

# ML8464B, ML8464C

# **Pulse Detector**

### GENERAL DESCRIPTION

. . .

**BLOCK DIAGRAM** 

The ML8464 is a Pulse Detector designed for use in magnetic disk applications to detect the amplitude peaks on the output of the read/write amplifier. These signal peaks are caused by flux reversal on the disk media, which when connected to the read/write amplifier result in an output consisting of a series of pulses of alternating polarity. The relative time position of these signal peaks is indicated by the leading edge of the TTL output pulses. The Pulse Detector accurately represents the time position of these peaks.

The ML8464 contains three major blocks. The amplifier block contains a wide bandwidth differential amplifier with Automatic Gain Control (AGC) and a precision full wave rectifier. The time channel block includes a programmable differentiator followed by a bidirectional one shot multivibrator. The gate channel block includes a differential comparator with programmable hysteresis, a D flip-flop and an output bi-directional one shot multivibrator. The ML8464C internally connects the time channel output to the D flip-flop.

#### FEATURES

- Wide differential input signal range 20-660 mV<sub>P-P</sub>
- TTL compatible digital Inputs and Output
- Externally gain controlled input differential amplifier
- Variable hysteresis comparator with gating circuitry
- Differentiator with externally programmable time constants
- Standard 12V power requirement
- Available in 24-pin DIP package, or a 28-pin surface mount PCC
- Improved pulse pairing (±1 ns max.)
- Handles RLL (1, 7) or (2, 7) data to 24 MB/s

#### ML8464B FEATURES

Direct replacement for DP8464B



\* ML8464C ONLY

U

# ML8464B, ML8464C

# PIN CONNECTIONS



## **PIN DESCRIPTION**

| NAME                                        | FUNCTION                                                                                                                                     | NAME                            | FUNCTION                                                                                                                                                        |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Amp In+, Amp In-                            | Differential inputs to the Ampli-<br>fier. The output of the read/write<br>head amplifier should be capa-<br>citively coupled to these pins. | Set Pulse Width                 | External capacitor between this<br>pin and Digital ground is<br>connected to control the pulse<br>width of the Encoded Data Out.                                |
| Amp Out+, Amp Out-                          | Differential outputs of the<br>Amplifier. These outputs should<br>be capacitively coupled to the<br>gating channel filter and to the         | Read/Write                      | TTL input. When low, the chip is<br>in read mode and active. When<br>High, the chip is forced into<br>stand by mode.                                            |
| Gate Channel Inputs                         | Differential inputs to the AGC<br>block and the gating channel.<br>Must be capacitively coupled<br>from the Amp Out.                         | Channel Alignment               | Buffered output of the differ-<br>ential comparator with hysteresis.<br>This output is TTL on the<br>ML8464B, and is open emitter<br>on ML8464C. The ML8464C is |
| Time Channel Input+,<br>Time Channel Input- | Differential inputs to the time channel differentiator. A filter is                                                                          |                                 | specified with a 2KΩ pull-down resistor to ground.                                                                                                              |
|                                             | required between these pins and<br>Amp Out pins to band limit the<br>noise and to correct for any<br>phase distortion due to read            | Time Pulse In<br>(ML8464B only) | This is the TTL input to the<br>clock of the D flip-flop. Usually<br>it is connected to the Time<br>Pulse Out pin.                                              |
|                                             | circuitry. Also inputs must be<br>capacitively coupled to prevent<br>disturbing the DC input level.                                          | Time Pulse Out                  | ML8464B: This is the TTL output from the bidirectional one shot following the differentiator.                                                                   |
| CD+, CD-                                    | External differentiator network<br>is connected between these<br>two pins.                                                                   |                                 | Usually it is connected to the<br>Time Pulse In pin.<br>ML8464C: Open emitter-follower                                                                          |
| Set Hysteresis                              | DC voltage on this pin sets the amount of hysteresis on the differential comparator.                                                         | Encoded Data Out                | test point.<br>TTL output. Leading edge of<br>this pin indicates the time                                                                                       |
| V <sub>REF</sub>                            | AGC circuit adjusts the gain of                                                                                                              | Vcc                             | position of the peaks.                                                                                                                                          |
|                                             | ential peak to peak voltage on<br>the Gate Channel. Input is four                                                                            | GND                             | Digital ground. Digital signals should be referenced to this pin.                                                                                               |
| C <sub>AGC</sub>                            | times the DC voltage on this pin.<br>External capacitor between this<br>pin and Analog ground is<br>connected for the AGC.                   | AGND                            | Analog ground. Analog signals should be referenced to this pin.                                                                                                 |

