
-., . -

-n
::a
0 n
::c -,,
3: ,,
(/) -3:
c:
(/)

'" ::a
•

(/)

C)
c: -c
'"

MPSIM
SIMULATOR

USER'S GUIDE

MICROCHIP

MPSIM
SIMULATOR
User's Guide

"Information contained in this publication regarding device applications and the like is intended by way of suggestion
only. No representation or warranty is given and no liability is assumed by Microchip Tehnology Incorporated with re
spect to the accuracy or use of such information. Use of Microchip's products as critical components in life support sys
tems is not authorized except with express written approval by Microchip. The Microchip logo and name are trademarks
of Microchip Technology Incorporated. All rights reserved. All other trademarks mentioned herein are the property of
their respective companies".

©Microchip Technology Incorporated 1995.

PICSTART and PICMASTER are registered trademarks of Microchip Technology Incorporated.

PIC is a registered trademark of Microchip Technology Inc. in the U.S.A.

PRO MATE and TrueGauge are trademarks of Microchip Technology Incorporated.

CompuServe is a registered trademark of CompuServe Incorporated.

fuzzyTECH is a registered trademark of Inform Software Corporation.

lntellec is a trademark of Intel Corporation.

IBM PC/AT is a registered trademark of International Business Machines Corporation.

Windows is a trademark Microsoft Corporation.

© 1995 Microchip Technology Inc. 05300271

MPSIM USER'S GUIDE

DS300271 © 1995 Microchip Technoiogy inc.

MICROCHIP

© 1995 Microchip Technology Inc.

MPSIM USER'S GUIDE

Table of Contents

Preface

Chapter 1.

Chapter 2.

.. 1
1/0 Timing ... 1
Execution Speed ... 1
Cost ..•...................... 1
Debugging Tool ... 1

Introduction .. 3
Introduction ... 3
Highlights .. 3
Installing MPSIM ..•....•. 3

System Requirements ..•... 3
Document Conventions ... 4
Terminology ...•........................ 4

Breakpoints ... 4
Program Counter (PC) .. 4
Disassembler•.....................•................... 4
Step .. 4
Symbols ..•..... 5
Trace ..•....... 5
View screen ..•..... 5

Device-Specific Support .. 5
Customer Support ...•. 5

The MPSIM Environment ... 7
Introduction ..•.............. 7
Highlights ...•................ 7
User Interface ..•.....•..•......•....•. 8
Invoking MPSIM .. 9
1/0 Pins ...•....... 9

1/0 Pin Modeling ...•... 9
Pin Signals .. 1 O

CPU Model .. 10
Reset Conditions .. 10
Sleep .. 11
WDT ... 11
Registers .. 11

Hardware Stack .. 12
Push•....................................... 12
Pop ...•....................................... 12

Files Used and Generated By MPSIM .. 12
Command Files .. 13
Initialization File .. 13
Journal File ..•............ 13
Stimulus File ... 13
Files Generated by the Assembler 14
Listing File .. 15
Input Hex File ... 15
Output Hex File ... 15
Symbol File ... 15
Trace File .. 15
HEX Code Formats .. 15

08300271 - page i

MPSIM USER'S GUIDE

Chapter3. Tutorial .. 17
Introduction ... 17
Highlights .. 17
Assemble the Code ... 18
Invoke the Simulator ... 18

MPSIM.INI .. 19
Load the Initialization File .. 19

Creating an initialization file .. 19
Load the Hex File .. 21
Load the Stimulus File ... 22
Set Up Trace Parameters ... 23
Set Up Breakpoints ... 25
Execute the Hex Code .. 26
Modify the Hex Code ... 27
Exit the MPSIM Session .. 28

Chapter4. Functional Categories of MPSIM Commands 29
Introduction ... 29
Highlights .. 29
Loading and Saving .. 30
Inspecting And Modifying .. 30

Program Memory .. 30
Registers ... 32
Display Functions ... 33
Patch Table ... 34
Clearing Memory and Registers 34
Searching Memory .. 34
Symbol Table .. 35
Restore ... 35

Execute and Trace .. 36
Execution Instructions ... 36
Tracing Execution ... 36
Breakpoints ... 38

View Screen .. 39
Miscellaneous Commands .. 40
MPSIM Commands ... 41

Chapter 5. MPSIM Commands ... 47
Introduction ... 4 7
Alphabetic Summary of MPSIM Commands 47
AB - Abort Session .. 54
AD - Add Item to View Screen .. 54
B - Set Breakpoint .. 56
BC - Clear Breakpoint ... 57
C - Continue Executing ... 57
CK - Clock ... 58
DB - Display All Active Breakpoints .. 59
DE - Delete Program Memory ... 59
DI - Display Program Memory in Symbolic Format... 60
DK- Define Key .. 61
DL - Delete Symbol from Symbol Table 62
DM - Display Program Memory in Radix Designated Format... ... 63
DP - Display All Patches ... 64
DR - Display All Registers ... 64
DS - Display Symbol Table ... 65

05300271 - page ii © 1995 M1croch1p T echno1ogy Inc.

DV - Delete View Screen Item .. 65
DW - Enable I Disable Watchdog Timer 66
DX - Display Current Trace Parameters 66
E - Execute Program .. 67
EE - Modify EE Memory ... 68
EL - Error Level .. 68
F - File Register Display/Modify ... 69
Fl - File Input ... 70
FM - Fill Memory ... 71
FW - Fuse Word .. 72
GE - Get Commands from an External File 73
GO- Reset and Execute ... 74
GS- Generate Symbol. ... 74
H - Help .. 75
IA - lnserVlnspect Assembly Code .. 76
IN - Insert Instruction ... 77
IP - Injection Point ... 77
IA - Initialize with Random Values ... 78
LJ - Load and Execute Journal File ... 79
LO - Load Object File .. 79
LR - Load Registers .. 80
LS - Load Symbol File .. 81
M - Display I Modify Program Memory at Address 82
NV - No View Screen .. 83
0 - Output Modified Object Code ... 83
P - Select Microcontroller ... 84
a - Quit ... 85
RA - Restore All .. 85
RE - Reset Elapsed Time and Step Count 86
RP - Restore Patches ... 86
RS - Reset Chip .. 87
SC - Display I Modify Processor Cycle Time 87
SE - Display I Modify 1/0 Pin .. 88
SF - Search Program Memory for Register 89
SI - Search Program Memory in Symbolic Format 90
SM - Search Program Memory in Radix Designated Format 90
SR - Set Radix .. 91
SS - Execute A Single Step .. 92
ST - Read Stimulus File .. 92
TA - Trace Address .. 93
TC - Trace Instructions ... 94
TF - Trace to File/Printer .. 95
TR - Trace Register .. 95
TY - Change View Screen .. 96
UR - Upload Registers .. 97
V - View Screen .. 98
Verbose - Echo to Screen .. 99
W - Work Register Display I Modify ... 99
WP - Watchdog Timer Period .. 100
ZM- Zero the Program Memory .. 100
ZP - Zero the Patch Table .. 101
ZR - Zero the Registers .. 101
ZT - Zero the Elapsed Time Counter .. 102

© 1995 Microchip Technology Inc. 08300271 - page iii

MPSIM USER'S GUIDE

Appendix A. Troubleshooting Guide .. 103
Introduction ... 103
Solutions to Some Common Problems 103
Messages .. 105

Informative Messages ... 105
Warning Messages ... 106
Error Messages .. 113

AppendixB. Sample File Listings .. 117
MPSIM.INI ... 117
PIC16C5X.INC .. 117
PIC16CXX.INC .. 119
PIC17CXX.INC .. 128
SAMPLE.ASM ... 132
SAMPLE.I NI .. 133
SAMPLE.ST! ... 134

AppendixC. Customer Support .. 135
Keeping Current with Microchip Systems 135
Highlights .. 135
Systems Information and Upgrade Hot Line 136
Connecting to Microchip BBS ... 136
Using the Bulletin Board .. 137

Special Interest Groups .. 137
Files .. 137
Mail ... 138

Software Releases .. 138
Alpha Release .. 138
Intermediate Release .. 139
Beta Release .. 139
Production Release .. 139

AppendixD. Intel INTELLECTM Hexadecimal Format 141
INHX8M ... 142

8-Bit Hex Format": .. 142
32-Bit Hex Format (.HEX) ... 143

Appendix E. PIC16C5X User's Guide Addendum ... 145
Introduction ... 145
VO Pins ... 145
CPU Model .. 145

Reset Conditions .. 145
Sleep ... 146
WOT .. 146
stack ... 146

Special Registers .. 146
Peripherals .. 147

Peripherals Supported .. 147

AppendixF. PIC16C64 User's Guide Addendum .. 149
Introduction ... 149
1/0 Pins ... 149
Interrupts ... 149
CPU Model .. 150

Reset Conditions .. 150
Sleep ... 150

05300271 - page iv © -j 995 ivikaochip Tet;l1(10lo9y loc.

WOT ... 150
Stack ... 150

Special Registers .. 151
Peripherals .. 151

Peripherals Supported .. 151
Tcycle Limitation 151
TIMERO .. 152
TIMER1 .. 152
TIMER2 .. 152
CCP1 .. 153

CAPTURE ... 153
COMPARE .. 153
PWM .. 153
SSP ... 153

AppendixG. PIC16C65 User's Guide Addendum ... 155
Introduction ... 155
1/0 Pins ... 155
Interrupts ... 155
CPU Model .. 156

Reset Conditions .. 156
Sleep .. 156
WOT ... 156
Stack ... 156

Special Registers .. 157
Peripherals .. 157

Peripherals Supported .. 157
Tcycle Limitation ... 158
TIMERO .. 158
TIMER1 .. 158
TIMER2 .. 159
CCP1 and CCP2 .. 159

CAPTURE ... 159
COMPARE .. 159
PWM .. 159

SSP .. 159
USART ... 159

Appendix H. PIC16C71 User's Guide Addendum ... 161
Introduction ... 161
1/0 Pins ... 161
Interrupts ... 161
CPU Model .. 162

Reset Conditions .. 162
Sleep .. 162
WOT ... 162
Stack ... 162

Special Registers .. 163
Peripherals .. 163

Peripherals Supported .. 163
Tcycle Limitation ... 163
TIMERO .. 164
AID Converter ... 164

© 1995 Microchip Technology Inc. 0$300271 • page v

MPSIM USER'S GUIDE

Appendix I. PIC16C73 User's Guide Addendum .. 165
Introduction ... 165
1/0 Pins ... 165
Interrupts ... 165
CPU Model .. 166

Reset Conditions .. 166
Sleep ... 166
WOT .. 166
Stack ... 166

Special Registers .. 167
Peripherals .. 167

Peripherals Supported .. 167
Tcycle Limitation ... 168
TIMERO ... 168
TIMER1 ... 168
TIMER2 ... 169
CCP1 and CCP2 ... 169

CAPTURE ... 169
COMPARE .. 169
PWM .. 169

SSP ... 169
USART .. 169
AID Converter ... 169

AppendixJ. PIC16C74 User's Guide Addendum .. 171
Introduction ... 171
1/0 Pins ... 171
Interrupts ... 171
CPU Model .. 172

Reset Conditions .. 172
Sleep ... 172
WOT .. 172
Stack ... 172

Special Registers .. 173
Peripherals .. 173

Peripherals Supported .. 173
Tcycle Limitation ... 174
TIMERO ... 174
TIMER1 ... 174
TIMER2 ... 175
CCP1 and CCP2 ... 175

CAPTURE ... 175
COMPARE .. 175
PWM .. 175

SSP ... 175
USART .. 175
AID Converter ... 175

Appendix K. PIC16C84 User's Guide Addendum .. 1n
Introduction ... 177
1/0 Pins ... 177
Interrupts ... 177
CPU Model .. 177

Reset Conditions .. 177
Sleep ... 178

0$300271 ·page v1 © 1995 Mit;fOGhip T tJehnolugy Inc.

WOT ... 178
Stack ... 178

Special Registers .. 178
Peripherals .. 179

Peripherals Supported .. 179
Tcycle Limitation ... 179
TIMERO .. 179
EEPROM Data Memory ... 179

Appendix L. PIC17C42 Support .. 181
Introduction ... 181
1/0 Pins ... 181
Special Function Registers ... 182
Interrupts ... 183
CPU Model .. 183

Reset Conditions .. 183
Sleep .. 183
WOT ... 184
Stack ... 184
Instruction Set ... 184

Special Registers .. 184
Peripherals .. 185

Tcycle Limttation ... 185
TIMERO .. 185
TIMER1 and TIMER2 ... 186
TIMER3 and Capture .. 186

PWM .. 186
USART ... 186

Memory Modes ... 186

Appendix M. PIC17C43 Support .. 187
Introduction ... 187
1/0 Pins .. 187

Special Function Registers ... 187
Interrupts ... 188
CPU Model .. 189

Reset Conditions .. 189
Sleep .. 189
WOT ... 189
Stack ... 189
Instruction Set ... 190

Special Registers .. 190
Peripherals .. 190

Tcycle Limitation ... 191
TIMERO .. 191
TIMER1 and TIMER2 ... 191
TIMER3 and Capture .. 192

PWM .. 192
USART ... 192

Memory Modes ... 192

© 1995 Microchip Technology Inc. DS300271 - page vii

MPSIM USER'S GUIDE

AppendixN. PIC17C44 Support .. 193
Introduction ... 193
1/0 Pins ... 193
Special Function Registers ... 193
Interrupts ... 194
CPU Model .. 194

Reset Conditions .. 194
Sleep ... 194
WOT .. 195
Stack ... 195
Instruction Set ... 195

Special Registers .. 195
Peripherals .. 196

Tcycle Limitation ... 196
TIMERO ... 196
TIMER1 and TIMER2 ... 197
TIMER3 and Capture .. 197

PWM .. 197
USART .. 197

Memory Modes ... 197

Worldwide Sales & Services .. 198

0$300271 - page viii © i 9&5 Microchip Technoiogy inc.

MICROCHIP

1/0Timing

MPSIM USER'S GUIDE

Preface

MPSIM is a discrete-event simulator tool designed to:

Imitate operation of Microchip Technology's PIC16CSX, PIC16CXX and
PIC17CXX families of microcontrollers

Assist users in debugging software that uses Microchip microcontroller
devices

A discrete-event simulator, as opposed to an in-circuit emulator, is designed to
aid in the debugging of the general logic of your software. The MPSIM
discrete-event simulator allows users to modify object code and immediately
re-execute, inject external stimuli to the simulated processor, and trace the
execution of the object code. A simulator differs from an in-circuit emulator in
three important areas: 1/0 timing, execution speed, and cost.

This manual covers MPSIM version 5.0 and later.

External timing in MPSIM is processed only once during each instruction
cycle. Transient signals, such as a spike on MCLR smaller than an instruction
cycle will not be simulated but may be caught by an in-circuit emulator. In
MPSIM, external stimulus is injected just before the next instruction cycle
execution.

Execution Speed

Cost

The execution speed of a discrete-event simulator is several orders of
magnitude less than a hardware-oriented solution. Users may view slower
execution speed as a handicap or a blessing. Some discrete-event simulators
are unacceptably slow. MPSIM however, attempts to provide the fastest
possible simulation cycle.

The cost of the debugging tool may be an issue with some developers. For
this reason, Microchip Technology has developed this simulator to be a cost
effective tool for debugging application software. MPSIM does not require any
external hardware to the PC, which keeps the cost at a minimum.

Debugging Tool

© 1995 Microchip Technology Inc.

The simulator, however, is a great debugging tool. It is particularly suitable for
optimizing algorithms. Unlike the emulator, the simulator makes many internal
registers visible and can provide more complex break points.

If you are a new user, refer to Chapter 3 for a "Getting Started" tutorial.

Device specific information is provided in the appendices at the end of the
manual.

08300271 - page 1

MPSIM USER'S GUIDE

05300271 " p&Qll 2 @ 1005 Microchip Toohnology Inc.

~
MICROCHIP MPSIM USER'S GUIDE

Introduction

Highlights

Chapter 1. Introduction

MPSIM is a discrete-event simulator designed to aid you in debugging your
software applications for Microchip Technology's PIC16C5X, PIC16CXX, and
PIC17CXX microcontrollers.

Whether you are an experienced user or a beginner, we strongly suggest that
you read this chapter first since it provides information about:

Installing MPSIM

Document Conventions

Terminology

Device-Specific Support

Customer Support

If this is your first time using MPSIM we also suggest that you go through the
tutorial provided in Chapter 3. This tutorial introduces all files that are used or
generated by the simulator and provides a good introduction to some of the
most widely-used commands.

Installing MPSIM

© 1995 Microchip Technology Inc.

System Requirements
MPSIM requires an IBM® PC/AT® or compatible running DOS version 5.0 or
later. The PC needs a 3 1/2 inch floppy disk drive and at least 640K main
memory. We recommend a hard disk with at least 5 MB of available space.

On the PC, create a new directory for the MPSIM software and change
to that directory:

MKDIR SIM<RETURN>

CD SIM<RETURN>

• Copy all the files on the MPSIM diskette into the above directory:

COPY a:*.*

After loading the software, MPSIM is ready to run.

DS300271 - page 3

MPSIM USER'S GUIDE

Document Conventions

Terminology

DS30027i - page 4

This section describes the conventions this manual uses for the data you are
to enter.

TABLE 1.1- CHARACTER CONVENTIONS

Character Represents

Square ([]) brackets Optional arguments

Curly ({ }) brackets Braces indicate group options. One or more
options in the group is required.

Angle(<>) brackets Delimiters for special keys: <TAB>, <ESC>,
etc.

Pipe (I) characters Choice of mutually exclusive arguments; an
OR selection

Lower case characters Type of data

Italic characters A variable argument; it can be either a type of
data (in lower case characters) or a specific
example (in uppercase characters)

Courier font User keyed data or output from the system

Breakpoints
Source code locations where you want the code to cease execution.

Program Counter (PC)
The address in the loaded program at which execution will begin or resume.

Disassembler
Converts modified object code back into assembly-language code when a
listing file wasn't loaded. Thus, mnemonic information can display even when
you have made changes.

Step
A single executable instruction. You can single-step through a program by
executing one instruction at a time with the SS command. A stimulus file can
inject values onto specified pins at specified steps.

© 1995 Mlcrochip Tochr.c!ogy ~nc.

Chapter 1. Introduction

Symbols
Alphanumeric identifiers such as labels, constant names, bit location names
and file register names. MPSIM understands both explicit data/addresses and
symbols.

Trace
A trace file can be created to illustrate the execution flow of your program.
Each line in the trace file contains the object code, source line, step number,
elapsed time, and file registers that have changed. Trace can be limited to a
range of addresses, or to a specific file register address. Please see Chapter
3 "Tutorial" for examples on the trace file. When you trace the instructions,
they always display on the screen. If you previously opened a trace file and
have not closed it, MPSIM also appends the trace to the file.

View screen
The portion of your monitor that dynamically displays the values in specified
data areas. It is seven lines long. The V command creates a view screen; the
AD command adds data areas to the display; the DV command deletes data
area from the display; and the NV command deletes all data areas from the
view screen.

Device-Specific Support
MPSIM provides support for more than one family of microcontrollers.
Chapters 1 - 5 contain general information about MPSIM, regardless of the
target processor. Device-specific information can be found in the appendices
at the end of this manual.

Customer Support

© 1995 Microchip Technology Inc.

If you have any questions about MPSIM, the first step is to check in
Appendix A: Troubleshooting Guide, which contains a troubleshooting
guide that provides some common error messages and their possible causes.
Appendix C: Customer Support provides detailed information about how to
connect to the Microchip Technology BBS. The BBS contains the most up-to
date development systems software, application notes, as well as a variety of
other useful information. If you still cannot find the answer, contact the sales
office nearest you. Information and telephone numbers are presented on the
last page of the manual.

DS300271 - page 5

MPSIM USER'S GUIDE

DS30027i - page 6 © 1995 M:croch:p Techr.c!ogy !r:c.

~
MICROCHIP MPSIM USER'S GUIDE

Chapter 2. The MPSIM Environment

Introduction

Highlights

Chapter 2 provides an introduction to the MPSIM debugging environment. It
describes all data areas that can be simulated and presents general
information about using the simulator. This chapter is highly recommended for
first-time users.

The following topics will be covered:

• User Interface

Invoking MPSIM

• 1/0 Pins

• CPU Model

• Hardware Stack

• Files Used and Generated By MPSIM

© 1995 Microchip Technology Inc. 08300271 - page 7

MPSIM USER'S GUIDE

User Interface

Title Line

View Screen

Command Entry

05300271 e page e

The user interface consists of three areas: the title line, the view screen and a
command entry/display region. The title line remains in a fixed location at the
top of the screen and lists the current hex file, the radix, the MPSIM version,
the controller being simulated, cycle steps and elapsed time.

Figure 2.1 Start-up

The view screen displays user selected pin and register values. This area is
created by the user typically through an initialization command file. This file
will be in greater detail later in this chapter in "Files Used and Generated by
MPSIM".

The command entry/display region occupies the remainder of the screen. Use
this area to enter commands; MPSIM enters any responses to a command on
the line or lines immediately following the command.

MPSIM can be invoked with any or a combination of the following options:

Option Description Default

-v verbose off

-m monochrome mode off

-a ASCII only off

© 1995 Microchip Technology Inc.

Chapter 2. The MPSIM Environment

Invoking MPSIM

1/0 Pins

© 1995 Microchip Technology Inc.

Invoke MPSIM by typing MPSIM at the DOS prompt, or by typing MPSIM_DP
for the PIC17C42 in the extended microcontroller or microprocessor mode.
MPSIM is faster than MPSIM_DP. MPSIM_DP supports the larger memory
modules.

To load a file into the simulator, use the following command:

%LO filename [FORMAT] <RETURN>

The '%' is MPSIM's prompt. Exit MPSIM by using the AB or Q command.
Obtain help with the H command.

There is a list of viewable and modifiable pins for each microcontroller in its
appendix. These pin names are loaded when a processor is selected and are
the only ones that MPSIM recognizes as valid.

UO Pin Modeling
Because a conflict can occur when a pin is being driven internally (via an
instruction) and externally (via stimulus file), the following table is provided to
illustrate the possible conditions and the order in which MPSIM processes it.

Is the pin being Is the pin Resolution
driven being
externally? driven

internally
?

Yes Yes Chip wins.

No No The pins are essentially floating. The pins
maintain the last external value they were
driven.*

Yes No Simple.

No Yes Simple.

* Note that this does not represent the actual behavior of the circuit when the 1/0
pin was last driven by the chip. However, typically, a used 1/0 pin (especially
CMOS) would not be left floating.

DS300271 - page 9

MPSIM USER'S GUIDE

CPU Model

08300271 - page 1 O

Pin Signals
At the end of each instruction all pins are checked for possible input or output.

• If the Qcm pin is cleared, MPSIM simulates a McrR reset.

• The TRIS (or DOR for the PIC17CXX) status bits determine how.
MPSIM manipulates the port and file register bits. For example, the
TRISA, RAO-RA5 and F5 registers work together; the TRISB, RBO-RB7
and F6 registers work together; and the TRISC, RCO-RC7 and F7
registers work together, etc.

- For TRIS status register bits that are set, MPSIM reads the
corresponding port bit into the corresponding file register bit.

- For TRIS status register bits that are cleared, MPSIM writes the
corresponding file register bit to the corresponding port bit (pin).

• Similarly, if any of the timer inputs are changed, the corresponding timer
or its prescaler will increment.

• Any peripheral input (such as capture input) is acted upon.

• Any peripheral output (such as serial port output) is presented on the
pin.

Reset Conditions
All reset conditions are supported by MPSIM.

A Power-On-Reset, for example, can be simulated by using the RS
instruction. All special-purpose registers will be initialized to the values
specified in the Microchip data sheet.

A MCLR reset during normal operation or during SLEEP, for example, can
easily be simulated by driving the MCLR pin low (and then high) either via the
stimulus file or by using the SE command.

A WOT time-out reset is simulated when WOT is enabled (see OW command)
and proper prescaler is set (by initializing OPTION register appropriately for
the PIC16CXX family or by using the FW command for the PIC17CXX family)
and WOT actually overflows. WOT time-out period is approximately the
"normal" time for the device being simulated (to closest instruction cycle
multiple).

The Time-out (TO) and Power-down (PD) bits in the Status register reflect the
reset condition. This feature is useful for simulating various power-up and time
out forks in the user code.

© 1995 Microchip Technology Inc.

© 1995 Microchip Technology Inc.

Chapter 2. The MPSIM Environment

Sleep
MPSIM simulates the SLEEP instruction, and will appear "asleep" until a
wake-up from sleep condition occurs. For example, if the Watchdog timer has
been enabled, it will wake the processor up from sleep when it times out
(depending upon the prescaler setting)

Another example of a wake-up-from-sleep condition, would be Timer1 wake
up from sleep. In this case, when the processor is asleep, Timer1 would
continue to increment until it overflows, and if the interrupt is enabled, will
wake the processor on overflow and branch to the interrupt vector.

Wake-up from SLEEP through interrupt is fully simulated in the PIC16CXX
and PIC17CXX products.

WOT
The Watchdog timer is fully simulated in the MPSIM simulator. Because it is
fuse-selectable on the device, it must be enabled by a separate command
(see the DW command) in MPSIM. The period of the WDT is determined by
the prescaler settings. The basic period (with prescaler = 1) is approximated
at 18 ms (for the PIC16C5X and PIC16CXX families and 12 ms for the
PIC17CXX families).

Registers
MPSIM simulates all registers. Certain special-function registers or non
mapped registers can be added to the viewscreen or modified like any other
register. Examples are timer prescaler or postscalers.

All registers are initialized appropriately at various reset conditions.

Please see the appendix of the microcontroller in question for a list of
additional registers.

Register Name Function

w Working Register

TRISA Tris register for Port A (PIC16C5X/PIC16CXX)

TRISB Tris register for Port B (PIC16C5X/PIC16CXX)

TRISX (etc)* (etc)*

OPT Option register*

* Processor-dependent. For a complete list for a given processor, please refer to
the device-specific appendix.

DS300271 - page 11

MPSIM USER'S GUIDE

Hardware Stack

Push
The CALL instruction pushes the PC value + 1 to the top of the stack and
loads the PC with the address of the subroutine being called. If the number of
CALL instructions exceeds the depth of the stack, MPSIM will issue a "STACK
OVERFLOW' warning message when executing or single-stepping through
code. In the PIC16C5X family, the CALL instruction is the only instruction that
causes an address to be pushed to the stack. The PIC16CXX and PIC17CXX
families, however, support interrupts. When an interrupt occurs, the PC value
+ 1 is pushed to the stack and the PC is loaded with the address of the
interrupt vector. The same error message will also be generated if too many
addresses are pushed to the stack when MPSIM is executing or single
stepping through a program.

Pop
RETLW instructions in the PIC16C5X and RETLW, RETURN and RETFIE
instructions in the PIC16CXX and PIC17CXX instruction set remove or "pop"
the last address pushed to the stack and loads its value into the PC. If an
attempt is made to pop more values than the stack contains, MPSIM will issue
a "STACK UNDERFLOW' warning message when executing or single
stepping through the program.

Because stack implementation is processor-family dependent, please refer to
the appendix of the processor family in question for stack simulation.

Files Used and Generated By MPSIM

08300271 - page 12

MPSIM uses or creates the following 1/0 files.

• Command files

• Initialization files

Journal files

Stimulus files

• Assembler files

HEX-Code formats

The following sections describe each of these files.

© 1995 Microchip Technology Inc.

© 1995 Microchip Technology Inc.

Chapter 2. The MPSIM Environment

Command Files
Command files are text files containing MPSIM commands. These MPSIM
commands are executed with the GE command.

There are two special command files: MPSIM.INI and MPSIM.JRN.
MPSIM.INI is the initialization file that MPSIM will automatically load on start
up. MPSIM.JRN is a file containing all commands executed in the previous
session.

Initialization File
When MPSIM is invoked, it automatically performs the MPSIM commands in
MPSIM.INI. Common commands in this file might create a standard view
screen and/or initialize data areas. Figure 3.2 in Chapter 3 lists an example
initialization file and Figure 3.3 in Chapter 3 shows the resulting view screen.

Journal File
If you want to re-execute the most recent MPSIM session, LJ retrieves a list of
the commands performed during the previous MPSIM session from
MPSIM.JRN. This file is automatically created each time MPSIM is invoked. If
you want to retain a journal file, copy it to another filename before reentering
MPSIM. The first time you reenter MPSIM, the journal file is the same as you
copied. However, when you exit via Q, the commands from the current
MPSIM session will overwrite the previous journal file. Thereafter, you can
access the copied file with GE.

As with all modern CAD/CAE tools, the concept of journal files is carried
throughout MPSIM. That is, any command entered by the user is
automatically stored in a journal file (named MPSIM.JRN). The journal file
remains in the user's default directory regardless of the termination method
(Quit or Abort). The LJ command loads and executes the journal file created
during the previous simulator session. However, it doesn't store the
commands from the previous journal file in the current journal file.

Performing the Q command removes the previous journal file, but using the
AB (Abort) retains old journal file. The current MPSIM session commands are
written over the previous journal file.

Stimulus File
This file allows you to schedule bit manipulation by forcing MPSIM to drive
given pins to given values at a specified input step. This scheduling is via a
text file called a stimulus file. The stimulus file can force any pin to any value at
any input step during program execution. The ST command reads the
stimulus file into MPSIM. When you execute the loaded file with E, each time it
looks for input, it reads the next step in the stimulus file. The first line of
stimulus file always consists of column headings. It lists first the word "STEP,"
followed by the pins that are to be manipulated. The data below STEP
represents the object file's input request occurrence. The data below each pin

DS300271 - page 13

MPSIM USER'S GUIDE

DS300271 - page 14

name is the input value. You may enter comments at the end of a line by
preceding it with an exclamation mark(!). The following example illustrates
the stimulus file format:

STEP pin 1

8 1

16

24

0

1

pin 2

0

1

0

These are pin names

followed by values

Other notes on the format of stimulus file:

• The steps in the stimulus file must be decimal, regardless of the radix in
which you run your simulation

• The number of spaces separating data tokens is irrelevant

• Backslash (\) is a continuation mark at the end of a line and indicates
that the following line continues the statement from the current line

Step RB2 RA3 RA2 RA1 RAO ! Column Headings

3 0 0 1 0 0 ! Stimulus before cycle 3

4 1 0 1 0 1 ! Injected before cycle 10

9 1 1 0 1 0 ! Injected before cycle 16

10 0 1 0 1 1 ! Stimulus before cycle 3

15 0 0 0 0 0 ! Injected before cycle 9

16 1 0 0 0 1 ! Injected before cycle 15

Figure 2.2· Stimulus File

There are three other ways to inject stimulus to the 1/0 pins in addition to
using the stimulus file. A "clock" can be assigned to an 1/0 pin, Alt-function
keys can be assigned to the pins (only for use in "execute" mode), and they
can be modified in "single step" mode. Details and syntax for each command
can be found in Chapter 5. Please see CK, DK, and SE commands.

Files Generated by the Assembler
The MPASM assembler generates by default all files necessary, for use with
MPSIM. To assemble a file, invoke MPASM with the source file name as
follows:

MPASM filename

The default assembler that MPSIM assumes is MPASM. To specify MPALC as
the assembler, invoke MPSIM with the "-s" option.

© 1995 Microchip Technology Inc.

© 1995 Microchip Technology Inc.

Chapter 2. The MPSIM Environment

Listing File
The listing file contains the source code the assembler uses to create the
object code being simulated. To display the source code throughout
simulation, read in the listing file with the LO command. Otherwise, MPSIM
uses the disassembler.

Input Hex File
The input hex file contains the object code generated by the assembler. The
LO command reads an hex file directly into program memory. The hex code
format can be INHXSM or INHXSS. The default format is INHXSM.

Output Hex File
At any time during simulation, the contents of the program memory can
written to an external file with the 0 command. The hex code format can be
INHXSS or INHXSM.

Symbol File
The assembler generates the symbol file and contains a collection of symbols
used in the source code. This file is used for symbolic debugging, and is
automatically loaded when the LO command is used. The RA command
clears the symbol file, and restores all original values.

Trace File
If you open a trace file with the TF command and later trace execution,
MPSIM writes the specified trace into the trace file as well as displaying the
trace on-line.

HEX Code Formats
The simulator is capable of reading or generating two different hex code
formats as dictated by the LO and 0 commands: INHXSS or INHXSM. The
default hex code format that the simulator recognizes is INHXBM, but any file
format can be loaded by specifying the format when using the LO command.
For example:

LO Myfile INHXBS

will tell the simulator to load myfile.obh and myfile.obl. (The two files
necessary for INHXBS format.) Similarly, modified hex code can be saved to
disk in any format by using the following command:

0 Myfile INHXBM

The file that has been loaded into memory in any format will now be saved as
a file in INHXSM format.

