

# High Frequency Multi-Mode Resonant Controller

## **GENERAL DESCRIPTION**

The ML4816 controller IC is suitable for a wide range of resonant converter topologies. This controller can be used with Zero Current Switched (ZCS) Quasi Resonant Converters (QRC) requiring constant on-time and modulated off-time, as well as frequency modulated converters such as Series Resonant Converters operating above resonance.

The ML4816's oscillator features independent control of charging and discharging currents (on-time and offtime). Output frequency can be obtained either proportional or inversely proportional to the controlling voltage. In addition, both upper and lower frequency limits ( $f_{MIN}$  and  $f_{MAX}$ ) can be independently set.

Both pulse-by-pulse and DC current limiting are provided for. Overload protection (shutdown) is triggered after a programmable delay time. Restart after overload shutdown can be delayed by a programmable time. Internal logic disables the gate drive until the oscillator is stable. The ML4816 includes under-voltage lockout with 6V hysteresis and high current high speed totem pole output drivers for high speed drive of external MOSFETs.

## **FEATURES**

- Supports Zero Current Switched (ZCS) Quasi-Resonant Converters
- Supports Series Resonant (ZVS) converters operating above resonance
- Wide oscillator frequency range
- Programmable f<sub>MIN</sub> and f<sub>MAX</sub> limits
- Practical Operation to 2.5MHz (f<sub>OSC</sub>)
- Low Start-up Current and Under-Voltage Lockout Circuits support Off-Line Operation
- Pulse by Pulse or DC Current Limiting
- Integrating Soft Start Reset (Fault Integration) with Programmable Restart Delay
- High current (1.5A peak) totem-pole output drive
- Precision buffered 5V Reference (±1%)



Micro Linear

### **BLOCK DIAGRAM**

### PIN CONFIGURATION

#### ML4816 20-Pin DIP



#### ML4816 20-Pin SOIC



### **PIN DESCRIPTION**

| PIN # | NAME       | DESCRIPTION                                                                                     | PIN # | NAME            | DESCRIPTION                                                               |
|-------|------------|-------------------------------------------------------------------------------------------------|-------|-----------------|---------------------------------------------------------------------------|
| 1     | I(FB)      | Input for load current limit.                                                                   | 9     | R(D)            | External resistor from this pin to                                        |
| 2     | INV        | Inverting input to error amp.                                                                   |       |                 | GND sets the oscillator discharge current (off time).                     |
| 3     | EA OUT     | Output of error amplifier.                                                                      | 10    | C(T)            | Timing capacitor for Oscillator.                                          |
| 4     | I(LIM) OUT | Output for load current limit amplifier.                                                        | 11    | GND             | Signal ground.                                                            |
| 5     | F(LIM)     | A voltage input sets the maximum on time for the timer.                                         | 12    | SOFT START      | Normally connected to Soft Start capacitor.                               |
| 6     | V(D)       | Controls the C(T) discharge<br>current and oscillator off time.<br>Connected to error amplifier | 13    | RC(RESET)       | Timing elements for Integrating fault detection and reset delay circuits. |
|       |            | output for off-time modulation<br>and to V(REF) for constant off                                | 14    | OUTA            | High Current Totem pole<br>output A.                                      |
| 7     | V(F)       | time.<br>Controls the charging current                                                          | 15    | PWR GND         | Return for the High Current<br>Totem Pole outputs.                        |
|       |            | and oscillator on time.<br>Connected to error amplifier for                                     | 16    | VC              | Supply for the High Current<br>Totem Pole outputs.                        |
|       |            | connected to GND for constant<br>on time.                                                       | 17    | OUTB            | High Current Totem pole output B.                                         |
| 8     | R(C)       | External timing resistor to either                                                              | 18    | V <sub>CC</sub> | Positive supply for the IC.                                               |
|       |            | GND or V(REF) sets the charging current (oscillator on time). This                              | 19    | V(REF)          | Buffered output for the 5.0V voltage reference.                           |
|       |            | pin can either source or sink current.                                                          | 20    | I(SENSE)        | Primary current sense input for current limit.                            |



