
-n
::u
0
n
:c -,,
s: ,,
)I
t/)

s:
c:
t/)

'" ::u .
t/)

" c: -c
'"

~··

MPASM
ASSEMBLER

USER'S GUIDE

MICROCHIP

"Information contained in this publication regarding device applications and the like is Intended by
way of suggestion only. No representation or warranty is given and no liabiltty is assumed by
Microchip Technology Incorporated with respect to the accuracy or use of such information. Use of
Microchip's products as critical components in life support systems is not authorized except with
express written approval by Microchip. The Microchip logo and name are trademarks of
Microchip Technology Incorporated. All rights reserved. All other trademarks mentioned herein are
the property of their respective companies".

©1994 Microchip Technology Incorporated. All rights Reserved.

The Microchip logo and name are trademarks of Microchip Technology Inc.

PIC is a registered trademark of Microchip Technology Inc. in the U.S.A.

ALLPRO is a registered trademark of Logical Devices Incorporated.

CompuServe is a registered trademark of CompuServe Incorporated.

Data 1/0 is a registered trademark of Data 1/0 Corporation.

Excel and Windows are registered trademarks of Microsoft Corporation.

IBM and PC/AT are registered trademarks of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

MS-DOS is a registered trademark of Microsoft Corporation.

Unisite is a registered trademark of UNIX System Labs/Novel/, Inc.

All product/company trademarks mentioned herein are the property of their respective companies.

MICROCHIP MPASM USER'S GUIDE

Table of Contents

Preface: Welcome ... 1
Feature List and Product Information .. 1
Migration Path ... 1

Chapter 1: Introduction .. 3
Product Definition .. 3
Documentation Layout .. 3
Terms .. 5

PIC16/17 .. 5
Source Code .. 5
Assemble ... 5
Mnemonics ... 5
Directives ... 6
Macro ... 6
Relocatable Object ... 6
Linking .. 6
Listing ... 6
PC .. 6
DOS ... 6

Recommended Reading ... 7
System Requirements ... 7
Warranty Registration ... 7
Installation ... 7
Compatibility Issues .. 8

Chapter 2: Environment and Usage .. 9
Introduction ... 9
Highlights .. 9
Terms .. 9

Command Line Interface .. 9
Shell ... 9
Alpha Character ... 9
Alpha Numeric .. 9

Command Line Interface ... 1 O
Shell Interface ... 12

Source File ... 12
Error File .. 12
Cross Reference File ... 12
Listing File .. 13
HEX Dump Type .. 13
Assemble to Object File ... 13

Source Code Formats ... 13
Labels .. 14
Mnemonics ... 14
Operands ... 14
Comments .. 15

Files Used by MPASM and Utility Functions 15
Object Code Formats .. 16
Listing File Format ... 16

© 1994 Microchip Technology Inc. DS33014C - page i

MPASM USER'S GUIDE

Error File Format (.ERR) ... 17
Chapter 3: Directive Language ... 19

Introduction ... 19
Highlights .. 19
Terms .. 19

Data Directives ... 19
Listing Directives .. 19
Control Directives ... 19
Macro Directives .. 19

Directive Details .. 21
CBANK - Future Feature ... 21
CBLOCK - Define a Block of Constants 22
CONSTANT- Declare Symbol Constant... 22
DATA- Create Numeric and Text Data 23
DB - Declare Data of One Byte ... 24
#DEFINE - Define a Text Substitution Label 25
OW - Declare Data of One Word ... 26
ELSE - Begin Alternative Assembly Block to IF 26
END - End Program Block .. 27
ENDC - End an Automatic Constant Block 27
ENDIF - End Conditional Assembly Block 28
ENDM. - End a Macro Definition .. 28
ENDW- End a While Loop .. 29
EQU - Define an Assembler Constant... 29
ERROR - Issue an Error Message .. 30
EXITM - Exit from a Macro .. 30
EXPAND - Expand Macro Listing .. 31
FILL - Specify Memory Fill Value .. 31
IF - Begin Conditionally Assembled Code Block 32
IFDEF - Execute If Symbol has Been Defined, 33
IFNDEF - Execute If Symbol has not Been Defined 34
INCLUDE - Include Additional Source File 35
LIST - Listing Options .. 36
LOCAL - Declare Local Macro Variable 37
MACRO - Declare Macro Definition .. 38
MESSG - Create User Defined Message ;38
NOEXPAND - Turn off Macro Expansion 39
NOLIST - Turn off Listing Output .. 39
ORG - Set Program Origin40
PAGE - Insert Listing Page Eject .. 40
PROCESSOR - Set Processor Type .. .41
RADIX - Specify Default Radix .. 41
RES - ReseNe Memory .. 42
SET - Define an Assembler Variable .. .42
SPACE - Insert Blank Listing Lines ... 43
SUBTITLE - Specify Program Subtitle 43
TITLE - Specify Program Title ... 44
#UNDEFINE - Delete a Substitution Label 44
VARIABLE - Declare Symbol Variable 45
WHILE - Perform Loop While Condition is True46

OS33014C - Page ii © 1994 Microchip Technology Inc.

Table of Contents

Chapter 4: Macro Language ... 47
Introduction ... 47
Highlights .. 47
Terms .. 47

Macro ... 47
Local Label ... 48
Recursion ... 48

Macro Syntax .. 48
Macro Directives ... 49
Text Substitution ... 49
Recursive Macros ... 50
Macro Usage ... 50
Examples .. 51

Eight by Eight Multiply .. 51
Constant Compare ... 52

Chapter 5: Expression Syntax and Operation .. 53
Introduction ... 53
Highlights .. 53
Terms .. 53

Expressions .. 53
Operators ... 53
Precedence .. 53
Radix .. 53

Text Strings ... 54
Numeric Constant and Radix .. 56
High I Low ... 58

Chapter 6: MPLIB - MPASM Librarian .. 59
Introduction ... 59

Chapter 7: MPLINK - MPASM Linker. ... 61
Introduction ... 61

Appendix A: Object Code Formats .. 63
Introduction ... 63
Highlights .. 63
Object Code Formats .. 63

Intel Hex Format (.HEX) ... 63
Example ... 64
8-Bit Split Format (.HXU.HXH) 64
Example ... 64
32-Bit Hex Format .. 65

Appendix B: Customer Support ... 67
Keeping Current with Microchip Systems 67
Highlights .. 67
Bulletin Board Access ... 68
Bulletin Board Usage .. 68

Special Interest Groups .. 68
Files ... 69
Mail .. 69

Software Revisions ... 70

© 1994 Microchip Technology Inc. DS33014C - page iii

MPASM USER'S GUIDE

Alpha Release .. 70
Intermediate Release ... 71
Beta Release .. 71
Production Release .. 71

Appendix C: MPALC Conversion Guide .. 73
Introduction ... 73
Highlights .. 73
Required Source Code Updates ... 73
Recommended Source Code Updates 74

Appendix D: ASM17 Conversion Guide ... 75
Introduction ... 75
Highlights .. 75
Required Source Code Updates ... 75
Recommended Source Code Updates 76

Appendix E: Error Messages ... 77
Address exceeds maximum limit available 77
Attempt to redefine reserved word 77
Branch or jump out of range ... 77
Call or jump not allowed at this address 77
Couldn't open ... 78
Couldn't open source file .. 78
Duplicate label or redefining symbol that cannot be
redefined .. 78
Error in parameter .. 78
Expected .. 78
File not found ... 78
Illegal argument .. 78
Illegal condition .. 79
Illegal condition, EOF encountered before END or
conditional end directive ... 79
Illegal conditional compile .. 79
Illegal character .. .in label. ... 79
Illegal digit .. 79
Illegal opcode ... 79
Include file not found .. 80
Include files nested too deep .. 80
Macro name missing .. 80
Macros nested too deep ... 80
Missing argument(s) ... 80
Missing terminator .. 80
Nested forward reference not allowed 80
Out of memory ... 81
Overwriting previous address contents 81
Processor type is undefined ... 81
Processor type previously defined 81

DS33014C - Page iv © 1994 Microchip Technology Inc.

Table of Contents

Symbol table full ... 81
Temp file creation error .. 82
Too many arguments ... 82
Undefined argument ... 82
Unknown error .. 82
WHILE failed to terminate within 256 iterations------····· 82

Warning Messages ... 82
Addresses above 32K not currently supported.
Using MaxRom ... 82
Argumentout of range, least significant bits used 82
Crossing page boundary-ensure page bits are set ... 83
... Is not currently supported .. 83
LCALL should only be used for multi-paged prgram
memory .. 83
... May not be handled as preprocessor directive 83
... Not a single byte quantity ... 83
This number is being treated as a binary
representation .. 83

Quick Reference Guide ... 85
Highlights .. 85
Terms .. 85

PIC16C5X .. 85
PIC16CXX .. 85
PIC17CXX .. 85

PIC16C5X Instruction Set ... 87
PIC16C5X Notes .. 89

PIC16CXX Instruction Set ... 90
PIC16CXX Notes ... 94

PIC17C42 Instruction Set .. 95
PIC17C42 Notes .. 99

Index .. 101
Reader Response .. 103
Sales and Service .. 104

© 1994 Microchip Technology Inc. DS33014C - page v

MPASM USER'S GUIDE

TABLE OF EXAMPLES
1 Sample MPASM Source Code ... 14
2 Sample MPASM Listing File (.LST) .. 16

TABLE OF TABLES
1 Documentation Conventions ... 5
2 Assembler Command Line Options .. 11
3 MPASM Default File Extensions ... 15
4 Directive Summary ... 20
5 List Directive Options .. 36
6 ANSI 'C' Escape Sequences .. 55
7 Radix Specifications ... 56
8 Arithmetic Operators and Precedence .. 57
9 Directive Summary ... 86
1 O PIC16C5X Operand Codes .. 87
11 PIC16C5X Byte Oriented File Register Operations 88
12 PIC16C5X Bit Oriented Register Operations 88
13 PIC16C5X Literal and Control Operations .. 89
14 PIC16CXX Byte Oriented File Register Operations 91
15 PIC16CXX Bit Oriented File Register Operations 91
16 PIC16CXX Literal and Control Operations .. 92
17 PIC16CXX Special Instruction Mnemonics 93
18 PIC17C42 Operand Codes ... 95
19 PIC17C42 Data Move Instructions .. 96
20 PIC17C42 Arithmetic and Logical Instructions 97
21 PIC17C42 Program Control Instructions ... 98
22 PIC17C42 Bit Handling Instructions .. 98
23 PIC17C42 Special Control Instructions ... 99

DS33014C - Page vi © 1994 Microchip Technology Inc.

MICROCHIP

Welcome

MPASM USER'S GUIDE

Preface

Microchip Technology Incorporated is committed to providing useful
and innovative solutions to your microcontroller designs. MPASM is the
first Universal Assembler available for Microchip's entire product line of
microcontrollers. MPASM will generate solid code with a directive
language rich in potential.

Feature List and Product Information

Migration Path

© 1994 Microchip Technology Inc.

MPASM provides a universal solution for developing assembly code for the
PIC16C5X, PIC16CXX, PIC17CXX, and future microcontroller offerings.
Notable features include:

PIC16C5X, PIC16CXX, and PIC17CXX Instruction Set

Command Line Interface

Command Shell Interface

Rich Directive Language

Flexible Macro Language

PICMASTER™ Compatibility

MPSIM Compatibility

Use of the Microchip MPASM Universal Assembler requires an
IBM PC/AT® or compatible computer, running MS-DOS® V4.1 or greater.

Users of MPALC and ASM17 will find that much of their existing code will
assemble with MPASM with little or no editing. This provides a simple
migration path. Appendices C and D describe some of the simple changes
you may need to implement to assemble existing code.

But more importantly, because the program is universal, an application
developed for the PIC16C54 can be easily translated into a program for the
PIC16C71. This would simply require changing the instruction mnemonics
that are not the same between the machines (assuming that register and
peripheral usage were similar). The rest of the directive and macro lan
guage will be the same.

MPASM was developed in conjunction with Byte Craft Limited, recognized
as a world leader in microcontroller language tools.

DS33014C - page 1

MPASM USER1S GUIDE

DS33014C - page 2 © 1994 Microchip Technology Inc.

MICROCHIP MPASM USER'S GUIDE

Chapter 1. Introduction

Product Definition
MPASM is a DOS based PC application that provides a platform for
developing assembly language code for Microchip microcontrollers includ
ing the PIC16C5X, PIC16CXX and PIC17CXX families. Generically,
MPASM will refer to the entire development platform including the macro
assembler and utility functions. Specifically:

MPASM - refers to the macro assembler that generates relocatable object
code from assembly source code.

MPLINK - refers to the linker that translates relocatable objects to execut
able binary code at absolute memory locations.

MPLIB - refers to the librarian utility that allows relocatable objects to be
grouped together in one file, or library, for convenience. These libraries
can be referenced via MPLINK as an object file output from MPASM.

Documentation Layout

© 1994 Microchip Technology Inc.

The documentation is intended to describe how to use the assembler, and
its environment. It also provides some basic information about specific
Microchip microcontrollers and their instruction sets, but detailed discus
sion of these issues is deferred to the data sheets for specific microcon
trollers. In particular:

Chapter 1: Introduction - Introduces the user to MPASM. It describes the
User's Guide layout, general conventions and terms, as well as a brief
discussion of installation, and platform requirements.

Chapter 2: Environment and Usage - This chapter describes the
assembler's Command Line Interface (CLI), and shell interface. Also
discussed here are the files used by MPASM, both input and output,
including object file formats.

Chapter 3: Directive Language - This chapter describes native directive
language of MPASM. This language should be familiar to previous users
of either Microchip or Byte Craft development system.

Chapter 4: Macro Language - This chapter describes the macro language
of MPASM. Macros are best learned by example; several will be offered
for consideration.

Chapter 5: Expression Syntax and Operation - This chapter describes the
expression syntax of MPASM, including operator precedence, radix
override notation, examples and discussion.

DS33014C - page 3

MPASM USER'S GUIDE

DS33014C - page 4

Chapter 6: MPLIB - MPASM Librarian - This chapter describes the
purpose, use and CLI of the librarian utility provided as part of the MPASM
development environment. It will also provide examples and discussion.

Chapter 7: MPLINK - MPASM Linker- This chapter describes the pur
pose, use and CU of the linker utility provided with MPASM. It also
describes the script language provided to specify where relocated objects
should be placed in memory.

This document offers the following General Reference sections:

Appendix A: Object code formats, a brief overview.

Appendix B: Customer Support - Provides information about accessing
the Microchip Bulletin Board for the latest revisions of products, user
forums and non-urgent questions about applying Microchip products.

Appendix C: MPALC Conversion Guide. A short description designed to
assist users of MPALC to move their code to MPASM.

Appendix D: ASM17 Conversion Guide. A short description designed to
assist users of ASM17 to move their code to MPASM.

Appendix E: Error Messages. A list of the error messages generated by
MPASM, with descriptions.

Index: A keyword cross reference to important topics and keywords.

Quick Reference Guide: This section provides a quick reference to the
instruction set for each family of microprocessors as well as quick refer
ences to the directive and macro language, possibly for "tear-out."

© 1994 Microchip Technology Inc.

Terms

Chapter 1: Introduction

TABLE 1: DOCUMENTATION CONVENTIONS
Character Represents

Square Brackets (O) Optional Arguments

Angle Brackets (<>) Delimiters for special keys: <TAB>, <ESC>, or
additional options.

Pipe Character (I) Choice of mutually exclusive arguments; an OR
selection.

Lowercase characters Type of data

Italic characters A variable argument; it can be either a type of data
(in lowercase characters or a specific example (in
uppercase characters)

Courier Font User entered code or sample code.

In order to provide a common frame of reference, the following terms are
defined:

PIC16/17

PIC16/17 refers to any Microchip microcontroller, including the representa
tives of the PIC16CSX, PIC16CXX, and PIC17CXX families.

Source Code

This is the file of PIC16/17 instructions and MPASM directives and macros
that will be translated into executable code. This code is suitable for use
by a PIC16/17 or Microchip development system product like an emulator,
a simulator or a programmer. It is an ASCII file that can be created using
any ASCII text editor.