05300271 - page 15

MPSIM USER'S GUIDE

DS300271 - page 16 © 1995 Microchip Technology Inc.

~
MICROCHIP MPSIM USER'S GUIDE

Introduction

Highlights

© 1995 Microchip Technology Inc.

Chapter 3. Tutorial

This chapter provides an introduction to MPSIM, the discrete-event simulator
for Microchip Technology's PIC16C5X, PIC16CXX and PIC17CXX families of
microcontrollers. It also presents a step-by-step tutorial through a sample
program, SAMPLE.ASM. The tutorial is intended to familiarize you with the
simulator and to provide an introduction to some of the most commonly used
commands. The source code for SAMPLE.ASM and the other files used in
the tutorial are available on your master disk, and can also be found in
Appendix B at the end of the manual. If you do not have soft copies of the
files for the tutorial, they can be created with any ASCII text editor. It is
assumed that MPASM and MPSIM have been installed on your hard drive,
and that all files used in the tutorial are in your working directory.

The program that is used in this tutorial, SAMPLE.ASM, is a software
multiplier that takes two 8-bit numbers, "mulplr" and "mulcnd", and places the
16-bit result in "H_byte" and "L_byte" for the PIC16C54.

Because this chapter provides some background examples in addition to the
tutorial, all steps that are part of the tutorial will have a step number in bold
text to the left of the command in the margin.

This chapter covers the following information:

• Assemble the Code

• Invoke the Simulator

• Load the Initialization File

• Load the Hex File

• Load the Stimulus File

• Set Up Trace Parameters

• Set Up Breakpoints

• Execute the Hex Code

• Modify the Hex Code

• Exit the MPSIM Session

05300271 - page 17

MPSIM USER'S GUIDE

Assemble the Code

STEP 1:

Before you can begin to use the simulator, you must first assemble
SAMPLE.ASM. MPASM generates a hex file in INHXBM format by default. In
addition to INHXBM, the following formats can be output:

INHXSM

INHXSS

There is one default setting that the simulator assumes when it loads your
code: the file format. The default file format for MPSIM is INHXBM, but any
format that either assembler generates can be loaded into the simulator.

For this tutorial, we want the output file format to be lNHXBM (the default
format used by MPSlM), and the processor type to be PlC16C54. Type the
following at the DOS prompt:

MPASM sample/p16C54<RETURN>

Invoke the Simulator

STEP2:

DS300271 - page 18

To invoke the simulator, simply type

MPSlM<RETURN> (if using the MPASM assembler)

or

MPSIM ·&<RETURN> (if using the MPALC assembler)

at the DOS prompt.

The following screen will display:

Figure 3.1 • MPSIM.INI View Screen

© 1995 Microchip Technology Inc.

Chapter 3. Tutorial

MPSIM.INI
Observe the information in the command area and the information that is
displayed in the view screen. The data areas appear in the view screen
because an initialization file, MPSIM.INI is in your working directory.
MPSIM.INI is simply an ASCII file that contains the same commands that
appear in the command area. Every time MPSIM is invoked, it looks for a file
called MPSIM.INI. If one exists on your working directory, all of the MPSIM
commands appearing in that file will be executed, much like a DOS batch file.
It is important to understand that an initialization file can be named anything.
MPSIM.INI is unique in that it is automatically loaded when MPSIM is invoked.

Load the Initialization File

© 1995 Microchip Technology Inc.

Initialization files are very useful because they allow you to choose data areas
that you wish to view, display them on the viewscreen, load your program, and
create break points-all in one step. In other words, you can invoke MPSIM,
load your initialization file, begin debugging, exit MPSIM, and return later,
easily setting up the viewscreen the same way that you had it when you quit
the program, simply by loading the initialization file.

Creating an initialization file
One easy way to create an initialization file is to first invoke the simulator, type
in commands that set up your viewscreen, set some break points, and then
quit the simulator. When you quit, you will notice that a file "MPSIM.JRN" has
been created. This "journal" file contains every command that you executed in
the previous session. If the W register, or any other register was added to the
viewscreen, the commands implementing this will be saved in the journal file.
This file can then be edited using any text editor to remove commands such
as "E" (execute) or "Q" (Quit), and then saved under another file name. It is
necessary to remove commands such as "E" and "Q" because they will also
be executed when you load your ANYTHING.IN! file, and the simulator would
set up your viewscreen, execute your code, and quit. It is also important to
save the journal file under another name before invoking MPSIM a second
time. Each time MPSIM is invoked, it overwrites the previous journal file, and if
you did not rename the journal file, it will contain all commands executed in
the current session.

0$300271 - page 19

MPSIM USER'S GUIDE

STEP3:

0$300271 - page 20

For this example, we will use the initialization file called "SAMPLE.INl9
• We

will load it by using the following command:

GE sample.in/ <RETURN>

MPSIM executes the commands in the following SAMPLE.IN! file.

LO SAMPLE
ST SAMPLE
SR X
ZP
ZR

ZT
RE
p 54
NV

AD mulcnd
AD mulplr
AD H_byte
AD L_byte
AD count
AD portb
AD RB7,B,l
AD RB6,B,l
AD RBS,B,l
AD RB4,B,l
AD RB3,B,l
AD RB2,B,l
AD RBl,B,l
AD RBO,B,l

Figure 3.2-Sample .INI Initialization File

© 1995 Microchip Technology Inc.

Chapter 3. Tutorial

This changes the viewscreen so that it displays the data areas that
SAMPLE.HEX uses, in the most useful format.

Figure 3.3- Sample.IN! View Screen

The commands in this file create the viewscreen shown above and re-initialize
data areas. The viewscreen now contains data areas that can be watched
during the execution of SAMPLE.

Load the Hex Fi le

© 1995 Microchip Technology Inc.

Notice that the LO command is listed in the SAMPLE.I NI file. Because of this,
the hex file was automatically loaded when SAMPLE.IN! was loaded. If the
LO command were not in the SAMPLE.IN! file, you could load the file by
typing in the following:

LO sample <RETURN>

It is important to realize that because we have assembled the code in the
MPSIM default format (INHXSM), we do not have to specify the format being
loaded. If we had assembled filename in any format other than INHXSM, we
would have had to load the file in the following way:

LO filename format <RETURN>

MPSIM loads the named hex file, and then looks for a source file. If the file is
available, it also loads the symbol table and the listing file.

08300271 - page 21

MPSIM USER'S GUIDE

Load the Stimulus File

08300271 - page 22

SAMPLE.IN! has taken care of loading the stimulus file. You can see in the
SAMPLE.IN! file that the command:

ST sample.sti<RETURN>

was executed when the initialization file was loaded.

The stimulus file contains values that are to be input to the pins. When you
execute the loaded program, at every instruction step specified in the stimulus
file, MPSIM retrieves the input data, and injects their values to the pins.

! Stimulus file for SAMPLE.ASM

STEP RB7 RB6 RBS RB4 RB3 RB2 RBl RBO !PortB Pins

3 0 0 0 0 1 0 0 1 ! 9 x 5

5 0 0 0 0 0 1 0 1

65 0 0 0 0 1 0 1 0 10 x 5

67 0 0 0 0 0 1 0 1

127 0 0 0 1 1 0 1 1 27 x 3

129 0 0 0 0 0 0 1 1

191 0 0 0 1 0 0 0 1 17 x 7

193 0 0 0 0 0 1 1 1

253 0 1 0 0 0 0 0 0 64 x 63

255 0 0 1 1 1 1 1 1

Figure 3.4 - SAMPLE.ST! Stimulus File

The stimulus file for SAMPLE in figure 3.4 writes the multiplier and
multiplicand values into simulated 1/0 port B. Since this port allows up to
eight bits of data, the maximum value of the multiplier and multiplicand is
11111111 or OxFF.

© 1995 Microchip Technology Inc.

Chapter 3. Tutorial

Set Up Trace Parameters

Exercise 1:

Exercise2:

© 1995 Microchip Technology Inc.

A trace file is a file that contains executed instructions, timing information, and
registers that have been modified. Using a trace file can be very helpful in
determining where to inject stimulus and for creating a "hard copy" of the
general execution flow of your program. There are five MPSIM commands
dealing with traces:

• TF opens and closes a file for writing the traced data.

• TA traces all instructions between two specified addresses

TC traces a specified number of instructions.

• TR traces instructions dealing with specified registers and values.

• DX displays the current trace parameters

Try some of the following exercises. All of the traces in these exercises will be
printed to a file. If you would like to try printing your trace to a default printer,
substitute "PRN" in place of the trace file name.

Trace the instructions between two labels, call_m and main, and print
the instructions to a file.

The first step is to create thE.l trace file:

TF trace1.trc <RETURN>

Next, specify the range of the trace. Then, begin tracing the instructions. Hit
any key to interrupt the trace.

TA main, call_m <RETURN>

TC<RETURN>

Trace fourteen instructions (OxOE instructions) and write the trace to
the file TRACE2.trc.

Restart the system by exiting MPSIM (q <RETURN>), and repeating steps 2
(Invoke the Simulator) and 3 (Load the Initialization File). Just as in Exercise
1, we will first open the trace file

TF trace2.trc <RETURN>

Then, we will trace the next fourteen instructions. Note that if the number of
instructions to be traced is not specified, the trace will continue until a key is
pressed.

TC E <RETURN>

Note: If you had specified the number of instructions to be executed as
"14" instead of "E", twenty steps would have been executed since
the radix is set to hexadecimal (the default radix in MPSIM).

DS300271 - page 23

MPSIM USER'S GUIDE

Exercise 3:

DS300271 - page 24

>AMPLE RADIX=X MPSIM 16c54 TIME=32. OOv 14

mlcnd: 09 1111lplr: FF H_byte: 00 L_byte: 00 count: OB portb: 05 RB7: 0
R86: 0 RBS: 0 RB'!: 0 RB3: 0 RB2: 1 RBl: 0 RB0: 1

IT: Trace file is open Ctrace2. trc)
.-:: tc e
JlFF 0A0E goto start :1.oov 1 ;
J00E 0040 start clrw :11.oov 2 :W:0 F3:1C
J00F 0002 option rn.oov 3 :orr:co
J010 0206 main movf portb,w :10.oov 1 lW:Ff F3:18
)011 0030 movwf 1111lplr m a2 .oov s lflO:FF F3:10
J012 0206 movf portb,w :11.oov 6 lW:9 f3:1B
)013 0029 movwf hi.I lend a11.oov 7 lf9:9 F3:18
J014 0900 ca lJ m call mpy_S T lZO .oov B ; [15,0J
JOOO 0072 mpy_S clrf H_byte l22 .OOv 9 :f12:0 F3:1C
)001 0073 clrf L_byte :21 .oov 111 :F13:0 F3:1C
J002 OCOB moolw 8 :211 .oov 11 :W:B
)003 0034 movwf count l2B .OOv 12 :F14:B F3:1C
)001 0209 MOVf nulcnd,w :30.ElOV 13 :w:9 n: 18
JOOS 11403 bcf STATIJS,CARRY c 132 .oov 14 :STATIJS: 18

Figure 3.5 -The trace information is printed to both the
screen and the trace file.

Check the current trace criteria.

DX<RETURN>

The current trace parameters display in the command entry area of the
MPSIM screen.

© 1995 Microchip Technology Inc.

Chapter 3. Tutorial

Set Up Breakpoints

Exercise 1:

Exercise 2:

Exercise 3:

Exercise 4:

© 1995 Microchip Technology Inc.

Break points are used to artificially stop program execution so that you can
review how the data has been manipulated or to see the contents of the
Special Function Registers. There are three instructions that deal with
breakpoints:

DB displays all of the breakpoints currently set.

BC clears one or all of the breakpoints currently set.

B sets a break point.

Initialize the breakpoints by clearing any break points currently set.
Enter the following command:

BC

Set a breakpoint at MPV _S. Enter the following command:

B mpy_S<RETURN>

Review all the breakpoints. Enter the following command:

DB<RETURN>

Delete the breakpoint at MPY _S. Enter the following command:

BC mpy_S<RETURN>

DS300271 - page 25

MPSIM USER'S GUIDE

Execute the Hex Code

Exercise 1:

Exercise 2:

Exercise 3:

Exercise4:

08300271 - page 26

In addition to trace, there are three instructions that you can use to execute
your code.

E
SS

c
• E executes your code until it encounters a breakpoint or you press a

key.

• SS single-steps through your instructions. That is, it executes one
single instruction at the CPC.

• C Execute, ignoring "n" number of breakpoints.

Add a watch variable. Add the w register to the display.

AD W <RETURN>

Add two breakpoints and execute until the first breakpoint is
encountered.

bmain

b mpy_S

E <RETURN>

MPSIM executes until it encounters the first breakpoint or until a key is
pressed. Watch the values change in the W, mulplr, H-Byte, and L-Byte
registers.

Execute instructions one step at a time.

SS <RETURN>

The SS instruction causes MPSIM to execute the instruction at the PC.
Pressing <RETURN> at the MPSIM prompt re-executes the last command.
Execute a second instruction by pressing <RETURN> again. Do this several
times, watching how the values in the W, mulplr, H-Byte, registers change.
This command can be used to single-step through your entire program to see
the data values at each step, and to watch the flow of your program. If you
supply an address with the SS command, MPSIM will modify the CPC to the
address you specify and then will execute the instruction at that address.
Remember that pressing <RETURN> will cause MPSIM to re-execute the
same command, so that if you supplied an address with the command, the
same address will be executed.

Execute your program and break after the second breakpoint.

C 2<RETURN>

MPSIM executes the instruction at the current CPC until the instruction
immediately following the second break point. Watch the values change in the
W, mulplr, H-Byte, and L-Byte registers.

© 1995 Microchip Technology Inc.

Chapter 3. Tutorial

Modify the Hex Code

Exercise 1:

Exercise 2:

Exercise 3:

Exercise4:

© 1995 Microchip Technology Inc.

MPSIM has four types of commands which allow you to modify the hex code:
search commands locate code that match specified criteria, display/modify
commands automatically display specified code and allow you to change it,
delete commands eliminate specified code, output commands allow the
modified code to be saved to a file. For the following exercises, mulplr is
stored in file register F10.

Search for the next occurrence of F10, and change its contents to OxFF.

SF 0, 1FF, F10<RETURN>

You will see two code lines with the "mulplr" register label.

F F10<RETURN>

After you type in the above command, you will see the current contents of
register F10, followed by a colon. Type in the value OxFF, and watch the
contents of the file register change. You will see that the contents of "mulplr"
will change since the value of "mulplr" is Ox10.

Change the value of the W register to OxOC

W<RETURN>

Just as in Exercise 1, you will see the current contents of W displayed on the
screen, followed by a colon. Type in OxOC, and watch the contents of the W
register change.

Change the contents of program memory located at the PC to a NOP.

Type in the following:

M O<RETURN>

You will see the contents of program memory displayed in hexadecimal,
followed by a colon. Type in a O (object code for NOP), and then <RETURN>.
Unlike modifying file registers, you will not immediately exit the function.
Instead, you will see the contents of the next memory location followed by a
colon. You can continue modifying program memory until you are finished.
When you are done, type "Q". This will get you back to the MPSIM command
prompt(%).

Delete program memory between address 2 and 4.

Type in the following command:

DE 2,4 <RETURN>

This function will delete all program memory from address 2 through
address 4, and will shift up remaining program memory. If you would like to
only clear the program memory between two addresses, use the following
command:

ZM 2,4 <RETURN>

0$300271 - page 27

MPSIM USER'S GUIDE

Exercise 5:

All of program memory between addresses 2 and 4 will now contain zeros
(NOP instructions). It will essentially leave a "hole" in program memory. Use
the following command to view your changes:

DI 0 <RETURN>

Remove the modifications made to program memory from the object
code in memory.

Remove the modifications made to program memory from the object code in
memory.

ZP<RETURN>

This instruction clears the patch table. All of the modifications made to
SAMPLE.HEX program memory are removed.

Exit the MPSIM Session

DS300271 - page 28

There are two ways of exiting MPSIM:

AB <RETURN>

Q <RETURN>

Using the AB command causes the old journal file to remain the same. The Q
command overwrites the old journal file.

You have now been introduced to some of the most commonly-used functions
in the simulator, and should have an understanding of how to use them. If
you need any additional information about any of the files that the simulator
uses or generates, please review the information in Chapter 2. Chapter 5
provides a list of all the commands that are available in MPSIM, complete with
a detailed description of their functions and syntax.

© 1995 Microchip Technology Inc.

~
MICROCHIP MPSIM USER'S GUIDE

Chapter 4. Functional Categories of MPSIM Commands

Introduction

Highlights

© 1995 Microchip Technology Inc.

Chapter 4 is intended to be used as a quick way to help locate a MPSIM
command by function. All of the commands presented in this chapter have
been grouped together according to function instead of alphabetical order.
Once the desired command is found, it can be looked up in Chapter Five
"MPSIM Simulator Commands" if a more detailed explanation or example is
required.

All commands have been divided into the following categories:

Loading and Saving

Inspecting and Modifying

Program Memory
Registers
Display Functions
Patch Table

- Clearing Memory and Registers
- Searching Memory
- Symbol Table

Restore

Execute and Trace

Execution Instructions
- Tracing Execution

Breakpoints

View Screen

Miscellaneous Commands

MPSIM Commands

05300271 - page 29

MPSIM USER'S GUIDE

Loading and Saving
The following three commands load and save hex code and listing files.

LO filename format

LS filename

0 filename format

Load file filename with format into program
memory. MPSIM also loads the source file.

Load filename into internal symbol table.

Write modified hex code to filename.

Before simulation can begin, use LO to load an hex file into program memory.
Immediately after loading the object file, MPSIM tries to load the listing file
using the same filename and the extension .LST. If MPSIM still can't find the
listing file, the source code file cannot be loaded and displayed at break
points. Instead, MPSIM disassembles the hex code and displays the
disassembled instruction.

The object file can be any of two different formats: INHX85 or INHXSM.

Example: LO SAMPLE.OBJ INHXBM<RETURN>

After modifications have been made to the program memory, the user may
wish to save the corrected hex code into an external file. Use the 0 command
to output the hex code. Enter the filename including the extension.

Example: 0 SAMPLE1.HEX INHXBS<RETURN>

Inspecting And Modifying

08300271 - page 30

MPSIM allows user to change the values of any data area or program
memory any time during the simulation.

Program Memory
In the course of testing a program, you may need to modify its instructions.
Both the following commands do so.

A address

M address

Display/modify program memory at address using
symbolic format.

Display/modify program memory at address using
the current radix format.

© 1995 Microchip Technology Inc.

Chapter 4. Functional Categories of MPSIM Commands

© 1995 Microchip Technology Inc.

If you use IA, the source code for the address displays, followed by':' on the
next line for the new command. The new command must consist of a valid
mnemonic followed by zero or more operands. Each operand must contain a
single value or symbol, no expressions will be allowed. MPSIM interprets all
values based on the current input radix as set with the SR command.

Entering 'Q' at the prompt ends the command; entering '-' causes MPSIM to
go back and inspect/modify the previous address; entering <RETURN>
leaves the instruction alone and continues to the next address.

Example: o/olA 200 <RETURN>

0200

CLRF 6

0201

0200

Q

CLRF FS

CLRF F7

CLRF 6

After changing the hex code, the original source code no longer displays. It is
replaced by a disassembled source line.

If you use M, the contents of the address display in the same format as the
current radix. The prompt ':' immediately follows the data. Place the new
value after the prompt, using the current radix.

The '-', 'Q' and <RETURN> have the same affect as described above. Two
additional commands that affect program memory are:

IN address,instruction Insert instruction at address in symbolic
format.

DE address1,address2 Delete program memory from addresst to
address2.

The IN command places a symbolically formatted opcode at the given
address, then displaces values that follow address by one location. The new
command must consist of a valid mnemonic followed by zero or more
operands. Each operand must contain a single value or symbol, no
expressions will be allowed.

The DE command deletes the code within the given boundaries then shifts all
data in program memory locations greater than the upper boundary down to
the lower boundary.

DS300271 - page 31

MPSIM USER'S GUIDE

08300271 • page 32

Registers
Each register can be inspected/modified by using the following commands:

F register

w
SC

SE data_area
RE

Display/modify contents of file register

Display/modify contents of W register

Display/modify processor cycle time

Display/modify any data_area
Reset elapsed time and step count

Inspect and modify file registers with the F command. The value of the
register displays followed by the prompt':'. Enter the new value after this
prompt.

Example: %F3

F3=20:21 (The value of F3 has now been
changed to 21.)

To inspect and modify the W register the W command is used.

Example: %W

W=44:00 (The value ofW has now been changed
to O.)

Inspect and modify the simulated cycle time with the SC command.

Example: %SC

2.0:.2

Display and/or modify the value of any other data area (stack, pins, status bits,
all registers) with the SE command.

Example: %SE OPT

OPT=FF:FE

© 1995 Microchip Technology Inc.

Chapter 4. Functional Categories of MPSIM Commands

© 1995 Microchip Technology Inc.

Display Functions
The display functions are provided to print formatted lists of various program
variables in the command/source area on the screen.

DR

OM addr1 ,addr2

Displays the contents of all registers including W,
status and the stack.

Displays the code from address 1 to address2.
The code displays only in the current radix, not in
mnemonics. address1 must be less than
address2 and both must be in the valid range of
program memory.

DI addr1,addr2 Displays the code from address 1 to address2.
The code displays in both the current radix and
mnemonics. address1 must be less then
address2 and both must be in the valid range of
program memory.

You can terminate the OM and DI commands at any time by pressing any key.

Example: %DI 0, 3

0000 0020 MOVWF 0 The MOVWF instruction = 20

0001 0063 CLRF 3 The CLRF instruction = 63

0002 0080 SUBWF 0' 0 The SUBWF instruction = 80

0003 0069 CLRF 9 The CLRF instruction = 69

%DM 0, 3

0000 0020

0001 0063

0002 0080

0003 0069

DS300271 - page 33

MPSIM USER'S GUIDE

DS300271 • page 34

Patch Table
During the course of simulation, several changes may have been made to the
hex code in order to achieve the desired results. The patch table keeps track
of all changes made by maintaining the original value of the address along
with the most recent change. The patch table can then be displayed out in
symbolic format to aid the user in making changes to the source code. The
following three commands manipulate the patch-table.

ZP

DP

RP

Clears the patch table and resets it to no patches made.
All changes previously made to the hex code remain.

Display all patches in symbolic format. Both the original
hex code and new code display.

Restores all patches to their original value and clears
the patch table

Clearing Memory and Registers
Memory and registers can be cleared quickly by using the following
commands.

ZM addr1 ,addr2 Zero the program memory from address1 to address2.
address1 must less than address2 and both must be
valid program memory addresses.

ZR

ZT

Zero all of the file registers (FO through F31).

Zero the elapsed time counter.

Clear any of the other data areas with the SE command.

Searching Memory
It is sometimes desirable to search the program memory for specific
instructions or operands. The following three commands search program
memory for various patterns and display each line containing that pattern.

SI address1,address2,instruction

Search program memory from address1 to address2for any occurrence of
instruction. Instruction is in mnemonic format.

SM address1,address2,m

Search program memory from address1 to address2 for any occurrence of
the value m. Specify the search criteria in the radix mode, not in mnemonics.

© 1995 Microchip Technology Inc.

Chapter 4. Functional Categories of MPSIM Commands

© 1995 Microchip Technology Inc.

SF address 1,address2,register

Search program memory from address1 to address2for any instruction that
accesses file register. Specify the search criteria in the radix mode, not in
mnemonics.

Example:

Symbol Table

%SJ: 0, 20, NOP

0000 0000 LOOP NOP

0006 0000 NOP

OOlE 0000 NOP

%SM O, 20, 0

0000 0000

0006 0000

OOlE 0000

The following commands manipulate the symbol table:

DS Display symbol table.

DL symbol Delete symbol from symbol table.

GS symbol, value, type Generate symbol with a value of type. type may
be file, bit(file), label or literal. See the GS
command description for the exact syntax.

Example:

Restore

%DS

Symbol

START

%GS NEWSYM,

FF, B

Symbol

START

NEWSYM

Value Type

0000 L

Value Type

0000

OOFF

L

B

The Restore All command, RA, has the combined effect of restoring the patch
table, clearing the symbol table and removing all break points.

DS300271 - page 35

MPSIM USER'S GUIDE

Execute and Trace

DS300271 • page 36

The simulator executes in three basic modes, execute until break, single step
or trace. In either of these modes you can stop execution at any time by
pressing any key.

Execution Instructions
The E command begins execution at the specified address, or at the CPC if
you don't specify an address. The loaded program executes until reaching a
break point or until you press any key. If you wish to slow down execution, use
the single step instruction, SS. SS executes the single instruction at the
specified address or at the CPC if you don't specify an address.

Tracing Execution
In the trace mode, all addresses meeting certain conditions display as they
execute. The conditions may include:

• A given instruction within address boundaries.

Accessing a given register.

A given register containing a value between two limits. The following
trace parameters maintain trace execution.

Register number being traced.

• Range of register values.

Range of addresses to trace.

The following commands set up and execute the trace mode.

TC #instructions

TA

TA addr1,addr2

TR

TR reg

Trace the next #instructions. If you omit
#instructions, execution continues until MPSIM
encounters a break point or until you press any
key.

Sets the upper and lower address trace limits to
the full range of program memory.

Sets the lower validation limit for address trace to
address1 and the upper address validation limit
to address2.

Sets the address trace to trace any file register.

Sets the address trace to trace the file register.

TR reg,min_val,max_val Sets the address trace to trace the file register
only if the value of the register is between
min_ value and max_ value.

© 1995 Microchip Technology Inc.

Chapter 4. Functional Categories of MPSIM Commands

© 1995 Microchip Technology Inc.

DX

Note:

Examples:

%DX

Address

%TC 2

Displays the current trace parameters. When in
trace mode, the location, opcode, mnemonic,
elapsed time, cycle steps and any changed data
areas will be displayed when the given conditions
are met.

F2 and F3 won't display if changed, however,
status bits do display.

OOOO:OlFF

0002 0000 LOOP NOP 16.oou 0003 I
0003 0040 TEST CLRW J 8.00u 0004 J Z:l

%TR 4, 0, F

%TR 3

%TA 0, 4

%DX

Address 0000:0004

F3 OOOO:OlFF

F4 OOOO:OOOF

%TC 40

0004 0020 CALL START J 10.00u OOOSJ [005,000]

Stack contents always display in brackets with the top of the stack to the left.

05300271 - page 37

MPSIM USER'S GUIDE

05300271 - page 38

Breakpoints
MPSIM allows the user to set up to 512 breakpoints on any valid address. It
also allows conditional breakpoints on any of the data areas. When one of
these breakpoints is encountered, the current address is displayed in
symbolic format and control is returned to the user. The following commands
control the breakpoints.

B address

B data_area op val

BC address

BC data_area

BC

C #breakpoints

DB

Set breakpoint at address (symbolic address can
be used).

Break when data_ area matches the condition
given by the operator(=,>,<,>=,<=,!=) and value.

Cancel breakpoint at address.

Cancel breakpoint involving data_area.

Cancel all breakpoints.

Continue execution ignoring #breakpoints
breakpoint occurrences.

Display all active breakpoints.

Only one conditional breakpoint is allowed per data area.

© 1995 Microchip Technology Inc.

Chapter 4. Functional Categories of MPSIM Commands

View Screen
The following commands set up and manipulate the view screen.

V data_area,radix,#digits

NV

This command sets up the view screen. This
means that the View command defines the
variables (and respective formats) to
constantly display on the screen. Once the
view screen is set, it remains active until
either a NOVIEW command or a View sets up
a new view screen. The format of this
command is relatively simple. Register or
signal s displays in radix mode r with n digits.
r defaults to hexadecimal and n defaults to 1.
If n is omitted, the number of digits is 1. The
radix can be binary, octal, hexadecimal or
decimal.

This command clears the view screen. The
same effect can be achieved by redefining
the view screen.

AD data_area,radix,#digits This command adds items to the view
screen. If one desires to add more display
items to the view screen, use the Add
command. While this command's format is
identical to View, it doesn't destroy the
current contents of the view screen, but
simply displays additional items as well as
the current ones.

DV data_area This command simply removes display items
from the view screen while leaving the
display formatting intact.

TY data_area,radix,#digits This command changes the formatting of the
existing view screen. s is the signal name (if
the designated signal isn't in the view screen,
MPSIM gives a warning). The radix can be x,
o, d or b and n is the number of spaces to
reserve for this variable at the display time.

© 1995 Microchip Technology Inc. 05300271 - page 39

MPSIM USER'S GUIDE

Miscellaneous Commands

05300271 - page 40

SR radix

p {541551711 ••• }

GE filename

Q

AB

ST filename

H

CK pin, high, low

This command sets the input/output radix to
Octal, hexadecimal or Decimal. The radix will be
used on all inputs and outputs with the exception
of file register numbers and step counts.

Choose the appropriate PIC16CXX
Microcontroller number n. n can be any member
of the PIC16CXX or PIC16C5X microcontroller
family. The default is 55.

This command forces MPSIM to get its command
stream from an external text file. When end of file
is reached, the control is returned to the user
interface. All the incoming commands are parsed
by the same mechanism as the one supervising
the on-line interface thus the syntax should follow
the guidelines of this document. If the specified
file is not found, the user will be notified.

This command terminates the dialogue. It prints
out one or two summary messages, removes the
journal file and exits to the operating system.

This command aborts the dialogue. It prints out
one or two summary messages and exits to the
operating system.

Stimulus command allows the user to introduce
an event-based stimulus injection into the model.
That is, the user may want to inject certain values
into certain pins or registers at some point during
the simulation. The stimuli are defined in a text file
whose format is described on pages 12 and 13.

The Help command lists the syntax and a brief
summary of each command available in MPSIM.
There are several screens of information. Press
SPACEBAR to exit, any other key to display the
next screen.

This command allows you to assign a clock to
an 1/0 pin.

DK altfxkey, pin, event This command simulates an asynchronous event
through a function keystroke, and is very useful
for simulating external interrupts or resets.

Fl FileNameAddr, PmemAddr, n

This command injects values into a file register
when the PC = PmemAddr. Repeats n times.

© 1995 Microchip Technology Inc.

Chapter 4. Functional Categories of MPSIM Commands

MPSIM Commands
The following table contains summary information grouped by function about
the MPSIM commands. This information is also found on the MPSIM Quick
Reference Card. Chapter 5 contains additional information about the MPSIM
commands.

Table 4.1 MPSIM Commands by Function

MPSIM Conventions

[l Brackets indicate optional items.

{ } Braces indicate group options. One or more options in the
group is required.

I Vertical bar indicates alternative options.

System Navigation

AB Abort Session. Aborts the dialogue, prints a summary
message and exits to the operating system. AB does not
overwrite the journal file.

HIHelpl? Help. The Help Command lists the syntax and gives a brief
summary of each command available in MPSIM. Press the
SPACEBAR to exit Help. Press any other key to display the
next help screen.

Q Quit. Terminates the dialog. Prints one or two summary
messages, overwrites the old journal file and exits to the
opening system.

Program Memory

DE address1,address2 Delete Program Memory from addresst to address2.

DI [addressl[,address2]] Display Program Memory in Symbolic Format. Displays
program memory from address1 to address2. Displays in
current radix and symbolic format. Omit address2 to display
next 10 lines from address1.

DM [addressl,address2] Display Program Memory in Radix Designated Format. (See
SR command to set the radix.) Displays program memory from
address 1 to address2. Data displays in current radix only. With
no parameter, displays 10 lines continuing from last OM
display.

FM addressl,address2,pattern Fill Memory. Fills program memory from addresst to address2
with specified HEX pattern.

IA address Insert/Inspect Assembly Code (Symbolic Format). Displays or
modifies program memory at address using symbolic format.

© 1995 Microchip Technology Inc. DS300271 - page 41

MPSIM USER'S GUIDE

Table 4.1 MPSIM Commands by Function (Continued)

IN address,instruction Insert instruction. Inserts instruction at address in symbolic
format.

LO filename[for:mat] Load Object File. Loads the object file, filename, with format
into program memory. MPSIM also loads the listing file and
symbol file.
Valid Formats: INHXSM (Default)

INHXSS

M address Display/Modify Program Memory at Address. The contents at
the address display, and a colon (:) prompt follows. To change
the value at address, enter a new value (in the current radix)
after the prompt.
a End the command
- Cause MPSIM to go back to the previous address
<Enter.J> Continue to the next address

O filename [format] Output Modified Object Code. Writes contents of program
memory, including modifications, to the specified file in the
designated format.
Valid Formats: INHXSM (Default)

INHXSS
INHX32 (for PIC17CXX)

SF address1,address2,register Search Program Memory for Register. Searches program
memory from address 1 to address2 for any instruction that
accesses the specified file register.