### ABSOLUTE MAXIMUM RATINGS

| Supply Voltage (Pins 16, 18) 30V          |
|-------------------------------------------|
| Output Current, Source or Sink (Pin 12)   |
| DC 0.5A                                   |
| Pulse (0.5µs) 1.5A                        |
| Analog Inputs                             |
| (Pins 1, 2, 5, 6, 7, 13) –0.3V to 6.3V    |
| Amplifier Output Currents (Pins 3, 4) 5mA |
| Soft Start Sink Current (Pin 8) 100mA     |
| R(C) Current (Pin 8)                      |
| R(D) Current (Pin 9)4mA                   |
| Junction Temperature 150°C                |
| Storage Temperature Range65°C to +150°C   |

| Lead Temperature (Soldering 10 sec.) | +260°C |
|--------------------------------------|--------|
| Thermal Resistance ( $\theta_{iA}$ ) |        |
| Plastic DIP or SOIC                  | 65°C/W |

### OPERATING CONDITIONS

Temperature Range ...... 0°C to +70°C

Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

### **ELECTRICAL CHARACTERISTICS**

Unless otherwise specified,  $C_T$  = 470pF,  $V_{CC}$  = 15V.  $V_{CC}$  is adjusted above the start threshold before settling at 15V.

| PARAMETER                       | CONDITIONS                                         | MIN                                    | ТҮР         | MAX   | UNITS |
|---------------------------------|----------------------------------------------------|----------------------------------------|-------------|-------|-------|
| Reference Section               |                                                    |                                        | ·           |       | •     |
| Output Voltage                  | $T_{A} = 25^{\circ}C, I_{O} = -1mA$                | 4.90                                   | 5.00        | 5.10  | v     |
| Line Regulation                 | $12V \le V_{CC} \le 25V$                           |                                        | 2           | 20    | mV    |
| Load Regulation                 | $1 \text{mA} \le \text{I}_{O} \le 10 \text{mA}$    |                                        | 5           | 20    | mV    |
| Temperature Stability           | $T_{MIN} \le T_A \le T_{MAX}$ (note 1)             | $T_{MIN} \le T_A \le T_{MAX}$ (note 1) |             | 0.4   | mV/°C |
| Total Variation                 | line, load, temp.                                  | 4.85                                   |             | 5.15  | V     |
| Output Noise Voltage            | 10Hz < f < 10KHz                                   |                                        | 50          |       | μV    |
| Long Term Stability             | T <sub>J</sub> = 125°C, 1000 Hrs (note 1)          |                                        | 5           | 25    | mV    |
| Short Circuit Current           | $V_{REF} = 0$                                      | -40                                    | -70         | -100  | mA    |
| Error Amplifier Section         |                                                    |                                        | · · · · · · |       |       |
| Non-Inverting Input Voltage     |                                                    | 2.37                                   | 2.47        | 2.57  | v     |
| Input Bias Current              |                                                    |                                        |             | 3     | μA    |
| Open-Loop Gain                  | $1 \le V_0 \le 4V$                                 | 60                                     |             |       | dB    |
| Unity Gain Bandwidth            | (note 1)                                           | 2.5                                    | 2.8         |       | MHz   |
| PSRR                            | $12V \le V_{CC} \le 25V$                           | 75                                     |             |       | dB    |
| Output Sink Current             | V <sub>PIN 2</sub> = 2.7V, V <sub>PIN 3</sub> = 1V | 1                                      | 2.8         |       | mA    |
| Output Source Current           | $V_{PIN 2} = 2.3V, V_{PIN 3} = 4V$                 | -0.5                                   | -2.2        |       | mA    |
| Output High Voltage             | $I_{P!N 3} = -0.5 mA$                              | 5.0                                    | 5.5         | 6.0   | V     |
| Output Low Voltage              | I <sub>PIN 3</sub> = 1mA                           |                                        | 0.5         | 1.0   | V     |
| Slew Rate                       |                                                    |                                        | 8.5         |       | V/µs  |
| Current-Limit Amplifier Section |                                                    |                                        | -           |       |       |
| Non-Inverting Input Voltage     |                                                    | 0.145                                  | 0.16        | 0.175 | v     |
| Input Bias Current              |                                                    |                                        |             | -1    | μA    |
| Open-Loop Gain                  | $1 \le V_O \le 4V$                                 | 65                                     |             |       | dB    |
| Unity Gain Bandwidth            | (note 1)                                           | 1.0                                    | 1.5         |       | MHz   |
| PSRR                            | $12V \le V_{CC} \le 25V$                           | 60                                     |             |       | dB    |
| Output Sink Current             | $V_{PIN 1} = 1V, V_{PIN 4} = 1V$                   | 1                                      | 1.6         |       | mA    |



