DEVICES INCORPORATED

FastCMOS
 Data Book

March 1989

DEVICES INCORPORATED

Fast CMOS
 Data Book

March 1989

Revison A

Corporate Headquarters:
628 East Evelyn Avenue
San Jose, California 94086
(408) 720-8630 FAX (408) 733-7690

Copyright © 1989, Logic Devices Incorporated

Logic Devices Incorporated reserves the right to make changes to its products or specifications at any time, without notice, in order to supply the best possible product.

Logic Devices Incorporated cannot assume responsibility for the use of any circuitry described other than the circuitry embodied in a Logic Devices product.

No license is hereby granted or implied under any patent, patent rights, or other rights of Logic Devices, Incorporated.

Logic Devices products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such use is executed between the customer and Logic Devices prior to such use. Life support devices or systems are those which are intended for surgical implantation into the body, or which support or sustain life and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Copyright © 1989 Logic Devices Incorporated
Published July 1989
Product Catalog No. LPDB89-02-15M

[^0]
Ordering Information

Memory Products

> Logic Products

Peripheral Products

Quality and Reliability

Technology and Design Features

Packaging

Application Notes

Technical Articles

Sales Offices
10

DEVICES INCORPORATED

DEVICES INCORPORATED

Introduction

Logic Devices is committed to providing value to its customers by offering the highest performance products available, with continuously improving price/performance and quality levels. To do this, we bring to bear submicron CMOS technology on a par with the most advanced production processes in the world, coupled with an engineering capability which is known and respected throughout our industry. In recent years, Logic Devices has diversified its product offering in an attempt to supply total solutions; highperformance logic products, peripheral products, and memory, with more to come. This allows us to provide a greater percentage of the overall solution to our customers.

We are proud to present this new edition of the Logic Devices Product Catalog, containing our full line of some 45 different logic, memory and peripheral devices. Logic Devices products bring new levels of performance to a wide range of application environments, including general-purpose computing, DSP and image processing, computer peripherals, and embedded control. All data sheets have been revised and reformatted for this edition of the catalog, and several new reference sections have been added for your assistance.

Section 2 on Memory Products features our new family of high speed 16K and 64K-bit SRAMs. Already among the highest performance devices of their density, these products are continuously augmented by yet faster and denser devices.

Of special note in Section 3 - Logic Products are several new products now in advanced development, the L29C524/525 Dual Pipeline Register, the L10C11 Variable Length Shift Register and the L29C818 Serial Scan Register. Section 4; Peripheral Products describes the L5380/L53C80 CMOS SCSI Controllers. These continue to be among the fastest, lowest power SCSI Controllers on the market today.

New for this edition are Sections 5 \& 6 providing background and reference information on the topics of Quality \& Reliability, Latch Up, ESD Protection and Power Dissipation. Of related interest is Section 7 on Packaging which in addition to providing dimensional information on all available package types, includes a detailed discussion of thermal considerations. Application Notes and Technical Article reprints reside in Section $8 \& 9$ and feature solutions to typical design problems.

Lastly, if further information is required, please contact your local Logic Devices sales office. Logic Devices locations worldwide are listed in Section 10, conveniently located at the end of the catalog.

DEVICES INCORPORATED

Table of Contents

1. ORDERING INFORMATION
Commercial and Military Products 1-1
2. MEMORY PRODUCTS
Product Selection Guide 2-2
Competitive Cross Reference 2-5
64K Static RAMs
L7C187 $\quad 64 \mathrm{~K} \times 1$, Separate I/O 2-7
L7C164 $16 \mathrm{~K} \times 4$, Common I/O, 1 Chip Enable 2-17
L7C166 $16 \mathrm{~K} \times 4$, Common I/O, 1 Chip Enable, + Output Enable 2-17
L7C165 $16 \mathrm{~K} \times 4$, Common I/O, 2 Chip Enables, + Output Enable 2-17
L7C161 $16 \mathrm{~K} \times 4$, Separate I/O, Transparent Write 2-27
L7C162 $16 \mathrm{~K} \times 4$, Separate I/O, High Impedance Write 2-27
L7C185 $8 \mathrm{~K} \times 8$, Common I/O 2-37
16K Static RAMs
$16 \mathrm{~K} \times 1$, Separate I / O 2-47
L7C168 $4 \mathrm{~K} \times 4$, Common I/O 2-57
L7C170 $4 \mathrm{~K} \times 4$, Common I/O, with Output Enable 2-57
L7C171 $4 \mathrm{~K} \times 4$, Separate I/O, Transparent Write 2-67
L7C172 $4 \mathrm{~K} \times 4$, Separate I/O, High Impedance Write 2-67
16116 $2 \mathrm{~K} \times 8$, Common I/O, with Output Enable 2-77
3. LOGIC PRODUCTS
Product Selection Guide 3-3
Competitive Cross Reference 3-5
Multipliers
LMU08 8×8 Signed 3-7
LMU8U 8×8 Unsigned 3-7
LMU557 8×8 Latched Output 3-15
LMU558 8×8 Unregistered 3-15
LMU12 12×12 3-21
LMU112 12×12 Reduced Pinout 3-29
LMU16 16×16 3-35
LMU216 16×16 3-35
LMU17 16×16 Microprogrammable 3-43
LUM217 16×16 Surface Mount 3-43
LMU18 $16 \times 16 / 32$ Outputs 3-51
Multiplier-Accumulators
LMA1009 12×12 3-61
LMA2009 12×12 Surface Mount 3-61
LMA1010 16×16 3-69
LMA2010 16×16 Surface Mount 3-69
Multiplier-Summer
LMS12 $\quad 12 \times 12 \times 26$ FIR 3-79
Pipeline Registers
L29C520 4×8-Bit, Variable Delay, 1-4 Stages 3-89
L29C521 4×8-Bit, Variable Delay, 1-4 Stages 3-89
LPR520 4×16-Bit, Variable Delay, $1-4$ Stages 3-97
LPR521 4×16-Bit, Variable Delay, $1-4$ Stages 3-97
L29C524 14×8-Bit, Variable Delay, $0-14$ Stages 3-105
L29C525 16×8-Bit, Variable Delay, $1-16$ Stages 3-105
L10C11 18×8-Bit, Variable Delay, 3-18 Stages 3-113
L29C818 Shadow Register 3-119
트ㄹㅡㅡ르ㅋㅡㅡㄹ
4. LOGIC PRODUCTS (Continued) Register Files
LRF07 $8 \times 8,3$ Independent Port 3-1 27
LRF08 $8 \times 8,5$ Independent Port
LRF08 $8 \times 8,5$ Independent Port 3-133 3-133
Arithmetic Logic Units
L4C381 16-Bit Add/Sub 3-139
L29C101 16-Bit Slice, Quad 2901 3-151
Special Arithmetic Functions
LSH32 32-Bit Barrel Shifter 3-165
L10C23 64×1 Digital Correlator 3-175
5. PERIPHERAL PRODUCTS
Production Selection/Cross Reference Guide 4-3
L5380 SCSI Controller 4-5
L53C80 SCSI Controller 4-5
6. LOGIC DEVICES QUALITY AND RELIABILITY
Overview 5-3
Reliability and Failure Rate Prediction 5-5
Assembly Flows 5-7
Commercial Plastic 5-8
Commercial Hermetic 5-10
High Reliability 5-12
MIL-STD-883 5-14
7. TECHNOLOGY AND DESIGN FEATURES
Latchup and ESD Protection 6-3
Power Dissipation in Logic Devices Products 6-7
8. PACKAGING
Product Marking Guide 7-3
Mechanical Data 7-7
Thermal Considerations 7-27
9. APPLICATION NOTES
"Real-Time Digital Image Transformation" 8-3
"Ultra-High Performance FFT Using DSP Designer Chips" 8-13
10. TECHNICAL ARTICLES
"Multiport Register File Simplifies and Speeds Digital Signal Processing" 9-3
"Multiport Register File Streamlines Signal Processing" 9-11
11. SALES OFFICES 10-2

Ordering Information

Memory Products

Logic Products

Peripheral Products

Quality and Reliability

Technology and Design Features

Packaging

Application Notes

Technical Articles

Sales Offices

Part Numbering System

To construct a valid part number:

In order to construct a valid Logic Devices part number, begin with the generic number obtained from the datasheet header or the product selection guide. To this number, append three characters from the tables below indicating the desired package code, temperature range, and screening. Finally, append zero, one, or two digits indicating the performance grade desired. Most devices are offered in several speed grades with the part number suffix indicating a critical path delay in nanoseconds.

For more information on available part numbers:

All products are not offered with all combinations of package style, temperature range, and screening. The Ordering Information table on the last page of each product datasheet indicates explicitly all valid combinations of package, temperature, screening, and performance codes for a given product.

For more information on package options:

Also given in the Ordering Information tables in each product datasheet are the Logic Devices package codes. These are two character codes consisting of a letter designating a package type, and a number distinguishing the individual package drawing. Drawings giving detailed dimensions and tolerances for each package code can be found in the Mechanical Data section of this catalog. For example, the LMA1010DMB55 given below refers to a "D" or sidebraze, hermetic DIP package. The LMA1010/2010 datasheet indicates that the actual package used is D6. In the Mechanical Data section package type D6 is seen to be a 64-pin, cavity-down, sidebraze, hermetic DIP.

Ordering Information

Memory Products

Logic Products

Peripheral Products

Quality and Reliability
Technology and Design Features

Packaging

Application Notes

Technical Articles

Sales Offices

DEVICES INCORPORATED

Contents

Package Availability Guide 2-3
64K Product Selection Guide/Competitive Cross Reference 2-4
16K Product Selection Guide/Competitive Cross Reference 2-5
64K Static RAMs
L7C187 $64 \mathrm{~K} \times 1$, Separate I/O 2-7
L7C164 $\quad 16 \mathrm{~K} \times 4$, Common I/O, 1 Chip Enable 2-17
L7C166 $16 \mathrm{~K} \times 4$, Common I/O, 1 Chip Enable, + Output Enable 2-17
L7C165 $16 \mathrm{~K} \times 4$, Common I/O, 2 Chip Enables, + Output Enable 2-17
L7C161 $\quad 16 \mathrm{~K} \times 4$, Separate I/O, Transparent Write 2-27
L7C162 $16 \mathrm{~K} \times 4$, Separate I/O, High Impedance Write 2-27
L7C185 $8 \mathrm{~K} \times 8$, Common I/O 2-37
16K Static RAMs
L7C167 $16 \mathrm{~K} \times 1$, Separate I/O 2-47
L7C168 $4 \mathrm{~K} \times 4$, Common I/O 2-57
L7C170 $4 \mathrm{~K} \times 4$, Common I/O, with Output Enable 2-57
L7C171 $4 \mathrm{~K} \times 4$, Separate I/O, Transparent Write 2-67
L7C172 $4 \mathrm{~K} \times 4$, Separate I/O, High Impedance Write 2-67
L6116 $2 \mathrm{~K} \times 8$, Common I/O, with Output Enable 2-77

Static RAM Package Availability Guide

	Type >	Plastic DIP		Sidebraze Hermetic DIP		CerDIP		SOIC (Gull-wing)		$\begin{gathered} \text { SOI } \\ \text { (J-lead) } \end{gathered}$	Ceramic LCC			
Package Code >		P	N	C	H	C	1	U	V	W	K			
	Width >	0.3"	0.6"	0.3"	$0.6{ }^{\prime \prime}$	0.3'	0.61	0.300"	0.331"	0.300"	$\begin{gathered} 290 \\ \mathbf{x} \\ 425 \end{gathered}$	$\begin{gathered} 290 \\ x \\ 490 \\ \hline \end{gathered}$	$\begin{gathered} 450 \\ x \\ 450 \end{gathered}$	$\begin{gathered} \mathbf{3 5 0} \\ \mathbf{x} \\ \mathbf{5 5 0} \end{gathered}$
Part No.	No. Pins													
16K.														
L7C167	20	-		-		\bullet		\bullet		-	\bullet			
L7C168	20	-		-		-		-		\bullet	-			
L7C170	22	-		-		-								
L7C171	24 (28)	-		-		-							(28)	
L7C172	24 (28)	\bullet		\bullet		-							(28)	
L6116	24 (28)	\bullet		\bullet			(28)							
64K.														
L7C187	22 (24)	\bullet		\bullet		\bullet		(24)		(24)		\bullet		
L7C164	22 (24)	-		-		-		(24)		(24)		-		
L7C165	24 (28)	-		-		-		\bullet		-				
L7C166	24 (28)	-		-		-		-		-				(28)
L7C161	28	-		-		-		-		-				\bullet
L7C162	28	\bullet		\bullet		-		\bullet		\bullet				-
L7C185	28	-	-	-	-	-	-	-	-	-				\bullet

64K\%.. Formeserection							
Part No.	Description	Speed (ns)		Power (mW)		Pins	Packages Available
		Com.	Mil.	Opr.	Standby		
L7C187	$64 \mathrm{~K} \times 1$ Separate I/O	15	20	225	25	22/24	DIP, LCC SOIC (Gull-Wing) SOJ (J-Lead)
L7C164	$16 \mathrm{~K} \times 4$ Common I/O 1 Chip Enable	20	25	285	25	22/24	DIP, LCC SOIC (Gull-Wing) SOJ (1-Lead)
L7C165	$16 \mathrm{~K} \times 4$ Common I/O 2 Chip Enables + OE	20	25	285	25	24/28	DIP SOIC (Gull-Wing) SOJ (J-Lead)
L7C166	$16 \mathrm{~K} \times 4$ Common I/O 1 Chip Enable + OE	20	25	285	25	24/28	DIP, LCC SOIC (Gull-Wing) SOJ (1-Lead)
L7C161	$16 \mathrm{~K} \times 4$ Separate I/O Transparent Write	20	25	285	25	28	DIP, LCC sOIC (Gull-Wing) SOJ (-Lead)
L7C162	$16 \mathrm{~K} \times 4$ Separate I/O High Impedance Write	20	25	285	25	28	DIP, LCC SOIC (Gull-Wing) SOJ (-Lead)
L7C185	$8 \mathrm{~K} \times 8$ Common I/O	20	25	290	25	28	DIP, LCC SOIC (Gull-Wing) SOJ (1-Lead)

Competitor	LOGIC DEVICES PART NUMBER						
	$\begin{aligned} & 17 C 187 \\ & (64 K \times 1) \end{aligned}$	$\begin{aligned} & \text { L7C164 } \\ & (16 K \times 4) \end{aligned}$	$\begin{aligned} & \text { L7C165 } \\ & (16 K \times 4) \end{aligned}$	$\begin{aligned} & \text { L7C166 } \\ & (16 K \times 4) \end{aligned}$	$\begin{aligned} & \text { L7C161 } \\ & (16 K \times 4) \end{aligned}$	$\begin{gathered} \hline \text { L7C162 } \\ (16 K \times 4) \end{gathered}$	$\begin{aligned} & \text { L7C185 } \\ & (8 \mathrm{~K} \times 8) \end{aligned}$
Cypress	CY7C187	CY7C164	NA	CY7C166	CY7C161	CY7C162	CY7C185/186
IDT	IDT7187	IDT7188	IDT7198	IDT6198	IDT71981	IDT71982	IDT7164
Performance	P4C187	P4C188	P4C198A	P4C198	P4C1981	P4C1982	P4C164
Saratoga	SSM7187	SSM7188	SSM7198	SSM7166	SSM7161	SSM7162	SSM7164
Hitachi	HM6287/6787	HM6288/6788	NA	HM6789	NA	NA	HM6264
Fuilsu	MB81C71	MB81C74	MB81C75;	NA	NA	NA	MB81C78/8464
Toshiba	TC5561/5562	TC55416	NA	TC55417	NA	NA	TMM2088
Micron	MT5C6401	MT5C6404	NA	MT5C6405	MT5C6406	MT5C6407	MT5C6408
Motorola	MCM6287	MCM6288/89	NA	MCM6290	NA	NA	MCM61/6264
Inmos	MS160001	MS1620	NA	MS1624	NA	NA	MS1630
Sony	CXK5164	CXK5464	NA	CXK5465	NA	NA	CXK5864/65
NEC.	HPD4361	بPD4362	NA	$\mu \mathrm{PD} 4363$	NA	NA	$\mu \mathrm{PD} 4364 / 4464$

Product Selection Guide/Competitive Cross Reference

16k\%.. Fromat Selection							
Part No.	Description	Speed (ns)		Power (mW)		Pins	Packages Available
		Com.	Mil.	Opr.	Standby		
L7C167	$16 \mathrm{~K} \times 1$ Separate I/O	12	15	190	20	20	DIP, LCC SOIC (Gull-Wing) SOJ (- -Lead)
L7C168	$4 K \times 4$ Common I/O	15	20	170	20	20	DIP, LCC SOIC (Gull-Wing) SOJ (1-Lead)
L7C170	$\begin{aligned} & 4 \mathrm{~K} \times 4 \\ & \text { Common I/O }+\mathrm{OE} \end{aligned}$	15	20	170	20	22	DIP
L7C171	$4 \mathrm{~K} \times 4$ Separate I/O Transparent Write	15	20	170	20	24/28	DIP, LCC
L7C172	$4 \mathrm{~K} \times 4$ Separate I/O High Impedance Write	15	20	170	20	24/28	DIP, LCC
L6116	$\begin{aligned} & 2 \mathrm{~K} \times 8 \\ & \text { Common } \mathrm{I} / \mathrm{O}+\mathrm{OE} \end{aligned}$	20	25	260	20	24/28	DIP, LCC SOIC (Gull-Wing) SOJ (- -Lead)