SI addrl,addr2,instruction Search Program Memory in Symbolic Format from address 1 to
address2 for any occurrence of instruction.

SM addrl,addr2,instruction Designated Format. (See SR command to set the radix.)
Searches program memory from address 1 to address2 for any
occurrence of instruction. Specify instruction in the current
radix.

ZM addressl,address2 Zero the Program Memory from addresst to address2.

Breakpoints

B address Set Breakpoint. Sets breakpoint at address (symbolic address
can be used).

B FileReg {operator value} Set Breakpoint. Break when FileReg matches the condition
given by the operator and the value.
Valid operators: { = I > I < I > = I < = I ! = }

BC Breakpoint Clear. Cancels all breakpoints.

BC [addrf FileReg] Breakpoint Clear. Cancels breakpoint at addr or FileReg.

DB Display All Active Breakpoints.

' DS300271 - page 42 © 1995 Microchip Technology Inc.

Chapter 4. Functional Categories of MPSIM Commands

Table 4.1 MPSIM Commands by Function (Continued)

Execution Instructions

C [#breakpoints]

E [address]

GO

RS

SS [address]

Tracing

DX

TA [addressl,address2]

TC [#instructions]

TF [filenamef PRNJ

TR register [,min_val,max_val]

Registers and Data Memory

DR

EE address

© 1995 Microchip Technology Inc.

Continue Executing. Continue execution ignoring #breakpoints
encountered.

Execute Program. Begins execution at the specified address,
or at the current PC if address is omitted. The loaded program
executes until reaching a breakpoint or until you press any key.

Reset and Execute. Resets the microcontroller, initializes all
registers and executes from the start.

Reset Chip. Simulates a power-on reset.

Execute a Single Step. Executes a single instruction at the
specified address or at the current PC if address is omitted.

To single step through multiple instructions, enter SS once and
press <Enter ..I> at the % prompt. Then continue pressing
<Enter..!>.

Display Current Trace Parameters. Displays the current trace
parameters. In trace mode, the location, opcode, mnemonic,
elapsed time, cycle steps, and changed file registers display
when the given conditions are met.

Trace Address. Sets the lower validation limit for address trace
to address1 and the upper address validation limit to address2.
With no arguments, MPSIM uses the full range of program
memory.

Trace Instructions. Trace the next #instructions. If you omit
#instructions, execution continues until MPSIM encounters a
breakpoint or until you press any key.

Trace to File/Printer. Open/Close trace output file or write trace
to printer. With no argument, TF closes file.

Trace Register. Sets the file register trace.
With no arguments, traces any file register. To perform trace
only when register value lies between min_ val and max_ val,
specify the min_ val and max_ val.

Display Registers. Displays the contents of special function
registers including W, status, flags, and the stack.

Modify EE Memory. Modifies memory at the specified address
on microcontrollers with EEPROM data memory.

08300271 - page 43

MPSIM USER'S GUIDE

Table 4.1 MPSIM Commands by Function (Continued)

F FileReg File Register Display/Modify. Displays or modifies the contents
of any FileReg (by absolute address or symbolic name).

IR {ALL I RAM SFR} Initialize with Random Values. Loads random values into
registers.

LR [filename] Load Registers. Loads contents of registers with data from a
DOS text file.

SE {I/O_pin / port] Display/Modify 1/0 Pin. Displays or modifies an llO_pin or port.

UR {ALL/RAM/SFR} [filename] Upload Registers. Uploads contents of registers into a DOS
text file.

w Work Register Display/Modify. Displays/modifies the contents
of the W register.

ZR Zero the Registers. Zeros all file registers.

Stimulus and Timer

CK [pin, {#hi,#low/-J Clock. Assigns a clock to specified 1/0 pin.

No Argument Displays current clock assignment.
pin,#hi,#low Defines clock period on pin.
pin,- Disables clock on specified pin.

DK [AltFxkey#, [pin,event] I[-]] Define Key. Assigns asynchronous event to an Alt function key.

No Argument: Displays assignment of all function keys
AltFxkey# Displays assignment of specified function

key
AltFxkey#- Cancels specified function.
- The dash cancels all assignments.
event= H,L, T,P High, Low, Toggle, Pulse

DW [E/DJ Enable/Disable Watchdog Timer.
E =Enable D =Disable
With no parameters, displays WOT state.

FI {filename,addr,FileReg[,nJ/-J File Input. Inserts the next value from filename into file register
when current PC=addr. Repeats n times.

IP [time/step] Injection Point. Injects a stimulus according to the time or step
count. With no parameters, displays current mode.

RE Reset Elapsed Time and Step Count.

SC [cyclelength] Display/Set Processor Cycle Time. Displays or modifies the
microcontroller's simulated cycle time.

ST filename Read Stimulus File. Loads stimulus file.

08300271 - page 44 © 1995 Microchip Technology Inc.

Chapter 4. Functional Categories of MPSIM Commands

Table 4.1 MPSIM Commands by Function (Continued)

Verbose [ON/OFF] Echo to View Screen. Prints a line to the view screen (and to
the optional trace file) when a stimulus is injected into a pin.
The command, without an argument, displays the current
setting.

WP (1 / ... / 128) Watchdog Timer Period. Sets watchdog timer time-out period
in ms. With no parameters, displays current setting. Check the
device AC characteristics table for typical twdt ranges.

ZT Zero the Elapsed Time Counter.

Program Memory Patch Control

DP Display All Patches. Displays all patches in symbolic format.
Both the original object code and new code are shown.

RA Restore All. Restores patch table, clears symbol table and
removes all breakpoints.

RP Restore Patches. Restores all patches to original value and
clears the patch table.

ZP Zero the Patch Table. Clears patch table and resets to no
patches made. Changes made to the object code are
unaffected, and object code cannot be restored to the original.

Symbol Table

DL symbol Delete Symbol from Symbol Table. Removes specified symbol
from the symbol table.

DS Display Symbol Table.

GS symbol, value, type Generate Symbol. Generates a symbol with the value and type
specified.
type: F - File Register

B-Bit

L-Label

K- Literal

View Screen

LS filename Load Symbol File. Load filename into internal symbol table.

AD FileReg[,radix[,#digits]J Add Item to View Screen. Use the AD command to add a
display item to the view screen.
The format of this command is identical to the V (View Screen)
command. The AD command does not destroy the current
contents of the view screen.

DV FileReg Delete View Screen Item. Removes display items from the
view screen, leaving the display formatting intact.

© 1995 Microchip Technology Inc. 05300271 • page 45

MPSIM USER'S GUIDE

Table 4.1 MPSIM Commands by Function (Continued)

NV No View Screen. Clear the view screen. The same effect can
be achieved by redefining the view screen with V command.

TY FileReg,radix,#digits Change View Screen. Change the formatting of the existing
view screen. (If the designated signal isn't in the view screen,
MPSIM gives a warning.) The radix can be x, o, d, orb. #digits
is the number of spaces to reserve for this variable at display
time.

V FileReg[,radix[,#digits]] View Screen. Sets up the view screen. Once set, the view
screen remains active until either a NV command or a V
command sets up a new view screen. FileReg displays in radix
mode with #digits. Radix defaults to hexadecimal and #digits to
1. The radix can be hexadecimal, octal, decimal or binary (x, o,
d, orb).

System Setup and Control

EL {0 I 1 I 2) Error Level. Sets current error level.

0= Display All Messages
1 = Display Warnings & Errors Only
2= Display Error Messages Only

Enter EL with no parameters to display current level.

FW {MC/EM/MP/RC256/RC64/RC/OSC} Fuse Word. Select microcontroller, extended microcontroller, or
microprocessor operating mode, and set the watchdog timer
fuse for the PIC17CXX simulator. Type FW with no parameters
to display current modes.

GE filename Get Commands from an External file. Forces MPSIM to read
and perform the MPSIM commands in the named ASCII
external file. Upon reaching the end of file, control returns to
the user.

IJ Load and Execute Journal File.

P device# Select Microcontroller. Choose the appropriate microcontroller
device#. The default is 55 which represents PIC16C55.
device# = XX where xx is a device suffix.

SR {O/x/DJ Set Radix. Sets the inpuVoutput radix to octal, hexadecimal,
or decimal. The radix will be used on all inputs and outputs
with the exception of step counts.

05300271 - page 46 © 1995 Microchip Technology Inc.

~
MICROCHIP MPSIM USER'S GUIDE

Chapter 5. MPSIM Commands

Introduction
The following table gives an alphabetic summary of the commands currently
available with MPSIM. Detail descriptions of each command follow the
alphabetic summary.

Press <RETURN> at the % prompt to re-execute the last command entered.
Thus you can use commands such as SS more easily.

Alphabetic Summary of MPSIM Commands

Alphabetic Summary of MPSIM Commands

[l Brackets indicate optional items.

{ } Braces indicate group options. One or more options in
the group is required.

I Vertical bar indicates alternative options.

AB Abort Session. Aborts the dialogue, prints a summary
message and exits to the operating system. AB does not
overwrite the journal file.

AD FileReg[,radix[,#digits)J Add Item to View Screen. Use the AD command to add a
display item to the view screen.

The format of this command is identical to the V (View
Screen) command. The AD command does not destroy
the current contents of the view screen.

B address Set Breakpoint. Sets beekeeping at address (symbolic
address can be used).

B FileReg {operator value} Set Breakpoint. Break when FileReg matches the
condition given by the operator and the value.

Valid operators: { = I > I < I > = I < = I ! = }

BC Breakpoint Clear. Cancels all breakpoints.

BC {addrf FileReg] Breakpoint Clear. Cancels breakpoint at addror FileReg.

c {#breakpoints] Continue Executing. Continue execution ignoring
#breakpoints encountered.

CK [pin, {#hi,#lowf-J Clock. Assigns a clock to specified 1/0 pin.

No Argument Displays current clock assignment.

pin,#hi,#low Defines clock period on pin.

pin,- Disables clock on specified pin.

© 1995 Microchip Technology Inc. DS300271 - page 47

MPSIM USER'S GUIDE

Alphabetic Summary of MPSIM Commands {Continued)

DB Display All Active Breakpoints.

DE addressl,address2 Delete Program Memory from address1 to address2.

DI [addressl[,address2]] Display Program Memory in Symbolic Format. Displays
program memory from address1 to address2. Displays
in current radix and symbolic format. Omit address2 to
display next 10 lines from address1.

DK [AltFxkey#,[pin,eventJ/[-J] Define Key. Assigns asynchronous event to an Alt
function key.

No Argument: Displays assignment of all function
keys.

AltFxkey# Displays assignment of specified
function key.

AltFxkey#- Cancels specified function.

- The dash cancels all assignments.

event= H,L, T,P High, Low, Toggle, Pulse

DL symbol Delete Symbol from Symbol Table. Removes specified
symbol from the symbol table.

DM [addressl,address2] Display Program Memory in Radix Designated Format.
(See SR command to set the radix.) Displays program
memory from address1 to address2. Data displays in
current radix only. With no parameter, displays 10 lines
continuing from last DM display.

DP Display All Patches. Displays all patches in symbolic
format. Both the original object code and new code are
shown.

DR Display Registers. Displays the contents of special
function registers including W, status, flags, and the
stack

DS Display Symbol Table.

DV FileReg Delete View Screen Item. Removes display items from
the view screen, leaving the display formatting intact.

DW [EIDl Enable/Disable Watchdog Timer.

E =Enable D =Disable

With no parameters, displays WOT state.

DS300271 - page 48 © 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

Alphabetic Summary of MPSIM Commands (Continued)

DX Display Current Trace Parameters. Displays the current
trace parameters. In trace mode, the location, opcode,
mnemonic, elapsed time, cycle steps, and changed file
registers display when the given conditions are met.

E [address] Execute Program. Begins execution at the specified
address, or at the current PC if address is omitted. The
loaded program executes until reaching a breakpoint or
until you press any key.

EE address Modify EE Memory. Modifies memory at the specified
address on microcontrollers with EEPROM data
memory.

EL {0 I 1 I 2} Error Level. Sets current error level.

0= Display All Messages

1 = Display Warnings & Errors Only

2= Display Error Messages Only

Enter EL with no parameters to display current level.

F FileReg File Register Display/Modify. Displays or modifies the
contents of any FileReg (by absolute address or
symbolic name).

FI {filename,addr,FileReg[,nJ/-J File Input. Inserts the next value from filename into file
register when current PC=addr. Repeats n times.

FM addressl,address2,pattern Fill Memory. Fills program memory from address1 to
address2with specified HEX pattern.

FW {MC/EM/MP/RC256/RC64/RC/OSC} Fuse Word. Select microcontroller, extended
microcontroller, or microprocessor operating mode, and
set the watchdog timer fuse for the PIC17CXX simulator.
Type FW with no parameters to display current modes.

GE filename Get Commands from an External file. Forces MPSIM to
read and perform the MPSIM commands in the named
ASCII external file. Upon reaching the end of file, control
returns to the user.

GO Reset and Execute. Resets the microcontroller,
initializes all registers and executes from the start.

© 1995 Microchip Technology Inc. 05300271 - page 49

MPSIM USER'S GUIDE

Alphabetic Summary of MPSIM Commands (Continued)

GS symbol, value, type Generate Symbol. Generates a symbol with the value
and type specified.

type: F - File Register

B-Bit

L-Label

K-Literal

HIHelpl? Help. The Help Command lists the syntax and gives a
brief summary of each command available in MPSIM.
Press the SPACEBAR to exit Help. Press any other key
to display the next help screen.

IA address Insert/Inspect Assembly Code (Symbolic Format).
Displays or modifies program memory at address using
symbolic format.

IN address, instruction Insert instruction. Inserts instruction at address in
symbolic format.

IP [time/step] Injection Point. Injects a stimulus according to the time or
step count. With no parameters, displays current mode.

IR {ALL I RAM SFR} Initialize with Random Values. Loads random values into
registers.

LJ Load and Execute Journal File.

LO filename[format] Load Hex File. Loads the hex file, filename, with format
into program memory. MPSIM also loads the listing file
and symbol file.

Valid Formats: INHXBM (Default)

INHXBS

LR [filename] Load Registers. Loads contents of registers with data
from a DOS text file.

LS filename Load Symbol File. Load filename into internal symbol
table.

M address Display/Modify Program Memory at Address. The
contents at the address display, and a colon (:) prompt
follows. To change the value at address, enter a new
value (in the current radix) after the prompt.

Q End the command

- Cause MPSIM to go back to the previous
address

<Enter.J> Continue to the next address

05300271 - page 50 © 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

Alphabetic Summary of MPSIM Commands (Continued)

NV No View Screen. Clear the view screen. The same effect
can be achieved by redefining the view screen with V
command.

0 filename [format] Output Modified Object Code. Writes contents of
program memory, including modifications, to the
specified file in the designated format.

Valid Formats: INHX8M (Default)

NHX8S

INHX32 (for PIC17CXX)

P device# Select Microcontroller. Choose the appropriate
microcontroller device#. The default is 55 which
represents PIC16C55.

device# = XX where XX is a device suffix.

Q Quit. Terminates the dialog. Prints one or two summary
messages, overwrites the old journal file and exits to the
opening system.

RA Restore All. Restores patch table, clears symbol table
and removes all breakpoints.

RE Reset Elapsed lime and Step Count.

RP Restore Patches. Restores all patches to original value
and clears the patch table.

RS Reset Chip. Simulates a power-on reset.

SC [cyclelength] Display/Set Processor Cycle lime. Displays or modifies
the microcontroller's simulated cycle time.

SE {I/O_pin / port] Display/Modify 1/0 Pin. Displays or modifies an l/O_pin
or port.

SF addressl,address2,register Search Program Memory for Register. Searches
program memory from address1 to address2 for any
instruction that accesses the specified file register.

SI addrl,addr2,instruction Search Program Memory in Symbolic Format from
address 1 to address2 for any occurrence of instruction.

SM addrl,addr2,instruction Search Program Memory in Radix Designated Format.
(See SR command to set the radix.) Searches program
memory from address 1 to address2 for any occurrence
of instruction. Specify instruction in the current radix.

SR {0/x/DJ Set Radix. Sets the input/output radix to octal,
hexadecimal, or decimal. The radix will be used on all
inputs and outputs with the exception of step counts.

© 1995 Microchip Technology Inc. DS300271 • page 51

MPSIM USER'S GUIDE

Alphabetic Summary of MPSIM Commands (Continued)

SS [address] Execute a Single Step. Executes a single instruction at
the specified address or at the current PC if address is
omitted.

To single step through multiple instructions, enter SS
once and press <Enter.J> at the% prompt. Then
continue pressing <Enter.J>.

ST filename Read Stimulus File. Loads stimulus file.

TA [addressl,address2] Trace Address. Sets the lower validation limit for address
trace to address 1 and the upper address validation limit
to address2. With no arguments, MPSIM uses the full
range of program memory.

TC [#instructions] Trace Instructions. Trace the next #instructions. If you
omit #instructions, execution continues until MPSIM
encounters a breakpoint or until you press any key.

TF [filename/ PRN] Trace to File/Printer. Open/Close trace output file or write
trace to printer. With no argument, TF closes file.

TR register [,min_val,max_val] Trace Register. Sets the file register trace. With no
arguments, traces any file register. To perform trace only
when register value lies between min_ val and max_ val,
specify the min_ val and max_ val.

TY FileReg,radix,#digits Change View Screen. Change the formatting of the
existing view screen. (If the designated signal isn't in the
view screen, MPSIM gives a warning.) The radix can be
x, o, d, or b. #digits is the number of spaces to reserve
for this variable at display time.

UR {ALL/RAM/SFR}[filename] Upload Registers. Uploads contents of registers into a
DOS text file.

V FileReg[,radix[,#digits]J View Screen. Sets up the view screen. Once set, the
view screen remains active until either a NV command or
a V command sets up a new view screen. FileReg
displays in radix mode with #digits. Radix defaults to
hexadecimal and #digits to 1. The radix can be
hexadecimal, octal, decimal or binary (x, o, d, orb).

Verbose [ON/OFF] Echo to View Screen. Prints a line to the view screen
(and to the optional trace file) when a stimulus is injected
into a pin. The command, without an argument, displays
the current setting.

w Work Register Display/Modify. Displays/modifies the
contents of the W register.

05300271 - page 52 © 1995 Microchip T!)chnology Inc.

Chapter 5. MPSIM Commands

Alphabetic Summary of MPSIM Commands (Continued)

WP {1 1 ... 1 128} Watchdog Timer Period. Sets watchdog timer time-out
period in ms. With no parameters, displays current
setting. Check the device AC characteristics table for
typical twdt ranges.

ZM addressl,address2 Zero the Program Memory from address1 to address2.

ZP Zero the Patch Table. Clears patch table and resets to no
patches made. Changes made to the object code are
unaffected, and object code cannot be restored to the
original.

ZR Zero the Registers. Zeros all file registers.

ZT Zero the Elapsed Time Counter.

© 1995 Microchip Technology Inc. DS300271 - page 53

MPSIM USER'S GUIDE

AB - Abort Session

Syntax
AB

Description
The abort command interrupts the MPSIM session and exits. It prints out one
or two summary messages, and exits to the operating system. MPSIM retains
the journal file.

Examples

MPSIM Command Result

AB<RETURN> MPSIM exits and displays the
following message:

Elapsed CPU time: h:IlUll:SS

Defaults
None.

AD - Add Item to View Screen

05300271 - page 54

Syntax
AD FileReg[, radix[, #digits]]

Description
The Add command adds a signal or register to the view screen. Optionally,
you may specify a radix different from the default and/or the number of digits.

While this command's format is identical to View, it doesn't destroy the current
contents of the view screen, but simply displays additional items as well as
the current ones.

© 1995 Microchip Technology Inc.

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

Examples

MPSIM Command Result

AD TRI SA Add Tris A to the screen.

AD RAO,B Add the RAO pin to the screen
display with binary radix.

AD MCLR,4 Add fiifCOi pin to the screen display
with 4 digits.

AD F3,B,8 Add the F3 register (status) to the
screen display with binary radix and
8 digits.

Defaults
Digits defaults to 2. The radix ordinarily defaults to hexadecimal, but you
can change this default with the SR command.

Radix Digits

x 2

B 8

0 3

D 2

Related Commands
The v command displays the first signal or register you request.
Subsequently, you can add display items with AD or delete them with DV. If
you use av command after AD, v replaces all previous display items on the
screen with the named signal or register. TheNV command wipes all display
items off the screen.

The GE command can load an initialization file that sets up the view screen.
Thereafter, you can use AD and DV to modify it.

Note: When referencing registers for the AD instruction use hex notation. For
example, file register 10 would be written as "OA".

Example:

AD FOA, X, 2

08300271 - page 55

MPSIM USER'S GUIDE

B - Set Breakpoint

05300271 - page 56

Syntax
B address

B FileReg [operator value]

Description
This command sets a breakpoint at the specified address or at the location
where the register matches the condition set by the operator and the value.

You can designate the address either with the explicit numeric location or with
a symbol.

The operator can be any of the following:

= equal

> greater than

< less than

>= greater than or equal

<= less than or equal

!= not equal

Examples

MPSIM Command Result

B LOOP<RETURN> Se~ breakpoint at label LOOP.

B F2 > 80<RETURN> Break if F2 is greater than BO.

Defaults
None.

Related Commands
BC clears breakpoints previously set and DB displays them.

Note: When referencing registers for relational instructions use decimal
notation.

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

BC - Clear Breakpoint

Syntax
BC

BC [addr / FileReg]

Description
This command deletes a specified breakpoint, or all breakpoints if you don't
specify one by address or file register.

Examples

MPSIM Command Result

BC LOOP Cancel breakpoint at LOOP.

BC F3 Cancel breakpoint involving the F3 register.

BC Cancel all breakpoints.

Defaults
None.

Related Commands
B sets breakpoints and DB displays them.

C - Continue Executing

© 1995 Microchip Technology Inc.

Syntax
C [#breakpoints]

Description
This command continues execution from the current PC. If you specify
#breakpoints, MPSIM ignores the first #breakpoints breakpoints encountered.

DS300271 - page 57

MPSIM USER'S GUIDE

CK-Clock

05300271 ·page 58

Examples

MPSIM Command Result

c Continue executing, break at the next breakpoint.

c 3 Continue executing, skip the first three
breakpoints found, but break at the fourth.

Defaults
n defaults to 0.

Related Commands
B sets the breakpoints, DB displays them and BC clears breakpoints
previously set.

Syntax
CK [pin, {#hi, #low/-JJ

Description
This command allows you to assign a clock to an 1/0 pin, defining the period
of the clock by stating the number of cycles that the pin should be high, and
the number of cycles that it should be low.

No Argument

#hi

#low

pin,-

Examples

Displays current clock assignment.

Defines the number of T-cycles that the pin should
remain high

Defines the number of T-cycles that the pin should
remain low

Disables clock on specified pin.

MPSIM Command Result

% CK RCO, 5, 4 Assign a clock to RCO with a 9 T-cycle period (5
high and 4 low cycles)

% CK RCO, - Cancel clock on RCO

% CK Display current clock assignment

Defaults
None

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

Related Commands
None

DB - Display All Active Breakpoints

Syntax
DB

Description
This command lists all active breakpoints. MPSIM allows only one conditional
breakpoint per data area.

Examples

MPSIM Command Result

B LOOP Sets a breakpoint at LOOP.

B F2 > 80 Sets a breakpoint at the location where F2 >80.

DB Displays all breakpoint locations via messages:

INFO, Break when (F2 > 0080)

INFO, Break on address LOOP

Defaults
None.

Related Commands
B sets the breakpoints, DB displays them andBC clears breakpoints
previously set.

DE - Delete Program Memory

© 1995 Microchip Technology Inc.

Syntax
DE addressl,address2

Description
This command deletes the information stored between addressl and
address2, inclusively. The DE command deletes memory within the given
boundaries then shifts those locations in program memory that are greater
than the upper bound down to the lower bound.

DS300271 - page 59

MPSIM USER'S GUIDE

Examples

MPSIM Command Result

DE 00151 0020 Removes the code from address 15thru
address 20, moving code from 21 to the end of
code to address 16.

Defaults
None.

Related Commands
None.

DI - Display Program Memory in Symbolic Format

08300271 ·page 60

Syntax
DX [addressl[, address2JJ

Description
This command displays program memory in symbolic format frorniddressl
to address2. addressl must be less then address2 and both must be in
the valid range of program memory. If noaddress2, then a screen full of
lines displays from addressl.

You can terminate DI at any time by pressing any key at the terminal.

Examples

MPSIM Command Result

DX 0, 3 The following messages display:

0000 0020 MOVWF 0

0001 0063 CLRF 3

0002 0080 SUBWF 0, 0

0003 0069 CLRF 9

Defaults
None.

Related Commands
The DM command also displays memory between two specified addresses;
however, DM displays the code in the format specified by the current radix
rather than in symbolic format.

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

DK - Define Key

© 1995 Microchip Technology Inc.

Syntax
DK fAltFxKey#, [pin,eventJ/[-]]

Description
AltFxKey# is an integer value between 1 and 12.

AltFxKey#- Cancels specified function.

Pin is any valid 1/0 pin.

Event is H, L, Tor P (high, low, toggle or pulse)

Cancels all assignments.

No Argument Displays assignments of all function keys.

This command simulates an asynchronous event through an Alt-function
keystroke and is very useful for simulating external interrupts or resets.

This function is used after a 'to" or "E" command. If you want to inject a
stimulus while stopped at a breakpoint, use the "sE" command.

In addition to the stated syntax, the following sequences perform the indicated
operations.

DK

DKAltFxKey

DK AltFxKey, -

DK-

Displays assignment of all function keys

Displays assignment of specified function key

Cancels specified function

Cancels all assignments

08300271 - page 61

MPSIM USER'S GUIDE

Examples

MPSIM Command Result

% DK 1,RBO,L

% E When MPSIM is executing, if Alt-F1 is hit,
ABO will be driven low.

% DK 12, MCLR, P Define Alt-F12 to provide a one-cycle pulse
on MCLR.

% E Now during execution (with MCLR high) hitting
Alt-F12 will simulate an external reset.

% DK 3, TOCKI, T Define Alt-F3 to toggle TOCKI input.

% E Now during execution, every time Alt-F3 is
pressed RTCC input will toggle.

% DK - Disable all assignments.

Defaults
None

Related Commands
SE, ST

DL - Delete Symbol from Symbol Table

Syntax
DL symbol

Description
This command removes the specified symbol from the symbol table.

Examples

MPSIM Command Result

DL HULPLR MPSIM removes "mulplr"from the symbol table.
To provide to or obtain data from this data area,
you must now use the actual register number, F10.
The value on the view screen, since it reads
"MULPLR" isn't updated.

Defaults
None.

05300271 - page 62 © 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

Related Commands
GS creates a symbol and puts it into the symbol table, LS loads a new symbol
table, ns displays the current symbol table andRA restores (clears) the
symbol table.

OM - Display Program Memory in
Radix Designated Format

© 1995 Microchip Technology Inc.

Syntax
DM [addressl,address2]

Description
This command displays program memory frolll:iddressl to address2. The
data stored displays in the format designated by the current radix addressl
must be less than address2 and both must be in the valid range for program
memory.

You can terminatenM at any time by pressing any key on the terminal.

Examples

MPSIM Command Result

DM O, 3 MPSIM displays the memory between locations o
and 3. The following messages display:

0000 0020

0001 0063

0002 0080

0003 0069

Defaults
None.

Related Commands
The DI command also displays memory between two specified addresses;
however, DI displays the code in symbolic format rather than in the format
specified by the current radix.

05300271 - page 63

MPSIM USER'S GUIDE

DP - Display All Patches

Syntax
DP

Description
This command displays all patches in symbolic format. Both the original
object code and new object code display.

Defaults
None.

Related Commands
The M and IA commands modify the object code; .IN adds commands to the
object code; DE removes object code; RA and RP restore the patches; and ZP
zeros the patches. The command, o, writes the modified object code as a hex
file.

DR - Display All Registers

DS30027 I - page 64

Syntax
DR

Description
This command displays the contents of ail registers including the W and
status registers, all flags and the stack.

Defaults
None.

Related Commands
The DP, DS, and DX commands display other MPSIM data areas and
parameters.

SE sets any data area's value.w displays and optionally modifies thew
register.

F displays and optionally modifies a register value.

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

OS - Display Symbol Table

Syntax
DS

Description
This command displays the symbol table.

Examples

MPSIM Command Result

DS The following messages display:

Symbol Value Type

START 0000 L

Defaults
None.

Related Commands
GS creates a symbol and puts it into the symbol table;r.,s loads a new symbol
table, DL removes a symbol from the current symbol table an<RA restores
(clears) the symbol table.

DV - Delete View Screen Item

© 1995 Microchip Technology Inc.

Syntax
DV FileReg

Description
This command removes display items from the view screen while leaving the
display formatting intact.

This command deletes a signal or register from the view screen display.

Examples

MPSIM Command Result

nv R'l'CC Deletes the RTCC from the view screen.

Defaults
None.

05300271 • page 65

MPSIM USER'S GUIDE

Related Commands
The v command displays the first signal or register you request.
Subsequently, you can add display items with AD or delete them with nv. If you
use av command afterAD, v replaces all previous display items on the screen
with the named signal or register. TheNV command wipes all display items off
the screen.

The GE command can load an initialization file that sets up the view screen.
Thereafter, you can use AD and DV to modify it.

DW - Enable I Disable Watchdog Timer

Syntax
DW [E/DJ

Description
This command enables or disables the watchdog timer, depending or the
parameter specified. E enables it; D disables it.

Examples

MPSIM Command Result

J)W E Enables the watchdog timer.

DW D Disables the watchdog timer.

Defaults
None.

Related Commands
RE resets the elapsed time and step count and ZT zeros the elapsed time.

DX - Display Current Trace Parameters

Syntax

05300271 - page 66

DX

Description
This command displays the current trace parameters. When in trace mode,
the location, opcode, mnemonic, elapsed time, cycle steps, and any changed
data areas display when the given conditions are met.

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

Examples

MPSIM Command Result

DX The following message displays:

Address OOOO:OlFF

Defaults
None.

Related Commands
The TA, TC and TR commands set the trace parameters.

E - Execute Program

Syntax

© 1995 Microchip Technology Inc.

E [address]

Description
This command executes the program from the optionally specified address or
the PC.

The E command begins execution at the specified address or at the current
address if no address is specified. The program continues to execute until
either reaching a breakpoint or until you press a key.

Examples

MPSIM Command Result

E OE MPSIM executes SAMPLE.HEX from the label
START until reaching a breakpoint or until you
press any key.

Defaults
None.

Related Commands
The GO command resets then executes from the start; ss executes the
instruction at the current PC or at a specified address. c executes from the
current PC to the specified breakpoint occurrence. TA traces execution
between specified addresses, and TC traces execution from the current PC for
a specified number of instructions.

DS300271 - page 67

MPSIM USER'S GUIDE

EE - Modify EE Memory

Syntax
EE address

Description
Manually Modify EE memory address on the PIC16C84.

Examples

MPSIM Result Command

% EE 2 EEMEMORY[2]:00:

23 EE memory location 2 now contains value Ox23.

Defaults
None.

EL - Error Level

DS300271 - page 68

Syntax
EL {0 I 1 I 2}

Description
This command sets the current level for displaying error messages and
system warnings.

O = Display All Messages

1 = Display Warnings and Errors Only

2 = Display Error Messages Only

Enter EL with no parameters to display current level.

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

Examples

MPSIM Command Result

% EL 0 All messages will display.

% EL 1 Only warnings and Error messages will display.

% EL 2 Only error messages will display.

% EL Current warning level will display.

Defaults
All messages are displayed (Error level of 0).

Related Commands
None

F - File Register Display/Modify

© 1995 Microchip Technology Inc.

Syntax
F FileReg

Description
This command displays and/or modifies the contents of the specified file
register. The value of the register displays, followed by the prompt':'. Place
the new value after the prompt.

Examples

MPSIM Command Result

% F 3 The following message displays:

3: 20: This message shows that file register 3 contains
the value '20.'

% F 3

3: 20: 21 Change file register 3 to a value of '21.'

Defaults
None.

Related Commands
The SE command can give the same result. DR, TR and ZR display, trace
and zero a specified register, respectively. M and IA modify the code at a
specified address, which can affect the register's value.

DS300271 - page 69

MPSIM USER'S GUIDE

Fl - File Input

05300271 - page 70

Syntax
FI {filename, addr, FileReg[, n] /-J

Description
This command inserts the next value from filename into file register when
current PC=addr. If n is not specified, when the last value in the file is read,
the next retrieved value will be the first value in the file. This will continue until
the command is cancelled. If n is specified then the file will be read n times
only.

