

BULLETIN NO. CG-2A

Technical Bulletin

For Designers of Chokes, Coils, Inductors, Filters and Resonant Circuits

FREQUENCY — TEMPERATURE — GEOMETRY — STABILITY

..... Four major variables that influence performance of magnetic components. Magnetics handy reference charts will help the designer select the magnetic component that precisely meets his needs. Magnetics complete line of cores and laminations offers freedom of choice.

Selection, of course, depends on the specific application involved. Tape wound and bobbin cores are generally used in square loop applications such as inverters or magnetic amplifiers. Permalloy powder cores and ferrites, having linear characteristics, are primarily used in chokes, coils, inductors, filters, resonant circuits, and transformers; there are also certain varieties of tape cores that could be used in these applications. These charts will help define your needs, and specific data on each family of products is available upon request.

FREQUENCY RANGE

MAGNETIC	1KHz	10KHz	100KHz	1	MHz 2MH
MATERIAL			30KHz	200KHz I	
TRANSFORMER LAMINATIONS (NICKEL - IRON)	μ _o = 5,000 - 60,000 Bm = 8,000 - 15,000				
TAPE WOUND CORES (NICKEL - IRON)	$\mu_{ m o}$ = 5,000 - 100,000 Bm = 8,000 - 20,000)			
TAPE WOUND CORES (AMORPHOUS)	μ _o = 3,000 - 20,000 Bm = 5,000 - 16,000				
CUT CORES (NICKEL - IRON)	μ _o = 1,000 - 25,000 Bm = 8,000 - 20,000				
BOBBIN CORES (NICKEL - IRON)		$\mu_{ m o} = 5,000 - B_{ m m} = 8,000 - B_{ m m}$	- 100,000 - 15,000		
PERMALLOY POWDER CORES (80% Ni)		$\mu_{ m o}$ = 14 - 55 Bm = 7,000	50		
HIGH FLUX POWDER CORES (50 Ni - 50 Fe)		μ _o = 14 - 16 Bm = 14,000	50)		
KOOL MU		$\mu_{ m o} = 60 - 12$ Bm = 10,000	25		
FERRITES (MnZn)				$\mu_{ m o} = 750 - 15,000$ Bm = 3,500 - 5,000	

TEMPERATURE RANGE (°C)

MAG MAT	NETIC ERIAL	- 50	0 - 40	- 30 -	20 – 1	0 0	10 2	20 3	040	0 50	0 6	07	0 8	80 9	0 10	00 11	10 12	20 13	80 14	0 15	0 1¢	50 17	70 18	30 19	90 20 I	00
LAMINATION	S																									
TAPE WOUN	D CORES																									51,000 & 52,000 Series
																										50,000 & 54,000 Series Nickel - iron cut cores
BOBBIN COR	ES																									
PERMALLOY I μ_{0}	POWDER CORES																									ANTICIPATED INDUCTION CHANGES
14 - 550	Α																									$\Delta L = \pm 1.5\%$
60-200	D																									$\Delta L = \pm 0.1\%$
60-200	W																									$\Delta L = \pm 0.25\%$
60-200	М																									$\Delta L = \pm 0.25\%$
60-300	L																									$\Delta F = < .05\%$ with polystyrene capacitor
FERRITE COR (FILTER Μ μ _ο	RES IATERIALS) GRADE														a)											
750	A																									1.0 - 3.0**
2,000	D																									0.9 - 2.1**
2,300	G																									-0.7 - +0.7**
(POWER N	ATERIALS)																									
μ_{\circ}	GRADE																									
1,500	К																									
2,300	R																									
2,500	P*																									
3,000	F*																									
5,000	J																									
10,000	W																									
15,000	Н																			4						

SHAPES AVAILABLE

MAGNETIC	TOROID Size Range	E CORE Size Range	OTHER SHAPES	MISC.		
Tape wound cores and bobbin cores	from OD" ID" Ht" .225 x .095 x .105					
Permalloy Powder Cores High Flux Powder Cores Kool Mu Powder Cores	$\begin{array}{c c} \underline{OD''} & \underline{ID''} & \underline{Ht''} \\ \hline .140 \times .070 \times .060 \\ to \\ 3.06 \times 1.9 \times .5 \\ (\text{core dimensions before painting}) \end{array}$					
Ferrites (MnZn)	$\frac{OD'' ID'' Ht''}{.100 \times .050 \times .025}$ to $3.4 \times 2.2 \times .5$	Length "Width "Ht" .349 x .160 x .075 to 3.1 x 1.5 x .78	Pot Cores $5mm \times 6mm$ to $45mm \times 29mm$. Machined blocks up to $6'' \times 2 \cdot 1/2'' \times 3/4''$	Special machined shapes and sizes		
Laminations	Rings .50"OD - 2"OD	.203 × .375 to 1.25 × 1.375	Special shapes	DU, E-I, U-I, F, L Shapes also available		
Nickel-Iron and Amorphous Cut Cores		Length"Width"Ht" 1.5 × 1.5 × .25 to 6.0 × 10.0 × 2.5	C Cores Length"Width"Ht" .5" × .25" × .125" to 12.0" × 14.0" × 2.0"			

All materials

OTHER SHAPES: Magnetics Specials Dept. is completely equipped to supply special shapes for unusual mechanical and magnetic requirements in all magnetic materials.

STABILITY CRITERIA

MAGNETIC MATERIAL	
TAPE WOUND CORES AND BOBBIN CORES	Will withstand high shock and vibrationMIL Std. 202 Group 7
PERMALLOY POWDER CORES	 Excellent DC bias stability Excellent AC flux density stability Good frequency stability (Q values up to 250) Narrow inductance tolerances (±8% in 2% groups) Superior temperature stability (see temperature chart)
FERRITES (MnZn)	 Narrow inductance tolerances (±3% in gapped pot cores) Excellent time stability (Disaccommodation factors as low as 1.5x10⁻¹ Very good frequency stability (Q values up to 800 in pot cores) Good temperature stability Good DC bias stability
LAMINATIONS	• $\mu_{\rm o}$ stability depends on materials and shape. Not as stable as powder cores.
NICKEL-IRON CUT CORES	 Excellent DC bias stability Will withstand high shock and vibration

HOME OFFICE AND FACTORY P.O. Box 391 Butler, Pa. 16003 FAX: 412-282-6955 Phone: (412) 282-8282

MPP Powder Cores • High Flux Powder Cores KOOL MU[®] Powder Cores Tape Wound Cores • Bobbin Cores Ferrite Cores Custom Components

© 1993 Magnetics All Rights Reserved Printed in USA CG-2A 2A