16§\%M. Froduct (ross Reference							
Competitor	LOGIC Devices part number						
	$\begin{aligned} & \hline \text { L7C167 } \\ & (16 \mathrm{~K} \times 1) \end{aligned}$	$\begin{aligned} & \hline 17 C 168 \\ & (4 K \times 4) \end{aligned}$	$\begin{aligned} & 17 C 170 \\ & (4 K \times 4) \end{aligned}$	$\begin{aligned} & 17 \mathrm{C} 171 \\ & (4 \mathrm{~K} \times 4) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 17 C 172 \\ & (4 K \times 4) \end{aligned}$	$\begin{gathered} 16116 \\ (2 K \times 8) \\ \hline \end{gathered}$	
Cypress	CY7C167	CY7C168	CY7C170	CY7C171	CY7C172	CY7C128/6116	
IDT	IDT6167	IDT6168	NA	IDT71681	IDT71682	IDT6116	
Performance	NA	P4C168	P4C170	P4C1681	P4C1682	P4C116	
Saratoga	SSM6167	SSM6168	SSMb170	SSM6171	SsM6172	SSM6116.	
Hitach	HM616716267	HM6168/6268	NA	Na	NA	HM6116/6716.	
fuilsu	mbitcb7	MB81C68/69	na	na	Na	MB8416.	
Toshiba	NA	TMM2068	TMM2078	NA	NA	TMM $2015 / 2018$	
Micron	MT5C1601	MT5C1604	MT5C1605	MT5C1606	MT5C1607	MT5C1608	
Motorola	мсм2167	MCM6168/1423	NA	NA	Na	MCM2016/18	
Tmos	IMS1400/03	MS1420/21/23	Na	NA.	NA	IMS143	
Sony.	$\mathrm{N} /$	Cxks 416	Na	NA	NA	CXK5814/16	
Nec.	$\mu \mathrm{PD} 4311$	$\mu \mathrm{PD4314}$	Na	Na	Na	$\stackrel{\text { apD446. }}{ }$	

Features

- 64 K by 1 Static RAM with separate I/O, Chip Select power downAuto-Powerdown ${ }^{\text {TM }}$ designAdvanced CMOS technology
- High speed - to 15 ns worst-case

L Low Power Operation
Active: 225 mW typical at 45 ns Standby: $50 \mu \mathrm{~W}$ typical

- Data retention at 2 V for battery backup operation
- Plug-compatible with IDT 7187, Cypress CY7C187
- Package styles available:
- 22-pin Plastic DIP
- 22-pin Sidebraze, Hermetic DIP
- 22-pin CerDIP
- 22-pin Ceramic LCC
- 24-pin Plastic SOIC (Gull-Wing)
- 24-pin Plastic SOJ (J-Lead)

Description

The L7C187 is a high-performance, low-power CMOS static Random Access Memory. The storage circuitry is organized as 65,536 words by 1 bit per word. Parts are available in six speed categories with worst-case access times from 15 ns to 85 ns .

Operation is from a single +5 V power supply and all interface signals are TTL compatible. Power consumption is 225 mW (typical) at 45 ns . Dissipation drops to 25 mW (typical) when the memory is deselected ($\overline{\mathrm{CE}}$ is high).

Two standby modes are available. Proprietary Auto-Powerdown ${ }^{\text {TM }}$ circuitry reduces power consumption automatically during read or write accesses which are longer than the minimum access time, or when the memory is deselected. In addition,

L7C187 Block Diagram

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
VCC supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current$>200 \mathrm{~mA}$

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Data Retention, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$

Electrical Characteristics
 Over Operating Conditions

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{IOH}=-4.0 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V}$	2.4			V
Vol	Output Low Voltage	$\mathrm{IOL}=8.0 \mathrm{~mA}$			0.4	V
VIH	Input High Voltage		2.0		$\begin{array}{r} \text { Vcc } \\ +0.3 \end{array}$	V
VIL	Input Low Voltage	Note 3	-3.0		0.8	V
lıx	Input Current	Ground $\leq \mathrm{V}_{1} \leq$ VcC	-10		+10	$\mu \mathrm{A}$
loz	Output Leakage Current	Ground \leq Vo \leq Vcc, $\overline{\mathrm{CE}}=$ Vcc	-50		+50	$\mu \mathrm{A}$
Ios	Output Short Current	Vo = Ground, Vcc = Max, Note 4			-350	mA
ICC2	Vcc Current, Inactive	Notes 5, 7		5.0	20	mA
ICC3	Vcc Current, Standby	Note 8		10	250	$\mu \mathrm{A}$
ICC4	Vcc Current, DR Mode	Vcc = 2.0 V, Note 9		1.5	50	$\mu \mathrm{A}$
Cl	Input Capacitance	Ambient Temp $=25^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V}$			5	pF
Co	Output Capacitance				7	pF

Symbol	Parameter	Test Condition	L.7C187-						
			85	45	35	25	20	15	Unit
ICC1	Vcc Current, Active	Notes 5, 6	35	60	70	100	120	150	mA

Switching Characteristics

Over Operating Range (ns)

Read Cycle (Notes 11, 12, 22, 23, 24)

Symbol	Parameter	L7C187-											
		85		45		35		25		20		15	
		Min	Max	Mins	Max								
tavav	Read Cycle Time	85		45		35		25		20		15\%	
tavQV	Addr Valid to Output Valid $(13,14)$		85		45		35		25		20		15
tAXQX	Addr Change to Output Change	5		5		5		5		5		3%	
tCLQV	Chip Enable Low to Output Valid (13, 15)		85		45		35		25		20		\% 15
tCLQZ	Chip Enable Low to Output Low $\mathrm{Z}(20,21)$	5		5		5		5		5			
tCHQZ	Chip Enable High to Output High Z $(20,21)$		35		15		15		10		8		
tPU	CE or WE Low to Power Up $(10,19)$	0		0		0		0		0		O\%	
tPD	Power Up to Power Down $(10,19)$		85		45		35		25		20		20

Write Cycle (Notes 11, 12, 22, 23, 24)

Symbol	Parameter	L7C187-											
		85		45		35		25		20		15	
		Min	Max										
tavav	Write Cycle Time	75		40		25		20		20		15	
tClew	Chip Enable Low to End of Write Cycle	65		30		25		20		12		12	\%:
tAVBW	Address Valid to Beginning of Write Cycle	0		0		0		0		0		0 0,	\%
tavew	Address Valid to End of Write Cycle	65		30		25		20		17		12	\%
tEWAX	End of Write Cycle to Address Change	0		0		0		0		0			$\stackrel{ }{*}$
tWLEW	Write Enable Low to End of Write Cycle	45		20		20		20		17		12	\%
tDVEW	Data Valid to End of Write Cycle	35		15		15		15		13		10	\%
tewdx	End of Write Cycle to Data Change	0		0		0		0		0			\%
tWHQZ	Write Enable High to Output Low Z $(20,21)$	5		5		5		5		5		5\%	$\stackrel{\text { \% }}{ }$
tWLQZ	Write Enable Low to Output High Z $(20,21)$		35		15		10		7		7	\bigcirc	\%7
tCHVL	Chip Enable High to Data Retention (10)	0		0		0		0		0		0	

Switching Waveforms

Read Cycle - Address Controlled (Notes 13, 14)

Read Cycle - $\overline{\text { CE }}$ Controlled (Notes 13, 15)

Write Cycle - $\overline{W E}$ Controlled (Notes 16, 17, 18, 19)

Write Cycle - $\overline{C E}$ Controlled (Notes 16, 17, 18, 19)

Data Retention

Test Loads and Transition Times

Figure 1a

Figure 1b

Figure 2

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2 V . The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
4. Duration of the output short circuit should not exceed 30 seconds.
5. 'Typical' supply current values are not shown but may be approximated. At a Vcc of 5.0 V , an ambient temperature of $+25^{\circ} \mathrm{C}$ and with nominal manufacturing parameters, the operating supply currents will be approximately $3 / 4$ or less of the maximum values shown.
6. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously enabled for reading, i.e., $\overline{\mathrm{CE}} \leq$ VIL, $^{\mathrm{WE}} \geq \mathrm{VIIH}$.
7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}$.
8. Tested with outputs open and all address and data inputs stable. The
device is continuously disabled, i.e., $\overline{\mathrm{CE}}=\mathrm{VCC}$. Input levels are within 0.5 V of Vcc or ground.
9. Data retention operation requires that VCC never drop below 2.0 V . $\overline{\mathrm{CE}}$ must be $\geq \mathrm{VCC}-0.3 \mathrm{~V}$. For all other inputs VIN \geq Vcc -0.3 or VIN $\leq 0.3 \mathrm{~V}$ is required to ensure full power down.

10. These parameters are guaranteed

 but not 100% tested.11. Test conditions assume input transition times of less than 3 ns , reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading for specified IOL and IOH plus 30 pF .
12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. tAVEW, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worstcase operation of any device always provides data within that time.
13. $\overline{\mathrm{WE}}$ is high for the read cycle.
14. The chip is continuously selected ($\overline{C E}$ low).
15. All address lines are valid priorto or coincident-with the $\overline{\mathrm{CE}}$ transition to low.
16. The internal write cycle of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ low and $\overline{\mathrm{WE}}$ low. Both signals must be low to initiate a write. Either signal can terminate a write by going high. The address, data, and control input setup and hold times should be referenced to the signal that falls last or rises first.
17. If $\overline{\mathrm{WE}}$ goes low before or concurrent with $\overline{\mathrm{CE}}$ going low, the output remains in a high impedance state.
18. If $\overline{\mathrm{CE}}$ goes high before or concurrent with WE going high, the output remains in a high impedance state.
19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions:
a. Falling edge of $\overline{\mathrm{CE}}$
b. Falling edge of $\overline{\mathrm{WE}}$ ($\overline{\mathrm{CE}}$ active)
c. Transition on any address line ($\overline{\mathrm{CE}}$ active)
d. Transition on any data line ($\overline{\mathrm{CE}}$ and $\overline{W E}$ active)
The device automatically powers down from ICC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.
20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
21. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Figure 1b. This parameter is sampled and not 100% tested.
22. All address timings are referenced from the last valid address line to the first transitioning address line.
23. $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions.
24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

Ordering Information

Commercial Operating Range ($\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Package Style	Performance					
	85 ns	45 ns	35 ns	25 ns	20 ns	15 ns
$\begin{gathered} \text { 22-pin Plastic DIP } \\ \left(0.3^{\prime \prime}\right)-\text { P8 } \end{gathered}$	L7C187PC85	L7C187PC45	L7C187PC35	L7C187PC25	L7C187PC20	L7C187PC15
24-pin SOIC - U1	L7C187UC85	L7C187UC45	L7C187UC35	L7C187UC25	L7C187UC20	L7C187UC15
24-pin SOJ - W1	L7C187WC85	L7C187WC45	L7C187WC35	L7C187WC25	L7C187WC20	L7C187WC15
22-pin Sidebraze (0.3") Hermetic DIP - D8	L7C187DC85	L7C187DC45	L7C187DC35	L7C187DC25	L7C187DC20	L7C187DC15
22-pin CerDIP (0.3') - C3	L7C187CC85	L7C187CC45	L7C187CC35	L7C187CC25	L7C187CC20	L7C187CC15
22-pin Ceramic LCC - K4	L7C187KC85	L7C187KC45	L7C187KC35	L7C187KC25	L7C187KC20	L7C187KC15

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance					
	85 ns	45 ns	35 ns	25 ns	20 ns	
22-pin Sidebraze (0.3") Hermetic DIP - D8	L7C187DM85 L7C187DME85 L7C187DMB85	L7C187DM45 L7C187DME45 L7C187DMB45	L7C187DM35 L7C187DME35 L7C187DMB35	L7C187DM25 L7C187DME25 L7C187DMB25	$\begin{aligned} & \text { L7C187DM20 } \\ & \text { L7C187DME20 } \\ & \text { L7C187DMB20 } \end{aligned}$	
22-pin CerDIP (0.3") - C3	L7C187CM85 L7C187CME85 L7C187CMB85	L7C187CM45 L7C187CME45 L7C187CMB45	L7C187CM35 L7C187CME35 L7C187CMB35	L7C187CM25 L7C187CME25 L7C187CMB25	L7C187CM20 L7C187CME20 L7C187CMB20	
22-pin Ceramic LCC - K4	L7C187KM85 L7C187KME85 L7C187KMB85	L7C187KM45 L7C187KME45 L7C187KMB45	L7C187KM35 L7C187KME35 L7C187KMB35	L7C187KM25 L7C187KME25 L7C187KMB25	L7C187KM20 L7C187KME20 L7C187KMB20	

Pin Assignments (P8, D8, C3, K4)

Pin	Function	Pin	Function
1	A 0	12	$\overline{\mathrm{CE}}$
2	A 1	13	DIN
3	A 2	14	A 8
4	A 3	15	A 9
5	A 4	16	A 10
6	A 5	17	A 11
7	A 6	18	A 12
8	A 7	19	A 13
9	DOUT	20	A 14
10	$\overline{\mathrm{WE}}$	21	A 15
11	GND	22	VCC

Pin Assignments (U1, W1)

Pin	Function	Pin	Function
1	A 0	13	$\overline{\mathrm{CE}}$
2	A 1	14	DIN
3	$\mathrm{~A}_{2}$	15	A 8
4	$\mathrm{~A}_{3}$	16	A 9
5	A 4	17	A 10
6	A 5	18	A 11
7	NC	19	NC
8	A 6	20	A 12
9	A 7	21	A 13
10	Dout	22	A 14
11	$\overline{\mathrm{WE}}$	23	A 15
12	GND	24	VCC

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Features

16K by 4 Static RAM with common I/O
Auto-Powerdown ${ }^{\mathrm{TM}}$ design
\square Advanced CMOS technology

- High speed - to 20 ns worst-case
- Low Power Operation Active: 285 mW typical at 45 ns Standby: $50 \mu \mathrm{~W}$ typical
\square Data retention at 2 V for battery backup operation
Plug-compatible with IDT 7188/ 7198, Cypress CY7C164/166
- Package styles available:
- 22/24-pin Plastic DIP
- 22/24-pin Sidebraze, Hermetic DIP
- 22/24-pin CerDIP
- 22/28-pin Ceramic LCC
- 24-pinPlastic SOIC (Gull-Wing)
- 24-pin Plastic SOJ (J-Lead)

Description

The L7C164, L7C165, and L7C166 are high-performance, low-power CMOS static RAMs. The storage cells are organized as 16,384 words by 4 bits per word. Data In and Data Out signals share I/O pins. The L7C164 has a single active-low Chip Enable. The L7C165 has two Chip Enables and a separate Output Enable. The L7C166 has a single Chip Enable and an Output Enable. Parts are available in five speed categories with worst-case access times from 20 ns to 85 ns .

Inputs and output are TTL compatible. Operation is from a single +5 V power supply. Power consumption is 285 mW (typical) at 45 ns . Dissipation drops to 25 mW (typical) when the memory is deselected (Enable is high).

L7C164/165/166 Block Diagram

Two standby modes are available. Proprietary Auto-Powerdown ${ }^{\mathrm{TM}}$ circuitry reduces power consumption automatically during read or write accesses which are longer than the minimum access time, or when the memory is deselected. In addition, data may be retained in inactive storage with a supply voltage as low as 2 V. The L7C164, L7C165, and L7C166 consumes only $3 \mu \mathrm{~W}$ (typical) at 2 V , for effective battery back-up operation.

The L7C164, L7C165, and L7C166 provides asynchronous (unclocked) operation with matching access and cycle times. An active-low Chip Enable and a three-state I/O bus simplify the connection of several chips for increased capacity.

Memory locations are specified on address pins A0 through A13. For the L7C164, reading from a designated location is accomplished by presenting an address and then taking $\overline{\mathrm{CE}} 1$ low while $\overline{\mathrm{WE}}$ remains high. For the L7C165 and L7C166, both CE1 and $\overline{\mathrm{CE}} 2$ must be low. The data in the addressed memory location will then appear on the Data Out pin within one access time. The output pin stays in a high-impedance state when $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ is high or $\overline{\mathrm{WE}}$ is low.

Writing to an addressed location is accomplished when the active-low $\overline{\mathrm{CE}}$ and WE inputs are low. Either signal may be used to terminate the write operation. Data In and Data Out signals have the same polarity.

Latchup and static discharge protection are provided on-chip. The L7C164, L7C165, and L7C166 can withstand an injection current of up to 200 mA on any pin without damage.