Assemble

The act of executing the MPASM macro assembler to translate source
code to relocatable object code.

Mnemonics

These are instructions that are translated directly into machine code.
These are used to perform arithmetic and logical operations on data
residing program or data memory of a PIC16/17. They also have the ability
to move data in and out of registers and memory as well as conditionally
branch to specified program addresses.

© 1994 Microchip Technology Inc. DS33014C- page 5

MPASM USER'S GUIDE

DS33014C ·page 6

Directives

Directives provide control of the assembler's operation by telling MPASM
how to treat mnemonics, data references and format the listing file. Direc
tives make coding easier and provide custom output according to specific
needs.

Macro

A macro consists of a sequence of assembler commands. Passing
arguments to a macro allows for flexible functionality.

Relocatable Object

A unit of intermediate code that may not have an absolute base address in
PIC16/17 memory. This base address may be assigned at link time.

Linking

Linking, or to link, refers to the translation of relocatable objects to machine
code suitable for execution by a PIC16/17. Absolute addresses may be
assigned to relocated objects at this time.

Listing

A listing is an ASCII text file that shows the machine code generated for
each assembly instruction, MPASM directive, or macro encountered in a
source file. An absolute listing file shows the collection of relocated
objects, together with their absolute addresses in PIC16/17 memory
(relative addresses will be shown in listings output directly from the macro
assembler).

PC
Any IBM or compatible Personal Computer.

DOS

Disk Operating System that provides the basis for most applications that
run on PCs.

© 1994 Microchip Technology Inc.

Chapter 1 : Introduction

Recommended Reading
This manual is intended to provide a reference to using the MPASM
development environment. It is not intended to replace reference material
regarding specific PIC16/17 microcontrollers. Therefore, you are urged to
read the Data Sheets for the PIC16/17 specified by your application.

If this is your first microcontroller application, you are encouraged to review
the Microchip "Embedded Control Handbook." You will find a wealth of
information about applying PIC16/17s. The application notes described
within are available from the Microchip BBS (see Appendix B).

All of these documents are available from your local sales office or from
your Microchip Field Application Engineer (FAE).

System Requirements
MPASM will run on any PC/AT or compatible computer, running DOS V4.1
or greater. The distribution is provided on 3.5", double density (720k)
floppy diskettes.

No special display or ancillary devices are required.

Warranty Registration

Installation

© 1994 Microchip Technology Inc.

Never use the original diskette as your working copy. Make a backup copy
of the MPASM distribution disk using the DOS "DISKCOPY" program, then
label the new copy and store the original in a safe place.

It is recommended that you execute MPASM from your hard disk. To do
this, create a new directory (MKDIR) for the assembler and copy all files
from the backup distribution diskette to that directory (MPASM, and its
accompanying utility programs and source examples are distributed at the
root level of the distribution diskette).

If you want to be able to run MPASM from any directory (without fully
qualifying the path to the executable program), you must add the new
directory to the DOS PATH environment variable.

For information on using DISKCOPY or any DOS command, and DOS
environment variables, refer to your IBM DOS User's Guide.

DS33014C - page 7

MPASM USER'S GUIDE

Compatibility Issues

DS33014C - page 8

MPASM is compatible with all Microchip development systems currently in
production. This includes MPSIM (PIC16/17 software core simulator),
PICMASTER, PRO MATE™ (the Microchip Universal Programmer), and
the Microchip low-cost development programmer.

It is not compatible with certain older Microchip In-Circuit Emulators.

Microchip Technology is sensitive to your investment in PIC16/17 firmware.
Whenever possible, we endeavor to protect that investment and remain
backward compatible as new products are developed and released.

MPASM is intended to be backward compatible with source code devel
oped with MPALC and ASM17. In order to provide the largest coverage in
backward compatibility, you may encounter small discrepancies in the
directive and macro syntax. Whenever practical, MPASM will attempt to
make a rational decision as to your coding intent, and flag older syntax as
warnings. Unfortunately, this is not always possible.

Specifically, MPASM no longer supports the"." (dot) directives within the
macro language. This is offset by the fact that almost all directives can be
executed within or without a macro.

As with any software product, users may have questions about the
MPASM Assembler. These questions can be posed to Microchip in the
following ways:

Contact your regional sales office. The locations, phone and fax
numbers are listed at the end of this manual.

Contact your local distributor or representative.

Connect worldwide to the Microchip BBS using the CompuServe®
communications network. In most cases a local call is your only
expense. The Microchip BBS connection does not use CompuServe
membership services, therefore you do not need CompuServe
membership to use the Microchip BBS.

The procedure to connect will vary slightly from country to country.
Please check with your local CompuServe agent for details if you have
a problem. CompuServe services allow multiple users at baud rates
up to 9600.

Contact the factory Applications Group.

© 1994 Microchip Technology Inc.

MICROCHIP MPASM USER'S GUIDE

Chapter 2. Environment and Usage

Introduction

Highlights

Terms

© 1994 Microchip Technology Inc.

MPASM provides a universal platform for developing code for PIC16/17s.
The product is represented by several programs: MPASM, MPUNK, and
MPUB. Each of these programs has its own Command Line Interface; the
former two can be accessed through the MPASM shell while MPUB can
only be accessed through its CU. This chapter is dedicated to describing
the MPASM CU and the MPASM shell.

The points that will be highlighted in this chapter are:

• MPASM Command Line Interface

• MPASM Shell Interface

• MPASM Input Files

• MPASM and Associated Output Files

Command Line Interface

Command Line Interface or CU refers to executing a program with options.
In the case of MPASM, executing MPASM with any command line options
or just the file name will invoke the assembler. In the absence of any
command line options, a prompted input interface (shell) will be executed.

Shell

The MPASM shell is a prompted input interface to the macro assembler
and linker. It is a DOS Text Graphics screen where the user fills in the
appropriate assembly and linker options.

Alpha Character

Alpha characters are those characters, regardless of case, that are nor
mally contained in the alphabet: (a, b, ... , z, A, B, ... , Z).

Alpha Numeric

Alpha Numeric characters include Alpha characters and numbers:
(0, 1, ... , 9).

DS33014C - page 9

MPASM USER'S GUIDE

Command Line Interface
MPASM can be invoked through the CU as follows:

MPASM [/<Option>[,/<Option> ...]] <file_name>

Where

/<Option> - refers to one of the command line options

<file_name> - is the file being assembled

For example, if test.asm exists in the current directory, it can be assembled
with following command:

MPASM /e /1 test

The assembler defaults (noted in Table 2) can be overriden with options
supplied to the CU:

• I <option> enables the option

• /<option>+ enables the option

• /<option>- disables the option

DS33014C - page 10 © 1994 Microchip Technology Inc.

Chapter 2: Environment and Usage

TABLE 2: ASSEMBLER COMMAND LINE OPTIONS

Option Default Description

? N/A Displays the MPASM Help Panel

c On Enables/Disables case sensitivity

e On Enable/Disable Error File

h N/A Displays the MPASM Help Panel

I On Enables/Disables the listing file generated from the
macro assembler. This would include relative
addresses in the case of relocatable objects.

m Off Enables/Disable macro expansion

0 N/A Sets the path for object files
/o<path>\object.file
where <path> describes the output directory, and
object. file to be created. For example:
/Oc:\temp\file.obj

p None Set the processor type:
/p<processor_type>
Where <processor_type> is one of [PIC16C54 I
PIC16C55 I PIC16C56 I PIC16C57 I PIC16C71 I
PIC16C84 I PIC17C42 I PIC16C58 I PIC16C64].

q Off Enable/Disable quiet mode (suppress screen output)

r Hex Defines default radix:
/r<radix>
where <radix> is one of [HEX I DEC I OCT]

x Off Enable/Disable cross reference in listing file.

a INHX8M Generate absolute .COD and hex output directly from
assembler.
/a<hex-format>
where <hex-format> is one of [INHX8M I INHX8S I
INHX32]

© 1994 Microchip Technology Inc. DS33014C • page 11

MPASM USER'S GUIDE

Shell Interface

DS33014C ·page 12

The MPASM Shell interface displays a screen in Text Graphics mode. On
this screen, you can fill in the name of the source file you want to assemble
and other information.

Source File

Type the name of your source file. The name can include a DOS path and
wild cards. If you use wild cards (one of• or?), a list of all matching files is
displayed for you to select from. A binary code file (<sourcename>.COD)
is automatically created.

Error File

An error file (<sourcename>.ERR) is created by default. To tum the error
field off, use the <t> to move to the YES and press <RET> to change it to
NO. The error file name can be changed by pressing the <TAB> key to
move to the shaded area and typing a new name. Wild cards are not
allowed.

Cross Reference File

Modify this field as for the Error File. It is used to optionally create a cross
reference file (<sourcename>.XRF). The name may be modified as for
Error File and again, wild cards are not allowed.

© 1994 Microchip Technology Inc.

Chapter 2: Environment and Usage

Listing File

Modify this field as for the Error File. It is used to optionally disable the
listing file. This may be a relative or absolute listing file, depending on
whether or not the Linker is invoked. The output file name may be modi
fied as for the Error file.

HEX Dump Type

Set this value to generate the desired output format from the Linker.
Changing this value is accomplished by moving to the field with the d->
key and pressing the <RET> key to scroll through the available options. To
change the HEX file name press the <TAB> key to move the shaded area,
and type in the new name.

Assemble to Object File

Changing this option will generate the relocatable object code that can be
input to the linker. It is modified as for the Error File. Turning it off will
have the effect of generating no object file at all.

Source Code Formats

© 1994 Microchip Technology Inc.

Code written for previous Microchip assemblers (MPALC and ASM17)
need not be rewritten according to these standards.

The source code file is created using any ASCII Text File editor (the editor
included with the PICMASTER Source Level Debugger was designed for
this purpose). It should conform to the following basic guidelines.

Each line of the source file may contain up to four types of information:

• labels
• mnenonics
• operands
• comments

The order and position of these are important. Labels must start in column
one. Mnemonics may start in column two or beyond. Operands follow the
mnemonic. Comments may follow the operands, mnenonics or labels, or
can start in any column if the first non space character is either an asterisk
(*) or a semi-colon (;). The maximum column width is 255 characters.

DS33014C- page 13

MPASM USER1S GUIDE

DS33014C ·page 14

One or more spaces must separate the label and the mnemonic, or the
mnemonic and the operand(s). Operands may be separated by a comma.
For example:

EXAMPLE 1: SAMPLE MPASM SOURCE CODE

Sample MPASM Source Code. It is for illustration only.

list p=16C54,r=HEX

ning

erg
goto

erg
starts here

Start

Labels

movlw
movlw
goto

end

Oxlff
Start

OxOOO

OxOa
OxOb
start

Reset Vector
Go back to the begin-

The main line code

Perform some PIC16/17 code

; do it forever ...

All labels must start in column 1. It may be followed by a colon(:), space,
tab or the end of line. Comments may also start in column 1 if one of the
valid comment denotations is used.

Labels must begin with an alpha character or an under bar U and may
thereafter contain alpha numeric characters and the under bar and the
question mark.

Labels may be up to 31 characters long. By default they are case sensi
tive, but case sensitivity may be overridden by command line or directive
options. If a colon is used when defining a label it is treated as a label
operator and not part of the label itself.

Mnemonics

Assembler instruction mnemonics, assembler directives and macro calls
must begin in at least column 2. If there is a label on the same line, they
must be separated from that label by a colon or by one or more spaces or
tabs.

Operands

Operands must be separated from mnemonics by one or more spaces or
tabs. Operand lists must be separated by commas. If the operand re
quires a fixed number of operands, anything on the line after the operands
is ignored. Comments are allowed at the end of the line. If the mnemonics
permits a variable number of operands, the end of the operand list is
determined by the end of the line or the comment.

© 1994 Microchip Technology Inc.

Chapter 2: Environment and Usage

Comments
Comments which are on a line by themselves must start with either of the
comment characters (* or ;). Comments at the end of a source line must
be separated from the rest of the line by one or more spaces or tabs.
Anything encountered on the line following the comment character is
ignored until the end of line.

Files Used by MPASM and Utility Functions
There are a number of default file extensions used by MPASM and the
associated utility functions.

TABLE 3: MPASM DEFAULT FILE EXTENSIONS

Extension Purpose

.ASM Default source code file extension input to MPASM:
<source_name>.ASM

.OBJ Default output extension for relocatable objects from MPASM:
<source_name>.OBJ

.LST Default output extension for listing files generated from either the
assembler or MPASM or MPLINK:

<source_name>.LST

.ERR Default output extension from MPASM for specific error files:
<source_name>.ERR

.MAP Default output extension from MPLINK for map output:
<source_name>.MAP

.HEX Default output extension from MPASM or MPLINK for Intel Hex
object code (see Appendix A)

<source_namel .HEX

.HXU.HXH Default output extensions from MPASM or MPLINK for separate
low byte and high byte Intel Hex format files:

<source_name>.HXL, <source_name>.HXH

.LIB Default extension for library files created by MPLIB, and
referenced by MPLINK:
<source_name>.LIB

.LNK Default extension for linker script files: <source_name>. LNK

.COD Default output extension for the symbol and debug file. This file
may be output from MPASM or MPLINK:

<source_name>.COD

© 1994 Microchip Technology Inc. . DS33014C - page 15

MPASM USER'S GUIDE

Object Code Formats
MPLINK and MPASM (with absolute addresses) are capable of producing
a number of different output formats. See Appendix A.

Listing File Format

Sample MPASM Listing File (.LST)

MPASM 00.00.64 Beta 10-22-1993 13:21:21 PAGE

LOC OBJECT CODE LINE SOURCE TEXT

0001
0002 Sample MPASM Source Code. It is for illustration only.
0003

OlFF OAOO

0000 OCOA
0001 OCOB
0002 OAOO

MPASM 00.00.64 Beta

SYMBOL TABLE

LABEL

Start

MEMORY USAGE MAP ('X'

0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016

Start

VALUE

0000

Used,

0000 xxx--- ---- ----

0040

0180

list
org
goto

org

movlw
movlw
goto

end

= Unused)

01co ---- -------- ----X

All other memory blocks unused.

Errors 0
Warnings 0

DS33014C - page 16

p=l6c54,r=HEX
Oxlff Reset Vector
Start Go back to the beginning

OxOOO The main line code starts

OxOa Perform same PIC16/17 code
Ox Ob
Start do it forever ...

10-22-1993 13:21:21 PAGE 2

© 1994 Microchip Technology Inc.

Chapter 2: Environment and Usage

The listing file format produced by MPASM is straight forward:

The product name and version, the assembly date and time, and the page
number appear at the top of every page.

The first column of numbers, four characters wide, contains the base
address in memory where the code will be placed. The second column,
also four characters wide, is reserved for the machine instruction. This is
the code that will be executed by the PIC16/17. The third column lists the
associated source file line number for this line. The remainder of the line is
reserved for the source code line that generated the machine code.

The symbol table lists all symbols in the program, and where they are
defined. The memory usage map gives a graphical representation of
memory usage. 'X' marks a used location and '-' marks memory that is not
used by this object.

Error File Format (.ERR)

© 1994 Microchip Technology Inc.

MPASM can generate an error file by supplying the /e option. This file can
be used to provide useful information when debugging your code. The file
name is followed by the line number of the offending line. A description of
the error encountered follows. (The PICMASTER Source Level Debugger
will automatically open this file in the case of an error). The error file looks
like this:

Error EXAMPLE.ASM 7 :Undefined argument (start in get arg)

Appendix E alphabetically describes the error messages generated by
MPASM.

DS33014C - page 17

MPASM USER'S GUIDE

DS33014C - page 18 © 1994 Microchip Technology Inc.

MICROCHIP MPASM USER'S GUIDE

Chapter 3. Directive Language

Introduction

Highlights

Terms

© 1994 Microchip Technology Inc.

This chapter describes the MPASM directive language.

Directives are assembler commands that appear in the source code but
are not translated directly into opcodes. They are used to control the
assembler: its input, output, and data allocation.

Many of the assembler directives have alternate names and formats.
These may exist to provide backward compatibility with previous assem
blers from Microchip and to be compatible with individual programming
practices. If portable code is desired, it is recommended that programs be
written using the specifications contained within this document.