**ELECTRICAL CHARACTERISTICS** (Continued) Unless otherwise specified,  $C_T = 470 pF$ ,  $V_{CC} = 15V$ .  $V_{CC}$  is adjusted above the start threshold before settling at 15V.

| PARAMETER                             |                                                 | CONDITIONS                                                                                                | MIN                   | ТҮР                   | MAX                                   | UNITS    |
|---------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|---------------------------------------|----------|
| Current-Limit Amplifier               | Section (Continued                              | ))                                                                                                        |                       | ·                     | ·                                     | ··       |
| Output Source Curre                   | nt                                              | $V_{PIN 1} = 0V, V_{PIN 4} = 4V$                                                                          | -0.5                  | -1.1                  |                                       | mA       |
| Output High Voltage                   |                                                 | I <sub>PIN 4</sub> = -0.5mA                                                                               | 6.0                   | 7.2                   | 8.0                                   | V        |
| Output Low Voltage                    |                                                 | I <sub>PIN 4</sub> = 1mA                                                                                  |                       | 0.7                   | 1.0                                   | v        |
| Slew Rate                             |                                                 | (note 1)                                                                                                  |                       | 0.9                   |                                       | V/µs     |
| Current-Sense Section                 |                                                 |                                                                                                           |                       |                       |                                       |          |
| Input Bias Current                    |                                                 | V <sub>PIN 20</sub> = 0                                                                                   |                       |                       | -2                                    | μA       |
| Current-Sense Thresh                  | old                                             |                                                                                                           | 1.20                  | 1.25                  | 1.30                                  | V        |
| Delay to Pin 13                       |                                                 | (note 1)                                                                                                  |                       | 80                    | 150                                   | ns       |
| Soft-Start Section                    |                                                 |                                                                                                           |                       |                       |                                       |          |
| Discharging Current                   |                                                 | V <sub>PIN 13</sub> = 4V, V <sub>PIN 12</sub> = 1V                                                        | 20                    | 35                    |                                       | mA       |
| Charging Current                      |                                                 | $V_{PIN 13} = 0, V_{PIN 12} = 1V$                                                                         | -14                   | -18                   | -22                                   | μA       |
| Overload Protection Se                | ection                                          |                                                                                                           |                       |                       |                                       |          |
| Overload Threshold Restart Threshold  |                                                 |                                                                                                           | 3.0                   | 3.2                   | 3.5                                   | V        |
| Restart Threshold                     |                                                 |                                                                                                           | 1.0                   | 1.2                   | 1.4                                   | v        |
| Pulse-by-pulse Chargi                 | $\frac{100}{100} = 1.35V, V_{PIN 13} = 2V -320$ |                                                                                                           |                       | μA                    |                                       |          |
| Current-Limit Amp. Controlled Current |                                                 | $V_{PIN 1} = 0, V_{PIN 13} = 2V$<br>$V_{PIN 4} = 1V$<br>$V_{PIN 4} = 2.5V$                                |                       | -2.2<br>-0.9          |                                       | mA<br>mA |
| Voltage-Controlled Tim                | er                                              |                                                                                                           |                       | ·                     | · · · · · · · · · · · · · · · · · · · | ·        |
| CT Minimum Dischar                    | ging Current                                    | $V_{PIN 6} = 0, V_{PIN 10} = 3V$                                                                          | 14                    | 16                    | 18                                    | μA       |
| C <sub>T</sub> Peak Voltage           |                                                 |                                                                                                           |                       | 3.75                  |                                       | v        |
| C <sub>T</sub> Valley Voltage         |                                                 |                                                                                                           |                       | 2.1                   |                                       | v        |
| R(C) Minimum Voltag                   | e                                               | $V_{PIN 5} = V_{PIN 7} = 0,$<br>25K $\Omega$ from Pin 8 to GND                                            | 0.446V <sub>REF</sub> | 0.455V <sub>REF</sub> | 0.464V <sub>REF</sub>                 | v        |
| R(C) Voltage                          |                                                 | $V_{\text{PIN 5}} = \frac{8}{11} V_{\text{REF}}, V_{\text{PIN 7}} = 5V,$<br>25KQ from Pin 8 to GND        | 0.713V <sub>REF</sub> | 0.727V <sub>REF</sub> | 0.742V <sub>REF</sub>                 | V        |
| R(D) Minimum Voltag                   | e                                               | $V_{PIN 6} = 0, 3K\Omega$ from Pin 9 to GND                                                               |                       |                       | 0                                     | v        |
| R(D) Maximum Voltag                   | je                                              | $V_{PIN 6}$ = 5V, 3K $\Omega$ from Pin 9 to GND                                                           | 0.425V <sub>REF</sub> | 0.45V <sub>REF</sub>  | 0.475V <sub>REF</sub>                 | v        |
| T <sub>ON</sub>                       | T <sub>A</sub> = 25°C                           | $V_{PIN 5} = V_{PIN 7} = 0$ , $V_{PIN 6} = 3V$ ,<br>25KΩ from Pin 8 to GND,<br>3KΩ from Pin 9 to GND      | 0.66                  | 0.68                  | 0.70                                  | μs       |
|                                       | Total Variation                                 | $\begin{array}{l} 12V \leq V_{CC} \leq 25V \text{ (note 1)} \\ T_{MIN} \leq T_A \leq T_{MAX} \end{array}$ | 0.63                  | 0.71                  | 0.79                                  | μs       |
| Output Dead Time                      | T <sub>A</sub> = 25°C<br>(note 1)               | $V_{PIN 5} = V_{PIN 7} = 0$ , $V_{PIN 6} = 5V$ ,<br>25KΩ from Pin 8 to GND,<br>3KΩ from Pin 9 to GND      | 110                   | 120                   | 130                                   | ns       |
|                                       | Total Variation                                 | $\begin{array}{l} 12V \leq V_{CC} \leq 25V \text{ (note 1)} \\ T_{MIN} \leq T_A \leq T_{MAX} \end{array}$ | 100                   | 120                   | 140                                   | ns       |