FileName

PMemAddr

FRegAddr

n

Fl-

Examples

is any valid DOS file name. The file should be an ASCII
file and should contain one hex value per line.

is the point in program memory at which value should
be injected.

File register that receives the value.

Number of times to go through the file. If n is not
specified, file is read continuously.

Closes file and cancels command.

MPSIM Command Result

%FIADVAL.TXT,4,9 When the PC=4, insert the next value from
ADVAL.TXT into register 9.

% FI - Close file and cancel assignment.

The FI command is useful when simulating devices such as the PIC16C71
and PIC16C74. Both of these devices have A/D converters (among other
peripheral modules). MPSIM does not perform an AID conversion, although
the interrupt that can be generated upon its completion is supported in the
software. The FI command allows you to inject values into a register when a
certain point in program memory is reached. For example, if the target
processor is the PIC16C71, you could set up your source code to branch to
the interrupt vector at the end of conversion and inject a value into the AD RES
register during the interrupt service routine (by using the FI command).

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

The command could be set up as follows:

FI ADVAL.TXT, Ox04 Ox09

When the Program Counter equals the interrupt vector (program memory
address Ox04), inject the next value in the file (ADVAL.TXT) into the ADRES
register (file register address Ox09).

org
IntVct bcf

movfw

Ox04
INTCON, ADIE ;At this point, the next
ADRES ;value in ADVAL.TXT will

;be in the ADRES register

The format of the ADVAL. TXT file is one HEX value on each line. For
example:

OxAA

OX55

OXAA

OX55

and so on.

Defaults
None.

Related Commands
None.

FM - Fill Memory

© 1995 Microchip Technology Inc.

Syntax
FM addressl,address2,pattern

Description
This command fills unused program memory between address1 and
address2with the specified HEX pattern.

Examples

MPSIM Commands Result

% FM 0, 3 0, OxFFF Fill unused program memory between O and 30
with OxFFF.

DS300271 - page 71

MPSIM USER'S GUIDE

Defaults
None.

Related Commands
M

FW - Fuse Word

05300271 - page 72

Syntax
FW {MC/EM/MP/RC256/RC64/RC/OSC}

Description
This command selects the operation mode (Microcontroller Mode, Extended
Microcontroller Mode, and Microprocessor Mode) or the WOT prescale option
for processors in the PIC17CXX family only (these options are hardware fuse
selectable only on the physical device).

MC = Microcontroller Mode

EM = Extended Microcontroller Mode

MP = Microprocessor Mode

Type FW with no parameters to display current modes.

Examples

MPSIM Command Result

% FW MC Processor will run in Microcontroller Mode

% FW RC64 WOT will have a prescale = 64

% FW Current operation mode and WOT prescale
option are displayed.

Defaults
Operation mode = Microprocessor

WOT Prescale = OSC

Related Commands
None.

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

GE - Get Commands from an External File

© 1995 Microchip Technology Inc.

Syntax
GE filename

Description
This command reads and performs the MPSIM commands in the named
ASCII file.

This command forces MPSIM to get its command stream from an external text
file. After reaching the end of file, control returns to the user. Commands in
the text file must conform to the same syntax as commands entered on-line. If
MPSIM cannot locate the specified file, an error message displays.

Examples

MPSIM Command Result

GE SAMPLE.:IN:I Reads and performs commands in the file,
SAMPLE.IN I.

Defaults
None.

Related Commands
The v command displays the first signal or register you request.
Subsequently, you can add display items with AD or delete them with DV. If you
use av command afterAD, v replaces all previous display items on the screen
with the named signal or register. TheNV command wipes all display items off
the screen.

The GE command can load an initialization file that sets up the view screen.
Thereafter, you can use AD and DV to modify it.

DS300271 - page 73

MPSIM USER'S GUIDE

GO - Reset and Execute

Syntax
GO

Description
This command performs a Power-On Reset and initializes all registers as
specified in the microcontroller data sheet. The PIC16/17 Microcontroller then
executes the loaded object code.

Examples

MPSIM Command Result

GO Reset and execute.

Defaults
None.

Related Commands
The E command executes from a specified address or the current PC;ss
executes the instruction at the current PC or at a specified address.c
executes from the current PC to the specified breakpoint occurrence. TA
traces execution between specified addresses, and TC traces execution from
the current PC for a specifies number of instructions.

GS ~ Generate Symbol

DS300271 - page 7 4

Syntax
GS symbol, value, type

Description
This command generates the specified symbol with the specified value and
type. The type can be file(F), bit(B), label(L), or literal(K). If the type is bit, it is
a bit in the specified file.

© 1995 Microchip Technology Inc.

H- Help

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

Examples

MPSIM Command Result

% DS

Symbol Value Type

START 0000 L

% GS NEWSYM, FF, B

% DS

Symbol Value Type

START 0000 L

NEWSYM FF B

Defaults
None.

Related Commands
DL removes a symbol from the current symbol table,r..s loads a new symbol
table, ns displays the current symbol table andRA restores (clears) the
symbol table.

Syntax
H I Help I ?

Description
This command lists the syntax and gives a brief summary of each command
available in MPSIM. Press the SPACE BAR to exit Help. Press any other key to
display the next help screen.

Examples

MPSIM Command Result

H The Help screen, containing command
descriptions and syntax displays.

Defaults
None.

Related Commands
None.

08300271 - page 75

MPSIM USER'S GUIDE

IA- Insert/Inspect Assembly Code

DS300271 ·page 76

Syntax
IA address

Description
This command displays or modifies the program memory at address in
symbolic format. The source code for the address displays, followed by the
prompt ':' on the next line for the new command.

Enter the new command as a mnemonic. It must be syntactically correct.
Operands may contain only a single value or symbol; expressions are not
allowed. Enter values in the current radix.

Entering 'Q' at the prompt ends the command; entering '-'causes MPSIM to
go back and inspect and/or modify the previous address; entering <RETURN>
continues to the next address.

After changing the object code, MPSIM no longer displays the original source
code. MPSIM replaces it with a disassembled source line.

Examples

MPSIM Command Result

% IA 200<RETURN> The instruction line at address 200 (in current
radix) displays:

0020 : CLRF FS

: CLRF 6 MPSIM changes the instruction as specified and
displays the next instruction line (address 201):

0201 : CLRF F7:

- MPSIM backs up and displays the modified
instruction at address 200:

0200 : CLRF 6:

: Q MPSIM exits the IA command.

Defaults
None.

Related Commands
DE, IN, M

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

IN - Insert Instruction

Syntax
IN AririrAss, instruct inn

Description
This command inserts instruction at address. The instruction places an
opcode at address then displaces each program memory value after address
by one location. instruction must consist of a valid mnemonic followed by zero
or more operands. Each operand must contain a single value or symbol, no
expressions are allowed.

Examples

MPSIM Command Result

% IN 200, NOP MPSIM inserts a NOP instruction at
address 200 (in the current radix).

Defaults
None.

Related Commands
DE, IA, M

IP - Injection Point

© 1995 Microchip Technology Inc.

Syntax
IP [time/step]

Description
Inject stimulus according to time or step count. The "step" heading should
remain labeled as "step" in the stimulus file, but IP TIME will override this
setting. If IP is typed with no parameters, the current mode (rIME or STEP)
will be shown. With no parameters, displays current mode.

DS300271 - page 77

MPSIM USER'S GUIDE

Examples

MPSIM Command Result

% IP time Stimulus will now be injected according to time
(integer values only).

Defaults
Default is "step"

Related Commands
None ..

IR - Initialize with Random Values

DS300271 - page 78

Syntax
IR {ALL I RAM SFR}

Description
Loads random values into registers. Will also load the power on reset values
into those registers that have defined power on reset values defined in the
data book.

Examples

MPSIM Command Result

% IR ALL All registers will be initialized with random
values, except those that have defined values for
power on reset.

% IR RAM Only general-purpose registers will be initialized
with random values

Defaults
ALL file registers will be loaded with random values.

Related Commands
UR, LR

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

LJ - Load and Execute Journal File

Syntax
LJ

Description
This command loads and executes the journal file commands. These
commands are not stored in the journal file recorded from the current session;
MPSIM enters only the LJ command.

When the journal file contains a program execution command, you must
press a key to stop program execution or wait until a breakpoint break occurs;
the journal file doesn't record premature execution breaks or exits.

Examples

MPSIM Command Result

% LJ All MPSIM commands entered during the previous
MPSIM session execute. These commands are not
stored in the journal file recorded from the current
session.

Defaults
The default extension is '.JRN'.

Related Commands
GE, LJ, LO, ST

LO - Load Object File

© 1995 Microchip Technology Inc.

Syntax
LO filename {format}

Description
This command loads the specified file into program memory. If the selected
assembler is MPASM, MPSIM will assume a .HEX extension. After loading the
HEX file, MPSIM attempts to load the listing file using the same filename and
the extension '.LST'. If MPSIM cannot find the listing file then all instruction
displays will be a disassembly. When found, MPSIM uses the listing file for
display throughout simulation.

05300271 - page 79

MPSIM USER'S GUIDE

The following is a list of valid formats:

INHXBM

INHXBS

Examples

MPSIM Command

% LO SAMPLE

% LO SAMPLE INHXSS

Defaults

Result

The HEX, listing and symbol file are loaded
into MPSIM in INHX8M format.

The HEX, listing and symbol file are loaded
into MPSIM in INHX8S format.

The default extension is '.HEX' and the default format is INHX8M.

Related Commands
GE, LJ, LS, ST

LR - Load Registers

DS300271 - page so

Syntax
LR filename

Description
This command loads the contents of registers with data from a DOS text file.

This command loads each file register listed on each row of "filename"with
the specified value. If no file name is supplied, MPSIM searches for a file
called "ram.daf'. Each line in the file should consist of the Bank Number, File
Register Number, and Value as follows:

BankNumber : FileRegisterNumber , Value

This format is also used with the "UR - Upload Registers" command. The
following sample is an excerpt from a "ram.daf' file:

;File register values for "myfile.asm"

0, OxOF, OxOF

0, OxlO, OxAA

0, Oxl7, OxFF

All values should be in hexadecimal radix and should begin in the first column
of each row. Blank lines or lines beginning with ";" or "!" will be interpreted as
comment lines and will be ignored. If an error is found in the file, a warning
message will be displayed and the offending line will be ignored.

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

Examples

MPSIM Command Result

% LR File registers in "RAM.DAT' will be loaded with
specified value

% LR myfile File registers in "myfile" will be loaded with
specified value.

Defaults
Registers and values from "ram.dat• file are loaded.

Related Commands
UR, IR

LS - Load Symbol File

© 1995 Microchip Technology Inc.

Syntax
LS filename

Description
This command loads the specified symbol file into the internal symbol table. If
symbolic debugging, the symbol file produced by the assembler must be
loaded with the LS command or loaded through the LO command.

Examples

MPSIM Command Result

% LS SAMPLE MPSIM reads in the symbol file SAMPLE.

Defaults
The default extension is '.SYM'.

Related Commands
GS, DL, DS, RA

DS300271 - page 81

MPSIM USER'S GUIDE

M - Display I Modify Program Memory at Address

DS300271 - page 82

Syntax
M address

Description
This command displays and/or modifies program memory at address. The
contents of the address display in the radix designated format, and are
followed immediately by a prompt ':'.

To change the value at address, place a new value after the prompt. Be sure
to enter that value in the current radix.

Entering 'Q' at the prompt ends the command.

Entering'-' causes MPSIM to go back and inspect and/or modify the previous
address.

Entering <RETURN> continues to the next address.

Examples

MPSIM Command Result

% M 0005 MPSIM displays the instruction line at address
0005 (as determined by the current radix) in the
current radix:

% SR 0

% M 010 MPSIM sets the radix to octal, then displays the
instruction line at the label MAIN in octal.

% Q MPSIM exits the M command.

% SR X

% M 010 MPSIM sets the radix to hexadecimal, then
displays the instruction line at the label MAIN in
hexadecimal.

MPSIM redisplays the instruction line at MAIN.

% SR D

% M main MPSIM sets the radix to decimal, then displays
the instruction line at the label MAIN in decimal.

Defaults
None.

Related Commands
IA

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

NV - No View Screen

Syntax
NV

Description
This command deletes or clears all elements from the view screen.

The same effect can be achieved by redefining the view screen.

Examples

MPSIM Command Result

% NV MPSIM removes all items from the view screen.

Defaults
None.

Related Commands
AD, V

0 - Output Modified Object Code

© 1995 Microchip Technology Inc.

Syntax
O filename [Format]

Description
This command writes the contents of program memory, including any
modifications to the specified file in the specified format. The program
memory contains object code.

The following is a list of valid formats:

INHXBM

INHXBS

INHX32

05300271 - page 83

MPSIM USER'S GUIDE

Examples

MPSIM Command Result

%0SAMPLE1.HEXINHX8M MPSIM writes the object code, as
modified, to the file SAMPLE1 .HEX in the
INHX16 format.

Defaults
Default output format is the same as the default input format, INHXBM.

Related Commands
None.

P - Select Microcontroller

DS300271 • page 84

Syntax
P device#

Description
Use this command to choose the appropriate microcontroller device#. The
default is 55 which represents PIC16C55.

device# = XX where XX is a device suffix.

Examples

MPSIM Command Result

% p 71 MPSIM sets the processor type.

Defaults
The simulated microcontroller defaults to 55.

Related Commands
None.

© 1995 Microchip Technology Inc.

Q-Quit

Syntax
Q

Description

Chapter 5. MPSIM Commands

This command exits from MPSIM and returns PC control to DOS. MPSIM
stores all MPSIM commands entered during this session in the journal file,
MPSIM.JRN. The old MPSIM.JRN, if present, is overwritten.

Examples

MPSIM Command Result

% Q MPSIM exits and displays the following
message:

Elapsed CPU time: h:mm:ss.

Defaults
None.

Related Commands
AB

RA - Restore All

© 1995 Microchip Technology Inc.

Syntax
RA

Description
This command restores the patch table, clears the symbol table of user
defined symbols and removes all breakpoints.

Examples

MPSIM Command Result

% RA MPSIM restores the patch table, clears the symbol
tables and removes all breakpoints.

Defaults
None.

DS300271 - page 85

MPSIM USER'S GUIDE

Related Commands
RP, DL, BC

RE - Reset Elapsed Time and Step Count

Syntax
RE

Description
This command resets the elapsed time and the step count to zero.

Examples

MPSIM Command Result

% RE MPSIM resets the elapsed time and the step
count to zeros.

Defaults
None.

Related Commands
ZT

RP - Restore Patches

08300271 - page 86

Syntax
RP

Description
This command restores all patches to their original value and clears the patch
table.

Examples

MPSIM Command Result

% RP MPSIM restores all patches.

Defaults
None.

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

Related Commands
RA

RS - Reset Chip

Syntax
RS

Description
Performs a Power-On Reset and initializes all registers as specified in the
data sheet of the specified microcontroller.

Examples

MPSIM Command Result

% RS Executes a Power-On-Reset.

Defaults
None.

Related Commands
GO

SC - Display I Modify Processor Cycle Time

© 1995 Microchip Technology Inc.

Syntax
SC [cyclelength]

Description
This command displays and/or modifies the microcontroller's simulated cycle
time.

08300271 - page 87

MPSIM USER'S GUIDE

Examples

MPSIM Command Result

% SC MPSIM displays the current cycle in µs: 2.0:

2 .0: .2 The entry '.2' changes the cycle to .2µs, or
200 ms.

% SC 2000. 0 The cycle length is changed to 2000.0µs or
2.0ms.

Defaults
The simulated cycle time defaults to 2 microseconds.

Related Commands
None.

SE - Display I Modify 1/0 Pin

Syntax
SE {I/O_pin / port]

Description
This command displays or modifies an l/O_pin or port.

Examples

MPSIM Command Result

% SE .RAO The following message displays: RA0=1:

RAO:l:O The value of 1/0 pin RAO changes from 1 to o.

Defaults
None.

Related Commands
F, W, ZR

08300271 - page BB © 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

SF - Search Program Memory for Register

© 1995 Microchip Technology Inc.

Syntax
SF addressl,address2,register

Description
This command searches program memory from address1 to address 2 for
any instruction that access the specified register. Register may be specified in
literal, 'F' syntax or as a symbol.

Examples

MPSIM Command Result

SF 0, 22, ;portb MPSIM search all memory from 0 through 22 for
instructions that reference the portb register, then
displays the lines containing the specified
instruction

0000 0000 main movf portb,W

0006 0000 movf portb,W

Defaults
None.

Related Commands
SI, SM

DS300271 - page 89

MPSIM USER'S GUIDE

SI - Search Program Memory in Symbolic Format

Syntax
SI addressl,address2,instruction

Description
This command searches program memory from address1 to address2for any
occurrence of instruction. instruction is in symbolic format. Full or partial
instructions may be specified.

Examples

MPSIM Command Result

% SI O, 20, CLRF MPSIM searches all memory from o through
20 for CLRF instructions, then displays the
lines containing the specified instruction:

0000 mpy_S clrf H_byte

0001 clrf L_byte

% SI 0, 20, MPSIM searches all movwf count memory
from 0 through 20 for MOVWF COUNT

instructions, then display the lines containing
the specified instruction:

0003 movwf count

Defaults
None.

Related Commands
SF, SM

SM - Search Program Memory in Radix
Designated Format

DS300271 - page 90

Syntax
SM addressl,address2,instruction

Description
This command searches program memory from address1 to address2 for
instruction. Specify instruction in the format designated by the radix.

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

Examples

MPSIM Command Result

% SM O, 30, COB MPSIM searches all memory from O
through 20 for the specified instruction, then
displays, in the current radix, the lines
containing it:

0002 movlw 8

Defaults
None.

Related Commands
SF, SI

SR- Set Radix

© 1995 Microchip Technology Inc.

Syntax
SR [O/X/DJ

Description
This command sets the radix to octal, hexadecimal or decimal. Subsequently,
MPSIM expects and uses this radix for all 1/0 including file register numbers
and step counts.

Examples

MPSIM Command Result

% SR 0 The radix becomes octal.

% SR X The radix becomes hexadecimal.

% SR D The radix becomes decimal.

Defaults
None.

Related Commands
None.

DS300271 - page 91

MPSIM USER'S GUIDE

SS- Execute A Single Step

Syntax
SS [address]

Description
This command executes a single step located at address. If you don't specify
address, MPSIM executes the instruction at the current PC. Pressing
<RETURN> at the% prompt re-executes the previous MPSIM command. Thus,
by entering ss once and subsequently pressing simply <RETURN>, you can
single step through multiple instructions easily.

Examples

MPSIM Command Result

% SS OlFF MPSIM resets the simulator code by executing
the reset address (PIC16C54 and PIC16C55).

% SS MPSIM executes the line of code at the PCP.

% SS 20 MPSIM executes the line of code at address 20
(in the current radix).

% SS LOOP MPSIM executes the line of code at the label
LOOP.

Defaults
None.

Related Commands
None.

ST - Read Stimulus File

05300271-page 92

Syntax
S'l' filename

Description
This command inserts specified values into specified pins or registers at a
specified simulation step or time. The specified values, pins/registers and
steps are defined in a text file called a stimulus file. Stimulus can be injected
either according to step or time. See instruction 'IP' for details.

The stimulus file allows you to schedule bit manipulation by forcing MPSIM to
drive given pins to given values at a specified input step.

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

The ST command reads the stimulus file into MPSIM. When you execute a file
with the E command, each time it looks for input, it reads the next step in the
stimulus file.

The first line of stimulus file always consists of column headings. It lists first
the word "STEP," followed by the pins that are to be manipulated. The data
below STEP represents the object file's input request occurrence. The data
below each pin name is the input value. You may enter comments at the end
of a line by preceding it with an exclamation mark (!).

The following example illustrates the stimulus file format:

STEP

8

16

24

RAO

1

0

1

RAl

0

1

1

These are I/O pin names

followed by values

Other notes on the format of stimulus file:

the number of spaces separating columns is irrelevant

the step count must be in decimal

Examples

MPSIM Command Result

% S'l' SAMPLE.S'l'I MPSIM reads the specified stimulus file.
Upon execution, it will retrieve input as
designated in this file.

Defaults
The default injection point is "step". The default file extension is '.STI'.

Related Commands
IP

TA - Trace Address

© 1995 Microchip Technology Inc.

Syntax
'l'A [address1,address2J

Description
This command sets the trace to print only those instructions located between
address1 and address2. If you don't specify address1 and address2, MPSIM
uses the full memory.

DS300271 - page 93

MPSIM USER'S GUIDE

Examples

MPSIM Command Result

% TA main, call_m MPSIM will prinVdisplay only those
instructions between main and cafl_m.

Defaults
Address range defaults to all of memory.

Related Commands
TC, TF, TR

TC - Trace Instructions

08300271 - page 94

Syntax
TC [#instructions]

Description
This command traces the next #instructions instructions, displaying the
instructions if they are valid. If you don't supply the #instructions, the
trace continues indefinitely until encountering a breakpoint or until you press
any key.

Examples

MPSIM Command Result

% TC 3 Trace the next three instructions.

Defaults
None.

Related Commands
TA, TF, TR

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

TF -Trace to File/Printer

Syntax
TF [filename Prn]

Description
This command opens or closes a file for writing the trace, or prints the trace. If
you enter PRN as an argument, MPSIM prints the trace to the default printer. If
you supply filename, MPSIM opens that file, if you don't, MPSIM closes any
currently opened output trace file.

You must use the TF command BEFORE starting the trace.

Examples

MPSIM Command Result

% TF Close the output trace file.

% TF PRN Print the trace to the default printer.

% TF SAMPLE.'l'RC Open SAMPLE.TAC and write the trace to it.

Defaults
None.

Related Commands
TA, TC, TR

TR - Trace Register

© 1995 Microchip Technology Inc.

Syntax
TR register [,min_val,max_val]

Description
This command sets the file register trace. If you don't supply any parameters,
MPSIM traces any file register. If you specify register, it traces that register. If
you also specify min_ val and max_ val, it performs the trace only if the value of
the specified register lies between min_ val and max_ val.

05300271 - page 95

MPSIM USER'S GUIDE

Examples

MPSIM Command Result

% TR Traces all registers.

% TR Pl Traces the W register.

% TR w, 2, 7 Traces the W register when its value falls
between 2 and 7 (in the current radix).

Defaults
None.

Related Commands
TA, TC, TF

TY - Change View Screen

DS300271 - page 96

Syntax
TY FileReg,radix,#digits

Description
This command changes the formatting of the existing viewscreen. (If the
designated signal isn't in the viewscreen, MPSIM gives a warning.)

The radix can be hexadecimal, octal, decimal or binary, designated bye, o,
D om, respectively.

#digits is the number of spaces to reserve for this variable at display time.

Examples

MPSIM Command Result

% TY RTCC,B,1 RTCC 1/0 pin displays in binary, using one digit.

Defaults
None.

Related Commands
AD, NV, V

© 1995 Microchip Technology inc.

Chapter 5. MPSIM Commands

UR - Upload Registers

© 1995 Microchip Technology Inc.

Syntax
UR {ALL/RAM/SFR}[filename]

Description
This command uploads the contents of registers into a DOS text file.

This command uploads file registers to "filename" (or to the default file name
RAM.DAT if no file name is specified). The file will be in ASCII format and will
consist of multiple lines in the following format:

BankNumber: FileRegisterNumber, Value

All values will be in hexadecimal radix and will begin in column one. For
example, if ALL registers are to be uploaded to a file, the special-function
registers would be print first, then all of the general-purpose registers would
be printed:

;Special Function Registers

0, OxOO, OxOO

0, OxOl, Ox09

0, Ox02, OxBl

Examples

MPSIM Command Result

% UR ALL Upload all registers to file RAM.DAT

% UR SFR t.out Upload all special-function registers to the file
"t.ouf'

Defaults
File name default is RAM.DAT.

Related Commands
LR, IR

08300271 - page 97

MPSIM USER'S GUIDE

V - View Screen

DS300271 - page 98

Syntax
V FileReg[,radix[,#digits]J

This command creates a new view screen that displays the named signal or
register. Optionally, you may specify a radix different from the default and/or a
number of digits.

v sets up the view screen. This means that the View command defines
the variables (and respective formats) to constantly display on the screen.
Once the view screen is set, it remains active until either arnv command or
a v command sets up a new view screen. The format of this command
is relatively simple. Fi/eReg displays in radix mode with #digits. Radix defaults
to hexadecimal and #digits to 1. The radix can be B (binary),
0 (octal), X (hexadecimal) or D (decimal).

Examples

MPSIM Command Result

%VF3,b,8 A view screen element is created with the
following format:

F3: 00000000

% V RBO A view screen element is created with the
following format:

RBO: 00

Defaults
The radix ordinarily defaults to hexadecimal, but you can change this default
with the SR command. Digits defaults according to the table below:

Table 5.1 radix default widths

Radix Digits

x 2

B 8

0 3

D 2

Related Commands
AD, DV, NV, TY

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

Verbose - Echo to Screen

Syntax
Verbose [ON/OFF]

Description
Prints a line to the screen (and to the optional trace file) when stimulus is
injected into a pin. The command, without an argument, displays the current
setting.

Examples

MPSIM Command Result

% VERBOSE ON Print to screen when stimuli are simulated.

Defaults
None.

W -Work Register Display I Modify

Syntax
w

Description
This command displays and/or modifies the contents of W register.

Examples

MPSIM Command Result

% w
W=44: The value of W is 44 as the following message

shows.

W=44:00 Change the value by entering a different value
after the ':' prompt.

The W register now has a value of O.

Defaults
None.

Related Commands
None.

© 1995 Microchip Technology Inc. DS300271 - page 99

MPSIM USER'S GUIDE

WP -Watchdog Timer Period

Syntax
WP {1 I .

Description

/ 12a1

Sets watchdog timer time-out period in milliseconds. With no parameters,
displays current setting.

Examples

MPSIM Command Result

% WP Display current period

% WP 10 WOT period set to 1 O ms.

Defaults
"Normal" period for selected Microcontroller.

Related Commands
None

ZM - Zero the Program Memory

05300271 - page 100

Syntax
ZM addressl, address2

Description
This command zeroes the program memory fromaddressl to address2.
addressl must less than address2 and both must be valid program
memory addresses.

Examples

MPSIM Command Result

% ZM o, lF Program memory from o to 1 Fis zeroed.

Defaults
None.

Related Commands
None.

© 1995 Microchip Technology Inc.

Chapter 5. MPSIM Commands

ZP - Zero the Patch Table

Syntax
ZP

Description
This command clears the patch table. Clears the patch table and resets it to
no patches made. Any changes made to the object code are unaffected.
Thus, the object code cannot be restored to the original.

Examples

MPSIM Command Result

% ZP Patch table cleared.

Defaults
None.

Related Commands
0, RA, RP

ZR -Zero the Registers

Syntax
ZR

Description
This command sets all of the file registers to zero. Care should be taken with
this instruction since it will zero the lower 8 bits of F2 (PC). ArRS command
should follow the ZR command to ensure the PC is set the expected reset
value.

Examples

MPSIM Command Result

% ZR All registers are zeroed.

Defaults
None.

Related Commands
DR, RS, SE

© 1995 Microchip Technology Inc. DS300271 - page 101

MPSIM USER'S GUIDE

ZT - Zero the Elapsed Time Counter

Syntax
ZT

Description
This command zeros the elapsed time counter.

Examples

MPSIM Command Result

% ZT The elapsed time counter resets to zero.

Defaults
None.

Related Commands
RE, RS

DS300271 • page 102 © 1995 Microchip Technology Inc.

~
MICROCHIP MPSIM USER'S GUIDE

Appendix A. Troubleshooting Guide

Introduction
This Appendix consists of the following sections:

Solutions to common problems

The three types of messages generated by MPSIM, grouped by severity
and their possible causes and solutions. Messages have been divided
into the following groups:

Informative Messages

Warning Messages

Error Messages

Solutions to Some Common Problems
Problem 1:

Solution 1:

Problem 2:

Solution 2:

Problem 3:

Solution 3:

© 1995 Microchip Technology Inc.

I keep getting strange error messages like "stack
underflow" or "Illegal Opcode" when single-stepping
through or executing my code.

Check to make sure that the processor type you selected
in MPSIM is the same as the processor type you
selected when you assembled your code. This is
especially important when simulating the members of the
PIC16CXX or PIC17CXX family since the object code for
them is different from the PIC16CSX, and the default
processor type for the simulator is the PIC16C54.

When I am trying to step through my code, MPSIM
seems to execute an instruction different from the one
that is displayed in the command area.

Check to make sure that you loaded your code into the
simulator in the same format that assembled it. For
example, if you assembled your code and didn't specify
an output format, your hex file will be in INHXSM format.
If you then load your code into the simulator in INHXSS
format, the simulator will behave strangely.

MPSIM does not perform indirect addressing correctly.

Check to make sure that you do not have your indirect
addr register defined as the label "FO" in your source file.
There is a symbol-table conflict when you define your
label as such. Rename the "FO" label in your source file
to "INDO" or any other label.

DS300271 - page 103

MPSIM USER'S GUIDE

Problem4:

Solution 4:

DS300271 ·page 104

The W register does not update on my screen.

You have redefined W in your source file to be equal to
zero, and MPSIM now treats Was file register 0. Change
the label in your source file to "Wreg" or something
similar.

© 1995 Microchip Technology Inc.

Messages

© 1995 Microchip Technology Inc.

Appendix A. Troubleshooting Guide

Informative Messages
Address Break After

Cause: The breakpoint mode has been set to break after the
instruction has been executed.

Break at Address

Cause: A breakpoint has been encountered and execution has
stopped.

Break at Register

Cause: A break on register condition has been encountered and
execution has stopped.

Interrupt at Address

Cause: Execution has stopped at the indicated address due to a user
keyboard interrupt.

Listing File Loaded

Cause: MPSIM found and read filename.LST

No Symbols Defined!

Cause: The user has requested a list of all symbols when no symbols
had been defined.

Object Code Written to Disk

Cause: MPSIM successfully dumped program memory to the named
object file.

Original Source Restored

Cause: MPSIM has restored the source to its original form upon user
request.

Out of Memory, Not all Source Lines Loaded

Cause: MPSIM has exhausted free memory while trying to load the
listing file.

Processor Reset

Cause: MPSIM has reset the processor due to a user request.

Symbol Table Loaded

Cause: MPSIM has found and read filename.SYM.

Trace File is Closed

Cause: MPSIM has successfully closed the trace file.

Trace File is Open

Cause: MPSIM has successfully opened the trace file.

05300271 - page 105

MPSIM USER'S GUIDE

Verbose is OFF

Cause: Verbose mode is currently OFF, extended user messages will
not be displayed.

Verbose is ON

Cause: Verbose mode is currently ON, extended user messages will
be displayed.

Watchdog Timer Disabled

Cause: MPSIM will not respond to watchdog timer time-outs.

Watchdog Timer Enabled

Cause: MPSIM will respond to watchdog timer time-outs.

Warning Messages
Address2 < Address1

Cause: When entering a starting and ending address for a command,
the ending address is greater than the ending address.

Cure: The starting address must be less than or equal to the ending
address.

Arg X out of Range LABEL

Cause: You have entered a operand that is out of range of the
specified instruction.

Cure: Review the instruction syntax and re-enter.

Attempt to Read Nonexistent File Register

Cause: Your object code has attempted to read a file register that
does not exist in the PIC16/17 Microcontroller you have
specified.

Cure: Set you PIC16/17 Microcontroller type accordingly.

Attempt to Write Nonexistent File Register

Cause: Your object code has attempted to read a file register that
does not exist in the PIC16117 Microcontroller you have
specified.

Cure: Set your PIC16/17 Microcontroller type accordingly.

Bad Break Value

Cause: While defining a register breakpoint, you have specified a
break value that is either unrecognized in the default radix or
is out of range for the file register.

Cure: Ensure the value is valid in the current radix and not out of
range of the file register.

0$300271-page 106 © 1995 Microchip Technology Inc.

Appendix A. Troubleshooting Guide

Bad Count

Cause: You have entered a break count that is unrecognized in the
current radix.

Cure: Ensure that the value is correct in the current radix.

Bad Cycle Length

Cause: You have entered a cycle length that is invalid or
unrecognizable.

Cure: Re-enter the cycle length.

Bad End Address

Cause: You have entered an ending address that is out of memory
bounds or unrecognizable in the current radix.

Cure: Ensure that the value is valid in the current radix and re-enter.

Bad Filename

Cause: The file name you entered was not recognizable as a DOS
file name.

Cure: Ensure the file name conforms to DOS naming standards.

Bad Max. Value

Cause: This maximum value you entered is not recognizable in the
current radix.

Cure: Ensure the value is valid in the current radix and re-enter.

Bad Min. Value

Cause: This minimum value you entered is not recognizable in the
current radix.

Cure: Ensure the value is valid in the current radix and re-enter.

