

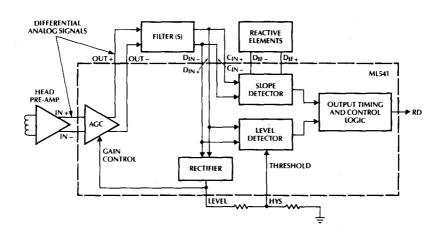
ML541

Read Data Processor

GENERAL DESCRIPTION

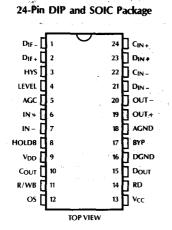
The ML541 is a monolithic bipolar integrated circuit for use in a disk drive system to detect analog pulse peaks generated by the recording head during a Read operation. Connected to the read/write amplifier output, it detects valid data and provides a TTL output to the data separator for further processing. It contains both analog and digital circuitry and supports the reading of MFM and RLL encoded data at rates up to 15 megabits/second.

The primary functional blocks within the device include an AGC amplifier, a level detector, a slope detector, and output logic. Operating modes Read, Write, and Hold are selectable with input logic signals. Read mode is used for pulse peak detection during a Read operation. Write mode disables the device's ouput during a Write operation, while Hold mode holds the AGC gain constant during recovery of embedded servo information.

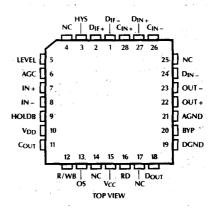

By using both level and slope detection, accurate pulse validation and peak time detection is acheived. The ML541 performance can be adjusted to fit particular needs through external component selection.

The ML541 is available both in a 24-pin PDIP and 28-pin PCC.

FEATURES


- Second source for SSI 541
- Data rates up to 15 megabits/second
- Supports MFM and RLL encoded read data
- 25 MHz wide-bandwidth AGC amplifier
- Fast AGC region for fast transient recover
- Slow AGC region for minimum zero crossing distortion
- Write to read transient suppression
- Supports embedded servo decoding
- +5V, +12V power supplies

SIMPLIFIED BLOCK DIAGRAM



PIN CONNECTIONS

28-Pin PCC Package

PIN DESCRIPTION

NAME	FUNCTION	NAME	FUNCTION
V _{CC}	+5V	HYS	Input for setting hysteresis level of the
V _{DD}	+12V		hysteresis comparator.
- AGND DGND	Analog Ground. Digital Ground.	LEVEL	 Provides rectified signal level for input to the hysteresis comparator.
R/WB	TTL compatible Read/Write Control pin.	D _{OUT}	Buffered test point for monitoring D input of the flip-flop.
IN+, IN-	Analog Signal Input pins	C_{IN+}, C_{IN-}	Analog input to the differentiator.
OUT+, OUT-	AGC Amplifier Output pins	D_{IF+}, D_{IF-}	External differentiating network con-
BYP	The AGC timing capacitor CAGC is		nection pins.
	tied between this pin and AGND.	COUT	Buffered test point for monitoring the
HOLDB	TTL compatible pin that holds the	-001	clock input to the flip-flop.
	AGC gain when pulled low.	OS	Connection for read output pulse
AGC	Reference input voltage level for the		width setting capacitor Cos.
,	AGC circuit.	RD	TTL compatible read output.
D_{IN+}, D_{IN-}	Analog input to the hysteresis com- parator.		

TABLE 1 MODE SELECT

R/WB	HOLDB	MODE	DESCRIPTION	
1	1	READ	AGC amp section active, Digital section active.	
1	0	HOLD	AGC gain constant, Digital section active.	0 = Logic level low
0	x	WRITE	AGC gain maximum, Digital section inactive, Input common mode resistance reduced.	1 = Logic level high X = Don't care

+ <u>7</u> - - - -

.

