 36	Vss	Supply	Ground

FUNCTIONAL DESCRIPTION

The MT43C8128/9 may be divided into four functional blocks (see Figure 1): the DRAM and its special functions, the Bit Mask Register (BMR), the two Serial Access Memories (SAMs), and the DRAM/SAM/BMR transfer circuitry. All the operations described below are also shown in the AC Timing Diagrams section of this data sheet and are summarized in the Functional Truth Table.

Note:

For dual function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing transfer operations the $\overline{TR}/\overline{OE}$ pin will be shown as $\overline{TR}/(\overline{OE})$.

DRAM OPERATION

This section describes the operation of the random access port and the special functions associated with the DRAM.

DRAM REFRESH (ROR, CBR, and HR)

Like any DRAM-based memory, the MT43C8128/9 TPDRAM must be refreshed to retain data. All 512 row-address combinations must be accessed within 8ms. The MT43C8128/9 supports CAS-BEFORE-RAS, RAS-ONLY and HIDDEN types of refresh cycles.

For the CAS-BEFORE-RAS REFRESH cycle, the row addresses are generated and stored in an internal address counter. The user need not supply any address data and simply must perform 512 CAS-BEFORE-RAS cycles within the 8ms time period.

For \overline{RAS} -ONLY REFRESH cycles, the refresh address must be generated externally and applied to the A0-A8 inputs . The DQ pins remain in a High-Z state for both the \overline{RAS} ONLY and \overline{CAS} -BEFORE- \overline{RAS} cycles.

HIDDEN REFRESH (HR) cycles are performed by toggling RAS (while keeping CAS LOW) after a READ or WRITE cycle. This performs CAS-BEFORE-RAS cycles but does not disturb the DO lines.

Any DRAM READ, WRITE, or TRANSFER cycle also refreshes the DRAM row that is being accessed. The SAM and Bit Mask Register portions of the MT43C8128/9 are fully static and do not require any refreshing.

DRAM READ AND WRITE CYCLES (RW)

The DRAM portion of the TPDRAM is nearly identical to standard 128K x 8 DRAMs. However, because several of the DRAM control pins are used for additional functions on this device, several conditions that were undefined or "don't care" states for the DRAM are specified for the TPDRAM. These conditions are highlighted in the following discussion. In addition, the TPDRAM has several special functions that may be used when writing to the DRAM.

The 17 address bits used to select an 8-bit word from the 131,072 available are latched into the chip using the A0-A8, \overline{RAS} , and \overline{CAS} inputs. First, the 9 row-address bits are setup on the address inputs and clocked into the part when \overline{RAS} transitions from HIGH to LOW. Next, the 8 column-address bits (A0 - $\overline{A7}$) are setup on the address inputs and clocked in when \overline{CAS} goes from HIGH to LOW.

For single port DRAMS, the \overline{OE} pin is a "don't care" when \overline{RAS} goes LOW. For the TPDRAM, $(\overline{TR})/\overline{OE}$ is used when \overline{RAS} goes LOW, to select between DRAM and TRANSFER cycles. $(\overline{TR})/\overline{OE}$ must be HIGH at the \overline{RAS} HIGH-to-LOW transition for all DRAM operations.

If (ME)/WE is HIGH when CAS goes LOW, a DRAM READ operation is performed and the data from the memory cells selected will appear at the DQ1-DQ8 port. The (TR)/OE input must transition from HIGH-to-LOW sometime after RAS falls to enable the DRAM output port.

For single port DRAMs, \overline{WE} is a "don't care" when \overline{RAS} goes LOW. For the TPDRAM, $\overline{ME}/(\overline{WE})$ is used, when \overline{RAS} goes LOW, to select between a MASKED WRITE cycle or a normal WRITE cycle. If $\overline{ME}/(\overline{WE})$ is LOW at the \overline{RAS} HIGH-to-LOW transition, a MASKED WRITE operation is selected. For any TPDRAM non-masked access cycle (READ or WRITE), $\overline{ME}/(\overline{WE})$ must be HIGH at the \overline{RAS} HIGH to LOW transition. If $\overline{(\overline{ME})}/\overline{WE}$ is LOW when \overline{CAS} goes LOW, a DRAM WRITE operation is performed and the data present on the DQ1-DQ8 data port will be written into the selected memory cells.

The TPDRAM can perform all the normal DRAM cycles: READ, EARLY-WRITE, LATE-WRITE, READ-MODIFY-WRITE, FAST-PAGE-MODE READ, FAST-PAGE-MODE WRITE, and FAST-PAGE-MODE READ-MODIFY-WRITE. Refer to the AC timing parameters and diagrams in the data sheet for more details on these operations.

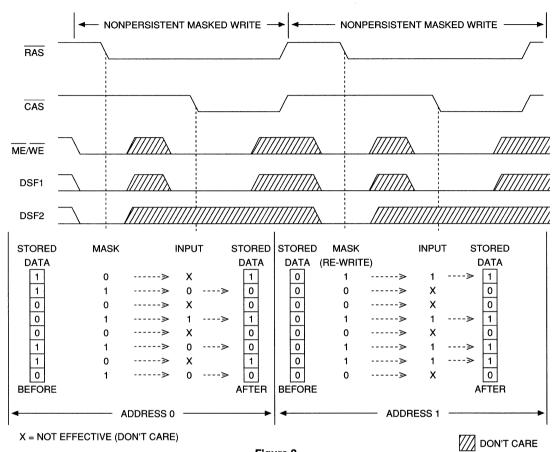


Figure 2
NONPERSISTENT MASKED WRITE EXAMPLE

NONPERSISTENT MASKED WRITE (RWNM)

The MASKED WRITE feature eliminates the need to do a READ-MODIFY-WRITE cycle when changing only certain bits within an 8-bit word. The MT43C8128/9 supports two types of MASKED WRITE cycles, NONPERSISTENT MASKED WRITE and PERSISTENT MASKED WRITE.

If ME/(WE), DSF1 and DSF2 are LOW at the RAS HIGH-to-LOW transition, the data (mask data) present on the DQ1-DQ8 inputs will be written into the mask data register. The mask data acts as an individual write enable for each of the eight DQ1-DQ8 pins. If a LOW (logic 0) is written to a mask data register bit, the input port for that bit is disabled during the subsequent WRITE operation and no new data will be written to that DRAM cell location. A HIGH (logic 1) on a mask data register bit enables the input port and

allows normal WRITE operations to proceed. This convention is used for all masks on the MT43C8128/9. Note that $\overline{\text{CAS}}$ is still HIGH. When $\overline{\text{CAS}}$ goes LOW, the bits present on the DQ1-DQ8 inputs will be either written to the DRAM (if the mask data bit was HIGH) or ignored (if the mask data bit was LOW). The DRAM contents that correspond to the masked bits will not be changed during the WRITE cycle. When using NONPERSISTENT MASKED WRITE, the data present on the DQ inputs is loaded into the mask data register at every falling edge of $\overline{\text{RAS}}$. FAST PAGE MODE may be used in tandem with NONPERSISTENT MASKED WRITE to write several column locations using the same mask during one $\overline{\text{RAS}}$ cycle. An example of NONPERSISTENT MASKED WRITE cycle is shown in Figure 2.

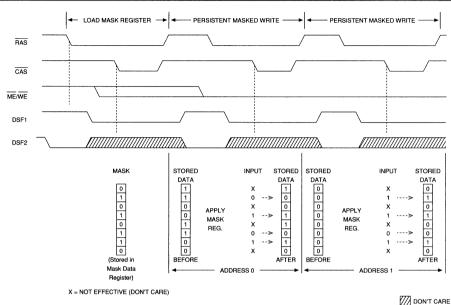


Figure 3
PERSISTENT MASKED WRITE EXAMPLE

PERSISTENT MASKED WRITE (RWOM)

The PERSISTENT MASKED WRITE feature eliminates the need to rewrite the mask data before each MASKED WRITE cycle if the same mask data is being used repeatedly. To initiate a PERSISTENT MASKED WRITE, a LOAD MASK REGISTER cycle is performed by taking $\overline{\text{ME}}/(\overline{\text{WE}})$ and DSF1 HIGH, and DSF2 LOW when $\overline{\text{RAS}}$ goes LOW. The mask data is loaded into the internal register when $\overline{\text{CAS}}$ goes LOW, provided DSF1 is LOW (see the LOAD MASK REGISTER description).

Mask data may also be loaded into the mask register by simply performing a NONPERSISTENT MASKED WRITE before the PERSISTENT MASKED WRITE cycles.

PERSISTENT MASKED WRITE cycles may then be performed by taking $\overline{\text{ME}}/(\overline{\text{WE}})$ and DSF2 LOW and DSF1 HIGH when $\overline{\text{RAS}}$ goes LOW. The contents of the mask data register will then be used as the mask data for the DRAM inputs. Unlike the NONPERSISTENT MASKED WRITE cycle, the data present at the DQ inputs is not loaded into the mask register when $\overline{\text{RAS}}$ falls. Another PERSISTENT MASKED WRITE cycle may be performed without reloading the register. Figure 3 shows the LOAD MASK REGISTER and PERSISTENT MASKED WRITE cycle operations. The LOAD MASK REGISTER and PERSISTENT MASKED WRITE cycles allow systems that cannot output data at $\overline{\text{RAS}}$ time to perform MASKED WRITE cycles. PERSISTENT MASKED WRITE can also operate in FAST PAGE MODE.

BLOCK WRITE (BW)

If DSF1 is HIGH when \overline{CAS} goes LOW, the MT43C8128/9 will perform a BLOCK WRITE cycle (\overline{WE} = "don't care") instead of a normal WRITE cycle. In BLOCK WRITE cycles, the contents of the color register (instead of the DQ inputs) are directly written to four adjacent column locations (see Figure 4). A total of 32 bits will be written simultaneously, improving the normal DRAM fill rate by four times. The color register must be loaded prior to beginning BLOCK WRITE cycles (see LOAD COLOR REGISTER).

The row is addressed as in a normal DRAM WRITE cycle. However, when $\overline{\text{CAS}}$ goes LOW, only the A2-A7 inputs are used. A2-A7 specify the "block" (out of the 64 possible) of four adjacent column locations that will be accessed. When $\overline{\text{CAS}}$ goes LOW, the DQ inputs are then used to determine which combination of the four column locations will be changed. DQ1 acts as a write enable for column location A0=0, A1=0; DQ2 controls column location A0=1, A1=0; DQ3 controls A0=0, A1=1; and DQ4 controls A0=1, A1=1. The write enable controls are active HIGH; a logic 1 enables and a logic 0 disables the WRITE function.

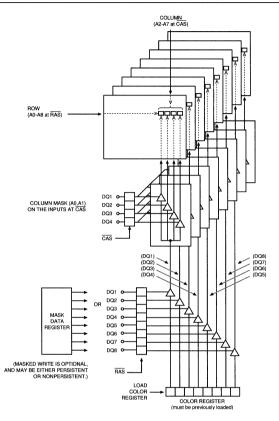


Figure 4
BLOCK WRITE EXAMPLE

The contents of the color register will then be written to the column locations enabled. Each DQ location of the color register is written to the four column locations (or any of the four that are enabled) in the corresponding DQ bit plane. The DQ mask is not used in this mode.

Note:

When performing a BLOCK WRITE, WE is a "don't care". This means LATE-WRITEs in the BW mode are not allowed.

NONPERSISTENT MASKED BLOCK WRITE (BWNM)

The MASKED WRITE functions can also be used during BLOCK WRITE cycles. NONPERSISTENT MASKED BLOCK WRITE operates exactly like the normal NONPERSISTENT MASKED WRITE except the mask is now applied to four column locations instead of just one column location.

Like NONPERSISTENT MASKED WRITE, the combination of $\overline{\text{ME}}/(\overline{\text{WE}})$ LOW and DSF1 LOW when $\overline{\text{RAS}}$ goes LOW, initiates a NONPERSISTENT MASK cycle. The DSF

pin must be driven HIGH, when $\overline{\text{CAS}}$ goes LOW, to perform a NONPERSISTENT MASKED BLOCK WRITE. By using both the column mask input and the MASKED WRITE function, any combination of the four bit planes may be masked and any combination of the eight column locations may be masked.

PERSISTENT MASKED BLOCK WRITE (BWOM)

This cycle is also performed exactly like the normal PERSISTENT MASKED WRITE except that DSF1 is HIGH when \overline{CAS} goes LOW to indicate the BLOCK WRITE function. Both the mask data register and the color register must be loaded with the appropriate data prior to starting a PERSISTENT MASKED BLOCK WRITE.

DRAM REGISTER OPERATIONS

The MT43C8128/9 contains two 8-bit registers that are used as data registers for special functions. This section describes how to load these registers.

LOAD MASK REGISTER (LMR)

The LOAD MASK REGISTER operation and timing are identical to a normal WRITE cycle except that DSF1 is HIGH when \overline{RAS} goes LOW. As shown in the Truth Table, the combination of $\overline{TR}/(\overline{OE})$, $\overline{ME}/(\overline{WE})$, and DSF1 being HIGH when \overline{RAS} goes LOW indicates the cycle is a REGISTER load cycle. DSF1 is used when \overline{CAS} goes LOW to select the register to be loaded, and must be LOW for a LOAD MASK REGISTER cycle. The data present on the DQ lines will then be written to the mask data register.

Note:

For a normal DRAM WRITE cycle, the mask data register is disabled but not modified. The contents of mask data register will not be changed unless a NON-PERSISTENT MASKED WRITE cycle or a LOAD MASK REGISTER cycle is performed

The row address supplied will be refreshed, but it is not necessary to provide any particular row address. The column address inputs are ignored during a LOAD MASK REGISTER cycle.

The mask data register contents are used during PERSIS-TENT MASKED WRITE and PERSISTENT MASKED BLOCK WRITE cycles to selectively enable writes to the eight DQ planes.

LOAD COLOR REGISTER (LCR)

A LOAD COLOR REGISTER cycle is identical to the LOAD MASK REGISTER cycle except DSF1 is HIGH when CAS goes LOW. The contents of the color register are retained until changed by another LOAD COLOR REGISTER cycle (or the part loses power) and are used as data inputs during BLOCK WRITE cycles.

TRANSFER OPERATIONS

This section describes transfer operations between the DRAM and either SAM. The direction of the transfer is specified with respect the DRAM portion of the device. A write is referenced to the DRAM array and a read is referenced from the array.

Note:

The three ports of the TPDRAM are independent and asynchronous to one another. Any or all of the ports may be accessed simultaneously at the maximum allowable frequencies. The only time the ports are synchronized is during transfers to or from the DRAM and SAM portions of the device. A transfer involving a SAM does not affect access from the other SAM port. Both SAMs may be accessed during a DRAM/BMR transfer operation or any other DRAM access cycle other than a SAM transfer.

TRANSFER operations are initiated when $\overline{TR}/\overline{OE}$) is LOW at the falling edge of \overline{RAS} . The state of STS when \overline{RAS} goes LOW indicates which SAM the TRANSFER will address. The state of $\overline{(ME)}/\overline{WE}$ when \overline{RAS} goes LOW indicates the direction of the TRANSFER. At the same time, DSF1 is used to select between normal TRANSFER cycles and SPLIT TRANSFER cycles and DSF2 is used to select between normal TRANSFER cycles and MASKED TRANSFER cycles. A TRANSFER cycles and be performed without dropping \overline{CAS} . In this case, the previously loaded Tap address will be used.

The MT43C8128/9 include a feature called BIT MASKED TRANSFER, which uses a third, 2048-bit data register to individually mask every bit involved in a TRANSFER operation. The BIT MASKED TRANSFER may be applied to either READ or WRITE TRANSFERS. The TRM pin is used to select between NORMAL and BIT MASKED TRANSFER (or BIT MASK REGISTER LOAD) cycles. The type of transfer operation is always selected on the falling edge of RAS.

NORMAL TRANSFERS

The MT43C8128/9 support all of the popular transfer cycles available on the 1 Meg video RAMs. Each of these is described in the following section.

READ TRANSFER (RT)

A READ TRANSFER cycle is selected if $\overline{\text{ME}}/(\overline{\text{WE}})$ is HIGH, and DSF1 and $\overline{\text{TR}}/(\overline{\text{OE}})$ are LOW when $\overline{\text{RAS}}$ goes LOW. When $\overline{\text{RAS}}$ goes LOW, the READ TRANSFER is to SAMa if STS = LOW, or to SAMb if STS = HIGH. The row address bits indicate the eight 256-bit DRAM rows that are to be transferred to the eight SAM data registers. The column address bits indicate the start address (or Tap point)

of the next serial output cycle from the designated SAM data registers. QSF indicates the SAM half being accessed: LOW if the lower half; HIGH if the upper. Performing a READ TRANSFER cycle sets the direction of the selected SAMs I/O buffers to the output mode.

To complete a REAL-TIME READ-TRANSFER, $\overline{TR}/(\overline{OE})$ is taken HIGH while \overline{RAS} and \overline{CAS} are LOW. In order to synchronize the REAL-TIME READ-TRANSFER to the serial clock, the rising edge of $\overline{TR}/(\overline{OE})$ must occur between the rising edges of successive clocks on the SC input (refer to the AC timing diagrams). A "regular" READ TRANSFER is not sychronized with the SC pin of the addressed SAM. This type of RT is performed when $\overline{TR}/(\overline{OE})$ is taken HIGH "early," without regard to the falling edge of CAS. The transfer will be completed internally by the device. The first serial clock must meet the tRSD, tCSD and tASD delays. (see READ TRANSFER AC timing diagram). The 2048 bits of DRAM data are then written into the SAM data registers, and the selected SAM's Tap address that was stored in the internal, 8-bit Tap address register is loaded into the address counter. If SE for the SAM selected (SEa for SAMa) is LOW, the first bits of the new row data will appear at the serial outputs with the next SC clock pulse. \overline{SE} enables the serial outputs, and may be either HIGH or LOW during this operation.

SPLIT READ TRANSFER (SRT)

The SPLIT READ TRANSFER cycle eliminates the critical transfer timing required to maintain a continuous serial output data stream (the "full" READ TRANSFER cycle has to occur immediately after the final bit of "old data," and before the first bit of "new data" is clocked out of the SAM port).

When using the SPLIT TRANSFER mode, the SAM is divided into an upper half and a lower half. While data is being serially read from one half of the SAM, new DRAM data may be transferred to the other half. The transfer can occur at any time while the other half is sending data and need not be synchronized with the SC clock.

The $\overline{TR}/(\overline{OE})$ timing is relaxed for SRT cycles. The rising edge of $\overline{TR}/(\overline{OE})$ is not used to complete the TRANSFER cycle and therefore is independent of the rising edges of \overline{RAS} and \overline{CAS} . The transfer timing is generated internally for SPLIT TRANSFER cycles.

SPLIT TRANSFERs do not change the SAM I/O direction. A normal (nonsplit) READ TRANSFER cycle must precede any sequence of SRT cycles to put the SAM I/O in the output mode and provide the initial SAM Tap address (which half). Then an SRT may be initiated by taking DSF1 HIGH and selecting the desired SAM (using STS) when RAS goes LOW during the TRANSFER cycle. As in nonsplit transfers, the row address is used to specify the DRAM row to be transferred. When an SRT cycle is initiated, the half of

the SAM not actively being accessed will be the half that receives the transfer. When \overline{CAS} falls, address pins A0-A6 determine the Tap address for the SAM-half selected; A7 = "don't care." If \overline{CAS} does not fall, the previously loaded Tap address will be reused and the TRANSFER will be to the idle half.

Figure 5 shows a typical SRT initiation sequence. The normal READ TRANSFER is first performed, followed by an SRT of the same row to the upper half of the SAM. The purpose of the SRT from the same row is to initiate the split SAM operating mode and load the Tap address for the upper half of the SAM. For the MT43C8128, serial access continues and when the SAM address counter reaches 127 ("A7"=1, A0-A6=0), the QSF output for that SAM goes HIGH and the Tap address for the upper half is automatically loaded. Since the serial access has now switched to the upper half of the SAM, new data may now be transferred to the lower half. This sequence of waiting for the state of QSF to change and then transferring new data to the SAM half that is not being accessed may now be repeated. For ex-

ample, the next step in Figure 5 would be to wait until QSF went LOW (indicating that row-1 data is shifting out the lower SAM) and then transferring the upper half of row 1 to the upper SAM. \overline{CAS} is used to load the Tap address. If \overline{CAS} does not fall, the last Tap address load for the addressed SAM will be reused.

The split SAM operation is slightly different for the MT43C8129. Instead of having a QSF, this device has a Split SAM Special Function (SSF) input. With this input the serial access may be switched at will from one half of the SAM to the other. In other words, the address count may be stopped on the current half and the Tap address of the next half may be loaded, without waiting for the maximum address count of the current half (127; lower, 255; upper). If no SSF pulse is applied, the Tap address of the next half will be automatically loaded when the maximum count of the current SAM-half is reached. QSF = 0 when the Lower SAM (bits 0–255) is being accessed. QSF = 1 when the Upper SAM (bits 256–511) is being accessed.

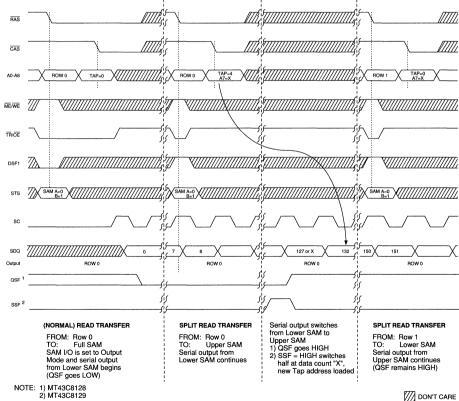


Figure 5
TYPICAL SPLIT READ TRANSFER INITIATION SEQUENCE

WRITE TRANSFER (WT)

The operation of the WRITE TRANSFER is identical to the READ TRANSFER described previously, except $\overline{(ME)/WE}$ and \overline{SE} must be LOW when \overline{RAS} goes LOW. The DSF2 input is used to select between the WT and DQ MASKED WRITE TRANSFER cycles, and must be LOW for the WT cycle. The STS pin is also taken LOW or HIGH to select SAMa or SAMb, respectively, when \overline{RAS} goes LOW. The row address indicates the DRAM row to which the SAM data register will be written, and the Tap address indicates the starting address of the next SERIAL INPUT cycle for the SAM data registers. QSF indicates the SAM half being accessed; LOW if the lower half, HIGH if the upper. Performing a WT sets the direction of the SAM I/O buffers to the input mode.

PSEUDO WRITE TRANSFER (PWT)

The PSEUDO WRITE TRANSFER cycle can be used to change the direction of a SAM port from output to input without disturbing the DRAM data in the selected row. A PSEUDO WRITE TRANSFER cycle is a WRITE TRANSFER cycle with the \$\overline{SE}\$ of the appropriate \$\overline{SAM}\$ held HIGH instead of LOW. The addressed row will be refreshed. A DQ MASKED WRITE TRANSFER (with all bits masked) is an alternate method for changing the direction of the \$\overline{SAM}\$ port without disturbing the addressed row data.

DQ MASKED WRITE TRANSFER (DMWT)

The data being transferred from either SAM to the DRAM may be masked by performing a DQ MASKED WRITE TRANSFER cycle. The transfer of data may be selectively enabled for each of the eight DQ planes (see Figure 6). The DMWT cycle is identical to the WRITE TRANSFER cycle except DSF2 is HIGH and mask data must be on the DQ inputs at the falling edge of RAS.

The complete SAM register will be transferred to the selected row in each DQ plane if the mask data input is HIGH, and the SAM register will not be transferred if the mask data input for that DQ plane is LOW. DRAM data is not disturbed in masked DQ planes.

SPLIT WRITE TRANSFER (SWT)

The SPLIT WRITE TRANSFER feature makes it possible to input and transfer uninterrupted bit streams. Figure 7 shows a typical initiation sequence for SWT cycles.

Like the SRT, the SPLIT WRITE TRANSFER cycle does not change the state of the SAM I/O buffers. A normal, DQ MASKED or PSEUDO WRITE TRANSFER cycle is required to set, the Tap address and set the SAM I/O direction to input mode.

After the WT, a SWT is performed to enter the split SAM operating mode. This sets the Tap for the next half of the SAM. The addressed half of the SAM is immediately trans-

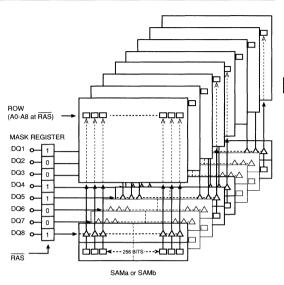


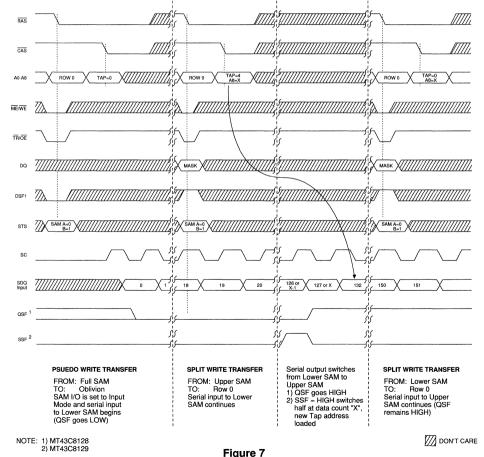
Figure 6
DQ MASKED WRITE TRANSFER

ferred to the first destination row. This half of the SAM may not yet contain valid data. However, another SWT to the same row will normally occur after this is loaded, so the initial invalid data will be overwritten. Another approach would be to initiate an SWT addressed to any DRAM row, but mask (disable) all eight of the DQ planes. This method can be used to initiate the SWT sequence without disturbing any DRAM data.

Write mask data must be supplied to the DQ inputs during every SWT cycle at RAS time. The mask data acts as an individual write enable for each of the eight DRAM DQ planes. For example, the DQ1 MASKED WRITE bit enables or disables the transfer of the SAMSDQ1 register to the DQ1 plane of the DRAM row selected (see the DQ MASKED WRITE TRANSFER description). As in all other MASKED WRITE operations, a HIGH enables the WRITE TRANSFER and a LOW disables the WRITE TRANSFER. As with SPLIT READ TRANSFER, the half of the SAM not receiving data will be the half transferred and the Tap address (A0-A6) for the other half is loaded when \overline{CAS} falls (A7 is a "don't care"). If CAS does not fall, the previously loaded Tap address, A0-A6, will be reused. The TRANSFER will be to the idle half. When the serial clock crosses the half-SAM boundary, the new Tap address for that half is automatically loaded.

The QSFa and QSFb outputs (MT43C8128) indicate which half of SAMa or SAMb, respectively, is currently accepting data. After QSF goes HIGH, indicating that serial input has now switched to the upper SAM, the contents of the lower

half of the SAM may be transferred to any DRAM row. The cycle of checking for a change in QSF and then transferring the half of the SAM just filled may now be repeated. The next step on Figure 7 is to wait for QSF to go LOW and then SWT the contents of the upper half of the SAM to row 0. If the terminal count of the SAM half is reached before an SWT is performed for the next half, the access will be repeated from the same half and previously loaded address (access will not move to the next half).


When operating the MT43C8129 in the SWT mode, the address pointer may be changed, at will, to the new Tap address of the next half when the final desired input data is clocked-in. When the final data is input, the SSF input is taken HIGH at the corresponding rising edge of SC. The next SC rising edge will input data into the Tap location of the next half of the SAM. If SSF is not applied, the Tap

address will be automatically loaded when the maximum Tap address count is reached for the current half (127 or 255). If SSF is HIGH at SC, before an SWT is performed for the next half, the access will jump to the old Tap address of the same half. Access will not preced to the next half. If terminal count is reached before an SWT, the access will proceed as it does for the MT43C4257.

SERIAL INPUT and SERIAL OUTPUT

The control inputs for SERIAL INPUT and SERIAL OUT-PUT are SCa,b and $\overline{\text{SE}}$ a,b. The rising edge of SC increments the serial address counter and provides access to the next SAM location. $\overline{\text{SE}}$ enables or disables the serial input/out-put buffers.

Serial output of the SAM contents will start at the serial start address that was loaded during the DRAM-TO-SAM

TYPICAL SPLIT WRITE TRANSFER INITIATION SEQUENCE

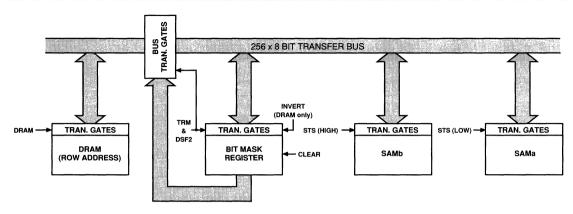


Figure 8
BIT MASKED TRANSFER BLOCK DIAGRAM

TRANSFER cycle. The SC input increments the address counter and presents the contents of the next SAM location to the 8-bit port. SE is used as an output enable during the SAM output operation. The serial address is automatically incremented with every SC LOW-to-HIGH transition, regardless of whether SE is HIGH or LOW. For the MT43C8128, the address progresses through the SAM and will wrap around (after count 127 or 255) to the Tap address of the next half, for split modes. Address count will wrap around (after count 255) to Tap address 0 if in the "full" SAM modes. For the MT43C8129, the address count will wrap as it does for the MT43C8128 or it may be triggered, at will, to the next half by the SSF input (split SAM modes). If SSF is HIGH at a LOW-to-HIGH transition of SC, the Tap address of the next half will be loaded into the address pointer. The following LOW-to-HIGH transition of SC will clock data from the Tap address of the new half.

SC is also used to clock-in data when the device is in the serial input mode. As in the serial output operation, the contents of the serial address register (loaded when the serial input mode was enabled) will determine the serial address of the first 8-bit word written. \overline{SE} acts as a WRITE ENABLE for serial input data and must be LOW for valid serial input. If \overline{SE} = HIGH, the data inputs are disabled and the SAM contents will not be modified. The serial address counter is incremented with every LOW-to-HIGH transition of SC, regardless of the logic level on the \overline{SE} input.

BIT MASKED TRANSFERS

This section describes transfers between the DRAM and either of the two SAMs using the BIT MASKED TRANSFER capability. Before performing these BIT MASKED TRANSFERS, the bit mask register must first be loaded with the

mask data. See the next section, BIT MASK REGISTER OPERATIONS, for instructions on how to load the Bit Mask Register (BMR).

The BMR is a 2048-bit register that individually controls each of the 2048 transfer gates on the internal 256 x 8 transfer bus (see Figure 8). These bus transfer gates reside between the DRAM array and the three data registers and are set to the "pass-thru" mode for nonmasked transfers. For BIT MASKED TRANSFERs, the data in the BMR is coupled to the control inputs of the bus transfer gates. A logic "1" in the BMR will select the pass-thru (unmasked) mode for the corresponding SAM data bit, while a logic "0" will select the masked mode for that bit.

BIT MASKED TRANSFERS may be incorporated when doing READ, WRITE, SPLIT READ and SPLIT WRITE TRANSFERS. The timing and control required for any particular BIT MASKED TRANSFER cycle is identical to the corresponding normal TRANSFER cycle, except that TRM and DSF2 are HIGH instead of LOW. BIT MASKED TRANSFERS between the DRAM and either of the two SAM registers are possible. Figure 9 illustrates the BIT MASKED TRANSFER functions.

BIT MASKED READ TRANSFER (BMRT)

BIT MASKED READ TRANSFER can be used to transfer any combination of the 2048 bits contained in any DRAM row address to either of the two SAMs. The logic conditions and timing for the BMRT function are identical to the normal READ TRANSFER function except to select the BIT MASKED feature, TRM and DSF2 are HIGH. If a bit in the BMR is a logic "1", the bus connection between the corresponding DRAM bit and the selected SAM bit is enabled and the data at the destination (one of the SAMs for BMRT) will be changed to the source data (the DRAM row for BMRT).

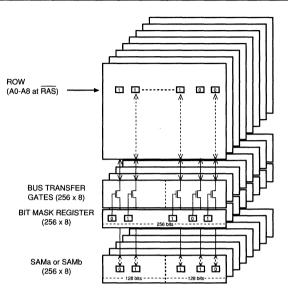


Figure 9
BIT MASK TRANSFER BLOCK DIAGRAM

BIT MASKED SPLIT READ TRANSFER (BMSRT)

The BIT MASKED SPLIT READ TRANSFER operation is identical to the normal SPLIT READ TRANSFER except that the bit mask (stored in the bit mask register) is applied to the transfer data by taking TRM and DSF2 HIGH when RAS falls. The remaining control timing is identical to the requirements for a normal SPLIT READ TRANSFER.

BIT MASKED WRITE TRANSFER (BMWT)

Like WRITE TRANSFER, the BIT MASKED WRITE TRANSFER function may be used to transfer data to any DRAM row address from either of the two SAM registers. In this case, the SAM data will be masked by the contents of the bit mask register before the data is written to the DRAM.

BIT MASKED SPLIT WRITE TRANSFER (BMSWT)

Like the other BIT MASKED TRANSFER cycles, the BMSWT is nearly identical to the SPLIT WRITE TRANSFER, except TRM and DSF2 are HIGH when RAS falls. Two masks are applied during a BMSWT operation. Each of the individual bits are masked by the bit mask register and each of the DQ planes are masked by the DQ inputs at RAS time. If a DQ input is LOW at RAS time, none of the 128 SAM bits for that DQ plane will be transferred to the DRAM row-half selected. If a DQ input is HIGH, the 128 SAM bits for that row-half will be masked by the corresponding 128 mask

register bits when written to the selected DRAM row-half. The remaining control timing is identical to the requirements for a normal SPLIT WRITE TRANSFER.

BIT MASK REGISTER OPERATIONS

This section describes how to transfer data to or from the Bit Mask Register (BMR) and how to clear the BMR's contents. Data may also be inverted when being transferred between the BMR and DRAM.

BMR READ TRANSFER (BMR-RT)

Any DRAM row may be transferred to the bit mask register by using the BMR READ TRANSFER function. When $\overline{R}AS$ falls, $\overline{TR}/(\overline{OE})$ is LOW to select a transfer cycle. TRM is HIGH to indicate that the BMR is involved in the TRANSFER cycle, and DSF2 is LOW to indicate that the data is to be transferred to the BMR (as opposed to using the contents of the BMR as bit mask data). The remainder of the timing and control required is identical to a normal READ TRANSFER cycle. No Tap address is loaded in this TRANSFER.

Note that the SAM transfer select (STS) pin is used to select whether non-inverted (STS=LOW) or inverted (STS=HIGH) data is transferred to the bit mask register. For all transfers to or from the bit mask register, the state of the MKD pin when \overline{RAS} falls selects whether the Serial Mask Input (SMI) feature is enabled (see the Functional Truth Table). SMI is a special serial input mode that allows mask information to be clocked into the BMR at the same address location as the data clocked into SAMb (see the SMI mode description). MKD is LOW when \overline{RAS} falls to disable SMI or HIGH to enable SMI. After the transfer is completed the MKD pin then acts either as a mask data input to the BMR (SMI enabled) or is "don't care" (SMI disabled). The MKD input is tied to the 8 bit-planes, the data on the MKD pin is written to each bit-plane simultaneously.

BMR INVERTED READ TRANSFER (BMR-IRT)

If the STS pin is HIGH at \overline{RAS} time the DRAM data will be inverted before being written to the BMR. All 2048 bits involved in the transfer will be complemented. The functionality and logic levels for the other control inputs are identical to the BMR READ TRANSFER cycle. Note that MKD is still used to enable or disable the SMI mode. There is no added cycle time delay for either the BMR INVERTED READ or BMR INVERTED WRITE TRANSFER cycles.

BMR WRITE TRANSFER (BMR-WT)

The contents of the BMR may also be transferred to any DRAM row by using the BMR WRITE TRANSFER cycle. $(\overline{\text{ME}})/\overline{\text{WE}}$ and DSF2 are LOW and TRM is HIGH when $\overline{\text{RAS}}$ falls, to select a write transfer from the BMR. The DQ inputs are used to input a DQ bit-plane mask when $\overline{\text{RAS}}$ falls. This allows each of the four DQ planes to be write enabled or disabled during the BMR-WT. The MKD input is used to enable or disable the SMI mode. STS must be LOW at $\overline{\text{RAS}}$ time to transfer non-inverted BMR data to the DRAM row selected.

BMR INVERTED WRITE TRANSFER (BMR-IWT)

As with the BMR INVERTED READ TRANSFER, the 2048 bits involved in the transfer may be inverted while being transferred. Taking STS HIGH at \overline{RAS} time will cause the BMR data to be inverted before it is stored in the selected DRAM row. The other control and DQ (mask) inputs are the same as the BMR-WT.

SAM-TO-BMR TRANSFER (SAM-BMR)

The contents of either SAM may be transferred to the BMR in the same manner that a DRAM row is transferred. In this case, DSF1 is HIGH to indicate that the SAM is the source of the data instead of the DRAM, $(\overline{ME})/\overline{WE}$ is used to indicate the direction of the transfer and must be LOW, when RAS falls, for a SAM-TO-BMR TRANSFER. STS is no longer used to select between normal and inverted data, it now indicates which SAM is involved in the transfer. Since a SAM-TO-BMR TRANSFER "reads" data from the SAM. the SAM will be placed into input mode by this transfer cycle. The MKD input is still used to determine if the SMI mode will be enabled after the transfer is completed. Since no DRAM access is involved, it is not necessary to provide any particular ROW address at RAS time. However, whichever ROW address is present at RAS time will be used as the address for a RAS-ONLY REFRESH. Since a SAM is involved in the transfer, a new SAM starting Address (or Tap) will be loaded at CAS time. This address will be loaded into the serial address counter of the SAM selected by STS at RAS time.

Note:

Any SAM/BMR TRANSFER will take the device out of the split SAM mode, if it was in that mode before the transfer.

BMR-TO-SAM TRANSFER (BMR-SAM)

The contents of the BMR may also be transferred to one of the SAM registers. The $\overline{(\text{ME})/\text{WE}}$ input is used to indicate the direction of the transfer and must be HIGH for a BMR-TO-SAM TRANSFER. STS is LOW to select SAMa or HIGH to select SAMb as the destination for the BMR data. The

remaining inputs and functionality are identical to the SAM-TO-BMR TRANSFER. Since a BMR-TO-SAM TRANSFER writes new data to the selected SAM register, the I/O for the SAM involved will be placed in the output mode and a new Tap address will be loaded when CAS falls.

CLEAR BIT MASK REGISTER (CLR-BMR)

The entire contents of the BMR can be cleared (set all bit LOW) within a single transfer cycle by performing a CLEAR BMR cycle. Unlike the other cycles that access the BMR, TRM is LOW at \overline{RAS} time for the CLEAR BIT MASK REGISTER function. $\overline{TR}/(\overline{OE})$ is LOW to indicate that the cycle is a transfer cycle (although there is really no data transfer involved). The CLR-BMR function is selected when $\overline{ME}/(\overline{WE})$. DSF1 and DSF2 are HIGH when RAS falls.

When the BMR is cleared, all data will be masked when a BIT MASKED TRANSFER cycle is performed.

The BMR INVERTED WRITE and BMR WRITE TRANS-FERS can be used with the CLR-BMR function to set or clear, respectively, any DRAM row. The CLR-BMR function is used to clear the BMR then the BMR TRANSFERS are performed to the addressed DRAM row.

The CLEAR BIT MASK REGISTER function is useful when using the SERIAL MASK INPUT mode. It is automatically performed (when in the SMI mode) when data is transferred from SAMb to the DRAM (see SERIAL MASK INPUT section).

SERIAL MASK INPUT (SMI)

Whenever the BMR is accessed, the MKD input is sensed and latched into the BMR control logic. If the MKD pin is LOW at \overline{RAS} time the Serial Mask Input (SMI) mode is disabled and the BMR may only be loaded via internal transfer cycles. If MKD is HIGH when \overline{RAS} falls, during a BMR access, then the BMR control logic enables the SMI mode and the BMR may be serially loaded via the MKD input.

When SMI is enabled, the MKD input is coupled to all eight of the bit mask register's DQ planes (see Figure 10). The SCb clock input and SAMb's address counter are used to input data to SAMb and the BMR. SEb will enable (LOW) or disable (HIGH) input data to SAMb and the BMR, the address count will increment regardless of the state of SEb.

The most common application of the SMI mode is to automatically load a transfer mask with the new data written to SAMb. To initialize the sequence, the BMR is cleared (CLR-BMR) with MKD=HIGH at \overline{RAS} time to enable the SMI mode. Then SAMb is prepared to accept input data by performing PSEUDO WRITE TRANSFER. The SAM starting address loaded will also apply to the BMR. For every address location that to which data is written in SAMb, the corresponding address location in the BMR will be written to the value present on MKD (all eight planes of the BMR will be written). After the input of data to SAMb

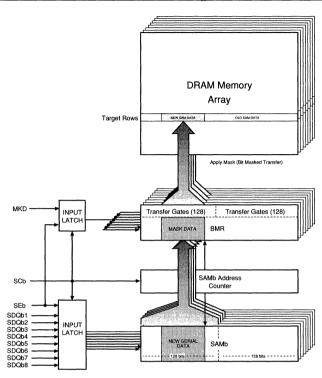


Figure 10
SERIAL-MASK-INPUT MODE BLOCK DIAGRAM

is complete, a BIT MASKED WRITE TRANSFER may be done and only the unmasked data from SAMb will be transferred to the DRAM. The BMR will be cleared automatically after a BIT MASKED WRITE TRANSFER from SAMb, if the device is in the SMI mode. A BMSWT from SAMb will clear on half of the BMR. This allows a new mask to be loaded during the next fill of SAMb, without performing a CLR-BMR cycle. If data is to be masked during the BMWT, then MKD is held LOW when the corresponding SAMb data is written. If the data is to be written (unmasked) to the DRAM during the BMWT, then MKD is held HIGH when the corresponding SAMb location is written. The function of the MKD pin is dependent on the I/O direction of SAMb. MKD is an input only, if SMI is enabled and SAMb is in input mode. If SMI is enabled and SAMb is in output mode, the MKD input is a "don't care," no new data may be written to the BMR via MKD. MKD is also "don't care" if the SMI mode is disabled. Note that the mask data loaded via SAMb may also be applied to a SAMa TRANSFER cycle, if the mask hasn't been cleared by a SAMb TRANSFER or a CLR-BMR cycle. The BMR will not be cleared after a TRANSFER involving SAMa.

POWER UP INITIALIZATION

When Vcc is initially supplied or when refresh is interrupted for more than 8ms the device must be initialized.

After Vcc is at specified operating conditions, for $100\mu s$ (minimum), eight \overline{RAS} cycles must be executed to initalize the dynamic memory array. When the device is initialized the DRAM I/O pins (DQs) are in a High-Z state, regardless of the state of $\overline{(TR)}/\overline{OE}$. The DRAM array will contain random data.

The SAM portion of the device is completely static and does not require an initialization cycle. Both SAM ports will power up in the serial input mode (WRITE TRANSFERs) and the SAM I/O pins (SDQ's) are in a High-Z state, regardless of the state of $\overline{\text{SE}}$ ab. Also, SPLITTRANSFER and SMI modes are disabled. Both QSF (MT43C8128) outputs are in the High-Z state. Both SAMs as well as bit mask, color, and DRAM mask registers all contain random data after power-up.

TRUTH TABLE 1

MULTIPORT DRAM

CODE	FUNCTION			R/	S FAL	LING	EDGE				CAS FALL	A0 -	- A8 ²	DQ1 -	DQ8 ³	REGIS	TERS
		CAS	TR / OE	ME / WE ¹⁰	DSF1	DSF2	SEa, SEb	TRM	MKD	STS	DSF1	RAS	CAS A8=X	RAS	CAS ⁴	MASK	COLOR
	DRAM OPERATIONS																
CBR	CAS-BEFORE-RAS REFRESH	0	111	111	Х	Х	×	×	Х	Х	Х	х	Х	Х	Х	Х	х
ROR	RAS ONLY REFRESH	1	1	Х	Х	Х	Х	X	х	х	T-	ROW	_	Х	_	×	Х
RW	NORMAL DRAM READ OR WRITE	1	1	1	0	011	х	Х	Х	Х	0	ROW	COLUMN	Х	VALID DATA	Х	х
RWNM	NONPERSISTENT (LOAD AND USE) MASKED WRITE TO DRAM	1	1	0	0	011	Х	Х	Х	х	0	ROW	COLUMN	WRITE MASK	VALID DATA	LOAD & USE	Х
RWOM	PERSISTENT (USE REGISTER) MASKED WRITE TO DRAM	1	1	0	1	011	х	Х	Х	х	0	ROW	COLUMN	Х	VALID DATA	USE	х
BW	BLOCK WRITE TO DRAM (NO DATA MASK)	1	1	1	0	011	Х	Х	Х	Х	1	ROW	COLUMN (A2 - A7)	Х	COLUMN MASK	Х	USE
BWNM	NONPERSISTENT (LOAD & USE) MASKED BLOCK WRITE TO DRAM	1	1	0	0	011	Х	Х	Х	Х	1	ROW	COLUMN (A2 - A7)	WRITE MASK	COLUMN MASK	LOAD & USE	USE
виом	PERSISTENT (USE MASK REGISTER) MASKED BLOCK WRITE TO DRAM	1	1	0	1	011	Х	Х	Х	Х	1	ROW	COLUMN (A2 - A7)	Х	COLUMN MASK	USE	USE
	REGISTER OPERATIONS																
LMR	LOAD MASK REGISTER	1	1	1	1	011	Х	Х	Х	Х	0	X ⁵	Х	Х	WRITE MASK	LOAD	Х
LCR	LOAD COLOR REGISTER	1	1	1	1	011	X	Х	Х	х	1	X ⁵	Х	х	COLOR DATA	Х	LOAD
	TRANSFER OPERATIONS				۵.			1					.l	L	<u> </u>	L	
RT	READ TRANSFER (DRAM-TO-SAM TRANSFER)	1	0	1	0	0	Х	0	Х	0=SAMa 1=SAMb		ROW	TAP ⁶	Х	Х	Х	Х
SRT ⁹	SPLIT READ TRANSFER (SPLIT DRAM-TO-SAM TRANSFER)	1	0	1	1	0	х	0	Х	0=SAMa 1=SAMb		ROW	TAP ⁶	Х	х	Х	х
WT	WRITE TRANSFER (SAM-TO-DRAM TRANSFER)	1	0	0	0	0	0	0	Х	0=SAMa 1=SAMb	X	ROW	TAP ⁶	, X	х	х	Х
PWT	PSEUDO WRITE TRANSFER (SERIAL INPUT MODE ENABLE)	1	0	0	0	0	1	0	Х	0=SAMa 1=SAMb		X ⁵	TAP ⁶	х	х	х	Х
SWT ⁹	SPLIT WRITE TRANSFER (SPLIT SAM- TO-DRAM TRANSFER WITH MASK)	1	0	0	1	0	×	0	Х	0=SAMa 1=SAMb	X	ROW	TAP ⁶	DQ MASK	×	LOAD & USE	х
DMWT	DQ MASKED WRITE TRANSFER	1	0	0	0	1	х	0	Х	0=SAMa 1=SAMb		ROW	TAP ⁶	DQ MASK	х	LOAD & USE	х

TRUTH TABLE 1

CODE	FUNCTION			RA	S FAL	LING	EDGE				CAS FALL	A0 -	A8 ²	DQ1 -	DQ4 ³	REGISTERS	
		CAS	TR / OE	ME / WE ¹⁰	DSF1	DSF2	SEa, SEb	TRM	MKD	STS	DSF1	RAS	CAS A8=X	RAS	CAS ⁴	MASK	COLOR
	BIT MASK REGISTER OPERA	TION	IS														
BMR- RT	BMR READ TRANSFER (DRAM→BMR TRANSFER)	1	0	1	0	0	Х	1	0/17	0	Х	ROW	Х	Х	Х	X	X
BMR- IRT	BMR READ TRANSFER (DRAM→INVERT→BMR TRANSFER)	1	0	1	0	0	Х	1	0/17	1	х	ROW	х	Х	Х	х	×
BMR- WT	BMR WRITE TRANSFER (BMR→DRAM TRANSFER)	1	0	0	0	0	Х	1	0/17	0	Х	ROW	Х	DQ MASK	Х	Х	Х
BMR- IWT	BMR WRITE TRANSFER (BMR→INVERT→DRAM TRANSFER)	1	0	0	0	0	Х	1	0/17	1	X	ROW	Х	DQ MASK	Х	Х	X
SAM- BMR	SAM→BMR TRANSFER	1	0	0	1	0	X	1	0/17	0=SAMa 1=SAMb		X ⁵	TAP ⁶	х	х	Х	х
BMR- SAM	BMR→SAM TRANSFER	1	0	1	1	0	Х	1	0/17	0=SAMa 1=SAMb		X ⁵	TAP ⁶	Х	Х	Х	х
CLR- BMR	CLEAR BIT MASK REGISTER (SETS BMR TO ALL "0's")	1	0	1	1	1	Х	0	0/17	×	х	X ⁵	Х	Х	Х	Х	X
	BIT MASKED TRANSFER OPE	RAT	IONS														
BMRT	BIT MASKED READ TRANSFER (BM DRAM—SAM TRANSFER)	1	0	1	0	1	Х	1	Х	0=SAMa 1=SAMb		ROW	TAP ⁶	Х	х	Х	Х
BMSRT ⁹	BIT MASKED SPLIT READ TRANSFER (BM SPLIT DRAM→SAM TRANSFER)	1	0	1	1	1	Х	1	X	0=SAMa 1=SAMb		ROW	TAP ⁶	х	Х	Х	х
BMWT	BIT MASKED WRITE TRANSFER (BM SAM→DRAM TRANSFER)	1	0	0	0	1	Х	1	X ₈	0=SAMa 1=SAMb		ROW	TAP ⁶	Х	Х	х	×
BMSWT ⁹	BIT MASKED SPLIT WRITE TRANSFER (BM SPLIT SAM→DRAM TRANSFER)	1	0	0	1	1	Х	1	Χ ⁸	0=SAMa 1=SAMb		ROW	TAP ⁶	DQ MASK	Х	LOAD & USE	Х

NOTES: 1. 0 = LOW (V_{ij}) , 1 = HIGH (V_{ij}) , X = "don't care", - = "not applicable"

- 2. These columns show what must be present on the A0-A8 inputs when RAS falls and A0-A7 when CAS falls.
- 3. These columns show what must be present on the DQ1-DQ8 inputs when RAS falls and when CAS falls.
- 4. On WRITE cycles (except BLOCK WRITE), the input data is latched at the falling edge of CAS or ME/WE, whichever is later. Similarly, on READ cycles, the output data is enabled on the falling edge of CAS or TR/OE, whichever is later.
- 5. The ROW that is addressed will be refreshed, but no particular ROW address is required.
- 6. Tap Address; this is the SAM location that the first SC cycle will access. For SPLIT TRANSFERs the half receiving the transfer is determined by the MSB of the internal address counter. The SAM half not currently being accessed will be the half receiving the transfer. Column address A7 is a "don't care" for SPLIT TRANSFERS.
- 7. The Serial Mask Input mode (SMI) is enabled ("1") or disabled ("0") when the BMR is accessed (see BMR OPERATIONS). If SMI is enabled (MKD = "1"), mask data is serially clocked into the BMR with SCb and the BMR is automatically cleared after a BIT MASKED WRITE or BIT MASKED SPLIT WRITE TRANSFER cycle from SAMb. For BIT MASKED READ TRANSFERs to any SAM and BIT MASKED WRITE TRANSFERs from SAMa, the BMR is not cleared automatically.
- 8. If the SMI mode is enabled, mask data is clocked into the BMR with SCb, A HIGH will allow data from the SAM address location to be written to the DRAM, a LOW will mask data to the DRAM during a BIT MASKED WRITE or BIT MASKED SPLIT WRITE TRANSFER.
- 9. SPLIT TRANSFERs do not change SAM I/O direction.
- 10. SAM I/O direction is a function of the state of ME/WE at RAS time. If ME/WE is LOW, then the selected SAM is an input; if ME/WE is HIGH then the SAM is an output.
- 11. The MT43C8128/9 operates properly if this state is "X", but to allow for future functional enhancements it is recommended that they are driven as shown in the Truth Table.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V to +7.0V
Operating Temperature, Ta(Ambient)0°C to +70°C
Storage Temperature (Ceramic)65°C to +150°C
Storage Temperature (Plastic)55°C to +150°C
Power Dissipation
Short Circuit Output Current 50m

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C)$

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	Vih	2.4	Vcc+1	٧	1
Input Low (Logic 0) Voltage, All Inputs	VıL	-1.0	0.8	٧	1

DC ELECTRICAL CHARACTERISTICS

(Notes 3, 4, 5) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

PARAMETER/CONDITION	SYMBOL	MIN	MAX	UNITS	NOTES
INPUT LEAKAGE CURRENT (any input (0V≤VIN≤Vcc, all other pins not under test = 0V).	l _L	-10	10	μА	
OUTPUT LEAKAGE CURRENT (Dout is disabled, 0V≤Vo∪τ≤Vcc).	loz	-10	10	μА	
OUTPUT LEVELS Output High Voltage (Iout = -2.5mA)	Vон	2.4		V	
Output Low Voltage (IOUT = 2.5mA)	Vol		0.4	V	1

CAPACITANCE

 $(T_{\Delta} = 25^{\circ}C; Vcc = 5.0V; f = 1MHz)$

A					
PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: Ao-As, TRM, MKD	C _{I1}		5	pF	2
Input Capacitance: RAS, CAS, ME/WE, TR/OE, SCa,b, SEa,b, DSF1,2, STS	CI2		7	pF	2
SSFa,b					
Input/Output Capacitance: DQ, SDQa,b	CI/O		9	pF	2
Output Capacitance: QSFa,b	Co		9	pF	2

CURRENT DRAIN, SAMa and SAMb IN STANDBY

 $(0^{\circ}C \le T_{\Lambda} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$ MAX PARAMETER/CONDITION SYMBOL UNITS NOTES -8 -10 -12 OPERATING CURRENT Icc1 100 90 80 mΑ 3.4 $(\overline{RAS} \text{ and } \overline{CAS} = \text{Cycling}; {}^{t}RC = {}^{t}RC \text{ (MIN)})$ OPERATING CURRENT: FAST PAGE MODE 70 3. 4 lcc₂ 90 80 mΑ $(\overline{RAS} = V_{IL} \overline{CAS} = Cycling; {}^{t}PC = {}^{t}PC (MIN))$ STANDBY CURRENT: TTL INPUT LEVELS Іссз 7 7 7 mΑ Power supply standby current (RAS=CAS=VIH, after 8 RAS cycles min) STANDBY CURRENT: CMOS INPUT LEVELS 1 1 ICC4 1 mΑ Power supply standby current (RAS=CAS=Vcc-0.2V. after 8 RAS cycles min). All other inputs at Vcc-0.2V or Vss+0.2V REFRESH CURRENT: RAS-ONLY ICC5 100 90 80 3 mΑ (RAS=Cycling; CAS=VIH) REFRESH CURRENT: CAS-BEFORE-RAS Icc6 90 80 70 mΑ 3.5 (RAS and CAS=Cycling) TRANSFER CURRENT: SAM/DRAM DATA TRANSFER 110 100 3 ICC7 90 mΑ

CURRENT DRAIN, SAMa and SAMb ACTIVE

(Notes 3, 4) (0° C $\leq T_{\Delta} \leq 70^{\circ}$ C; Vcc = 5.0V ± 10%) MAX PARAMETER/CONDITION SYMBOL -8 -10 -12 UNITS NOTES **OPERATING CURRENT** 180 170 160 mA Icc8 $(\overline{RAS} \text{ and } \overline{CAS} = \text{Cycling}; {}^{t}RC = {}^{t}RC \text{ (MIN)})$ OPERATING CURRENT: FAST PAGE MODE Icc9 160 150 140 mΑ $\overline{(RAS)} = V_{IL} \overline{CAS} = Cycling; {}^{t}PC = {}^{t}PC (MIN)$ STANDBY CURRENT: TTL INPUT LEVELS ICC10 85 85 85 mA Power supply standby current (RAS=CAS=VIH, after 8 RAS cycles min) STANDBY CURRENT: CMOS INPUT LEVELS ICC11 75 75 75 mΑ Power supply standby current (RAS=CAS=Vcc-0.2V, after 8 RAS cycles min). All other inputs at Vcc-0.2V or Vss+0.2V REFRESH CURRENT: RAS-ONLY ICC12 180 170 160 mΑ (RAS=Cycling; CAS=Vін) REFRESH CURRENT: CAS-BEFORE-RAS 170 160 ICC13 150 mΑ 5 (RAS and CAS=Cycling) TRANSFER CURRENT: SAM/DRAM DATA TRANSFER ICC14 180 170 160 mΑ

DRAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS			-8	-	10		12		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Random READ or WRITE cycle time	t _{RC}	150		180		210		ns	
READ-MODIFY-WRITE cycle time	tRWC	205		235		280		ns	
FAST-PAGE-MODE READ or WRITE	t _{PC}	45		55		65		ns	
cycle time									
FAST-PAGE-MODE READ-MODIFY-	^t PRWC	100		110		140		ns	
WRITE cycle time									
Access time from RAS	^t RAC		80		100		120	ns	14, 17
Access time from CAS	t _{CAC}		20		25		30	ns	15
Access time from (TR)/OE	^t OE		20		25		30	ns	
Access time from column address	^t AA		40		50		60	ns	
Access time from CAS precharge	^t CPA		45		55		65	ns	
RAS pulse width	t _{RAS}	80	10,000	100	10,000	120	10,000	ns	
RAS pulse width (FAST PAGE MODE)	^t RASP	80	100,000	100	100,000	120	100,000	ns	
RAS hold time	^t RSH	20		25		30		ns	
RAS precharge time	t _{RP}	60		70		80		ns	
CAS pulse width	t _{CAS}	20	10,000	25	10,000	30	10,000	ns	
CAS hold time	t _{CSH}	80		100		120		ns	
CAS precharge time	^t CPN	15		15		20		ns	16
CAS precharge time (FAST PAGE MODE)	^t CP	10		10		15		ns	
RAS to CAS delay time	t _{RCD}	20	60	20	75	25	90	ns	17
CAS to RAS precharge time	^t CRP	5		5		10		ns	
Row address setup time	t _{ASR}	0		0		0		ns	
Row address hold time	^t RAH	12		15		15		ns	
RAS to column	^t RAD	17	40	20	50	25	60	ns	18
address delay time									
Column address setup time	t _{ASC}	0		0		0		ns	
Column address hold time	^t CAH	15		20		25		ns	
Column address hold time	t _{AR}	60		70		85		ns	
(referenced to RAS)									
Column address to	t _{RAL}	40		50		60		ns	
RAS lead time	1 1							ŀ	
Read command setup time	t _{RCS}	0		0		0		ns	
Read command hold time	^t RCH	0		0		0		ns	19
(referenced to CAS)									
Read command hold time (referenced to RAS)	^t RRH	0		0		0		ns	19
CAS to output in Low-Z	tCLZ	0	-	0		0	 	ns	
Output buffer turn-off delay	tOFF	0	20	0	20	0	30	ns	20
Output Disable	tOD	0	20	0	20	0	30	ns	1-0
Output Disable hold time from start of write	t _{OEH}		15	<u> </u>	15		20	ns	
Output Enable to RAS delay	tORD		0		0		0	ns	

DRAM TIMING PARAMETERS (Continued)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes: 6, 7, 8, 9, 10, 11, 12, 13) (0°C \leq T_A \leq +70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS			8		10	-1	12		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Write command setup time	twcs	0		0		0		ns	21
Write command hold time	tWCH	15		20		25		ns	
Write command hold time (referenced to RAS)	^t WCR	60		75		85		ns	
Write command pulse width	^t WP	15		15		20		ns	
Write command to RAS lead time	t _{RWL}	20		20		25		ns	
Write command to CAS lead time	t _{CWL}	20		20		25		ns	
Data-in setup time	t _{DS}	0		0		0		ns	22
Data-in hold time	t _{DH}	20		20		25		ns	22
Data-in hold time (referenced to RAS)	^t DHR	60		70		90		ns	
RAS to WE delay time	t _{RWD}	110		130		160		ns	21
Column address to WE delay time	^t AWD	70		80		100		ns	21
CAS to WE delay time	t _{CWD}	50		60		70		ns	21
Transition time (rise or fall)	t _T	3	50	3	50	3	50	ns	9, 10
Refresh period (512 cycles)	^t REF		8		8		8	ms	
RAS to CAS precharge time	t _{RPC}	0		0		0		ns	
CAS setup time (CAS-BEFORE-RAS refresh)	t _{CSR}	10		10		10		ns	5
CAS hold time (CAS-BEFORE-RAS refresh)	^t CHR	30		30		30		ns	5
ME/WE to RAS setup time	twsR	0		0		0		ns	
ME/WE to RAS hold time	^t RWH	12		15		15		ns	
Mask data to RAS setup time	t _{MS}	0		0		0		ns	
Mask data to RAS hold time	^t MH	12		15		15		ns	

TRANSFER AND MODE CONTROL TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) (0° C \leq $T_{\mbox{\scriptsize A}} \leq$ + 70°C; Vcc = 5.0V \pm 10%)

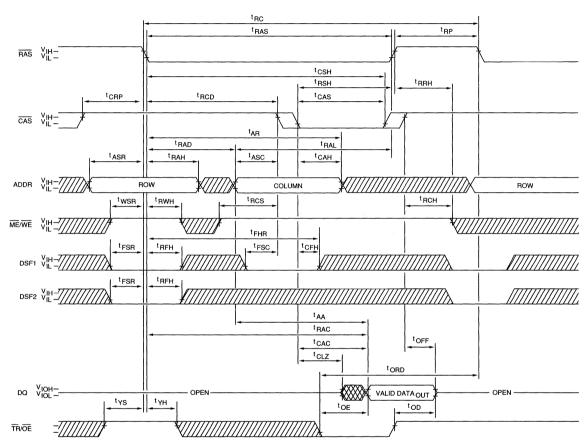
A.C. CHARACTERISTICS		-8	-10		-12				
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
TRANSFER command to RAS setup time	tTLS	0		0		0		ns	25
TRANSFER command to RAS hold time	t _{TLH}	12	10,000	15	10,000	15	10,000	ns	25
TRANSFER command to RAS hold time (REAL-TIME READ TRANSFER only)		70	10,000	80	10,000	90	10,000	ns	25
TRANSFER command to CAS hold time (REAL-TIME READ TRANSFER only)		20		25		30		ns	25
TRANSFER command to column address hold time (For REAL-TIME READ TRANSFER only)	t _{ATH}	25		30		35		ns	25
TRANSFER command to SC lead time	TSL	5		5	1	5		ns	25
TRANSFER command to RAS HIGH lead time	t _{TRL}	0		0		0		ns	25
TRANSFER command to RAS delay time	t _{TRD}	15		15		15		ns	25
TRANSFER command to CAS HIGH lead time	tTCL	0		0		0		ns	25
TRANSFER command to CAS delay time	^t TCD	15		15		15		ns	25
First SC edge to TRANSFER command delay time	t _{TSD}	10		10		10		ns	25
RAS to first SC edge delay time	tRSD	80		95		105		ns	
CAS to first SC edge delay time	tCSD	25		30		35		ns	
Column address to first SC edge delay time	t _{ASD}	50		60		65		ns	
Serial output buffer turn-off delay from RAS	^t SDZ	10	35	10	40	10	45	ns	
SC to RAS setup time	t _{SRS}	30		30		40		ns	
RAS to SC delay time	tSRD	20		25		30		ns	
Serial data input to SE delay time	tSZE	0		0		0		ns	
RAS to SD buffer turn-on time	t _{SRO}	10		15		15		ns	
Serial data input delay from RAS	t _{SDD}	45		50		55	1	ns	
Serial data input to RAS delay time	tszs	0		0		0		ns	
Serial Input Mode enable (SE) to RAS setup time	t _{ESR}	0		0		0		ns	
Serial Input Mode enable (SE) to RAS hold time	tREH	12		15		15	 	ns	
NONTRANSFER command	TYS	0		0		0	 	ns	26
to RAS setup time	'0							"	-
NONTRANSFER command to RAS hold time	tYH	12		15		15	†	ns	26
DSF, TRM, STS, MKD to RAS setup time	t _{FSR}	0		0		0		ns	
DSF, TRM, STS, MKD to RAS hold time	t _{RFH}	12		15		15		ns	
DSF to RAS hold time	tFHR	60		65		70		ns	
DSF to CAS setup time	tFSC	0		0	-	0	1	ns	<u> </u>
DSF to CAS hold time	t _{CFH}	15		20		20		ns	
SC to QSF delay time	t _{SQD}		35		40		45	ns	
RAS to QSF delay time	†RQD		65		85		105	ns	
CAS to QSF delay time	tCQD		35		40		45	ns	
TR/OE to QSF delay time	^t TQD	***************************************	25		30		35	ns	
SPLIT TRANSFER setup time	tSTS	30		35		40		ns	
SPLIT TRANSFER hold time	tSTH	30		35		40		ns	
Split SAM setup time to RAS from last SC	tSCR	30		35		40	1	ns	29
Split SAM hold time to RAS from first SC	tRSC	30	T	35		40		ns	29

SAM TIMING PARAMETERS

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Notes 6, 7, 8, 9, 10) (0° C \leq T_A \leq + 70°C; Vcc = 5.0V \pm 10%)

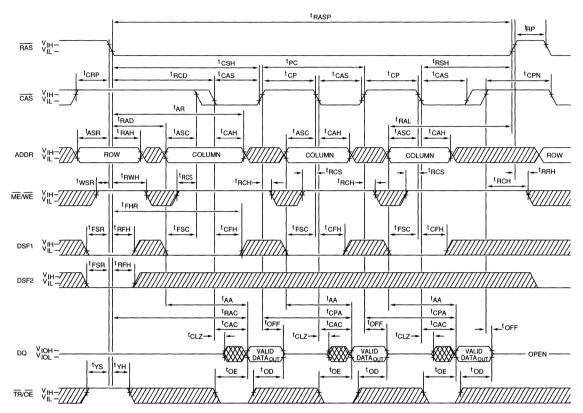
A.C. CHARACTERISTICS			-8		-10		-12		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Serial clock cycle time	tsc t	25		30		35		ns	
Access time from SC	t _{SAC}		25		30		35	ns	24
SC precharge time (SC LOW time)	t _{SP}	10		10		12		ns	
SC pulse width (SC HIGH time)	t _{SAS}	5		10		12		ns	
Access time from SE	^t SEA		15		20		30	ns	24
SE precharge time	t _{SEP}	10		15		15		ns	
SE pulse width	t _{SE}	10		15		15		ns	
Serial data out hold time after SC HIGH	^t soh	5		5		5		ns	24
Serial output buffer turn-off delay from SE	^t SEZ	0	12	0	15	0	25	ns	24
Serial data in setup time	t _{SDS}	0		0		0		ns	24
Serial data in hold time	^t SDH	10		15		20		ns	24
SERIAL INPUT (Write) Enable setup time	^t sws	0		. 0		0		ns	
SERIAL INPUT (Write) Enable hold time	^t swH	15		15		25		ns	
SERIAL INPUT (Write) Disable setup time	^t swis	0		0		0		ns	
SERIAL INPUT (Write) Disable hold time	^t SWIH	15		15		25		ns	
SSF to SC setup time	t _{SFS}	0		0		0		ns	29
SSF to SC hold time	t _{SFH}	15		20		20		ns	29
SSF LOW to SC HIGH delay	t _{SFD}	0		0		0		ns	29


NOTES

- 1. All voltages referenced to Vss.
- 2. This parameter is sampled. Capacitance is calculated from the equation $C = \underline{I\Delta t}$ with $\Delta V = 3V$ and Vcc = 5V.
- 3. Icc is dependent on cycle rates.
- Icc is dependent on output loading. Specified values are obtained with minimum cycle time and the outputs open.
- 5. Enables on-chip refresh and address counters.
- The minimum specifications are used only to indicate cycle time at which proper operation over the full temperature range (0°C ≤ T_A ≤ 70°C) is assured.
- An initial pause of 100μs is required after power-up followed by any 8 RAS cycles before proper device operation is assured. The 8 RAS cycle wake-up should be repeated any time the 8ms refresh requirement is exceeded.
- 8. AC characteristics assume ^tT = 5ns.
- VIH MIN and VIL MAX are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL (or between VIL and VIH).
- 10. In addition to meeting the transition rate specification, all input signals must transit between VIH and VIH (or between VII. and VIH) in a monotonic manner.
- 11. If $\overline{\text{CAS}} = \text{V}_{\text{IH}}$, DRAM data outputs (DQ1-DQ8) is high impedance.
- 12. If $\overline{\text{CAS}} = V_{IL}$, DRAM data outputs (DQ1-DQ8) may contain data from the last valid READ cycle.
- 13. DRAM output timing measured with a load equivalent to 1 TTL gate and 50pF. Output reference levels: VoH = 2.0V; VoL = 0.8V.
- 14. Assumes that ^tRCD < ^tRCD (MAX). If ^tRCD is greater than the maximum recommended value shown in this table, ^tRAC will increase by the amount that ^tRCD exceeds the value shown.
- 15. Assumes that ${}^{t}RCD \ge {}^{t}RCD$ (MAX).
- 16. If CAS is LOW at the falling edge of RAS, DQ will be maintained from the previous cycle. To initiate a new cycle and clear the data out buffer, CAS must be pulsed HIGH for ^tCPN.
- 17. Operation within the ^tRCD (MAX) limit ensures that ^tRAC (MAX) can be met. ^tRCD (MAX) is specified as a reference point only; if ^tRCD is greater than the speci fied ^tRCD (MAX) limit, then access time is controlled exclusively by ^tCAC.
- 18. Operation within the ^tRAD (MAX) limit ensures that ^tRCD (MAX) can be met. ^tRAD (MAX) is specified as

- a reference point only; if ^tRAD is greater than the specified ^tRAD (MAX) limit, then access time is controlled exclusively by ^tAA.
- 19. Either ^tRCH or ^tRRH must be satisfied for a READ cycle.
- 20. ^tOFF (MAX) defines the time at which the output achieves the open circuit condition and is not referenced to VOH or VOL.
- 21. tWCS, tRWD, tAWD and tCWD are restrictive operating parameters in LATE-WRITE, READ-WRITE and READ-MODIFY-WRITE cycles only. If ${}^{t}WCS \ge$ tWCS (MIN), the cycle is an EARLY-WRITE cycle and the data output will remain an open circuit throughout the entire cycle, regardless of $\overline{TR}/\overline{OE}$. If ${}^{t}WCS \leq$ tWCS (MIN), the cycle is a LATE-WRITE and $\overline{TR}/\overline{OE}$ must control the output buffers during the write to avoid data contention. If ${}^{t}RWD \ge {}^{t}RWD$ (MIN), ${}^{t}AWD \ge {}^{t}AWD$ (MIN) and ${}^{t}CWD \ge {}^{t}CWD$ (MIN), the cycle is a READ-WRITE and the data output will contain data read from the selected cell. If neither of the above conditions are met, the state of the output buffers (at access time and until \overline{CAS} goes back to VIH) is indeterminate but the WRITE will be valid, if ^tOD and ^tOEH are met. See the LATE-WRITE AC Timing diagram.
- 22. These parameters are referenced to $\overline{\text{CAS}}$ leading edge in early WRITE cycles and $\overline{\text{ME}}/\overline{\text{WE}}$ leading edge in late WRITE or READ-WRITE cycles.
- 23. During a READ cycle, if TR/OE is LOW then taken HIGH, DQ goes open. The DQs will go open with OE or CAS, whichever goes HIGH first.
- 24. SAM output timing is measured with a load equivalent to 1 TTL gate and 30pF. Output reference levels: Voh = 2.0V; Vol = 0.8V.
- 25. TRANSFER command means that $\overline{TR}/\overline{OE}$ is LOW when \overline{RAS} goes LOW.
- 26. NON-TRANSFER command means that $\overline{TR}/\overline{OE}$ is HIGH when \overline{RAS} goes LOW.
- 27. LATE-WRITE and READ-MODIFY-WRITE cycles must have ^tOD and ^tOEH met (OE HIGH during WRITE cycle) in order to ensure that the output buffers will be open during the WRITE cycle. The DQs will provide previously read data if CAS remains LOW and OE is taken LOW after ^tOEH is met. If CAS goes HIGH prior to OE going back LOW, the DQs will remain open.
- 28. Applies to the MT43C8128 only.
- 29. Applies to the MT43C8129 only.

DRAM READ CYCLE



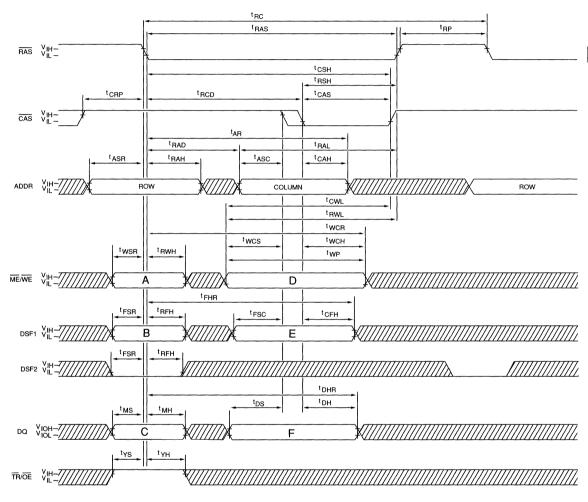
DON'T CARE

₩ UNDEFINED

DRAM FAST PAGE MODE READ CYCLE

DON'T CARE

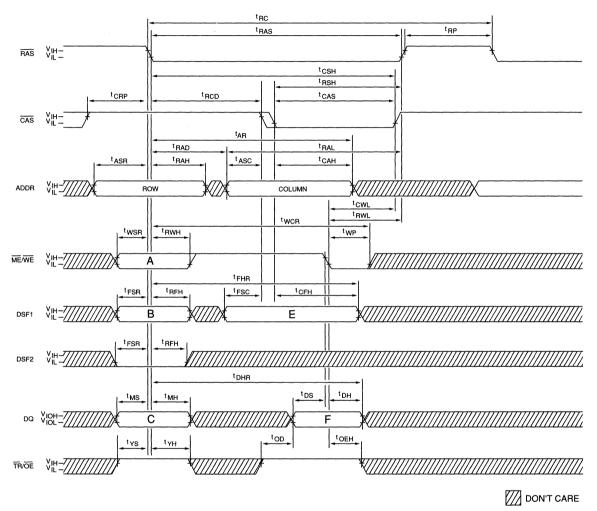
₩ UNDEFINED


WRITE CYCLE FUNCTION TABLE 1

LOGIC STATES ²							
Ī	RAS Falling Edge CAS Falling I			Edge	FUNCTION	CODE	
Α	B C D E F		F	FUNCTION	CODE		
ME/WE	DSF1	DQ (Input)	ME/WE	DSF1	DQ (Input)		
1	0	×	0/15	0	DRAM	Normal DRAM WRITE	RW
0	0	Write Mask	0/15	0	DRAM (Masked)	NONPERSISTENT (Load and Use) MASKED WRITE to DRAM	RWNM
0	1	Х	0/15	0	DRAM (Masked)	PERSISTENT (Use Register) MASKED WRITE to DRAM	RWOM
1	0	Х	X ³	1	Column Mask	BLOCK WRITE to DRAM (No Data Mask)	BW
0	0	Write Mask	X3	1	Column Mask	NONPERSISTENT (Load and Use) MASKED BLOCK WRITE to DRAM	BWNM
0	1	Х	X3	1	Column Mask	PERSISTENT (Use Register) MASKED BLOCK WRITE to DRAM	вwом
1	1	Х	X ⁴	0	Write Mask	LOAD MASK REGISTER	LMR
1	1	Х	X ⁴	1	Color Data	LOAD COLOR REGISTER	LCR

- 1. Refer to this function table to determine the logic states of "A", "B", "C", "D", "E" and "F" for the WRITE cycle timing diagrams on the following pages.
- 2: TRM, MKD and STS are "don't care" for all WRITE cycles.
- 3. WE is a "don't care" for BLOCK WRITE cycles. It occurs on the falling edge of CAS.
- 4. Register load cycles can be either EARLY or LATE-WRITE cycles.
- If ME/WE is LOW, an EARLY-WRITE is performed; if it is HIGH, a LATE-WRITE is performed if ME/WE falls after CAS.

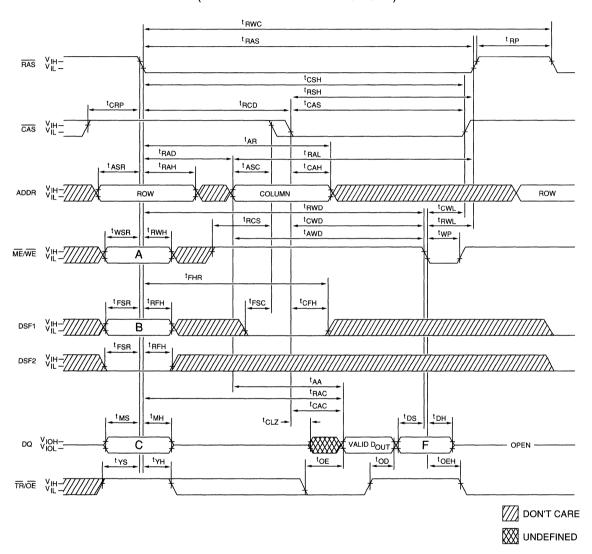
DRAM EARLY-WRITE CYCLE


DON'T CARE

₩ UNDEFINED

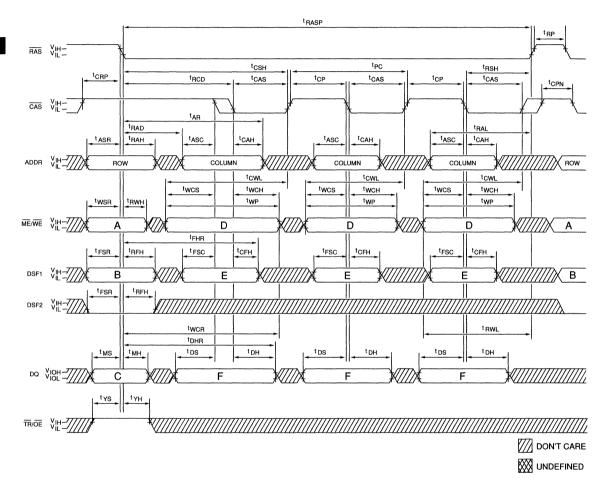
NOTE: The logic states of "A", "B", "C", "D", "E" and "F" determine the type of WRITE operation performed. See the WRITE Cycle Function Table for a detailed description.

DRAM LATE-WRITE CYCLE

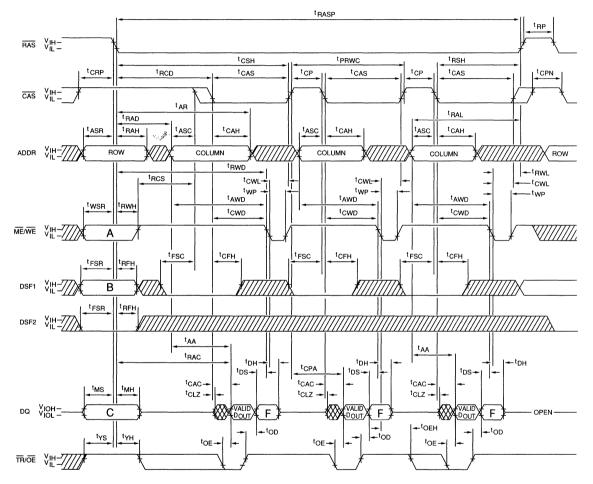


₩ UNDEFINED

- 1. The logic states of "A", "B", "C", "E", and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.
- 2. LATE-WRITE cycles are not valid for BLOCK WRITEs. (ME)/WE = "don't care" at the falling edge of CAS.

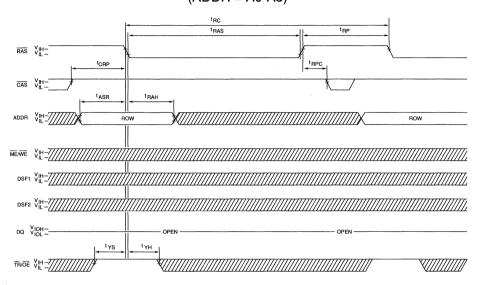

DRAM READ-WRITE CYCLE (READ-MODIFY-WRITE CYCLE)

NOTE: The logic states of "A", "B", "C", and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

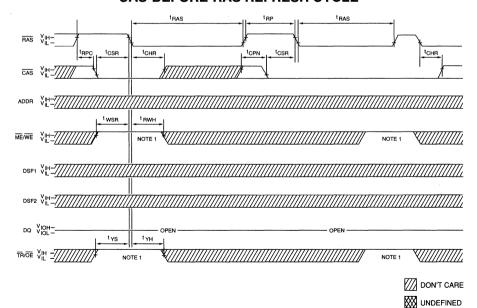

DRAM FAST-PAGE-MODE EARLY-WRITE CYCLE 1,2

- READ cycles or READ-MODIFY-WRITE cycles can be mixed with WRITE cycles while in FAST PAGE MODE.
- 2. The logic states of "A", "B", "C", "D", "E", and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

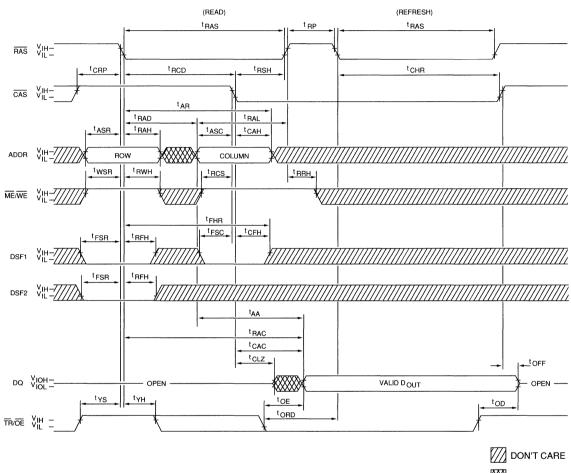
DRAM FAST-PAGE-MODE READ-WRITE CYCLE (READ-MODIFY-WRITE or LATE-WRITE CYCLES)


DON'T CARE

₩ UNDEFINED


- READ or WRITE cycles can be mixed with READ-MODIFY-WRITE cycles while in FAST PAGE MODE. Use the Write Function Table to determine the proper DSF1 state for the desired WRITE operation.
- 2: The logic states of "A", "B", "C", and "F" determine the type of WRITE operation performed. See the Write Cycle Function Table for a detailed description.

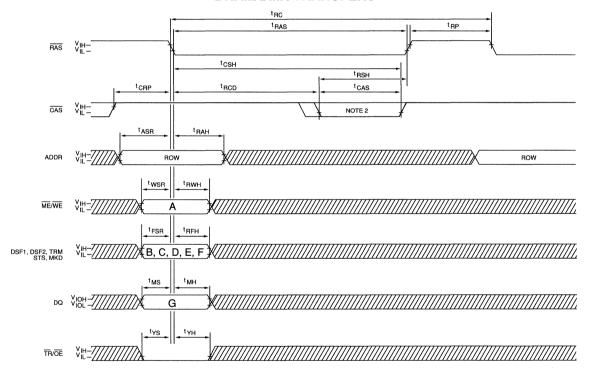
DRAM RAS-ONLY REFRESH CYCLE (ADDR = A0-A8)


CAS-BEFORE-RAS REFRESH CYCLE

NOTE: 1. The MT43C8128/9 operates with this state as "don't care", but to allow for future functional enhancements it is recommended that they be driven as illustrated for system upgradability.

DRAM HIDDEN-REFRESH CYCLE

UNDEFINED


NOTE: A HIDDEN REFRESH may also be performed after a WRITE or TRANSFER cycle. In the WRITE case, ME/WE = LOW (when CAS goes LOW) and TR/OE = HIGH. In the TRANSFER case, TR/OE = LOW (when RAS goes LOW) and the DQ pins stay High-Z during the refresh period, regardless of TR/OE.

DRAM/BMR TRANSFER CYCLE FUNCTION TABLE

LOGIC STATES								
		RA	S Falling E	dge			FUNCTION	CODE
A	В	С	D	E	F	G		CODE
ME/WE	DSF1	DSF2	TRM	STS	MKD	DQ (input)		
1	0	0	1	0	X¹	Х	BMR READ TRANSFER (DRAM→BMR TRANSFER)	BMR-RT
1	0	0	1	1	X¹	х	BMR READ TRANSFER (DRAM→invert→BMR TRANSFER)	BMR-IRT
0	0	0	1	0	X1	MASK	BMR WRITE TRANSFER (BMR→DRAM TRANSFER)	BMR-WT
0	0	0	1	1	X1	MASK	BMR WRITE TRANSFER (BMR→invert→DRAM TRANSFER)	BMR-IWT
1	1	1	0	x	X1	х	CLEAR BMR (CLR-BMR)	CLR- BMR

DRAM/BMR TRANSFERS

DON'T CARE

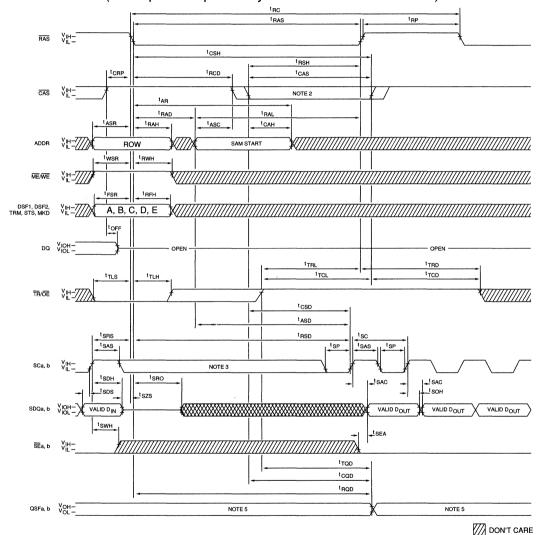
₩ UNDEFINED

NOTE: 1. Serial Mask Input mode is enabled if MKD = HIGH; disabled if MKD = LOW.

2. It is not necessary to drop CAS during a DRAM/BMR TRANSFER.

READ TRANSFER CYCLE FUNCTION TABLE¹

		GIC STA				
A DSF1	B DSF2	C TRM	D STS	E MKD	FUNCTION	CODE
0	0	0	0/12	Х	READ TRANSFER (DRAM→SAM)	RW
1	0	0	0/12	Х	SPLIT READ TRANSFER (DRAM→SAM)	SRT
0	1	1	0/12	Х	BIT MASKED READ TRANSFER	BMRT
1	1	1	0/12	Х	BIT MASKED SPLIT READ TRANSFER	BMSRT
1	0	1	0/12	0/13	BMR→SAM TRANSFER	BMR-SAM

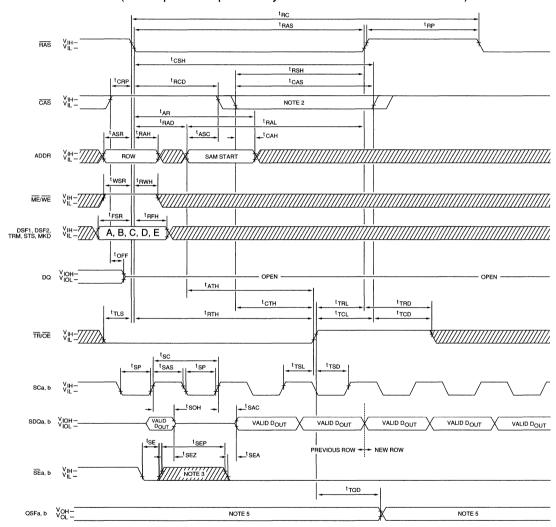

- 1. Refer to this function table to determine the logic states of "A", "B", "C", "D" and "E" for READ TRANSFER cycle timing diagrams on the following pages.
- 2. The state of STS at the falling edge of RAS determines the SAM involved in the transfer. When STS = LOW the transfer is to SAMa; when STS = HIGH the transfer is to SAMb.
- 3. Serial Mask Input mode is enabled if MKD = HIGH; disabled if MKD = LOW.

₩ UNDEFINED

READ TRANSFER^{1,4} (DRAM-TO-SAM TRANSFER)

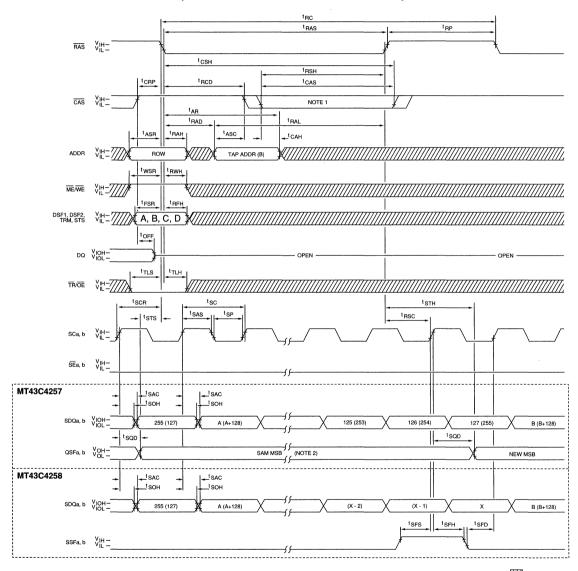
(When part was previously in the SERIAL INPUT mode)

- 1. SSF = "Don't Care"
- CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed SAM will be reused.
- 3. There must be no rising edges on the SC input during this time period.
- 4. The logic states of "A", "B", "C", and "D" determine the type of TRANSFER operation performed. See the Read Transfer Cycle Function Table.
- QSF = 0 when the Lower SAM (bits 0–127) is being accessed.
 QSF = 1 when the Upper SAM (bits 128–255) is being accessed.


DON'T CARE

UNDEFINED

REAL-TIME READ TRANSFER^{1,4} (DRAM-TO-SAM TRANSFER)


(When part was previously in the SERIAL OUTPUT mode)

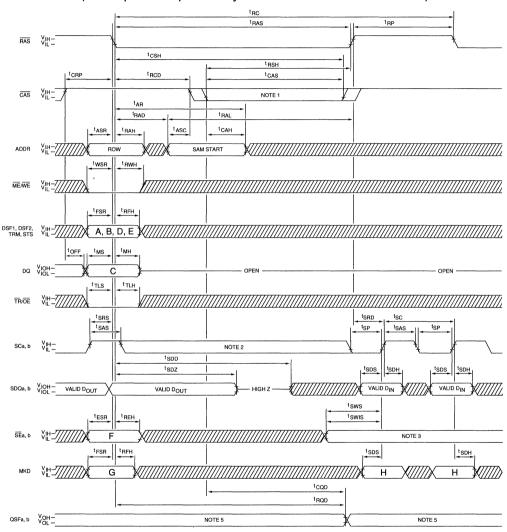
- 1. SSF = "Don't Care"
- CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed
- 3. The SE pulse is shown to illustrate the serial output enable and disable timing. It is not required.
- 4. The logic states of "A", "B", "C", and "D" determine the type of TRANSFER operation performed. See the Read Transfer Cycle Function Table.
- QSF = 0 when the Lower SAM (bits 0–127) is being accessed.
 QSF = 1 when the Upper SAM (bits 128–255) is being accessed.

SPLIT READ TRANSFER³ (SPLIT DRAM-TO-SAM TRANSFER)

NOTE:

 CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed SAM will be reused for the idle half. DON'T CARE

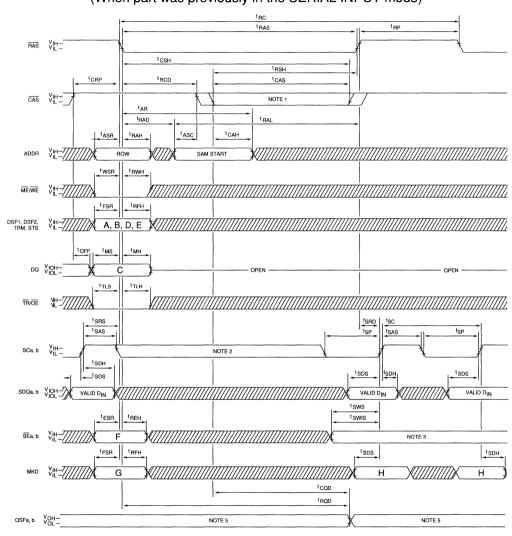
- QSF = 0 when the Lower SAM (bits 0–127) is being accessed.
 QSF = 1 when the Upper SAM (bits 128–255) is being accessed.
- 3. The logic states of "A", "B", "C", and "D" determine the type of TRANSFER operation performed. See the Read Transfer Cycle Function Table.


WRITE TRANSFER CYCLE FUNCTION TABLE¹

			LOGIC	C STAT	ES				
		RAS F	alling E	dge			SC	FUNCTION	CODE
A DSF1	B DSF2	C DQ	D TRM	E STS	F SE	G MKD	H MKD	TONOTION	CODE
0	0	Χ	0	0/12	0	Х	-	WRITE TRANSFER (SAM→DRAM)	WT
0	0	Х	0	0/12	1	Х	-	PSEUDO WRITE TRANSFER	PWT
1	0	mask	0	0/12	Х	Х	-	SPLIT WRITE TRANSFER (SAM→DRAM)	SWT
0	1	mask	0	0/12	Х	Х	-	DQ MASKED WRITE TRANSFER (SAM→DRAM)	DMWT
0	1	Х	1	0/12	Х	Х	0/14	BIT MASKED WRITE TRANSFER (SAM-DRAM)	BMWT
1	1	mask	1	0/12	Х	х	0/14	BIT MASKED SPLIT WRITE TRANSFER (SAM→DRAM)	BMSWT
1	0	Х	1	0/12	Х	0/13	-	SAM→BMR TRANSFER	SAM-BMR

- 1. Refer to this function table to determine the logic states of "A", "B", "C", "D", "E", "F", "G", and "H" for WRITE TRANSFER cycle timing diagrams on the following pages.
- 2. The state of STS at the falling edge of RAS determines the SAM involved in the transfer. When STS = LOW the transfer is to SAMa; when SAM = HIGH the transfer is to SAMb.
- 3. Serial Mask Input (SMI) mode is enabled if MKD = HIGH and disabled if MKD = LOW.
- 4. When in the SMI mode (see BMR transfer waveforms) MKD is the SMI data input. MKD data is clocked into all bit planes of the bit mask register with SCb. A logic "1" on MKD will allow data to pass through all the mask; a logic "0" will mask the corresponding location of the SAM during a BIT MASKED TRANSFER. BIT MASKED TRANSFERs to or from SAMa must not take place while mask data is being serially input via SCb and MKD.

WRITE TRANSFER⁴ (When part was previously in the SERIAL OUTPUT mode)

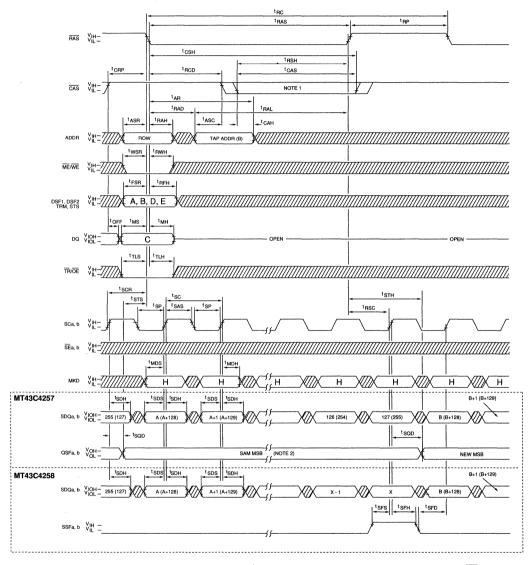

NOTE:

 CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed SAM will be reused.

- DON'T CARE
 UNDEFINED
- 2. There must be no rising edges on the SC input during this time period.
- 3. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
- 4. The logic states of "A", "B", "C", "D", "E", "F", "G" and "H" determine the type of TRANSFER operation performed. See the Write Transfer Cycle Function Table.
- 5. QSF = 0 when the Lower SAM (bits 0–127) is being accessed. QSF = 1 when the Upper SAM (bits 128–255) is being accessed. SSFa,b = "don't care" (MT43C8129).

WRITE TRANSFER4 (When part was previously in the SERIAL INPUT mode)

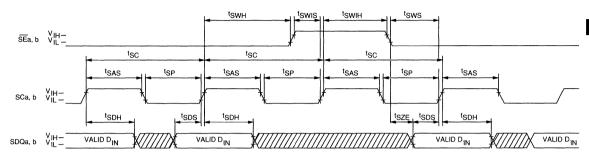
NOTE:


 CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed SAM will be reused.

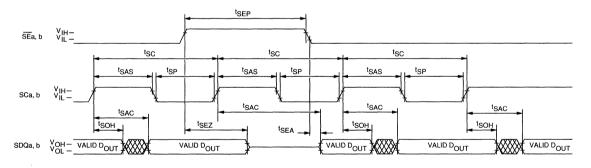
- DON'T CARE
 UNDEFINED
- 2. SE must be LOW to input new serial data, but the serial address register is incremented by SC regardless of SE.
- 3. There must be no rising edges on the SC input during this time period.
- The logic states of "A", "B", "C", "D", "E", "F", "G" and "H" determine the type of TRANSFER operation performed. See the Write Transfer Cycle Function Table.
- 5. QSF = 0 when the Lower SAM (bits 0-127) is being accessed.

 QSF = 1 when the Upper SAM (bits 128-255) is being accessed. SSFa,b = "don't care" (MT43C8129).

SPLIT WRITE TRANSFER³ (SPLIT SAM-TO-DRAM TRANSFER)



DON'T CARE
UNDEFINED


- CAS is used to load the Tap address. If CAS does not fall, the last Tap address loaded for the addressed SAM will be reused.
- QSF = 0 when the Lower SAM (bits 0–127) is being accessed.
 QSF = 1 when the Upper SAM (bits 128–255) is being accessed.
- 3. The logic states of "A", "B", "C", "D", "E", and "H" determine the type of TRANSFER operation performed. See the Write Transfer Cycle Function Table.

SAMa or SAMb SERIAL INPUT

SAMa or SAMb SERIAL OUTPUT

DON'T CARE

UNDEFINED

NOTE: SEa, SCa and SDQa are used when accessing SAMa and SEb; SCb and SDQb are used when access in SAMb.

DYNAMIC RAMS	1
DRAM MODULES	2
MULTIPORT DRAMS	3
STATIC RAMS	4
SYNCHRONOUS SRAMS	5
SRAM MODULES	6
CACHE DATA SRAMS	7
FIFO MEMORIES	8
APPLICATION/TECHNICAL INFORMATION	9
MILITARY INFORMATION	10
PACKAGE INFORMATION	11
SALES INFORMATION	12

SRAM PRODUCT SELECTION GUIDE

Memory	Control	Part	Access		Pac	kage and Nu	mber of Pins				
Configuration	Functions	Number	Time (ns)	PDIP	SOJ	CDIP	LCC	ZIP	TSOP	Process	Page
16K x 1	CE only	MT5C1601	12 to 35	20	24	20	20	-	-	CMOS	4-1
64K x 1	CE only	MT5C6401	12 to 35	22	24	22	-	-	-	CMOS	4-9
256K x 1	CE only	MT5C2561	20 to 45	24	24	24	28	-	-	CMOS	4-17
1 Meg x 1	CE only	MT5C1001	25 to 45	28	28	28	32	*	28	CMOS	4-25
4K x 4	CE only	MT5C1604	12 to 35	20	24	20	20	-	-	CMOS	4-33
4K x 4	CE & OE	MT5C1605	12 to 35	22	24	22	-	-	-	CMOS	4-41
4K x 4	Separate I/O	MT5C1606	12 to 35	24	24	24	28	-	-	CMOS	4-49
4K x 4	Separate I/O High-Z	MT5C1607	12 to 35	24	24	24	28	-	-	CMOS	4-49
16K x 4	CE only	MT5C6404	12 to 35	22	24	22	-	-	-	CMOS	4-57
16K x 4	CE & OE	MT5C6405	12 to 35	24	24	24	28	-	-	CMOS	4-65
16K x 4	Separate I/O, CE1, CE2	MT5C6406	12 to 35	28	28	28	28	-	-	CMOS	4-73
16K x 4	Separate I/O High-Z	MT5C6407	12 to 35	28	28	28	28	-	-	CMOS	4-73
64K x 4	CE only	MT5C2564	20 to 45	24	24	24	28	-	-	CMOS	4-81
64K x 4	CE & OE	MT5C2565	20 to 45	28	28	28	28	-	-	CMOS	4-89
256K x 4	CE & OE	MT5C1005	25 to 45	28	28	28	32	*	28	CMOS	4-97
2K x 8	CE & OE	MT5C1608	12 to 35	24	24	24	24	-	-	CMOS	4-10
8K x 8	CE1, CE2 & OE	MT5C6408	12 to 35	28	28	28	32	-	-	CMOS	4-113
32K x 8	CE & OE	MT5C2568	20 to 45	28	28	28	32	28	-	CMOS	4-12
128K x 8	OE, CE1 & CE2	MT5C1008	25 to 45	32	32	32	32	*	32	CMOS	4-129
16K x 16	Latched Address/Data	MT5C2516	15 to 25	-	-	-	-	-	-	CMOS	4-13
16K x 18	Latched Address/Data	MT5C2818	15 to 25	-	-	-	-	-	-	CMOS	4-15

^{*} ZIP introduced in Q191

SRAM

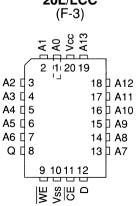
16K x 1 SRAM

FEATURES

- High speed: 12, 15, 20, 25, 30 and 35ns
- High-performance, low-power, CMOS double metal
- Single +5V ($\pm 10\%$) power supply
- Easy memory expansion with CE option
- All inputs and outputs are TTL compatible

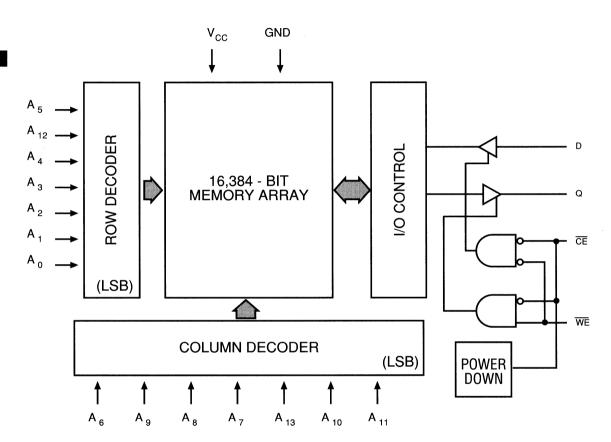
OPTIONS	MARKING
Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
30ns access	-30
35ns access	-35
• Packages	
Plastic DIP (300 mil)	None
Ceramic DIP (300 mil)	C
Plastic SOJ (300 mil)	DJ
Ceramic LCC	EC
Two Volt Data Retention	L

GENERAL DESCRIPTION


The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers chip enable (CE) on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design. The x1 configuration features separate data input and output.

Writing to these devices is accomplished when write enable (WE) and CE inputs are both LOW. Reading is accomplished when WE remains HIGH and CE goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.


All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View) 20L/300 DIP 24L/300 SQJ (A-4, B-4) (E-4) A0 [1 A1 [2 A2 [3 A0 □1 •` 1 • 24 D Vcc 23 A13 19 A13 A1 🛛 2 22 A12 АЗ 📮 21 A11 A4 [5 NC [6 NC [7 A2 [3 18□A12 5 20 A10 A3 □4 17 A11 18 D NC A5 [8 A6 [9 Q [10 17 🛭 A9 A4 🛛 5 16∐A10 16 🗅 A8 15 A7 A5 46 15 A9 WE | 11 14 D Vss 🛘 12 13 D CE A6 🛛 7 14∐A8 Q 🗆 8 13 A7 WE 9 12 🛮 D 11 CE Vss 410 20L/LCC (F-3)

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	CE	WE	OUTPUT	POWER
STANDBY	Н	Х	HIGH-Z	STANDBY
READ	L	Н	Q	ACTIVE
WRITE	L	L	HIGH-Z	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Storage Temperature (Ceramic)	-65°C to +150°C
Storage Temperature (Plastic)	-55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{A} \leq 70^{\circ}C;\,Vcc = 5.0V \pm 10\%)$

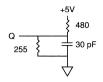
DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		ViH	2.2	Vcc +1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V$ IN $\le V$ CC	ILı	-5	5	μΑ	
Output Leakage Current	Output(s) Disabled, 0V ≤ Vouт ≤ Vcc	ILo	-5	5	μА	
Output High Voltage	I он = -4.0 m A	Vон	2.4		V	1
Output Low Voltage	loL = 8.0mA	Vol		0.4	V	1

								MAX						
DESCRIPTION	CONDITIONS	SYMBOL	-12	-12 -15 -2		-25	-30	-35	UNITS	NOTES				
Power Supply	CE ≤ VIL; Vcc = MAX													
Current: Operating	$f = MAX = 1/{}^{t}RC,$	lcc	140	125	110	100	100	100	mA	3				
	Outputs Open													
Power Supply	CE ≥ ViH; Vcc = MAX													
Current: Standby	$f = MAX = 1/{}^{t}RC,$	ISB1	50	45	40	30	30	30	mA					
•	Outputs Open													
	CE ≥ Vcc -0.2V; Vcc = MAX			3	3		3	3	mA					
	VIL ≤ Vss +0.2V;	ISB2	3			3								
	$V_{IH} \ge V_{CC} - 0.2V; f = 0$													

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cı		7	pF	4
Output Capacitance	Vcc = 5V	Со		7	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS


(Note 5, 13) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

DECORIDATION		-1	2	-1	15	-2	20	-2	25	-3	10	-3	35		
DESCRIPTION	SYM	MIN	МАХ	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle			•		•										
READ cycle time	^t RC	12		15		20		25		30		35		ns	
Address access time	^t AA		12		15		20		25		30		35	ns	
Chip Enable access time	^t ACE		11		12		15		20		25		30	ns	
Output hold from address change	tОН	3		3		3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		5		5		5		5		ns	
Chip Disable to output in High-Z	tHZCE		7		7		10		10		15		20	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		0		0		ns	
Chip Disable to power-down time	^t PD		12		15		20		25		30		35	ns	
WRITE Cycle															
WRITE cycle time	tWC	12		15		20		25		30		35		ns	
Chip Enable to end of write	tCW	10	5	12		15		20		25		25		ns	
Address valid to end of write	^t AW	12		12		15		20		25		25		ns	
Address setup time	^t AS	0		0		0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		0		0		ns	
Write pulse width	tWP	10		12		15		20		25		25		ns	
Data setup time	^t DS	7		8		10		10		15		15		ns	
Data hold time	^t DH	0		0		0		0		0		0		ns	
Write Disable to output in Low-Z	^t LZWE	2		2		2		2		2		2		ns	
Write Enable to output in High-Z	^t HZWE		6		6		8		10		12		15	ns	6

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

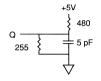
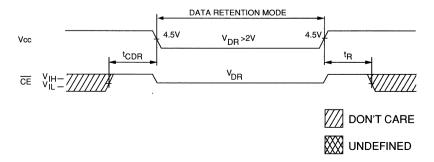


Fig. 1 OUTPUT LOAD EQUIVALENT

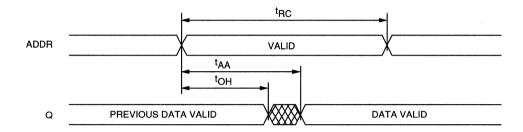
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

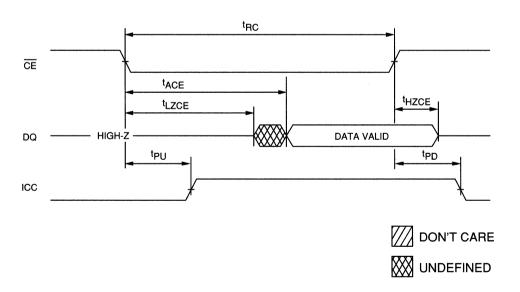

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE and tHŽWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE.