There are four basic types of directives provided by MPASM.

The points that will be highlighted in this chapter are:

Data Directives

Listing Directives

• Control Directives

• Macro Directives

Data Directives

Data Directives are those that control the allocation of memory and provide
a way to refer to data items symbolically, that is, by meaningful names.

Listing Directives

Listing Directives are those directives that control the MPASM listing file
and format. They allow the specification of titles, page ejects and other
listing control.

Control Directives

Control directives permit sections of conditionally assembled code.

Macro Directives

These directives control the execution and data allocation within macro
body definitions.

DS33014C - page 19

MPASM USER'S GUIDE

TABLE 4: DIRECTIVE SUMMARY

Directive Description Syntax

CBANK Future Feature

CBLOCK Define a Block of Constants cblock [<expr>]

CONSTANT Declare Symbol Constant constant <label>[=<expr>, ... ,<label>[=<expr>]]

DATA Create Numeric and Text Data data <expr>,[,<expr>, ... ,<expr>]

DA TA "text_string>[," <text_string>", ...]

DB Declare Data of One Byte db <expr>[,<expr>, ... ,<expr>]

#DEFINE Define a Text Substitution Label define <name> [<value>} define <name>

[<arg>, ... ,<arg>] <value>

ow Declare Data of One Word dw <expr>[,<expr>, ... ,<expr>]

ELSE Begin Alternative Assembly Block to IF else

END End Program Block end

ENDC End an Automatic Constant Block endc

ENDIF End conditional Assembly Block endif

ENDM End a Macro Definition endm

ENDW End a While Loop endw

EQU Define an Assembly Constant <label> equ <expr>

ERROR Issue an Error Message error "<text_string>"

EXITM Exit from a Macro exitm

EXPAND Expand Macro Listing expand

FILL Specify Memory Fill Value fill <expr>

IF Begin ConditionallyAssembled Code Block if <expr>

IFDEF Execute If Symbol has Been Defined ifdef <label>

IFNDEF Execute If Symbol has not Been Defined ifdef <label>

INCLUDE Include Additional Source File include <<include_file>> <include_file>"

LIST Listing Options list [<list_option>, ... ,<list_option>]

LOCAL \Declare Local Macro Variable local <label>[,<local>]

MACRO Declare Macro Definition label macro [<arg>, ... ,<arg>]

MESSG Create User Defined Message messg "<message_text>

NOEXPAND Tum off Macro Expansion noexpand

(Cont.)

DS33014C - page 20 © 1994 Microchip Technology Inc.

Chapter 3: Directive Language

NOLIST Tum off Listing Output no list

ORG Set Program Origin <label> org <expr>

PAGE Insert Listing Page Eject page

PROCESSOR Set Processor Type processor <processsor_type>

RADIX Specify Default Radix radix <defaultJadix>

RES Reserve Memory res <mem_unitS>

SET Define an Assembler Variable <label> set <expr>

SPACE Insert Blank Listing Lines space <expr>

SUBTITLE Specify Program Subtitle subtitl "<sub_text>"

TITLE Specify Program Title title "<title_text>"

#UNDEFINE Delete a Substitution Label #undefine <label>

VARIABLE Declare Symbol Variable variable <label>[=<expr>, •.• ,<label>[=<expr>]]

WHILE Perform Loop While Condition is True while<expr>

endw

Directive Details
The remainder of this chapter is dedicated to providing a detailed descrip
tion of the directives supported by MPASM. Each definition will show:

Syntax

Description

Example

A table of the MPASM directives is provided as a quick reference at the
end of this document.

CBANK - Future Feature

© 1994 Microchip Technology Inc.

Syntax

Description

Example

See Also

DS33014C- page 21

MPASM USER1S GUIDE

CBLOCK - Define a Block of Constants

Syntax

cblock [<expr>]

Description

Define a list of named constants. Each is assigned a value of one higher
than the last one. The purpose of this directive is to assign address offsets
to many labels. The list of names end when and ENDC directive is encoun
tered.

<expr> indicates the starting value for the first name in the block. If no
expression is found, the first name will receive a value one higher than the
final name in the previous CBLOCK or the current program counter.

Multiple names may be given on a line, separated by commas.

Example

cblock Ox20

endc

name_l, name_2
name_3, name_4

See Also

ENDC

name_l will be
assigned 20
name_2, 21 and so on
name_4 is assigned 23.

CONSTANT - Declare Symbol Constant

Syntax

DS33014C - page 22

constant <label>[=<expr>,

... ,<label>[=<expr>]

Description

<label> is a valid MPASM label, and <expr> is a valid MPASM expres
sion. The expression must be fully resolvable at the time of the assignment.

The CONSTANT directive creates symbols for use in MPASM expressions.
Contants may not be reset after having once been initialized. This is the
principal difference between symbols declared as CONSTANT and those
declared as VARIABLE, or created by the SET directive. Otherwise, con
stants and variables may be used interchangeably in expressions.

© 1994 Microchip Technology Inc.

Chapter 3: Directive Language

Example
variable RecLength=64

constant BufLength=512, MaxMem

MaxMem=RecLength+BufLength

See Also

SET

VARIABLE

Set Default
RecLength

Init BufLength
; RecLength may

be reset later
in RecLength=l28

;CalcMaxMem

DATA - Create Numeric and Text Data

© 1994 Microchip Technology Inc.

Syntax

data <expr>, [,<expr>, ... ,<expr>]
data "<text_st,ring> [, "<text_string>", ...]

Description

Initialize one or more words of program memory with data. The data may
be in the form of constants, relocatable or external labels or expressions of
any of the above.

The data may also consist of ASCII character strings, <text_string>,
enclosed in single quotes for one character, or double quotes for strings.
Single character items are placed right justified into a whole word, while
strings are packed two to a word with the first character in the most signifi
cant byte of the word. If an odd number of characters are given in a string,
the final byte is zero filled.

All of the ANSI escape characters may be used in either of the latter two
data formats.

Example

data reloc_label+lO con,stants
data 1,2,ext_label constants, externals
data "testing 1,2,3" text string
data 'N' single character
data start_of_program relocatable label

See Also

ow DB

DS33014C - page 23

MPASM USER'S GUIDE

DB - Declare Data of One Byte

Syntax

DS33014C - page 24

db <expr>[,<expr>, ... ,<expr>]

Description

Reserve memory bytes, 8-bits of value expression. Multiple expressions
continue to fill bytes consecutively until the end of expressions. Should
there be an odd number of expressions, the last byte will be null filled.

Example

db 't', OxOf, 'e', OxOf, 's', OxOf, 't', '\n'

See Also

DATA ow

© 1994 Microchip Technology Inc.

Chapter 3: Directive Language

#DEFINE - Define a Text Substitution Label

© 1994 Microchip Technology Inc.

Syntax

#define <name.> [<string>]

Description

This directive defines a text substitution string. Wherever <name> is
encountered in the assembly code, <string> will be substituted and
evaluated if possible.

Using the directive with no <value> causes a definition of <name> to be
noted internally and may be tested for using the #IFDEF directive.

This directive emulates the ANSI 'C' standard for #define. Symbols defined
with this method are not available for viewing using the PICMASTER or
MPSIM.

Example

#define length
#define control
#define position

test_label

See Also

IFDEF
IFNDEF
#UN DEFINE

dw
bsf

20
Oxl9,7
(X,Y,Z) (y- (2 * Z +X))

position(l, length, 512)
control ; set bit 7 in fl9

DS33014C - page 25

MPASM USER'S GUIDE

DW - Declare Data of One Word

Syntax

dw <expr>[,<expr>, ... ,<expr>]

Description

Reserve memory words for data, initializing that space to specific values.
<expr> is a variable number of valid MPASM expressions. Values are
stored into successive memory locations and the location counter is
incremented by one. Expressions may be literal strings and are stored as
described in the DATA directive.

Example

dw 39, "diagnostic 39", (d_list*2+d_offset}
dw diagbase-1

See Also

DATA DB

ELSE - Begin Alternative Assembly Block to IF

Syntax

DS33014C - page 26

else

Description

Used in conjunction with an IF directive to provide an alternative path of
assembly code should the IF evaluate to false. ELSE may be used inside
a regular program block or macro.

Example

speed macro rate
if rate < 50
dw slow
else
dw fast
endif
endm

See Also

IF ENDIF

© 1994 Microchip Technology Inc.

Chapter 3: Directive Language

END - End Program Block

Syntax

end

Description

Indicates the end of the program. After program termination, the symbol
table is dumped to the listing file.

Example

start
executable code

end end of instructions

See Also

NIA

ENDC - End an Automatic Constant Block

© 1994 Microchip Technology Inc.

Syntax

endc

Description

ENDC terminates the end of a CBLOCK list. It must be supplied to terminate
the list.

See Also

CBLOCK

DS33014C - page 27

MPASM USER'S GUIDE

ENDIF - End Conditional Assembly Block

Syntax

end if

Description

This directive marks the end of a conditional assembly block. ENDIF may
be used inside a regular program block or macro.

See Also

IF ELSE

ENDM - End a Macro Definition

DS33014C - page 28

Syntax

endm

Description

Macro definitions begin with a MACRO directive, and are terminated by the
ENDM directive.

Example

make_table macro argl, arg2
dw "argl", 0 null terminate table name
resv arg2 ; reserve sto.rage

endm

See Also

MACRO EXITM

© 1994 Microchip Technology Inc.

Chapter 3: Directive Language

ENDW - End a While Loop

Syntax

endw

Description

ENDW terminates a WHILE loop. As long as the condition specified by the
WHILE directive remains true, the source code between the WHILE direc
tive and the ENDW directive will be repeatedly expanded in the assembly
source code stream. This directive may be used inside a regular program
block or macro.

Example

See the example for while

See Also

WHILE

EQU - Define an Assembler Constant

© 1994 Microchip Technology Inc.

Syntax

<label> equ <expr>

Description

<expr> is a valid MPASM expression. The value of the expression is
assigned to <label>.

Example

four equ 4

See Also

SET #DEFINE

assigned the numeric value of
to label four

DS33014C - page 29

MPASM USER1S GUIDE

ERROR - Issue an Error Message

Syntax

error "<text_string>n

Description

When conditions dictate that the MPASM assembler encounters an ERROR
directive, the <text_string> is printed in a format identical to any
MPASM error message. <text_string> may be from one to eighty
characters.

Example

error_checking macro argl
if argl >= 55 ; if arg is out of range

error "error_checking-01 arg out of rangen
endif

endm

See Also

MESSG

EXITM - Exit from a Macro

DS33014C - page 30

Syntax

exitm

Description

Forces immediate return from macro expansion during assembly. The
effect is the same as if an ENDM directive had been encountered.

Example

macro fileReg test
if filereg == 1 check for valid file

exitm
else

error "bad file assignment"
endm

See Also

MACRO ENDM

© 1994 Microchip Technology Inc.

Chapter 3: Directive Language

EXPAND - Expand Macro Listing

Syntax

expand

Description

Causes all macros to be fully expanded in the listing file. This directive is
roughly equivalent to the /m MPASM command line option, but may be
limited in scope by the occurrence of a subsequent NOEXPAND.

See Also

MACRO NOEXPAND

FILL - Specify Memory Fill Value

Syntax

© 1994 Microchip Technology Inc.

fill <expr>

Description

The purpose of the FILL directive is to control the value placed in unused
code locations of PROMs and ROMs. The FILL directive enables the fill
function and specifies the fill value. This means that the linker output code
files will contain record values for these locations. Unused code gaps are
created by specifying address advances with ORG and RES directives.

The fill directive can be invoked multiple times to cause different values to
be used. If no FILL directives are encountered, then no data records are
generated for the unused code locations.

Example

fill Oxl009 fill with a constant

See Also

ow ORG RES

DS33o14C- page 31

MPASM USER'S GUIDE

IF - Begin Conditionally Assembled Code Block

Syntax

DS33014C ·page 32

if <expr>

Description

Begin execution of a conditional assembly block. If <expr> evaluates to
true, the code immediately following the if will assemble. Otherwise,
subsequent code is skipped until an ELSE directive or an ENDIF directive
is encountered.

Other conditions that may be checked:

IFABS - If <label> is absolute

• IFNDEF- If <label> is not defined

An expression that evaluates to zero is considered logically FALSE. An
expression that evaluates to any other value is considered logically TRUE.
The IF and WHILE directives operate on the logical value of an expres
sion. A relational TRUE expression is guaranteed to return a value of one;
FALSE a value of zero.

Example

if version
movlw
movwf

else
movlw
movwf

endif

See Also

ELSE ENDIF

100; check current version
OxOa
io_l

OxOla
io_2

© 1994 Microchip Technology Inc.

Chapter 3: Directive Language

IFDEF - Execute If Symbol has Been Defined

Syntax

if def <label>

Description

<label> is a valid MPASM label. If the label has been previously defined,
usually by issuing a #DEFINE directive or by setting the value on the
MPASM command line, the conditional path is taken. Assembly will
continue until a matching ELSE or ENDIF directive is encountered.

Example(s)

#define testing 1

if def testing
<execute test code>

endif

See Also

#DEFINE ELSE ENDIF

IFNDEF #UNDEFINE

set testing "on"

this path would
be executed.

© 1994 Microchip Technology Inc. DS33014C- page 33

MPASM USER'S GUIDE

IFNDEF - Execute If Symbol has not Been Defined

Syntax

DS33014C - page 34

ifdef <label>

Description

<label> is a valid MPASM label. If the label has not been previously
defined, or has been undefined by issuing an #UNDEFINE directive, then
the code following the directive will be assembled. Assembly will be
enabled or disabled until the next matching ELSE or ENDIF directive is
encountered.

Example

#define testingl

#undef ine testingl
ifndef testingl

endif

end

See Also

#DEFINE ELSE
IFDEF #UNDEFINE
ENDIF

set testing on

set testing off
if not in testing mode
execute
this path

end of source

© 1994 Microchip Technology Inc.

Chapter 3: Directive Language

INCLUDE - Include Additional Source File

© 1994 Microchip Technology Inc.

Syntax

include <<include_f ile>>
include "<include_f ile>"

Description

The specified file is read in as source code. Upon end-of-file, source code
assembly will resume from the original source file. Up to six levels of
nesting is permitted. <include_file> may be enclosed in quotes or
angle brackets. In either case, only the current working directory will be
searched, unless a fully qualified path is specified.

Example

include "c:\sys\sysdefs.inc"
include <regs.h>

See Also

NIA

system defs
register defs

DS33014C - page 35

MPASM USER'S GUIDE

LIST - Listing Options

Syntax

DS33014C - page 36

list [<list_option>, ... , <list_option>]

Description

Occurring on a line by itself, the <list> directive has the effect of turning
listing output on, if it had been previously turned off. Otherwise, one of the
following list options can be supplied to control the assembly process:

TABLE 5: LIST DIRECTIVE OPTIONS

Option Default Description

C;nnn BO Set column width.

n;nnn 59 Set lines per page.

t;ONIOFF OFF Truncate lines of listing (otherwise wrap).

p;<type> None Set processor type:
PIC16C54, PIC16C55, PIC16C56, PIC16C57,
PIC16C71, PIC16C84, PIC17C42, PIC16C58,
PIC16C64.

r;<radix> hex Set default radix: hex, dee, oct.

X;ONIOFF Off Tum macro expansion on or off.

See Also

NOLIST

© 1994 Microchip Technology Inc.

Chapter 3: Directive Language

LOCAL - Declare Local Macro Variable

© 1994 Microchip Technology Inc.

Syntax

local <label>[,<local>]

Description

<label> is a valid MPASM label. It may be a label that exists outside the
context of the macro definition. The directive declares that the specified
data elements are to be considered in local context to the macro.

If the macro is called recursively, each invocation will have its own local
copy.

Example

<main code segment>

len equ 10 global version
size equ 20 note that a local variable

may now be created and modi-
fied
test macro size

local len, label local len and label
len set size modify local len

label res len reserve buffer
len set len-20
endm end macro

See Also

MACRO ENDM

DS33014C - page 37

MPASM USER'S GUIDE

MACRO - Declare Macro Definition

Syntax

label macro [<arg>, ... , <arg>]

Description

A macro is a sequence of instructions that can be inserted in the assembly
source code by using a single macro call. The macro must first be defined,
then it can be referred to in subsequent source code.