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Power Supply Voltage Range

V_{CC}
V _{DD} 0.3 to 14V _{DC}
Terminal Voltage Range
R/WB, IN+, IN-, HOLDB0.3V to V _{CC} +0.3V
RD
All others
Storage Temperature Range65°C to +150°C
Junction Temperature (T _I) +135°C
Lead Temperature (Soldering, 10sec) 260°C
-

OPERATING CONDITIONS

Supply Voltage	
V _{CC}	5V±10%
V _{DD}	12∨±10%
$V_{(C_{IN+}-C_{IN-})}, V_{(D_{IN+}-D_{IN-})}$	
V_{HYS}	1.ÓV
C ₀₈	
Typical Component Values (Refer to Typical Applications)	. to 200 pt
C _{IN}	0.001. F
$C_{\rm S}$	
C _{OUT}	
ROUT	
CAGCI	
C _{AGC2}	
R _{AGC}	2.21 kQ
C _{LEVEL}	150 pF
R _{LEVEL1}	. 1.54kQ
R _{LEVEL2}	. 6.49kΩ
Cos	

ELECTRICAL CHARACTERISTICS

The following specifications apply over the recommended operating conditions of $V_{CC} = 5V \pm 10\%$, $V_{DD} = 12V \pm 10\%$, $0^{\circ}C < T_A < 70^{\circ}C$ and external components as specified under recommended operating conditions unless otherwise specified. (See Note 2.)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP NOTE 5	MAX	UNITS
DC Charact	eristics	······································		· · · · · · · · · · · · · · · · · · ·		
lcc	V _{CC} Supply Current	Outputs unloaded			14	mA
	V _{DD} Supply Current	Outputs unloaded			70	mA
PD	Power Dissipation	Outputs unloaded, T _A = 70°C			930	mW
Digital Inpu	rts Characteristics (HOLDB, R/WE	;)		- .		
ViH	High Voltage		2			v
VIL	Low Voltage				0.8	V
lн	High Current	V _{IH} =2.4V			100	μA
l _{lL}	Low Current	V _{IL} =0.4V	-0.4			mA
Digital Out	puts Characteristics (C _{OUT} , RD)	•		·•		
VOL	Output Low Voltage	I _{OL} =4mA			0.4	v
V _{OH}	Output High Voltage	I _{OH} =400μA	2.4	11		V
WRITE ANI	D HOLD MODE CHARACTERIST	CS				
Mode Cont	rol					
t _{RW}	Read to Write Transition Time				1	μs
twr	Write to Read Transition Time	AGC settling not included, time to high input resistance	1.2		3	μs
t _{RH}	Read to Hold Transition Time				1	μs
Write Mode	;					
Z _{IC}	Common Mode Input Impedance (both sides)	R/WB pin = low		250		Q

ELECTRICAL CHARACTERISTICS (Continued) The following specifications apply over the recommended operating conditions of $V_{CC}=5V \pm 10\%$, $V_{DD}=12V \pm 10\%$, $0^{\circ}C \leq T_A \leq 70^{\circ}C$, IN + and IN - AC coupled, $OUT + and OUT - differentially loaded with >600Q and each side loaded with <10pF to GND, <math>C_{BYP}=2000$ pF, OUT + and OUT - AC coupled to D_{IN+} and D_{IN-} respectively, $V_{AGC}=2.2V$ unless otherwise specified. (See Note 2.)