**ELECTRICAL CHARACTERISTICS** (Continued) Unless otherwise specified,  $C_T$  = 470pF,  $V_{CC}$  = 15V.  $V_{CC}$  is adjusted above the start threshold before settling at 15V.

| PARAMETER                |                       | CONDITIONS                                                                                                                                                         | MIN  | ТҮР  | MAX  | UNITS |
|--------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|-------|
| Voltage-Controlled       | led Timer (Continued) |                                                                                                                                                                    |      |      |      |       |
| Frequency                | f <sub>MAX(1)</sub>   | $V_{PIN 5} = V_{PIN 7} = 0$ , $V_{PIN 6} = 5V$<br>25KΩ from Pin 8 to GND<br>3KΩ from Pin 9 to GND                                                                  | 1.1  | 1.2  | 1.3  | MHz   |
|                          | f <sub>MIN(1)</sub>   | $V_{PIN 5} = V_{PIN 7} = 0$ , $V_{PIN 6} = 1.4V$<br>25KΩ from Pin 8 to GND<br>3KΩ from Pin 9 to GND                                                                | 17   | 22   | 26   | KHz   |
|                          | fmax(2)               | $V_{PIN 5} = \frac{8}{11} V_{REF}$ , $V_{PIN 7} = 2V$ , $V_{PIN 6} = 5V$<br>22KΩ from Pin 8 to Pin 19<br>3KΩ from Pin 9 to GND                                     | 1.35 | 1.45 | 1.55 | MHz   |
|                          | fmin(2)               | $V_{PIN 5} = \frac{8}{11} V_{REF}$ , $V_{PIN 7} = 5V$ , $V_{PIN 6} = 5V$<br>22KΩ from Pin 8 to Pin 19<br>3KΩ from Pin 9 to GND                                     | 750  | 800  | 850  | KHz   |
| Under Voltage Lo         | ckout Section         |                                                                                                                                                                    |      | ···· |      |       |
| Start Threshold          |                       |                                                                                                                                                                    | 15.8 | 16.3 | 16.8 | v     |
| Stop Threshold           |                       |                                                                                                                                                                    | 9.2  | 9.7  | 10.2 | v     |
| Supply Current           |                       |                                                                                                                                                                    |      |      |      |       |
| Start-Up Current         |                       | V <sub>CC</sub> = 15.5V                                                                                                                                            | 1.2  | 1.5  | 1.8  | mA    |
| Operating Supply Current |                       | $V_{PIN 5} = V_{PIN 7} = 0$ , $V_{PIN 6} = 5V$<br>25K $\Omega$ from Pin 8 to GND<br>3K $\Omega$ from Pin 9 to GND<br>$C_{LA} = C_{LB} = 0$ , $T_A = 25^{\circ}C$ , | 26   | 32   | 38   | mA    |
|                          | -                     | $T_{MIN} \le T_A \le T_{MAX}$                                                                                                                                      |      |      | 53   | mA    |
| Output Section           |                       |                                                                                                                                                                    |      |      |      |       |
| Output Low Leve          | el                    | I <sub>SINK</sub> = 20mA                                                                                                                                           |      | 0.1  | 0.4  | V     |
|                          |                       | I <sub>SINK</sub> = 200mA                                                                                                                                          |      | 0.7  | 2.2  | v     |
| Output High Lev          | /el                   | I <sub>SOURCE</sub> = 20mA                                                                                                                                         | 12.0 | 13.5 |      | V     |
|                          |                       | I <sub>SOURCE</sub> = 200mA                                                                                                                                        | 11.5 | 13.0 |      | v     |
| Rise Time                |                       | $C_{LA} = C_{LB} = 1nF$ (note 1)                                                                                                                                   |      |      | 60   | ns    |
| Fall Time                |                       | $C_{LA} = C_{LB} = 1nF$ (note 1)                                                                                                                                   |      |      | 60   | ns    |