- 8. WE is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. tRC = Read Cycle Time.
- 12. Chip enable (CE) and write enable (WE) can initiate and terminate a WRITE cycle.
- 13. For automotive, industrial and extended temperature specifications refer to page 4-165.

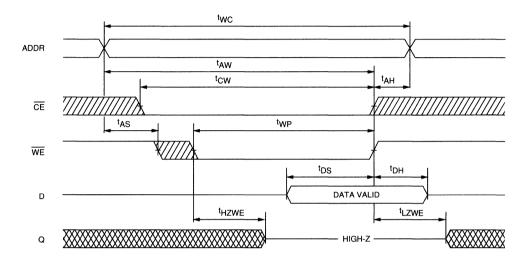
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)


DESCRIPTION	CONDITIONS	,	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			Vdr	2		_	V	
Data Retention Current	CE ≥ (Vcc -0.2V) Vin ≥ (Vcc -0.2V)	Vcc = 2v	ICCDR		95	250	μА	
	or ≤ 0.2V	Vcc = 3v			300	400	μΑ	
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11

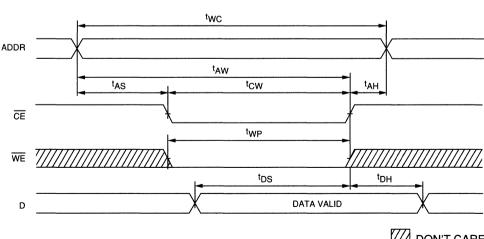
LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. 1 8, 9



READ CYCLE NO. 2 7, 8, 10



WRITE CYCLE NO. 1 (Write Enable Controlled) 7, 12

WRITE CYCLE NO. 2

(Chip Enable Controlled) 12

DON'T CARE

SRAM

64K x 1 SRAM

FEATURES

OPTIONS

- High speed: 12, 15, 20, 25, 30 and 35ns
- High-performance, low-power, CMOS double metal process

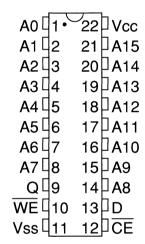
MARKING

- Single +5V (±10%) power supply
- Easy memory expansion with CE option
- All inputs and outputs are TTL compatible

01 110110	14171171111
Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
30ns access	-30
35ns access	-35
• Packages	
Plastic DIP (300 mil)	None
Ceramic DIP (300 mil)	C
Plastic SOJ (300 mil)	DJ
Ceramic LCC	EC
Two Volt Data Retention	L

GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

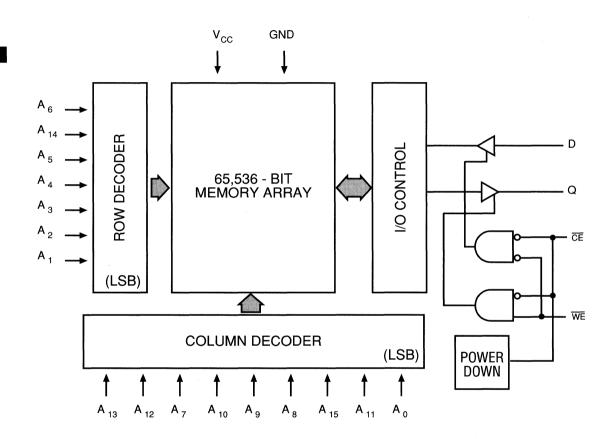

For flexibility in high speed memory applications, Micron offers chip enable (\overline{CE}) on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design. The x1 configuration features separate data input and output.

Writing to these devices is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)

22L/300 DIP (A-6, B-6)



24L/300 SOJ (E-4)

Α0	ď	1 •	24	Ь	Vcc
Α1	₫	2	23	þ	A15
A 2	₫	3	22	þ	A14
АЗ	þ	4	21	Þ	A13
Α4	þ	5	20	Þ	A12
Α5	d	6	19	Þ	NC
NC	þ	7	18	Þ	A11
A6	þ	8	17	þ	A10
Α7	₫	9	16	þ	Α9
Q	þ	10	15	Þ	A8
WE	þ	11	14	þ	D
Vss	þ	12	13	þ	CE

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	CE	WE	DQ	POWER
STANDBY	Н	Х	HIGH-Z	STANDBY
READ	L	H	Q	ACTIVE
WRITE	L	L	HIGH-Z	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Storage Temperature (Ceramic)	65°C to +150°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50m A

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		ViH	2.2	Vcc +1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	0V ≤ VIN ≤ Vcc	ILı	-5	5	μΑ	
Output Leakage Current	Output(s) Disabled, 0V ≤ Vouт ≤ Vcc	ILo	-5	5	μА	
Output High Voltage	Iон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	loL = 8.0mA	Vol		0.4	V	1

					М	AX]	
DESCRIPTION	CONDITIONS	SYMBOL	-12	-15	-20	-25	-30	-35	UNITS	NOTES
Power Supply Current: Operating	TE ≤ VIL; Vcc = MAX f = MAX = 1/ ¹RC, Outputs Open	Icc	140	130	120	110	100	100	mA	3
Power Supply Current: Standby	TE ≥ VIH; VCC = MAX f = MAX = 1/ ¹RC, Outputs Open	ISB1	60	50	40	30	30	30	mA	
	$\overline{\text{CE}} \ge \text{Vcc -0.2V}; \text{ Vcc} = \text{MAX}$ $\text{Vil.} \le \text{Vss +0.2V};$ $\text{Vil.} \ge \text{Vcc -0.2V}; \text{ f} = 0$	ISB2	5	5	5	5	5	5	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cı		7	рF	4
Output Capacitance	Vcc = 5V	Со		7	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13) (0°C \leq $T_{A} \leq$ 70°C; Vcc = 5V \pm 10%)

DECORIDATION		-1	12	-1	15	-2	20	-2	25	-3	80	-3	35		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MiN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle															
READ cycle time	^t RC	12		15		20		25		30		35		ns	
Address access time	^t AA		12		15		20		25		30		35	ns	
Chip Enable access time	^t ACE		12		12		15		20		25		30	ns	
Output hold from address change	tOH	3		3		3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		5		5		5		5		ns	
Chip Disable to output in High-Z	^t HZCE		7		7		10		10		15		20	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		0		0		ns	
Chip Disable to power-down time	^t PD		12		15		20		25		30		35	ns	
WRITE Cycle															
WRITE cycle time	tWC	12		15		20		25		30		35		ns	
Chip Enable to end of write	tCW	10		12		15		20		25		25		ns	
Address valid to end of write	^t AW	12		12		15		20		25		25		ns	
Address setup time	^t AS	0		0		0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		0		0		ns	
Write pulse width	tWP	10		12		15		20		25		25		ns	
Data setup time	^t DS	8		8		10		10		15		15		ns	
Data hold time	^t DH	0		0		0		0		0		0		ns	
Write Disable to output in Low-Z	^t LZWE	2		2		2		2		2		2		ns	
Write Enable to output in High-Z	tHZWE		6		6		8		10		12		15	ns	6

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

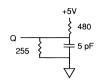
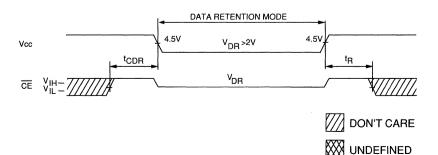


Fig. 1 OUTPUT LOAD EQUIVALENT

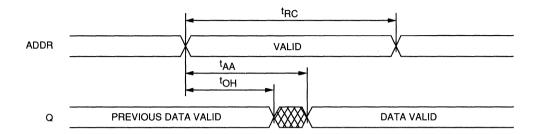
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

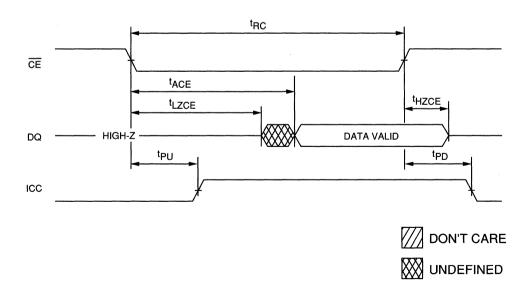

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE.

- 8. WE is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. tRC = Read Cycle Time.
- 12. Chip enable (CE) and write enable (WE) can initiate and terminate a WRITE cycle.
- 13. For automotive, industrial and extended temperature specifications refer to page 4-167.

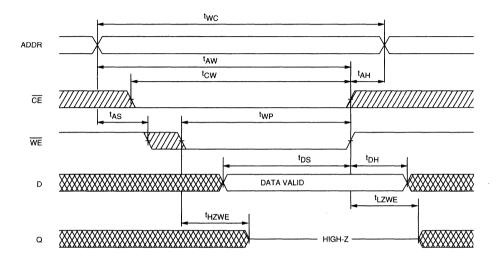
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

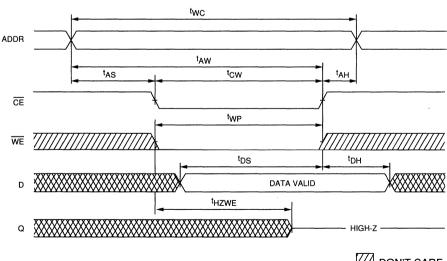

DESCRIPTION	CONDITIONS		SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			Vdr	2			V	
Data Retention Current	<u>CE</u> ≥ (Vcc -0.2V)	Vcc = 2v	ICCDR		95	250	μΑ	
	Vin ≥ (Vcc -0.2V) or ≤ 0.2V	Vcc = 3v			300	400	μΑ	
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11

LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. 18,9


READ CYCLE NO. 2 7, 8, 10


WRITE CYCLE NO. 1

(Write Enable Controlled) 7, 12

WRITE CYCLE NO. 2

(Chip Enable Controlled) 12

24L/300 SOJ

SRAM

256K x 1 SRAM

FEATURES

- High speed: 20, 25, 30, 35, and 45ns
- High-performance, low-power, CMOS double metal process
- Single +5V (±10%) power supply
- Easy memory expansion with CE option
- All inputs and outputs are TTL compatible

OPTIONS	MARKING
Timing	
20ns access	-20
25ns access	-25
30ns access	-30
35ns access	-35
45ns access	-45
• Packages	
Plastic DIP (300 mil)	None
Ceramic DIP (300 mil)	С
Plastic SOJ (300 mil)	DJ
Ceramic LCC	EC
Two Volt Data Retention	L

GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

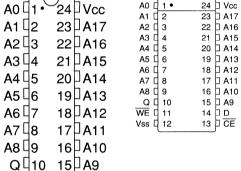
For flexibility in high speed memory applications, Micron offers chip enable (\overline{CE}) on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design. The x1 configuration features separate data input and output.

Writing to these devices is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

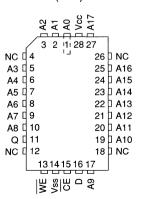
All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)

24L/300 DIP

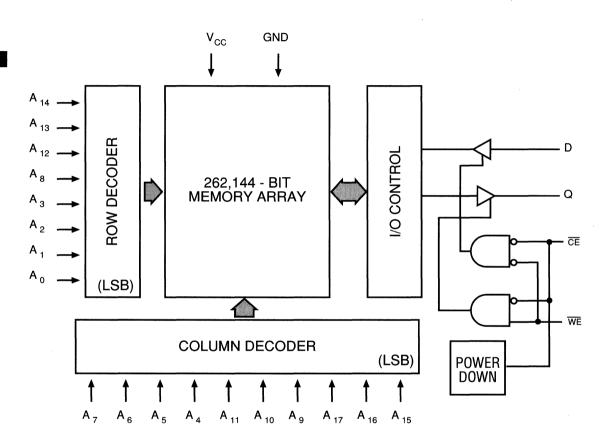

WE 11

Vss 412


14 D

13 CE

(A-7, B-7)	(E-4)		
• • H . V • • H	Δ0 H 1 •	24 17 Va	



28L/LCC (F-4)

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	CE	WE	OUTPUT	POWER
STANDBY	Н	Х	HIGH-Z	STANDBY
READ	L	Н	Q	ACTIVE
WRITE	L	L	HIGH-Z	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vs	s1.0V to +7.0V
Storage Temperature (Ceramic)	65°C to +150°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{\mbox{\scriptsize A}} \leq 70^{\circ}C; \mbox{ Vcc} = 5.0 \mbox{\scriptsize V} \pm 10\%)$

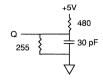
DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Vih	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	0V ≤ Vin ≤ Vcc	ILı	-5	5	μА	
Output Leakage Current Output(s) Disabled, 0V ≤ Vouт ≤ Vcc		ILo	-5	5	μА	
Output High Voltage	lон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	loL = 8.0mA	Vol		0.4	V	1

			MAX						
DESCRIPTION	CONDITIONS	SYMBOL	-20	-25	-30	-35	-40	UNITS	NOTES
Power Supply Current: Operating	CE ≤ V _{IL} ; V _{CC} = MAX f = MAX = 1/ [†] RC, Outputs Open	lcc	105	95	95	90	90	mA	3
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC, Outputs Open	ISB1	30	25	25	25	25	mA	
	$\overline{\text{CE}} \ge \text{Vcc} -0.2\text{V}; \text{Vcc} = \text{MAX}$ $\text{Vil} \le \text{Vss} +0.2\text{V};$ $\text{Vih} \ge \text{Vcc} -0.2\text{V}; \text{f} = 0$	IsB2	5	5	5	7	7	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cı		7	pF	4
Output Capacitance	Vcc = 5V	Со		5	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS


(Note 5, 13) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

DESCRIPTION		-2	20	-2	25	-3	30	-3	35	-4	15			
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES	
READ Cycle	READ Cycle													
READ cycle time	^t RC	20		25		30		35		45		ns		
Address access time	^t AA		20		25		30		35		45	ns		
Chip Enable access time	^t ACE		20		25		30		35		45	ns		
Output hold from address change	^t OH	3		5		5 ،		5		5		ns		
Chip Enable to output in Low-Z	^t LZCE	6		6		6		6		6		ns		
Chip Disable to output in High-Z	†HZCE		9		9		12		15		18	ns	6, 7	
Chip Enable to power-up time	tPU	0		0		0		0		0		ns		
Chip Disable to power-down time	tPD		20		25		30		35		45	ns		
WRITE Cycle														
WRITE cycle time	tWC	20		20		25		30		35		ns		
Chip Enable to end of write	tCM	15		15		18		20		25		ns		
Address valid to end of write	^t AW	15		15		18		20		25		ns		
Address setup time	t _{AS}	0		0		0		0		0		ns		
Address hold from end of write	^t AH	0		0		0		0		0		ns		
Write pulse width	tWP	15		15		18		20		25		ns		
Data setup time	t _{DS}	10		10		12		15		20		ns		
Data hold time	tDH	0		0		0		0		0		ns		
Write Disable to output in Low-Z	tLZWE	5		5		5		5		5		ns		
Write Enable to output in High-Z	[†] HZWE		10		10		12		15		18	ns	6	

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

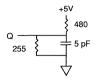
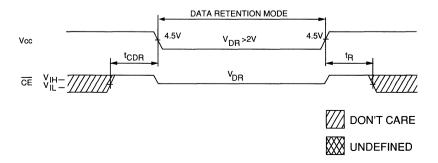


Fig. 1 OUTPUT LOAD EQUIVALENT

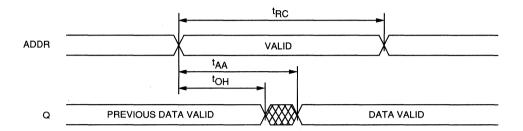
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

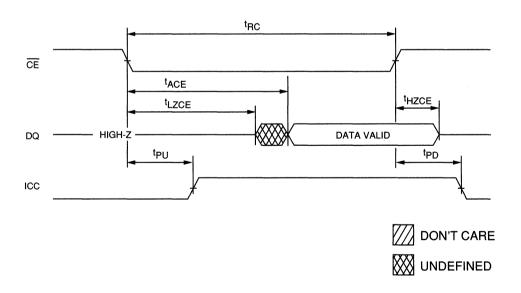

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE.

- 8. WE is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. tRC = Read Cycle Time.
- 12. Chip enable (CE) and write enable (WE) can initiate and terminate a WRITE cycle.
- 13. For automotive, industrial and extended temperature specifications refer to page 4-169.

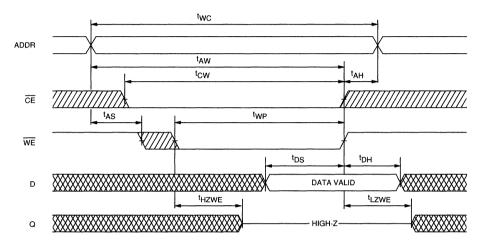
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

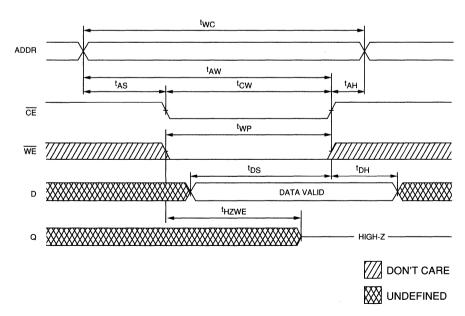

DESCRIPTION	CONDITIONS	;	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			Vdr	2			٧	
Data Retention Current	<u>CE</u> ≥ (Vcc -0.2V)	Vcc = 2v	ICCDR		95	300	μΑ	
	$VIN \ge (VCC - 0.2V)$ or $\le 0.2V$	Vcc = 3v			350	400	μΑ	
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	tRC			ns	4, 11

LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. 18,9


READ CYCLE NO. 2 7, 8, 10


WRITE CYCLE NO. 1

(Write Enable Controlled) 12

WRITE CYCLE NO. 2

(Chip Enable Controlled) 12

SRAM

1 MEG x 1 SRAM

FEATURES

OPTIONS

• Timina

- High speed: 25, 35, and 45ns
- High-performance, low-power, CMOS double metal process

MARKING

- Single +5V (±10%) power supply
- Easy memory expansion with CE option
- · All inputs and outputs are TTL compatible

• 11ming	
25ns access	-25
35ns access	-35
45ns access	-45
• Packages	
Plastic DIP (400 mil)	None
Ceramic DIP (400mil)	C
Plastic SOJ (400 mil)	DJ
Two Volt Data Retention	L

GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

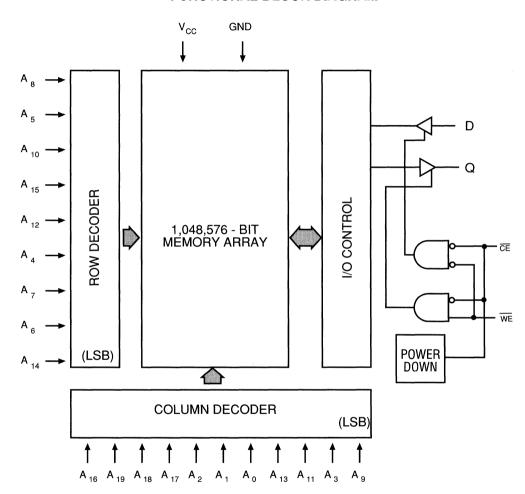
For flexibility in high speed memory applications, Micron offers chip enable (CE) capability. This enhancement can place the outputs in a high impedance state for additional flexibility in system design.

Writing to this device is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH while \overline{CE} goes LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)

28L/400 DIP (A-10)


	- 1		7	1	
A10	4	1•	28	þ	Vcc
A11		2	27	þ	Α9
A12		3	26		Α8
A13	d	4	25	þ	Α7
A14		5			Α6
A15		6			Α5
NC		7	22	þ	Α4
A16		8	21		NC
A17	q	9	20	þ	АЗ
A18	q	10	19	þ	Α2
A19	d	11	18	þ	Α1
Q		12	17	þ	Α0
WE	d	13	16	þ	D
Vss		14	15	þ	CE

28L/400 SOJ (E-9)

A10 [1	28	D Vcc
A11 [2	27	A9
A12 [3	26	A8
A13 [4	25	A 7
A14 [5	24	A6
A15 [6	23	A5
NC [7	22	
A16	8	21	NC A3 A2 A1 A0
A17 [9	20	A3
А18 🛭	10	19	A2
A19 [11	18	A1
Qф	12	17	A0
WE [13	16	Þ D
Vss [14	15	CE

FUNCTIONAL BLOCK DIAGRAM

NOTE: The two least significant row address bits (A6 and A14) are encoded using a gray code.

TRUTH TABLE

MODE	CE	WE	DQ	POWER
STANDBY	Н	Х	HIGH-Z	STANDBY
READ	L	Н	Q	ACTIVE
WRITE	L	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC supply relative to Vss	1.0V to +7.0V
Storage Temperature (Ceramic)	-65°C to +150°C
Storage Temperature (Plastic)	-55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		ViH	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V$ IN $\le V$ CC	ILı	-5	5	μΑ	
Output Leakage Current	Output(s) Disabled, $0V \le V_{OUT} \le V_{CC}$	ILo	-5	5	μА	
Output High Voltage	lон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	loL = 8.0mA	Vol		0.4	V	1

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Power Supply Current: Operating	CE ≤ V _{IL} ; V _{CC} = MAX f = MAX = 1/ ^t RC, Outputs Open	lcc		120	mA	3
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX f = MAX = 1/ tRC, Outputs Open	ISB1		30	mA	
	CE ≥ Vcc -0.2V; Vcc = MAX VIL ≤ Vss +0.2V; VIH ≥ Vcc -0.2V; f = 0	ISB2		7	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cı		8	pF	4
Output Capacitance	Vcc = 5V	Со		8	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Note 5, 13) (0°C \leq T $_{A}$ \leq 70°C; Vcc = 5V \pm 10%)

DESCRIPTION		-2	25	-35		-45			
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle									
READ cycle time	^t RC	25		35		45		ns	
Address access time	^t AA		25		35		45	ns	
Chip Enable access time	†ACE		25		35		45	ns	
Output hold from address change	tOH	5		5		5		ns	
Chip Enable to output in Low-Z	^t LZCE	5		5		5		ns	
Chip Disable to output in High-Z	^t HZCE		10		15		18	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		ns	
Chip Disable to power-down time	^t PD		25		35		45	ns	
WRITE Cycle							-	,	_
WRITE cycle time	¹WC	25		35		45		ns	
Chip Enable to end of write	tcw	15		20		25		ns	
Address valid to end of write	^t AW	15		20		25		ns	
Address setup time	^t AS	0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		ns	
Write pulse width	tWP	15		20		25		ns	
Data setup time	^t DS	10		15		20		ns	
Data hold time	^t DH	0		0		0		ns	
Write Disable to output in Low-Z	^t LZWE	0		0		0		ns	
Write Enable to output in High-Z	^t HZWE	0	10	0	15	0	18	ns	6, 7

AC TEST CONDITIONS

	Input pulse levels	Vss to 3.0V
	Input rise and fall times	5ns
	Input timing reference levels	1.5V
	Output reference levels	1.5V
ŀ	Output load	See Figures 1 and 2

Q +5V 480 255 30 pF

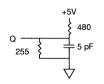
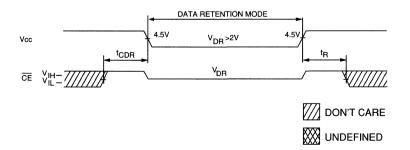


Fig. 1 OUTPUT LOAD EQUIVALENT

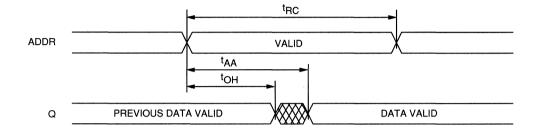
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

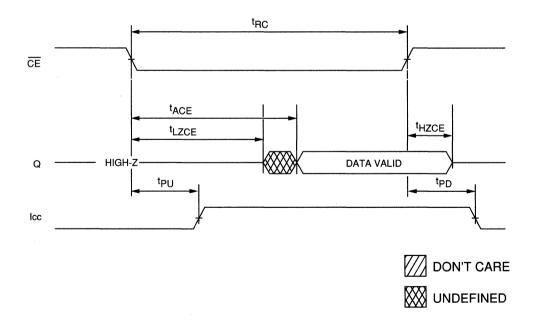

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- 7. At any given temperature and voltage condition, tHZCE is less than tZCE and tHZWE is less than tZWE.

- 8. WE is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables and output enable held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable (CE) and write enable (WE) can initiate and terminate a WRITE cycle.
- 13. For automotive, industrial and extended temperature specifications refer to page 4-171.

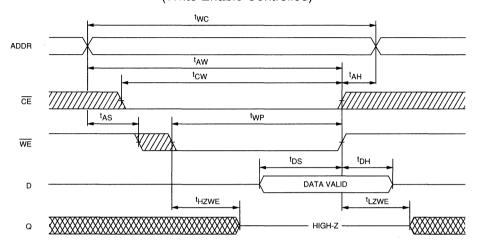
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

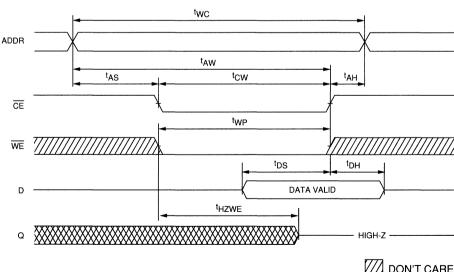

DESCRIPTION	CONDITIONS	S	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			V DR	2			V	
Data Retention Current		Vcc = 2v	ICCDR		95	500	μΑ	
				350	750	μА		
Chip Deselect to Data		•						
Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11

LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. 18,9


READ CYCLE NO. 2 7, 8, 10


WRITE CYCLE NO. 1

(Write Enable Controlled) 7, 12

WRITE CYCLE NO. 2

(Chip Enable Controlled) 12

DON'T CARE

W UNDEFINED

24L/300 SOJ

SRAM

4K x 4 SRAM

20L/300 DIP

FEATURES

OPTIONS

- High speed: 12, 15, 20, 25, 30 and 35ns
- High-performance, low-power, CMOS double metal process

MARKING

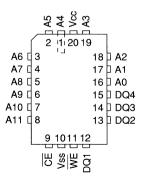
- Single +5V (±10%) power supply
- Easy memory expansion with CE option
- · All inputs and outputs are TTL compatible

01 110110	1411 1161611 4
Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
30ns access	-30
35ns access	-35
• Packages	
Plastic DIP (300 mil)	None
Ceramic DIP (300 mil)	C
Plastic SOJ (300 mil)	DJ
Ceramic LCC	EC
Two Volt Data Retention	L

GENERAL DESCRIPTION

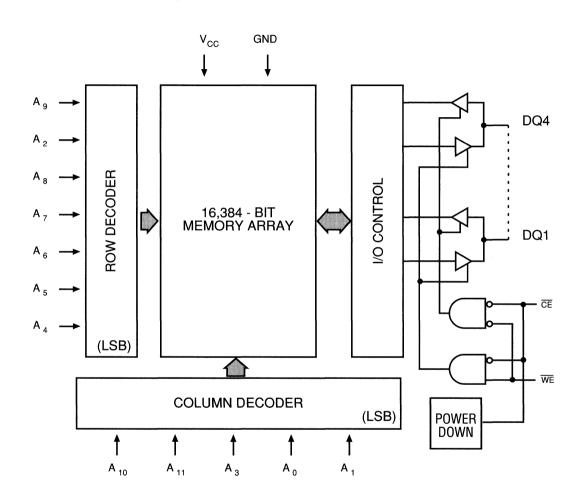
The Micron SRAM family employs high-speed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers chip enable (CE) on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design.


Writing to these devices is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)


(Δ	\-4, B	-4)				(E-4)		
_								
A 4 [1.	20 🛚	Vcc	A4	þ	1 •	24	Vcc
A5 [2 1	9	A 3	A5	9	2		A3
		'3E	AS	A6	9	3] A2
A6 🛚	3 1	8	A2	Α7	9	4	21	□ A1
		⊢		A 8	9	5	20	□ A 0
A7 4	4 1	ŀ7μ	A1	A 9	þ	6	19	D NC
A8 🛚	5 1	16	A0	NC	Ц	7	18	D NC
_	J 1	ᅜ	Α0	A10	Ц	8	17	DQ4
A94	6 1	5∐	DQ4	A11	þ	9	16	DQ3
A40 H	7 4	∟a h	DOO	CE	q	10	15	DQ2
A10 4	/ 1	4	DQ3	NC	q	11	14	DQ1
A11 🛚	8 1	3₽	DQ2	Vss	þ	12	13	Þ WE
CE	9 1	12	DQ1					
Vss [10 1	1	WE					

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	CE	WE	DQ	POWER
STANDBY	Н	Х	HIGH-Z	STANDBY
READ	L	Н	Q	ACTIVE
WRITE	L	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Storage Temperature (Ceramic)	65°C to +150°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

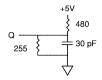
DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage	and the state of t	Vін	2.2	Vcc +1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	0V ≤ VIN ≤ VCC	ILı	-5	5	μΑ	
Output Leakage Current	Output(s) Disabled, 0V ≤ Vouт ≤ Vcc	ILo	-5	5	μА	
Output High Voltage	lон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1

				MAX]		
DESCRIPTION	CONDITIONS	SYMBOL	-12	-15	-20	-25	-30	-35	UNITS	NOTES
Power Supply Current: Operating	CE ≤ VIL; VCC = MAX f = MAX = 1/ tRC, Outputs Open	Icc	140	125	110	100	100	100	mA	3
Power Supply Current: Standby	CE ≥ ViH; Vcc = MAX f = MAX = 1/ tRC, Outputs Open	ISB1	50	45	40	30	30	30	mA	
	$\overline{CE} \ge Vcc -0.2V; \ Vcc = MAX$ $VlL \le Vss +0.2V;$ $VlH \ge Vcc -0.2V; \ f = 0$	ISB2	3	3	3	3	3	3	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cı		7	рF	4
Output Capacitance	Vcc = 5V	Со		7	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS


(Note 5, 13) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

DECORIDATION		-1	12	-1	15	-2	20	-2	:5	-3	0	-3	15		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle	READ Cycle													•	
READ cycle time	^t RC	12		15		20		25		30		35		ns	
Address access time	^t AA		12		15		20		25		30		35	ns	
Chip Enable access time	^t ACE		11		12		15		20		25		30	ns	
Output hold from address change	tOH	3		3		3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		5		5		5		5		ns	
Chip Disable to output in High-Z	^t HZCE		7		7		10		10		15		20	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		0		0		ns	
Chip Disable to power-down time	^t PD		12		15		20		25		30		35	ns	
WRITE Cycle															
WRITE cycle time	tWC	12		15		20		25		30		35		ns	
Chip Enable to end of write	tCM	10		12		15		20		25		25		ns	
Address valid to end of write	^t AW	12		12		15		20		25		25		ns	
Address setup time	t A S	0		0		0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		0		0		ns	
Write pulse width	tWP	10		12		15		20		25		25		ns	
Data setup time	^t DS	7		8		10		10		15		15		ns	
Data hold time	†DH	0		0		0		0		0		0		ns	
Write Disable to output in Low-Z	^t LZWE	2		2		2		2		2		2		ns	
Write Enable to output in High-Z	^t HZWE		6		6		8		10		12		15	ns	6

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

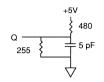
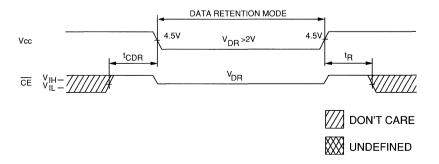


Fig. 1 OUTPUT LOAD EQUIVALENT

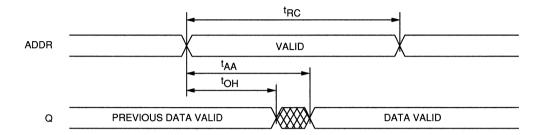
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

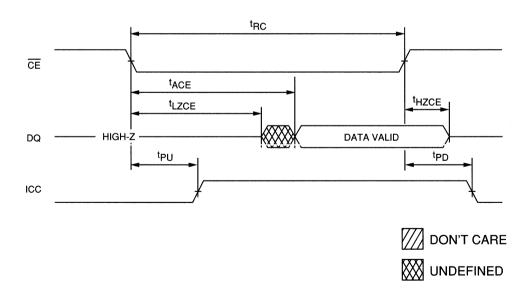

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE and ^tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE.

- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable (CE) and write enable (WE) can initiate and terminate a WRITE cycle.
- 13. For automotive, industrial and extended temperature specifications refer to page 4-165.

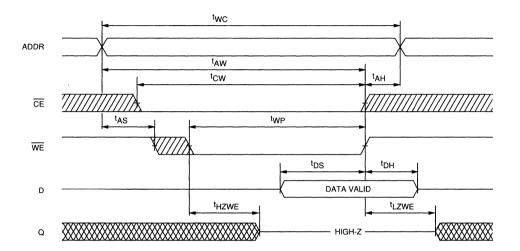
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)


DESCRIPTION	CONDITIONS	3	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2			V	
Data Retention Current	CE ≥ (Vcc -0.2V) Vin ≥ (Vcc -0.2V)		ICCDR		95	250	μΑ	
$ \begin{array}{c c} VIN \geq (VCC - 0.2V) \\ or \leq 0.2V \end{array} $	Vcc = 3v			300	400	μΑ		
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 10

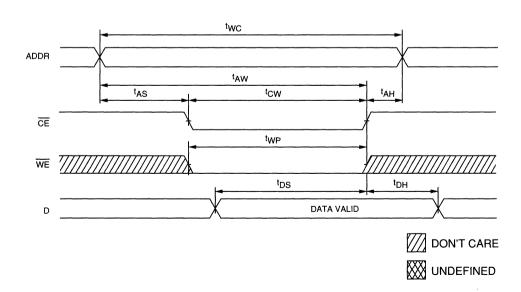
LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. 18,9



READ CYCLE NO. 2 7, 8, 10



WRITE CYCLE NO. 1 (Write Enable Controlled) 7, 12

WRITE CYCLE NO. 2

(Chip Enable Controlled) 12

SRAM

4K x 4 SRAM

WITH OUTPUT ENABLE

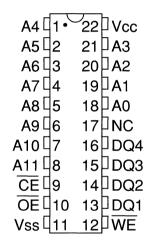
FEATURES

- High speed: 12, 15, 20, 25, 30 and 35ns
- High-performance, low-power, CMOS double metal process
- Single +5V ($\pm 10\%$) power supply
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ options
- · All inputs and outputs are TTL compatible

OPTIONS	MARKING
Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
30ns access	-30
35ns access	-35
• Packages	
Plastic DIP (300 mil)	None
Ceramic DIP (300 mil)	С
Plastic SOJ (300 mil)	DJ
Ceramic LCC	EC
Two Volt Data Retention	L

GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

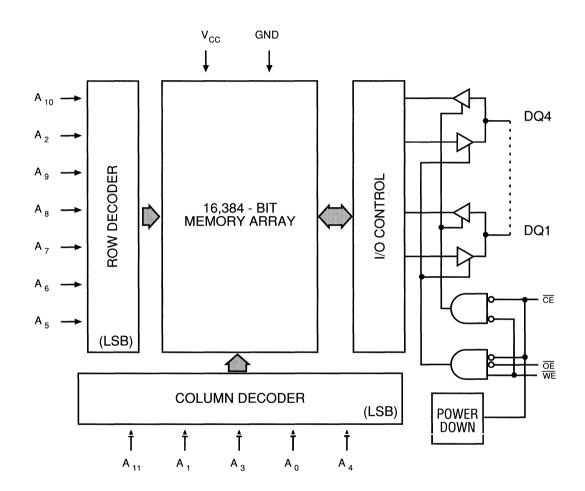

For flexibility in high speed memory applications, Micron offers chip enable (CE) on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design.

Writing to these devices is accomplished when write enable (WE) and CE inputs are both LOW. Reading is accomplished when WE remains HIGH and CE goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)

22L/300DIP (A-6, B-6)



24L/300 SOJ (E-4)

A4	þ	1 •	24	Vcc
A5	þ	2	23	□ A3
A 6	þ	3	22	□ A2
Α7	Ц	4	21	□ A1
A8	q	5	20	□ A0
Α9	Ц	6	19	□ NC
NC	Ц	7	18	D NC
A10	þ	8	17	DQ4
A11	þ	9	16	р DQз
CE	Ц	10	15	DQ2
ŌĒ	┖	11	14	DQ1
Vss	þ	12	13	₽ WE

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	ŌĒ	CE	WE	DQ	POWER
STANDBY	Х	Н	Х	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
READ	Н	L	Н	HIGH-Z	ACTIVE
WRITE	X	L	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Storage Temperature (Ceramic)	65°C to +150°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

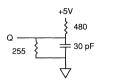
DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		ViH	2.2	Vcc +1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	0V ≤ VIN ≤ Vcc	ILı	-5	5	μΑ	
Output Leakage Current	Output(s) Disabled, 0V ≤ Voυτ ≤ Vcc	ILo	-5	5	μА	
Output High Voltage	Iон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	٧	1

					M	AX	,			
DESCRIPTION	CONDITIONS	SYMBOL	-12	-15	-20	-25	-30	-35	UNITS	NOTES
Power Supply Current: Operating	$\overline{CE} \le V_{IL}$; $V_{CC} = MAX$ $f = MAX = 1/{}^{t}RC$.	lcc	140	125	110	100	100	100	mA	3
	Outputs Open									
Power Supply Current: Standby	CE ≥ Viн; Vcc = MAX f = MAX = 1/ ^t RC, Outputs Open	ISB1	50	45	40	30	30	30	mA	
	$\overline{\text{CE}} \ge \text{Vcc} - 0.2\text{V}; \text{Vcc} = \text{MAX}$ $\text{ViL} \le \text{Vss} + 0.2\text{V};$ $\text{ViH} \ge \text{Vcc} - 0.2\text{V}; \text{f} = 0$	IsB2	3	3	3	3	3	3	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	$T_A = 25^{\circ}C; f = 1MHz$	Cı		7	pF	4
Output Capacitance	Vcc = 5V	Со		7	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS


(Note 5, 13) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

DECORIDATION		-12		-15		-20		-2	25	-3	10	-35			
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	мах	MIN	MAX	UNITS	NOTES
READ Cycle	READ Cycle														
READ cycle time	†RC	12		15		20		25		30		35		ns	
Address access time	^t AA		12		15		20		25		30		35	ns	
Chip Enable access time	tACE		11		12		15		20		25		30	ns	
Output hold from address change	tOH	3		3		3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		5		5		5		5		ns	
Chip Disable to output in High-Z	tHZCE		7		7		10		10		15		20	ns	6, 7
Chip Enable to power-up time	tPU	0		0		0		0		0		0		ns	
Chip Disable to power-down time	tPD		12		15		20		25		30		35	ns	
Output enable access time	^t AOE		7		7		9		10		15		20	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		0		0		ns	
Output Disable to output in High-Z	†HZOE		6		6		10		10		15		20	ns	6
WRITE Cycle															
WRITE cycle time	tWC	12		15		20		25		30		35		ns	
Chip Enable to end of write	tCM.	10		12		15		20		25		25		ns	
Address valid to end of write	^t AW	12		12		15		20		25		25		ns	
Address setup time	tAS	0		0		0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		0		0		ns	
Write pulse width	tWP	10		12		15		20		25		25		ns	
Data setup time	^t DS	7		8		10		10		15		15		ns	
Data hold time	†DH	0		0		0		0		0		0		ns	
Write Disable to output in Low-Z	^t LZWE	2		2		2		2		2		2		ns	
Write Enable to output in High-Z	tHZWE		6		6		8		10		12		15	ns	6

AC TEST CONDITIONS

	Input pulse levelsVss to 3.0V	
ĺ	Input rise and fall times5ns	
	Input timing reference levels1.5V	
	Output reference levels1.5V	
	Output loadSee Figures 1 and 2	

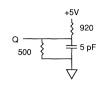
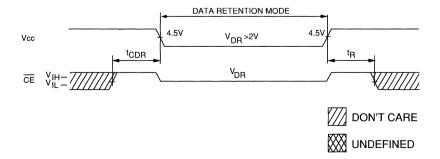


Fig. 1 OUTPUT LOAD EQUIVALENT

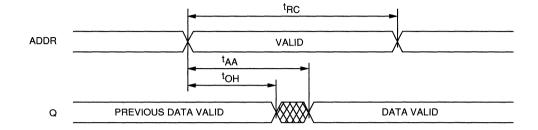
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

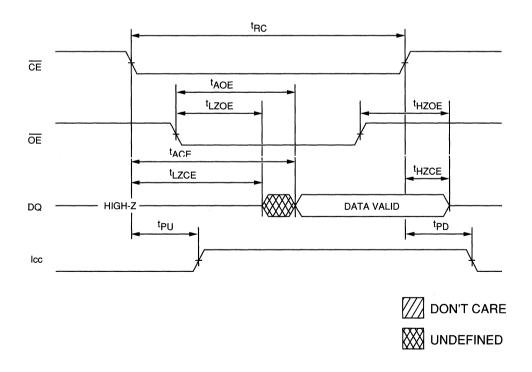

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE, tHZWE and tHZOE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- 7. At any given temperature and voltage condition, tHZCE is less than tLZCE.

- 8. WE is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- Address valid prior to or coincident with latest occurring chip enable.
- 11. tRC = Read Cycle Time.
- 12. Chip enable (ČE) and write enable (WE) can initiate and terminate a WRITE cycle.
- 13. For automotive, industrial and extended temperature specifications refer to page 4-165.

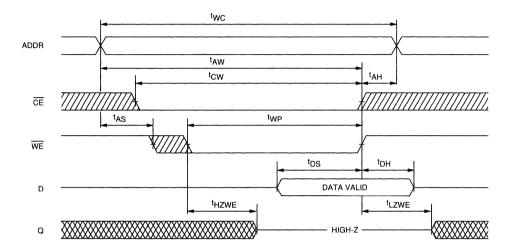
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)


DESCRIPTION	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNITS	NOTES	
Vcc for Retention Data			V DR	2			V	
Data Retention Current	<u>CE</u> ≥ (Vcc -0.2V) Vin ≥ (Vcc -0.2V)	Vcc = 2v	ICCDR		95	250	μΑ	
	$ \begin{array}{c} VIN \ge (VCC - 0.2V) \\ or \le 0.2V \end{array} $	Vcc =3v			300	400	μΑ	
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11

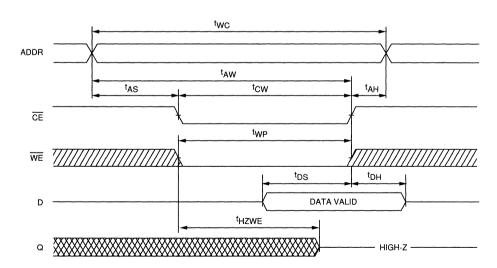
LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. 1 8, 9



READ CYCLE NO. 2 7, 8, 10



WRITE CYCLE NO. 1 (Write Enable Controlled) 7, 12

WRITE CYCLE NO. 2

(Chip Enable Controlled) 12

DON'T CARE

24L/300 SOJ

SRAM

4K x 4 SRAM

24L/300DIP

WITH SEPARATE INPUTS AND OUTPUTS

FEATURES

ODDITON TO

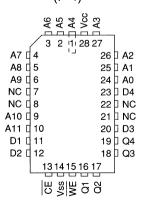
- High speed: 12, 15, 20, 25, 30 and 35ns
- High-performance, low-power, CMOS double metal process
- Single +5V (±10%) power supply
- Easy memory expansion with $\overline{\text{CE}}$ option
- All inputs and outputs are TTL compatible
- MT5C1606 output tracks input during WRITE
- MT5C1607 output high impedance during WRITE

OPTIONS	MARKING
Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
30ns access	-30
35ns access	-35
• Packages	
Plastic DIP (300 mil)	None
Ceramic DIP (300 mil)	C
Plastic SOJ (300 mil)	DJ
Ceramic LCC	EC
Two Volt Data Retention	L

GENERAL DESCRIPTION

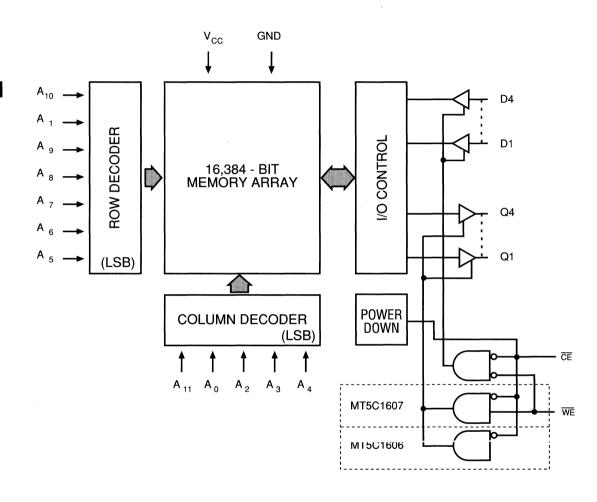
The Micron SRAM family employs high-speed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers chip enable (\overline{CE}) on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design. The x4 configuration features separate data input and output.


Writing to these devices is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)


(A-7,	B-7)	(E-4)					
A4 11. A5 2 A6 3 A7 4 A8 5 A9 6 A10 7 A11 8 D1 9 D2 10 CE 11 Vss 12	24 Vcc 23 A3 22 A2 21 A1 20 A0 19 D4 18 D3 17 Q4 16 Q3 15 Q2 14 Q1 13 WE	A4					

28L/LCC (F-4)

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	CE	WE	DQ	POWER
STANDBY	Н	Х	HIGH-Z	STANDBY
READ	L	Н	Q	ACTIVE
WRITE (1)	L	L	HIGH-Z	ACTIVE
WRITE (2)	L	L	D	ACTIVE

NOTE: 1. MT5C1607 ONLY

2. MT5C1606 ONLY

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V to	+7.0V
Storage Temperature (Ceramic)65°C to	+150°C
Storage Temperature (Plastic)55°C to	+150°C
Power Dissipation	1W
Short Circuit Output Current	50m A

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{\mbox{\scriptsize A}} \leq 70^{\circ}C; \mbox{\ensuremath{Vcc}} = 5.0 \mbox{\ensuremath{V}} \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		ViH	2.2	Vcc +1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	0V ≤ VIN ≤ VCC	ILı	-5	5	μΑ	-
Output Leakage Current	ILo	-5	5	μА		
Output High Voltage	Iон = -4.0mA	Vон	2.4		V	1
Output Low Voltage IoL = 8.0mA		Vol	***************************************	0.4	٧	1

					M	AX				
DESCRIPTION	CONDITIONS	SYMBOL	-12	-15	-20	-25	-30	-35	UNITS	NOTES
Power Supply	CE ≤ VIL; Vcc = MAX									
Current: Operating	$f = MAX = 1/{}^{t}RC,$	Icc	140	125	110	100	100	100	mA	3
	Outputs Open			ĺ						
Power Supply	CE ≥ VIH; Vcc = MAX									
Current: Standby	$f = MAX = 1/{}^{t}RC,$	IsB1	50	45	40	30	30	30	mA	ł
	Outputs Open			1					İ	
	CE ≥ Vcc -0.2V; Vcc = MAX									
	V _I L ≤ Vss +0.2V;	IsB2	3	3	3	3	3	3	mA	}
	$V_{IH} \ge V_{CC} - 0.2V$; $f = 0$			}						}

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	$T_A = 25^{\circ}C; f = 1MHz$	Cı		7	pF	4
Output Capacitance	Vcc = 5V	Со		7	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

DECORPTION		-12		-15		-20		-2	25	-3	30	-35			
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MiN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle															
READ cycle time	^t RC	12		15		20		25		30		35		ns	i
Address access time	^t AA		12		15		20		25		30		35	ns	
Chip Enable access time	^t ACE		11		12		15		20		25		30	ns	
Output hold from address change	^t OH	3		3		3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		5		5		5		5		ns	
Chip Disable to output in High-Z	[†] HZCE		7		7		10		10		15		20	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		0		0		ns	
Chip Disable to power-down time	^t PD		12		15		20		25		30		35	ns	
WRITE Cycle															
WRITE cycle time	¹WC	12		15		20		25		30		35		ns	
Chip Enable to end of write	tCM	10		12		15		20		25		25		ns	
Address valid to end of write	^t AW	12		12		15		20		25		25		ns	
Address setup time	^t AS	0		0		0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		0		0		ns	
Write pulse width	tWP	10		12		15		20		25		25		ns	
Data setup time	^t DS	7		8		10		10		15		15		ns	
Data hold time	^t DH	0		0		0		0		0		0		ns	
Write Disable to output in Low-Z	^t LZWE	2		2		2		2		2		2		ns	
Write Enable to output in High-Z	^t HZWE		6		6		8		10		12		15	ns	
Write Enable to output valid	^t AWE		12		15		20		25		30		35	ns	
Data valid to output valid	^t ADV		12		15		20		25		30		35	ns	

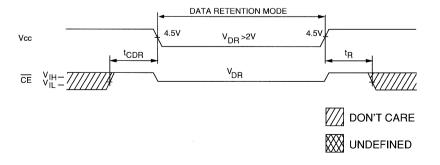
AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

Fig. 1 OUTPUT LOAD EQUIVALENT

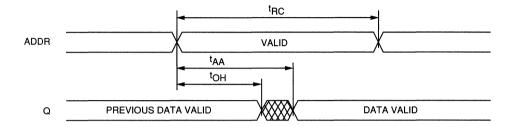
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

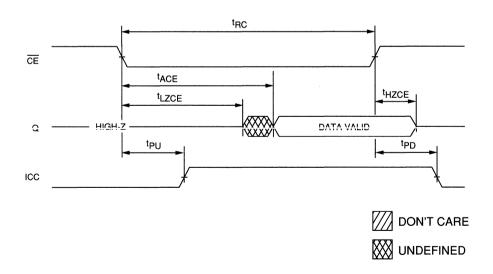

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE.

- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. tRC = Read Cycle Time.
- 12. Chip enable (ČE) and write enable (WE) can initiate and terminate a WRITE cycle.
- 13. For automotive, industrial and extended temperature specifications refer to page 4-165.

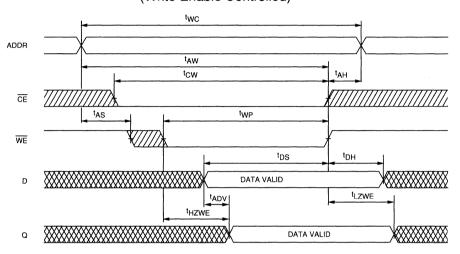
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

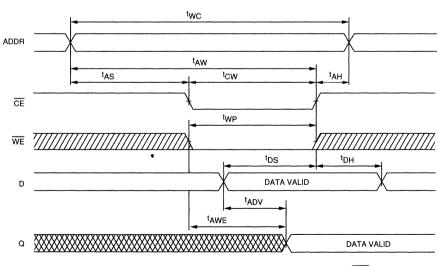

DESCRIPTION	CONDITIONS		SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			V DR	2			V	
Data Retention Current	CE ≥ (Vcc -0.2V) Vin ≥ (Vcc -0.2V) or ≤ 0.2V		ICCDR		95	250	μΑ	
		Vcc = 3v			300	400	μΑ	
Chip Deselect to Data Retention Time			^t CDR	0		_	ns	4
Operation Recovery Time			^t R	tRC			ns	4, 11

LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. 18,9


READ CYCLE NO. 2 7, 8, 10


WRITE CYCLE NO. 1

(Write Enable Controlled) 7, 12

WRITE CYCLE NO. 2

(Chip Enable Controlled) 12

DON'T CARE

SRAM

16K x 4 SRAM

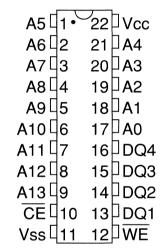
FEATURES

- High speed: 12, 15, 20, 25, 30 and 35ns
- High-performance, low-power, CMOS double metal process
- Single +5V ($\pm 10\%$) power supply
- Easy memory expansion with CE option
- All inputs and outputs are TTL compatible

OPTIONS	MARKING
• Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
30ns access	-30
35ns access	-35
• Packages	
Plastic DIP (300 mil)	None
Ceramic DIP (300 mil)	C
Plastic SOJ (300 mil)	DJ
Ceramic LCC	EC
• Two Volt Data Retention	L

GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

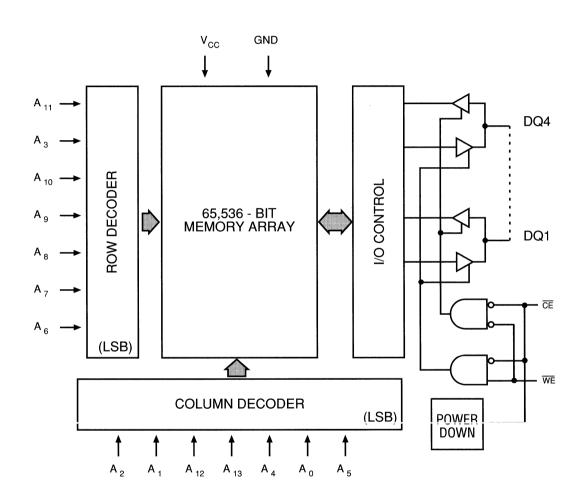

For flexibility in high speed memory applications, Micron offers chip enable (\overline{CE}) on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design.

Writing to these devices is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)

22L/300 DIP (A-6, B-6)



24L/300 SOJ (E-4)

A5 □ 1 •	24	Vcc
A6 🗆 2	23	□ A4
A7 🛚 3	22	□ АЗ
A8 🛚 4	21	□ A2
A 9 ☐ 5	20	□ A1
A10 ☐ 6	19	□ A0
A11 🛭 7	18	D ИС
A12 🛭 8	17	DQ4
A13 🛭 9	16	р раз
CE [10	15	DQ2
NC 🛚 11	14	DQ1
Vss 🛭 12	13	□ WE
		,

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	CE	WE	DQ	POWER
STANDBY	Н	Х	HIGH-Z	STANDBY
READ	L	Н	Q	ACTIVE
WRITE	L	L	DIN	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Storage Temperature (Ceramic)	65°C to +150°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{\text{A}} \leq 70^{\circ}C; \ Vcc = 5.0V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		ViH	2.2	Vcc +1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	ILı	-5	5	μΑ	
Output Leakage Current	Output(s) Disabled, 0V ≤ Vout ≤ Vcc	ILo	-5	5	μА	
Output High Voltage	Iон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	loL = 8.0mA	Vol		0.4	V	1

			MAX							
DESCRIPTION	CONDITIONS	SYMBOL	-12	-15	-20	-25	-30	-35	UNITS	NOTES
Power Supply Current: Operating	CE ≤ V _{IL} ; V _{CC} = MAX f = MAX = 1/ ^t RC, Outputs Open	Icc	140	130	120	110	100	100	mA	3
Power Supply Current: Standby	TE ≥ VIH; Vcc = MAX f = MAX = 1/ tRC, Outputs Open	Is _B 1	60	50	40	30	30	30	mA	
	\overline{\overline{CE}} \ge \text{Vcc -0.2V; Vcc = MAX} \\ \text{ViL \le Vss +0.2V;} \\ \text{ViH \ge Vcc -0.2V; f = 0} \end{array}	ISB2	5	5	5	5	5	5	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cı		7	pF	4
Output Capacitance	Vcc = 5V	Co		7	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13) (0°C \leq T_{A} \leq 70°C; Vcc = 5V \pm 10%)

DECORIDEION		-1	12	-1	15	-2	<u>:</u> 0	-2	25	-3	10	-3	35		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle															
READ cycle time	^t RC	12		15		20		25		30		35		ns	
Address access time	^t AA		12		15		20		25		30		35	ns	
Chip Enable access time	^t ACE		12		12		15		20		25		30	ns	
Output hold from address change	^t OH	3		3		3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		5		5		5		5		ns	
Chip Disable to output in High-Z	^t HZCE		7		7		10		10		15		20	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		0		0		ns	
Chip Disable to power-down time	^t PD		12		15		20		25		30		35	ns	
WRITE Cycle															
WRITE cycle time	tWC	12		15		20		25		30		35		ns	
Chip Enable to end of write	tCW	10		12		15		20		25		25		ns	
Address valid to end of write	^t AW	12		12		15		20		25		25		ns	
Address setup time	^t AS	0		0		0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		0		0		ns	
Write pulse width	tWP	10		12		15		20		25		25		ns	
Data setup time	^t DS	8		8		10		10		15		15		ns	
Data hold time	^t DH	0		0		0		0		0		0		ns	
Write Disable to output in Low-Z	^t LZWE	2		2		2		2		2		2		ns	
Write Enable to output in High-Z	^t HZWE		6		6		8		10		12		15	ns	6

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

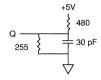
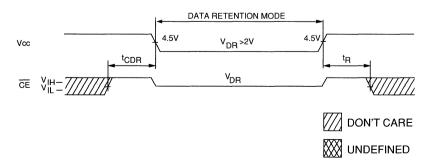


Fig. 1 OUTPUT LOAD EQUIVALENT

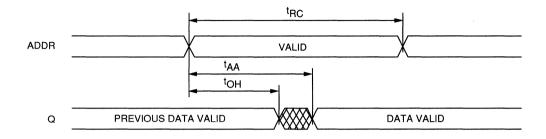
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

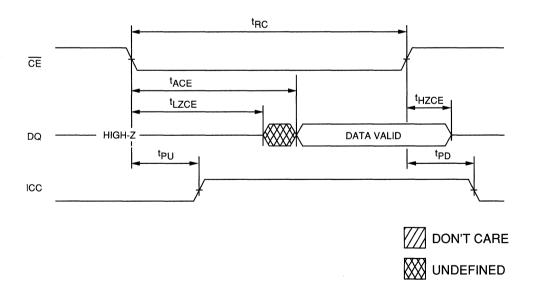

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE.

- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. tRC = Read Cycle Time.
- 12. Chip enable (CE) and write enable (WE) can initiate and terminate a WRITE cycle.
- 13. For automotive, industrial and extended temperature specifications refer to page 4-167.

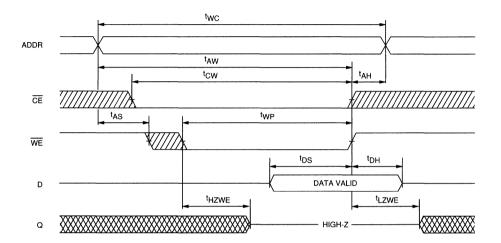
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)


DESCRIPTION	CONDITIONS		SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2			V	
Data Retention Current	<u>CE</u> ≥ (Vcc -0.2V)		ICCDR		95	250	μΑ	
	$V_{\text{IN}} \ge (V_{\text{CC}} - 0.2V)$ or $\le 0.2V$	Vcc = 3v			300	400	μΑ	
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11

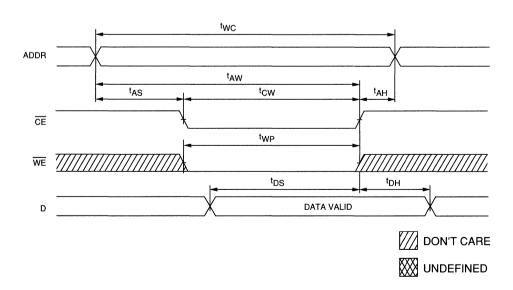
LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. 18,9



READ CYCLE NO. 2 7, 8, 10



WRITE CYCLE NO. 1 (Write Enable Controlled) 7, 12

WRITE CYCLE NO. 2 (Chip Enable Controlled)¹²

24L/300 SQJ

(E-4)

SRAM

16K x 4 SRAM

WITH OUTPUT ENABLE

24L/300 DIP

(A-7, B-7)

A12 8 17 DQ4 A13 9 16 DQ3 CE 10 15 DQ2 OE 11 14 DQ1 Vss 12 13 WE

FEATURES

OPTIONS

- High speed: 12, 15, 20, 25, 30 and 35ns
- High-performance, low-power, CMOS double metal process
- Single +5V (±10%) power supply
- Easy memory expansion with \overline{CE} and \overline{OE} options

MARKING

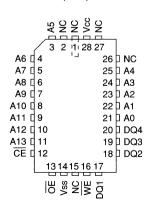
All inputs and outputs are TTL compatible

Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
30ns access	-30
35ns access	-35
• Packages	
Plastic DIP (300 mil)	None
Ceramic DIP (300 mil)	C
Plastic SOJ (300 mil)	DJ
Ceramic LCC	EC
Two Volt Data Retention	L

GENERAL DESCRIPTION

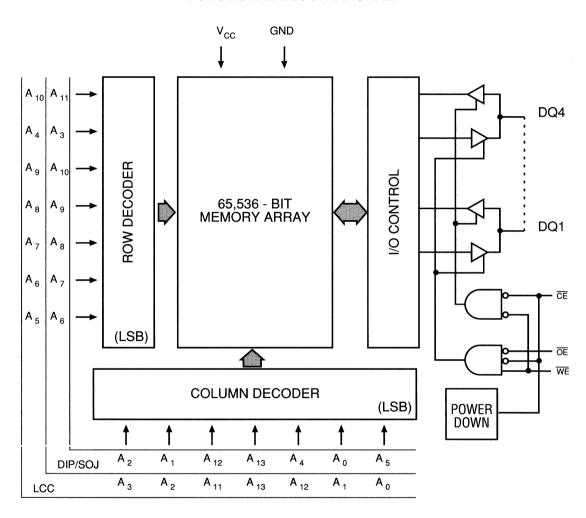
The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers chip enable (CE) on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design.


Writing to these devices is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)


A5 1 •	24 Vcc	A5 [1 • A6 [2	24
A6 ☐2	23 A4	A7 🛚 3	22 🗆 A3
A 7 ☐3	22 A3	A8	21 A2 20 A1
A8	21 A2	A10 🛭 6 A11 🗓 7	19 ☐ A0 18 ☐ NC
A 9	20 A 1	A12 🛘 8 A13 🖟 9	17 DQ4
A10 ∐6	19∐A0	CE [10 OE [11	15 DQ2
A 11 ∐7	18∐NC	Vss [12	13 WE

28L/LCC (F-4)

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	ŌĒ	CE	WE	DQ	POWER
STANDBY	Х	Н	Х	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
READ	Н	L	Н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Storage Temperature (Ceramic)	65°C to +150°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{A} \leq 70^{\circ}C;\,Vcc = 5.0V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES	
Input High (Logic 1) Voltage		ViH	2.2	Vcc +1	V	1	
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2	
Input Leakage Current	0V ≤ VIN ≤ VCC	ILı	-5	5	μΑ		
Output Leakage Current	Output(s) Disabled, 0V ≤ Voυτ ≤ Vcc	ILo	-5	5	μА		
Output High Voltage	Iон = -4.0mA	Vон	2.4		V	1	
Output Low Voltage	loL = 8.0mA	Vol		0.4	V	1	

					М	AX				
DESCRIPTION	CONDITIONS	SYMBOL	-12	-15	-20	-25	-30	-35	UNITS	NOTES
Power Supply Current: Operating	$\overline{CE} \le V_{IL}$; $V_{CC} = MAX$ $f = MAX = 1/{}^{t}RC$,	Icc	140	130	120	110	100	100	mA	3
	Outputs Open									
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX f = MAX = 1/ ^t RC, Outputs Open	ISB1	60	50	40	30	30	30	mA	
	$\overline{\text{CE}} \ge \text{Vcc -0.2V}; \text{Vcc} = \text{MAX}$ $\text{Vil.} \le \text{Vss +0.2V};$ $\text{Vih.} \ge \text{Vcc -0.2V}; \text{f = 0}$	IsB2	5	5	5	5	5	5	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cı		7	pF	4
Output Capacitance	Vcc = 5V	Со		7	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

DESCRIPTION		-1	2	-1	5	-2	20	-2	25	-3	0	-3	35		
DESCRIPTION	SYM	MIN	MAX	MiN	MAX	MIN	МАХ	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle															
READ cycle time	^t RC	12		15		20		25		30		35		ns	
Address access time	^t AA		12		15		20		25		30		35	ns	
Chip Enable access time	^t ACE		12		12		15		20		25		30	ns	
Output hold from address change	tOH	3		3		3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		5		5		5		5		ns	
Chip Disable to output in High-Z	^t HZCE		7		7		10		10		15		20	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		0		0		ns	
Chip Disable to power-down time	^t PD		12		15		20		25		30		35	ns	
Output Enable access time	^t AOE		7		7		9		10		15		20	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		0		0		ns	
Output Disable to output in High-Z	†HZOE		6		6		10		10		15		20	ns	6
WRITE Cycle														•	
WRITE cycle time	tWC	12		15		20		25		30		35		ns	
Chip Enable to end of write	tCW	10		12		15		20		25		25		ns	
Address valid to end of write	^t AW	12		12		15		20		25		25		ns	
Address setup time	†AS	0		0		0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		0		0		ns	
Write pulse width	tWP	10		12		15		20		25		25		ns	
Data setup time	^t DS	8		8		10		10		15		15		ns	
Data hold time	†DH	0		0		0		0		0		0		ns	
Write Disable to output in Low-Z	tLZWE	2		2		2		2		2		2		ns	
Write Enable to output in High-Z	^t HZWE		6		6		8		10		12		15	ns	6

AC TEST CONDITIONS

I	Input pulse levels	Vss to 3.0V
	Input rise and fall times	5ns
	Input timing reference levels	1.5V
	Output reference levels	1.5V
	Output loadSee F	igures 1 and 2

Q 480 255 30 pF

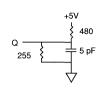
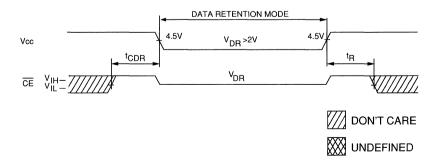


Fig. 1 OUTPUT LOAD EQUIVALENT

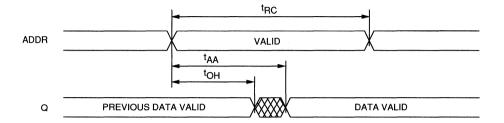
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

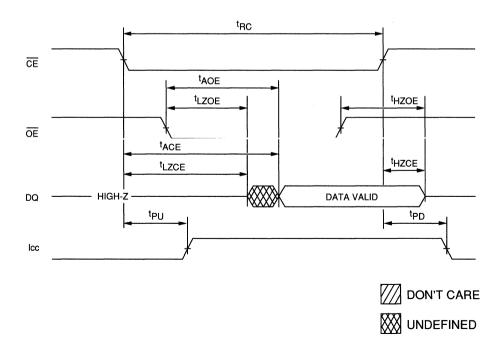

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE, tHZWE and tHZOE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- 7. At any given temperature and voltage condition, [†]HZCE is less than [†]LZCE.

- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable (CE) and write enable (WE) can initiate and terminate a WRITE cycle.
- 13. For automotive, industrial and extended temperature specifications refer to page 4-167.

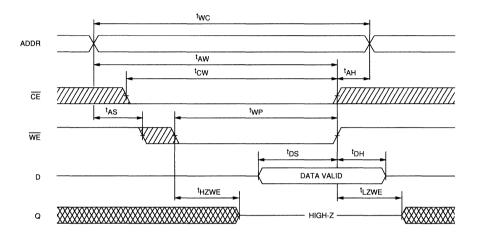
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)


DESCRIPTION	CONDITIONS	SYMBOL	MIN	TYP	MAX	UNITS	NOTES	
Vcc for Retention Data			VDR	2		_	V	
Data Retention Current	<u>CE</u> ≥ (Vcc -0.2V) Vin ≥ (Vcc -0.2V)	Vcc = 2v	ICCDR		95	250	μΑ	
	or ≤ 0.2V	Vcc = 3v			300	400	μА	
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11

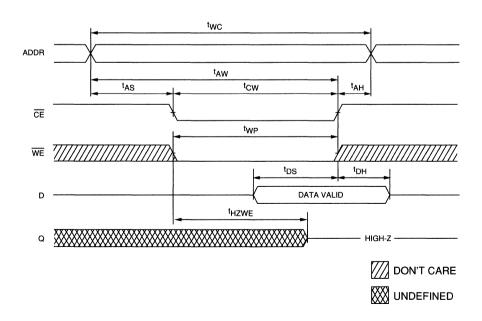
LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. 1 8, 9



READ CYCLE NO. 2 7, 8, 10



WRITE CYCLE NO. 1 (Write Enable Controlled) 7, 12

WRITE CYCLE NO. 2

(Chip Enable Controlled) 12

SRAM

16K x 4 SRAM

WITH SEPARATE INPUTS AND OUTPUTS

FEATURES

OPTIONS

- High speed: 12, 15, 20, 25, 30 and 35ns
- High-performance, low-power, CMOS double metal process
- Single +5V (±10%) power supply
- Easy memory expansion with CE1, CE2 and OE options
- All inputs and outputs are TTL compatible
- MT5C6406 output tracks input during WRITE
- MT5C6407 output high impedance during WRITE

MARKING

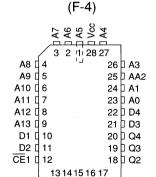
T.

Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
30ns access	-30
35ns access	-35
Packages	
Plastic DIP (300 mil)	None
Ceramic DIP (300 mil)	· C
Plastic SOJ (300 mil)	DJ
Ceramic LCC	EC
	15ns access 20ns access 25ns access 30ns access 35ns access Packages Plastic DIP (300 mil) Ceramic DIP (300 mil) Plastic SOJ (300 mil)

GENERAL DESCRIPTION

Two Volt Data Retention

The Micron SRAM family employs high-speed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

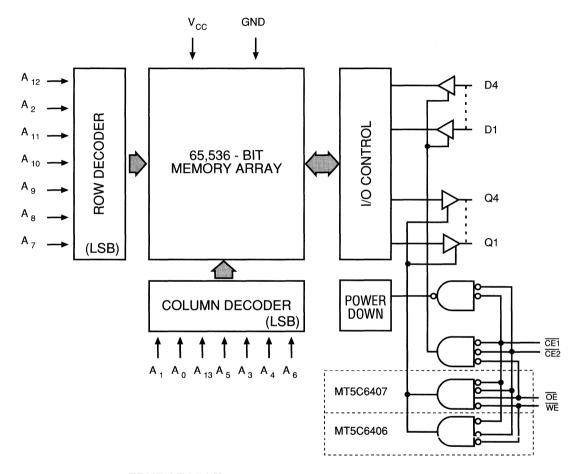

For flexibility in high speed memory applications, Micron offers chip enable (\overline{CE}) on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design. The x4 configuration features separate data input and output.

Writing to these devices is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)

28L/30 (A-9,		28L/30 (E-	
A5	28 Vcc 27 A4 26 A3 25 A2 24 A1 23 A0 22 D4 21 D3 20 Q4 19 Q3 18 Q2 17 Q1 16 WE 15 CE2	A5 [1 A6 [2 A7 [3 A8 [4 A9 [5 A10 [6 A11 [7 A12 [8 A13 [9 D1 [10 D2 [11 CET [12 OE [13 Vss [14	28 J Vcc 27 J A4 26 J A3 25 J A2 24 J A1 23 J A0 22 J D4 21 J D3 20 J Q4 19 J Q3 18 J Q2 17 J Q1 16 J WE 15 J CE2



28L/LCC

Vss CE2

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	CE1	CE2	OE	WE	OUTPUTS	POWER
STANDBY	Н	Х	Х	Х	HIGH-Z	STANDBY
STANDBY	Х	Н	Х	Х	HIGH-Z	STANDBY
READ	L	L	L	Н	Q	ACTIVE
READ	L	L	Н	Н	HIGH-Z	ACTIVE
WRITE (1)	L	L	Х	L	HIGH-Z	ACTIVE
WRITE (2)	L	L	L	L	D	ACTIVE
WRITE (2)	L	L	Н	L	HIGH-Z	ACTIVE

NOTE: 1. MT5C6407 ONLY

2. MT5C6406 ONLY

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V to +7.0V
Storage Temperature (Ceramic)65°C to +150°C
Storage Temperature (Plastic)55°C to +150°C
Power Dissipation
Short Circuit Output Current50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{A} \leq 70^{\circ}C; \ Vcc = 5.0V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Vih	2.2	Vcc +1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	0V ≤ VIN ≤ VCC	ILı	-5	5	μΑ	
Output Leakage Current	Output(s) Disabled, 0V ≤ Voυτ ≤ Vcc	ILo	-5	5	μΑ	
Output High Voltage	Iон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	loL = 8.0mA	Vol		0.4	٧	1

			MAX							
DESCRIPTION	CONDITIONS	SYMBOL	-12	-15	-20	-25	-30	-35	UNITS	NOTES
Power Supply Current: Operating	CE ≤ Viι; Vcc = MAX f = MAX = 1/ tRC, Outputs Open	Icc	140	130	120	110	100	100	mA	3
Power Supply Current: Standby	CE ≥ VIH; VCC = MAX f = MAX = 1/ tRC, Outputs Open	ISB1	60	50	40	30	30	30	mA	
	$\overline{\text{CE}} \ge \text{Vcc} - 0.2\text{V}; \text{Vcc} = \text{MAX}$ $\text{V}_{\text{IL}} \le \text{Vss} + 0.2\text{V};$ $\text{Vih} \ge \text{Vcc} - 0.2\text{V}; \text{f} = 0$	ISB2	5	5	5	5	5	5	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cı		7	pF	4
Output Capacitance	Vcc = 5V	Co		7	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

DESCRIPTION		-1	2	-1	15	-2	20	-2	25	-3	30	-3	35		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle															
READ cycle time	^t RC	12		15		20		25		30		35		ns	
Address access time	^t AA		12		15		20		25		30		35	ns	
Chip Enable access time	†ACE		12		12		15		20		25		30	ns	
Output hold from address change	tОН	3		3		3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		5		5		5		5		ns	
Chip Disable to output in High-Z	†HZCE		7		7		10		10		15		20	ns	6, 7
Chip Enable to power-up time	tPU	0		0		0		0		0		0		ns	
Chip Disable to power-down time	^t PD		12		15		20		25		30		35	ns	
Output Enable access time	^t AOE		7		7		9		10		15		20	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		0		0		ns	
Output Disable to output in High-Z	^t HZOE		6		6		10		10		15		20	ns	6
WRITE Cycle															
WRITE cycle time	tWC	12		15		20		25		30		35		ns	
Chip Enable to end of write	tCW	10		12		15		20		25		25		ns	
Address valid to end of write	^t AW	12		12		15		20		25		25		ns	
Address setup time	^t AS	0		0		0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		0		0		ns	
Write pulse width	^t WP	10		12		15		20		25		25		ns	
Data setup time	t _{DS}	8		8		10		10		15		15		ns	
Data hold time	^t DH	0		0		0		0		0		0		ns	
Write Disable to output in Low-Z	^t LZWE	2		2		2		2		2		2		ns	
Write Enable to output in High-Z	^t HZWE		6		6		8		10		12		15	ns	6
Write Enable to output valid	^t AWE		12		15		20		25		30		35	ns	
Data valid to output valid	^t ADV		12		15		20		25		30		35	ns	

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

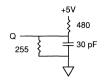
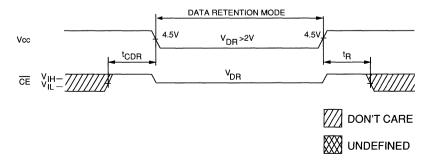


Fig. 1 OUTPUT LOAD EQUIVALENT

Fig. 2 OUTPUT LOAD EQUIVALENT

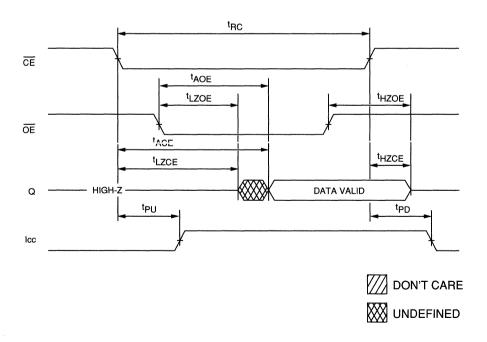
NOTES


- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE, tHZWE and tHZOE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE.

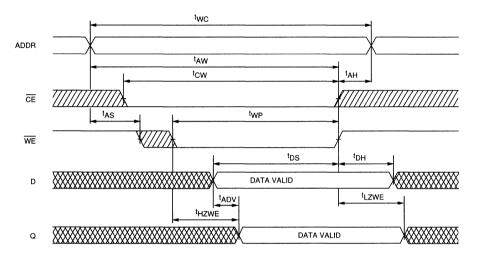
- 8. WE is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. tRC = Read Cycle Time.
- 12. Chip enable (\overline{CE}) and write enable (\overline{WE}) can initiate and terminate a WRITE cycle.
- 13. For automotive, industrial and extended temperature specifications refer to page 4-167.

DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

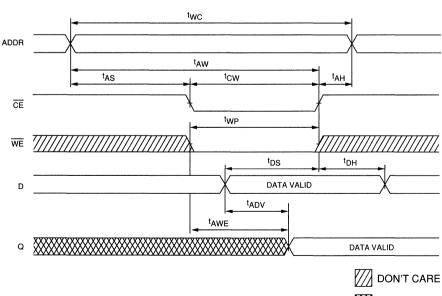
DESCRIPTION	CONDITIONS		SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			Vdr	2		_	V	
Data Retention Current	CE ≥ (Vcc -0.2V) Vin ≥ (Vcc -0.2V)	Vcc = 2v	ICCDR		95	250	μΑ	
	or ≤ 0.2V	Vcc = 3v			300	400	μΑ	
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11


LOW Vcc DATA RETENTION WAVEFORM

READ CYCLE NO. 1 8, 9



READ CYCLE NO. 2 7, 8, 10



WRITE CYCLE NO. 1 (Write Enable Controlled) 7, 12

WRITE CYCLE NO. 2 (Chip Enable Controlled) 12

24L/300 SOJ

(E-4)

SRAM

64K x 4 SRAM

24L/300 DIP

(A-7, B-7)

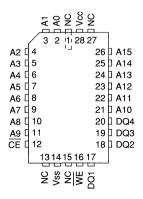
FEATURES

- High speed: 20, 25, 30, 35, and 45ns
- High-performance, low-power, CMOS double metal process
- Single +5V (±10%) power supply
- Easy memory expansion with CE option
- All inputs and outputs are TTL compatible

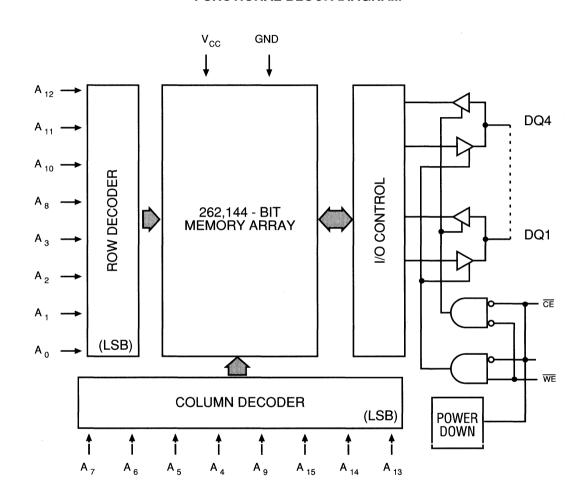
OPTIONS	MARKING
Timing	
20ns access	-20
25ns access	-25
30ns access	-30
35ns access	-35
45ns access	-45
Packages Plastic DIP (300 mil) Ceramic DIP (300 mil) Plastic SOJ (300 mil) Ceramic LCC	None C DJ EC
Two Volt Data Retention	L

GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.


For flexibility in high speed memory applications, Micron offers chip enable (\overline{CE}) on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design.

Writing to these devices is accomplished when write enable (WE) and CE inputs are both LOW. Reading is accomplished when WE remains HIGH and CE goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.


All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)

28L/LCC (F-4)

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	CE	WE	DQ	POWER
STANDBY	Н	Х	HIGH-Z	STANDBY
READ	L	Н	Q	ACTIVE
WRITE	L	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Storage Temperature (Ceramic)	
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

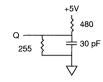
DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		ViH	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	0V ≤ VIN ≤ VCC	ILı	-5	5	μΑ	
Output Leakage Current	Output(s) Disabled, $0V \le V_{OUT} \le V_{CC}$	ILo	-5	5	μΑ	
Output High Voltage	Iон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1

			MAX						
DESCRIPTION	CONDITIONS	SYMBOL	-20	-25	-30	-35	-40	UNITS	NOTES
Power Supply	CE ≤ VIL; Vcc = MAX								
Current: Operating	$f = MAX = 1/{}^{t}RC,$	Icc	105	95	95	90	90	mA	3
	Outputs Open			ļ				ŀ	
Power Supply	CE ≥ Viн; Vcc = MAX								
Current: Standby	$f = MAX = 1/{}^{t}RC,$	ISB1	30	25	25	25	25	mA	
	Outputs Open								
	CE ≥ Vcc -0.2V; Vcc = MAX								
	V _I L ≤ Vss +0.2V;	IsB2	5	5	5	7	7	mA	
	V _{IH} ≥ V _{CC} -0.2V; f = 0								

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cı		7	pF	4
Output Capacitance	Vcc = 5V	Со		5	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS


(Note 5, 13) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

DESCRIPTION		-2	20	-2	25	-3	30	-3	35	-4	1 5		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle	READ Cycle												
READ cycle time	^t RC	20		25		30		35		45		ns	
Address access time	^t AA		20		25		30		35		45	ns	
Chip Enable access time	^t ACE		20		25		30		35		45	ns	
Output hold from address change	tОН	3		5		5		5		5		ns	
Chip Enable to output in Low-Z	tLZCE	6		6		6		6		6		ns	
Chip Disable to output in High-Z	†HZCE		9		9		12		15		18	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		0		ns	
Chip Disable to power-down time	^t PD	-	20		25		30		35		45	ns	
WRITE Cycle													
WRITE cycle time	tWC	20		20		25		30		35		ns	
Chip Enable to end of write	tCW	15		15		18		20		25		ns	
Address valid to end of write	^t AW	15		15		18		20		25		ns	
Address setup time	†AS	0		0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		0		ns	
Write pulse width	tWP	15		15		18		20		25		ns	
Data setup time	^t DS	10		10		12		15		20		ns	
Data hold time	tDH	0		0		0		0		0		ns	
Write Disable to output in Low-Z	^t LZWE	5		5		5		5		5		ns	
Write Enable to output in High-Z	tHZWE		10		10		12		15		18	ns	6

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

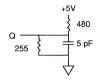
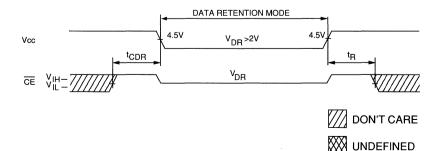


Fig. 1 OUTPUT LOAD EQUIVALENT

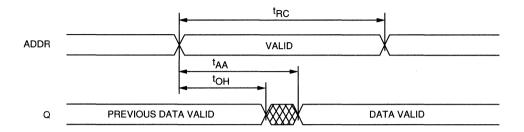
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

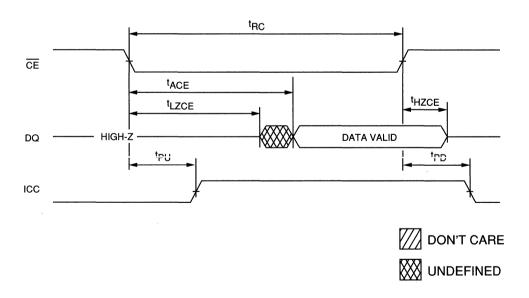

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. ^tHZCE and ^tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE.

- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. tRC = Read Cycle Time.
- 12. Chip enable (\overline{CE}) and write enable (\overline{WE}) can initiate and terminate a WRITE cycle.
- 13. For automotive, industrial and extended temperature specifications refer to page 4-169.

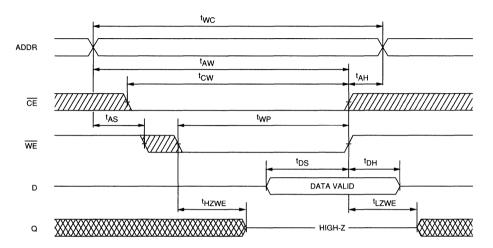
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)


DESCRIPTION	CONDITIONS		SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2		_	V	
Data Retention Current	CE ≥ (Vcc -0.2V) Vin ≥ (Vcc -0.2V)	Vcc = 2v	ICCDR		95	300	μΑ	
	or ≤ 0.2V	Vcc = 3v			350	400	μА	
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 10

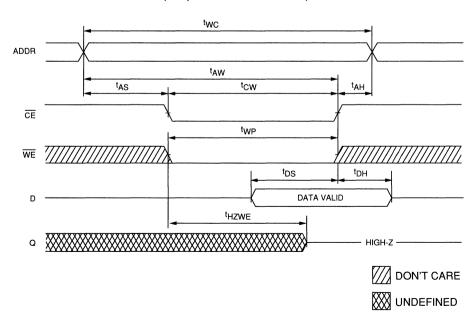
LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. 1 8, 9



READ CYCLE NO. 2 7, 8, 10



WRITE CYCLE NO. 1 (Write Enable Controlled) 7, 12

WRITE CYCLE NO. 2

(Chip Enable Controlled) 12

SRAM

64K x 4 SRAM

WITH OUTPUT ENABLE

FEATURES

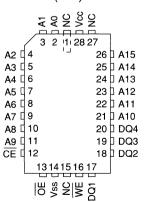
- High speed: 20, 25, 30, 35, and 45ns
- High-performance, low-power, CMOS double metal process
- Single +5V (±10%) power supply
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ options
- All inputs and outputs are TTL compatible

OPTIONS	MARKING
Timing	
20ns access	-20
25ns access	-25
30ns access	-30
35ns access	-35
45ns access	-45
Packages	
Plastic DIP (300 mil)	None
Ceramic DIP (300 mil)	С
Plastic SOJ (300 mil)	DJ
Ceramic LCC	EC
Two Volt Data Retention	ī

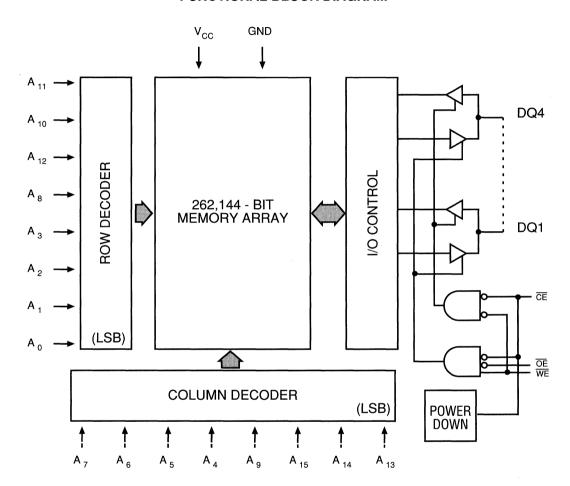
GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers chip enable (\overline{OE}) and output enable (\overline{OE}) on this organization. These enhancements can place the outputs in a high impedance state for additional flexibility in system design.


Writing to these devices is accomplished when write enable (WE) and $\overline{\text{CE}}$ inputs are both LOW. Reading is accomplished when $\overline{\text{WE}}$ remains HIGH and $\overline{\text{CE}}$ and $\overline{\text{OE}}$ go LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible.


PIN ASSIGNMENT (Top View)

28L/30 (A-9,		28L/300 SOJ (E-8)				
NC	28 Vcc 27 A15 26 A14 25 A13 24 A12 23 A11 22 A10 21 NC 20 NC 19 DQ4 18 DQ3 17 DQ2 16 DQ1 15 WE	NC [1	28) Vcc 27] A15 26] A14 25] A13 24] A12 23] A11 22] A10 21] NC 19] DQ4 18] DQ3 17] DQ2 16] DQ1 15] WE			

28L/LCC (F-4)

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	ŌĒ	CE	WE	DQ	POWER
STANDBY	Х	Н	Х	HIGH-Z	STANDBY
READ	٦	L	Н	Q	ACTIVE
READ	Н	L	Н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Storage Temperature (Ceramic)	65°C to +150°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{\Delta} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Vih	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	0V ≤ VIN ≤ Vcc	ILı	-5	5	μΑ	
Output Leakage Current	Output(s) Disabled, $0V \le V_{OUT} \le V_{CC}$	ILo	-5	5	μА	
Output High Voltage	I OH = -4.0 m A	Vон	2.4		V	1
Output Low Voltage	loL = 8.0mA	Vol		0.4	V	1

					MAX				
DESCRIPTION	CONDITIONS	SYMBOL	-20	-25	-30	-35	-40	UNITS	NOTES
Power Supply	CE ≤ VIL; Vcc = MAX								
Current: Operating	$f = MAX = 1/{}^{t}RC,$	lcc	105	95	95	90	90	mA	3
	Outputs Open								
Power Supply	CE ≥ ViH; Vcc = MAX								
Current: Standby	$f = MAX = 1/{}^{t}RC,$	Is _B 1	30	25	25	25	25	mA	
	Outputs Open		İ			1			
	CE ≥ Vcc -0.2V; Vcc = MAX								
	V _{IL} ≤ Vss +0.2V;	IsB2	5	5	5	7	7	mA	
	V _{IH} ≥ V _{CC} -0.2V; f = 0								ĺ

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cı		7	pF	4
Output Capacitance	Vcc = 5V	Со		5	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

DECORIDE		-2	20	-2	25	-3	30	-3	35	-4	15		
DESCRIPTION	SYM	MIN	MAX	MIN	МАХ	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle			<u> </u>	L	L	L	L	L	L	L	L.,,	<u> </u>	L
READ cycle time	^t RC	20		25		30		35		45		ns	
Address access time	^t AA		20		25		30		35		45	ns	
Chip Enable access time	^t ACE		20		25		30		35		45	ns	
Output hold from address change	^t OH	3		5		5		5		5		ns	
Chip Enable to output in Low-Z	^t LZCE	6		6		6		6		6		ns	
Chip Disable to output in High-Z	†HZCE		9		9		12		15		18	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		0		ns	
Chip Disable to power-down time	^t PD		20		25		30		35		45	ns	
Output Enable access time	†AOE		8		8		10		12		15	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		0		ns	
Output Disable to out put in High-Z	†HZOE		7		7		10		12		15	ns	
WRITE Cycle												1	•
WRITE cycle time	tWC	20		20		25		30		35		ns	
Chip Enable to end of write	tCM	15		15		18		20		25		ns	
Address valid to end of write	^t AW	15		15		18		20		25		ns	
Address setup time	^t AS	0		0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		0		ns	
Write pulse width	tWP	15		15		18		20		25		ns	
Data setup time	^t DS	10		10		12		15		20		ns	
Data hold time	^t DH	0		0		0		0		0		ns	
Write Disable to output in Low-Z	tLZWE	5		5		5		5		5		ns	
Write Enable to output in High-Z	tHZWE		10		10		12		15		18	ns	6

AC TEST CONDITIONS

	Input pulse levelsVss to 3.0V	
	Input rise and fall times5ns	
I	Input timing reference levels1.5V	
	Output reference levels1.5V	
l	Output loadSee Figures 1 and 2	

480 255 430 pF

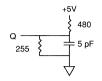
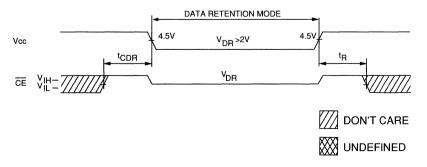


Fig. 1 OUTPUT LOAD EQUIVALENT

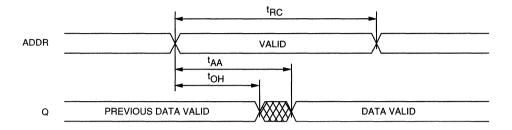
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

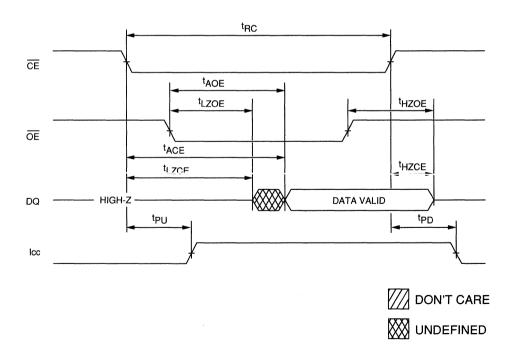

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE, tHZOE and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- 7. At any given temperature and voltage condition, 'HZCE is less than 'LZCE.

- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable (CE) and write enable (WE) can initiate and terminate a WRITE cycle.
- 13. For automotive, industrial and extended temperature specifications refer to page 4-169.

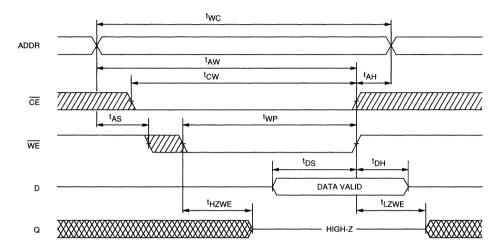
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)


DESCRIPTION	CONDITIONS	3	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2		_	V	
Data Retention Current	<u>CE</u> ≥ (Vcc -0.2V)		ICCDR		95	300	μΑ	
	V IN \geq (VCC -0.2V) or \leq 0.2V	Vcc = 3v			350	400	μΑ	
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11

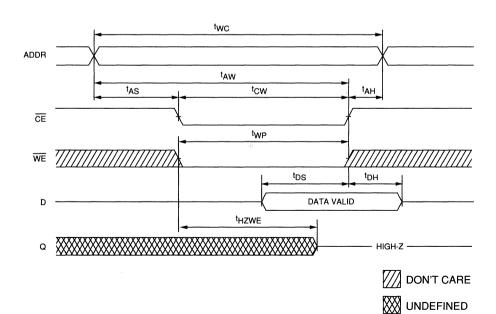
LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. 18,9



READ CYCLE NO. 2 7, 8, 10



WRITE CYCLE NO. 1 (Write Enable Controlled) 7, 12

WRITE CYCLE NO. 2 (Chip Enable Controlled) 12

SRAM

256K x 4 SRAM

WITH OUTPUT ENABLE

FEATURES

OPTIONS

- High speed: 25, 35, and 45ns
- High-performance, low-power, CMOS double metal process
- Single +5V (±10%) power supply
- Easy memory expansion with \(\overline{CE}\) and \(\overline{OE}\)
 options
- All inputs and outputs are TTL compatible
- Fast Output Enable access time: 8ns

•	Timing 25ns access 35ns access 45ns access	-25 -35 -45
•	Packages Plastic DIP (400 mil) Ceramic DIP (400mil) Plastic SOJ (400 mil)	None C DJ
•	Two Volt Data Retention	L

MARKING

GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

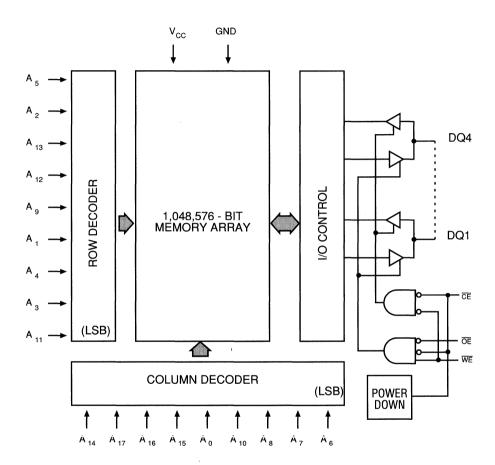
For flexibility in high speed memory applications, Micron offers chip enable (CE) capability. This enhancement can place the outputs in a high impedance state for additional flexibility in system design.

Writing to this device is accomplished when write enable (WE) and CE inputs are both LOW. Reading is accomplished when WE remains HIGH while output enable (OE) and CE go LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)

28L/400 DIP (A-10)


A7 [1●	28	Vcc
A8 [2	27	P A6
A9 [3	26	A5
A10	4	25	A4
A11 [5	24	P A3
A12	6	23	A2
A13 [7	22	A1
A14 [8	21	P A0
A15 [9	20	NC
A16	10	19	DQ4
A17	11	18	DQ3
CE	12	17	DQ2
OE [13	16	DQ1
Vss [14	15	WF

28L/400 SOJ (E-9)

A 7 [1	28	Ъ.	Vcc
A8 [2	27	Ъ.	A6
A9 [3	26	þ.	Α5
A10 [4	25	þ.	Α4
A11 [5	24	þ.	АЗ
A12 [6	23	þ.	A 2
A13 [7	22	þ.	A 1
A14 [8	21	þ.	Α0
A15 [9	20	þ	NC
A16 [10	19	þ	DQ4
A17 [11	18	þ	DQ3
CE [12	17	þ	DQ2
OE [13	16	þ	DQ1
Vss [14	15	þ ^¹	WE
		 	_	

FUNCTIONAL BLOCK DIAGRAM

NOTE: The two least significant row address bits (A11 and A3) are encoded using a gray code.

TRUTH TABLE

MODE	ŌĒ	CE	WE	DQ	POWER
STANDBY	Х	Н	Х	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
READ	Н	L	Н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vs	s1.0V to +7.0V
Storage Temperature (Ceramic)	65°C to +150°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		ViH	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	ILı	-5	5	μА	
Output Leakage Current	Output(s) Disabled, $0V \le V_{OUT} \le V_{CC}$	ILo	-5	5	μА	
Output High Voltage	Iон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Power Supply Current: Operating	CE ≤ V _{IL} ; V _{CC} = MAX f = MAX = 1/ ^t RC, Outputs Open	lcc		120	mA	3
Power Supply Current: Standby	TE ≥ VIH; Vcc = MAX f = MAX = 1/ ¹RC, Outputs Open	ISB1		30	mA	
	\overline{\overline{CE}} \ge \text{Vcc} -0.2V; \text{Vcc} = MAX \\ \text{ViL} \leq \text{Vss} +0.2V; \\ \text{ViH} \ge \text{Vcc} -0.2V; \text{f} = 0	ISB2		7	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cı		8	pF	4
Output Capacitance	Vcc = 5V	Со		8	рF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

DESCRIPTION		-25		-35		-45			
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle									
READ cycle time	^t RC	25		35		45		ns	
Address access time	^t AA		25		35		45	ns	
Chip Enable access time	^t ACE		25		35		45	ns	
Output hold from address change	[‡] OH	5		5		5		ns	
Chip Enable to output in Low-Z	^t LZCE	5		5		5		ns	
Chip Disable to output in High-Z	tHZCE		10		15		18	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		ns	
Chip Disable to power-down time	^t PD		25		35		45	ns	
Output Enable access time	^t AOE		8		12		15	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		ns	
Output Disable to output in High-Z	tHZOE		10		12		15	ns	6
WRITE Cycle									
WRITE cycle time	tWC	25		35		45		ns	
Chip Enable to end of write	tCM	15		20		25		ns	
Address valid to end of write	^t AW	15		20		25		ns	
Address setup time	^t AS	0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		ns	
Write pulse width	tWP	15		20		25		ns	
Data setup time	^t DS	10		15		20		ns	
Data hold time	^t DH	0		0		0		ns	
Write Disable to output in Low-Z	tLZWE	0		0		0		ns	
Write Enable to output in High-Z	tHZWE	0	10	0	15	0	18	ns	6, 7

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference levels .	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

Q 480 255 30 pF

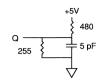
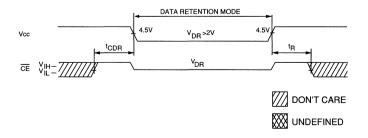


Fig. 1 OUTPUT LOAD EQUIVALENT

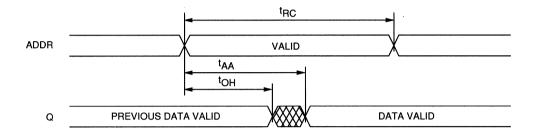
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

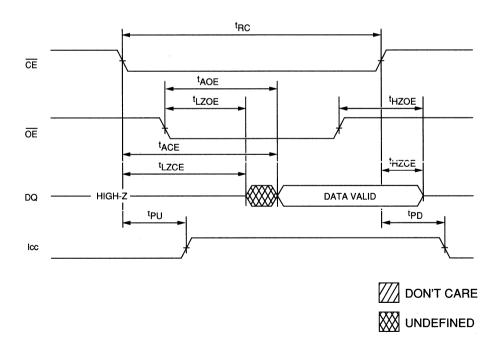

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE, tHZOE and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- 7. At any given temperature and voltage condition, 'HZCE is less than 'LZCE and 'HZWE is less than 'LZWE.

- 8. WE is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables and output enable held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. tRC = Read Cycle Time.
- 12. Chip enable (CE) and write enable (WE) can initiate and terminate a WRITE cycle.
- 13. For automotive, industrial and extended temperature specifications refer to page 4-171.

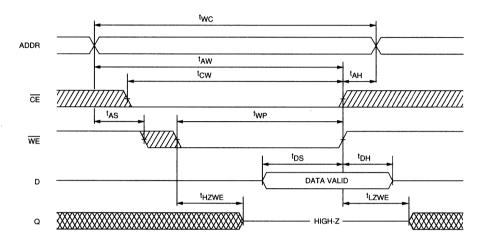
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)


DESCRIPTION	CONDITIONS	3	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2			٧	
Data Retention Current	VIN ≥ (Vcc -0.2V)	Vcc = 2v	ICCDR		95	500	μА	
		Vcc = 3v			350	750	μА	
Chip Deselect to Data								
Retention Time			^t CDR	0		_	ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11

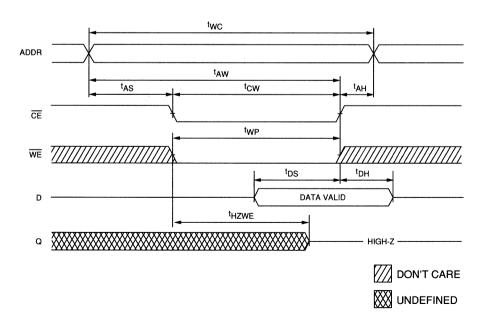
LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. 18,9



READ CYCLE NO. 2 7, 8, 10



WRITE CYCLE NO. 1 (Write Enable Controlled) 12

WRITE CYCLE NO. 2

(Chip Enable Controlled) 12

24L/300 SOJ

(E-4)

SRAM

2K x 8 SRAM

24L/300DIP

(A-7, B-7)

FEATURES

ODTTONIO

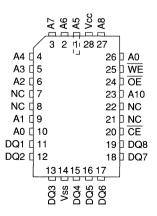
- High speed: 12, 15, 20, 25, 30 and 35ns
- High-performance, low-power, CMOS double metal process
- Single +5V (±10%) power supply
- Easy memory expansion with CE and OE options
- · All inputs and outputs are TTL compatible

OPTIONS	MARKING
Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
30ns access	-30
35ns access	-35
Packages	
Plastic DIP (300 mil)	None
Ceramic DIP (300 mil)	C
Plastic SOJ (300 mil)	DJ
Ceramic LCC (28 pin)	EC
Two Volt Data Retention	L

GENERAL DESCRIPTION

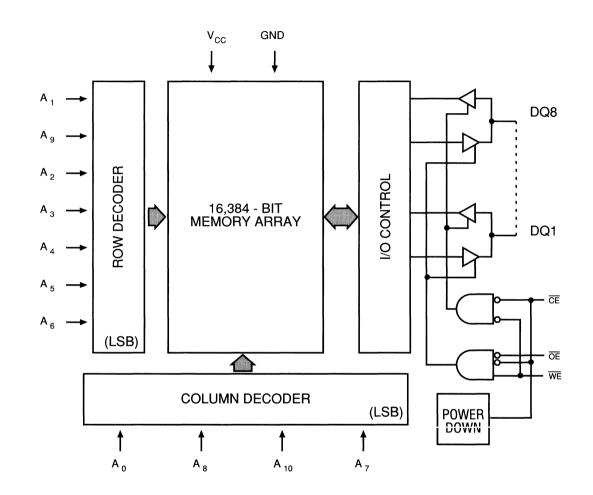
The Micron SRAM family employs high-speed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers chip enable (CE) on all organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design.


Writing to these devices is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)


A7 1 1 •	24 Vcc	A7 [1 •	24] Vcc
A6 □2	23 🛚 A8	A6 □ 2 A5 □ 3	23 🛭 A8 22 🗓 A9
A5 ☐3	22 A9	A4 4	21 WE
A4 🛚 4	21 WE	A3 🛚 5	20 DE
A3 5		A2 [] 6	19 P A10
	20 OE	A1 🛭 7	18 🛭 CE
A2 ☐6	19□A10	A0 🛮 8	17 🛭 DQ8
A1 🛮 7	18 CE	DQ1 🛮 9	16 🛭 DQ7
A14/	10FCE	DQ2 🛭 10	15 🏻 DQ6
A0 □8	17 DQ8	DQ3 🛭 11	14 🏻 DQ5
DQ1 49	16 DQ7	Vss [12	13 DQ4
DQ2 410	15 DQ6		
DQ3 🛚 11	14 DQ5		
Vss [12	13 DQ4		

28L/LCC (F-4)

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	OE	CE	WE	DQ	POWER
STANDBY	Х	Н	Х	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
READ	Н	L	Н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V to +7.0	V
Storage Temperature (Ceramic)65°C to +150°	
Storage Temperature (Plastic)55°C to +150°	C
Power Dissipation1V	
Short Circuit Output Current50m	A

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{\Delta} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Vıн	2.2	Vcc +1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	0V ≤ Vin ≤ Vcc	<u> </u> ILi	-5	5	μΑ	
Output Leakage Current	Output(s) Disabled, 0V ≤ Vouт ≤ Vcc	ILo	-5	5	μА	
Output High Voltage	Iон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	loL = 8.0mA	Vol		0.4	V	1

			MAX							
DESCRIPTION	CONDITIONS	SYMBOL	-12	-15	-20	-25	-30	-35	UNITS	NOTES
Power Supply	CE ≤ VIL; Vcc = MAX									
Current: Operating	$f = MAX = 1/{}^{t}RC,$	Icc	140	125	110	100	100	100	mA	3
	Outputs Open									
Power Supply	CE ≥ VIH; Vcc = MAX									
Current: Standby	$f = MAX = 1/{}^{t}RC,$	Is _B 1	50	45	40	30	30	30	mA	
	Outputs Open									
	CE ≥ Vcc -0.2V; Vcc = MAX									
	VIL ≤ Vss +0.2V;	ISB2	3	3	3	3	3	3	mA	
	V _{IH} ≥ V _{CC} -0.2V; f = 0									

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	ō		7	pF	4
Output Capacitance	Vcc = 5V	Co		7	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

DECODIDATION			12	-1	5	-2	20	-2	25	-3	80	-3	35		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	мах	MIN	MAX	UNITS	NOTES
READ Cycle															
READ cycle time	^t RC	12		15		20		25		30		35		ns	
Address access time	^t AA		12		15		20		25		30		35	ns	
Chip Enable access time	^t ACE		11		12		15		20		25		30	ns	
Output hold from address change	tОН	3		3		3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		5		5		5		5		ns	
Chip Disable to output in High-Z	†HZCE		7		7		10		10		15		20	ns	6, 7
Chip Enable to power-up time	[‡] PU	0		0		0		0		0		0		ns	
Chip Disable to power-down time	^t PD		12		15		20		25		30		35	ns	
Output Enable access time	^t AOE		7		7		9		10		15		20	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		0		0		ns	
Output Disable to output in High-Z	^t HZOE		6		6		10		10		15		20	ns	6
WRITE Cycle															
WRITE cycle time	tWC	12		15		20		25		30		35		ns	
Chip Enable to end of write	tCM	10		12		15		20		25		25		ns	
Address valid to end of write	^t AW	12		12		15	İ	20		25		25		ns	
Address setup time	^t AS	0		0		0		0		0		0		ns	
Address hold from end of write	^τ ΑΗ	0		0		0		0		0		0		ns	
Write pulse width	tWP	10		12		15		20		25		25		ns	
Data setup time	^t DS	7		8		10		10		15		15		ns	
Data hold time	^t DH	0		0		0		0		0		0		ns	
Write Disable to output in Low-Z	^t LZWE	2		2 .		2		2		2		2		ns	
Write Enable to output in High-Z	^t HZWE		6		6		8		10		12		15	ns	6

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

Q +5V 480 255 30 pF

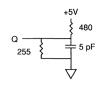
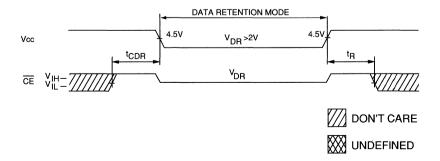


Fig. 1 OUTPUT LOAD EQUIVALENT

Fig. 2 OUTPUT LOAD EQUIVALENT

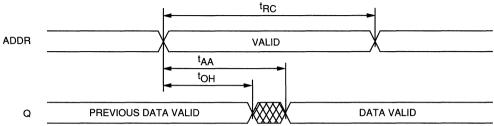
NOTES

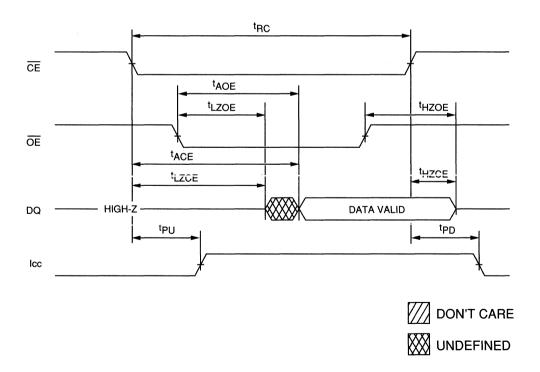

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- ^tHZCE, ^tHZWE and ^tHZOE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE.