16K x 4 Static RAM

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 VOutput current into low outputs25 mA
Latchup current > 200 mA

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Data Retention, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{IOH}=-4.0 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V}$	2.4			V
Vol	Output Low Voltage	$\mathrm{IOL}=8.0 \mathrm{~mA}$			0.4	V
VIH	Input High Voltage		2.0		$\begin{array}{r} \text { VCC } \\ +0.3 \end{array}$	V
VIL	Input Low Voltage	Note 3	-3.0		0.8	V
lıx	Input Current	Ground \leq Vi \leq Vcc	-10		+10	$\mu \mathrm{A}$
IOZ	Output Leakage Current	Ground \leq Vo \leq Vcc, $\overline{\mathrm{CE}}=\mathrm{Vcc}$	-50		+50	$\mu \mathrm{A}$
Ios	Output Short Current	Vo = Ground, Vcc = Max, Note 4			-350	mA
ICC2	Vcc Current, Inactive	Notes 5, 7		5.0	20	mA
ICC3	Vcc Current, Standby	Note 8		10	250	$\mu \mathrm{A}$
ICC4	Vcc Current, DR Mode	Vcc $=2.0 \mathrm{~V}$, Note 9		1.5	50	$\mu \mathrm{A}$
Cl	Input Capacitance	Ambient Temp $=25^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V}$			5	pF
Co	Output Capacitance				7	pF

Symbol	Parameter	LTC164/165/166-							
	VCC Current, Active	Notes 5,6	85	45	35	25	20	15	Unit

DEVICES INCORPORATED

Switching Characteristics

Over Operating Range (ns)
Read Cycle (Notes 11, 12, 21, 22, 23, 24)

Symbol	Parameter	L7C164/165/166-											
		85		45		35		25		20		15	
		Min	Max										
tavav	Read Cycle Time	85		45		35		25		20		15	
tAVQV	Addr Valid to Output Valid $(13,14)$		85		45		35		25		20	$\stackrel{ }{3}$	15
tAXQX	Addr Change to Output Change	5		5		5		5		5		3\%	\%
tCLQV	Chip Enable Low to Output Valid (13, 15)		85		45		35		25		20		$\stackrel{15}{ }$
tCLQZ	Chip Enable Low to Output Low Z $(20,21)$	5		5		5		5		5		5%	\%
tCHQZ	Chip Enable High to Output High Z $(20,21)$		30		15		15		10		8	$\%$	8
tolqV	Output Enable Low to Output Valid		35		20		15		12		10		8
tolqz	Output Enable Low to Output Low Z $(20,21)$	3		3		3		3		3		38	¢
tOHQZ	Output Enable High to Output High Z (20,21)		30		15		12		10		8		\% 8
tPU	$\overline{\mathrm{CE}}$ or $\overline{W E}$ Low to Power Up $(10,19)$	0		0		0		0		0		0\%	\%
tPD	Power Up to Power Down (10, 19)		85		45		35		25		20		20

Write Cycle (Notes 11, 12, 22, 23, 24)

Symbol	Parameter	L7C164/165/166-											
		85		45		35		25		20		15	
		Min	Max										
tavav	Write Cycle Time	75		40		25		20		20		15	
tCLEW	Chip Enable Low to End of Write Cycle	65		30		25		20		17		12	
tAVBW	Address Valid to Beginning of Write Cycle	0		0		0		0		0		0	\%
tavew	Address Valid to End of Write Cycle	65		30		25		20		17		12	$\stackrel{+}{8}$
tewax	End of Write Cycle to Address Change	0		0		0		0		0		$0 \times$	\%
tWLEW	Write Enable Low to End of Write Cycle	45		20		20		20		17		12\%	\%
tDVEW	Data Valid to End of Write Cycle	35		15		15		15		13		10.	8
tewDX	End of Write Cycle to Data Change	0		0		0		0		0			8
tWHQZ	Write Enable High to Output Low Z $(20,21)$	5		5		5		5		5			
tWLQZ	Write Enable Low to Output High Z $(20,21)$		35		15		10		7		7		${ }_{7}$
tCHVL	Chip Enable High to Data Retention (10)	0		0		0		0		0		0	

Switching Waveforms

Read Cycle - Address Controlled (Notes 13, 14)

Read Cycle - $\overline{C E} / \overline{O E}$ Controlled (Notes 13, 15)

Write Cycle - $\overline{\text { WE }}$ Controlled (Notes 16, 17, 18, 19)

Write Cycle - $\overline{\text { CE }}$ Controlled (Notes 16, 17, 18, 19)

Data Retention

Test Loads and Transition Times

Figure 1a

Figure 1b

Figure 2

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2 V . The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
4. Duration of the output short circuit should not exceed 30 seconds.
5. 'Typical' supply current values are not shown but may be approximated. At a Vcc of 5.0 V , an ambient temperature of $+25^{\circ} \mathrm{C}$ and with nominal manufacturing parameters, the operating supply currents will be approximately $3 / 4$ or less of the maximum values shown.
6. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously enabled for reading, i.e., $\overline{\mathrm{CE}} \leq \mathrm{VIL}^{\prime}, \overline{\mathrm{WE}} \geq \mathrm{VIH}_{\text {I }}$.
7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{\mathrm{CE}} \geq \mathrm{VIH}$.
8. Tested with outputs open and all address and data inputs stable. The
device is continuously disabled, i.e., $\overline{\mathrm{CE}}=$ VCC. Input levels are within 0.5 V of Vcc or ground.
9. Data retention operation requires that VCC never drop below $2.0 \mathrm{~V} . \overline{\mathrm{CE}}$ must be $\geq \mathrm{VCc}-0.3 \mathrm{~V}$. For all other inputs VIN \geq VCC -0.3 or VIN $\leq 0.3 \mathrm{~V}$ is required to ensure full power down.
10. These parameters are guaranteed but not 100% tested.
11. Test conditions assume input transition times of less than 3 ns , reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading for specified IOL and IOH plus 30 pF .
12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. tAVEW, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worstcase operation of any device always provides data within that time.
13. $\overline{\mathrm{WE}}$ is high for the read cycle.
14. The chip is continuously selected ($\overline{\mathrm{CE}}$ low).
15. All address lines are valid priorto or coincident-with the $\overline{\mathrm{CE}}$ transition to low.
16. The internal write cycle of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ low and $\overline{\mathrm{WE}}$ low. Both signals must be low to initiate a write. Either signal can terminate a write by going high. The address, data, and control input setup and hold times should be referenced to the signal that falls last or rises first.
17. If $\overline{\mathrm{WE}}$ goes low before or concurrent with $\overline{\mathrm{CE}}$ going low, the output remains in a high impedance state.
18. If $\overline{\mathrm{CE}}$ goes high before or concurrent with $\overline{W E}$ going high, the output remains in a high impedance state.
19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions:
a. Falling edge of $\overline{\mathrm{CE}}$
b. Falling edge of $\overline{\mathrm{WE}}$ ($\overline{\mathrm{CE}}$ active)
c. Transition on any address line ($\overline{\mathrm{CE}}$ active)
d. Transition on any data line ($\overline{\mathrm{CE}}$ and $\overline{W E}$ active)
The device automatically powers down from ICC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.
20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
21. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Figure 1b. This parameter is sampled and not 100% tested.
22. All address timings are referenced from the last valid address line to the first transitioning address line.
23. $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions.
24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)

Package Style	Performance					
	85 ns	45 ns	35 ns	25 ns	20 ns	15 ns
L7C164						
$\begin{gathered} \text { 22-pin Plastic DIP } \\ \left(0.3^{\prime \prime}\right)-\text { P8 } \end{gathered}$	L7C164PC85	L7C164PC45	L7C164PC35	L7C164PC25	L7C164PC20	
22-pin Sidebraze (0.3") Hermetic DIP - D8	L7C164DC85	L7C164DC45	L7C164DC35	L7C164DC25	L7C164DC20	
24-pin SOIC - U1	L7C164UC85	L7C164UC45	L7C164UC35	L7C164UC25	L7C164UC20	
24-pin SOJ - W1	L7C164WC85	L7C164WC45	L7C164WC35	L7C164WC25	L7C164WC20	
22-pin CerDIP (0.3') - C3	L7C164CC85	L7C164CC45	L7C164CC35	L7C164CC25	L7C164CC20	
22-pin Ceramic LCC - K4	L7C164KC85	L7C164KC45	L7C164KC35	L7C164KC25	L7C164KC20	
L7C165						
$\begin{gathered} \text { 24-pin Plastic DIP } \\ \left(0.3^{\prime \prime}\right)-\mathrm{P} 2 \end{gathered}$	L7C165PC85	L7C165PC45	L7C165PC35	L7C165PC25	L7C165PC20	
24-pin SOIC - U1	L7C165UC85	L7C165UC45	L7C165UC35	L7C165UC25	L7C165UC20	
24-pin SOJ - W1	L7C165WC85	L7C165WC45	L7C165WC35	L7C165WC25	L7C165WC20	
$\begin{array}{r} \text { 24-pin Sidebraze (0.3") } \\ \text { Hermetic DIP - D2 } \end{array}$	L7C165DC85	L7C165DC45	L7C165DC35	L7C165DC25	L7C165DC20	
24-pin CerDIP (0.3") - C1	L7C165CC85	L7C165CC45	L7C165CC35	L7C165CC25	L7C165CC20	
L7C166						
$\begin{gathered} \text { 24-pin Plastic DIP } \\ \left(0.3^{\prime \prime}\right)-\mathrm{P} 2 \end{gathered}$	L7C166PC85	L7C166PC45	L7C166PC35	L7C166PC25	L7C166PC20	
24-pin SOIC-U1	L7C166UC85	L7C166UC45	L7C166UC35	L7C166UC25	L7C166UC20	
24-pin SOJ - W1	L7C166WC85	L7C166WC45	L7C166WC35	L7C166WC25	L7C166WC20	
24-pin Sidebraze (0.3") Hermetic DIP - D2	L7C166DC85	L7C166DC45	L7C166DC35	L7C166DC25	L7C166DC20	
24-pin CerDIP (0.3") - C1	L7C166CC85	L7C166CC45	L7C166CC35	L7C166CC25	L7C166CC20	
28-pin Ceramic LCC - K5	L7C166KC85	L7C166KC45	L7C166KC35	L7C166KC25	L7C166KC20	

Ordering Information

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$)

Package Style	Performance					
	85 ns	45 ns	35 ns	25 ns	20 ns	
L7C164						
22-pin Sidebraze (0.3") Hermetic DIP - D8	L7C164DM85 L7C164DME85 L7C164DMB85	L7C164DM45 L7C164DME45 L7C164DMB45	L7C164DM35 L7C164DME35 L7C164DMB35	L7C164DM25 L7C164DME25 L7C164DMB25		
22-pin CerDIP (0.3") - C3	L7C164CM85 L7C164CME85 L7C164CMB85	L7C164CM45 L7C164CME45 L7C164CMB45	L7C164CM35 L7C164CME35 L7C164CMB35	L7C164CM25 L7C164CME25 L7C164CMB25		
22-pin Ceramic LCC - K4	L7C164KM85 L7C164KME85 L7C164KMB85	L7C164KM45 L7C164KME45 L7C164KMB45	L7C164KM35 L7C164KME35 L7C164KMB35	L7C164KM25 L7C164KME25 L7C164KMB25		
L7C165						
24-pin Sidebraze (0.3") Hermetic DIP - D2	L7C165DM85 L7C165DME85 L7C165DMB85	L7C165DM45 L7C165DME45 L7C165DMB45	L7C165DM35 L7C165DME35 L7C165DMB35	L7C165DM25 L7C165DME25 L7C165DMB25		
24-pin CerDIP (0.3') - C1	L7C165CM85 L7C165CME85 L7C165CMB85	L7C165CM45 L7C165CME45 L7C165CMB45	L7C165CM35 L7C165CME35 L7C165CMB35	L7C165CM25 L7C165CME25 L7C165CMB25		
L7C166						
24-pin Sidebraze (0.3") Hermetic DIP - D2	L7C166DM85 L7C166DME85 L7C166DMB85	L7C166DM45 L7C166DME45 L7C166DMB45	L7C166DM35 L7C166DME35 L7C166DMB35	L7C166DM25 L7C166DME25 L7C166DMB25		
24-pin CerDIP (0.3") - C1	L7C166CM85 L7C166CME85 L7C166CMB85	L7C166CM45 L7C166CME45 L7C166CMB45	$\begin{aligned} & \text { L7C166CM35 } \\ & \text { L7C166CME35 } \\ & \text { L7C166CMB35 } \end{aligned}$	L7C166CM25 L7C166CME25 L7C166CMB25		
28-pin Ceramic LCC - K5	L7C166KM85 L7C166KME85 L7C166KMB85	L7C166KM45 L7C166KME45 L7C166KMB45	L7C166KM35 L7C166KME35 L7C166KMB35	L7C166KM25 L7C166KME25 L7C166KMB25		

L7C164 Pin Assignments
 (22-pin - P8, D8, C3)

Pin	Function	Pin	Function
1	A 0	12	$\overline{\mathrm{WE}}$
2	A 1	13	$\mathrm{I} 0 / \mathrm{O} 0$
3	A 2	14	$\mathrm{I} 1 / \mathrm{O} 1$
4	A 3	15	$\mathrm{I} 2 / \mathrm{O} 2$
5	A 4	16	$\mathrm{I} 3 / \mathrm{O} 3$
6	A 5	17	A 9
7	A 6	18	A 10
8	A 7	19	A 11
9	A 8	20	A 12
10	$\overline{\mathrm{CE}}$	21	A 13
11	GND	22	VCC

L7C164 Pin Assignments
(22-pin -K4)

Pin	Function	Pin	Function
1	$\mathrm{~A}_{5}$	12	$\overline{\mathrm{WE}}$
2	$\mathrm{~A}_{6}$	13	$\mathrm{I} 0 / \mathrm{O}_{0}$
3	$\mathrm{~A}_{7}$	14	$\mathrm{I} 1 / \mathrm{O}_{1}$
4	$\mathrm{~A}_{8}$	15	$\mathrm{I} 2 / \mathrm{O}_{2}$
5	$\mathrm{~A}_{9}$	16	$\mathrm{I} / \mathrm{O}_{3}$
6	$\mathrm{~A}_{10}$	17	$\mathrm{~A}_{0}$
7	$\mathrm{~A}_{11}$	18	$\mathrm{~A}_{1}$
8	$\mathrm{~A}_{12}$	19	$\mathrm{~A}_{2}$
9	$\mathrm{~A}_{13}$	20	$\mathrm{~A}_{3}$
10	$\overline{\mathrm{CE}}$	21	$\mathrm{~A}_{4}$
11	GND	22	VCC

L7C164 Pin Assignments

(24-pin-U1, W1)

Pin	Function	Pin	Function
1	$\mathrm{~A}_{0}$	13	$\overline{\mathrm{WE}}$
2	$\mathrm{~A}_{1}$	14	$\mathrm{I} 0 / \mathrm{O} 0$
3	$\mathrm{~A}_{2}$	15	$\mathrm{I} / \mathrm{O} 1$
4	$\mathrm{~A}_{3}$	16	$\mathrm{I} / \mathrm{O} 2$
5	A 4	17	$\mathrm{I} 3 / \mathrm{O} 3$
6	A 5	18	NC
7	A 6	19	A 9
8	A 7	20	A 10
9	A 8	21	A 11
10	$\overline{\mathrm{CE}}$	22	A 12
11	NC	23	A 13
12	GND	24	VCC

L7C165 Pin Assignments
(24-pin - P2, D2, C1, U1, W1)

Pin	Function	Pin	Function
1	A 0	13	$\overline{\mathrm{WE}}$
2	A 1	14	$\mathrm{I} / \mathrm{O} 0$
3	A 2	15	$\mathrm{I} 1 / \mathrm{O} 1$
4	A 3	16	$\mathrm{I} 2 / \mathrm{O} 2$
5	A 4	17	$\mathrm{I} 3 / \mathrm{O} 3$
6	A 5	18	$\overline{\mathrm{CE}} 2$
7	A 6	19	A 9
8	A 7	20	A 10
9	A 8	21	A 11
10	$\overline{\mathrm{CE}} 1$	22	A 12
11	$\overline{\mathrm{OE}}$	23	A 13
12	GND	24	VCC

L7C166 Pin Assignments
(24-pin - P2, D2, C1, U1, W1)

Pin	Function	Pin	Function
1	A 0	13	$\overline{\mathrm{WE}}$
2	A 1	14	$\mathrm{I} 0 / \mathrm{O} 0$
3	A 2	15	$\mathrm{I} 1 / \mathrm{O} 1$
4	A 3	16	$\mathrm{I} 2 / \mathrm{O} 2$
5	A 4	17	$\mathrm{I} 3 / \mathrm{O} 3$
6	A 5	18	NC
7	A 6	19	A 9
8	A 7	20	A 10
9	A 8	21	A 11
10	$\overline{\mathrm{CE}} 1$	22	A 12
11	$\overline{\mathrm{OE}}$	23	A 13
12	GND	24	VCC

L7C166 Pin Assignments
(28-pin - K5)

Pin	Function	Pin	Function
1	$N C$	15	$N C$
2	$N C$	16	$\overline{\mathrm{WE}}$
3	A 0	17	$\mathrm{I} / \mathrm{O} 0$
4	A 1	18	$\mathrm{I} / \mathrm{O} 1$
5	A 2	19	$\mathrm{I} 2 / \mathrm{O} 2$
6	A 3	20	$\mathrm{I} / \mathrm{O} 3$
7	A 4	21	A 9
8	A 5	22	A 10
9	A 6	23	A 11
10	A 7	24	A 12
11	A 8	25	A 13
12	$\overline{\mathrm{CE}} 1$	26	NC
13	$\overline{\mathrm{OE}}$	27	NC
14	GND	28	VCC

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Features

16K by 4 Static RAM with separate I/O, transparent write (L7C161), or high impedance write (L7C162)
Auto-Powerdown ${ }^{\mathrm{TM}}$ design
Advanced CMOS technology

- High speed - to 20 ns worst case

L Low Power Operation Active: 285 mW typical at 45 ns Standby: $50 \mu \mathrm{~W}$ typical
Data retention at 2 V for battery backup operation

- Plug-compatible with IDT 71981/ 71982, Cypress CY7C161/162
- Package styles available:
- 28 -pin Plastic DIP
- 28-pin Sidebraze, Hermetic DIP
- 28-pin CerDIP
- 28-pin Ceramic LCC
- 28 -pinPlastic SOIC (Gull-Wing)
- 28-pin Plastic SOJ (J-Lead)

Description

The L7C161 and L7C162 are highperformance, low-power CMOS static RAMs. The storage cells are organized as 16,384 words by 4 bits per word. Data In and Data Out are separate. Parts are available in five speed categories with worst-case access times from 20 ns to 85 ns .