A macro can call another macro, or may call itself recursively.

Please refer to the chapter "Macro Language" for more information.

Example

Read macro device, buffer, count
movlw device
movwf ram 20

movlw buffer
movwf ram 21
movlw count

callsys_21

endm

See Also

ENDM
IF
ENDIF

LOCAL
ELSE
EXITM

buffer address

byte count

read file call

MESSG - Create User Defined Message

Syntax

DS33014C - page 38

messg "<message_text>"

Description

Causes an informational message to be printed in the listing file. The
message text can be up to 255 characters. Issuing a MESSG directive does
not set any error return codes.

© 1994 Microchip Technology Inc.

Chapter 3: Directive Language

Example

macro mssg_macro

messg "mssg_macro-001 invoked without argument•

endm

See Also

ERROR

NOEXPAND - Turn off Macro Expansion

Syntax

no expand

Description

Tums off macro expansion.

See Also

EXPAND

NOLIST - Turn off Listing Output

Syntax

© 1994 Microchip Technology Inc.

NOLI ST

Description

Tum off listing file output.

See Also

LIST

DS33014C - page 39

MPASM USER'S GUIDE

ORG - Set Program Origin

Syntax

<label> org <expr>

Description

Set the program origin for subsequent code at the address defined in
<expr>. MPASM outputs relocatable object code, while MPLINK will
place the code at the specified address. If <label> is specified, it will be
given the value of the <expr>. The default origin is zero.

Example

int_l org Ox20
; Vector 20 code goes here

int_2 org int_l+OxlO

See Also

RES

FILL

Vector 30 code goes here

PAGE - Insert Listing Page Eject

Syntax

page

Description

Inserts a page eject into the listing file.

See Also

LIST TITLE

DS33014C - page 40 © 1994 Microchip Technology Inc.

Chapter 3: Directive Language

PROCESSOR - Set Processor Type

Syntax

processor <processor_ type>

Description

Set the processor type to <processor_ type>:
[16C54 I 16C55 I 16C56 I 16C57 I 16C71 I 16C84 I 17C42]

Example

processor 16C54

See Also

LIST

RADIX - Specify Default Radix

Syntax

radix <default_radix>

Description

Sets the default radix for data expressions. The default radix is hex. Valid
radix are: hex, dee, or oe t.

Example

radix dee

See Also

LIST

© 1994 Microchip Technology Inc. DS33014C - page 41

MPASM USER'S GUIDE

RES - Reserve Memory

Syntax

res <mem_units>

Description

The RES directive is a relative org command. The command causes the
program counter to be advanced from its current location by the value
specified in <mem_uni ts>.

Example

buffer res 64 reserve 64 words of storage

See Also

ORG FILL

SET - Define an Assembler Variable

DS33014C - page 42

Syntax

<label> set <expr>

Description

<label> assumes the value of the valid MPASM expression specified by
<expr>. The SET directive is functionally equivalent to the EQU directive
except that SET values may be altered by SET directives.

Example

area set 0
width set Ox12
length set Ox14
Area set length * width
length set length + 1

See Also

EQU

© 1994 Microchip Technology Inc.

Chapter 3: Directive Language

SPACE - Insert Blank Listing Lines

Syntax

space <expr>

Description

Insert <expr> number of blank lines into the listing file.

Example

space 3 ;Inserts three blank lines

See Also

LIST

SUBTITLE - Specify Program Subtitle

Syntax

subtitl "<sub_text>"

Description

<sub_text> is an ASCII string enclosed in double quotes, 60 characters
or less in length. This directive establishes a second program header line
for use as a subtitle in the listing output.

Example

subtitle "diagnostic section"

See Also

TITLE

© 1994 Microchip Technology Inc. DS33014C - page 43

MPASM USER'S GUIDE

TITLE - Specify Program Title

Syntax

title "<title_text>"

Description

<title_text> is a printable ASCII string enclosed in double quotes. It
must be 60 characters or less in length. This directive establishes the text
to be used in the top line of the listing page.

Example

title "operational code, rev 5.0"

See Also

LIST SUBTITL

#UNDEFINE - Delete a Substitution Label

DS33014C - page 44

Syntax
#undef ine <label>

Description

<label> is an identifier previously defined with the #DEFINE directive. It
must be a valid MPASM label. The symbol named is removed from the
symbol table,

Example

#define

#undefine

See Also

#DEFINE
INCLUDE

length

length

IFDEF
IFNDEF

20

© 1994 Microchip Technology Inc.

Chapter 3: Directive Language

VARIABLE - Declare Symbol Variable
Syntax

© 1994 Microchip Technology Inc.

variable <label>[=<expr>, ... ,<label>[=<expr>]

Description

<label> is a valid MPASM label, arid <expr> is a valid MPASM expression.
The expression must be fully resolvable at the time of the assignment.

The VARIABLE directive creates symbols for use in MPASM expressions.
Variables differ from constants may be used interchangeably in expres
sions.

The VARIABLE directive creates a symbol that is functionally equivalent to
those created by the SET directive. The difference being that the VARI
ABLE directive does not require that symbols be initailized when they are
declared.

Example

Please refer to the CONST ANT example.

See Also

SET CONSTANT

DS33014C - page 45

MPASM USER'S GUIDE

WHILE - Perform Loop While Condition is True

Syntax

DS33014C - page 46

while <expr>

endw

Description

<expr> is a valid MPASM expression that controls the number of times the
loop is performed. An expression that evaluates to zero is considered
logically FALSE. An expression that evaluates to any other value is
considered logically TRUE. The IF and WHILE directives operate on the
logical value of an expression. A relational TRUE expression is guaranteed
to return a value of one; FALSE a value of zero.

Example

test mac macro count
variable i
i = 0

start

while i < count

movlw i
i += 1

endw
endm

test mac 5
end

See Also

ENDW

IF

© 1994 Microchip Technology Inc.

MICROCHIP MPASM USER1S GUIDE

Chapter 4. Macro Language

Introduction

Highlights

Terms

© 1994 Microchip Technology Inc.

Macros are user defined sets of instructions and directives that will be
included in-line with the assembler source code whenever the macro is
invoked.

Macros consist of sequences of assembler instructions and directives.
They can be written to accept arguments, making them flexible. Their
advantages are:

Higher levels of abstraction, improving readability and reliability.

Consistent solutions to frequently performed functions.

Simplified changes.

Improved testability.

Applications might include, creating complex tables, frequently used code
and complex operations.

The points that will be highlighed in this chapter are:

Macro Syntax

Text Substitution

Local Symbols

Recursive Macros

Macro Usage

Examples

Macro

As define before, a macro is a collection of assembler instructions that are
included in the assembly code when the macro is invoked by the source
code. Macros must be defined before their first invocation; forward refer
ences to macros are not allowed.

All statements following the MACRO directive (see Chapter 5) are part of the
macro definition. Lines consisting of a comment only are not saved in the
macro definition. Labels used within the macro must be local to the macro
so the macro can be called repetitively.

DS33014C - page 47

MPASM USER'S GUIDE

Macro Syntax

DS33014C - page 48

Local Label

A local label is one that is defined with the LOCAL directive (see
Chapter 5). These labels are particular to a given instance of the macro's
instantiation. In other words, the symbols and labels that are declared as
local are purged from the symbol table when the ENDM macro is encoun
tered.

Recursion

This is the concept that a macro, having been defined, can call itself.
Great care should be taken when writing recursive macros; it is easy to get
caught in an infinite loop where there will be no exit from the recursion.

MPASM macros are defined according to the following syntax:

<label> macro [<arg>, ... , <arg>]

endm

Where <label> is a valid MPASM label and <arg> are any number of
optional arguments supplied to the macro. The values assigned to these
arguments at the time the macro is invoked will be substituted wherever
the argument name occurs in the body of the macro.

The body of a macro may be comprised of MPASM directives, PIC16/17
assembly instructions, or MPASM Macro Directives (LOCAL for example).
Refer back to Chapter 5. MPASM continues to process the body of the
macro until a EXITM or ENDM directive is encountered

© 1994 Microchip Technology Inc.

Chapter 4: Macro Language

Macro Directives
As noted in Chapter 5, there are a few directives that are unique to macro
definitions. They make no sense out of the macro context (refer to Chapter
5 for details concerning these directives):

• MACRO

• LOCAL

EX I TM

ENDM

When writing macros, you can use any of these directives PLUS any other
directives supported by MPASM.

Text Substitution

© 1994 Microchip Technology Inc.

A variety of string replacement and parsing patterns may appear within the
body of a macro. They may be used only within the body of a macro.

Command Description

<arg> Substitute the argument text supplied as part of the
macro invocation.

#v (<label>) Returns the integer value of the simple <label>.
Typically, used to create unique variable names with
common prefixes or suffixes.

DS33014C - page 49

MPASM USER'S GUIDE

Arguments may be used anywhere within the body of the macro, except as
part of normal expression. For example, the following macro:

define_table
variable

while

entry#v(a)

a += 1

endw

endm

would generate:

entryO
entryl
entry2
entry3

when invoked.

dw
dw
dw
dw

0
0
0
0

macro
a = 0

a < 3

dw 0

Recursive Macros

Macro Usage

DS33014C - page 50

Macros may invoke themselves. This is known as recursion. Care should
be exercised, as in all cases of recursion, to avoid infinite loops. Macros
called recursively will generate their own local variables if the LOCAL
directive is used (see Chapter 3).

Once the macro has been defined, it can be invoked at any point within the
source module by using a macro call, as described below.

<ma·cro_name> [<arg>, ... , <arg> l

Where <macro_name> is the name of a previously defined macro, and
arguments are supplied, as required.

The macro call itself will not occupy any locations in memory. However the
macro expansion will begin at the current m~mory location. Commas may
be used to reserve an argument position. In this case, the argument will be
NULL. The argument list is terminated by white space or a semicolon
colon.

The EXITM directive (see Chapter 3) provides an alternate method for
terminating a macro expansion. During a macro expansion, this directive
causes expansion of the current macro to stop and all code between the
EXITM and the ENDM directives for this macro to be ignored. If macros are
nested, EXITM causes code generation to return to the previously level of
macro expansion.

© 1994 Microchip Technology Inc.

Examples

© 1994 Microchip Technology Inc.

Chapter 4: Macro Language

Eight by Eight Multiply

subtitl umacro de£.L11lLj_on.s"
page

multiply - eight by eight multiply macro, executing
in program memory. optimized for speed, straight
line code.

written for the PIC17C42.

multiply macro argl, arg2, dest_hi, dest_lo

local i
variable i

movlw argl
movwf mulplr

movlw arg2

clrf de st hi
clrf de st_ lo

bcf _carry

while i < 8
addwf de st hi
rrcf de st hi -
rrcf de st_ lo

i += 1
endw

endm

0
establish local index variable
and initialize it.

setup multiplier

setup multiplicand in w reg

clear the destination regs

clear carry for test

do all eight bits
then add multiplicand
shift right through carry
shift right again, snag carry
if set by previous rotate
increment loop counter
break after eight iterations
end of macro.

The macro declares all of the required arguments. In this case, there are
four. The LOCAL directive then establishes a local variable "i" that will be
used as an index counter. It is initialized to zero.

A number of assembler instructions are then included. When the macro is
executed, these instructions will be written in line with the rest of the
assembler source code.

DS33014C - page 51

MPASM USER'S GUIDE

DS33014C - page 52

The macro writes the multiplication code using an algorithm that uses right
shifts and adds for each bit set in the eight bits of the multiplier. The
WHILE directive is used for this function, continuing the loop until 'i' is
greater than or equal to eight.

The end of the loop is noted by the ENDW directive. Execution continues
with the statement immediately following the ENDW when the WHILE
condition becomes TRUE. The entire macro is terminated by the ENDM

directive.

Constant Compare

For further example, if the following macro were written:

include "16cxx.reg"

compare file to constant and jump if file
>= constant.

cfl _jge macro file, con, jump_ to
movlw con & OX ff
subwf file, w
btfsc status, carry
goto jump_ to
endm

and invoked by:

cfl_jge switch_val, max_switch, switch_on

it would produce:

movlw max_switch & Oxff
subwf switch_val, w
btfsc status, carr
goto switch_on

© 1994 Microchip Technology Inc.

MICROCHIP MPASM USER'S GUIDE

Chapter 5. Expression Syntax and Operation

Introduction

Highlights

Terms

© 1994 Microchip Technology Inc.

This chapter describes various expression formats, syntax, and operations
used by MPASM.

The points that will be highlighted in this chapter are:

Text Strings

Numeric Constants and Radix

Arithmetic Operators and Precedence

High I Low Operators

Expressions

Expressions are used in the operand field of the source line and may
contain constants, symbols, or any combination of constants and symbols
separated by arithmetic operators. Each constant or symbol may be
preceded by a plus or minus to indicate a positive or negative expression.

Operators

Operators are arithmetic symbols, like the plus sign"+" and the minus sign
"-",that are used when forming well defined expressions. Each operator
has an assigned precedence.

Precedence

Precedence is the concept that some elements of an expression get
evaluated before others. In general, precedence is established from left to
right, and expressions within parentheses are always evaluated first.

Radix

Radix is the base numbering system that the assembler is supposed to use
when evaluating expressions. The default radix is hexadecimal (base 16).
You can change the default radix (See Chapter 5) and override the default
with certain radix override operators. These are described in this chapter.

DS33014C - page 53

MPASM USER'S GUIDE

Text Strings

DS33014C - page 54

A "string" is a sequence of any valid ASCII character (of the decimal range
of O to 127) enclosed by double quotes.

Strings may be of any length that will fit within a 132 column source line. If
a matching quote mark is found, the string ends. If none is found before
the end of the line, the string will end at the end of the line. While there is
no direct provision for continuation onto a second line, it is generally no
problem to use a second DW directive for the next line.

The DW directive will store the entire string into successive words. If a
string has an odd number of characters (bytes), the DW and DATA direc
tives will pad the end of the string with one byte of zeros (OO).

If a string is used as a literal operand, it must be exactly one character
long, or an error will occur.

See the examples below for the object code generated by different state
ments involving strings.

7465 7374 696E
one\n•
6720 6F75 7470
7574 2073 7472
696E 6720 6F6E
650A

two•

B061

7465 7374 696E
string•
6720 6669 7273
7420 6F75 7470
7574 2073 7472
696E 6700

dw

#define str

movlw

data

•testing output string

•testing output string

•a•

•testing first output

© 1994 Microchip Technology Inc.

Chapter 5: Expression Syntax and Operation

The assembler accepts the ANSI 'C' escape sequences to represent
certain special control characters:

TABLE 6: ANSI 'C' ESCAPE SEQUENCES

Escape Description
Character

\a Bell (alert) character

\b Backspace character

\f Form feed character

\n New line character

\r Carriage return character

\t Horizontal tab character

\v Vertical tab character

\\ Backslash

\? Question mark character

\' Single quote (apostrophe) ,. Double quote character

\000 Octal number (zero, Octal digit, Octal digit)

\xHH Hexadecimal number

© 1994 Microchip Technology Inc. DS33014C - page 55

MPASM USER'S GUIDE

Numeric Constants and Radix

DS33014C - page 56

MPASM supports the following radix fonns: hexadecimal, decimal, octal,
binary, and character. The default radix is hexadecimal; the default radix
detennines what value will be assigned to constants in the object file when
they are not explicitly specified by a base descriptor.

Constants can be optionally preceded by a plus or minus sign. If unsigned,
the value is assumed to be positive.

The following table presents the various radix specifications:

TABLE 7: RADIX SPECIFICATIONS

Type Syntax Example

Decimal D'<digits>' D'100'

Hexadecimal H'<hex_digits>' H'9f

Octal O'<octal_digits>' 0'777'

Binary B'<binary_digits>' B' 00111001'

Character '<character>' 'C'

A'<Character>' A'C'

© 1994 Microchip Technology Inc.