- 8. WE is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable (CE) and write enable (WE) can initiate and terminate a WRITE cycle.
- 13. For automotive, industrial and extended temperature specifications refer to page 4-165.

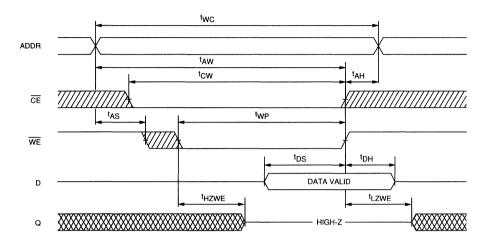
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

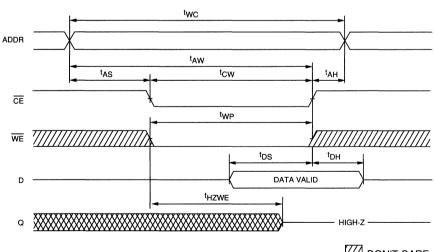
DESCRIPTION	CONDITIONS		SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			V DR	2		_	V	
Data Retention Current	<u>CE</u> ≥ (Vcc -0.2V) V _{IN} ≥ (Vcc -0.2V)	Vcc = 2v	ICCDR		95	250	μΑ	
	$or \le 0.2V$	Vcc = 3v			300	400	μ A	
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11


LOW Vcc DATA RETENTION WAVEFORM


FAST SRAM

READ CYCLE NO. 1 8, 9


READ CYCLE NO. 2 7, 8, 10


WRITE CYCLE NO. 1

(Write Enable Controlled) 7, 12

WRITE CYCLE NO. 2

(Chip Enable Controlled) 12

DON'T CARE

₩ UNDEFINED

28L/300 SQJ

SRAM

8K x 8 SRAM

28L/300 DIP

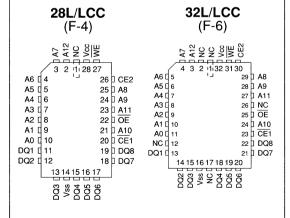
FEATURES

- High speed: 12, 15, 20, 25, 30 and 35ns
- High-performance, low-power, CMOS double metal process
- Single +5V ($\pm 10\%$) power supply
- Easy memory expansion with $\overline{CE1}$, CE2 and \overline{OE} options
- All inputs and outputs are TTL compatible

OPTIONS	MARKING
Timing	
12ns access	-12
15ns access	-15
20ns access	-20
25ns access	-25
30ns access	-30
35ns access	-35
Packages	
Plastic DIP (300 mil)	None
Ceramic DIP (300 mil)	С
Plastic SOJ (300 mil)	DJ
Ceramic LCC (28 pin)	EC
Ceramic LCC (32 pin)	ECW
Two Volt Data Retention	L

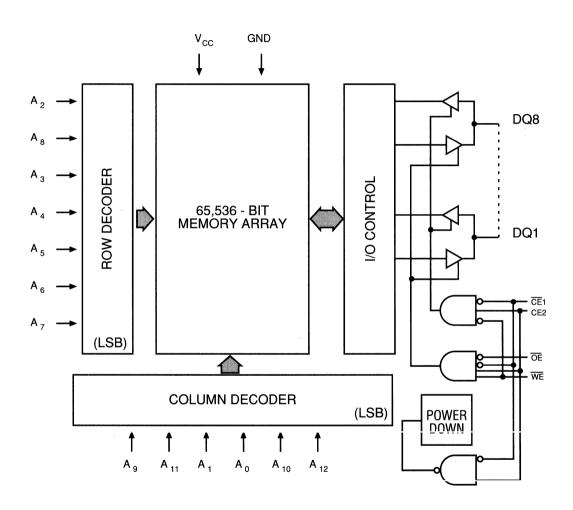
GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.


For flexibility in high speed memory applications, Micron offers two chip enables on the x8 organizations. This enhancement can place the outputs in a high impedance state for additional flexibility in system design.

Writing to these devices is accomplished when write enable (WE) and CE inputs are both LOW. Reading is accomplished when WE remains HIGH and CE goes to LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible.


PIN ASSIGNMENT (Top View)

	9, B-9		20	(E-8	3)
NC 1 A12 2 A7 3 A6 4 A5 5 A4 6 A3 7 A2 8 A1 9 A0 1 DQ1 1 DQ2 1 DQ2 1 Vss 1	27 26 25 24 23 22 21 20 0 19 1 18 2 17 3 16	Vcc WE CE2 A8 A9 A11 OE A10 CE1 DQ8 DQ7 DQ6 DQ5	NC d A12 d A6 d A5 d A4 d A3 d A2 d A0 d DQ1 d DQ2 d DQ3 d Vss d	1 2 3 4 5 6 7 8 9 10 11 12 13 14	28 J Vcc 27 J WE 26 J CE2 25 J A8 24 J A9 23 J A11 22 J OE 21 J A10 20 J CE1 19 J DQ8 18 J DQ7 17 J DQ6 16 J DQ5 15 J DQ4

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	CE1	CE2	WE	ŌĒ	DQ OPERATION	POWER
STANDBY	Н	Х	Х	Х	HIGH-Z	STANDBY
STANDBY	Х	L	Х	Х	HIGH-Z	STANDBY
READ	L	Н	Н	L	Q	ACTIVE
READ	L	Н	Н	Н	HIGH-Z	ACTIVE
WRITE	L	Н	L	Х	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Storage Temperature (Ceramic)	65°C to +150°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{\mbox{\scriptsize A}} \leq 70^{\circ}C; \mbox{\em Vcc} = 5.0 \mbox{\em V} \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		VIH	2.2	Vcc +1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	0V ≤ VIN ≤ VCC	ILı	-5	5	μА	
Output Leakage Current	Output(s) Disabled, 0V ≤ Vouт ≤ Vcc	ILo	-5	5	μА	
Output High Voltage	Iон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	loL = 8.0mA	Vol		0.4	V	1

				MAX						
DESCRIPTION	CONDITIONS	SYMBOL	-12	-15	-20	-25	-30	-35	UNITS	NOTES
Power Supply	CE ≤ VIL; VCC = MAX									
Current: Operating	$f = MAX = 1/{}^{t}RC,$	Icc	140	130	120	110	100	100	mA	3
	Outputs Open									
Power Supply	CE ≥ VIH; VCC = MAX									
Current: Standby	$f = MAX = 1/{}^{t}RC,$	Is _B 1	60	50	40	30	30	30	mA	
	Outputs Open									
	CE ≥ Vcc -0.2V; Vcc = MAX									
	$V_{IL} \leq V_{SS} + 0.2V$;	IsB2	5	5	5	5	5	5	mA	
	$V_{IH} \ge V_{CC} - 0.2V; f = 0$				1	l				

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cı		7	pF	4
Output Capacitance	Vcc = 5V	Со		7	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5, 13) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

DECORIDATION		-12		-1	-15		-20		!5	-3	0	-3	35		
DESCRIPTION	SYM	MIN	MAX	MIN	МАХ	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle				Unique en esta en en	L									1	1
READ cycle time	†RC	12		15		20		25		30		35		ns	
Address access time	^t AA		12		15		20		25		30		35	ns	
Chip Enable access time	^t ACE		12		12		15		20		25		30	ns	
Output hold from address change	tOH	3		3		3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		5		5		5		5		ns	
Chip Disable to output in High-Z	^t HZCE		7		7		10		10		15		20	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		0		0		ns	
Chip Disable to power-down time	tPD		12		15		20		25		30		35	ns	
Output Enable access time	^t AOE		7		7		9		10		15		20	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		0		0		ns	
Output Disable to output in High-Z	†HZOE		6		6		10		10		15		20	ns	6
WRITE Cycle			•	•											
WRITE cycle time	ţMC	12		15		20		25		30		35		ns	
Chip Enable to end of write	tCM	10		12		15		20		25		25		ns	
Address valid to end of write	^t AW	12		12		15		20		25		25		ns	
Address setup time	tAS	0		0		0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		0		0		ns	
Write pulse width	tWP	10		12		15		20		25		25		ns	
Data setup time	^t DS	8		8		10		10		15		15		ns	
Data hold time	tDH	0		0		0		0		0		0		ns	
Write Disable to output in Low-Z	^t LZWE	2		2		2		2		2		2		ns	
Write Enable to output in High-Z	tHZWE		6		6		8		10		12		15	ns	6

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

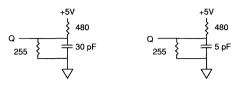
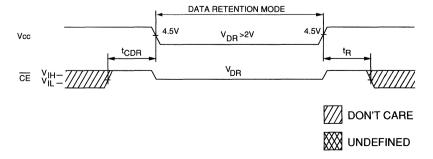


Fig. 1 OUTPUT LOAD EQUIVALENT

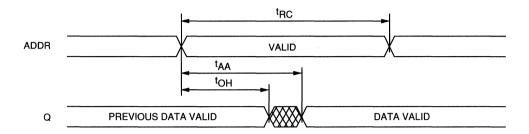
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES


- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE, tHZWE and tHZOE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- 7. At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE.

- 8. WE is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. Chip enable (CE) and write enable (WE) can initiate and terminate a WRITE cycle.
- 13. For automotive, industrial and extended temperature specifications refer to page 4-167.

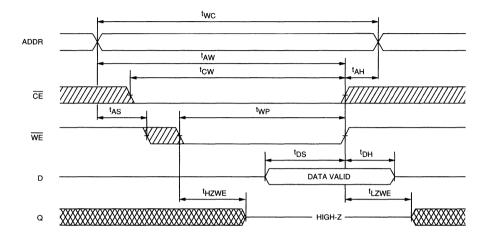
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)


DESCRIPTION	CONDITIONS	3	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			Vdr	2		_	V	
Data Retention Current	<u>CE</u> ≥ (Vcc -0.2V) V _{IN} ≥ (Vcc -0.2V)	Vcc = 2v	ICCDR		95	250	μΑ	
	or ≤ 0.2V	Vcc = 3v			300	400	μА	
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11

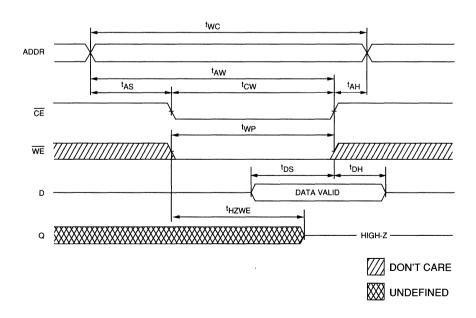
LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. 1 8, 9



READ CYCLE NO. 2 7, 8, 10



WRITE CYCLE NO. 1 (Write Enable Controlled) 7, 12

WRITE CYCLE NO. 2 (Chip Enable Controlled) 12

SRAM

32K x 8 SRAM

FEATURES

- High speed: 20, 25, 30, 35, and 45ns
- High-performance, low-power, CMOS double metal process
- Single +5V (±10%) power supply
- Easy memory expansion with CE and OE options
- All inputs and outputs are TTL compatible

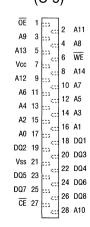
OPTIONS • Timing	MARKING
20ns access	-20
25ns access	-25
30ns access	-30
35ns access	-35
45ns access	-45
Packages	
Plastic DIP (300 mil)	None
Plastic DIP (600 mil)	W
Ceramic DIP (300 mil)	С
Ceramic DIP (600 mil)	CW
Plastic SOJ (300 mil)	DJ
Ceramic LCC (28 pin)	EC
Ceramic LCC (32 pin)	ECW
• Two Volt Data Retention	L
• Temperature	r.
Industrial (- 40° C to + 85° C)	IT

GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

For flexibility in high speed memory applications, Micron offers chip enable (\overline{OE}) and output enable (\overline{OE}) on this organization. These enhancements can place the outputs in a high impedance state for additional flexibility in system design.

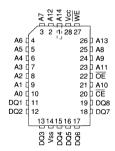
Writing to these devices is accomplished when write enable (\overline{WE}) and \overline{CE} inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} and \overline{OE} go LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

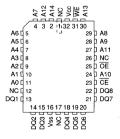

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)

(A-9, A	\-11 ,	B-9, B-1
A14 A12 A7 A6 A5 A4 A3 A2	1 2 3 4 5 6 7	B-9, B-1 ⁻² 28 Vcc 27 WE 26 A13 25 A8 24 A9 23 A11 22 OE 21 A10
	4 8 4 9	21 A10 20 CE
	10	19 DQ8
DQ1	11	18 DQ7
DQ2	12	17 DQ6
DQ3	13	16 DQ5
Vss	14	15 DQ4

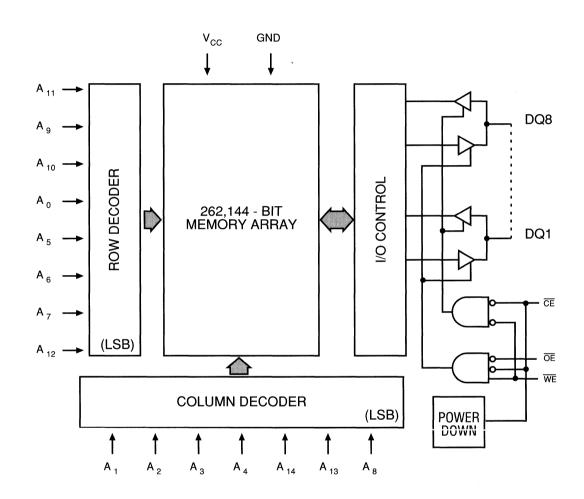
28L/300/600 DIP


28L ZIP (C-5)


28L/300 SOJ (E-8)

A14 [1	28	Vcc
A12 [2	27	WE
A7 [3	26	A13
A 6 E	4	25	1 A8
A5 [5	24	A9
A4 [6	23	A11
A3 [7	22) OE
A2 [8	21	A10
A1 [9	20	CE
A0 [10	19	DQ8
DQ1	11	18	DQ7
DQ2	12	17	DQ6
DQ3 E	13	16	DQ5
Vss [14	15	DQ4
			,

28L/LCC (F-4)



32L/LCC (F-6)

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	ŌĒ	CE	WE	DQ	POWER
STANDBY	Х	Н	Х	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
READ	Н	L	Н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC supply relative to Vss	1.0V to +7.0V
Storage Temperature (Ceramic)	65°C to +150°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage	A CONTRACTOR OF THE CONTRACTOR	ViH	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V$ IN $\le V$ CC	ILı	-5	5	μΑ	
Output Leakage Current	Output(s) Disabled, $0V \le V_{OUT} \le V_{CC}$	ILo	-5	5	μΑ	
Output High Voltage	Iон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	loL = 8.0mA	Vol		0.4	V	1

DESCRIPTION	CONDITIONS	SYMBOL	-20	-25	-30	-35	-40	UNITS	NOTES
Power Supply Current: Operating	CE ≤ VIL; Vcc = MAX f = MAX = 1/ tRC, Outputs Open	lcc	105	95	95	90	90	mA	3
Power Supply Current: Standby	CE ≥ ViH; Vcc = MAX f = MAX = 1/ tRC, Outputs Open	Isb1	30	25	25	25	25	mA	
	$\overline{\text{CE}} \ge \text{Vcc -0.2V; Vcc} = \text{MAX}$ $\text{V}_{\text{IL}} \le \text{Vss +0.2V;}$ $\text{V}_{\text{IH}} \ge \text{Vcc -0.2V; f = 0}$	ISB2	5	5	5	7	7	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	$T_A = 25^{\circ}C$; $f = 1MHz$	Cī		7	pF	4
Output Capacitance	Vcc = 5V	Co		5	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Note 5, 13) (0°C \leq T $_{\Delta}$ \leq 70°C; Vcc = 5V \pm 10%)

DESCRIPTION		-2	20	-2	25	-30		-35		-45			
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle													
READ cycle time	^t RC	20		25		30		35		45		ns	
Address access time	^t AA		20		25		30		35		45	ns	
Chip Enable access time	†ACE		20		25		30		35		45	ns	
Output hold from address change	[†] OH	3		5		5		5		5		ns	
Chip Enable to output in Low-Z	^t LZCE	6		6		6		6		6		ns	
Chip Disable to output in High-Z	[†] HZCE		9		9		12		15		18	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		0		ns	
Chip Disable to power-down time	^t PD		20		25		30		35		45	ns	
Output Enable access time	^t AOE		8		8		10		12		15	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		0		ns	
Output Disable to output in High-Z	^t HZOE		7		7		10		12		15	ns	
WRITE Cycle													
WRITE cycle time	tWC	20		20		25		30		35		ns	
Chip Enable to end of write	tCM	15		15		18		20		25		ns	
Address valid to end of write	^t AW	15		15		18		20		25		ns	
Address setup time	^t AS	0		0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		0		ns	
Write pulse width	tWP	15		15		18		20		25		ns	
Data setup time	^t DS	10		10		12		15		20		ns	
Data hold time	^t DH	0		0		0		0		0		ns	
Write Disable to output in Low-Z	^t LZWE	5		5		5		5		5		ns	
Write Enable to output in High-Z	^t HZWE		10		10		12		15		18	ns	6

AC TEST CONDITIONS

Γ	Input pulse levels	Vss to 3.0V
	Input rise and fall times	5ns
	Input timing reference levels	1.5V
	Output reference levels	1.5V
	Output load	See Figures 1 and 2

0 480 255 30 pF

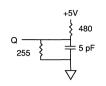
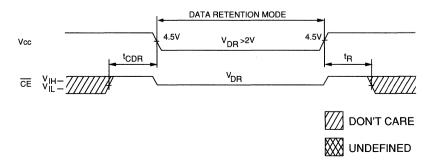


Fig. 1 OUTPUT LOAD EQUIVALENT

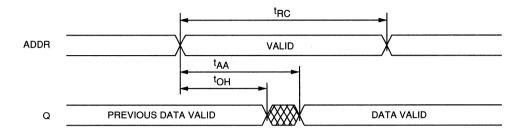
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

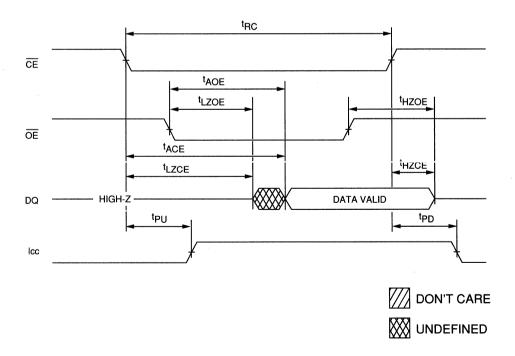

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE, tHZOE and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- 7. At any given temperature and voltage condition, †HZCE is less than †LZCE.

- 8. WE is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. tRC = Read Cycle Time.
- 12. Chip enable ($\overline{\text{CE}}$) and write enable ($\overline{\text{WE}}$) can initiate and terminate a WRITE cycle.
- 13. For automotive, industrial and extended temperature specifications refer to page 4-169.

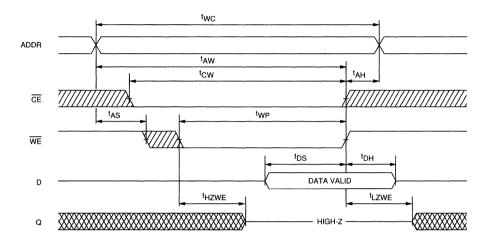
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)


DESCRIPTION	CONDITIONS		SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			Vdr	2			٧	
Data Retention Current	ata Retention Current	Vcc = 2v	ICCDR		95	300	μΑ	
		Vcc = 3v	1		350	400	μΑ	
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11

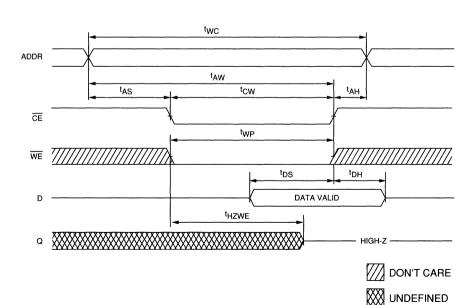
LOW Vcc DATA RETENTION WAVEFORM



READ CYCLE NO. 18,9



READ CYCLE NO. 2 7, 8, 10



WRITE CYCLE NO. 1 (Write Enable Controlled) 7, 12

WRITE CYCLE NO. 2 (Chip Enable Controlled) 12

32L/400 SOJ

(F-11)

SRAM

128K x 8 SRAM

WITH OUTPUT ENABLE

32L/400/600 DIP

(A-12, A-13,

Vss [16 17 DQ4

FEATURES

- High speed: 25, 35, and 45ns
- High-performance, low-power, CMOS double metal process
- Single +5V (±10%) power supply
- Easy memory expansion with CE1, CE2 and OE options
- All inputs and outputs are TTL compatible
- Fast Output Enable access time: 8ns

OPTIONS	MARKIN
Timing	
25ns access	-25
35ns access	-35
45ns access	-45
• Packages	
Plastic DIP (400 mil)	None
Plastic DIP (600 mil)	W
Ceramic DIP (400 mil)	C
Ceramic DIP (600 mil)	CW
Plastic SOJ (400 mil)	DJ
Ceramic LCC (32 pin)	EC
Two Volt Data Retention	L

GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

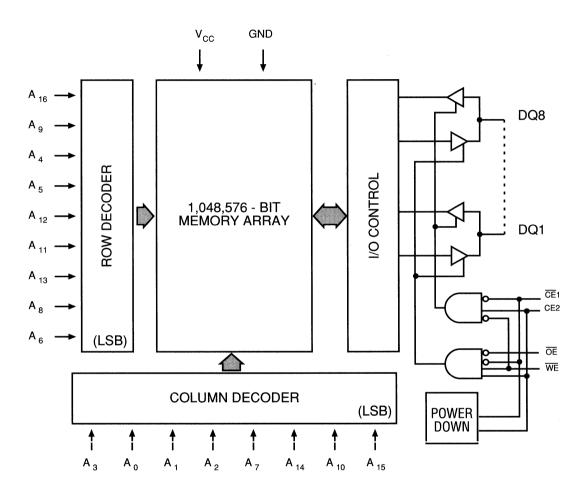
For flexibility in high speed memory applications, Micron offers dual chip enables (CE1, CE2). This enhancement can place the outputs in a high impedance state for additional flexibility in system design.

Writing to these devices is accomplished when write enable (\overline{WE}) and $\overline{CE1}$ inputs are both LOW and CE2 is HIGH. Reading is accomplished when \overline{WE} and CE2 remain HIGH and $\overline{CE1}$ goes LOW. The device offers a reduced power standby mode when disabled. This allows system designs to achieve low standby power requirements.

All devices operate from a single +5V power supply and all inputs and outputs are fully TTL compatible.

PIN ASSIGNMENT (Top View)

	, B-13)	(_	11)
NC 1	32	NC	32) Vcc 31) A15 30) CE2 / NC* 29) WE 28) A13 27) A8 26) A9 25) A11 24) OE 23) A10 22) CE1 21) DQ8 22) DQ7 19) DQ6 18) DQ5 17) DQ4
DQ0 [1 15	IN II DQS		


32L/LCC (F-8)

NC	į::::	3.1	32 ET Vcc
A16	223	2	31 EE A15
A14	223	3	30 [] CE2/NC*
A12	223	4	29 [] WE
A7	\$23	5	28 EIG A13
A6	523	6	27 [] A8
A5	523	7	26 [] A9
A4	223	8	25 EI A11
A3	\$23	9	24 EI OE
A2	200	10	23 EI A10
A1	223	11	22 [] CE1
A0	223	12	21 [] DQ8
DQ1	\$23	13	20 EE DQ7
DQ2	<u>\$</u> 23	14	19 EIG DQ6
DQ3	ķ::3	15	18 EEG DQ5
Vss	ķΞ3	16	17 [] DQ4

*Contact factory for no-connect (NC) option on pin 30

FUNCTIONAL BLOCK DIAGRAM

NOTE: The two least significant row address bits (A8 and A6) are encoded using a gray code.

TRUTH TABLE

MODE	ŌĒ	CE1	CE2	WE	DQ	POWER
STANDBY	Х	Ι	X	Х	HIGH-Z	STANDBY
STANDBY	Х	Х	L	Х	HIGH-Z	STANDBY
READ	L	L	Н	Н	Q	ACTIVE
READ	Н	L	Н	Н	HIGH-Z	ACTIVE
WRITE	Х	L	Н	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss.	1.0V to +7.0V
Storage Temperature (Ceramic)	65°C to +150°C
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{A} \leq 70^{\circ}C; \ Vcc = 5.0V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		ViH	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage	VIL	-0.5	0.8	V	1, 2	
Input Leakage Current	0V ≤ VIN ≤ VCC	ILı	-5	5	μΑ	
Output Leakage Current	Output(s) Disabled, 0V ≤ Vouт ≤ Vcc		-5	5	μА	
Output High Voltage	Iон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Power Supply Current: Operating	CE ≤ V _{IL} ; V _{CC} = MAX f = MAX = 1/ ^t RC, Outputs Open	lcc		120	mA	3
Power Supply Current: Standby	TE ≥ VIH; VCC = MAX f = MAX = 1/ tRC, Outputs Open	ISB1		30	mA	
	$\overline{\text{CE}} \ge \text{Vcc} - 0.2\text{V}; \text{ Vcc} = \text{MAX}$ $\text{Vil} \le \text{Vss} + 0.2\text{V};$ $\text{Vih} \ge \text{Vcc} - 0.2\text{V}; \text{f} = 0$	IsB2		7	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cı		8	pF	4
Output Capacitance	Vcc = 5V	Со		8	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Note 5, 14) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

DESCRIPTION		-2	25	-35		-45			
		MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle									
READ cycle time	^t RC	25		35		45		ns	
Address access time	^t AA		25		35		45	ns	
Chip Enable access time	†ACE	.,	25		35		45	ns	
Output hold from address change	tOH	5		5		5		ns	
Chip Enable to output in Low-Z	^t LZCE	5		5		5		ns	
Chip Disable to output in High-Z	tHZCE		10		15		18	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		ns	
Chip Disable to power-down time	^t PD		25		35		45	ns	
Output Enable access time	^t AOE		8		12		15	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		ns	
Output Disable to output in High-Z	^t HZOE		10		12		15	ns	6
WRITE Cycle	-		r						
WRITE cycle time	tWC	25		35		45		ns	
Chip Enable to end of write	tCW	15		20		25		ns	
Address valid to end of write	t _{AW}	15		20		25		ns	
Address setup time	^t AS	0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		ns	
Write pulse width	tWP	15		20		25		ns	
Data setup time	^t DS	10		15		20		ns	
Data hold time	^t DH	0		0		0		ns	
Write Disable to output in Low-Z	^t LZWE	0		0		0		ns	
Write Enable to output in High-Z	tHZWE	0	10	0	15	0	18	ns	6

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

480 255 480 255 70 pF

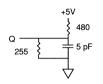
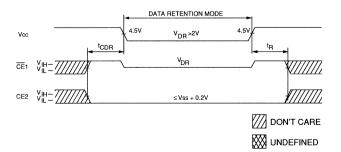


Fig. 1 OUTPUT LOAD EQUIVALENT

Fig. 2 OUTPUT LOAD EQUIVALENT

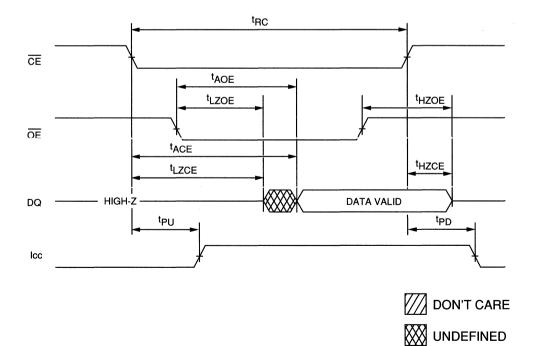
NOTES


- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE, tHZOE and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, and ^tHZWE is less than ^tLZWE.

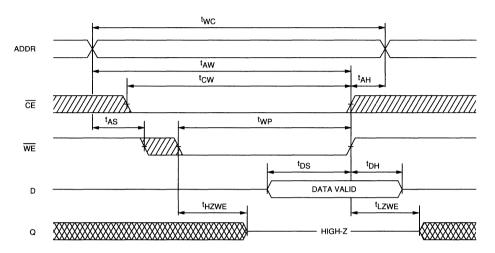
- 8. WE is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables and output enable held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. ^tRC = Read Cycle Time.
- 12. CE2 timing is the same as $\overline{\text{CE}}1$ timing. The wave form is inverted.
- 13. Chip enable (CE1, CE2) and write enable (WE) can initiate and terminate a WRITE cycle.
- 14. For automotive, industrial and extended temperature specifications refer to page 4-171.

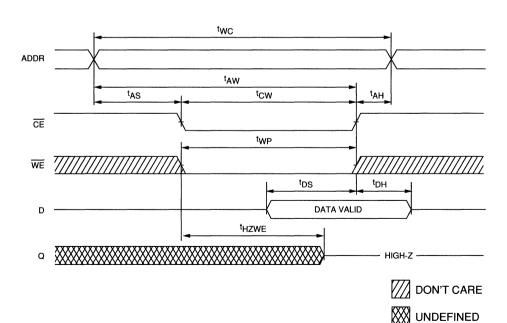
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

DESCRIPTION	CONDITIONS		SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2			V	
Data Retention Current	$\overline{\text{CE1}} \ge (\text{Vcc -0.2V})$ or $\text{CE2} \le (\text{Vss +0.2V})$	Vcc = 2v	ICCDR		95	500	μΑ	
	$Vin \ge (Vcc -0.2V)$ or $\le 0.2V$	Vcc = 3v			350	750	μΑ	
Chip Deselect to Data								
Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 11


LOW Vcc DATA RETENTION WAVEFORM

READ CYCLE NO. 18,9


READ CYCLE NO. 2 ^{7, 8, 10, 12}


WRITE CYCLE NO. 1

(Write Enable Controlled) 7, 12, 13

WRITE CYCLE NO. 2

(Chip Enable Controlled) 12, 13

SRAM

16K x 16 SRAM

WITH ADDRESS / DATA INPUT LATCHES

PIN ASSIGNMENT (Top View)

FEATURES

- Fast access times: 15, 17, 20 and 25ns
- Fast output enable: 6, 8 and 10ns
- Single +5V ($\pm 10\%$) power supply
- Separate, electrically isolated output buffer power supply and ground (VccQ, VssQ)
- Optional +3.3V (±10%) output buffer operation
- Separate Data Input Latch
- Common Data Inputs and Data Outputs
- BYTE WRITE capability via Dual Write Strobes
- Address and Chip Enable input latches

OPTIONS	MARKING
Timing	
15ns access	-15
17ns access	-17
20ns access	-20
25ns access	-25
• Packages	
52-pin PLCC	EJ
52-pin PQFP	LG
• Density	
16K x 16	MT5C2516

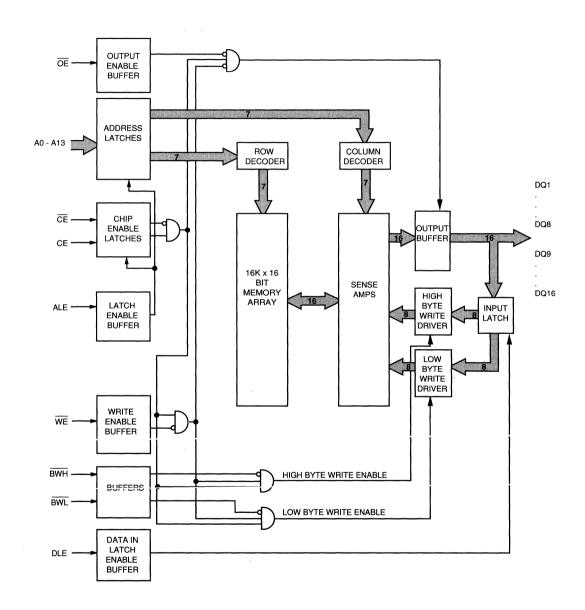
52-Pin PLCC (D-3) 52-Pin PQFP (D-5) A11 A11 WE BWL Vsc Vss Vss A12 A13 CE 7 6 5 4 2 2 5 5 5 1 5 0 40 40 47 7 6 5 4 3 2 52 51 50 49 48 47 DQ9 d 8 DQ10 🗆 9 45 DQ8 VccQ ☐ 10 44 b DQ7 VssQ 🗆 11 43 VccQ DQ11 🛘 12 42 VssQ DQ12 🗖 13 41 DQ6 DQ13 🗖 14 40 DQ5 DQ14 | 15 VssQ | 16 VccQ | 17 39 DQ4 38 DQ3 37 VssQ DQ15 I 18 DQ16 I 19 36 ☐ VccQ 35 D DQ2 NC 🗗 20 34 DQ1 21 22 23 24 25 26 27 28 29 30 31 32 33

GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, lowpower CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

The MT5C2516 SRAM integrates a 16K x 16 SRAM core with advanced peripheral circuitry consisting of address and data input latches, latched active HIGH and active LOW chip enables, separate upper and lower byte write strobes and a fast output enable. The device is ideally suited for "pipelined" systems and systems that benefit from a wide data bus.

Address and chip enable latches are provided. When address latch enable (ALE) is HIGH, the address and chip enable latches are transparent, allowing the input to flow through the latch. If ALE is LOW, the address and chip enable latch inputs are disabled. This input latch simplifies READ and WRITE cycles by guaranteeing address hold time in a simple fashion.


Dual write strobes (BWL and BWH) allow individual bytes to be written. BWL controls DQ1-DQ8 the lower bits. While BWH controls DQ9-DQ16 the upper bits.

A data input latch is provided. When data latch enable (DLE) is HIGH, the data latches are in the transparent mode and input data flows through the latch. When DLE is LOW, the data latch inputs are disabled. The data input latch simplifies WRITE cycles by guaranteeing data hold times.

The MT5C2516 operates from a +5V power supply. Separate and electrically isolated output buffer power (VccQ) and ground (VssQ) pins are provided to allow either +3.3V or +5V TTL operation of the output drivers.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

PLCC and PQFP PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
33, 32, 31, 30, 29, 26, 25, 24, 23, 22, 7, 6, 49, 48	A0-A13	Input	Address Inputs: These inputs are either latched or unlatched depending on the state of ALE.
52	WE	Input	Write Enable: This input determines if the cycle is a READ or WRITE cycle. WE is LOW for a WRITE cycle and HIGH for a READ cycle
51	ALE	Input	Address Latch Enable: This signal latches the address, CE, and CE inputs on its falling edge. When ALE is HIGH, the latch is transparent.
3, 4	BWL, BWH	Input	Byte Write Enables: These active LOW inputs allow individual bytes to be written. When \overline{BWL} is LOW, data is written to the lower byte, D1-D8. When \overline{BWH} is LOW, data is written to the upper byte, D9-D16. When both \overline{BWH} and \overline{BWL} are HIGH and meet the required setup time to the falling edge of \overline{WE} , then the WRITE cycle is aborted.
5, 47	CE,CE	Input	Chip Enables: These signals are used to enable the device. Both active HIGH (CE) and active LOW (CE) enables are supplied to provide on-chip address decoding when multiple devices are used, as in a dual bank configuration.
50	ŌĒ	Input	Output Enable: This active LOW input enables the output drivers.
21	DLE	Input	Data Latch Enable: When DLE is HIGH, the data latch is transparent. Input data is latched into the on-chip data latch on the falling edge of DLE.
20, 46	NC	Input/ Output	Parity Data I/O: These signals are no connects (NC). No connects are not internally bonded.
34, 35, 38, 39, 40, 41, 44, 45, 8, 9, 12 13, 14, 15, 18, 19	DQ1-DQ16	Input/ Output	SRAM Data I/O: Lower byte is DQ1-DQ8; Upper byte is DQ9-DQ16. When data is latched, DQ1-DQ16 must meet the required setup and hold times around DLE.
2, 28	Vcc	Supply	Power Supply: +5V ± 10%
10, 17, 36, 43	VccQ	Supply	Isolated Output Buffer Supply: +5V \pm 10% or 3.3V \pm 10%
11, 16, 37, 42	VssQ	Supply	Isolated Output Buffer Ground: GND
1,27	Vss	Supply	Ground: GND

TRUTH TABLE

OPERATION	CE	CE	WE	BWL	BWH	ALE	DLE	ŌĒ	DQ
Deselected cycle	L	Х	Х	Х	Х	Х	Х	Х	High-Z
Deselected	Х	Н	Х	Х	Х	Х	X	Х	High-Z
READ	Н	L	Н	Х	Х	Н	Х	Н	High-Z
READ	Н	L	Н	Х	Х	Н	Х	L	Q1-Q16
LATCHED READ	Н	L	Н	Х	Х	L	Х	L	Q1-Q16
WORD WRITE DQ1-DQ16 transparent data-in	Н	L	L	L	L	Н	Н	Х	D1-D16
LATCHED WORD WRITE DQ1-DQ16 transparent data-in	Н	L	L	L	L	L	Н	Х	D1-D16
WORD WRITE DQ1-DQ16 latched data-in	Н	L	L	L	L	н	L	Х	D1-D16
LATCHED WORD WRITE DQ1-DQ16 latched data-in	Н	L	L	L	L	L	L	Х	D1-D16
ABORTED WRITE	Н	L	L	Н	Н	Х	Х	Х	High-Z
BYTE WRITE DQ1-DQ8 transparent data-in	Н	L	L	L	Н	Н	Н	Х	D1-D8
LATCHED BYTE WRITE DQ1-DQ8 transparent data-in	Н	L	L	L	Н	L	Н	Х	D1-D8
BYTE WRITE DQ9-DQ16 transparent data-in	Н	L	L	Н	L	Н	Н	Х	D9-D16
LATCHED BYTE WRITE DQ9-DQ16 transparent data-in	Н	L	L	Н	L	L	Н	Х	D9-D16
BYTE WRITE DQ1-DQ8 latched data-in	Н	L	L	L	H	Н	L	X	D1-D8
LATCHED BYTE WRITE DQ1-DQ8 latched data-in	Н	L	L	L	Н	L	L	Х	D1-D8
BYTE WRITE DQ9-DQ16 latched data-in	Н	L	L	Н	L	Н	L	Х	D9-D16
LATCHED BYTE WRITE DQ9-DQ16 latched data-in	Н	L	L	Н	L	L	L	Х	D9-D16

NOTE:

- 1. Latched inputs (Addresses, CE, and $\overline{\text{CE}}$) must satisfy the specified setup and hold times around the falling edge of ALE. Data-in must satisfy the specified setup and hold times for DLE.
- 2. A transparent WRITE cycle is defined by DLE HIGH during the ^tDLW time.
- 3. A latched WRITE cycle is defined by DLE transitioning LOW during the WRITE cycle and data satisfying the specified setup and hold times for DLE.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc/Vccq supply relative	ve
to Vss/Vssq	1.0V to +7.0V
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1.5W
Short Circuit Output Current	50m 4

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%; Vss = Vssq, Unless Otherwise Noted)

DESCRIPTION	CRIPTION CONDITIONS				UNITS	NOTES
Input High (Logic 1) Voltage		ViH	2.2	Vcc+1	٧	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	٧	1, 2
Input Leakage Current	0V ≤ Vin ≤ Vcc	ILı	-10	10	μΑ	
Output Leakage Current	Output(s) Disabled, 0V ≤ Vouт ≤ Vcc	ILo	-10	10	μΑ	
Output High Voltage	Iон = -4.0mA	Vон	2.4		٧	1
Output Low Voltage	lol = 8.0mA	Vol		0.4	٧	1
Supply Voltage		Vcc	4.5	5.5	٧	1
Output Buffer Supply Voltage	5.0V TTL Compatible	Vccq	4.5	5.5	٧	1

DESCRIPTION	CONDITIONS	SYMBOL	TYP	MAX	UNITS	NOTES
Power Supply Current: Operating	CE VIL, CE ≥ VIH; Vcc = MAX; Outputs Open f = MAX f = MAX	lcc	150	250	mA	3
Power Supply Current: Standby	CE ≤ V _{IL} , CE ≥ V _{IH} ; V _{CC} = MAX Outputs Open f = MAX = 1/ ^t RC	IsB1	20	30	mA	
	$\overline{\text{CE}} \ge \text{Vcc} -0.2$; $\text{CE} \le \text{Vss} +0.2$, $\text{Vcc} = \text{MAX}$; $\text{VIL} \le \text{Vss} +0.2$, $\text{VIH} \ge \text{Vcc} -0.2$; $\text{f} = 0$	IsB2	8	10	mA	
	CE ≤ V _{IL} ; CE ≥ V _{IH} ; V _{CC} = MAX f = 0; Outputs Open	ISB3	10	15	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _Δ = 25°C; f = 1MHz	Cı		6	pF	4
Input/Output Capacitance (D/Q)	Vcc = 5V	Cı/o		8	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (0°C \leq T_A \leq 70°C; Vcc = VccQ = 5V \pm 10%)

	-15 -1'		-17 -20			-25					
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
ADDRESS LATCH										•	•
Latch cycle time	tLC	15		17		20		25		ns	
Latch high time	tLEH	5		5		5		5		ns	
Address / Chip Enable setup to latch LOW	t _L S	2		2		2		2		ns	
Address / Chip Enable hold from latch LOW	^t LH	3		3		3		3		ns	
Address / Chip Enable setup to latch HIGH	tLHS	0		0		0		0		ns	
Latch HIGH to output active (Low-Z)	tLZL	2		2		2		2		ns	6, 7, 4
Latch HIGH to output in High-Z	^t HZL	2	7	2	7	2	7	2	10	ns	6, 7, 4
READ CYCLE									•	•	
READ cycle time	tRC	15		17		20		25		ns	
Address access time	^t AA		15		17		20		25	ns	
Chip Enable access time	†ACE		15		17		20		25	ns	
Output hold from address change	tOH	4		4		4		4		ns	
Chip Enable to output in Low-Z	tLZCE	2		2		2		2		ns	6, 7, 4
Chip Disable to output in High-Z	tHZCE	2	7	2	7	2	7	2	10	ns	6, 7, 4
Chip Enable to power-up time	tPU	0		0		0		0		ns	
Chip Disable to power-down time	t _{PD}		15		17		20		25	ns	
Output Enable access time	^t AOE		6		7		8		10	ns	
Output Enable to output in Low-Z	tLZOE	2		2		2		2		ns	6, 7, 4
Output Disable to output in High-Z	^t HZOE	2	6	2	7	2	8	2	10	ns	6, 7, 4
WRITE Cycle											
WRITE cycle time	tWC	15		17		20		25		ns	
Chip Enable to end of write	tCW	13		14		15		20		ns	
Address valid to end of write	^t AW	13		14		15		20		ns	
Address setup time	^t AS	0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		ns	
Write pulse width	tWP	13		14		15		20		ns	
Data setup time	t _{DS}	6		7		8		10		ns	
Data hold time	tDH	0		0		0		0		ns	
Write Disable to output in Low-Z	tLZWE	5		5		5		5		ñŝ	6, 7, 4
Write Enable to output in High-Z	tHZWE	0	7	0	7	0	7	0	10	ns	6, 7, 4
Byte write enable setup time	tBWS	6		7		8		10		ns	
Byte write enable hold time	^t BWH	2		2		2		2		ns	
Byte write disable setup time	iBWDS	0		0		0		0		ns	
Data setup to DLE LOW	†DLS	1		1		1		1		ns	9
Data hold from DLE LOW	†DLH	3		3		3		3		ns	9
DLE HIGH to end of write	^t DLW	6		7		8		10		ns	8
End of write to DLE HIGH	†WDLH	0		0		0		0		ns	9
End of write to ALE HIGH	tWLH	0		0		0		0		ns	
ALE HIGH setup time to write enable LOW	tLWS	0		0		0		0		ns	
ALE HIGH to end of write	tLW	13		14		15		20		ns	

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

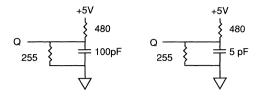
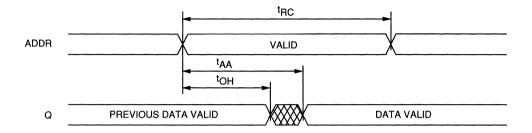
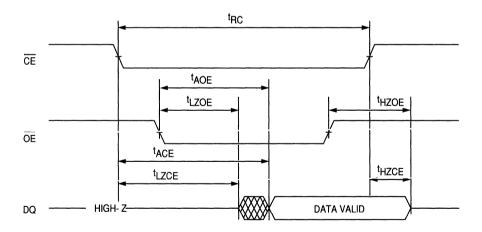


Fig. 1 OUTPUT LOAD EQUIVALENT

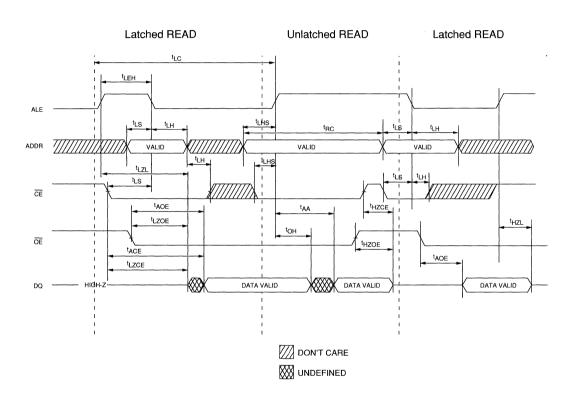
Fig. 2 OUTPUT LOAD EQUIVALENT

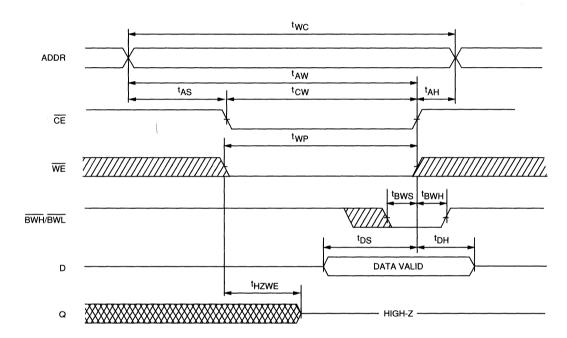

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- 6. Output loading is specified with CL = 5pF as in Fig. 2. Transition is measured \pm 500mV from steady state voltage.
- At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, and ^tHZOE is less than ^tLZOE.
- 8. A transparent WRITE cycle is defined by DLE being HIGH during the WRITE cycle.


- A latched WRITE cycle is defined by DLE transitioning LOW during the WRITE cycle and data satisfying the specified setup and hold time with respect to DLE.
- 10. Any combination of write enable (WE) and chip enable (CE) can initiate and terminate a WRITE cycle.
- 11. WE is HIGH for READ cycle.
- 12. Device is continuously selected. All chip enables held in their active state.
- 13. Address valid prior to or coincident with the latest occurring chip enable.
- 14. CE timing is the same as $\overline{\text{CE}}$ timing. The wave form is inverted.

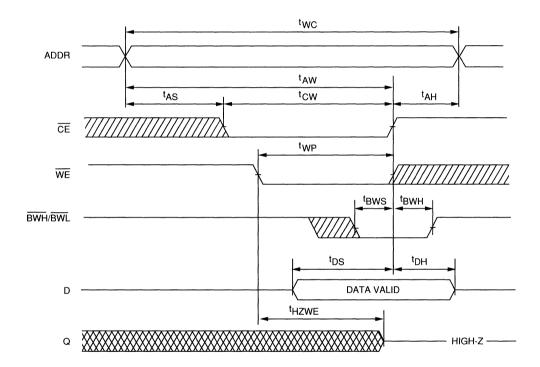
READ CYCLE NO. 1 11, 12


READ CYCLE NO. 2 7, 11, 13, 14



READ CYCLE NO. 3 (ALE=DLE=HIGH) ^{7, 11, 14}

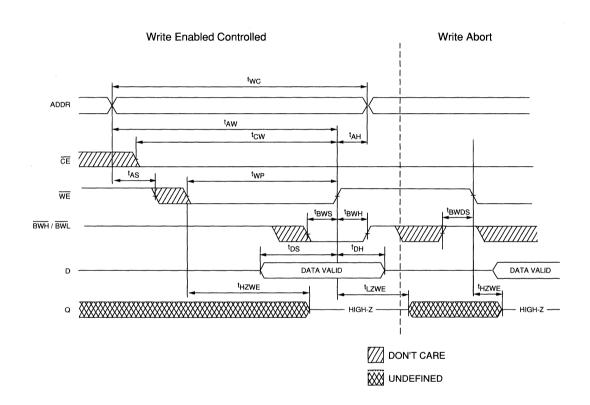
WRITE CYCLE NO. 1 Chip Enable Controlled (ALE=DLE=HIGH) ^{10, 14}



DONT CARE

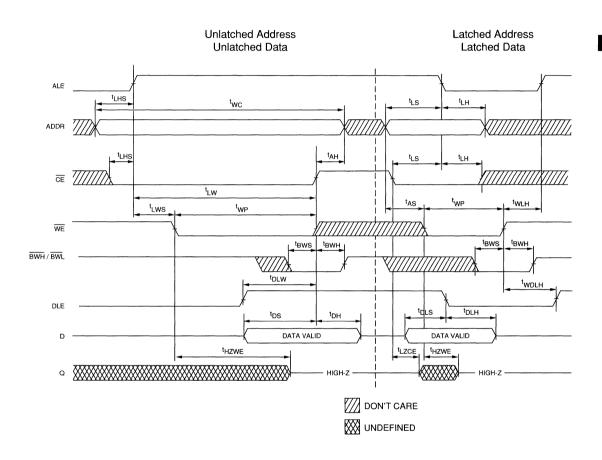
UNDEFINED

WRITE CYCLE NO. 2 Write Enable Initiated / Chip Enable Terminate (ALE=DLE=HIGH) 10, 14



DON'T CARE

W UNDEFINED



WRITE CYCLE NO. 3 (ALE=DLE=HIGH) ^{7, 10, 14}

WRITE CYCLE NO. 4 7, 10, 14

SRAM

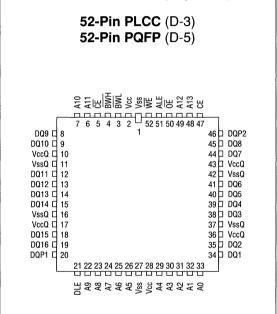
16K x 18 SRAM

WITH ADDRESS / DATA INPUT LATCHES

PIN ASSIGNMENT (Top View)

FEATURES

- Fast access times: 15, 17, 20 and 25ns
- Fast output enable: 6, 8 and 10ns
- Single +5V (±10%) power supply
- Separate, electrically isolated output buffer power supply and ground (VccQ, VssQ)
- Optional +3.3V (±10%) output buffer operation
- Separate Data Input Latch
- Common Data Inputs and Data Outputs
- BYTE WRITE capability via Dual Write Strobes
- Parity bits
- Address and Chip Enable input latches

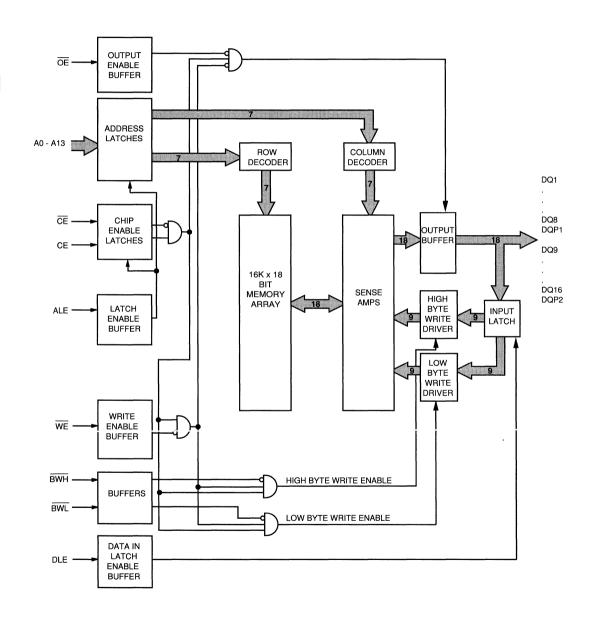

OPTIONS	MARKING
Timing	
15ns access	-15
17ns access	-17
20ns access	-20
25ns access	-25
Packages	
52-pin PLCC	EJ
52-pin PQFP	LG
Density	
16K x 18	MT5C2818

GENERAL DESCRIPTION

The Micron SRAM family employs high-speed, low-power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

The MT5C2818 SRAM integrates a 16K x 18 SRAM core with advanced peripheral circuitry consisting of address and data input latches, latched active HIGH and active LOW chip enables, separate upper and lower byte write strobes and a fast output enable. The device is ideally suited for "pipelined" systems and systems that benefit from a wide data bus. Parity bits are provided for added data integrity.

Address and chip enable latches are provided. When address latch enable (ALE) is HIGH, the address and chip enable latches are transparent, allowing the input to flow through the latch. If ALE is LOW, the address and chip


enable latch inputs are disabled. This input latch simplifies READ and WRITE cycles by guaranteeing address hold time in a simple fashion.

Dual write strobes (BWL and BWH) allow individual bytes to be written. BWL controls DQ1-DQ8 and DQP1, the lower bits. While BWH controls DQ9-DQ16 and DQP2, the upper bits.

A data input latch is provided. When data latch enable (DLE) is HIGH, the data latches are in the transparent mode and input data flows through the latch. When DLE is LOW, the data latch inputs are disabled. The data input latch simplifies WRITE cycles by guaranteeing data hold times.

The MT5C2818 operates from a +5V power supply. Separate and electrically isolated output buffer power (VccQ) and ground (VssQ) pins are provided to allow either +3.3V or +5V TTL operation of the output drivers.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

PLCC and PQFP PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
33, 32, 31, 30, 29, 26, 25, 24, 23, 22, 7, 6, 49, 48	A0-A13	Input	Address Inputs: These inputs are either latched or unlatched depending on the state of ALE.
52	WE	Input	Write Enable: This input determines if the cycle is a READ or WRITE cycle. WE is LOW for a WRITE cycle and HIGH for a READ cycle
51	ALE	Input	Address Latch Enable: This signal latches the address, CE, and CE inputs on its falling edge. When ALE is HIGH, the latch is transparent.
3, 4	BWL, BWH	Input	Byte Write Enables: These active LOW inputs allow individual bytes to be written. When \overline{BWL} is LOW, data is written to the lower byte, D1-D8, DQP1. When \overline{BWH} is LOW, data is written to the upper byte, D9-D16, DQP2. When both \overline{BWH} and \overline{BWL} are HIGH and meet the required setup time to the falling edge of \overline{WE} , then the WRITE cycle is aborted.
5, 47	CE,CE	Input	Chip Enables: These signals are used to enable the device. Both active HIGH (CE) and active LOW (CE) enables are supplied to provide on-chip address decoding when multiple devices are used, as in a dual bank configuration.
50	ŌĒ	Input	Output Enable: This active LOW input enables the output drivers.
21	DLE	Input	Data Latch Enable: When DLE is HIGH, the data latch is transparent. Input data is latched into the on-chip data latch on the falling edge of DLE.
20, 46	DQP1 DQP2	Input/ Output	Parity Data I/O: These signals are data parity bits. The DQP1 is the parity bit for the lower byte, DQ1-DQ8. DQP2 is the parity bit for the upper byte, DQ9-DQ16.
34, 35, 38, 39, 40, 41, 44, 45, 8, 9, 12 13, 14, 15, 18, 19	DQ1-DQ16	Input/ Output	SRAM Data I/O: Lower byte is DQ1-DQ8; Upper byte is DQ9-DQ16. When data is latched, DQ1-DQ16 must meet the setup and hold times around DLE.
2, 28	Vcc	Supply	Power Supply: +5V ± 10%
10, 17, 36, 43	VccQ	Supply	Isolated Output Buffer Supply: +5V \pm 10% or 3.3V \pm 10%
11, 16, 37, 42	VssQ	Supply	Isolated Output Buffer Ground: GND
1, 27	Vss	Supply	Ground: GND

TRUTH TABLE

OPERATION	CE	CE	WE	BWL	BWH	ALE	DLE	ŌĒ	DQ	DQP
Deselected cycle	L	Х	Х	Х	Х	Х	Х	Х	High-Z	High-Z
Deselected	Х	Н	Х	Х	Х	Х	Х	Х	High-Z	High-Z
READ	Н	L	Н	Х	Х	Н	Х	Н	High-Z	High-Z
READ	Н	L	Н	Х	Х	Н	Х	L	Q1-Q16	QP1, QP2
LATCHED READ	Η	L	Н	Х	Х	L	Х	L	Q1-Q16	QP1, QP2
WORD WRITE DQ1-DQ16 transparent data-in	Н	L	L	L	L	Н	Н	Х	D1-D16	DP1, DP2
LATCHED WORD WRITE DQ1-DQ16 transparent data-in	Н	اـ	L	L	L	L	Н	Х	D1-D16	DP1, DP2
WORD WRITE DQ1-DQ16 latched data-in	Н	L	L	L	L	Н	L	Х	D1-D16	DP1, DP2
LATCHED WORD WRITE DQ1-DQ16 latched data-in	Η	L	L	L	L	L	L	Х	D1-D16	DP1, DP2
ABORTED WRITE	Η	L	L	Н	Н	Х	Х	Х	High-Z	High-Z
BYTE WRITE DQ1-DQ8 transparent data-in	Н	L	L	L	Н	Н	Н	Х	D1-D8	DP1
LATCHED BYTE WRITE DQ1-DQ8 transparent data-in	Ι	L	L	L	Н	L	Н	Х	D1-D8	DP1
BYTE WRITE DQ9-DQ16 transparent data-in	Н	L	L	Н	L	Н	Н	Х	D9-D16	DP2
LATCHED BYTE WRITE DQ9-DQ16 transparent data-in	Н	L	L	Н	L	L	Н	Х	D9-D16	DP2
BYTE WRITE DQ1-DQ8 latched data-in	Н	L	L	L	Н	Н	L	Х	D1-D8	DP1
LATCHED BYTE WRITE DQ1-DQ8 latched data-in	Н	L	L	L	Н	L	L	×	D1-D8	DP1
BYTE WRITE DQ9-DQ16 latched data-in	Н	L	L	Ι	L	Н	L	×	D9-D16	DP2
LATCHED BYTE WRITE DQ9-DQ16 latched data-in	Н	L	L	Н	L	L	L	Х	D9-D16	DP2

NOTE:

- 1. Latched inputs (Addresses, CE, and CE) must satisfy the specified setup and hold times around the falling edge of ALE. Data-in must satisfy the specified setup and hold times for DLE.
- 2. A transparent WRITE cycle is defined by DLE HIGH during the ^tDLW time.
- 3. A latched WRITE cycle is defined by DLE transitioning LOW during the WRITE cycle and data satisfying the specified setup and hold times for DLE.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc/Vccq supply relative	
to Vss/Vssq	1.0V to +7.0V
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1.5W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(0°C \leq T_{Δ} \leq 70°C; Vcc = 5.0V \pm 10%; Vss = Vssq, Unless Otherwise Noted)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES	
Input High (Logic 1) Voltage		ViH	2.2	Vcc+1	٧	1	
Input Low (Logic 0) Voltage	ow (Logic 0) Voltage				٧	1, 2	
Input Leakage Current	0V ≤ Vin ≤ Vcc	ILı	-10	10	μА		
Output Leakage Current	Output(s) Disabled, $0V \le V_{OUT} \le V_{CC}$	ILo	-10	10	μΑ		
Output High Voltage	loн = -4.0mA	Vон	2.4		٧	1	
Output Low Voltage	IoL = 8.0mA	Vol		0.4	٧	1	
Supply Voltage		Vcc	4.5	5.5	٧	1	
Output Buffer Supply Voltage	5.0V TTL Compatible	Vccq	4.5	5.5	٧	1	

DESCRIPTION	CONDITIONS	SYMBOL	TYP	MAX	UNITS	NOTES
Power Supply Current: Operating	CE ≤ V _{IL} , CE ≥ V _{IH} ; Vcc = MAX Outputs Open f = MAX = 1/ [†] RC	lcc	150	250	mA	3
	$CE \le VIL, \overline{CE} \ge VIH; VCC = MAX$ Outputs Open $f = MAX = 1/{}^{t}RC$	ISB1	20	30	mA	
Power Supply Current: Standby	$\overline{\text{CE}} \ge \text{Vcc} - 0.2\text{V}; \text{CE} \le \text{Vss} + 0.2\text{V},$ $\text{Vcc} = \text{MAX}; \text{ViL} \le \text{Vss} + 0.2\text{V},$ $\text{ViH} \ge \text{Vcc} - 0.2\text{V}; \text{f} = 0$	ISB2	8	10	mA	
	CE ≤ V _{IL} ; CE ≥ V _{IH} ; V _{CC} = MAX f = 0; Outputs Open	IsB3	10	15	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	$T_{\Lambda} = 25^{\circ}C$; $f = 1MHz$	Cı		6	pF	4
Input/Output Capacitance (D/Q)	Vcc = 5V	Cı/o		8	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (0°C \leq T_A \leq 70°C; Vcc = VccQ = 5V \pm 10%)

		-15		-17		-20		-25			
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
ADDRESS LATCH											
Latch cycle time	^t LC	15		17		20		25		ns	
Latch high time	tLEH	5		5		5		5		ns	
Address / Chip Enable setup to latch LOW	^t LS	2		2		2		2		ns	
Address / Chip Enable hold from latch LOW	^t LH	3		3		3		3		ns	
Address / Chip Enable setup to latch HIGH	tLHS	0		0		0		0		ns	
Latch HIGH to output active (Low-Z)	tLZL	2		2		2		2		ns	6, 7, 4
Latch HIGH to output in High-Z	tHZL	2	7	2	7	2	7	2	10	ns	6, 7, 4
READ CYCLE											
READ cycle time	†RC	15		17		20		25		ns	
Address access time	^t AA		15		17		20		25	ns	
Chip Enable access time	tACE		15		17		20		25	ns	
Output hold from address change	tOH	4		4		4		4		ns	
Chip Enable to output in Low-Z	^t LZCE	2		2		2		2		ns	6, 7, 4
Chip Disable to output in High-Z	tHZCE	2	7	2	7	2	7	2	10	ns	6, 7, 4
Chip Enable to power-up time	^t PU	0		0		0		0		ns	
Chip Disable to power-down time	^t PD		15		17		20		25	ns	
Output Enable access time	†AOE		6		7		8		10	ns	
Output Enable to output in Low-Z	^t LZOE	2		2		2		2		ns	6, 7, 4
Output Disable to output in High-Z	tHZOE	2	6	2	7	2	8	2	10	ns	6, 7, 4
WRITE Cycle											
WRITE cycle time	tWC	15		17		20		25		ns	
Chip Enable to end of write	tCW	13		14		15		20		ns	
Address valid to end of write	^t AW	13		14		15		20		ns	
Address setup time	†AS	0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		ns	
Write pulse width	tWP	13		14		15		20		ns	
Data setup time	^t DS	6		7		8		10		ns	
Data hold time	†DH	0		0		0		Û		ns	
Write Disable to output in Low-Z	^t LZWE	5		5		5		5		ns	6, 7, 4
Write Enable to output in High-Z	tHZWE	0	7	0	7	0	7	0	10	ns	6, 7, 4
Byte write enable setup time	tBWS	6		7		8		10		ns	
Byte write enable hold time	^t BWH	2		2		2		2		ns	
Byte write disable setup time	tBWDS	0		0		0		0		ns	
Data setup to DLE LOW	†DLS	1		1		1	ļ —	1		ns	9
Data hold from DLE LOW	†DLH	3		3		3		3		ns	9
DLE HIGH to end of write	tDLW	6		7		8		10		ns	8
End of write to DLE HIGH	†WDLH	0		0		0		0		ns	9
End of write to ALE HIGH	tWLH	0		0		0		0		ns	
ALE HIGH setup time to write enable LOW	tLWS	0		0		0		0		ns	
ALE HIGH to end of write	†LW	13		14		15		20		ns	

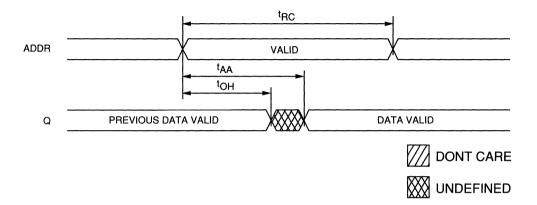
AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	.See Figures 1 and 2

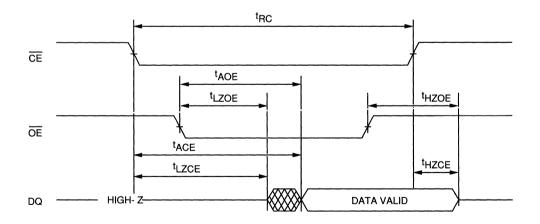
Q +5V +5V 480 480 255 5 pF

Fig. 1 OUTPUT LOAD EQUIVALENT

Fig. 2 OUTPUT LOAD EQUIVALENT

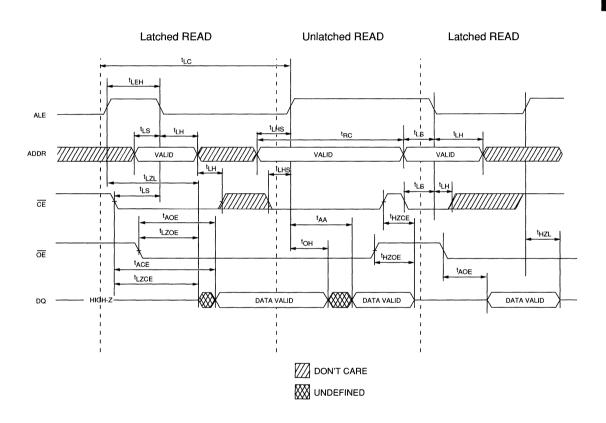

NOTES

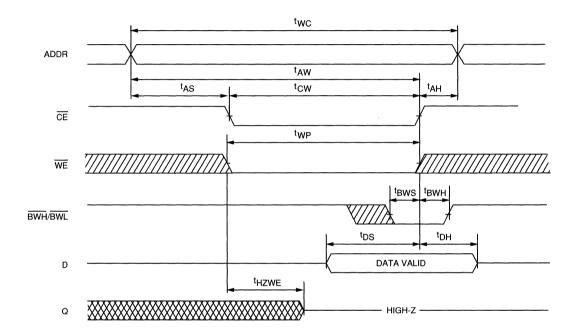
- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- Output loading is specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, and ^tHZOE is less than ^tHZOE
- 8. A transparent WRITE cycle is defined by DLE being HIGH during the WRITE cycle.


- A latched WRITE cycle is defined by DLE transitioning LOW during the WRITE cycle and data satisfying the specified setup and hold time with respect to DLE.
- 10. Any combination of write enable (WE) and chip enable (CE) can initiate and terminate a WRITE cycle.
- 11. WE is HIGH for READ cycle.
- 12. Device is continuously selected. All chip enables held in their active state.
- 13. Address valid prior to or coincident with the latest occurring chip enable.
- 14. CE timing is the same as $\overline{\text{CE}}$ timing. The wave form is inverted.

READ CYCLE NO. 1 11, 12

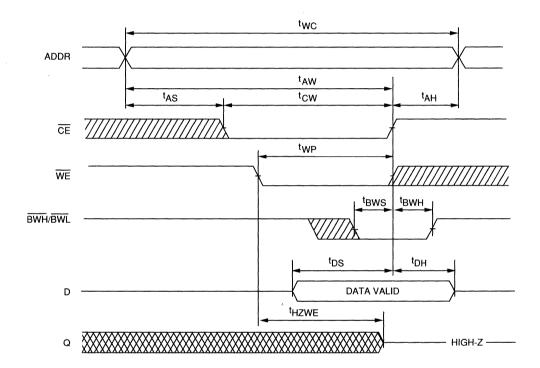
READ CYCLE NO. 2 7, 11, 13, 14




READ CYCLE NO. 3

(ALE=DLE=HIGH) 7, 11, 14

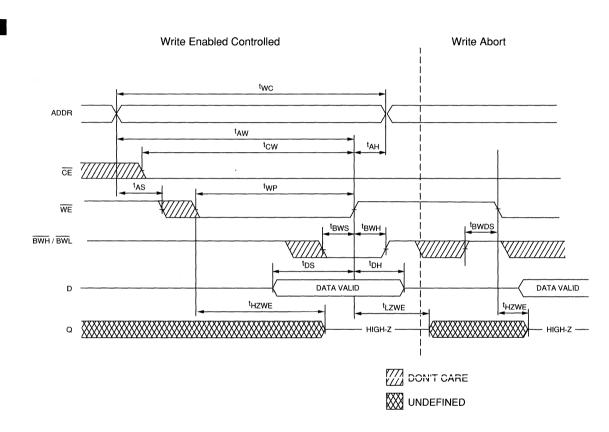
WRITE CYCLE NO. 1 Chip Enable Controlled (ALE=DLE=HIGH) ^{10, 14}


DONT CARE

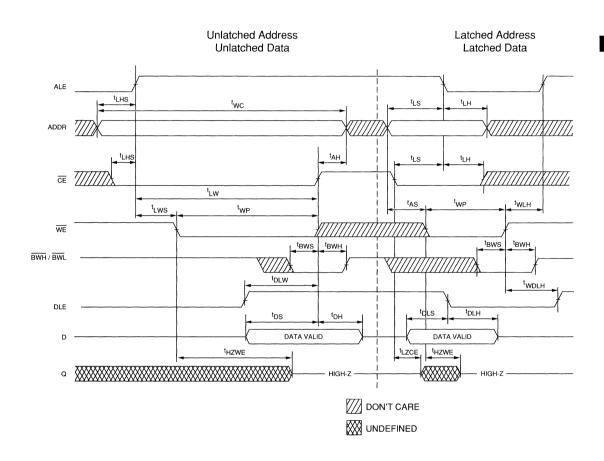
W UNDEFINED

WRITE CYCLE NO. 2

Write Enable Initiated / Chip Enable Terminate (ALE=DLE=HIGH) 10, 14



DON'T CARE


WRITE CYCLE NO. 3

(ALE=DLE=HIGH) 7, 10, 14

WRITE CYCLE NO. 4 7, 10, 14

IT/AT/XT** SPECIFICATION - 16K SRAM FAMILY

ABSOLUTE MAXIMUM RATINGS*

 This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**IT- (-40°C to +85°C),

AT- (-40°C to +125°C),

XT - (-55°C to +125°C)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(-40^{\circ}C \leq T_{\Delta} \leq 85^{\circ}C; -40^{\circ}C \leq T_{\Delta} \leq 125^{\circ}C; -55^{\circ}C \leq T_{\Delta} \leq 125^{\circ}C; \ Vcc = 5.0V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		ViH	2.2	Vcc +1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V$ IN $\le V$ CC	ILı	-5	5	μΑ	
Output Leakage Current	Output(s) Disabled, 0V ≤ Vouт ≤ Vcc	ILo	-5	5	μА	
Output High Voltage	Iон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	loL = 8.0mA	Vol		0.4	V	1

DESCRIPTION	CONDITIONS	SYMBOL	-12	-15	-20	-25	-30	-35	UNITS	NOTES
Power Supply	CE ≤ VIL; Vcc = MAX	Icc	150	135	120	110	110	110	mA	3
Current: Operating	$f = MAX = 1/{}^{t}RC,$									
	Outputs Open									
Power Supply	CE ≥ ViH; Vcc = MAX	ISB1	55	50	45	40	40	40	mA	
Current: Standby	$f = MAX = 1/{}^{t}RC,$									
	Outputs Open									
	CE ≥ Vcc -0.2V; Vcc = MAX									
	V _I L ≤ Vss +0.2V;	ISB2	3	3	3	3	3	3	mA	
	$V_{IH} \ge V_{CC} - 0.2V; f = 0$									

DESCRIPTION	CONDITION	S	SYMBOL	MIN	TYP	MAX	UNITS NOTE
Power Supply	CE ≥ (Vcc -0.2V)	Vcc = 2V	ICCDR		150	300	mA
Current: Data Retention	Vin ≥ (Vcc -0.2V)						
	or ≤ -0.2V	Vcc = 3V			450	550	mA

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Сι		7	pF	4
Output Capacitance	Vcc = 5V	Co		7	pF	4

IT/AT/XT** SPECIFICATION - 16K SRAM FAMILY

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (-40°C \leq T_A \leq 85°C; -40°C \leq T_A \leq 125°C; -55°C \leq T_A \leq 125°C; Vcc = 5.0 \pm 10%)

DECODED NO.		-1	A 2	-1	5	-2		A -2	25	-3	0	-3	15		
DESCRIPTION	SYM	MIN	MAX	MIN	мах	MIN	мах	MIN	MAX	MIN	MAX	MIN	МАХ	UNITS	NOTES
READ Cycle													· · · · · · · · · · · · · · · · · · ·		L
READ cycle time	^t RC	12		15		20		25		30		35		ns	
Address access time	^t AA		12		15		20		25		30		35	ns	
Chip Enable access time	^t ACE		11		12		15		20		25		30	ns	
Output hold from address change	tOH	3		3		3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		5		5		5		5		ns	
Chip Disable to output in High-Z	^t HZCE		7		7		10		10		15		20	ns	6,7
Chip Enable to power-up time	^t PU	0		0		0		0		0		0		ns	
Chip Disable to power-down time	^t PD		12		15		20		25		30		35	ns	
Output enable access time	†AOE		7		7		9		10		15		20	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		0		0		ns	
Output Disable to output in High-Z	^t HZOE		6		6		10		10		15		20	ns	6
WRITE Cycle	-														
WRITE cycle time	tWC	12		15		20		25		30		35		ns	
Chip Enable to end of write	tCW	10		12		15		20		25		25		ns	
Address valid to end of write	^t AW	12		12		15		20		25		25		ns	
Address setup time	t _{AS}	0		0		0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		0		0		ns	
Write pulse width	tWP	10		12		15		20		25		25		ns	
Data setup time	tDS	9		9		10		12		15		15		ns	
Data hold time	tDH	0		0		0		0		0		0		ns	
Write Disable to output in Low-Z	tLZWE	2		2		2		2		2		2		ns	
Write Enable to output in High-Z	HZWE		6		6		8		10		12		15	ns	6
Write Enable to output valid	^t AWE		12		15		20		25		30		35	ns	
Data valid to output valid	^t ADV		12		15		20		25		30		35	ns	

IT/AT/XT** SPECIFICATION - 64K SRAM FAMILY

ABSOLUTE MAXIMUM RATINGS*

 This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**IT- (-40°C to +85°C),

AT- (-40°C to +125°C),

XT - (-55°C to +125°C)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(-40^{\circ}C \le T_{\Delta} \le 85^{\circ}C; -40^{\circ}C \le T_{\Delta} \le 125^{\circ}C; -55^{\circ}C \le T_{\Delta} \le 125^{\circ}C; Vcc = 5.0V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Vıн	2.2	Vcc +1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V$ IN $\le V$ CC	ILı	-5	5	μΑ	
Output Leakage Current	Output(s) Disabled, 0V ≤ Vouт ≤ Vcc	ILo	-5	5	μΑ	
Output High Voltage	Iон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	loL = 8.0mA	Vol		0.4	٧	1

					M	AX]	
DESCRIPTION	CONDITIONS	SYMBOL	-12	-15	-20	-25	-30	-35	UNITS	NOTES
Power Supply Current: Operating	CE ≤ ViL; Vcc = MAX f = MAX = 1/ tRC, Outputs Open	lcc	150	140	130	120	110	110	mA	3
Power Supply Current: Standby	CE ≥ VIH; Vcc = MAX f = MAX = 1/ ¹RC, Outputs Open	ISB1	60	50	45	40	40	40	mA	
	$\overline{\text{CE}} \ge \text{Vcc} - 0.2\text{V}; \text{Vcc} = \text{MAX}$ $\text{Vil.} \le \text{Vss} + 0.2\text{V};$ $\text{Vih.} \ge \text{Vcc} - 0.2\text{V}; \text{f} = 0$	ISB2	5	5	5	5	5	5	mA	

DESCRIPTION	CONDITION	S	SYMBOL	MIN	TYP	MAX	UNITS N	OTES
Power Supply	<u>CE</u> ≥ (Vcc -0.2V)	Vcc = 2V	ICCDR		150	300	mA	
Current: Data Retention	Vin ≥ (Vcc -0.2V) or ≤ -0.2V	Vcc = 3V			450	550	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	$T_A = 25^{\circ}C$; $f = 1MHz$	Čı		7	pF	4
Output Capacitance	Vcc = 5V	Со		7	pF	4

IT/AT/XT** SPECIFICATION - 64K SRAM FAMILY

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (-40°C \leq T_A \leq 85°C; -40°C \leq T_A \leq 125°C; -55°C \leq T_A \leq 125°C; Vcc = 5.0 \pm 10%)

		-1	A 12	-1	5	-2	20	-2	25	-3	10	-3	35		
DESCRIPTION	SYM	MIN	MAX	MIN	МАХ	MIN	МАХ	MIN	MAX	MIN	MAX	MIN	МАХ	UNITS	NOTES
READ Cycle			<u> </u>											-	
READ cycle time	^t RC	12		15		20		25		30		35		ns	
Address access time	†AA		12		15		20		25		30		35	ns	
Chip Enable access time	^t ACE		12		12		15		20		25		30	ns	
Output hold from address change	[†] OH	3		3		3		3		3		3		ns	
Chip Enable to output in Low-Z	^t LZCE	3		3		5		5		5		5		ns	
Chip Disable to output in High-Z	^t HZCE		7		7		10		10		15		20	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		0		0		ns	
Chip Disable to power-down time	^t PD		12		15		20		25		30		35	ns	
Output Enable access time	^t AOE		7		7		9		10		15		20	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		0		0		ns	
Output Disable to output in High-Z	^t HZOE		6		6		10		10		15		20	ns	6
WRITE Cycle													1		
WRITE cycle time	†WC	12		15		20		25		30		35		ns	
Chip Enable to end of write	tCW	10		12		15		20		25		25		ns	
Address valid to end of write	^t AW	12		12		15		20		25		25		ns	
Address setup time	^t AS	0		0		0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		0		0		ns	
Write pulse width	tWP	10		12		15		20		25		25		ns	
Data setup time	^t DS	9		9		10		12		15		15		ns	
Data hold time	^t DH	0		0		0		0		0		0		ns	
Write Disable to output in Low-Z	^t LZWE	2		2		2		2		2		2		ns	
Write Enable to output in High-Z	tHZWE		6		6		8		10		12		15	ns	6
Write Enable to output valid	^t AWE		12		15		20		25		30		35	ns	
Data valid to output valid	^t ADV		12		15		20		25		30		35	ns	

IT/AT/XT** SPECIFICATION - 256K SRAM FAMILY

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss1.0V to +7.0V
Storage Temperature (Ceramic)65°C to +150°C
Storage Temperature (Plastic)55°C to +150°C
Power Dissipation1W
Short Circuit Output Current50mA
*Stresses greater than those listed under "Absolute Maxi-
mum Ratings" may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**IT- (-40°C to +85°C),

AT- (-40°C to +125°C),

XT - (-55°C to +125°C)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(-40^{\circ}C \le T_{\Delta} \le 85^{\circ}C; -40^{\circ}C \le T_{\Delta} \le 125^{\circ}C; -55^{\circ}C \le T_{\Delta} \le 125^{\circ}C; Vcc = 5.0V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Vih	2.2	Vcc +1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	ILı	-5	5	μΑ	
Output Leakage Current	Output(s) Disabled, 0V ≤ Vouт ≤ Vcc	ILo	-5	5	μА	
Output High Voltage	Iон = -4.0mA	Voн	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1

		MAX							
DESCRIPTION	CONDITIONS	SYMBOL	-20	-25	-30	-35	-40	UNITS	NOTES
Power Supply	CE ≤ VIL; Vcc = MAX	Icc	120	110	100	100	100	mA	3
Current: Operating	$f = MAX = 1/{}^{t}RC,$								1
	Outputs Open					1		Ì	
Power Supply	CE ≥ ViH; Vcc = MAX	ISB1	30	30	30	30	30	mA	
Current: Standby	$f = MAX = 1/{}^{t}RC,$								
	Outputs Open		}				l		
	CE ≥ Vcc -0.2V; Vcc = MAX								
	VIL ≤ Vss +0.2V;	ISB2	8	8	8	8	8	mA	
	$V_{IH} \ge V_{CC} - 0.2V$; $f = 0$							1	

DESCRIPTION	CONDITIONS		SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Power Supply	<u>CE</u> ≥ (Vcc -0.2V)	Vcc = 2V	ICCDR		95	500	mA	
Current: Data Retention	Vin ≥ (Vcc -0.2V)							1
	or ≤ -0.2V	Vcc = 3V			300	900	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	$T_A = 25^{\circ}C; f = 1MHz$	Cı		7	pF.	4
Output Capacitance	Vcc = 5V	Co		5	pF	4

IT/AT/XT** SPECIFICATION - 256K SRAM FAMILY

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (-40°C \leq T_A \leq 85°C; -40°C \leq T_A \leq 125°C; -55°C \leq T_A \leq 125°C; Vcc = 5.0 \pm 10%)

DECORIDATION		-2	20	-2	25	-3	80	-3	35	-4	1 5		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle			L		L								
READ cycle time	^t RC	20		25		30		35		45		ns	
Address access time	^t AA		20		25		30		35		45	ns	
Chip Enable access time	†ACE		20		25		30		35		45	ns	
Output hold from address change	^t OH	3		5		5		5		5		ns	
Chip Enable to output in Low-Z	^t LZCE	6		6		6		6		6		ns	
Chip Disable to output in High-Z	[†] HZCE		9		9		12		15		18	ns	6, 7
Chip Enable to power-up time	^t PU	0		0		0		0		0		ns	
Chip Disable to power-down time	^t PD		20		25		30		35		45	ns	
Output Enable access time	^t AOE		10		10		12		15		15	ns	
Output Enable to output in Low-Z	^t LZOE	0		0		0		0		0		ns	
Output Disable to out put in High-Z	^t HZOE		7		7		10		12		15	ns	
WRITE Cycle													
WRITE cycle time	tWC	20		20		25		30		35		ns	
Chip Enable to end of write	tCM	15		18		20		20		25		ns	
Address valid to end of write	^t AW	15		18		20		20		25		ns	
Address setup time	^t AS	0		0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		0		ns	
Write pulse width	^t WP	15		18		20		20		25		ns	
Data setup time	^t DS	10		12		15		15		20		ns	
Data hold time	^t DH	0		0		0		0		0		ns	
Write Disable to output in Low-Z	^t LZWE	5		5		5		5		5		ns	
Write Enable to output in High-Z	^t HZWE		10		10		12		15		18	ns	6

MICHON IT/AT/XT** SPECIFICATION - 1 MEG SRAM FAMILY

ABSOLUTE MAXIMUM RATINGS*

This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

**IT- (-40°C to +85°C),

AT- (-40°C to +125°C),

XT- (-55°C to +125°C)

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(-40^{\circ}C \leq T_{A} \leq 85^{\circ}C; -40^{\circ}C \leq T_{A} \leq 125^{\circ}C; -55^{\circ}C \leq T_{A} \leq 125^{\circ}C; \ Vcc = 5.0V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		ViH	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	0V ≤ VIN ≤ VCC	ILı	-5	5	μΑ	
Output Leakage Current	Output(s) Disabled, $0V \le V_{OUT} \le V_{CC}$	ILo	-5	5	μΑ	
Output High Voltage	lон = -4.0mA	Vон	2.4		V	1
Output Low Voltage	w Voltage IoL = 8.0mA			0.4	٧	1

DESCRIPTION	CONDITION	IS	SYMBOL	MIN	MAX	UNITS	NOTES
Power Supply Current: Operating	f = MAX = 1/	CE ≤ Vi∟; Vcc = MAX f = MAX = 1/ ^t RC, Outputs Open			120	mA	3
Power Supply Current: Standby	CE ≥ VIH; Vcc = f = MAX = 1/ Outputs Op	IsB1		30	mA		
	ViL ≤ Vss +0	$\overline{CE} \ge Vcc -0.2V; Vcc = MAX$ $VlL \le Vss +0.2V;$ $VlH \ge Vcc -0.2V; f = 0$			7	mA	
Power Supply	<u>CE</u> ≥ (Vcc -0.2V)	Vcc = 2V	ICCDR		500	mA	
Current: Data Retention V _{IN} ≥ (Vcc -0.2V) or ≤ -0.2V	Vcc = 3V			750	mA		

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cı		8	pF	4
Output Capacitance	Vcc = 5V	Co		8	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (-40°C \leq T_A \leq 85°C; -40°C \leq T_A \leq 125°C; -55°C \leq T_A \leq 125°C; Vcc = 5.0V \pm 10%)

									
DESCRIPTION		-2	25	-3	35	-4	15		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle									
READ cycle time	^t RC	25		35		45		ns	
Address access time	^t AA		25		35		45	ns	
Chip Enable access time	tACE		25		35		45	ns	
Output hold from address change	tОН	5		5		5		ns	
Chip Enable to output in Low-Z	tLZCE	5		5		5		ns	
Chip Disable to output in High-Z	tHZCE		10		15		18	ns	6, 7
Chip Enable to power-up time	tPU	0		0		0		ns	
Chip Disable to power-down time	^t PD		25		35		45	ns	
Output Enable access time	^t AOE		8		12		15	ns	
Output Enable to output in Low-Z	†LZOE	0		0		0		ns	
Output Disable to output in High-Z	†HZOE		10		12		15	ns	6
WRITE Cycle									
WRITE cycle time	tWC	25		35		45		ns	
Chip Enable to end of write	tCW	15		20		25		ns	
Address valid to end of write	^t AW	15		20		25		ns	
Address setup time	t _{AS}	0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		ns	
Write pulse width	tWP	15		20		25		ns	
Data setup time	^t DS	10		15		20		ns	
Data hold time	tDH	0		0		0		ns	
Write Disable to output in Low-Z	tLZWE	0		0		0		ns	
Write Enable to output in High-Z	tHZWE	0	10	0	15	0	18	ns	6, 7

MICHON

DYNAMIC RAMS	1
DRAM MODULES	2
MULTIPORT DRAMS	3
STATIC RAMS	4
SYNCHRONOUS SRAMS	5
SRAM MODULES	6
CACHE DATA SRAMS	7
FIFO MEMORIES	8
APPLICATION/TECHNICAL INFORMATION	9
MILITARY INFORMATION	10
PACKAGE INFORMATION	11
SALES INFORMATION	19

SYNCHRONOUS SRAM PRODUCT SELECTION GUIDE

Memory	Control	Part Access		Paci	kage		
Configuration	Functions	Number	Time (ns)	PLCC	PQFP	Process	Page
Dual 16K x 16	Registered Address, Write Control, Dual Chip Enable; Data Input Latch	MT58C1616	15, 17, 20, 25	52	52	CMOS	5-1
Dual 16K x 18	Registered Address, Write Control, Dual Chip Enable; Data Input Latch	MT58C1618	15, 17, 20, 25	52	52	CMOS	5-11

SYNCHRONOUS SRAN

SYNCHRONOUS SRAM

16K x 16 SRAM

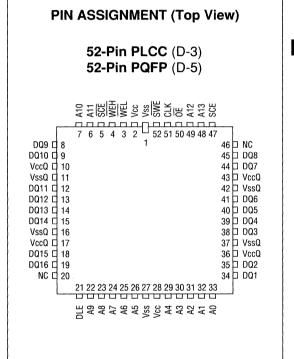
WITH CLOCKED, REGISTERED INPUTS

FEATURES

- Fast access times: 15, 17, 20, and 25ns
- Fast Output Enable: 6, 7, 8, and 10ns
- Single +5V ($\pm 10\%$) power supply
- Separate, electrically isolated output buffer power supply and ground (VccQ, VssQ)
- Optional +3.3V ($\pm 10\%$) output buffer operation
- Data Input Latch

16K x 16

- Common Data Inputs and Data Outputs
- BYTE WRITE capability via Dual Write Strobes
- Clock controlled registered address, Write Control and **Dual Chip Enables**

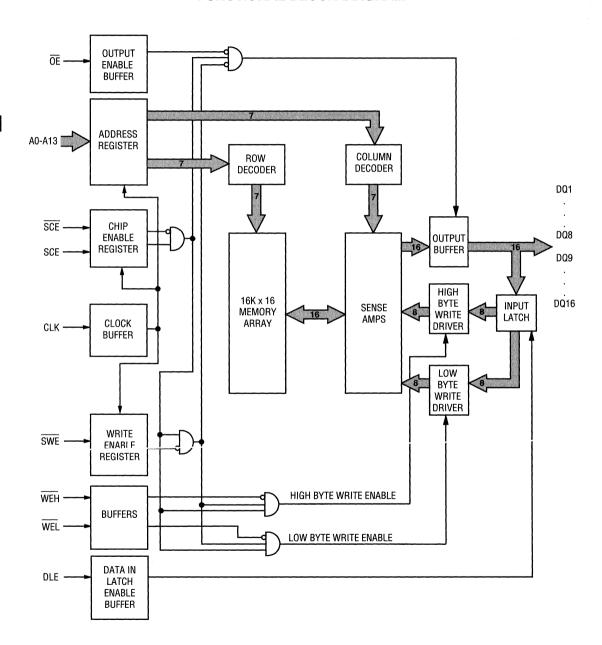

MT58C1616

OPTIONS	MARKING
Timing	
15ns access	-15
17ns access	-17
20ns access	-20
25ns access	-25
• Packages 52-pin PLCC	EJ
52-pin PQFP	LG
• Density	

GENERAL DESCRIPTION

The Micron Synchronous SRAM family employs high speed, low power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using doublelayer metal, double-layer polysilicon technology.

The MT58C1616 SRAM integrates a 16K x 16 SRAM core with advanced synchronous peripheral circuitry. All synchronous inputs pass through registers controlled by a positive-edge-triggered single clock input (CLK). The synchronous inputs include all addresses, the two chip selects (SCE, SCE) and the synchronous write enable (SWE). Asynchronous inputs include the byte write enables (WEL, $\overline{\text{WEH}}$), output enable ($\overline{\text{OE}}$), data latch enable (DLE) and the clock. Input data can be asynchronously latched by DLE to provide simplified data-in (D) timing during WRITE cycles. Data-out (Q), enabled by OE during READ cycles, is asynchronous. The entire data word (DQ1 - DQ16) is output during each READ cycle. The devices are ideally suited for "pipelined" systems and those systems which benefit from a wide data bus.



Address and write control are registered on-chip to simplify WRITE cycles. Dual write enables allow individual bytes to be written. WEL controls DQ1-DQ8 while WEH controls DQ9-DQ16. WEL/WEH allow late WRITE cycles to be aborted if they are both HIGH during the LOW period of the clock. Dual chip enables (SCE, SCE) allow on-chip address decoding to be accomplished when the devices are used in a dual bank mode.

A data input latch is provided. When DLE is HIGH, the data latches are in the transparent mode and input data flows through the latch. When DLE is LOW, the data latch inputs are disabled. The data input latch simplifies WRITE cycles by guaranteeing data hold times.

The MT58C1616 operates from a +5V power supply. Separate and electrically isolated output buffer power (VccQ) and ground (VssQ) pins are provided to allow either +3.3V or +5V TTL operation of the output drivers.

FUNCTIONAL BLOCK DIAGRAM

MT58C1616

PIN DESCRIPTIONS

PLCC and PQFP PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
33, 32, 31, 30, 29, 26, 25, 24, 23, 22, 7, 6, 49, 48	A0-A13	Input	Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
52	SWE	Input	Synchronous Write Enable: This input is a synchronous write enable and must meet the setup and hold times around the rising edge of CLK. SWE is LOW for a WRITE cycle and HIGH for a READ cycle
51	CLK	Input	Clock: This signal registers the address, SCE, SCE, and SWE inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge.
3, 4	WEL, WEH	Input	Asynchronous Write Enables: These asynchronous, active LOW inputs allow individual bytes to be written. When WEL is LOW, data is written to the lower byte, D1-D8. When WEH is LOW, data is written to the upper byte, D9-D16. A late WRITE cycle can be aborted if both WEL and WEH are HIGH during the LOW period of CLK.
5, 47	SCE,SCE	Input	Synchronous Chip Selects: These synchronous signals are used to enable the device. Both active HIGH (SCE) and active LOW (SCE) enables are supplied to provide on-chip address decoding when multiple devices are used, as in a dual bank configuration.
50	ŌĒ	Input	Output Enable: This active LOW input enables the output drivers.
21	DLE	Input	Data Latch Enable: When DLE is HIGH the latch is transparent. Input data is latched asynchronously into the on-chip data latch on the falling edge of DLE. DLE must meet the setup and hold times around CLK if data is latched.
20, 46	NC NC	Input/ Output	These pins are no connects (NC). No connects are not internally bonded.
34, 35, 38, 39, 40, 41, 44, 45, 8, 9, 12 13, 14, 15, 18, 19	DQ1-DQ16	Input/ Output	SRAM Data I/O: Lower byte is DQ1-DQ8; Upper byte is DQ9-DQ16. Input data must meet the setup and hold time around DLE when being latched.
2, 28	Vcc	Supply	Power Supply: +5V ± 10%
10, 17, 36, 43	VccQ	Supply	Isolated Output Buffer Supply: +5V ± 10% or 3.3V ± 10%
11, 16, 37, 42	VssQ	Supply	Isolated Output Buffer Ground: GND
1, 27	Vss	Supply	Ground: GND

TRUTH TABLE

OPERATION	SCE	SCE	SWE	WEL	WEH	DLE	ŌĒ	DQ
Deselected Cycle	L	Х	Х	Х	Х	Х	Х	High-Z
Deselected Cycle	Х	Н	Х	Х	Х	Х	Х	High-Z
Read Cycle	Н	L	Н	X	Х	Х	Н	High-Z
Read Cycle	Н	L	Н	Х	Х	Х	L	Q1-Q16
Word Write Cycle DQ1-DQ16 Transparent data-in	Н	L	L	L	L	Н	Х	D1-D16
Word Write Cycle DQ1-DQ16 Latched data-in	Н	L	L	L	L	L	Х	D1-D16
Aborted Write Cycle	Н	L	L	Н	Н	Х	Х	High-Z
Byte Write Cycle DQ1-DQ8 Transparent data-in	н	L	L	L	Н	Н	Х	D1-D8
Byte Write Cycle DQ9-DQ16 Transparent data-in	Н	L	L	Н	L	Н	Х	D9-D16
Byte Write Cycle DQ1-DQ8 Latched data-in	Н	L	L	L	Н	L	Х	D1-D8
Byte Write Cycle DQ9-DQ16 Latched data-in	Н	L	L	Н	L	L	Х	D9-D16

NOTE:

- 1. Registered inputs (Addresses, SWE, SCE, and SCE) must satisfy the specified setup and hold times around the rising edge of clock (CLK). Data-in must satisfy the specified setup and hold times for DLE.
- 2. A transparent WRITE cycle is defined by DLE HIGH during the WRITE cycle.
- 3. A latched WRITE cycle is defined by DLE transitioning LOW during the WRITE cycle and satisfying the specified setup and hold times.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc/Vccq supply relative	
to Vss/Vssq	1.0V to +7.0V
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1.5W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{\Delta} \le 70^{\circ}C; Vcc =5.0V \pm 10\%; Vss = Vssq, Unless Otherwise Noted)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		ViH	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	$0V \le V_{IN} \le V_{CC}$	ILi	-10	10	μΑ	
Output Leakage Current	Output(s) Disabled, 0V ≤ Voυτ ≤ Vcc	ILo	-10	10	μА	
Output High Voltage	loн = -4.0mA	Vон	2.4		V	1
Output Low Voltage	loL = 8.0mA	Vol		0.4	V	1
Supply Voltage		Vcc	4.5	5.5	V	1
Output Buffer Supply Voltage	5.0V TTL Compatible	Vccq	4.5	5.5	V	1

DESCRIPTION	CONDITIONS	SYMBOL	TYP	MAX	UNITS	NOTES
Power Supply Current: Operating	SCE ≤ VIL; SCE ≥ VIH; f = MAX, Vcc = MAX; Outputs Open	lcc	150	300	mA	3
	$f = MAX; SCE \le VIL; \overline{SCE} \ge VIH,$ $VCC = MAX$	Is _B 1	20	50	mA	
Power Supply Current: Standby	$\overline{SCE} \geq Vcc -0.2; SCE \leq Vss +0.2, \\ Vcc = MAX; Vll \leq Vss +0.2, \\ Vlh \geq Vcc -0.2; f = 0$	ISB2	8	15	mA	
	$f = 0$; $SCE \le V_{IL}$; $\overline{SCE} \le V_{IH}$, $Vcc = MAX$	Isa3	10	25	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	$T_A = 25^{\circ}C; f = 1MHz$	Cı		6	pF	4
Input/Output Capacitance (D/Q)	Vcc = 5V	Co		8	pF	4

WEL / WEH not hold time

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Note 5) (0°C \leq T $_{A}$ \leq 70°C; Vcc = VccQ = 5V \pm 10%)

			15	-	17	-20		-2	25		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Clock									-		L
Clock cycle time	t _{KC}	15		17		20	1	25		ns	
Clock high time	tKH	4		4		4		4		ns	
Clock low time	^t KL	8		8		8		8		ns	
Chip Enable											
SCE/SCE setup time	^t SCES	2		2		2		2		ns	10
SCE/SCE hold time	^t SCEH	2		2		2		2		ns	10
Address				•							
Address setup time	tSAS	2		2		2		2		ns	10
Address hold time	tSAH	2		2		2		2		ns	10
READ Cycle									4.		
READ cycle time	t _{RC}	15		17		20		25		ns	11
Clock to output valid	^t KQ		15		17		20		25	ns	
Clock to output invalid	^t KQX	3		3		3		3		ns	10
Clock to output in Low-Z	^t KQLZ	10		10		10		10		ns	6, 7
Clock to output in High-Z	†KQHZ	3	8	3	8	3	8	3	12	ns	6, 7
SWE setup time	tswns	2		2		2		2		ns	10
SWE hold time	tswnh	2		2		2		2		ns	10
OE to output valid	^t OEQ		6		7		8		10	ns	
OE to output in Low-Z	†OELZ	0		0		0		0		ns	6, 7
OE to output in High-Z	^t OEHZ		8		8		8		8	ns	6, 7
WRITE Cycle					·						
WRITE cycle time	tWC	15		17		20		25		ns	11
SWE setup time	tSWES	2		2		2		2		ns	10
SWE hold time	^t SWEH	2	1	2		2		2		ns	10
Data setup time	t _{DS}	5		6		6		7		ns	8, 10
Data hold time	tDH	2		2		2		2		ns	8, 10
Data to DLE not setup time	†DLNS	1		1		1		1		ns	9, 10
Data to DLE not hold time	^t DLNH	3		3		3		3		ñŝ	9, 10
DLE setup time	†DLS	6		6		6		7		ns	9, 10
DLE hold time	^t DLH	2		2		2		2		ns	9, 10
WEL / WEH setup time	tWES	6		6		6		7		ns	10
WEL / WEH hold time	™EH	2		2		2		2		ns	10
WEL / WEH not setup time	tWNS		0		0		0		0	ns	10
			 		 	 	 		+		+

HNW

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

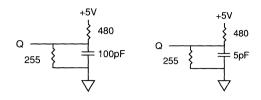
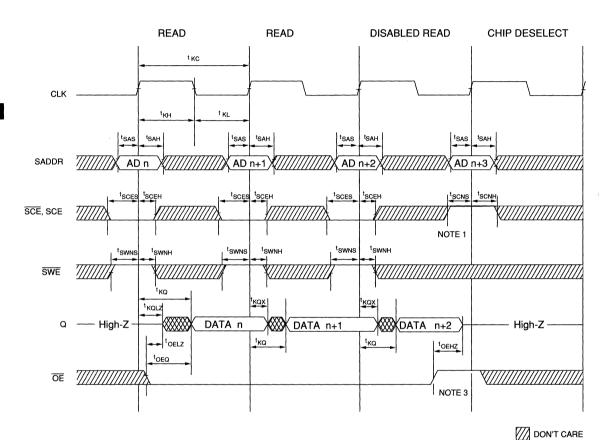


Fig. 1 OUTPUT LOAD EQUIVALENT

Fig. 2 OUTPUT LOAD EQUIVALENT


NOTES

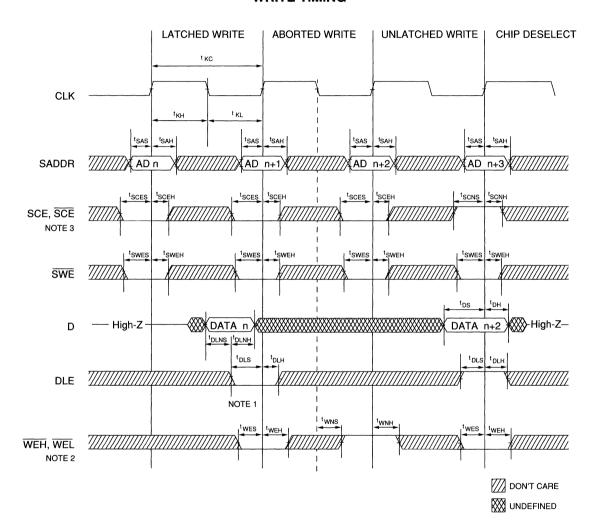
- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- Output loading is specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- At any given temperature and voltage condition, ^tKQHZ is less than ^tKQLZ and ^tOEHZ is less than ^tOELZ.

- 8. A transparent WRITE cycle is defined by DLE being HIGH during the WRITE cycle.
- A latched WRITE cycle is defined by DLE transitioning LOW during the WRITE cycle and satisfying the specified setup and hold time with respect to the rising edge of clock (CLK).
- 10. This is a synchronous device. All synchronous inputs must meet the setup and hold times with stable logic levels for all falling edges of address latch enable (ALE) and data latch enable (DLE).
- 11. ${}^{t}RC = {}^{t}WC = {}^{t}KC$

READ TIMING 2

XXI LINDEEINED

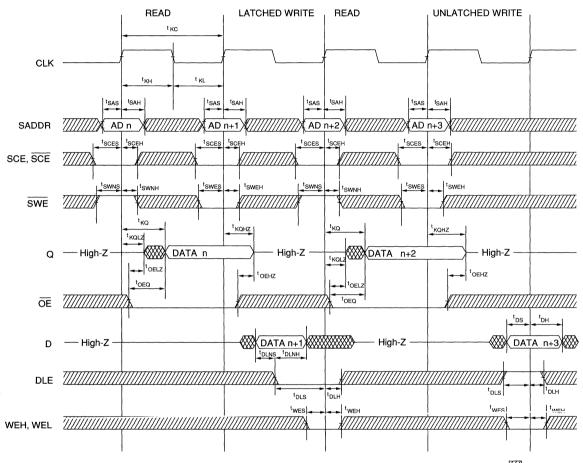
₩ undefined


NOTE: 1. When synchronous chip enables (SCE, SCE) are inactive, the part is deselected.

2. WEL / WEH are Don't Care signals during a READ cycle.

3. Data out (Q) is disabled whenever asynchronous output enable (OE) is inactive, during a READ cycle.

WRITE TIMING



NOTE:

- 1. Data is latched when DLE transitions from HIGH to LOW. When DLE is HIGH, the latch is transparent and data flows through the latch.
- 2. Asynchronous write enables (WEH, WEL) are available for use as byte write enables at the system level. They are also available to perform a late WRITE cycle abort.
- 3. When synchronous chip enables (SCE, SCE) are inactive, the part is deselected.

READ/WRITE TIMING

DON'T CARE

₩ UNDEFINED

SYNCHRONOUS SRAM

16K x 18 SRAM

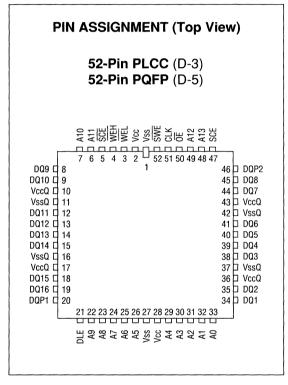
WITH CLOCKED, REGISTERED INPUTS

FEATURES

- Fast access times: 15, 17, 20, and 25ns
- Fast Output Enable: 6, 7, 8, and 10ns
- Single +5V ($\pm 10\%$) power supply
- Separate, electrically isolated output buffer power supply and ground (VccQ, VssQ)
- Optional +3.3V (±10%) output buffer operation
- Data Input Latch
- Common Data Inputs and Data Outputs
- BYTE WRITE capability via Dual Write Strobes
- Parity Bits

OPTIONO

 Clock controlled registered address, Write Control and Dual Chip Enables

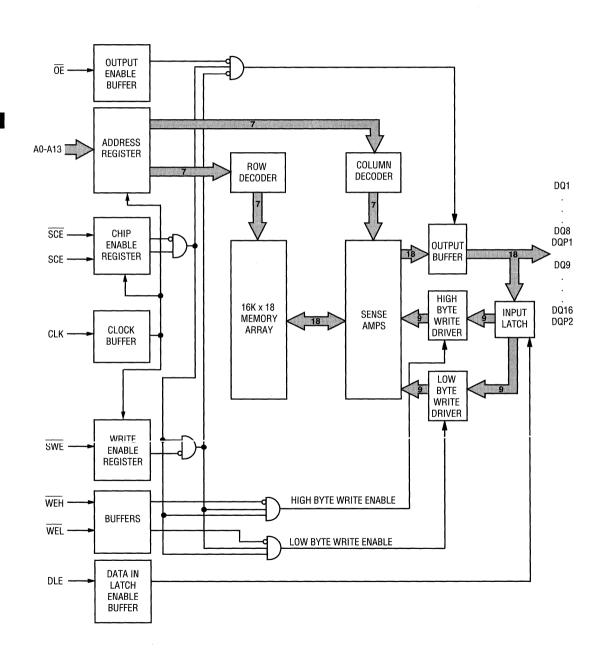

N. C. A. TOTATATA

OPTIONS	MARKING
Timing	
15ns access	-15
17ns access	-17
20ns access	-20
25ns access	-25
 Packages 	
52-pin PLCC	EJ
52-pin PQFP	LG
 Density 	
16K x 18	MT58C1618

GENERAL DESCRIPTION

The Micron Synchronous SRAM family employs high speed, low power CMOS designs using a four-transistor memory cell. Micron SRAMs are fabricated using double-layer metal, double-layer polysilicon technology.