Bad Opcode

Cause: While attempting to search program memory for a specified
opcode, the opcode you entered is unrecognizable in the
current radix.

Cure: Ensure the opcode is valid in the current radix and re-enter.

Bad Option

Cause: The option you supplied to the V command was not valid.

Cure: Valid options are on and off. Use on of the valid options.

Bad Signal Value

Cause: While attempting to modify an 1/0 pin's value, you have
entered a value that is unrecognizable in the current radix.

Cure: Re-enter the value ensuring it is valid in the current radix.

© 1995 Microchip Technology Inc. 05300271- page 107

MPSIM USER'S GUIDE

05300271 - page 108

Bad Value

Cause: You have entered a value that is out of range of the file
register or unrecognized in the current radix.

Cure: Ensure the value is valid in the current radix and in range for
the file register.

Bad Width

Cause: The number you specified as the width of a view screen
element was not recognized.

Cure: Ensure the width is a valid number in the current radix.

Can only Break on File Registers or Addresses

Cause: You have attempted to set a break point on an 110 pin.

Cure: Break points on 1/0 pins are disallowed.

Cannot Add Symbol to Symbol Table

Cause: Due to memory constraints, MPSIM cannot add the specified
symbol to the symbol table.

Cure: Increase the amount of free memory before entering MPSIM.

Cannot Find Command File

Cause: MPSIM cannot find the command file you specified.

Cure: Ensure that the file is present in the path that you specified in
the command.

Cannot Find Command File (MPSIM.jrn)

Cause: MPSIM cannot find the old journal file.

Cure: If MPSIM.jrn was not present in the current directory, this
message is informational only. If the file is present, this may
signal more serious errors with your disk.

Cannot Find List File

Cause: MPSIM cannot find the list file with the same name as the hex
file plus the .LST extension.

Cure: Ensure you have a list file in the same directory as the hex file
you specified.

Cannot Find Symbol File

Cause: MPSIM cannot find the symbol file with the same name as
the hex file plus the .SYM extension.

Cure: Ensure you have a symbol file in the same directory as the
hex file you specified.

Cannot Open Trace File

Cause: MPSIM cannot open the file you specified. This may be
caused by any number of DOS errors.

© 1995 Microchip Technology Inc.

© 1995 Microchip Technology Inc.

Appendix A. Troubleshooting Guide

Cure: Ensure that the file you specified doesn't exist and is read
only, or you have exhausted the number of DOS file handles.

Cannot Parse Filename

Cause: The file name you entered was not recognizable as a DOS
filename.

Cure: Ensure the file name conforms to DOS naming standards.

Cannot Search for an 10 Pin or Status Bit

Cause: You have attempted to search program memory for an
instruction modifying an 1/0 pin or a status bit.

Cure: This operation is not supported.

Cannot Trace an 10 Pin or Status Bit

Cause: You have attempted to set a trace on an 1/0 pin or Status Bit.

Cure: This operation is not supported.

File Symbol does not Match Page at PC=XXX

Cause: MPSIM has detected a page mismatch between the file
symbol and the page select bits in the FSR.

Cure: This is a software error, your code needs to be fixed.

Invalid Filename

Cause: The file name you entered was not recognizable as a DOS
file name.

Cure: Ensure the file name conforms to DOS naming standards.

Illegal Number of Arguments

Cause: You have entered the wrong number of arguments for the
command.

Cure: Supply all required arguments for the command.

Illegal Radix

Cause: You have given a radix modifier that is not recognized.

Cure: Valid radix modifiers are X, D, 0 and B. Use one of the valid
types.

Missing Instruction

Cause: You have told MPSIM to assemble an instruction, but did not
supply the instruction.

Cure: Re-enter the command with the desired instruction.

No Breaks Found Involving

Cause: While trying to delete a register breakpoint, you have
specified a file register that has no associated break point.

Cure: Ensure that a breakpoint for the specified file register has
been defined via the DB command.

05300271 - page 109

MPSIM USER'S GUIDE

DS300271-page 110

No Object Code Loaded

Cause: MPSIM cannot open the object file and as a result cannot
load the object code.

Cure: Ensure that the file name you specified is present in the
directory you specified.

Opcode can only be used in PIC16C55/57 Mode

Cause: MPSIM has tried to execute an instruction that is valid only for
the PIC16C55 or PIC16C57. Most likely a TRIS 7 instruction.

Cure: Your Microcontroller type is not set properly. Refer to the P
command.

Out of Memory

Cause: While defining a register breakpoint, MPSIM has exhausted
free memory.

Cure: Increase the amount of free memory before entering MPSIM
or rename the list file so that MPSIM cannot find it.

Stack Overflow

Cause: You have executed one too many RETLW instructions for the
contents of the Microcontroller stack.

Cure: This is a software error, your code needs to be fixed.

Stack Underflow

Cause: You have executed one too many CALL instructions for the
size of the Microcontroller stack.

Cure: This is a software error, your code needs to be fixed.

Start Address Exceeds End Address

Cause: When entering a starting and ending address for a command,
the ending address is greater than the ending address.

Cure: The starting address must be less than or equal to the ending
address.

Symbol Already Exists

Cause: You have attempted to define a symbol that already exists.

Cure: Use a different symbol name.

Too Many Arguments

Cause: You have entered too many arguments for the command.

Cure: Review the common syntax.

Unable to Open Object File

Cause: MPSIM cannot open the object file specified.

Cure: Ensure that the file is present in the directory you specified.

© 1995 Microchip Technology Inc.

Appendix A. Troubleshooting Guide

Undefined Symbol

Cause: You have attempted to delete a nonexistent symbol.

Cure: Ensure that the symbol is defined. Symbols are case
sensitive. If you used the case insensitivity switch in the
assembler, all symbols have been mapped to uppercase.

Uninitialized Memory Location Executed

Cause: MPSIM has attempted to execute a memory location that
does not have any object code loaded.

Cure: Ensure that there is object code loaded and your program is
not running amuck.

Unknown Break Mode

Cause: You have specified a break mode that is unrecognized to
MPSIM.

Cure: Valid break modes are before and after. Use one of the valid
break modes.

Unknown File Format

Cause: MPSIM has tried to read in an object file that is does not
recognize.

Cure: Ensure that the file you specified is a valid object file in the
format you specified.

Unknown Instruction XXX

Cause: You have told MPSIM to assemble an instruction which is not
a valid instruction.

Cure: Re-enter the instruction in valid mnemonics.

Unknown Opcode XXX

Cause: There is an invalid opcode in your object file.

Cure: Ensure that you have loaded your object file in the correct
format. Default is INHX16.

Unknown Operator

Cause: While defining a register breakpoint, you have used an
unrecognized logical operator.

Cure: Valid operators are <, >, <=, >=, =, !=. Use one of the valid
operators.

Unknown Radix

Cause: You have attempted to modify the default radix to a value that
is unrecognized by MPSIM.

Cure: Valid radix values are X, D and 0. Use one of the valid
values.

© 1995 Microchip Technology Inc. 08300271 - page 111

MPSIM USER'S GUIDE

Unknown Symbol Type

Cause: While attempting to define a new symbol, you have entered a
symbol type that is unrecognized by MPSIM.

Cure: Valid symbol types are F, L, K and B. Use one of the valid
symbol types.

Use SE Command to Modify 10 Pins

Cause: You have attempted to use the F command to modify an 1/0
pin.

Cure: Use the SE command.

Value Out of Range

Cause: You have specified a value that is out of range or
unrecognized in the current radix.

Cure: Ensure that the value is valid in the current radix and valid for
the current operation.

View Item not Found

Cause: You have attempted to delete or modify a nonexistent view
screen element.

Cure: Ensure that the element is present on the view screen. View
screen elements are case-sensitive.

ViewScreen is Full

Cause: You have attempted to add an element to the view screen
when there is no more room on the screen.

Cure: Since the view screen is static in this version, there is no
work-around.

WOT Time-out

Cause: The watchdog timer has timed out.

Cure: Ensure the settings for the WOT are correct and your
software resets the WOT appropriately.

XXX is not an 10 Pin

Cause: You have tried to use the SE command to modify a label that
is not an 1/0 pin.

Cure: Use the F command to modify file registers, status bits and
the stack.

DS300271- page 112 © 1995 Microchip Technology Inc.

Appendix A. Troubleshooting Guide

Error Messages
Bad Stimulus (Line X)

Cause: MPSIM has found a stimulus value other that zero or one.

Cure: All pin stimuli must be either zero or one.

Cannot Delete Old Journal File

Cause: The file MPSIM.JRN has been read protected.

Cure: If you intended for the file to be read protected then do not
worry about this error otherwise read enable the file.

Cannot Find Heading Line in Stimulus File

Cause: MPSIM cannot find the heading line in the stimulus file.

Cure: Ensure that there is a line in the file which begins with STEP.

Cannot Map Stimulus, Symbol Conflict XXX

Cause: MPSIM has encountered two column headings that are
identical.

Cure: Ensure your column headings are correct.

Cannot Open File for Input XXX

Cause: MPSIM cannot open the specified file for reading.

Cure: Either the file does not exist or the file is read-only.

Cannot Open Journal File

Cause: MPSIM cannot open the old journal file.

Cure: The file MPSIM.JRN has been read protected, change the
DOS attribute.

Cannot Update Journal File

Cause: MPSIM cannot update the journal file with the new
commands for this session.

Cure: Either the old MPSIM.JRN cannot be deleted or the new
journal file does not exist. Contact your local FAE.

Duplicate Symbol in Symbol File

Cause: MPSIM has encountered a symbol in the symbol file that has
already been defined.

Cure: Delete the duplicate reference. If MPSIM finds this error it will
not continue to read the symbol file.

First Heading in Stimulus File MUST be STEP

Cause: The line that MPSIM interpreted as the heading line did not
begin with STEP.

Cure: Make sure all comment lines begin with '!'and the heading
line begins with STEP.

© 1995 Microchip Technology Inc. DS300271 . page 113

MPSIM USER'S GUIDE

DS300271 - page 114

Out of Memory, Cannot Create Event Calendar

Cause: MPSIM exhausted free memory while trying to create the
event calendar.

Cure: Increase the amount of free memory before invoking MPSIM.

Out of Memory, Cannot Create Event (Line X)

Cause: MPSIM exhausted free memory while trying to create an
event.

Cure: Increase the amount of free memory before invoking MPSIM.

Out of Memory During Build of Break

Cause: MPSIM exhausted free memory while trying to define a file
register breakpoint.

Cure: Increase the amount of free memory before invoking MPSIM.

Stimulus Data does not Match Headings (Line X)

Cause: MPSIM has found a line that has too few or too many data
points to match the column headings.

Cure: Ensure each data line has one data point for each column
heading.

Symbol File does not Match Hex File

Cause: You have tried to load a symbol file that was not generated for
the current hex file.

Cure: If you intended to load the symbol file, the embedded file
name must match the file name of the symbol file.

Symbol File is Corrupt

Cause: MPSIM has encountered some unexpected formatting in the
symbol file.

Cure: Regenerate the symbol file.

Symbol File Sync Error

Cause: MPSIM has gotten lost while trying to parse the symbol file.
Most likely the symbol file is corrupt.

Cure: Regenerate the symbol file.

Too Many Headings in Stimulus File (MAX=40)

Cause: The stimulus file has a limit of 40 headings, enough for each
1/0 pin.

Cure: If there is a need for more headings, contact your local FAE.

Unknown Command

Cause: MPSIM does not recognize the command you entered.

Cure: Refer to the command summary for valid commands.

© 1995 Microchip Technology Inc.

Appendix A. Troubleshooting Guide

Unexpected EOF in Stimulus File

Cause: While reading the stimulus file, MPSIM encountered a line
that did not have the proper number of data points.

Cure: Ensure that all data lines have the correct number of data
points.

Unknown File Register X

Cause: MPSIM does not recognize the file register as an argument to
the instruction.

Cure: Re-enter the mnemonic with a valid file register.

Unknown Option X

Cause: MPSIM does not recognize the command line option X.

Cure: Refer to the section on command line arguments.

Unknown Opcode (X)

Cause: MPSIM tried to execute an opcode that is not a valid opcode.

Cure: Ensure you loaded the object file in the correct format.
INHX16 and INHX8M have different byte orders.

© 1995 Microchip Technology Inc. DS300271 - page 115

MPSIM USER'S GUIDE

05300271- page 116 © 1995 Microchip Technology Inc.

~
MICROCHIP MPSIM USER'S GUIDE

Appendix B. Sample File Listings

MPSIM.INI
SR X
ZP
ZR
ZT
RE
V W,X,2
AD Fl,X,2
AD F2,X,3
AD F3,X,2
AD F4,X,2
AD FS,X,2
AD F6,X,2
AD F7,X,2
RS

PIC16C5X.INC
LIST
; Pl6C5X.INC Standard Header File, Version 2.0
NOLIST

Microchip Technology, Inc.

This header file defines configurations, registers, and other useful bits of
information for the 16C5X microcontrollers. These names are taken to match
the data sheets as closely as possible. The microcontrollers included
in this file are:

16C54
16C54A
16C55
16C56
16C57
16C58A

There is one group of symbols that is valid for all microcontrollers.
Each microcontroller in this family also has its own section of special
symbols. Note that the processor must be selected before this file is
included. The processor may be selected the following ways:

1. Command line switch:
C:\ MPASM MYFILE.ASM /Pl6C54A

2. LIST directive in the source file
LIST P:l6C54A

3. Processor Type entry in the MPASM full-screen interface
;==

Generic Definitions

;==
w
F

EQU
EQU

H'0000'
H'0001'

;----- Register Files ---
CBLOCK H'OOOO'

INDF
TMRO
PCL
STATUS
FSR
PORTA
PORTB

© 1995 Microchip Technology Inc. 05300271- page 117

MPSIM USER'S GUIDE

ENOC
STATUS Bits

PA2
PAl
PAO
NOT_TO
NOT_PD
z
DC
c

;----- OPTION Bits
TOCS
TOSE
PSA
PS2
PSl
PSO

EQU H'0007'
EQU H'0006'
EQU H'0005'
EQU H'0004'
EQU H'0003'
EQU H'0002'
EQU H'OOOl'
EQU H'OOOO'

EQU H'0005'
EQU H'0004'
EQU H'0003'
EQU H'0002'
EQU H'0001'
EQU H'0000'

Processor-dependent Definitions

IFDEF _16C54
#define _CONFIG_O

END IF
IFDEF _16C54A

#define _CONFIG_O
END IF
IFDEF _16C55

; Register Files
PORTC

#define _CONFIG_O
END IF
IFDEF 16C56

#define _CONFIG_O
END IF
IFDEF _16C57

; Register Files
PORTC

#define CONFIG_O
END IF
IFDEF _16C58A

#define _CONFIG_l
END IF

Configuration Bits

IFDEF _CONFIG_O
_CP_ON
_CP_OFF
_WDT_ON
_WDT_OFF
_LP_OSC
_XT_OSC
_HS_OSC
_RC_OSC
;#undefine _CONFIG_O

END IF

IFDEF _CONFIG_l
_CP_ON
_CP_OFF
_WDT_ON

DS300271 - page 118

EQU

EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU

H'0007'

H'0007'

H'OFF7'
H'OFFF'
H'OFFF'
H'OFFB'
H'OFFC'
H'OFFD'
H'OFFE'
H'OFFF'

H'0007'
H'OFFF'
H'OFFF'

© 1995 Microchip Technology Inc.

Appendix B. Sample File Listings

_WD'r_OFF
_LP_OSC
_XT_OSC
_HS_OSC
_RC_OSC
;#undefine ~CONFIG_l

ENDIF
LIST

PIC16CXX.INC
LIST

EQU
EQU
EQU
EQU
EQU

H'OFFB'
H'OFFC'
H'OFFD'
H'OFFE'
H'OFFF'

; P16CXX.INC Standard Header File, Version 2.0 Microchip Technology, Inc.
NOLI ST

This header file defines configurations, registers, and other useful bits of
information for the 16CXX microcontrollers. These names are taken to match
the data sheets as closely as possible. The rnicrocontrollers included
in this file are:

16C61
16C620
16C621
16C622
16C64
16C65
16C71
16C73
16C74
16C83
16C84
16C84A

There is one group of defines that is valid for all rnicrocontrollers.
Each rnicrocontroller in this family also has its own section of special
defines. Note that the processor must be selected before this file is
included. The processor may be selected the following ways:

1. Command line switch:
C:\ MPASM MYFILE.ASM /P16C71

2. LIST directive in the source file
LIST P;16C71

3. Processor Type entry in the MPASM full-screen interface
;==

w
F

Generic Definitions

EQU H'OOOO'
EQU H'OOOl'

;----- Register
INDF

Files--

TMRO
PCL
STATUS
FSR
PORTA
PORTB
PC LATH
INTCON
OPTION_REG
TRI SA
TRI SB

;----- INTCON Bits
GIE
TOIE
INTE
RBIE
TOIF

© 1995 Microchip Technology Inc.

(except

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

ADC/Periph)
EQU
EQU
EQU
EQU
EQU

H'OOOO'
H'OOOl'
H'0002'
H'0003'
H'0004'
H'0005'
H'0006'
H'OOOA'
H'OOOB'
H'0081'
H'0085'
H'0086'

H'0007'
H'OOOS'
H'0004'
H'0003'
H'0002'

08300271- page 119

MPSIM USER'S GUIDE

INTF
RBIF

;----- OPTION Bits
NOT_RBPU
INTEDG
TOCS
TOSE
PSA
PS2
PS1
PSO

STATUS Bits
IRP
RP1
RPO
NOT_TO
NOT_PD
z
DC
c

EQU H'0001'
EQU H'OOOO'

EQU H'0007'
EQU H'0006'
EQU H'OOOS'
EQU H'0004'
EQU H'0003'
EQU H'0002'
EQU H'0001'
EQU H'OOOO'

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

H'0007'
H'0006'
H'OOOS'
H'0004'
H'0003'
H'0002'
H'0001'
H'0000'

Processor-dependent Definitions

IFDEF 16C61
tdefine _CONFIG_O

END IF
IFDEF _16C620

;----- Register Files
PIRl
CM CON
PIE1
PCON
VRCON

tdef ine _CONFIG_6
END IF
IFDEF 16C621

;----=-:::Register Files
PIR1
CM CON
PIE1
PCON
VRCON

tdefine _CONFIG_4
END IF
IFDEF _16C622

;----- Register Files
PIR1
CM CON
PIE1
PCON
VRCON

tdefine _CONFIG_S
END IF
IFDEF _16C63

;----- Register Files
PORTC
PIR1
TMR1L
TMR1H
Tl CON
TMR2
T2CON
SSPBUF
SS PC ON
CCPR1L

DS300271 - page 120

EQU H'OOOC'
EQU H'001F'
EQU H'008C'
EQU H'008E'
EQU H'009F'

EQU H'OOOC'
EQU H'001F'
EQU H'008C'
EQU H'008E'
EQU H'009F'

EQU H'OOOC'
EQU H'001F'
EQU H'008C'
EQU H'008E'
EQU H'009F'

EQU H'0007'
EQU H'OOOC'
EQU H'OOOE'
EQU H'OOOF'
EQU H'0010'
EQU H'OOll'
EQU H'0012'
EQU H'0013'
EQU H'0014'
EQU H'0015'

© 1995 Microchip Technology Inc.

CCPRlH
CC Pl CON
TRI SC
PIEl
PCON
PR2
SSPADD
SSPSTAT

#define _CONFIG_2
END IF
IFDEF 16C64

;----- Register Files
PORTC
PORTD
PORTE
PIRl
TMRlL
TMRlH
Tl CON
TMR2
T2CON
SSPBUF
SS PC ON
CCPRlL
CCPRlH
CCPlCON
TRI SC
TRI SD
TRI SE
PIEl
PCON
PR2
SSPADD
SSPSTAT

#define _CONFIG_2
END IF
IFDEF _16C65

;----- Register Files
PORTC
PORTD
PORTE
PIRl
PIR2
TMRlL
TMRlH
Tl CON
TMR2
T2CON
SSPBUF
SSPCON
CCPRlL
CCPRlH
CC Pl CON
RC STA
TXREG
RC REG
CCPR2L
CCPR2H
CCP2CON
TRI SC
TRI SD
TRISE
PIEl
PIE2
PCON
PR2
SSPADD

© 1995 Microchip Technology Inc.

Appendix B. Sample File Listings

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

H'0016'
H'0017'
H'0087'
H'008C'
H'008E'
H'0092'
H'0093'
H' 0094'

EQU H'0007'
EQU H'0008'
EQU H'0009'
EQU H'OOOC'
EQU H'OOOE'
EQU H'OOOF'
EQU H'OOlO'
EQU H'OOll'
EQU H'0012'
EQU H'0013'
EQU H'0014'
EQU H'0015'
EQU H'0016'
EQU H'0017'
EQU H'0087'
EQU H'0088'
EQU H'0089'
EQU H'008C'
EQU H'008E'
EQU H'0092'
EQU H'0093'
EQU H'0094'

EQU H'0007'
EQU H'0008'
EQU H'0009'
EQU H'OOOC'
EQU H'OOOD'
EQU H'OOOE'
EQU H'OOOF'
EQU H'0010'
EQU H'OOll'
EQU H'0012'
EQU H'0013'
EQU H'0014'
EQU H'0015'
EQU H'0016'
EQU H'OOl 7'
EQU H'0018'
EQU H'0019'
EQU H'001A'
EQU H'001B'
EQU H'001C'
EQU H'001D'
EQU H'0087'
EQU H'0088'
EQU H'0089'
EQU H'008C'
EQU H'008D'
EQU H'008E'
EQU H'0092'
EQU H'0093'

0$300271 - page 121

MPSIM USER,'S GUIDE

SSPSTAT
TXSTA
SPBRG

#define _CONFIG_2
END IF
IFDEF _16C71

#define _ADC_CONFIG_O
#define _CONFIG_O

END IF
IFDEF _16C73

;----- Register Files
PORTC
PIRl
PIR2
TMRlL
TMRlH
Tl CON
TMR2
T2CON
SSPBUF
SSPCON
CCPRlL
CCPRlH
CC Pl CON
RC STA
TXREG
RC REG
CCPR2L
CCPR2H
CCP2CON
TRI SC
PIEl
PIE2
PCON
PR2
SSPADD
SSPSTAT
TXSTA
SPBRG

#define _ADC_CONFIG_l
#define _CONFIG_2

END IF
IFDEF _16C74

;----- Register Files
PORTC
PORTD
PORTE
PIRl
PIR2
TMRlL
TMRlH
Tl CON
TMR2
T2CON
SSPBUF
SSPCON
CCPRlL
CCPRlH
CCPlCON
RC STA
TXREG
RC REG
CCPR2L
CCPR2H
CCP2CON
TRI SC
TRI SD

08300271 - page 122

EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

H'0094'
H'0098'
H'0099'

H'0007'
H'OOOC'
H'OOOD'
H'OOOE'
H'OOOF'
H'0010'
H'0011'
H'0012'
H'0013'
H'0014'
H'0015'
H'0016'
H'0017'
H'0018'
H'0019'
H'OOlA'
H'001B'
H'001C'
H'001D'
H'0087'
H'008C'
H'008D'
H'OOBE'
H'0092'
H'0093'
H'0094'
H'0098'
H'0099'

EQU H'0007'
EQU H'0008'
EQU H'0009'
EQU H'OOOC'
EQU H'OOOD'
EQU H'OOOE'
EQU H'OOOF'
EQU H'0010'
EQU H'0011'
EQU H'0012'
EQU H'0013'
EQU H'0014'
EQU H'0015'
EQU H'0016'
EQU H'0017'
EQU H'0018'
EQU H'0019'
EQU H'001A'
EQU H'001B'
EQU H'OOlC'
EQU H'OOlD'
EQU H'0087'
EQU H'0088'

© 1995 Microchip Technology Inc.

TRI SE
PIEl
PIE2
PCON
PR2
SSPADD
SSPSTAT
TXSTA
SPBRG

#define __ADC_CONFIG_l
#define _CONFIG_2

END IF
IFDEF _16C83

;----- Register Files
EEDATA
EEADR
EECOID
EECON2

#define _CONFIG_3
END IF
IFDEF _16C84

;----- Register Files
EEDATA
EEADR
EEcom
EECON2

#define _CONFIG_O
END IF
IFDEF _16C84A

;----- Register Files
EEDATA
EEADR
EECOID
EECON2

#define _CONFIG_3
END IF

Configuration Bits

IFDEF _CONFIG_O
_CP_ON
_CP_OFF
_PWRTE_ON
_PWRTE_OFF
_WD'r_ON
_WD'r_OFF
_LP_OSC
_X'I'_OSC
_Hs_osc
_RC_OSC
;#undefine _CONFIG_O

END IF
IFDEF CONFIG 1

BODEN ON
BODEN OFF
_CP_ON
_CP_OFF
_PWRTE_ON
_PWRTE_OFF
_WD'r_ON
_WD'r_OFF
_LP_OSC
_X'I'_OSC
_Hs_osc
_Rc_osc

© 1995 Microchip Technology Inc.

Appendix B. Sample File Listings

EQU H'0089'
EQU H'OOBC'
EQU H'OOBD'
EQU H'OOBE'
EQU H'0092'
EQU H'0093'
EQU H'0094'
EQU H'0098'
EQU H'0099'

EQU H'0008'
EQU H'0009'
EQU H'0088'
EQU H'0089'

EQU H'0008'
EQU H'0009'
EQU H'0088'
EQU H'0089'

EQU H'0008'
EQU H'0009'
EQU H'0088'
EQU H'0089'

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

H'3FEF'
H'3FFF'
H'3FFF'
H'3FF7'
H'3FFF'
H'3FFB'
H'3FFC'
H'3FFD'
H'3FFE'
H'3FFF'

H'3FFF'
H'3FBF'
H'004F'
H'3FFF'
H'3FFF'
H'3FF7'
H'3FFF'
H'3FFB'
H'3FFC'
H'3FFD'
H'3FFE'
H'3FFF'

DS300271-page123

MPSIM USER'S GUIDE

;#undefine _CONFIG_l
END IF
IFDEF _CONFIG 2

_CP_ALL EQU H'3FCF'
_CP_75 EQU H'3FDF'
_CP_50 EQU H'3FEF'
_CP_OFF EQU H'3FFF'
_PWRTE_ON EQU H'3FFF'
_PWRTE_OFF EQU H'3FF7'
_WDT_ON EQU H'3FFF'
_WDT_OFF EQU H'3FFB'
_LP_OSC EQU H'3FFC'
_XT_OSC EQU H'3FFD'
_HS_OSC EQU H'3FFE'
_RC_OSC EQU H'3FFF'
;#undefine _CONFIG_2

END IF
IFDEF _CONFIG 3

_CP_ON EQU H'OOOF'
_CP_OFF EQU H'3FFF'
_PWRTE_ON EQU H'3FFF'
_PWRTE_OFF EQU H'3FF7'
_WDT_ON EQU H'3FFF'
_WDT_OFF EQU H'3FFB'
_LP_OSC EQU H'3FFC'
_XT_OSC EQU H'3FFD'
_HS_OSC EQU H'3FFE'
_RC_OSC EQU H'3FFF'
;#undefine _CONFIG_3

END IF
IFDEF _CONFIG 4

BODEN ON EQU H'3FFF'
BODEN OFF EQU H'3FBF'
_CP_ALL EQU H'OOCF'
_CP_50 EQU H'15DF'
_CP_OFF EQU H'3FFF'
_PWRTE_ON EQU H'3FFF'
_PWRTE_OFF EQU H'3FF7'
_WDT_ON EQU H'3FFF'
_WDT_OFF EQU H'3FFB'
_LP_OSC EQU H'3FFC'
_XT_OSC EQU H'3FFD'
_HS_OSC EQU H'3FFE'
_RC_OSC EQU H'3FFF'
;#undefine _CONFIG_4

END IF
IFDEF _CONFIG 5

BODEN ON EQU H'3FFF'
BODEN OFF EQU H'3FBF'
_CP_ALL EQU H'OOCF'
_CP_75 EQU H'l5DF'
_CP_50 EQU H'2AEF'
_CP_OFF EQU H'3FFF'
_PWRTE_ON EQU H'3FFF'
_PWRTE_OFF EQU H'3FF7'
_WDT_ON EQU H'3FFF'
_WDT_OFF EQU H'3FFB'
_LP_OSC EQU H'3FFC'
_XT_OSC EQU H'3FFD'
_HS_OSC EQU H'3FFE'
_Rc_osc EQU H'3FFF'
;#undefine _CONFIG_5

END IF
IFDEF _CONFIG 6

BODEN ON EQU H'3FFF'
_BODEN_OFF EQU H' 3FBF'
_CP_ON EQU H'OOCF'

DS300271 - page 124 © 1995 Microchip Technology Inc.

_CP_OFF
_PWRTE_ON
_PWRTE_OFF
_WDT_ON
_WDT_OFF
_LP_OSC
_XT_OSC
_HS_OSC
_RC_OSC
;#undefine ~CONFIG_6

END IF

More Bit Definitions

IFDEF ~ADC_CONFIG_O
;---- Register Files

ADCONO

Appendix B. Sample File Listings

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

H'3FFF'
H'3FFF'
H'3FF7'
H'3FFF'
H'3FFB'
H'3FFC'
H'3FFD'
H'3FFE'
H'3FFF'

EQU H'0008'
EQU H'0009'
EQU H'0088'

AD RES
ADCONl

;---- Finish
ADIE

INTCON Definition ---

;----- ADCONO
ADCSl
ADC SO
CHSl
CHSO
GO
NOT_DONE
GO_DONE
ADIF
ADON

Bits
EQU H'0006'

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

H'0007'
H'0006'
H'0004'
H'0003'
H'0002'
H'0002'
H'0002'
H'0001'
H'OOOO'

;----- ADCONl Bits --
PCFGl
PCFGO

;#undefine ~ADC_CONFIG_O
ELSE

EQU
EQU

H'OOOl'
H'OOOO'

;---- Finish INTCON Definition---
PEIE EQU H'0006'

END IF
IFDEF ~ADC_CONFIG_l

; ----- Register Files -------------------·------------------------------
ADRES
ADC ONO
ADCONl

EQU
EQU
EQU

H'001E'
H' OOlF'
H' 009F'

;----- ADCONO Bits ---
ADCSl
ADC SO
CHS2
CHSl
CHSO
GO
NOT_DONE
GO_DONE
ADON

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

H' 0007'
H'0006'
H'0005'
H' 0004'
H' 0003'
H'0002'
H'0002'
H' 0002'
H'OOOO'

;----- ADCONl Bits ---
PCFG2
PCFGl
PCFGO

;----- PIEl and PIRl ADC
ADIE
ADIF

;#undefine ~ADC_CONFIG_l
END IF
IFDEF CCPlCON

CCPlX

© 1995 Microchip Technology Inc.

EQU H'0002'
EQU H'OOOl'
EQU H'OOOO'

Bits --
EQU H'0006'
EQU H'0006'

EQU H'0005'

DS300271 - page 125

MPSIM USER'S GUIDE

CCPlY
CCP1M3
CCP1M2
CCPlMl
CCPlMO

END IF
IFDEF CCP2CON

CCP2X
CCP2Y
CCP2M3
CCP2M2
CCP2Ml
CCP2MO

END IF
IFDEF CMCON

C20UT
Cl OUT
CIS
CM2
CMl
CMO

EQU H'0004'
EQU H'0003'
EQU H'0002'
EQU H'OOOl'
EQU H'OOOO'

EQU H'0005'
EQU H'0004'
EQU H'0003'
EQU H'0002'
EQU H'OOOl'
EQU H'OOOO'

EQU H'0007'
EQU H'0006'
EQU H'0003'
EQU H'0002'
EQU H'0001'
EQU H'OOOO'

PIEl and
CMIE

PIRl ADC Bits and Short Cuts

CMIF
ENDIF
IFDEF EECONl

EEIF
WRERR
WREN
WR
RD

END IF
IFDEF PCON

NOT_POR
NOT_BO

ENDIF
IFDEF PIEl

PS PIE
SS PIE
CC Pl IE
TMR2IE
TMRlIE

END IF
IFDEF PIRl

PSPIF
SSPIF
CCPlIF
TMR2IF
TMRlIF

END IF
IFDEF PIE2

CCP2IE
CCP2IF

END IF
IFDEF RCSTA

SPEN
RC9
NOT_RC8
RC8_9
SREN
CREN
FERR
OERR
RCD8

PIEl and PIRl RC Bits
RCIE
RBFL

DS300271 - page 126

EQU H'0006'
EQU H'0006'

EQU H'0004'
EQU H'0003'
EQU H'0002'
EQU H'OOOl'
EQU H'OOOO'

EQU H'OOOl'
EQU H'OOOO'

EQU H'0007'
EQU H'0003'
EQU H'0002'
EQU H'OOOl'
EQU H'OOOO'

EQU H'0007'
EQU H'0003'
EQU H'0002'
EQU H'OOOl'
EQU H'OOOO'

Assumes PIE2 and PIR2
EQU H'OOOO'
EQU H'OOOO'

EQU H'0007'
EQU H'0006'
EQU H'0006'
EQU H'0006'
EQU H'0005'
EQU H'0004'
EQU H'0002'
EQU H'OOOl'
EQU H'OOOO'
and Short Cuts ---------------------------
EQU H'0005'
EQU H'0005'

© 1995 Microchip Technology Inc.