TIME CHANNEL INPUT -SET HYSTERESIS CD+ TIME CHANNEL INPUT + GATE CHANNEL INPUT VREF CDц сті 28 27 26 3 2 1 NC 25 GATE CHANNEL INPUT NC 24 ANALOG GROUND AMP IN + 23 AMP OUT -AMP IN -22 AMP OUT + 28-Pin PLCC R NC 21 NC 9 Vcc [ 20 DIGITAL GROUND 10 NC 🛛 11 19 CAGC 12 13 14 15 16 17 18 11 1 TIME ENCODED DATA OUT SET NC PULSE WIDTH TIME PULSE IN\* ALIGNMENT READ/WRITE



## FUNCTIONAL DESCRIPTION

The output from the read/write amplifier is AC coupled to the amp input of the ML8464. The amplifier's output voltage is fed back via an external filter to an internal fullwave rectifier and compared against the external voltage on the V<sub>REF</sub> pin. The AGC circuit adjusts the gain of the amplifier to make the peak to peak differential voltage on the Gate Channel Input four times the DC voltage on the V<sub>REF</sub>. Typically the signal on the amp out will be set for 4V<sub>P-P</sub> differential. Since the filter usually has a 6dB loss, the signal on the Gate Channel Input will be 2V<sub>P-P</sub> differential. The user should therefore set 0.5V on V<sub>REF</sub> which can be done with a simple voltage divider from the +12V supply or other suitable reference.

The peak detection is performed by feeding the output of the amplifier through an external filter to the differentiator. The differentiator output changes state when the input pulse changes direction, generally this will be at the peaks. However, if the signal exhibits shouldering, the differentiator will also respond to noise near the baseline. To avoid this problem, the signal is also fed to a gating channel which is used to define a level either side of the baseline. This gating channel is comprised of a differential comparator with hysteresis and a D flip-flop. The hysteresis for this comparator is externally set via the Set Hysteresis pin. In order to have data out, the input amplitude must first cross the hysteresis level which will change the logic level on the D input of the flip-flop. The peak of the input signal will generate a pulse out of the differentiator and bidirectional one shot. This pulse will clock the new data at the D input through to the output. In this way, when the differentiator is responding to noise at the baseline, the output of the D flip-flop is not changing since the logic level into the D input has not been changed. The comparator circuitry is therefore a gating channel which prevents any noise near the baseline from contaminating the data. The amount of hysteresis is twice the DC voltage on the Set Hysteresis pin. For instance, if the voltage on the Set Hysteresis pin is 0.3V, the differential AC signal across the gate channel input must be larger than 0.6V before the comparator will change states. In this case, the hysteresis is 30% of a 2V peak to peak differential signal at the gate channel input.

### ABSOLUTE MAXIMUM RATINGS

| Supply Voltage                                                 | 14V  |
|----------------------------------------------------------------|------|
| TTL Input Voltage                                              | 5.5V |
| TTL Output Voltage                                             | 5.5V |
| Input Voltage                                                  | 5.5V |
| Differential Input Voltage                                     | +3V  |
| $\theta_{IA}$ for 24-Pin Plastic DIP (Copper Lead Frame) 60°C/ | Watt |
| $\theta_{IA}$ for 28-Pin PLCC (Copper Lead Frame)              | Watt |
| Storage Temperature Range65°C to +1                            | 50°C |

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.