The MT58C1618 SRAM integrates a 16K x 18 SRAM core with advanced synchronous peripheral circuitry. All synchronous inputs pass through registers controlled by a positive-edge-triggered single clock input (CLK). The synchronous inputs include all addresses, the two chip selects (SCE, SCE) and the synchronous write enable (SWE). Asynchronous inputs include the byte write enables (WEL, WEH), output enable (OE), data latch enable (DLE) and the clock. Input data can be asynchronously latched by DLE to provide simplified data-in (D) timing during WRITE cycles. Data-out (Q), enabled by OE during READ cycles, is asynchronous. The entire data word (DQ1-DQ16, DQP1/2) is output during each READ cycle. The devices are ideally suited for "pipelined" systems and those systems which benefit from a wide data bus.


Address and write control are registered on-chip to simplify WRITE cycles. Dual write enables allow individual bytes to be written. WEL controls DQ1-DQ8 and DQP1 while WEH controls DQ9-DQ16 and DQP2. WEL/WEH allow late WRITE cycles to be aborted if they are both HIGH during the LOW period of the clock. Dual chip enables (SCE, SCE) allow on-chip address decoding to be accomplished when the devices are used in a dual bank mode.

A data input latch is provided. When DLE is HIGH, the data latches are in the transparent mode and input data flows through the latch. When DLE is LOW, the data latch inputs are disabled. The data input latch simplifies WRITE cycles by guaranteeing data hold times.

The MT58C1618 operates from a +5V power supply. Separate and electrically isolated output buffer power (VccQ) and ground (VssQ) pins are provided to allow either +3.3V or +5V TTL operation of the output drivers.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

PLCC and PQFP PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
33, 32, 31, 30, 29, 26, 25, 24, 23, 22, 7, 6, 49, 48	A0-A13	Input	Address Inputs: These inputs are registered and must meet the setup and hold times around the rising edge of CLK.
52	SWE	Input	Synchronous Write Enable: This input is a synchronous write enable and must meet the setup and hold times around the rising edge of CLK. SWE is LOW for a WRITE cycle and HIGH for a READ cycle
51	CLK	Input	Clock: This signal latches the address, SCE, SCE, and SWE inputs on its rising edge. All synchronous inputs must meet setup and hold times around the clock's rising edge.
3, 4	WEL, WEH	Input	Asynchronous Write Enables: These asynchronous, active LOW inputs allow individual bytes to be written. When WEL is LOW, data is written to the lower byte, D1-D8, DQP1. When WEH is LOW, data is written to the upper byte, D9-D16, DQP2. A late WRITE cycle can be aborted if both WEL and WEH are HIGH during the LOW period of CLK.
5, 47	SCE,SCE	Input	Synchronous Chip Selects: These synchronous signals are used to enable the device. Both active HIGH (SCE) and active LOW (SCE) enables are supplied to provide on-chip address decoding when multiple devices are used, as in a dual bank configuration.
50	ŌĒ	Input	Output Enable: This active LOW input enables the output drivers.
21	DLE	Input	Data Latch Enable: When DLE is HIGH the latch is transparent. Input data is latched asynchronously into the on-chip data latch on the falling edge of DLE. DLE must meet the setup and hold times around DLE if data is latched.
20, 46	DQP1 DQP2	Input/ Output	Parity Data I/O: These signals are data parity bits. The DQP1 is the parity bit for the lower byte, DQ1-DQ8. DQP2 is the parity bit for the upper byte, DQ9-DQ16. Parity data must meet the setup and hold time around DLE when being latched.
34, 35, 38, 39, 40, 41, 44, 45, 8, 9, 12 13, 14, 15, 18, 19	DQ1-DQ16	Input/ Output	SRAM Data I/O: Lower byte is DQ1-DQ8; Upper byte is DQ9-DQ16. Input data must meet the setup and hold time around DLE when being latched.
2, 28	Vcc	Supply	Power Supply: +5V ± 10%
10, 17, 36, 43	VccQ	Supply	Isolated Output Buffer Supply: +5V ± 10% or 3.3V ± 10%
11, 16, 37, 42	VssQ	Supply	Isolated Output Buffer Ground: GND
1, 27	Vss	Supply	Ground: GND

TRUTH TABLE

OPERATION	SCE	SCE	SWE	WEL	WEH	DLE	ŌĒ	DQ
Deselected Cycle	L	Х	Х	Х	Х	Х	Х	High-Z
Deselected Cycle	Х	Н	Х	Х	Х	Х	Х	High-Z
Read Cycle	Н	L	Н	Х	Х	Х	Н	High-Z
Read Cycle	Н	L	Н	Х	Х	Х	L	Q1-Q16, QP1, QP2
Word Write Cycle DQ1-DQ16, DQP1, DQP2 Transparent data-in	Н	L	L	L	L	Н	х	D1-D16, DP1, DP2
Word Write Cycle DQ1-DQ16, DQP1, DQP2 Latched data-in	Н	L	L	L	L	L	×	D1-D16, DP1, DP2
Aborted Write Cycle	Н	L	L	Н	Н	Х	X	High-Z
Byte Write Cycle DQ1-DQ8, DQP1 Transparent data-in	Н	L	L	L	Н	Н	х	D1-D8, DP1
Byte Write Cycle DQ9-DQ16, DQP2 Transparent data-in	Н	L	L	Н	L	Н	х	D9-D16, DP2
Byte Write Cycle DQ1-DQ8, DQP1 Latched data-in	Н	L	L	L	Н	L	Х	D1-D8, DP1
Byte Write Cycle DQ9-DQ16, DQP2 Latched data-in	Н	L	L	Н	L	L	Х	D9-D16, DP2

NOTE:

- 1. Registered inputs (Addresses, SWE, SCE, and SCE) must satisfy the specified setup and hold times around the rising edge of clock (CLK). Data-in must satisfy the specified setup and hold times for DLE.
- 2. A transparent WRITE cycle is defined by DLE HIGH during the WRITE cycle.
- A latched WRITE cycle is defined by DLE transitioning LOW during the WRITE cycle and satisfying the specified setup and hold times.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc/Vccq supply relativ	e
to Vss/Vssq	1.0V to +7.0V
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1.5W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(0°C \leq T_{Δ} \leq 70°C; Vcc = 5.0V \pm 10%; Vss = Vssq, Unless Otherwise Noted)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		Vih	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	0V ≤ Vin ≤ Vcc	ILi .	-10	10	μА	
Output Leakage Current	Output(s) Disabled, 0V ≤ Vouт ≤ Vcc	ILo	-10	10	μА	
Output High Voltage	loн = -4.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1
Supply Voltage		Vcc	4.5	5.5	V	1
Output Buffer Supply Voltage	5.0V TTL Compatible	Vccq	4.5	5.5	V	1

DESCRIPTION	CONDITIONS	SYMBOL	TYP	MAX	UNITS	NOTES
Power Supply Current: Operating	SCE ≤ VIL; SCE ≥ VIH; f = MAX; Vcc = MAX; Outputs Open	Icc	150	300	mA	3
	SCE \leq VIL; $\overline{SCE} \geq$ VIH; Vcc = MAX; f = MAX	Isb1	20	50	mA	
Power Supply Current: Standby	SCE ≥ Vcc -0.2; SCE ≤ Vss +0.2; Vcc = MAX; VIL ≤ Vss +0.2; VIH ≥ Vcc -0.2; f = 0	IsB2	8	15	mA	
	$f = 0$, $\overline{SCE} \le V_{IL}$; $\overline{SCE} \le V_{IH}$; $V_{CC} = MAX$	IsB3	10	25	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	$T_A = 25^{\circ}C$, $f = 1MHz$	Cı		6	pF	4
Input/Output Capacitance (D/Q)	Vcc = 5V	Со		8	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (0°C \leq T_A \leq 70°C; Vcc = VccQ = 5V \pm 10%)

		-	15	-1	17	-20		-25			
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Clock			L								
Clock cycle time	tKC	15		17		20		25		ns	
Clock high time	^t KH	4		4		4		4		ns	
Clock low time	tKL.	8		8		8		8		ns	
Chip Enable											
SCE/SCE setup time	tSCES	2		2		2		2		ns	10
SCE/SCE hold time	tSCEH	2		2		2		2		ns	10
Address											
Address setup time	tSAS	2		2		2		2		ns	10
Address hold time	tSAH	2		2		2		2		ns	10
READ Cycle											•
READ cycle time	tRC	15		17		20		25		ns	11
Clock to output valid	†KQ		15		17		20		25	ns	
Clock to output invalid	tKQX	3		3		3		3		ns	10
Clock to output in Low-Z	tKQLZ	10		10		10		10		ns	6, 7
Clock to output in High-Z	tKQHZ	3	8	3	8	3	8	3	12	ns	6, 7
SWE setup time	tswns	2		2		2		2		ns	10
SWE hold time	tswnh	2		2		2		2		ns	10
OE to output valid	^t OEQ		6		7		8		10	ns	
OE to output in Low-Z	†OELZ	0		0		0		0		ns	6, 7
OE to output in High-Z	†OEHZ		8		8		8		8	ns	6, 7
WRITE Cycle							••••			•	
WRITE cycle time	tWC	15		17		20		25		ns	11
SWE setup time	tSWES	2		2		2		2		ns	10
SWE hold time	tSWEH	2		2		2		2		ns	10
Data setup time	tDS.	5		6		6		7		ns	8, 10
Data hold time	^t DH	2		2		2		2		ns	8, 10
Data to DLE not setup time	^t DLNS	1		1		1		1		ns	9, 10
Data to DLE not hold time	^t DLNH	3		3		3		3		ns	9, 10
DLE setup time	†DLS	· 6		6		6		/	i	ns	9, 10
DLE hold time	^t DLH	2		2		2		2	Ī	ns	9, 10
WEL / WEH setup time	tWES	6		6		6		7		ns	10
WEL / WEH hold time	tWEH	2		2		2		2		ns	10
WEL / WEH not setup time	tWNS		0		0		0		0	ns	10
WEL / WEH not hold time	tWNH	2		2		2		2		ns	10

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output loadS	See Figures 1 and 2

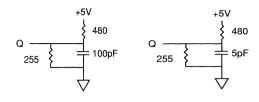
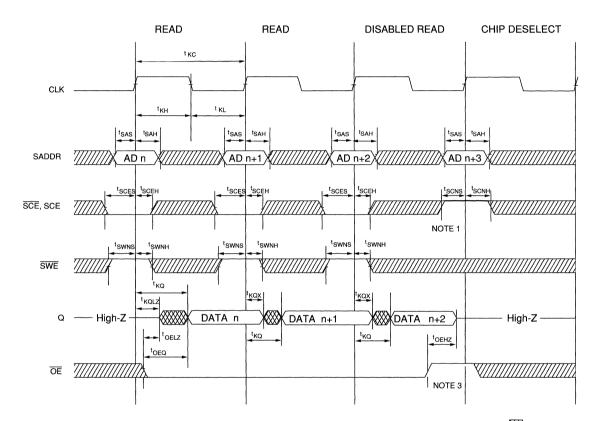


Fig. 1 OUTPUT LOAD EQUIVALENT

Fig. 2 OUTPUT LOAD EQUIVALENT

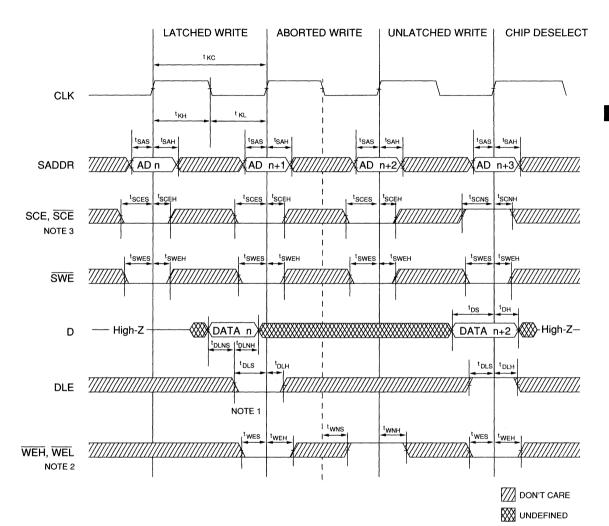

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- Output loading is specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- At any given temperature and voltage condition, ^tKQHZ is less than ^tKQLZ and ^tOEHZ is less than ^tOELZ.

- 8. A transparent WRITE cycle is defined by DLE being HIGH during the WRITE cycle.
- A latched WRITE cycle is defined by DLE transitioning LOW during the WRITE cycle and satisfying the specified setup and hold time with respect to the rising edge of clock (CLK).
- 10. This is a synchronous device. All synchronous inputs must meet the setup and hold times with stable logic levels for all falling edges of address latch enable (ALE) and data latch enable (DLE).
- 11. ${}^{t}RC = {}^{t}WC = {}^{t}KC$

READ TIMING²

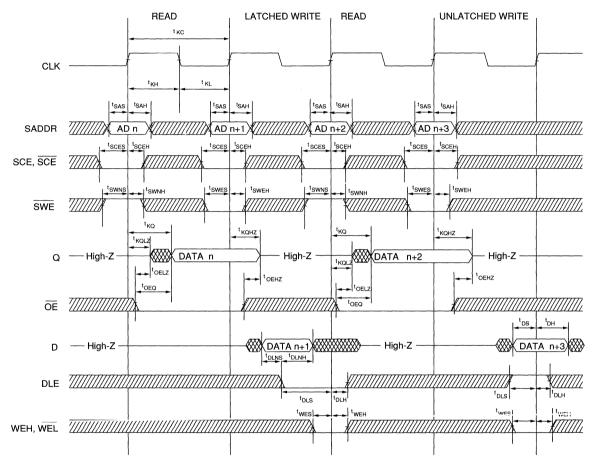
DON'T CARE


₩ undefined

NOTE:

- 1. When synchronous chip enables (SCE, SCE) are inactive, the part is deselected.
- 2. WEL / WEH are Don't Care signals during a READ cycle.
- 3. Data out (Q) is disabled whenever asynchronous output enable (OE) is inactive, during a READ cycle.

WRITE TIMING



NOTE:

- 1. Data is latched when DLE transitions from HIGH to LOW. When DLE is HIGH, the latch is transparent and data flows through the latch.
- Asynchronous write enables (WEH, WEL) are available for use as byte write enables at the system level.
 They are also available to perform a late WRITE cycle abort.
- 3. When synchronous chip enables (SCE, SCE) are inactive, the part is deselected.

READ/WRITE TIMING

DON'T CARE

₩ UNDEFINED

DYNAMIC RAMS	1
DRAM MODULES	2
MULTIPORT DRAMS	3
STATIC RAMS	4
SYNCHRONOUS SRAMS	5
SRAM MODULES	6
CACHE DATA SRAMS	7
FIFO MEMORIES	8
APPLICATION/TECHNICAL INFORMATION	9
MILITARY INFORMATION	10
PACKAGE INFORMATION	11
SALES INFORMATION	12

SRAM MODULE PRODUCT SELECTION GUIDE

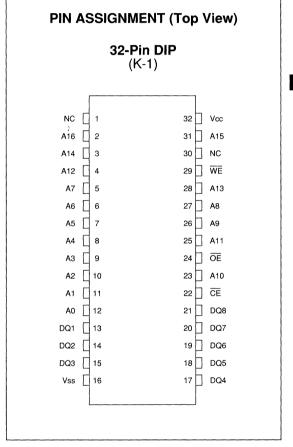
Memory	Optional	Part	Access	Package and	No. of Pins		
Configuration	Access Cycle	Number	Time (ns)	DIP	ZIP	Process	Page
128K x 8	CE & OE	MT4S1288	30, 35, 45	32	-	CMOS	6-1
32K x 16	CE & OE	MT2S3216	30, 35, 45	40	-	CMOS	6-9
64K x 16	CE & OE	MT4S6416	30, 35, 45	40	-	CMOS	6-17
16K x 32	CE & OE	MT8S1632	15, 20, 25, 30, 35, 45	-	64	CMOS	6-25
64K x 32	CE & OE	MT8S6432	20, 25, 30, 35, 45	-	64	CMOS	6-33
128K x 32	CE & OE	MT4S12832	25, 35, 45	T -	64	CMOS	6-41
256K x 32	CE & OE	MT8S25632	25, 35, 45	-	64	CMOS	6-49

(REPLACES: MT85C8128)

SRAM MODULE

128K x 8 SRAM

FEATURES


OPTIONS

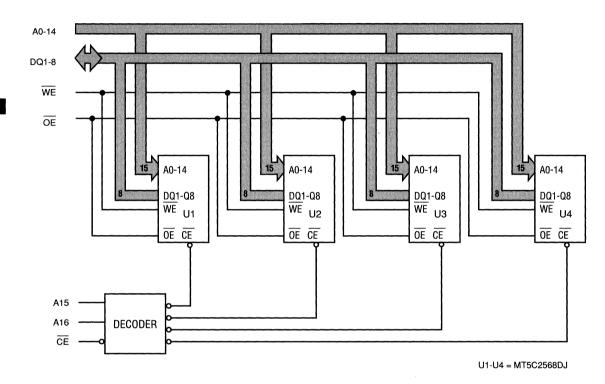
- High speed: 30ns, 35ns, and 45ns
- · High-performance, low-power CMOS process
- Single +5V (±10%) power supply
- Easy memory expansion with CE function
- All inputs and outputs are TTL compatible
- Pin compatible with monolithic 1 Meg SRAM

MARKING

Timing	
30ns access	-30
35ns access	-35
45ns access	-45
• Packages 32-pin DIP (600 mil)	D
2V data retention	L

(Available in 45ns, CMOS decoder version only)

GENERAL DESCRIPTION


The MT4S1288 is a high-speed SRAM memory module containing 131,072 words organized in a x8-bit configuration. The module consists of four 32K x 8 fast static RAMs and a single decoder mounted on a 32-pin DIP, FR4 printed circuit board . Depending upon the speed of the module, the decoder will be either TTL (30ns and 35ns) or CMOS (45ns).

The decoder interprets the higher order address bits (A15 and A16) to select one of the four fast static RAMs. Data is written into the SRAM memory when both write enable ($\overline{\text{WE}}$) and chip enable ($\overline{\text{CE}}$) inputs are LOW. Reading is accomplished when $\overline{\text{WE}}$ remains HIGH, and $\overline{\text{CE}}$ and output

enable (\overline{OE}) are LOW. \overline{CE} sets the output in a high impedance state for additional system design flexibility, and memory expansion may be achieved through use of the \overline{OE} and \overline{CE} functions.

The Micron SRAM family uses high-speed, low-power CMOS designs featuring a four-transistor memory cell and double-layer metal, double-layer polysilicon technology. All module components may be powered from a single +5V DC supply and all inputs and outputs are fully TTL compatible. The "L" option offers reduced-voltage operation for systems with low standby power requirements.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	ŌĒ	CE	WE	DQ	POWER
STANDBY	Х	Η	Х	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
READ	Н	L	Н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on VCC supply relative to Vss.	1.0V to +7.0V
Storage Temperature	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{\Lambda} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

^	M	AX	ļ					
DESCRIPTION	COND	SYMBOL	MIN	-30, -35	-45	UNITS	NOTES	
Input High (Logic 1) Voltage			ViH	2.2	Vcc+1	Vcc+1	V	
Input Low (Logic 0) Voltage			VIL	-0.5	0.8	0.8	V	1, 2
Input Leakage Current	0V ≤ Vin ≤ Vcc	40-A14, WE, OE	ILı	-20	20	20	μА	
input Edutago dullont	1	A15, A16, CE	1.2		600	1.0	μА	
Input/Output Leakage Current		Output(s) Disabled, DQ1-DQ8 0V ≤ Vouт ≤ Vcc		-20	20	20	μА	
Output High Voltage	І он =	Vон	2.4			V	1	
Output Low Voltage	lol =	8.0mA	Vol	0.4	0.4	0.4	٧	1

DECEDITION				M.			
DESCRIPTION CONDITIONS		SYMBOL	MIN	-30, -35	-45	UNITS	NOTES
Operating Current: TTL Input Levels	CE ≤ Vil.; Vcc = MAX; f = MAX = 1/ tRC, Outputs Open	lcc		190	180	mA	3
Standby Current: TTL Input Levels	CE ≥ Viн, Vcc = MAX f = MAX = 1/ ^t RC, Outputs Open	Is _B 1		120	100	mA	
Standby Current: CMOS Input Levels	CE ≥ Vcc -0.2; Vcc = MAX VIL ≤ Vss +0.2, VIH ≥ Vcc -0.2; f = 0	ISB2		40	20	mA	

CAPACITANCE				M	1		
DESCRIPTION	CONDITIONS	SYMBOL	MIN	-30, -35	-45	UNITS	NOTES
Input Capacitance: A0-A14 WE, & OE		C _{I1}		28	28	pF	4
Input Capacitance: A15, A16, & CE	T _A = 25°C; f = 1MHz Vcc = 5V	C12		5	4.5	pF	4
Input/Output Capacitance: DQ1-DQ8		Сю		28	28	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

		-30		-35		-45			
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle					•				
READ cycle time	^t RC	30		35		45		ns	
Address access time	^t AA		30		35		45	ns	
Chip Enable access time	†ACE		30		35		45	ns	
Output hold from address change	tОН	5		5		5		ns	
Chip Enable LOW to output in Low-Z	^t LZCE	5		5		5		ns	7
Chip Enable to output in High-Z	†HZCE		20		20		25	ns	6, 7
Chip Enable LOW to power-up time	tpU	0		0		0		ns	
Chip Enable HIGH to power-down time	tPD		30		35		45	ns	
Output Enable access time	^t AOE		10		12		15	ns	
Output Enable LOW to output in Low-Z	^t LZOE	0		0		0		ns	
Output Enable HIGH to output in High-Z	†HZOE		10		12		15	ns	6
WRITE Cycle									
WRITE cycle time	tWC	25		30		35		ns	
Chip Enable to end of write	tCW	25		30		30		ns	
Address Valid to end of write	^t AW	18		20		25		ns	
Address setup time	t _{AS}	0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		ns	
Write pulse width	tWP	25		25		30		ns	
Data setup time	^t DS	15		15		20		ns	
Data hold time	tDH	0		0		0		ns	
Write Enable LOW to output in Low-Z	^t LZWE	0		0		0		ns	7
Write Enable HIGH to output in High-Z	tHZWE		12		15		18	ns	6, 7

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

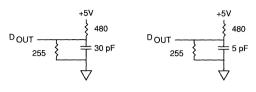
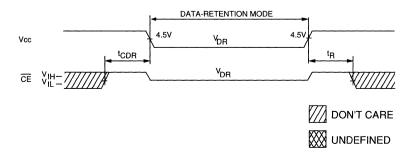


Fig. 1 OUTPUT LOAD EQUIVALENT

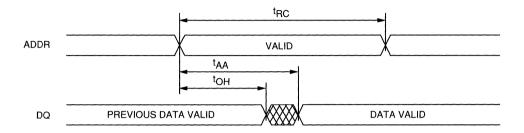
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

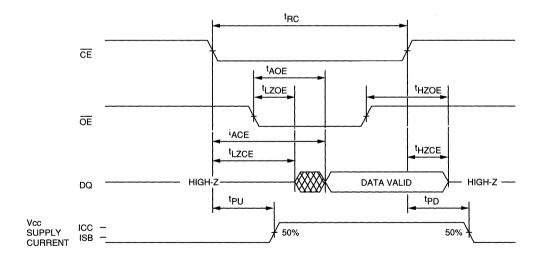

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE, tHZOE, and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, ^tHZWE is less than ^tLZWE.

- 8. WE is HIGH for READ cycle.
- Device is continuously selected. All CEs held in their active state.
- 10. Address valid prior to or coincident with latest occurring $\overline{\text{CE}}$.
- 11. The ouptut will be in the High-Z state if \overline{OE} is High.
- 12. The first falling edge of either \overline{CE} or \overline{WE} will initiate a WRITE cycle, and the first rising edge of either \overline{CE} or \overline{WE} will terminate a WRITE cycle.

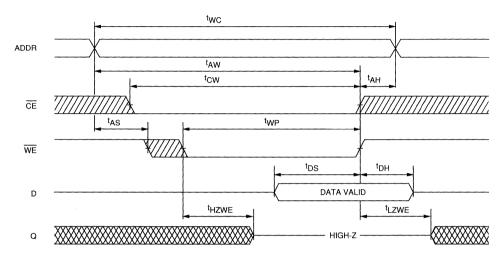
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)


DESCRIPTION	CONDITIONS		SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2			V	
Data Retention Current	<u>CE</u> ≥ (Vcc -0.2V) Vin ≥ (Vcc -0.2V)	Vcc = 2v	ICCDR		0.5	2	mA	
Data Neterition Current	or ≤ 0.2V	Vcc = 3v			1.5	3	mA	
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4, 10

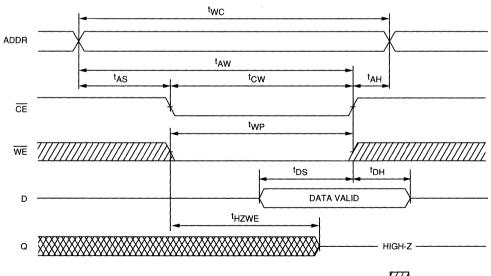
LOW Vcc DATA-RETENTION WAVEFORM



READ CYCLE NO. 18,9



READ CYCLE NO. 2 7, 8, 10



WRITE CYCLE NO. 1 (Write Enable Controlled) 11, 12

WRITE CYCLE NO. 2 (Chip Enable Controlled) 11, 12

SRAM MODULE

32K x 16 SRAM

FEATURES

OPTIONS

- High speed: 30ns, 35ns and 45ns
- High-performance, low-power CMOS process
- Single +5V ($\pm 10\%$) power supply
- Easy memory expansion with CE function
- Upper and Lower Byte Select
- · All inputs and outputs are TTL compatible

• Timing 30ns access	-30
35ns access	-35
45ns access	-45
• Packages 40-pin DIP (600 mil)	D

MARKING

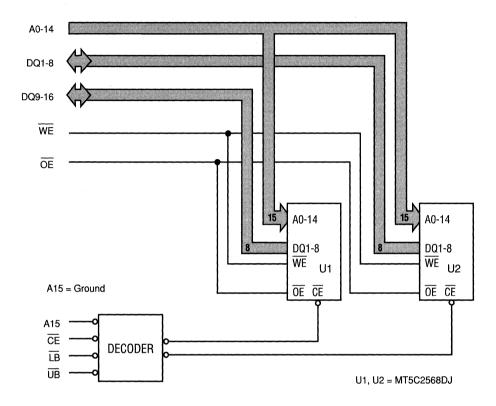
 2V data retention L (Available in 45ns, CMOS decoder versions only)

PIN ASSIGNMENT (Top View) 40-Pin DIP (K-2)*A15 □ 40 TVCC h WE CE I DQ16 ∏ 3 38 TUB DQ15 ∏ ħΙΒ 37 DQ14 🛘 □ A14 DQ13 🗂 ∏ A13 35 DQ12 [] 7 ΠA12 DQ11 [□ A11 DQ10 I 9 32 ∏ A10 DQ9 [] 10 .31 ΠA9 Vss [ΠVss DQ8 | 12 29 □ A8 DQ7 13 ΠA7 28 DQ6 [□ A6 DQ5 [26 □ A5 DQ4 II 16 Π A4 25 DO3 [□ A3 DQ2 ∏ 18 ∏ A2 23 DQ1 19 22 TA1 OE ∏ 20 □ A0

* Address A15 must be connected to Vss

GENERAL DESCRIPTION

The MT2S3216 is a high-speed SRAM memory module containing 32,768 words organized in a x16-bit configuration. The module consists of two 32K x 8 fast static RAMs and a single decoder mounted on a 40-pin DIP, FR4 printed circuit board . Depending upon the speed of the module, the decoder will be either TTL (30ns and 35ns) or CMOS (45ns).


Data is written into the SRAM memory when both write enable (\overline{WE}) and chip enable (\overline{CE}) inputs are LOW. Reading occurs when \overline{WE} remains HIGH, and \overline{CE} and output enable (\overline{OE}) are LOW. \overline{LB} and \overline{UB} control the lower and upper byte

selection. $\overline{\text{CE}}$ sets the output in a high impedance state for additional system design flexibility, and memory expansion may be achieved through use of the $\overline{\text{CE}}$ functions.

The Micron SRAM family uses high-speed, low-power CMOS designs featuring a four-transistor memory cell and double-layer metal, double-layer polysilicon technology. All module components may be powered from a single +5V DC supply and all inputs and outputs are fully TTL compatible. The "L" option offers reduced-voltage operation for systems with low standby power requirements.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	CE	ŪB	LB	ŌĒ	WE	A15	DQ OPERATION	POWER
STANDBY	Н	Х	Х	Х	Х	L	HIGH-Z	STANDBY
STANDBY	L	Τ	Н	Х	Х	٦	HIGH-Z	STANDBY
READ: WORD	L	L	L	L	Н	٦	Q (1-16)	ACTIVE (x16)
READ: LOWER BYTE	L	Н	L	L	Н	L	Q (1-8)	ACTIVE (x8)
READ: UPPER BYTE	L	اـ	Τ	L	Н	L	Q (9-16)	ACTIVE (x8)
READ: WORD	L	L	L	Н	Н	L	HIGH-Z	ACTIVE (x16)
READ: LOWER BYTE	L	Н	L	Н	н	L	HIGH-Z	ACTIVE (x8)
READ: UPPER BYTE	L	L	Н	Н	Н	L	HIGH-Z	ACTIVE (x8)
WRITE: WORD	L	L	L	Х	L	L	D (1-16)	ACTIVE (x16)
WRITE: LOWER BYTE	L	Н	L	Х	L	L	D (1-8)	ACTIVE (x8)
WRITE: UPPER BYTE	L	L	Н	Х	L	L	D (9-16)	ACTIVE (x8)

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vs	ss1.0V to +7.0V
Storage Temperature	55°C to +150°C
Power Dissipation	2W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

$0.0 \le 1_A \le 70.0$, $0.00 = 3$.	MAX								
DESCRIPTION	CONDITIONS			SYMBOL	MIN	-30, -35	-45	UNITS	NOTES
Input High (Logic 1) Voltage	A0-A14, WE, OE		ViH	2.2	Vcc+1	Vcc+1	٧		
	A15, C	A15, CE, UB, LB			2.0	Vcc+1	Vcc+1	٧	
Input Low (Logic 0) Voltage	A0-A14, WE, OE A15, CE, UB, LB		VIL	-0.5	0.8	0.8	V	1, 2	
			VIL	-0.5	8.0	0.9	V	1, 2	
	A0		A14, WE OE		-10	10	10	μΑ	
Input Leakage Current	0V ≤ Vin ≤ Vcc	A15	5, <u>CE</u>	ILi		1200	2.0	μА	
		ŪB	, LB			600	1.0	μА	
Input/Output Leakage Current		Output(s) Disabled, OV ≤ Vout ≤ Vcc		lLo	-5	5	5	μΑ	
Output High Voltage	І он =	Iон = -4.0mA			2.4			٧	1
Output Low Voltage	lol =	= 8.0	mA	Vol		0.4	0.4	V	1

					MAX		1	
DESCRIPTION		CONDITIONS	SYMBOL	MIN	-30, -35	-45	UNITS	NOTES
Operating Current: TTL Input Levels	(x16)	$\overline{CE} \le V_{IL}$; $V_{CC} = MAX$ $f = MAX = 1/{}^{t}RC$.	lcc		210	200	mA	3
TTE Input Levels	(x8)	Outputs Open	icc		140	130		
Standby Current: TTL Input Levels		CE ≥ VIH; Vcc = MAX f = MAX =1/ ^t RC, Outputs Open	Isb1		70	50	mA	
Standby Current: CMOS Input Levels		$\overline{\text{CE}} \ge \text{Vcc} - 0.2; \text{Vcc} = \text{MAX}$ $\text{ViL} \le \text{Vss} + 0.2,$ $\text{ViH} \ge \text{Vcc} - 0.2; \text{f} = 0$	ISB2		35	15	mA	

CAPACITANCE		M					
DESCRIPTION	CONDITIONS	SYMBOL	MIN	-30, -35	-45	UNITS	NOTES
Input Capacitance: A0-A14, WE, OE	$T_A = 25^{\circ}C$; $f = 1MHz$ Vcc = 5V	C _{I1}		14	14	pF	4
Input Capacitance: A15, CE		Cı2		10	9	pF	4
Input Capacitance: UB, LB		Сіз		5	4.5	pF	4
Input/Output Capacitance: DQ		Сю		7	7	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

		-30		-35		-45			
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle									
READ cycle time	^t RC	30		35		45		ns	
Address access time	^t AA		30		35		45	ns	
Chip Enable access time	†ACE		30		35		45	ns	
Output hold from address change	tОН	5		5		5		ns	
Chip Enable LOW to output in Low-Z	†LZCE	5		5		5		ns	7
Chip Enable to output in High-Z	[†] HZCE		20		20		25	ns	6, 7
Chip Enable LOW to power-up time	tPU	0		0		0		ns	
Chip Enable HIGH to power-down time	^t PD		30		35		45	ns	
Output Enable access time	^t AOE		10		12		15	ns	
Output Enable LOW to output in Low-Z	^t LZOE	0		0		0		ns	
Output Enable HIGH to output in High-Z	^t HZOE		10		12		15	ns	6
WRITE Cycle									
WRITE cycle time	tWC	25		30		35		ns	
Chip Enable to end of write	tCW	25		30		30		ns	
Address valid to end of writo	[‡] ÁW	18		20		25		ns	
Address setup time	†AS	0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		ns	
WRITE command pulse width	tWP	25		25		30		ns	
Data setup time	t _{DS}	15		15		20		ns	
Data hold time	tDH	0		0		0		ns	
Write Enable LOW to output in Low-Z	^t LZWE	0		0		0		ns	7
Write Enable HIGH to output in High-Z	tHZWE		12		15		18	ns	6, 7

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

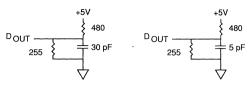
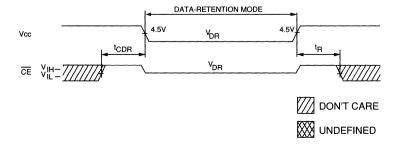


Fig. 1 OUTPUT LOAD EQUIVALENT

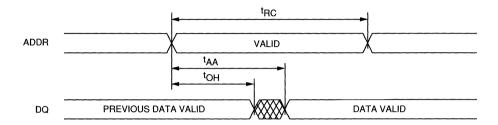
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

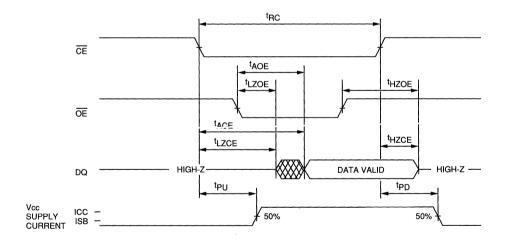

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE and tHŽWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE, ^tHZWE is less than ^tLZWE.

- 8. WE is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. The ouptut will be in the High-Z state if \overline{OE} is High.
- 12. The first falling edge of either $\overline{\text{CE}}$ or $\overline{\text{WE}}$ will initiate a WRITE cycle, and the first rising edge of either $\overline{\text{CE}}$ or $\overline{\text{WE}}$ will terminate a WRITE cycle.

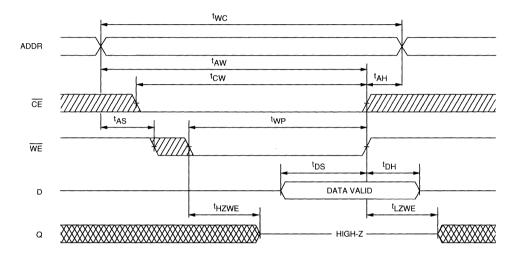
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)

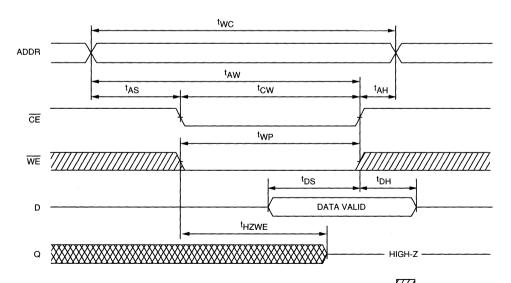

DESCRIPTION	CONDITIONS	}	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2		_	V	
Data Retention Current	CE ≥ (Vcc -0.2V) Vin ≥ (Vcc -0.2V)	Vcc = 2v	ICCDR		0.3	1.0	mA	
Data Fictorition Garrent	or ≤ 0.2V	Vcc = 3v			0.8	1.6	mA	
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4

LOW Vcc DATA-RETENTION WAVEFORM



READ CYCLE NO. 1 8, 9


READ CYCLE NO. 2 7, 8, 10


DON'T CARE

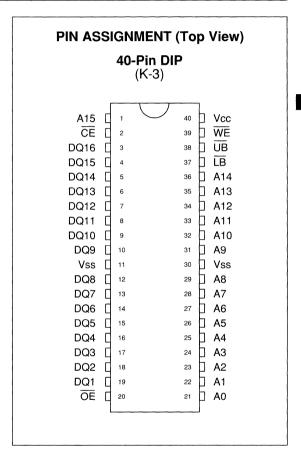
WRITE CYCLE NO. 1 (Write Enable Controlled) 11, 12

WRITE CYCLE NO. 2 (Chip Enable Controlled) 11, 12

SRAM MODULE

64K x 16 SRAM

FEATURES


OPTIONS

- High speed: 30ns, 35ns and 45ns
- High-performance, low-power, CMOS process
- Single +5V (±10%) power supply
- Easy memory expansion with CE function
- Upper and Lower Byte Select
- All inputs and outputs are TTL compatible

Timing	
30ns access	-30
35ns access	-35
45ns access	-45
 Packages 	
40-pin DIP (600 mil)	D

MARKING

2V data retention L
 (Available in the 45ns, CMOS decoder version only)

GENERAL DESCRIPTION

The MT4S6416 is a high-speed SRAM memory module containing 65,536 words organized in a x16-bit configuration. The module consists of four 32K x 8 fast static RAMs and a single decoder mounted on a 40-pin DIP, double-sided FR4 printed circuit board. Depending upon the speed of the module, the decoder will be either TTL (30ns and 35ns) or CMOS (45ns).


The decoder interprets the higher order address bit (A15) to select two of the four fast static RAMs. Data is written into the SRAM memory when both write enable ($\overline{\text{WE}}$) and chip enable ($\overline{\text{CE}}$) inputs are LOW. Reading occurs when $\overline{\text{WE}}$ remains HIGH, and $\overline{\text{CE}}$ and output enable ($\overline{\text{OE}}$) are LOW.

 $\overline{\text{LB}}$ and $\overline{\text{UB}}$ control the lower and upper byte selection. $\overline{\text{CE}}$ sets the output in a high-impedance state for additional system design flexibility, and memory expansion may be achieved through use of the $\overline{\text{OE}}$ function.

The Micron SRAM family uses high-speed, low-power CMOS designs featuring a four-transistor memory cell and double-layer metal, double-layer polysilicon technology. All module components can be powered from a single +5V DC supply and all inputs and outputs are fully TTL compatible. The "L" option offers reduced-voltage operation for systems with low standby power requirements.

FUNCTIONAL BLOCK DIAGRAM

TRUTH TABLE

MODE	CE	ŪB	LB	ŌĒ	WE	DQ OPERATION	POWER
STANDBY	Н	Х	Х	Х	Х	HIGH-Z	STANDBY
STANDBY	L	Н	Н	Х	Х	HIGH-Z	STANDBY
READ: WORD	L	L	L	L	Н	Q (1-16)	ACTIVE (x16)
READ: LOWER BYTE	L	Н	L	L	Н	Q (1-8)	ACTIVE (x8)
READ: UPPER BYTE	L	L	Н	L	Н	Q (9-16)	ACTIVE (x8)
READ: WORD	L	L	L	Н	Н	HIGH-Z	ACTIVE (x16)
READ: LOWER BYTE	L	Н	L	Н	Н	HIGH-Z	ACTIVE (x8)
READ: UPPER BYTE	L	L	Н	Н	Н	HIGH-Z	ACTIVE (x8)
WRITE: WORD	L	L	L	Х	L	D (1-16)	ACTIVE (x16)
WRITE: LOWER BYTE	L	Н	L	Х	L	D (1-8)	ACTIVE (x8)
WRITE: UPPER BYTE	L	L	Н	Х	L	D (9-16)	ACTIVE (x8)

ABSOLUTE MAXIMUM RATINGS*

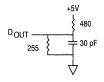
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

$0^{\circ}C \le I_A \le /0^{\circ}C$; $Vcc = 5$	$^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$						}	
DESCRIPTION	CONDITI	CONDITIONS		MIN	-30, -35	-45	UNITS	NOTES
Input High (Logic 1) Voltage	A0-	A14, WE, OE	ViH	2.2	Vcc+1	Vcc+1	V	
	A15	, CE, UB, LB	ViH	2.0	Vcc+1	Vcc+1	V	
Input Low (Logic 0) Voltage	A0-	414, WE, OE	VIL	-0.5	0.8	0.8	V	1, 2
	A15	CE, UB, LB	VIL	-0.5	0.8	1.3	V	1, 2
Innert Lankage Comment	0V < VIN < Vcc	A0-A14		-40	40	40	μА	
Input Leakage Current	OV S VIN S VCC	A15, CE	- ILi		1200	1.0	μА	
		UB, LB			600	1.0	μА	
Output Leakage Current		Output(s) Disabled 0V ≤ Vouт ≤ Vcc		-20	20	20	μА	
Output High Voltage	Іон = -4.	loн = -4.0mA		2.4			V	1
Output Low Voltage	lol = 8.0)mA	Vol		0.4	0.4	V	1

					M	AX		
DESCRIPTION		CONDITIONS	SYMBOL	MIN	-30, -35	-45	UNITS	NOTES
Operating Current: TTL Input Levels	(x16)	CE ≤ V _{IL} , Vcc = MAX f = MAX =1/ ^t RC.	Icc		210	250	mA	3
TTE input Levels	(x8)	Outputs Open	ICC		105	150		
Standby Current: TTL Input Levels		CE ≥ V _{IH} , V _{CC} = MAX f = MAX =1/ ^t RC, Outputs Open	ISB1		120	100	mA	
Standby Current: CMOS Input Levels		$\overline{\text{CE}} \ge \text{Vcc}$ -0.2, $\text{Vcc} = \text{MAX}$ $\text{ViL} \le \text{Vss}$ +0.2, $\text{ViH} \ge \text{Vcc}$ -0.2, $\text{f} = 0$	ISB2		40	20	mA	

CAPACITANCE	M	AX					
DESCRIPTION	CONDITIONS	SYMBOL	MIN	-30, -35	-45	UNITS	NOTES
Input Capacitance: A0-A14, WE, OE	T _A = 25°C; f = 1MHz Vcc=5V	C _I 1		32	16	pF	4
Input Capacitance: A15, CE		Cı2		10	9	pF	4
Input Capacitance: UB, LB		Сіз		5	4.5	pF	4
Input/Output Capacitance: DQ		Cio		16	16	pF	4



ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Note 5) (0°C \leq T_{A} \leq 70°C; Vcc = 5V \pm 10%)

DESCRIPTION		-30		-3	35	-45			
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle									
READ cycle time	^t RC	30		35		45		ns	
Address access time	^t AA		30		35		45	ns	
Chip Enable access time	†ACE		30		35		45	ns	
Output hold from address change	^t OH	5		5		5		ns	
Chip Enable LOW to output in Low-Z	†LZCE	5		5		5		ns	7
Chip Enable to output in High-Z	^t HZCE		20		20		25	ns	6, 7
Chip Enable LOW to power-up time	^t PU	0		0		0		ns	
Chip Enable HIGH to power-down time	^t PD		30		35		45	ns	
Output Enable access time	†AOE		20		20		25	ns	
Output Enable LOW to output in Low-Z	[†] LZOE	0		0		0		ns	
Output Enable HIGH to output in High-Z	^t HZOE		20		20		30	ns	6
WRITE Cycle									
WRITE cycle time	tWC	30		35		45		ns	
Chip Enable to end of write	tCW	25		30		30		ns	
Address valid to end of write	^t AW	25		25		30		ns	
Address setup time	^t AS	0		0		0		ns	
Address hold from end of write	^t AH	2		2		2		ns	
Write command pulse width	tWP	25		25		30		ns	
Data setup time	^t DS	15		15		18		ns	
Data hold time	^t DH	0		0		0		ns	
Write Enable LOW to output in Low-Z	tLZWE	0		0		0		ns	7
Write Enable HIGH to output in High-Z	^t HZWE		20		15		15	ns	6, 7

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

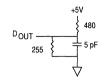
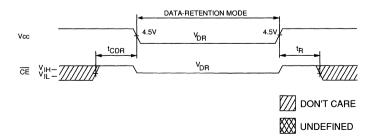


Fig. 1 OUTPUT LOAD EQUIVALENT

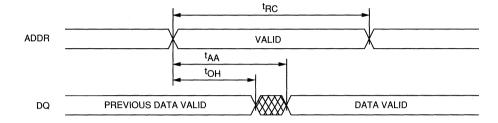
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

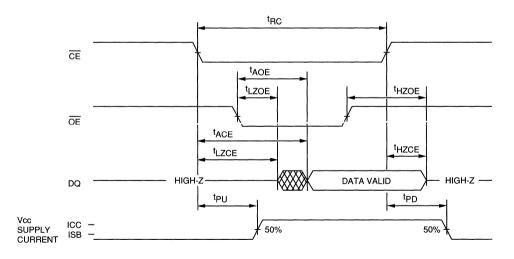

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE, tHZOE and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- At any given temperature and voltage condition, ^tHZCE and ^tHZWE are less than ^tLZCE and ^tLZWE respectively.

- 8. WE is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. The ouptut will be in the High-Z state if \overline{OE} is High.
- 12. The first falling edge of either $\overline{\text{CE}}$ or $\overline{\text{WE}}$ will initiate a WRITE cycle, and the first rising edge of either $\overline{\text{CE}}$ or $\overline{\text{WE}}$ will terminate a WRITE cycle.

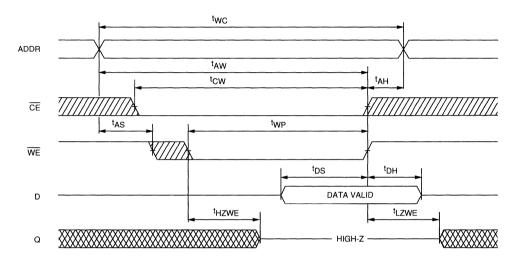
DATA RETENTION ELECTRICAL CHARACTERISTICS (L Version Only)


DESCRIPTION	CONDITIONS		SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2		_	V	
Data Retention Current	CE ≥ (Vcc -0.2V) Vin ≥ (Vcc -0.2V)	Vcc = 2v			0.5	2	mA	
Data Netention Current	or ≤ 0.2V	Vcc = 3v			1.5	3	mA	
Chip Deselect to Data Retention Time			^t CDR	0		_	ns	4
Operation Recovery Time			^t R	^t RC			ns	4

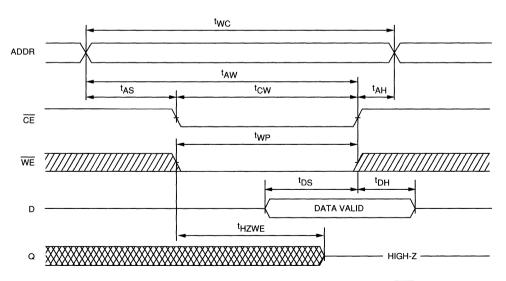
LOW Vcc DATA-RETENTION WAVEFORM



READ CYCLE NO. 1 8, 9



READ CYCLE NO. 2 7, 8, 10



WRITE CYCLE NO. 1 (Write Enable Controlled) 11, 12

WRITE CYCLE NO. 2 (Chip Enable Controlled) 11, 12

SRAM MODULE

16K x 32 SRAM

FEATURES

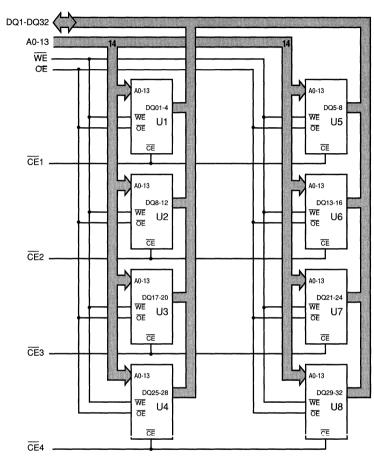
- High speed: 15ns, 20ns, 25ns, 30ns, 35ns and 45ns
- High-performance, low-power, CMOS process
- Single +5V (±10%) power supply
- Easy memory expansion with \overline{CE} and \overline{OE} functions
- Low profile (.50 inches MAX height)
- All inputs and outputs are TTL compatible
- · Industry standard pinout
- Pin compatible with 64K x 32, 128K x 32 and 256K x 32 modules

OPTIONS	MARKING
Timing	
15ns access	-15
20ns access	-20
25ns access	-25
30ns access	-30
35ns access	-35
45ns access	-45
Packages	
64-pin ZIP	Z
2V data retention	L

PIN ASSIGNMENT (Top View) 64-Pin ZIP (J-1)PD0 PD1 DQ1 DQ9 DQ2 [6 DQ10 DQ3 I 8 DQ11 10 DQ4 [11 DQ12 Vcc F 12 13 Α0 14 Α7 Α1 15 AR F 16 A2 17 Α9 18 DQ13 19 DQ5 20 DQ14 21 DQ6 E 22 23 DQ15 24 DQ7 25 DQ16 26 DQ8 [Vss 27 WE C 28 29 NC CE2 30 CE4 33 CE3 [34 NC OF 35 NC F 36 37 38 Vss F 39 DQ25 DQ17 40 DQ26 41 DO18 42 DQ27 43 DQ19 F 44 DQ28 45 DQ20 [46 47 A3 48 A10 [A4 49 A11 Γ 50 51 A5 A12 🗆 52 Vcc 53 A13 [54 Α6 55 DQ21 [56 DQ29 57 DQ22 58 DQ30 59 DQ23 [60 61 DQ31 62 DO24 7 DQ32 63 Vss 64

GENERAL DESCRIPTION

The MT8S1632 is a high-speed SRAM memory module containing 16,384 words organized in a x32-bit configuration. The module consists of eight 16K x 4 fast static RAMs mounted on a 64-pin ZIP, double-sided, FR4 printed circuit board.


Data is written into to the SRAM memory when write enable (\overline{WE}) and chip enable (\overline{CE}) inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} and output enable (\overline{OE}) are LOW. \overline{CE} can set the output in a high-impedance state for additional flexibility in system design, and memory expansion is accomplished by use of the \overline{OE} function.

PD0 and PD1 identify the module's density, allowing interchangeable use of alternate-density, industry standard modules. Four chip enable inputs, (CE1, CE2, CE3 and CE4), are used to enable the module's 4 bytes independently.

The Micron SRAM family uses a high-speed, low-power CMOS design in a four-transistor memory cell featuring double-layer metal, double-layer polysilicon technology. All module components may be powered from a single +5VDC supply and all inputs and outputs are fully TTL compatible. The "L" option offers reduced-voltage operation for systems with low standby power requirements.

FUNCTIONAL BLOCK DIAGRAM

U1-U8 = MT5C6405DJ

PRESENCE DETECT

PD0 = Vss

PD1 = No Connect

TRUTH TABLE

MODE	ŌĒ	CE	WE	DQ	POWER
STANDBY	Х	Н	Х	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
READ	Н	L	Н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to	Vss1.0V to +7.0V
Storage Temperature	55°C to +150°C
Power Dissipation	8W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{\mbox{\scriptsize A}} \leq 70^{\circ}C; \mbox{\em Vcc} = 5.0 \mbox{\em V} \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES	
Input High (Logic 1) Voltage		ViH	2.2	Vcc+1	V	1	
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2	
Input Leakage Current	$0V \le V$ IN $\le V$ CC	ILı	-40	40	μА		
Output Leakage Current	Output(s) Disabled 0V ≤ Vουτ ≤ Vcc	ILo	-5	5	μА		
Output High Voltage	loн = -4.0mA	Vон	2.4		V	1	
Output Low Voltage	loL = 8.0mA	Vol		0.4	V	1	

					MAX			
DESCRIPTION	CONDITIONS	SYMBOL	-15	-20	-25	-30, -35, -45	UNITS	NOTES
Operating Current: TTL Input Levels	TE ≤ VIL, Vcc = MAX f = MAX = 1/ ^t RC, Outputs Open	lcc	1040	960	880	800	mA	3
Standby Current: TTL Input Levels	TE ≥ ViH, Vcc = MAX f = MAX = 1/ ^t RC, Outputs Open	Ísb1	400	320	240	240	mA	
Power Supply Current: Standby	CE ≥ Vcc -0.2, Vcc = MAX VIL ≤ Vss +0.2, VIH ≥ Vcc -0.2, f = 0	IsB2	40	40	40	40	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: Ao-A13, WE, CE, OE	$T_A = 25^{\circ}C; f = 1MHz$	Cı		70	рF	4
Input/Output Capacitance: DQ1-DQ32	Vcc = 5V	Cı/o		15	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (0°C \leq T_{Δ} \leq 70°C; Vcc = 5V \pm 10%)

DESCRIPTION			15	-20 -25		-30		-35		-45					
DESCRIPTION	SYM	MIN	MAX	MIN	МАХ	MIN	MAX	MIN	MAX	MIN	MAX	MIN	МАХ	UNITS	NOTES
READ Cycle															
READ cycle time	^t RC	15		20		25		30		35		45		ns	
Address access time	†AA		15		20		25		30		35		45	ns	
Chip Enable access time	†ACE		12,		15		20		25		30		40	ns	
Output hold from address change	tOH	3		3		3		3		3		3		ns	
Chip Enable LOW to output in Low-Z	^t LZCE	3		5		5		5		5		5		ns	7
Chip Enable to output in High-Z	tHZCE		7		10		10		15		20		20	ns	6, 7
Chip Enable LOW to power-up time	t _P U	0		0		0		0		0		0		ns	
Chip Enable HIGH to power-down time	^t PD		15		20		25		30		35		45	ns	
Output Enable access time	†AOE		7		9		10		15		20		20	ns	
Output Enable LOW to output in Low-Z	^t LZOE	0		0		0		0		0		0		ns	
Output Enable HIGH to output in High-Z	^t HZOE		6		10		10		15		20		20	ns	6
WRITE Cycle															
WRITE cycle time	tWC	15		20		25		30		35		45		ns	
Chip Enable to end of write	tCW	12	8	15		20		25		25		30		ns	
Address valid to end of write	WA [†]	12		15		20		25		25		30		ns	
Address setup time	†AS	0		0		0		0		0	i	0		ns	
Address hold from end of write	^t AH	0		0		0		0		0		0		ns	
Write command pulse width	tWP	12		15		20		25		25		30		ns	
Data setup time	t _{DS}	8		10		10		15		15		20		ns	
Data hold time	†DH	0		0		0		0		0		0		ns	
Write Enable LOW to output in Low-Z	tLZWE	2		2		2		2		2		2		ns	7
Write Enable HIGH to output in High-Z	tHZWE		6		8		10		12		15		20	ns	6, 7

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

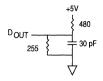
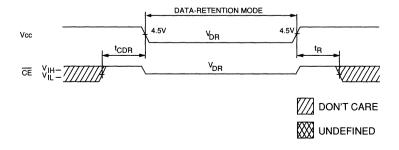


Fig. 1 OUTPUT LOAD EQUIVALENT

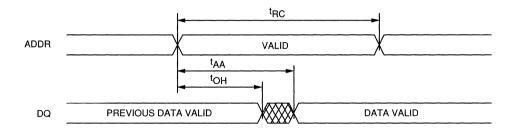
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

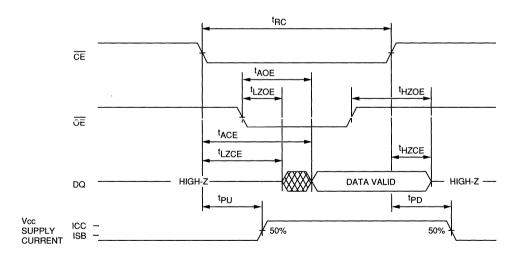

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE, tHZOE and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ±500mV from steady state voltage.
- 7. At any given temperature and voltage condition, 'HZCE is less than 'LZCE, and 'HZWE is less than 'LZWE.

- 8. WE is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. The ouptut will be in the High-Z state if \overline{OE} is High.
- 12. The first falling edge of either \overline{CE} or \overline{WE} will initiate a WRITE cycle, and the first rising edge of either \overline{CE} or \overline{WE} will terminate a WRITE cycle.

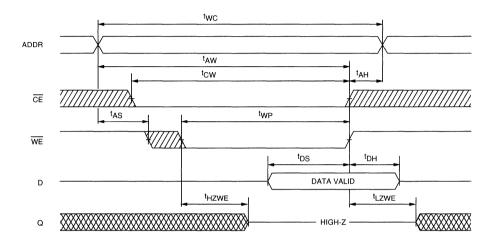
DATA RETENTION ELECTRICAL CHARACTERISTICS (-L Version Only)

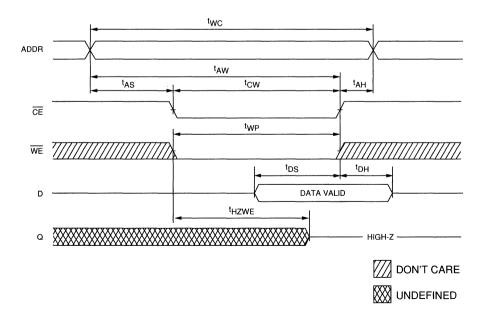

DESCRIPTION	CONDITIONS		SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			V DR	2	_	V		
Data Retention Current	<u>CE</u> ≥ (Vcc -0.2V) Vin ≥ (Vcc -0.2V)	Vcc = 2v	ICCDR		0.8	4	mA	
Data Neterition Current	or ≤ 0.2V	Vcc = 3v			2.8	6	mA	
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4

LOW Vcc DATA-RETENTION WAVEFORM



READ CYCLE NO. 18,9


READ CYCLE NO. 2 7, 8, 10


DON'T CARE

WRITE CYCLE NO. 1 (Write Enable Controlled) 11, 12

WRITE CYCLE NO. 2 (Chip Enable Controlled) 11, 12

SRAM MODULE

64K x 32 SRAM

FEATURES

OPTIONS

- Industry compatible pinout
- High speed: 20ns, 25ns, 30ns, 35ns and 45ns
- High-performance, low-power, CMOS process
- Single +5V (±10%) power supply
- Easy memory expansion with CE function
- Low profile (.50 inches MAX height)
- All inputs and outputs are TTL compatible

OI IIONS	MAKKING
Timing	
20ns access	-20
25ns access	-25
30ns access	-30
35ns access	-35
45ns access	-45
• Packages 64-pin ZIP	Z
2V data retention	L

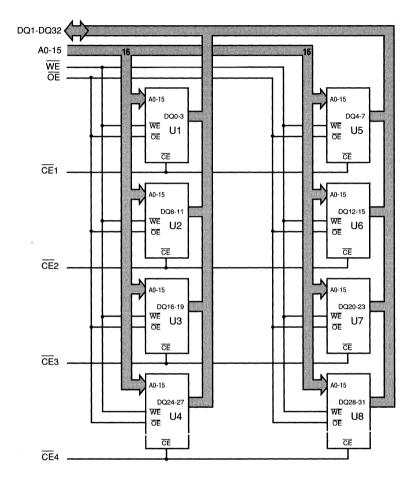
MARKING

PIN ASSIGNMENT (Top View) 64-Pin ZIP (J-1)Vss PD0 D PD1 DQ1 E DQ9 DQ2 7 DQ10 DQ3 [8 DQ11 DQ4 □ 10 DQ12 Vcc □ 12 □ A0 13 A7 14 ∃ A1 15 A8 [16 17 7 A2 A9 [18 □ DQ13 19 DQ5 □ 20 21 □ DQ14 DQ6 E 22 DQ15 DQ7 24 25 DQ16 DQ8 [26 27 ☐ Vss WE 28 A15 CF2 29 A14 E 30 32 □ CE4 33 CE3 [34 35 NC OE NC F 37 Vss [38 T DQ25 39 DQ17 [40 41 DQ26 DQ18 42 DQ27 43 44 DQ19 [DQ28 45 DQ20 46 47 _ A3 A10 [48 □ A4 49 A11 E 50 51 A5 A12 [52 7 Vcc 53 А13 Г 54 55 A6 DQ21 [56 DQ29 57 DQ22 58 DQ30 59 DQ23 60 61 DQ31 DQ24 [62 T DQ32 Vss [

GENERAL DESCRIPTION

The MT8S6432 is a high-speed SRAM memory module containing 65,536 words organized in a x32-bit configuration. The module consists of eight 64K x 4 fast static RAMs mounted on a 64-pin ZIP, double-sided, FR4 printed circuit board.

Data is written into to the SRAM memory when write enable ($\overline{\text{WE}}$) and chip enable ($\overline{\text{CE}}$) inputs are both LOW. Reading is accomplished when $\overline{\text{WE}}$ remains HIGH and $\overline{\text{CE}}$ and output enable ($\overline{\text{OE}}$) are LOW. $\overline{\text{CE}}$ can set the output in a high-impedance state for additional flexibility in system design, and memory expansion is accomplished by use of the $\overline{\text{OE}}$ function.


PD0 and PD1 identify the module's density allowing inter-

changeable use of alternate density, industry-standard modules. Four chip enable inputs, (CE1, CE2, CE3 and CE4) are used to enable the module's 4 bytes independently.

The Micron SRAM family uses a high-speed, low-power CMOS design in a four-transistor memory cell featuring double-layer metal, double-layer polysilicon technology. All module components may be powered from a single +5VDC supply and all inputs and outputs are fully TTL compatible. The "L" option offers reduced-voltage operation for systems with low standby power requirements.

FUNCTIONAL BLOCK DIAGRAM

U1-U8 = MT5C2565DJ

PRESENCE DETECT PD0 = No Connect PD1 = Vss

TRUTH TABLE

MODE	ŌĒ	CE	WE	DQ	POWER
STANDBY	Х	Н	Х	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
READ	Н	L	Н	HIGH-Z	ACTIVE
WRITE	Х	L	L	.D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative	e to Vss1.0V to +7.0V
Storage Temperature	55°C to +150°C
Power Dissipation	8W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{\mbox{\scriptsize A}} \leq 70^{\circ}C; \mbox{\em Vcc} = 5.0 \mbox{\em V} \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES	
Input High (Logic 1) Voltage		ViH	2.2	Vcc+1	V	1	
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2	
Input Leakage Current	0V ≤ VIN ≤ Vcc	ILı	-40	40	μΑ		
Output Leakage Current	Output(s) Disabled 0V ≤ Vouт ≤ Vcc	ILo	-5	5	μА		
Output High Voltage	Iон = -4.0mA	Vон	2.4		V	1	
Output Low Voltage	loL = 8.0mA	Vol		0.4	V	1	

				MAX			
DESCRIPTION	CONDITIONS	SYMBOL	-20	-25, -30	-35, -45	UNITS	NOTES
Operating Current: TTL Input Levels	CE ≤ V _{IL} , V _C C = MAX f = MAX = 1/ ^t RC, Outputs Open	lcc	840	760	720	mA	3
Standby Current: TTL Input Levels	TE ≥ ViH, Vcc = MAX f = MAX = 1/ tRC, Outputs Open	Isb1	240	200	200	mA	
Power Supply Current: Standby	CE ≥ Vcc -0.2, Vcc = MAX VIL ≤ Vss +0.2, VIH ≥ Vcc -0.2, f = 0	IsB2	40	40	56	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance: Ao-A13, WE, CE, OE	$T_A = 25^{\circ}C; f = 1MHz$	Cı		72	pF	4
Input/Output Capacitance: DQ1-DQ32	Vcc = 5V	Cı/o		15	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 5) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

DECORIDATION		-2	20	-25	5	-30		-40		-45			
DESCRIPTION	SYM	MIN	MAX	MiN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle	-l										the sufficient and the supplemental threat		
READ cycle time	tRC	20		25		30		35		45		ns	
Address access time	†AA		20		25		30		35		45	ns	
Chip Enable access time	†ACE		20		25		30		35		45	ns	
Output hold from address change	tOH	3		5		5		5		5		ns	
Chip Enable LOW to output in Low-Z	^t LZCE	6		6		6		6		6		ns	7
Chip Enable to output in High-Z	^t HZCE		9		9		12		15		18	ns	6, 7
Chip Enable LOW to power-up time	^t PU	0		0		0		0		0		ns	1
Chip Enable HIGH to power-down time	tPD		20		25		30		35		45	ns	
Output Enable access time	†AOE		8		8		10		12		15	ns	
Output Enable LOW to output in Low-Z	^t LZOE	2		2		2		2		2		ns	
Output Enable HIGH to output in High-Z	†HZOE		7		7		10		12		15	ns	6
WRITE Cycle	····	L											
WRITE cycle time	¹WC	20		20		25		30		35		ns	
Chip Enable to end of write	tCW	15		15		18		20		25		ns	
Address valid to end of write	^t AW	15		15		18		20		25		ns	
Address setup time	†AS	0		0		0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		0		0		ns	
Write pulse width	tWP	15		15		18		20		25		ns	
Data setup time	†DS	10		10		12		15		20		ns	
Data hold time	†DH	0		0		0		0		0		ns	
Write Enable LOW to output in Low-Z	tLZWE	5		5		5		5		5		ns	7
Write Enable HIGH to output in High-Z	tHZWE	0	10	0	10	0	10	0	12	0	15	ns	6, 7

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference leve	els1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

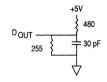
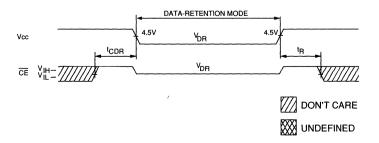


Fig. 1 OUTPUT LOAD EQUIVALENT

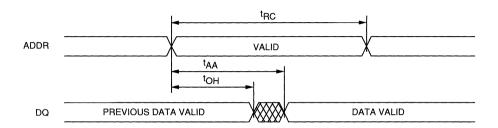
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

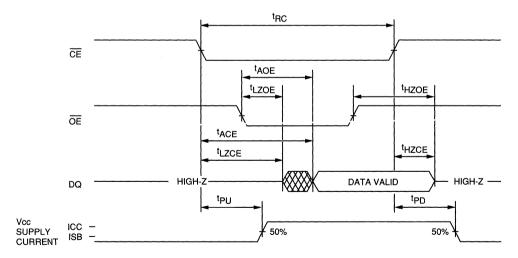

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE, tHZOE and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- At any given temperature and voltage condition, [†]HZCE and [†]HZOE are less than [†]LZWE.

- 8. $\overline{\text{WE}}$ is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. The ouptut will be in the High-Z state if \overline{OE} is High.
- 12. The first falling edge of either \overline{CE} or \overline{WE} will initiate a WRITE cycle, and the first rising edge of either \overline{CE} or \overline{WE} will terminate a WRITE cycle.

DATA RETENTION ELECTRICAL CHARACTERISTICS (-L Version Only)

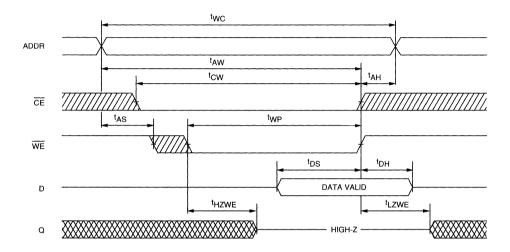

DESCRIPTION	CONDITIONS		SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2		_	V	
Data Retention Current $\overline{CE} \ge (Vcc - 0.2V)$ $VIN \ge (Vcc - 0.2V)$ $or \le 0.2V$	Vcc = 2v	ICCDR		0.8	4	mA		
	Vcc = 3v			3	6	mA		
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	†RC			ns	4

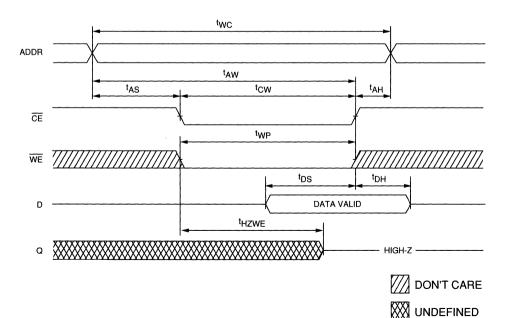
LOW Vcc DATA-RETENTION WAVEFORM



READ CYCLE NO. 18,9

READ CYCLE NO. 2 7, 8, 10





(REPLACES: MT85C3264)

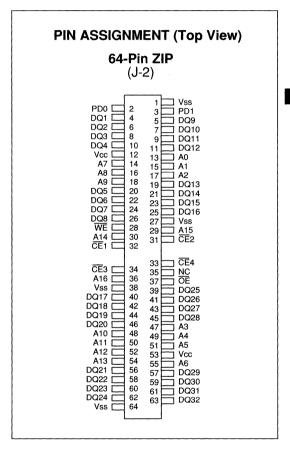
WRITE CYCLE NO. 1 (Write Enable Controlled) 11, 12

WRITE CYCLE NO. 2 (Chip Enable Controlled) 11, 12

(REPLACES: MT85C3264)

SRAM MODULE

128K x 32 SRAM


FEATURES

OPTIONS

- Industry compatible pinout
- High speed: 25ns, 35ns and 45ns
- High-density 512KB design
- High-performance, low-power, CMOS process
- Single +5V (±10%) power supply
- Easy memory expansion with CE function
- Low profile (.600 inches MAX height)
- All inputs and outputs are TTL compatible

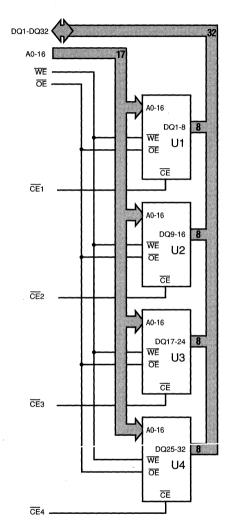
•	Timing 25ns access 35ns access 45ns access	-25 -35 -45
•	Packages 64-pin ZIP	Z
•	Optional, 2V data retention	L

MARKING

GENERAL DESCRIPTION

The MT4S12832 is a high-speed SRAM memory module containing 131,072 words organized in a x32-bit configuration. The module consists of four 128K x 8 fast static RAMs mounted on a 64-pin ZIP, double-sided, FR4 printed circuit board.

Data is written into the SRAM memory when write enable (\overline{WE}) and chip enable (\overline{CE}) inputs are both LOW. Reading is accomplished when \overline{WE} remains HIGH and \overline{CE} and output enable (\overline{OE}) are LOW. \overline{CE} can set the output in a high-impedance state for additional flexibility in system design. Memory expansion is accomplished by use of the \overline{OE} function.


PD0 and PD1 identify the module's density allowing inter-

changeable use of alternate density, industry-standard modules. Four chip enable inputs, $(\overline{CE1}, \overline{CE2}, \overline{CE3})$ and $(\overline{CE4})$ are used to enable the module's 4 bytes independently.

The Micron SRAM family uses a high-speed, low-power CMOS design in a four-transistor memory cell featuring double-layer metal, double-layer polysilicon technology. All module components may be powered from a single +5VDC supply and all inputs and outputs are fully TTL compatible. The "L" option offers reduced-voltage operation for systems with low standby power requirements.

FUNCTIONAL BLOCK DIAGRAM

U1-U4 = MT5C1008

PRESENCE DETECT PD0 = No Connect

PD1 = No Connect

TRUTH TABLE

MODE	ŌĒ	CE	WE	DQ	POWER
STANDBY	Х	н	X	HIGH-Z	STANDBY
READ	L	Ļ	Н	Q	ACTIVE
READ	Н	L	Н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Storage Temperature	55°C to +150°C
Power Dissipation	4W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

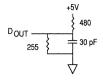
 $(0^{\circ}C \leq T_{\mbox{\scriptsize A}} \leq 70^{\circ}C; \mbox{\em Vcc} = 5.0 \mbox{\em V} \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage		ViH	2.2	Vcc+1	V	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2
Input Leakage Current	0V ≤ VIN ≤ VCC	ILı	-20	20	μΑ	
Output Leakage Current	Output(s) Disabled 0V ≤ Vouт ≤ Vcc	ILo	-20	20	μА	
Output High Voltage	loн = -4.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1

				MAX			
DESCRIPTION	CONDITIONS	SYMBOL	-25	- 35	-45	UNITS	NOTES
Operating Current: TTL Input Levels	TE ≤ VIL, Vcc = MAX f = MAX = 1/ tRC, Outputs Open	lcc	480	480	480	mA	3
Standby Current: TTL Input Levels	$\overline{CE} \ge V_{IH}, V_{CC} = MAX$ $f = MAX = 1/{}^{t}RC,$ ISB1 Outputs Open		100	100	100	mA	
Standby Current: CMOS Input Levels	$\overline{CE} \ge Vcc - 0.2, \ Vcc = MAX$ $V_{IL} \le Vss + 0.2,$ $V_{IH} \ge Vcc - 0.2, \ f = 0$	ISB2	28	28	28	mA	

CAPACITANCE

DESCRIPTION	RIPTION CONDITIONS		MIN	MAX	UNITS	NOTES
Input Capacitance: Ao-A13, WE, OE	$T_A = 25^{\circ}C; f = 1MHz$	Cı		32	pF	4
Input/Output Capacitance: DQ1-DQ32	Vcc = 5V	Cı/o		8	pF	4


ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Note 5) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

DESCRIPTION		-2	25	-3	5	-45	j		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle									
READ cycle time	^t RC	25		35		45		ns	
Address access time	^t AA		25		35		45	ns	
Chip Enable access time	†ACE		25		35		45	ns	
Output hold from address change	tОН	5		5		5		ns	
Chip Enable LOW to output in Low-Z	†LZCE	5		5		5		ns	7
Chip Enable to output in High-Z	tHZCE		10		15		18	ns	6, 7
Chip Enable LOW to power-up time	^t PU	0		0		0		ns	
Chip Enable HIGH to power-down time	^t PD		25		35		45	ns	
Output Enable access time	tAOE		8		12		15	ns	
Output Enable LOW to output in Low-Z	^t LZOE	0		0		0		ns	
Output Enable HIGH to output in High-Z	†HZOE		10		12		15	ns	6
WRITE Cycle									
WRITE cycle time	¹WC	25		35		45		ns	
Chip Enable to end of write	tCW	15		20		25		ns	
Address valid to end of write	†AW	15		20		25		ns	
Address setup time	†AS	0		0		0		ns	
Address hold from end of write	^t AH	0		0		0		ns	
Write command pulse width	tWP	15		20		25		ns	
Data setup time	†DS	10		15		20		ns	
Data hold time	tDH	0		0		0		ns	
Write Enable LOW to output in Low-Z	tLZWE	0		0		0		ns	7
Write Enable HIGH to output in High-Z	tHZWE		10		15		18	ns	6, 7

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	.See Figures 1 and 2

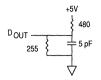
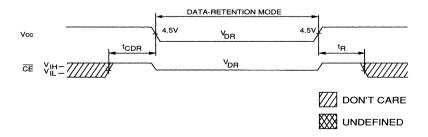


Fig. 1 OUTPUT LOAD EQUIVALENT

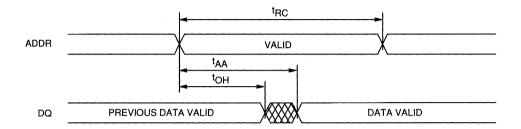
Fig. 2 OUTPUT LOAD EQUIVALENT

NOTES

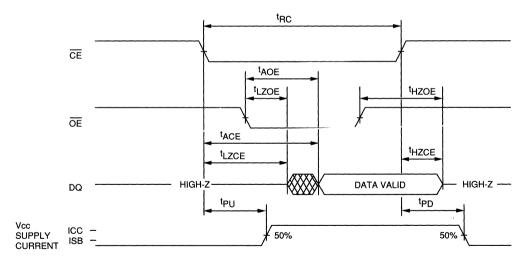

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE, tHZOE and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- 7. At any given temperature and voltage condition, 'HZCE and 'HZOE are less than 'LZWE.

- 8. WE is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. The ouptut will be in the High-Z state if \overline{OE} is High.
- 12. The first falling edge of either $\overline{\text{CE}}$ or $\overline{\text{WE}}$ will initiate a WRITE cycle, and the first rising edge of either $\overline{\text{CE}}$ or $\overline{\text{WE}}$ will terminate a WRITE cycle.

DATA RETENTION ELECTRICAL CHARACTERISTICS (-L Version Only)

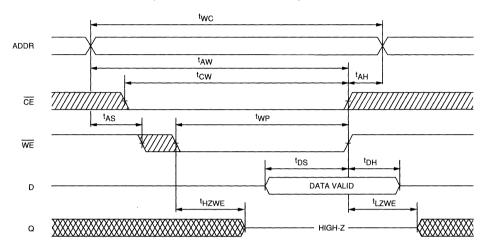

DESCRIPTION	CONDITIONS		SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2			V	
Data Retention Current	CE ≥ (Vcc -0.2V) Vin ≥ (Vcc -0.2V)	Vcc = 2v	ICCDR		0.4	2	mA	
Data Heterition Guirent	or ≤ 0.2V	Vcc = 3v			1.4	3	mA	
Chip Deselect to Data Retention Time			^t CDR	0		_	ns	4
Operation Recovery Time			^t R	^t RC			ns	4

LOW Vcc DATA-RETENTION WAVEFORM

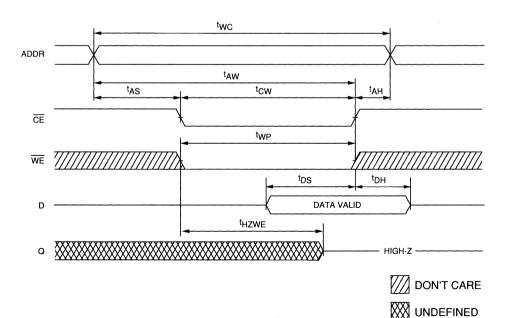


READ CYCLE NO. 18,9

READ CYCLE NO. 2 7, 8, 10

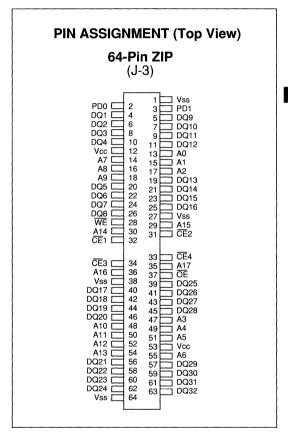


DON'T CARE



WRITE CYCLE NO. 1 (Write Enable Controlled) 11, 12

WRITE CYCLE NO. 2 (Chip Enable Controlled) 11, 12


SRAM MODULE

256K x 32 SRAM

FEATURES

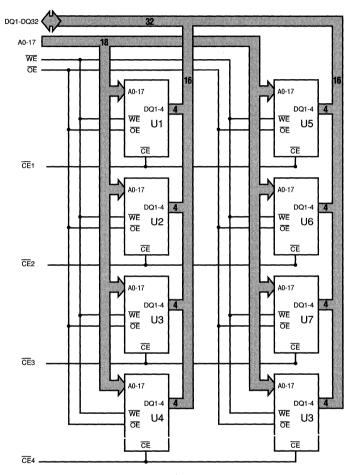
- Industry compatible pinout
- High speed: 25ns, 35ns and 45ns
- High-density 1MB design
- High-performance, low-power, CMOS process
- Single +5V (±10%) power supply
- Easy memory expansion with \overline{CE} function
- Low profile (.600 inches MAX height)
- All inputs and outputs are TTL compatible

OPTIONS	MARKING				
Timing					
25ns access	-25				
35ns access	-35				
45ns access	-45				
Packages					
64-pin ZIP	Z				
Optional, 2V data retention	L				

GENERAL DESCRIPTION

The MT8S25632 is a high-speed SRAM memory module containing 262,144 words organized in a x32-bit configuration. The module consists of eight 256K x 4 fast static RAMs mounted on a 64-pin ZIP, double-sided, FR4 printed circuit board.

Data is written into the SRAM memory when write enable (\overline{WE}) and chip enable (\overline{CE}) inputs are both LOW. Reading is accomplished when WE remains HIGH and CE and output enable (OE) are LOW. CE can set the output in a high impedance state for additional flexibility in system design, and memory expansion is accomplished by use of the \overline{OE} and \overline{CE} functions.


PD0 and PD1 identify the module's density allowing inter-

changeable use of alternate density, industry-standard modules. Four chip enable inputs, (CE1, CE2, CE3 and CE4) are used to enable the module's 4 bytes indepen-

The Micron SRAM family uses a high-speed, lowpower CMOS design in a four-transistor memory cell featuring double-layer metal, double-layer polysilicon technology. All module components may be powered from a single +5VDC supply and all inputs and outputs are fully TTL compatible. The "L" option offers reducedvoltage operation for systems with low standby power requirements.

FUNCTIONAL BLOCK DIAGRAM

U1-U8 = MT5C1005

PRESENCE DETECT

PD0 = Vss

PD1 = Vss

TRUTH TABLE

MODE	ŌĒ	CE	WE	DQ	POWER
STANDBY	Х	Н	Х	HIGH-Z	STANDBY
READ	L	L	Н	Q	ACTIVE
READ	Н	L	Н	HIGH-Z	ACTIVE
WRITE	Х	L	L	D	ACTIVE

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to	Vss1.0V to +7.0V
Storage Temperature	55°C to +150°C
Power Dissipation	8W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{\Delta} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

DESCRIPTION	CONDITIONS		SYMBOL	MIN	MAX	UNITS	NOTES
Input High (Logic 1) Voltage			Vін	2.2	Vcc+1	٧	1
Input Low (Logic 0) Voltage		VIL	-0.5	0.8	V	1, 2	
Input Leakage Current	0V ≤ VIN ≤ VCC		ILı	-5	5	μΑ	
Input/Output Leakage Current	Output(s) Disabled, 0V ≤ Vouт ≤ Vcc	DQ1-DQ32	ILo	-5	5	μΑ	
Output High Voltage	loн = -4.0mA		Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA		Vol		0.4	V	1

				MAX		,	
DESCRIPTION	CONDITIONS	SYMBOL	-25	-35	-45	UNITS	NOTES
Operating Current: TTL Input Levels	TE ≤ ViL; Vcc = MAX f = MAX = 1/ ¹RC; Outputs Open	Icc	960	960	960	mA	3
Standby Current: TTL Input Levels	TE ≥ ViH; Vcc = MAX f = MAX = 1/ ¹RC; Outputs Open	ISB1	200	200	200	mA	
Standby Current: CMOS Input Levels	$\overline{\text{CE}} \ge \text{Vcc} -0.2$; $\text{Vcc} = \text{MAX}$ $\text{Vil} \le \text{Vss} +0.2$, $\text{Vih} \ge \text{Vcc} -0.2$; $\text{f} = 0$	ISB2	56	56	56	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance; A0-A17, WE, OE	$T_A = 25^{\circ}C$; $f = 1MHz$	C _{I1}		64	pF	4
Input Capacitance; CE1-CE4	Vcc = 5V	Cı2		16	pF	4
Input/Output Capacitance: DQ1-DQ32		Cı/o		8	pF	4

Write pulse width

Data setup time

Data hold time

Write Enable LOW to output in Low-Z

Write Enable HIGH to output in High-Z

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Note 5) (0°C \leq T_A \leq 70°C; Vcc = 5V \pm 10%)

-25 -35 -45 DESCRIPTION SYM MIN MAX MIN MAX MIN MAX UNITS NOTES **READ Cycle** ^tRC 25 35 READ cycle time 45 ns Address access time ^tAA 25 35 45 ns Chip Enable access time ^tACE 25 35 45 ns Output hold from address change HO 5 5 5 ns ^tLZCE 7 Chip Enable LOW to output in Low-Z 5 5 5 ns Chip Enable to output in High-Z **†HZCE** 10 18 15 ns 6.7 Chip Enable LOW to power-up time tPU 0 0 0 ns Chip Enable HIGH to power-down time ^tPD 25 35 45 ns Output Enable access time ^tAOE 8 12 15 ns ^tLZOE Output Enable LOW to output in Low-Z 0 0 0 ns Output Enable HIGH to output in High-Z ^tHZOE 10 12 15 6 ns **WRITE Cycle** WRITE cycle time tWC 25 35 45 ns tCW 15 25 Chip Enable to end of write 20 ns Address valid to end of write ^tAW 15 20 25 ns Address setup time tAS 0 0 0 ns Address hold from end of write ^tAH 0 0 0 ns

tWP

^tDS

tDH.

tLZWE

^tHZWE

15

10

0

0

20

15

0

0

10

25

20

0

0

15

ns

ns

ns

ns

ns

18

7

6, 7

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	5ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

DOUT 480 480 255 30 pF

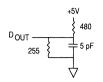
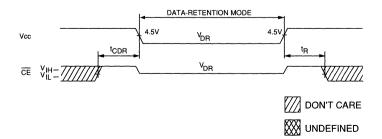


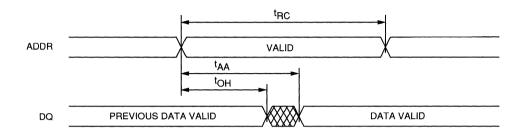
Fig. 1 OUTPUT LOAD EQUIVALENT

Fig. 2 OUTPUT LOAD EQUIVALENT

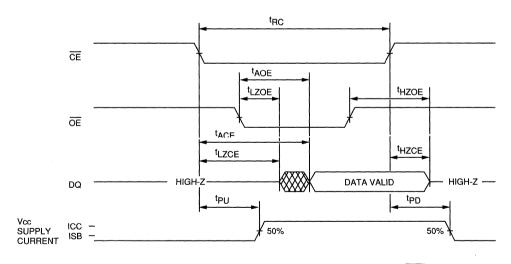
NOTES

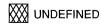

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Test conditions as specified with the output loading as shown in Fig. 1 unless otherwise noted.
- tHZCE and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- At any given temperature and voltage condition, ^tHZCE is less than ^tLZCE and ^tHZWE is less than ^tLZWE.

- 8. WE is HIGH for READ cycle.
- 9. Device is continuously selected. All chip enables held in their active state.
- 10. Address valid prior to or coincident with latest occurring chip enable.
- 11. The ouptut will be in the High-Z state if \overline{OE} is High.
- 12. The first falling edge of either $\overline{\text{CE}}$ or $\overline{\text{WE}}$ will initiate a WRITE cycle, and the first rising edge of either $\overline{\text{CE}}$ or $\overline{\text{WE}}$ will terminate a WRITE cycle.

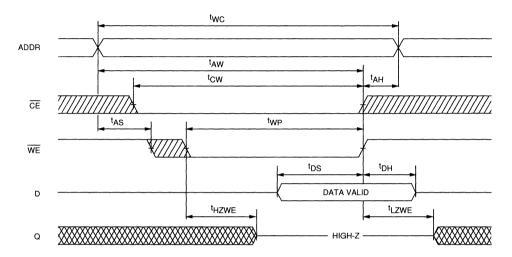

DATA RETENTION ELECTRICAL CHARACTERISTICS (-L Version Only)

DESCRIPTION	CONDITIONS		SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Vcc for Retention Data			VDR	2			٧	
Data Retention Current	<u>CE</u> ≥ (Vcc -0.2V) Vin ≥ (Vcc -0.2V)	Vcc = 2v	ICCDR		0.8	4	mA	
Data Neterition Current	or ≤ 0.2V	Vcc = 3v			2.8	6	mA	
Chip Deselect to Data Retention Time			^t CDR	0			ns	4
Operation Recovery Time			^t R	^t RC			ns	4

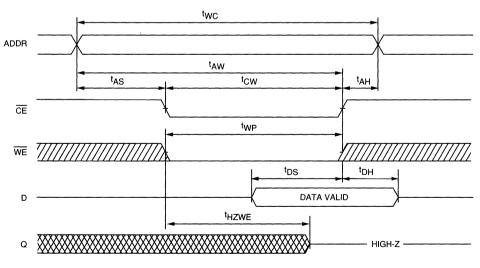

LOW Vcc DATA-RETENTION WAVEFORM



READ CYCLE NO. 2 7, 8, 10



DON'T CARE



WRITE CYCLE NO. 1 (Write Enable Controlled) 11, 12

WRITE CYCLE NO. 2 (Chip Enable Controlled) 11, 12

DON'T CARE

MICHON

DYNAMIC RAMS	. 1
DRAM MODULES	2
MULTIPORT DRAMS	3
STATIC RAMS	4
SYNCHRONOUS SRAMS	5
SRAM MODULES	6
CACHE DATA SRAMS	7
FIFO MEMORIES	8
APPLICATION/TECHNICAL INFORMATION	9
MILITARY INFORMATION	10
PACKAGE INFORMATION	2511
SALES INFORMATION	12

CACHE DATA SRAM PRODUCT SELECTION GUIDE

Memory	Control	Part	Access	Pac	kage		-
Configuration	Functions	Number	Time (ns)	PLCC	PQFP	Process	Page
Dual 4K x 16 or Single 8K x 16	Mode, Byte Select CE, OE Address Latch (A0 - A11)	MT56C0816	20, 25, 35	52	52	CMOS	7-1
Dual 4K x 16 or Single 8K x 16	Mode, Byte Select CE, OE Address Latch (A0 - A12)	MT56C3816	20, 25, 35	52	52	CMOS	7-11
Dual 4K x 18 or Single 8K x 18	Mode, Byte Select CE, OE Address Latch (A0 - A11)	MT56C0818	20, 25, 35	52	52	CMOS	7-21
Dual 4K x 18 or Single 8K x 18	Mode, Byte Select CE, OE Synchronous Write Enable	MT56C2818	24, 28	52	52	CMOS	7-31
Dual 4K x 18 or Single 8K x 18	Mode, Byte Select CE, OE Address Latch (A0 - A12)	MT56C3818	20, 25, 35	52	52	CMOS	7-41

CACHE DATA SRAM

CACHE DATA STATIC RAM

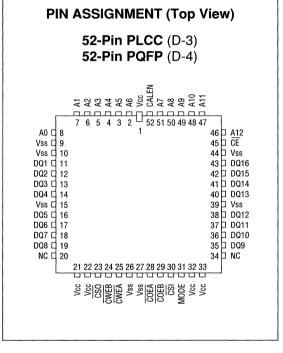
DUAL 4K x 16 SRAM, SINGLE 8K x 16 SRAM

CONFIGURABLE CACHE DATA SRAM

FEATURES

- Operates as two 4K x 16 SRAMs with common addresses and data; also configurable as a single 8K x 16 SRAM
- Built-in input address latches
- · Separate upper and lower Byte Select
- Fast access times: 20ns, 25ns and 35ns allow operation with 40, 33 and 25MHz microprocessor systems
- Fast Output Enable: 8ns
- Directly interfaces with the Intel 82385 cache controller as well as other 80386 cache memory controllers

OPTIONS	MARKING
 Timing 	
20ns access (40 MHz)	-20
25ns access (33 MHz)	-25
35ns access (25 MHz)	-35
Packages	
52-pin PLCC	EJ
52-pin PQFP	LG


GENERAL DESCRIPTION

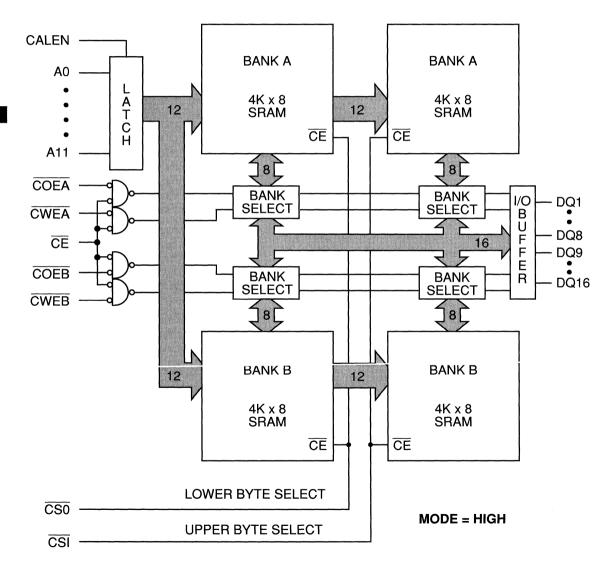
The MT56C0816 is one of a family of fast SRAM cache memories. It employs a high-speed, low-power design using a four-transistor memory cell. It is fabricated using double-layer polysilicon, double-layer metal CMOS technology.

The MT56C0816 is a highly integrated cache data memory building block. It easily interfaces with cache controllers for the Intel 80386 in either the DIRECT MAPPED or TWO-WAY SET ASSOCIATIVE MODE. A mode control pin (MODE) determines the configuration of the memory. When this pin is held LOW, the device functions as an 8K-word by 16-bit SRAM. When the mode pin is HIGH, the device is configured as a dual 4K-word by 16-bit SRAM.

Input addresses are latched in the on-chip register on the negative edge of the CALEN signal. This register is functionally equivalent to a 74LS373.

The memory functions are controlled by the chip select $(\overline{CE}, \overline{CSO} \text{ and } \overline{CSI})$, output enable $(\overline{COEA} \text{ and } \overline{COEB})$ and write enable $(\overline{CWEA} \text{ and } \overline{CWEB})$ signals.

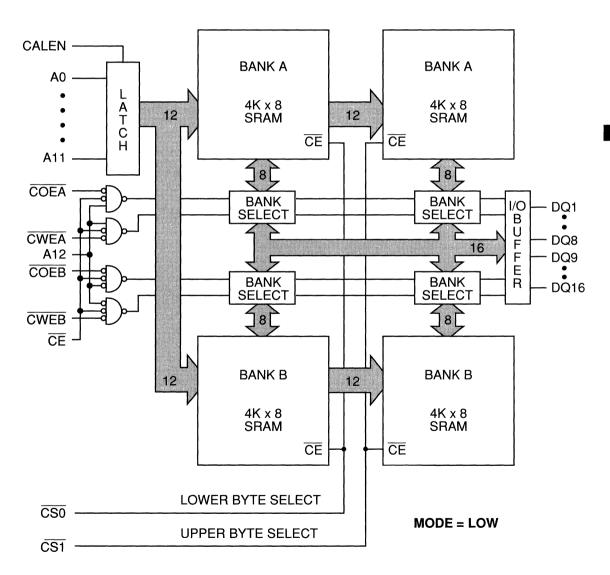
In either the DIRECT MAPPED (direct) or TWO-WAYSET ASSOCIATIVE (dual) operational modes, $\overline{\text{CE}}$ is a global chip enable, while $\overline{\text{CS0}}$ and $\overline{\text{CS1}}$ control lower and upper byte selection for READ and WRITE operations.


Outputs are enabled on a HIGH to LOW transition of COEA or COEB. In the dual mode, bank "A" or bank "B" may be enabled. In the direct mode, COEA and COEB should be connected together externally and used as a single output enable. Alternately COEA or COEB can be tied LOW externally, allowing the other signal to control the outputs.

Write enable is activated on a HIGH to LOW transition of CWEA or CWEB. In the dual mode, data may be written to bank "A" or bank "B". In the direct mode, CWEA and CWEB should be connected together externally and used as a single write enable. Alternately CWEA or CWEB can be tied LOW externally, allowing the other signal to control the write function.

The MT56C0816 operates from a +5V power supply and all inputs and outputs are fully TTL compatible.

FUNCTIONAL BLOCK DIAGRAM


DUAL 4K x 16 (TWO-WAY SET ASSOCIATIVE)

FUNCTIONAL BLOCK DIAGRAM

8K x 16 (DIRECT MAP)

PIN DESCRIPTIONS

PLCC PIN Number(s)	SYMBOL	TYPE	DESCRIPTION
8, 7, 6, 5, 4, 3, 2, 51, 50, 49, 48, 47	A0-A11	Input	Address Inputs: These inputs are clocked by CALEN and stored in a latch.
46	A12	Input	Address Input: This input is the high order address bit in the direct 8K x 16 configuration. It is not used in the dual 4K x 16 configuration.
52	CALEN	Input	Address Latch Enable: When CALEN is HIGH, the latch is transparent. The negative edge latches the current address inputs (A0-A11).
31	MODE	Input	Mode Select: This controls the device configuration. When this pin is tied HIGH, the device is in the dual 4K x 16 configuration. When the pin is tied LOW, the device is configured as an 8K x 16 SRAM.
23, 30	CS0, CS1	Input	Chip Selects: These signals are used to select the upper and lower bytes for both READ and WRITE operations. When $\overline{\text{CS0}}$ is LOW, DQ1-DQ8 are enabled. When $\overline{\text{CS1}}$ is LOW, DQ9-DQ16 are enabled.
45	CE	Input	Chip Enable: When \overline{CE} is LOW, the device is enabled. It is a global control signal that activates both bank A and bank B for READ or WRITE operations.
28, 29	COEA, COEB	Input	Output Enable: In the dual configuration the signal that is LOW enables bank A or B. Simultaneous LOW assertion will deselect both banks. In the DIRECT mode, these signals should be externally connected, and, when asserted LOW, allow A12 to determine which memory bank is enabled. Alternately COEA or COEB can be tied LOW externally, allowing the other signal to control the output.
25, 24	CWEA, CWEB	Input	Write Enable: In the dual configuration the signal that is LOW enables a data WRITE to the addressed memory location. In the DIRECT mode, these signals should be externally connected, and, when asserted LOW, allow A12 to determine which memory bank is written. Alternately CWEA or CWEB can be tied LOW externally, allowing the other signal to control the write function.
11, 12, 13, 14, 16 17, 18, 19, 35, 36, 37 38, 40, 41, 42, 43	DQ1-DQ16	Input/ Output	SRAM Data I/O: lower byte is DQ1-DQ8; upper byte is DQ9-DQ16.
1, 21, 22, 32, 33,	Vcc	Supply	Power Supply: +5V ± 5%
9, 10, 15, 26, 27, 39, 44	Vss	Supply	Ground: GND
9, 10, 15, 26, 27, 39, 44	Vss		Ground: GND

TRUTH TABLE

DUAL 4K x 16 (MODE PIN = HIGH)

OPERATION	CE	CSO	CS1	COEA	COEB	CWEA	CWEB
Outputs High-Z, WRITE disabled	Н	Х	Х	X	Х	Х	Х
Outputs High-Z, WRITE disabled	X	Н	Н	X	Х	Х	Х
Outputs High-Z	Х	Х	Х	Н	Н	Х	Х
Outputs High-Z	X	X	Х	L	L	Х	Χ
READ DQ1 - DQ8 bank A	L	L	Н	L	Н	Н	Н
READ DQ1 - DQ8 bank B	L	L	Н	Н	L	Н	Н
READ DQ9 - DQ16 bank A	L	Н	L	L	Н	Н	Н
READ DQ9 - DQ16 bank B	L	Н	L	Н	L	Н	Н
READ DQ1 - DQ16 bank A	L	L	L	L	Н	Н	Н
READ DQ1 - DQ16 bank B	L	L	L	Н	L	Н	Н
WRITE DQ1 - DQ8 bank A	L	L	Н	Х	Х	L	Н
WRITE DQ1 - DQ8 bank B	L	L	Н	Х	Х	Н	L
WRITE DQ9 - DQ16 bank A	L	Н	L	Х	Х	L	Н
WRITE DQ9 - DQ16 bank B	L	Н	L	Х	Х	Н	L
WRITE DQ1 - DQ16 bank A	L	L	L	X	Х	L	Н
WRITE DQ1 - DQ16 bank B	L	L	L	Х	Х	Н	L
WRITE DQ1 - DQ8 bank A & B	L	L	Н	Х	Х	L	L
WRITE DQ9 - DQ16 bank A & B	L	Н	L	Х	Х	L	L
WRITE DQ1 - DQ16 bank A & B	L	L	L	Х	Х	L	L

NOTE: $\overline{\text{CE}}$, when taken inactive while $\overline{\text{CWEA}}$ or $\overline{\text{CWEB}}$ remain active, allows a chip-enable-controlled WRITE to be performed.

TRUTH TABLE

 $8K \times 16 (MODE PIN = LOW)$

OPERATION	CE	CSO	CS1	COEA	COEB	CWEA	CWEB
Outputs High-Z, WRITE disabled	Н	Х	Х	Х	Χ	Х	Х
Outputs High-Z, WRITE disabled	Х	Н	Н	Х	Х	Х	Χ
Outputs High-Z	Х	Х	Х	Н	Н	Х	Χ
READ DQ1 - DQ8	L	L	Н	L	L	Н	Н
READ DQ9 - DQ16	L	Н	L	L	L	Н	Н
READ DQ1 - DQ16	L	L	L	L	L	Н	Н
WRITE DQ1 - DQ8	L	L	Н	Χ	Х	L	L
WRITE DQ9 - DQ16	L	H	L	Χ	Χ	L	L
WRITE DQ1 - DQ16	L	L	L	Χ	Χ	L	L

NOTE: CE, when taken inactive while CWEA and CWEB remain active, allows a chip-enable-controlled WRITE to be performed.

COEA and COEB must both be LOW to enable outputs. However, one signal can be tied LOW externally, allowing the other signal to control the outputs. Similarly CWEA and CWEB must both be LOW to enable a WRITE cycle. Either CWEA or CWEB can be tied LOW externally, allowing the other signal to control the WRITE function.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Storage Temperature	55°C to +150°C
Power Dissipation (PLCC)	1.2W
Power Dissipation (PQFP)	1.2W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{\mbox{\scriptsize A}} \leq 70^{\circ}C; \mbox{ Vcc} = 5.0 \mbox{\scriptsize V} \pm 5\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Power Supply Voltage		Vcc	4.75	5.25	V	
Input High Voltage		Vih	2.2	Vcc+0.3	V	1
Input Low Voltage		VIL	-0.3	0.8	V	1, 2
Input Leakage Current	Vin = GND to Vcc	ILı	-10	10	μΑ	
Output Leakage Current	Vi/o = GND to Vcc Output(s) Disabled	ILo	-10	10	μΑ	
Output Low Voltage	loL = 4.0mA	Vol		0.4	V	1
Output High Voltage	Iон = -1.0mA	Vон	2.4		٧	1

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Power Supply Current: Average Operating Current	100% Duty cycle Vin = GND to Vcc	lcc1		220	mA	
Power Supply Current: Average Operating Current	50% Duty cycle Vin = GND to Vcc	Icc2		120	mA	
Power Supply Current: CMOS Standby	CS0 = CS1 ≥ Vcc - 0.2V Vcc = MAX Vii. ≤ Vss + 0.2V Viii. ≥ Vcc - 0.2V	Isa		20	mA	

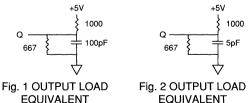
CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cin		6	pF	3
Output Capacitance	Vcc = 5V	Cı/o		6	pF	3

PQFP THERMAL CONSIDERATIONS

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Thermal resistance - Junction to Ambient	Still Air	ØJA		100	°C/W	
Thermal resistance - Junction to Case		_Ø JC		45	°C/W	
Maximum Case Temperature		Тс		110	°C	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS $(0^{\circ}C \le T_{\Delta} \le +70^{\circ}C; Vcc = 5.0V \pm 5\%)$

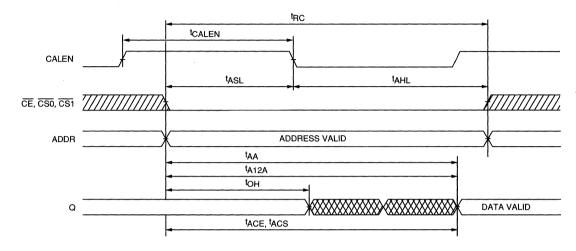

DECORIDATION		-:	20	-25		-35			
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle									
READ cycle time	^t RC	20		25	1	35		ns	4, 5
Address access time (A0-A11)	^t AA		20		25		35	ns	
A12 address access time	tA12A		15		17		25	ns	
Chip Enable access time	^t ACE		20		20		25	ns	
Chip Select access time	tACS		20		25		35	ns	
Output Enable access time	†AOE		8		10		13	ns	
Output hold from address change	†OH	3		3		3		ns	
Chip Select to output Low-Z	†LZCS	3		3		3		ns	
Output Enable to output Low-Z	†LZOE	2		2		2		ns	
Chip deselect to output High-Z	tHZCS		15		15		25	ns	6
Output disable to output High-Z	tHZOE		10		10		14	ns	6
Address latch enable pulse width	^t CALEN	8		8		10		ns	
Address setup to latch LOW	†ASL	4		4		6		ns	
Address hold from latch LOW	^t AHL	5		5		5		ns	
WRITE Cycle									
WRITE cycle time	tWC	20		25		35		ns	
Address valid to end of write	^t AW	15		18		25		ns	
A12 address valid to end of write	tA12W	15		18		25		ns	
Chip Select to end of write	tCW	15		18		25		ns	
Data valid to end of write	tDW	10		10		10		ns	
Data hold from end of write	tDH	0		0		0		ns	
Write Enable output in High-Z	tHZWE		12		15		15	ns	6
Write disable to output in Low-Z	tLZWE	3		3		3		ns	
Write pulse width	tWP	15		18		25		ns	
CE pulse width (during Chip Enable controlled write)	^t CP	15		18		25		ns	
Address setup time	†AS	0		0		0		ns	
Write recovery time	tWR	0		0		0		ns	
Address latch enable pulse width	^t CALEN	8		8		10		ns	
Address setup to latch LOW	†ASL	4		4		6		ns	
Address hold from latch LOW	^t AHL	5		5		5		ns	

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

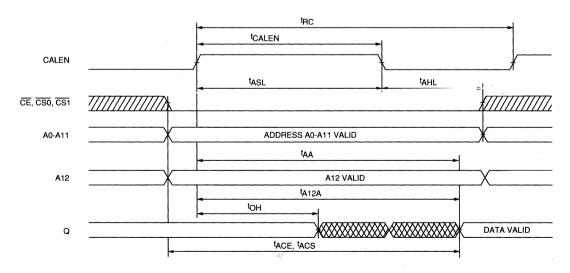
NOTES

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. This parameter is sampled.
- 4. CWE is HIGH for a READ cycle.


EQUIVALENT

- 5. All READ cycle timings are referenced from the last valid address to the first transitioning address.
- 6. tHZCS, tHZOE, and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured \pm 500mV from steady state voltage.