Chapter 5: Expression Syntax and Operation

TABLE 8: ARITHMETIC OPERATORS AND PRECEDENCE

Operator Example

(Left Parenthesis 1 + (d * 4)

) Right Parenthesis (Lenoth + 1) * 256

! Item NOT (logical complement) if ! (a - b)

- Negation (2's complement) -1 * Length

high Return high byte movlw high CTR Table

low Return low byte movlw low CTR Table

* Multiply a = b * c

I Divide a = b I c

% Modulus entry_len = tot len % 16 -

+ Add tot len = entry_ len * 8 + 1 -
- Subtract entry_len = (tot - 1) I 8

<< Left shift << flags

>> Right shift >> flags

>= Greater or equal if entry_idx >;:: num_entries

> Greater than if entry_idx > num_entries

< Less than if entry_idx < num_entries

<= Less or equal if entry_idx <= num_entries

-- Equal to if entry_idx -- num_entries

!:::: Not equal to if entry_idx != nuro_entries

& Bitwise AND flags = flags & ERROR_BIT
A Bitwise exclusive OR flags = flags A ERROR_BIT

I Bitwise inclusive OR flags = flags I ERROR_BIT

- Complement flags = flags - ERROR_BIT

&& Logical AND if (len -- 512) && b -- c

11 Logical OR if (len -- 512) 11 b -- c

= Set equal to entry_index = 0

+= Add to, set equal entry_index += 1

-= Subtract, set equal entry_ index -= 1

*= Multiply, set equal entry_index *= entry_length

I= Divide, set equal entry_total /= entry_length

%= Modulus, set equal entry_ index %= 8

<<= Left shift, set equal flags <<= 3

>>= Right shift, set equal flags >>= 3

&= AND, set equal flags &= ERROR_FLAG

I= Inclusive OR, set equal flags I= ERROR_FLAG

A= Exclusive OR, set equal flags A = ERROR_FLAG

$ Return program counter goto $ + 3

© 1994 Microchip Technology Inc. DS33014C - page 57

MPASM USER'S GUIDE

High I Low

DS33014C - page 58

Syntax

<instruction> high <operand>
<instruction> low <operand>

Description

Where <instruction> is an appropriate MPASM assembler instruction
and <operand> is an appropriate argument list for that instruction.

The high operators are used to return the high byte or the low byte of a
16-bit label value. This is done to handle dynamic pointer calculations as
might be used with table read and write instructions.

Example

movlw
moVPf
movlw
moVPf

low
wreg,
high
wreg,

size handle the lsb's
low size_lo
size handle the msb's
high size_hi

C 1994 Microchip Technology Inc.

MICROCHIP MPASM USER'S GUIDE

Chapter 6. MPLIB - MPASM Librarian

Introduction

© 1994 Microchip Technology Inc.

A librarian is a tool that allows several different objects to be grouped into
one logical collection, or library. MPLIB combines several object modules,
created with MPASM, into a single file. When a library file is linked with
other modules, only those library functions that are referenced by the other
modules are linked into the final binary code.

Object modules can be added, deleted, or replaced from the MPLIB
Command Line Interface.

DS33014C- page 59

MPASM USER'S GUIDE

DS33014C-page 60 e 1994 Microchip Technology Inc.

MICROCHIP MPASM USER1S GUIDE

Chapter 7. MPLINK - MPASM Linker

Introduction
MPLINK is the MPASM relocatable object linker. It joins any number of
object files, together with any library modules, into an executable binary file
that is fixed in the PIC16/17's memory. MPLINK can also generate an
absolute listing file of the PIC16/17 application. This file can be invaluable
when debugging your design; it is in the same general format as the listing
file generated for relocatable objects by MPASM.

MPLINK accepts options from either its Command Line Interface or a script

'"•· ~

~
<?:&~

(f&~
~

~<?:&
~~

~~

© 1994 Microchip Technology Inc. DS33014C-page 61

MPASM USER'S GUIDE

DS33014C-page 62 © 1994 Microchip Technology Inc.

MICROCHIP MPASM USER'S GUIDE

Appendix A. Object Code Formats

Introduction

Highlights

MPASM and MPLINK are capable of outputting several different object file
formats, suitable for a variety of programmer and emulator applications.

• Intel® HEX Format (INHXSM)

• Intel Split HEX Format (INHXSS)

• Intel HEX 32 Format (INHX32)

Object Code Formats

© 1994 Microchip Technology Inc.

MPLINK and MPASM (with absolute addresses) are capable of producing
a number of different output formats.

Intel HEX Format (.HEX)

This format produces one 8-bit HEX file with a low byte, high byte combina
tion. Since each address can only contain 8 bits in this format, all ad
dresses are doubled. This file format is useful for transferring PIC16/17
series code to third party EPROM programmers (for example, Data 1/0®
Unisite™ and Logical Devices ALLPAO™).

Each data record begins with a 9 character prefix and ends with a 2
character checksum. Each record has the following format:

:BBAAAATTHHHH HHHCC

where

BB - is a two digit hexadecimal byte count representing the number of data
bytes that will appear on the line.

AAAA - is a four digit hexadecimal address representing the starting
address of the data record.

TT - is a two digit record type record type that will always be '00' except for
the end-of-file record, which will be '01'.

HH - is a two digit hexadecimal data word, presented in low byte, high byte
combinations.

cc - is a two digit hexadecimal checksum that is the two's compliment of
the sum of all preceding bytes in the record including the prefix.

DS33014C - page 63

MPASM USER'S GUIDE

DS33014C-page 64

Example

<file_name>.HEX

:lOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOFO
:0400100000000000EC
:100032000000280040006800A800E800C80028016D
:100042006801A9018901EA01280208026A02BF02C5
:10005200E002E80228036803BF03E803C8030804B8
:1000620008040804030443050306E807E807FF0839
:06007200FF08FF08190A57
:OOOOOOOlFF

8-Bit Split Format (.HXL/.HXH)

The lntellec split 8-bit file format produces two output files: .HXL and .HXH.
The format is the same as the normal 8-bit format, except that the low
bytes of the data word are stored in the .HXL file, and the high bytes of the
data word are stored in the .HXH file.

Example

<file_name>.HXL

:OAOOOOOOOOOOOOOOOOOOOOOOOOOOOOF6
:1000190000284068A8E8C82868A989EA28086ABFAA
:10002900EOE82868BFE8C8080808034303E8E8FFD0
:03003900FFFF19AD
:OOOOOOOlFF

<file_name>.HXH

:OAOOOOOOOOOOOOOOOOOOOOOOOOOOOOF6
:1000190000000000000000010101010102020202CA
:100029000202030303030304040404050607070883
:0300390008080AAA
:OOOOOOOlFF

© 1994 Microchip Technology Inc.

© 1994 Microchip Technology Inc.

Appendix A: Object Code Formats

32-Bit Hex Format (.HEX)

The extended 32-bit address HEX format is similar to the Hex 8 format
described above, except that the Intel extended linear address record is
output also to establish the upper 16 bits of the data address.

Each data record begins with a 9 character prefix and ends with a 2
character checksum. Each record has the following format:

:BBAAAATTHHHH HHHCC

where

BB - is a two digit hexadecimal byte count representing the number of data
bytes that will appear on the line.

AAAA - is a four digit hexadecimal address representing the starting
address of the data record.

TT - is a two digit record type record type:

00 - Data record
01 - End of File record
02 - Segment address record
04 - Linear address record

HH - is a two digit hexadecimal data word.

cc - is a two digit hexadecimal checksum that is the two's compliment of
the sum of all preceding bytes in the record including the prefix.

DS33014C - page 65

MPASM USER'S GUIDE

DS33014C - page 66 © 1994 Microchip Technology Inc.

MICROCHIP MPASM USER'S GUIDE

Appendix B. Customer Support

Keeping Current with Microchip Systems

Highlights

Microchip Technology endeavors at all times to provide the best service
and responsiveness possible to it users. The Microchip Technology
Systems BBS is one mechanism to facilitate this process.

The BBS is supported as a service to its customers. This is where all of
the most recent information regarding systems products can be found. The
BBS is monitored several times a week for questions. Truly urgent issues
should not be left with the BBS, but referred to your local distributor, or
Microchip sales office.

The BBS is an evolving product. Details of its operation will not be found
here. This chapter provides a brief discussion of the general services
available.

This chapter also describes the Microchip Systems software numbering
scheme.

The points that will be highlighted in this chapter are:

Access to the BBS

Special Interest Groups

Files

Mail

• Software Releases

© 1994 Microchip Technology Inc. DS33014C - page 67

MPASM USER1S GUIDE

Bulletin Board Access
Access to the bulletin board is 24 hours per day, barring technical or
mechanical difficulties. Access is gained by calling your local CompuServe
access number. Your modem should be set to 8-bits, No parity, 1 stop bit
(8-1-N). The service supports baud rates from 300 to 9600 baud. To
access the BBS, follow these steps:

1. Dial your local CompuServe access number.

2. Press <ret> and a garbage string will appear.

3. Enter +<ret> and Host Name: will appear.

4. Enter mchipbbs<ret> and you will be connected to the Microchip
BBS.

There is no charge for connecting to the BBS. There is no charge to dial
the CompuServe access number. You do not need to be a CompuServe
member to take advantage of this connection (you never actually log in to
CompuServe).

Bulletin Board Usage

DS33014C - page 68

The bulletin board is a multifaceted tool. It can provide you with informa
tion on a number of different topics.

Special Interest Groups

Files

Mail

Bug Lists

Technical Assistance

Special Interest Groups

Special Interest Groups, or SIGs as they are commonly referred to, provide
you with the opportunity to discuss issues and topics of interest with others
that share your interest or questions. They may be able to provide you
with information not available by any other method because of the broad
background of the PIC16/17 user community.

© 1994 Microchip Technology Inc.

© 1994 Microchip Technology Inc.

Appendix B: Customer Support

There are SIGs for most Microchip systems, including:

PRO MATE™

PICMASTER™

MPASM

Utilities

• Bugs

These groups are monitored by the Microchip staff.

Files

The Microchip BBS is used regularly to distribute technical information,
Application Notes' source code, errata sheets, bug reports, and interim
patches for Microchip systems software products. Users can contribute
files for distribution on the BBS. These files will be monitored, scanned
and approved or disapproved by the moderator of the SIG to which the file
is submitted. No executable files are accepted from the user community in
general to limit the spread of computer viruses.

Mail

The BBS can be used to distribute mail to other users of the service. This
is one way to get answers to your questions and problems from the Micro
chip staff, as well as to keep in touch with fellow Microchip users world
wide.

Consider mailing the moderator of your SIG, or SYSOP, if you have ideas
or questions about Microchip products, or the operation of the BBS. Be
aware, though, that the SIGs are moderated only about once per day.
Truly urgent questions should be referred to your local distributor, sales
representative, or FAE. They are your first line of defense.

DS33014C - page 69

MPASM USER'S GUIDE

Software Revisions

DS33014C- page 70

Software products released by Microchip are referred to by version num
bers. Version numbers use the form:

xx.yy.zz <status>

Where xx is the major release number, yy is the minor number, and zz is
the intermediate number. The status field displays one of the following
categories:

Alpha

Intermediate

Beta

Released

Production releases are numbered with major, and minor version numbers
like:

3.04 Released

Alpha, Beta and Intermediate releases are numbered with the major, minor
and intermediate numbers:

3.04.01 Alpha

Alpha Release

Alpha designated software is engineering software that has not been
submitted to any quality assurance testing. In general, this grade of
software is intended for software development team access only, but may
be sent to selected individuals for conceptual evaluation. Once Alpha
grade software has passed quality assurance testing, it may be upgraded
to Beta or Intermediate status.

© 1994 Microchip Technology Inc.

© 1994 Microchip Technology Inc.

Appendix B: Customer Support

Intermediate Release

lntemiediate released software represents changes to a releasd software
system and is designated as such by adding an intermediate number to the
version number. lntemiediate changes are represented by:

Bug Fixes

Special Releases

Feature Experiments

lntemiediate released software does not represent our most tested and
stable software. Typically, it will not have been subject to a thorough and
rigorous test suite, unlike production released versions. Therefore, users
should use these versions with care, and only in cases where the features
provided by an intemiediate release are required.

lntemiediate releases are primarily available through the BBS.

Beta Release

Preproduction software is designated as Beta. Beta software is sent to
Applications Engineers and Consultants, F AEs, and select customers. The
Beta Test period is limited to a few weeks. Software that passes Beta
testing without having significant flaws, will be production released.
Flawed software will be evaluated, repaired, and updated with a new
revision number for a subsequent Beta trial.

Production Release

Production released software is software shipped with tool products.
Example products are PRO MATE™, PICSTART™, and PICMASTER™.
The Major number is advanced when significant feature enhancements are
made to the product. The minor version number is advanced for mainte
nance fixes and minor enhancements. Production released software
reresents Microchip's most stable and thoroughly tested software.

There will always be a period of time when the Production Released
software is not reflected by products being shipped until stocks are rotated.
You should always check the BBS for the current production release.

DS33014C - page 71

MPASM USER'S GUIDE

DS33014C - page 72 © 1994 Microchip Technology Inc.

MICROCHIP MPASM USER1S GUIDE

Appendix C. MPALC Conversion Guide

Introduction

Highlights

MPASM attempts to be backward compatible with MPALC.

It is very possible that your source code will assemble as is. There are,
however, a number of inconsistencies between the two assemblers that
require some simple changes. In addition, MPASM attempts to provide a
clean and simple assembler solution for the future. To that end, there are
also a number of changes that are recommended to encourage compatibil
ity going forward.

Required Source Code Updates

Recommended Source Code Updates

Required Source Code Updates

© 1994 Microchip Technology Inc.

Specify processor type at the very top of the first source file in pro
grams assembled with MPASM using either the PROCESSOR or LIST
directives, or specify the processor on the command line. MPASM will
not assemble your source without this information.

DS33014C - page 73

MPASM USER'S GUIDE

Recommended Source Code Updates

DS33014C- page 74

You are encouraged to move all of your labels to column one, and
assembler directives (like LIST and TITLE) to at least column two. An
example would be:

list
title

p=16c54, r=hex
Sample Code

#include 'c:\tools\regs.h'

#define
#define

alabel
blabel

Start

and soon.

zero
one

set
set

org
goto

org

goto
end

0
1

zero
one

OxOO
Start

Ox28

Start

• Specify the radix you are assuming using either the RADIX or LIST
directives, or the command line option.

Change all radix overrides currently included in your code to one of
those specified in the MPASM User's Guide. For example:

Change: movlw 5D

to: movlw D' 5'

Fully qualify moves of label addresses by using the HIGH or LOW
directives.

© 1994 Microchip Technology Inc.

MICROCHIP MPASM USER1S GUIDE

Appendix D. AS Ml 7 Conversion Guide

Introduction

Highlights

MPASM attempts to be backward compatible with ASM17.

It is very possible that your source code will assemble as is. There are,
however, a number of inconsistencies between the two assemblers that
require some simple changes. In addition, MPASM attempts to provide a
clean and simple assembler solution for the future. To that end, there are
also a number of changes that are recommended to encourage compatibil
ity going forward.

Required Source Code Updates

Recommended Source Code Updates

Required Source Code Updates

© 1994 Microchip Technology Inc.

Specify processor type at the very top of the first source file in pro
grams assembled with MPASM using either the PROCESSOR or LIST
directives, or specify the processor on the command line. MPASM will
not assemble your source without this information.

Change DOS paths for ASM17 source code from using two back
slashes to one.

Example: Change:

to:

#include c:\\tools\\regs.h

#include c: \tools \regs. h

Recode any macros that use a variable number of arguments to call
out specific arguments. This would only be appropriate for ASM17
code, and is a feature that will be included at some point in the future.

If you are using the ASM17 HALT directive, recode this as a macro or
remove it. This feature will be included at some point in the future.

If you are using the ASM17 FILL directive, temporarily remove it. This
feature will be included at some point in the future.