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP NOTE 5	MAX	UNITS
READ MOD	DE CHARACTERISICS					·
AGC Ampli	fier					- <u>-</u>
R _{ID}	Differential Input Resistance	$V_{(N+- N-)} = 100 \text{mV}_{P-P} @ 2.5 \text{MHz}$		5		kQ.
C _{ID}	Differential Input Capacitance	$V_{(IN+-IN-)} = 100 mV_{P-P} @ 2.5 MHz$			10	pF
Z _{IC}	Common Mode Input	R/WB pin high		1.8		kΩ
· · · · · · · · · · · · · · · · · · ·	Impedance (both sides)	R/WB pin low		0.25		kΩ
A _{VR}	Gain Range	1V _{P-P} ≤V _{OUT diff} <2.5V _{P-P}	4		83	V/V
e _N	Input Noise Voltage	Gain set to maximum			30	nV/ √Hz
BW	Bandwidth	Gain set to maximum, -3dB point	25			MHz
V _{OP}	Maximum Output Voltage Swing	Set by V _{AGC}	3			V _{P-P}
OD	OUT + to OUT - Pin Current	No DC path to GND, See Note 3	• ±3.2			mA
Ro	Output Resistance	. 21		20	30	Q
C ₀	Output Capacitance			12		pF
V _{IP} V _{AGC}	(D _{IN +} – D _{IN -}) Input Voltage Swing VS AGC Input Level	30mV _{P-P} ≤V _(IN+-IN-) ≤550mV _{P-P} , 1.5V≤V _{AGC} ≤3.75V		0.48		V _{P-P} /V
V _{IP}	(D _{IN+} -D _{IN-}) Input Voltage Swing Variation	$30 \text{mV}_{P,P} < V_{(IN+-IN-)} < 550 \text{mV}_{P,P}$ AGC Fixed, over supply and temp.			+8	%
t _D	Gain Decay Time	See Figure 1a; V _{IN} = 300mV _{P.P} then > 150mV _{P.P} at 2.5 MHz, V _{OUT} to 90% of final value.	:	50		μs
t _A	Gain Attack Time	See Figure 1b; from Write to Read transition to V _{OUT} at 110% of final value, V _{IN} = 400 mV _{P-P} @ 2.5 MHz		4		μs
I _{AGCíc}	Fast AGC Capacitor Charge Current	$V_{(D_{IN+}-D_{IN-})} = 1.6 V, V_{AGC} = 3.0 V$		1.5		mA
AGCsc	Slow AGC Capacitor Charge Current	V _{(DIN+} -D _{IN-})=1.6 V, Vary V _{AGC} until slow discharge begins		0.17		mA
	Fast to Slow Attack	V _{(DIN+} -D _{IN-})		1.25		-
	Switchover Point	$V_{(D_{IN+}-D_{IN-})}$ Final				
AGCD	AGC Capacitor Discharge Current	$V_{(D_{N+}-D_{N-})}=0.0V$ Read Mode		4.5		μA
		Hold Mode	-0.2		+0.2	μΑ.
CMRR	CMRR (Input Referred)	$V_{IN+} = V_{IN-} = 100 \text{ mV}_{P,P}$ @ 5MHz, gain at max.	40			dB
PSRR	PSRR (Input Referred)	V _{CC} or V _{DD} = 100 mV _{P-P} @ 5MHz, gain at max.	30		1	dB
Hysteresis (Comparator					
V _{IP}	Input Signal Range			T	1.5	V _{P-P}
R _{ID}	Differential Input Resistance	$V_{(D_{IN} + -D_{IN} -)} = 100 \text{ mV}_{P-P} @ 2.5 \text{ MHz}$	5		15	kΩ
C _{ID}	Differential Input Capacitance	$V_{(D_{IN+}-D_{IN-})} = 100 \text{ mV}_{P-P} @ 2.5 \text{ MHz}$	1	<u>+</u>	6.0	pF
Z _{IC}	Common Mode Input Impedance	(both sides)		2.0		kΩ
V _{IO}	Comparator Offset Voltage	HYS pin at −0.5V, ≤1.5kQ across D _{IN+} , D _{IN-}		5		mV

•

ELECTRICAL CHARACTERISTICS (Continued)