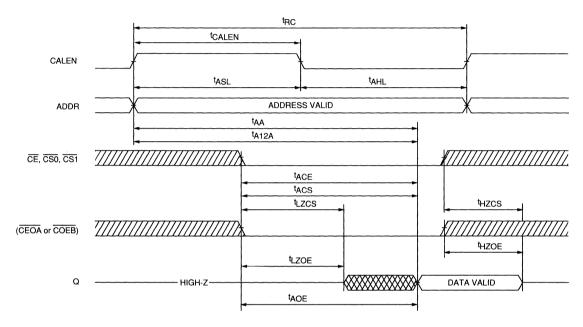
READ CYCLE NO. 1


 $\frac{\text{(Address Controlled)}}{\text{CWEA}} = \frac{\text{(COEB}}{\text{CWEB}} = \text{Viii.}; \frac{\text{COEA}}{\text{COEA}} \text{ and/or } \frac{\text{COEB}}{\text{COEB}} = \text{Viii.}$

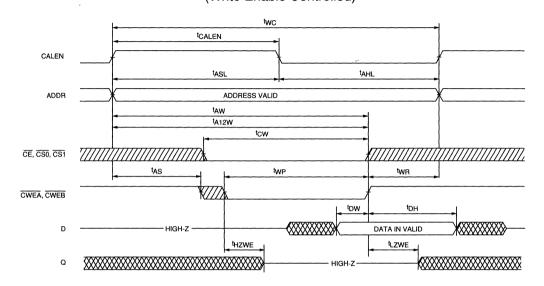
READ CYCLE NO. 2

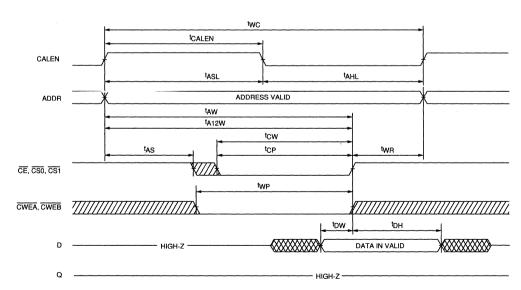
(CALEN Controlled)

CWEA = CWEB = VIH; COEA and/or COEB = VIL



DON'T CARE


READ CYCLE NO. 3 CWEA = CWEB = VIH


DON'T CARE
UNDEFINED

WRITE CYCLE NO. 1 (Write Enable Controlled)

WRITE CYCLE NO. 2 (Chip Select Controlled)

CACHE DATA STATIC RAM

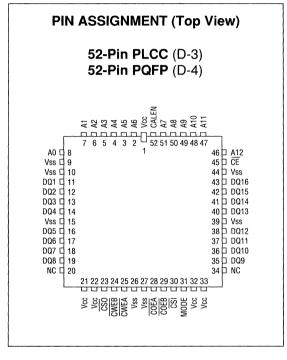
DUAL 4K x 16 SRAM, SINGLE 8K x 16 SRAM

CONFIGURABLE CACHE DATA SRAM

FEATURES

- Operates as two 4K x 16 SRAMs with common addresses and data; also configurable as a single 8K x 16 SRAM
- Built-in input address latches (A0-A12)
- Separate upper and lower Byte Select
- Fast access times: 20ns, 25ns and 35ns allow operation with 40, 33 and 25MHz microprocessor systems
- Fast Output Enable: 8ns
- Directly interfaces with the Intel 82385 cache controller as well as other 80386 and 80486 cache memory controllers

OPTIONS	MARKING
Timing	
20ns access (40 MHz)	-20
25ns access (33 MHz)	-25
35ns access (25 MHz)	-35
Packages	
52-pin PLCC	EJ
52-pin PQFP	LG


GENERAL DESCRIPTION

The MT56C3816 is one of a family of fast SRAM cache memories. It employs a high-speed, low-power design using a four-transistor memory cell. It is fabricated using double-layer polysilicon, double-layer metal CMOS technology.

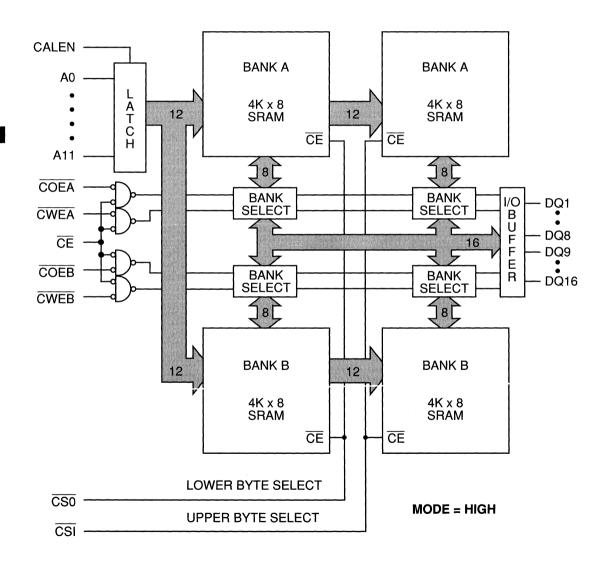
The MT56C3816 is a highly integrated cache data memory building block. It easily interfaces with cache controllers for the Intel 80386 in either the DIRECT MAPPED or TWO-WAY SET ASSOCIATIVE MODE. A mode control pin (MODE) determines the configuration of the memory. When this pin is held LOW, the device functions as an 8K-word by 16-bit SRAM. When the mode pin is HIGH, the device is configured as a dual 4K-word by 16-bit SRAM.

Input addresses are latched in the on-chip register on the negative edge of the CALEN signal. This register is functionally equivalent to a 74LS373.

The memory functions are controlled by the chip select $(\overline{CE}, \overline{CSO} \text{ and } \overline{CSI})$, output enable $(\overline{COEA} \text{ and } \overline{COEB})$ and write enable $(\overline{CWEA} \text{ and } \overline{CWEB})$ signals.

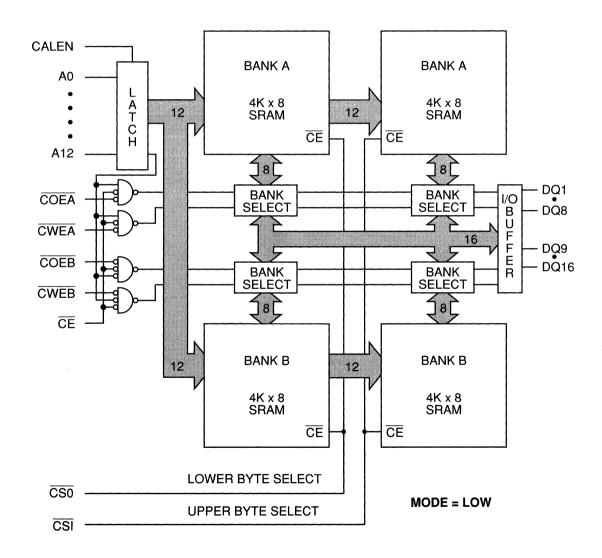
In either the DIRECT MAPPED (direct) or TWO-WAYSET ASSOCIATIVE (dual) operational modes, $\overline{\text{CE}}$ is a global chip enable, while $\overline{\text{CS0}}$ and $\overline{\text{CS1}}$ control lower and upper byte selection for READ and WRITE operations.

Outputs are enabled on a HIGH to LOW transition of COEA or COEB. In the dual mode, bank "A" or bank "B" may be enabled. In the direct mode, COEA and COEB should be connected together externally and used as a single output enable. Alternately, COEA or COEB can be tied LOW externally, allowing the other signal to control the outputs.


Write enable is activated on a HIGH to LOW transition of CWEA or CWEB. In the dual mode, data may be written to bank "A" or bank "B". In the direct mode, CWEA and CWEB should be connected together externally and used as a single write enable. Alternately, CWEA or CWEB can be tied LOW externally, allowing the other signal to control the write function.

The MT56C3816 operates from a +5V power supply and all inputs and outputs are fully TTL compatible.

FUNCTIONAL BLOCK DIAGRAM


DUAL 4K x 16 (TWO-WAY SET ASSOCIATIVE)

FUNCTIONAL BLOCK DIAGRAM

8K x 16 (DIRECT MAP)

PIN DESCRIPTIONS

PLCC PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
8, 7, 6, 5, 4, 3, 2, 51, 50, 49, 48, 47	A0-A11	Input	Address Inputs: These inputs are clocked by CALEN and stored in a latch.
46	A12	Input	Address Input: This input is the high order address bit in the direct $8K \times 16$ configuration. It is not used in the dual $4K \times 16$ configuration. This input is latched by the negative edge of CALEN.
52	CALEN	Input	Address Latch Enable: When CALEN is HIGH, the latch is transparent. The negative edge latches the current address inputs (A0-A12).
31	MODE	Input	Mode Select: This controls the device configuration. When this pin is tied HIGH, the device is in the dual 4K x 16 configuration. When the pin is tied LOW, the device is configured as an 8K x 16 SRAM.
23, 30	CSO, CS1	Input	Chip Selects: These signals are used to select the upper and lower bytes for both READ and WRITE operations. When CS0 is LOW, DQ1-DQ8 are enabled. When CS1 is LOW, DQ9-DQ16 are enabled.
45	CE	Input	Chip Enable: When \overline{CE} is LOW, the device is enabled. It is a global control signal that activates both bank A and bank B for READ or WRITE operations.
28, 29	COEA, COEB	Input	Output Enable: In the dual configuration the signal that is LOW enables bank A or B. Simultaneous LOW assertion will deselect both banks. In the DIRECT mode, these signals should be externally connected, and, when asserted LOW, allow A12 to determine which memory bank is enabled. Alternately, COEA or COEB can be tied LOW externally, allowing the other signal to control the outputs.
25, 24	CWEA, CWEB	Input	WRITE ENABLE: In the dual configuration, the signal that is LOW enables a data write to the addressed memory location. In the DIRECT mode, these signals should be externally connected, and, when asserted LOW, allow A12 to determine which memory bank is written. Alternately, OWEA or OWEB can be tied LOW externally, allowing the other signal to control the write function.
11, 12, 13, 14, 16 17, 18, 19, 35, 36, 37 38, 40, 41, 42, 43	DQ1-DQ16	Input/ Output	SRAM Data I/O: lower byte is DQ1-DQ8; upper byte is DQ9-DQ16.
1, 21, 22, 32, 33,	Vcc	Supply	Power Supply: +5V ± 5%
9, 10, 15, 26, 27, 39, 44	Vss	Supply	Ground: GND

TRUTH TABLE

DUAL 4K x 16 (MODE PIN = HIGH)

OPERATION	CE	CSO	CS1	COEA	COEB	CWEA	CWEB
Outputs High-Z, WRITE disabled	Н	X	Х	Х	Х	Х	Х
Outputs High-Z, WRITE disabled	Х	Н	Н	Х	Х	X	Χ
Outputs High-Z	Х	Х	Х	Н	Н	Х	Х
Outputs High-Z	Х	Х	Х	L	L	Х	Х
READ DQ1 - DQ8 bank A	L	L	Н	L	Н	Н	Н
READ DQ1 - DQ8 bank B	L	L	Н	Н	L	Н	Н
READ DQ9 - DQ16 bank A	L	Н	L	L	Н	Н	Н
READ DQ9 - DQ16 bank B	L	Н	L	Н	L	Н	Н
READ DQ1 - DQ16 bank A	L	L	L	L	Н	Н	Н
READ DQ1 - DQ16 bank B	L	L	L	Н	L	Н	Н
WRITE DQ1 - DQ8 bank A	L	L	Н	Х	Х	L	Н
WRITE DQ1 - DQ8 bank B	L	L	Н	Х	Х	Н	L
WRITE DQ9 - DQ16 bank A	L	Н	L	Х	Х	L	Н
WRITE DQ9 - DQ16 bank B	L	Н	L	Х	Х	Н	L
WRITE DQ1 - DQ16 bank A	L	L	L	Х	Х	L	Н
WRITE DQ1 - DQ16 bank B	L	L	L	Х	Х	Н	L
WRITE DQ1 - DQ8 bank A & B	L	L	Н	Х	Х	L	L
WRITE DQ9 - DQ16 bank A & B	L	Н	L	Х	Х	L	L
WRITE DQ1 - DQ16 bank A & B	L	L	L	Х	Х	L	L

NOTE: CE, when taken inactive while CWEA or CWEB remain active, allows a chip-enable-controlled WRITE to be performed.

TRUTH TABLE

 $8K \times 16 (MODE PIN = LOW)$

OPERATION	ČE	CSO	CS1	COEA	COEB	CWEA	CWEB
Outputs High-Z, WRITE disabled	Н	X	X	X	Х	X	X
Outputs High-Z, WRITE disabled	X	Н	Н	X	Х	X	X
Outputs High-Z	X	Х	Х	Н	Н	X	X
READ DQ1 - DQ8	L	L	Н	L	L	Н	Н
READ DQ9 - DQ16	L	Н	L	L	L	Н	Н
READ DQ1 - DQ16	L	L	L	L	L	Н	Н
WRITE DQ1 - DQ8	L	L	Н	X	X	L	L
WRITE DQ9 - DQ16	L	Н	L	Х	Х	L	L
WRITE DQ1 - DQ16	l L	L	L	Х	Х	L	L

NOTE: CE, when taken inactive while CWEA and CWEB remain active, allows a chip-enable-controlled WRITE to be performed.

COEA and COEB must both be LOW to enable outputs. However, one signal can be tied LOW externally, allowing the other signal to control the outputs. Similarly CWEA and CWEB must both be LOW to enable a WRITE cycle. Either CWEA or CWEB can be tied LOW externally, allowing the other signal to control the WRITE function.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to V	Vss1.0V to +7.0V
Storage Temperature	55°C to +150°C
Power Dissipation (PLCC)	1.2W
Power Dissipation (PQFP)	1.2W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{\mbox{\scriptsize A}} \leq 70^{\circ}C; \mbox{ Vcc} = 5.0 \mbox{\scriptsize V} \pm 5\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Power Supply Voltage		Vcc	4.75	5.25	٧	
Input High Voltage		ViH	2.2	Vcc+0.3	V	1
Input Low Voltage		VIL	-0.3	0.8	٧	1, 2
Input Leakage Current	Vin = GND to Vcc	ILı	-10	10	μΑ	
Output Leakage Current	V _I /o = GND to Vcc Output(s) Disabled	ILo	-10	10	μΑ	
Output Low Voltage	loL = 4.0mA	Vol		0.4	٧	1
Output High Voltage	loн = -1.0mA	Voн	2.4		٧	1

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Power Supply Current: Average Operating Current	100% Duty cycle Vin = GND to Vcc	lcc1		220	mA	
Power Supply Current: Average Operating Current	50% Duty cycle Vin = GND to Vcc	lcc2		120	mA	
Power Supply Current: CMOS Standby	$\overline{CS0} = \overline{CS1} \ge Vcc - 0.2V$ $Vcc = MAX$ $VIL \le Vss + 0.2V$ $VIH \ge Vcc - 0.2V$	lsв		20	mA	

CAPACITANCE

	DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
	Input Capacitance	T _A = 25°C; f = 1MHz	Cin		6	pF	3
. [Output Capacitance	Vcc = 5V	Cı/o		6	pF	3

PQFP THERMAL CONSIDERATIONS

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Thermal resistance - Junction to Ambient	Still Air	ØJA		100	°C/W	
Thermal resistance - Junction to Case		ØJC		45	°C/W	
Maximum Case Temperature		Тс		110	°C	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (0°C \leq T $_{\Delta}$ \leq +70°C; Vcc = 5.0V $\pm5\%$)

DESCRIPTION		-	20	-2	25		35		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle		<u> </u>			<u> </u>				J
READ cycle time	†RC	20		25		35		ns	4, 5
Address access time (A0-A12)	^t AA		20		25		35	ns	
Chip Enable access time	†ACE		20		20		25	ns	
Chip Select access time	tACS		20		25		35	ns	
Output Enable access time	^t AOE		8		10		13	ns	
Output hold from address change	tOH	3		3		3		ns	1
Chip Select to output Low-Z	tLZCS	3		3		3		ns	
Output Enable to output Low-Z	^t LZOE	2		2		2		ns	
Chip deselect to output High-Z	tHZCS		15		15		25	ns	6
Output disable to output High-Z	tHZOE		10		10	ì	14	ns	6
Address latch enable pulse width	^t CALEN	8		8		10		ns	
Address setup to latch LOW	†ASL	4		4		6		ns	
Address hold from latch LOW	tAHL	5		5		5		ns	
WRITE Cycle									1
WRITE cycle time	tWC	20		25		35		ns	
Address valid to end of write	t _{AW}	15		18		25		ns	
Chip Select to end of write	tCW	15		18		25		ns	
Data valid to end of write	tDW	10		10		10		ns	
Data hold from end of write	^t DH	0		0		0		ns	•
Write Enable output in High-Z	tHZWE		12		15		15	ns	6
Write disable to output in Low-Z	tLZWE	3		3		3		ns	
Write pulse width	tWP	15		18		25		ns	
CE pulse width (during Chip Enable controlled write)	^t CP	15		18		25		ns	
Address setup time	^t AS	0		0		0		ns	
Write recovery time	tWR	0		0		0		ns	
Address latch enable pulse width	¹ CALEN	8		8		10		ns	
Address setup to latch LOW	†ASL	4		4		6		ns	
Address hold from latch LOW	^t AHL	5		5		5		ns	

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. This parameter is sampled.
- 4. CWE is HIGH for a READ cycle.

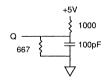


Fig. 1 OUTPUT LOAD EQUIVALENT

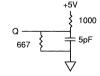
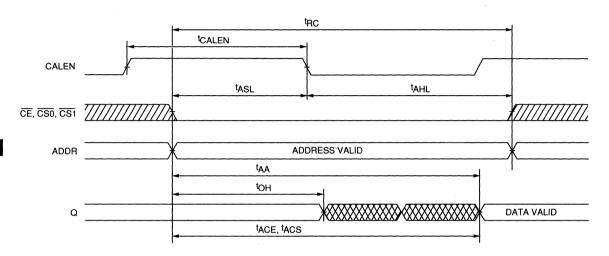
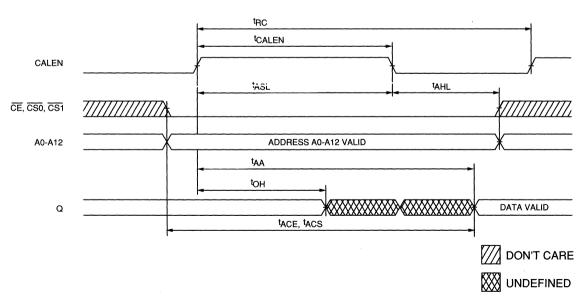


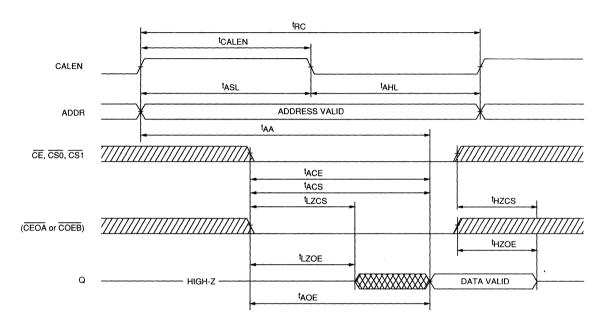
Fig. 2 OUTPUT LOAD EQUIVALENT


- 5. All READ cycle timings are referenced from the last valid address to the first transitioning address.
- HZCS, HZOE, and HZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.

READ CYCLE NO. 1

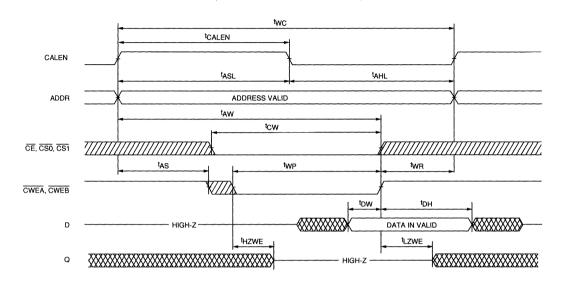
(Address Controlled)

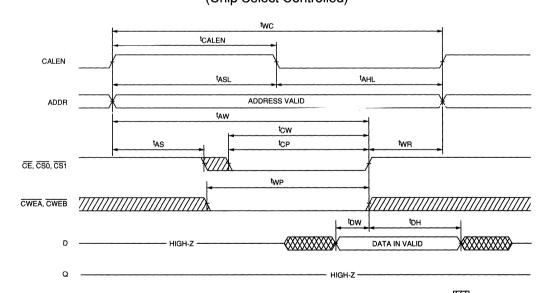

CWEA = CWEB = VIH; COEA and/or COEB = VIL


READ CYCLE NO. 2

(CALEN Controlled)

CWEA = CWEB = VIH; COEA and/or COEB = VIL


READ CYCLE NO. 3 CWEA = CWEB = VIH


DON'T CARE
UNDEFINED

WRITE CYCLE NO. 1 (Write Enable Controlled)

WRITE CYCLE NO. 2 (Chip Select Controlled)

CACHE DATA SRAN

CACHE DATA STATIC RAM

DUAL 4K x 18 SRAM, SINGLE 8K x 18 SRAM

CONFIGURABLE CACHE DATA SRAM

FEATURES

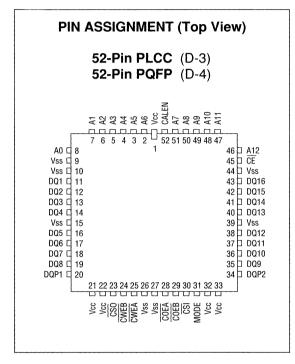
- Operates as two 4K x 18 SRAMs with common addresses and data; also configurable as a single 8K x 18 SRAM
- Built-in input address latches
- Separate upper and lower Byte Select
- Fast access times: 20ns, 25ns and 35ns allow operation with 40, 33 and 25MHz microprocessor systems
- Fast Output Enable: 8ns
- Directly interfaces with the Intel 82385 cache controller as well as other 80386 cache memory controllers
- Parity bits provided for large cache applications such as secondary cache for the Intel 80486 microprocessors

OPTIONS

Timing

MARKING

-20
-25
-35
EJ
LĠ


GENERAL DESCRIPTION

The MT56C0818 is one of a family of fast SRAM cache memories. It employs a high-speed, low-power design using a four-transistor memory cell. It is fabricated using double-layer polysilicon, double-layer metal CMOS technology.

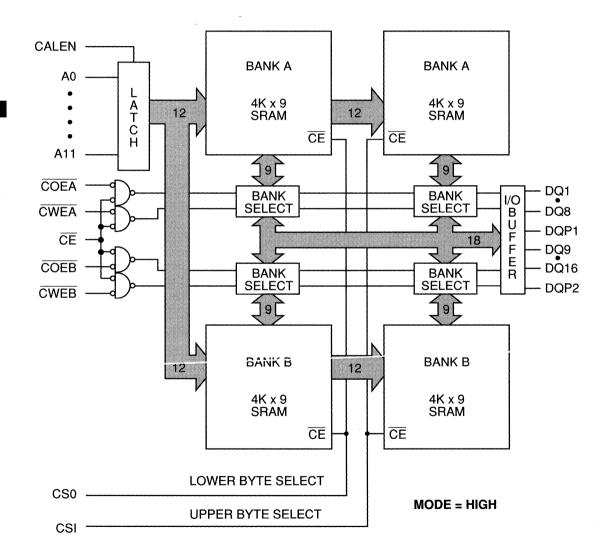
The MT56C0818 is a highly integrated cache data memory building block. It easily interfaces with cache controllers for the Intel 80386 in either the DIRECT MAPPED or TWO-WAY SET ASSOCIATIVE mode. A mode control pin (MODE) determines the configuration of the memory. When this pin is held LOW, the device functions as an 8K-word by 18-bit SRAM. When the mode pin is HIGH, the device is configured as a dual 4K-word by 18-bit SRAM.

Input addresses are latched in the on-chip register on the negative edge of the CALEN signal. This register is functionally equivalent to a 74LS373.

The memory functions are controlled by the chip select $(\overline{CE}, \overline{CSO} \text{ and } \overline{CSI})$, output enable $(\overline{COEA} \text{ and } \overline{COEB})$ and write enable $(\overline{CWEA} \text{ and } \overline{CWEB})$ signals.

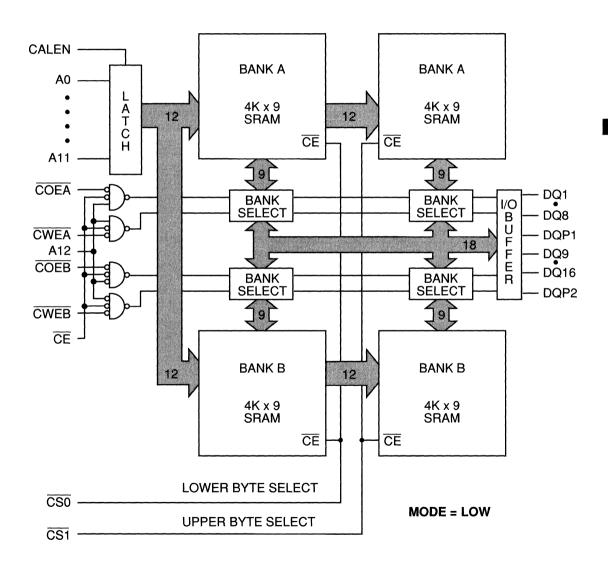
In either the DIRECT MAPPED (direct) or TWO-WAYSET ASSOCIATIVE (dual) operational modes, $\overline{\text{CE}}$ is a global chip enable, while $\overline{\text{CS0}}$ and $\overline{\text{CS1}}$ control lower and upper byte selection for READ and WRITE operations.

Outputs are enabled on a HIGH to LOW transition of COEA or COEB. In the dual mode, bank "A" or bank "B" may be enabled. In the direct mode, COEA and COEB should be connected together externally and used as a single output enable. Alternately, COEA or COEB can be tied LOW externally, allowing the other signal to control the outputs.


Write enable is activated on a HIGH to LOW transition of CWEA or CWEB. In the dual mode, data may be written to bank "A" or bank "B". In the direct mode, CWEA and CWEB should be connected together externally and used as a single write enable. Alternately, CWEA or CWEB can be tied LOW externally, allowing the other signal to control the write function.

The MT56C0818 operates from a +5V power supply and all inputs and outputs are fully TTL compatible.

FUNCTIONAL BLOCK DIAGRAM


DUAL 4K x 18 (TWO-WAY SET ASSOCIATIVE)

FUNCTIONAL BLOCK DIAGRAM

8K x 18 (DIRECT MAP)

PIN DESCRIPTIONS

PLCC PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
8, 7, 6, 5, 4, 3, 2, 51, 50, 49, 48, 47	A0-A11	Input	Address Inputs: These inputs are clocked by CALEN and stored in a latch.
46	A12	Input	Address Input: This input is the high order address bit in the direct $8K \times 18$ configuration. It is not used in the dual $4K \times 18$ configuration.
52	CALEN	Input	Address Latch Enable: When CALEN is HIGH, the latch is transparent. The negative edge latches the current address inputs (A0-A11).
31	MODE	Input	Mode Select: This controls the device configuration. When this pin is tied HIGH, the device is in the dual 4K \times 18 configuration. When the pin is tied LOW, the device is configured as an 8K \times 18 SRAM.
23, 30	CSO, CS1	Input	Chip Selects: These signals are used to select the upper and lower bytes for both READ and WRITE operations. When $\overline{\text{CS0}}$ is LOW, DQ1-DQ8 and DQP1 are enabled. When $\overline{\text{CS1}}$ is LOW, DQ9-DQ16 and DQP2 are enabled.
45	CE	Input	Chip Enable: When \overline{CE} is LOW, the device is enabled. It is a global control signal that activates both bank A and bank B for READ or WRITE operations.
28, 29	COEA, COEB	Input	Output Enable: In the dual configuration the signal that is LOW enables bank A or B. Simultaneous LOW assertion will deselect both banks. In the direct mode, these signals should be externally connected, and, when asserted LOW, allow A12 to determine which memory bank is enabled. Alternately, COEA or COEB can be tied LOW externally, allowing the other signal to control the outputs.
25, 24	CWEA, CWEB	Input	Write Enable: In the dual configuration the signal that is LOW enables a data write to the addressed memory location. In the direct mode, these signals should be externally connected, and, when asserted LOW, allow A12 to determine which memory bank is written. Alternately, CWEA or CWEB can be tied LOW externally, allowing the other signal to control the write function.
11, 12, 13, 14, 16 17, 18, 19, 35, 36, 37 38, 40, 41, 42, 43	DQ1-DQ16	Input/ Output	SRAM Data I/O: lower byte is DQ1-DQ8; upper byte is DQ9-DQ16.
20,34	DQP1 DQP2	Input/ Output	Parity Data I/O: DQP1 is the parity bit for the lower byte. DQP2 is the parity bit for the upper byte.
1, 21, 22, 32, 33,	Vcc	Supply	Power Supply: +5V ± 5%
9, 10, 15, 26, 27, 39, 44	Vss	Supply	Ground: GND

TRUTH TABLE

DUAL 4K x 18 (MODE PIN = HIGH)

OPERATION	CE	CSO	CS1	COEA	COEB	CWEA	CWEB
Outputs High-Z, WRITE disabled	Н	Х	Х	Х	Х	Х	Х
Outputs High-Z, WRITE disabled	Х	Н	Н	Х	Х	Χ	Х
Outputs High-Z	Х	Х	Х	Н	Н	Χ	Х
Outputs High-Z	Х	Х	Х	L	L	Х	Х
READ DQ1 - DQ8, DQP1 bank A	L	L	Н	L	Н	Н	Н
READ DQ1 - DQ8, DQP1 bank B	L	L	Н	Н	L	Н	Н
READ DQ9 - DQ16, DQP2 bank A	L	Н	L	L	Н	Н	Н
READ DQ9 - DQ16, DQP2 bank B	L	Н	L	Н	L	Н	Н
READ DQ1 - DQ16, DQP1, DQP2 bank A	L	L	L	L	Н	Н	Н
READ DQ1 - DQ16, DQP1, DQP2 bank B	L	L	L	Н	L	Н	Н
WRITE DQ1 - DQ8, DQP1 bank A	L	L	Н	Х	Х	L	Н
WRITE DQ1 - DQ8, DQP1 bank B	L	L	Н	Х	Χ	Н	L
WRITE DQ9 - DQ16, DQP2 bank A	L	Н	L	Х	Х	L	Н
WRITE DQ9 - DQ16, DQP2 bank B	L	Н	L	Х	Х	Н	L
WRITE DQ1 - DQ16, DQP1, DQP2 bank A	L	L	L	Х	Х	L	Н
WRITE DQ1 - DQ16, DQP1, DQP2 bank B	L	L	L	Х	Х	Н	L
WRITE DQ1 - DQ8, DQP1 bank A & B	L	L	Н	Х	Х	L	L
WRITE DQ9 - DQ16, DQP2 bank A & B	L	Н	L	Х	Х	L	L
WRITE DQ1 - DQ16, DQP1, DQP2 bank A & B	L	L	L	Х	Х	L	L

NOTE: CE, when taken inactive while CWEA or CWEB remain active, allows a chip-enable-controlled WRITE to be performed.

TRUTH TABLE

 $8K \times 18 \text{ (MODE PIN = LOW)}$

OPERATION	CE	CSO	CS1	COEA	COEB	CWEA	CWEB
Outputs High-Z, WRITE disabled	Н	X	Х	X	X	X	X
Outputs High-Z, WRITE disabled	X	Н	Н	Х	Х	Х	Х
Outputs High-Z	X	Х	Х	Н	Н	Х	Х
READ DQ1 - DQ8, DQP1	L	L	Н	L	L	Н	Н
READ DQ9 - DQ16, DQP2	L	Н	L	L	L	Н	Н
READ DQ1 - DQ16, DQP1, DQP2	L	L	L	L	L	Н	Н
WRITE DQ1 - DQ8, DQP1	L	L	Н	Х	Х	L	L
WRITE DQ9 - DQ16, DQP2	L	Н	L	Χ	Χ	L	L
WRITE DQ1 - DQ16, DQP1, DQP2	L	L	L	Х	Χ	L	L

NOTE: CE, when taken inactive while CWEA and CWEB remain active, allows a chip-enable-controlled WRITE to be performed.

COEA and COEB must both be LOW to enable outputs. However, one signal can be tied LOW externally, allowing the other signal to control the outputs. Similarly CWEA and CWEB must both be LOW to enable a WRITE cycle. Either CWEA or CWEB can be tied LOW externally, allowing the other signal to control the WRITE function.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Storage Temperature	55°C to +150°C
Power Dissipation (PLCC)	1.2W
Power Dissipation (PQFP)	1.2W
Short Circuit Output Current	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

(0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 5%)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Power Supply Voltage		Vcc	4.75	5.25	٧	
Input High Voltage		ViH	2.2	Vcc+0.3	٧	1
Input Low Voltage		VIL	-0.3	0.8	٧	1, 2
Input Leakage Current	Vin = GND to Vcc	ILı	-10	10	μΑ	
Output Leakage Current	V _I /o = GND to Vcc Output(s) Disabled	ILo	-10	10	μΑ	
Output Low Voltage	loL = 4.0mA	Vol		0.4	٧	1
Output High Voltage	Iон = -1.0mA	Voн	2.4		V	1

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Power Supply Current: Average Operating Current	100% Duty cycle Vin = GND to Vcc	Icc1		220	mA	
Power Supply Current: Average Operating Current	50% Duty cycle Vin = GND to Vcc	Icc2		120	mA	
Power Supply Current: CMOS Standby	CS0 = CS1 ≥ Vcc - 0.2V Vcc = MAX VIL ≤ Vss + 0.2V VIH ≥ Vcc - 0.2V	IsB		20	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cin		6	pF	3
Output Capacitance	Vcc = 5V	Cı/o		6	pF	3

PQFP THERMAL CONSIDERATIONS

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Thermal resistance - Junction to Ambient	Still Air	ØJA		100	°C/W	
Thermal resistance - Junction to Case		øJC		45	°C/W	
Maximum Case Temperature		Тс		110	°C	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS $(0^{\circ}C \le T_{A} \le +70^{\circ}C, Vcc = 5.0V \pm 5\%)$

DESCRIPTION		-	20	-2	25		35		
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle									
READ cycle time	^t RC	20		25		35		ns	4, 5
Address access time (A0-A11)	^t AA		20		25		35	ns	
A12 address access time	tA12A		15		17		25	ns	
Chip Enable access time	†ACE		20		20		25	ns	
Chip Select access time	tACS		20		25		35	ns	
Output Enable access time	^t AOE		8		10		13	ns	
Output hold from address change	tOH	3		3		3		ns	
Chip Select to output Low-Z	tLZCS	3		3		3		ns	
Output Enable to output Low-Z	^t LZOE	2		2		2		ns	
Chip deselect to output High-Z	tHZCS		15		15		25	ns	6
Output disable to output High-Z	^t HZOE		10		10		14	ns	6
Address latch enable pulse width	^t CALEN	8		8		10		ns	
Address setup to latch LOW	†ASL	4		4		6		ns	
Address hold from latch LOW	tAHL	5		5		5		ns	
WRITE Cycle							***************************************		
WRITE cycle time	tWC	20		25		35		ns	
Address valid to end of write	tAW	15		18		25		ns	
A12 address valid to end of write	^t A12W	15		18		25		ns	
Chip Select to end of write	tCW	15		18		25		ns	
Data valid to end of write	tDW	10		10		10		ns	
Data hold from end of write	tDH	0		0		0		ns	
Write enable output in High-Z	^t HZWE		12		15		15	ns	6
Write disable to output in Low-Z	†LZWE	3		3		3		ns	
Write pulse width	tWP	15		18		25		ns	
CE pulse width (during Chip Enable controlled write)	^t CP	15	{	18		25		ns	
Address setup time	^t AS	0		0		0		ns	
Write recovery time	tWR	0		0		0		ns	
Address latch enable pulse width	^t CALEN	8		8		10		ns	
Address setup to latch LOW	†ASL	4		4		6		ns	
Address hold from latch LOW	^t AHL	5		5		5		ns	

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output loadSee	Figures 1 and 2

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. This parameter is sampled.
- 4. CWE is HIGH for a READ cycle.

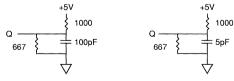
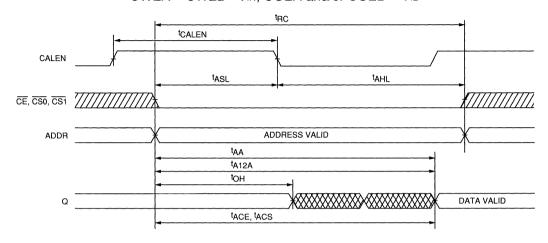


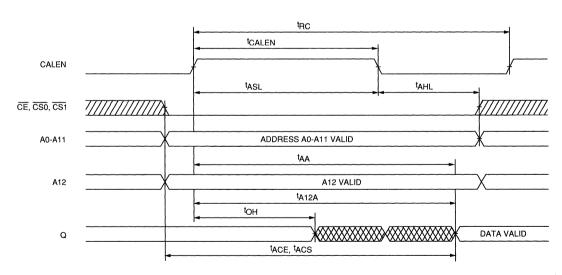
Fig. 1 OUTPUT LOAD EQUIVALENT

Fig. 2 OUTPUT LOAD EQUIVALENT


- 5. All READ cycle timings are referenced from the last valid address to the first transitioning address.
- HZCS, HZOE, and HZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.

READ CYCLE NO. 1

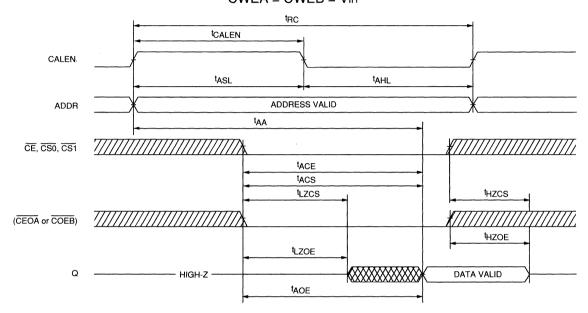
(Address Controlled)


CWEA = CWEB = VIH; COEA and/or COEB = VIL

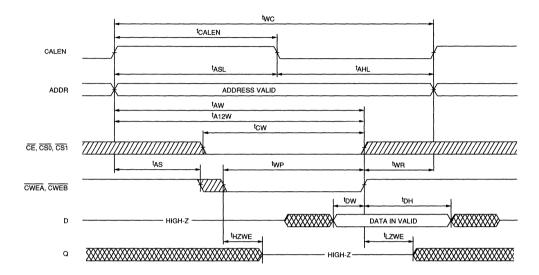
READ CYCLE NO. 2

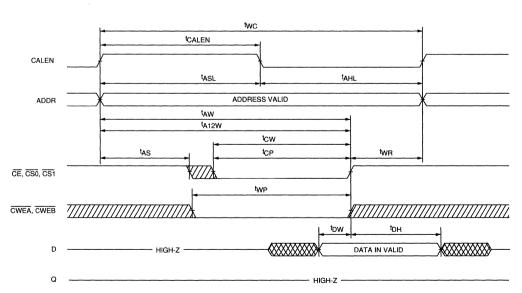
(CALEN Controlled)

CWEA = CWEB = VIH; COEA and/or COEB = VIL



DON'T CARE


READ CYCLE NO. 3 CWEA = CWEB = VIH


DON'T CARE
UNDEFINED

WRITE CYCLE NO. 1 (Write Enable Controlled)

WRITE CYCLE NO. 2 (Chip Select Controlled)

CACHE DATA STATIC RAM

DUAL 4K x 18 SRAM, SINGLE 8K x 18 SRAM

CONFIGURABLE CACHE DATA SRAM

FEATURES

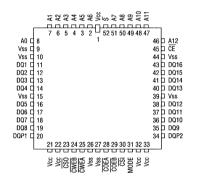
- Automatic WRITE cycle completion
- Operates as two 4K x 18 SRAMs with common addresses and data; also configurable as a single 8K x 18 SRAM
- Automatically controlled input address latches
- Built-in input data latches
- Separate upper and lower Byte Select
- Fast access times: 24ns and 28ns allow operation with 33MHz and 25MHz microprocessor systems
- Fast Output Enable: 8ns
- Parity bits provided for large cache applications such as secondary cache for the Intel 80486 microprocessor
- Directly compatible with the Intel 82485 cache controller

OPTIONS MARKING Timing 24ns access (33 MHz) 28ns access (25 MHz) Parkenese

Packages52-pin PLCC52-pin PQFPLG

GENERAL DESCRIPTION

The MT56C2818 is one of a family of fast SRAM cache memories. It employs a high-speed, low-power design using a four-transistor memory cell. It is fabricated using double-layer polysilicon, double-layer metal CMOS technology.


The MT56C2818 is a highly integrated cache data memory building block. A mode control pin (MODE) determines the configuration of the memory. When this pin is held LOW, the device functions as an 8K-word by 18-bit SRAM. When the mode pin is HIGH, the device is configured as a dual 4K-word by 18-bit SRAM.

Strobe (\overline{S}) controls the on-chip address and data latches. During READ and WRITE cycles the address latch is always transparent except for the time period ^tALO following the rising edge of \overline{S} . The addresses are "locked out" during this time.

 \overline{S} has no effect on the data latch during a READ cycle. During a WRITE cycle, data is latched on the rising edge of \overline{S} . The rising edge of \overline{S} also initiates the completion of the WRITE cycle.

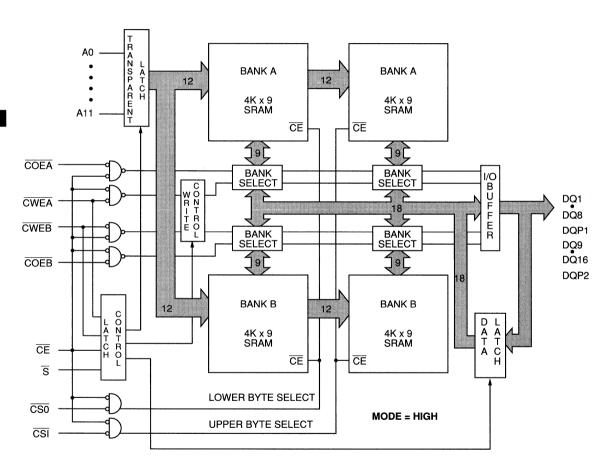
PIN ASSIGNMENT (Top View)

52-Pin PLCC (D-3) **52-Pin PQFP** (D-4)

The memory functions are controlled by the chip select $(\overline{CE}, \overline{CSO})$ and \overline{CSI} , output enable (\overline{COEA}) and \overline{COEB} and write enable (\overline{CWEA}) and \overline{CWEB} signals.

In either the DIRECT MAPPED (direct) or TWO-WAYSET ASSOCIATIVE (dual) operational modes, $\overline{\text{CE}}$ is a global chip enable, while $\overline{\text{CS0}}$ and $\overline{\text{CS1}}$ control lower and upper byte selection for READ and WRITE operations. Power consumption may be reduced by keeping either $\overline{\text{CE}}$ inactive (HIGH), or $\overline{\text{CS0}}$ and $\overline{\text{CS1}}$ inactive (HIGH) as much as possible.

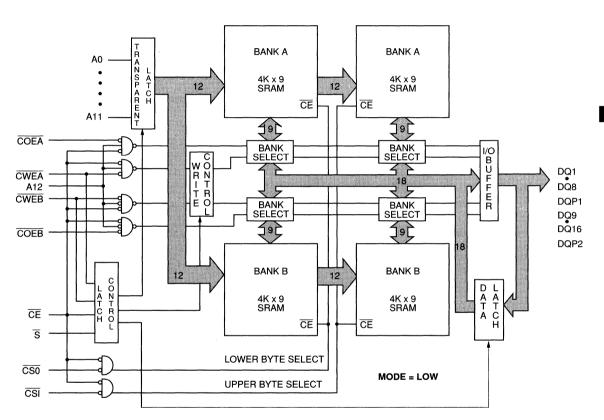
Outputs are enabled on a HIGH to LOW transition of COEA or COEB. In the dual mode, bank "A" or bank "B" may be enabled. In the direct mode, COEA and COEB should be connected together externally and used as a single output enable. Alternately, COEA or COEB can be tied LOW externally, allowing the other signal to control the outputs.


Write enable is activated on a HIGH to LOW transition of CWEA or CWEB. In the dual mode, data may be written to bank "A" or bank "B". In the direct mode, CWEA and CWEB should be connected together externally and used as a single write enable. Alternately, CWEA or CWEB can be tied LOW externally, allowing the other signal to control the write function.

The MT56C2818 operates from a +5V power supply and all inputs and outputs are fully TTL compatible.

FUNCTIONAL BLOCK DIAGRAM

DUAL 4K x 18 (TWO-WAY SET ASSOCIATIVE)



FUNCTIONAL BLOCK DIAGRAM

 $(\overline{COEA} = \overline{COEB}; \overline{CWEA} = \overline{CWEB})$

8K x 18 (DIRECT MAP)

PIN DESCRIPTIONS

PLCC PIN Number(s)	SYMBOL	TYPE	DESCRIPTION
8, 7, 6, 5, 4, 3, 2, 51, 50, 49, 48, 47	A0-A11	Input	Address Inputs: A0-A11 are always sampled (transparent latch) except for the time ${}^{t}WAH$ and ${}^{t}ALO$ following the rising edge of \overline{S} .
46	A12	Input	Address Input: This input is the high order address bit in the direct $8K \times 18$ configuration. It is not used in the dual $4K \times 18$ configuration.
52	\$	Input	Strobe: This signal controls the internal data and address latches. The address latch is always transparent except for the time period ¹ ALO following the rising edge of \overline{S} . The addresses are "locked out" during this time period. \overline{S} does not affect the data latch during a READ cycle. During a WRITE cycle the rising edge of \overline{S} latches the data. The rising edge also initiates the termination of the WRITE cycle.
31	MODE	Input	Mode Select: This controls the device configuration. When this pin is tied HIGH, the device is in the dual 4K x 18 configuration. When the pin is tied LOW, the device is configured as an 8K x 18 SRAM.
23, 30	CS0, CS1	Input	Chip Selects: These signals are used to select the upper and lower bytes for both READ and WRITE operations. When $\overline{CS0}$ is LOW, DQ1-DQ8 and DQP1 are enabled. When $\overline{CS1}$ is LOW, DQ9-DQ16 and DQP2 are enabled. Significant power savings can be achieved by keeping $\overline{CS0}$ and $\overline{CS1}$ inactive as much as possible.
45	CE	Input	Chip Enable: When \overline{CE} is LOW, the device is enabled. It is a global control signal that activates both bank "A" and bank "B" for READ or WRITE operations. Significant power savings can be achieved by keeping \overline{CE} inactive as much as possible.
28, 29	COEA, COEB	Input	Output Enable: In the dual configuration, the signal that is LOW enables bank "A" or "B". Simultaneous LOW assertion will deselect both banks. In the direct mode, these signals should be externally connected and, when asserted LOW, allow A12 to determine which memory bank is enabled. Alternately, COEA or COEB can be tied LOW externally, allowing the other signal to control the outputs.
25, 24	CWEA, CWEB	Input	Write Enable: In the dual configuration, the signal that is LOW enables a data write to the addressed memory location. In the direct mode, these signals should be externally connected and, when asserted LOW, allow A12 to determine which memory bank is written. Alternately, CWEA or CWEB can be tied LOW externally, allowing the other signal to control the write function.
20, 34	DQP1, DQP2	Input/ Output	Parity Data I/O: DQP1 is the parity bit for the lower byte. DQP2 is the parity bit for the upper byte.
11, 12, 13, 14, 16 17, 18, 19, 35, 36, 37 38, 40, 41, 42, 43	DQ1-DQ16	Input/ Output	SRAM Data I/O: lower byte is DQ1-DQ8; upper byte is DQ9-DQ16.
1, 21, 22, 32, 33,	Vcc	Supply	Power Supply: +5V ± 5%
9, 10, 15, 26, 27, 39, 44	Vss	Supply	Ground: GND

TRUTH TABLE

DUAL 4K x 18 (MODE PIN = HIGH)

OPERATION	CE	CSO	CS1	COEA	COEB	CWEA	CWEB
Outputs High-Z, WRITE disabled	Н	Х	Х	Х	Х	Х	Х
Outputs High-Z, WRITE disabled	Х	Н	Н	Х	Х	Х	Х
Outputs High-Z	Х	Х	Х	Н	Н	Х	Х
Outputs High-Z	X	X	Х	L	L	Х	Х
READ DQ1 - DQ8, DQP1 bank A	L	L	Н	L	Н	Н	Н
READ DQ1 - DQ8, DQP1 bank B	L	L	Н	Н	L	Н	Н
READ DQ9 - DQ16, DQP2 bank A	L	Н	L	L	Н	Н	Н
READ DQ9 - DQ16, DQP2 bank B	L	Н	L	Н	L	Н	Н
READ DQ1 - DQ16, DQP1, DQP2 bank A	L	L	L	L	Н	Н	Н
READ DQ1 - DQ16, DQP1, DQP2 bank B	L	L	L	Н	L	Н	Н
WRITE DQ1 - DQ8, DQP1 bank A	L	L	Н	Х	Х	L	Н
WRITE DQ1 - DQ8, DQP1 bank B	L	L	Н	Х	X	Н	L
WRITE DQ9 - DQ16, DQP2 bank A	L	Н	L	Х	Х	L	Н
WRITE DQ9 - DQ16, DQP2 bank B	L	Н	L	Х	Х	Н	L
WRITE DQ1 - DQ16, DQP1, DQP2 bank A	L	L	L	Х	Х	L	Н
WRITE DQ1 - DQ16, DQP1, DQP2 bank B	L	L	L	Х	Х	Н	L
WRITE DQ1 - DQ8, DQP1 bank A & B	L	L	Н	Х	Х	L	L
WRITE DQ9 - DQ16, DQP2 bank A & B	L	Н	L	Х	Х	L	L
WRITE DQ1 - DQ16, DQP1, DQP2 bank A & B	L	L	L	Х	Х	L	L

TRUTH TABLE

 $8K \times 18 \text{ (MODE PIN = LOW)}$

OPERATION	CE	CS0	CS1	COEA	COEB	CWEA	CWEB
Outputs High-Z, WRITE disabled	Н	Х	Х	Х	Х	Х	Х
Outputs High-Z, WRITE disabled	Х	Н	Н	Х	Χ	Х	Х
Outputs High-Z	Х	Х	Х	Н	Н	Х	X
READ DQ1 - DQ8, DQP1	L	L	Н	L	L	Н	H
READ DQ9 - DQ16, DQP2	L	Н	L	L	L	Н	Н
READ DQ1 - DQ16, DQP1, DQP2	L	L	L	L	L	Н	Н
WRITE DQ1 - DQ8, DQP1	L	L	Н	Х	Χ	L	L
WRITE DQ9 - DQ16, DQP2	L	Н	L	Х	Χ	L	L
WRITE DQ1 - DQ16, DQP1, DQP2	L	L	L	Х	X	L	L

NOTE: When mode pin is LOW, COEA and COEB must both be LOW to enable outputs. However, one signal can be tied LOW externally, allowing the other signal to control the outputs. Similarly CWEA and CWEB must both be LOW to enable a WRITE cycle. Either CWEA or CWEB can be tied LOW externally, allowing the other signal to control the WRITE function.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	1.0V to +7.0V
Storage Temperature (Plastic)	
Power Dissipation (PLCC)	1.2W
Power Dissipation (PQFP)	1.2W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{\Delta} \leq 70^{\circ}C; \ Vcc = 5.0V \pm 5\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Power Supply Voltage		Vcc	4.75	5.25	V	
Input High Voltage		Vін	2.2	Vcc +0.3	V	1
Input Low Voltage		VIL	-0.3	0.8	٧	1, 2
Input Leakage Current	Vin = GND to Vcc	ILı	-10	10	μΑ	
Output Leakage Current	Vi/o = GND to Vcc Output(s) Disabled	ILo	-10	10	μΑ	
Output Low Voltage	loL = 4.0mA	Vol		0.4	٧	1
Output High Voltage	loн = -1.0mA	Vон	2.4		V	1

DESCRIPTION	CONDITIONS		SYMBOL	MIN	MAX	UNITS	NOTES
Power Supply Current: Average Operating Current	100% Duty cycle Vin = GND to Vcc		lcc1		220	mA	
Power Supply Current: Average Operating Current	50% Duty cycle Vin = GND to Vcc		lcc2		120	mA	
Power Supply Current: CMOS Standby	$ \begin{array}{l} \overline{\text{CS1}} \geq \text{Vcc -0.2V and} \\ \overline{\text{CS0}} \geq \text{Vcc -0.2V or} \\ \text{Vcc = MAX, f = 0,} \\ \text{Vil.} \leq \text{Vss +0.2V,} \\ \text{Vih} \geq \text{Vcc -0.2V} \\ \end{array} $	CE≤ Vss +0.2V	ISB1		20	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _Δ = 25°C; Vcc = 5V	Cin		6	pF	3
Input/Output Capacitance	$\int f = 1MHz$,	Cı/o		6	pF	3

PQFP THERMAL CONSIDERATIONS

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Thermal resistance - Junction to Ambient	Still Air	Ø _{JA}		100	°C/W	
Thermal resistance - Junction to Case		_Ø JC		45	°C/W	
Maximum Case Temperature		Тс		110	°C	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Note 8) (0°C \leq T_A \leq +70°C, Vcc = 5.0V \pm 5%)

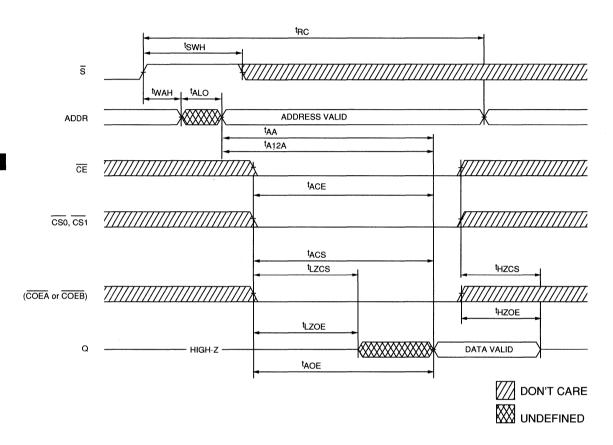
DECORIDATION	-24 -28		28				
DESCRIPTION	SYM	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle			<u> </u>				<u> </u>
READ cycle time	tRC tRC	24		28		ns	4, 5
Address access time (A0-A11)	tAA		24		28	ns	4, 5
A12 address access time	tA12A		17		19	ns	
Chip Enable access time	†ACE		23		26	ns	
Chip Select access time	tACS		23		26	ns	
Output Enable access time	†AOE		8		10	ns	
Output hold from address change	^t OH	3		3		ns	
Chip select/chip enable to output Low-Z	tLZCS	3		3		ns	
Output Enable to output Low-Z	†LZOE	2		2		ns	
Chip deselect/chip disable to output High-Z	tHZCS		15		15	ns	6
Output disable to output High-Z	^t HZOE	2	10	2	10	ns	6
WRITE Cycle							
WRITE cycle time	tWC	24		28		ns	
S strobe HIGH level width	tSWH	11		14		ns	7
S strobe LOW level width	tSWL	11		14		ns	7
WRITE, Chip Enable/Write Enable to S strobe setup	tWSS	10		12		ns	7
WRITE, Chip Enable/Write Enable to S strobe hold	tWSH	2		2		ns	7
WRITE, address setup to S strobe	tWAS	13		16		ns	7
WRITE, address hold to S strobe	tWAH	2		2		ns	7
Address latch closed	†ALO		8		8	ns	7
Chip Select to \overline{S} strobe setup	tcss	13		16		ns	7
Chip Select to S strobe hold	^t CSH	2		2		ns	7
Data to S strobe setup	tDSS	5		5		ns	7
Data to \overline{S} strobe hold	^t DSH	3		3		ns	7
Write Enable to output in High-Z	tHZWE		15		15	ns	6
Write Enable to output in Low-Z	tLZWE	8		8		ns	

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output loadRefe (see notes 6 and 8).	erence Figure 1

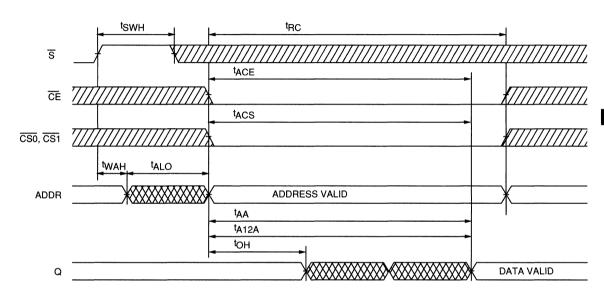
Q +5V 1000 100pF

Fig. 1 OUTPUT LOAD EQUIVALENT


Fig. 2 OUTPUT LOAD EQUIVALENT

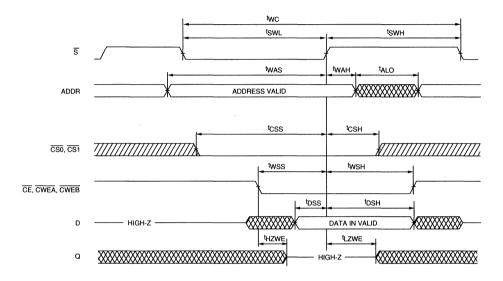
NOTES

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. This parameter is sampled.
- 4. CWE is HIGH for a READ cycle.
- 5. All READ cycle timings are referenced from the last valid address to the first transitioning address.
- tHZCS, tHZOE, and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.
- 7. Self-timed WRITE parameter.
- 8. Output timing should be derated by 1ns for each additional 30pf of capacitive loading.

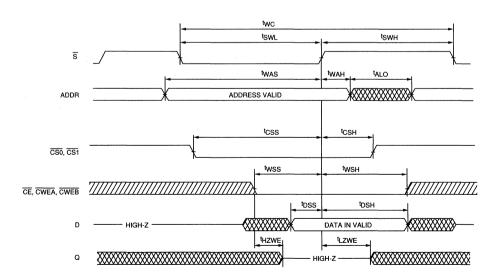

READ CYCLE NO. 1 (CWEA = CWEB = VIH)

READ CYCLE NO. 2

 $(\overline{COEA} \text{ and/or } \overline{COEB} = VIL)$ $(\overline{CWEA} = \overline{CWEB} = VIH)$



DON'T CARE


W UNDEFINED

WRITE CYCLE NO. 1 (Write Enable/Chip Enable controlled)

WRITE CYCLE NO. 2 (Chip Select Controlled)

DON'T CARE
UNDEFINED

CACHE DATA STATIC RAM

DUAL 4K x 18 SRAM, SINGLE 8K x 18 SRAM

CONFIGURABLE CACHE DATA SRAM

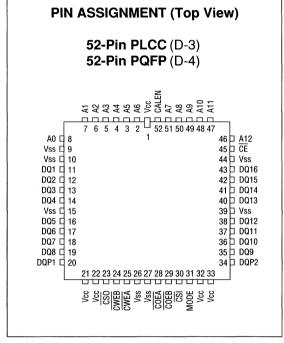
FEATURES

OPTION

- Operates as two 4K x 18 SRAMs with common addresses and data; also configurable as a single 8K x 18 SRAM
- Built-in input address latches (A0-A12)
- Separate upper and lower Byte Select
- Fast access times: 20ns, 25ns and 35ns allow operation with 40, 33 and 25MHz microprocessor systems
- Fast Output Enable: 8ns
- Directly interfaces with the Intel 82385 cache controller as well as other 80386 and 80486 cache memory controllers
- Parity bits provided for large cache applications such as secondary cache for the Intel 80486 microprocessors

N. C. A. TO TATE TO

20ns access (40 MHz) 25ns access (33 MHz) 35ns access (25 MHz) Packages 52-pin PLCC	MARKING					
Timing						
20ns access (40 MHz)	-20					
25ns access (33 MHz)	-25					
35ns access (25 MHz)	-35					
• Packages						
52-pin PLCC	EJ					
52-pin PQFP	LG					


GENERAL DESCRIPTION

The MT56C3818 is one of a family of fast SRAM cache memories. It employs a high-speed, low-power design using a four-transistor memory cell. It is fabricated using double-layer polysilicon, double-layer metal CMOS technology.

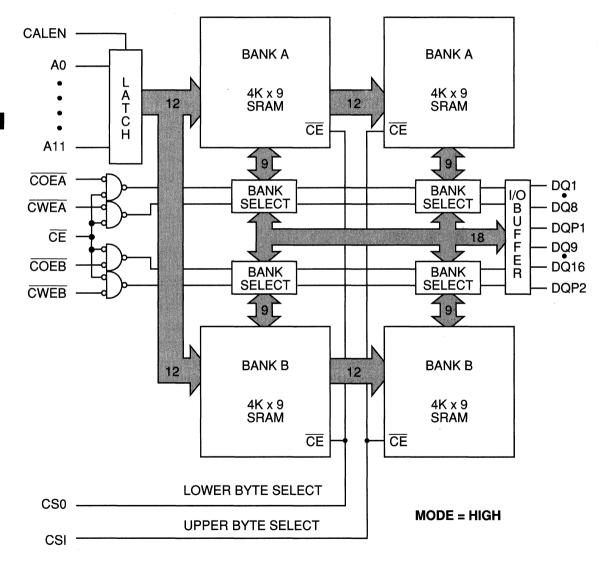
The MT56C3818 is a highly integrated cache data memory building block. It easily interfaces with cache controllers for the Intel 80386 in either the DIRECT MAPPED or TWO-WAY SET ASSOCIATIVE mode. A mode control pin (MODE) determines the configuration of the memory. When this pin is held LOW, the device functions as an 8K-word by 18-bit SRAM. When the mode pin is HIGH, the device is configured as a dual 4K-word by 18-bit SRAM.

Input addresses are latched in the on-chip register on the negative edge of the CALEN signal. This register is functionally equivalent to a 74LS373.

The memory functions are controlled by the chip select (CE, CSO and CSI), output enable (COEA and COEB) and write enable (CWEA and CWEB) signals.

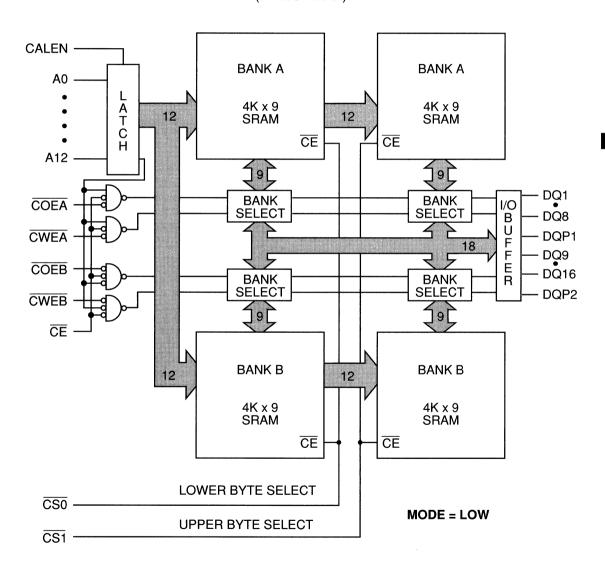
In either the DIRECT MAPPED (direct) or TWO-WAY SET ASSOCIATIVE (dual) operational modes, $\overline{\text{CE}}$ is a global chip enable, while $\overline{\text{CSO}}$ and $\overline{\text{CSI}}$ control lower and upper byte selection for READ and WRITE operations.

Outputs are enabled on a HIGH to LOW transition of COEA or COEB. In the dual mode, bank "A" or bank "B" may be enabled. In the direct mode, COEA and COEB should be connected together externally and used as a single output enable. Alternately, COEA or COEB can be tied LOW externally, allowing the other signal to control the outputs.


Write enable is activated on a HIGH to LOW transition of CWEA or CWEB. In the dual mode, data may be written to bank "A" or bank "B". In the direct mode, CWEA and CWEB should be connected together externally and used as a single write enable. Alternately, CWEA or CWEB can be tied LOW externally, allowing the other signal to control the write function.

The MT56C3818 operates from a \pm 5V power supply and all inputs and outputs are fully TTL compatible.

FUNCTIONAL BLOCK DIAGRAM


DUAL 4K x 18 (TWO-WAY SET ASSOCIATIVE)

FUNCTIONAL BLOCK DIAGRAM

8K x 18 (DIRECT MAP)

PIN DESCRIPTIONS

PLCC PIN Number(s)	SYMBOL	TYPE	DESCRIPTION
8, 7, 6, 5, 4, 3, 2, 51, 50, 49, 48, 47	A0-A11	Input	Address Inputs: These inputs are clocked by CALEN and stored in a latch.
46	A12	Input	Address Input: This input is the high order address bit in the direct 8K x 18 configuration. It is not used in the dual 4K x 18 configuration. This input is latched by the negative edge of CALEN.
52	CALEN	Input	Address Latch Enable: When CALEN is HIGH, the latch is transparent. The negative edge latches the current address inputs (A0-A12).
31	MODE	Input	Mode Select: This controls the device configuration. When this pin is tied HIGH, the device is in the dual 4K x 18 configuration. When the pin is tied LOW, the device is configured as an 8K x 18 SRAM.
23, 30	CS0, CS1	Chip Selects: These signals are used to select the upper and lower bytes for both READ and WRITE operations. When $\overline{\text{CS0}}$ is LOW, DQ1-DQ8 and DQP1 are enabled. When $\overline{\text{CS1}}$ is LOW, DQ9-DQ16 and DQP2 are enabled.	
45	CE	Input	Chip Enable: When $\overline{\text{CE}}$ is LOW, the device is enabled. It is a global control signal that activates both bank A and bank B for READ or WRITE operations.
28, 29	COEA, COEB	Input	Output Enable: In the dual configuration the signal that is LOW enables bank A or B. Simultaneous LOW assertion will deselect both banks. In the direct mode, these signals should be externally connected, and, when asserted LOW, allow A12 to determine which memory bank is enabled. Alternately, COEA or COEB can be tied LOW externally, allowing the other signal to control the outputs.
25, 24	CWEA, CWEB	Input	Write Enable: In the dual configuration the signal that is LOW enables a data write to the addressed memory location. In the direct mode, these signals should be externally connected, and, when asserted LOW, allow A12 to determine which memory bank is written. Alternately, CWEA or CWEB can be tied LOW externally, allowing the other signal to control the write function.
11, 12, 13, 14, 16 17, 18, 19, 35, 36, 37 38, 40, 41, 42, 43	DQ1-DQ16	Input/ Output	SRAM Data I/O: lower byte is DQ1-DQ8; upper byte is DQ9-DQ16.
20,34	DQP1 DQP2	Input/ Output	Parity Data I/O: DQP1 is the parity bit for the lower byte. DQP2 is the parity bit for the upper byte.
1, 21, 22, 32, 33,	Vcc	Supply	Power Supply: +5V ± 5%

TRUTH TABLE

DUAL $4K \times 18$ (MODE PIN = HIGH)

OPERATION	CE	CSO	CS1	COEA	COEB	CWEA	CWEB
Outputs High-Z, WRITE disabled	Н	Х	Х	Х	Х	Х	Х
Outputs High-Z, WRITE disabled	Х	Н	Н	Х	Х	Х	Х
Outputs High-Z	Х	Х	Х	Н	Н	Х	Х
Outputs High-Z	Х	Х	Х	L	L	Х	Х
READ DQ1 - DQ8,DQP1 bank A	L	L	Н	L	Н	Н	H
READ DQ1 - DQ8, DQP1 bank B	L	L	Н	Н	L	Н	Н
READ DQ9 - DQ16, DQP2 bank A	L	Н	L	L	Н	Н	Н
READ DQ9 - DQ16, DQP2 bank B	L	Н	L	Н	L	Н	Н
READ DQ1 - DQ16, DQP1, DQP2 bank A	L	L	L	L	Н	Н	Н
READ DQ1 - DQ16, DQP1, DQP2 bank B	L	L	L	Н	L	Н	Н
WRITE DQ1 - DQ8, DQP1 bank A	L	L	Н	Х	Х	L	Н
WRITE DQ1 - DQ8, DQP1 bank B	L	L	Н	Х	Х	Н	L
WRITE DQ9 - DQ16, DQP2 bank A	L	Н	L	Х	Х	L	Н
WRITE DQ9 - DQ16, DQP2 bank B	L	Н	L	Х	Х	Н	L
WRITE DQ1 - DQ16, DQP1, DQP2 bank A	L	L	L	Х	Х	L	Н
WRITE DQ1 - DQ16, DQP1, DQP2 bank B	L	L	L	Х	Х	Н	L
WRITE DQ1 - DQ8, DQP1 bank A & B	Ĺ	L	Н	Х	Х	L	Ĺ
WRITE DQ9 - DQ16, DQP2 bank A & B	L	Н	L	Х	Х	L	L
WRITE DQ1 - DQ16, DQP1, DQP2 bank A & B	L	L	L	Х	Х	L	L

NOTE:

CE, when taken inactive while CWEA or CWEB remain active, allows a chip-enable-controlled WRITE to be

performed.

TRUTH TABLE

8K x 18 (MODE PIN = LOW)

OPERATION	CE	CSO	CS1	COEA	COEB	CWEA	CWEB
Outputs High-Z, WRITE disabled	Н	X	Х	Х	Х	Χ	Х
Outputs High-Z, WRITE disabled	X	Н	Н	Х	Х	Х	Х
Outputs High-Z	X	Х	Х	Н	Н	Х	Х
READ DQ1 - DQ8, DQP1	L	L	Н	L	L	Н	Н
READ DQ9 - DQ16, DQP2	L	Н	L	L	L	Н	Н
READ DQ1 - DQ16, DQP1, DQP2	L	L	L	L	L	Н	Н
WRITE DQ1 - DQ8, DQP1	L	L	Н	Х	Х	L	L
WRITE DQ9 - DQ16, DQP2	L	Н	L	Х	Х	L	L
WRITE DQ1 - DQ16, DQP1, DQP2	L	L	L	Х	Х	L	L

NOTE: CE, when taken inactive while CWEA and CWEB remain active, allows a chip-enable-controlled WRITE to be performed.

COEA and COEB must both be LOW to enable outputs. However, one signal can be tied LOW externally, allowing the other signal to control the outputs. Similarly CWEA and CWEB must both be LOW to enable a WRITE cycle. Either CWEA or CWEB can be tied LOW externally, allowing the other signal to control the WRITE function.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to \	7ss1.0V to +7.0V
Storage Temperature	55°C to +150°C
Power Dissipation (PLCC)	1.2W
Power Dissipation (PQFP)	
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{\text{A}} \leq 70^{\circ}C; \ \text{Vcc} = 5.0 \text{V} \pm 5\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Power Supply Voltage		Vcc	4.75	5.25	V	
Input High Voltage		Vıн	2.2	Vcc +0.3	V	1
Input Low Voltage		VIL	-0.3	0.8	V	1, 2
Input Leakage Current	Vin = GND to Vcc	ILı	-10	10	μΑ	
Output Leakage Current	Vi/o = GND to Vcc Output(s) Disabled	ILo	-10	10	μΑ	
Output Low Voltage	loL = 4.0mA	Vol		0.4	V	1
Output High Voltage	Iон = -1.0mA	Vон	2.4		٧	1

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Power Supply Current: Average Operating Current	100% Duty cycle Vin = GND to Vcc	Icc1		220	mA	
Power Supply Current: Average Operating Current	50% Duty cycle Vin = GND to Vcc	lcc2		120	mA	
Power Supply Current: CMOS Standby	CS0 = CS1 ≥ Vcc -0.2V Vcc = MAX VIL ≤ Vss +0.2V VIH ≥ Vcc -0.2V	IsB		20	mA	

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cin		6	pF	3
Output Capacitance	Vcc = 5V	Cı/o		6	pF	3

PQFP THERMAL CONSIDERATIONS

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Thermal resistance - Junction to Ambient	Still Air	ØJA		100	°C/W	
Thermal resistance - Junction to Case		ØJC		45	°C/W	
Maximum Case Temperature		Tc		110	°C	

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (0°C \leq T $_{A}$ \leq +70°C, Vcc = 5.0V $\pm5\%$)

DESCRIPTION		-20		-25		-35			
	SYM	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle									
READ cycle time	^t RC	20		25		35		ns	4, 5
Address access time (A0-A12)	^t AA		20		25		35	ns	
Chip Enable access time	†ACE		20		20		25	ns	
Chip Select access time	tACS		20		25		35	ns	
Output Enable access time	^t AOE		8		10		13	ns	
Output hold from address change	tOH	3		3		3		ns	
Chip Select to output Low-Z	tLZCS	3		3		3		ns	
Output Enable to output Low-Z	^t LZOE	2		2		2		ns	
Chip deselect to output High-Z	tHZCS		15		15		25	ns	6
Output disable to output High-Z	tHZOE		10		10		14	ns	6
Address latch enable pulse width	^t CALEN	8		8		10		ns	
Address setup to latch LOW	^t ASL	4		4		6		ns	
Address hold from latch LOW	†AHL	5		5		5		ns	
WRITE Cycle							*		•
WRITE cycle time	tWC	20		25		35		ns	
Address valid to end of write	^t AW	15		18		25		ns	
Chip Select to end of write	tCM	15		18		25		ns	
Data valid to end of write	tDW	10		10		10		ns	
Data hold from end of write	^t DH	0		0		0		ns	
Write Enable output in High-Z	tHZWE		12		15		15	ns	6
Write disable to output in Low-Z	tLZWE	3		3		3		ns	
Write pulse width	tWP	15		18		25		ns	
CE pulse width (during Chip Enable controlled write)	^t CP	15		18		25		ns	
Address setup time	tAS	0		0		0		ns	
Write recovery time	^t WR	0		0		0		ns	
Address latch enable pulse width	^t CALEN	8		8		10		ns	
Address setup to latch LOW	†ASL	4		4		6		ns	
Address hold from latch LOW	^t AHL	5		5		5		ns	

AC TEST CONDITIONS

Input pulse levels	Vss to 3.0V
Input rise and fall times	3ns
Input timing reference levels	1.5V
Output reference levels	1.5V
Output load	See Figures 1 and 2

Q +5V 1000 Q 667 100pF 667 4

Fig. 1 OUTPUT LOAD EQUIVALENT

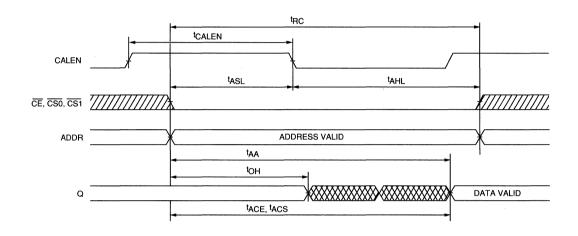
Fig. 2 OUTPUT LOAD EQUIVALENT

+5V

1000

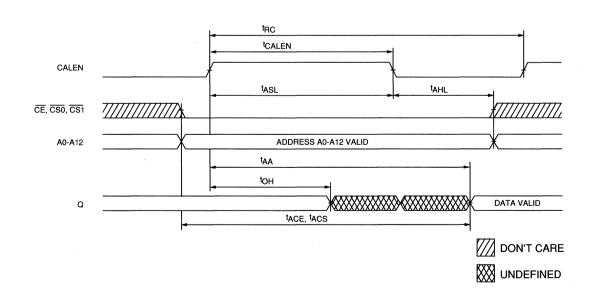
5pF

NOTES

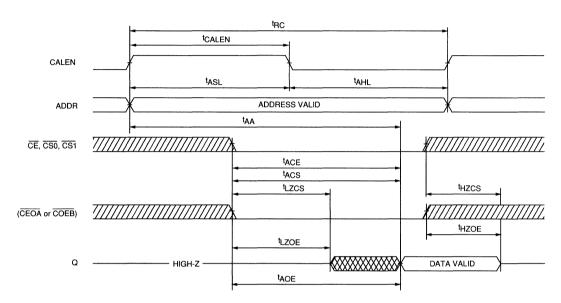

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. This parameter is sampled.
- 4. CWE is HIGH for a READ cycle.

- 5. All READ cycle timings are referenced from the last valid address to the first transitioning address.
- tHZCS, tHZOE, and tHZWE are specified with CL = 5pF as in Fig. 2. Transition is measured ± 500mV from steady state voltage.

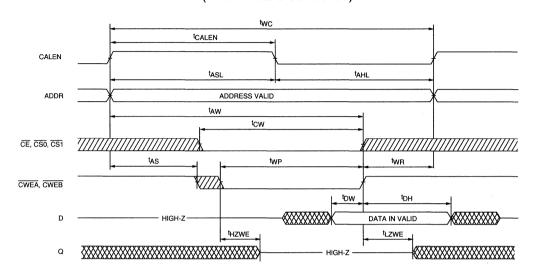
READ CYCLE NO. 1

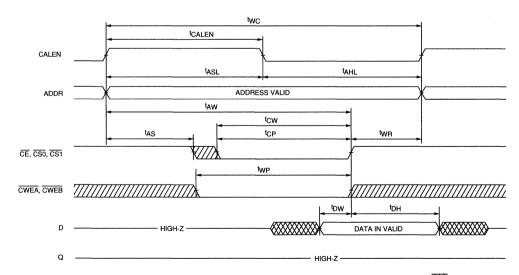

 $\frac{\text{(Address Controlled)}}{\text{CWEA}} = \frac{\text{(Address Controlled)}}{\text{CWEB}} = \text{V}_{\text{IH}}; \frac{\text{COEA}}{\text{COEA}} \text{ and/or } \frac{\text{COEB}}{\text{COEB}} = \text{V}_{\text{IL}}$

READ CYCLE NO. 2


(CALEN Controlled)

CWEA = CWEB = VIH; COEA and/or COEB = VIL


READ CYCLE NO. 3 CWEA = CWEB = VIH


DON'T CARE
UNDEFINED

WRITE CYCLE NO. 1 (Write Enable Controlled)

WRITE CYCLE NO. 2 (Chip Select Controlled)

DYNAMIC RAMS	1
DRAM MODULES	2
MULTIPORT DRAMS	3
STATIC RAMS	4
SYNCHRONOUS SRAMS	5
SRAM MODULES	6
CACHE DATA SRAMS	7
FIFO MEMORIES	8
APPLICATION/TECHNICAL INFORMATION	9
MILITARY INFORMATION	10
PACKAGE INFORMATION	11
SALES INFORMATION	12

FIFO PRODUCT SELECTION GUIDE

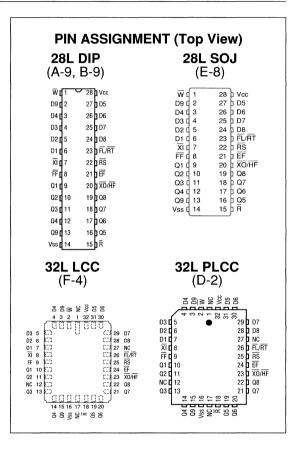
Memory Control Part		Cycle	Package and Number of Pins						
Configuration	Functions	Number	Time (ns)	PDIP	CDIP	LCC	PLCC	SOJ	Page
512 x 9	Е	MT52C9005	15, 20, 25, 35	28	28	32	32	28	8-1
512 x 9	PF, E	MT52C9007	15, 20, 25, 35	28	28	32	32	28	8-13
1K x 9	E	MT52C9010	15, 20, 25, 35	28	28	32	32	28	8-29
1K x 9	PF, E	MT52C9012	15, 20, 25, 35	28	28	32	32	28	8-41
2K x 9	E	MT52C9020	15, 20, 25, 35	28	28	32	32	28	8-57
2K x 9	PF, E	MT52C9022	15, 20, 25, 35	28	28	32	32	28	8-69

E = Expandable Depth and Width, PF = Programmable Flag

FIFO

512 x 9 FIFO

FEATURES

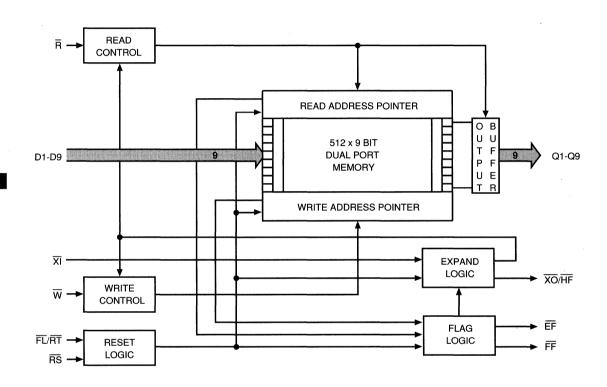

- Very high speed: 15, 20, 25 and 35ns access
- High-performance, low-power CMOS process
- Single +5V ±10% supply
- Low power: 5mW typ. (standby); 350mW typ. (active)
- TTL compatible inputs and outputs
- Asynchronous READ and WRITE
- Empty, Half-Full and Full Flags
- Half-full flag in STAND ALONE mode
- Auto-retransmit capability
- Fully expandable by width and depth
- Pin and function compatible with higher density standard FIFOs

OPTIONS	MARKING
Timing	
15ns access time	-15
20ns access time	-20
25ns access time	-25
35ns access time	-35
Packages Plastic DIP (300 mil) Plastic DIP (600 mil) Ceramic DIP (600 mil) PLCC Ceramic LCC SOJ (300 mil)	None W C EJ EC DJ

GENERAL DESCRIPTION

The Micron FIFO family employs high-speed, low-power CMOS designs using a true dual port, six-transistor memory cell with resistor loads.

These devices are written and read in a first-in-first-out (FIFO) sequence. Dual read and write pointers handle the internal addressing, so no external address generation is required. Information can be written to and read from the FIFO asynchronously and independently at the input and output ports. This allows information to be transferred independently in and out of the FIFO at varying data rates. Visibility of the memory volume is given through empty, half-full and full flags. While the full flag is asserted, attempted writes are inhibited. Likewise, while the empty



flag is asserted, further reads are inhibited and the outputs remain in a high-impedance state. Expansion out, expansion in, and first load pins are provided to expand the depth of the FIFO memory array, with no performance degradation. A retransmit pin allows data to be re-sent on the receiver's request when the FIFO is in the STAND ALONE mode.

The depth and/or width of the FIFO can be expanded by cascading multiple devices. Also, the MT52C9005 is speed, function and pin compatible with higher density FIFOs from Micron. This upward compatibility with 1K and 2K FIFOs provides a single-chip, depth-expansion solution.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

LCC PIN NUMBER(S)	DIP PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
25	22	RS	Input	Reset: Taking RS LOW will reset the FIFO by initializing the read and write pointers and all flags. After the device is powered up, it must be reset before any writes can take place.
2	1	W	Input	Write Strobe: \overline{W} is taken LOW to write data from the input port (D1-D9) into the FIFO memory array.
18	15	R	Input	Read Strobe: \overline{R} is taken LOW to read data from the FIFO memory array to the output port (Q1-Q9).
8	7	ΧI	Input	Expansion In: This pin is used for DEPTH EXPANSION mode. In SINGLE DEVICE mode, it should be grounded. In EXPANDED mode, it should be connected to Expansion-Out (XO)of the previous device in the daisy chain.
26	23	FL/RT	Input	First Load: Acts as first load signal in DEPTH EXPANSION mode. FL, if low, will enable the device as the first to be loaded (enables read and write pointers). FL should be tied LOW for the first FIFO in the chain, tied HIGH for all other FIFOs in the chain.
				Retransmit: Acts as retransmit signal in STAND ALONE mode. RT is used to enable the RETRANSMIT cycle. When taken LOW, RT resets the read pointer to the first data location and the FIFO is then ready to retransmit data on the following READ operation(s). The flags will be affected according to specific data conditions.
7, 6, 5, 4, 31, 30, 29, 28, 3	6, 5, 4, 3, 27 26, 25, 24, 2	D1-D9	Input	Data Inputs
24	21	EF	Output	Empty Flag: Indicates empty FIFO memory when LOW, inhibiting further READ cycles.
9	8	FF	Output	Full Flag: Indicates full FIFO memory when LOW, inhibiting further WRITE cycles.
23	20	XO/HF	Output	Expansion Out: Acts as expansion out pin in DEPTH EXPANSION mode. \overline{XO} will pulse LOW on the last physical WRITE or the last physical READ. \overline{XO} should be connected to \overline{XI} of the next FIFO in the daisy chain.
				Half-full Flag: Acts as Half Full Flag in STAND ALONE mode. HF goes LOW when the FIFO becomes more than Half-full; will stay LOW until the FIFO becomes Half-full or less.
10, 11, 13, 14, 19, 20, 21, 22, 15	9, 10, 11, 12, 16 17, 18, 19, 13	Q1-Q9	Output	Data Output: Output or high impedance.
32	28	Vcc	Supply	
16	14	Vss	Supply	Ground

FUNCTIONAL DESCRIPTION

The MT52C9005 uses a dual port SRAM memory cell array with separate read and write pointers. This results in a flexible length FIFO buffer memory, with independent, asynchronous READ and WRITE capabilities and with no fall-through or bubble-through time constraints.

Note:

For dual function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing the half-full flag the $\overline{XO}/\overline{HF}$ pin will be shown as $(\overline{XO})/\overline{HF}$.

RESET

After Vcc is stable, RESET (\overline{RS}) must be taken LOW to initialize the read and write pointers and flags. During the reset pulse, the state of the \overline{XI} pin will determine if the FIFO will operate in the STAND ALONE or DEPTH EXPANSION mode. The STAND ALONE mode is entered if \overline{XI} is LOW. If \overline{XI} is connected to \overline{XO} of another FIFO, the DEPTH EXPANSION mode is selected.

WRITING THE FIFO

Data is written into the FIFO when the write strobe (\overline{W}) pin is taken LOW, while FF is HIGH. The WRITE cycle is initiated by the falling edge of \overline{W} and data on the D1-D9 pins are latched on the rising edge. If the location to be written is the last empty location in the FIFO, the FF will be asserted (LOW) after the falling edge of \overline{W} . While \overline{FF} is LOW, any attempted writes will be inhibited, with no loss of data already stored in the FIFO. When a device is used in the STAND ALONE mode, $(\overline{XO})/\overline{HF}$ is asserted when the halffull-plus-one location (512/2 + 1) is written. It will stay asserted until the FIFO becomes half-full or less. The first WRITE to an empty FIFO will cause EF to go HIGH after the rising edge of \overline{W} . When operating in the DEPTH EXPAN-SION mode, the last location write to a FIFO will cause \overline{XO} (\overline{HF}) to pulse LOW. This will enable writes to the next FIFO in the chain.

READING THE FIFO

Information is read from the FIFO when the read strobe (\overline{R}) pin is taken LOW and the FIFO is not empty $(\overline{EF}$ is HIGH). The data-out (Q1-Q9) pins will go active $(Low-Z)^tRLZ$ after the falling edge of \overline{R} and valid data will appear tA after the falling edge of \overline{R} . After the last available data word is read, \overline{EF} will go LOW upon the falling edge of \overline{R} . While \overline{EF} is asserted LOW, any attempted reads will be inhibited and the outputs will stay inactive (High-Z). When the FIFO is being used in the SINGLE DEVICE mode and the half-full-plus-one location is read, $(\overline{XO})/\overline{HF}$ will go HIGH after the rising edge of \overline{R} . When the FIFO is full $(\overline{FF}LOW)$ and a read is initiated, \overline{FF} will go HIGH after the rising edge of \overline{R} . When operating in the EXPANDED mode, the last location read to a FIFO will cause $\overline{XO}/\overline{HF}$ to pulse LOW. This will enable further reads from the next FIFO in the chain.

RETRANSMIT

In the STAND ALONE mode, the MT52C9005 allows the receiving device to request that the data read earlier from the FIFO to be repeated, when less than 512 writes have been performed between resets. When the $(\overline{FL})/\overline{RT}$ pin is taken LOW, the read pointer is reset to the first location while the write pointer is not affected. The receiver may again start reading the data from the beginning of the FIFO \overline{RTR} after $(\overline{FL})/\overline{RT}$ is taken HIGH. The empty, half-full and full flags will be affected as specified for the data volume.

DATA FLOW-THROUGH

Data flow-through is a method of writing and reading the FIFO at its full and empty boundaries, respectively. By holding \overline{W} LOW when the FIFO is full, a WRITE can be initiated from the next ensuing READ pulse. This is referred to as a FLOW-THROUGH WRITE. FLOW-THROUGH WRITEs are initiated from the rising edge of \overline{R} . When the FIFO is empty, a FLOW-THROUGH READ can be done by holding \overline{R} LOW and letting the next WRITE initiate the READ. FLOW-THROUGH READs are initiated from the rising edge of \overline{W} and access time is measured from the rising edge of \overline{EF} .

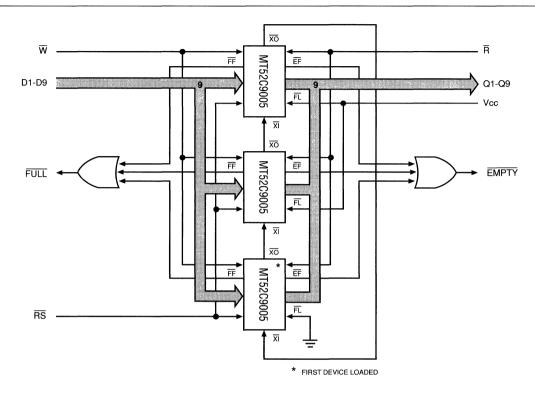


Figure 1
DEPTH EXPANSION

WIDTH EXPANSION

The FIFO word width can be expanded, in increments of 9 bits, using either the stand alone or groups of expanded-depth mode FIFOs. Expanded-width operation is achieved by tying devices together with all control lines $(\overline{W}, \overline{R},$ etc.) in common. The flags are monitored from one device or one expanded-depth group (Figure 1) when expanding depth and width.

DEPTH EXPANSION

Multiple MT52C9005s may be cascaded to expand the depth of the FIFO buffer. Three pins are used to expand the memory depth, \overline{XI} , $\overline{XO}/(\overline{HF})$ and $\overline{FL}/(\overline{RT})$. Figure 1 illustrates a typical three-device expansion. The DEPTH EXPANSION mode is entered during a RESET cycle, by tying the $\overline{XO}/(\overline{HF})$ pin of each device to the \overline{XI} pin of the next device in the chain. The first device to be loaded will have its $\overline{FL}/(\overline{RT})$ pin grounded. The remaining devices in the chain will have $\overline{FL}/(\overline{RT})$ tied HIGH. During RESET cycle, $\overline{XO}/(\overline{HF})$ of each device is held HIGH, disabling reads and

writes to all FIFOs, except the first load device. When the last physical location of the first device is written, the $\overline{\text{XO}}/\overline{\text{(HF)}}$ pin will pulse LOW on the falling edge of $\overline{\text{W}}$. This will "pass" the write pointer to the next device in the chain, enabling writes to that device and disabling writes to the first MT52C9005. The writes will continue to go to the second device until last location WRITE. Then it will "pass" the write pointer to the third device.

The full condition of the entire FIFO array is signaled by "OR-ing" all the \overline{FF} pins. On the last physical READ of the first device, its $\overline{XO}/(\overline{HF})$ will pulse again. On the falling edge of \overline{R} , the read pointer is "passed" to the second device. The read pointer will, in effect, "chase" the write pointer through the extended FIFO array. The read pointer never overtakes the write pointer. An empty condition is signaled by OR-ing all of the \overline{EF} pins. This inhibits further reads. While in the DEPTH EXPANSION mode, the half-full flag and retransmit functions are not available.

MT52C9005

TRUTH TABLE 1

SINGLE-DEVICE CONFIGURATION/WIDTH-EXPANSION Mode

MODE		INPUTS		INTERNA	OUTPUTS			
	RS	RT	Xι	Read Pointer	Write Pointer	EF	FF	HF
RESET	0	х	0	Location Zero	Location Zero	0	1	1
RETRANSMIT	1	0	0	Location Zero	Unchanged	1	Х	Х
READ/WRITE	1	1	0	Increment (1)	Increment (1)	Х	Х	Х

NOTE:

1. Pointer will increment if flag is HIGH.

TRUTH TABLE 2

DEPTH-EXPANSION/COMPOUND-EXPANSION Mode

MODE	INPUTS			INTERNA	OUTPUTS		
	RS	FC	Χı	Read Pointer	Write Pointer	EF	FF
RESET First Device	0	0	(1)	Location Zero	Location Zero	0	1
RESET All other Devices	0	1	(1)	Location Zero	Location Zero	0	1
READ/WRITE	1	Х	(1)	Х	X	Х	Х

NOTE:

1. XI is connected to \overline{XO} of previous device.

RS = Reset Input, FL/RT/DIR= First Load/Retransmit, EF = Empty Flag Output, FF = Full Flag Output, XI = Expansion Input, HF = Half Full Flag Output.

ABSOLUTE MAXIMUM RATINGS*

 *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{\mbox{\scriptsize A}} \leq 70^{\circ}C; \mbox{ Vcc} = 5.0 \mbox{\scriptsize V} \pm 10\%)$

DESCRIPTION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.0	Vcc+1	V	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-0.5	0.8	٧	1, 2

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_{\Delta} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Power Supply Current: Operating	W, R ≤ Vı∟; Vcc = MAX Outputs Open	lcc		100	mA	3
	W, R ≥ VIH; VCC = MAX	ISB1		15	mA	
Power Supply Current: Standby	\overline{W} , $\overline{R} \ge Vcc$ -0.2; $Vcc = MAX$ $VIL \le Vss$ +0.2, $VIH \ge Vcc$ -0.2; $f = 0$	ISB2		5	mA	
Input Leakage Current	0V ≤ VIN ≤ Vcc	ILı	-10	10	μА	
Output Leakage Current	Output(s) Disabled, 0V ≤ Vouт ≤ Vcc	ILo	-10	10	μА	
Output High Voltage	Іон = -2.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1

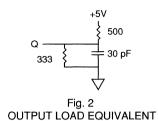
CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cı		8	pF	4
Output Capacitance	Vcc = 5V	, C o		8	pF	4

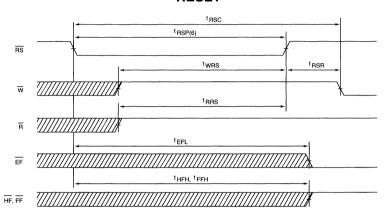
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

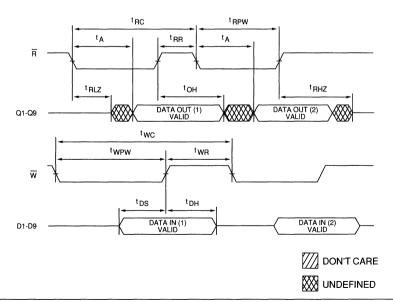
A.C. CHARACTERISTICS			15	-2	20	-2	25	-:	35		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Shift Frequency	Fs		40		33.3		28.5		22.2	MHz	
Access time	^t A		15		20		25		35	ns	
Read cycle time	tRC tRC	25		30		35		45		ns	
Read command recovery time	t _{RR}	10		10		10		10		ns	
Read command pulse width	tRPW	15		20		25		35		ns	6
Read LOW to Low-Z	†RLZ	5		5		5		5		ns	
Read to HIGH to High-Z	t _{RHZ}		15		15		18		20	ns	
Data hold from R HIGH	tOH	5		5		5		5		ns	
Write cycle time	tWC	25		30		35		45		ns	
Write command pulse width	tWPW	15		20		25		35		ns	6
Write command recovery time	tWR	10		10		10		10		ns	
Write HIGH to Low-Z	tWLZ	5		5		5		5		ns	5
Data setup time	t _{DS}	10		12		15		20		ns	
Data hold time	tDH	0		0		0		0		ns	
Reset cycle time	tRSC	25		30		35		45		ns	
Reset pulse width	tRSP	15		20		25		35		ns	6
Reset recovery time	tRSR	10		10		10		10		ns	
Read HIGH to Reset HIGH	tRRS	15		20		25		35		ns	
Write HIGH to Reset HIGH	twrs	15		20		25		35		ns	
Retransmit cycle time	tRTC	25		30		35		45		ns	
Retransmit pulse width	^t RT	15		20		25		35		ns	
Retransmit recovery time	^t RTR	10		10		10		12		ns	
Retransmit setup time	^t RTS	15		20		25		35		ns	
Reset to EF LOW	t _{EFL}		25		30		35		45	ns	
Reset to HF FF HIGH	tHFH, tFFH		25		30		35		45	ns	
Read LOW to EF LOW	tREF.		20		20		25		35	ns	
Read HIGH to FF HIGH	^t RFF		20		20		25		35	ns	
Write LOW to FF LOW	^t WFF		20		20		25		35	ns	
Write HIGH to EF HIGH	^t WEF		20		20		25		35	ns	
Write LOW to HF LOW	^t WHF		25		30		35		45	ns	
Read HIGH to HF HIGH	^t RHF		25		30		35		45	ns	
Read pulse after EF HIGH	^t RPE	15		20		25		35		ns	5
Write pulse width after FF HIGH	^t WPF	15		20		25		35		ns	5
Read/Write to XO LOW	†XOL		20		20		25		35	ns	
Read/Write to XO HIGH	tX0H		20		20		25		35	ns	
XI pulse width	^t XIP	15		20		25		35		ns	
XI setup Time	tXIS	10		12		15		15		ns	
XI recovery time	tXIR	10		10		10		10		ns	


NOTES

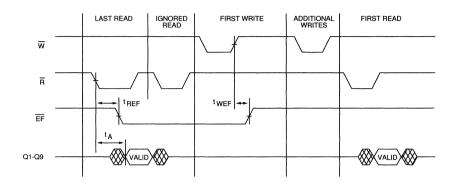
- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Flow-through mode only.
- 6. Pulse widths less than minimum are not allowed.



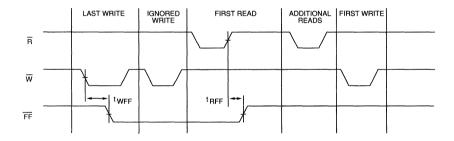
AC TEST CONDITIONS

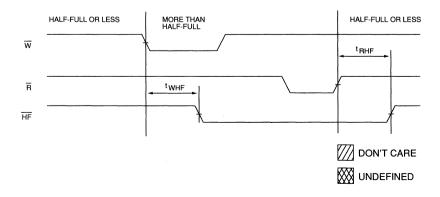

Input pulse level	0 to 3.0V
Input rise and fall times	5ns
Input timing reference level	1.5V
Output reference level	1.5V
Output load	See Figure 2

RESET

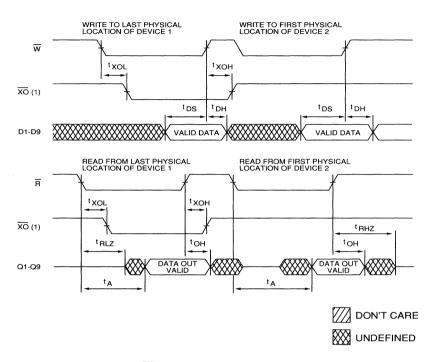


ASYNCHRONOUS READ AND WRITE

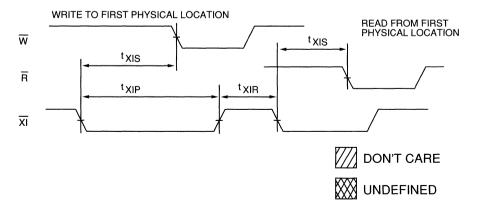



EMPTY FLAG

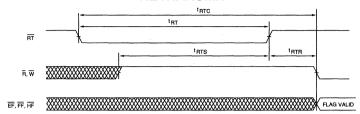
FULL FLAG



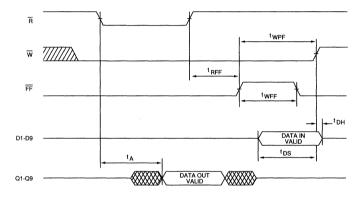
HALF-FULL FLAG

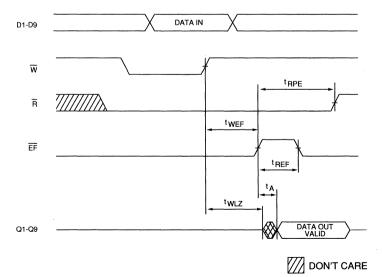


EXPANSION MODE (\overline{XO})


NOTE: \overline{XO} of the Device 1 is connected to \overline{XI} of Device 2.

EXPANSION MODE (\overline{XI})




RETRANSMIT

WRITE FLOW-THROUGH

READ FLOW-THROUGH

₩ UNDEFINED

FIFO

512 x 9 FIFO

WITH PROGRAMMABLE FLAGS

FEATURES

- Very high speed: 15, 20, 25 and 35ns access
- High-performance, low-power CMOS process
- Single +5V ±10% supply
- Low power: 5mW typical (standby); 350mW typical (active)
- TTL compatible inputs and outputs
- Asynchronous READ and WRITE
- Two fully configurable Almost Full and Almost Empty Flags
- Programmable Half Full Flag or Full/Empty Flag option eliminates external counter requirement
- Register loading via the input or output pins
- Auto-retransmit capability in single-device mode
- Fully expandable by width and depth
- Pin and function compatible with standard FIFOs

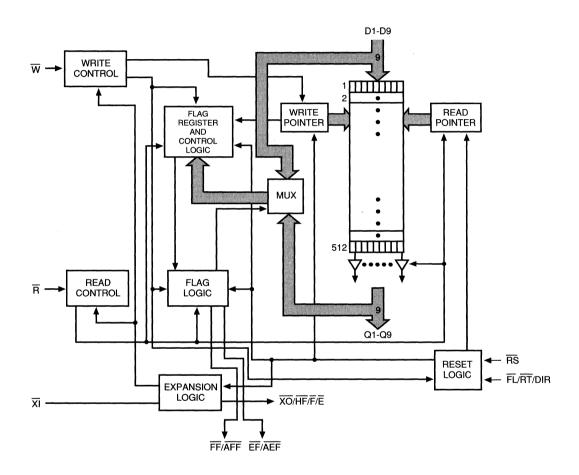
OPTIONS	MARKIN
Timing	
15ns access time	-15
20ns access time	-20
25ns access time	-25
35ns access time	-35
• Packages	
Plastic DIP (300 mil)	None
Plastic DIP (600 mil)	W
Ceramic DIP (600 mil)	C
PLCC	EJ
Ceramic LCC	EC
Plastic SOI	DI

GENERAL DESCRIPTION

The Micron FIFO family employs high-speed, low-power CMOS designs using a true dual-port, six-transistor memory cell with resistor loads.

These devices are written and read in a first-in-first-out (FIFO) sequence. Dual read and write pointers handle the internal addressing, so no external address generation is required. Information may be written to and read from the FIFO asynchronously and independently at the input and output ports. This allows information to be transferred independently in and out of the FIFO at varying data rates.

When not configured, the MT52C9007 defaults to a standard FIFO with empty (\overline{EF}) , full (\overline{FF}) and half-full


PIN ASSIGNME	NT (Top View)
28L/DIP (A-9, B-9)	28L/SOJ (E-8)
W 1 • 28 Vcc D9 2 27 D5 D4 3 26 D6 D3 4 25 D7 D2 5 24 D8 D1 6 23 FURT/DIR XI 7 22 RS FF/AFF 8 21 EF/AEF Q1 9 20 XO/HF/F Q2 10 19 Q8 Q3 11 18 Q7 Q4 12 17 Q6 Q9 13 16 Q5 GND 14 15 R	W 1
32L/LCC (F-4)	32L/PLCC (D-2)
3 8 1 ≥ 2 3 2 3 3 3 3 3 0 0 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D3 1 5

(\overline{HF}) flag pins. The MT52C9007 can be configured for programmable flags by loading the internal flag registers (as described under "Register Load Mode" on page 8-17). In configured mode, up to three flags are provided. The first two are the almost empty flag (\overline{AEF}) and the almost full flag (\overline{AFF}) with independently programmable offsets. The third one is either an \overline{HF} or a full and empty (\overline{FE}) flag, depending on the bit configuration of the registers. A retransmit pin allows data to be re-sent on the receiver's request when the FIFO is in the STAND ALONE mode.

The depth and/or width of the FIFO can be expanded by cascading multiple devices. Also, the MT52C9007 is speed, function and pin compatible with higher density FIFOs from Micron. This upward compatibility with 1K and 2K FIFOs provides a single-chip depth-expansion solution.

MICHON

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

LCC PIN NUMBER(S)	DIP PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
25	22	RS	Input	Reset: This pin is used to reset the device and load internal flag registers. During device reset, all internal pointers and registers are cleared.
2	1	W	Input	Write: A LOW on this pin loads data into the device. The internal write pointer is incremented after the rising edge of the write input.
18	15	R	Input	Read: A LOW on this pin puts the oldest valid data byte in the memory array on the output bus. The internal read pointer is incremented at the rising edge of the read signal. Outputs are High-Z when this pin is HIGH.
8	7	प्रा	Input	Expansion In: This pin is used for DEPTH EXPANSION mode. In SINGLE DEVICE mode, it should be grounded. In EXPANDED mode, it should be connected to Expansion-Out (XO)of the previous device in the daisy chain.
26	23	FL/RT/DIR	Input	First Load/Retransmit/Direction: When in single-device mode, this pin can be used to initiate a reread of the previously read data. When in REGISTER LOAD mode, the pin is used for register loading direction. When it is LOW, registers are loaded through the data output pins. When it is HIGH, registers are loaded through the data input pins. In DEPTH EXPANSION mode, this pin should be tied LOW if the device is the first one in the chain and tied HIGH if it is not the first one.
7, 6, 5, 4, 31, 30 29, 28, 3	6, 5, 4, 3, 27 26, 25, 24, 2	D1-D9	Input	Data Inputs: Data on these lines are stored in the memory array or flag registers during array WRITE or register programming, respectively.
24	21	EF/AEF	Output	Empty Flag/Almost Empty Flag: This output pin indicates the FIFO status. When in NONCONFIGURED mode, this pin is an Empty Flag output. When in CONFIGURED mode, it is an Almost Empty Flag output. This pin is active LOW.
9	8	FF/AFF	Output	Full Flag/Almost Full Flags: This output pin indicates the FIFO status. When in NONCONFIGURED mode, this pin is a Full Flag output. When in CONFIGURED mode, it is an Almost Full Flag output. This pin is active LOW.
23	20	XO/HF/FE	Output	Expansion Out/Half Full/Full/Empty: This pin's function is determined by its operation mode. When in SINGLE DEVICE mode, this pin is either HF Flag or a Full/Empty Flag, depending on the state of the most significant bit of Almost Full Flag Register. The pin is an $\overline{\text{XO}}$ output when the part is in DEPTH EXPANSION mode. This pin defaults to $\overline{\text{XO/HF}}$ in NONCONFIGURED mode.
10, 11, 13, 14 19, 20, 21, 22,15	9, 10, 11, 12, 16 17, 18, 19, 13	Q1-Q9	I/O	Data Output: These pins may be used for data retrieval. The pins become inputs during register loading with DIR input HIGH. The outputs are disabled (High-Z) during device idle (\overline{R} = HIGH).
32	28	Vcc	Supply	Power Supply: +5V ±10%
16	14	GND	Supply	Ground

FUNCTIONAL DESCRIPTION

The MT52C9007 uses a dual port SRAM memory cell array with separate read and write pointers. This results in a flexible-length FIFO buffer memory with independent, asynchronous READ and WRITE capabilities and with no fall-through or bubble-through time constraints.

Note:

For multiple function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing half-full flags, the $\overline{XO}/\overline{HF/F}$ E pin will be shown as $(\overline{XO})/\overline{HF/(F}$ E).

RESET

After Vcc is stable, Reset (\overline{RS}) must be taken LOW with both \overline{R} and \overline{W} HIGH to initialize the read and write pointers and flags. This also clears all internal registers. During the reset pulse, the state of the \overline{XI} pin will determine if the FIFO will operate in the STAND ALONE or DEPTH EXPANSION mode. The STAND ALONE mode is entered if \overline{XI} is tied LOW. If \overline{XI} is connected to $\overline{XO}/(\overline{HF})$ of another FIFO, the DEPTH EXPANSION mode is selected.

WRITING THE FIFO

Data is written into the FIFO when the write strobe (\overline{W}) pin is taken LOW and the FIFO is not full. The WRITE cycle is initiated by the falling edge of \overline{W} . Data on the D1-D9 pins are latched on the rising edge. If the location to be written is the last empty location in the FIFO, \overline{FF} will be asserted (LOW) after the falling edge of \overline{W} . While the \overline{FF} is asserted, all writes are inhibited and previously stored data are unaffected. The first WRITE to an empty FIFO will cause \overline{EF} to go HIGH after the rising edge of \overline{W} . When operating in the DEPTH EXPANSION mode, the last location write to a FIFO will cause $\overline{XO}/(\overline{HF})$ to pulse LOW. This will enable writes to the next FIFO in the chain.

READING THE FIFO

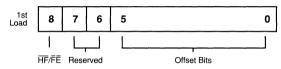
Information is read from the FIFO when the read strobe (\overline{R}) pin is taken LOW and FIFO is not empty $(\overline{EF}$ is High). The data-out (Q1-Q9) pins will go active (Low-Z) ^tRLZ after the falling edge of \overline{R} . Valid data will appear ^tA after the falling edge of \overline{R} . After the last available data word is read, \overline{EF} will go LOW upon the falling edge of \overline{R} . While the \overline{EF} is asserted LOW, any attempted reads will be inhibited and the outputs will stay inactive (High-Z). When the FIFO is full and a READ is initiated, the \overline{FF} will go HIGH after the rising edge of \overline{R} . When operating in the expanded mode, the last location read from a FIFO will cause $\overline{XO}/(\overline{HF})$ to pulse LOW. This will enable further reads from the next FIFO in the chain.