Inputs and output are TTL compatible. Operation is from a single +5 V power supply. Power consumption is 285 mW (typical) at 45 ns . Dissipation drops to 25 mW (typical) when the memory is deselected (Enable is high).

Two standby modes are available. Proprietary Auto-Powerdown ${ }^{\mathrm{TM}}$ circuitry reduces power consumption automatically during read or write accesses which are longer than the minimum access time, or when the

memory is deselected. In addition, data may be retained in inactive storage with a supply voltage as low as 2 V. The L7C161 and L7C162 consumes only $3 \mu \mathrm{~W}$ (typical) at 2 V , allowing effective battery back-up operation.
The L7C161 and L7C162 provides asynchronous (unclocked) operation with matching access and cycle times. Two active-low Chip Enables and a three-state bus output with a separate output enable line simplify the connection of several chips for increased storage capacity.
Memory locations are specified on address pins A0 through A13. Reading from a designated location is accomplished by presenting an address and then taking $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ low while Write remains high. The data in the addressed memory location will then appear on the Data Out pins within one access time. The output pins stay in a high-impedance state when $\overline{\mathrm{WE}}$ is low (L7C162 only) or $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$, or $\overline{\mathrm{OE}}$ is high.

Writing to an addressed location is accomplished when the active-low $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ and $\overline{\mathrm{WE}}$ inputs are all low. Any of these signals may be used to terminate the write operation. The Data In and Data Out signals have the same polarity.

Latchup and static discharge protection are provided on-chip. The L7C161 and L7C162 can withstand an injection current of up to 200 mA on any pin without damage.

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
VcC supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current > 200 mA

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Data Retention, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{IOH}=-4.0 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V}$	2.4			V
Vol	Output Low Voltage	$\mathrm{IOL}=8.0 \mathrm{~mA}$			0.4	V
VIH	Input High Voltage		2.0		$\begin{array}{r} \text { Vcc } \\ +0.3 \end{array}$	V
VIL	Input Low Voltage	Note 3	-3.0		0.8	V
IIX	Input Current	Ground \leq VI \leq VCC	-10		+10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vo \leq Vcc, $\overline{\mathrm{CE}}=\mathrm{Vcc}$	-50		+50	$\mu \mathrm{A}$
IOS	Output Short Current	Vo = Ground, Vcc = Max, Note 4			-350	mA
ICC2	Vcc Current, Inactive	Notes 5, 7		5.0	20	mA
ICC3	Vcc Current, Standby	Note 8		10	250	$\mu \mathrm{A}$
ICC4	Vcc Current, DR Mode	$\mathrm{Vcc}=2.0 \mathrm{~V}$, Note 9		1.5	50	$\mu \mathrm{A}$
Cl	Input Capacitance	Ambient Temp $=25^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V}$			5	pF
Co	Output Capacitance	Test Frequency $=1 \mathrm{MHz}$, Note 10			7	pF

Symbol	Parameter	Test Condition	L7C161/162-						
			85	45	35	25	20	15	Unit
IcC1	Vcc Current, Active	Notes 5, 6	45	70	85	120	145		mA

Switching Characteristics

Over Operating Range ($n s$)
Read Cycle (Notes 11, 12, 21, 22, 23, 24)

Symbol	Parameter	L7C161/162-											
		85		45		35		25		20		15	
		Min	Max										
tavav	Read Cycle Time	85		45		35		25		20		15	
tAVQV	Addr Valid to Output Valid (13, 14)		85		45		35		25		20	\checkmark	$\ldots 15$
tAXQX	Addr Change to Output Change	5		5		5		5		5		3.	\%
tCLQV	Chip Enable Low to Output Valid $(13,15)$		85		45		35		25		20		15
tCLQZ	Chip Enable Low to Output Low Z $(20,21)$	5		5		5		5		5		5\%	\%
tCHQZ	Chip Enable High to Output High Z $(20,21)$		30		15		15		10		8		$\stackrel{8}{4}$
tolqv	Output Enable Low to Output Valid		35		20		15		12		10		8
tOLQZ	Output Enable Low to Output Low Z $(20,21)$	3		3		3		3		3		3	\%
tOHQZ	Output Enable High to Output High Z $(20,21)$		30		15		12		10		8		\% 8
tPu	CE or WE Low to Power Up $(10,19)$	0		0		0		0		0			-
tPD	Power Up to Power Down $(10,19)$		85		45		35		25		20		20

Write Cycle (Notes 11, 12, 21, 22, 23, 24)

Symbol	Parameter	L7C161/162-											
		85		45		35		25		20		15	
		Min	Max										
tavav	Write Cycle Time	75		40		25		20		20		15	
tCLEW	Chip Enable Low to End of Write Cycle	65		30		25		20		17		12	
tAVBW	Address Valid to Beginning of Write Cycle	0		0		0		0		0		0	
tavew	Address Valid to End of Write Cycle	65		30		25		20		17		12	
tewax	End of Write Cycle to Address Change	0		0		0		0		0		08	\%
tWLEW	Write Enable Low to End of Write Cycle	45		20		20		20		17		12	
tDVEW	Data Valid to End of Write Cycle	35		15		15		15		13		10	
tEWDX	End of Write Cycle to Data Change	0		0		0		0		0			
tWHQZ	Write High to Output Low Z $(20,21)$	5		5		5		5		5			
tWLQZ	Write Enable Low to Output High Z $(20,21)$		35		15		10		7		7		$\stackrel{+}{\square}$
tCHVL	Chip Enable High to Data Retention (10)	0		0		0		0		0		${ }^{*}$	
tWLQV	Write Enable Low to Output Valid		50		35		30		20		15		15
tDVQV	Data Valid to Output Valid		50		35		30		20		15		15

16K x 4 Static RAM

Switching Waveforms

Read Cycle - Address Controlled (Notes 13, 14)

Read Cycle - $\overline{C E} / \overline{O E}$ Controlled (Notes 13, 15)

Write Cycle - $\overline{W E}$ Controlled (Notes 16, 17, 18, 19)

Write Cycle - $\overline{C E}$ Controlled (Notes 16, 17, 18, 19)

Data Retention

Test Loads and Transition Times

Figure 1a

Figure 1b

Figure 2

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2 V . The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
4. Duration of the output short circuit should not exceed 30 seconds.
5. 'Typical' supply current values are not shown but may be approximated. At a Vcc of 5.0 V , an ambient temperature of $+25^{\circ} \mathrm{C}$ and with nominal manufacturing parameters, the operating supply currents will be approximately $3 / 4$ or less of the maximum values shown.
6. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously enabled for reading, i.e., $\overline{\mathrm{CE}} \leq \mathrm{VII}^{\prime}, \overline{\mathrm{WE}} \geq \mathrm{V}_{\mathrm{IH}}$.
7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{\mathrm{CE}} \geq \mathrm{VIH}_{\mathrm{IH}}$.
8. Tested with outputs open and all address and data inputs stable. The
device is continuously disabled, i.e., $\overline{\mathrm{CE}}=$ VCC. Input levels are within 0.5 V of Vcc or ground.
9. Data retention operation requires that VCC never drop below $2.0 \mathrm{~V} . \overline{\mathrm{CE}}$ must be $\geq \mathrm{VCc}-0.3 \mathrm{~V}$. For all other inputs VIN \geq VCC -0.3 or VIN $\leq 0.3 \mathrm{~V}$ is required to ensure full power down.
10. These parameters are guaranteed but not 100% tested.
11. Test conditions assume input transition times of less than 3 ns , reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading for specified IOL and IOH plus 30 pF .
12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. tAVEW, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worstcase operation of any device always provides data within that time.
13. $\overline{\mathrm{WE}}$ is high for the read cycle.
14. The chip is continuously selected ($\overline{\mathrm{CE}}$ low).
15. All address lines are valid priorto or coincident-with the $\overline{\mathrm{CE}}$ transition to low.
16. The internal write cycle of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ low and $\overline{\mathrm{WE}}$ low. Both signals must be low to initiate a write. Either signal can terminate a write by going high. The address, data, and control input setup and hold times should be referenced to the signal that falls last or rises first.
17. If $\overline{\mathrm{WE}}$ goes low before or concurrent with $\overline{\mathrm{CE}}$ going low, the output remains in a high impedance state.
18. If $\overline{\mathrm{CE}}$ goes high before or concurrent with WE going high, the output remains in a high impedance state.
19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions:
a. Falling edge of $\overline{\mathrm{CE}}$
b. Falling edge of $\overline{\mathrm{WE}}$ ($\overline{\mathrm{CE}}$ active)
c. Transition on any address line ($\overline{\mathrm{CE}}$ active)
d. Transition on any data line ($\overline{\mathrm{CE}}$ and $\overline{W E}$ active)
The device automatically powers down from ICC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.
20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
21. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Figure 1b. This parameter is sampled and not 100% tested.
22. All address timings are referenced from the last valid address line to the first transitioning address line.
23. $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions.
24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)

Package Style	Performance					
	85 ns	45 ns	35 ns	25 ns	20 ns	15 ns
L7C161						
28-pin Plastic DIP $\left(0.3^{\prime \prime}\right)-\mathrm{P} 10$	L7C161PC85	L7C161PC45	L7C161PC35	L7C161PC25	L7C161PC20	
28-pin Sidebraze (0.3") Hermetic DIP - D10	L7C161DC85	L7C161DC45	L7C161DC35	L7C161DC25	L7C161DC20	
28-pin SOIC - U2	L7C161UC85	L7C161UC45	L7C161UC35	L7C161UC25	L7C161 UC20	
28-pin SOJ - W2	L7C161WC85	L7C161WC45	L7C161WC35	L7C161WC25	L7C161WC20	
28-pin CerDIP (0.3') - C5	L7C161CC85	L7C161CC45	L7C161CC35	L7C161CC25	L7C161CC20	
28-pin Ceramic LCC - K5	L7C161 KC85	L7C161KC45	L7C161KC35	L7C161KC25	L7C161KC20	
L7C162						
28-pin Plastic DIP $\left(0.3^{\prime \prime}\right)-\mathrm{P} 10$	L7C162PC85	L7C162PC45	L7C162PC35	L7C162PC25	L7C162PC20	
28-pin Sidebraze (0.3") Hermetic DIP - D10	L7C162DC85	L7C162DC45	L7C162DC35	L7C162DC25	L7C162DC20	
28-pin SOIC-U2	L7C162UC85	L7C162UC45	L7C162UC35	L7C162UC25	L7C162UC20	
28-pin SOJ - W2	L7C162WC85	L7C162WC45	L7C162WC35	L7C162WC25	L7C162WC20	
28-pin CerDIP (0.3") - C5	L7C162CC85	L7C162CC45	L7C162CC35	L7C162CC25	L7C162CC20	
28-pin Ceramic LCC - K5	L7C162KC85	L7C162KC45	L7C162KC35	L7C162KC25	L7C162KC20	

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance					
	85 ns	45 ns	35 ns	25 ns	20 ns	
L7C161						
28-pin Sidebraze (0.3") Hermetic DIP - D10	L7C161DM85 L7C161DME85 L7C161DMB85	L7C161DM45 L7C161DME45 L7C161DMB45	L7C161DM35 L7C161DME35 L7C161DMB35	L7C161DM25 L7C161DME25 L7C161DMB25		
28-pin CerDIP (0.3') - C5	L7C161CM85 L7C161CME85 L7C161CMB85	L7C161CM45 L7C161CME45 L7C161CMB45	L7C161CM35 L7C161CME35 L7C161CMB35	L7C161CM25 L7C161CME25 L7C161CMB25		
28-pin Ceramic LCC - K5	L7C161KM85 L7C161KME85 L7C161KMB85	L7C161KM45 L7C161KME45 L7C161KMB45	L7C161KM35 L7C161KME35 L7C161KMB35	L7C161 KM25 L7C161KME25 L7C161KMB25		
L7C162						
28-pin Sidebraze (0.3") Hermetic DIP - D10	L7C162DM85 L7C162DME85 L7C162DMB85	L7C162DM45 L7C162DME45 L7C162DMB45	L7C162DM35 L7C162DME35 L7C162DMB35	$\begin{aligned} & \text { L7C162DM25 } \\ & \text { L7C162DME25 } \\ & \text { L7C162DMB25 } \end{aligned}$		
28-pin CerDIP (0.3') - C5	L7C162CM85 L7C162CME85 L7C161CME85	L7C162CM45 L7C162CME45 L7C162CMB45	L7C162CM35 L7C162CME35 L7C162CMB35	L7C162CM25 L7C162CME25 L7C162CMB25		
28-pin Ceramic LCC - K5	L7C162KM85 L7C162KME85 L7C162KMB85	L7C162KM45 L7C162KME45 L7C162KMB45	L7C162KM35 L7C162KME35 L7C162KMB35	L7C162KM25 L7C162KME25 L7C162KMB25		

DEVICES INCORPORATED

Pin Assignments (P10, D10, C5, K5, U2, W2)

Pin	Function	Pin	Function
1	A 0	15	$\overline{\mathrm{CE}} 2$
2	A 1	16	$\overline{\mathrm{WE}}$
3	A 2	17	O 0
4	A 3	18	O 1
5	A 4	19	O 2
6	A 5	20	O 3
7	A 6	21	I 2
8	A 7	22	I 3
9	A 8	23	A 9
10	I	24	A 10
11	I 11	25	A 11
12	$\overline{\mathrm{CE}} 1$	26	A 12
13	$\overline{\mathrm{OE}}$	27	A 13
14	GND	28	VCC

(c) 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Features

- 8 K by 8 Static RAM with chip select powerdown, output enable
Auto-Powerdown ${ }^{\text {TM }}$ design
Advanced CMOS technology
- High speed - to 20 ns worst case

Low Power Operation
Active: 290 mW typical at 45 ns
Standby: $50 \mu \mathrm{~W}$ typical

- Data retention at 2 V for battery backup operation
- Plug-compatible with IDT7164, Cypress CY7C185/186

Package styles available:

- 28-pin Plastic DIP
- 28-pin Sidebraze, Hermetic DIP
- 28 -pin CerDIP
- 28-pin Ceramic LCC
- 28-pin Plastic SOIC (Gull-Wing)
- 28-pinPlastic SOJ (J-Lead)

Description

The L7C185 is a high-performance, low-power CMOS static RAM. The storage circuitry is organized as 8,192 words by 8 bits per word. The 8 Data In and Data Out signals share I/O pins. Parts are available in five speeds with worst-case access times from 20 ns to 85 ns .

Inputs and output are TTL compatible. Operation is from a single +5 V power supply. Power consumption is 290 mW (typical) at 45 ns . Dissipation drops to 25 mW (typical) when the memory is deselected (Enable is high).

Two standby modes are available. Proprietary Auto-Powerdown ${ }^{\mathrm{TM}}$ circuitry reduces power consumption automatically during read or write accesses which are longer than the minimum access time, or when the

DEVICES INCORPORATED

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2)

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Data Retention, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{IOH}=-4.0 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V}$	2.4			V
Vol	Output Low Voltage	$\mathrm{IOL}=8.0 \mathrm{~mA}$			0.4	V
VIH	Input High Voltage		2.0		$\begin{array}{r} \text { Vcc } \\ +0.3 \end{array}$	V
VIL	Input Low Voltage	Note 3	-3.0		0.8	V
IIX	Input Current	Ground $\leq \mathrm{VI} \leq \mathrm{VCC}$	-10		+10	$\mu \mathrm{A}$
IOZ	Output Leakage Current	Ground \leq Vo \leq Vcc, $\overline{\mathrm{CE}}=\mathrm{VCC}$	-50		+50	$\mu \mathrm{A}$
IOS	Output Short Current	Vo = Ground, Vcc = Max, Note 4			-350	mA
ICC2	Vcc Current, Inactive	Notes 5, 7		5.0	20	mA
ICC3	Vcc Current, Standby	Note 8		10	250	$\mu \mathrm{A}$
ICC4	Vcc Current, DR Mode	Vcc = 2.0 V, Note 9		1.5	50	$\mu \mathrm{A}$
Cl	Input Capacitance	$\text { Ambient Temp }=25^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V}$			5	pF
Co	Output Capacitance				7	pF

Symbol	Parameter	Test Condition	L7C185-						
			85	45	35	25	20	15	Unit
ICC1	Vcc Current, Active	Notes 5, 6	45	80	100	140	180		mA

Switching Characteristics

Over Operating Range (ns)
Read Cycle (Notes 11, 12, 21, 22, 23, 24)

Symbol	Parameter	L7C185-											
		85		45		35		25		20		15	
		Min	Max										
tavav	Read Cycle Time	85		45		35		25		20		15	
tavqv	Addr Valid to Output Valid (13,14)		85		45		35		25		20		15
tAXQX	Addr Change to Output Change	5		5		5		5		5			
tCLQV	Chip Enable Active to Output Valid (13,15)		85		30		25		25		20		15
tCLQZ	Chip Enable Active to Output Low Z $(20,21)$	5		5		5		5		5		5	*
tCHQZ	Chip Enable Inactive to Output $\operatorname{High} \mathrm{Z}(20,21)$		35		15		15		10		8		8
tolqv	Output Enable Low to Output Valid		35		20		15		12		10		8
tolqz	Output Enable Low to Output Low Z (20,21)	3		3		3		3		3		3.	*
tohQZ	Output Enable High to Output High Z (20, 21)		30		15		12		10		8		
tPU	CE Active or $\overline{W E}$ Low to Power Up (10,19)	0		0		0		0		0		0.	
tPD	Power Up to Power Down (10, 19)		85		45		35		25		20		20

Write Cycle (Notes 11, 12, 22, 23, 24)