The following specifications apply over the recommended operating conditions of $V_{CC} = 5V \pm 10\%$, $V_{DD} = 12V \pm 10\%$, $0^{\circ}C \leq T_A \leq 70^{\circ}C$, IN + and IN - AC coupled, OUT + and OUT - differentially loaded with $>600\Omega$ and each side loaded with <10 pF to GND, $C_{BYP} = 2000 \text{ pF}$, OUT + and OUT - AC coupled to D_{IN+} and D_{IN-} respectively, $V_{AGC} = 2.2V$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
	DE CHARACTERISICS (Continued)	·····				
· · · · · · · · · · · · · · · · · · ·	Comparator (Continued)					•·
V _{HYSP} V _{HYS}	Peak Hysteresis Voltage vs HYS pin voltage (input referred)	1V <v<sub>HY5<3V</v<sub>		0.21		V/V
ц. I	HYS Pin Input Current	1V <v<sub>HYS<3V</v<sub>	0		-20	μA
l ₀	LEVEL Pin Max Output Current		3			mA
R _O	LEVEL Pin Output Resistance	ILEVEL=0.5mA		180		Q
VOL	DOUT Pin Output Low Voltage	T _A ≈ 70°C	V _{DD} -4.0		V _{DD} -2.5	V
V _{OH}	D _{OUT} Pin Output High Voltage	$T_A = 70^{\circ}C$	V _{DD} -2.2		V _{DD} -1.5	V
VOL	D _{OUT} Pin Output Low Voltage	$T_A = 25^{\circ}C$	V _{DD} -4.0		V _{DD} -2.8	V
VOH	D _{OUT} Pin Output High Voltage	T _A ≈ 25°C	V _{DD} -2.5		V _{DD} -1.6	V
Active Diff	erentiator		·	······································	······	
VIP	Input Signal Range				1.5	V _{P-P}
R _{ID}	Differential Input Resistance	$V_{(C_{IN+}-C_{IN-})} = 100 \text{ mV}_{P-P} @ 2.5 \text{ MHz}$	5		. 15	kQ
C _{ID}	Differential Input Capacitance	V _(CIN+-CIN-) =100mV _{P-P} @2.5MHz			6	pF
Z _{IC}	Common Mode Input Impedance	(both sides)		2.0		kQ
I _{OD}	D _{IF+} to D _{IF-} Pin Current	Differentiator Imped must be set so as not to clip signal at this current level	± 1.3			mA
VIO	Comparator Offset Voltage	D _{IF+} , D _{IF} AC Coupled	-	5	1	тV
VOL	COUT Pin Output Low Voltage	0≤I _{OH} ≤0.5mA		V _{DD} -3		v
V _{PO}	COUT Pin Output Pulse Voltage	0≤I _{OH} ≤0.5mA		0.4		V
PW ₀	COUT Pin Output Pulse Width	0≤I _{OH} ≤0.5 mA		30		ns

The following specifications apply over the recommended operating conditions of $V_{CC} = 5V \pm 10\%$, $V_{DD} = 12V \pm 10\%$, $0^{\circ}C \leq T_A \leq 70^{\circ}C$, $V_{(C_{IN+}-C_{IN-})} = V_{(D_{IN+}-D_{IN-})} = 1.0V_{P,P}$ AC coupled sine wave at 2.5 MHz, $R_{D_{IF}} = 100\Omega$, $C_{D_{IF}} = 65$ pF, $V_{HYS} = 1.8V$, $C_{OS} = 60$ pF, 4 kQ to V_{CC} and 10 pF to GND on pin RD unless otherwise specified.

Output Da	ta Characteristics (Refer to Figure			T		
t _{D1}	D-Flip-Flop Set Up Time	$\begin{array}{l} \mbox{Min delay from $V_{(D_{ N+}-D_{ N-})$}$ exceeding threshold to $V_{(D_{ F+}-D_{ F-})$}$ reaching a peak \\ \end{array}$	0			'ns
^t D3	Propagation Delay				110	ns
t _{D5}	Output Data Pulse Width	$T_A = 25^{\circ}C, V_{CC} = 5V, V_{DD} = 12V$		±15%	· .	
t _{D5}	Output Data Pulse Width Variation	$C_{OS} = 60 \text{pF}$, See Note 4	30		80	ns
t _{D3} -t _{D4}	Logic Skew (Pulse Pairing)				3	ns
R	Output Rise Time	V _{OH} =2.4V	1		18	ns
ι _F	Output Fall Time	V _{OI} = 0.4V			14	ns

Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with respect to ground.

Note 2: Limits are guaranteed by 100% testing, sampling, or correlation with worst-case test conditions.

Note 3: AGC amplifier output current may be increased as in Figure 4.

Note 4: $t_{D5} \approx 770$ (C_{OS}), $50pF < C_{OS} < 150pF$.