RETRANSMIT

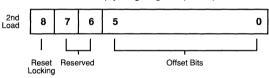
In the STAND ALONE mode, the MT52C9007 allows the receiving device to request that data just read from the FIFO be repeated, when less than 512 writes have been performed between resets. When the $(\overline{FL})/\overline{RT}/(DIR)$ pin is taken LOW, the read pointer is reset to the first location while the write pointer is not affected. The receiver may start reading the data from the beginning of the FIFO tRTR after $(\overline{FL})/\overline{RT}/(DIR)$ is taken HIGH. Some or all flags may be affected depending on the location of the read and write pointers before and after the retransmit.

DATA FLOW-THROUGH

Data flow-through is a method of writing and reading the FIFO at its full and empty boundaries, respectively. By holding \overline{W} LOW when the FIFO is full, a WRITE can be initiated from the next ensuing READ pulse. This is referred to as a FLOW-THROUGH WRITE. FLOW-THROUGH WRITEs are initiated from the rising edge of \overline{R} . When the FIFO is empty, a flow-through READ can be done by holding \overline{R} LOW and letting the next WRITE initiate the READ. Flow-through reads are initiated from the rising edge of \overline{W} , and access time is measured from the rising edge of the empty flag.


REGISTER LOAD MODE

This mode of operation is used to reset the device and program the internal flag registers. This yields an almost full and an almost empty flag (DIP package pins 8 and 21 respectively) and a half-full or $\overline{F}/\overline{E}$ flag (DIP package pin 20)


Two 9-bit internal registers have been provided for flag configuration. One is the almost full flag register (AFFR) and the other is the almost empty flag register (AEFR). Bit configurations of the two registers are shown below.

REGISTER SET FOR MT52C9007

Almost Full Flag Register (AFFR)

Almost Empty Flag Register (AEFR)

Note that bits 0-5 are used for offset setting. The offset value ranges from 1 to 63 words. Each offset value corresponds to a 2-byte increment. This provides a maximum offset of 126 bytes.

Bits 6 and 7 are reserved for future offset expansion. Bit 8 of the AFFR is used for configuration of $\overline{HF/FE}$ pin. When this bit is set LOW, the HF/ \overline{FE} pin is configured as an \overline{HF} flag output. When it is set high, the HF/ \overline{FE} is configured as an $\overline{F/E}$ flag output.

Bit 8 of the AEFR is used for reset locking. When this bit is set LOW, subsequent device RESET or REGISTER LOADING cycles reset the device. When the bit is programmed HIGH, subsequent RESET cycles are ignored. In this mode, the flag registers may be reconfigured without device reset. The part may be reset by cycling power to the device or by writing zero (0) into bit 8 of the AEFR register followed by a DEVICE RESET or REGISTER LOAD.

Flag registers are loaded by bringing \overline{RS} LOW followed by the \overline{R} input. The \overline{R} pin should be brought LOW ^tRS after

the $\overline{\text{RS}}$ becomes LOW. The registers may be loaded via the input pins or the output pins depending on the status of the DIR control input. Data is latched into the registers at the rising edge of the $\overline{\text{W}}$ control pin. The first WRITE loads the AFFR while the second WRITE loads the AEFR. This loading order is fixed.

BIDIRECTIONAL MODE

Applications requiring data buffering between two systems (each system capable of READ and WRITE operations) can be achieved by using two MT52C9007s. Care must be taken to assure that the appropriate flag is monitored by each system (i.e. \overline{FF} is monitored on the device where \overline{W} is used; \overline{EF} is monitored on the device where \overline{R} is used). Both depth expansion and width expansion may be used in this mode.

FLAG TIMING

A total of three flag outputs are provided in either CONFIGURED or NONCONFIGURED mode. In the NONCONFIGURED mode, the three flags are \overline{HF} , \overline{EF} and \overline{FF} . The \overline{HF} flag goes active when more than half the FIFO is full. The flag goes inactive when the FIFO is half full or less.

The full and empty flags are asserted when the last byte is written to or read out of the FIFO, respectively. They are deasserted when the first byte is loaded into an empty FIFO or read out of a full FIFO, respectively. All three flag outputs are active LOW.

When the device is programmed, the $\overline{\text{AFF}}$ and $\overline{\text{AEF}}$ go active after a READ/WRITE cycle initiation of the location corresponding to the programmed offset value. For example, if the AEFR is programmed with a 10-byte offset (loading a Hex value of 05), the $\overline{\text{AEF}}$ flag goes active while reading the 10th location before the FIFO is empty. The flag goes inactive when there are 10 or more bytes left in the FIFO. The assertion timing and deassertion timing of the $\overline{\text{AFF}}$ are the same.

The third flag in the PROGRAM mode is either \overline{HF} or $\overline{F/E}$ flag depending on the state of the highest bit of the AFFR. If the device is programmed for \overline{HF} flag, it functions like the \overline{HF} flag in NONPROGRAMMED mode. If the device is configured for $\overline{F/E}$ flag, the pin will be active (LOW) when the FIFO is either empty or full. The condition of the FIFO is determined by the state of $\overline{F/E}$ together with states of \overline{AFF} and \overline{AEF} (example: if $\overline{F/E}$ is LOW and \overline{AFF} is LOW but \overline{AEF} is HIGH, the FIFO is full).

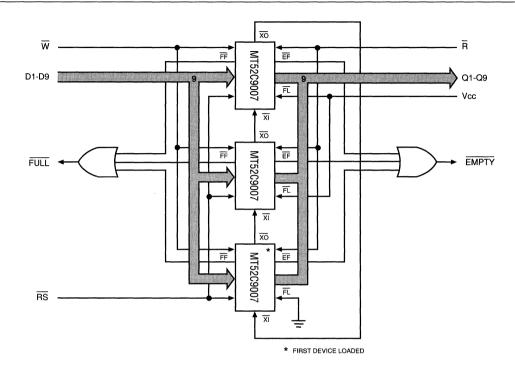


Figure 1
DEPTH EXPANSION

WIDTH EXPANSION

The FIFO word width can be expanded, in increments of 9 bits, using either the STAND ALONE or groups of EXPANDED DEPTH mode FIFOs. Expanded width operation is achieved by tying devices together with all control lines $(\overline{W}, \overline{R},$ etc.) in common. The flags are monitored from one device or one expanded-depth group (Figure 1), when expanding depth and width.

DEPTH EXPANSION

Multiple MT52C9007s may be cascaded to expand the depth of the FIFO buffer. Three pins are used to expand the memory depth, \overline{XI} , \overline{XO} /($\overline{HF}/\overline{FE}$) and \overline{FL} /($\overline{RT}/\overline{DIR}$). Figure 1 illustrates a typical three-device expansion. The depth-expansion mode is entered by tying the \overline{XO} /($\overline{HF}/\overline{FE}$) pin of each device to the \overline{XI} pin of the next device in the chain. The first device to be loaded will have its \overline{FL} /($\overline{RT}/\overline{DIR}$) pin grounded. The remaining devices in the chain will have $\overline{FL}/(\overline{RT}/\overline{DIR})$ tied HIGH. Upon a reset, reads and writes to all FIFOs are disabled, except the first load device. When the

last physical location of the first device is written, the $\overline{\text{XO}}/(\overline{\text{HF}})$ pin will pulse LOW on the falling edge of $\overline{\text{W}}$. This will "pass" the write pointer to the next device in the chain, enabling writes to that device and disabling writes to the first MT52C9007. The writes will continue to go to the second device until last location write. Then it will "pass" the write pointer to the third device. The full condition of the entire FIFO array is signaled when all the $\overline{\text{FF}}/(\overline{\text{AFF}})$ pins are LOW.

On the last physical READ of the first device, its $\overline{\text{XO}}$ ($\overline{\text{HF}}$) will pulse again. On the falling edge of $\overline{\text{R}}$, the read pointer is "passed" to the second device. The read pointer will, in effect, "chase" the write pointer through the extended FIFO array. The read pointer never overtakes the write pointer. On the last READ, an empty condition is signaled by all of the $\overline{\text{EF}}$ pins being LOW. This inhibits further reads. While in the depth-expansion mode, the half-full flag and retransmit functions are not available.

TRUTH TABLE 1

SINGLE-DEVICE CONFIGURATION/WIDTH-EXPANSION Mode

MODE		INPUTS	***************************************	INTERNA	OUTPUTS			
	RS	RT	Χı	Read Pointer	Write Pointer	EF	FF	HF
RESET	0	Х	0	Location Zero	Location Zero	0	1	1
RETRANSMIT	1	0	0	Location Zero	Unchanged	1	Х	Х
READ/WRITE	1	1	0	Increment (1)	Increment (1)	X	Х	Х

NOTE: 1. Pointer will increment if flag is HIGH.

TRUTH TABLE 2

DEPTH-EXPANSION/COMPOUND-EXPANSION Mode

MODE		INPUTS		INTERNA	L STATUS	OUTPUTS		
	RS	FL	Χī	Read Pointer	Write Pointer	EF	FF	
RESET First Device	0	0	(1)	Location Zero	Location Zero	0	1	
RESET All other Devices	0	1	(1)	Location Zero	Location Zero	0	1	
READ/WRITE	1	Х	(1)	X	Х	Х	Х	

NOTE: 1. XI is connected to \overline{XO} of previous device.

 \overline{RS} = Reset Input, $\overline{FL/RT}/DIR$ = First Load/Retransmit, \overline{EF} = Empty Flag Output, \overline{FF} = Full Flag Output, \overline{XI} = Expansion Input, \overline{HF} = Half Full Flag Output.

ABSOLUTE MAXIMUM RATINGS*

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

MAX

RECOMMENDED DC OPERATING CONDITIONS

(0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

DESCRIPTION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.0	Vcc+1	V	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-0.5	0.8	٧	1, 2

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

, ,			·				1			
DESCRIPTION	CONDITIONS	SYMBOL	MIN	-15	-20	-25	-35	UNITS	NOTES	
Power Supply Current: Operating	W, R ≤ VIL; Vcc = MAX f = MAX = 1/ tRC Outputs Open	lcc		120	115	110	100	mA	3	
	W, R ≥ ViH; Vcc = MAX f = MAX = 1/†RC	ISB1		15	15	15	15	mA		
Power Supply Current: Standby	\overline{W} , $\overline{R} \ge Vcc$ -0.2; $Vcc = MAX$ $Vll \le Vss$ +0.2, $Vlh \ge Vcc$ -0.2; $f = 0$	IsB2		5	5	5	5	mA		
Input Leakage Current	0V ≤ Vin ≤ Vcc	ILı	-10	10	10	10	10	μΑ		
Output Leakage Current	Output(s) Disabled 0V ≤ Voυτ ≤ Vcc	ILo	-10	10	10	10	10	μА		
Output High Voltage	Iон = -2.0mA	Vон	2.4					٧	1	
Output Low Voltage	IoL = 8.0mA	Vol					0.4	٧	1	

CAPACITANCE

(VIN = 0V; VOUT = 0V)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	$T_A = 25^{\circ}C$; $f = 1MHz$	Cı		8	pF	4
Output Capacitance	Vcc = 5V	Со		8	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Applicable for configured and nonconfigured modes) (0°C \leq T_{Δ} \leq 70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS		T	15		20	-2	25		35		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle			·			<u> </u>				<u> </u>	
Shift frequency	^t RF	T	40		33.3		28.5		22.2	MHz	I
READ cycle time	tRC	25		30		35		45		ns	
Access time	^t A		15		20		25		35	ns	6
READ recovery time	†RR	10	 	10		10		10		ns	
Read pulse width	tRPW	15	<u> </u>	20		25		35		ns	
Read LOW to Low-Z	tRLZ	5	<u> </u>	5		5		5	1	ns	7
Read to HIGH to High-Z	tRHZ		15		15	†	18		20	ns	7
Data HOLD from R HIGH	tOH.	5	1	5		5		5	1	ns	
WRITE Cycle			<u> </u>		-						
WRITE cycle time	tWC	25		30		35	I	45		ns	
Write pulse width	tWPW	15		20		25		35		ns	6
WRITE recovery time	tWR	10		10		10		10		ns	
Write HIGH to Low-Z	tWLZ	5		5		5		5		ns	5, 7
Data setup time	t _{DS}	10	†	12		15		18		ns	
Data hold time	tDH	0	ļ	0	1	0		0	1	ns	
RETRANSMIT Cycle		· · · · · · · · · · · · · · · · · · ·	<u> </u>		<u> </u>	·	<u> </u>	1			1
Restransmit cycle time	tRTC	25		30		35	1	45		ns	
Retransmit pulse width	t _{RT}	15	<u> </u>	20	†	25		35		ns	
Retransmit recovery time	^t RTR	10		10	i	10		12		ns	
Retransmit command setup time	tRTS	15	†	20		25		35	1	ns	
RESET Cycle											
RESET cycle time (no register programming)	tRSC	25		30		35		45		ns	
Reset pulse width	¹RSP	15	ļ	20		25	 	35	†	ns	6
Reset recovery time	tRSR	10	-	10		10		10	 	ns	+
RS LOW to R LOW	tRS	15	-	20	 	25		35	 	ns	-
Reset and register programming cycle time	tRSPC	85		100		115		145		ns	
R LOW to DIR valid (register load cycle)	†RDV	5		5	 	5	1	5	<u> </u>	ns	†
R LOW to register load	tRW	10		10		10		10		ns	
W HIGH to RS LOW	tWRS	0		0	1	0	1	0	1	ns	
R HIGH to RS LOW	tRRS	0	 	0		0	 	0	†	ns	t

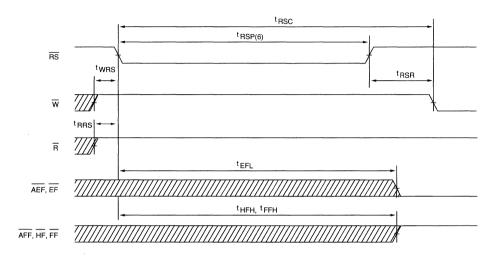
NOTES

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Data flow-through data mode only.

- 6. Pulse widths less than minimum are not allowed.
- 7. Values guaranteed by design, not currently tested.
- 8. \overline{R} and DIR signals must go inactive (HIGH) coincident with \overline{RS} going inactive (HIGH).
- 9. DIR must become valid before \overline{W} goes active (LOW).

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Applicable for configured mode only) (T $_{A}$ = 0°C to 70°C; Vcc = 5.0V \pm 10%)


A.C. CHARACTERISTICS		-15		-:	20	-25		-3	35		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Expansion Mode Timing											
R/W to XO LOW	†XOL		20		20		25		35	ns	
R/W to XO HIGH	tXOH		20		20		25		35	ns	
XI pulse width	†XIP	15		20		25		35		ns	
XI command setup time to R/W	tXIS	10		12		15		15		ns	
XI command recovery time	^t XIR	10		10		10		10		ns	
Flags Timing											
W HIGH to Flags Valid	tWFV		15		15		15		15	ns	
RS to EF LOW	tEFL		25		30		35		45	ns	
R LOW to EF LOW	^t REF		20		20		25		35	ns	
W HIGH to EF HIGH	tWEF		20		20		25		35	ns	
R pulse after EF HIGH	tRPE	15		20		25		35		ns	5
RS to HF, FF HIGH	tHFH, tFFH		25		30		35		45	ns	
R HIGH to FF	^t RFF		15		20		25		30	ns	
W LOW to FF LOW	tWFF		20		20		25		35	ns	
W pulse width after FF HIGH	tWPF	15		20		25		35		ns	5
W LOW to HF LOW	tWHF		25		30		35		45	ns	
R HIGH to HF HIGH	^t RHF		25		30		35		45	ns	
R HIGH to AFF	^t RAFF		25		30		35		45	ns	
W LOW to AFF	tWAFF		25		30		35		45	ns	
R LOW to AEF LOW	^t RAEF		25		30		35		45	ns	
W HIGH to AEF	^t WAEF		25		30		35		45	ns	

AC TEST CONDITIONS

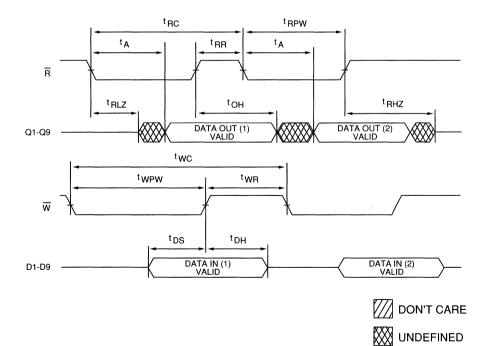
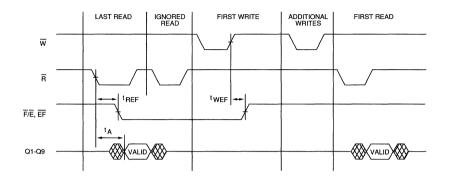
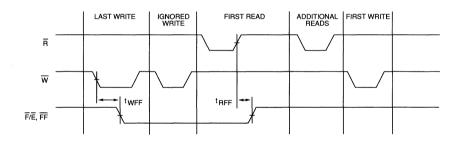
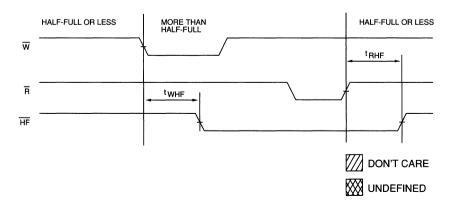

Input pulse level	0 to 3.0V
Input rise and fall times	5ns
Input timing reference level	1.5V
Output reference level	1.5V
Output load	See Figure 2

Figure 2
OUTPUT LOAD EQUIVALENT

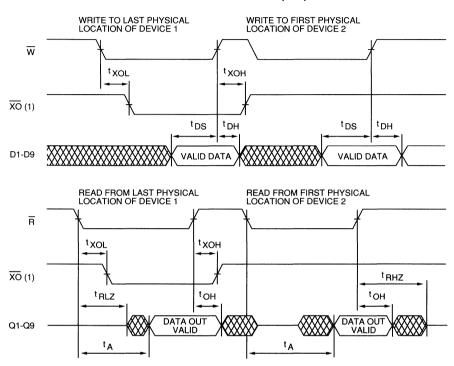


ASYNCHRONOUS READ AND WRITE

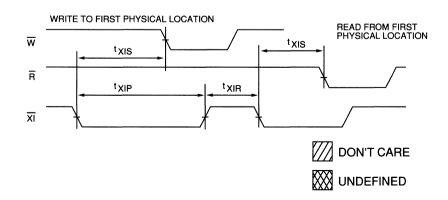



EMPTY FLAG

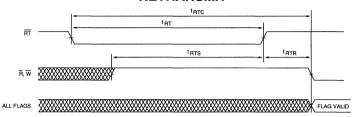
FULL FLAG



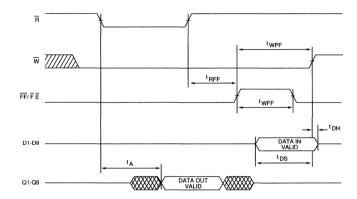
HALF-FULL FLAG (FOR CONFIGURED AND NONCONFIGURED MODES)

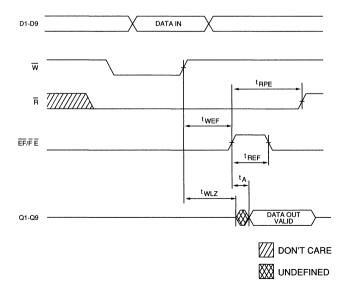


EXPANSION MODE (XO)

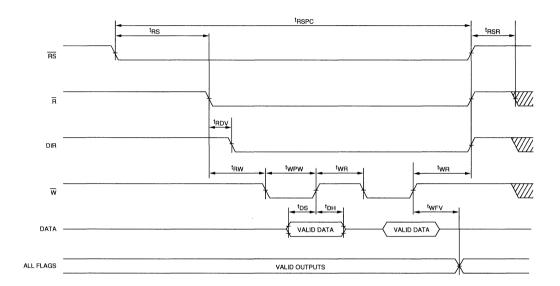

NOTE: 1. \overline{XO} of the Device 1 is connected to \overline{XI} of Device 2.

EXPANSION MODE (XI)

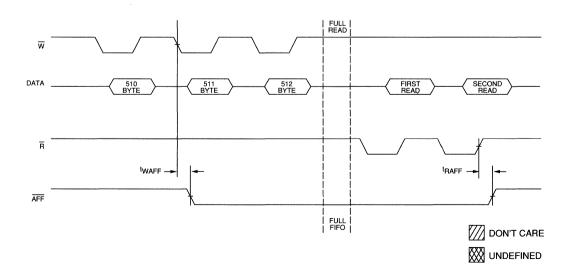



RETRANSMIT

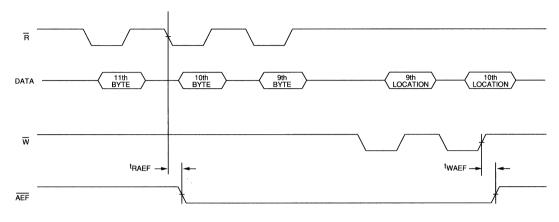
WRITE FLOW-THROUGH



READ FLOW-THROUGH



RESET/REGISTER PROGRAMMING CYCLE TIME 8,9



ALMOST FULL FLAG (2-BYTE OFFSET)

ALMOST EMPTY FLAG (10-BYTE OFFSET)

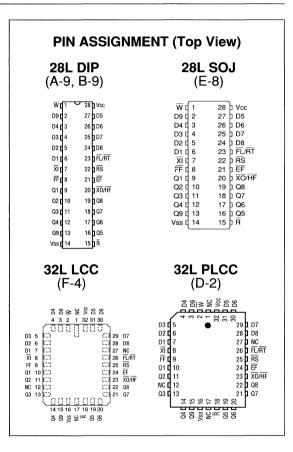
DON'T CARE

₩ UNDEFINED

FIFO

1K x 9 FIFO

FEATURES

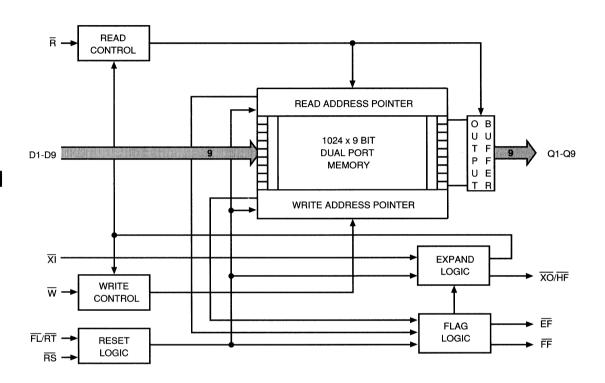

- Very high speed: 15, 20, 25 and 35ns access
- High-performance, low-power CMOS process
- Single +5V ±10% supply
- Low power: 5mW typ. (standby); 350mW typ. (active)
- TTL compatible inputs and outputs
- · Asynchronous and simultaneous READ and WRITE
- · Empty, Half-Full and Full Flags
- · Half-Full Flag capability in STAND ALONE mode
- Auto-retransmit capability
- · Fully expandable by width and depth
- Pin and function compatible with higher density standard FIFOs

OPTIONS	MARKING
Timing 15ns access time 20ns access time 25ns access time	-15 -20 -25
35ns access time	-35
Packages Plastic DIP (300 mil) Plastic DIP (600 mil) Ceramic DIP (600 mil) PLCC Ceramic LCC SOJ (300 mil)	None W C EJ EC DJ

GENERAL DESCRIPTION

The Micron FIFO family employs high-speed, low-power CMOS designs using a true dual port, six-transistor memory cell with resistor loads.

These devices are written and read in a first-in-first-out (FIFO) sequence. Dual read and write pointers handle the internal addressing, so no external address generation is required. Information can be written to and read from the FIFO asynchronously and independently at the input and output ports. This allows information to be transferred independently in and out of the FIFO at varying data rates. Visibility of the memory volume is given through empty, half-full and full flags. While the full flag is asserted, attempted writes are inhibited. Likewise, while the empty



flag is asserted, further reads are inhibited and the outputs remain in a high-impedance state. Expansion out, expansion in, and first load pins are provided to expand the depth of the FIFO memory array, with no performance degradation. A retransmit pin allows data to be re-sent on the receiver's request when the FIFO is in the STAND ALONE mode.

The depth and/or width of the FIFO can be expanded by cascading multiple devices. Also, the MT52C9010 is speed, function and pin compatible with higher density FIFOs from Micron. This upward compatibility with the $2K \times 9$ FIFO provides a single-chip, depth-expansion solution.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

LCC PIN NUMBER(S)	DIP PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
25	22	RS	Input	Reset: Taking $\overline{\text{RS}}$ LOW will reset the FIFO by initializing the read and write pointers and all flags. After the device is powered up, it must be reset before any writes can take place.
2	1	W	Input	Write Strobe: \overline{W} is taken LOW to write data from the input port (D1-D9) into the FIFO memory array.
18	15	R	Input	Read Strobe: \overline{R} is taken LOW to read data from the FIFO memory array to the output port (Q1-Q9).
8	7	प्रा	Input	Expansion In: This pin is used for DEPTH EXPANSION mode. In SINGLE DEVICE mode, it should be grounded. In EXPANDED mode, it should be connected to Expansion-Out (\overline{XO}) of the previous device in the daisy chain.
26	23	FL/RT	Input	First Load: Acts as first load signal in DEPTH EXPANSION mode. FL if low, will enable the device as the first to be loaded (enables read and write pointers). FL should be tied low for the first FIFO in the chain, tied high for all other FIFOs in the chain
				Retransmit: Acts as retransmit signal in STAND ALONE mode. RT is used to enable the RETRANSMIT cycle. When taken LOW, RT resets the read pointer to the first data location and the FIFO is then ready to retransmit data on the following READ operation(s). The flags will be affected according to specific data conditions.
7, 6, 5, 4, 31, 30, 29, 28, 3	6, 5, 4, 3, 27 26, 25, 24, 2	D1-D9	Input	Data Inputs
24	21	ĒF	Output	Empty Flag: Indicates empty FIFO memory when LOW, inhibiting further READ cycles.
9	8	FF	Output	Full Flag: Indicates full FIFO memory when LOW, inhibiting further WRITE cycles.
23	20	XO/HF	Output	Expansion Out: Acts as expansion out pin in DEPTH EXPANSION mode. \overline{XO} will pulse LOW on the last physical WRITE or the last physical read. \overline{XO} should be connected to \overline{XI} of the next FIFO in the daisy chain.
				Half-Full Flag: Acts as Half Full Flag in STAND ALONE mode. HF goes LOW when the FIFO becomes more than half-full; will stay LOW until the FIFO becomes half-full or less.
10, 11, 13, 14, 19, 20, 21, 22, 15	9, 10, 11, 12, 16 17, 18, 19, 13	Q1-Q9	Output	Data Output: Output or high impedance.
32	28	Vcc	Supply	Power Supply: +5V ±10%
16	14	Vss	Supply	Ground

FUNCTIONAL DESCRIPTION

The MT52C9010 uses a dual port SRAM memory cell array with separate read and write pointers. This results in a flexible length FIFO buffer memory, with independent, asynchronous READ and WRITE capabilities and with no fall-through or bubble-through time constraints.

Note:

For dual function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing the half-full flags the $\overline{XO}/\overline{HF}$ pin will be shown as $(\overline{XO})/\overline{HF}$.

RESET

After Vcc is stable, RESET (\overline{RS}) must be taken LOW to initialize the read and write pointers and flags. During the reset pulse, the state of the \overline{XI} pin will determine if the FIFO will operate in the STAND ALONE or DEPTH EXPANSION mode. The STAND ALONE mode is entered if \overline{XI} is LOW. If \overline{XI} is tied to $\overline{XO}/\overline{(HF)}$ of another FIFO, the DEPTH EXPANSION mode is selected.

WRITING THE FIFO

Data is written into the FIFO when the write strobe (\overline{W}) pin is taken LOW, while FF is HIGH. The WRITE cycle is initiated by the falling edge of W and data on the D1-D9 pins are latched on the rising edge. If the location to be written is the last empty location in the FIFO, the FF will be asserted (LOW) after the falling edge of \overline{W} . While \overline{FF} is LOW, any attempted writes will be inhibited, with no loss of data already stored in the FIFO. When a device is used in the STAND ALONE mode, $(\overline{XO})/\overline{HF}$ is asserted when the halffull-plus-one location (1024/2 + 1) is written. It will stay asserted until the FIFO becomes half-full or less. The first WRITE to an empty FIFO will cause EF to go HIGH after the rising edge of \overline{W} . When operating in the DEPTH EXPAN-SION mode, write to the last location of the FIFO will cause $\overline{XO}/(\overline{HF})$ to pulse LOW. This will enable writes to the next FIFO in the chain.

READING THE FIFO

Information is read from the FIFO when the read strobe (\overline{R}) pin is taken LOW and the FIFO is not empty $(\overline{EF}$ is HIGH). The data-out (Q1-Q9) pins will go active $(Low-Z)^tRLZ$ after the falling edge of \overline{R} and valid data will appear tA after the falling edge of \overline{R} . After the last available data word is read, \overline{EF} will go LOW upon the falling edge of \overline{R} . While \overline{EF} is asserted LOW, any attempted reads will be inhibited and the outputs will stay inactive (High-Z). When the FIFO is being used in the SINGLE DEVICE mode and the half-full-plus-one location is read, $(\overline{XO})/\overline{HF}$ will go HIGH after the rising edge of \overline{R} . When the FIFO is full $(\overline{FF}LOW)$ and a read is initiated, (\overline{FF}) will go HIGH after the rising edge of \overline{R} . When operating in the EXPANDED mode, the last location read to a FIFO will cause $(\overline{XO})/\overline{HF}$ to pulse LOW. This will enable further reads from the next FIFO in the chain.

RETRANSMIT

In the STAND ALONE mode, the MT52C9010 allows the receiving device to request that the data read earlier from the FIFO to be repeated, when less than 1024 writes have been performed between resets. When the $(\overline{FL})/\overline{RT}$ pin is taken LOW, the read pointer is reset to the first location while the write pointer is not affected. The receiver may again start reading the data from the beginning of the FIFO \overline{RTR} after $\overline{(FL)}/\overline{RT}$ is taken HIGH. The empty, half-full and full flags will be affected as specified for the data volume (useful only in SINGLE mode with no wraparound).

DATA FLOW-THROUGH

Data flow-through is a method of writing and reading the FIFO at its full and empty boundaries, respectively. By holding \overline{W} LOW when the FIFO is full, a WRITE can be initiated from the next ensuing READ pulse. This is referred to as a FLOW-THROUGH WRITE. FLOW-THROUGH WRITEs are initiated from the rising edge of $\overline{R}.$ When the FIFO is empty, a FLOW-THROUGH READ can be done by holding \overline{R} LOW and letting the next WRITE initiate the READ. FLOW-THROUGH READs are initiated from the rising edge of \overline{W} and access time is measured from the rising edge of $\overline{EF}.$

MICRON

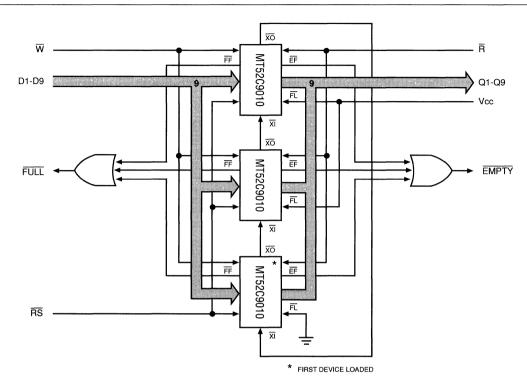


Figure 1
DEPTH EXPANSION

WIDTH EXPANSION

The FIFO word width can be expanded, in increments of 9 bits, using either the stand alone or groups of expanded-depth mode FIFOs. Expanded-width operation is achieved by tying devices together with all control lines $(\overline{W}, \overline{R},$ etc.) in common. The flags are monitored from one device or one expanded-depth group (Figure 1) when expanding depth and width.

DEPTH EXPANSION

Multiple MT52C9010s may be cascaded to expand the depth of the FIFO buffer. Three pins are used to expand the memory depth, \overline{XI} , $\overline{XO}/\overline{(HF)}$ and $\overline{FL}/\overline{(RT)}$. Figure 1 illustrates a typical three-device expansion. The DEPTH EXPANSION mode is entered during a RESET cycle, by tying the $\overline{XO}/\overline{(HF)}$ pin of each device to the \overline{XI} pin of the next device in the chain. The first device to be loaded will have its $\overline{FL}/\overline{(RT)}$ pin grounded. The remaining devices in the chain will have $\overline{FL}/\overline{(RT)}$ tied HIGH. During RESET cycle, $\overline{XO}/\overline{(HF)}$ of each device is held HIGH, disabling reads and

writes to all FIFOs, except the first load device. When the last physical location of the first device is written, the $\overline{\text{XO}}/\overline{\text{(HF)}}$ pin will pulse LOW on the falling edge of $\overline{\text{W}}$. This will "pass" the write pointer to the next device in the chain, enabling writes to that device and disabling writes to the first MT52C9010. The writes will continue to go to the second device until last location WRITE. Then it will "pass" the write pointer to the third device.

The full condition of the entire FIFO array is signaled by "OR-ing" all the \overline{FF} pins. On the last physical READ of the first device, its $\overline{XO}/(\overline{HF})$ will pulse again. On the falling edge of \overline{R} , the read pointer is "passed" to the second device. The read pointer will, in effect, "chase" the write pointer through the extended FIFO array. The read pointer never overtakes the write pointer. An empty condition is signaled by OR-ing all of the \overline{EF} pins. This inhibits further reads. While in the DEPTH EXPANSION mode, the half-full flag and retransmit functions are not available.

TRUTH TABLE 1

SINGLE-DEVICE CONFIGURATION/WIDTH-EXPANSION Mode

MODE		INPUTS		INTERNA	L STATUS	OUTPUTS			
	RS	RT	ΧI	Read Pointer	Write Pointer	EF	FF	HF	
RESET	0	Х	0	Location Zero	Location Zero	0	1	1	
RETRANSMIT	1	0	0	Location Zero	Unchanged	1	Х	Х	
READ/WRITE	1	1	0	Increment (1)	Increment (1)	Х	Х	Х	

NOTE: 1. Pointer will increment if flag is HIGH.

TRUTH TABLE 2

DEPTH-EXPANSION/COMPOUND-EXPANSION Mode

MODE	ODE INPUTS			INTERNA	L STATUS	OUTPUTS		
	RS	FL	ΧI	Read Pointer	Write Pointer	EF	FF	
RESET First Device	0	0	(1)	Location Zero	Location Zero	0	1	
RESET All other Devices	0	1	(1)	Location Zero	Location Zero	0	1	
READ/WRITE	1	Х	(1)	Х	X	X	Х	

NOTE:

1. XI is connected to \overline{XO} of previous device.

 $\overline{\text{RS}}$ = Reset Input, $\overline{\text{FL/RT}}/\text{DIR}$ = First Load/Retransmit, $\overline{\text{EF}}$ = Empty Flag Output, $\overline{\text{FF}}$ = Full Flag Output, $\overline{\text{XI}}$ = Expansion Input, $\overline{\text{HF}}$ = Half Full Flag Output.

ABSOLUTE MAXIMUM RATINGS*

 *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{\mbox{\scriptsize A}} \leq 70^{\circ}C; \mbox{ Vcc} = 5.0 \mbox{\scriptsize V} \pm 10\%)$

DESCRIPTION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.0	Vcc+1	V	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-0.5	0.8	V	1, 2

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Power Supply Current: Operating	W, R ≤ Vı∟; Vcc = MAX Outputs Open	lcc		100	mA	3
	W, R ≥ ViH; Vcc = MAX	ISB1		15	mA	
Power Supply Current: Standby	\overline{W} , $\overline{R} \ge Vcc$ -0.2; Vcc = MAX $ViL \le Vss$ +0.2, $ViH \ge Vcc$ -0.2; $f = 0$	ISB2		5	mA	
Input Leakage Current	0V ≤ VIN ≤ Vcc	ILı	-10	10	μА	
Output Leakage Current	Output(s) Disabled, 0V ≤ Vouт ≤ Vcc	ILo	-10	10	μА	
Output High Voltage	Iон = -2.0mA	Vон	2.4		V	1
Output Low Voltage	IoL = 8.0mA	Vol		0.4	V	1

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	$T_A = 25^{\circ}C; f = 1MHz$	Cı		8	pF	4
Output Capacitance	Vcc = 5V	Со		8	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS -15 -20 -25 **PARAMETER** SYM MIN MAX MIN MAX MIN MAX MIN MAX UNITS NOTES Shift Frequency Fs 40 33.3 28.5 22.2 MHz t_A Access time 15 20 25 35 ns ^tRC 25 30 35 45 Read cycle time ns †BB Read command recovery time 10 10 10 10 ns Read command pulse width **TRPW** 15 20 25 35 ns 6 Read LOW to Low-Z ^tRLZ 5 5 5 5 ns Read to HIGH to High-Z ^tRHZ 15 15 18 20 ns tOH Data hold from R HIGH 5 5 5 5 ns Write cycle time tWC 25 30 35 45 ns Write command pulse width WPW 20 25 35 15 ns 6 tWR Write command recovery time 10 10 10 10 ns Write HIGH to Low-Z tWLZ 5 5 5 5 5 ns Data setup time ^tDS 10 12 15 20 ns Data hold time ^tDH 0 0 0 0 ns Reset cycle time tRSC 25 30 35 45 กร tRSP Reset pulse width 15 20 25 35 6 ^tRSR Reset recovery time 10 10 10 10 ns Read HIGH to Reset HIGH ^tRRS 15 20 25 35 ns Write HIGH to Reset HIGH †WRS 15 20 25 35 ns 25 Retransmit cycle time ^tRTC 30 35 45 ns Retransmit pulse width †RT 15 20 25 35 ns Retransmit recovery time ^tBTB 10 10 10 12 ns Retransmit setup time ^tRTS 15 20 25 35 ns Reset to EF LOW tEFL 25 30 35 45 ns Reset to HF FF HIGH tHFH, tFFH 25 30 35 45 ns Read LOW to EF LOW **TREE** 25 35 20 20 ns Read HIGH to FF HIGH ^tRFF 20 20 25 35 ns Write LOW to FF LOW ^tWFF 20 20 25 35 ns Write HIGH to EF HIGH tWEF 20 20 25 35 ns Write LOW to HF LOW ^tWHF 25 30 35 45 ns Read HIGH to HF HIGH ^tRHF 25 30 35 45 ns Read pulse after EF HIGH ^tRPE 35 15 20 25 5 ns Write pulse width after FF HIGH ^tWPF 15 20 35 ns 5 †XOL Read/Write to XO LOW 20 20 25 35 ns Read/Write to XO HIGH **TXOH** 20 20 25 35 ns XI pulse width ^tXIP 15 20 25 35 ns XI setup Time ^tXIS 10 12 15 15 ns XI recovery time ^tXIR 10 10 10 10 ns

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Flow-through mode only.
- 6. Pulse widths less than minimum are not allowed.

AC TEST CONDITIONS

Input pulse level	0 to 3.0V
Input rise and fall times	5ns
Input timing reference level	1.5V
Output reference level	1.5V
Output load	See Figure 2

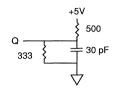
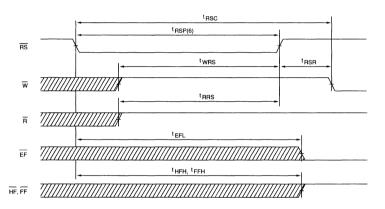
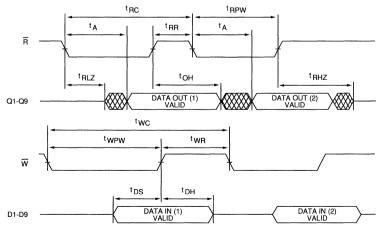
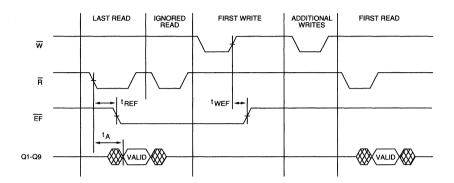




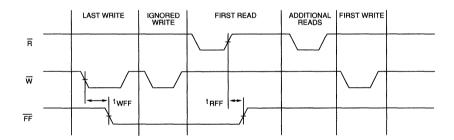
Fig. 2 OUTPUT LOAD EQUIVALENT

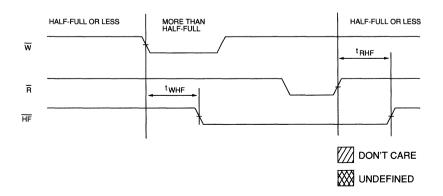
RESET

ASYNCHRONOUS READ AND WRITE



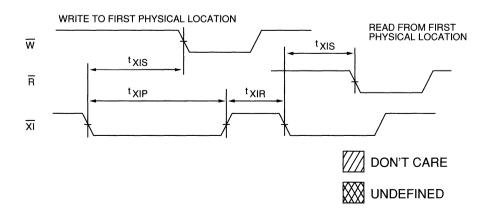
DON'T CARE



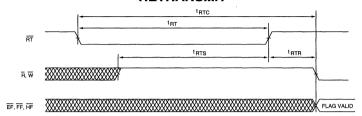

EMPTY FLAG

FULL FLAG

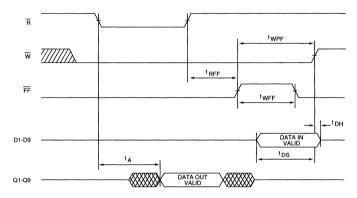
HALF-FULL FLAG

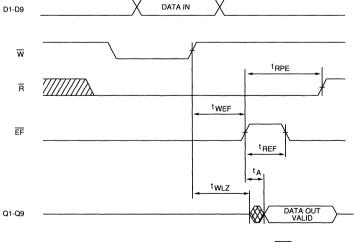


EXPANSION MODE (XO)



NOTE: \overline{XO} of the Device 1 is connected to \overline{XI} of Device 2.


EXPANSION MODE (XI)


RETRANSMIT

WRITE FLOW-THROUGH

READ FLOW-THROUGH

FIFO

1K x 9 FIFO

WITH PROGRAMMABLE FLAGS

FEATURES

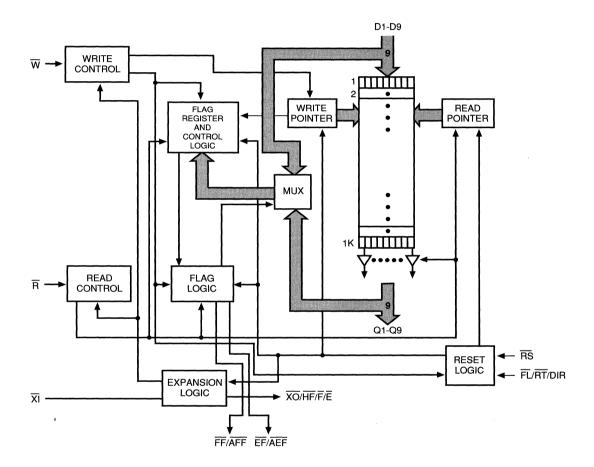
- Very high speed: 15, 20, 25 and 35ns access
- High-performance, low-power CMOS process
- Single +5V ±10% supply
- Low power: 5mW typical (standby); 350mW typical (active)
- TTL compatible inputs and outputs
- Asynchronous READ and WRITE
- Two fully configurable Almost Full and Almost Empty
- Programmable Half Full Flag or Full/Empty Flag option eliminates external counter requirement
- Register loading via the input or output pins
- Auto-retransmit capability in single-device mode
- · Fully expandable by width and depth
- Pin and function compatible with standard FIFOs

OPTIONS	MARKING
Timing	
15ns access time	-15
20ns access time	-20
25ns access time	-25
35ns access time	-35
Packages	
Plastic DIP (300 mil)	None
Plastic DIP (600 mil)	W
Ceramic DIP (600 mil)	С
PLCC	EJ
Ceramic LCC	EC
Plastic SOJ	DJ

GENERAL DESCRIPTION

The Micron FIFO family employs high-speed, low-power CMOS designs using a true dual-port, six-transistor memory cell with resistor loads.

These devices are written and read in a first-in-first-out (FIFO) sequence. Dual read and write pointers handle the internal addressing, so no external address generation is required. Information may be written to and read from the FIFO asynchronously and independently at the input and output ports. This allows information to be transferred independently in and out of the FIFO at varying data rates.


When not configured, the MT52C9012 defaults to a standard FIFO with empty (\overline{EF}) , full (\overline{FF}) and half-full

PIN ASSIGNME	NT (Top View)					
28L/DIP (A-9, B-9)	28L/SOJ (E-8)					
W (1 • 28) Vcc D9 (2 27) D5 D4 (3 26) D6 D3 (4 25) D7 D2 (5 24) D8 D1 (6 23) FL/RT/DIR XI (7 22) RS FF/AFF (8 21) EF/AFF Q1 (9 20) XO/HF/F E Q2 (10 19) Q8 Q3 (11 18) Q7 Q4 (12 17) Q6 Q9 (13 16) Q5 GND (14 15) R	W 1					
32L/LCC (F-4)	32L/PLCC (D-2)					
2 8 15 2 \$ 8 8 8 4 3 2 1 32 3 1 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	03 [5					

(HF) flag pins. The MT52C9012 can be configured for programmable flags by loading the internal flag registers (as described under "Register Load Mode" on page 8-45). In CONFIGURED mode, up to three flags are provided. The first two are the almost empty flag (AEF) and the almost full flag (AFF) with independently programmable offsets. The third one is either an HF or a full and empty (FE) flag, depending on the bit configuration of the registers. A retransmit pin allows data to be re-sent on the receiver's request when the FIFO is in the stand-alone mode.

The depth and/or width of the FIFO can be expanded by cascading multiple devices. Also, the MT52C9012 is speed, function and pin compatible with higher and lower density FIFOs from Micron. This upward compatibility with 2K FIFOs provides a single-chip depth-expansion solution.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

LOC DIN	DID DIN	OVERDO	TVDE	DESCRIPTION
LCC PIN NUMBER(S)	DIP PIN NUMBER(S)	SYMBOL	TYPE	DESCRIPTION
25	22	RS	Input	Reset: This pin is used to reset the device and load internal flag registers. During device reset, all internal pointers and registers are cleared.
2	1	W	Input	Write: A LOW on this pin loads data into the device. The internal write pointer is incremented after the rising edge of the write input.
18	15	R	Input	Read: A LOW on this pin puts the oldest valid data byte in the memory array on the output bus. The internal read pointer is incremented at the rising edge of the read signal. Outputs are High-Z when this pin is HIGH.
8	7	त्रा	Input	Expansion In: This pin is used for DEPTH EXPANSION mode. In SINGLE DEVICE mode, it should be grounded. In EXPANDED mode, it should be connected to Expansion-Out (XO) of the previous device in the daisy chain.
26	23	FL/RT/DIR	Input	First Load/Retransmit/Direction: When in single-device mode, this pin can be used to initiate a reread of the previously read data. When in REGISTER LOAD mode, the pin is used for register loading direction. When it is LOW, registers are loaded through the data output pins. When it is HIGH, registers are loaded through the data input pins. In DEPTH EXPANSION mode, this pin should be tied LOW if the device is the first one in the chain and tied HIGH if it is not the first one.
7, 6, 5, 4, 31, 30 29, 28, 3	6, 5, 4, 3, 27 26, 25, 24, 2	D1-D9	Input	Data Inputs: Data on these lines are stored in the memory array or flag registers during array WRITE or register programming, respectively.
24	21	EF/AEF	Output	Empty Flag/Almost Empty Flag: This output pin indicates the FIFO status. When in NONCONFIGURED mode, this pin is an Empty Flag output. When in CONFIGURED mode, it is an Almost Empty Flag output. This pin is active LOW.
9	8	FF/AFF	Output	Full Flag/Almost Full Flags: This output pin indicates the FIFO status. When in NONCONFIGURED mode, this pin is a Full Flag output. When in CONFIGURED mode, it is an Almost Full Flag output. This pin is active LOW.
23	20	XO/HF/FE	Output	Expansion Out/Half Full/Full/Empty: This pin's function is determined by its operation mode. When in SINGLE DEVICE mode, this pin is either HF Flag or a Full/Empty Flag, depending on the state of the most significant bit of Almost Full Flag Register. The pin is an $\overline{\text{XO}}$ output when the part is in DEPTH EXPANSION mode. This pin defaults to $\overline{\text{XO}}/\overline{\text{HF}}$ in NONCONFIGURED mode.
10, 11, 13, 14 19, 20, 21, 22,15	9, 10, 11, 12, 16 17, 18, 19, 13	Q1-Q9	I/O	Data Output: These pins may be used for data retrieval. The pins become inputs during register loading with DIR input HIGH. The outputs are disabled (High-Z) during device idle (\overline{R} = HIGH).
32	28	Vcc	Supply	Power Supply: +5V ±10%
16	14	GND	Supply	Ground

FUNCTIONAL DESCRIPTION

The MT52C9012 uses a dual port SRAM memory cell array with separate read and write pointers. This results in a flexible-length FIFO buffer memory with independent, asynchronous READ and WRITE capabilities and with no fall-through or bubble-through time constraints.

Note:

For multiple function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing half-full flags, the $\overline{XO}/\overline{HF}/\overline{F}$ E pin will be shown as $(\overline{XO})/\overline{HF}/(\overline{F}$ E).

RESET

After Vcc is stable, Reset (\overline{RS}) must be taken LOW with both \overline{R} and \overline{W} HIGH to initialize the read and write pointers and flags. This also clears all internal registers. During the reset pulse, the state of the \overline{XI} pin will determine if the FIFO will operate in the STAND ALONE or DEPTH EXPANSION mode. The STAND ALONE mode is entered if \overline{XI} is tied LOW. If \overline{XI} is connected to $\overline{XO}/\overline{(HF)}$ of another FIFO, the DEPTH EXPANSION mode is selected.

WRITING THE FIFO

Data is written into the FIFO when the write strobe (\overline{W}) pin is taken LOW and if the FIFO is not full. The WRITE cycle is initiated by the falling edge of \overline{W} . Data on the D1-D9 pins are latched on the rising edge. If the location to be written is the last empty location in the FIFO, \overline{FF} will be asserted (LOW) after the falling edge of \overline{W} . While \overline{FF} is asserted, all writes are inhibited and previously stored data are unaffected. The first WRITE to an empty FIFO will cause \overline{EF} to go HIGH after the rising edge of \overline{W} . When operating in the DEPTH EXPANSION mode, the last location write to a FIFO will cause \overline{XO} /(\overline{HF}) to pulse LOW. This will enable writes to the next FIFO in the chain.

READING THE FIFO

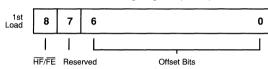
Information is read from the FIFO when the read strobe (\overline{R}) pin is taken LOW and FIFO is not empty (\overline{EF}) is HIGH). The data-out (Q1-Q9) pins will go active (Low-Z) tRLZ after the falling edge of \overline{R} . Valid data will appear tA after the falling edge of \overline{R} . After the last available data word is read, \overline{EF} will go LOW upon the falling edge of \overline{R} . While \overline{EF} is asserted LOW, any attempted reads will be inhibited and the outputs will stay inactive (High-Z). When the FIFO is full and a READ is initiated, the \overline{FF} will go HIGH after the rising edge of \overline{R} . When operating in the expanded mode, the last location read from a FIFO will cause $\overline{XO}/(\overline{HF})$ to pulse LOW. This will enable further reads from the next FIFO in the chain.

RETRANSMIT

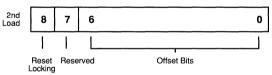
In the STAND ALONE mode, the MT52C9012 allows the receiving device to request that data just read from the FIFO be repeated, when less than 1024 writes have been performed between resets. When the $(\overline{FL})/\overline{RT}/(DIR)$ pin is taken LOW, the read pointer is reset to the first location while the write pointer is not affected. The receiver may start reading the data from the beginning of the FIFO ${}^{t}RTR$ after $(\overline{FL})/\overline{RT}/(DIR)$ is taken HIGH. Some or all flags may be affected depending on the location of the read and write pointers before and after the retransmit.

DATA FLOW-THROUGH

Data flow-through is a method of writing and reading the FIFO at its full and empty boundaries, respectively. By holding \overline{W} LOW when the FIFO is full, a WRITE can be initiated from the next ensuing READ pulse. This is referred to as a FLOW-THROUGH WRITE. FLOW-THROUGH WRITEs are initiated from the rising edge of \overline{R} . When the FIFO is empty, a FLOW-THROUGH READ can be done by holding \overline{R} LOW and letting the next WRITE initiate the READ. Flow-through reads are initiated from the rising edge of \overline{W} , and access time is measured from the rising edge of the empty flag.


REGISTER LOAD MODE

This mode of operation is used to reset the device and program the internal flag registers. This yields an almost full and an almost empty flag (DIP package pins 8 and 21 respectively) and a half-full or $\overline{F}/\overline{E}$ flag (DIP package pin 20).


Two 9-bit internal registers have been provided for flag configuration. One is the almost full flag register (AFFR) and the other is the almost empty flag register (AEFR). Bit configurations of the two registers are shown below.

REGISTER SET FOR MT52C9012

Almost Full Flag Register (AFFR)

Almost Empty Flag Register (AEFR)

Note that bits 0-6 are used for offset setting. The offset value ranges from 1 to 127 words. Each offset value corresponds to a 2-byte increment. This provides a maximum offset of 254 bytes.

Bits 6 and 7 are reserved for future offset expansion. Bit 8 of the AFFR is used for configuration of $\overline{HF}/\overline{FE}$ pin. When this bit is set LOW, the HF/ \overline{FE} pin is configured as an \overline{HF} flag output. When it is set high, the HF/ \overline{FE} is configured as an $\overline{F/E}$ flag output.

Bit 8 of the AEFR is used for reset locking. When this bit is set LOW, subsequent device RESET or REGISTER LOADING cycles reset the device. When the bit is programmed HIGH, subsequent RESET cycles are ignored. In this mode, the flag registers can be reconfigured without device reset. The part can be reset by cycling power to the device or by writing zero (0) into bit 8 of the AEFR register followed by a DEVICE RESET or REGISTER LOAD.

Flag registers are loaded by bringing \overline{RS} LOW followed by the \overline{R} input. The \overline{R} pin should be brought LOW ^tRS after

the $\overline{\text{RS}}$ becomes LOW. The registers may be loaded via the input pins or the output pins depending on the status of the DIR control input. Data is latched into the registers at the rising edge of the $\overline{\text{W}}$ control pin. The first WRITE loads the AFFR while the second WRITE loads the AEFR. This loading order is fixed.

BIDIRECTIONAL MODE

Applications requiring data buffering between two systems (each system capable of READ and WRITE operations) can be achieved by using two MT52C9012s. Care must be taken to assure that the appropriate flag is monitored by each system (i.e. \overline{FF} is monitored on the device where \overline{W} is used; \overline{EF} is monitored on the device where \overline{W} is used). Both depth expansion and width expansion may be used in this mode.

FLAG TIMING

A total of three flag outputs are provided in either CONFIGURED or NONCONFIGURED mode. In the NONCONFIGURED mode, the three flags are \overline{HF} , \overline{EF} and \overline{FF} . The \overline{HF} flag goes active when more than half the FIFO is full. The flag goes inactive when the FIFO is half full or less.

The full and empty flags are asserted when the last byte is written to or read out of the FIFO, respectively. They are deasserted when the first byte is loaded into an empty FIFO or read out of a full FIFO, respectively. All three flag outputs are active LOW.

When the device is programmed, the \overline{AFF} and \overline{AEF} go active after a READ/WRITE cycle initiation of the location corresponding to the programmed offset value. For example, if the AEFR is programmed with a 10-byte offset (loading a Hex value of 05), the \overline{AEF} flag goes active while reading the 10th location before the FIFO is empty. The flag goes inactive when there are 10 or more bytes left in the FIFO. The assertion timing and deassertion timing of the \overline{AFF} are the same.

The third flag in the PROGRAM mode is either \overline{HF} or $\overline{F/E}$ flag depending on the state of the highest bit of the AFFR. If the device is programmed for \overline{HF} flag, it functions like the \overline{HF} flag in NONPROGRAMMED mode. If the device is configured for $\overline{F/E}$ flag, the pin will be active (LOW) when the FIFO is either empty or full. The condition of the FIFO is determined by the state of $\overline{F/E}$ together with states of \overline{AFF} and \overline{AEF} (example: if $\overline{F/E}$ is LOW and \overline{AFF} is LOW but \overline{AEF} is HIGH, the FIFO is full).

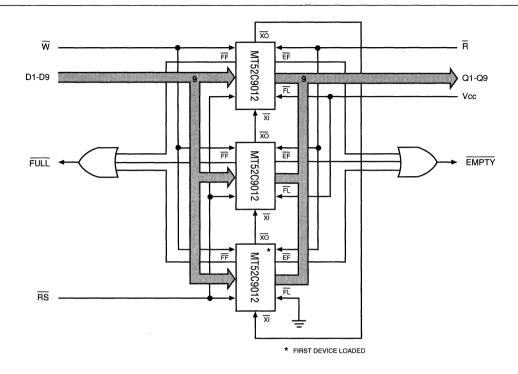


Figure 1
DEPTH EXPANSION

WIDTH EXPANSION

The FIFO word width can be expanded, in increments of 9 bits, using either the STAND ALONE or groups of EXPANDED DEPTH mode FIFOs. Expanded width operation is achieved by tying devices together with all control lines $(\overline{W}, \overline{R},$ etc.) in common. The flags are monitored from one device or one expanded-depth group (Figure 1), when expanding depth and width.

DEPTH EXPANSION

Multiple MT52C9012s may be cascaded to expand the depth of the FIFO buffer. Three pins are used to expand the memory depth, \overline{XI} , $\overline{XO}/(\overline{HF/FE})$ and $\overline{FL}/(\overline{RT}/DIR)$. Figure 1 illustrates a typical three-device expansion. The depth-expansion mode is entered by tying the $\overline{XO}/(\overline{HF/FE})$ pin of each device to the \overline{XI} pin of the next device in the chain. The first device to be loaded will have its $\overline{FL}/(\overline{RT}/DIR)$ pin grounded. The remaining devices in the chain will have $\overline{FL}/(\overline{RT}/DIR)$ tied HIGH. Upon a reset, reads and writes to all FIFOs are disabled, except the first load device. When the

last physical location of the first device is written, the $\overline{\text{XO}}/(\overline{\text{HF}})$ pin will pulse LOW on the falling edge of $\overline{\text{W}}$. This will "pass" the write pointer to the next device in the chain, enabling writes to that device and disabling writes to the first MT52C9012. The writes will continue to go to the second device until last location write. Then it will "pass" the write pointer to the third device. The full condition of the entire FIFO array is signaled when all the $\overline{\text{FF}}/(\overline{\text{AFF}})$ pins are LOW.

On the last physical READ of the first device, its $\overline{\text{XO}}$ ($\overline{\text{HF}}$) will pulse again. On the falling edge of $\overline{\text{R}}$, the read pointer is "passed" to the second device. The read pointer will, in effect, "chase" the write pointer through the extended FIFO array. The read pointer never overtakes the write pointer. On the last READ, an empty condition is signaled by all of the $\overline{\text{EF}}$ pins being LOW. This inhibits further reads. While in the depth-expansion mode, the half-full flag and retransmit functions are not available.

TRUTH TABLE 1

SINGLE-DEVICE CONFIGURATION/WIDTH-EXPANSION Mode

MODE		INPUTS		INTERNA	L STATUS		OUTPUTS	
	RS	RT	Χı	Read Pointer	Write Pointer	EF	FF	HF
RESET	0	Х	0	Location Zero	Location Zero	0	1	1
RETRANSMIT	1	0	0	Location Zero	Unchanged	1	Х	Х
READ/WRITE	1	1	0	Increment (1)	Increment (1)	Х	Х	Х

NOTE: 1. Pointer will increment if flag is HIGH.

TRUTH TABLE 2

DEPTH-EXPANSION/COMPOUND-EXPANSION Mode

MODE		INPUTS	UTS INTERNAL STATUS OUTPU				PUTS
	RS	FL	Χī	Read Pointer	Write Pointer	EF	FF
RESET First Device	0	0	(1)	Location Zero	Location Zero	0	1
RESET All other Devices	0	1	(1)	Location Zero	Location Zero	0	1
READ/WRITE	1	Х	(1)	X	X	Х	Х

NOTE:

1. XI is connected to $\overline{\text{XO}}$ of previous device.

RS = Reset Input, FL/RT/DIR= First Load/Retransmit, EF = Empty Flag Output, FF = Full Flag Output, XI = Expansion Input, HF = Half Full Flag Output.

ABSOLUTE MAXIMUM RATINGS*

 *Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{\Delta} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

DESCRIPTION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.0	Vcc+1	V	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-0.5	0.8	V	1, 2

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_{\Delta} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

$A \subseteq A \subseteq A \subseteq A \subseteq A \subseteq A \subseteq A \subseteq A \subseteq A \subseteq A \subseteq$						AX			
DESCRIPTION	CONDITIONS	SYMBOL	MIN	-15	-20	-25	-35	UNITS	NOTES
Power Supply Current: Operating	\overline{W} , $\overline{R} \le V_{IL}$; $V_{CC} = MAX$ $f = MAX = 1/{}^{t}RC$ Outputs Open	lcc		120	115	110	100	mA	3
	W, R ≥ ViH; Vcc = MAX f = MAX = 1/ tRC	ISB1		15	15	15	15	mA	
Power Supply Current: Standby	\overline{W} , $\overline{R} \ge Vcc$ -0.2; $Vcc = MAX$ $Vll \le Vss$ +0.2, $Vlh \ge Vcc$ -0.2; $f = 0$	ISB2		5	5	5	5	mA	
Input Leakage Current	0V ≤ Vin ≤ Vcc	ILı	-10	10	10	10	10	μΑ	
Output Leakage Current	Output(s) Disabled 0V ≤ Voυτ ≤ Vcc	ILo	-10	10	10	10	10	μА	
Output High Voltage	Iон = -2.0mA	Vон	2.4					٧	1
Output Low Voltage	loL = 8.0mA	Vol					0.4	٧	1

CAPACITANCE

(Vin = 0V; Vout = 0V)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	$T_A = 25^{\circ}C; f = 1MHz$	Cı		8	рF	4
Output Capacitance	Vcc = 5V	Co		8	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Applicable for configured and nonconfigured modes) (0°C \leq T $_{\Delta}$ \leq 70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS			15	-:	20	-2	25	-:	35		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle											
Shift frequency	^t RF		40		33.3		28.5		22.2	MHz	
READ cycle time	^t RC	25		30		35		45		ns	
Access time	^t A		15		20		25		35	ns	6
READ recovery time	t _{RR}	10		10		10		10		ns	
Read pulse width	tRPW	15		20		25		35		ns	
Read LOW to Low-Z	t _{RLZ}	5		5		5		5		ns	7
Read to HIGH to High-Z	^t RHZ		15		15		18		20	ns	7
Data HOLD from R HIGH	tOH	5		5		5		5		ns	
WRITE Cycle				•							
WRITE cycle time	tWC	25		30		35		45		ns	
Write pulse width	tWPW	15		20		25		35		ns	6
WRITE recovery time	tWR	10		10		10		10		ns	
Write HIGH to Low-Z	tWLZ	5		5		5		5		ns	5, 7
Data setup time	^t DS	10		12		15		18		ns	
Data hold time	tDH	0		0		0		0		ns	
RETRANSMIT Cycle				•					***************************************		
Restransmit cycle time	^t RTC	25		30		35		45		ns	
Retransmit pulse width	^t RT	15		20		25		35		ns	
Retransmit recovery time	^t RTR	10		10		10		12		ns	
Retransmit command setup time	tRTS.	15		20		25		35		ns	
RESET Cycle			-								
RESET cycle time	tRSC	25		30		35		45		ns	
(no register programming)							ĺ				
Reset pulse width	tRSP	15		20		25		35		ns	6
Reset recovery time	tRSR	10		10		10		10		ns	
RS LOW to R LOW	t _{RS}	15		20		25		35		ns	
Reset and register programming	^t RSPC	85		100		115		145		ns	
cycle time											
R LOW to DIR valid (register load cycle)	^t RDV	5		5		5		5		ns	
R LOW to register load	^t RW	10		10		10		10		ns	
W HIGH to RS LOW	tWRS	0		0		0		0		ns	
R HIGH to RS LOW	tRRS	0		0		0		0		ns	

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Data flow-through data mode only.

- 6. Pulse widths less than minimum are not allowed.
- 7. Values guaranteed by design, not currently tested.
- 8. \overline{R} and DIR signals must go inactive (HIGH) coincident with \overline{RS} going inactive (HIGH).
- 9. DIR must become valid before \overline{W} goes active (LOW).

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Applicable for configured mode only) (T_A = 0°C to 70°C; Vcc = $5.0V \pm 10\%$)

A.C. CHARACTERISTICS		-1	15	-2	20	-2	5	-3	35		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Expansion Mode Timing											
R/W to XO LOW	†XOL		20		20		25		35	ns	
R/W to XO HIGH	†XOH		20		20		25		35	ns	
XI pulse width	tXIP	15		20		25		35		ns	
XI command setup time to R/W	tXIS	10		12		15		15		ns	
XI command recovery time	^t XIR	10		10		10		10		ns	
Flags Timing											
W HIGH to Flags Valid	tWFV		15		15		15		15	ns	
RS to EF LOW	tEFL		25		30		35		45	ns	
R LOW to EF LOW	^t REF		20		20		25		35	ns	
W HIGH to EF HIGH	tWEF		20		20		25		35	ns	
R pulse after EF HIGH	^t RPE	15		20		25		35		ns	5
RS to HF, FF HIGH	tHFH, tFFH		25		30		35		45	ns	
R HIGH to FF	tRFF		15		20		25		30	ns	
W LOW to FF LOW	tWFF		20		20		25		35	ns	
W pulse width after FF HIGH	^t WPF	15		20		25		35		ns	5
W LOW to HF LOW	tWHF		25		30		35		45	ns	
R HIGH to HF HIGH	^t RHF		25		30		35		45	ns	
R HIGH to AFF	^t RAFF		25		30		35		45	ns	
W LOW to AFF	tWAFF		25		30		35		45	ns	
R LOW to AEF LOW	^t RAEF		25		30		35		45	ns	
W HIGH to AEF	†WAEF		25		30		35		45	ns	

AC TEST CONDITIONS

Input pulse level	0 to 3.0V
Input rise and fall times	5ns
Input timing reference level	1.5V
Output reference level	1.5V
Output load	See Figure 2

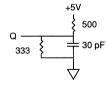
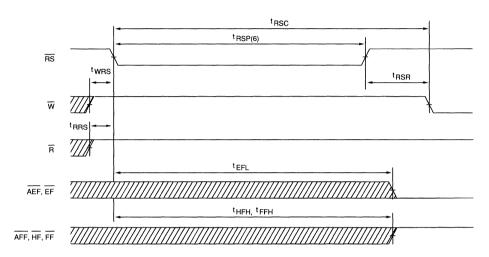
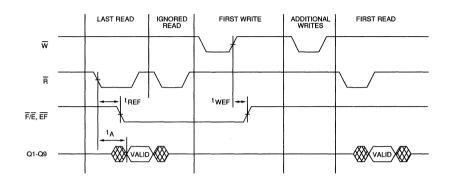
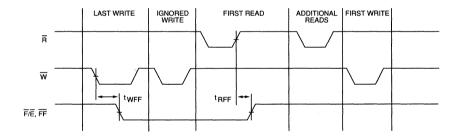



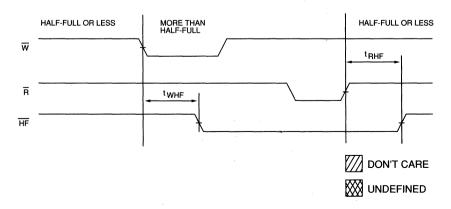
Figure 2 OUTPUT LOAD EQUIVALENT

RESET (WITH NO REGISTER PROGRAMMING)

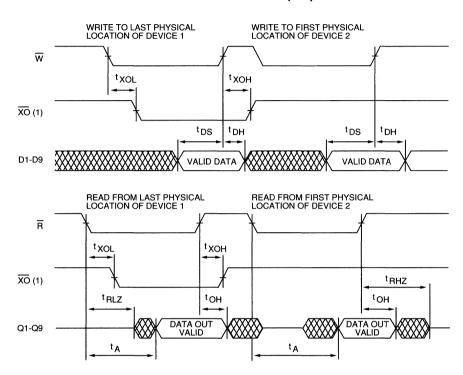


ASYNCHRONOUS READ AND WRITE

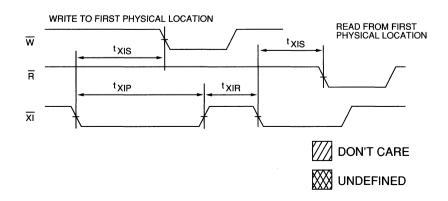



EMPTY FLAG

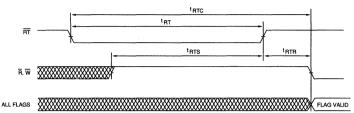
FULL FLAG



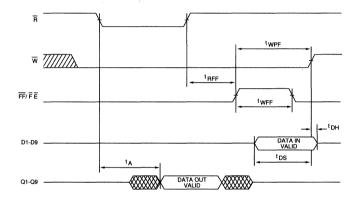
HALF-FULL FLAG (FOR CONFIGURED AND NONCONFIGURED MODES)



EXPANSION MODE (\overline{XO})

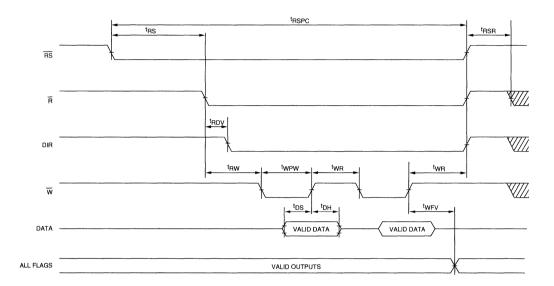

NOTE: 1. \overline{XO} of the Device 1 is connected to \overline{XI} of Device 2.

EXPANSION MODE (XI)

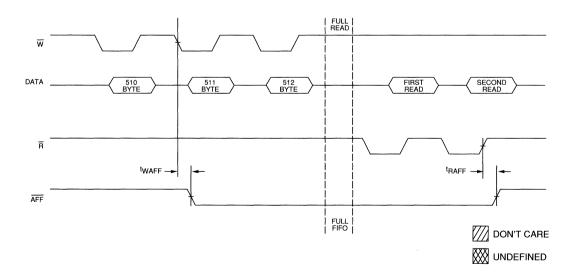


RETRANSMIT

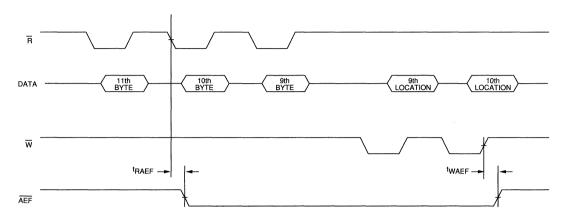
WRITE FLOW-THROUGH



READ FLOW-THROUGH



RESET/REGISTER PROGRAMMING CYCLE TIME 8,9



ALMOST FULL FLAG (2-BYTE OFFSET)

ALMOST EMPTY FLAG (10-BYTE OFFSET)

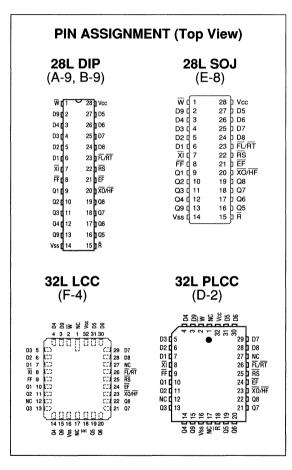
DON'T CARE

₩ undefined

FIFO

2K x 9 FIFO

FEATURES

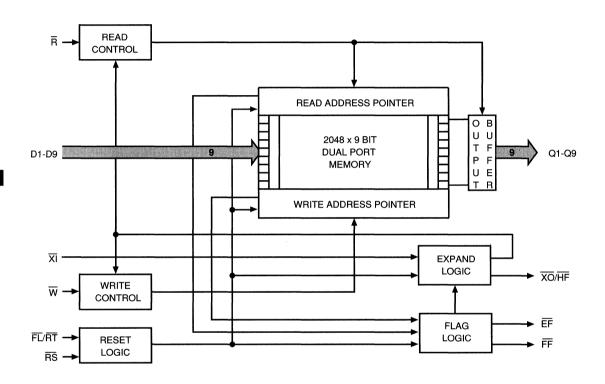

- Very high speed: 15, 20, 25 and 35ns access
- High-performance, low-power CMOS process
- Single $+5V \pm 10\%$ supply
- Low power: 5mW typ. (standby); 350mW typ. (active)
- · TTL compatible inputs and outputs
- Asynchronous and simultaneous READ and WRITE
- Empty, Half-Full and Full Flags
- Half-Full Flag in STAND ALONE mode
- Auto-retransmit capability
- Fully expandable by width and depth
- Pin and function compatible with other standard **FIFOs**

OPTIONS	MARKING
Timing	
15ns access time	-15
20ns access time	-20
25ns access time	-25
35ns access time	-35
Packages	
Plastic DIP (300 mil)	None
Plastic DIP (600 mil)	W
Ceramic DIP (600 mil)	С
PLCC	EJ
Ceramic LCC	ÉC
SOJ (300 mil)	DJ

GENERAL DESCRIPTION

The Micron FIFO family employs high-speed, low-power CMOS designs using a true dual port, six-transistor memory cell with resistor loads.

These devices are written and read in a first-in-first-out (FIFO) sequence. Dual read and write pointers handle the internal addressing, so no external address generation is required. Information can be written to and read from the FIFO asynchronously and independently at the input and output ports. This allows information to be transferred independently in and out of the FIFO at varying data rates. Visibility of the memory volume is given through empty,



half-full and full flags. While the full flag is asserted, attempted writes are inhibited. Likewise, while the empty flag is asserted, further reads are inhibited and the outputs remain in a high-impedance state. Expansion out, expansion in, and first load pins are provided to expand the depth of the FIFO memory array, with no performance degradation. A retransmit pin allows data to be re-sent on the receiver's request when the FIFO is in the STAND ALONE mode.

The depth and/or width of the FIFO can be expanded by cascading multiple devices.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

LCC PIN	DIP PIN	SYMBOL	TYPE	DESCRIPTION
NUMBER(S)	NUMBER(S)	STWIDUL	ITE	DESCRIPTION
25	22	RS	Input	Reset: Taking $\overline{\text{RS}}$ LOW will reset the FIFO by initializing the read and write pointers and all flags. After the device is powered up, it must be reset before any writes can take place.
2	1	W	Input	Write Strobe: \overline{W} is taken LOW to write data from the input port (D1-D9) into the FIFO memory array.
18	15	R	Input	Read Strobe: \overline{R} is taken LOW to read data from the FIFO memory array to the output port (Q1-Q9).
8	7	Χī	Input	Expansion In: This pin is used for DEPTH EXPANSION mode. In SINGLE DEVICE mode, it should be grounded. In EXPANDED mode, it should be connected to Expansion-Out (\overline{XO}) of the previous device in the daisy chain.
26	23	FL/RT	Input	First Load: Acts as first load signal in DEPTH EXPANSION mode. FL if low, will enable the device as the first to be loaded (enables read and write pointers). FL should be tied low for the first FIFO in the chain, and tied high for all other FIFOs in the chain
				Retransmit: Acts as retransmit signal in STAND ALONE mode. RT is used to enable the RETRANSMIT cycle. When taken LOW, RT resets the read pointer to the first data location and the FIFO is then ready to retransmit data on the following READ operation(s). The flags will be affected according to specific data conditions.
7, 6, 5, 4, 31, 30, 29, 28, 3	6, 5, 4, 3, 27 26, 25, 24, 2	D1-D9	Input	Data Inputs
24	21	EF	Output	Empty Flag: Indicates empty FIFO memory when LOW, inhibiting further READ cycles.
9	8	FF	Output	Full Flag: Indicates full FIFO memory when LOW, inhibiting further WRITE cycles.
23	20	XO/HF	Output	SION mode. $\overline{\text{XO}}$ will pulse LOW on the last physical WRITE or the last physical read. $\overline{\text{XO}}$ should be connected to $\overline{\text{XI}}$ of the next FIFO in the daisy chain.
				Half-full Flag: Acts as Half Full Flag in STAND ALONE mode. HF goes LOW when the FIFO becomes more than Half-Full; will stay LOW until the FIFO becomes Half-Full or less.
10, 11, 13, 14, 19, 20, 21, 22, 15	9, 10, 11, 12, 16 17, 18, 19, 13	Q1-Q9	Output	Data Output: Output or high impedance.
32	28	Vcc	Supply	Power Supply: +5V ±10%
16	14	Vss	Supply	Ground

FUNCTIONAL DESCRIPTION

The MT52C9020 uses a dual port SRAM memory cell array with separate read and write pointers. This results in a flexible length FIFO buffer memory, with independent, asynchronous READ and WRITE capabilities and with no fall-through or bubble-through time constraints.

Note:

For dual function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing the half-full flags the $\overline{XO}/\overline{HF}$ pin will be shown as $(\overline{XO})/\overline{HF}$.

RESET

After Vcc is stable, RESET (\overline{RS}) must be taken LOW to initialize the read and write pointers and flags. During the reset pulse, the state of the \overline{XI} pin will determine if the FIFO will operate in the STAND ALONE or DEPTH EXPANSION mode. The STAND ALONE mode is entered if \overline{XI} is LOW. If \overline{XI} is tied to \overline{XO} of another FIFO, the DEPTH EXPANSION mode is selected.

WRITING THE FIFO

Data is written into the FIFO when the write strobe (\overline{W}) pin is taken LOW, while FF is HIGH. The WRITE cycle is initiated by the falling edge of \overline{W} and data on the D1-D9 pins are latched on the rising edge. If the location to be written is the last empty location in the FIFO, the FF will be asserted (LOW) after the falling edge of \overline{W} . While \overline{FF} is LOW, any attempted writes will be inhibited, with no loss of data already stored in the FIFO. When a device is used in the STAND ALONE mode, $(\overline{XO})/\overline{HF}$ is asserted when the halffull-plus-one location (2048/2 + 1) is written. It will stay asserted until the FIFO becomes half-full or less. The first WRITE to an empty FIFO will cause EF to go HIGH after the rising edge of \overline{W} . When operating in the DEPTH EXPAN-SION mode, the last location write to a FIFO will cause \overline{XO} HF to pulse LOW. This will enable writes to the next FIFO in the chain.

READING THE FIFO

Information is read from the FIFO when the read strobe (\overline{R}) pin is taken LOW and the FIFO is not empty $(\overline{EF}$ is HIGH). The data-out (Q1-Q9) pins will go active (Low-Z) ^tRLZ after the falling edge of \overline{R} and valid data will appear ^tA after the falling edge of \overline{R} . After the last available data word is read, \overline{EF} will go LOW upon the falling edge of \overline{R} . While \overline{EF} is asserted LOW, any attempted reads will be inhibited and the outputs will stay inactive (High-Z). When the FIFO is being used in the SINGLE DEVICE mode and the half-full-plus-one location is read, $(\overline{XO})/\overline{HF}$ will go HIGH after the rising edge of \overline{R} . When the FIFO is full $(\overline{FF}LOW)$ and a READ is initiated, \overline{FF} will go HIGH after the rising edge of \overline{R} . When operating in the EXPANDED mode, the last location read to a FIFO will cause $\overline{XO}/\overline{HF}$ to pulse LOW. This will enable further reads from the next FIFO in the chain.

RETRANSMIT

In the STAND ALONE mode, the MT52C9020 allows the receiving device to request that the data read earlier from the FIFO to be repeated, when less than 2047 writes have been performed between resets. When the $(\overline{FL})/\overline{RT}$ pin is taken LOW, the read pointer is reset to the first location while the write pointer is not affected. The receiver may again start reading the data from the beginning of the FIFO 1 RTR after $(\overline{FL})/\overline{RT}$ is taken HIGH. The empty, half-full and full flags will be affected as specified for the data volume.

DATA FLOW-THROUGH

Data flow-through is a method of writing and reading the FIFO at its full and empty boundaries, respectively. By holding \overline{W} LOW when the FIFO is full, a WRITE can be initiated from the next ensuing READ pulse. This is referred to as a FLOW-THROUGH WRITE. FLOW-THROUGH WRITEs are initiated from the rising edge of \overline{R} . When the FIFO is empty, a FLOW-THROUGH READ can be done by holding \overline{R} LOW and letting the next WRITE initiate the READ. FLOW-THROUGH READs are initiated from the rising edge of \overline{W} and access time is measured from the rising edge of \overline{EF} .

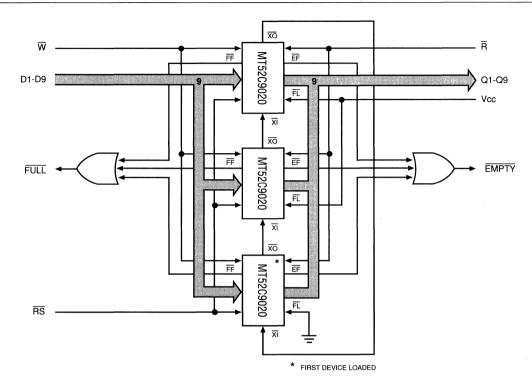


Figure 1
DEPTH EXPANSION

WIDTH EXPANSION

The FIFO word width can be expanded, in increments of 9 bits, using either the stand alone or groups of expanded-depth mode FIFOs. Expanded-width operation is achieved by tying devices together with all control lines $(\overline{W}, \overline{R},$ etc.) in common. The flags are monitored from one device or one expanded-depth group (Figure 1) when expanding depth and width.

DEPTH EXPANSION

Multiple MT52C9020s may be cascaded to expand the depth of the FIFO buffer. Three pins are used to expand the memory depth, \overline{XI} , $\overline{XO}/(\overline{HF})$ and $\overline{FL}/(\overline{RT})$. Figure 1 illustrates a typical three-device expansion. The DEPTH EXPANSION mode is entered during a RESET cycle, by tying the $\overline{XO}/(\overline{HF})$ pin of each device to the \overline{XI} pin of the next device in the chain. The first device to be loaded will have its $\overline{FL}/(\overline{RT})$ pin grounded. The remaining devices in the chain will have $\overline{FL}/(\overline{RT})$ tied HIGH. During RESET cycle, $\overline{XO}/(\overline{HF})$ of each device is held HIGH, disabling reads and

writes to all FIFOs, except the first load device. When the last physical location of the first device is written, the $\overline{\text{XO}}/\overline{\text{(HF)}}$ pin will pulse LOW on the falling edge of $\overline{\text{W}}$. This will "pass" the write pointer to the next device in the chain, enabling writes to that device and disabling writes to the first MT52C9020. The writes will continue to go to the second device until last location WRITE. Then it will "pass" the write pointer to the third device.

The full condition of the entire FIFO array is signaled by "OR-ing" all the \overline{FF} pins. On the last physical READ of the first device, its $\overline{XO}/(\overline{HF})$ will pulse again. On the falling edge of \overline{R} , the read pointer is "passed" to the second device. The read pointer will, in effect, "chase" the write pointer through the extended FIFO array. The read pointer never overtakes the write pointer. An empty condition is signaled by OR-ing all of the \overline{EF} pins. This inhibits further reads. While in the DEPTH EXPANSION mode, the half-full flag and retransmit functions are not available.

TRUTH TABLE 1

SINGLE-DEVICE CONFIGURATION/WIDTH-EXPANSION Mode

MODE		INPUTS		INTERNA	INTERNAL STATUS			
	RS	RT	ΧI	Read Pointer	Write Pointer	EF	FF	HF
RESET	0	х	0	Location Zero	Location Zero	0	1	1
RETRANSMIT	1	0	0	Location Zero	Unchanged	1	Х	Х
READ/WRITE	1	1	0	Increment (1)	Increment (1)	Х	Х	Х

NOTE: 1. Pointer will increment if flag is HIGH.

TRUTH TABLE 2

DEPTH-EXPANSION/COMPOUND-EXPANSION Mode

MODE		INPUTS		INTERNA	L STATUS	OUTI	PUTS
	RS	FL	ΧI	Read Pointer	Write Pointer	EF	FF
RESET First Device	0	0	(1)	Location Zero	Location Zero	0	1
RESET All other Devices	0	1	(1)	Location Zero	Location Zero	0	1
READ/WRITE	1	Х	(1)	X	X	Х	Х

NOTE:

1. XI is connected to $\overline{\text{XO}}$ of previous device.

 \overline{RS} = Reset Input, $\overline{FL/RT/DIR}$ = First Load/Retransmit, \overline{EF} = Empty Flag Output, \overline{FF} = Full Flag Output, \overline{XI} = Expansion Input, \overline{HF} = Half Full Flag Output.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss0.5V to	⊥7 ΩV
Operating Temperature T _A (ambient)0°C to	
Storage Temperature (Ceramic)65°C to +1	150°C
Storage Temperature (Plastic)55°C to +1	150°C
Power Dissipation	1W
Short Circuit Output Current5	

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \leq T_{\mbox{\scriptsize A}} \leq 70^{\circ}C; \mbox{ Vcc} = 5.0 \mbox{\scriptsize V} \pm 10\%)$

DESCRIPTION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	V	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.0	Vcc+1	V	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-0.5	0.8	٧	1, 2

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_{\Delta} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Power Supply Current: Operating	W, R ≤ V _{IL} ; Vcc = MAX Outputs Open	lcc		100	mA	3
	W, R ≥ VIH; VCC = MAX	ISB1		15	mA	
Power Supply Current: Standby	\overline{W} , $\overline{R} \ge Vcc$ -0.2; $Vcc = MAX$ $VlL \le Vss$ +0.2, $VlH \ge Vcc$ -0.2; $f = 0$	IsB2		5	mA	
Input Leakage Current	0V ≤ Vin ≤ Vcc	ILı	-10	10	μА	
Output Leakage Current	Output(s) Disabled, 0V ≤ Vouт ≤ Vcc	ILo	-10	10	μА	
Output High Voltage	Iон = -2.0mA	Vон	2.4		V	1
Output Low Voltage	loL = 8.0mA	Vol		0.4	V	1

CAPACITANCE

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cı		8	pF	4
Output Capacitance	Vcc = 5V	Со		8	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

 $(0^{\circ}\text{C} \le \text{T}_{\text{A}} \le 70^{\circ}\text{C}; \text{Vcc} = 5.0\text{V} \pm 10\%)$

A.C. CHARACTERISTICS			15	-2	20	-2	.5		35		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Shift Frequency	Fs		40		33.3		28.5		22.2	MHz	
Access time	t _A		15		20		25		35	ns	
Read cycle time	tRC tRC	25		30		35		45		ns	
Read command recovery time	tRR	10		10		10		10		ns	
Read command pulse width	tRPW	15		20		25		35		ns	6
Read LOW to Low-Z	t _{RLZ}	5		5		5		5		ns	
Read to HIGH to High-Z	^t RHZ		15		15		18		20	ns	
Data hold from R HIGH	фн	5		5		5		5		ns	
Write cycle time	tWC	25		30		35		45		ns	
Write command pulse width	tWPW	15		20		25		35		ns	6
Write command recovery time	^t WR	10		10		10		10		ns	
Write HIGH to Low-Z	tWLZ	5		5		5		5		ns	5
Data setup time	t _{DS}	10		12		15		20		ns	
Data hold time	tDH	0		0		0		0		ns	
Reset cycle time	tRSC	25		30		35		45		ns	
Reset pulse width	tRSP	15		20		25		35		ns	6
Reset recovery time	tRSR	10		10		10		10		ns	
Read HIGH to Reset HIGH	tRRS	15		20		25		35		ns	
Write HIGH to Reset HIGH	twrs	15		20		25		35		ns	
Retransmit cycle time	tRTC	25		30		35		45		ns	
Retransmit pulse width	t _{RT}	15		20		25		35		ns	
Retransmit recovery time	tRTR	10		10		10		12		ns	
Retransmit setup time	^t RTS	15		20		25		35		ns	
Reset to EF LOW	t _{EFL}		25		30		35		45	ns	
Reset to HF FF HIGH	tHFH, tFFH		25		30		35		45	ns	
Read LOW to EF LOW	tREF.		20		20		25		35	ns	
Read HIGH to FF HIGH	tRFF		20		20		25		35	ns	
Write LOW to FF LOW	tWFF		20		20		25		35	ns	
Write HIGH to EF HIGH	tWEF		20		20		25		35	ns	
Write LOW to HF LOW	tWHF		25		30		35		45	ns	
Read HIGH to HF HIGH	tRHF		25		30		35		45	ns	
Read pulse after EF HIGH	t _{RPE}	15		20		25		35		ns	5
Write pulse width after FF HIGH	tWPF	15		20		25		35		ns	5
Read/Write to XO LOW	^t XOL		20		20		25		35	ns	
Read/Write to XO HIGH	tXOH		20		20		25		35	ns	
XI pulse width	tXIP	15		20		25		35		ns	
XI setup time	tXIS	10		12		15		15		ns	
XI recovery time	tXIR	10		10		10		10		ns	

NOTES

- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Flow-through mode only.
- 6. Pulse widths less than minimum are not allowed.

AC TEST CONDITIONS

Input pulse level	0 to 3.0V
Input rise and fall times	5ns
Input timing reference level	1.5V
Output reference level	1.5V
Output load	See Figure 2

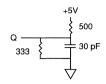
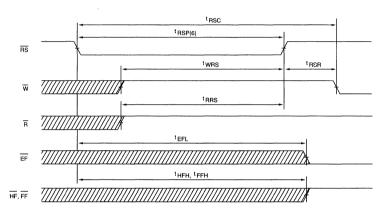
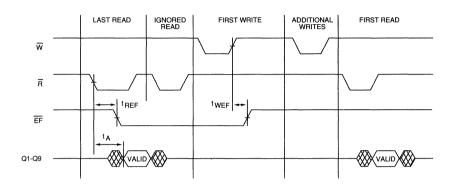
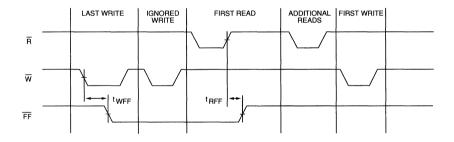
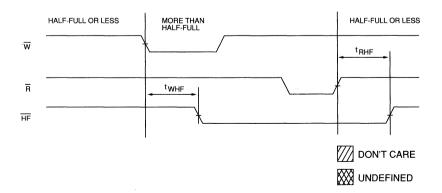



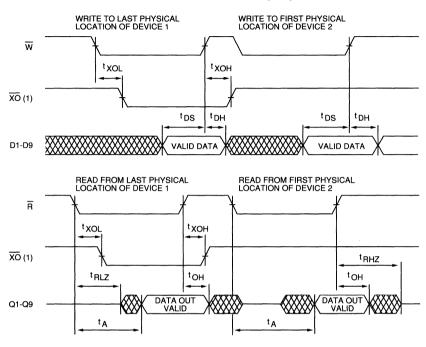
Fig. 2 OUTPUT LOAD EQUIVALENT


RESET

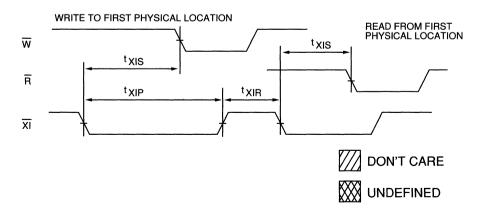

ASYNCHRONOUS READ AND WRITE


EMPTY FLAG

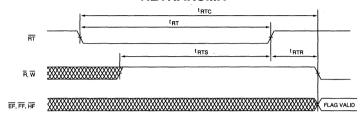
FULL FLAG



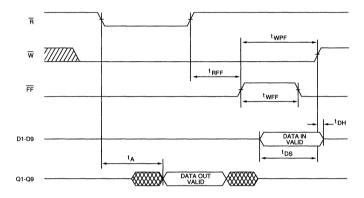
HALF-FULL FLAG

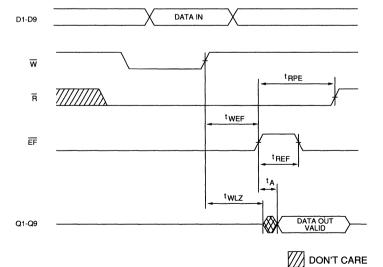


EXPANSION MODE (XO)



NOTE: \overline{XO} of the Device 1 is connected to \overline{XI} of Device 2.


EXPANSION MODE (XI)


RETRANSMIT

WRITE FLOW-THROUGH

READ FLOW-THROUGH

₩ UNDEFINED

FIFO

2K x 9 FIFO

WITH PROGRAMMABLE FLAGS

FEATURES

DTTONIC

- Very high speed: 15, 20, 25 and 35ns access
- High-performance, low-power CMOS process
- Single $+5V \pm 10\%$ supply
- Low power: 5mW typical (standby); 350mW typical (active)
- TTL compatible inputs and outputs
- Asynchronous READ and WRITE
- Two fully configurable Almost Full and Almost Empty Flags
- Programmable Half Full Flag or Full/Empty Flag option eliminates external counter requirement
- Register loading via the input or output pins
- Auto-retransmit capability in single-device mode
- · Fully expandable by width and depth
- · Pin and function compatible with standard FIFOs

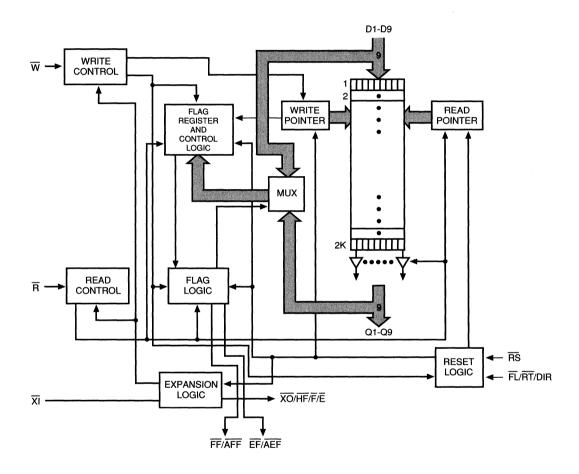
NAA DIZINIO

MAKKING
-15
-20
-25
-35
None
W
C
EJ
EC
DJ

GENERAL DESCRIPTION

The Micron FIFO family employs high-speed, low-power CMOS designs using a true dual-port, six-transistor memory cell with resistor loads.

These devices are written and read in a first-in-first-out (FIFO) sequence. Dual read and write pointers handle the internal addressing, so no external address generation is required. Information may be written to and read from the FIFO asynchronously and independently at the input and output ports. This allows information to be transferred independently in and out of the FIFO at varying data rates.


When not configured, the MT52C9022 defaults to a standard FIFO with empty (EF), full (FF) and half-full (HF) flag pins. The MT52C9022 can be configured for programmable

PIN ASSIGNMENT (Top View)						
28L/DIP (A-9, B-9)	28L/SOJ (E-8)					
W (1 ● 28 U VCC D9 (2 27 U D5 D4 (3 26 U D6 D3 (4 25 U D7 D2 (5 24 U D8 D1 (6 23 U FL/RT/DIR XI (7 22 U RS FF/AFF (8 21 U FF/AFF Q1 (9 20 U XO/FF/F E Q2 (10 19 U RS Q3 (11 18 U Q7 Q4 (12 17 U G6 Q9 (13 16 U G5 GND (14 15 U R)	W 1					
32L/LCC (F-4)	32L/PLCC (D-2)					
3 8 18 18 18 18 18 18 18 18 18 18 18 18 1	88 ≥ 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					

flags by loading the internal flag registers (as described under "Register Load Mode" on page 8-73). In configured mode, up to three flags are provided. The first two are the almost empty flag (\overline{AEF}) and the almost full flag (\overline{AFF}) with independently programmable offsets. The third one is either an \overline{HF} or a full and empty (\overline{FE}) flag, depending on the bit configuration of the registers. A retransmit pin allows data to be re-sent on the receiver's request when the FIFO is in the STAND ALONE mode.

The depth and/or width of the FIFO can be expanded by cascading multiple devices. The MT52C9022 is speed, function and pin compatible with lower density FIFOs from Micron.

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTIONS

LCC PIN	DIP PIN	SYMBOL	TYPE	DESCRIPTION
NUMBER(S)	NUMBER(S)	STWIDUL	ITPE	DESCRIPTION
25	22	RS	Input	Reset: This pin is used to reset the device and load internal flag registers. During device reset, all internal pointers and registers are cleared.
2	1	W	Input	Write: A LOW on this pin loads data into the device. The internal write pointer is incremented after the rising edge of the write input.
18	15	R	Input	Read: A LOW on this pin puts the oldest valid data byte in the memory array on the output bus. The internal read pointer is incremented at the rising edge of the read signal. Outputs are High-Z when this pin is HIGH.
8	7	प्रा	Input	Expansion In: This pin is used for DEPTH EXPANSION mode. In SINGLE DEVICE mode, it should be grounded. In EXPANDED mode, it should be connected to Expansion-Out $(\overline{\text{XO}})$ of the previous device in the daisy chain.
26	23	FL/RT/DIR	Input	First Load/Retransmit/Direction: When in single-device mode, this pin can be used to initiate a reread of the previously read data. When in REGISTER LOAD mode, the pin is used for register loading direction. When it is LOW, registers are loaded through the data output pins. When it is HIGH, registers are loaded through the data input pins. In DEPTH EXPANSION mode, this pin should be tied LOW if the device is the first one in the chain and tied HIGH if it is not the first one.
7, 6, 5, 4, 31, 30 29, 28, 3	6, 5, 4, 3, 27 26, 25, 24, 2	D1-D9	Input	Data Inputs: Data on these lines are stored in the memory array or flag registers during array WRITE or register programming, respectively.
24	21	EF/AEF	Output	Empty Flag/Almost Empty Flag: This output pin indicates the FIFO status. When in NONCONFIGURED mode, this pin is an Empty Flag output. When in CONFIGURED mode, it is an Almost Empty Flag output. This pin is active LOW.
9	8	FF/AFF	Output	Full Flag/Almost Full Flags: This output pin indicates the FIFO status. When in NONCONFIGURED mode, this pin is a Full Flag output. When in CONFIGURED mode, it is an Almost Full Flag output. This pin is active LOW.
23	20	XO/HF/FE	Output	Expansion Out/Half Full/Full/Empty: This pin's function is determined by its operation mode. When in SINGLE DEVICE mode, this pin is either HF Flag or a Full/Empty Flag, depending on the state of the most significant bit of Almost Full Flag Register. The pin is an \overline{XO} output when the part is in DEPTH EXPANSION mode. This pin defaults to $\overline{XO}/\overline{HF}$ in NONCONFIGURED mode.
10, 11, 13, 14 19, 20, 21, 22,15	9, 10, 11, 12, 16 17, 18, 19, 13	Q1-Q9	I/O	Data Output: These pins may be used for data retrieval. The pins become inputs during register loading with DIR input HIGH. The outputs are disabled (High-Z) during device idle (\overline{R} = HIGH).
32	28	Vcc	Supply	Power Supply: +5V ±10%
16	14	GND	Supply	Ground

FUNCTIONAL DESCRIPTION

The MT52C9022 uses a dual port SRAM memory cell array with separate read and write pointers. This results in a flexible-length FIFO buffer memory with independent, asynchronous READ and WRITE capabilities and with no fall-through or bubble-through time constraints.

Note:

For multiple function pins, the function that is not being discussed will be surrounded by parentheses. For example, when discussing half-full flags, the $\overline{XO}/\overline{HF/F}$ E pin will be shown as $(\overline{XO})/\overline{HF/(FE)}$.

RESET

After Vcc is stable, Reset (\overline{RS}) must be taken LOW with both \overline{R} and \overline{W} HIGH to initialize the read and write pointers and flags. This also clears all internal registers. During the reset pulse, the state of the \overline{XI} pin will determine if the FIFO will operate in the STAND ALONE or DEPTH EXPANSION mode. The STAND ALONE mode is entered if \overline{XI} is tied LOW. If \overline{XI} is connected to $\overline{XO}/\overline{(HF)}$ of another FIFO, the DEPTH EXPANSION mode is selected.

WRITING THE FIFO

Data is written into the FIFO when the write strobe (\overline{W}) pin is taken LOW and if the FIFO is not full. The WRITE cycle is initiated by the falling edge of \overline{W} . Data on the D1-D9 pins are latched on the rising edge. If the location to be written is the last empty location in the FIFO, \overline{FF} will be asserted (LOW) after the falling edge of \overline{W} . While the \overline{FF} is asserted, all writes are inhibited and previously stored data are unaffected. The first WRITE to an empty FIFO will cause \overline{EF} to go HIGH after the rising edge of \overline{W} . When operating in the DEPTH EXPANSION mode, the last location write to a FIFO will cause $\overline{XO}/(\overline{HF})$ to pulse LOW. This will enable writes to the next FIFO in the chain.

READING THE FIFO

Information is read from the FIFO when the read strobe (\overline{R}) pin is taken LOW and FIFO is not empty $(\overline{EF}$ is High). The data-out (Q1-Q9) pins will go active $(Low-Z)^tRLZ$ after the falling edge of \overline{R} . Valid data will appear tA after the falling edge of \overline{R} . Valid data will appear tA after the falling edge of \overline{R} . While \overline{EF} is asserted LOW, any attempted reads will be inhibited and the outputs will stay inactive (High-Z). When the FIFO is full and a READ is initiated, the \overline{FF} will go HIGH after the rising edge of \overline{R} . When operating in the expanded mode, the last location read from a FIFO will cause $\overline{XO}/(\overline{HF})$ to pulse LOW. This will enable further reads from the next FIFO in the chain.

RETRANSMIT

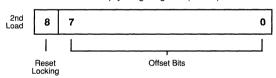
In the STAND ALONE mode, the MT52C9022 allows the receiving device to request that data just read from the FIFO be repeated, when less than 2047 writes have been performed between resets. When the $(\overline{FL})/\overline{RT}/(DIR)$ pin is taken LOW, the read pointer is reset to the first location while the write pointer is not affected. The receiver may start reading the data from the beginning of the FIFO ${}^{t}RTR$ after $(\overline{FL})/\overline{RT}/(DIR)$ is taken HIGH. Some or all flags may be affected depending on the location of the read and write pointers before and after the retransmit.

DATA FLOW-THROUGH

Data flow-through is a method of writing and reading the FIFO at its full and empty boundaries, respectively. By holding \overline{W} LOW when the FIFO is full, a WRITE can be initiated from the next ensuing READ pulse. This is referred to as a FLOW-THROUGH WRITE. FLOW-THROUGH WRITEs are initiated from the rising edge of \overline{R} . When the FIFO is empty, a FLOW-THROUGH READ can be done by holding \overline{R} LOW and letting the next WRITE initiate the READ. Flow-through reads are initiated from the rising edge of \overline{W} , and access time is measured from the rising edge of the empty flag.

REGISTER LOAD MODE

This mode of operation is used to reset the device and program the internal flag registers. This yields an almost full and an almost empty flag (DIP package pins 8 and 21 respectively) and a half-full or $\overline{F/E}$ flag (DIP package pin 20).


Two 9-bit internal registers have been provided for flag configuration. One is the almost full flag register (AFFR) and the other is the almost empty flag register (AEFR). Bit configurations of the two registers are shown below.

REGISTER SET FOR MT52C9022

Almost Full Flag Register (AFFR)

Almost Empty Flag Register (AEFR)

Note that bits 0-7 are used for offset setting. The offset value ranges from 1 to 255 words. Each offset value corresponds to a 2-byte increment. This provides a maximum offset of 510 bytes.

Bits 6 and 7 are reserved for future offset expansion. Bit 8 of the AFFR is used for configuration of $\overline{HF/FE}$ pin. When this bit is set LOW, the $\overline{HF/FE}$ pin is configured as an \overline{HF} flag output. When it is set high, the $\overline{HF/FE}$ is configured as an $\overline{F/E}$ flag output.

Bit 8 of the AEFR is used for reset locking. When this bit is set LOW, subsequent device RESET or REGISTER LOADING cycles reset the device. When the bit is programmed HIGH, subsequent RESET cycles are ignored. In this mode, the flag registers can be reconfigured without device reset. The part can be reset by cycling power to the device or by writing zero (0) into bit 8 of the AEFR register followed by a DEVICE RESET or REGISTER LOAD.

Flag registers are loaded by bringing \overline{RS} LOW followed by the \overline{R} input. The \overline{R} pin should be brought LOW ^tRS after

the \overline{RS} becomes LOW. The registers may be loaded via the input pins or the output pins depending on the status of the DIR control input. Data is latched into the registers at the rising edge of the \overline{W} control pin. The first WRITE loads the AFFR while the second WRITE loads the AEFR. This loading order is fixed.

BIDIRECTIONAL MODE

Applications requiring data buffering between two systems (each system capable of READ and WRITE operations) can be achieved by using two MT52C9022s. Care must be taken to assure that the appropriate flag is monitored by each system (i.e. \overline{FF} is monitored on the device where \overline{W} is used; \overline{EF} is monitored on the device where \overline{R} is used). Both depth expansion and width expansion may be used in this mode.

FLAG TIMING

A total of three flag outputs are provided in either CONFIGURED or NONCONFIGURED mode. In the NONCONFIGURED mode, the three flags are \overline{HF} flag, \overline{EF} and \overline{FF} . The \overline{HF} flag goes active when more than half the FIFO if full. The flag goes inactive when the FIFO is half full or less.

The full and empty flags are asserted when the last byte is written to or read out of the FIFO, respectively. They are deasserted when the first byte is loaded into an empty FIFO or read out of a full FIFO, respectively. All three flag outputs are active LOW.

When the device is programmed, the \overline{AFF} and \overline{AEF} go active after a READ/WRITE cycle initiation of the location corresponding to the programmed offset value. For example, if the AEFR is programmed with a 10-byte offset (loading a Hex value of 05), the \overline{AEF} flag goes active while reading the 10th location before the FIFO is empty. The flag goes inactive when there are 10 or more bytes left in the FIFO. The assertion timing and deassertion timing of the \overline{AFF} are the same.

The third flag in the PROGRAM mode is either \overline{HF} or $\overline{F/E}$ flag depending on the state of the highest bit of the AFFR. If the device is programmed for \overline{HF} flag, it functions like the \overline{HF} flag in NONPROGRAMMED mode. If the device is configured for $\overline{F/E}$ flag, the pin will be active (LOW) when the FIFO is either empty or full. The condition of the FIFO is determined by the state of $\overline{F/E}$ together with states of \overline{AFF} and \overline{AEF} (example: if $\overline{F/E}$ is LOW and \overline{AFF} is LOW but \overline{AEF} is HIGH, the FIFO is full).

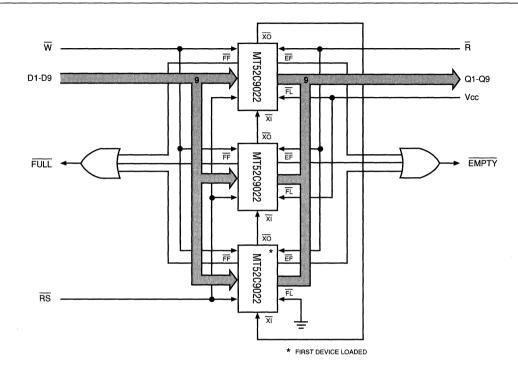


Figure 1
DEPTH EXPANSION

WIDTH EXPANSION

The FIFO word width can be expanded, in increments of 9 bits, using either the STAND ALONE or groups of EXPANDED DEPTH mode FIFOs. Expanded width operation is achieved by tying devices together with all control lines $(\overline{W}, \overline{R},$ etc.) in common. The flags are monitored from one device or one expanded-depth group (Figure 1), when expanding depth and width.