Symbol	Parameter	L7C185-											
		85		45		35		25		20		15	
		Min	Max										
tavav	Write Cycle Time	75		40		25		20		20		15	
tCLEW	Chip Enable Active to End of Write Cycle	65		30		25		20		17		12%	
tAVBW	Address Valid to Beginning of Write Cycle	0		0		0		0		0		0	*
tavew	Address Valid to End of Write Cycle	65		30		25		20		17		12	$\stackrel{+}{8}$
tewax	End of Write Cycle to Address Change	0		0		0		0		0			
tWLEW	Write Enable Low to End of Write Cycle	45		30		20		20		17		12	\%
tDVEW	Data Valid to End of Write Cycle	35		15		15		15		13		10 \%	\%
tewdx	End of Write Cycle to Data Change	0		0		0		0		0		0%	\%
tWHQZ	Write Enable High to Output Low Z $(20,21)$	5		5		5		5		5			$\stackrel{\square}{\circ}$
tWLQZ	Write Enable Low to Output High Z $(20,21)$		35		15		10		7		7		$\stackrel{\square}{7}$
tCHVL	Chip Enable Inactive to Data Retention (10)	0		0		0		0		0		0	

Switching Waveforms

Read Cycle — Address Controlled (Notes 13, 14)

Read Cycle - $\overline{C E} / \overline{O E}$ Controlled (Notes 13, 15)

Write Cycle - $\overline{\text { WE }}$ Controlled (Notes 16, 17, 18, 19)

Write Cycle - $\overline{C E}$ Controlled (Notes 16, 17, 18, 19)

Data Retention

Test Loads and Transition Times

Figure 1a

Figure 1b

Figure 2

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2 V . The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
4. Duration of the output short circuit should not exceed 30 seconds.
5. 'Typical' supply current values are not shown but may be approximated. At a Vcc of 5.0 V , an ambient temperature of $+25^{\circ} \mathrm{C}$ and with nominal manufacturing parameters, the operating supply currents will be approximately $3 / 4$ or less of the maximum values shown.
6. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously enabled for reading, i.e., $\overline{\mathrm{CE}} \leq$ VIL, $\overline{\mathrm{WE}} \geq$ VIH.
7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{\mathrm{CE}} \geq \mathrm{VIH}$.
8. Tested with outputs open and all address and data inputs stable. The
device is continuously disabled, i.e., $\overline{\mathrm{CE}}=$ VCC. Input levels are within 0.5 V of VCC or ground.
9. Data retention operation requires that VCC never drop below $2.0 \mathrm{~V} . \overline{\mathrm{CE}}$ must be $\geq \mathrm{VCC}-0.3 \mathrm{~V}$. For all other inputs VIN \geq VCC -0.3 or VIN $\leq 0.3 \mathrm{~V}$ is required to ensure full power down.
10. These parameters are guaranteed but not 100% tested.
11. Test conditions assume input transition times of less than 3 ns , reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading for specified IOL and IOH plus 30 pF .
12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. tAVEW, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worstcase operation of any device always provides data within that time.
13. $\overline{\mathrm{WE}}$ is high for the read cycle.
14. The chip is continuously selected ($\overline{\mathrm{CE}}$ low).
15. All address lines are valid priorto or coincident-with the $\overline{\mathrm{CE}}$ transition to low.
16. The internal write cycle of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ low and $\overline{\mathrm{WE}}$ low. Both signals must be low to initiate a write. Either signal can terminate a write by going high. The address, data, and control input setup and hold times should be referenced to the signal that falls last or rises first.
17. If $\overline{\mathrm{WE}}$ goes low before or concurrent with $\overline{\mathrm{CE}}$ going low, the output remains in a high impedance state.
18. If $\overline{\mathrm{CE}}$ goes high before or concurrent with $\overline{W E}$ going high, the output remains in a high impedance state.
19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions:
a. Falling edge of $\overline{\mathrm{CE}}$
b. Falling edge of $\overline{\mathrm{WE}}$ ($\overline{\mathrm{CE}}$ active)
c. Transition on any address line ($\overline{\mathrm{CE}}$ active)
d. Transition on any data line ($\overline{\mathrm{CE}}$ and $\overline{W E}$ active)
The device automatically powers down from ICC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.
20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
21. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Figure 1b. This parameter is sampled and not 100% tested.
22. All address timings are referenced from the last valid address line to the first transitioning address line.
23. $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions.
24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

Ordering Information

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Package Style	Performance					
	85 ns	45 ns	35 ns	25 ns	20 ns	15 ns
28-pin Plastic DIP $\left(0.3^{\prime \prime}\right)-\mathrm{P} 10$	L7C185PC85	L7C185PC45	L7C185PC35	L7C185PC25	L7C185PC20	
$\begin{gathered} \text { 28-pin Plastic DIP } \\ \left(0.6^{\prime \prime}\right)-\mathrm{P} 9 \end{gathered}$	L7C185NC85	L7C185NC45	L7C185NC35	L7C185NC25	L7C185NC20	
28-pin SOIC - U2 (0.300")	L7C185UC85	L7C185UC45	L7C185UC35	L7C185UC25	L7C185UC20	
28-pin SOIC - V2 (0.331')	L7C185VC85	L7C185VC45	L7C185VC35	L7C185VC25	L7C185VC20	
28-pin SOJ - W2	L7C185WC85	L7C185WC45	L7C185WC35	L7C185WC25	L7C185WC20	
28-pin Sidebraze (0.3") Hermetic DIP — D10	L7C185DC85	L7C185DC45	L7C185DC35	L7C185DC25	L7C185DC20	
28-pin Sidebraze (0.6") Hermetic DIP - D9	L7C185HC85	L7C185HC45	L7C185HC35	L7C185HC25	L7C185HC20	
28-pin CerDIP (0.3") - C5	L7C185CC85	L7C185CC45	L7C185CC35	L7C185CC25	L7C185CC20	
28-pin CerDIP (0.6") - C6	L7C185IC85	L7C185IC45	L7C185IC35	L7C185IC25	L7C185IC20	
28-pin Ceramic LCC - K5	L7C185KC85	L7C185KC45	L7C185KC35	L7C185KC25	L7C185KC20	

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance					
	85 ns	45 ns	35 ns	25 ns	20 ns	
28-pin Sidebraze ($0.3^{\prime \prime}$) Hermetic DIP - D10	L7C185DM85 L7C185DME85 L7C185DMB85	L7C185DM45 L7C185DME45 L7C185DMB45	L7C185DM35 L7C185DME35 L7C185DMB35	L7C185DM25 L7C185DME25 L7C185DMB25		
28-pin Sidebraze (0.6") Hermetic DIP - D9	L7C185HM85 L7C185HME85 L7C185HMB85	L7C185HM45 L7C185HME45 L7C185HMB45	L7C185HM35 L7C185HME35 L7C185HMB35	L7C185HM25 L7C185HME25 L7C185HMB25		
28-pin CerDIP (0.3') - C5	L7C185CM85 L7C185CME85 L7C185CMB85	L7C185CM45 L7C185CME45 L7C185CMB45	L7C185CM35 L7C185CME35 L7C185CMB35	$\begin{aligned} & \text { L7C185CM25 } \\ & \text { L7C185CME25 } \\ & \text { L7C185CMB25 } \end{aligned}$		
28-pin CerDIP (0.6") - C6	L7C185IM85 L7C185IME85 L7C185IME85	L7C185IM45 L7C185IME45 L7C185IMB45	L7C185IM35 L7C185IME35 L7C185IMB35	L7C185IM25 L7C185IME25 L7C185IMB25		
28-pin Ceramic LCC - K5	L7C185KM85 L7C185KME85 L7C185KMB85	L7C185KM45 L7C185KME45 L7C185KMB45	L7C185KM35 L7C185KME35 L7C185KMB35	$\begin{aligned} & \text { L7C185KM25 } \\ & \text { L7C185KME25 } \\ & \text { L7C185KMB25 } \end{aligned}$		

Pin Assignments (P9, P10, D9, D10, C5, C6, U2, W2)

Pin	Function	Pin	Function
1	NC	15	13/O3
2	A12	16	14/O4
3	A7	17	15/O5
4	A6	18	16/O6
5	A5	19	17/O7
6	A4	20	$\overline{\mathrm{CE}} 1$
7	A3	21	A10
8	A2	22	$\overline{\mathrm{OE}}$
9	A1	23	A11
10	A0	24	A9
11	10/O0	25	A8
12	$\mathrm{l}_{1} / \mathrm{O} 1$	26	CE2
13	12/O2	27	$\overline{\text { WE }}$
14	GND	28	Vcc

Pin Assignments (K5)

Pin	Function	Pin	Function
1	A 12	15	$\mathrm{I}_{3} / \mathrm{O} 3$
2	A 7	16	$\mathrm{I} 4 / \mathrm{O} 4$
3	A 6	17	$\mathrm{I} 5 / \mathrm{O} 5$
4	NC	18	$\mathrm{I} 6 / \mathrm{O} 6$
5	A 5	19	$\mathrm{I} / \mathrm{O} 7$
6	A 4	20	$\overline{\mathrm{CE}} 1$
7	A 3	21	A 10
8	A 2	22	$\overline{\mathrm{OE}}$
9	A 1	23	A 11
10	A 0	24	A 9
11	$\mathrm{I} / \mathrm{O} 0$	25	A 8
12	$\mathrm{I} / \mathrm{O} 1$	26	CE 2
13	$\mathrm{I} 2 / \mathrm{O} 2$	27	$\overline{\mathrm{WE}}$
14	GND	28	VCC

Features

16K by 1 Static RAM with separate I/O, Chip Select power down

Auto-Powerdown ${ }^{\mathrm{TM}}$ design
Advanced CMOS technology

- High speed - to 12 ns worst-case
- Low Power Operation Active: 190 mW typical at 35 ns Standby: $12.5 \mu \mathrm{~W}$ typical
Data retention at 2 V for battery backup operation
Plug-compatible with IDT 6167, Cypress CY7C167

Package styles available:

- 20-pin Plastic DIP
- 20-pin Sidebraze, Hermetic DIP
- 20-pin CerDIP
- 20-pinCeramic LCC
- 20-pin Plastic SOIC (Gull-Wing)
- 20-pin Plastic SOJ (J-Lead)

Description

The L7C167 is a high-performance, low-power CMOS static Random Access Memory. The storage circuitry is organized as 16,384 words by 1 bit per word. Parts are available in six speed categories with worst-case access times from 12 ns to 85 ns.

Operation is from a single +5 V power supply and all interface signals are TTL compatible. Power consumption is 190 mW (typical) when being operated at 35 ns . Dissipation drops to 20 mW (typical) when the memory is deselected ($\overline{\mathrm{CE}}$ is high).
Two standby modes are available. Proprietary Auto-Powerdown ${ }^{\mathrm{TM}}$ circuitry reduces power consumption automatically during read or write accesses which are longer than the minimum access time, or when the memory is deselected. In addition,

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2)

Storage temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground	-0.5 V to +7.0 V
Input signal with respect to ground	-3.0 V to +7.0 V
Signal applied to high impedance output	-3.0 V to +7.0 V
Output current into low outputs	25 mA
Latchup current > 200 mA

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Data Retention, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{IOH}=-4.0 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V}$	2.4			V
Vol	Output Low Voltage	$\mathrm{IOL}=8.0 \mathrm{~mA}$			0.4	V
VIH	Input High Voltage		2.0		$\begin{array}{r} \mathrm{Vcc} \\ +0.3 \end{array}$	V
VIL	Input Low Voltage	Note 3	-3.0		0.8	V
lıx	Input Current	Ground $\leq \mathrm{VI}^{5} \leq \mathrm{Vcc}$	-10		+10	$\mu \mathrm{A}$
loz	Output Leakage Current	Ground \leq Vo \leq Vcc, $\overline{\mathrm{CE}}=\mathrm{Vcc}$	-50		+50	$\mu \mathrm{A}$
Ios	Output Short Current	Vo = Ground, Vcc = Max, Note 4			-350	mA
ICC2	Vcc Current, Inactive	Notes 5, 7		4.0	20	mA
IcC3	Vcc Current, Standby	Note 8		0.5	10	$\mu \mathrm{A}$
ICC4	Vcc Current, DR Mode	$\mathrm{Vcc}=2.0 \mathrm{~V}$, Note 9		5	500	nA
Cl	Input Capacitance	$\begin{aligned} & \text { Ambient Temp }=25^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V} \\ & \text { Test Frequency }=1 \mathrm{MHz} \text {, Note } 10 \end{aligned}$			5	pF
Co	Output Capacitance				7	pF

Symbol			Parameter	L7C167-					
ICC1	VCC Current, Active	Notes 5,6	$\mathbf{8 5}$	$\mathbf{3 5}$	$\mathbf{2 5}$	$\mathbf{2 0}$	$\mathbf{1 5}$	$\mathbf{1 2}$	Unit

Switching Characteristics

Over Operating Range (ns)

Read Cycle (Notes 11, 12, 22, 23, 24)

Symbol	Parameter	L7C167-										
		85		35		25		20		15		12
		Min	Max	Ming Max								
tavav	Read Cycle Time	85		35		25		20		15		12. ${ }^{\text {\% }}$
tAVQV	Addr Valid to Output Valid (13, 14)		85		35		25		20		15	\%12
tAXQX	Addr Change to Output Change	5		5		5		5		3		3%
tCLQV	Chip Enable Low to Output Valid (13,15)		85		35		25		20		15	\bigcirc
tCLQZ	Chip Enable Low to Output Low Z $(20,21)$	5		5		5		5		5		5%
tCHQZ	Chip Enable High to Output High Z (20, 21)		30		15		10		8		8	\%;8
tPU	CE or WE Low to Power Up (10, 19)	0		0		0		0		0		08 \%
tPD	Power Up to Power Down (10, 19)		85		35		25		20		20	\% 20

Write Cycle (Notes 11, 12, 22, 23, 24)

Symbol	Parameter	L7C167-											
		85		35		25		20		15		12	
		Min	Max										
tavav	Write Cycle Time	75		25		20		20		15		12	
tCLEW	Chip Enable Low to End of Write Cycle	65		25		20		17		12		10%	
tAVBW	Address Valid to Beginning of Write Cycle	0		0		0		0		0		0,	\%
tavew	Address Valid to End of Write Cycle	65		25		20		17		12		10	
tewax	End of Write Cycle to Address Change	0		0		0		0		0		0 O\%	
tWLEW	Write Enable Low to End of Write Cycle	45		20		20		17		12		10	
tDVEW	Data Valid to End of Write Cycle	35		15		15		13		10		10	$\stackrel{ }{*}$
tEWDX	End of Write Cycle to Data Change	0		0		0		0		0		$0 \cdot$	
tWHQZ	Write Enable High to Output Low $\mathrm{Z}(20,21)$	5		5		5		5		5		5.	
tWLQZ	Write Enable Low to Output High Z $(20,21)$		35		10		7		7		7		\% 7
tCHVL	Chip Enable High to Data Retention (10)	0		0		0		0		0		0	

Switching Waveforms

Read Cycle - Address Controlled (Notes 13, 14)

Read Cycle - $\overline{C E}$ Controlled (Notes 13, 15)

Write Cycle - $\overline{\text { WE }}$ Controlled (Notes 16, 17, 18, 19)

Write Cycle - $\overline{C E}$ Controlled (Notes 16, 17, 18, 19)

Data Retention

Test Loads and Transition Times

Figure $1 \mathbf{a}$

Figure 1b

Figure 2

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2 V . The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
4. Duration of the output short circuit should not exceed 30 seconds.
5. 'Typical' supply current values are not shown but may be approximated. At a Vcc of 5.0 V , an ambient temperature of $+25^{\circ} \mathrm{C}$ and with nominal manufacturing parameters, the operating supply currents will be approximately $3 / 4$ or less of the maximum values shown.
6. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously enabled for reading, i.e., $\overline{\mathrm{CE}} \leq \mathrm{VIL}_{\mathrm{IL}}, \overline{\mathrm{WE}} \geq \mathrm{V}_{\mathrm{IH}}$.
7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}$.
8. Tested with outputs open and all address and data inputs stable. The
device is continuously disabled, i.e., $\overline{\mathrm{CE}}=$ Vcc. Input levels are within 0.5 V of Vcc or ground.
9. Data retention operation requires that VCC never drop below 2.0 V . $\overline{\mathrm{CE}}$ must be $\geq \mathrm{Vcc}-0.3 \mathrm{~V}$. For all other inputs Vin \geq Vcc -0.3 or Vin $\leq 0.3 \mathrm{~V}$ is required to ensure full power down.
10. These parameters are guaranteed but not 100% tested.
11. Test conditions assume input transition times of less than 3 ns , reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading for specified Iol and IOH plus 30 pF .
12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. tAVEW, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worstcase operation of any device always provides data within that time.
13. $\overline{\mathrm{WE}}$ is high for the read cycle.
14. The chip is continuously selected ($\overline{\mathrm{CE}}$ low).
15. All address lines are valid priorto or coincident-with the $\overline{\mathrm{CE}}$ transition to low.
16. The internal write cycle of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ low and $\overline{\mathrm{WE}}$ low. Both signals must be low to initiate a write. Either signal can terminate a write by going high. The address, data, and control input setup and hold times should be referenced to the signal that falls last or rises first.
17. If $\overline{\mathrm{WE}}$ goes low before or concurrent with $\overline{\mathrm{CE}}$ going low, the output remains in a high impedance state.
18. If $\overline{\mathrm{CE}}$ goes high before or concurrent with WE going high, the output remains in a high impedance state.
19. Powerup from IcC2 to IcC1 occurs as a result of any of the following conditions:
a. Falling edge of $\overline{\mathrm{CE}}$
b. Falling edge of $\overline{\mathrm{WE}}$ ($\overline{\mathrm{CE}}$ active)
c. Transition on any address line ($\overline{\mathrm{CE}}$ active)
d. Transition on any data line ($\overline{\mathrm{CE}}$ and $\overline{W E}$ active)
The device automatically powers down from ICC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.
20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
21. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Figure 1b. This parameter is sampled and not 100% tested.
22. All address timings are referenced from the last valid address line to the first transitioning address line.
23. $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions.
24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Package Style	Performance					
	85 ns	35 ns	25 ns	20 ns	15 ns	12 ns
$\begin{gathered} \text { 20-pin Plastic DIP } \\ \left(0.3^{\prime \prime}\right)-\text { P6 } \end{gathered}$	L7C167PC85	L7C167PC35	L7C167PC25	L7C167PC20	L7C167PC15	L7C167PC12
20-pin Sidebraze (0.3") Hermetic DIP - D7	L7C167DC85	L7C167DC35	L7C167DC25	L7C167DC20	L7C167DC15	L7C167DC12
20-pin Plastic SOIC - U3	L7C167UC85	L7C167UC35	L7C167UC25	L7C167UC20	L7C167UC15	L7C167UC12
20-pin Plastic SOJ - W3	L7C167WC85	L7C167WC35	L7C167WC25	L7C167WC20	L7C167WC15	L7C167WC12
20-pin CerDIP (0.3') - C2	L7C167CC85	L7C167CC35	L7C167CC25	L7C167CC20	L7C167CC15	L7C167CC12
20-pin Ceramic LCC - K6	L7C167KC85	L7C167KC35	L7C167KC25	L7C167KC20	L7C167KC15	L7C167KC12