# DC ELECTRICAL CHARACTERISTICS

<u>Over</u> recommended operating conditions of  $T_A = 0$  to 70°C,  $V_{CC} = 12.0V \pm 10\%$ ,  $V_{REF} = 0.5V$ , Set Hysteresis = 0.3V, Read/Write = 0.8V unless otherwise noted. (All pin numbers refer to DIP package.)

| SYMBOL              | PARAMETER                                      | MIN  | ТҮР        | MAX  | UNITS  | CONDITIONS                                                  |
|---------------------|------------------------------------------------|------|------------|------|--------|-------------------------------------------------------------|
| AMPLIFIER           |                                                |      | 1          | J    | 1      | 1                                                           |
| Z <sub>INAI</sub>   | Amp In Impedance                               | 0.8  | 1.0        | 1.5  | kΩ     |                                                             |
| AVMIN               | Min Voltage Gain                               |      |            | 6.0  | V/V    | AC Output 4V <sub>P-P</sub> Differential                    |
| AVMAX               | Max Voltage Gain                               | 180  |            |      | V/V    | AC Output 4V <sub>P-P</sub> Differential                    |
| V <sub>CAGC</sub>   | Voltage on C <sub>AGC</sub>                    | 2.8  | 4.5<br>3.4 | 5.5  | V<br>V | $A_V = 6.0$<br>$A_V = 180$                                  |
| GATE CHAN           | ,                                              |      | 1          |      |        |                                                             |
| Z <sub>INGCI</sub>  | Gate Channel Input Impedance                   | 1.75 | 2.5        | 3.25 | kΩ     |                                                             |
| I <sub>CAGC</sub> - | Current that charges C <sub>ACC</sub>          | -1.5 | -2.5       | -3.5 | mA     | Pin 16 = 3.9V<br>Pin 21 - Pin 22 = 1.3V                     |
| ICAGC <sup>+</sup>  | Current that discharges C <sub>AGC</sub>       |      | 1          | 5    | μA     | Pin 16 = 5.0V<br>Pin 21 – Pin 22 = 0.7V                     |
| I <sub>VREF</sub>   | V <sub>REF</sub> Input Bias Current            |      | -0.01      | -100 | μA     |                                                             |
| V <sub>THAGC</sub>  | AGC Threshold                                  | 0.88 | 1.0        | 1.12 | v      | Pin 16 = 4.2V See Note 1                                    |
| I <sub>SH</sub>     | Set Hysteresis Bias Current                    |      | -60        | ~100 | μA     |                                                             |
| V <sub>THSH</sub>   | Set Hysteresis Threshold                       | 0.48 | 0.6        | 0.72 | v      | See Note 2                                                  |
| TIME CHAN           | INEL                                           |      |            |      |        |                                                             |
| ZINTC               | Time Channel Input Impedance                   | 3.5  | 5          | 6.5  | kΩ     |                                                             |
| I <sub>CD</sub>     | Current into pins 1 & 24 that discharges $C_D$ | 2.1  | 2.7        | 3.4  | mA     |                                                             |
| WRITE MO            | DE                                             |      |            |      |        |                                                             |
| Z <sub>INAI</sub>   | Amplifier Input Impedance in<br>Write Mode     | 100  |            | 500  | Ω      | Pin 11 = 2V                                                 |
| ICAGC               | Pin 16 Current in Write Mode                   |      | 1.0        | 5.0  | μA     | Pin 11 = 2V<br>Pin 16 = 3.9V<br>Pin 21 - Pin 22 = 1.3V      |
| DIGITAL PI          | NS                                             |      |            |      |        |                                                             |
| V <sub>IH</sub>     | High Level Input Voltage                       | 2.0  |            |      | V      | ML8464B: Pins 11, 13                                        |
| VIL                 | Low Level Input Voltage                        |      |            | 0.8  | v      | ML8464C: Pin 11                                             |
| V <sub>I</sub>      | Input Clamp Voltage                            |      |            | -1.5 | v      | $V_{\rm CC}$ = 10.8V, I <sub>I</sub> = -18mA                |
| I <sub>IH</sub>     | High Level Input Current                       |      |            | 20   | μA     | $V_{\rm CC}$ = 13.2V, $V_{\rm t}$ = 2.7V                    |
| l,                  | Input Current at Maximum<br>Input Voltage      |      |            | 1    | mA     | V <sub>CC</sub> = 13.2V,<br>V <sub>I</sub> = 5.5V           |
| IIL                 | Low Level Input Current                        |      |            | -200 | μA     | $V_{\rm CC}$ = 13.2V, $V_{\rm I}$ = 0.5V                    |
| V <sub>OH</sub>     | High Level Output Voltage                      | 2.4  |            |      | v      | $V_{CC}$ = 10.8V, $V_{IOH}$ = -40 $\mu$ A<br>See notes 3, 7 |
| V <sub>OL</sub>     | Low Level Output Voltage                       |      |            | 0.5  | v      | $V_{CC}$ = 10.8V, $I_{OL}$ = 800 $\mu$ A, see note 7        |
| losc                | Output Short Circuit Current                   |      |            | -100 | mA     | $V_{\rm CC}$ = 13.2V, $V_{\rm O}$ = 0V                      |
| I <sub>CC</sub>     | Supply Current                                 |      | 54         | 75   | mA     | $V_{CC} = 13.2V$                                            |