Appendix B. Sample File Listings

END IF
IFDEF SSPCON

WCOL EQU H'0007'
SS POV EQU H'0006'
SS PEN EQU H'0005'
CKP EQU H'0004'
SSPM3 EQU H'0003'
SSPM2 EQU H'0002'
SSPMl EQU H'0001'
SSPMO EQU H'OOOO'

END IF
IFDEF SSPSTAT

D EQU H'0005'
I2C_DATA EQU H'0005'
NOT_A EQU H'0005'
NOT_ADDRESS EQU H' 0005'
D_A EQU H'OOOS'
DATA_ADDRESS EQU H'OOOS'
p EQU H'0004'
I2C_STOP EQU H'0004'
s EQU H'0003'
I2C_START EQU H'0003'
R EQU H'0002'
I2C_READ EQU H'0002'
NOT_W EQU H'0002'
NOT_WRITE EQU H'0002'
R_W EQU H'0002'
READ_WRITE EQU H'0002'
UA EQU H'OOOl'
BF EQU H'0000'

END IF
IFDEF TlCON

TlCKPSl EQU H'0005'
TlCKPSO EQU H'0004'
TlOSCEN EQU H'0003'
TlINSYNC EQU H'0002'
TMRlCS EQU H'OOOl'
TMRlON EQU H'0000'

END IF
IFDEF T2CON

TOUTPS3 EQU H'0006'
TOUTPS2 EQU H'0005'
TOUTPSl EQU H'0004'
TOUTPSO EQU H'0003'
TMR20N EQU H'0002'
T2CKPS1 EQU H'0001'
T2CKPSO EQU H'0000'

END IF
IFDEF TRISE

IBF EQU H'0007'
OBF EQU H'0006'
IBOV EQU H'0005'
PSPMODE EQU H'0004'
TRISE2 EQU H'0002'
TRISEl EQU H'0001'
TRI SEO EQU H'OOOO'

END IF
IFDEF TXSTA

CSRC EQU H'0007'
TX9 EQU H'0006'
NOT_TXS EQU H'0006'
TX8_9 EQU H'0006'
TXEN EQU H'0005'
SYNC EQU H'0004'
BRGH EQU H'0002'
TRMI' EQU H'OOOl'
TXDS EQU H'OOOO'

© 1995 Microchip Technology Inc. 0$300271 - page 127

-- ----~·--- -

MPSIM USER'S:,GUIDE

;----- PIEl
TXIE
TXIF

END IF

and PIRl TX Bits and Short Cuts ---------------------------

IFDEF VRCON
VREN
VROE
VRR
VR3
VR2
VRl
VRO

END IF
LIST

PIC17CXX.INC
LIST

EQU H'0004'
EQU H'0004'

EQU H'0007'
EQU H'0006'
EQU H'0005'
EQU H'0003'
EQU H'0002'
EQU H'0001'
EQU H'OOOO'

; P17CXX.INC Standard Header File, Version 2.0 Microchip Technology, Inc.
NOLI ST

This header file defines configurations, registers, and other useful bits of
infonnation for the 17CXX microcontrollers. These names are taken to match
the data sheets as closely as possible. The microcontrollers included
in this file are:
17C42
17C43
17C44
There is one group of defines that is valid for all microcontrollers.
Each microcontroller in this family also has its own section of special
defines. Note that the processor must be selected before this file is
included. The processor may be selected the following ways:

1. Command line switch:
C:\ MPASM MYFILE.ASM /Pl7C42

2. LIST directive in the source file
LIST P=l 7C42

3. Processor Type entry in the MPASM full-screen interface

;==

Generic Definitions

;==
w
F
CBLOCK

BANKO
BANKl
BANK2
BANK3

ENDC
;----- Register Files

CBLOCK
INDFO
FSRO
PCL
PC LATH
ALOSTA
TOSTA
CPUSTA
INT STA
IND Fl
FSRl
WREG
TMROL
TMROH

05300271 - page 128

H'OOOO'

H'OOOO'

EQU
EQU

H'OOOO'
H'OOOl'

; Bank 0

© 1995 Microchip Technology Inc.

TBLPTRL
TBLPTRH
BSR
PORTA
DDRB
PORTB
RC STA
RCREG
TXSTA
TXREG
SPBRG

ENDC
CBLOCK

DDRC
PORTC
DDRD
PORTO
DDRE
PORTE
PIR
PIE

ENDC
CBLOCK

TMRl
TMR2
TMR3L
TMR3H
PRl
PR2
PR3L
PR3H

ENDC
CBLOCK

CALlL
CALlH

ENDC
CBLOCK

PWlDCL
PW2DCL
PWlDCH
PW2DCH
CA2L
CA2H
TCONl
TCON2

ENDC
;----- ALUSTA Bits

FS3
FS2
FSl
FSO
ov
z
DC
c

;----- CPUSTA Bits
STKAV
GLINTD
NOT_TO
NOT_PD

;----- INTSTA Bits
PEIF
TOCKIF
TOIF
INTF
PEIE
TOCKIE

© 1995 Microchip Technology Inc.

Appendix B. Sample File Listings

H'OOlO' Bank 1

H'OOlO' Bank 2

H'0016' Bank 2 - alternate

H' 0010' Bank 3

EQU H'0007'
EQU H'0006'
EQU H'OOOS'
EQU H'0004'
EQU H'0003'
EQU H'0002'
EQU H'0001'
EQU H'OOOO'

EQU H'OOOS'
EQU H'0004'
EQU H'0003'
EQU H'0002'

EQU H'0007'
EQU H'0006'
EQU H'0005'
EQU H'0004'
EQU H'0003'
EQU H'0002'

DS300271-page129

MPSIM USER'S .GUIDE

TOIE EQU H'0001'
INTE EQU H'0000'

;----- PIE Bits ---
RBIE EQU H'0007'
TMR3IE EQU H'0006'
TMR2IE EQU H'0005'
TMRlIE EQU H'0004'
CA2IE EQU H'0003'
CAlIE EQU H'0002'
TXIE EQU H'0001'
RCIE EQU H'OOOO'

;----- PIR Bits ---
RBIF EQU H'0007'
TMR3IF EQU H'0006'
TMR2IF EQU H'0005'
TMRlIF EQU H'0004'
CA2IF EQU H'0003'
CAlIF EQU H'0002'
TXIF EQU H'0001'
RCIF EQU H'0000'

;----- PORTA Bits ---
NOT_RBPUEQUH'0007'
TOCKIEQUH'0001'
INTEQUH' 0000'

;----- RCSTA Bits ---
SPEN
RC9
NOT_RC8
RC8_9
SREN
CREN
FERR
OERR
RCD8

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

H'0007'
H'0006'
H'0006'
H'0006'
H'0005'
H'0004'
H'0002'
H'0001'
H'OOOO'

;----- TOSTA Bits --
INTEDG
TOSE
TOCS
TOPS3
TOPS2
TOPSl
TOPSO

EQU
EQU
EQU
EQU
EQU
EQU
EQU

H'0007'
H'0006'
H'0005'
H'0004'
H'0003'
H'0002'
H'0001'

;----- TCONl Bits ---
CA2ED1
CA2EDO
CAlEDl
CAlEDO
T16
TMR3CS
TMR2CS
TMRlCS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

H'0007'
H'0006'
H'OOOS'
H'0004'
H'0003'
H'0002'
H'OOOl'
H'OOOO'

;----- TCON2 Bits ---
CA20VF
CAlOVF
PWM20N
PWMlON
CAl
NOT_PR3
CAl_PR3
TMR30N
TMR20N
TMRlON

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

H'0007'
H'0006'
H'0005'
H'0004'
H'0003'
H'0003'
H'0003'
H'0002'
H'OOOl'
H'OOOO'

;----- TXSTA Bits ---
CSRC
TX9
NOT_TX8
TX8_9

08300271 - page 130

EQU
EQU
EQU
EQU

H'0007'
H'0006'
H'0006'
H'0006'

© 1995 Microchip Technology Inc.

Appendix B. Sample File Listings

TXEN
SYNC
TRMT
TXD8

EQU
EQU
EQU
EQU

H' 0005'
H'0004'
H'OOOl'
H'OOOO'

Configuration Bits - Generic

_XMC_MODE EQU H'FFBF'
_MC_MODE EQU H'FFEF'
_MP_MODE EQU H'FFFF'
_WDT_NORM EQU H'FFF3'
_WDT_64 EQU H'FFF7'
_WDT_256 EQU H'FFFB'
_WDT_l EQU H'FFFF'
_LF_OSC EQU H'FFFC'
_RC_OSC EQU H'FFFD'
_XT_OSC EQU H'FFFE'
_EC_OSC EQU H'FFFF'

Processor-dependent Definitions

IFDEF _17C42
; Nothing else needs
#define _CONFIG_O

END IF
IFDEF _17C43

;----- Register Files
PRODL
PRO DH

#define _CONFIG_l
END IF
IFDEF _17C44

;----- Register Files
PRODL
PRO DH

#define _CONFIG_l
END IF

to be defined

EQU H'0018'
EQU H'0019'

EQU H'0018'
EQU H'0019'

Configuration Bits - Specific

IFDEF _CONFIG_O
_PMC_MODE
;#undefine _CONFIG_O

END IF
IFDEF _CONFIG 1

_PMC_MODE
;#undefine CONFIG_l

END IF
LIST

© 1995 Microchip Technology Inc.

EQU H'FFAF'

EQU H'OOAF'

DS300271 - page 131

MPSIM USER'S GUIDE

SAMPLE.ASM
;***

SAMPLE.ASM
; 8x8 Software Multiplier
;***

The 16 bit result is stored in 2 bytes

Before calling the subroutine" mpy ", the multiplier should
be loaded in location " mulplr , and the multiplicand in
" mulcnd " . The 16 bit result is stored in locations
H_byte & L_byte.

Performance
Program Memory
of cycles
Scratch RAM

15 locations
71

0 locations

This routine is optimized for code efficiency (looped code)
; For time efficiency code refer to "mult8x8F.asm" (straight line code
;***

LIST p~16C54 PIC16C54 is the target processor
mulcnd equ 09 8 bit multiplicand
mulplr equ 10 8 bit multiplier
H_byte equ 12 High byte of the 16 bit result
L_byte equ 13 Low byte of the 16 bit result
count equ 14 loop counter
portb equ 06 I/O register F6
STATUS equ 03 STATUS register F3
CARRY equ 0 Carry bit in status register
Same equ 1

Begin Multiplier Routine
mpy_S clrf H_byte

clrf L_byte
movlw 8
movwf count
movf mulcnd,w
bcf STATUS,CARRY Clear the carry bit in the status Reg.

loop rrf mulplr
btfsc STATUS,CARRY
addwf H_byte, Same
rrf H_byte, Same
rrf L_byte, Same
decfsz count
goto loop

retlw 0

;**
; Test Program
;***
start clrw

option
!l'ain movf

movwf
movf
movwf

call_m call

goto

08300271 - page 132

portb,w
mulplr
portb,w
mulcnd

mpy_S

main

multiplier (in mulplr) 05

; The result is in locations F12 & F13
; H_byte & L_byte

© 1995 Microchip Technology Inc.

Appendix B. Sample File Listings

org OlFFh
goto start

END

list p=l6C64,r=HEX
org 0
syrnbol_name equ 010
syrnbollOO_name equ 011
syrnbollOOO_name equ 012
syrnbol123456789A equ 013
syrnbol123456789ABCDEF equ 014
devicel equ 032
statflag equ 02e
movf 3,w set up Timer 0
iorlw 020
movwf 3
movlw Odf
movwf 01
nop
movf 3,w
andlw Odf
movwf 3
movlw 011
movwf 010
movlw Ofe
movwf Oe
nop
movlw 04
movwf 012
movf 3,w
iorlw 020
movwf 3
movlw 6
movwf 012
movf 3,w
andlw Odf
movwf 3
loop
nop
nop
nop
nop
nop
nop
nop
nop
goto loop
END

SAMPLE.IN I
LO SAMPLE
ST SAMPLE
SR X
ZP
ZR
ZT
RE
p 54
NV
AD mulcnd
AD mulplr
AD H_byte

nop

© 1995 Microchip Technology Inc.

set up Timer 1

set up Timer 2

DS300271 - page 133

MPSIM USER'S GUIDE

AD L_byte
AD count
AD portb
AD RB7,B,1
AD RB6,B,1
AD RBS,B,1
AD RB4,B,1
AD RB3,B,1
AD RB2,B,1
AD RBl,B,1
AD RBO,B,1
RS

SAMPLE.STI
! Stimulus file for SAMPLE.A.SM

STEP RB7 RB6 RBS RB4 RB3 RB2 RBl RBO PortB Pins
3 0 0 0 0 1 0 0 1 9 x 5
5 0 0 0 0 0 1 0 1
65 0 0 0 0 1 0 1 0 10 x 5
67 0 0 0 0 0 1 0 1
127 0 0 0 1 1 0 1 1 27 x 3
129 0 0 0 0 0 0 1 1
191 0 0 0 1 0 0 0 1 17 x 7
193 0 0 0 0 0 1 1 1
253 0 1 0 0 0 0 0 0 64 x 63
255 0 0 1 1 1 1 1 1

DS300271- page 134 © 1995 Microchip Technology Inc.

~
MICROCHIP MPSIM USER'S GUIDE

Appendix C. Customer Support

Keeping Current with Microchip Systems

Highlights

© 1995 Microchip Technology Inc.

This chapter provides a brief discussion of the Microchip BBS general
services available. Because the Microchip BBS is an evolving product, details
of its operation are not described here. This chapter also describes the
Microchip software release numbering scheme.

Microchip Technology supports the Microchip BBS as a service to its
customers. The Microchip BBS contains the most recent information
regarding Microchip systems products. Microchip endeavors at all times to
provide quality service and fast responsiveness to users. To accomplish this,
Microchip monitors the BBS several times a week for questions. Truly urgent
issues should not be left with the BBS, but referred to your local distributor,
sales office or FAE.

Note: the best way to keep current with Microchip systems is to register.

The highlighted points in this chapter include:

• Keeping Current with Microchip Systems

Systems Information and Upgrade Hot Line

Connecting to Microchip BBS

Using the Bulletin Board

Special Interest Groups

Files

Mail

Software Releases

Alpha Release

Intermediate Release

Beta Release

Production Release

DS300271 - page 135

MPSIM USER'S GUIDE

Systems Information and Upgrade Hot Line
The Systems lnfonnation And Upgrade Line provides system users a
listing of the latest versions of all of Microchip's development systems
software products. Plus, this line provides infonnation on how customers
can receive any currently available upgrade kits. The Hot Line Numbers
are: 1-800-755-2345 for U.S. and most of Canada, and 1-602-786-7302
for the rest of the wor1d.

These phone numbers are also listed on the "Important Information" sheet
that is shipped with all development systems. The hot line message is
updated whenever a new software version is added to the Microchip BBS, or
when a new upgrade kit becomes available.

Connecting to Microchip BBS

DS300271-page136

Connect wor1dwide to the Microchip BBS using the CompuServe®
communications network. In most cases, a local call is your only expense.
The Microchip BBS connection does not use CompuServe membership
services, therefore, you do not need CompuServe membership to join
Microchip's BBS.

There is no charge for connecting to the BBS, except for a toll charge to the
CompuServe access number, where applicable. You do not need to be a
CompuServe member to take advantage of this connection (you never
actually log in to CompuServe).

The procedure to connect will vary slightly from country to country. Please
check with your local CompuServe agent for details if you have a problem.
CompuServe service allow multiple users at baud rates up to 14400 bps.

The following connect procedure applies in most locations.

1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the
normal CompuServe setting which is 7E1.

2. Dial your local CompuServe access number.

3. Depress <Enter ..J> and a garbage string will appear because
CompuServe is expecting a 7E1 setting.

4. Type+, depress <Enter ..J> and Host Name: will appear.

5. Type MCHIPBBS, depress <Enter..J> and you will be connected to the
Microchip BBS.

6. In the United States, to find CompuServe's phone number closest to
you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud
or (800) 331-7166 for 9600-14400 baud connection. After the system
responds with Host Name:, type

NETWORK, depress <Enter..J> and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 457-1550
for your local CompuServe number.

© 1995 Microchip Technology Inc.

Appendix C. Customer Support

Using the Bulletin Board

© 1995 Microchip Technology Inc.

The bulletin board is a multifaceted tool. It can provide you with information on
a number of different topics.

Special Interest Groups

• Files

Mail

• Bug Lists

Special Interest Groups
Special Interest Groups, or SIGs as they are commonly referred to, provide
you with the opportunity to discuss issues and topics of interest with others
that share your interest or questions. SI Gs may provide you with information
not available by any other method because of the broad background of the
PIC16/17 user community.

There are SIGs for most Microchip systems, including:

• MPASM • MPSIM
• PICMASTER® • TRUE GAUGE™
• PROMATE • fuzzyTECH®-MP
• Utilities • ASSP
• Bugs

These groups are monitored by the Microchip staff.

Files
Microchip regularly uses the Microchip BBS to distribute technical
information, application notes, source code, errata sheets, bug reports, and
interim patches for Microchip systems software products. Users can
contribute files for distribution on the BBS. For each SIG, a moderator
monitors, scans, and approves or disapproves files submitted to the SIG. No
executable files are accepted from the user community in general to limit the
spread of computer viruses.

DS300271 - page 137

MPSIM USER'S GUIDE

Mail
The BBS can be used to distribute mail to other users of the service. This is
one way to get answers to your questions and problems from the Microchip
staff, as well as keeping in touch with fellow Microchip users worldwide.

Consider mailing the moderator of your SIG, or the SYSOP, if you have ideas
or questions about Microchip products, or the operation of the BBS.

Note: The SIGs provide you with the opportunity to discuss issues and
exchange ideas. Technical support and urgent questions should
be referred to your local distributor, sales representative or FAE.
They are your first level of support.

Software Releases

DS300271- page 138

Software products released by Microchip are referred to by version numbers.
Version numbers use the form:

xx..yy.zz <status>

Where xx is the major release number,yy is the minor number, andzz is the
intermediate number. The status field displays one of the following
categories:

• Alpha

Intermediate

• Beta

• Released

Production releases are numbered with major, and minor version numbers
like:

3.04 Released

Alpha, Beta and Intermediate releases are numbered with the major, minor
and intermediate numbers:

3.04.01 Alpha

Alpha Release
Alpha designated software is engineering software that has not been
submitted to any quality assurance testing. In general, this grade of software
is intended for software development team access only, but may be sent to
selected individuals for conceptual evaluation. Once Alpha grade software
has passed quality assurance testing, it may be upgraded to Beta or
Intermediate status.

© 1995 Microchip Technology Inc.

© 1995 Microchip Technology Inc.

Appendix C. Customer Support

Intermediate Release
Intermediate released software represents changes to a released software
system and is designated as such by adding an intermediate number to the
version number. Intermediate changes are represented by:

Bug Fixes

Special Releases

Feature Experiments

Intermediate released software does not represent our most tested and stable
software. Typically, it will not have been subject to a thorough and rigorous
test suite, unlike production released versions. Therefore, users should use
these versions with care, and only in cases where the features provided by an
intermediate release are required.

Intermediate releases are primarily available through the BBS.

Beta Release
Preproduction software is designated as Beta. Beta software is sent to
Applications Engineers and Consultants, FAEs, and select customers. The
Beta Test period is limited to a few weeks. Software that passes Beta testing
without having significant flaws, will be production released. Flawed software
will be evaluated, repaired, and updated with a new revision number for a
subsequent Beta trial.

Production Release
Production released software is software shipped with tool products. Example
products are PRO MATE, PICSTART®, and PICMASTER. The Major number
is advanced when significant feature enhancements are made to the product.
The minor version number is advanced for maintenance fixes and minor
enhancements. Production released software represents Microchip's most
stable and thoroughly tested software.

There will always be a period of time when the Production Released software
is not reflected by products being shipped until stocks are rotated. You should
always check the BBS for the current production release.

DS300271- page 139

MPSIM USER'S GUIDE

05300271 - page 140 © 1995 Microchip Technology Inc.

~
MICROCHIP MPSIM USER'S GUIDE

Appendix D. Intel INTELLEC™ Hexadecimal Format

INHXBM INHX8S

START

CHARACTER

WORD COUNT

ADDRESS

RECORD TYPE

HIGH BYTE

LOW BYTE

CHECKSUM

:(colon)

2 Hex digits

4 Hex digits

2 Hex digits

2 Hex digits

2 Hex digits

2 Hex digits

START

CHARACTER

BYTE COUNT

ADDRESS

RECORD TYPE

LOW or HIGH
BYTE

CHECKSUM

:(colon)

2 Hex digits

2 Hex digits

2 Hex digits

2 Hex digits

START

BYTE COUNT

ADDRESS

RECORD TYPE

LOW BYTE

HIGH BYTE

CHECKSUM

Figure D.1a INHX8S and INHX8M File Formats

:(colon)

2 Hex digits

4 Hex digits

2 Hex digits

2 Hex digits

1 Hex digits

2 Hex digits

10 0000 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

10 0010 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

10 0020 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

10 0030 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

10 0040 00 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Figure D.1b - INHX8M File Formats

© 1995 Microchip Technology Inc. 08300271 - page 141

MPSIM USER'S GUIDE

INHXSM

DS300271 - page 142

This format produces one 8-bit hexadecimal file with a low-byte/high-byte
combination. Since each address can only contain 8 bits in this format, all
addresses are doubled. File extensions for the object code are ".OBJ." This
format is useful for transferring PIC16C5X series object code to third party
EPROM programmers.

The difference between this format and lnhx16 is the word length and the
high/low byte order. lnhx8m has 8-bit words (two hexadecimal digits) with the
low byte first, rather than 16-bit words (four hexadecimal digits) with the high
byte first.

8-Bit Hex Format:
Each data record begins with a 9 character prefix and ends with a 2 character
checksum. Each record has the following format:

:BBAAAATTHHHH HHHCC

where,

BB

AAAA

TT

HH

cc

a two-digit hexadecimal byte count representing the number of
data words that appear on the line.

a four-digit hexadecimal address representing the starting
address for the data record.

a two-digit record type that will always be '00' except for the
end-of-file record which is set to '01 '.

a two-digit hexadecimal data word.

a two-digit hexadecimal checksum that's the two's compliment
of the sum of all preceding bytes in the record including the
prefix.

© 1995 Microchip Technology Inc.

Appendix D. Intel INTELLEC Hexadecimal Format

© 1995 Microchip Technology Inc.

32-Bit Hex Format (.HEX)
The extended 32-bit address HEX format is similar to the Hex 8 format
described above, except that the Intel extended linear address record is
output also to establish the upper 16 bits of the data address.

Each data record begins with a 9 character prefix and ends with a 2 character
checksum. Each record has the following format:

:BBAAAATTHHHH HHHCC

where

BB - is a two digit hexadecimal byte count representing the number of data
bytes that will appear on the line.

AAAA - is a four digit hexadecimal address representing the starting address
of the data record.

TT - is a two digit record type record type:

00 - Data record

01 - End of File record

02 - Segment address record

04 - Linear address record

HH - is a two digit hexadecimal data word.

cc - is a two digit hexadecimal checksum that is the two's compliment of the
sum of all preceding bytes in the record including the prefix.

DS300271 - page 143

MPSIM USER'S GUIDE

08300271 • page 144 © 1995 Microchip Technology Inc.

~
MICROCHIP MPSIM USER'S GUIDE

Appendix E. PIC16C5X User's Guide Addendum

Introduction

110 Pins

CPU Model

© 1995 Microchip Technology Inc.

MPSIM provides support for more than one family of Microchip
microcontrollers. This section has been added as an addendum to the
MPSIM user's guide to centralize PIC16C5X-specific simulator support.

The PIC16C5X family consists of the PIC16C54, PIC16C55, PIC16C56,
PIC16C57, and PIC16C58A. When modifying pins either manually (with the
SE command) or via the stimulus file, use the following pin names only. These
are the only ones that MPSIM recognizes as valid 1/0 pins. Because the
pinout is device-specific, some pins (for example RCO on a PIC16C54) will
not be available on all parts in this family.

MCLR

TOCKI

RAO-RA3

RBO-RB7

RCO-RC7

Reset Conditions
All reset conditions are supported by MPSIM.

A Power-On-Reset can be simulated by using the RS instruction. All special
purpose registers will be initialized to the values specified in the data sheet.

A MCLR reset during normal operation or during SLEEP can easily be
simulated by driving the MCLR pin low (and then high) via the stimulus file or
by using the SE command or by using DK command.

A WDT time-out reset is simulated when WDT is enabled (see DW command)
and proper prescaler is set (by initializing OPTION register appropriately) and
WDT actually overflows. WDT time-out period (with prescale = 1) is
approximated at 18 ms (to closest instruction cycle multiple).

The Time-out (TO) and Power-down (PD) bits in the Status register reflect
appropriate reset condition. This feature is useful for simulating various
power-up and time out forks in the user code.

DS300271 - page 145

MPSIM USER'S GUIDE

Sleep
MPSIM simulates the SLEEP instruction, and will appear "asleep" until a
wake-up from sleep condition occurs. For example, if the Watchdog timer has
been enabled, it will wake the processor up from sleep when it times out
(depending upon the prescaler setting in the OPTION register).

WOT
The Watchdog timer is fully simulated in the MPSIM simulator. Because it is
fuse-selectable on the device, it must be enabled by a separate command
(see the OW command) in MPSIM. The period of the WOT is determined by
the prescaler settings in the OPTION register. The basic period (with
prescaler = 1) is approximated at 18 ms (to closest instruction cycle multiple).

Stack
MPSIM presents an accurate simulation of the hardware stack on the
PIC16C5X, and additionally provides warning messages if an underflow or
overflow condition occurs. When a CALL instruction is encountered, or when
an interrupt has occurred, the value of the PC+ 1 is pushed to the stack, and
the stack is popped when a RETLW instruction is executed. If more than two
values are pushed to the stack before it is popped, the value will be pushed to
the stack, but a warning message will be issued, indicating a stack overflow
condition. An error message will also be generated if the user attempts to pop
an empty stack. Popping an empty stack will cause the last value popped to
be put in the PC.

Special Registers

DS300271 - page 146

To aid in debugging this device, certain items that are normally not observable
have been declared as "special" registers. For example, the W register is not
directly-addressable, but can be added to the viewscreen, by adding the
special label "W' or ''w" with the AD command, just as any register. The
following is a complete list of "special" registers that can be added to the
viewscreen and observed or modified. You can add them as you normally
would any other register declared in your code, specifying any radix to view
them.

W(orw)

TRISA

TRISB

TRISC

OPT (the option register)

It is important not to redefine these special labels. For example, do not define
the label "W' to be equal to zero in your source code. This will cause the
special label to be overridden, and "W' will now be the indirect-address
register (INDF).

© 1995 Microchip Technology Inc.

Appendix E. PIC16CSX User's Guide Addendum

Peripherals

© 1995 Microchip Technology Inc.

Peripherals Supported
Along with providing core support, the RTCC timer/counter module is fully
supported. It is fully supported in internal and external clock modes. The
prescaler is made readable and writable as 'RTCCPRE" symbol.

It is important to remember that because MPSIM executes on instruction
cycle boundaries, resolutions below 1 Tcy cannot be simulated.

MPSIM is a discrete-event simulator where all stimuli are evaluated and all
response generated at instruction boundaries or Tcy. One Tcy = 4 Tosc
(where Tosc is input clock). Therefore, there are several events that can not
be accurately simulated in MPSIM. These fall into two categories:

Purely asynchronous events

Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

TimerO prescaler is capable of accepting clock pulse inputs smaller
than Tcy, but this can not be simulated.

In summary, the net result of instruction boundary simulation is that all events
get synchronized at instruction boundary and events smaller than one
instruction cycle get lost.

05300271 - page 147

MPSIM USER'S GUIDE

DS300271 - page 148 © 1995 Microchip Technology Inc.

~
MICROCHIP MPSIM USER'S GUIDE

Appendix F. PIC16C64 User's Guide Addendum

Introduction

1/0 Pins

Interrupts

© 1995 Microchip Technology Inc.

MPSIM provides support for more than one family of Microchip
rnicrocontrollers. This section has been added as an addendum to the
MPSIM user's guide to centralize PIC16C64-specific simulator support.

The PIC16C64 is a 40-pin device, with many of the 1/0 pins multiplexed with
other peripherals (and therefore referred by more than one name). When
modifying pins either manually (e.g. with the SE command) or via the stimulus
file, use the following pin names only. These are the only ones that MPSIM
recognizes as valid 1/0 pins:

MCLR

RAO-RA5

RBO-RB7

RCO-RC7

RDO-RD7

REO-RE2

MPSIM version 4.5 or greater supports all interrupts on the PIC16C64:

TirnerO overflow

Tirner1 overflow

Tirner2

CCP1

SSP (in SPI mode ONLY)

Change on Port RB <7 .. 4>

External interrupt from ABO/INT pin

Parallel Slave Port

08300271 - page 149

MPSIM USER'S GUIDE

CPU Model

DS300271 - page 150

Reset Conditions
All reset conditions are supported by MPSIM.

A Power-On-Reset can be simulated by using the RS instruction. All special
purpose registers will be initialized to the values specified in the data sheet.

A MCi:R reset during normal operation or during SLEEP can easily be
simulated by driving the MCLR pin low (and then high) via the stimulus file or
by using the SE command or by using DK command.

A WOT time-out reset is simulated when WOT is enabled (see DW command)
and proper prescaler is set (by initializing OPTION register appropriately) and
WOT actually overflows. WOT time-out period (with prescale = 1) is
approximated at 18 ms (to closest instruction cycle multiple).

The Time-out (TO) and Power-down (PD) bits in the Status register reflect
appropriate reset condition. This feature is useful for simulating various
power-up and time out forks in the user code.

Sleep
MPSIM simulates the SLEEP instruction, and will appear "asleep" until a
wake-up from sleep condition occurs. For example, if the Watchdog timer has
been enabled, it will wake the processor up from sleep when it times out
(depending upon the prescaler setting in the OPTION register). Another
example of a wake-up-from-sleep condition, would be Timer1 wake-up from
sleep. In this case, when the processor is asleep, Timer1 would continue to
increment until it overflows, and if the interrupt is enabled, will wake the
processor on overflow and branch to the interrupt vector.

WOT
The Watchdog timer is fully simulated in the MPSIM simulator. Because it is
fuse-selectable on the device, it must be enabled by a separate command
(see the DW command) in MPSIM. The period of the WOT is determined by
the prescaler settings in the OPTION register. The basic period (with
prescaler = 1) is approximated at 18 ms (to closest instruction cycle multiple).

Stack
MPSIM presents an accurate simulation of the hardware stack on the
PIC16CXX, and additionally provides warning messages if an underflow or
overflow condition occurs. When a CALL instruction is encountered, or when
an interrupt has occurred, the value of the PC+ 1 is pushed to the stack, and
the stack is popped when a RETLW, RETURN, or RETFIE instruction is
executed. If more than eight values are pushed to the stack before it is
popped, the value will be pushed to the stack, but a warning message will be
issued, indicating a stack overflow condition. An error message will also be

© 1995 Microchip Technology Inc.

Appendix F. PIC16C64 User's Guide Addendum

generated if the user attempts to pop an empty stack. Popping an empty
stack will cause the stack pointer to point to the top of a full stack, and will not
generate an error message if another pop is initiated.

Special Registers

Peripherals

© 1995 Microchip Technology Inc.

To aid in debugging this device, certain items that are normally not observable
have been declared as "special" registers. Prescalers and postscalers cannot
be declared in your code as "registers", so there are special labels that can be
added to the view screen. You can add them as you normally would any other
register declared in your code, specifying any radix to view them.

The following are special items that can be added to the view screen when
the PIC16C64 has been selected:

TOPRE - Prescaler for timerO

T1 PRE - Prescaler for timer1

T2PRE - Prescaler for timer2

T2POS - Postscaler for timer2

CCP1 PRE - Prescaler for CCP1

SPIPRE - Prescaler for SPI

SSPSR - SSP Shift register

Please remember that these labels are only available when the PIC16C64 is
the target processor, and that they cannot be manually modified.