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance					
	85 ns	35 ns	25 ns	20 ns	15 ns	
20-pin Sidebraze (0.3") Hermetic DIP — D7	L7C167DM85 L7C167DME85 L7C167DMB85	L7C167DM35 L7C167DME35 L7C167DMB35	$\begin{aligned} & \text { L7C167DM25 } \\ & \text { L7C167DME25 } \\ & \text { L7C167DMB25 } \end{aligned}$	L7C167DM20 L7C167DME20 L7C167DMB20	L7C167DM15 L7C167DME15 L7C167DMB15	
20-pin CerDIP (0.3') - C.2	L7C167CM85 L7C167CME85 L7C167CMB85	L7C167CM35 L7C167CME35 L7C167CMB35	L7C167CM25 L7C167CME25 L7C167CMB25	L7C167CM20 L7C167CME20 L7C167CMB20	L7C167CM15 L7C167CME15 L7C167CMB15	
20-pin Ceramic LCC - K6	L7C167KM85 L7C167KME85 L7C167KMB85	L7C167KM35 L7C167KME35 L7C167KMB35	L7C167KM25 L7C167KME25 L7C167KMB25	L7C167KM20 L7C167KME20 L7C167KMB20	L7C167KM15 L7C167KME15 L7C167KMB15	

Pin Assignments (P6, D7, C2, K6, U3, W3)

Pin	Function	Pin	Function
1	A 0	11	$\overline{\mathrm{CE}}$
2	A 1	12	DIN
3	A 2	13	A 7
4	A 3	14	A 8
5	A 4	15	A 9
6	A 5	16	A 10
7	A 6	17	A 11
8	DOUT	18	A 12
9	$\overline{\mathrm{WE}}$	19	A 13
10	GND	20	VCC

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Features

4 K by 4 Static RAM with common I/O, output enable (L7C170 only)
Auto-Powerdown ${ }^{\text {TM }}$ design

- Advanced CMOS technology
- High speed - to 15 ns worst case
- Low Power Operation Active: 170 mW typical at 45 ns Standby: $12.5 \mu \mathrm{~W}$ typical
Data retention at 2 V for battery backup
- Plug-compatible with IDT 6168 and Cypress CY7C168/170
- Package styles available:
- 20/22-pin Plastic DIP
- 20/22-pin Sidebraze, Hermetic DIP
- 20/22-pin CerDIP
- 20-pin Ceramic LCC
- 20-pin Plastic SOIC (Gull-Wing)
- 20-pin Plastic SOJ (J-Lead)

Description

The L7C168 and L7C170 are highperformance, low-power CMOS static RAMs. The storage cells are organized as 4096 words by 4 bits per word. Data In and Data Out signals share I/O pins. The L7C170 version adds and active-low Output Enable input. Parts are available in six speed categories with worst-case access times from 15 ns to 85 ns .

Inputs and output are TTL compatible. Operation is from a single +5 V power supply. Power consumption is 170 mW (typical) when being operated at 45 ns . Dissipation drops to 20 mW (typical) when the memory is deselected (Enable is high).
Two standby modes are available. Proprietary Auto-Powerdown ${ }^{\mathrm{TM}}$ circuitry reduces power consumption automatically during read or write

L7C168/170 Block Diagram

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 VOutput current into low outputs25 mALatch-up current$>200 \mathrm{~mA}$

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Data Retention, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Data Retention, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{IOH}=-4.0 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V}$	2.4			V
Vol	Output Low Voltage	$\mathrm{IOL}=8.0 \mathrm{~mA}$			0.4	V
VIH	Input High Voltage		2.0		$\begin{array}{r} \text { Vcc } \\ +0.3 \end{array}$	V
VIL	Input Low Voltage	Note 3	-3.0		0.8	V
IIX	Input Current	Ground $\leq \mathrm{V}_{1} \leq \mathrm{VCC}$	-10		+10	$\mu \mathrm{A}$
loz	Output Leakage Current	Ground \leq Vo \leq Vcc, $\overline{\mathrm{CE}}=\mathrm{VcC}$	-50		+50	$\mu \mathrm{A}$
IOS	Output Short Current	Vo = Ground, Vcc = Max, Note 4			-350	mA
ICC2	Vcc Current, Inactive	Notes 5, 7		4.0	20	mA
ICC 3	Vcc Current, Standby	Note 8		0.5	10	$\mu \mathrm{A}$
ICC4	Vcc Current, DR Mode	$\mathrm{Vcc}=2.0 \mathrm{~V}$, Note 9		5	500	nA
Cl	Input Capacitance	$\text { Ambient Temp }=25^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V}$			5	pF
CO	Output Capacitance	$\text { Test Frequency }=1 \mathrm{MHz} \text {, Note } 10$			7	pF

Symbol	Parameter	Test Condition	L7C168/170-						
			85	45	35	25	20	15	Unit
ICC1	Vcc Current, Active	Notes 5, 6	25	45	55	75	95	120	mA

DEVICES INCORPORATED

Switching Characteristics

Over Operating Range (ns)
Read Cycle (Notes 11, 12, 21, 22, 23, 24)

Symbol	Parameter	L7C168/170-											
		85		45		35		25		20		15	
		Min	Max										
tavav	Read Cycle Time	85		45		35		25		20		15	
tavQv	Addr Valid to Output Valid (13, 14)		85		45		35		25		20	$\%$	$\times 15$
tAXQX	Addr Change to Output Change	5		5		5		5		5		3.	\%
tCLQV	Chip Enable Low to Output Valid (13, 15)		85		45		35		25		20		15
tCLQZ	Chip Enable Low to Output Low Z $(20,21)$	5		5		5		5		5		5	$\stackrel{\text { \% }}{*}$
tCHQZ	Chip Enable High to Output High Z $(20,21)$		30		15		15		10		10		\% 8
tolQv	Output Enable Low to Output Valid		35		20		15		12		10		\% 8
tolQz	Output Enable Low to Output Low Z $(20,21)$	3		3		3		3		3		3.8	
tOHQZ	Output Enable High to Output High Z $(20,21)$		30		15		12		10		8		${ }_{*}^{*} 8$
tPU	$\overline{\mathrm{CE}}$ or $\overline{\text { WE }}$ Low to Power Up $(10,19)$	0		0		0		0		0		0	
tPD	Power Up to Power Down (10, 19)		85		45		35		25		20		20

Write Cycle (Notes 11, 12, 22, 23, 24)

Symbol	Parameter	L7C168/170-											
		85		45		35		25		20		15	
		Min	Max										
tavav	Write Cycle Time	75		40		25		20		20		15	
tClew	Chip Enable Low to End of Write Cycle	65		30		25		20		17		12.	\%
tAVBW	Address Valid to Beginning of Write Cycle	0		0		0		0		0		Q	\%
tavew	Address Valid to End of Write Cycle	65		30		25		20		17		12	
tewax	End of Write Cycle to Address Change	0		0		0		0		0		O\%	
tWLEW	Write Enable Low to End of Write Cycle	45		20		20		20		17		12\%	
tDVEW	Data Valid to End of Write Cycle	35		25		15		15		13		10°	8
tEWDX	End of Write Cycle to Data Change	0		0		0		0		0		0	8,
tWHQZ	Write Enable High to Output Low Z $(20,21)$	5		5		5		5		5		5	
tWLQZ	Write Enable Low to Output High Z $(20,21)$		35		15		10		7		7		
tCHVL	Chip Enable High to Data Retention (10)	0		0		0		0		0		0	

Switching Waveforms

Read Cycle — Address Controlled (Notes 13, 14)

Read Cycle - $\overline{\boldsymbol{C E}} / \overline{O E}$ Controlled (Notes 13, 15)

Write Cycle - $\bar{W} E$ Controlled (Notes 16, 17, 18, 19)

Write Cycle - $\overline{C E}$ Controlled (Notes 16, 17, 18, 19)

Data Retention

Test Loads and Transition Times

Figure 1a

Figure 1b

Figure 2

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2 V . The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
4. Duration of the output short circuit should not exceed 30 seconds.
5. 'Typical' supply current values are not shown but may be approximated. At a Vcc of 5.0 V , an ambient temperature of $+25^{\circ} \mathrm{C}$ and with nominal manufacturing parameters, the operating supply currents will be approximately $3 / 4$ or less of the maximum values shown.
6. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously enabled for reading, i.e., $\overline{\mathrm{CE}} \leq \mathrm{VIIL}^{\prime}, \overline{\mathrm{WE}} \geq \mathrm{VIH}_{\text {IH }}$.
7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{\mathrm{CE}} \geq \mathrm{VIH}$.
8. Tested with outputs open and all address and data inputs stable. The
device is continuously disabled, i.e., $\overline{\mathrm{CE}}=$ VCc. Input levels are within 0.5 V of Vcc or ground.
9. Data retention operation requires that VCC never drop below $2.0 \mathrm{~V} . \overline{\mathrm{CE}}$ must be $\geq \mathrm{VCc}-0.3 \mathrm{~V}$. For all other inputs VIN \geq Vcc -0.3 or VIN $\leq 0.3 \mathrm{~V}$ is required to ensure full power down.

10. These parameters are guaranteed

 but not 100% tested.11. Test conditions assume input transition times of less than 3 ns , reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading for specified IOL and IOH plus 30 pF .
12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. tAVEW, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worstcase operation of any device always provides data within that time.
13. $\overline{\mathrm{WE}}$ is high for the read cycle.
14. The chip is continuously selected ($\overline{\mathrm{CE}}$ low).
15. All address lines are valid priorto or coincident-with the $\overline{\mathrm{CE}}$ transition to low.
16. The internal write cycle of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ low and $\overline{\mathrm{WE}}$ low. Both signals must be low to initiate a write. Either signal can terminate a write by going high. The address, data, and control input setup and hold times should be referenced to the signal that falls last or rises first.
17. If $\overline{\mathrm{WE}}$ goes low before or concurrent with $\overline{\mathrm{CE}}$ going low, the output remains in a high impedance state.
18. If $\overline{\mathrm{CE}}$ goes high before or concurrent with $\overline{W E}$ going high, the output remains in a high impedance state.
19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions:
a. Falling edge of $\overline{\mathrm{CE}}$
b. Falling edge of $\overline{\mathrm{WE}}$ ($\overline{\mathrm{CE}}$ active)
c. Transition on any address line ($\overline{\mathrm{CE}}$ active)
d. Transition on any data line ($\overline{\mathrm{CE}}$ and $\overline{W E}$ active)
The device automatically powers down from ICC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.
20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
21. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Figure 1b. This parameter is sampled and not 100% tested.
22. All address timings are referenced from the last valid address line to the first transitioning address line.
23. $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions.
24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Package Style	Performance					
	85 ns	45 ns	35 ns	25 ns	20 ns	15 ns
L7C168						
$\begin{gathered} \text { 20-pin Plastic DIP } \\ \left(0.3^{\prime \prime}\right)-\mathrm{P} 6 \\ \hline \end{gathered}$	L7C168PC85	L7C168PC45	L7C168PC35	L7C168PC25	L7C168PC20	L7C168PC15
20-pin Sidebraze (0.3") Hermetic DIP - D7	L7C168DC85	L7C168DC45	L7C168DC35	L7C168DC25	L7C168DC20	L7C168DC15
20-pin Plastic SOIC - U3	L7C168UC85	L7C168UC45	L7C168UC35	L7C168UC25	L7C168UC20	L7C168UC15
20-pin Plastic SOJ - W3	L7C168WC85	L7C168WC45	L7C168WC35	L7C168WC25	L7C168WC20	L7C168WC15
20-pin CerDIP (0.3") - C2	L7C168CC85	L7C168CC45	L7C168CC35	L7C168CC25	L7C168CC20	L7C168CC15
20-pin Ceramic LCC - K6	L7C168KC85	L7C168KC45	L7C168KC35	L7C168KC25	L7C168KC20	L7C168KC15
L7C170						
$\begin{gathered} \text { 22-pin Plastic DIP } \\ \left(0.3^{\prime \prime}\right)-\text { P8 } \end{gathered}$	L7C170PC85	L7C170PC45	L7C170PC35	L7C170PC25	L7C170PC20	L7C170PC15
22-pin Sidebraze (0.3") Hermetic DIP - D8	L7C170DC85	L7C170DC45	L7C170DC35	L7C170DC25	L7C170DC20	L7C170DC15
22-pin CerDIP (0.3") - C3	L7C170CC85	L7C170CC45	L7C170CC35	L7C170CC25	L7C170CC20	L7C170CC15

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance					
	85 ns	45 ns	35 ns	25 ns	20 ns	
L7C168						
20-pin Sidebraze (0.3") Hermetic DIP - D7	L7C168DM85 L7C168DME85 L7C168DMB85	L7C168DM45 L7C168DME45 L7C168DMB45	L7C168DM35 L7C168DME35 L7C168DMB35	L7C168DM25 L7C168DME25 L7C168DMB25	L7C168DM20 L7C168DME20 L7C168DMB20	
20-pin CerDIP (0.3') - C2	L7C168CM85 L7C168CME85 L7C168CMB85	L7C168CM45 L7C168CME45 L7C168CMB45	L7C168CM35 L7C168CME35 L7C168CMB35	L7C168CM25 L7C168CME25 L7C168CMB25	$\begin{aligned} & \text { L7C168CM20 } \\ & \text { L7C168CME20 } \\ & \text { L7C168CMB20 } \end{aligned}$	
20-pin Ceramic LCC - K6	L7C168KM85 L7C168KME85 L7C168KMB85	L7C168KM45 L7C168KME45 L7C168KMB45	L7C168KM35 L7C168KME35 L7C168KMB35	L7C168KM25 L7C168KME25 L7C168KMB25	L7C168KM20 L7C168KME20 L7C168KMB20	
L7C170						
22-pin Sidebraze (0.3") Hermetic DIP - D8	L7C170DM85 L7C170DME85 L7C170DMB85	L7C170DM45 L7C170DME45 L7C170DMB45	L7C170DM35 L7C170DME35 L7C170DMB35	L7C170DM25 L7C170DME25 L7C170DMB25	L7C170DM20 L7C170DME20 L7C170DMB20	
22-pin CerDIP (0.3') - C3	L7C170CM85 L7C170CME85 L7C170CMB85	L7C170CM45 L7C170CME45 L7C170CMB45	L7C170CM35 L7C170CME35 L7C170CMB35	L7C170CM25 L7C170CME25 L7C170CMB25	L7C170CM20 L7C170CME20 L7C170CMB20	

DEVICES INCORPORATED

L7C168 Pin Assignments (P6, D7, C2, K6, U3, W3)

Pin	Function	Pin	Function
1	A 0	11	$\overline{\mathrm{WE}}$
2	$\mathrm{~A}_{1}$	12	$\mathrm{I} 0 / \mathrm{O} 0$
3	$\mathrm{~A}_{2}$	13	$\mathrm{I} 1 / \mathrm{O} 1$
4	A 3	14	$\mathrm{I} 2 / \mathrm{O} 2$
5	A 4	15	$\mathrm{I} 3 / \mathrm{O} 3$
6	A 5	16	A 8
7	A 6	17	A 9
8	A 7	18	A 10
9	$\overline{\mathrm{CE}}$	19	A 11
10	GND	20	VCc

L7C170 Pin Assignments (P8, D8, C3)

Pin	Function	Pin	Function
1	A 0	12	$\overline{\mathrm{WE}}$
2	A 1	13	$\mathrm{I} / \mathrm{O} 0$
3	A 2	14	$11 / \mathrm{O} 1$
4	A 3	15	$\mathrm{I} 2 / \mathrm{O} 2$
5	A 4	16	$\mathrm{I} 3 / \mathrm{O} 3$
6	A 5	17	NC
7	A 6	18	A 8
8	A 7	19	A 9
9	$\overline{\mathrm{CE}}$	20	A 10
10	$\overline{\mathrm{OE}}$	21	A 11
11	GND	22	VCC

Abstract

(c) 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Memory Products

Features

- 4 K by 4 Static RAM with separate I/O, transparent write (L7C171), or high impedance write (L7C172)
Auto-PowerDown ${ }^{\text {TM }}$ design
\square Advanced CMOS technology
High speed - to 15 ns worst case
- Low Power Operation Active: 170 mW typical at 45 ns Standby: $12.5 \mu \mathrm{~W}$ typical

Data retention at 2 V for battery backup operation

- Plug-compatible with IDT 71681/ 71682, Cypress CY7C171/172
\square Package styles available:
- 24-pin Plastic DIP
- 24-pin Sidebraze, Hermetic DIP
- 24-pin CerDIP
- 28-pin Ceramic LCC

Description

The L7C171 and L7C172 are highperformance, low-power CMOS static RAMs. The storage cells are organized as 4096 words by 4 bits per word. Data In and Data Out are separate. Parts are available in five speed categories with worst-case access times from 15 ns to 85 ns .