Note 1: This parameter is not 100% tested in production but guaranteed by design.

### FUNCTIONAL DESCRIPTION

### OSCILLATOR

The oscillator is the core of the ML4816 and is designed to allow the maximum flexibility. This oscillator can be used in two basic modes of operation:

- 1. On time proportional to  $V_{IN}$ , fixed off time with a maximum on time limit (where  $V_{IN}$  is the output of the error amplifier).
- 2. Off time inversely proportional to VIN, fixed on time.





Figure 1. Oscillator Block Diagram

The internal CLOCK signal, shown above, turns the outputs off at its rising edge. Clock remains high and the outputs stay off as long as C(T) is discharging. The discharge time ( $T_{OFF}$ ) of C(T) is:

$$T_{OFF} = \frac{1.65 \text{ C(T) } \text{R(D)}}{10 (\text{V(D)} - 2\text{V}) + 16\mu\text{A } \text{R(D)}}$$
(1)

#### Variable Off-Time, Constant On-Time (Figure 2)

When using a variable off time control, V(D) is tied to the output of the error amplifier. Off time is given by equation (1) while the  $16\mu$ A current sink prevents the off time from becoming infinite, thereby providing an upper limit to T<sub>OFF</sub> of:

$$Max (T_{OFF}) = C(T) \times 1.03 \times 10^5$$
 (2)

The on time is given by:

t

$$\Gamma_{ON} = 0.0605 \ R(C) \ C(T)$$
 (3)



Figure 2. Variable Off Time, Constant On Time Oscillator Connections



Figure 2a. Max (T<sub>OFF</sub>) vs. C<sub>T</sub>





Figure 2b. T<sub>ON</sub> vs. R(C)

#### Variable On-Time, Constant Off-Time

The on time  $(T_{ON})$  is controlled by the current flowing from V(REF) through R(C) into B2. The output of B2 is internally limited to be no less than 2.27V and no greater than F(LIM).







Figure 3a. Minimum TON for Constant Off-Time

Configuration with  $V_{FLIM} = \frac{8}{11} \times V_{REF}$ 

The on time for figure 3 is given by:

$$T_{ON} = \frac{0.138 \ R(C) \ C(T)}{V(REF) - V(F)}$$
(4)

The maximum on time is given by:

$$T_{ON(MAX)} = \frac{0.138 \ R(C) \ C(T)}{V(REF) - F(LIM)}$$
(5)

where F(LIM) > 2.27V. The minimum on time is:

$$T_{ON(MIN)} = 0.0506 R(C) C(T)$$
 (6)

#### **ERROR AMPLIFIER**

The ML4816 error amplifier is a 2.5MHz bandwidth, 8.5V/µsec slew rate op-amp with provision for limiting the positive output voltage swing to implement the soft start function.