Peripherals Supported
Along with providing core support, the following peripheral modules (in
addition to general-purpose 1/0) are supported:

TimerO

Timer1

Timer2

CCP1

Parallel Slave Port

SSP (in SPI Mode only)

Tcycle Limitation
It is important to remember that because MPSIM executes on instruction
cycle boundaries, resolutions below 1 Tcy cannot be simulated. Please see
the following section for more details concerning the limitations of T-cycle
simulation.

DS300271 - page 151

MPSIM USER'S GUIDE

DS300271 - page 152

MPSIM is a discrete-event simulator where all stimuli are evaluated and all
response generated at instruction boundaries or Tcy. One Tcy = 4 Tosc
(where Tosc is input clock). Therefore, there are several events that can not
be accurately simulated in MPSIM. These fall into two categories:

Purely asynchronous events

Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

TimerO, Timer1, and Timer2 prescalers are capable of accepting clock
pulse inputs smaller than Tcy, but these can not be simulated.

Capture input pulses can be smaller than one Tcy, but can not be
simulated.

PWM output pulse resolution less than 1 Tcy is not supported.

8-bit compare will not be supported since the output resolution is limited
to Tcycles

In unsynchronized counter mode, clock input smaller than Tcy is not
supported

The oscillator on RCO/RC1 pins is not supported. The user can, how
ever, simply use an external clock input for simulation purposes.

In summary, the net result of instruction boundary simulation is that all events
get synchronized at instruction boundary and events smaller than one
instruction cycle get lost.

TIME RO

TimerO (and the interrupt it can generate on overflow) is fully supported by
MPSIM, and will increment by the internal or external clock. Clock input must
have a minimum high time of 1 Tcy and a minimum low time of 1 Tcy due to
stimulus file requirements. The prescaler for TimerO is made accessible as
TOPRE. It can be watched and modified.

TIMER1

Timer1 in its various modes is supported by MPSIM, except when running in
counter mode by an external crystal. The interrupt it can be generated on
overflow and wake-up from sleep through interrupt are both supported by
MPSIM. The prescaler for Timer1 is viewable and modifiable as T1 PRE. The
external oscillator on RCO/RC1 is not simulated. The user can simply use a
clock input (see CK command).

TIMER2

Timer2 and the interrupt that can be generated on overflow are fully supported
by MPSIM, and both the prescaler and postscaler for Timer2 are viewable and
modifiable (T2PRE and T2POS).

© 1995 Microchip Technology Inc.

Appendix F. PIC16C64 User's Guide Addendum

© 1995 Microchip Technology Inc.

CCP1
CAPTURE
MPSIM fully supports capture and the interrupt generated. The prescaler for
the CCP module is viewable and modifiable (CCP1 PRE).

COMPARE
Compare mode, its interrupt, and the special event trigger (resetting Timer1
by CCP1) are supported in this version of MPSIM.

PWM
PWM output (resolution greater than 1 Tcy only) are supported in this version
of MPSIM.

SSP
The Synchronous Serial Port is supported in SPI mode only. The shift register
(SSPSR) can be added to the viewscreen, observed and modified. MPSIM
currently does not support the 12C™ mode.

DS300271 - page 153

MPSIM USER'S GUIDE

08300271 - page 154 © 1995 Microchip Technology Inc.

~
MICROCHIP MPSIM USER'S GUIDE

Appendix G. PIC16C65 User's Guide Addendum

Introduction

1/0 Pins

Interrupts

© 1995 Microchip Technology Inc.

MPSIM provides support for more than one family of Microchip
microcontrollers. This section has been added as an addendum to the
MPSIM user's guide to centralize PIC16C65-specific simulator support.

The PIC16C65 is a 40-pin device, with many of the 1/0 pins multiplexed with
other peripherals (and therefore referred by more than one name). When
modifying pins either manually (e.g. with the SE command) or via the stimulus
file, use the following pin names only. These are the only ones that MPSIM
recognizes as valid 1/0 pins:

MCLR

RAO-RAS

RBO-RB7

RCO-RC7

RDO-RD7

REO-RE7

MPSIM version 4.5 or greater supports all interrupts on the PIC16C65:

TimerO overflow

Timer1 overflow

Timer2

CCP1

CCP2

SSP (in SPI mode ONLY)

Change on Port RB <7:4>

External interrupt from RBO/INT pin

USART

Parallel Slave Port

DS300271 - page 155

MPSIM USER'S GUIDE

CPU Model

DS300271 - page 156

Reset Conditions
All reset conditions are supported by MPSIM.

A Power-On-Reset can be simulated by using the RS instruction. All special
purpose registers will be initialized to the values specified in the data sheet.

AMCIJl reset during normal operation or during SLEEP can easily be
simulated by driving the MCLR pin low (and then high) via the stimulus file or
by using the SE command or by using DK command.

A WDT time-out reset is simulated when WDT is enabled (see DW command)
and proper prescaler is set (by initializing OPTION register appropriately) and
WDT actually overflows. WDT time-out period (with prescale = 1) is
approximated at 18 ms (to closest instruction cycle multiple).

The Time-out (TO) and Power-down (PD) bits in the Status register reflect
appropriate reset condition. This feature is useful for simulating various
power-up and time out forks in the user code.

Sleep
MPSIM simulates the SLEEP instruction, and will appear "asleep" until a
wake-up from sleep condition occurs. For example, if the Watchdog timer has
been enabled, it will wake the processor up from sleep when it times out
(depending upon the prescaler setting in the OPTION register). Another
example of a wake-up-from-sleep condition, would be Timer1 wake-up from
sleep. In this case, when the processor is asleep, Timer1 would continue to
increment until it overflows, and if the interrupt is enabled, will wake the
processor on overflow and branch to the interrupt vector.

WOT
The Watchdog timer is fully simulated in the MPSIM simulator. Because it is
fuse-selectable on the device, it must be enabled by a separate command
(see the DW command) in MPSIM. The period of the WDT is determined by
the prescaler settings in the OPTION register. The basic period (with
prescaler = 1) is approximated at 18 ms (to closest instruction cycle multiple).

Stack
MPSIM presents an accurate simulation of the hardware stack on the
PIC16CXX, and additionally provides warning messages if an underflow or
overflow condition occurs. When a CALL instruction is encountered, or when
an interrupt has occurred, the value of the PC+ 1 is pushed to the stack, and
the stack is popped when a RETLW, RETURN, or RETFIE instruction is
executed. If mbre than eight values are pushed to the stack before it is
popped, the value will be pushed to the stack, but a warning message will be
issued, indicating a stack overflow condition. An error message will also be

© 1995 Microchip Technology Inc.

Appendix G. PIC16C65 User's Guide Addendum

generated if the user attempts to pop an empty stack. Popping an empty
stack will cause the stack pointer to point to the top of a full stack, and will not
generate an error message if another pop is initiated.

Special Registers

Peripherals

© 1995 Microchip Technology Inc.

To aid in debugging this device, certain items that are normally not observable
have been declared as "special" registers. Prescalers and postscalers
cannot be declared in your code as "registers", so there are special labels that
can be added to the view screen. You can add them as you normally would
any other register declared in your code, specifying any radix to view them.

The following are special items that can be added to the view screen when
the PIC16C65 has been selected:

TOPRE - Prescaler for timerO

T1 PRE - Prescaler for timer1

T2PRE - Prescaler for timer2

T2POS - Postscaler for timer2

CCP1 PRE - Prescaler for CCP1

CCP2PRE - Prescaler for CCP2

SPIPRE - Prescaler for SPI

SSPSR - SSP Shift register

Please remember that these labels are only available when the PIC16C65 is
the target processor, and that they cannot be manually modified.

Peripherals Supported
Along with providing core support, the following peripheral modules (in
addition to general-purpose 1/0) are supported:

TimerO

Timer1

Timer2

CCP1

CCP2

Parallel Slave Port

SSP (in SPI Mode only)

USART (limited)

DS300271 - page 157

MPSIM USER'S GUIDE

DS300271 - page 158

Tcycle Limitation
It is important to remember that because MPSIM executes on instruction
cycle boundaries, resolutions below 1 Tcy cannot be simulated. Please see
the following section for more details concerning the limitations of T-cycle
simulation.

MPSIM is a discrete-event simulator where all stimuli are evaluated and all
response generated at instruction boundaries or Tcy. One Tcy = 4 Tosc
(where Tosc is input clock). Therefore, there are several events that can not
be accurately simulated in MPSIM. These fall into two categories:

Purely asynchronous events

Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

TimerO, Timer1, and Timer2 prescalers are capable of accepting clock
pulse inputs smaller than Tcy, but these can not be simulated.

Capture input pulses can be smaller than one Tcy, but can not be
simulated.

PWM output pulse resolution less than 1 Tcy is not supported.

8-bit compare will not be supported since the output resolution is limited
to Tcycles

In unsynchronized counter mode, clock input smaller than Tcy is not
supported

The oscillator on RCO/RC1 pins is not supported. The user can, how
ever, simply use an external clock input for simulation purposes.

In summary, the net result of instruction boundary simulation is that all events
get synchronized at instruction boundary and events smaller than one
instruction cycle get lost.

TIME RO
TimerO (and the interrupt it can generate on overflow) is fully supported by
MPSIM, and will increment by the internal or external clock. Clock input must
have a minimum high time of Hey and a minimum low time of 1Tcy due to
stimulus file requirements. The prescaler for TimerO is made accessible as
TOPRE. It can be watched and modified.

TIMER1
Timer1 in its various modes is supported by MPSIM, except when running in
counter mode by an external crystal. The interrupt it can be generated on
overflow and wake-up from sleep through interrupt are both supported by
MPSIM. The prescaler for Timer1 is viewable and modifiable as T1 PRE. The
external oscillator on RCO/RC1 is not simulated. The user can simply use a
clock input (see CK command).

© 1995 Microchip Technology Inc.

Appendix G. PIC16C65 User's Guide Addendum

© 1995 Microchip Technology Inc.

TIMER2
Timer2 and the interrupt that can be generated on overflow are fully supported
by MPSIM, and both the prescaler and postscaler for Timer2 are viewable and
modifiable (T2PRE and T2POS).

CCP1 and CCP2
CAPTURE

MPSIM fully supports capture and the interrupt generated. The prescaler for
the CCP module is viewable and modifiable (CCP1 PRE).

COMPARE

Compare mode, its interrupt, and the special event trigger (resetting Timer1
with CCP1) are supported in this version of MPSIM.

PWM

PWM output (resolution greater than 1Tcy only) are supported in this version
ofMPSIM.

SSP
The Synchronous Serial Port is supported in SPI mode only. The shift register
(SSPSR) can be added to the viewscreen, observed and modified. MPSIM
currently does not support the 12C mode.

USART
Timing and interrupt generation is supported. Baud rate generator is
supported. Reading and writing of the registers are supported but actual
receive or transmit operation is not simulated.

DS300271 - page 159

MPSIM USER'S GUIDE

05300271 - page 160 © 1995 Microchip Technology Inc.

~
MICROCHIP MPSIM USER'S GUIDE

Appendix H. PIC16C71 User's Guide Addendum

Introduction

1/0 Pins

Interrupts

© 1995 Microchip Technology Inc.

MPSIM provides support for more than one family of Microchip
microcontrollers. This section has been added as an addendum to the
MPSIM user's guide to centralize PIC16C71-specific simulator support.

The PIC16C71 is an 18-pin device, with some of the 1/0 pins multiplexed with
other peripherals (and therefore referred by more than one name). When
modifying pins either manually (e.g. with the SE command) or via the stimulus
file, use the following pin names only. These are the only ones that MPSIM
recognizes as valid 1/0 pins:

MCLR

RAO-RM

RBO-RB7

Additionally, RTCC is also recognized as TimerO (previously RTCC) input, i.e.
same as RA4.

MPSIM supports all interrupts on the PIC16C71:

TimerO overflow

Change on Port RB <7 .. 4>

External interrupt from RBO/INT pin

AID interrupt complete

DS300271 - page 161

MPSIM USER'S GUIDE

CPU Model

DS300271 - page 162

Reset Conditions
All reset conditions are supported by MPSIM.

A Power-On-Beset can be simulated by using the BS instruction. All special
purpose registers will be initialized to the values specified in the data sheet.

Afi.1C['R reset during normal operation or during SLEEP can easily be
simulated by driving the MCrn pin low (and then high) via the stimulus file or
by using the SE command or by using DK command.

A WOT time-out reset is simulated when WOT is enabled (see DW command)
and proper prescaler is set (by initializing OPTION register appropriately) and
WOT actually overflows. WOT time-out period (with prescale = 1) is
approximated at 18 ms (to closest instruction cycle multiple).

The Time-out (TO) and Power-down (PD) bits in the Status register reflect
appropriate reset condition. This feature is useful for simulating various
power-up and time out forks in the user code.

Sleep
MPSIM simulates the SLEEP instruction, and will appear •asleep" until a
wake-up from sleep condition occurs. For example, if the Watchdog timer has
been enabled, it will wake the processor up from sleep when it times out
(depending upon the prescaler setting in the OPTION register). Another
example of a wake-up-from-sleep condition, would be wake-up due to BBQ/
INT external interrupt.

WOT
The Watchdog timer is fully simulated in the MPSIM simulator. Because it is
fuse-selectable on the device, it must be enabled by a separate command
(see the DW command) in MPSIM. The period of the WOT is determined by
the prescaler settings in the OPTION register. The basic period (with
prescaler = 1) is approximated at 18 ms (to closest instruction cycle multiple).

Stack
MPSIM presents an accurate simulation of the hardware stack on the
PIC16CXX, and additionally provides warning messages if an underflow or
overflow condition occurs. When a CALL instruction is encountered, or when
an interrupt has occurred, the value of the PC+ 1 is pushed to the stack, and
the stack is popped when a BETLW, RETURN, or RETFIE instruction is
executed. If more than eight values are pushed to the stack before it is
popped, the value will be pushed to the stack, but a warning message will be
issued, indicating a stack overflow condition. An error message will also be
generated if the user attempts to pop an empty stack. Popping an empty
stack will cause the stack pointer to point to the top of a full stack, and will not
generate an error message if another pop is initiated.

© 1995 Microchip Technology Inc.

Appendix H. PIC16C71 User's Guide Addendum

Special Registers

Peripherals

© 1995 Microchip Technology Inc.

To aid in debugging this device, certain items that are normally not observable
have been declared as "special" registers. Prescalers and postscalers
cannot be declared in your code as "registers", so there are special labels that
can be added to the view screen. You can add them as you normally would
any other register declared in your code, specifying any radix to view them.

The following are special items that can be added to the view screen when
the PIC16C71 has been selected:

TOPRE - Prescaler for timerO

Please remember that these labels are only available when the PIC16C71 is
the target processor, and that they cannot be manually modified.

Peripherals Supported
Along with providing core support, the following peripheral modules (in
addition to general-purpose 1/0) are supported:

TimerO

AID module (limited)

Tcycle Limitation
It is important to remember that because MPSIM executes on instruction
cycle boundaries, resolutions below 1 Tcy cannot be simulated. Please see
the following section for more details concerning the limitations of T-cycle
simulation.

MPSIM is a discrete-event simulator where all stimuli are evaluated and all
response generated at instruction boundaries or Tcy. One Tcy = 4 Tosc
(where Tosc is input clock). Therefore, there are several events that can not
be accurately simulated in MPSIM. These fall into two categories:

Purely asynchronous events

Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

TimerO prescaler is capable of accepting clock pulse inputs smaller
than Tcy, but this can not be simulated.

In summary, the net result of instruction boundary simulation is that all events
get synchronized at instruction boundary and events smaller than one
instruction cycle get lost.

DS300271 - page 163

MPSIM USER'S GUIDE

DS300271-page 164

TIM ERO
limerO (and the interrupt it can generate on overflow) is fully supported by
MPSIM, and will increment by the internal or external clock. Clock input must
have a minimum high time of 1 Tcy and a minimum low time of 1 Tcy due to
stimulus file requirements. The prescaler for limerO is made accessible as
TOPRE. It can be watched and modified.

AID Converter
All the registers, timing function and interrupt generation are implemented.
The simulator, however, does not load any meaningful value into AID result
register (ADRES) at the end of a conversion. Use the Fl command to load the
ADRES register from a file for simulation purposes.

© 1995 Microchip Technology Inc.

~
MICROCHIP MPSIM USER'S GUIDE

Appendix I. PIC16C73 User's Guide Addendum

Introduction

110 Pins

Interrupts

MPSIM provides support for more than one family of Microchip
microcontrollers. This section has been added as an addendum to the
MPSIM user's guide to centralize PIC16C73-specific simulator support.

The PIC16C73 is a 28-pin device, with many of the 1/0 pins multiplexed with
other peripherals (and therefore referred by more than one name). When
modifying pins either manually (e.g. with the SE command) or via the stimulus
file, use the following pin names only. These are the only ones that MPSIM
recognizes as valid 1/0 pins:

MCLR

RAO·RA5

RBO·RB7

RCO-RC7

MPSIM version 4.5 or greater supports all interrupts on the PIC16C73:

TimerO overflow

Timer1 overflow

Timer2

CCP1

CCP2

SSP (in SPI mode ONLY)

Change on Port RB <7 . .4>

External interrupt from RBO/INT pin

ND interrupt complete

USART

Note: Appendix 0 has been intentionally skipped in the numbering process.

© 1995 Microchip Technology Inc. DS300271 • page 165

MPSIM USER'S GUIDE

CPU Model

DS300271 - page 166

Reset Conditions
All reset conditions are supported by MPSIM.

A Power-On-Reset can be simulated by using the RS instruction. All special
purpose registers will be initialized to the values specified in the data sheet.

AMCCR reset during normal operation or during SLEEP can easily be
simulated by driving the 1iiiCCTf pin low (and then high) via the stimulus file or
by using the SE command or by using DK command.

A WOT time-out reset is simulated when WOT is enabled (see DW command)
and proper prescaler is set (by initializing OPTION register appropriately) and
WOT actually overflows. WDT time-out period (with prescale = 1) is
approximated at 18 ms (to closest instruction cycle multiple).

The Time-out (ffi) and Power-down (PD) bits in the Status register reflect
appropriate reset condition. This feature is useful for simulating various
power-up and time out forks in the user code.

Sleep
MPSIM simulates the SLEEP instruction, and will appear "asleep" until a
wake-up from sleep condition occurs. For example, if the Watchdog timer has
been enabled, it will wake the processor up from sleep when it times out
(depending upon the prescaler setting in the OPTION register). Another
example of a wake-up-from-sleep condition, would be Timer1 wake-up from
sleep. In this case, when the processor is asleep, Timer1 would continue to
increment until it overflows, and if the interrupt is enabled, will wake the
processor on overflow and branch to the interrupt vector.

WOT
The Watchdog timer is fully simulated in the MPSIM simulator. Because it is
fuse-selectable on the device, it must be enabled by a separate command
(see the DW command) in MPSIM. The period of the WOT is determined by
the prescaler settings in the OPTION register. The basic period (with
prescaler = 1) is approximated at 18 ms (to closest instruction cycle multiple).

Stack
MPSIM presents an accurate simulation of the hardware stack on the
PIC16CXX, and additionally provides warning messages if an underflow or
overflow condition occurs. When a CALL instruction is encountered, or when
an interrupt has occurred, the value of the PC+ 1 is pushed to the stack, and
the stack is popped when a RETLW, RETURN, or RETFIE instruction is
executed. If more than eight values are pushed to the stack before it is
popped, the value will be pushed to the stack, but a warning message will be
issued, indicating a stack overflow condition. An error message will also be

© 1995 Microchip Technology Inc.

Appendix I. PIC16C73 User's Guide Addendum

generated if the user attempts to pop an empty stack. Popping an empty
stack will cause the stack pointer to point to the top of a full stack, and will not
generate an error message if another pop is initiated.

Special Registers

Peripherals

© 1995 Microchip Technology Inc.

To aid in debugging this device, certain items that are normally not observable
have been declared as "special" registers. Prescalers and postscalers
cannot be declared in your code as "registers", so there are special labels that
can be added to the view screen. You can add them as you normally would
any other register declared in your code, specifying any radix to view them.

The following are special items that can be added to the view screen when the
PIC16C73 has been selected:

TOPRE - Prescaler for timerO

T1 PRE - Prescaler for timer1

T2PRE - Prescaler for timer2

T2POS - Postscaler for timer2

CCP1 PRE - Prescaler for CCP1

CCP2PRE - Prescaler for CCP2

SPIPRE - Prescaler for SPI

SSPSR - SSP Shift register

Please remember that these labels are only available when the PIC16C73 is
the target processor, and that they cannot be manually modified.

Peripherals Supported
Along with providing core support, the following peripheral modules (in
addition to general-purpose 1/0) are supported:

TimerO

• Timer1

Timer2

• CCP1

CCP2

SSP (in SPI Mode only)

AID module (limited)

USART (limited)

DS300271 ·page 167

MPSIM USER'S GUIDE

08300271-page 168

Tcycle Limitation
It is important to remember that because MPSIM executes on instruction
cycle boundaries, resolutions below 1 Tcy cannot be simulated. Please see
the following section for more details concerning the limitations of T-cycle
simulation.

MPSIM is a discrete-event simulator where all stimuli are evaluated and all
response generated at instruction boundaries or Tcy. One Tcy = 4 Tosc
(where Tosc is input clock). Therefore, there are several events that can not
be accurately simulated in MPSIM. These fall into two categories:

Purely asynchronous events

• Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

• TimerO, Timer1, and Timer2 prescalers are capable of accepting clock
pulse inputs smaller than Tcy, but these can not be simulated.

Capture input pulses can be smaller than one Tcy, but can not be
simulated.

PWM output pulse resolution less than 1 Tcy is not supported.

• 8-bit compare will not be supported since the output resolution is limited
to Tcycles

In unsynchronized counter mode, clock input smaller than Tcy is not
supported

The oscillator on RCO/RC1 pins is not supported. The user can, how
ever, simply use an external clock input for simulation purposes.

In summary, the net result of instruction boundary simulation is that all events
get synchronized at instruction boundary and events smaller than one
instruction cycle get lost.

TIME RO
TimerO (and the interrupt it can generate on overflow) is fully supported by
MPSIM, and will increment by the internal or external clock. Clock input must
have a minimum high time of 1Tcy and a minimum low time of 1Tcy due to
stimulus file requirements. The prescaler for TimerO is made accessible as
TOPRE. It can be watched and modified.

TIMER1
Timer1 in its various modes is supported by MPSIM, except when running in
counter mode by an external crystal. The interrupt it can be generated on
overflow and wake-up from sleep through interrupt are both supported by
MPSIM. The prescaler for Timer1 is viewable and modifiable as T1 PRE. The
external oscillator on RCO/RC1 is not simulated. The user can simply use a
clock input (see CK command).

© 1995 Microchip Technology Inc.

Appendix I. PIC16C73 User's Guide Addendum

© 1995 Microchip Technology Inc.

TIMER2
Timer2 and the interrupt that can be generated on overflow are fully
supported by MPSIM, and both the prescaler and postscaler for Timer2 are
viewable and modifiable (T2PRE and T2POS).

CCP1 and CCP2
CAPTURE
MPSIM fully supports capture and the interrupt generated. The prescaler for
the CCP module is viewable and modifiable (CCP1 PRE).

COMPARE
Compare mode, its interrupt, and the special event trigger (resetting Timer1 if
CCP1 and starting AID Conversion if CCP2) are supported in this version of
MPSIM.

PWM
PWM output (resolution greater than 1Tcy only) are supported in this version
of MPSIM.

SSP
The Synchronous Serial Port is supported in SPI mode only. The shift register
(SSPSR) can be added to the viewscreen, observed and modified. MPSIM
currently does not support the 12C mode.

USART
Timing and interrupt generation is supported. Baud rate generator is
supported. Reading and writing of the registers are supported but actual
receive or transmit operation is not simulated.

AID Converter
All the registers, timing function and interrupt generation are implemented.
The simulator, however, does not load any meaningful value into AID result
register (ADRES) at the end of a conversion. Use the Fl command to load the
ADRES register from a file for simulation purposes.

DS300271 - page 169

MPSIM USER'S GUIDE

05300271 - page 170 © 1995 Microchip Technology Inc.

~
MICROCHIP MPSIM USER'S GUIDE

Appendix J. PIC16C74 User's Guide Addendum

Introduction

110 Pins

Interrupts

© 1995 Microchip Technology Inc.

MPSIM provides support for more than one family of Microchip
microcontrollers. This section has been added as an addendum to the
MPSIM user's guide to centralize PIC16C74-specific simulator support.

The PIC16C74 is a 40-pin device, with many of the 1/0 pins multiplexed with
other peripherals (and therefore referred by more than one name). When
modifying pins either manually (e.g. with the SE command) or via the stimulus
file, use the following pin names only. These are the only ones that MPSIM
recognizes as valid 1/0 pins:

• MCLR

• RAO-RAS

RBO-RB7

RCO-RC7

• RDO-RD7

REO-RE2

MPSIM supports all interrupts on the PIC16C74:

• TimerO overflow

Timer1 overflow

Timer2

CCP1

CCP2

SSP (in SPI mode ONLY)

Change on Port RB <7..4>

External interrupt from RBO/INT pin

• AID interrupt complete

USART

Parallel Slave Port

DS300271 - page 171

MPSIM USER'S GUIDE

CPU Model

DS300271 - page 172

Reset Conditions
All reset conditions are supported by MPSIM.

A Power-On-Reset can be simulated by using the RS instruction. All special
purpose registers will be initialized to the values specified in the data sheet.

A'fiAC'C'R reset during normal operation or during SLEEP can easily be
simulated by driving the MCLR pin low (and then high) via the stimulus file or
by using the SE command or by using DK command.

A WOT time-out reset is simulated when WOT is enabled (see DW command)
and proper prescaler is set (by initializing OPTION register appropriately) and
WOT actually overflows. WOT time-out period (with prescale = 1) is
approximated at 18 ms (to closest instruction cycle multiple).

The Time-out (TO) and Power-down (PD) bits in the Status register reflect
appropriate reset condition. This feature is useful for simulating various
power-up and time out forks in the user code.

Sleep
MPSIM simulates the SLEEP instruction, and will appear "asleep" until a
wake-up from sleep condition occurs. For example, if the Watchdog timer has
been enabled, it will wake the processor up from sleep when it times out
(depending upon the prescaler setting in the OPTION register). Another
example of a wake-up-from-sleep condition, would be Timer1 wake-up from
sleep. In this case, when the processor is asleep, Timer1 would continue to
increment until it overflows, and if the interrupt is enabled, will wake the
processor on overflow and branch to the interrupt vector.

WOT
The Watchdog timer is fully simulated in the MPSIM simulator. Because it is
fuse-selectable on the device, it must be enabled by a separate command
(see the DW command) in MPSIM. The period of the WOT is determined by
the prescaler settings in the OPTION register. The basic period (with
prescaler = 1) is approximated at 18 ms (to closest instruction cycle multiple).

Stack
MPSIM presents an accurate simulation of the hardware stack on the
PIC16CXX, and additionally provides warning messages if an underflow or
overflow condition occurs. When a CALL instruction is encountered, or when
an interrupt has occurred, the value of the PC+ 1 is pushed to the stack, and
the stack is popped when a RETLW, RETURN, or RETFIE instruction is
executed. If more than eight values are pushed to the stack before it is
popped, the value will be pushed to the stack, but a warning message will be
issued, indicating a stack overflow condition. An error message will also be

© 1995 Microchip Technology Inc.

Appendix J. PIC16C74 User's Guide Addendum

generated if the user attempts to pop an empty stack. Popping an empty
stack will cause the stack pointer to point to the top of a full stack, and will not
generate an error message if another pop is initiated.

Special Registers

Peripherals

© 1995 Microchip Technology Inc.

To aid in debugging this device, certain items that are normally not observable
have been declared as "special" registers. Prescalers and postscalers cannot
be declared in your code as "registers", so there are special labels that can be
added to the view screen. You can add them as you normally would any other
register declared in your code, specifying any radix to view them.

The following are special items that can be added to the view screen when
the PIC16C74 has been selected:

TOPRE - Prescaler for timerO

T1 PRE - Prescaler for timer1

T2PRE - Prescaler for timer2

T2POS - Postscaler for timer2

CCP1 PRE - Prescaler for CCP1

CCP2PRE - Prescaler for CCP2

SPIPRE - Prescaler for SPI

SSPSR - SSP Shift register

Please remember that these labels are only available when the PIC16C74 is
the target processor, and that they cannot be manually modified.

Peripherals Supported
Along with providing core support, the following peripheral modules (in
addition to general-purpose 110) are supported:

TimerO

Timer1

Timer2

CCP1

CCP2

Parallel Slave Port

SSP (in SPI Mode only)

ND module (limited)

USART (limited)

DS300271 - page 173

MPSIM USER'S GUIDE

DS300271 - page 174

Tcycle Limitation
It is important to remember that because MPSIM executes on instruction
cycle boundaries, resolutions below 1 Tcy cannot be simulated. Please see
the following section for more details concerning the limitations of T-cycle
simulation.

MPSIM is a discrete-event simulator where all stimuli are evaluated and all
response generated at instruction boundaries or Tcy. One Tcy = 4 Tosc
(where Tosc is input clock). Therefore, there are several events that can not
be accurately simulated in MPSIM. These fall into two categories:

Purely asynchronous events

• Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

• TimerO, Timer1, and Timer2 prescalers are capable of accepting clock
pulse inputs smaller than Tcy, but these can not be simulated.

Capture input pulses can be smaller than one Tcy, but can not be
simulated.

• PWM output pulse resolution less than 1 Tcy is not supported.

8-bit compare will not be supported since the output resolution is limited
to Tcydes

• In unsynchronized counter mode, clock input smaller than Tcy is not
supported

• The oscillator on RCO/RC1 pins is not supported. The user can, how
ever, simply use an external clock input for simulation purposes.

In summary, the net result of instruction boundary simulation is that all events
get synchronized at instruction boundary and events smaller than one
instruction cycle get lost.

TIM ERO
TimerO (and the interrupt it can generate on overflow) is fully supported by
MPSIM, and will increment by the internal or external clock. Clock input must
have a minimum high time of 1Tcy and a minimum low time of 1 Tcy due to
stimulus file requirements. The prescaler for TimerO is made accessible as
TOPRE. It can be watched and modified.

TIMER1
Timer1 in its various modes is supported by MPSIM, except when running in
counter mode by an external crystal. The interrupt it can be generated on
overflow and wake-up from sleep through interrupt are both supported by
MPSIM. The prescaler for Timer1 is viewable and modifiable as T1 PRE. The
external oscillator on RCO/RC1 is not simulated. The user can simply use a
clock input (see CK command).

© 1995 Microchip Technology Inc.

Appendix J. PIC16C74 User's Guide Addendum

© 1995 Microchip Technology Inc.

TIMER2

Timer2 and the interrupt that can be generated on overflow are fully supported
by MPSIM, and both the prescaler and postscaler for Timer2 are viewable and
modifiable (T2PRE and T2POS).

CCP1 and CCP2
CAPTURE

MPSIM fully supports capture and the interrupt generated. The prescaler for
the CCP module is viewable and modifiable (CCP1 PRE).

COMPARE

Compare mode, its interrupt, and the special event trigger (resetting Timer1 if
CCP1 and starting AID Conversion if CCP2) are supported in this version of
MPSIM.

PWM

PWM output (resolution greater than 1Tcy only) are supported in this version
of MPSIM.

SSP
The Synchronous Serial Port is supported in SPI mode only. The shift register
(SSPSR) can be added to the viewscreen, observed and modified. MPSIM
currently does not support the 12C mode.

USART
Timing and interrupt generation is supported. Baud rate generator is
supported. Reading and writing of the registers are supported but actual
receive or transmit operation is not simulated.

AID Converter
All the registers, timing function and interrupt generation are implemented.
The simulator, however, does not load any meaningful value into AID result
register (ADRES) at the end of a conversion. Use the Fl command to load the
ADRES register from a file for simulation purposes.

DS300271 - page 175

MPSIM USER'S GUIDE

DS300271 - page 176 © 1995 Microchip Technology Inc.

~
MICROCHIP MPSIM USER'S GUIDE

Appendix K. PIC16C84 User's Guide Addendum

Introduction

1/0 Pins

Interrupts

CPU Model

© 1995 Microchip Technology Inc.

MPSIM provides support for more than one family of Microchip
microcontrollers. This section has been added as an addendum to the MPSIM
user's guide to centralize PIC16C74-specific simulator support.

The PIC16C84 is an 18-pin device, with some of the 1/0 pins multiplexed with
other peripherals (and therefore referred by more than one name). When
modifying pins either manually (e.g. with the SE command) or via the stimulus
file, use the following pin names only. These are the only ones that MPSIM
recognizes as valid 1/0 pins:

MCLR

RAO-RA4

RBO-RB7

MPSIM supports all interrupts on the PIC16C71:

TimerO overflow

Change on Port RB <7:4>

External interrupt from RBO/INT pin

• EEPROM write complete

Reset Conditions
All reset conditions are supported by MPSIM.