Note 5: Typicals are parametric norm at 25°C

FUNCTIONAL DESCRIPTION

Operating Modes

The ML541 has three definitive operation modes which are: Read mode, Write mode and Hold mode. These modes are defined by input pins HOLDB and R/WB as shown in Table 1. Read mode, the mode used normally for pulse detection, is assumed in the following sections unless otherwise noted.

AGC Amplifier Section

The purpose of the AGC amplifier is to provide a constant read signal level for both the level and slope detectors. Full differential processing of the read signal is used to minimize noise and distortion in the analog signal. A wide gain range is required due to large signal variation when moving the recording head from an inside to outside data track or variations in media.

The differential output voltage level V_{OUT} from the AGC amp is determined by voltage V_{AGC} present at pin AGC. V_{OUT} is full wave rectified and compared against V_{AGC} to create charge/discharge current for capacitor C_{BYP} connected at pin BYP. Voltage V_{BYP} across C_{BYP} controls the gain in the AGC amplifier.

Two distinct values of I_{BYP} are possible which determine a fast and slow AGC gain response attack rate. When V_{OUT} is more than 125% of the set level a high value of I_{BYP} is sourced which provides a fast AGC attack rate. When V_{OUT} is within 100% to 125% of the set level a reduced value of I_{BYP} is sourced which provides a slower attack rate. The fast-slow gain response attack rates provides for an initial quick system response and then minimum zero crossing distortion of the analog signal once the gain is within working range. V_{AGC} should be set so that the differential input voltage V_{DIN} into the level comparator is $1V_{PP}$ at nominal Read signal conditions. The AGC amp section gain is given by:

$$\frac{A_{V2}}{A_{V1}} = \exp \frac{V_{BYP2} - V_{BYP1}}{5.8 \times V_T}$$

Where: A_{V1}, A_{V2} are initial and final amplifier gain values corresponding to initial and final V_{BVP} values.

 $V_T = (KT)/Q = 26 \,\text{mV}$ at room temperature.

The AGC amp's differential inputs must be AC coupled to the read amplifier (ML117, ML501, etc.) differential outputs. Similarly, AC coupling must be used at the AGC amp outputs.

AGC Amp During Write Mode — When the ML541 is put into write mode, the AGC amp's input impedance is lowered to allow a faster dampening of the Write to Read transient from the head pre-amp. The AGC gain is also set to maximum gain so that fast AGC attack will occur when changing back to the Read mode. Internal device timing is controlled so that settling occurs prior to Read mode activation. Minimal value input coupling capacitors should be chosen to reduce settling time, however, bandwidth requirements also need to be considered.

AGC Amp During Hold Mode – During the Hold mode, the charge/discharge current driving pin BYP is internally disconnected. AGC compensation capacitor C_{AGC} will then hold the present gain setting. The amplitude of V_{OUT} will therefore not affect the AGC gain and gain will remain constant.

Hold mode is used so that AGC gain will not be adjusted when embedded servo information is read. This prevents loosing the pulse peak amplitude information needed during position decoding, or creating additional gain settling time when again reading data. Embedded servo pulses are normally taken at outputs D_{IF-} and D_{IF+} , as shown in the typical application.

External Filter Network

Filtering for the level and slope detectors can be performed with a single filter or two separate filters. If separate filters are used, care must be used to insure that time delays are matched. A multi-pole Bessell filter is recommended due to the group delay and linear phase characteristics.

Level Detector

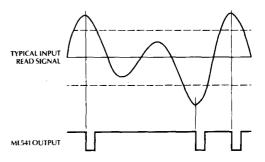
The full wave rectified V_{OUT} is buffered and available at pin LEVEL. The level detector uses a hysteresis comparator to compare the processed read signal amplitude against a reference voltage derived from voltage V_{LEVEL} output from pin LEVEL. Using V_{LEVEL} provides a feed-forward function that allows valid level detection to be performed prior to AGC amp gain settling. The level detector hysteresis value is set in a way that will only allow relatively large read pulse peaks (negative or positive) to be detected.