The Error Amplifier input contains protection diodes as shown above. INV should not be driven lower than  $2.5V - V_{BE}$  or higher than  $2.5V + V_{BE}$ .





Figure 5. Error Amplifier Open-Loop Gain and Phase vs. Frequency

#### OUTPUT DRIVER STAGE

The ML4816 has two high current high speed totem pole output drivers each capable of 1.5A peak output, designed to quickly switch the gates of capacitive loads, such as power MOSFET transistors.



Figure 6. Power Driver Simplified Schematic



Figure 6a. Output Driver Current Consumption I(C) vs. Output Load Capacitance



Figure 7. Output Saturation Voltage vs. Output Current



Figure 8. Rise/Fall Time

#### CURRENT LIMIT, FAULT DETECTION AND SOFT START

The ML4816 has two modes of current limiting: Primary pulse-by-pulse over-current protection and secondary DC average current limiting.

#### Primary Pulse-by-Pulse Current Limit Circuit

In this mode, the primary current is compared with a 1.25V threshold in comparator X1. When the sensed current exceeds the 1.25V threshold of comparator X1, the R-S latch X2 is set, turning on the  $320\mu$ A current source to charge C<sub>RST</sub>. I<sub>F1</sub> remains on until CLOCK goes high (T<sub>OFF</sub>). When C<sub>RST</sub> has charged to 3.2V, a soft start reset occurs. The number of times the outputs reach current limit are "remembered" on C<sub>RST</sub>. Over time, C<sub>RST</sub> is discharged by R<sub>RST</sub> providing a measure of "forgetting" when the over-current condition no longer occurs. If the output fault is removed before C<sub>RST</sub> reaches 3.2V, C<sub>RST</sub> discharges slowly through R<sub>RST</sub> and normal operation resumes.

Over-Current Sensing, Overload Shutdown and Fault Management



Figure 9. Overload Protection and Fault Management

#### Secondary dc Current Limit Circuit

In secondary dc current-limiting, the currents in the output rectifiers are sensed, full-wave rectified and smoothed. The smoothed signal is fed into the current-limiting amplifier X<sub>3</sub>. If the sensed current is below the 0.16V threshold, the output of X<sub>3</sub> will go above  $V_{REF}$  and  $I_{F2}$  will be off. As the sensed current exceeds the current-limit threshold,  $V_{ILO}$  starts to fall and

$$I_{F2}~(\approx \frac{V_{REF}-V_{ILO}-2V_{BE}}{1200\Omega}~)~turns~on.~I_{F2}~charges~C_{RST}$$

towards the overload threshold (3.2V) of  $X_4$ .  $C_{RST}$  charging and temporary recovery through  $R_{RST}$  here are similar to the pulse-by-pulse over-current sensing case except that  $I_{F2}$  is continuous.

Under persistent output short circuit with either form of over-current protection,  $C_{RST}$  is charged until it reaches 3.2V. The gate drives are immediately terminated and the soft-start capacitor  $C_{SS}$  is discharged.  $C_{RST}$  then discharges through  $R_{RST}$  toward the restart threshold (1.2V). Gate drives remain off until  $C_{RST}$  is discharged below 1.2V. The time taken for  $C_{RST}$ to discharge to the restart threshold is the restart-delay time. This delay reduces the average power delivered to the load during overload, thus protecting both the load and the controller. If overload persists, the controller will continue to hiccup until the cause of overload is removed. The controller undergoes soft-start at each restart.

The overload shutdown and restart sequences for both over-current protection schemes with non-bootstrapped  $V_{CC}$  are illustrated in Figures 10 and 11.











Figure 12. Simplified V<sub>CC</sub> Bootstrapping Scheme in Half-Bridge Configuration

For a bootstrapped converter, where controller V<sub>CC</sub> is obtained from an auxiliary winding of the main transformer, (see Figure 12) overload shutdown causes both the converter output and the controller  $V_{CC}$  to collapse. Undervoltage lockout (UVLO) is activated and the on-chip bandgap reference is disabled. ML4816 dissipates only 1.5mA during shutdown. Since IBLEED is higher than the start-up current, C<sub>S</sub> will be charged towards the UVLO start threshold. When this happens, the entire controller becomes operational except that the gate drives remain off. I<sub>CC</sub> jumps to its full operational value. Since V<sub>CC</sub> bootstrapping is not yet available, I<sub>CC</sub> will discharge C<sub>S</sub> below the UVLO stop threshold. The on-chip reference will again be disabled with the controller supply current reduced to 1.5mA. IBLEED will again charge Cs towards the UVLO start threshold. The process repeats until CRST is discharged below the restart threshold. The shutdown and restart sequence is illustrated in Figure 13.