Inputs and output are TTL compatible. Operation is from a single +5 V power supply. Power consumption is 170 mW (typical) when operating at 45 ns . Dissipation drops to 20 mW (typical) when the memory is deselected (Enable is high).

Two standby modes are available. Proprietary Auto-PowerDown ${ }^{\mathrm{TM}}$ circuitry reduces power consumption automatically during read or write

L7C171/172 Block Diagram

accesses which are longer than the minimum access time, or when the memory is deselected. In addition, data may be retained in inactive storage with a supply voltage as low as 2 V . The L7C171 and L7C172 consumes only $1 \mu \mathrm{~W}$ (typical) at 2 V , allowing effective battery back-up operation.

The L7C171 and L7C172 provides asynchronous (unclocked) operation with matching access and cycle times. Two active-low Chip Enables and a three-state output bus output with a bus control line simplify the connection of several chips for increased storage capacity.

Memory locations are specified on address pins A0 through A11. Reading from a designated location is accomplished by presenting an address and then taking $\overline{C E}$ low while Write remains high. The data in the addressed memory location will then appear on the Data Out pins within one access time. The output pins stay in a high-impedance state when $\overline{\mathrm{WE}}$ is low (L7C172 only) or $\overline{\mathrm{CE}}$ is high.

Writing to an addressed location is accomplished when the active-low $\overline{\mathrm{CE}}$ and $\overline{W E}$ inputs are both low. Each of these signals may be used to terminate the write operation. The Data In and Data Out signals have the same polarity.

Latchup and static discharge protection are provided on-chip. The L7C171 and L7C172 can withstand an injection current of up to 100 mA on any page without damage.

4K x 4 Static RAM

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2)
Storage temperature ... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground .. -0.5 V to +7.0 V
Input signal with respect to ground ... -3.0 V to +7.0 V
Signal applied to high impedance output ... 3.0 V to +7.0 V
Output current into low outputs ... 25 mA
Latchup current .. > 200 mA

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Data Retention, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$
Data Retention, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{VCC} \leq 5.5 \mathrm{~V}$

Electrical Characteristics
 Over Operating Conditions

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{IOH}=-4.0 \mathrm{~mA}, \mathrm{Vcc}=4.5 \mathrm{~V}$	2.4			V
Vol	Output Low Voltage	$\mathrm{IOL}=8.0 \mathrm{~mA}$			0.4	V
VIH	Input High Voltage		2.0		$\begin{array}{r} \text { Vcc } \\ +0.3 \end{array}$	V
VIL	Input Low Voltage	Note 3	-3.0		0.8	V
IIX	Input Current	Ground $\leq \mathrm{V}_{1} \leq \mathrm{Vcc}$	-10		+10	$\mu \mathrm{A}$
loz	Output Leakage Current	Ground \leq Vo \leq Vcc, $\overline{\mathrm{CE}}=\mathrm{Vcc}$	-50		+50	$\mu \mathrm{A}$
los	Output Short Current	Vo = Ground, Vcc = Max, Note 4			-350	mA
Icc2	Vcc Current, Inactive	Notes 5, 7		4.0	20	mA
Icc3	Vcc Current, Standby	Note 8		0.5	10	$\mu \mathrm{A}$
IcC4	Vcc Current, DR Mode	Vcc $=2.0 \mathrm{~V}$, Note 9		5	500	nA
Cl	Input Capacitance	Ambient Temp $=25^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V}$			5	pF
Co	Output Capacitance	Test Frequency $=1 \mathrm{MHz}$, Note 10			7	pF

Symbol	Parameter	Test Condition	L.7C171/172-						
			85	45	35	25	20	15	Unit
ICC1	Vcc Current, Active	Notes 5, 6	25	45	55	75	95	120	mA

Switching Characteristics

Over Operating Range (ns)

Read Cycle (Notes 11, 12, 22, 23, 24)

Symbol	Parameter	L7C171/172-										
		85		45		35		25		20		15
		Min	Max	Min Max								
tavav	Read Cycle Time	85		45		35		25		20		15
tAVQV	Addr Valid to Output Valid (13, 14)		85		45		35		25		20	\% 15
tAXQX	Addr Change to Output Change	5		5		5		5		5		3 \%
tCLQV	Chip Enable Low to Output Valid (13, 15)		85		45		35		25		20	$\% 15$
tCLQZ	Chip Enable Low to Output Low $\mathbf{Z}(20,21)$	5		5		5		5		5		5%
tCHQZ	Chip Enable High to Output High Z $(20,21)$		30		15		15		10		8	88
tPU	CE or WE Low to Power Up (10, 19)	0		0		0		0		0		$Q^{*}{ }_{6}$
tPD	Power Up to Power Down $(10,19)$		85		45		35		25		20	$\mathrm{Y}_{2} 20$

Write Cycle (Notes 11, 12, 21, 22, 23, 24)

Symbol	Parameter	L7C171/172-											
		85		45		35		25		20		15	
		Min	Max										
tavav	Write Cycle Time	75		40		25		20		20		15	
tClew	Chip Enable Low to End of Write Cycle	65		30		25		20		17		12	
tAVBW	Address Valid to Beginning of Write Cycle	0		0		0		0		0		0	
tavew	Address Valid to End of Write Cycle	65		30		25		20		17		12	$\stackrel{\text { \% }}{ }$
tewax	End of Write Cycle to Address Change	0		0		0		0		0		O	\%
tWLEW	Write Enable Low to End of Write Cycle	65		20		20		20		17		1\%	
tDVEW	Data Valid to End of Write Cycle	35		15		15		15		13		1\%\%	
tEWDX	End of Write Cycle to Data Change	0		0		0		0		0		0	8
tWHQZ	Write High to Output Low Z $(20,21)$	5		5		5		5		5		5	8
tWLQZ	Write Enable Low to Output High Z $(20,21)$		35		15		10		7		7		7
tCHVL	Chip Enable High to Data Retention (10)	0		0		0		0		0		0	
tWLQV	Write Enable Low to Output Valid		50		35		30		20		15		15
tDVQV	Data Valid to Output Valid		50		35		30		20		15		15

4K x 4 Static RAM

Switching Waveforms

Read Cycle - Address Controlled (Notes 13, 14)

Read Cycle - $\overline{C E}$ Controlled (Notes 13, 15)

Write Cycle — $\overline{W E}$ Controlled (Notes 16, 17, 18, 19)

Write Cycle - $\overline{C E}$ Controlled (Notes 16, 17, 18, 19)

Data Retention

Test Loads and Transition Times

Figure 1a

Figure 1b

Figure 2

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2 V . The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
4. Duration of the output short circuit should not exceed 30 seconds.
5. 'Typical' supply current values are not shown but may be approximated. At a Vcc of 5.0 V , an ambient temperature of $+25^{\circ} \mathrm{C}$ and with nominal manufacturing parameters, the operating supply currents will be approximately $3 / 4$ or less of the maximum values shown.
6. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously enabled for reading, i.e., $\overline{\mathrm{CE}} \leq \mathrm{VIL}^{\prime}, \overline{\mathrm{WE}} \geq \mathrm{VIH}_{\text {I }}$.
7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}$.
8. Tested with outputs open and all address and data inputs stable. The
device is continuously disabled, i.e., $\overline{\mathrm{CE}}=\mathrm{VCC}$. Input levels are within 0.5 V of VCC or ground.
9. Data retention operation requires that VCC never drop below $2.0 \mathrm{~V} . \overline{\mathrm{CE}}$ must be $\geq \mathrm{Vcc}-0.3 \mathrm{~V}$. For all other inputs VIN \geq Vcc -0.3 or VIN $\leq 0.3 \mathrm{~V}$ is required to ensure full power down.
10. These parameters are guaranteed but not 100% tested.
11. Test conditions assume input transition times of less than 3 ns , reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading for specified IOL and IOH plus 30 pF .
12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. tAVEW, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worstcase operation of any device always provides data within that time.

13. $\overline{\mathrm{WE}}$ is high for the read cycle.

14. The chip is continuously selected ($\overline{\mathrm{CE}}$ low).
15. All address lines are valid priorto or coincident-with the $\overline{\mathrm{CE}}$ transition to low.
16. The internal write cycle of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ low and $\overline{\mathrm{WE}}$ low. Both signals must be low to initiate a write. Either signal can terminate a write by going high. The address, data, and control input setup and hold times should be referenced to the signal that falls last or rises first.
17. If $\overline{\mathrm{WE}}$ goes low before or concurrent with $\overline{\mathrm{CE}}$ going low, the output remains in a high impedance state.
18. If $\overline{\mathrm{CE}}$ goes high before or concurrent with WE going high, the output remains in a high impedance state.
19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions:
a. Falling edge of $\overline{\mathrm{CE}}$
b. Falling edge of $\overline{\mathrm{WE}}$ ($\overline{\mathrm{CE}}$ active)
c. Transition on any address line ($\overline{\mathrm{CE}}$
active)
d. Transition on any data line ($\overline{\mathrm{CE}}$ and $\overline{W E}$ active)
The device automatically powers down from ICC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.
20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
21. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Figure 1b. This parameter is sampled and not 100% tested.
22. All address timings are referenced from the last valid address line to the first transitioning address line.
23. $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions.
24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)

Package Style	Performance					
	85 ns	45 ns	35 ns	25 ns	20 ns	15 ns
L7C171						
$\begin{gathered} \text { 24-pin Plastic DIP } \\ \left(0.3^{\prime \prime}\right)-P 2 \end{gathered}$	L7C171PC85	L7C171PC45	L7C171PC35	L7C171PC25	L7C171PC20	L7C171PC15
24-pin Sidebraze (0.3") Hermetic DIP - D2	L7C171DC85	L7C171DC45	L7C171DC35	L7C171DC25	L7C171DC20	L7C171DC15
24-pin CerDIP (0.3") - C1	L7C171CC85	L7C171CC45	L7C171CC35	L7C171CC25	L7C171CC20	L7C171CC15
28-pin Ceramic LCC - K7	L7C171KC85	L7C171KC45	L7C171KC35	L7C171KC25	L7C171KC20	L7C171KC15
L7C172						
24-pin Plastic DIP $\left(0.3^{\prime \prime}\right)-P 2$	L7C172PC85	L7C172PC45	L7C172PC35	L7C172PC25	L7C172PC20	L7C172PC15
24-pin Sidebraze (0.3") Hermetic DIP - D2	L7C172DC85	L7C172DC45	L7C172DC35	L7C172DC25	L7C172DC20	L7C172DC15
24-pin CerDIP (0.3') - C1	L7C172CC85	L7C172CC45	L7C172CC35	L7C172CC25	L7C172CC20	L7C172CC15
28-pin Ceramic LCC - K7	L7C172KC85	L7C172KC45	L7C172KC35	L7C172KC25	L7C172KC20	L7C172KC15

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance					
	85 ns	45 ns	35 ns	25 ns	20 ns	
L7C171						
24-pin Sidebraze (0.3") Hermetic DIP - D2	L7C171DM85 L7C171DME85 L7C171DMB85	L7C171DM45 L7C171DME45 L7C171DMB45	L7C171DM35 L7C171DME35 L7C171DMB35	L7C171DM25 L7C171DME25 L7C171DMB25	$\begin{aligned} & \text { L7C171DM20 } \\ & \text { L7C171DME20 } \\ & \text { L7C171DMB20 } \end{aligned}$	
24-pin CerDIP (0.3') - C1	L7C171CM85 L7C171CME85 L7C171CMB85	L7C171CM45 L7C171CME45 L7C171CMB45	L7C171CM35 L7C171CME35 L7C171CMB35	L7C171CM25 L7C171CME25 L7C171CMB25	$\begin{aligned} & \text { L7C171CM20 } \\ & \text { L7C171CME20 } \\ & \text { L7C171CMB20 } \end{aligned}$	
28-pin Ceramic LCC - K7	L7C171KM85 L7C171KME85 L7C171KMB85	L7C171KM45 L7C171KME45 L7C171KMB45	L7C171KM35 L7C171KME35 L7C171KMB35	L7C171KM25 L7C171KME25 L7C171KMB25	L7C171KM20 L7C171KME20 L7C171KMB20	
L7C172						
24-pin Sidebraze (0.3") Hermetic DIP - D2	$\begin{aligned} & \text { L7C172DM85 } \\ & \text { L7C172DME85 } \\ & \text { L7C172DMB85 } \end{aligned}$	L7C172DM45 L7C172DME45 L7C172DMB45	L7C172DM35 L7C172DME35 L7C172DMB35	L7C172DM25 L7C172DME25 L7C172DMB25	L7C172DM20 L7C172DME20 L7C172DMB20	
24-pin CerDIP (0.3') - C1	L7C172CM85 L7C172CME85 L7C172CMB85	L7C172CM45 L7C172CME45 L7C172CMB45	L7C172CM35 L7C172CME35 L7C172CMB35	L7C172CM25 L7C172CME25 L7C172CMB25	$\begin{aligned} & \text { L7C172CM20 } \\ & \text { L7C172CME20 } \\ & \text { L7C172CMB20 } \end{aligned}$	
28-pin Ceramic LCC - K7	L7C172KM85 L7C172KME85 L7C172KMB85	L7C172KM45 L7C172KME45 L7C172KMB45	L7C172KM35 L7C172KME35 L7C172KMB35	L7C172KM25 L7C172KME25 L7C172KMB25	L7C172KM20 L7C172KME20 L7C172KMB20	

Pin Assignments
(24-pin-P2, D2, C1)

Pin	Function	Pin	Function
1	A0	13	$\overline{\mathrm{WE}}$
2	A 1	14	O 0
3	A 2	15	O 1
4	A 3	16	O 2
5	A 4	17	O 3
6	A 5	18	I 2
7	A 6	19	I 3
8	A 7	20	A 8
9	I 0	21	A 9
10	I	22	A 10
11	$\overline{\mathrm{CE}}$	23	A 11
12	GND	24	VCC

Pin Assignments
(28-pin -K7)

Pin	Function	Pin	Function
1	A 0	15	$\overline{\mathrm{WE}}$
2	A 1	16	O 0
3	$\mathrm{~A}_{2}$	17	O 1
4	A 3	18	O 2
5	A 4	19	O 3
6	A 5	20	12
7	NC	21	NC
8	NC	22	NC
9	A 6	23	I 3
10	A 7	24	A 8
11	10	25	A 9
12	11	26	A 10
13	$\overline{\mathrm{CE}}$	27	A 11
14	GND	28	VCC

(c) 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Features

- 2 K by 8 Static RAM with chip select powerdown, output enable
\square Auto-Powerdown ${ }^{\mathrm{TM}}$ design
- Advanced CMOS technology
- High speed - to 20 ns worst case
\square Low Power Operation Active: 260 mW typical at 45 ns Standby: $12.5 \mu \mathrm{~W}$ typical
Data retention at 2 V for battery backup operation
- Plug-compatible with IDT6116, Cypress CY7C128/CY6116
\square Package styles available:
- 24-pin Plastic DIP
- 24-pin Sidebraze, Hermetic DIP
- 24-pin CerDIP
- 24-pinPlastic SOIC(Gull-Wing)
- 24-pin Plastic SOJ (J-Lead)
- 28-pin Ceramic LCC

Description

The L6116 is a high-performance, lowpower CMOS static RAM. The storage circuitry is organized as 2048 words by 8 bits per word. The 8 Data In and Data Out signals share I/O pins. Parts are available in five speeds with worst-case access times from 20 ns to 85 ns .

Inputs and output are TTL compatible. Operation is from a single +5 V power supply. Power consumption is 260 mW (typical) when being operated at 45 ns. Dissipation drops to 20 mW (typical) when the memory is deselected (Enable is high).

Two standby modes are available. Proprietary Auto-Powerdown ${ }^{\mathrm{TM}}$ circuitry reduces power consumption automatically during read or write accesses which are longer than the minimum access time, or when the

L6116 Block Diagram

memory is deselected. In addition, data may be retained in inactive storage with a supply voltage as low as 2 V . The L6116 consumes only $1 \mu \mathrm{~W}$ at 2 V (typical), for effective battery back-up operation.

The L6116 provides asynchronous (unclocked) operation with matching access and cycle times. An active-low Chip Enable and a three-state I/O bus simplify the connection of several chips for increased storage capacity.

Memory locations are specified on address pins A0 through A10.
Reading from a designated location is accomplished by presenting an address and then taking $\overline{\mathrm{CE}}$ low while $\overline{\mathrm{WE}}$ remains high. The data in the addressed memory location will then appear on the Data Out pin within one access time. The output pin stays in a high-impedance state when $\overline{\mathrm{CE}}$, $\overline{\mathrm{OE}}$, or $\overline{\mathrm{WE}}$ is low.