Slope Detector

The slope detector uses an external reactive component network to produce a voltage signal proportional to the differential of the read signal. By using a hysteresis comparator to detect zero slope of the read signal, the time occurrence of positive or negative read pulse peak values can be determined.

An external reactive network, shown in the Typical Application, is used between the D_{IF+} and D_{IF-} pins to provide the differential function given by:

$$A_V = \frac{-2000Cs}{LCs^2 + (R + 92)Cs + 1}$$

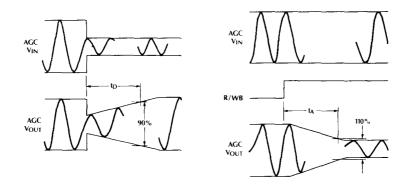

Where: C = External capacitor (20 pF to 150 pF)

L = External inductor R = External resistor

 $s = j\omega = j2\pi f$

Output Logic

The output logic provides a negative TTL pulse at pin RD which begins at the peak of a valid read pulse, as shown below.


Pin R/WB must be high for the output logic to be active. The key element in the output logic is the D flip-flop. The flip-flop is clocked by the slope detector at the time of a zero crossing, which loads data from level detector. The flip-flop inputs only change state when the level detector detects a peak amplitude of a polarity opposite to the previous valid peak. Thus, through the output logic the slope detector determines output timing and the level detector determines pulse validity.

BLOCK DIAGRAM

DIN+ OUT+ I VCC VDD (CIN+ DIF -DIF+ VDD ş IN-AGC BUFFER COUT Ş ONE SHOT GAIN CONTROL IN-Voo ¥ CK ONE SHOT RD ł ō Q FULL-WAVE RECTIFIER Ŧ ጘ , BUFFER BYP AGND CONTROL SLOV LOCIC HOLDB Ē LEVEL T_Os DGND AGC R/WB HYS DOUT

As with any high gain, wide bandwidth analog circuitry, care needs to be exercised in PC layout. Power supply and ground lines should be bypassed and well isolated from other circuitry. A ground plane is recommended, as is keeping analog lines short and well balanced to prevent interaction with nearby circuitry in the disk drive.

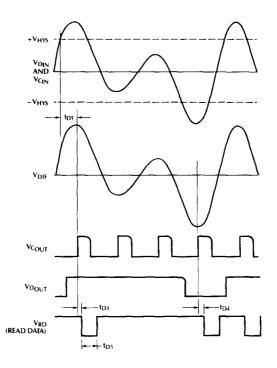


Figure 2. Output Logic Timing Diagram

TYPICAL APPLICATIONS

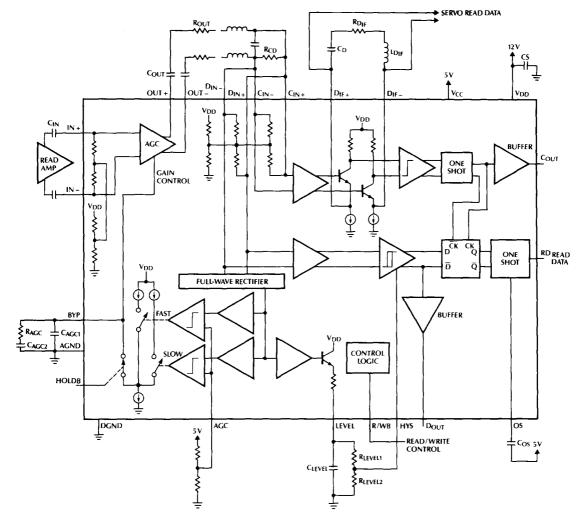
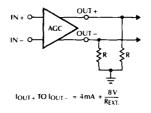
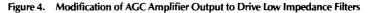




Figure 3. Typical Application Diagram

ORDERING INFORMATION

PART NUMBER	TEMP. RANGE	PACKAGE
ML541CP	0°C to +70°C	MOLDED DIP (P24)
ML541CJ	0°C to +70°C	HERMETIC DIP (124)
ML541CQ	0°C to +70°C	MOLDED PCC (Q28)
ML541CS	0°C to +70°C	MOLDED SOIC (S24)