DS33014C - page 75

MPASM USER'S GUIDE

Recommended Source Code Updates

DS33014C - page 76

You are encouraged to move all of your labels to column one, and
assembler directives (like LIST and TITLE) to at least column two. An
example would be:

list
title

p=17c42, r=dec
Sample Code

#include 'c:\tools\regs.h'

#define
#define

a label
blabel

Start

and so on.

zero
one

set
set

org
goto

org

goto
end

0
1

zero
one

OxOO
Start

Ox28

Start

Specify the radix you are assuming using either the RADIX or LIST
directives, or the command line option.

Change all radix overrides currently included in your code to one of
those specified in the MPASM User's Guide. For example:

Change: movlw SD

to: movlw D' 5'

Fully qualify moves of label addresses by using the HIGH or LOW
directives.

© 1994 Microchip Technology Inc.

MICROCHIP MPASM USER'S GUIDE

Appendix E. Error Messages

The following error and warning messages are produced by MPASM.
These messages always appear in the listing file directly above each line in
which the error occurred.

The error and warning messages are stored in the error file (.ERR) if no
MPASM options are specified. If the /e- option is used (turns error file off),
then the messages will appear on the screen. If the /q (quiet mode) option
is used with the /e-, then the messages will not display on the screen or in
an error file. The messages will still appear in the listing file.

Error Messages

© 1994 Microchip Technology Inc.

Address exceeds maximum limit available

You are trying to access memory that is not supported. The current
program counter is greater than the maximum program memory limit for
the specified processor type. Please refer to the data sheet for this proces
sor to find the valid memory range.

Attempt to redefine reserved word

The words "END", "ERROR", "HIGH", "LOW' and PAGE are reserved
words in MPASM. You must not use these words as labels or symbols.
Remove or rename any occurances of these words and then reassemble.

Branch or jump out of range

A branch or jump statement is addressing the last half of a program
memory page. This is not allowed. Any instruction which writes to the
Program Counter (CALL, JUMP, BRANCH or GOTO) is limited to the first
256 locations of any program memory page.

Call or jump not allowed at this address

A call or computed jump statement is addressing the last half of a program
memory page. This is not allowed. Any Instruction which writes to the
Program Counter (CALL, JUMP, BRANCH or GOTO) is limited to the first
256 locations of any program memory page.

DS33014C - page 77

MPASM USER'S GUIDE

DS33014C - page 78

Couldn't open ...

MPASM couldn't open the specified object file, memory map file, code file,
error file, listing file, or cross-reference file. Either the file already exists and
is read/write protected, or there is not enough disk space to create or write
to the file.

Couldn't open source file ...

The source file specified on the command line, or through the interactive
menu, does not exist. Check the current directory for the desired file, and
verify the spelling of the source file name.

Duplicate label or redefining symbol that cannot
be redefined

You have either used the same label name twice in your program, or a
constant, a #DEFINE'd symbol, or an EQU'd symbol has been used on the
left-hand side of an equation. MPASM does not know which definition to
use. This ERROR message appears before BOTH definitions of the
symbol, when appropriate.

Error in parameter

One of the options used on the MPASM command line was not a valid
option, or an option was incorrectly formatted. Type mpasm /h or mpasm I?
at the DOS prompt to see a usage message showing the valid command
line options.

Expected ...

The syntax of the source line is incorrect. MPASM expected to see one
thing, but got something different. Check the syntax of the directive or
opcode in error in the MPASM User's Guide.

File not found

The file specified in the shell screen's source file field does not exist in the
current directory. This error appears when the shell interface is used to
invoke MPASM, rather than the command line interface. Check the spelling
of the file name, and verify that you are in the desired directory. Press any
key to continue.

Illegal argument

The radix specified with either a LIST directive or the RADIX directive is not
one of the valid radix choices. Change the radix to: DEC for decimal, OCT
for octal, or HEX for hexadecimal radix.

© 1994 Microchip Technology Inc.

© 1994 Microchip Technology Inc.

Appendix E: Error Messages

Illegal condition

An IF statement is using an illegal comparison operator. The valid condi
tions which can be checked by an IF statement are:

==(equal to)

!= (not equal to)

> (greater than)

< (less than)

>= (greater than or equal to)

<= (less than or equal to).

Illegal condition, EOF encountered before END or
conditional end directive

The END directive is missing, or a CBLOCK, an IF, a WHILE or a MACRO
statement is missing an ENDC, ENDIF, ENDW or ENDM respectively.

Illegal conditional compile

There is a problem with the construction of the indicated IF I ELSE I
ENDIF statements.

Illegal character ... in label ...

The specified label contains an illegal character. Legal characters are:
underscore (_), period (.), capital letters (A through Z), lower case letters
(a through z), or decimal digits (0 through 9).

Illegal digit

The specified digit is illegal in the context used. The digit is either incorrect
for the radix specified in the source file, or is an unsupported ANSI escape
sequence. Check the LIST directive used in the source code to verify the
specified radix. See Chapter 5: Expression Syntax and Operation in the
MPASM User's Guide for valid radix specifications and ANSI 'C' escape
sequences.

Illegal opcode

The indicated opcode or directive is not recognized by MPASM. The
opcode may be misspelled, or is no longer supported. Or, an otherwise
legal opcode may be used in an illegal context. For example, a valid
directive, such as LIST, prepended with a pound sign (#LIST) will generate
this "Illegal opcode" error message. Other examples are: using an ELSE
without an associated IF, or using an INCLUDE directive inside a macro
definition.

DS33014C-page 79

MPASM USER'S GUIDE

DS33014C - page 80

Include file not found

The file to be included does not exist in the current directory. Check the
spelling of the include file name, and verify that you are in the desired
directory. If necessary, specify the complete DOS path (for example:

C:\SOURCE\INCLUDE\FILENAME.H).

Include files nested too deep

The current include file cannot include another file, because you have
reached the maximum level of include file nesting. The maximum number
of include files nested within each other is five (5).

Macro name missing

The term "macro" has been encountered without an associated name for
the macro. Macro names can be any legal, unique MPASM label.

Macros nested too deep

The current macro definition cannot call another macro, because you have
reached the maximum level of macro nesting. The maximum number of
macros nested within each other is eight (8).

Missing argument(s)

This opcode, directive, or macro call requires at least one more operand
(argument) than is provided. Check the instruction set for the proper
syntax. This error can also occur if a #DEFINE'd label is missing a value. In
this case, the error message won't appear until the label is used as an
operand.

Missing terminator

There is an open parenthesis, curly bracket or square bracket without
amatching closed parenthesis, curly bracket or square bracket, respec
tively. This error message can also occur when a comma or blank is
expected, but not found.

Nested forward reference not allowed

The indicated label has not been defined yet, and is not allowed to be used
before it is defined. Specifically, forward references to macros are not
permitted. If a macro call is generating the error, move the call to a point in
the code below the macro definition.

This error message also occurs when MPASM cannot tell the type of a
given label: variable, constant, address, local variable, or reserved word.
The label may be defined more than once.

© 1994 Microchip Technology Inc.

© 1994 Microchip Technology Inc.

Appendix E: Error Messages

Out of memory

All the PC's available memory has been used to create code segments,
macros and forward references. Try reducing the number of macros in your
source file(s). Also, close out of any terminate-and-stay-resident programs
(TSR's) and ciose any applications, then try assembling the file again. If
you are running Windows and assembling from a DOS prompt, try exiting
Windows and assembling directly from DOS.

Overwriting previous address contents

The location for which MPASM is trying to generate object code has
already been used by this program. Usually, an ORG directive for this
address occurs prior to the source line that produces this error message.
The only time MPASM will allow you to overwrite a previously-used ad
dress is if it was reserved with an RES directive.

Processor type is undefined

No processor type has been specified. Use the LIST or PROCESSOR
directive in your source code, or use the /p option on the command line, to
define a processor type (PIC16C54, PIC16C55, PIC16C56, PIC16C57,
PIC16C58A, PIC16C64, PIC16C71, PIC16C84, or PIC17C42).

Processor type previously defined

A processor type has already been specified. You cannot change proces
sor types in the middle of a program. Check the LIST or PROCESSOR
directive in your source code to see which processor type is defined. If you
specify the same processor type two or more times in the same program,
no error will occur.

Symbol table full

All the PC's available memory has been used to create symbols. MPASM
requires more memory to create all the symbols defined in this source file.
Eliminate any TSR's, and close any applications, then try assembling the
file again. If you are running Windows and assembling from a DOS prompt,
try exiting Windows and assembling directly from DOS.

You may get the qualifier "Out of macro space (#define)" appended to this
message. If this is the case, eliminate #DEFINE symbols in your code by
hardcoding as many values as possible.

Or, you may see this error message qualified with "more than 8 locals in a
macro." The maximum number of local variables allowed per macro is eight
(8). Eliminate local variables from the macro definition.

DS33014C- page 81

MPASM USER 1S GUIDE

Temp file creation error

A temporary file could not be created as needed. MPASM uses temporary
files when building the symbol table. This error could be caused by a DOS
disk write error, if the disk is full.

Too many arguments

An opcode has been given too many operands, or a macro has been
invoked with too many arguments. Check the processor's instruction set for
the proper opcode syntax, or verify the number of arguments in the macro
definition.

Undefined argument

A label is being used that has not yet been defined. The label might be
used as an operand or as a macro argument. If there is a mistake in the
argument list of a macro definition, this error message will appear when the
macro is invoked, since the arguments were never properly defined.

Unknown error

An error has occurred which MPASM cannot understand. It is not any of
the errors described in this appendix. Contact your Microchip Field Applica
tion Engineer (FAE) if you cannot debug this unknown error.

WHILE failed to terminate within 256 iterations

The end condition of a WHILE loop was never met. This is flagged as an
"Unknown error" because MPASM doesn't know why the WHILE loop
didn't terminate. Check your condition statement for proper syntax and
logic.

Warning Messages

DS33014C - page 82

Addresses above 32K not currently supported.
Using MaxRom.

MPASM does not currently allow you to access memory above Ox8000
(32K). Eventually, addresses up to 64K will be supported, when the linker
and librarian are implemented.

Argument out of range, least significant bits used

The operand is not between the maximum and minimum values allowed for
this opcode in this processor family. Most "Argument out of range" errors
are WARNING messages. The out-of-range argument is truncated to the
maximum value allowed. However, any argument that can produce unex
pected object code (for example, TRIS O would evaluate to a NOP) gener
ates an ERROR message rather than a WARNING.

© 1994 Microchip Technology Inc.

© 1994 Microchip Technology Inc.

Appendix E: Error Messages

Crossing page boundary- ensure page bits are
set

MPASM is informing you that a page boundary has been crossed, and is
recommending that you check to see that you have properly set the page
bits. Please refer to the data sheet for your specific processor to find its
memory boundaries .

... Is not currently supported

Any directive that is not currently supported generates this WARNING.
Please look in the User's Guide for alternative directives, or contact your
Microchip Field Applications Engineer for options.

LCALL should only be used for multi-paged
program memory

You are using the LCALL opcode, when you should be using CALL in
stead. LCALL only applies for processors that have more than one page of
program memory (such as the PIC16C57). LCALL uses 4 execution
cycles, while CALL only uses 2. This is only a WARNING, and correct
code is generated .

... May not be handled as preprocessor directive

The #DEFINE and #UNDEFINE directives generate this WARNING to
inform you that these directives do not function exactly as you would
expect them to operate in the C language. Please refer to the User's
Guide descriptions for these directives to determine how they will behave .

... Not a single byte quantity

You have specified a literal value that is larger than 8-bits. This WARNING
is produced when you use an opcode that requires a single-byte value
(such as MOVLW). MPASM truncates to the lower 8 bits of the value. You
may be more specific by preceding the value with a HIGH or LOW opera
tor.

This number is being treated as a binary
representation

The specified number is ambiguous, and could be interpreted as either a
binary or hexadecimal number. MPASM is assuming that it is binary.
Example: b0101.

MPASM expects hexadecimal numbers to be represented as Oxb0101 or
as H'b0101 '.

DS33014C - page 83

MPASM USER'S GUIDE

DS33014C - page 84 © 1994 Microchip Technology Inc.

w
er:
w
I
1-
:J
()

MICROCHIP MPASM USER'S GUIDE

Quick Reference Guide

Quick Reference Guide

Highlights

Terms

© 1994 Microchip Technology Inc.

This quick reference guide is supplied to give you all of the instructions for
the Microchip family of microcontrollers, including their description, function
and status bits modified.

If more information is required, please refer to the data sheets for the
PIC16/17 in question.

Directive Summary

PIC16C5X Instruction Set and Notes

PIC16CXX Instruction Set and Notes

PIC17CXX Instruction Set and Notes

PIC16C5X

Microchip's low-end 8-bit microcontroller with 12-bit wide instruction set
currently including: PIC16C54, PIC16C55, PIC16C56, PIC16C57, and
PIC16C58.

PIC16CXX

Microchip's mid-range 8-bit microcontroller with 14-bit wide instruction set
currently including: PIC16C71, PIC16C64, and PIC16C84.

PIC17CXX

Microchip's high-end 8-bit microcontroller family with 16-bit wide instruction
set currently including PIC17C42.

DS33014C - page 85

MPASM USER'S GUIDE

TABLE 9: DIRECTIVE SUMMARY
Directive Description Syntax

CBANK Future Feature

CBLOCK Define a Block of Constants cblock [<expr>]

CONSTANT Declare Symbol Constant constant <label>[=<expr>,
... , <label> [=<expr> 1 J

DATA Create Numeric and Text Data data <expr>, {, <expr>, ••• , <expr> 1 DATA
"text string>[, "<text_string>u, ...]

DB Declare Data of On~te db <expr> [, <expr>, ••• , <expr>]

#DEFINE Define a Text Substitution Label define <name> [<value>}
define <name> [<arg>, ..• , <arg>] <value>

ow Declare Data of One Word dw <expr> [, <expr>, ••. , <expr>]

ELSE ~n Alternative Assembly Block to IF else

END End P~am Block end

ENDC End an Automatic Constant Block endc

ENDIF End conditional Assembly Block endif

ENDM End a Macro Definition endm

ENDW End a While Loo_.E._ endw

EQU Define an Assembly Constant <label> equ <expr>

ERROR Issue an Error Mess~e error "<text_string>"

EXITM Exit from a Macro exitm

EXPAND ~and Macro Listi~ expand

FILL ~Memo_ry_Fill Value fill <expr>

IF ~n ConditionallyAssembled Code Block if <expr>

IFDEF Execute If ~mbol has Been Defined if def <label>

IFNDEF Execute If Symbol has not Been Defined if def <label>

INCLUDE Include Additional Source File include <<include file>>
"<include_file>"

LIST Uss~ons list (<list option>, ... , <list_option>]

LOCAL Declare Local Macro Variable local <label> (,<local>]

MACRO Declare Macro Definition label macro [<arg>, ... , <arg>]

MESSG Create User Defined Mes"¥ messg "<message text>

NOEXPAND Turn off Macro Ex_-2!!.nsion noexpand

NOLIST Turn off Listi.!:!a ~ut nolist

ORG Set P~am Origin <label> org <expr>

PAGE Insert Listi!!S_ P~ §_eel page

PROCESSOR Set Processor Type processor <processsor type>

RADIX ~Default Radix radix <default radix>

RES Reserve Mem~ res <mem_units>

SET Define an Assembler Variable <label> set <expr>

SPACE Insert Blank Listi~ Lines space <expr>

SUBTITLE Specify Program Subtitle subtitl "<sub text>"

TITLE ~Pr~amTitle title "<title text>"

#UNDEFINE Delete a Substitution Label #undefine <label>

VARIABLE Declare ~mbol Variable variable <label>[=<expr>, ... ,<label>[=<expr>] l

WHILE Perform Loop While Condition is True while <expr>

endw

DS33014C - page 86 © 1994 Microchip Technology Inc.

Quick Reference

PIC16C5X Instruction Set
All instructions execute in a single instruction cycle unless otherwise noted.
Any unused opcode is executed as a NOP. The instruction set is highly
orthogonal and is grouped into three basic catagories:

Byte Oriented operations

Bit Oriented Operations

Literal and Control Operations

The following tables list the instructions recognized by the MPASM assem
bler, where:

TABLE 10: PIC16C5X OPERAND CODES

Field Description

f Register file address (OxOO to OxFF)

w Working register (accumulator)

b Bit address within an B bit file register

k Literal field, constant data or label.

x Don't care location.

d Destination select; d = o: store result in w (fOA), d = 1:
store result in file register f. Default is d = 1.