The over-current timing and shutdown sequence can be disabled by grounding pin 13.





#### Auxiliary Output Current-Limiting (RC(RESET) Pin Grounded)

Constant current at power inverter output can be obtained by utilizing the current-limit amplifier with pin 13 shorted to ground. The ILO pin is connected to the EAO pin through two external OR-ing diodes  $D_1$  and  $D_2$  (Figure 14).  $R_1$  is used as a pull-up resistor. The current-limiting loop activates and takes control if the voltage at the inverting input IFB of the current-limit amplifier exceeds the 160mV threshold and ILO is pulled below EAO. The schematic shows that either the main error amplifier or the current-limiting amplifier controls the switching frequency of the converter. The voltage to the IFB pin comes from the output of a current sensor which produces a signal proportional to the output current.



Figure 14. Auxiliary Output Current-Limiting

#### First-Pulse Inhibit

ML4816 features a unique scheme to prevent input transformer from saturating during initial start-up. Before V<sub>CC</sub> rises above the undervoltage lockout (UVLO) start threshold, the bandgap reference is disabled. Since the bias circuit of the timer requires a reference output of at least 4V<sub>BF</sub> to operate, the timing capacitor C<sub>T</sub> remains fully discharged. As V<sub>CC</sub> crosses UVLO start threshold at  $t_0$ , the reference becomes enabled. The reference output rises at a rate determined by the reference short-circuit current and the external bypass capacitor. C<sub>T</sub> remains discharged until V<sub>REF</sub> exceeds 4V<sub>BE</sub>. There is no gate drive until V<sub>REF</sub> reaches the "reference-good" level (4.4V) (see Figure 16). Once  $V_{REF}$  exceeds  $4V_{BE}$  (t<sub>1</sub>), C<sub>T</sub> is charged towards the upper threshold of the oscillator/timer. Although the gate drives are enabled at t<sub>2</sub>, the firstpulse inhibit latch continues to blank the outputs. This latch is reset when C<sub>T</sub> voltage crosses the upper oscillator threshold at t3. OUTA is gated on after the CLK pulse elapses.

Without the first-pulse inhibit circuit, the first OUTA pulse would be on for time  $T_{ONI}$  which could be as much as 2 to 3 times longer than the desired  $T_{ON}$  time. The first-pulse inhibit latch ensures no abnormally long first gate drive pulse, independent of  $V_{REF}$  rise time.



Figure 15. Operation of UVLO and the First-Pulse Inhibit Circuit



Figure 16. Timing Diagram Illustrating Initial Start-Up and the First-Pulse Inhibit

### **Open Loop Laboratory Test Fixture**



This test fixture is useful for exercising many of the ML4816's functions and measuring their specifications. As with any wideband circuit, careful grounding and bypass procedures should be followed. The use of a ground plane is highly recommended.

## PHYSICAL DIMENSIONS inches (millimeters)

20-Pin Molded DIP Package (P20)



#### 20-Pin SOIC (S20W)







### ORDERING INFORMATION

| PART NUMBER | TEMPERATURE<br>RANGE | PACKAGE             |  |
|-------------|----------------------|---------------------|--|
| ML4816CP    | 0°C to +70°C         | Plastic DIP (P20)   |  |
| ML4816CS    | 0°C to +70°C         | Plastic SOIC (S20W) |  |

Micro Linear reserves the right to make changes to any product herein to improve reliability, function or design. Micro Linear does not assume any liability arising out of the application or use of any product described herein, neither does it convey any license under its patent right nor the rights of others. The circuits contained in this data sheet are offered as possible applications only. Micro Linear makes no warranties or representations as to whether the illustrated circuits infringe any intellectual property rights of others, and will accept no responsibility or liability for use of any application herein. The customer is urged to consult with appropriate legal counsel before deciding on a particular application.

2092 Concourse Drive San Jose, CA 95131 Tel: 408/433-5200 Fax: 408/432-0295

15

024892 🗹 \_ \_