#### DC ELECTRICAL CHARACTERISTICS (Continued)

<u>Over</u> recommended operating conditions of  $T_A = 0$  to 70°C,  $V_{CC} = 12.0V \pm 10\%$ ,  $V_{REF} = 0.5V$ , Set Hysteresis = 0.3V, Read/Write = 0.8V unless otherwise noted. (All pin numbers refer to DIP package.)

| SYMBOL            | PARAMETER                                                   | MIN | TYP | MAX | UNITS  | CONDITIONS                                                 |
|-------------------|-------------------------------------------------------------|-----|-----|-----|--------|------------------------------------------------------------|
| DIGITAL PIN       | VS (Continued)                                              |     |     |     |        |                                                            |
| V <sub>OHCA</sub> | Channel Alignment Pin V <sub>OH</sub><br>ML8464B<br>ML8464C | 2.4 | 7.6 |     | v<br>v | (Note 3)<br>$I_{OH} = -40\mu A$<br>$10k\Omega$ Load to GND |
| V <sub>OLCA</sub> | Channel Alignment Pin V <sub>OL</sub><br>ML8464B<br>ML8464C |     | 6.9 | 0.4 | v<br>v | (Note 3)<br>$I_{OL} = 800\mu A$<br>$10k\Omega$ Load to GND |
| V <sub>OHTP</sub> | Time Pulse Out Pin V <sub>OH</sub><br>ML8464B<br>ML8464C    | 2.4 | 9.6 |     | v<br>v | 10kΩ Load to GND<br>10kΩ Load to GND                       |
| V <sub>OLTP</sub> | Time Pulse Out Pin V <sub>OL</sub><br>ML8464B<br>ML8464C    |     | 8.6 | 0.4 | v<br>v | 10kΩ Load to GND<br>10kΩ Load to GND                       |

### AC ELECTRICAL CHARACTERISTICS

Over recommended operating temperature and supply range of V<sub>CC</sub> = 10.8 to 13.2V,  $T_A = 0$  to 70°C.

| SYMBOL                             | PARAMETER                  | MIN | TYP  | MAX  | UNITS | CONDITIONS                                                     |
|------------------------------------|----------------------------|-----|------|------|-------|----------------------------------------------------------------|
| ML8464-1<br>t <sub>P-P</sub>       | Pulse Pairing              |     | ±0.5 | ±1.0 | ns    |                                                                |
| <br>ML8464-1.5<br>t <sub>P-P</sub> | Pulse Pairing <sup>6</sup> |     | ±0.8 | ±1.5 | ns    | f = 2.5MHz<br>$V_{IN} = 40mV_{P-P}$ differential<br>See note 4 |
| ML8464-2<br>t <sub>P-P</sub>       | Pulse Pairing              |     | ±1.5 | ±3.0 | ns    |                                                                |

Note 1: The AGC threshold is defined as the voltage across the gate channel input when the voltage on CAGC is 4.2V.

Note 2: The Set Hysteresis threshold is defined as the voltage across the gate channel input when the channel alignment output voltage changes state.

Note 3: To prevent inductive coupling from the digital outputs to amplifier inputs, the TTL outputs should not drive more than one ALS TTL load.

Note 4: The filter and differentiator network are described in the pulse pairing set-up.

Note 5: All limits are guaranteed by 100% testing or alternate methods.

Note 6: The 1.5 ns pulse pairing specification is available only on the ML8464C, not the ML8464B.

Note 7: ML8464B: Pins 12, 14, 15

ML8464C: Pins 14 and 15 only.