© 1994 Microchip Technology Inc. DS33014C- page 87

MPASM USER'S GUIDE

TABLE 11: PIC16C5X BYTE ORIENTED FILE REGISTER OPERATIONS
Binary Hex Mnemonic Description Function Bits Notes

0001 lldf ffff lCf ADDWF f,d AddWandf W+f---td c de z 1,2,4

0001 Oldf fff f 14f ANDWF f,d ANDWandf W.AND.f ---td z 2,4

0000 Ollf ffff 06f CLRF f Clear! 0 ___, f z 4

0000 0110 0000 040 CLRW ClearW 0 ___, w z

0010 Oldf ffff 24f COMF f,d Complement f f ___, d z 2,-1

0000 lldf ffff Ocf DECF f,d Decrement f f - 1 ___, d z 2,4

0010 lldf ff ff 2Cf DECFSZ f,d Decrement f, skip if zero f - 1 ---t d, skip if zero None 2,4

0010 lOdf ff ff 28f INCF f,d Increment f f + 1 ___, d z 2,4

0011 lldf ffff 3Cf INCFSZ f,d Increment f, skip if zero f + 1 ---t d, skip if zero None 2,4

0001 OOdf ff ff lOf IORWF f,d Inclusive OR Wand f Wvf ___, d z 2,4

0010 OOdf ff ff 20f MOVF f,d Movef f ___, d z 2,4

0000 OOH ff ff 02f MOVWF f Move W tot w ___, f None 1,4

0000 0000 0000 000 NOP No operation None

0011 Oldf ff ff 34f RLF f,d Rotate left f f<n> ---7 d<n+l>, C -7 d<O>,
f<7> ___, c

c 2,4

0011 OOdf ffff 30f RRF f,d Rotate right f f<n> ---?d<n-1>,C ---7d<7>,
f<O> ---t C

c 2,4

0000 lOdf ffff 08f SUBWF f,d Subtract W from f f - w ---td[f+ w +1---td] c de z 1,2,4

0011 lOdf ff ff 38f SWAPF f,d Swap halves I f<0:3>..., f<4:7>---td None 2,4

0001 lOdf ffff 18f XORWF f,d Exclusive OR W and f w Ei) f ___, d z 2,4

TABLE 12: PIC16C5X BIT ORIENTED FILE REGISTER OPERATIONS
Binary Hex Mnemonic Description Function Bits Notes

0110 bbbf ffff 4bf BCF f,b Bit clear! 0 ---tf (b) None 2,4

0101 bbbf ff ff Sbf BSF f,b Bit set f 1 ___, f (b) None 2,4

0110 bbbf ff ff 6bf BTFSC f,b Bit test, skip tt clear skip if f (b) = 0 None

0111 bbbf ffff 8bf BTFSS f,b Bit test, skip if set skip if f (b) = 1 None

DS33014C - page BB © 1994 Microchip Technology Inc.

Quick Reference

TABLE 13: PIC16C5X LITERAL AND CONTROL OPERATIONS
Binary Hex

1110 kkkk kkkk Ekk

1001 kkkk kkkk 9kk

0000 0000 0100 004

lOlk kkkk kkkk Akk

1101 kkkk kkkk Dkk

110 0 kkkk kkkk Ckk

0000 0000 0010 002

1000 kkkk kkkk 8kk

0000 0000 0011 003

0000 0000 Of ff OOf

1111 kkkk kkkk Fkk

Mnemonic Description Function Bits Notes

ANDLW k And literal and W k&W-7W z

CALL k Call subroutine PC + l-7 TOS, k -7PC None 1

CLRWDT Clear watch dog timer 0 -7 WDT (and Prescaler to pd
if assigned)

GOTO k Goto address k-7 PC (9 bi ts) None
(k is nine bits)

IORLW k Incl. OR llteral and W kvW -7 w z

MOVLW k Move Literal to W k -7 w None

OPTION Load OPTION register w -7 OPTION Register None

RETLW k Return with llteral in W k -7 W, TOS -7 PC None

SLEEP Go into stand by mode 0 ---t WDT, stop to pd

oscillator

TRIS f Tristate port f W -7 I/0 control reg f None 3

XORLW k Exclusive OR llteral and W kffiW-7W z

PIC16C5X Notes
1. If the destination of any instruction is the program counter (register file 2),

the 8-bit destination value will be loaded into the lower 8-bits of the program
counter (PC) and the 9th bit of the PC will be cleared. For the PIC16C56
and PIC16C57, the upper 3 bits of the status register (register file 3),
PA2:PAO, are loaded into the most significant 3 bits of the PC(11 :9). In
case of the GOTO instruction, the lower 9 bits of the PC are loaded with the
destination address, and the 3 most significant bits of the PC(11 :9) are
loaded with PA2:PAO from the status register.

2. When an 1/0 register is modified as a function of itself (i.e. MOVF 6, 1) the
value used will be the value present on the pins themselves. For example,
a tristated pin with data latch "1 • but is driven low by an external device
will be relatched in the low state.

3. The instruction "TRIS f ·, where f = s, 6, or 7 causes the contents of
the w register to be written to the tristate latches of the specified file (port).
A one forces the pin to a high impedance state and disables the output
buffers.

4. If this instruction is executed on file register fl (and, where applicable
d=l), the prescaler will be cleared if assigned to the RTCC.

© 1994 Microchip Technology Inc. DS33014C - page 89

MPASM USER'S GUIDE

PIC16CXX Instruction Set

DS33014C - page 90

The PIC16CXX instruction set consists of 36 instructions, each a single 14-
bit wide word. Most instructions operate on a file register, f, and the
working register, w (accumulator). The result can be directed either to the
file register or the w register or to both in the case of some instructions. A
few instructions operate solely on a file register (BSF for example).

All instructions execute in a single instruction cycle unless otherwise noted.
Any unused opcode is executed as a NOP. The instruction set is highly
orthogonal and is grouped into three basic catagories:

Byte Oriented operations

Bit Oriented Operations

Literal and Control Operations

The following tables list the instructions recognized by the MPASM
assembler.

© 1994 Microchip Technology Inc.

Quick Reference

TABLE 14: PIC16CXX BYTE ORIENTED FILE REGISTER OPERATIONS
Binary Hex Mnemonic Description Function Bits Notes

00 0111 dfff ff ff 07ff ADDWF f,d Add Wand! W+f~d c de z 2,3

00 0101 dfff ff ff 05ff ANDWF f,d ANDWandf W.AND.t ~d z 2,3

00 0001 lfff ff ff 018f CLRF f Clear! 0 ~ f z 3

00 0001 Oxxx xxxx 0100 CLRW ClearW 0 ~w z

00 1001 dfff ffff 09ff COMF f,d Complement f f ~d z 2,3

00 0011 dfff ff ff 03ff DECF f,d Decrement f f - 1 ~d z 2,3

00 1011 dfff ff ff OB ff DECFSZ f,d Decrement f, skip It zero f - 1 ~ d,skip if zero None 2,3

00 1010 dfff ff ff OAff INCF f,d Increment f f + 1 ~ d z 2,3

00 1111 dfff ff ff OFff INCFSZ f,d Increment f, skip It zero f + 1 ~ d,skip if zero None 2,3

00 0100 dfff ffff 04ff IORWF f,d Inclusive OR Wand f WVf ~d z 2,3

00 1000 dfff ff ff 08ff MOVF f,d Move! f ~ d z 2,3

00 0000 lfff ff ff 008f MOVW f MoveWtof w~ f None 3

00 0000 OxxO 0000 0000 NOP No operation None

00 1101 dfff ff ff ODff RLF f,d Rotate left! f<n>--7d<n+l>,
f<7>~C

C---td<O>, c 2,3

00 1100 dfff ff ff OCff RRF f,d Rotate right f f<n>---td<n-1>,
f<O>~C

C~d<7>, c 2,3

00 0110 dfff ff ff 02ff SUBWF f,d Sutract W from f f - w ~d[f+ w +l~d]. c de z 2,3

00 1110 dfff ff ff OEff SWAPP f,d Swap haves f f<0:3> t-7 f<4:7>~d None 2,3

00 0110 dfff ff ff 06ff XORWF f,d Exclusive OR Wand f w Gl f -> d z 2,3

TABLE 15: PIC16CXX BIT ORIENTED FILE REGISTER OPERATIONS
Binary Hex Mnemonic Description Function Bits Notes

01 OObb bfff ff ff lbff BCF f,b Bit clear! 0 ~f(b) None 2,3

01 Olbb bfff ff ff lbff BSF f,b Bit set f 1 ~f(b) None 2,3

01 lObb bfff ff ff lbff BTFSC f,b Bit test, skip It clear skip if f (b) ; 0 None

01 llbb bfff ff ff lbff BTFSS f,b Bit test, skip It set skip if f (b) ; 1 None

© 1994 Microchip Technology Inc. DS33014C - page 91

MPASM USER'S GUIDE

TABLE 16: PIC16CXX LITERAL AND CONTROL OPERATIONS
Binary Hex Mnemonic Description Function Bits Notes

11 lllx kkkk kkkk 3Ekk ADDLW k Add literal to W k +W -t W c de z

11 1001 kkkk kkkk 39kk ANDLW k And literal and W k&W-tW z

10 Okkk kkkk kkkk 2kkk CALL k Call subroutine PC+ 1--tTOS, k-tPC None

00 0000 0110 0100 0064 CLRW T Clear watch dog timer 0 -t WOT (and Prescaler
if assigned) to pd

10 lkkk kkkk kkkk 2kkk GOTO k ~Qto Qddres~ 1s rnne t>its
k-tPC(9 bits) None

11 1000 kkkk kkkk 38kk IORLW k Incl. OR literal and W kvW __. w z

11 OOxx kkkk kkkk 30kk MOVLW k Move Literal to W k __. w None

00 0000 0110 0010 0062 OPTION Load OPTION register W -t OPTION Register None 1

00 0000 0000 1001 0009 RETFIE Return from Interrupt TOS -t PC, 1 -t GIE None

11 Olxx kkkk kkkk 34kk RETLW k Return with literal in W k -t W, TOS -t PC None

00 0000 0000 1000 0008 RETURN Return from subroutine TOS -t PC None

00 0000 0110 0011 0063 SLEEP Go into stand by mode 0 -t WOT, stop oscillator to pd

11 llOx kkkk kkkk 3Ckk SUBLW k Subtract W from literal k-W-tW c de z

00 0000 0110 Offf 006f TRIS f Tristate port f W -t I/O control reg f None 1

11 1010 kkkk kkkk 3Akk XORLW k Exclusive OR literal and W k©w-.w z

DS33014C - page 92 © 1994 Microchip Technology Inc.

Quick Reference

TABLE 17: PIC16CXX SPECIAL INSTRUCTION MNEMONICS

Name Mnemonic Equivalent Status
Operation(s)

Clear CarTY CLRC BCF 3,0 -
--

Set Carry SETC BSF 3.0 -
Clear Digit Carry CLRDC BCF 3,1 -
Set Digit CarTY SETDC BSF 3,1 -
Clear Zero CLRZ BCF 3,2 -
Set Zero SETZ BSF 3,2 -
Skip on CarTY SKPC BTFSS 3,0 -
Skip on No Carry SKPNC BTFSC 3,0 -
Skip on Digit Carry SKPDC BTFSS 3,1 -
Skip on No Digit Carry SKPNDC BTFSC 3,1 -
Skip on Zero SKPZ BTFSS 3,2 -
Skip on Non Zero SKPNZ BTFSC 3,2 -
Test File TSTFf MOVF f, 1 z
Move File to W MOVFWf MOVF f,O z
Negate File NEGFf,d COMF f, 1

INCF f,d z
Add CarTY to File ADDCF f,d BTFSC 3,0

INCF f,d z
Subtract Carry from File SUBCFf,d BTFSC 3,0

DECF f,d z
Add Digit Carry to File ADDDCFf,d BTFSC 3,1

INCF f,d z
Subtract Digit Carry from File SUBDCFf,d BTFSC 3,1

DECF f,d z
Branch Bk GOTO k -
Branch on Carry BCk BTFSC 3,0

GOTO k -
Branch on No CarTY BNCk BTFSS 3,0

GOTO k -
Branch on Digit Carry BDCk BTFSC 3,1

GOTO k -
Branch on No Digit Carry BNDCk BTFSS 3,1

GOTO k -
Branch on Zero BZk BTFSC 3,2

GOTO k -

© 1994 Microchip Technology Inc. DS33014C - page 93

MPASM USER'S GUIDE

TABLE 17: PIC16CXX SPECIAL INSTRUCTION MNEMONICS (CONT)
Name Mnemonic Equivalent Status

Operation(s)

Branch on Non Zero BNZk BTFSS 3,2

GOTO k

Call across page boundary LCALLk BCF 3,5 or BSF 3,5

DS33014C - page 94

BCF 3,6 or BSF 3,6

CALL k

PIC16CXX Notes
1. TRIS and OPTION instructions are included in the instruction set for upward

compatability with the PIC16C5X products. Microchip strongly recommends
not using these instructions for new code development. Instead of using
these instructions, directly address the TRIS and OPTION registers to obtain
equivalent control. These instructions may not be supported in future
PIC16CXX products.

2. When an 1/0 register is modified as a function of itself (i.e. MOVF 6, 1) the
value used will be the value present on the pins themselves. For example,
a tristated pin with data latch "1 • but is driven low by an external device will
be relatched in the low state.

3. If this instruction is executed on file register fl (and, where applicable d=l),
the prescaler will be cleared if assigned to the RTCC.

© 1994 Microchip Technology Inc.

Quick Reference

PIC17C42 Instruction Set
The PIC17C42 instruction set consists of 55 instructions, each a single 16-
bit wide word. Most instructions operate on a file register, f, and the
working register, w (accumulator). The result can be directed either to the
file register or the w register or to both in the case of some instructions. A
few instructions operate solely on a file register (BSF for example).

All instructions execute in a single instruction cyC:le unless otherwise noted.
Any unused opcode is executed as a NOP. The instruction set is highly
orthogonal and is grouped into four basic catagories: ·

Data Move Operations

Arithmetic and Logical Operations

Bit Manipulation Operations

Special Control Operations

The following tables list the instructions recognized by the MPASM assem
bler, where:

TABLE 18: PIC17C42 OPERAND CODES

Field Description

f Register file address (OxOO to OxFF)

p Peripheral register file address (oxo o to Oxlf)

b Bit address within an 8 bit file register

i Table pointer control; i = o : do not change,
i = 1: increment after instruction execution.

t Table byte select; t = o: perform operation on lower byte,
t = 1 : peform operation on upper byte.

k Literal field, constant data or label.

x Don't care location.

d Destination select; d = o : store result in W < f DA) , d = 1:
store result in file register f. Default is d = 1.

@ 1994 Microchip Technology Inc. DS33014C - page 95

MPASM USER'S GUIDE

TABLE 19: PIC17C42 DATA MOVE INSTRUCTIONS

Binary Hex Mnemonic Description Function Bits Notes

Ollp pppp ffff ffff 6pf f MOVFP f,p Movefto p f-tp None 4

1011 1000 kkkk kkkk BBkk MOVLB k Move literal to BSR k -t BSR None

OlOp pppp ffff ffff 4pf f MOVPF p,f Move ptof p -t w z 4

0000 0001 ffff ffff Olff MOVWF f MoveWtoF W-tf None

1010 lOti ffff ffff a8ff TABLRD t,i,f Read data from table TBLATH -t f if t = 1, None 8,10
latch into file f, then TBLATL -t f if t = 0;
update table latch with ProgMem(TBLPTR)-tTBLAT;
16-bit contents of TBLPTR+l-tTBLPTR if i=l
memory location
addressed by table
pointer

11 ti ffff ffff acf f TABLWT t,i,f Write data from file f to f-tTBLATH if t = 1, None 6
table latch and then f-tTBLATL if t = O;
write 16-bit table latch to TBLAT-tProgMem (TBLPTR) ;
proJrram memo~ location TBLPTR+l-tTBLPTR if i=l
ad ressed by ta le pointer

1010 OOtx ffff ffff aOf f TLRD t,f Read data from table latch TBLATH -t f if t = 1 None
into file f (table latch
unchanged)

TBLATL -t f if t = 0

1010 Oltx ffff ffff a4ff TLWT t,f Write data from file f into f -t TBLATH if t = 1 None
table latch f -t TBLATL if t = 0

DS33014C - page 96 © 1994 Microchip Technology Inc.