DEPTH EXPANSION

Multiple MT52C9022s may be cascaded to expand the depth of the FIFO buffer. Three pins are used to expand the memory depth, \overline{XI} , $\overline{XO}/\overline{(HF/FE)}$ and $\overline{FL}/\overline{(RT/DIR)}$. Figure 1 illustrates a typical three-device expansion. The depth-expansion mode is entered by tying the $\overline{XO}/\overline{(HF/FE)}$ pin of each device to the \overline{XI} pin of the next device in the chain. The first device to be loaded will have its $\overline{FL}/\overline{(RT/DIR)}$ pin grounded. The remaining devices in the chain will have $\overline{FL}/\overline{(RT/DIR)}$ tied HIGH. Upon a reset, reads and writes to all FIFOs are disabled, except the first load device. When the

last physical location of the first device is written, the $\overline{\text{XO}}/\overline{(\text{HF})}$ pin will pulse LOW on the falling edge of $\overline{\text{W}}$. This will "pass" the write pointer to the next device in the chain, enabling writes to that device and disabling writes to the first MT52C9022. The writes will continue to go to the second device until last location write. Then it will "pass" the write pointer to the third device. The full condition of the entire FIFO array is signaled when all the $\overline{\text{FF}}/\overline{(\text{AFF})}$ pins are LOW.

On the last physical READ of the first device, its $\overline{\text{XO}}$ ($\overline{\text{HF}}$) will pulse again. On the falling edge of $\overline{\text{R}}$, the read pointer is "passed" to the second device. The read pointer will, in effect, "chase" the write pointer through the extended FIFO array. The READ pointer never overtakes the write pointer. On the last READ, an empty condition is signaled by all of the $\overline{\text{EF}}$ pins being LOW. This inhibits further reads. While in the depth-expansion mode, the half-full flag and retransmit functions are not available.

TRUTH TABLE 1

SINGLE-DEVICE CONFIGURATION/WIDTH-EXPANSION Mode

MODE	INPUTS			INTERNA		OUTPUTS		
	RS	RT	Χı	Read Pointer	Write Pointer	EF	FF	HF
RESET	0	Х	0	Location Zero	Location Zero	0	1	1
RETRANSMIT	1	0	0	Location Zero	Unchanged	1	Х	Х
READ/WRITE	1	1	0	Increment (1)	Increment (1)	Х	Х	Х

NOTE: 1. Pointer will increment if flag is HIGH.

TRUTH TABLE 2

DEPTH-EXPANSION/COMPOUND-EXPANSION Mode

MODE		INPUTS		INTERNA	L STATUS	OUTPUTS		
	RS	FL	Χì	Read Pointer	Write Pointer	EF	FF	
RESET First Device	0	0	(1)	Location Zero	Location Zero	0	1	
RESET All other Devices	0	1	(1)	Location Zero	Location Zero	0	1	
READ/WRITE	1	Х	(1)	Х	Х	Х	Х	

NOTE:

1. XI is connected to \overline{XO} of previous device.

 \overline{RS} = Reset Input, $\overline{FL/RT/DIR}$ = First Load/Retransmit, \overline{EF} = Empty Flag Output, \overline{FF} = Full Flag Output, \overline{XI} = Expansion Input, \overline{HF} = Half Full Flag Output.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vcc supply relative to Vss	0.5V to +7.0V
Operating Temperature T _A (ambient)	0°C to 70°C
Storage Temperature (Ceramic)	
Storage Temperature (Plastic)	55°C to +150°C
Power Dissipation	1W
Short Circuit Output Current	50mA

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $(0^{\circ}C \le T_{\Delta} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

DESCRIPTION	SYMBOL	MIN	MAX	UNITS	NOTES
Supply Voltage	Vcc	4.5	5.5	٧	1
Input High (Logic 1) Voltage, All Inputs	ViH	2.0	Vcc+1	V	1
Input Low (Logic 0) Voltage, All Inputs	VIL	-0.5	0.8	V	1, 2

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C; Vcc = 5.0V \pm 10\%)$

A = / G G, / G	0.07 = 1070,		MAX						
DESCRIPTION	CONDITIONS	SYMBOL	MIN	-15	-20	-25	-35	UNITS	NOTES
Power Supply Current: Operating	\overline{W} , $\overline{R} \le V_{IL}$; $V_{CC} = MAX$ $f = MAX = 1/{}^{t}RC$ Outputs Open	lcc		120	115	110	100	mA	3
	\overline{W} , $\overline{R} \ge V_{IH}$; $V_{CC} = MAX$ $f = MAX = 1/{}^{t}RC$	ISB1		15	15	15	15	mA	
Power Supply Current: Standby	\overline{W} , $\overline{R} \ge Vcc$ -0.2; $Vcc = MAX$ $ViL \le Vss$ +0.2, $ViH \ge Vcc$ -0.2; $f = 0$	ISB2		5	5	5	5	mA	
Input Leakage Current	0V ≤ Vin ≤ Vcc	ILı	-10	10	10	10	10	μΑ	
Output Leakage Current	Output(s) Disabled 0V ≤ Vo∪t ≤ Vcc	ILo	-10	10	10	10	10	μА	
Output High Voltage	Iон = -2.0mA	Vон	2.4					٧	1
Output Low Voltage	IoL = 8.0mA	Vol					0.4	٧	1

CAPACITANCE

(Vin = 0V; Vout = 0V)

DESCRIPTION	CONDITIONS	SYMBOL	MIN	MAX	UNITS	NOTES
Input Capacitance	T _A = 25°C; f = 1MHz	Cı		8	pF	4
Output Capacitance	Vcc = 5V	Co		8	pF	4

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

(Applicable for configured and nonconfigured modes) (0°C \leq T_A \leq 70°C; Vcc = 5.0V \pm 10%)

A.C. CHARACTERISTICS		-	15	-:	20	-2	25	-35			
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
READ Cycle					<u> </u>			<u> </u>			
Shift frequency	t _{RF}		40		33.3		28.5		22.2	MHz	
READ cycle time	^t RC	25		30		35		45		ns	
Access time	^t A		15		20		25		35	ns	6
READ recovery time	tRR	10		10		10		10		ns	
Read pulse width	tRPW	15		20		25		35		ns	
Read LOW to Low-Z	tRLZ	5		5		5		5		ns	7
Read to HIGH to High-Z	tRHZ		15		15		18		20	ns	7
Data HOLD from R HIGH	tOH	5		5		5		5		ns	
WRITE Cycle				·							
WRITE cycle time	tWC	25		30		35	T	45		ns	
Write pulse width	tWPW	15		20		25		35		ns	6
WRITE recovery time	tWR	10		10		10		10		ns	
Write HIGH to Low-Z	tWLZ	5		5		5		5		ns	5, 7
Data setup time	†DS	10		12		15		18		ns	
Data hold time	†DH	0	1	0		0		0		ns	
RETRANSMIT Cycle	<u> </u>	· · · · · · · · · · · · · · · · · · ·	·		.l	·					<u> </u>
Restransmit cycle time	tRTC	25		30		35		45		ns	
Retransmit pulse width	t _{RT}	15		20		25		35	1	ns	
Retransmit recovery time	tRTR	10		10		10		12		ns	
Retransmit command setup time	†RTS	15		20		25		35		ns	
RESET Cycle											
RESET cycle time (no register programming)	^t RSC	25		30		35		45		ns	
Reset pulse width	†RSP	15	 	20	 	25	 	35	 	ns	6
Reset recovery time	tRSR	10	-	10	-	10	-	10	ļ	+	-
RS LOW to R LOW	tRS	15		20	-	25		35	ļ	ns	
	tRSPC	85	ļ	100	-	115		145	1		-
Reset and register programming cycle time	HSPC	85		100		115		145		ns	
R LOW to DIR valid (register load cycle)	tRDV	5		5		5		5		ns	
R LOW to register load	t _{RW}	10		10		10		10		ns	
W HIGH to RS LOW	tWRS	0		0		0		0		ns	
R HIGH to RS LOW	tRRS	0		0		0		0		ns	

NOTES

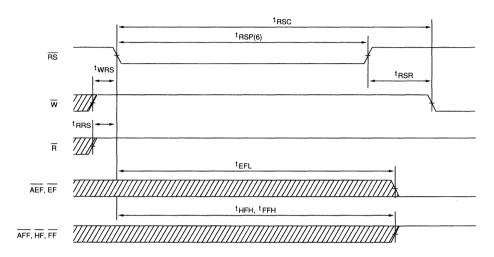
- 1. All voltages referenced to Vss (GND).
- 2. -3.0V for pulse width < 20ns.
- 3. Icc is dependent on output loading and cycle rates.
- 4. This parameter is sampled.
- 5. Data flow-through data mode only.

- 6. Pulse widths less than minimum are not allowed.
- 7. Values guaranteed by design, not currently tested.
- 8. \overline{R} and DIR signals must go inactive (HIGH) coincident with \overline{RS} going inactive (HIGH).
- 9. DIR must become valid before \overline{W} goes active (LOW).

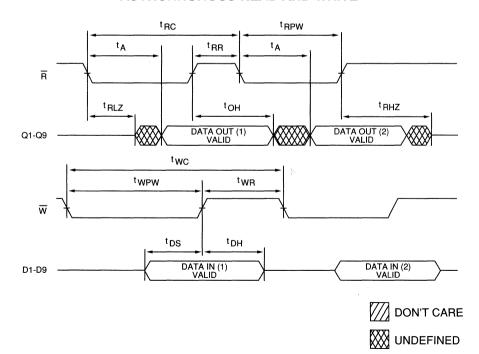
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS

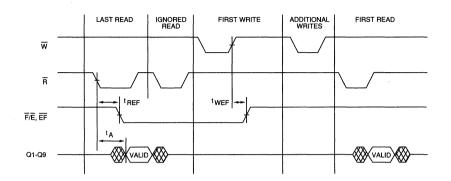
(Applicable for configured mode only) ($T_A = 0$ °C to 70°C; $Vcc = 5.0V \pm 10$ %)

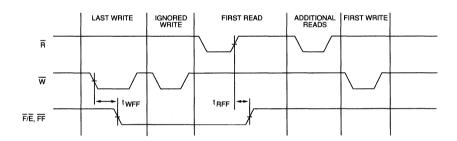
A.C. CHARACTERISTICS			15	-2	20	-2	:5	(35		
PARAMETER	SYM	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
Expansion Mode Timing											
R/W to XO LOW	†XOL		20		20		25		35	ns	
R/W to XO HIGH	HOX		20		20		25		35	ns	
XI pulse width	tXIP	15		20		25		35		ns	
XI command setup time to R/W	tXIS	10		12		15		15		ns	
XI command recovery time	^t XIR	10		10		10		10		ns	
Flags Timing					-						
W HIGH to Flags Valid	tWFV		15		15		15		15	ns	
RS to EF LOW	tEFL		25		30		35		45	ns	
R LOW to EF LOW	^t REF		20		20		25		35	ns	
W HIGH to EF HIGH	tWEF		20		20		25		35	ns	
R pulse after EF HIGH	^t RPE	15		20		25		35		ns	5
RS to HF, FF HIGH	tHFH, tFFH		25		30		35		45	ns	
R HIGH to FF	^t RFF		15		20		25		30	ns	
W LOW to FF LOW	tWFF		20		20		25		35	ns	
W pulse width after FF HIGH	tWPF	15		20		25		35		ns	5
W LOW to HF LOW	tWHF		25		30		35		45	ns	
R HIGH to HF HIGH	tRHF		25		30		35		45	ns	
R HIGH to AFF	^t RAFF		25		30		35		45	ns	
W LOW to AFF	†WAFF		25		30		35		45	ns	
R LOW to AEF LOW	^t RAEF		25		30		35		45	ns	
W HIGH to AEF	tWAEF		25		30		35		45	ns	

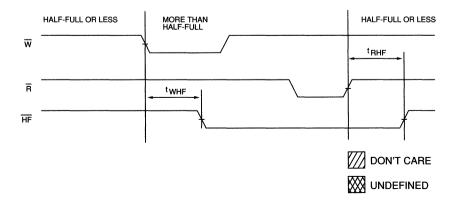

AC TEST CONDITIONS

Input pulse level	0 to 3.0V
Input rise and fall times	5ns
Input timing reference level	1.5V
Output reference level	1.5V
Output load	See Figure 2


Figure 2
OUTPUT LOAD EQUIVALENT


RESET (WITH NO REGISTER PROGRAMMING)

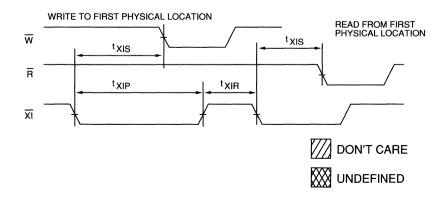

ASYNCHRONOUS READ AND WRITE

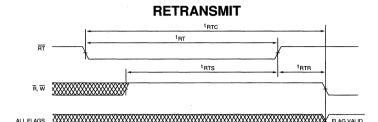

EMPTY FLAG

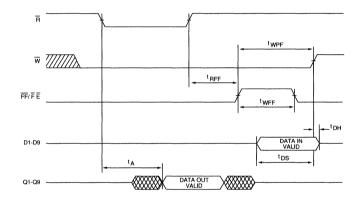
FULL FLAG



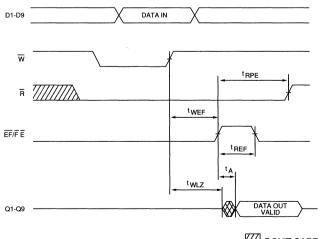
HALF-FULL FLAG (FOR CONFIGURED AND NONCONFIGURED MODES)




EXPANSION MODE (XO)

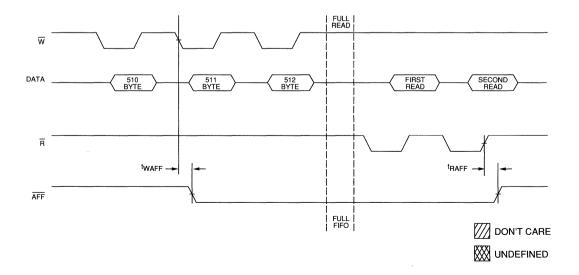

NOTE: 1. \overline{XO} of the Device 1 is connected to \overline{XI} of Device 2.

EXPANSION MODE (XI)

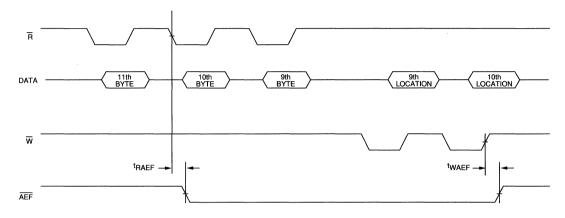


WRITE FLOW-THROUGH

READ FLOW-THROUGH



RESET/REGISTER PROGRAMMING CYCLE TIME 8,9



ALMOST FULL FLAG (2-BYTE OFFSET)

ALMOST EMPTY FLAG (10-BYTE OFFSET)

DON'T CARE

₩ UNDEFINED

MICRON TECHNOLOGY, INC.

DYNAMIC RAMS	1
DRAM MODULES	2
MULTIPORT DRAMS	3
STATIC RAMS	4.
SYNCHRONOUS SRAMS	5
SRAM MODULES	6
CACHE DATA SRAMS	7
FIFO MEMORIES	8
APPLICATION/TECHNICAL INFORMATION	9
MILITARY INFORMATION	10
PACKAGE INFORMATION	
SALES INFORMATION	12

Application/Technical Note	Title	Page
TN-04-01	DRAM POWER-UP AND REFRESH CONSTRAINTS	9-1
TN-04-02	MT4C1664 AND MT4C1665 COMPATIBILITIES	9-3
TN-04-03	MT4C1664: 256 KILOBYTE MEMORY SYSTEM WITH FOUR RAS LINES	9-5
TN-04-04	MT4C1664: 256 KILOBYTE MEMORY SYSTEM WITH FOUR CAS LINES	9-7
TN-04-05	4 MEG DRAM — DIRECT 1 MEG COMPATIBILITY	9-9
TN-04-06	UNDERSTANDING DRAM LATE-WRITE CYCLES	9-11
TN-43-01	MT43C4257/MT43C4258 COMPARISON	9-13
TN-05-02	SRAM BUS CONTENTION DESIGN CONSIDERATIONS	9-15
TN-05-03	SRAM CAPACITIVE LOADING	9-19
TN-05-06	1 MEG FAST SRAM TYPICAL OPERATING CURVES	9-21
TN-05-07	256K FAST SRAM TYPICAL OPERATING CURVES	9-23
TN-05-08	64K FAST SRAM TYPICAL OPERATING CURVES	9-25
AN-56-01	MT56C0816 CACHE DATA SRAM FAMILY	9-27

APPLICATION/TECHNICAL INFORMATION

TECHNICAL NOTE

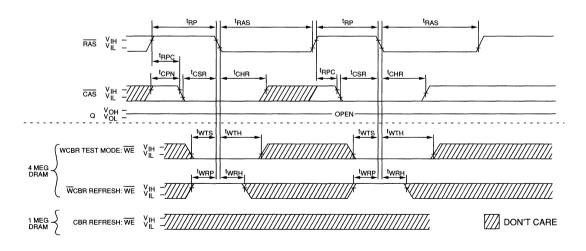
DRAM POWER-UP AND REFRESH CONSTRAINTS

INTRODUCTION

The JEDEC 4 Meg DRAM introduces two potential incompatibilities compared to the previous generation 1 Meg DRAM. The incompatibilities involve refresh and power-up. Understanding and addressing these incompatibilities and providing for them will offer designers and system users greater compatibility between the 1 Meg and 4 Meg.

REFRESH

The most commonly used refresh mode of the 1 Meg is the CBR ($\overline{\text{CAS}}$ -BEFORE- $\overline{\text{RAS}}$) REFRESH cycle. The CBR for the 1 Meg specifies the $\overline{\text{WE}}$ pin as a "don't care." The 4 Meg, on the other hand, specifies the CBR REFRESH mode to be a $\overline{\text{WCBR}}$, which is CBR with the $\overline{\text{WE}}$ pin held at a logical HIGH level.


The reason for $\overline{W}CBR$ instead of CBR on the 4 Meg is that a CBR cycle with \overline{WE} LOW will put the the 4 Meg into the JEDEC-specified test mode (WCBR). In contrast, the 1 Meg test mode is entered by applying a HIGH signal to the test pin (pin 4 on DIPs, pin 5 on SOJs and pin 8 on ZIPs). This HIGH signal is usually a "super voltage" (Vin \geq 7.5V), so normal TTL or CMOS HIGH levels will not cause the part to enter the test mode.

POWER-UP

The 4 Meg $\overline{W}CBR$ constraint may also introduce another problem. The 1 Meg POWER-UP cycle requires a 100µs delay followed by any eight \overline{RAS} cycles. The 4 Meg POWER-UP is more restrictive in that eight \overline{RAS} -ONLY REFRESH or CBR REFRESH (\overline{WE} held HIGH) cycles must be used. The restriction is needed since the 4 Meg may power-up in the JEDEC-specified test mode and must exit out of the test mode. The only way to exit the 4 Meg JEDEC test mode is with either a \overline{RAS} -ONLY or a \overline{W} CBR REFRESH cycle.

SUMMARY

- 1. The 1 Meg test pin is the A10 pin on the 4 Meg.
- For standard test mode, the 1 Meg requires a vaild HIGH on the test pin while the 4 Meg requires a CBR cycle with WE LOW.
- 3. The 1 Meg CBR REFRESH allows the WE pin to be a "don't care" while the 4 Meg CBR requires WE to be HIGH (WCBR).
- 4. The eight RAS wake-up cycles on the 1 Meg may be any valid RAS cycle while the 4 Meg may use RAS-ONLY REFRESH or WCBR REFRESH cycles, exclusively.

COMPARISON OF 4 MEG TEST MODE AND WCBR TO 1 MEG CBR

TECHNICAL NOTE

MT4C1664 AND MT4C1665 COMPATIBILITIES

INTRODUCTION

Micron provides the 64K x 16 DRAM in two versions: MT4C1664 and MT4C1665. The MT4C1664 has two WE pins which allow for BYTE-WRITE cycles. It does not support WRITE-PER-BIT. The MT4C1665 has one WE pin and offers nonpersistent, WRITE-PER-BIT (MASKED WRITE) cycles.

COMPATIBILITY

The MT4C1664 and MT4C1665 may be used interchangeably, provided precautions are taken ahead of time. The memory system may not utilize the WRITE-PER-BYTE feature of the MT4C1664 or the WRITE-PER-BIT feature of the MT4C1665 in order to maintain interchangeability.

At the system level, a special timing constraint exists. WE must be held HIGH when RAS transitions from HIGH to LOW (preventing the MT4C1665 from performing WRITE-PER-BIT cycles). The two WE traces must be connected together (pins 12 and 13 on SOJ or pins 22 and 23 on ZIP) in order to ensure that all 16 bits will be written on the MT4C1664.

The MT4C1664 and MT4C1665 are now interchangeable.

The MT4C1664 will have twice the capacitive load on the write enable signal as the MT4C1665 due to its two $\overline{\text{WE}}$ pins. Its $\overline{\text{WE}}$ timing will be a "don't care" when $\overline{\text{RAS}}$ transitions from HIGH to LOW while the MT4C1665 will enter a WRITE-PER-BIT cycle if \overline{WE} is LOW when \overline{RAS} transitions from HIGH to LOW.

The MT4C1665 can provide the BYTE-WRITE capability of the MT4C1664 by allowing the mask register to be enabled by bytes. However, this may not be practical since it requires additional circuitry.

SUMMARY

An application that performs 16-bit word writes will allow either the MT4C1664 or MT4C1665 to be used. The MT4C1664 must have both WE pins connected, doubling capacitance on the write enable signal, but its timing is a "don't care" when RAS goes LOW. On the other hand, the MT4C1665 has only one \overline{WE} for lower capacitance, but \overline{WE} must always be held HIGH when RAS transitions from HIGH to LOW (refer to Note 1).

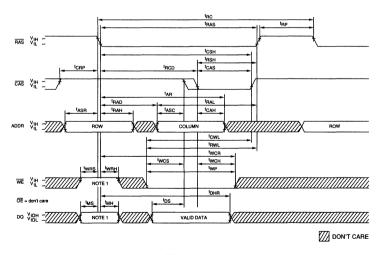


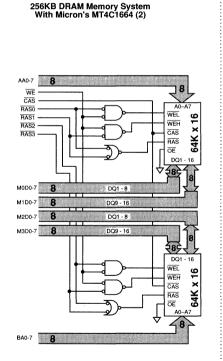
Figure 1 MT4C1665 TIMING CONSTRAINTS

NOTE: 1. Applies to MT4C1665 only. The MT4C1664 specifies these as "don't cares" during this portion of operation.

TECHNICAL NOTE

MT4C1664: 256 KILOBYTE MEMORY SYSTEM WITH FOUR RAS LINES

INTRODUCTION


Micron's MT4C1664 64K \times 16 DRAM is a great solution for replacing 64K \times 4 DRAMs in VGA systems. For a 256 kilobyte (KB) memory system, two MT4C1664s replace eight 64K \times 4 DRAMs, resulting in improved reliability and performance margins, decreased power consumption, reduced costs and board savings, while maintaining state-of-the-art technology.

This application note shows how the MT4C1664 may be interfaced with a 256KB memory system using four RAS

controls and EARLY-WRITE cycles ($\overline{\text{OE}}$ grounded). Reference to the MT4C1664 data sheet will be helpful in understanding how the MT4C1664 functions. The schematic in Figure 1 shows 256KB memory systems using four $\overline{\text{RAS}}$ controls and EARLY-WRITE cycles and how memory is implemented with both the MT4C1664 and 64K x 4 DRAMs.

The same schematic for the MT4C1664 may also be used in systems using LATE-WRITE cycles (OE controlled).

256KB DRAM Memory System

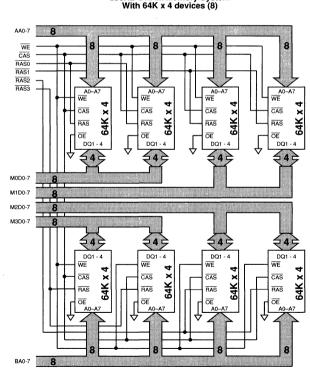
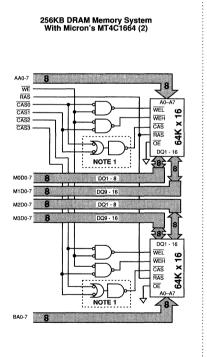


Figure 1 256KB EARLY-WRITE MEMORY

TECHNICAL NOTE

MT4C1664: 256 KILOBYTE MEMORY SYSTEM WITH FOUR CAS LINES


INTRODUCTION

Micron's MT4C1664 64K \times 16 DRAM is a great solution for replacing 64K \times 4 DRAMs in VGA systems. For a 256 kilobyte (KB) memory system, two MT4C1664s will replace eight 64K \times 4 DRAMs, resulting in improved reliability and performance margins, decreased power consumption, reduced costs and board savings while maintaining state-of-the-art technology.

This application note shows how the MT4C1664 may interface with a 256KB memory system using four CAS controls and EARLY-WRITE cycles (OE grounded).

Reference to the MT4C1664 data sheet will be helpful in understanding how the MT4C1664 functions. The schematic in Figure 1 shows 256KB memory systems using four $\overline{\text{CAS}}$ controls and EARLY-WRITE cycles and how memory is implemented with both the MT4C1664 and 64K x 4 DRAMs.

The same schematic for the MT4C1664 may also be used in systems using LATE-WRITE cycles $(\overline{OE}$ controlled), except Note 1 no longer applies and the two delay paths may be equal.

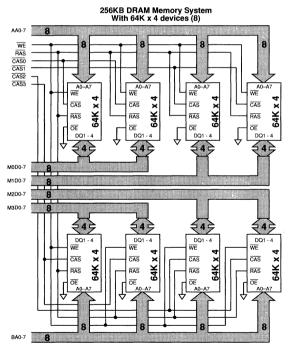


Figure 1
256KB EARLY-WRITE MEMORY

NOTE: 1. This delay path needs to be slightly longer than the two NAND gates to ensure the WE to CAS setup time is met. This will guarantee the DRAM will always be in EARLY-WRITE during WRITE cycles.

TECHNICAL NOTE

4 MEG DRAM — DIRECT 1 MEG COMPATIBILITY

INTRODUCTION

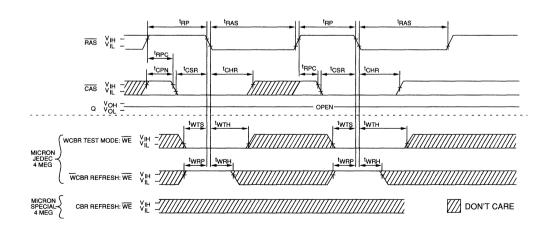
The JEDEC 4 Meg DRAM introduces three potential incompatibilities compared to the previous generation 1 Meg DRAM. The incompatibilities involve refresh and power-up and the JEDEC test mode.

Micron provides two versions of the 4 Meg DRAM. The standard version will not have the JEDEC test mode allowing for 1 Meg DRAM compatibility. The second version will offer the JEDEC test mode.

REFRESH

The most commonly used refresh mode of the 1 Meg is the CBR ($\overline{\text{CAS}}$ -BEFORE- $\overline{\text{RAS}}$) REFRESH cycle. The CBR for the 1 Meg specifies the $\overline{\text{WE}}$ pin as a "don't care." The 4 Meg, on the other hand, specifies the CBR REFRESH mode to be $\overline{\text{WCBR}}$, which is CBR with the $\overline{\text{WE}}$ pin held at a logical HIGH level.

The reason for $\overline{W}CBR$ instead of CBR on the 4 Meg is that a CBR cycle with \overline{WE} LOW will put the 4 Meg into the JEDEC specified test mode (WCBR).


POWER-UP

The 4 Meg WCBR constraint may also introduce another

problem. The 1 Meg POWER-UP cycle requires a 100 μ s delay followed by any eight \overline{RAS} cycles. The 4 Meg POWER-UP cycle is more restrictive in that eight \overline{RAS} -ONLY REFRESH or \overline{W} CBR REFRESH cycles must be used. The restriction is needed since the 4 Meg may power-up in the JEDEC-specified test mode and must exit out of the test mode for normal operation. The only way to exit the 4 Meg JEDEC test mode is with either a \overline{RAS} -ONLY or a \overline{W} CBR REFRESH cycle.

SPECIAL FEATURE

A memory system currently using 1 Meg DRAMs with WE as a "don't care" during CBR REFRESH does not allow for direct upgrading to 4 Meg DRAMs. Micron, realizing some companies will have this situation, provides a special feature on its 4 Meg DRAM requiring "supervoltage" to access the 4 Meg JEDEC WCBR test function. This allows the Micron 4 Meg DRAM to be refreshed in the same manner as any 1 Meg DRAM. Note that the eight POWER-UP cycles should be refresh cycles only in order to guarantee that any 4 Meg DRAM, including Micron's, does not inadvertently power-up in the test mode.

COMPARISON OF JEDEC WCBR TO MICRON 4 MEG CBR

ATTLICATION/IECHNICAL INTOKMATION

TECHNICAL NOTE

UNDERSTANDING DRAM LATE-WRITE CYCLES

INTRODUCTION

There are three different cycles possible to write to a DRAM: EARLY-WRITE cycles, READ-MODIFY-WRITE cycles and LATE-WRITE cycles. The industry standards for DRAM WRITE cycles are fairly consistent for both the EARLY-WRITE and READ-MODIFY-WRITE cycles. An exception exists for the "LATE-WRITE" cycle.

COMMON DO DRAM

A LATE-WRITE cycle is a READ-MODIFY-WRITE (see Figure 1) except that the READ portion is not utilized. This is accomplished by keeping the output enable pin (\overline{OE}) HIGH throughout the cycle. The timing parameters ${}^{t}RWD, {}^{t}AWD$ and ${}^{t}CWD$ no longer apply since \overline{OE} is HIGH.

This condition can be viewed as an EARLY-WRITE with tWCS "sliding" past the CAS time and violating the 0ns setup time (WE going LOW prior to CAS going LOW). But, since the output buffers are not being used (OE is HIGH), tWCS and tCWD are no longer required.

Be cautious anytime OE is brought LOW (possibly a noise spike occurs), as the output buffers could turn on and cause contention with the data bus, which could corrupt input data.

The term used for such a WRITE cycle varies throughout

the industry. The use of " \overline{OE} controlled WRITE," "Delayed WRITE" and "LATE-WRITE" all signify the same WRITE cycle described above.

SPLIT D AND Q DRAM

A LATE-WRITE cycle is a READ-MODIFY-WRITE except the READ portion is not guaranteed and the D and Q pins are separate paths (D and Q cannot be connected together). This is accomplished by ignoring the timing parameters ^tRWD, ^tAWD and ^tCWD.

This condition can be viewed as an EARLY-WRITE with twCS "sliding" past the CAS time and violating the 0ns setup time (WE going LOW prior to CAS going LOW). But, since the output buffers are a "don't care," twCS and tcWD are no longer required.

This cycle is not available on applications that have the D and Q connected together as the output will contend with the input.

SUMMARY

A LATE-WRITE cycle is most useful on common DQ DRAMs. Use caution to ensure the output enable pin is properly controlled.

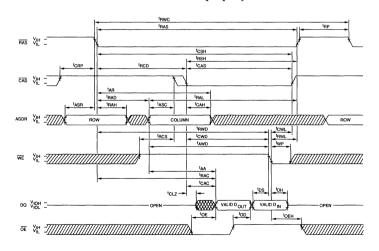


Figure 1
READ-MODIFY-WRITE (MULTIPLE DQ) TIMING

TECHNICAL NOTE

MT43C4257/MT43C4258 COMPARISON

INTRODUCTION

Micron Technology, Inc., offers its Triple Port DRAM (TPDRAM) in two versions. The MT43C4257 supports the JEDEC Split SAM Status Function (QSF) pin as defined for VRAMs. The MT43C4258 supports a variation of the QSF function called the Split SAM Special Function (SSF) input function. Other than this difference, the function and performance of the two devices are identical.

MT43C4257 — QSF OUTPUT

The QSF output pin of the MT43C4257 is identical in function to the QSF pin of the MT42C4255 256K x 4 VRAM. The QSF output pin indicates which half of the SAM is being accessed. When data is accessed from the lower half, the QSF is LOW; when data is accessed from the upper half, QSF is HIGH (see Figure 1). When using the MT43C4257 or any standard VRAM in the split SAM mode, the transition between SAM halves occurs only when the SAM-half boundary is reached by the Address Pointer. This is address count 255 for the lower half and 511 for the upper half. When this boundary is reached, the new Tap Address for

the next SAM-half is loaded ("X" for the lower, "Y" for the upper). The following SC will access data from the new half.

MT43C4258 — SSF INPUT

The MT43C4258 introduces functionality to the TPDRAM that is not available on standard VRAMs. By making the "QSF" pin an input (SSF), a higher degree of design flexibility is offered to the system engineer. The SSF applies only to split transfer cycles. It will allow access to be switched from one half of the SAM to the other at will. If SSF is HIGH at the rising edge of serial clock, the split SAM access will be switched to the other half of the SAM (See Figure 2).

By taking SSF HIGH for the rising edge of a serial clock (location "A" for the lower half, "B" for the upper), the access from the current half may be terminated. Data from this clock will appear on the outputs when in serial output mode or will be written if in serial input mode.

The next serial clock will access data at the new Tap Address ("X" for the lower, "Y" for the upper) of the next half. The SSF input acts as a "stop address" input so the

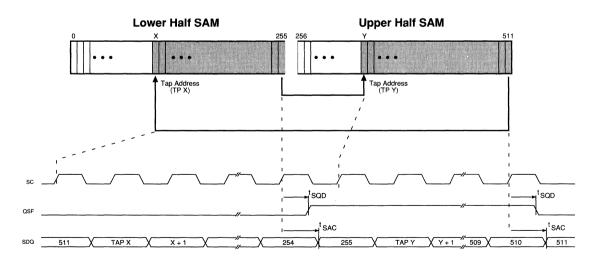


Figure 1
QSF OPERATION FOR THE MT43C4257 (SERIAL OUTPUT)

APPLICATION/TECHNICAL INFORMATION

designer can "force" the access from one half to the next when desired. When operating in the split SAM mode, this option allows different sized "blocks" of data to be input or output from the SAM half regardless of the Tap Address and Stop Point. This feature is useful when performing pans, zooms and scrolling in video-graphics systems and for handling distinct packet sizes in networking or controller applications.

SUMMARY

The difference between the MT43C4257 and MT43C4258 is only the variance in the functionality of the "QSF" pin.

The MT43C4258 SSF input pin results in more efficient handling and therefore higher throughput of input or output data in either SAM. This improves the performance of video-graphics and networking systems by providing high clock speed and no latency time between reaching the Stop Point of valid data in one half and the loading of the new Tap Address for the next half.

The SSF functionality is also available on the x8 versions of the TPDRAM, the MT43C8128 (QSF) and MT43C8129 (SSF). Refer to the data sheets for detailed timing and functional descriptions.

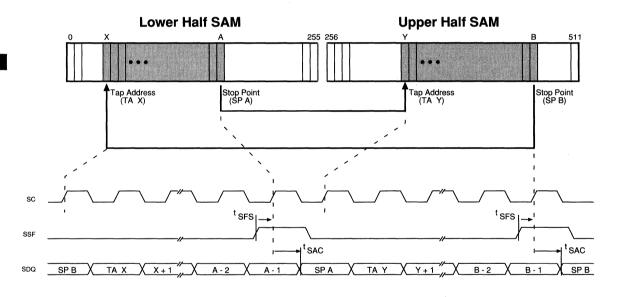


Figure 2
SSF OPERATION FOR THE MT43C4258 (SERIAL OUTPUT)

APPLICATION/TECHNICAL INFORMATION

TECHNICAL NOTE

SRAM BUS CONTENTION DESIGN CONSIDERATIONS

INTRODUCTION

High-speed SRAM memory systems normally share a common data bus with other memory devices, processors and memory management or caching devices. All of these devices are required to control data bus at one time or another. Turning off a device that is driving the bus before a new device takes control of the bus can be a difficult design problem when these systems are operating at minimum cycle times.

When two or more devices are driving the bus at the same time, a conflict known as "bus contention" occurs. This technical note discusses bus contention design issues and points out features in the design of Micron's fast SRAMs to help minimize bus contention problems.

BUS CONTENTION EFFECTS

System-design problems caused by bus contention are difficult to analyze. The effects are transient, normally not longer than 5ns. The most visible result of bus contention is observed as noise on power-supply lines and data lines connecting the contending devices. While these conflicts are not destructive, they potentially reduce long-term system reliability. However, in most cases, they do not affect system performance when all the active components are MOS.

MOS devices are inherently self-current limiting. As the current through a MOS transistor increases, the transistor heats up and its gain decreases. Bipolar transistors have the opposite behavior. When a bipolar transistor's temperature

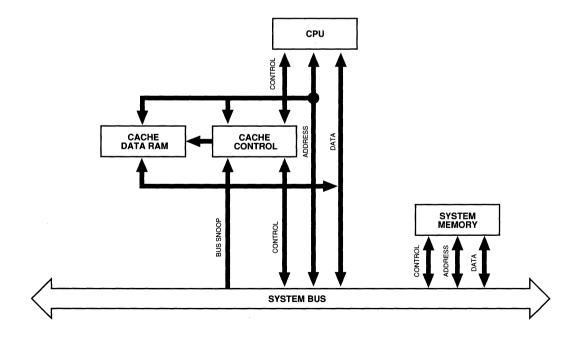


Figure 1
BLOCK DIAGRAM OF A CACHE MEMORY SYSTEM

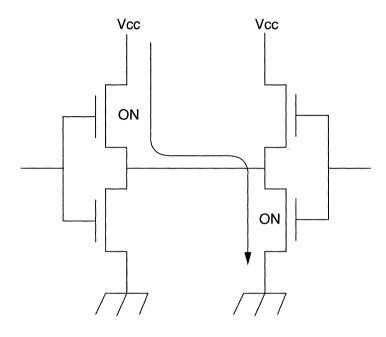


Figure 2
BUS CONTENTION CURRENT PATH

is elevated, the gain of the device increases, making it possible for the current through the transistor to increase to a destructive level. This phenomenon is known as thermal runaway. If CMOS SRAMs share any data lines with bipolar or BiCMOS output devices, the system should be designed to eliminate any possibility of bus contention.

Figure 2 is a schematic diagram of two contending SRAM output buffers. A high current path has been created by two SRAM output buffers. The current is flowing between the "on" transistor connected to Vcc in the buffer on the left and the transistor connected to ground in the buffer on the right.

SRAM SPECIFICATIONS

The critical parameters for calculating the amount of bus contention for a high-speed SRAM system design is the time it takes for a device to go to a low-impedance state (logic 1 or 0) on its output versus the time required for a contending output to go to a high-impedance state. A typical SRAM has three control signals; chip enable (CE), write enable (WE) and output enable (OE). [†]LZCE, [†]LZWE and [†]LZOE are the times it takes for the outputs to become active or low impedance upon the assertion of CE, WE and OE. [†]HZCE, [†]HZWE and [†]HZOE are the times required for

the outputs to become inactive or high impedance after CE, WE and OE are removed. These times are shown in the READ and WRITE cycle timing diagram (Figure 3).

A preliminary review of a fast SRAM data sheet would imply that the worst case for bus contention could be calculated from the equation:

$${}^{t}C = {}^{t}HZ (MAX) - {}^{t}LZ (MIN)$$

where ${}^{t}C$ is equal to the bus-contention overlap time. For an output enable change in an SRAM rated at 20ns access time, ${}^{t}HZ = 7$ ns and ${}^{t}LZ = 2$ ns; therefore ${}^{t}C = 5$ ns. If this calculation is correct, there would be a serious bus contention problem. Thus, for a system running with a 20ns cycle, almost 25 percent of the total cycle would be lost to bus contention and there would be a large increase in power dissipation in the output buffers.

Happily, the previous analysis is not valid because ^tHZ maximum occurs at completely different test conditions than ^tLZ minimum. ^tHZ maximum is worst-case at the highest operating temperature and the lowest power-supply voltage. On a commercial data sheet, this would be at 70° C and 4.5V. ^tLZ minimum is specified at the lowest operating

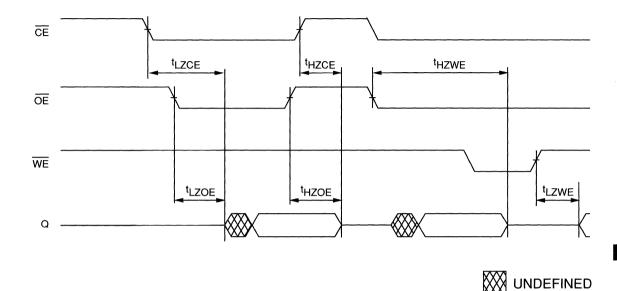


Figure 3
READ AND WRITE CYCLE TIMING

temperature and the highest voltage. Again, on the commercial data sheet, this would be 0° C and 5.5V. It is not possible for two SRAMs on the same board to be at such diverse temperatures and voltages. In a "real world" system — that is one with an equal operating environment for temperature and power supply voltage — ${}^{t}HZ$ - ${}^{t}LZ$ is approximately 0.2ns.

Futhermore, Micron fast SRAMs have been designed to insure the outputs always turn off faster than the they turn

on when operating at the same voltage and temperature: ${}^t\!HZ < {}^t\!LZ$. Since the devices will normally be mounted on the same board, the bus contention associated with the SRAM control signals has been minimized.

Care must be taken when mutiple vendors' SRAMs share the bus. An analysis of the output turn-off time must be done under the same operating and temperature conditions to insure that bus contention between the devices is minimized.

APPLICATION/TECHNICAL INFORMATION

TECHNICAL NOTE

INTRODUCTION

Many high-speed 16-bit and 32-bit microprocessor systems require fast SRAMs. SRAMs are used either in main memory or caching subsystems. In either case, the SRAMs are typically required to interface with a system bus that is shared by one or more microprocessors, several I/O devices and other types of memory (i.e. ROM, EPROM, etc.).

Even though transceivers and/or buffers interface with the actual bus, SRAMs are typically required to drive loads larger than what is specified in the data sheet timing parameters. Hence, the access time must be derated to reflect the actual performance of the SRAM under these circumstances.

SIMILARITY BETWEEN SRAM FAMILIES

Micron's 16K, 64K, 256K and 1 Meg SRAM families all have the same size output transistors and output architecture. Hence, all devices will have the same drive characteristics. The actual data presented in this technical note are derived from the 256K SRAM family.

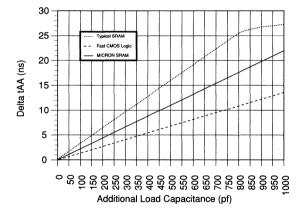


Figure 1
INCREASED ACCESS TIME vs
ADDITIONAL OUTPUT LOADING

SRAM CAPACITIVE LOADING

COMPARISON OF DEVICES

Figure 1 compares the effects of capacitive loading on the Micron SRAM family with SRAMs from a typical memory supplier and discrete CMOS logic, designed to drive heavy loads. The graph illustrates the additional access time required to drive various capacitive loads.

As expected, the Micron SRAM family does not drive heavy loads as well as the discrete CMOS logic, but does drive faster than the typical SRAM from other suppliers.

The graph line which represents the Micron SRAM family is based on data gathered on the Micron 256K SRAM. Access time measurements were taken with the SRAM subjected to various capacitive loads. In the range covered, the change in access time was seen to be a linear function of the capacitive load. The following equation may be used to determine the access time required for a specific load.

$$T_{AA}(actual) = T_{AA}(data sheet) + T_{AA}(additional)$$

$$T_{AA}$$
 (additional) (ns) = .022 (ns/pf) C_a

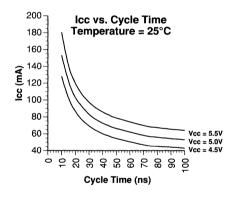
This applies where C_a is the additional capacitive load expressed in picofarads (pf).

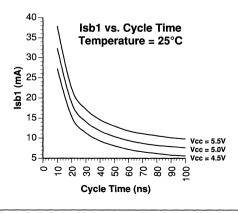
For example, the access time needed for a 100pf total capacitive load is:

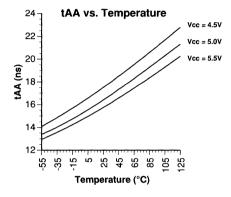
 T_{AA} (actual) = 20ns + T_{AA} (additional) = 20ns + .022 * (total load - rated load) = 20ns + .022ns/pf * (100pf - 30pf) = 20ns + 1.5ns = 21.5ns

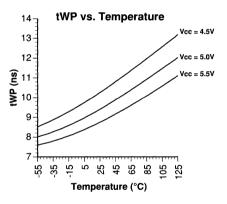
SUMMARY

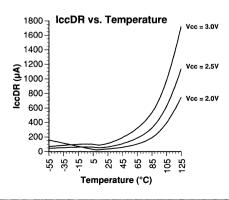
The SRAM timing specifications of all major vendors are based upon an industry-standard capacitive load of 30pf. In most applications, the SRAMs are required to drive much larger capacitive loads. In addition, today's designs are implemented around higher frequencies. This requires the system timing be more precise; hence, loading becomes a more important issue. Understanding how the SRAM will perform under specific loading conditions may result in a more reliable design.

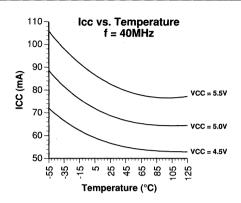


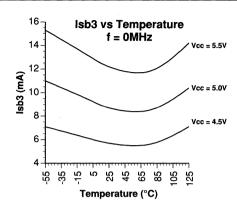

TECHNICAL NOTE

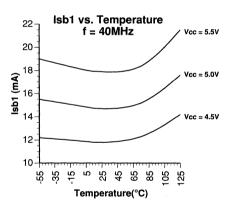

1 MEG FAST SRAM TYPICAL OPERATING CURVES

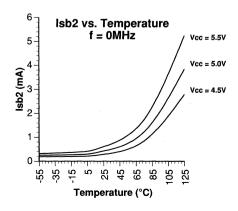

INTRODUCTION

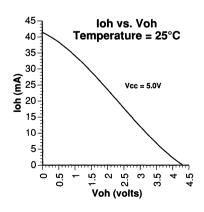

These curves represent the typical operating characteristics of Micron's 1 Meg, 25ns SRAM. They may be used to calculate the typical operating parameters of a memory system. For worst-case design limits, the system designer should refer to the individual data sheets in the SRAM section of the data book.

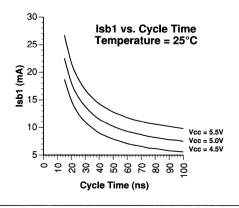




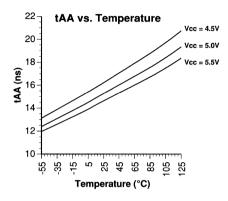


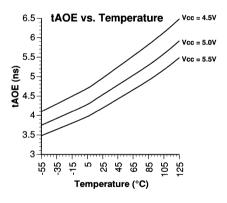


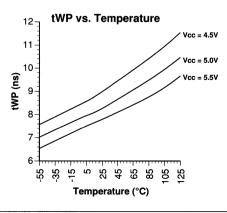


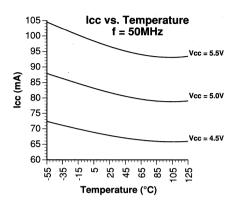


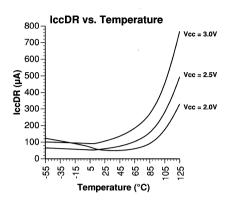
TECHNICAL NOTE

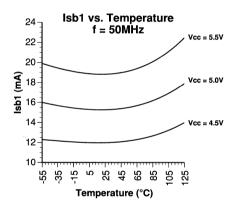

INTRODUCTION

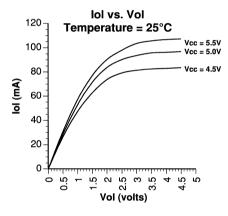

These curves represent the typical operating characteristics of Micron's 256K, 20ns SRAM. They may be used to calculate the typical operating parameters of a memory system. For worst-case design limits, the system designer should refer to the individual data sheets in the SRAM section of the data book.

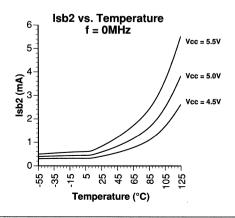


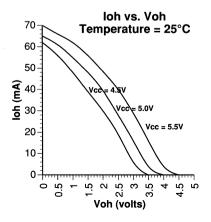

256K FAST SRAM TYPICAL OPERATING CURVES

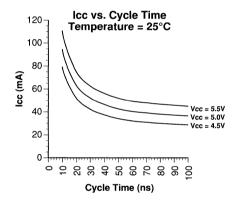


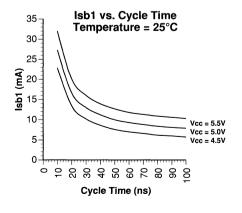




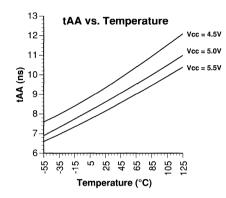


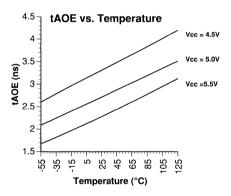


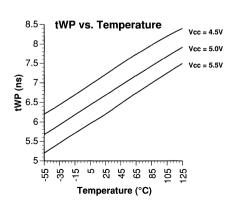


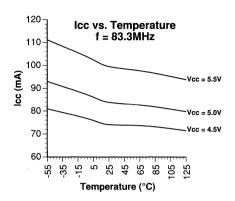


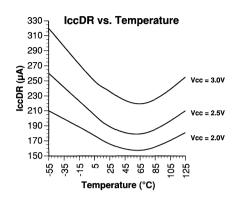
TECHNICAL NOTE

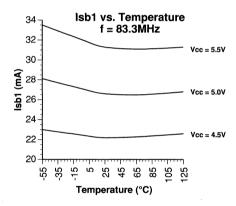

INTRODUCTION

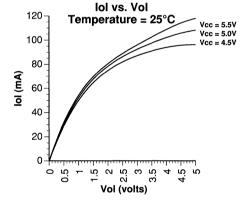

These curves represent the typical operating characteristics of Micron's 64K, 12ns SRAM. They may be used to calculate the typical operating parameters of a memory system. For worst-case design limits, the system designer should refer to the individual data sheets in the SRAM section of the data book.

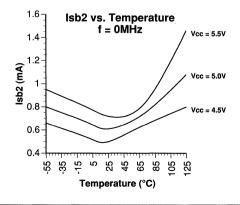


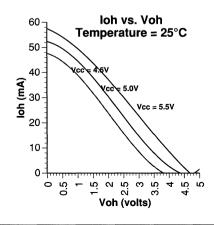



64K FAST SRAM TYPICAL OPERATING CURVES









APPLICATION NOTE

MT56C0816 CACHE DATA SRAM FAMILY

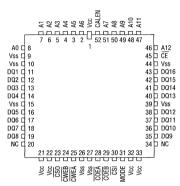
INTRODUCTION

The Micron MT56C0816 Cache Data SRAM family was developed in response to a need for compact cache subsystems for the Intel™ 80386 microprocessor. Applications using the 80386 demand maximum performance, and DRAM technology cannot meet the fast access times required for zero-wait-state operation. Statistics show that a small cache subsystem allows the majority of 80386 memory accesses to be completed within the 80386 cycle time. This eliminates the need for wait states¹ to be added to the memory cycle, allowing the 80386 to operate at its maximum performance level. The cache can be designed using fast commodity SRAMs.

However, the Micron Cache Data SRAM allows cache subsystem designs requiring less space, using less power and offering greater reliability than the fast SRAM implementation. Design and debug times are also reduced, because the Micron MT56C0816 is designed to connect directly to off-the-shelf 80386 cache controllers.

This application note explores why caching is needed. It then discusses how a cache subsystem works, what influences the performance of the cache, and how different cache organizations and architectures compare.

In addition, this application note looks at the most popular off-the-shelf controllers available to implement a cache subsystem. It compares several fast SRAM and cache data SRAM implementations with those controllers. Finally, a summary of the cache data SRAM advantages is shown.


BACKGROUND

Microprocessors have typically interfaced directly to DRAM (dynamic random-access memory) main memory due to their relatively slow clock speeds and multiple clock instruction cycles. But over the past few years, complexinstruction-set computer (CISC) microprocessors have driven the clock frequencies into the 20, 25 and 33 megahertz (MHz) range. The two most dominant CISC architectures are the 80X86 and 680X0. The number of clock cycles needed to execute a specific instruction has steadily decreased and is now approaching a single clock cycle for many instructions.

The introduction of reduced-instruction-set computer (RISC) architectures has fueled the quest for higher clock frequencies and reduced clock cycles for each instruction executed. Some of the predominant RISC architectures include SPARC™, 80960, R3000, 29000 and 88000. RISC

MT56C0816 PIN ASSIGNMENT (Top View)

52-Pin PLCC 52-Pin PQFP

architectures requiring the absolute minimum number of clock cycles for each instruction are not only approaching single clock execution, but in some cases are able to sustain multiple instruction execution in a single clock cycle. CISC microprocessors are not far behind, and the competition between the CISC and RISC camps is driving processor designers to continuously reach for maximum performance.

This new era of performance is placing heavy demands on memory subsystems that heretofore have been able to

For example, the 80386 can complete a memory cycle in two clock periods. With a 25MHz processor, this allows 80ns for the processor to output its address to the memory array. It also provides time for the decode circuitry to supply the necessary signals to the memory and enables the memory to respond once it has received the necessary signals. In typical applications, the speed of the memory array that is needed to avoid any wait states is 35ns.

¹ Wait states are one or more additional processor clock cycles added to the memory access cycle. These extra clock cycles keep the processor idling while memory has time to respond to the memory request. For a given processor's clock speed, the number of wait states needed to complete a memory access is directly related to how fast the memory can respond to a read or write request initiated by the microprocessor.

keep pace. For example, an 80386 processor operating at 25 MHz requires a memory access time of close to 40ns if it is to operate at maximum performance (i.e. no wait states):

2 x clock cycle time - address delay - data setup - decode logic and buffer delay = (2 * 40) - 21 - 7 - 10 = 42ns

Current DRAM access speeds are in the 70ns to 80ns access range. Even with faster access techniques such as FAST PAGE and STATIC COLUMN modes, the DRAM access time is not sufficient to meet zero-wait-state access times.

The alternative to adding wait states to the system and thus degrading performance is to design a system architecture that makes the memory appear faster to the CPU. Approaches that have been implemented include organizing the DRAM in multiple banks, adding some fast SRAM for specific code and data or caching.

The use of a cache is applicable in high-end systems as well as cost-conscious, medium-performance systems. At the high end, where the goal is to maximize performance on every processor cycle, the only alternative to cache is the use of very fast SRAMs as the main memory to achieve zerowait-state performance. This is a very expensive solution. The medium performance systems must constantly balance performance and cost. A small cache in these systems can achieve much higher performance with a relatively small, incremental cost.

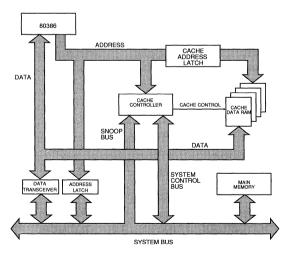


Figure 1
TYPICAL 80386-BASED CACHE SYSTEM

CACHE OVERVIEW

WHAT IS A CACHE

A cache is small, fast, local storage for frequently accessed code and data. It consists of high-speed memory (usually SRAM) that resides between the CPU and the main memory (usually DRAM) in a processor system. Figure 1 illustrates a typical block diagram of an 80386-based cache system.

The cache increases the effective speed of the main memory by responding quickly with a copy of the most frequently used items in main memory. The cache control logic checks the address of each memory access and, if it is present in the cache, allows the cache to respond instead of main memory. Accesses to the cache are much faster (typically zero wait states) than accesses to main memory. The more accesses that are made to the cache, the better the overall system performance. Hence the goal in designing a cache is to maximize accesses to the cache (known as the cache hit rate).

WHY A CACHE WORKS

The theory of a cache is based on two attributes of computer programs: temporal locality and spacial locality. Temporal locality (locality of time) is an attribute exhibited by computer programs where the same addressed code and data are used repeatedly in a short time. This behavior is typified by program loops, a very prevalent programming structure. Spacial locality (locality of place) is a computer program attribute in which the next needed information is found near the information that was just accessed. This occurs in most programs since related data are stored together (data tables, arrays, etc.) and instructions (code) are typically executed in sequence.

In a cache design, main memory may be thought of as a collection of many small, uniform segments. The cache contains a copy of one or more of these small memory segments that have been used recently. When the processor executes a read from main memory, the cache control determines if that address is contained in one of the small memory segments that are currently resident in the cache memory. If so, the access is completed by the cache. If not, the access is completed by main memory and the memory segment that has just been accessed is placed into the cache for future use. The attribute of spacial locality implies that the information needed next will also be found in the same memory segment just accessed, which is now located in the cache. The attribute of temporal locality implies that the memory location, just accessed, will be used again in the near future.

PERFORMANCE FACTORS

The performance of the cache (and hence the system) is measured by the cache hit rate, which is the percentage of successful cache accesses. The cache hit rate is determined by specific demands of software being executed and by cache-management policies.

The design factors that influence cache hit rate are: total cache memory size, cache memory organization (associativity), and cache transfer block size. These factors are all interrelated and each needs attention to obtain the optimum cost-effective result. Each factor presents trade-offs of performance, complexity and cost. One factor may be decreased for cost reasons while another may be increased to improve performance. The same or better hit rate may still be obtained. However, the complexity might be increased also. The cache designer must carefully weigh each factor to achieve the best overall cost/performance/complexity ratio. Table 1 compares the cache hit rate of several cache sizes with varying associativity and line sizes.

Table 1

	CACHE HIT RATES				
	Cache Configuration				
Hit Rate (%)*					
41	1	Direct	4		
73	8	Direct	4		
81	16	Direct	4		
86	32	Direct	4		
87	32	Two-way	4		
88	64	Direct	4		
89	64	Two-way	4		
89	64	Four-way	4		
89	128	Direct	4		
89	128	Two-way	4		
91	32	Direct	8		
92	64	Direct	8		
93	64	Two-way	8		
93	128	Direct	8		

^{*} Rounded to the nearest whole percent.

COHERENCY

Since the cache is a temporary buffer for a section of main memory, the cache designer must take into consideration how to keep the data consistent between main memory and the cache. This is called cache coherency.

There are instances when an address in the cache might not contain the same information as the same address in main memory. One such situation occurs during a write cycle, where a cache data element is updated to a new value. Now the address in main memory and the same address in the cache have two different values, with the cache contain-

ing the newest value. The main memory needs to be updated to contain the same information. This is controlled by the write policy of the cache.

Another such instance occurs when another processor writes information to a main memory address that is also located in the cache. This situation is handled by "snooping". Snooping occurs when the main memory bus is always watched by the cache logic. If a write occurs to a main memory address identical to a cached address, that cache address is marked invalid. This guarantees that if that address is accessed, it will be updated as main memory is accessed for the requested data.

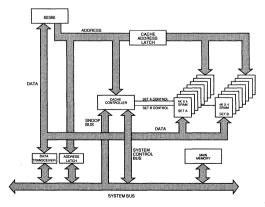
There are two types of cache write policies: write-through and copy-back. A write-through cache will write to both main memory and the cache on each write cycle whenever the addressed location is found to be resident in the cache. This ensures that the cache and main memory are always coherent, but it requires more main memory accesses, thus increasing bus usage. This also decreases performance due to the large amount of accesses to slower main memory. The main memory accesses may be made more efficient with the addition of write buffers, but this also adds significant complexity and coherency problems in the buffers.

The copy-back policy writes only to the cache, if the address location is present (cache hit), and allows the CPU to proceed. This allows maximum system performance. However, the main memory still needs to be updated. The update of main memory occurs when the line that contains the write address in the cache is replaced by a new line. Main memory write updates occur far less often than the update policy of a write-through design. The copy-back policy also has its drawbacks. Instead of only replacing the data element (possibly one byte) that was written, all the bytes in the line are replaced. This may be as many as four, eight, 16 or more. This can result in a large time penalty when a copy-back occurs.

CACHE CONTROLLERS

It quickly becomes apparent that all variables in cache design are interrelated and all have trade-offs. For most designs, especially those in the micro arena, caching represents a new realm and can bog down a design if done from scratch. Fortunately, several companies have designed off-the-shelf cache controllers, which take into consideration all the trade-offs and performance factors. These controller implementations meet the majority of the needs of the 80386 cache market.


The three most popular 80386 cache controllers — Intel's 82385, Austek's A38202 and Chips & Technologies' 82C307 and Peak™ — were designed to interface with standard SRAMs as well as additional address latches and possible transceivers.


DIRECT-MAPPED VERSUS TWO-WAY-SET IMPLEMENTATION

The use of an off-the-shelf cache controller eliminates most of the decisions that would occur in a discrete design. The trade-offs that have been made include line size, write update policy, and in some cases, even the cache size and associativity. The majority of controllers allow the user to configure only the associativity (direct or two-way set) and the cache size. The controllers support, without additional logic, both the TWO-WAY-SET ASSOCIATIVE and DI-RECT-MAPPED modes.

The trade-off between DIRECT-MAPPED and TWO-WAY-SET ASSOCIATIVE modes is typically one of increased hit rate versus added complexity. Since the controllers have integrated the complexity, it might seem that

DIRECT-MAPPED BLOCK DIAGRAM

TWO-WAY-SET BLOCK DIAGRAM

Figure 2

the only logical choice is to use the TWO-WAY-SET AS-SOCIATIVE mode. Assuming a 32 kilobyte (KB) cache, the direct mode will require four 8K x 8 SRAMs (one bank of 8K x 32 bits) while two-way mode will require 16 4K x 4 SRAMs (two banks of 4K x 32 bits). Figure 2 contains typical block diagrams illustrating implementations of DIRECT-MAPPED and two-way-set designs.

The trade-off then is in the additional SRAMs for two-way set. This is reflected as incremental cost, power and board space needed to achieve the higher hit rate obtained over the direct-mapped implementation. For the 32KB cache size, the additional hit rate of the two-way set implementation is generally chosen if the board space is available. In the medium-to-high-end performance market, the extra performance (see Table 1) delivered by the two-way set design is worth the extra cost.

Table 2 compares the board real estate and power requirements of each configuration. The two-way-set implementation requires eight 74F245 transceivers to control the flow of data between each bank and the common data bus. Figure 3 illustrates the board space requirements of each implementation.

The assumptions used for the board space comparison were .050 inch chip-to-chip spacing and .050 inch outside border around the circuitry. The power comparison is based on a 25MHz design assuming 10ns decoding delay. This gives the following equation for the cache 8K x 8 SRAM access time:

Cache SRAM available access time = 4 * 386CLK2 - 386 address delay - 386 ready setup - SRAM enable decode - 74F373 delay = (4 * 20ns) - 21ns - 9ns - 10ns - 9ns = 31ns.

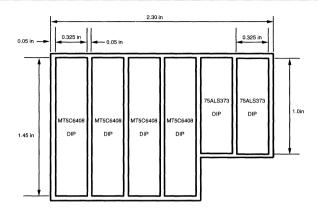
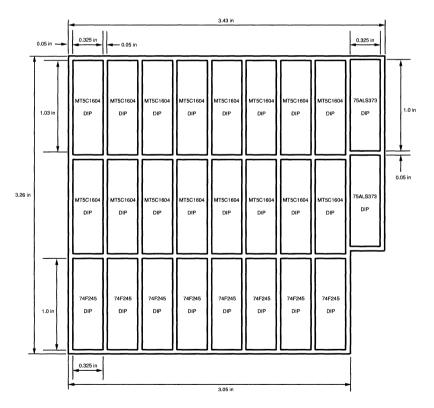

The $8K \times 8$ configuration would require SRAMs with an access time of 25ns. For the two-way-set configuration, an additional 6ns must be subtracted for the delay through the 74F245 transceivers. This barely provides 25ns for the $4K \times 4$ SRAM access time in this latter implementation. Any other delays that exist in the data access path must also be taken into consideration. In the case of the $4K \times 4$ SRAMs, a 20ns part will probably be required.

Table 2


32KB CACHE CONFIGURATION COMPARISON					
Configuration	SRAM	# SRAMs	Area (in²)	Power (W)	
Direct-Mapped	8K x 8	4	3.23	2.75	
Two-Way-Set	4K x 4	16	10.57	10.55*	

^{*} The 4K x 4 configuration incorporates two banks of eight SRAMs each. One bank is active while the other is in standby mode. This fact was used in the power calculations.

DIRECT-MAPPED SPACE REQUIREMENT USING 8K x 8 SRAMS

TWO-WAY-SET SPACE REQUIREMENT USING 4K x 4 SRAMS

Figure 3

MT56C0816 INTEGRATED CACHE SRAM

The MT56C0816 is an application-specific 8K x 16 SRAM designed for, but not limited to, cache data SRAM implementations. The MT56C0816 is designed to be used in either direct-mapped or two-way-set designs. It incorporates an on-chip address latch, on-chip multiplexing between the two SRAM banks (for two-way-set mode), fast output enable times, and low-power consumption.

Almost all designs have used the MT56C0816 in the twoway-set mode of operation. This is due to the fact that the MT56C0816 eliminates the major problems in implementing the two-way-set mode architecture, namely the cost, space and power. Before the MT56C0816, a two-way-set implementation required three times the board space and four times the power of a direct-mode design when using standard SRAMs.

Due to the integration of on-chip address latches and multiplexors, often a lower-speed MT56C0816 can be used in place of a higher-speed, more costly standard SRAM. The advantages of the MT56C0816 don't stop here. It is widely second-sourced by other suppliers, the access time has been reduced to 20ns and it is available in the smaller PQFP package.

Table 3 compares the board space, power and access time requirements of standard SRAMs and both packages of the MT56C0816 in a 32KB cache design. The numbers pre-

Table 3

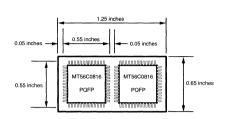
Cache SRAM Comparison (33MHz)						
Device	Number of Devices	PC Board Area	Power (w)	Access Speed (ns) Required		
MT56C0816 PQFP	2	1.00	2.2	25		
MT56C0816 PLCC	2	1.94	2.2	25		
8K x 8 SOJ 74F373 SOIC	4 2	2.28	3.15	15		
8K x 8 DIP 74F373 DIP	4 2	3.99	3.15	15		
4K x 4 SOJ 74F373 SOIC 74F245 SOIC	16 2 8	8.58	12.15*	12		
4K x 4 DIP 74F373 DIP 74F245 DIP	16 2 8	13.05	12.15*	12		

^{*} The 4K x 4 configuration incorporates two banks of eight SRAMs each. One bank is active while the other is in standby mode. This fact was used in the power calculations.

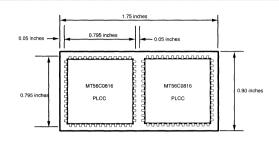
sented are applicable to both direct-mapped and two-way-set implementations for the MT56C0816 and 4K x 4 SRAMs. The use of 8K x 8 SRAMs in a two-way configuration requires a minimum of 64KB in the cache and are not considered in the comparison. The same board area assumptions are used in Table 3 as in Table 2 regarding chipto-chip and circuitry border spacing. The area values are normalized to the MT56C0816 in the PQFP package.

The SRAM access time and power considerations are based on a 33 MHz 80386 design assuming a 10ns enable decode time. The cache SRAM access time equation is as follows:

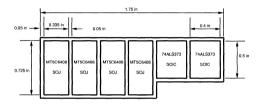
Cache SRAM access time = 4 * 386CLK2 - 386 address delay - 386 ready setup - SRAM enable decode - 74F373 delay = (4 * 15ns) - 15ns - 7ns - 10ns - 9ns = 19ns

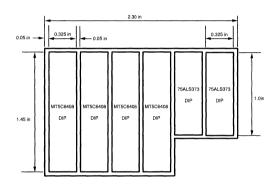

This will require 8K x 8 SRAMs with a 15ns access time. The 4K x 4 implementation requires that the transceiver delay time (6ns) also be subtracted, which leaves only 13ns. Hence, a 12ns part must be used. The MT56C0816 incorporates the address latch on-board and thus allows 9ns to be added back into the SRAM access time. This yields a 28ns access time for a MT56C0816 design, which is easily met by the 25ns part. This access time is applicable to both the direct mode and two-way set configurations since the data multiplexing is also on-chip.

Figures 4 and 5 illustrate the board space required by the MT56C0816 and the standard SRAM configurations that are summarized in Table 3.


OPTIMUM SYSTEM

The available, off-the-shelf cache controllers allow very quick and efficient cache subsystem designs for 80386-based systems. And an off-the-shelf controller teamed with the MT56C0816 maximizes the system performance/cost ratio. The MT56C0816 allows the controller to be employed in its highest performance mode, two-way-set associativity, without the disadvantages incurred using standard SRAMs.


A two-way-set design using the MT56C0816 requires only two parts versus 10 for an 8K \times 8 SRAM implementation and 26 for a 4K \times 4 implementation. A direct-mapped design using the MT56C0816 requires only two parts versus six for an 8K \times 8 SRAM implementation and 26 for a 4K \times 4 implementation. In addition to the board-space, power, and integration advantages, the MT56C0816 offers a direct connection to the controllers. This means higher system reliability and easier design and debugging over the standard SRAM implementations. Figure 6 shows a detailed diagram of a system using the MT56C0816.


MT56C0816 PQFP

MT56C0816 PLCC

8K x 8 SOJ/SOIC

8K x 8 DIP

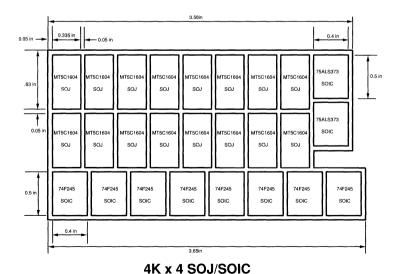
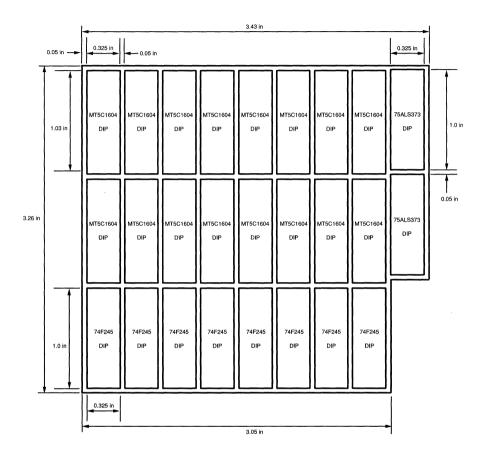



Figure 4

4K x 4 DIP

Figure 5

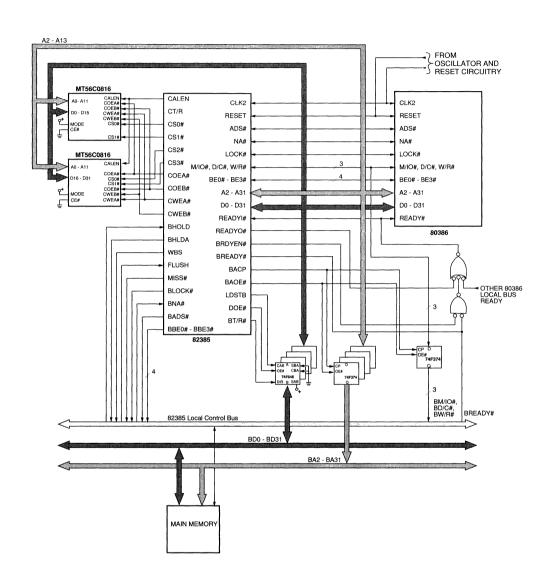


Figure 6

Table 4

MICRON CACHE SRAM FAMILY						
Part #	Description	Speed (ns)	Package	Availability		
MT56C0816	Dual 4K x 16 or 8K x 16 Addresses 0 through 11 are latched	20, 25, 35	PLCC PQFP	Now		
MT56C0818	Dual 4K x 18 or 8K x 18 Addresses 0 through 11 are latched	20, 25, 35	PLCC PQFP	Now		
MT56C2818	Dual 4K x 18 or 8K x 18 80486 self-timed write; used on Intel Turbocache486™ module	24, 28	PLCC PQFP	Now		
MT56C3816	Dual 4K x 16 or 8K x 16 Addresses 0 through 12 are latched	20, 25, 35	PLCC PQFP	Feb. 1991		
MT56C3818	Dual 4K x 18 or 8K x 18 Addresses 0 through 12 are latched	20, 25, 35	PLCC PQFP	Feb. 1991		
MT56C1616	Dual 8K x 16 or 16K x 16 Addresses 0 through 12 are latched	15, 20, 25	PLCC PQFP	2H 1991		
MT56C1618	Dual 8K x 18 or 16K x 18 Addresses 0 through 12 are latched	15, 20, 25	PLCC PQFP	2H 1991		
MT56C3616	Dual 8K x 16 or 16K x 16 Addresses 0 through 13 are latched	15, 20, 25	PLCC PQFP	2H 1991		
MT56C3618	Dual 8K x 18 or 16K x 18 Addresses 0 through 13 are latched	15, 20, 25	PLCC PQFP	2H 1991		
MT56C2618	Dual 8K x 18 or 16K x 18 80486 self-timed write	17, 24, 28	PLCC PQFP	2H 1991		

MORE SOLUTIONS

An entire family of cache-specific data SRAMs is available. Table 4 lists the members of the cache SRAM family.

In addition, Micron was the first to introduce the MT56C0816 both in a 20ns access speed and in the thin, small-outline PQFP package.

SPECIAL CONSIDERATIONS

The Micron MT56C0816 was designed for a specific generation of cache implementations for the 80386. That generation required a nonlatched A12 address and a faster A12 access time. Since then, designs employing certain off-the-shelf controllers are more efficiently implemented if address line A12 is latched on the cache data SRAM. These designs do not require the faster A12 access time. In order to keep pace with the everchanging design community Micron will introduce in the Q1/1991 time-frame versions of the MT56C0816 and the MT56C0818 with address A12 latched. The part numbers of these new devices are MT56C3816 and MT56C3818 respectively.

The latched A12 version of the cache data SRAM can be appealing in 80386DX designs where the cache uses a two-way-set associative architecture and the cache size is 64KB or larger. The latched A12 parts are applicable for 80386SX designs where the cache is structured using a two-way-set associative organization and the cache size is 32KB or larger. Designs using a direct-mapped architecture essentially use the cache data SRAM as an 8K x 16 SRAM and as

such the latched version would be advantageous in all cases.

Whether the latched or unlatched A12 version of the cache data SRAM is more advantageous depends entirely on the specifics of each individual design.

SUMMARY

The Micron MT56C0816 has been as important to 80386 caching solutions as the off-the-shelf controllers from Intel, Austek and Chips & Technologies. The direct connection of the MT56C0816 to controllers makes the implementation more appealing for the designer from both a design and debug standpoint. The reduced board space, power and comparable cost to commodity SRAM implementations are advantages that make the MT56C0816 the right choice for new designs. Implementations using the MT56C0816 add reliability to the system due to the reduced component count. The MT56C0816 offers other less obvious cost advantages. Reduced board space requirements directly affect board manufacturing costs and allow more components to be placed on the board. Better reliability means lower costs due to fewer returns and fewer board revisions. Other costs that the MT56C0816 minimizes over the standard SRAM solutions are inventory and assembly costs.

Clearly the Micron MT56C0816 is a superior solution to standard SRAMs in cache designs.

DYNAMIC RAMS	. 1
DRAM MODULES	2
MULTIPORT DRAMS	3
STATIC RAMS	4
SYNCHRONOUS SRAMS	M 5
SRAM MODULES	6
CACHE DATA SRAMS	7
FIFO MEMORIES	8
APPLICATION/TECHNICAL INFORMATION	9
MILITARY INFORMATION	10
PACKAGE INFORMATION	11
SALES INFORMATION	19

GENERAL INFORMATION

As a major supplier to the defense electronics industry, Micron offers an extensive array of speeds and configurations compatible with military-standard pinouts. A wide selection of devices are available to fit both Standard Military Drawings (SMD) and Joint Army-Navy (JAN) Level-B specifications — SRAMs, DRAMs and Multiport DRAMs.

Micron maintains the MIL-M-38510 certification status for all its fabrication facilities. Micron's CMOS and NMOS process technologies are both JAN certified. Our military-grade SRAM modules meet or exceed the proposed standards of the JEDEC JC-13 Module Committee. Currently, we are waiting for DESC to announce approval of these MIL-STD-883 standards.

Micron's entire military assembly takes place in Boise, Idaho. Micron produces and tests our military products to specifications that meet or exceed the requirements of MIL-M-38510 and MIL-STD-883, methods 5004 and 5005. Every Micron product is tested on the AMBYX,™ a unique, intelligent burn-in system designed by Micron to eliminate infant mortalities. Our internal processes provide an extensive data base that allows complete statistical process control and test data in real time.

Many of Micron's military products have received military

qualification, including the 1 Meg VRAM and 1 Meg SRAM. To date, military qualification is pending on Micron's 4 Meg DRAMs and various SRAM modules. Products under development include cache data SRAMs and FIFOs. New package configurations will include a ceramic vertical (CV) package that meets high-density, through-hole designs. Micron is also looking into J-leaded LCC packages for high-density boards.

Memory devices for military and space-level applications require both radiation tolerance and latch-up immunity. Micron is currently in the process of characterizing select CMOS SRAM and DRAM devices for total dose, dose rate and latch-up immunity.

Micron is continually evaluating and improving our radiation tolerance processes on our military and commercial products for future use on land, sea and in space. We're assessing our 1 Meg SRAM, 4 Meg DRAM and 1 Meg VRAM devices beyond standard MIL-STD-883 and JAN Level-B requirements. Micron is developing a process flow that parallels the requirements of Class-S to be used for products not requiring Class-S compliance. These products will offer the high density and speed necessary in spacelevel applications. For more information, please refer to Micron's *Military MOS Data Book*.

MICRON MIL-STD-883C COMPLIANT PRODUCT ASSURANCE FLOW

Description of Requirements and Screens	Methods and Test Conditions	Comment
General MIL-M-38510		
1. MIL-STD 883, Class B, Rev. C	Establish and implement a plan for a product assurance program	
2. Certification	Manufacturer's QA survey	Self audit
3. Traceability	Traceable to wafer production lot	Computer lot history records
4. Country of Origin (Not required for 883C)	N/A	Devices manufactured, assembled and tested in Boise, Idaho USA
NAME OF THE PARTY		boloc, radito Corr
MIL-STD 883 Fabrication		Y 1 10
5. Incoming Materials	Receiving inspection	Vendor audits
6. Wafer Fabrication7. Assembly	Method 2018, SEM monitors Process monitors	Sample Sample
7. Assembly	Statistical process controls	Sample
MIL-STD 883, Class B, Rev. C, Met	hod 5004 Screening	
8. Internal Visual	Method 2010, cond. B	100%
9. Thermal Shock	Method 1010, cond. B	100%
10. Constant Acceleration	Method 2001, cond. E	100%
11. Hermeticity		
A. Fine Leak	Method 1014, cond. A	100%
B. Gross Leak	Method 1014, cond. C	100%
12. Initial Electricals	Manufacturer's documented data sheet	100%
13. Burn-in	Method 1015	100%
14. Final Electrical Post	Method 5004, Class B,	100%
Burn-in Test	paragraph 3.1.15, 5% PDA	
15. Marking	Method 2015	100%
16. External Visual	Method 2009	100%
17. Quality Conformance Inspection	Method 5005 in-line Class B	Groups A, B, C, D
18. Pack/Ship	Includes C of C, with QCI data (attributes only)	100%
0.11.0.4		
Quality Conformance Inspection p	er Method 5005 (attributes data only)	
19. Group A	Manufacturer's documented data sheet	Each inspection lot/sublot
20. Group B	Package functional and construction tests	Each inspection lot/sublot
21. Group C	Die related	Each microcircuit group, every 4 calendar quarters
22. Group D	Package-related test	Each package type, every 52 weel

DRAM

Description	Speed	Micron Part Number	SMD Part Number (5962-)	JAN Part Number
64K x 1 CDIP	120ns	MT4264C-12 883C		
	150ns	MT4264C-15 883C	8201004EX (-55°C/+125°C) 8201006EX (-55°C/+110°C)	
	200ns	MT4264C-20 883C	8201005EX (-55°C/+125°C) 8201007EX (-55°C/+110°C)	
64K x 1 CLCC	120ns	MT4264EC-12 883C		
	150ns	MT4264EC-15 883C	820100406ZX	
	200ns	MT4264EC-20 883C	820100607ZX	
64K x 1 Flat Pack	120ns	MT4264F-12 883C	No Drawing	
	150ns	MT4264F-15 883C	No Drawing	
	200ns	MT4264F-20 883C	No Drawing	
256K x 1 CDIP	100ns	MT1259C-10 883C	No Drawing	
	120ns	MT1259C-12 883C	8515203EX	JM38510/2460103BEX
	150ns	MT1259C-15 883C	8515201EX	JM38510/2460204BEX
256K x 1 CLCC	100ns	MT1259EC-10 883C	No Drawing	
	120ns	MT1259EC-12 883C	8515203XX	JM38510/2460103BXX
	150ns	MT1259EC-15 883C	8515201XX	JM38510/2460204BXX
64K x 4 CDIP	100ns	MT4067C-10 883C	8767604VX	
	120ns	MT4067C-12 883C	8767601VX	
	150ns	MT4067C-15 883C	8767602VX	
	200ns	MT4067C-20 883C	8767603VX	
64K x 4 CLCC	100ns	MT4067EC-10 883C	8767604XX	
	120ns	MT4067EC-12 883C	8767601XX	
	150ns	MT4067EC-15 883C	8767602XX	
	200ns	MT4067EC-20 883C	8767603XX	
1 Meg x 1 CDIP	80ns	MT4C1024C-8 883C	No Drawing	JM38510/24901BVX
	100ns	MT4C1024C-10 883C	No Drawing	JM38510/24902BVX
	120ns	MT4C1024C-12 883C	No Drawing	JM38510/24903BVX
	150ns	MT4C1024C-15 883C	No Drawing	JM38510/24904BVX
1 Meg x 1 CLCC	80ns	MT4C1024EC-8 883C		JM38510/24901BZX
	100ns	MT4C1024EC-10 883C		JM38510/24902BZX
	120ns	MT4C1024EC-12 883C		JM38510/24903BZX
	150ns	MT4C1024EC-15 883C		JM38510/24904BZX
1 Meg x 1 Flat Pack	80ns	MT4C1024F-8 883C		JM38510/24901BXX
	100ns	MT4C1024F-10 883C		JM38510/24902BXX
	120ns	MT4C1024F-12 883C		JM38510/24903BXX
	150ns	MT4C1024F-15 883C		JM38510/24904BXX

DRAM

Description	Speed	Micron Part Number	SMD Part Number (5962-)	JAN Part Number (5962-)
1 Meg x 4 CDIP	80ns	MT4C4001C-8 883C	90847M X	90847B X
0	100ns	MT4C4001C-10 883C	90847M ^X	90847B X
	120ns	MT4C4001C-12 883C	90847M ^X	90847B X
	150ns	MT4C4001C-15 883C	90847M_X	90847B_X
1 Meg x 4 LCC	80ns	MT4C4001EC-8 883C	90847M_X	90847B_X
O	100ns	MT4C4001EC-10 883C	90847M_X	90847B_X
	120ns	MT4C4001EC-12 883C	90847M_X	90847B_X
	150ns	MT4C4001EC-15 883C	90847M_X	90847B_X
1 Meg x 4 Flat Pack	80ns	MT4C4001F-8 883C	90847M X	90847B X
O	100ns	MT4C4001F-10 883C	90847M ^X	90847B X
	120ns	MT4C4001F-12 883C	90847M ^X	90847B X
	150ns	MT4C4001F-15 883C	90847M_X	90847B_X
4 Meg x 1 CDIP	80ns	MT4C1004C-8 883C	90622M X	90622B X
4 Meg x i CDir	100ns	MT4C1004C-8 883C	90622M_X	90622B_X
	100ns 120ns	MT4C1004C-10 883C	90622M_X	90622B_X
	150ns	MT4C1004C-12 883C	90622M_X	90622B_X
4 Meg x 1 LCC	80ns	MT4C1004EC-8 883C	90622M X	90622B X
O	100ns	MT4C1004EC-10 883C	90622M X	90622B X
	120ns	MT4C1004EC-12 883C	90622M X	90622B X
	150ns	MT4C1004EC-15 883C	90622M_X	90622B_X
4 Meg x 1 Flat Pack	80ns	MT4C1004F-8 883C	90622M_X	90622B_X
Ü	100ns	MT4C1004F-10 883C	90622M_X	90622B_X
	120ns	MT4C1004F-12 883C	90622M_X	90622B_X
	150ns	MT4C1004F-15 883C	90622M X	90622B X

120ns

MILITARY INFORMATION

Description	Speed	Micron Part Number	SMD Part Number (5962-)	JAN Part Number
64K x 4 CDIP	100ns	MT42C4064C-10 883C	89952M_X	
	120ns	MT42C4064C-12 883C	89952M_X	
	150ns	MT42C4064C-15 883C	89952M_X	
64K x 4 LCC	120ns	MT42C4064EC-10 883C	89952M_X	
	150ns	MT42C4064EC-12 883C	89952M_X	
	200ns	MT42C4064EC-15 883C	89952M_X	
128K x 8 CDIP	80ns	MT42C8128CW-8 883C	No Drawing	
	100ns	MT42C8128CW-10 883C	No Drawing	
	120ns	MT42C8128CW-12 883C	No Drawing	
256K x 4 CDIP	80ns	MT42C4256-8 883C	No Drawing	
	100ns	MT42C4256-12 883C	No Drawing	

No Drawing

MT42C4256-15 883C

SRAM

Description	Speed	Micron Part Number	SMD Part Number (5962-)	JAN Part Number
128K x 8 CDIP	25ns	MT5C1008C-25 883C	8959837MZX*	5962-8959837BZX*
	35ns	MT5C1008C-30 883C	8959836MZX*	5962-8959836BZX*
	45ns	MT5C1008C-45 883C	8959835MZX*	5962-8959835BZX*
256K x 1 CDIP	25ns	MT5C2561C-25 L 883C	8872505LX	JM38510/29310BLX
	35ns	MT5C2561C-35 L 883C	8872501LX	JM38510/29302BLX
	45ns	MT5C2561C-45 883C	8872502LX	JM38510/29301BLX
256K x 1 CLCC	25ns	MT5C2561EC-25 L 883C	8872505XX	JM38510/29310BNX
	35ns	MT5C2561EC-35 L 883C	8872501XX	JM38510/29302BNX
	45ns	MT5C2561EC-45 883C	8872502XX	JM38510/29301BNX
64K x 4 CDIP	25ns	MT5C2564C-25 L 883C	Note 1	JM38510/29311BLX
	35ns	MT5C2564C-35 L 883C	8868101LX	JM38510/29304BLX
	45ns	MT5C2564C-45 883C	8868102LX	JM38510/29303BLX
64K x 4 CLCC	25ns	MT5C2564EC-25 L 883C	Note 1	IM38510/29311BNX
	35ns	MT5C2564EC-30 L 883C	8868101XX	JM38510/29304BNX
	45ns	MT5C2564EC-45 883C	8868102XX	JM38510/29303BNX
64K x 4 CDIP	25ns	MT5C2565C-25 L 883C	8952405XX	JM38510/29312BYX
w/\overline{OE}	35ns	MT5C2565C-35 L 883C	8952404XX	JM38510/29315BYX
	45ns	MT5C2565C-45 883C	8952403XX	JM38510/29314BYX
64K x 4 CLCC	25ns	MT5C2565EC-25 L 883C	8952405YX	JM38510/29312BNX
w/ OE	35ns	MT5C2565EC-30 L 883C	8952404YX	JM38510/29315BNX
·	45ns	MT5C2565EC-45 883C	8952403YX	JM38510/29314BNX
32K x 8 CDIP	25ns	MT5C2568C-25 L 883C	No Drawing	JM38510/29313BYX
300 MIL	35ns	MT5C2568C-30 L 883C	No Drawing	JM38510/29309BYX
	45ns	MT5C2568C-45 883C	No Drawing	IM38510/29308BYX
	55ns	MT5C2568C-55 883C	No Drawing	JM38510/29307BYX
32K x 8 CDIP	25ns	MT5C2568CW-25 L 883C	Note 1	JM38510/29313BXX
600 MIL	35ns	MT5C2568CW-35 L 883C	No Drawing	JM38510/29309BXX
	45ns	MT5C2568CW-45 L 883C	8866204XX	JM38510/29308BXX
	55ns	MT5C2568CW-55 L 883C	8866205XX	JM38510/29307BXX
32K x 8 CLCC	25ns	MT5C2568EC-25 L 883C	Note 1	JM38510/29313BNX
28 PIN	35ns	MT5C2568EC-35 L 883C	No Drawing	JM38510/29309BNX
	45ns	MT5C2568EC-45 L 883C	8866204UX	JM38510/29308BNX
	55ns	MT5C2568EC-55 L 883C	8866205UX	JM38510/29307BNX

^{*}Preliminary

Note: 1. The current SMDs are written for the slower grade devices. Micron has submitted new drawings to DESC for faster devices.

L: Optional 2V data retention is available on all parts indicated by "L" after speed. Optional low-voltage data retention available on all SRAMs.

SRAM

Description	Speed	Micron Part Number	SMD Part Number (5962-)	JAN Part Number
32K x 8 CLCC	25ns	MT5C2568ECW-25 L 883C	No Drawing	JM38510/29313BTX
32 PIN	35ns	MT5C2568ECW-30 L 883C	No Drawing	JM38510/29309BTX
	45ns	MT5C2568ECW-45 L 883C	8866204YX	JM38510/29308BTX
	55ns	MT5C2568ECW-55 L 883C	8866205YX	JM38510/29307BTX
32K x 8 Flat Pack	25ns	MT5C2568F-25 L 883C	No Drawing	JM38510/29313BMX
	35ns	MT5C2568F-35 L 883C	No Drawing	JM38510/29309BMX
	45ns	MT5C2568F-45 L 883C	8866204TX	JM38510/29308BMX
	55ns	MT5C2568F-55 L 883C	8866205TX	JM38510/29307BMX
64K x 1 CDIP	20ns	MT5C6401C-20 L 883C	Note 1	
	25ns	MT5C6401C-25 L 883C	No Drawing	
	30ns	MT5C6401C-30 L 883C	No Drawing	
	35ns	MT5C6401C-35 L 883C	8601501XX	
64K x 1 CLCC	20ns	MT5C6401EC-20 L 883C	Note 1	
	25ns	MT5C6401EC-25 L 883C	No Drawing	
	30ns	MT5C6401EC-30 L 883C	No Drawing	
	35ns	MT5C6401EC-35 L 883C	8601501ZX	
16K x 4 CDIP	20ns	MT5C6404C-20 L 883C	8969204YX	
	25ns	MT5C6404C-25 L 883C	8969202YX	
16K x 4 CLCC	20ns	MT5C6404EC-20 L 883C	8969204ZX	
	25ns	MT5C6404EC-25 L 883C	8969202ZX	
8K x 8 CDIP	15ns	MT5C6408C-15 L 883C	3829418MZX	
300 MIL	15ns	MT5C6408C-15 883C	3829419MZX	
	20ns	MT5C6408C-20 L 883C	8969104ZX or 3829416	MZX
	25ns	MT5C6408C-25 L 883C	8969102ZX or 3829414	MZX
	30ns	MT5C6408C-30 L 883C	No Drawing	
	35ns	MT5C6408C-35 L 883C	3829412MZX	
8K x 8 CDIP	20ns	MT5C6408CW-20 L 883C	8969104XX	
600 MIL	25ns	MT5C6408CW-25 L 883C	8969102XX	
	30ns	MT5C6408CW-30 L 883C	No Drawing	
	35ns	MT5C6408CW-35 L 883C	No Drawing	
8K x 8 CLCC	15ns	MT5C6408EC-15 L 883C	3829418MUX	
28 PIN	20ns	MT5C6408EC-20 L 883C	8969104NX or 3829416	MUX
	25ns	MT5C6408EC-25 L 883C	8969102NX or 3829414	MUX
	30ns	MT5C6408EC-30 L 883C	No Drawing	
	35ns	MT5C6408EC-35 L 883C	3829412MUX	

Note:

The current SMDs are written for the slower grade devices. Micron has submitted new drawings to DESC for faster devices.

L: Optional 2V data retention is available on all parts indicated by "L" after speed. Optional low-voltage data retention available on all SRAMs.

SRAM

Description	Speed	Micron Part Number	SMD Part Number	JAN Part Number
8K x 8 Flat Pack	25ns	MT5C6408F-25 L 883C	8969102YX	
32 PIN	35ns	MT5C6408F-35 L 883C	No Drawing	
2K x 8 CDIP	20ns	MT5C1608C-20 L 883C	8969002LX	
	25ns	MT5C1608C-25 L 883C	8969001LX	
	30ns	MT5C1608C-30 L 883C	No Drawing	
	35ns	MT5C1608C-35 L 883C	No Drawing	
2K x 8 CLCC	20ns	MT5C1608EC-20 L 883C	8969002ZX	
	25ns	MT5C1608EC-25 L 883C	8969001ZX	
	30ns	MT5C1608EC-30 L 883C	No Drawing	
	35ns	MT5C1608EC-35 L 883C	No Drawing	

SRAM MODULE

Description	Speed	Micron Part Number	SMD Part Number	JAN Part Number
128K x 8 CDIP	35ns	MT4S1288CW-35	No Drawing	
512K x 8 CDIP	35ns	MT4S5128CW-35	No Drawing	
64K x 16 CDIP	35ns	MT4S6416CW-35	No Drawing	
64K x 32 CDIP	35ns	MT4S6432CW-35	No Drawing	

CACHE DATA SRAM*

Description	Speed	Micron Part Number	SMD Part Number	JAN Part Number
8K x 16 CLCC	20ns	MT56C0816C-20 L 883C	No Drawing	
	25ns	MT56C0816C-25 L 883C	No Drawing	
	35ns	MT56C0816C-35 L 883C	No Drawing	

*Preliminary

L:

Note: 1. The current SMDs are written for the slower grade devices. Micron has submitted new drawings to DESC for faster devices.

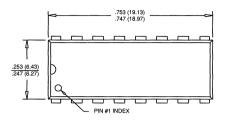
Optional 2V data retention is available on all parts indicated by "L" after speed. Optional low-voltage data retention available on all SRAMs.

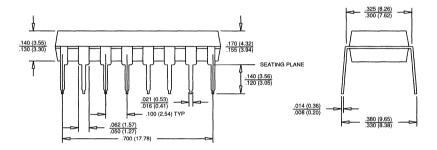
FIFO*

Description	Speed	Micron Part Number	SMD Part Number	JAN Part Number
512 x 9 CLCC	15ns	MT52C9005EC-15 883C	No Drawing	
	20ns	MT52C9005EC-20 883C	No Drawing	
	25ns	MT52C9005EC-25 883C	No Drawing	
	35ns	MT52C9005EC-35 883C	No Drawing	
1K x 9 CLCC	15ns	MT52C9010EC-15 883C	No Drawing	
	20ns	MT52C9010EC-20 883C	No Drawing	
	25ns	MT52C9010EC-25 883C	No Drawing	
	35ns	MT52C9010EC-35 883C	No Drawing	
2K x 9 CLCC	15ns	MT52C9020EC-15 883C	No Drawing	
	20ns	MT52C9020EC-20 883C	No Drawing	
	25ns	MT52C9020EC-25 883C	No Drawing	
	35ns	MT52C9020EC-35 883C	No Drawing	

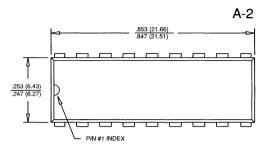
MICRON

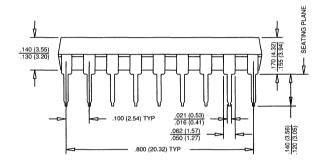
DYNAMIC RAMS	1
DRAM MODULES	2
MULTIPORT DRAMS	3
STATIC RAMS	4
SYNCHRONOUS SRAMS	5
SRAM MODULES	6
CACHE DATA SRAMS	7
FIFO MEMORIES	8
APPLICATION/TECHNICAL INFORMATION	9
MILITARY INFORMATION	10
PACKAGE INFORMATION	11
SALES INFORMATION	12

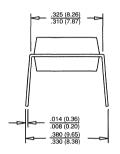




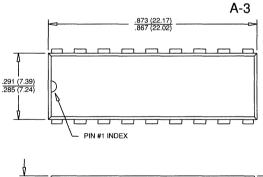
PACKAGE TYPE	PIN COUNT	PAGE	PACKAGE TYPE	PIN COU	NT	PAGE
PLASTIC DIP	16	. 11-2	PLASTIC SOJ	20/26		11-24
	18	. 11-3		22/26		11-25
	20	. 11-4		24		11-25
	22	. 11-5		24/26		11-26
	24	. 11-6		24/28		11-27
	28	. 11-7		28		11-27
	32	. 11-9		32	•••••	11-28
CERAMIC DIP	16	. 11-10		40	•••••	11-29
	18	. 11-11	CERAMIC LCC	18		11-30
	20	. 11-12		20		11-31
	22	. 11-13		28		11-32
	24	. 11-14		32		11-33
	28		FLAT PACK	16		11-35
	32	. 11-17				
PLASTIC ZIP	16	. 11-18				
	20					
	24					
	28		MODULE SIP	30	•••••	11-37
	40		MODULE SIMM.	30		11-39
DI CC						
PLCC			MODINETIN			11 44
	32		MODULE ZIP			
	52	. 11-22		72	•••••	11-46
LPQFP	52	. 11-23	MODULE DIP	32		11-49
				40		11-50

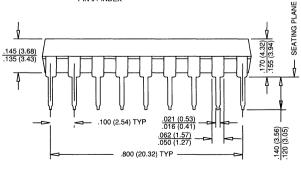

A-1

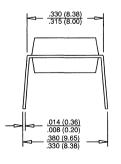


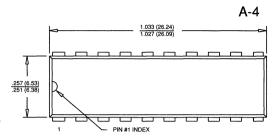


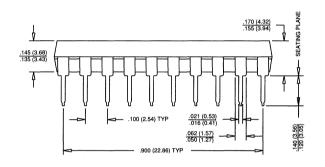
All dimensions in inches (millimeters) $\frac{\text{Max}}{\text{Min}}$ or typical where noted.

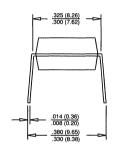


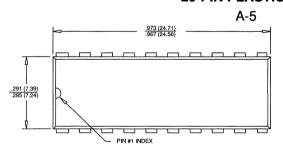


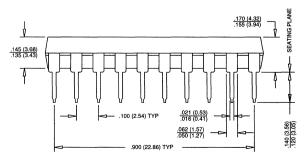


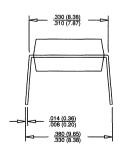

18-PIN PLASTIC DIP



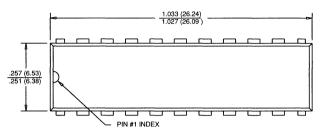


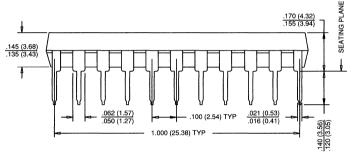


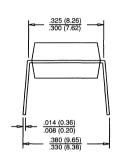


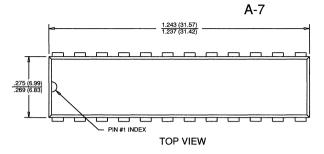


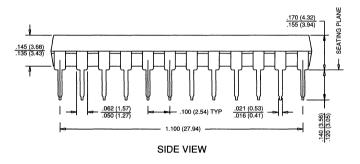
20-PIN PLASTIC DIP

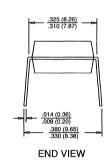


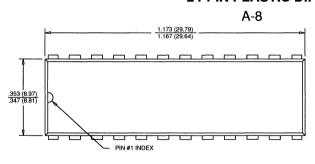


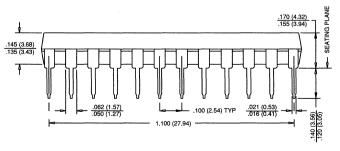


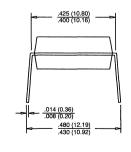

A-6



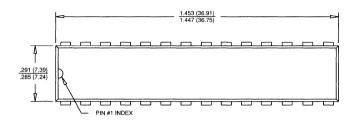


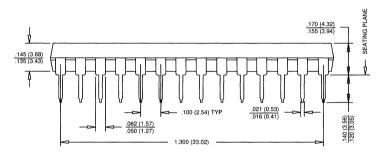


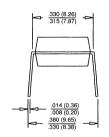




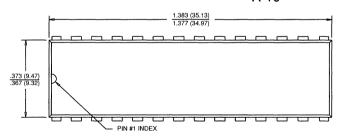
24-PIN PLASTIC DIP

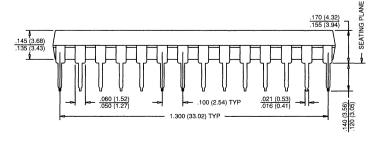






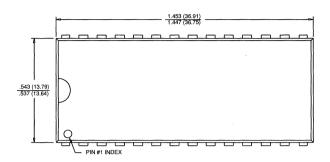
A-9

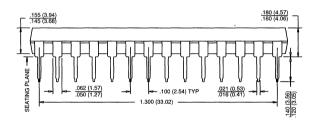


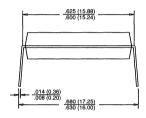


28-PIN PLASTIC DIP

A-10

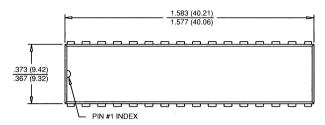


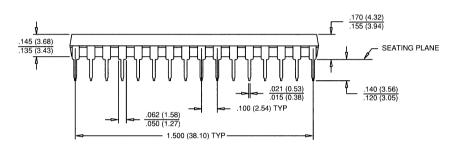


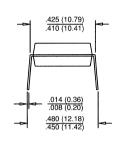


28-PIN PLASTIC DIP

A-11

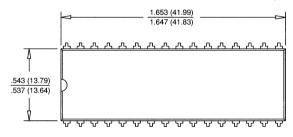


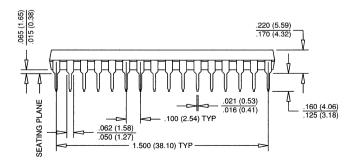


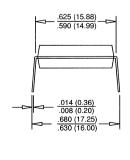


32-PIN PLASTIC DIP

A-12

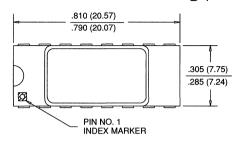


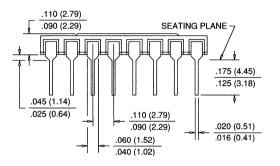


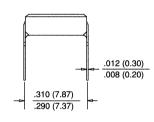


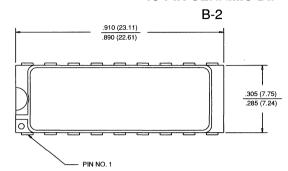
32-PIN PLASTIC DIP

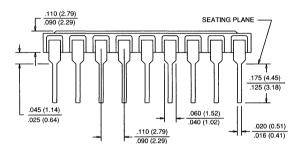
A-13

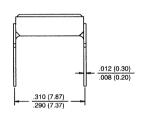


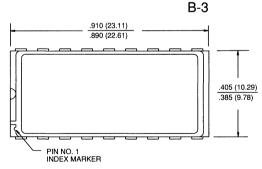


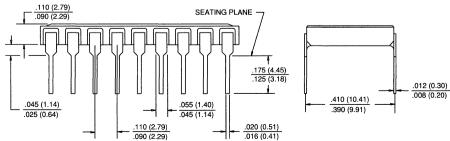


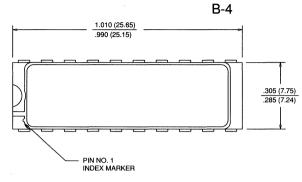

B-1

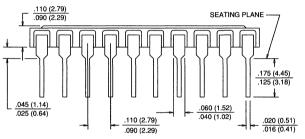


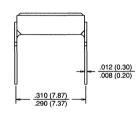


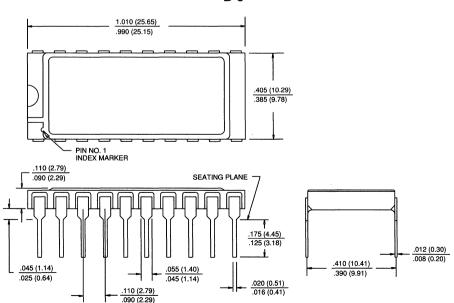


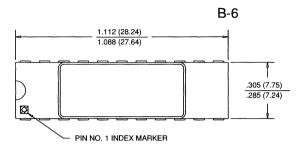


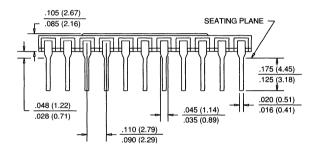


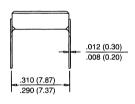

18-PIN CERAMIC DIP

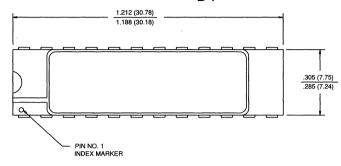


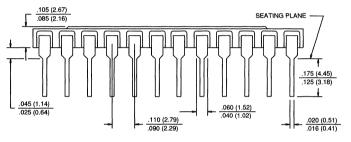


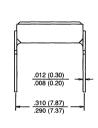



20-PIN CERAMIC DIP

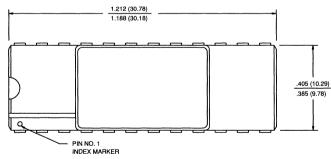

B-5

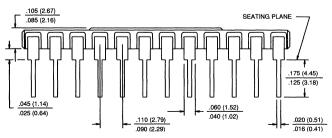






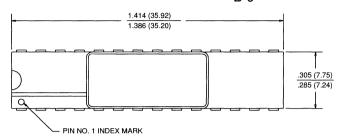
B-7

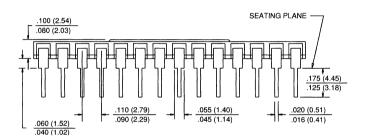


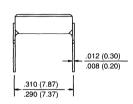


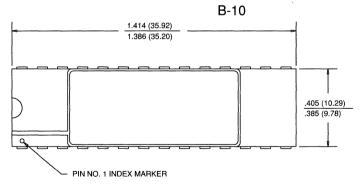
24-PIN CERAMIC DIP

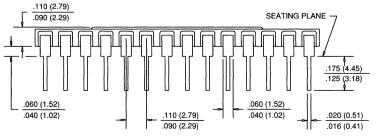
B-8



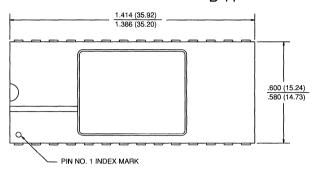


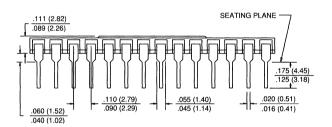


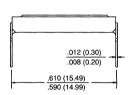

B-9



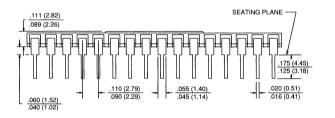
28-PIN CERAMIC DIP





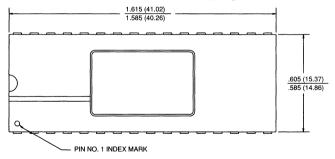


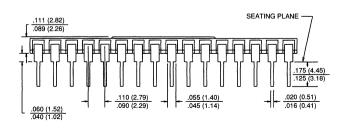
B-11

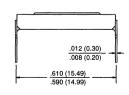


B-12

1.615 (41.02)
1.585 (40.26)

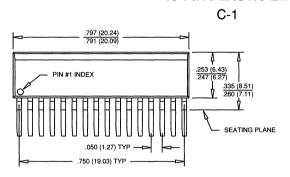

PIN NO. 1 INDEX MARK

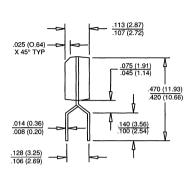


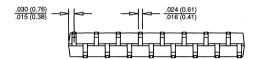


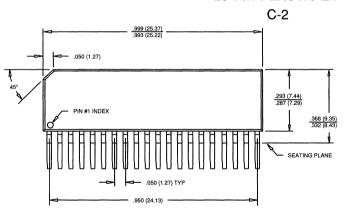
32-PIN CERAMIC DIP

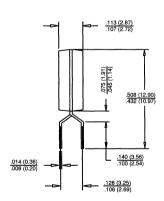
B-13

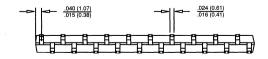




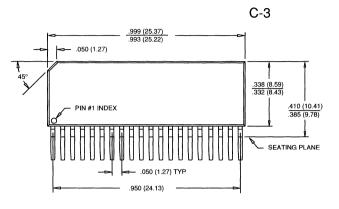


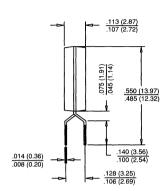

16-PIN PLASTIC ZIP

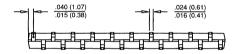




20-PIN PLASTIC ZIP

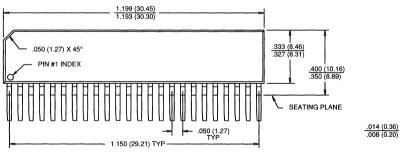


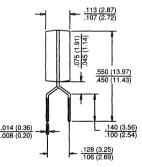


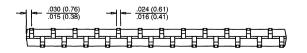


All dimensions in inches (millimeters) $\frac{\text{Max}}{\text{Min}}$ or typical where noted.