A Power-On-Reset can be simulated by using the RS instruction. All special
purpose registers will be initialized to the values specified in the data sheet.

A MCCR reset during normal operation or during SLEEP can easily be
simulated by driving the MCLR pin low (and then high) via the stimulus file or
by using the SE command or by using DK command.

A WOT time-out reset is simulated when WOT is enabled (see OW command)
and proper prescaler is set (by initializing OPTION register appropriately) and
WOT actually overflows. WOT time-out period (with prescale = 1) is
approximated at 18 ms (to closest instruction cycle multiple).

DS300271 - page 177

MPSIM USER'S GUIDE

The Time-out (TO) and Power-down (PD) bits in the Status register reflect
appropriate reset condition. This feature is useful for simulating various
power-up and time out forks in the user code.

Sleep
MPSIM simulates the SLEEP instruction, and will appear "asleep" until a
wake-up from sleep condition occurs. For example, if the Watchdog timer has
been enabled, it will wake the processor up from sleep when it times out
(depending upon the prescaler setting in the OPTION register). Another
example of a wake-up-from-sleep condition, would be due to RBO/INT
interrupt wake-up.

WOT
The Watchdog timer is fully simulated in the MPSIM simulator. Because it is
fuse-selectable on the device, it must be enabled by a separate command
(see the DW command) in MPSIM. The period of the WOT is determined by
the prescaler settings in the OPTION register. The basic period (with
prescaler = 1) is approximated at 18 ms (to closest instruction cycle multiple).

Stack
MPSIM presents an accurate simulation of the hardware stack on the
PIC16CXX, and additionally provides warning messages if an underflow or
overflow condition occurs. When a CALL instruction is encountered, or when
an interrupt has occurred, the value of the PC+ 1 is pushed to the stack, and
the stack is popped when a RETLW, RETURN, or RETFIE instruction is
executed. If more than eight values are pushed to the stack before it is
popped, the value will be pushed to the stack, but a warning message will be
issued, indicating a stack overflow condition. An err.or message will also be
generated if the user attempts to pop an empty stack. Popping an empty stack
will cause the stack pointer to point to the top of a full stack, and will not
generate an error message if another pop is initiated.

Special Registers

DS300271 - page 178

To aid in debugging this device, certain items that are normally not observable
have been declared as "special" registers. Prescalers and postscalers
cannot be declared in your code as "registers", so there are special labels that
can be added to the view screen. You can add them as you normally would
any other register declared in your code, specifying any radix to view them.

The following are special items that can be added to the view screen when
the PIC16C84 has been selected:

• TOPRE - Prescaler for timerO

Please remember that these labels are only available when the PIC16C84 is
the target processor, and that they cannot be manually modified.

© 1995 Microchip Technology Inc.

Appendix K. PIC16C84 User's Guide Addendum

Peripherals

© 1995 Microchip Technology Inc.

Peripherals Supported
Along with providing core support, the following peripheral modules (in
addition to general-purpose 1/0) are supported:

TimerO

EEPROM data memory

Tcycle Limitation
It is important to remember that because MPSIM executes on instruction
cycle boundaries, resolutions below 1 Tcy cannot be simulated. Please see
the following section for more details concerning the limitations of T-cycle
simulation.

MPSIM is a discrete-event simulator where all stimuli are evaluated and all
response generated at instruction boundaries or Tcy. One Tcy = 4 Tosc
(where Tosc is input clock). Therefore, there are several events that can not be
accurately simulated in MPSIM. These fall into two categories:

Purely asynchronous events

• Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

• TimerO prescaler is capable of accepting clock pulse inputs smaller
than Tcy, but this can not be simulated.

In summary, the net result of instruction boundary simulation is that all events
get synchronized at instruction boundary and events smaller than one
instruction cycle get lost.

Tl MERO
TimerO (and the interrupt it can generate on overflow) is fully supported by
MPSIM, and will increment by the internal or external clock. Clock input must
have a minimum high time of 1Tcy and a minimum low time of 1Tcy due to
stimulus file requirements. The prescaler for TimerO is made accessible as
TOPRE. It can be watched and modified.

EEPROM Data Memory
The EEPROM data memory is fully simulated. The registers and the read/
write cycles are fully implemented. The write cycle time is approximated to 10
ms (to nearest instruction cycle multiple).

Please note that whereas the write to EEPROM is supported, the simulator
does not check for ''the valid instruction sequence". The simulator does,
however, simulate functions of WRERR and WREN control bits in the
EECON1 register.

05300271 - page 179

MPSIM USER'S GUIDE

0$300271 - page 180 © 1995 Microchip Technology Inc.

~
MICROCHIP MPSIM USER'S GUIDE

Appendix L. PI Cl 7C42 Support

Introduction

1/0 Pins

© 1995 Microchip Technology Inc.

MPSIM provides support for more than one family of Microchip
microcontrollers. This section has been added as an addendum to the
MPSIM user's guide to centralize PIC17C42-specific simulator support.

The PIC17C42 is a 40-pin device, with many of the 1/0 pins multiplexed with
other peripherals (and therefore referred by more than one name). When
modifying pins either manually (with the SE command) or via the stimulus file,
use the following pin names only. These are the only ones that MPSIM
recognizes as valid 1/0 pins:

MCIR"
RAO-RA5

RBO-RB7

RCO-RC7

RDO-RD7

REO-RE2

DS300271 - page 181

MPSIM USER'S GUIDE

Special Function Registers

05300271 - page 182

Many special-function registers in the PIC17CXX family (specifically the
"peripheral registers") are located in register banks other than bank zero. To
access these registers in your program, you must first select the desired bank
and then specify the address within that bank (OX1 O - Ox17). Because of this,
the "porta" register (address OX1 O in bank 0), for example, and the "ddrc"
(address OX10 in bank 1) registers would both be defined in your source code
as addresses Ox10.

In order to distinguish between labels that have the same address, MPSIM
has pre-defined the following labels with file register addresses and has
added them to its internal symbol table:

DDRC TMR1

PORTC TMR2

DDRD

PORTO

DORE

PORTE

PIR

PIE

TMR3L

TMR3H

PR1

PR2

PR3L

PR3H

PW1DCL

PW2DCL

PW1DCH

PW2DCH

CA2L

CA2H

TCON1

TCON2

If you want to view the contents of any of these registers during your
simulation session, you can add them to the viewscreen by using the "AD"
command.

© 1995 Microchip Technology Inc.

Interrupts

CPU Model

© 1995 Microchip Technology Inc.

Appendix L. PIC17C42 Support

MPSIM Version 5.0 or greater supports all interrupts on the PIC17C42:

External interrupt on INT pin

TMRO overflow interrupt

External interrupt on RAO pin

Port B input change interrupt

Timer/Counter1 interrupt

Timer/Counter2 interrupt

Timer/Counter3 interrupt

Capture1 interrupt

Capture2 Interrupt

Serial port transmit interrupt*

Serial port receive interrupt*

*Serial port timing only

Reset Conditions
All reset conditions are supported by MPSIM

A Power-On-Reset can be simulated by using the RS instruction. all special
purpose registers will be initialized to the values specified in the data sheet.

A"fiifCJJ3" reset during normal operation or during SLEEP can easily be
simulated by driving the MCLR pin low (and then high) via the stimulus file, by
using the SE command, or by using the DK command.

A WDT time-out reset is simulated when the WDT is enabled (see DW
command) and the proper prescaler is set (see the FW command) and the
WDT actually overflows. WDT time-out period is approximated at 12 ms (to
closest instruction cycle multiple) but can be changed by using the WP
command.

The Time out (TO) and Power-Down (PD) bits in the ALUSTA register reflect
appropriate reset condition. This feature is useful for simulating various
power-up and time-out forks in the user code.

Sleep
MPSIM simulates the SLEEP instruction and will appear "asleep" until a
wake-up from sleep condition occurs. For example, if the Watchdog timer has
been enabled, it will wake the processor up from sleep when it times out
(depending on the fuse setting by the FW command). Another example of a
wake-up-from-sleep condition, would be an input change on PORTS. If the

DS300271 - page 183

MPSIM USER'S GUIDE

interrupt is enabled and the GLINTD bit is set, the processor will wake-up and
will resume executing from the instruction following the SLEEP command. If
the GLINTD = o, the normal interrupt response will take place.

WOT
The Watchdog timer is fully simulated in the MPSIM simulator. Because it is
fuse-selectable and fuse-configurable on the device, it must be enabled and
configured by separate commands (see the DW and the FW commands) in
MPSIM. The basic period of the WDT (with prescaler = 1) is approximated at
12ms (to closest instruction cycle multiple) but can also be changed via the
WP command.

Stack
MPSIM presents an accurate simulation of the hardware stack on the
PIC17CXX, and additionally provides warning messages if an underflow or
overflow condition occurs. When a CALL or LCALL instruction is encountered
or when an interrupt has occurred, the value of the PC+ 1 is pushed to the
stack. The stack is popped when a RETLW, RETURN, or RETFIE instruction
is executed. If more than sixteen values are pushed to the stack before it is
popped, the value will be pushed to the stack, a warning message will be
issued indicating a stack overflow condition, and the STAKAVL bit will be
cleared until a reset condition occurs

Instruction Set
The entire PIC17CXX instruction set is supported, including pre-increment
and post-increment of indirect-address registers (according to their
configuration). The TABLRD and TABLWT instructions are also fully
supported, including long writes for the TABLWT instruction.

Special Registers

DS300271 - page 184

To aid in debugging this device, certain items that are normally not observable
have been declared as "special" registers. Prescalers cannot be declared in
user code as "registers", so there ar special labels that can be added to the
view screen. You can add them as you normally would any other register
declared in your code, specifying any radix to view them.

The following special items can be added to the view screen when the
PIC17C42 has been selected:

TOPRE (Prescaler for Timer 0)

WDTPRE (Prescaler for WOT)

© 1995 Microchip Technology Inc.

Peripherals

© 1995 Microchip Technology Inc.

Appendix L. PIC17C42 Support

Along with providing core support, the following peripheral modules (in
addition to general-purpose 1/0) are supported:

Timer 0 in both internal and external clock modes

Timer1 and Timer2 (and their respective period registers)

Timer3

Two Capture Modules

Two PWM Modules

USART (limited)

Tcycle Limitation
It is important to remember that because MPSIM executes on instruction
cycle boundaries, resolutions below 1 Tcy cannot be simulated. Please see
the following section for more details concerning the limitations of T-cycle
simulation.

MPSIM is a discrete-event simulator where all stimuli are evaluated an all
response generated at instruction boundaries or Tcy. One Tcy = 4 Tosc
(where Tosc is input clock). Therefor, there are several events that can not be
accurately simulated in MPSIM. These fall into two categories:

• Purely asynchronous events

Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

TimerO prescaler is capable of accepting clock pulse inputs smaller
than Tcy, but these can not be simulated.

• Capture input pulses can be smaller than one Tcy, but can not be
simulated.

PWM output pulse resolution less than 1 Tcy is not supported

In unsynchronized counter mode, clock input smaller than Tcy is not
supported.

In summary, the net result of instruction boundary simulation is that all events
get synchronized at instruction boundary and events smaller than one
instruction cycle get lost.

TIM ERO
TimerO (and the interrupt it can generate on overflow) is fully supported by
MPSIM, and will increment by the internal or external clock. Delay from
external clock edge to timer increment has also been simulated, as well as
the interrupt latency period. Clock input must have a minimum high time of
1 Tcy and a minimum low time of 1 Tcy due to the stimulus file requirements.
The prescaler for TimerO is made accessible as TOPRE. It can be watched
and modified.

DS300271-page185

MPSIM USER'S GUIDE

TIMER1 and TIMER2
Timer1 and Timer2 in its various modes is fully supported by MPSIM. Delays
from clock edge to increment (when configured to increment from rising or
falling edge of external clock) is simulated as well as the interrupt latency
periods. Clock input must have a minimum high time of 1Tcy and a minimum
low time of 1Tcy due to the stimulus file requirements.

TIMER3 and Capture
MPSIM fully supports Timer3 and the Capture module in all of its modes.
Delays from clock edge to increment (when configured in external mode),
delay for capture and interrupt latency periods are fully supported. Clock input
must have a minimum high time of 1 Tcy and a minimum low time of 1 Tcy due
to the stimulus file requirements.

PWM

Both PWM outputs are supported (resolution greater than 1Tcy only) are
supported in this version of MPSIM.

USART
Timing and interrupt generation is supported. Baud rate generator is
supported. Reading and writing of the registers are supported but actual
receive or transmit operation is not simulated.

Memory Modes

08300271 - page 186

The following memory modes are supported by MPSIM:

Microcontroller Mode

Extended Microcontroller Mode

Microprocessor Mode

The default is Microcontroller mode, which has 2K of program-memory
on-chip. If you would like to use any of the other modes, you must use the
FW command (since this option is fuse-selectable on-chip).

© 1995 Microchip Technology Inc.

MICROCHIP MPSIM USER'S GUIDE

Appendix M. PI Cl 7C43 Support

Introduction

1/0 Pins

MPSIM provides support for more than one family of Microchip
microcontrollers. This section has been added as an addendum to the
MPSIM user's guide to centralize PIC17C43-specific simulator support.

The PIC17C43 is a 40-pin device, with many of the 1/0 pins multiplexed with
other peripherals (and therefore referred by more than one name). When
modifying pins either manually (with the SE command) or via the stimulus file,
use the following pin names only. These are the only ones that MPSIM
recognizes as valid 1/0 pins:

MCLR

RAO-RAS

RBO-RB7

RCO-RC7

RDO-RD7

REO-RE2

Special Function Registers

© 1995 Microchip Technology Inc.

Many special-function registers in the 17CXX family (specifically the
"peripheral registers") are located in register banks other than bank zero. To
access these registers in your program, you must first select the desired bank
and then specify the address within that bank (Ox10 - Ox17). Because of this,
the "porta" register (address Ox10 in bank 0), for example, and the "ddrc"
(address Ox10 in bank 1) registers would both be defined in your source code
as addresses Ox10.

DS300271 - page 187

MPSIM USER'S GUIDE

Interrupts

DS300271 - page 188

In order to distinguish between labels that have the same address, MPSIM
has pre-defined the following labels with file register addresses and has
added them to its internal symbol table:

DDRC TMR1 PW1 DCL

PORTC TMR2 PW2DCL

DORO TMR3L PW1DCH

PORTO TMR3H PW2DCH

DORE PR1 CA2L

PORTE PR2 CA2H

PIR PR3L TCON1

PIE PR3H TCON2

If you want to view the contents of any of these registers during your
simulation session, you can add them to the viewscreen by using the "AD"
command.

MPSIM Version 5.0 or greater supports all interrupts on the PIC17C43:

External interrupt on INT pin

TMRO overflow interrupt

External interrupt on RAO pin

Port B input change interrupt

Timer/Counter1 interrupt

Timer/Counter2 interrupt

Timer/Counter3 interrupt

Capture 1 i nte rru pt

Capture2 Interrupt

Serial port transmit interrupt*

Serial port receive interrupt*

*Serial port timing only

© 1995 Microchip Technology Inc.

CPU Model

© 1995 Microchip Technology Inc.

Appendix M. PIC17C43 Support

Reset Conditions
All reset conditions are supported by MPSIM

A Power-On-Reset can be simulated by using the RS instruction. all special
purpose registers will be initialized to the values specified in the data sheet.

A!iiiCii3" reset during normal operation or during SLEEP can easily be
simulated by driving the MCLR pin low (and then high) via the stimulus file, by
using the SE command, or by using the DK command.

A WDT time-out reset is simulated when the WDT is enabled (see DW
command) and the proper prescaler is set (see the FW command) and the
WDT actually overflows. WDT time-out period is approximated at 12 ms (to
closest instruction cycle multiple) but can be changed by using the WP
command.

The Time out (TO) and Power-Down (PD) bits in the ALUSTA register reflect
appropriate reset condition. This feature is useful for simulating various
power-up and time-out forks in the user code.

Sleep
MPSIM simulates the SLEEP instruction and will appear "asleep" until a
wake-up from sleep condition occurs. For example, if the Watchdog timer has
been enabled, it will wake the processor up from sleep when it times out
(depending on the fuse setting by the FW command). Another example of a
wake-up-from-sleep condition, would be an input change on PORT B. If the
interrupt is enabled and the GLINTD bit is set, the processor will wake-up and
will resume executing from the instruction following the SLEEP command. If
the GLINTD = 0, the normal interrupt response will take place.

WOT
The Watchdog timer is fully simulated in the MPSIM simulator. Because it is
fuse-selectable and fuse-configurable on the device, it must be enabled and
configured by separate commands (see the DW and the FW commands) in
MPSIM. The basic period of the WDT (with prescaler = 1) is approximated at
12ms (to closest instruction cycle multiple) but can also be changed via the
WP command.

Stack
MPSIM presents an accurate simulation of the hardware stack on the
PIC17CXX, and additionally provides warning messages if an underflow or
overflow condition occurs. When a CALL or LC ALL instruction is encountered
or when an interrupt has occurred, the value of the PC+ 1 is pushed to the
stack. The stack is popped when a RETLW, RETURN, or RETFIE instruction
is executed. If more than sixteen values are pushed to the stack before it is

DS300271 ·page 189

MPSIM USER'S GUIDE

popped, the value will be pushed to the stack, a warning message will be
issued indicating a stack overflow condition, and the STAKAVL bit will be
cleared until a reset condition occurs

Instruction Set
The entire PIC17CXX instruction set is supported, including pre-increment
and post-increment of indirect-address registers (according to their
configuration). The TABLRD and TABLWT instructions are also fully
supported, including long writes for the TABLWT instruction. The hardware
multiply instructions, MULLW and MULLWF are both fully supported as is the
MOVLP instruction.

Special Registers

Peripherals

DS300271 - page 190

To aid in debugging this device, certain items that are normally not observable
have been declared as "special" registers. Prescalers cannot be declared in
user code as "registers", so there ar special labels that can be added to the
view screen. You can add them as you normally would any other register
declared in your code, specifying any radix to view them.

The following special item can be added to the view screen when the
PIC17C43 has been selected:

TOPRE (Prescaler for Timer 0)

WDTPRE (Prescaler for WOT)

Along with providing core support, the following peripheral modules (in
addition to general-purpose 1/0) are supported:

Timer 0 in both internal and external clock modes

Timer1 and Timer2 (and their respective period registers)

Timer3

Two Capture Modules

Two PWM Modules

USART (limited)

© 1995 Microchip Technology Inc.

© 1995 Microchip Technology Inc.

Appendix M. PIC17C43 Support

Tcycle Limitation
It is important to remember that because MPSIM executes on instruction
cycle boundaries, resolutions below 1 Tcy cannot be simulated. Please see
the following section for more details concerning the limitations of T-cycle
simulation.

MPSIM is a discrete-event simulator where all stimuli are evaluated an all
response generated at instruction boundaries or Tcy. One Tcy = 4 Tosc
(where Tosc is input clock). Therefore, there are several events that can not be
accurately simulated in MPSIM. These fall into two categories:

Purely asynchronous events

Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

TimerO prescaler is capable of accepting clock pulse inputs smaller
than Tcy, but these can not be simulated.

Capture input pulses can be smaller than one Tcy, but can not be
simulated.

PWM output pulse resolution less than 1Tcy is not supported

In unsynchronized counter mode, clock input smaller than Tcy is not
supported.

In summary, the net result of instruction boundary simulation is that all events
get synchronized at instruction boundary and events smaller than one
instruction cycle get lost.

TIM ERO
TimerO (and the interrupt it can generate on overflow) is fully supported by
MPSIM, and will increment by the internal or external clock. Delay from
external clock edge to timer increment has also been simulated, as well as
the interrupt latency period. Clock input must have a minimum high time of
1Tcy and a minimum low time of 1Tcy due to the stimulus file requirements.
The prescaler for TimerO is made accessible as TOPRE. It can be watched
and modified.

TIMER1 and TIMER2
Timer1 and Timer2 in its various modes is fully supported by MPSIM. Delays
from clock edge to increment (when configured to increment from rising or
falling edge of external clock) is simulated as well as the interrupt latency
periods. Clock input must have a minimum high time of 1Tcy and a minimum
low time of 1Tcy due to the stimulus file requirements.

DS300271 - page 191

MPSIM USER'S GUIDE

TIM ER3 and Capture

MPSIM fully supports Timer3 and the Capture module in all of its modes.
Delays from clock edge to increment (when configured in external mode),
delay for capture and interrupt latency periods are fully supported. Clock input
must have a minimum high time of 1 Tcy and a minimum low time of 1 Tcy due
to the stimulus file requirements.

PWM

Both PWM outputs are supported (resolution greater than 1Tcy only) are
supported in this version of MPSIM.

USART
Timing and interrupt generation is supported. Baud rate generator is
supported. Reading and writing of the registers are supported but actual
receive or transmit operation is not simulated.

Memory Modes

DS300271 - page 192

The following memory modes are supported by MPSIM:

Microcontroller Mode

Extended Microcontroller Mode

Microprocessor Mode

The default is Microcontroller mode, which has 4K of program-memory
on-chip. If you would like to use any of the other modes, you must use the
FW command (since this option is fuse-selectable on-chip).

© 1995 Microchip Technology Inc.

~
MICROCHIP MPSIM USER'S GUIDE

Appendix N. PI Cl 7C44 Support

Introduction

1/0 Pins

MPSIM provides support for more than one family of Microchip
microcontrollers. This section has been added as an addendum to the
MPSIM user's guide to centralize PIC17C44-specific simulator support.

The PIC17C44 is a 40-pin device, with many of the 1/0 pins multiplexed with
other peripherals (and therefore referred by more than one name). When
modifying pins either manually (with the SE command) or via the stimulus file,
use the following pin names only. These are the only ones that MPSIM
recognizes as valid 1/0 pins:

MCLR

RAO-RAS

RBO-RB7

RCO-RC7

RDO-RD7

• REO-RE2

Special Function Registers

© 1995 Microchip Technology Inc.

Many special-function registers in the PIC17CXX family (specifically the
"peripheral registers") are located in register banks other than bank zero. To
access these registers in your program, you must first select the desired bank
and then specify the address within that bank (Ox1 O - Ox17). Because of this,
the "porta" register (address Ox1 O in bank 0), for example, and the "ddrc''
(address OX10 in bank 1) registers would both be defined in your source code
as addresses Ox1 O.

In order to distinguish between labels that have the same address, MPSIM
has pre-defined the following labels with file register addresses and has
added them to its internal symbol table:

DDRC TMR1

PORTC TMR2

DDRD

PORTO

DORE

PORTE

PIR

PIE

TMR3L
TMR3H

PR1
PR2

PR3L
PR3H

PW1DCL

PW2DCL

PW1DCH
PW2DCH

CA2L

CA2H

TCON1

TCON2

DS300271 - page 193

MPSIM USER'S GUIDE

Interrupts

CPU Model

DS300271 - page 194

If you want to view the contents of any of these registers during your
simulation session, you can add them to the viewscreen by using the "AD"
command.

MPSIM Version 5.0 or greater supports all interrupts on the PIC17C44:

External interrupt on INT pin

TMRO overflow interrupt

External interrupt on RT pin

Port B input change interrupt

Timer/Counter1 interrupt

Timer/Counter2 interrupt

Timer/Counter3 interrupt

• Capture1 interrupt

Capture2 Interrupt

Serial port transmit interrupt*

Serial port receive interrupt*

*Serial port timing only

Reset Conditions
All reset conditions are supported by MPSIM

A Power-On-Reset can be simulated by using the RS instruction. all special
purpose registers will be initialized to the vafues specified in the data sheet.

A MCIB reset during normal operation or during SLEEP can easily be
simulated by driving the MCLR pin low (and then high) via the stimulus file, by
using the SE command, or by using the DK command.

A WOT time-out reset is simulated when the WOT is enabled (see OW
command) and the proper prescaler is set (see the FW command) and the
WOT actually overflows. WOT time-out period is approximated at 12 ms (to
closest instruction cycle multiple) but can be changed by using the WP
command.

The Time out (TO) and Power-Down (PD) bits in the ALUSTA register reflect
appropriate reset condition. This feature is useful for simulating various
power-up and time-out forks in the user code.

Sleep
MPSIM simulates the SLEEP instruction and will appear "asleep" until a wake
up from sleep condition occurs. For example, if the Watchdog timer has been
enabled, it will wake the processor up from sleep when it times out
(depending on the fuse setting by the FW command). Another example of a

© 1995 Microchip Technology Inc.

Appendix N. PIC17C44 Support

wake-up-from-sleep condition, would be an input change on PORT B. If the
interrupt is enabled and the GLINTD bit is set, the processor will wake-up and
will resume executing from the instruction following the SLEEP command. If
the GLINTD = 0, the normal interrupt response will take place.

WOT
The Watchdog timer is fully simulated in the MPSIM simulator. Because it is
fuse-selectable and fuse-configurable on the device, it must be enabled and
configured by separate commands (see the DW and the FW commands) in
MPSIM. The basic period of the WDT (with prescaler = 1) is approximated at
12ms (to closest instruction cycle multiple) but can also be changed via the
WP command.

Stack
MPSIM presents an accurate simulation of the hardware stack on the
PIC17CXX, and additionally provides warning messages if an underflow or
overflow condition occurs. When a CALL or LCALL instruction is encountered
or when an interrupt has occurred, the value of the PC+ 1 is pushed to the
stack. The stack is popped when a RETLW, RETURN, or RETFIE instruction
is executed. If more than sixteen values are pushed to the stack before it is
popped, the value will be pushed to the stack, a warning message will be
issued indicating a stack overflow condition, and the STAKAVL bit will be
cleared until a reset condition occurs

Instruction Set
The entire PIC17CXX instruction set is supported, including pre-increment
and post-increment of indirect-address registers (according to their
configuration). The TABLRD and TABLWT instructions are also fully
supported, including long writes for the TABLWT instruction. The hardware
multiply instructions, MULLW and MULLWF are both fully supported as is the
MOVLP instruction.

Special Registers

(c) 1995 Microchip Technology Inc.

To aid in debugging this device, certain items that are normally not observable
have been declared as "special" registers. Prescalers cannot be declared in
user code as "registers", so there ar special labels that can be added to the
view screen. You can add them as you normally would any other register
declared in your code, specifying any radix to view them.

The following special item can be added to the view screen when the
PIC17C44 has been selected:

TOPRE (Prescaler for Timer 0)

WDTPRE (Prescaler for WOT)

DS300271 - page 195

MPSIM USER'S GUIDE

Peripherals

DS300271 - page 196

Along with providing core support, the following peripheral modules (in
addition to general-purpose 1/0) are supported:

Timer O in both internal and external clock modes

Timer1 and Timer2 (and their respective period registers)
Timer3
Two Capture Modules

Two PWM Modules
USART (limited)

Tcycle Limitation
It is important to remember that because MPSIM executes on instruction
cycle boundaries, resolutions below Hey cannot be simulated. Please see
the following section for more details concerning the limitations of T-cycle
simulation.

MPSIM is a discrete-event simulator where all stimuli are evaluated an all
response generated at instruction boundaries or Tcy. One Tcy = 4 Tosc
(where Tosc is input clock). Therefor, there are several events that can not be
accurately simulated in MPSIM. These fall into two categories:

Purely asynchronous events

Synchronous events that occur at Tosc clock boundaries

Because of this, the following items are not supported in MPSIM:

TimerO prescaler is capable of accepting clock pulse inputs smaller
than Tcy, but these can not be simulated.
Capture input pulses can be smaller than one Tcy, but can not be
simulated.
PWM output pulse resolution less than Hey is not supported

In unsynchronized counter mode, clock input smaller than Tcy is not
supported.

In summary, the net result of instruction boundary simulation is that all events
get synchronized at instruction boundary and events smaller than one
instruction cycle get lost.

TIM ERO
TimerO (and the interrupt it can generate on overflow) is fully supported by
MPSIM, and will increment by the internal or external clock. Delay from
external clock edge to timer increment has also been simulated, as well as the
interrupt latency period. Clock input must have a minimum high time of 1 Tcy
and a minimum low time of Hey due to the stimulus file requirements. The
prescaler for TimerO is made accessible as TOPRE. It can be watched and
modified.

© 1995 Microchip Technology Inc.

Appendix N. PIC17C44 Support

TIMER1 and TIMER2
Timer1 and Timer2 in its various modes is fully supported by MPSIM. Delays
from clock edge to increment (when configured to increment from rising or
falling edge of external clock) is simulated as well as the interrupt latency
periods. Clock input must have a minimum high time of 1Tcy and a minimum
low time of 1Tcy due to the stimulus file requirements.

TIMER3 and Capture
MPSIM fully supports Timer3 and the Capture module in all of its modes.
Delays from clock edge to increment (when configured in external mode),
delay for capture and interrupt latency periods are fully supported. Clock input
must have a minimum high time of 1Tcy and a minimum low time of 1Tcy due
to the stimulus file requirements.

PWM

Both PWM outputs are supported (resolution greater than 1 Tcy only) are
supported in this version of MPSIM.

USART
Timing and interrupt generation is supported. Baud rate generator is
supported. Reading and writing of the registers are supported but actual
receive or transmit operation is not simulated.

Memory Modes

@ 1995 Microchip Technology Inc.

The following memory modes are supported by MPSIM:

Microcontroller Mode

Extended Microcontroller Mode

Microprocessor Mode

The default is Microcontroller mode, which has SK of program-memory on
chip. If you would like to use any of the other modes, you must use the FW
command (since this option is fuse-selectable on chip).

DS300271 - page 197

WORLDWIDE SALES & SERVICE

AMERICAS

Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 602 786-7200
Fax: 602 786-7277

Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 404 640-0034
Fax: 404 640-0307

Boston
Microchip Technology Inc.
Five The Mountain Road, Suite 120
Framingham, MA 01701
Tel: 508 820-3334
Fax: 508 820-4326

Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 708 285-0071
Fax: 708 285-0075

Dallas
Microchip Technology Inc.
14651 Dallas Parkway, Suite816
Dallas, TX 75240-8809
Tel: 214 991-7177
Fax: 214 991-8588

Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 455
Irvine, CA 92715
Tel: 714 263-1888
Fax: 714 263-1338

AMERICAS (continued)

New York
Microchip Technology Inc.
150 Motor Parkway, Suite 416
Hauppauge, NY 11788
Tel: 516 273-5305
Fax: 516 273-5335

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408 436-7950
Fax: 408 436-7955

ASIA/PACIFIC

Hong Kong
Microchip Technology Inc.
Un~ No. 3002-3004, Tower 1
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T. Hong Kong
Tel: 852 2 401 1200
Fax: 852 2 401 3431

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku,
Seoul, Korea
Tel: 82 2 554 7200
Fax: 82 2 558 5934

Taiwan
Microchip Technology Taiwan
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886 2 717 7175
Fax: 886 2 545 0139

MICROCHIP

EUROPE

United Kingdom
Arizona Microchip Technology Ltd.
Unit 6, The Courtyard
Meadow Bank, Furlong Road
Bourne End, Buckinghamshire SL8 5AJ
Tel: 44 0 1628 851077
Fax: 44 o 1628 850259

France
Arizona Microchip Technology SARL
2 Rue du Buisson aux Fraises
91300 Massy - France
Tel: 33 1 69 53 63 20
Fax: 33 1 69 30 90 79

Germany
Arizona MicrochipTechnology GmbH
Gustav-Heinemann-Ring 125
D-81739 Muenchen, Germany
Tel: 49 89 627 144 0
Fax: 49 89 627 144 44

Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Pegaso lngresso No. 2
Via Paracelso 23, 20041 Agrate Brianza
(Ml) Italy
Tel: 39 039 689 9939
Fax: 39 039 689 9883

JAPAN
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shin Yokohama
Kohoku-Ku, Yokohama
Kanagawa 222 Japan
Tel: 81 45 471 6166
Fax: 81 45 471 6122

Printed in USA 1994, Microchip Technology Incorporated. All Rights Reserved. 4/01/95

*Information contained in this publication regarding device applications and the like is intended by way of suggestion only. No representation of warranty is given and no liability is assumed by Microchip
Technology Inc. with respect to the accuracy or use of such information. Use of Microchip's products as cr~ical components in life support systems ls not authorized except with express written approval by
Microchip. The Microchip logo and name are trademarks of Microchip Technology Incorporated. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.

DS300271 - page 198 © 1995 Microchip Technology Inc.

MICROCHIP

Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ. 85224-6199

Tel : 602. 786. 7200 Fax: 602 . 899. 9210

IC 1995 Microchip Technology Inc. Printed in U.S.A. 4/95

0 830027