Quick Reference

TABLE 20: PIC17C42 ARITHMETIC AND LOGICAL INSTRUCTIONS

Binary Hex Mnemonic Description Function Bits Notes

1011 0001 kkkk kkkk blkk ADDLW k Add literal to W (W+k_ -4 W ov e de z

0000 llld ffff ffff Oeff ADDWF f,d Add Wto F (W+f) -4 d ov e de z

0001 OOOd ffff ffff lOff ADDWFC f ,d Add W and Carry to f (W+f+C) -4 d ov c de z

1011 0101 kkkk kkkk b5kk ANDLW k AND Literal and W (W.AND.k) -4 w z

0000 lOld ff ff ffff Oaf f ANDWF f,d ANDWwithf (W.AND.f) -4 d z

0010 lOOd ffff ffff 2Bff CLRF f,d Clear f and Clear d OxOO -4 f, OxOO -4 d None 3

0001 OOld ffff ffff 12ff COMF f,d Complement f -4 d z

0010 llld ffff ffff 2ef f DAW f,d Dec. adjust W, store in f,d W adjusted -4f and d e

0000 Olld ff ff ffff 06ff DECF f,d Decrement! (f - l)-4f and d ov c de z

0001 OlOd ffff ff ff 14f f INCF f,d Increment! (f + 1) -4f and d ov e de z

1011 0011 kkkk kkkk b3kk IORLW k Inclusive OR literal with W (W.OR.k)-4W z

0000 lOOd ffff ffff 08ff IORWF f,d Inclusive or W with I (w.OR. f)-4d z

1011 0000 kkkk kkkk bOkk MOVLW k Move literal to W k -4 w None

0010 llOd ff ff ff ff 2eff NEGW f,d Negate W, store in I and d (W + l)-4f, (W + 1)-4d ov e de z 1,3

0001 lOld ff ff ff ff laff RLCF f,d Rotate left through carry f<n>---7d<n+l>, f<7>-+C, e
C-4d<O>

0010 OOld ffff ffff 22ff RLNCF f,d Rotate left (no carry) f<n>-+d<n+l>, None
f<7>-4d<0>

0001 lOOd ffff ffff lBff RRCF f,d Rotate right through carry f<n>---7d<n-l>, f<O>-+c,
c-+d<7>

None

0010 OOOd ffff ffff 20ff RRNCF f,d Rotate right (no carry) f<n> ---7d<n-1>, None
f<O> -4d<7>

0010 lOld ffff ffff 2aff SETF f,d Set f and Set d Oxff-4f, Oxff-4d None 3

1011 0010 kkkk kkkk b2kk SUBLW k Subtract W from literal (k-W)-4W ov e de z

0000 010d ff ff ff ff 04ff SUBWF f,d Subtract W from f (f-W)-4d ov e de z 1

0000 OOld ff ff fff f 02f f SUBWFB f,d Subtract from f with borrow (f-w-e)-4 d ov e de z 1

0001 llOd ffff ff ff lef f SWAPF f,d Swap! (f<O: 3 > -4 d<4: 7>, None
f<4: 7> -4 d<O: 3>

1011 0100 kkkk kkkk b4kk XORLW k Exclusive OR literal (W.XOR.k)-4w z
wlthW

0000 llOd ffff ffff Oeff XORWF f,d Exclusive OR W with f (W.XOR.f)-4d z

© 1994 Microchip Technology Inc. DS33014C- page 97

MPASM USER'S GUIDE

TABLE 21: PIC17C42 PROGRAM CONTROL INSTRUCTIONS
Binary Hex Mnemonic Description Function Bits Notes

lllk kkkk kkkk kkkk ekkk CALL k Subroutine call PC+l -t TOS, None B
(within Bk page)

0011 0001 ff ff ff ff 31ff CPFSEQ f Compare l/w, skip Hf= w f-W, skip if f = w None 7

0011 0010 ff ff ff ff 32ff CPFSGT f Comparef/w, skip HI> w f-W, skip if f > w None 2,7

0011 0000 ff ff ff ff 30ff CPFSLT f Compare f/w, skip if f< w f-W, skip if f < w None 2,7

0001 Olld ff ff ffff 16ff DECFSZ f,d Decrement I, skip HO (f-1) -t d, skip if 0 None 7

0010 Olld ff ff ff ff 26ff DCFSNZ f,d Decrement I, skip Hnot O (f-1) -td, skip if not 0 None 7

llOk kkkk kkkk kkkk ckkk GOTO k Uncondltional branch k -t PC<12: 0> None B
(within Bk) k<12: 8> -t f3<4: 0>'

PC<l5: 13> -t f3<7: 5>

0001 llld fff f ffff lef f INCFSZ f,d Increment I, skip H zero (f+l) -t d, skip if 0 None 7

0010 OlOd ffff ff ff 24ff INFSNZ f,d Increment f, skip ff not zero (f+l) -td, skip if not 0 None 7

1011 0111 kkkk kkkk b7kk LCALL k Long Call (within 64k) (PC+l) -t TOS None 5,B

0000 0000 0000 0101 0005 RETFIE Return from interrupt, (f3) -t PCH:k -t PCL GLINTD B
enable interrupt "0" -+GLINTD

1011 0110 kkkk kkkk b6kk RETLW k Return with llteral in W k -tW, TOS -t PC, None B
(f3 unchanged)

0000 0000 0000 0010 0002 RETURN Return from subroutine TOS -t PC (f3 unchanged) None B

0011 0011 ff ff ff ff 33ff TSTFSZ f Test I, skip if zero skip if f = 0 None 7

TABLE 22: PIC17C42 BIT HANDLING INSTRUCTIONS
Binary Hex Mnemonic Description Function Bits Notes

1000 lbbb ff ff ff ff Sbff BCF f,b Bit clear I 0 -t f (b) None 4

1000 Obbb ff ff ff ff Sb ff BSF f,b Bit self 1 -t f (b) None 4

1001 lbbb fff f ff ff 9bff BTFSC f,b Bit test, skip if clear skip if f (b) = 0 None 4,7

1001 Obbb fff f ff ff 9bff BTFSS f,b Bit test, skip H set skip if f(b) = 1 None 4,7

0011 lbbb ffff ff ff 3bff BTG f,b Bit toggle I f(b) -t f (b) None 4

DS33014C - page 9B © 1994 Microchip Technology Inc.

Quick Reference

TABLE 23: PIC17C42 SPECIAL CONTROL INSTRUCTIONS

Binary

0000 0000 0000 0100

0000 0000 0000 0100

0000 0000 0000 0011

Hex Mnemonic Description Function Bits Notes

0004 CLRWT Clear watch dog timer 0---tWDT, 0---tWDT prescaler, PD, To
1--+PD, 1--+TO

0000 NOP No operation None None

0003 SLEEP Enter sleep mode Stop oscillator, PD, TO
power down, 0->WDT,
0->WDTPrescaler
1->PD, 1-> To

PIC17C42 Notes
1. 2's complement arithmetic

2. Unsigned arithmetic

3. If d=l, only the file is affected; if d=O, both wand the file are affected; if
only w is required to be affected, then f=Oah (File Oah) must be defined.

4. The hex representation is not accurate. The value of the bit to be modified
has to be incorporated into the third digit.

5. During an LCALL, the contents of File 03h are loaded into the MSB of the
PC and kkkk kkkk is loaded into File 02h, the LSB of the PC.

6. Multiple cycle instructions for EPROM programming when table pointer
selects internal EPROM. The instruction is terminated by an interrupt
event. When writing to external program memory, it is a two cycle
instruction.

7. Two cycle instructions when condition is TRUE, else single cycle
instruction.

8. Two cycle instruction, except for TABLRD to File 02h (Program Counter
low byte) in which case it takes 3 cycles.

9. A skip means that instructions fetched during execution of current instruc
tion are not executed. Instead, a NOP is executed.

10. Any instruction that writes to PCL (File 02h} is a two cycle instruction,
except for TABLRD to File 02h, which is a three cycle instruction.

© 1994 Microchip Technology Inc. DS33014C - page 99

MPASM USER'S GUIDE

NOTES:

DS33014C - page 100 © 1994 Microchip Technology Inc.

MICROCHIP

8-Bit Split Format 64
32-Bit Hex Format 65

A

Alpha Character 9
Alpha Numeric 9
Alpha Release 70
ANSI 'C' Escape Sequences

55
Arithmetic Operators and

Precedence 57
Assemble 5
Assemble to Object File 13
Assembler Command Line

Options 11

B
Beta Release 71
Bulletin Board Access 68
Bulletin Board Usage 68

c
CBANK 21
CBLOCK 22
Command Line Interface 9
Comments 15
Compatibility Issues 8
CONSTANT 22
Control Directives 19
Cross Reference File 12
Customer Support 8

D
DATA 23
Data Directives 19
DB 24
#DEFINE 25
Directives 6
Directive Summary 20
DOS 6
ow 26

@ 1994 Microchip Technology Inc.

MPASM USER1S GUIDE

Index

E
ELSE 26
END 27
ENDC 27
ENDIF 28
ENDM 28
ENDW 29
EQU 29
ERROR 30
EXITM 30
EXPAND 31
Error File 12
Error File Format (.ERR) 17
Error Messages n
Expressions 53

F
FILL 31
Files 69

H
Hex Dump Type 13
High/Low 58

IF 32
IFDEF 33
IFNDEF 34
INCLUDE 35
Installation 7
Intel Hex Format (.HEX) 63
Intermediate Release 71

L
Labels 14
Linking 6
LIST 36
Listing 6
Listing Directives 19
Listing File 13
Listing File Format 16
LOCAL 37
LocalLabel 48

M
Macro 6, 47
MACRO 38
Macro Directives 19, 49
Macro Examples 51
Macro Syntax 48
Macro Usage 50
Mail 69
MESSG 38
Microchip BBS 8, 67-71
Migration Path 1
Mnemonics 5, 14
MPASM Default File Exten

sions 15

N
NOEXPAND 39
NOLIST 39
Numeric Constants and

Radix 56

0
Object Code Formats 16, 63
Operands 14
Operators 57
ORG 40

p

PAGE 40
PC 6
PIC16/17 5
PIC16C5X 85
PIC16C5X Instruction Set

87
PIC16C5X Notes 89
PIC16C5X Operand Codes

87
PIC16CXX 85
PIC16CXX Instruction Set

90

DS33014C-page 101

Index

PIC16CXX Notes 94
PIC17C42 Instruction Set

95
PIC17C42 Notes 99
PIC17C42 Operand Codes

95
PIC17CXX 85
Precedence 53, 57
PROCESSOR 41
Production Release 71

a
Quick Reference Guide 85

R
Reader Response 1 03
RADIX 41
Radix Specifications 56
Recursion 48
Recursive Macros 50
Relocatable Object 6
RES 42

DS33014C - page 102

s
SET 42
Shell 9
Source Code 5
Source Code Formats 13
Source File 12
SPACE 43
Special Interest Groups 68
SUBTITLE 43
System Requirements 7

T
Text Strings 54
Text Substitution 49
TITLE 44

u
#UNDEFINE 44

v
VARIABLE 45

w
Warranty Registration 7
WHILE 46

© 1994 Microchip Technology Inc.

READER RESPONSE MPASM USER1S GUIDE
It is our intention to provide you with the best documentation possible to ensure successful use of your
Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways
in which our documentation can better seNe you, please FAX your comments to the Technical Publications
Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data
Sheet.

To: Technical Publications Manager Total pages sent ______ _

RE: Reader Response
From: Name ________________________________ _

Company _______________________________ _

Address _______________________________ _

City I State I ZIP I Country ______________________ _

Telephone: (__) __ _ FAX:(__) ______ _

Application (optional): __________ _ Would you like a reply? _Y

Literature Number: DS33014C

N

Product: MPASM User's Guide

Questions:

1. What are the best features of this document? --------------------

2. How does this document meet your hardware and software development needs? _______ _

3. Do you find the organization of this document easy to follow? If not, why? _________ _

4. What additions to the docurf1ent do you think would enhance the structure and subject matter?

5. What deletions from the document could be made without affecting the overall usefulness?

6. Is there any incorrect or misleading information (what and where)? -------------

7. How would you improve this document? ----------------------

8. How would you improve our software, systems, and silicon products? ------------

© 1994 Microchip Technology Inc. DS33014C - page 103

WORLDWIDE SALES & SERVICE

AMERICAS
Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ. 85224-6199
Tel: 602 786-7200 Fax: 602 899-9210

Atlanta
Microchip Technology Inc.
1521 Johnson Ferry Road NE, Suite 170
Marietta, GA 30062
Tel: 404 509-8800 Fax: 404 509-8600

Boston
Microchip Technology Inc.
Five The Mountain Road, Suite 120
Framingham, MA 01701
Tel: 508 820-3334 Fax: 508 820-4326

Chicago
Microchip Technology Inc.
665 Tollgate Road, Unit C
Elgin, IL 60123-9312
Tel: 708 741-0171 Fax: 708 741-0638

Dallas
Microchip Technology Inc.
14651 Dallas Parkway, Sutte 816
Dallas, TX 75240-8809
Tel: 214 991-7177 Fax: 214 991-8588

AMERICAS (continued)

Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 455
Irvine, CA 92715
Tel: 714 263-1888 Fax: 714 263-1338

New York
Microchip Technology Inc.
150 Motor Parkway, Suite 416
Hauppauge, NY 11788
Tel: 516 273-5305 Fax: 516 273-5335

San Jose
Microchip Technology Inc.
2107 N First Street, Suite 590
San Jose, CA 95131
Tel: 408 436-7950 Fax: 408 436-7955

ASIA/PACIFIC
Microchip Technology Inc.
Unit No. 3002-3004, Tower 1
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T. Hong Kong
Tel: 852 4011200 Fax: 852 401 3431

MICROCHIP

EUROPE
United Kingdom
Arizona Microchip Technology Ltd.
Unit 6, The Courtyard
Meadow Bank, Furlong Road
Bourne End, Buckinghamshire SL8 5AJ
Tel: 44 0628 851 077 Fax: 44 0628 850 259

Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
81739 Muenchen, Germany
Tel: 49 089 627144 0 Fax: 49 089 627144 44

France
Arizona Microchip Technology SARL
2, Rue Du Buisson aux Fraises
F-91300 Massy, France
Tel: 33 01 6930 9090 Fax: 33 01 6930 9079

Italy
Arizona Microchip Technology SRL
Centro Oirezionale Colleoni
Palazzo Pegaso lngresso No. 2
Via Paracelso 23, 20041 Agrate Brianza (Ml) Italy
Tel: 39 039 68 99 939 Fax: 39 039 68 99 883

JAPAN
Microchip Technology International Inc.
Shinyokohama Gotoh Bldg. BF, 3-22-4
Shinyokohama, Kohoku-Ku, Yokohama-Shi
Kanagawa 222 Japan
Tel: 8145 471 6166 Fax: 8145471 6122

Printed in USA© 1994, Microchip Technology Incorporated. All Rights Reserved. 7/01/94

'Information contained !nthis publication regarding device applications and the like is intended by way of suggestion only. No representation or warranty is given and no liability Is assumed by Microchip
Technology Inc. with respect to the accuracy or use of such information. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval
by Microchip. The Microchip logo and name are trademarks of Microchip Technology Incorporated. All rights reserved. AU other trademarks mentioned herein are the property of their respective companies.

DS33014C - page 104 © 1994 Microchip Technology Inc.

MICROCHIP

Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ. 85224-6199

Tel: 602 . 786. 7200 Fax: 602. 899. 9210

© 1994 Microchip Technology Inc. Printed in the U.S.A 6/94