20-PIN PLASTIC ZIP

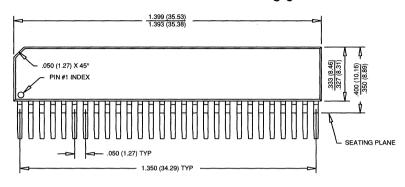


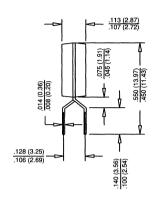


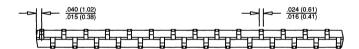


24-PIN PLASTIC ZIP

C-4

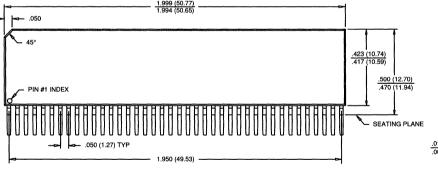


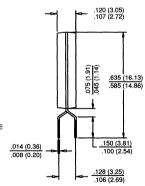


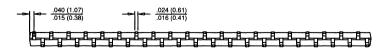


28-PIN PLASTIC ZIP

C-5

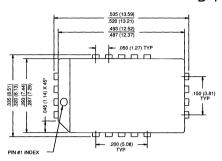


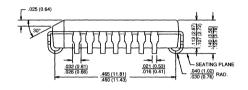


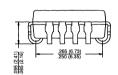


40-PIN PLASTIC ZIP

C-6

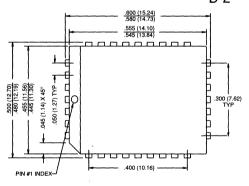


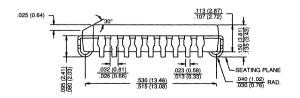


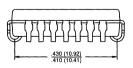


18-PIN PLCC

D-1

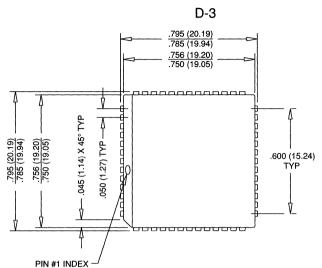


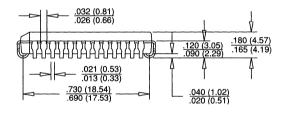




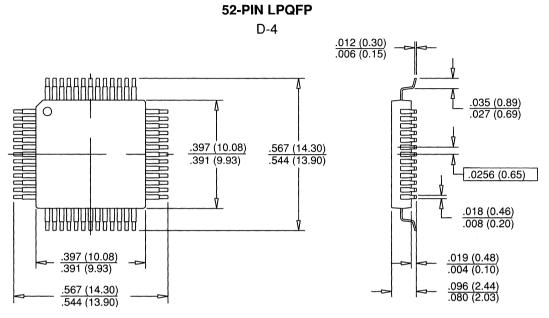
32-PIN PLCC

D-2

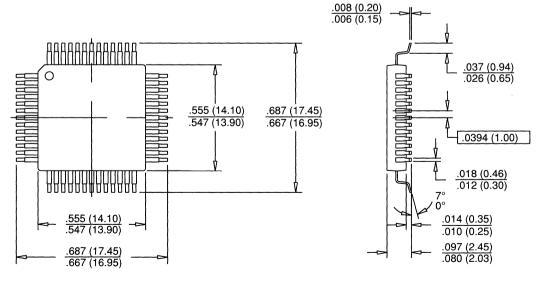


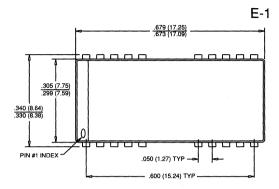


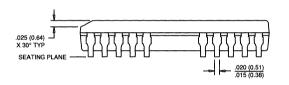
All dimensions in inches (millimeters) $\frac{\mbox{Max}}{\mbox{Min}}$ or typical where noted.

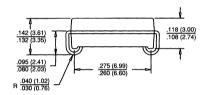


52-PIN PLCC

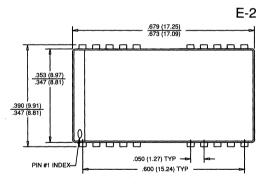


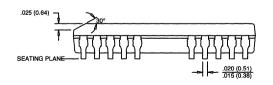


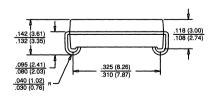

52-PIN LPQFP D-5



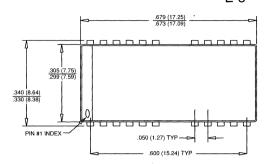
All dimensions in inches (millimeters) $\frac{Max}{Min}$ or typical where noted.

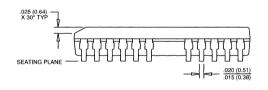

20/26-PIN PLASTIC SOJ

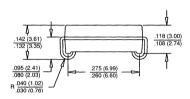




20/26-PIN PLASTIC SOJ

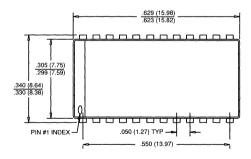


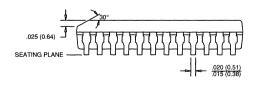

All dimensions in inches (millimeters) $\frac{Max}{Min}\,$ or typical where noted.

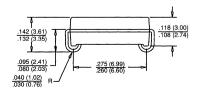


22/26-PIN PLASTIC SOJ

E-3

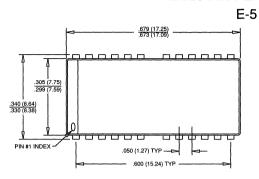


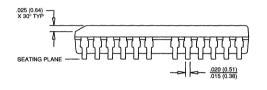


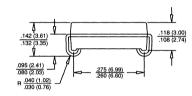


24-PIN PLASTIC SOJ

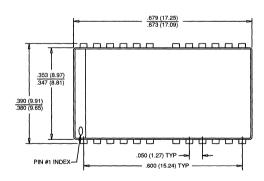
E-4

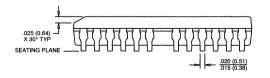


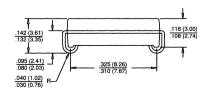




24/26-PIN PLASTIC SOJ

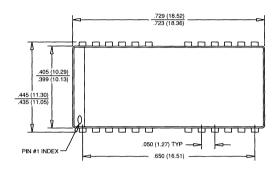


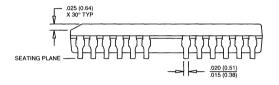


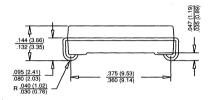


24/26-PIN PLASTIC SOJ

E-6

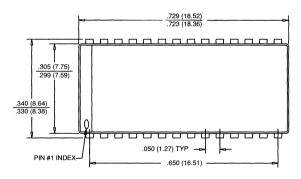


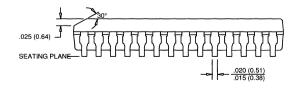


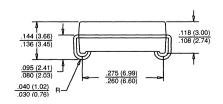


24/28-PIN PLASTIC SOJ

E-7

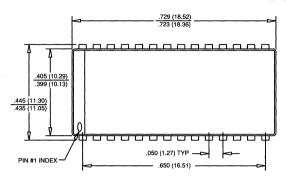


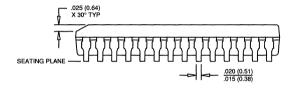


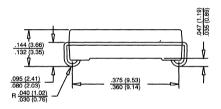


28-PIN PLASTIC SOJ

E-8

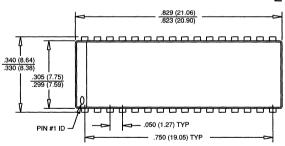


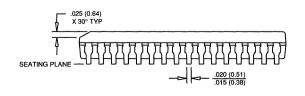


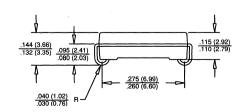


28-PIN PLASTIC SOJ

E-9

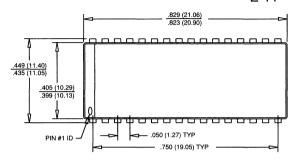


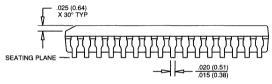


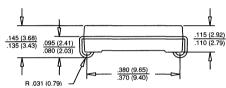


32-PIN PLASTIC SOJ

E-10

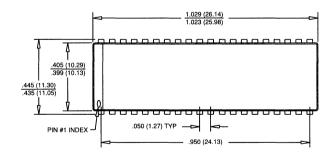


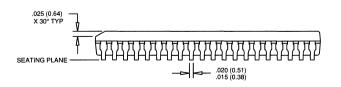


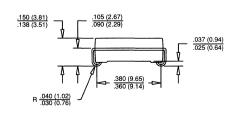


32-PIN PLASTIC SOJ

E-11

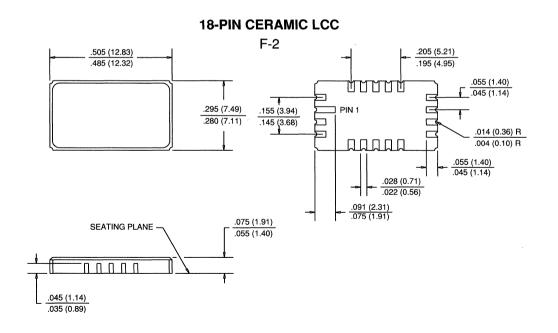


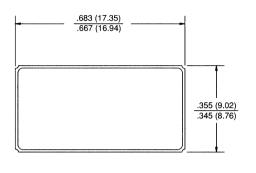


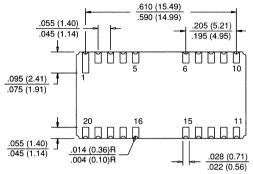


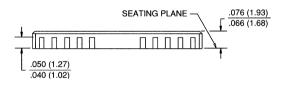
40-PIN PLASTIC SOJ

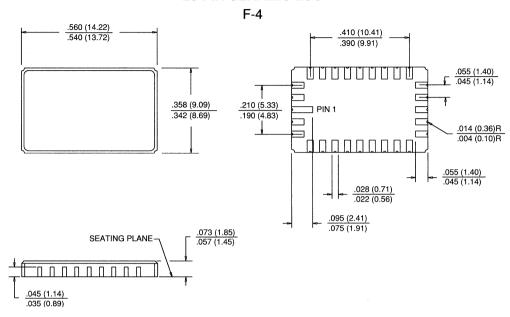
E-12

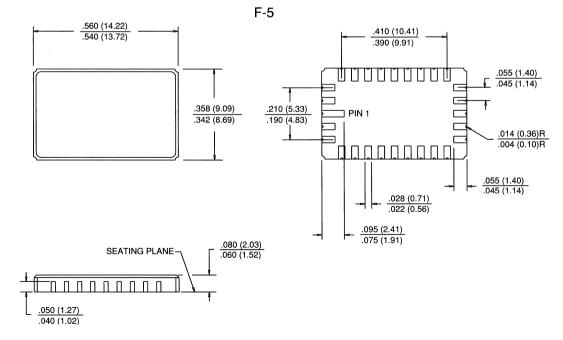


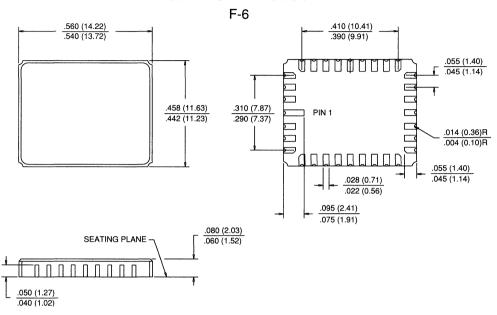

18-PIN CERAMIC LCC F-1 .456 (11.58) 205 (5.21) .444 (11.28) .195 (4.95) .055 (1.40) .045 (1.14) PIN 1 .290 (7.37) .155 (3.94) .280 (7.11) .145 (3.68) .014 (0.36)R .004 (0.10)R .055 (1.40) .045 (1.14) .028 (0.71) .022 (0.56) .090 (2.29) .080 (2.03) .083 (2.11) SEATING PLANE .067 (1.70) .055 (1.40) .045 (1.14)



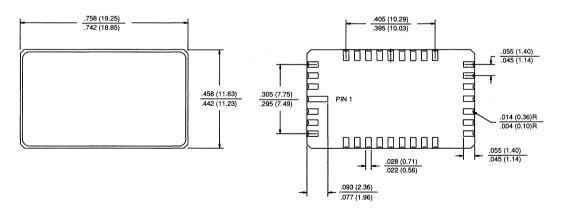

All dimensions in inches (millimeters) $\frac{Max}{Min}$ or typical where noted.

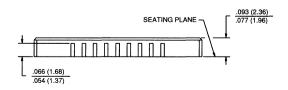

F-3





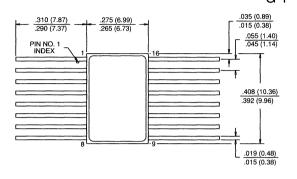
28-PIN CERAMIC LCC

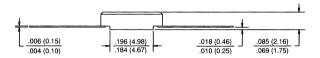




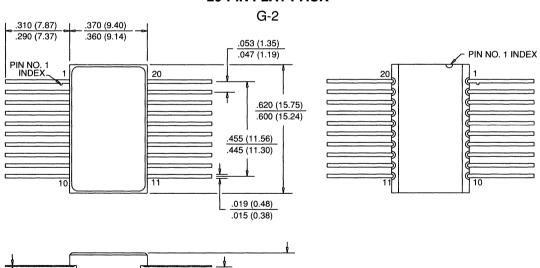
32-PIN CERAMIC LCC

F-7





16-PIN FLAT PACK


G-1

20-PIN FLAT PACK

All dimensions in inches (millimeters) $\frac{\text{Max}}{\text{Min}}$ or typical where noted.

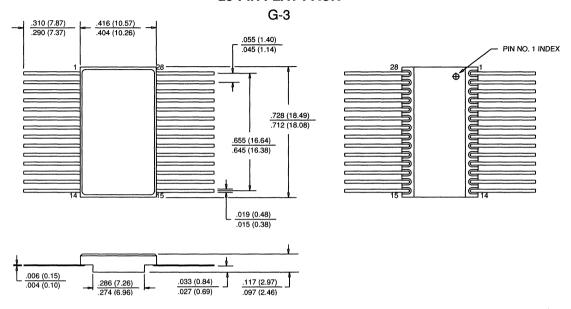
.306 (7.77)

.294 (7.47)

.035 (0.89)

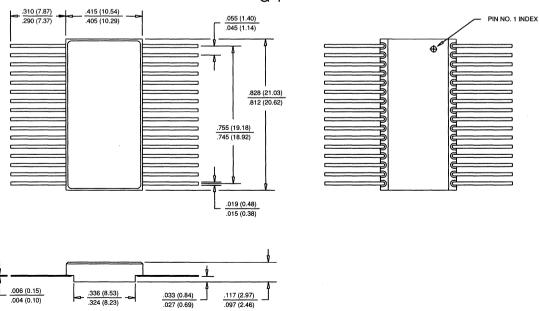
.025 (0.64)

.006 (0.15)

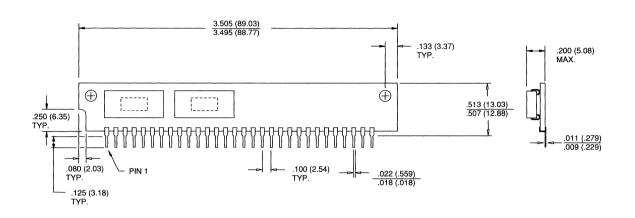

.003 (0.08)

.105 (2.67)

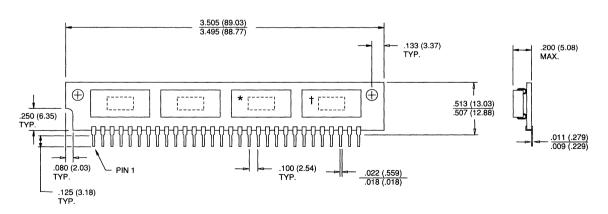
.085 (2.16)



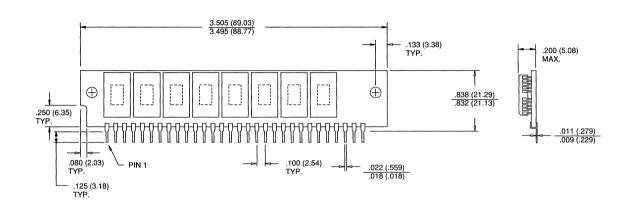
28-PIN FLAT PACK


32-PIN FLAT PACK

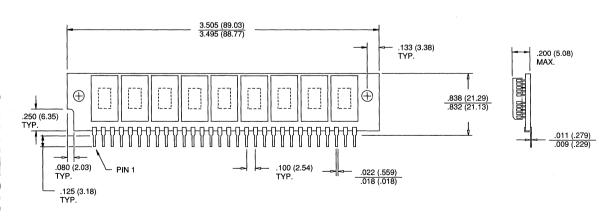
G-4



H-1

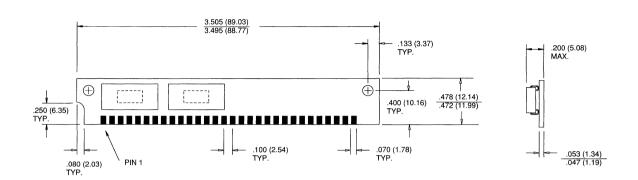

30-PIN MODULE SIP

H-2

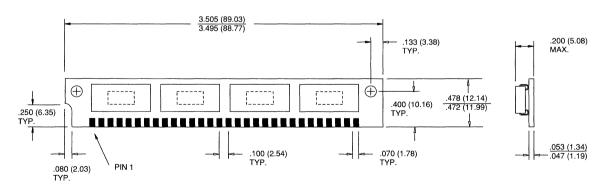


All dimensions in inches (millimeters) $\frac{\text{Max}}{\text{Min}}$ or typical where noted.

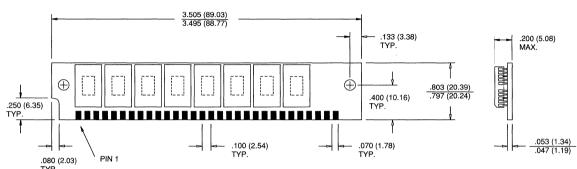
30-PIN MODULE SIP H-3



30-PIN MODULE SIP H-4

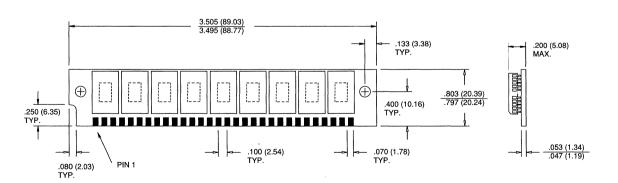


I-1

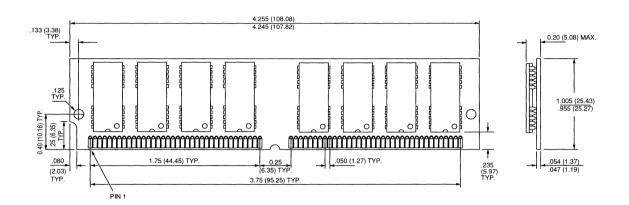


30-PIN MODULE SIMM

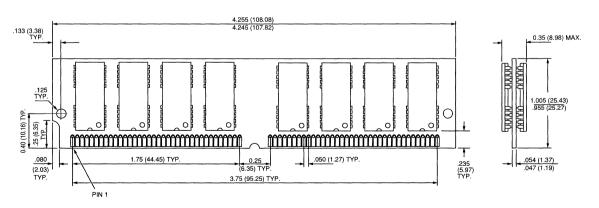
1-2



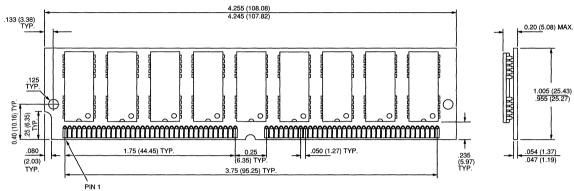
I-3


30-PIN MODULE SIMM

1-4

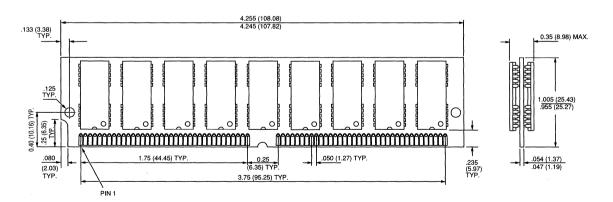


1-5

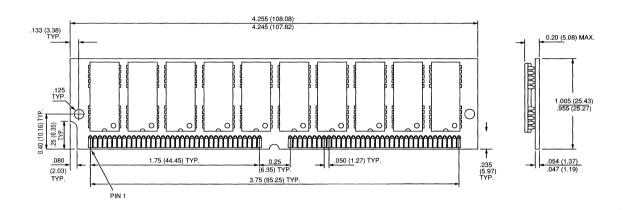


72-PIN MODULE SIMM

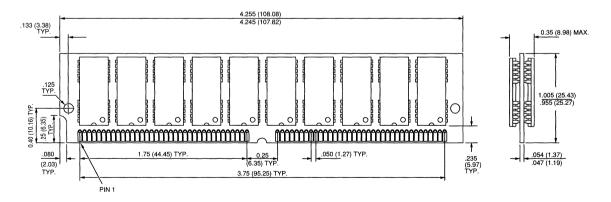
1-6



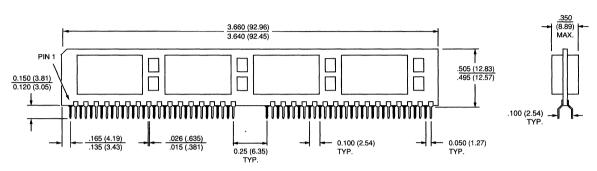
1-7


72-PIN MODULE SIMM

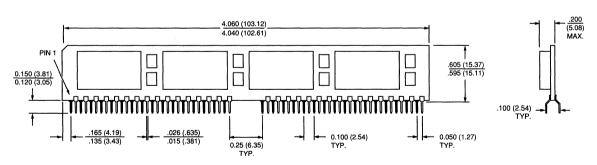
I-8

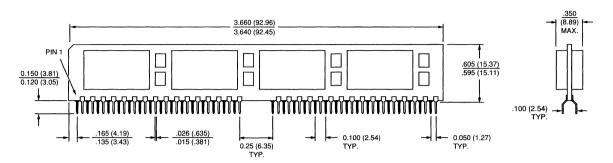


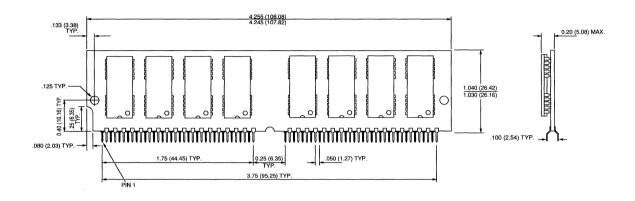
1-9

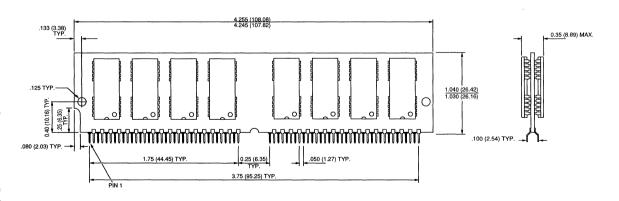

72-PIN MODULE SIMM

I-10

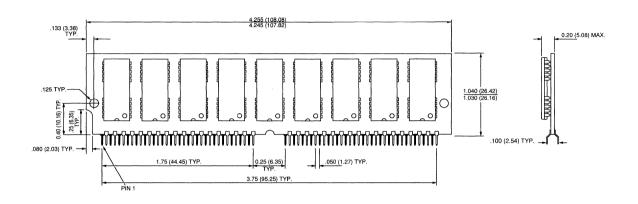



J-1

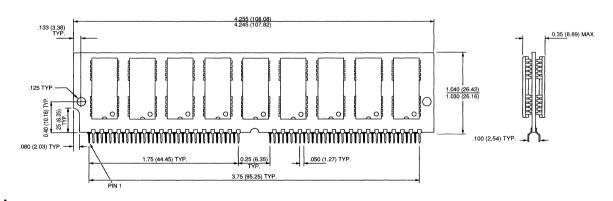

64-PIN MODULE ZIP

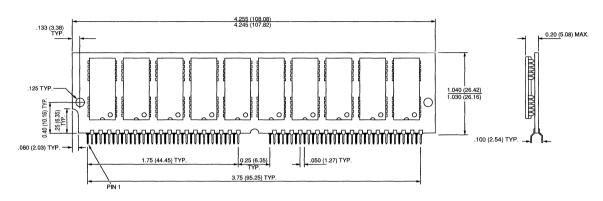


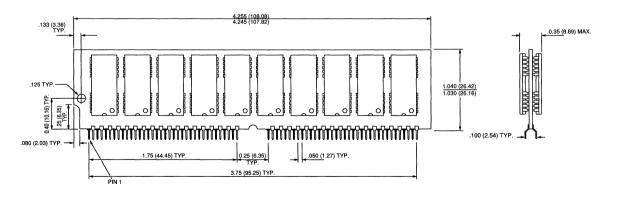
J-4



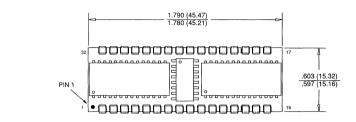
72-PIN MODULE ZIP

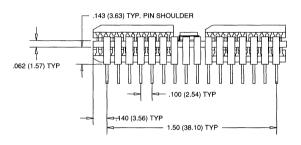


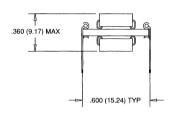

J-6

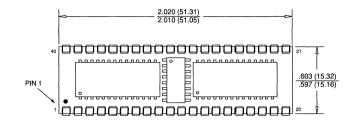

72-PIN MODULE ZIP

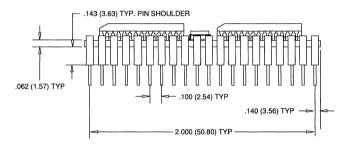
J-8

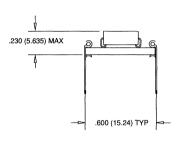


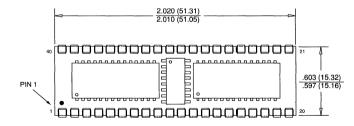

72-PIN MODULE ZIP

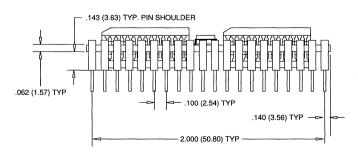


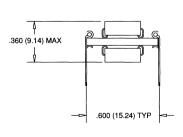

K-1











40-PIN MODULE DIP

K-3

DYNAMIC RAMS	1
DRAM MODULES	2
MULTIPORT DRAMS	3
STATIC RAMS	4
SYNCHRONOUS SRAMS	5
SRAM MODULES	6
CACHE DATA SRAMS	7
FIFO MEMORIES	8
APPLICATION/TECHNICAL INFORMATION	9
MILITARY INFORMATION	10
PACKAGE INFORMATION	
SALES INFORMATION	12

ORDER INFORMATION

Each Micron component family is manufactured and quality-controlled in the USA at our modern Boise, Idaho, facility employing Micron's low power, high performance CMOS silicon gate process. Micron products are functionally equivalent to other manufacturers' products meeting JEDEC standards. Device functionality is consistently assured over a wider power supply, temperature range and refresh range than specified. Each unit receives continuous

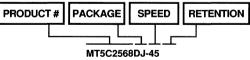

AMBYX™ system-level testing during many hours of accelerated burn-in prior to final test and shipment.

Please contact the factory for technical, test and application assistance. Micron can also furnish the sales representative and distributors nearest you. Micron's quality assured policy is to offer prompt, accurate and courteous service while assuring reliability and quality.

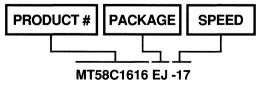
ORDER EXAMPLES:

DRAM

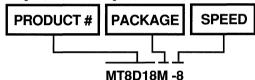
1 Meg x 1, 100ns in Plastic SOJ


MULTIPORT DRAM (VRAM)

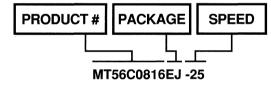
256K x 4, 100ns in ZIP


SRAM

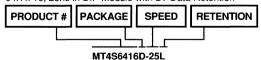
32K x 8, 45ns in Plastic SOJ


Synchronous SRAM

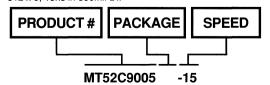
16K x 16, Clocked, Register Inputs, 17ns in Plastic LCC


DRAM MODULE

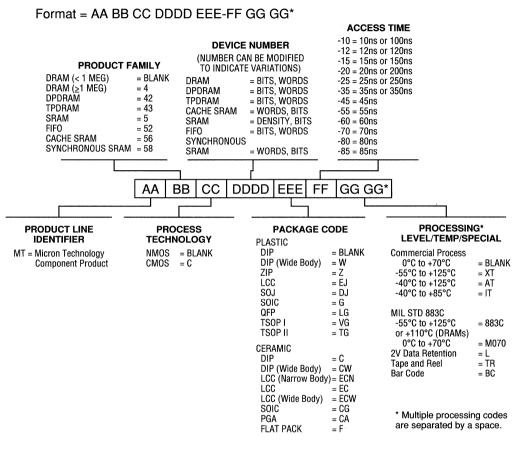
1 Meg x 8, 120ns Fast Page Mode Access, Leaded SIP


CACHE DATA SRAM

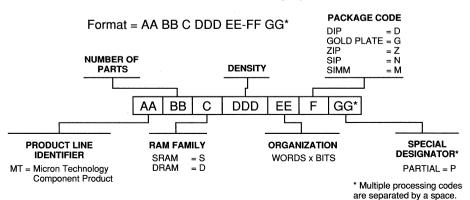
Dual 4K x 16, Single 8K x 16, 25ns in Plastic LCC


SRAM MODULE

64K x 16, 25ns in DIP Module with 2V Data Retention

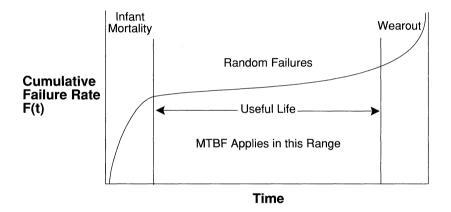

FIFO

512 x 9, 15ns in 300mil DIP



Component Product Numbering System

Module Product Numbering System



Overview

Product reliability pertains to product performance over time, i.e., a product's ability to perform its intended functions within specified performance limit, while operating under specified environmental conditions, for a specified length of time. This section contains a brief overview of some of the issues that affect the reliability of IC devices, and briefly describes Micron's reliability program. For a more in-depth discussion of reliability, the reader may refer to Micron's Quality/Reliability Literature.

Reliability Goals

Reliability goals of semiconductor ICs are typically discussed with reference to the traditional reliability curve of component life. The reliability curve, commonly known as the "bathtub curve," is shown in the bottom half of Figure 1, where h(t) is the hazard rate or the probability of a component failing at t_0+1 in time, given that it has survived at time t_0 .

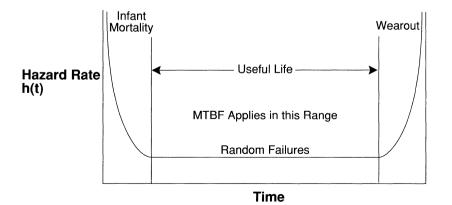


Figure 1
RELIABILITY CURVE

Figure 1 shows that the significant portion of this curve is the random failure segment. The first exponential segment (infant mortality) is attributed to gross manufacturing defects. Failures that occur in this region are screened out by Micron's in-house burn-in of all production material using the AMBYX $^{\text{\tiny M}}$ intelligent burn-in/test system, which is described in the following section.

Micron's AMBYX™ Burn-in/Test System

To effectively screen out infant mortalities Micron believes it is critical to have the ability to functionally test devices without removing them from the burn-in oven, and to do so several times during the duration of the burn-in cycle. This enables the manufacturer to determine if the failure rate curves of *individual* production lots have reached the random failure region of the bathtub curve by the end of the burn-in cycle. Production lots that do not exhibit a stable failure rate towards the end of the burn-in cycle are subjected to additional burn-in. This burn-in flow also alerts the manufacturer to the slightest variation in a product's failure rate, so that any needed corrective action can be taken.

To meet this need for an intelligent burn-in system, Micron developed the AMBYXTM burn-in/test system. By "burn-in/test" we mean that devices are tested for functionality without removing the DUT (device-under-test) boards from the burn-in oven. This effectively eliminates failures resulting from handling, thereby minimizing "noise" from the test results. During the test phase, the output produced by the devices under test is compared to the pattern expected. If a discrepancy occurs, the AMBYXTM system hardware records the failure and provides the following information: bit address, device address, board address, temperature, Vcc voltage, test pattern, time set.

A functional test of the devices is conducted at burn-in conditions (125°C, 7.5V Vcc) at the beginning of the burn-in cycle, to verify that the devices under test are being properly exercised. All units that fail this test are screened from the production material. The burn-in cycle then proceeds. For our DRAM family, for example, Micron specifies that all production material is subjected to burn-in in four intervals at the following conditions: 125°C at 7.5V Vcc for the first two intervals and 6.0V Vcc for the last two intervals, with functional testing of the devices performed at 125°C between each interval. During temperature ramping to 125°C and back to 25°C, the AMBYXTM system tests for thermal intermittent opens. This flow is illustrated Figure 2.

It is also noteworthy that the stress conditions during the last two intervals of production burn-in (i.e., 125° C and 6.0V Vcc) are identical to the stress conditions for the extended high-temperature-operating-life (HTOL) test, with which we calculate the random failure rate (described on pages 5-6) of the device during its useful life. The usefulness of this scheme is that it allows for a comparison of the failure rate during the latter part of production burn-in and the HTOL test and, thus, enables Micron to determine whether production material has been effectively screened for infant mortalities.

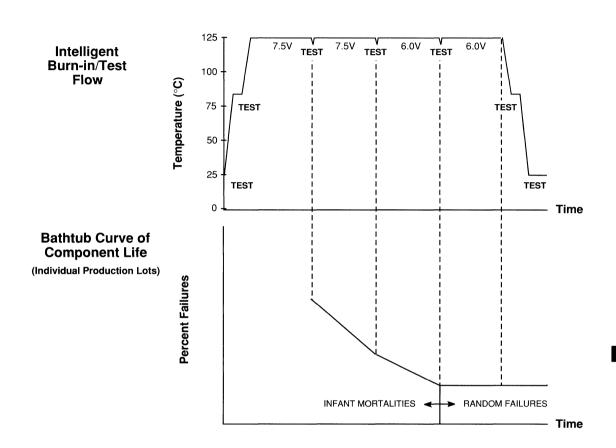
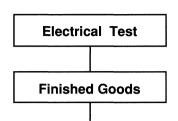



Figure 2
AMBYX™ BURN-IN/TEST FLOW AND TEST RESULTS

Environmental Process Monitor Program

Micron's environmental process monitor (EPM) program is designed to ensure the reliability of our standard products. Under this program, weekly samples of our various product and package types are subjected to a battery of environmental stress tests. During these tests, the devices are stressed for many hours under conditions designed to simulate years of normal field use. Equations, derived from intricate engineering models are applied to the data collected from these accelerated tests. From these calculations, we are able to predict failure rates under *normal use* conditions. The conditions for these tests, known as "accelerated environmental stress" tests are described in Figure 3. The EPM program described in this particular figure is for our 1 Meg DRAM.

Test Name and Description	Test Duration	Sample Size Per Week
HIGH TEMPERATURE OPERATING LIFE	1008 Hours	100 Parts
(125°C, 6.0V, ckbd / ckbd Complement Pattern)	3024 Hours	100 Parts
TEMPERATURE AND HUMIDITY	1008 Hours	100 Parts
(85°C, 85% R.H., 5.5V, Alternating Bias)	3024 Hours	100 Parts
AUTOCLAVE (121°C, 100% R.H., 15 PSI, No Bias)	288 Hours	50 Parts
LOW TEMPERATURE LIFE (-25°C, 7.0V, Dynamic Bias)	1008 Hours	10 Parts
TEMPERATURE CYCLE (-65°C TO +150°C, Air to Air)	1000 Cycles	100 Parts
THERMAL SHOCK (-55°C TO +125°C, Liquid to Liquid)	700 Cycles	25 Parts
HIGH TEMPERATURE STORAGE (150°C, No Bias)	1008 Hours	25 Parts
ELECTROSTATIC DISCHARGE (+ and -)	MIL STD 3015.7	24 Parts

NOTE: Samples Pulled from Five Different Lots at Finished Goods.

Figure 3
ENVIRONMENTAL PROCESS MONITOR – 1 MEG DRAM

Failure Rate Calculation

The failure rate during the useful life of the device is expressed as percent failures per thousand device hours or as FITs (failures in time, per billion device hours), and is calculated as follows:

where: Pn = Poisson Statistic (at a given confidence level). For the data above, Pn at 60% confidence level equals .916.

Device hours = sample size multiplied by test time (in hours). In our example, to follow, device hours equal 1.929 × 106.

A.F. = acceleration factor between the stress environment and *maximum* use conditions. For the 1 Meg DRAM, the acceleration factor between 125°C, 6.0V (HTOL stress conditions) and 70°C, 5.5V (maximum operating conditions) equals 16.5. (Calculation of this acceleration factor is described in the following section).

Thus, the failure rate of the Micron 1 Meg DRAM family is computed as follows:

Failure Rate =
$$.916 \div (1.929 \times 10^6) (16.5) = 2.878 \times 10^{-8}$$

where: Total device hours at test conditions = 1.929×10^6 .

Equivalent device hours at maximum use conditions (70°C, 5.5V Vcc) using an acceleration factor of $16.5 = 32 \times 10^6$.

To translate the above failure rate into percent failures per thousand device hours, we multiply the failure rate obtained from the equation above by 10^5 :

Failure Rate =
$$(2.878 \times 10^{-8}) \times 10^{5} = 0.0029\%$$
 per 1K device hours

To state the failure rate in FITs, we multiply the failure rate obtained from the equation above by 10°:

Failure Rate =
$$(2.878 \times 10^{-8}) \times 10^9 = 29$$
 FITs

NOTE: *Typical* use conditions for the 1 Meg DRAM are 50°C and 5.0V Vcc. When we calculate the acceleration factor between the stress environment (70°C, 5.5V Vcc) and these typical conditions, we find that A.F. equals 125.4. Using the acceleration factor 125.4, the FIT rate for the 1 Meg DRAM is calculated as follows:

Failure Rate =
$$916 \div (1.929 \times 10^6) (125.4) = 3.787 \times 10^{-9}$$

= $(3.787 \times 10^{-9}) \times 10^9 = 3.787$
= 4 FITs (rounded)

Acceleration Factor Calculation:

Again, using the 1 Meg DRAM for our example, the acceleration factor between high temperature operating life stress conditions (125°C, 6.0V) and maximum operating conditions (70°C, 5.5V) is computed using the following models:

1. Acceleration factor due to temperature stress:

The acceleration factor due to temperature stress is computed using the Arrhenius equation, which is stated as follows:

$$A.F._{t^{1/t^2}} = \exp \left[\frac{E_a}{kT_1} - \frac{E_a}{kT_2} \right]$$

where: k = Boltzmann's constant, which is equal to 8.617 x 10^{-5}

 T_1 and T_2 = operating and stress temperatures, respectively, in kelvins

E = activation energy in eV (For oxide defects, which is the most common failure mechanism for the 1 Meg DRAM, used in our example, the activation energy is determined to be 0.3eV).

Using these values, the temperature acceleration factor between 125°C and 70°C is computed to be 4.07.

2. Acceleration factor due to voltage stress:

The acceleration factor due to voltage stress is computed using the following model:

A.
$$F_{v_1/v_2} = \exp [\beta (v_1 - v_2)]$$

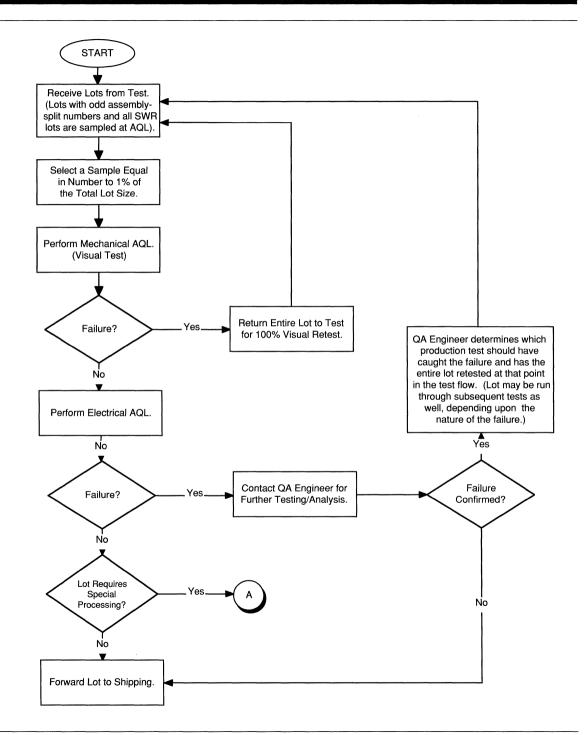
where: v_1 and v_2 = stress voltage and operating voltage, respectively, in volts

 β = constant, the value of which was derived experimentally by running several sessions of Micron's intelligent burnin test sequence at different voltages on large numbers of the device. (For the 1 Meg DRAM, used in our example, β equals 2.8).

Thus, the voltage acceleration factor for the 1 Meg DRAM between 6.0V (stress condition) and 5.5V (maximum operating condition) is computed to be 4.06.

Finally, the overall acceleration factor due to temperature and voltage stress is calculated as the product of the two respective acceleration factors or:

$$A.F._{overall} = A.F._{temperature} \times A.F._{voltage}$$


Outgoing Product Quality

Before being sent to our finished goods area, where products are prepared for shipping, a special unit within the quality assurance department takes a 1% sample from each production lot. These samples are subjected to visual and electrical testing in order to measure the AQL (acceptable quality level) of all outgoing product. A flowchart illustrating Micron's AQL test procedure is provided in Figure 4.

Visual or mechanical testing consists of an unaided visual inspection of the sample devices for any physical irregularities which could negatively affect their performance. If a sample device is found to have, for example, a bent lead, a package irregularity or excess solder, the entire lot is returned to our test area for a 100% visual inspection.

Electrical testing of the sample devices is performed using ATE (automatic test equipment) systems. Testing is conducted at room temperature (~25°C) and at 70°C. Should an electrical failure occur, the failing device is turned over to a quality assurance engineer for further testing and analysis. If after completing this analysis the electrical failure is confirmed, the QA engineer determines which production monitor/test should have caught the failure and the entire lot is retested at that point in the test flow. Correlating the failure to the test where it should originally have been detected, and discerning why it was not tested, are important steps in preserving the integrity of our test process.

The percent devices found to be defective in the total number of devices sampled weekly is recorded using a control chart. This control chart, containing AQL data for the previous 52 weeks, is presented in weekly management meetings, where plans for corrective action are made, as needed.

Example of Special Processing: Lot Mounted on Tape & Reel

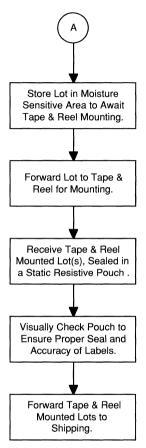


Figure 4
AQL TEST FLOW FOR ALL OUTGOING PRODUCT

Automated Data Capture & Analysis

Micron has developed a sophisticated data capture and analysis system with a computer network tailored to the needs of quality IC manufacturing. Figure 5 shows the various functional areas that provide the input to our VAX data bases.

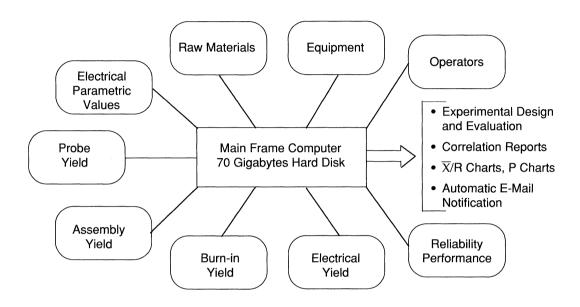


Figure 5
STATISTICAL CORRELATION

Data Capture

Automated, real-time data capture makes real-time charting (\overline{X}) and R charts, etc.) of all critical operations and processes possible, and ensures that appropriate manufacturing personnel are alerted on a timely basis, should unexpected variation occur. As production lots move through each manufacturing step, detailed information (including step number, lot number, machine number, date/time, and operator number) are entered into the production data base. In addition; automated, highly-programmable measurement systems are utilized to capture a host of parameters associated with equipment, on-line process material, and environmental variables.

Analytical Tools

By using highly flexible, on-line data extraction programs, system users have the ability to tap this vast data base and to design their own correlation and trend analyses. The ability to correlate process variables to product performance allows us to make on-line projections of the quality of our finished product for a given lot or process run. In addition, we can estimate the impact of process improvements on quality well in advance and can make the impact of process deviations more visible to our engineers. This approach allows us to model yield and quality parameters based on on-line parameters. We then use this model to predict the final product results. Following is a description of the various means by which we analyze data:

 GROUP SUMMARIES: Summaries, which provide the means and standard deviations of user-defined parametrics, enable system users to compare the parametric values of production lots as well as special engineering lots.

- TREND ANALYSIS: Trend charts are routinely generated for critical parameters. System users can trend the means and
 ranges of any probe or parametric data captured throughout the manufacturing process.
- CORRELATION ANALYSIS: Correlation analysis can be performed on any combination of factors; such as equipment,
 masks, or electrical parameters. One report, regularly produced and disseminated to key personnel, takes two groups
 of lots (one with a high failure rate, the other with a low failure rate) and identifies all the pieces of equipment that are
 common to one or the other group. The report, thus, quickly alerts us should there be a correlation between a lot with a
 high failure rate and a particular piece(s) of equipment in the wafer fabrication or assembly areas.

Another regularly produced report analyzes a user-selected set of database parametrics against an index, such as manufacturing yield. Lots are divided into three sub-groups(upper yielding, middle yielding and lower yielding). The report then correlates the yields with all electrical parametric values taken on individual lots at wafer sort. Thus, the report helps us determine which processing step may have caused the yields to vary among the three subgroups.

- STATISTICAL PROCESS CONTROL CHARTS: SPC control charts are used throughout the company to monitor and
 evaluate critical process parameters, such as, critical dimensions (CDs), oxide thickness, chemical vapor depositions
 (CVDs), particle counts, temperature and humidity, and many other critical process and product quality parameters.
- OVERLAYS or WAFER MAPS: Maps, which are produced for all wafers during probe, show various parameters as a
 function of position on the wafer and are very useful for problem isolation. Maps may be analyzed individually or in
 groups. For example, wafers from an entire lot may be analyzed in relation to one particular parameter.
- RS/1 DISCOVER/EXPLORE: This analysis software is used for experimental design, and evaluation of results. The statistical approach supported by this software (i.e., the use of *t* tests, ANOVA tables, multiregression analysis, etc.) has proven invaluable in reducing time expended for product development and for trouble shooting. It is also used to determine the relationships between process output and probe and parametric data. Using multiregression analysis, for example, we are able to determine the relationship between L effective and CD dimensions to the speed of a device.

The use of automation in data capture, analysis, and feedback greatly enhances the flexibility and speed with which we are able to view all aspects of the manufacturing process. This effective data analysis and feedback system helps to reduce parametric deviations, improve margin to specifications, increase manufacturing yields, and provide for more accurate fabrication output planning.

ALABAMA

Representative

Southeast Technical Group 101 Washington, Suite 6 Huntsville, AL 35801 Phone - 205-534-2376 Fax - 205-534-2384

Distributors

Hall-Mark Electronics Corporation 4900 Bradford Drive Huntsville, AL 35805 Phone - 205-837-8700 FAX - 205-830-2565

Pioneer Technology 4835 University Square, #5 Huntsville, AL 35816 Phone - 205-837-9300 FAX - 205-837-9358

Military Distributor

Zeus Components, Inc. 1750 West Broadway, Suite 114 Oviedo, FL 32765 Phone - 407-365-3000 FAX - 407-365-2356

ARIZONA

Representative

Quatra Associates 4645 South Lakeshore Dr., Ste #1 Tempe, AZ 85282 Phone - 602-820-7050 FAX - 602-820-7054

Distributors

Anthem Electronics Incorporated 1555 West 10th Pl., #101 Tempe, AZ 85281 Phone - 602-966-6600 FAX - 602-966-4826

Hall-Mark Electronics Corporation 4637 S. 36th Place Phoenix, AZ 85040 Phone - 602-437-1200 FAX - 602-437-2348

Wyle Laboratories 4141 E. Raymond St., Ste #1 Phoenix, AZ 85040 Phone - 602-437-2088 FAX - 602-437-2124

Military Distributor

JAN Devices, Inc. 6925 Canby, Bldg. 109 Reseda, CA 91335 Phone - 818-708-1100 FAX - 818-708-7436

Zeus Components, Inc. 6276 San Ignacio Ave., Ste E San Jose, CA 95119 Phone - 408-629-4789 FAX - 408-629-4892

ARKANSAS

Representative

Nova Marketing Incorporated 4924 S. Memorial, Suite 1339 Tulsa, OK 74145 Phone - 918-660-5105 FAX - 918-665-3815

Distributors

Anthem Electronics, Inc. 651 N. Plano Rd., Suite 429 Richardson, TX 75081 Phone - 214-238-7100 FAX - 214-238-0237

Hall-Mark Electronics Corporation 11420 Pagemill Road Dallas, TX 75243 Phone - 214-553-4300

FAX - 214-343-5988 Pioneer Electronics 13765 Beta Dallas, TX 75244

Phone - 214-386-7300 FAX - 214-490-6419

Wyle Laboratories 1810 N. Greenville Avenue Richardson, TX 75081 Phone - 214- 235-9953 FAX - 214-644-5064

Military Distributor

Zeus Components, Inc. 1800 North Glenville, Ste 120 Richardson, TX 75081 Phone - 214-783-7010

FAX - 214-234-4385

CALIFORNIA

Representatives (Northern California)

Bay Area Electronics Sales, Inc 2001 Gateway Place, Ste 315 San Jose, CA 95110 Phone - 408-452-8133 FAX - 408-452-8139

Representatives (Southern California)

Jones & McGeoy Sales Incorporated 801 Parkcenter Drive, Ste 250 Santa Ana, CA 92705 Phone - 714-547-6466 FAX - 714-547-7670

9868 Scranton Road, Suite 414 San Diego, CA 92121 Phone - 619-453-7948 FAX - 619-453-0034

Distributors

Anthem Electronics Incorporated 1040 E. Brokaw Road San Jose, CA 95131 Phone - 408-453-1200 FAX - 408-452-2281

Anthem Electronics Incorporated 9131 Oakdale Avenue Chatsworth, CA 91311 Phone - 818-775-1333 FAX - 818-775-1302

Anthem Electronics Incorporated 1 Old Field Drive East Irvine, CA 92718-2809 Phone - 714-768-4444 FAX - 714-380-4747

Anthem Electronics Incorporated 580 Menlo Drive, Suite 8 Rocklin, CA 95677 Phone - 916-624-9744 Fax - 916-624-9750

Anthem Electronics Incorporated 9369 Carroll Park Drive San Diego, CA 92121 Phone - 619-453-9005 FAX - 619-546-7893

Hall-Mark Electronics Corporation 9420 Topanga Canyon Blvd. Chatsworth, CA 91311 Phone - 818-773-4500 FAX - 818-773-4555

Hall-Mark Electronics Corporation 580 Menlo Drive, Suite 2 Rocklin, CA 95677 Phone - 916-624-9781 Fax - 916-961-0922

Hall-Mark Electronics Corporation 3878 Ruffin Road, Ste. B San Diego, CA 92123

San Diego, CA 92123 Phone - 619-268-1201 FAX - 619-268-0209

Hall-Mark Electronics Corporation

2105 Lundy Avenue San Jose, CA 95131

Phone - 408-432-4000

FAX - 408-432-4044

Hall-Mark Electronics Corporation #1 Mauchly

Irvine, CA 92718

Phone - 714-727-6000

FAX - 714-727-6066

Pioneer Technologies 134 Rio Robles

San Iose, CA 95134

Phone - 408-954-9100

FAX - 408-954-9113

Wyle Laboratories

(Accounting Office Only)

128 Maryland Ave.

El Segundo, CA 90245

Phone - 213-322-1763

Wyle Laboratories

3000 Bowers Avenue

Santa Clara, CA 95051

Phone - 408-727-2500

FAX - 408-727-5896

Wyle Laboratories

17872 Cowan Avenue

Irvine, CA 92714

Phone - 714-863-9953 FAX - 714-863-0473

Wyle Laboratories

2951 Sunrise Blvd, Suite #175

Rancho Cordova, CA 95742 Phone - 916-638-5282

FAX - 916-638-1491

Wyle Laboratories

9525 Chesapeake Drive

San Diego, CA 92123

Phone - 619-565-9171

FAX - 619-565-0512

Wyle Laboratories

26677 W. Agoura Road

Calabasas, ČA 91302

Phone - 818-880-9000

FAX - 818-880-5510

Military Distributors

JAN Devices, Inc.

6925 Canby, Bldg. 109

Reseda, CA 91335 Phone - 818-708-1100

FAX - 818-708-7436

Zeus Components, Inc. 22700 Savi Ranch Parkway

Yorba Linda, CA 92686

Phone - 714-921-9000 FAX - 714-921-2715

Zeus Components, Inc.

5236 Colodny Drive, Suite 102

Agoura Hills, CA 91301

Phone - 818-889-3838

FAX - 818-889-2464

Zeus Components, Inc.

5625 Ruffin Road, Ste 200

San Diego, CA 92123

Phone - 619-277-9681

FAX - 619-277-7105

Zeus Components, Inc.

6276 San Ignacio Ave., Ste E

San Jose, ČA 95119

Phone - 408-629-4789

FAX - 408-629-4892

CANADA

Representatives

Clark-Hurman Associates

20 Regan Road, Unit #14

Brampton, Ontario L7A 1C3

Canada Phone - 416-840-6066

FAX - 416-840-6091

Clark-Hurman Associates

66 Colonnade Road, Ste 205

Nepean, Ontario K2E 7K7

Canada

Phone - 613-727-5626

FAX - 613-727-1707

Clark-Hurman Associates

19 Donegani, Suite 5

Pointe Claire, Ouebec H9R 2V6

Canada

Phone - 514-426-0453

FAX - 514-426-0455

Davetek Marketing

#37 4429 Kingsway

Burnaby, B.C. V5H 2A1

Canada

Phone - 604-430-3680

FAX - 604-435-5490

Davetek Marketing

#206 2723 37th Avenue

N.E. Calgary, AB T1Y 5R8

Canada Phone 403-291-4984

FAX - 403-250-3445

Distributor

Semad Electronic

85 Spy Court

Markham, Ontario L3R 4Z4

Canada

Phone - 416-475-8500

FAX - 416-475-4158

Semad Electronic 1825 Woodward Dr.

Ottawa, Ontario K2C OR2

Canada

Phone - 613-727-8325

FAX - 613-727-9489

Semad Electronic

8563 Government Street

Burnaby, BC V3N 4S9

Canada

Phone - 604-420-9889

FAX - 604-420-0124

Semad Electronic

243 Place Frontenac

Pointe Claire, PO H9R 4Z7

Canada Phone - 514-694-0860

FAX - 514-694-0965

Semad Electronic

6120 3rd St. S.E., Unit 9

Calgary, Alberta T2H 1K4

Canada

Phone - 403-252-5664

FAX - 403-255-0966

COLORADO

Representative

Wescom Marketing

4891 Independence St.

Wheatridge, CO 80033

Phone - 303-422-8957

FAX - 303-422-9892

Distributors

Anthem Electronics Incorporated

373 Inverness Drive South

Englewood, CO 80112

Phone - 303-790-4500 FAX - 303-790-4532

Hall-Mark Electronics Corporation

12503 E. Euclid Dr., #20

Englewood, CO 80111

Phone - 303-790-1662 FAX - 303-790-4991

Wyle Laboratories 451 E 124th Street Thornton, CO 80241 Phone - 303-457-9953 FAX - 303-457-4831

Military Distributor

JAN Devices, Inc. 6925 Canby, Bldg. 109 Reseda, CA 91335 Phone - 818-708-1100 FAX - 818-708-7436

Zeus Components, Inc. 6276 San Ignacio Ave., Ste E San Jose, CA 95119 Phone - 408-629-4789 FAX - 408-629-4892

CONNECTICUT

Representative

Advanced Tech Sales Incorporated Westview Office Park Building 2 , Suite 1C 850 N. Main St. Ext. Wallingford, CT 06492 Phone - 203-284-0838 FAX - 203-284-8232

Distributors

Anthem Electronics 61 Mattatuck Heights Waterbury, CT 06705 Phone - 203-575-1575 FAX - 203-596-3232

Hall-Mark Electronics Corporation 615 W. Johnson Ave, Bldg. 3 Cheshire, CT 06410 Phone - 203-271-2844

FAX - 203-272-1704 Pioneer Standard 112 Main Street Norwalk, CT 06851

Phone - 203-853-1515 FAX - 203-838-9901

Military Distributor

Zeus Components, Inc. 100 Midland Ave. Port Chester, NY 10573 Phone - 914-937-7400 FAX - 914-937-2553

DELAWARE

Representative

Omega Electronic Sales Incorporated 2655 Interplex Drive, Suite 104 Trevose, PA 19047 Phone - 215-244-4000

FAX - 215-244-4104 Distributor

Pioneer Technologies Keith Valley Business Center 500 Enterprise Road Horsham, PA 19044 Phone - 215-674-4000 FAX - 215-674-3107

Military Distributor

Zeus Components, Inc. 8930-A Route 108 Columbia, MD 21045 Phone - 301-997-1118 FAX - 301-964-9784

DISTRICT OF COLUMBIA

Representative

Electronic Engineering & Sales, Inc. 235 Prince George Street Annapolis, MD 21401 Phone - 301-269-6573 FAX - 301-269-6476

Distributor

Pioneer Technologies 15810 Gaither Drive Gaithersburg, MD 20877 Phone - 301-921-0660 FAX - 301-921-3852

FLORIDA

Representatives

Photon Sales, Inc. 1600 Sarno Rd., Ste #21 Melbourne, FL 32935 Phone - 407-259-8999 FAX - 407-259-1323

Distributors

Anthem Electronics Incorporated 2555 Enterprise Rd, Ste #11-2 Clearwater, FL 34623 Phone - 813-797-2900 FAX - 813-796-4880

Chip Supply 7725 N. Orange Blossom Trail Orlando, FL 32810-2696 Phone - 407-298-7100 FAX - 407-290-0164 Hall-Mark Electronics Corporation 10491 72nd St. North Largo, FL 34647 Phone - 800-282-9350 FAX - 813-544-4394

Hall-Mark Electronics Corporation 3161 Southwest 15th Street Pompano Beach, FL 33069-4806 Phone - 305-971-9280 FAX - 305-971-9339

Hall-Mark Electronics Corporation 489 E Semoran Blvd, #145 Casselserry, FL 32707 Phone - 407-830-5855 FAX - 407-767-5002

Pioneer Technologies 337 South-North Lake #1000 Altamonte Springs, FL 32701 Phone - 407-834-9090 FAX - 407-834-0865

Pioneer Technologies 5500 Rio Vista Drive Clearwater, FL 34620 Phone - 813-531-5037 FAX - 918-492-0546

Pioneer Technologies 674 S. Military Trail Deerfield Beach, FL 33442 Phone - 305-428-8877 FAX - 305-481-2950

Military Distributor

Zeus Components, Inc. 1750 W. Broadway, Suite 114 Oviedo, FL 32765 Phone - 407-365-3000 FAX - 407-365-2356

GEORGIA

Representative

Southeast Technical Group 2620 Deer Isle Cove Lawrenceville, GA 30244 Phone - 404-979-2055 FAX - same

Distributors

Hall-Mark Electornics Corporation 3425 Corporate Way, Suite A Ouluth, GA 30136 Phone - 404-623-4400 FAX - 404-476-8806

Pioneer Technologies 3100F Northwoods Place Norcross, GA 30071 Phone - 404-448-1711 FAX - 404-446-8270

Military Distributor

Zeus Components, Inc. 1750 West Broadway, Ste 114 Oveido, FL 32765 Phone - 407-365-3000 FAX - 407-365-2356

HAWAII

Representative

Bay Area Electronics 2001 Gateway Pl., Ste. 315 San Jose, CA 95110 Phone - 408-452-8133 FAX - 408-452-8139

Distributors

Anthem Electronics Incorporated 1040 E. Brokaw Road San Jose, CA 95131 Phone - 408-453-1200 FAX - 408-452-2281

Hall-Mark Electronics Corporation 2105 Lundy Avenue San Jose, CA 95131 Phone - 408-432-4000

Wyle Laboratories 3000 Bowers Avenue Santa Clara, CA 95051 Phone - 408-727-2500 FAX - 408-727-5896

FAX - 408-432-4044

IDAHO

Representative

Contact Micron Component Sales Phone - 208-368-3900

Military Distributor

IAN Devices, Inc. 6925 Canby, Bldg. 109 Reseda, CA 91335 Phone - 818-708-1100 FAX - 818-708-7436

Zeus Components, Inc. 6276 San Ignacio Ave., Ste E San Jose, CA 95119 Phone - 408-629-4789 FAX - 408-629-4892

ILLINOIS

Representatives

Oasis Sales Corporation 1101 Tonne Road Elk Grove Village, IL 60007 Phone - 708-640-1850 FAX - 708-640-9432

Advanced Technical Sales 1810 Craig Road, Ste 213 St. Louis, MO 63146 Phone - 314-878-2921 FAX - 314-878-1994

Distributors

Anthem Electronics Incorporated 1300 Remington, Suite A Schaumburg, IL 60173 Phone - 708-884-0200 FAX - 708-884-0480

Hall-Mark Electronics Corporation 210 Mittel Drive Wooddale, IL 60191 Phone - 708-860-3800 FAX - 708-860-0239

Pioneer Standard 2171 Executive Drive, Ste 200 Addison, IL 60101 Phone - 708-495-9680 FAX - 708-495-9831

Military Distributors

Zeus Components, Inc. 100 Midland Ave. Port Chester, NY 10573 Phone - 914-937-7400 FAX - 914-937-2553

Zeus Components, Inc. 2912 Springboro West, Ste 106 Dayton, OH 45439 Phone - 513-293-6162 FAX - 513-293-1781

INDIANA

Representatives

Electro Reps, Inc. 7240 Shadeland Station Suite 275 Indianapolis, IN 46256 Phone - 317-842-7202 FAX - 317-841-0230

Electro Reps, Inc. 407 Airport North Office Park Fort Wavne, IN 46825 Phone - 219-489-8502 FAX - 219-489-8408

Distributors

Hall-Mark Electronics Corporation 4275 W. 96th Street Indianapolis, IN 46268 Phone - 317-872-8875 FAX - 317-876-7165

Pioneer Standard 9350 N. Priority Wy, West Dr Indianapolis, IN 46240 Phone - 317-573-0880 FAX - 317-573-0979

Military Distributors

Zeus Components, Inc. 100 Midland Ave. Port Chester, NY 10573 Phone - 914-937-7400 FAX - 914-937-2553

Zeus Components, Inc. 2912 Springboro West, Ste 106 Dayton, OH 45439 Phone - 513-293-6162 FAX - 513-293-1781

IOWA

Representative

Advanced Technical Sales 375 Collins Road N.E. Cedar Rapids, IA 52402 Phone - 319-393-8280 FAX - 319-393-7258

Distributors

Anthem Electronics Incorporated 7646 Golden Triangle Dr. Eden Prairie, MN 55344 Phone - 612-944-5454 FAX - 612-944-3045

Hall-Mark Electronics Corporation 210 Mittel Drive Wooddale, IL 60191 Phone - 708-860-3800 FAX - 708-860-0239

SALES INFORMATION

Pioneer Standard 7625 Golden Triangle Drive Eden Prarie, MN 55344 Phone - 612-944-3355 FAX - 612-944-3794

Military Distributor

Zeus Components, Inc. 1800 North Glenville, Ste 120 Richardson, TX 75081 Phone - 214-783-7010 FAX - 214-234-4385

KANSAS

Representative

Advanced Technical Sales 601 N. Mur-Len, Suite 8 Olathe, KS 66062 Phone - 913-782-8702 FAX - 913-782-8641

Distributors

Hall-Mark Electronics Corporation 10809 Lakeview Drive Lenexa, KS 66215 Phone - 913-888-4747 FAX - 913-888-0523

Pioneer Electronics 2029 Woodland Pkwy., Ste #101 St. Louis, MO 63146 Phone - 314-432-4350 FAX - 314-432-4854

Military Distributor

Zeus Components, Inc. 1800 North Glenville, Ste 120 Richardson, TX 75081 Phone - 214-783-7010 FAX - 214-234-4385

KENTUCKY

Representatives

Electro Reps., Inc. 7240 Shadeland Station, Ste. 275 Indianapolis, IN 46256 317-842-7202 FAX - 317-489-8408

Scott Electronics, Inc. 10901 Reed-Hartman Hwy., Suite 301 Cincinnati, OH 45242-2821 Phone - 513-791-2513 FAX - 513-791-8059

Distributors

Hall-Mark Electronics Corporation (E. Ky) 400 E Wilson Bridge Rd, Ste S Worthington, OH 43085 Phone - 614-888-3313 FAX - 614-888-0767

Hall-Mark Electronics Corporation (W. Ky) 4275 W. 96th Street Indianapolis, IN 46268 Phone - 317-872-8875 FAX - 317-876-7165

Pioneer Standard (W. Ky) 9350 N. Priority Way, W. Dr. Indianapolis, IN 46240 Phone - 317-573-0880 FAX - 317-573-0979 Pioneer Standard (E. Ky) 4433 Interpoint Boulevard Dayton, OH 45424 Phone - 513-236-9900 FAX - 513-236-8133

LOUISIANA

Representative

Nova Marketing Incorporated 8350 Meadow Road Suite 174 Dallas, TX 75231 Phone - 214-750-6082 FAX - 214-750-6068

Distributors

Hall-Mark Electronics Corporation 11333 Pagemill Road Dallas, TX 75243 Phone - 214-343-5000 FAX - 214-343-5851

Pioneer Electronics 13765 Beta Dallas, TX 75244 Phone - 214-386-7300 FAX - 214-490-6419

Wyle Laboratories 1810 North Greenville Avenue Richardson, TX 75081 Phone - 214-235-9953 FAX - 214-644-5064

Military Distributors

Zeus Components, Inc. 8930-A Route 108 Columbia, MD 21045 Phone - 301-997-1118 FAX - 301-964-9784

Zeus Components, Inc. 1800 North Glenville, Suite 120 Richardson, TX 75081 Phone - 214-783-7010 FAX - 214-234-4385

MAINE

Representative

Advanced Tech Sales Incorporated 348 Park Street, Ste 102 North Reading, MA 01864 Phone - 508-664-0888 FAX - 508-664-5503

Distributors

Anthem Electronics 36 Jonspin Road Wilmington, MA 01887 Phone - 508-657-5170 FAX - 508-657-6008 Hall-Mark Electronics Corporation Pinehurst Park, 6 Cook Street Billerica, MA 01821 Phone - 617-935-9777 FAX - 617-667-4129

Pioneer Standard 44 Hartwell Avenue Lexington, MA 02173 Phone - 617-861-9200 FAX - 617-863-1547

Military Distributor

Zeus Components, Inc. 11 Lakeside Office Park 607 North Avenue Wakefield, MA 01880 Phone - 617-246-8200 FAX - 617-246-8293

MARYLAND

Representative

Electronic Engineering & Sales Inc. 235 Prince George Street Annapolis, MD 21401 Phone - 301-269-6573 FAX - 301-269-6476

Distributors

Anthem Electronics 9020A Mendenhall Court Columbia, MD 21045 Phone - 301-995-6640 FAX - 301-381-4379

Hall-Mark Electronics Corporation 10240 Old Columbia Road Columbia, MD 21046 Phone - 301-988-9800 FAX - 301-381-2036

Pioneer Technologies 15810 Gaither Drive Gaithersburg, MD 20877 Phone - 301-921-0660 FAX - 301-921-3852

Military Distributor

Zeus Components, Inc. 8930-A Route 108 Columbia, MD 21045 Phone - 301-997-1118 FAX - 301-964-9784

MASSACHUSETTS

Representative

Advanced Tech Sales 348 Park Street, Ste 102 North Reading, MA 01864 Phone - 508-664-0888 FAX - 508-664-5503

Distributors

Anthem Electronics, Inc. 36 Jonspin Road Wilmington, MA 01887 Phone - 508-657-5170 FAX - 508-657-6008

Gerber Electornics 128 Carnegie Row Norwood, MA 02062 Phone - 617-769-6000 FAX - 617-762-8931

Hall-Mark Electronics Corporation Pinehurst Park, 6 Cook Street Billerica, MA 01821 Phone - 617-935-9777 FAX - 617-667-4129

Pioneer Standard 44 Hartwell Avenue Lexington, MA 02173 Phone - 617-861-9200 FAX - 617-863-1547

Wyle Laboratories 15 3rd Avenue Burlington, MA 01803 Phone - 617-272-7300 FAX - 617-272-6809

Military Distributor

JAN Devices, Inc. 44 Cochrane St. Melrose, MA 02176 Phone - 617-662-3901

Zeus Components, Inc. 11 Lakeside Office Park Wakefield, MA 01880 Phone 617-246-8200 FAX - 617-246-8293

MICHIGAN

Representatives

Rathsburg Associates Incorporated 34605 Twelve Mile Rd. Farmington Hills, MI 48331-3263 Phone - 313-489-1500 FAX - 313-489-1480 Rathsburg Associates Incorporated 2680 Horizon, S.E. Grand Rapids, MI 49506 Phone - 616-949-7400 FAX - 616-949-1909

Distributors

Hall-Mark Electronics Corporation 38027 Schoolcraft Road Livonia, MI 48150 Phone - 313-462-1205 FAX - 313-462-1830

Pioneer Standard 4505 Broadmoor Avenue, S.E. Grand Rapids, MI 49512 Phone - 616-698-1800 FAX - 616-698-1831

Pioneer Standard 13485 Stamford Livonia, MI 48150 Phone - 313-525-1800 FAX - 313-427 3720

Military Distributors

Zeus Components, Inc. 100 Midland Ave. Port Chester, NY 10573 Phone - 914-937-7400 FAX - 914-937-2553

Zeus Components, Inc. 2912 Springboro West, Ste 106 Dayton, OH 45439 Phone - 513-293-6162 FAX - 513-293-1781

MINNESOTA

Representative

HMR Incorporated 9065 Lyndale Avenue Minneapolis, MN 55420-3520 Phone - 612-888-2122 FAX - 612-884-4768

Distributors

Anthem Electronics Inc. 7646 Golden Triangle Dr. Eden Prairie, MN 55344 Phone - 612-944-5454 FAX - 612-944-3045

Hall-Mark Electronics Corporation 10300 Valley View Rd, Ste 101 Eden Prairie, MN 55344 Phone - 612-941-2600 FAX - 612-941-5778 Pioneer Standard 7625 Golden Triangle Drive Eden Prairie, MN 55344 Phone - 612-944-3355 FAX - 612-944-3794

Military Distributors

Zeus Components, Inc. 100 Midland Ave. Port Chester, NY 10573 Phone - 914-937-7400 FAX - 914-937-2553

Zeus Components, Inc. 2912 Springboro West, Ste 106 Dayton, OH 45439 Phone - 513-293-6162 FAX - 513-293-1781

MISSISSIPPI

Representative

Southeast Technical Group Route 10, Box 368 Meridian, MS 39301 Phone - 601-485-7055 FAX - 601-485-7063

Distributor

Hall-Mark Electronics Corporation 4900 Bradford Drive Huntsville, AL 35805 Phone - 205-837-8700 FAX - 205-830-2565

Pioneer Technologies 4835 University Square, Ste #5 Huntsville, AL 35816 Phone - 205-837-9300 FAX - 205-837-9358

Military Distributor

Zeus Components, Inc. 1800 North Glenville, Suite 120 Richardson, TX 75081 Phone - 214-783-7010 FAX - 214-234-4385 SALES INFORMATION

MISSOURI

Representatives

Advanced Technical Sales 1810 Craig Road, Suite #213 St. Louis, MO 63146 Phone - 314-878-2921 FAX - 314-878-1994

Distributors

Hall-Mark Electronics Corporation 3783 Rider Trail So. Earth City, MO 63045 Phone - 314-291-5350 FAX - 314-291-0362

Pioneer Standard 2029 Woodland Pkwy #101 St Louis, MO 63146 Phone - 314-432-4350 FAX - 314-432-4854

Military Distributor

Zeus Components, Inc. 1800 North Glenville, Suite 120 Richardson, TX 75081 Phone - 214-783-7010 FAX - 214-234-4385

MONTANA Distributor

Almac Electronics E 10905 Montgomery Spokane, WA 99206 Phone - 509-924-9500 1-800-325-6545 FAX - 509-928-6096

Military Distributor

Zeus Components, Inc. 6276 San Ignacio Ave., Suite E San Jose, CA 95119 Phone - 408-629-4789 FAX - 408-629-4892

NEBRASKA

Representative

Advanced Technical Sales 601 North Mur-Len, Suite 8 Olathe, KS 66062 Phone - 913-782-8702 FAX - 913-782-8641

Distributors

Hall-Mark Electronics Corporation 10809 Lakeview Dr. Lenexa, KS 66215 Phone - 913-888-4747 FAX - 913-888-0523

Wyle Laboratories 451 E 124th Street Thornton, CO 80241 Phone - 303-457-9953 FAX - 303-457-4831

Military Distributor

Zeus Components, Inc. 1800 North Glenville, Suite 120 Richardson, TX 75081 Phone - 214-783-7010 FAX - 214-234-4385

NEVADA

Representative

Bay Area Electronics Sales, Inc 2001 Gateway Place, Suite 315 San Jose, CA 95110 Phone - 408-452-8133 FAX - 408-452-8139

Distributors

Anthem Electronics Incorporated 580 Menlo Drive, Suite 8 Rocklin, CA 95677 Phone - 916-624-9744 FAX - 916-624-9750

Hall-Mark Electronics Corporation 580 Menlo Dr., Suite 2 Rocklin, CA 95677 Phone - 916-624-9781 FAX - 916-961-0922

Wyle Laboratories 2951 Sunrise Blvd., Suite 175 Rancho Cordova, CA 95742 Phone - 916-638-5282 FAX - 916-638-1491

Military Distributor

JAN Devices, Inc. 44 Cochrane St. Melrose, MA 02176 Phone - 617-662-3901

Zeus Components, Inc. 6276 San Ignacio Ave., Suite E San Jose, CA 95119 Phone - 408-629-4789 FAX - 408-629-4892

NEW HAMPSHIRE

Representative

Advanced Tech Sales Incorporated 348 Park Street, Ste 102 North Reading, MA 01864 Phone - 508-664-0888 FAX - 508-664-5503

Distributors

Anthem Electronics 36 Jonspin Road Wilmington, MA 01887 Phone - 508-657-5170 FAX - 508-657-6008 Hall-Mark Electronics Corporation Pinehurst Park, 6 Cook Street Billerica, MA 01821 Phone - 617-935-9777 FAX - 617-667-4129

Pioneer Standard 44 Hartwell Avenue Lexington, MA 02173 Phone - 617-861-9200 FAX - 617-863-1547

Military Distributor

Zeus Components, Inc. 11 Lakeside Office Park 607 North Avenue Wakefield, MA 01880 Phone - 617-246-8200 FAX - 617-246-8293

NEW JERSEY

Representative

Applied Technical Marketing 234 Main St., Suite 2 Huntington, NY 11743 Phone - 516-271-0200 FAX - 516-271-4450

Representative (Southern)

Omega Electronics 2655 Interplex Dr., Suite 104 Trevose, PA 19047 Phone - 215-244-4000 FAX - 215-244-4104

Distributors

Anthem Electronics 26 Chapin Road, Unit K Pine Brook, NJ 07058 Phone - 201-227-7960 FAX - 201-227-9246

Hall-Mark Electronics Corporation 107 Fairfield Road Fairfield, NJ 07006 Phone - 201-575-4415 FAX - 201-882-9389

Hall-Mark Electronics Corporation 11000 Midlantic Drive, Suite 5 Mt. Laurel, NJ 08054 Phone - 609-235-1900 FAX - 609-235-3381

Hall-Mark Electronics Corporation 200 Lanidex Plaza, 2nd Fl. Parsippany, NJ 07054 Phone - 201-515-3000 FAX - 201-515-4475

Military Distributor

Zeus Components, Inc. 100 Midland Ave. Port Chester, NY 10573 Phone - 914-937-7400 FAX - 914-937-2553

Zeus Components, Inc. 8930-A Route 108 Columbia, MD 21045 Phone - 301-997-1118 FAX - 301-964-9784

NEW MEXICO

Representative

Quatra Associates Incorporated 600 Autumnwood Place, S.E. Albuquerque, NM 87123 Phone - 505-296-6781 FAX - 602-820-7054

Distributors

Anthem Electronics Inc. 1555 W. 10th Pl., Suite #101 Tempe, AZ 85281 Phone - 602-966-6600 FAX - 602-966-4826

Hall-Mark Electronics Corporation 4637 South 36th Place Phoenix, AZ 85040

Phone - 602-437-1200 FAX - 602-437-2348

Wyle Laboratories 4141 E. Raymond St., Ste #1 Phoenix, AZ 85040 Phone - 602-437-2088 FAX - 602-437-2124

Military Distributor

JAN Devices, Inc. 6925 Canby, Bldg. 109 Reseda, CA 91335 Phone - 818-708-1100 FAX - 818-708-7436

Zeus Components, Inc. 6276 San Ignacio Ave., Suite E San Jose, ČA 95119 Phone - 408-629-4789 FAX - 408-629-4892

NEW YORK

Representatives

Applied Technical Marketing 234 Main St., Suite 2 Huntington Village, NY 11743 Phone - 516-271-0200

FAX - 516-271-4450

Electra Sales Corporation 3000 Winston Rd. South Rochester, NY 14623 Phone - 716-427-7860 FAX - 716-427-0614

Electra Sales Corporation

1 Alder Drive

East Syracuse, NY 13057 Phone - 315-463-1248 FAX - 315-463-1717

Distributors

Anthem Electronics-Military 47 Mall Drive Commack, NY 11725-5703 Phone - 516-864-6600 FAX - 516-493-2244

Hall-Mark Electronics Corporation 6605 Pittsford - Palmyra Road, Suite E8 Fairport, NY 14450

Phone - 716-425-3300 FAX - 716-425-7195

Hall-Mark Electronics Corporation 3075 Veterans Memorial Hwv Ronkonkoma, NY 11779 Phone - 516-737-0600 FAX - 516-737-0838

MAST Distributors, Inc. 710-2 Union Parkway Ronkonkoma, NY 11799 Phone - 516-471-4422 FAX - 516-471-2040

Pioneer Standard 68 Corporate Drive Binghamton, NY 13904 Phone - 607-722-9300 FAX - 607-722-9562

Pioneer Standard 840 Fairport Park Fairport, NY 14450 Phone - 716-381-7070 FAX - 716-381-5955

Pioneer Standard 14A Madison Road Fairfield, NY 07006 Phone - 201-575-3510 FAX - 201-575-3454

Pioneer Standard 60 Crossways Park West Woodbury, NY 11797 Phone - 516-921-8700 FAX - 516-921-2143

Military Distributor

Zeus Components, Inc. 100 Midland Ave. Port Chester, NY 10573 Phone - 914-937-7400 FAX - 914-937-2553

Zeus Components, Inc. 2110 Smithtown Ave. Ronkonkoma, L.I., NY 11779 Phone - 516-737-4500 FAX - 516-737-4520

Zeus Components, Inc. 2912 Springboro West, Ste 106 Dayton, OH 45439 Phone - 513-293-6162 FAX - 513-293-1781

NORTH CAROLINA

Representatives

Southeast Technical Group 700 N. Arendell Ave Zebulon, NC 27597 Phone - 919-269-5589 FAX - 919-269-5670

Distributors

Hall-Mark Electronics Corporation 5234 Green's Dairy Road Raleigh, NC 27604 Phone - 919-872-0712 FAX - 919-878-8729

Pioneer Technologies 9401L Southern Pines Blvd Charlotte, NC 28210 Phone - 704-526-8188 FAX - 704-522-8564

Pioneer Electronics 2810 Meridian Parkway, #148 Durham, NC 27713 Phone - 919-544-5400 FAX - 919-544-5885

Military Distributor

Zeus Components, Inc. 8930-A Route 108 Columbia, MD 21045 Phone - 301-997-1118 FAX - 301-964-9784

NORTH DAKOTA

Representative

HMR Incorporated 9065 Lyndale Avenue Minneapolis, MN 55420-3520 Phone - 612-888-2122 FAX - 612-884-4768

Distributors

Anthem Electronics Incorporated 7646 Golden Triangle Dr. Eden Prairie, MN 55344 Phone - 612-944-5454 FAX - 612-944-3045

Hall-Mark Electronics Corporation 10300 Valley View Rd, Ste 101 Eden Prairie, MN 55344 Phone - 612-941-2600 FAX - 612-941-5778

Pioneer Standard 7625 Golden Triangle Drive Eden Prairie, MN 55344 Phone - 612-944-3355 FAX - 612-944-3794

Military Distributors

Zeus Components, Inc. 100 Midland Ave. Port Chester, NY 10573 Phone - 914-937-7400 FAX - 914-937-2553

Zeus Components, Inc. 2912 Springboro West, Ste 106 Dayton, OH 45439 Phone - 513-293-6162 FAX - 513-293-1781

OHIO

Representatives

FAX - 216-473-5055

Scott Electronics, Inc. Corporate Headquarters 360 Alpha Park Cleveland OH 44143-2240 Phone - 216-473-5050

Scott Electronics, Inc. 3131 South Dixie Drive Dayton, OH 45439-2223 Phone - 513-294-0539 FAX - 513-294-4769

Scott Electronics, Inc. 916 Eastwind Drive Westerville, OH 43081-3379 Phone - 614-882-6100

FAX - 614-882-0900 Scott Electronics, Inc. 10901 Reed Hartman, Ste. 301

Cincinnati, OH 45242-2821 Phone - 513-791-2513 FAX - 513-791-8059

Distributors

Hall-Mark Electronics Corporation 5821 Harper Road Solon, OH 44139

Phone - 216-349-4632 FAX - 216-248-4803

Hall-Mark Electronics Corporation 400 E. Wilson Bridge Rd, Ste S Worthington, OH 43085 Phone - 614-888-3313 FAX - 614-888-0767

Pioneer Standard 4800 E 131st Street Cleveland, OH 44105 Phone - 216-587-3600

FAX - 216-587-3906

Pioneer Standard 4433 Interpoint Blvd. Dayton, OH 45424 Phone - 513-236-9900 FAX - 513-236-8133

Pioneer Standard 5440 Naiman Parkway Solon, OH 44139 Phone - 216-349-1300 FAX - 216-349-0754

Military Distributors

Zeus Components, Inc. 100 Midland Ave. Port Chester, NY 10573 Phone - 914-937-7400 FAX - 914-937-2553

Zeus Components, Inc. 2912 Springboro West, Ste 106 Dayton, OH 45439 Phone - 513-293-6162 FAX - 513-293-1781

OKLAHOMA

Representative

Nova Marketing Incorporated 4924 S. Memorial, Suite 1339 Tulsa, OK 74145 Phone - 918-660-5105 FAX - 918-665-3815

Distributor

Hall-Mark Electronics Corporation 5411 S. 125th East Ave., #305 Tulsa, OK 74146 Phone - 918-254-6110 FAX - 918-254-6207

Military Distributor

Zeus Components, Inc. 1800 N. Glenville, Ste 120 Richardson, TX 75081 Phone - 214-783-7010 FAX - 214-234-4385

OREGON

Representative

Northwest Marketing Associates 6975 SW Sandburg Rd, Ste 330 Portland, OR 97223 Phone - 503-620-0441 FAX - 503-684-2541

Distributors

Almac Electronics 1885 N.W. 169th Place Beaverton, OR 97006 Phone - 503-629-8090 FAX - 503-645-0611

Anthem Electronics Incorporated 9090 S.W. Gemini Drive Beaverton, OR 97005 Phone - 503-643-1114 FAX - 503-626-7928

Wyle Laboratories 9640 SW Sunshine Ct, Ste. 200 Beaverton, OR 97005 Phone - 503-643-7900 FAX - 503-646-5466

Military Distributor

JAN Devices, Inc. 6925 Canby, Bldg. 109 Reseda, CA 91335 Phone - 818-708-1100 FAX - 818-708-7436

Zeus Components, Inc. 6276 San Ignacio Ave., Ste E San Jose, CA 95119 Phone - 408-629-4789 FAX - 408-629-4892

PENNSYLVANIA

Representatives

Omega Electronic Sales Incorporated 2655 Interplex Dr., #104 Trevose, PA 19047 Phone - 215-244-4000 FAX - 215-244-4104

Scott Electronics, Inc. (W. PA) 360 Alpha Park Cleveland, OH 44143-2240 Phone - 216-473-5050 FAX - 216-473-5055

Distributors

Anthem Electronics, Inc. 355 Business Ctr. Dr. Horsham, PA 19044 Phone - 215-443-5150 FAX - 215-675-9875

Hall-Mark Electronics Corporation 11000 Midlantic Drive, Suite 5 Mt. Laurel, NJ 08054 Phone - 609-235-1900 FAX - 609-235-3381

Hall-Mark Electronics Corporation (W. PA) 5821 Harper Road

Solon, OĤ 44139 Phone - 216-349-4632 FAX - 216-248-4803 Pioneer Technologies

500 Enterprise Road Horsham, PA 19044 Phone - 215-674-4000 FAX - 215-674-3107

Pioneer Technologies (W. PA) 259 Kappa Drive Pittsburgh, PA 15238 Phone - 412-782-2300 FAX - 412-963-8255

Military Distributors

Zeus Components, Inc. 100 Midland Ave. Port Chester, NY 10573 Phone - 914-937-7400 FAX - 914-937-2553

Zeus Components, Inc. 2912 Springboro West, Ste 106 Dayton, OH 45439 Phone - 513-293-6162 FAX - 513-293-1781

RHODE ISLAND

Representative

Advanced Tech Sales Incorporated 348 Park Street, Ste 102 North Reading, MA 01864 Phone - 508-664-0888 FAX - 508-664-5503

Distributors

Anthem Electronics 61 Mattatuck Heights Waterbury, CT 06705 Phone - 203-575-1575 FAX - 203-596-3232 Hall-Mark Electronics Corporation 615 W. Johnson Ave., Bldg. 3 Cheshire, CT 06410 Phone - 203-271-2844 FAX - 203-272-1704

Pioneer Standard 112 Main Street Norwalk, CT 06851 Phone - 203-853-1515 FAX - 203-838-9901

Military Distributor

Zeus Components, Inc. 11 Lakeside Office Park 607 North Avenue Wakefield, MA 01880 Phone - 617-246-8200 FAX - 617-246-8293

SOUTH CAROLINA

Representative

Southeast Technical Group 700 N. Arendell Ave. Zebulon, NC 27597 Phone - 919-269-5589 FAX - 919-269-5670

Distributor

Pioneer Technologies 9401 L. Southern Pine Blvd Charotte, NC 28210 Phone - 704-526-8188 FAX - 704-522-8564

Military Distributor

Zeus Components, Inc. 1750 West Broadway, Ste 114 Oviedo, FL 32765 Phone - 407-365-3000 FAX - 407-365-2356

SOUTH DAKOTA

Representative

HMR Incorporated 9065 Lyndale Avenue Minneapolis, MN 55420-3520 Phone - 612-888-2122 FAX - 612-884-4768

Distributors

Anthem Electronics Incorporated 7646 Golden Triangle Dr. Eden Prairie, MN 55344 Phone - 612-944-5454 FAX - 612-944-3045 Hall-Mark Electronics Corporation 10300 Valley View Rd, Ste 101 Eden Prairie, MN 55344 Phone - 612-941-2600 FAX - 612-941-5778

Pioneer Standard 7625 Golden Triangle Drive Eden Prairie, MN 55344 Phone - 612-944-3355 FAX - 612-944-3794

Military Distributors

Zeus Components, Inc. 100 Midland Ave. Port Chester, NY 10573 Phone - 914-937-7400 FAX - 914-937-2553

Zeus Components, Inc. 2912 Springboro West, Ste 106 Dayton, OH 45439 Phone - 513-293-6162 FAX - 513-293-1781

TENNESSEE

Representative

Southeast Technical Group 700 N. Arendell Ave. Zebulon, NC 27597 Phone - 919-269-5589 FAX - 919-269-5670

Distributors

Hall-Mark Electronics Corporation 4900 Bradford Drive Huntsville, AL 35805 Phone - 205-837-8700 FAX - 205-830-2565

Pioneer Technologies 4825 University Square, #5 Huntsville, AL 35816 Phone - 205-837-9300 FAX - 205-837-9358

Military Distributor

Zeus Components, Inc. 8930-A Route 108 Columbia, MD 21045 Phone - 301-997-1118 FAX - 301-964-9784

TEXAS

Representatives

Nova Marketing Incorporated 8350 Meadow Road, Suite 174 Dallas, TX 75231 Phone - 214-750-6082 FAX - 214-750-6068

Nova Marketing Incorporated 9207 Country Creek #206 Houston, TX 77036 Phone - 713-988-6082 FAX - 713-774-1014

Nova Marketing Incorporated Stillhouse Canyon Office Park 4807 Spicewood Springs Road Building 3, Suite 3140 Austin, TX 78759 Phone - 512-343-2221 FAX - 512-343-2487

Distributors

Anthem Electronics, Inc. 651 N. Plano Road, Suite 429 Richardson, TX 75081 Phone - 214-238-7100 FAX - 214-238-0237

Hall-Mark Electronics Corporation 12211 Technology Boulevard Austin, TX 78727 Phone - 512-258-8848 FAX - 512-258-3777

Hall-Mark Electronics Corporation 11333 Pagemill Road Dallas, TX 75243 Phone - 214-343-5000 FAX - 214-343-5851

Hall-Mark Electronics Corporation 11420 Pagemill Road Dallas, TX 75243 Phone - 214-553-4300 FAX - 214-343-5988

Hall-Mark Electronics Corporation 8000 Westglen

Houston, TX 77063 Phone - 713-781-6100 FAX - 713-953-8420

Pioneer Standard 1826 Kramer Lane, Suite D Austin, TX 78758 Phone - 512-835-4000 FAX - 512-835-9829

Pioneer Electronics 13765 Beta Dallas, TX 75244 Phone - 214-386-7300 FAX - 214-490-6419

Pioneer Standard 10530 Rockley Rd., Suite 100 Houston, TX 77099 Phone - 713-495-4700 FAX - 713-495-5642 Wyle Laboratories 4030 W. Braker, Suite 330 Austin, TX 78759 Phone - 512-345-8853 FAX - 512-834-0981

Wyle Laboratories 1810 N. Greenville Avenue Richardson, TX 75081 Phone - 214-235-9953 FAX - 214-644-5064

Wyle Laboratories 11001 S. Wilcrest, Suite 100 Houston, TX 77099 Phone - 713-879-9953 FAX - 713-879-6540

Military Distributor

Zeus Components, Inc. 1800 N. Glenville, Suite 120 Richardson, TX 75081 Phone - 214-783-7010 FAX - 214-234-4385

UTAH

Representative

Wescom Marketing 3500 So. Main, Suite 100 Salt Lake City, UT 84115 Phone - 801-269-0419 FAX - 801-269-0665

Distributors

Anthem Electronics Incorporated 1279 West 2200 South Salt Lake City, UT 84119 Phone - 801-973-8555 FAX - 801-973-8909

Hall-Mark Electronics Corporation 2265 South 1300 West West Valley City, UT 84119 Phone - 801-972-1008 FAX - 303-790-4991

Wyle Laboratories 1325 West 2200 South, Suite E West Valley City, UT 84119 Phone - 801-974-9953 FAX - 801-972-2524

Military Distributor

JAN Devices, Inc. 6925 Canby, Bldg. 109 Reseda, CA 91335 Phone - 818-708-1100 FAX - 818-708-7436 Zeus Components, Inc. 6276 San Ignacio Ave., Suite E San Jose, CA 95119 Phone - 408-629-4789 FAX - 408-629-4892

VERMONT

Representative

Advanced Tech Sales Incorporated 348 Park Street, Ste 102 North Reading, MA 01864 Phone - 508-664-0888 FAX - 508-664-5503

Distributors

Anthem Electronics 36 Jonspin Road Wilmington, MA 01887 Phone - 508-657-5170 FAX - 508-657-6008

Hall-Mark Electronics Corporation Pinehurst Park, 6 Cook Street Billerica, MA 01821 Phone - 617-935-9777 FAX - 617-667-4129

Pioneer Standard 44 Hartwell Avenue Lexington, MA 02173 Phone - 617-861-9200 FAX - 617-863-1547

Military Distributor

Zeus Components, Inc. 11 Lakeside Office Park 607 North Avenue Wakefield, MA 01880 Phone - 617-246-8200 FAX - 617-246-8293

VIRGINIA

Representative

Electronic Enginnering & Sales Incorporated 235 Prince George Street Annapolis, MD 21401 Phone - 301-269-6573 FAX - 301-269-6476

Distributors

Anthem Electronics 9020A Mendenhall Court Columbia, MD 21045 Phone - 301-995-6640 FAX - 301-381-4379

Hall-Mark Electronics Corporation 10240 Old Columbia Road Columbia, MD 21046 Phone - 301-988-9800

FAX - 301-381-2036

Pioneer Technologies 15810 Gaither Drive Gaithersburg, MD 20877 Phone - 301-921-0660 FAX - 301-921-3852

Military Distributor

Zeus Components, Inc. 8930-A Route 108 Columbia, MD 21045 Phone - 301-997-1118 FAX - 301-964-9784

WASHINGTON

Representative

Northwest Marketing Associates, Inc. 12835 Bel-Red Road, Ste. 330 Bellevue, WA 98005 Phone - 206-455-5846 FAX - 206-451-1130

Distributors

Almac Electronics 14360 Southeast Eastgate West Bellevue, WA 98007 Phone - 206-643-9992 FAX - 206-643-9709

Almac Electronics East 10905 Montgomery Spokane, WA 99206 Phone - 509-924-9500 1-800-325-6545

Anthem Electronics Incorporated 19017-120th Ave. N.E., Ste. 102 Bothell, WA 98011

Phone - 206-483-1700 FAX - 206-486-0571

FAX - 509-928-6096

Hall-Mark Electronics Corporation 250 Northwest 39th, Suite #4 Seattle, WA 98107 Phone - 206-547-0415

Phone - 206-547-0415 FAX - 314-291-0362

Wyle Laboratories 15385 NE 90th Street Redmond, WA 98052-3522 Phone - 206-881-1150 FAX - 206-453-0071

Military Distributor

JAN Devices, Inc. 6925 Canby, Bldg. 109 Reseda, CA 91335 Phone - 818-708-1100 FAX - 818-708-7436

Zeus Components, Inc. 6276 San Ignacio Ave., Suite E San Jose, CA 95119 Phone - 408-629-4789 FAX - 408-629-4892

WEST VIRGINIA

Representative

Scott Electronics, Inc. 916 Eastwind Drive Westerville, OH 43081-3379 Phone - 614-882-6100 FAX - 614-882-0900

Distributor

Hall-Mark Electronics Corporation 400 E Wilson Bridge Rd, Ste S Worthington, OH 43085 Phone - 614-888-3313 FAX - 614-888-0767

Military Distributor

Zeus Components, Inc. 8930-A Route 108 Columbia, MD 21045 Phone - 301-997-1118 FAX - 301-964-9784

WISCONSIN

Representative

Oasis Sales Corporation 1305 North Barker Road Brookfield, WI 53005 Phone - 414-782-6660 FAX - 414-782-7921

Distributors

Hall-Mark Electronics Corporation 16255 West Lincoln Avenue New Berlin, Wisconsin 53151 Phone - 414-797-7844 FAX - 414-797-9259

Pioneer Standard 120 Bishops Way, #163 Brookfield, WI 53005 Phone - 414-784-3480 FAX - 414-784-8207

Military Distributors

Zeus Components, Inc. 100 Midland Ave. Port Chester, NY 10573 Phone - 914-937-7400 FAX - 914-937-2553

Zeus Components, Inc. 2912 Springboro West, Ste 106 Dayton, OH 45439 Phone - 513-293-6162 FAX - 513-293-1781

WYOMING

Representative

Wescom Marketing 3500 South Main, Suite 100 Salt Lake City, UT 84115 Phone - 801-269-0419 FAX - 801 - 269-0665

Distributors

Anthem Electronics Incorporated 1279 West 2200 South Salt Lake City, UT 84119 Phone - 801-973-8555 FAX - 801-973-8909

Hall-Mark Electronics Coporation 2265 South 1300 West West Valley City, UT 84119 Phone - 801-972-1008 FAX - 303-790-4991

Wyle Laboratories 1325 West 2200 South, Suite E West Valley City, UT 84119 Phone - 801-974-9953 FAX - 801-972-2524

Military Distributor

JAN Devices, Inc. 6925 Canby, Bldg. 109 Reseda, CA 91335 Phone - 818-708-1100 FAX - 818-708-7436

Zeus Components, Inc. 6276 San Ignacio Ave., Suite E San Jose, CA 95119 Phone - 408-629-4789 FAX - 408-629-4892

AUSTRALIA

Representative

Reptechnic Pte. Ltd. 3/36 Bydown Street Neutral Bay NSW 2089 Australia Phone - 612-953-9844

FAX - 612-953-9683

AUSTRIA

Distributor

Thomas Neuroth Ges. m.b.H. Hietzinger Hauptstrasse 22/A/2 A-1130 Vienna Austria

Phone - 431-82-56-45 FAX - 431-82-84-920

BELGIUM

Representative & Distributor

MCA - Tronix SPRL Parc De Recherches Du Sart Tilman Av. Des Noisetiers B-4031 Angleur Belgium Phone - 32-41-67-4208 FAX - 32-41-67-6331

DENMARK

Distributor

Industriparken 4 4960 Holeby Denmark Phone - 45-53-906333 FAX - 45-53-906422

Henckel Elektronik

FINLAND

Representative & Distributor

Integrated Electronics OY AB Turkhaudantie 1 P.O. Box 160 00700 Helsinki Finland Phone - 358-0-351-3133

FAX - 358-0-351-3134

FRANCE

Representative

Rep'Tronic, SA 1 bis, Rue Marcel Paul Batiment A Z.I. De La Bonde 91300 Massy Phone - 33-1-60-13-9300 FAX - 33-1-60-13-9198

Distributors

Datadis 3 bis, rue Rene Cassin BP 84-Z.I. de la Bonde 91303 Massy Cedex France Phone - 331-69-204141 FAX - 331-69-204900

LEX Electronics 60-62, rue des Gemeaux-Silic 580 94653 Rungis Cedex France Phone - 33-1-49-78-4848

Paris Sud Electronique 12, rue Rene Cassin 91300 Massy France

FAX - 33-1-49-78-0699

Phone - 33-1-69-20-6699 FAX - 33-1-69-20-7532

RTF Diffusion 79 Rue Pierre Semard 92320 Chatillon France Phone - 1-49-65-2626 FAX - 1-49-65-2649

GERMANY

Representative

Advanced Semi Conductor Products Kapellenstrasse 9 D-8025 Unterhaching Munich, Germany Phone - 49-89-61-9076 FAX - 49-89-61-9070

Distributor Metronik GmBH

Leonhardsweg 2 8025 Unterhaching Germany Phone - 089-611-08-0 FAX - 089-611-64-68

HONG KONG

Representative

Lestina International Ltd. Rm 405, Park Tower 15 Austin Rd Tsimshatsui, Kowloon Hong Kong Phone - 852-735-1736 FAX - 852-730-7538

INDIA

Distributor

Silicon Electronics 3350 Scott Blvd. Suite 1201 Santa Clara, CA 95054 Phone - 408-988-4408 FAX - 408-988-4431

INDONESIA

Representative

Desner Electronics (FE) Ltd. 42 Mactaggart Rd. #04-01 Mactaggart Bldg. Singapore, 1336 Phone - 65-285-1566 FAX - 65-284-9466

IRELAND

Representative

New England Technical Sales Ltd. The Diamond Malahide County Dublin Ireland Phone - 353-1-450635

Distributor

FAX - 353-1-453625

Lyco, Ltd. Estuary House New Street Malahide, Dublin Ireland Phone - 353-1-452-020 FAX - 353-1-452-414

ISRAEL.

Representative/Distributor

Rapac Electronic, Ltd. Mailing Address: P.O. Box 18053 Tel Aviv, Israel 61180 Office Address: #7. Kehilat Saloniki Street Tel Aviv, Israel 69513 Phone - 972-3-477115

FAX - 972-3-493-272

ITALY

Representative & Distributor

Moxel S.R.L. Via C Frova 34 20092 Cinisello Balsamo (MI) Italy Phone - 39-261290521 FAX - 39-261-72582

Distributor

EUR Elettronica S.P.A. 20094 Assago (MI) Sede: Via E. Fermi, 8 Partita IVA 00883800153 Italy Phone - 02-4880022 FAX - 02-4880275

IAPAN

Distributor

Sanyo Electronic Co.

Natsume Bldg., 4th Floor 18-6, 2-Chome Yushima, Bunkyo-Ku, Tokyo 113 Japan Phone - 81-3-3818-4330 FAX - 813-3818-1124

KOREA

Representative

Eastern Electronics, Inc. 3rd Floor, Yoowha Bldg. 995-16, Daechi-Dong Kangnam-Ku, Seoul, Korea Phone - 822-553-2997 FAX - 822-553-2998

THE NETHERLANDS

Distributor

Microtron Postbus 188 NL - 1243 ZK Graveland The Netherlands Phone - 31-35-61834 FAX - 31-35-62709

NEW ZEALAND

Representative

Reptechnic 3/36 Bydown Street Neutral Bay, NSW 2089 Australia Phone - 612-953-9844 FAX - 612-953-9683

NORWAY

Distributor

BIT Elektronikk AS P.O. Box 36 3401 Lier Lierbyen, Norway Phone - 47-3-847099 FAX - 47-3-845510

PHILLIPINES

Representative

Desner Electronics (FE) Ltd. 42 Mactaggart Rd. #04-01 Mactaggart Bldg. Singapore, 1336 Phone - 65-285-1566 FAX - 65-284-9466

PORTUGAL

Representative & Distributor

ATD Electronica LDA. Rua dos Lusiadas 5.5. Sala B/K 1300 Lisboa Portugal Phone - 351-1-362-0290 FAX - 361-1-362-1068

SINGAPORE

Representative

Desner Electronics (FE) Ltd. 42 Mactaggart Rd. #04-01 Mactaggart Bldg. Singapore, 1336 Phone - 65-285-1566 FAX - 65-284-9466

SPAIN

Distributor

ATD Electronica, S.A. Plaza Cuidad de Viena, 6 28040 Madrid Spain Phone - 341-534-4000 FAX - 341-534-7663

SWEDEN

Representative & Distributor

IE Komponenter AB Box 11 113 S161 11 Bromma, Sweden Phone - 46-8-804685 FAX - 46-8-262286

SWITZERLAND

Representative

Micron Technology Casa Fuchs CH-6984 Pura Switzerland Phone - 41-9171-3785 FAX - 41-9171-3889

Distributor

Anatec Sumpfstrasse 7 CH-6300 ZUG Switzerland Phone - 41-42-412-441 FAX - 41-42-413-124 Pabstronic AG

Aarauerstrasse 20 5200 Brugg Switzerland Phone - 41-56-41-7957 FAX - 41-56-41-0792

TAIWAN, R.O.C.

Representative & Distributor

ASEC

7F. No. 344-1 Min-Sheng E Rd Min-Sheng Commercial Bldg Taipei, Taiwan R.O.C. Taiwan

Phone - 886-2-505-7025 FAX - 886-2-501-1524

UNITED KINGDOM

Representative

Micron Technology, Inc European Office Suite 17 Kinetic Centre Theobald Street Borehamwood Hertfordshire WD6 4SE United Kingdom Phone - 44-81-905-1255 FAX - 44-81-905-1126

EURO Rep. Saville Court, Saville Place, Clifton, Bristol BS8 4EJ United Kingdom Phone - 44-272-237-594 FAX - 44-272-237-598

Distributor

Abacus Electronics PLC Abacus House, Bone Lane Newbury, Bukshire RG14 5SF United Kingdom Phone - 0635-36222 FAX - 0635-38670

Bytech Computers, Ltd. 12 A Cedarwood, Chineham Business Park Crockford Lane, Basingstoke Hampshire, RG24 OWD United Kingdom Phone - 44-256-707-107 FAX - 44-256-707-162

Thame Components Thame Park Road Thame, Oxon, 0X9 3UQ United Kingdom Phone - 44-84-426-1188 FAX - 44-84-426-1681

Micron Technology, Inc. Marketing Department 2805 East Columbia Road Boise, Idaho 83706 Telephone: (208) 368-3900

FAX: (208) 368-4617