#### PULSE PAIRING SET UP

#### PARTS LIST

| R1 220Ω      | C1 82pF           |
|--------------|-------------------|
| R4 680Ω      | C2, C3, C6 0.01µF |
| R2, R3 240Ω  | C4 100pF          |
| R5, R6 3.3kΩ | C5 15pF           |
| R7 100kΩ     | C7, C8 0.0022µF   |
| L1 1.5μH     | C9 47pF           |
| L2, L3 4.7µH |                   |

\* The connection between pins 12 and 13 is required only for the ML8464B.

### PULSE PAIRING MEASUREMENT

The scope probe is connected to pin 14 (Encoded Data Out) and triggered off of its positive edge. The trigger holdoff is adjusted so that the scope first triggers off the pulse associated with the positive peak and then off the pulse associated with the negative peak. Pulse pairing is displayed on the second pair of pulses on the display. If the second pair of pulses are separated by 6ns, then the pulse pairing for the part is  $\pm$ 3ns.



# ML8464B, ML8464C





ML8464B



Micro Linear

•

### DIFFERENCES BETWEEN ML8464C AND ML8464B

#### THE EXTERNAL DELAY

The ML8464B open circuits the digital signal at pins 12 and 13. This allows for the insertion of an external delay filter. The ML8464C has no TTL buffers at these pins and closes the signal path internally bringing out a test point at pin 12. Hence, the ML8464 does not allow for the external delay.

#### **TEST POINTS**

The ML8464B has two TTL test points at pins 12 and 15. The ML8464C uses open emitter followers in an ECL configuration. Hence, the voltage levels are not similar at pins 12 and 15 on both devices. The typical voltage level at pins 12 are  $V_{OH}$  = 9.6V,  $V_{OL}$  = 8.6V and at pin 15 are  $V_{OH}$  = 1.6V,  $V_{OL}$  = 1.0V.

#### AGC GAIN CONTROL FACTOR

The AGC reference level is a DC voltage externally set at  $V_{REF}$  (pin 4). Increasing this DC voltage will increase the gain of the gain controlled amplifier.

AGC gain control factor =

|                  | $V_{OUT PEAK}$ = peak of the AGC amp                                                                                                                                                         |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | V <sub>REF</sub>                                                                                                                                                                             |
| AGC gain control | $I \text{ factor} = \frac{2.5 \text{V}_{\text{PP}}}{0.5 \text{V}_{\text{DC}}} = 5 \text{ for ML8464B}$ $= \frac{2.0 \text{V}_{\text{PP}}}{0.5 \text{V}_{\text{DC}}} = 4 \text{ for ML8464C}$ |
|                  |                                                                                                                                                                                              |

Thus, at V<sub>REF</sub> = 0.5V<sub>DC</sub>, V<sub>OUT</sub> AGC = 2.5V for ML8464B and 2.0V for ML8464C. This smaller signal amplitude should be taken into consideration at the hysteresis comparator. To set the desired amount of hysteresis, and external DC control voltage is used. The particular settings for V<sub>REF</sub> and control voltage at pin 3 that optimizes the ML8464B performance may not necessarily optimize the ML8464C performance.

### ORDERING INFORMATION

| PART NUMBER   | TEMP. RANGE  | PACKAGE          | PULSE PAIRING |
|---------------|--------------|------------------|---------------|
| ML8464C-1CP   | 0°C to +70°C | MOLDED DIP (P24) | ±1 ns         |
| ML8464C-1CQ   | 0°C to +70°C | MOLDED PCC (Q28) | ±1 ns         |
| ML8464C-1.5CP | 0°C to +70°C | MOLDED DIP (P24) | ±1.5 ns       |
| ML8464C-1.5CQ | 0°C to +70°C | MOLDED PCC (Q28) | ±1.5 ns       |
| ML8464C-2CP   | 0°C to +70°C | MOLDED DIP (P24) | ±3 ns         |
| ML8464C-2CQ   | 0°C to +70°C | MOLDED PCC (Q28) | ±3 ns         |
| ML8464B-1CP   | 0°C to +70°C | MOLDED DIP (P24) | ±1 ns         |
| ML8464B-1CO   | 0°C to +70°C | MOLDED PCC (Q28) | ±1 ns         |
| ML8464B-2CP   | 0°C to +70°C | MOLDED DIP (P24) | $\pm 3$ ns    |
| ML8464B-2CQ   | 0°C to +70°C | MOLDED PCC (Q28) | $\pm 3$ ns    |