Writing to an addressed location is accomplished when the active-low $\overline{\mathrm{CE}}$ and $\overline{W E}$ inputs are both low. Either of these signals may be used to terminate the write operation. Data In and Data Out signals have the same polarity.

Latchup and static discharge protection are provided on-chip. The L6116 can withstand an injection current of up to 200 mA on any pin without damage.

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2)

Storage te	${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground.	-0.5 V to +7.0 V
Input signal with respect to ground	-3.0 V to +7.0 V
Signal applied to high impedance output	-3.0 V to +7.0 V
Output current into low outputs. 25 mA
Latchup current > 200 mA

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$
Data Retention, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$2.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Condition	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{IOH}=-4.0 \mathrm{~mA}, \mathrm{VCC}=4.5 \mathrm{~V}$	2.4			V
Vol	Output Low Voltage	$\mathrm{IOL}=8.0 \mathrm{~mA}$			0.4	V
VIH	Input High Voltage		2.0		$\begin{array}{r} \text { Vcc } \\ +0.3 \end{array}$	V
VIL	Input Low Voltage	Note 3	-3.0		0.8	V
lıx	Input Current	Ground \leq Vı \leq Vcc	-10		+10	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vo \leq Vcc, $\overline{\mathrm{CE}}=\mathrm{Vcc}$	-50		+50	$\mu \mathrm{A}$
los	Output Short Current	Vo = Ground, Vcc = Max, Note 4			-350	mA
ICC2	Vcc Current, Inactive	Notes 5, 7		4.0	20	mA
ICC3	Vcc Current, Standby	Note 8		0.5	10	$\mu \mathrm{A}$
ICC4	Vcc Current, DR Mode	$\mathrm{VCC}=2.0 \mathrm{~V}$, Note 9		5	500	nA
Cl	Input Capacitance	$\begin{aligned} & \text { Ambient Temp }=25^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V} \\ & \text { Test Frequency }=1 \mathrm{MHz} \text {, Note } 10 \end{aligned}$			5	pF
Co	Output Capacitance				7	pF

Symbol	Parameter	Test Condition	L6116-						
			85	45	35	25	20	15	Unit
ICC1	VCC Current, Active	Notes 5, 6	25	70	90	125	155		mA

DEVICES INCORPORATED

Switching Characteristics

Over Operating Range (ns)
Read Cycle (Notes 11, 12, 21, 22, 23, 24)

Symbol	Parameter	L6116-											
		85		45		35		25		20		15	
		Min	Max										
tavav	Read Cycle Time	85		45		35		25		20		15	
tAVQV	Addr Valid to Output Valid $(13,14)$		85		45		35		25		20	\%	\% 15
tAXQX	Addr Change to Output Change	5		5		5		5		5			\%
tCLQV	Chip Enable Low to Output Valid (13, 15)		85		45		35		25		20		15
tCLQZ	Chip Enable Low to Output Low Z $(20,21)$	5		5		5		5		5		5.	\%
tCHQZ	Chip Enable High to Output High Z $(20,21)$		30		15		15		10		8	-	8
tolqV	Output Enable Low to Output Valid		35		20		15		12		10		88
tolqz	Output Enable Low to Output Low Z $(20,21)$	3		3		3		3		3			\%
tOHQZ	Output Enable High to Output High Z (20,21)		30		15		12		10		8		\% 8
tPU	$\overline{\mathrm{CE}}$ or $\bar{W} E$ Low to Power Up $(10,19)$	0		0		0		0		0		0%	
tPD	Power Up to Power Down $(10,19)$		85		45		35		25		20		20

Write Cycle (Notes 11, 12, 22, 23, 24)

Symbol	Parameter	L6116-											
		85		45		35		25		20		15	
		Min	Max										
tavav	Write Cycle Time	75		40		25		20		20		15	
tclew	Chip Enable Low to End of Write Cycle	65		30		25		20		17		12\%	
tavb ${ }^{\text {a }}$	Address Valid to Beginning of Write Cycle	0		0		0		0		0		0%	
tavew	Address Valid to End of Write Cycle	65		30		25		20		17		12	\%
tewax	End of Write Cycle to Address Change	0		0		0		0		0		0%	
twLew	Write Enable Low to End of Write Cycle	45		20		20		20		17		$\stackrel{12}{*}$	\%
tovew	Data Valid to End of Write Cycle	35		15		15		15		13		10^{10}	$\stackrel{3}{*}$
tewdx	End of Write Cycle to Data Change	0		0		0		0		0		0	\%
twhQz	Write Enable High to Output Low Z $(20,21)$	5		5		5		5		5			\%
tWLQz	Write Enable Low to Output High Z $(20,21)$		35		15		10		7		7		\% 7
tCHVL	Chip Enable High to Data Retention (10)	0		0		0		0		0		0	

2K x 8 Static RAM

Switching Waveforms

Read Cycle - Address Controlled (Notes 13, 14)

Read Cycle - $\overline{C E} / \overline{O E}$ Controlled (Notes 13, 15)

Write Cycle - $\overline{W E}$ Controlled (Notes 16, 17, 18, 19)

Write Cycle - $\overline{C E}$ Controlled (Notes 16, 17, 18, 19)

Data Retention

Test Loads and Transition Times

Figure 1a

Figure 1b

Figure 2

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability of the tested device.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This product provides hard clamping of transient undershoot. Input levels below ground will be clamped beginning at -0.6 V . A current in excess of 100 mA is required to reach -2 V . The device can withstand indefinite operation with inputs as low as -3 V subject only to power dissipation and bond wire fusing constraints.
4. Duration of the output short circuit should not exceed 30 seconds.
5. 'Typical' supply current values are not shown but may be approximated. At a Vcc of 5.0 V , an ambient temperature of $+25^{\circ} \mathrm{C}$ and with nominal manufacturing parameters, the operating supply currents will be approximately $3 / 4$ or less of the maximum values shown.
6. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously enabled for reading, i.e., $\overline{\mathrm{CE}} \leq \mathrm{VIIL}^{\prime}, \overline{\mathrm{WE}} \geq \mathrm{VIH}_{\text {IH }}$.
7. Tested with outputs open and all address and data inputs changing at the maximum read cycle rate. The device is continuously disabled, i.e., $\overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}$.
8. Tested with outputs open and all address and data inputs stable. The
device is continuously disabled, i.e., $\overline{\mathrm{CE}}=$ VCC. Input levels are within 0.5 V of VCC or ground.
9. Data retention operation requires that VCC never drop below $2.0 \mathrm{~V} . \overline{\mathrm{CE}}$ must be $\geq \mathrm{Vcc}-0.3 \mathrm{~V}$. For all other inputs VIN \geq VCC -0.3 or VIN $\leq 0.3 \mathrm{~V}$ is required to ensure full power down.

10. These parameters are guaranteed

 but not 100% tested.11. Test conditions assume input transition times of less than 3 ns , reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading for specified IOL and IOH plus 30 pF .
12. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. tAVEW, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Access time, for example, is specified as a maximum since worstcase operation of any device always provides data within that time.
13. $\overline{\mathrm{WE}}$ is high for the read cycle.
14. The chip is continuously selected ($\overline{\mathrm{CE}}$ low).
15. All address lines are valid priorto or coincident-with the $\overline{\mathrm{CE}}$ transition to low.
16. The internal write cycle of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ low and $\overline{\mathrm{WE}}$ low. Both signals must be low to initiate a write. Either signal can terminate a write by going high. The address, data, and control input setup and hold times should be referenced to the signal that falls last or rises first.
17. If $\overline{\mathrm{WE}}$ goes low before or concurrent with $\overline{\mathrm{CE}}$ going low, the output remains in a high impedance state.
18. If $\overline{\mathrm{CE}}$ goes high before or concurrent with $\overline{W E}$ going high, the output remains in a high impedance state.
19. Powerup from ICC2 to ICC1 occurs as a result of any of the following conditions:
a. Falling edge of $\overline{\mathrm{CE}}$
b. Falling edge of $\overline{\mathrm{WE}}$ ($\overline{\mathrm{CE}}$ active)
c. Transition on any address line ($\overline{\mathrm{CE}}$ active)
d. Transition on any data line ($\overline{\mathrm{CE}}$ and $\overline{W E}$ active)
The device automatically powers down from ICC1 to ICC2 after tPD has elapsed from any of the prior conditions. This means that power dissipation is dependent on only cycle rate, and is not on Chip Select pulse width.
20. At any given temperature and voltage condition, output disable time is less than output enable time for any given device.
21. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with specified loading in Figure 1b. This parameter is sampled and not 100% tested.
22. All address timings are referenced from the last valid address line to the first transitioning address line.
23. $\overline{\mathrm{CE}}$ or $\overline{\mathrm{WE}}$ must be high during address transitions.
24. This product is a very high speed device and care must be taken during testing in order to realize valid test information. Inadequate attention to setups and procedures can cause a good part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the VCC and ground planes directly up to the contactor fingers. A $0.01 \mu \mathrm{~F}$ high frequency capacitor is also required between VCC and ground. To avoid signal reflections, proper terminations must be used.

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)

Package Style	Performance					
	85 ns	45 ns	35 ns	25 ns	20 ns	15 ns
$\begin{aligned} & \text { 24-pin Plastic DIP } \\ & \left(0.3^{\prime \prime}\right)-\mathrm{P} 2 \end{aligned}$	L6116PC85	L6116PC45	L6116PC35	L6116PC25	L6116PC20	
$\begin{aligned} & \text { 24-pin Plastic DIP } \\ & \left(0.6^{\prime \prime}\right)-P 1 \end{aligned}$	L6116NC85	L6116NC45	L6116NC35	L6116NC25	L6116NC20	
24-pin SOIC - U1	L6116UC85	L6116UC45	L6116UC35	L6116UC25	L6116UC20	
24-pin SOIC - U1	L6116WC85	L6116WC45	L6116WC35	L6116WC25	L6116WC20	
24-pin Sidebraze (0.3") Hermetic DIP - D2	L6116DC85	L6116DC45	L6116DC35	L6116DC25	L6116DC20	
24-pin Sidebraze (0.6") Hermetic DIP - D1	L6116HC85	L6116HC45	L6116HC35	L6116HC25	L6116HC20	
24-pin CerDIP (0.3") - C1	L6116CC85	L6116CC45	L6116CC35	L6116CC25	L6116CC20	
24-pin CerDIP (0.6") - C4	L6116IC85	L6116IC45	L6116IC35	L6116IC25	L6116IC20	
28-pin Ceramic LCC - K7	L6116KC85	L6116KC45	L6116KC35	L6116KC25	L6116KC20	

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance					
	85 ns	45 ns	35 ns	25 ns	20 ns	
24-pin Sidebraze (0.3") Hermetic DIP - D2	L6116DM85 L6116DME85 L6116DMB85	L6116DM45 L6116DME45 L6116DMB45	L6116DM35 L6116DME35 L6116DMB35	L6116DM25 L6116DME25 L6116DMB25		
24-pin Sidebraze (0.6") Hermetic DIP - D1	L6116HM85 L6116HME85 L6116HMB85	L6116HM45 L6116HME45 L6116HMB45	L6116HM35 L6116HME35 L6116HMB35	L6116HM25 L6116HME25 L6116HMB25		
24-pin CerDIP (0.3") - C1	L6116CM85 L6116CME85 L6116CMB85	L6116CM45 L6116CME45 L6116CMB45	L6116CM35 L6116CME35 L6116CMB35	L6116CM25 L6116CME25 L6116CMB25		
24-pin CerDIP (0.6") - C4	L6116IM85 L61161ME85 L6116IMB85	L6116IM45 L6116IME45 L6116IMB45	L61161M35 L6116IME35 L6116IMB35	L6116IM25 L6116IME25 L6116IMB25		
28-pin Ceramic LCC - K7	L6116KM85 L6116KME85 L6116KMB85	L6116KM45 L6116KME45 L6116KMB45	L6116KM35 L6116KME35 L6116KMB35	L6116KM25 L6116KME25 L6116KMB25		

Pin Assignments
(P1, P2, D1, D2, C1, C4, U1, W1)

Pin	Function	Pin	Function
1	A 7	13	$\mathrm{I} 3 / \mathrm{O} 3$
2	A 6	14	$\mathrm{I} 4 / \mathrm{O} 4$
3	A 5	15	$\mathrm{I} 5 / \mathrm{O} 5$
4	$\mathrm{~A}_{4}$	16	$\mathrm{I} 6 / \mathrm{O} 6$
5	$\mathrm{~A}_{3}$	17	$\mathrm{I} 7 / \mathrm{O} 7$
6	A 2	18	$\overline{\mathrm{CE}}$
7	A 1	19	A 10
8	A 0	20	$\overline{\mathrm{OE}}$
9	$\mathrm{I} / \mathrm{O} 0$	21	$\overline{\mathrm{WE}}$
10	$\mathrm{I} 1 / \mathrm{O} 1$	22	A 9
11	$\mathrm{I} 2 / \mathrm{O} 2$	23	A 8
12	GND	24	VCC

Pin Assignments

(K7)

Pin	Function	Pin	Function
1	A 7	15	$\mathrm{I} 3 / \mathrm{O} 3$
2	A 6	16	$\mathrm{I} / \mathrm{O} 4$
3	A 5	17	$\mathrm{I} 5 / \mathrm{O} 5$
4	A 4	18	$\mathrm{I} 6 / \mathrm{O} 6$
5	A 3	19	$\mathrm{I} / \mathrm{O} 7$
6	A 2	20	$\overline{\mathrm{CE}}$
7	NC	21	NC
8	NC	22	NC
9	A 1	23	A 10
10	A 0	24	$\overline{\mathrm{OE}}$
11	$\mathrm{I} / \mathrm{O} 0$	25	$\overline{\mathrm{WE}}$
12	$\mathrm{I} 1 / \mathrm{O} 1$	26	A 9
13	$\mathrm{I} 2 / \mathrm{O} 2$	27	A 8
14	GND	28	VCC

DEVICES INCORPORATED

Ordering Information

Memory Products

Logic Products

Quality and Reliability

Technology and Design Features

Packaging

Application Notes

Technical Articles

Sales Offices

Contents

Product Selection Guide 3-3
Competitive Cross Reference 3-5
Multipliers
LMU08 8×8 Signed 3-7
LMU8U 8×8 Unsigned 3-7
LMU557 8×8 Latched Output 3-15
LMU558 8×8 Unregistered 3-15
LMU12 12×12 3-21
LMU112 12×12 Reduced Pinout 3-29
LMU16 16×16 3-35
LMU216 16×16 3-35
LMU17 16×16 Microprogrammable 3-43
LUM217 16×16 Surface Mount 3-43
LMU18 $16 \times 16 / 32$ Outputs 3-51
Multiplier-Accumulators
LMA1009 12×12 3-61
LMA2009 12×12 Surface Mount 3-61
LMA1010 16×16 3-69
LMA2010 16×16 Surface Mount 3-69
Multiplier-Summer
LMS12 $\quad 12 \times 12 \times 26$ FIR 3-79
Pipeline Registers
L29C520 4×8-Bit, Variable Delay, 1-4 Stages 3-89
L29C521 4×8-Bit, Variable Delay, $1-4$ Stages 3-89
LPR520 4×16-Bit, Variable Delay, $1-4$ Stages 3-97
LPR521 4×16-Bit, Variable Delay, 1-4 Stages 3-97
L29C524 14×8-Bit, Variable Delay, $0-14$ Stages 3-105
L29C525 16×8-Bit, Variable Delay, 1-16 Stages 3-105
L10C11 18×8-Bit, Variable Delay, 3-18 Stages 3-113
L29C818 Shadow Register 3-119
Register Files
LRF07 8×8, 3 Independent Port 3-127
LRF08 8×8, 5 Independent Port 3-133
Arithmetic Logic Units
L4C381 16-Bit Add/Sub 3-139
L29C101 16-Bit Slice, Quad 2901 3-151
Special Arithmetic Functions
LSH32 32-Bit Barrel Shifter 3-165
L10C23 $\quad 64 \times 1$ Digital Correlator 3-175

Product Selection Guide

Part No.	Description	Maximum Speed (ns)		Power (mW)	Pins	Packages Available
		Commercial	Military			
MULTIPLIERS						
LMU08 LMU8U	8×8 Signed 8×8 Unsigned	35	45	40	40/44	DIP, LCC, PLCC
LMU557 LMU558	8×8 Latched Output 8×8 Unregistered	60	70	85	40	DIP
LMU12	12×12	35	45	60	64/68	DIP, Pin Grid Array
LMU112	12×12 Reduced Pinout	50	60	50	48	DIP
LMU16	16×16	45	55	60	64/68	DIP, Pin Grid Array
LMU216	16×16	45	55	60	68	LCC, PLCC
LMU17	16×16 Microprogrammable	45	55	60	64/68	DIP, Pin Grid Array
LMU217	16×16 Surface Mount	45	55	60	68	LCC, PLCC
LMU18	$16 \times 16 / 32$ Outputs	35	45	150	84	Pin Grid Array, PLCC
MULTIPLIER ACCUMULATORS						
LMA1009	12×12	45	55	60	64/68	DIP, Pin Grid Array
LMA2009	12×12 Surface Mount	45	55	60	68	LCC, PLCC
LMA1010	16×16	45	55	60	64/68	DIP, Pin Grid Array
LMA2010	16×16 Surface Mount	45	55	60	68	LCC, PLCC
MULTIPLIER SUMMER						
LMS12	$12 \times 12 \times 26$ FIR	40	50	75	84	Pin Grid Array, PLCC
PIPELINE REGISTERS						
$\begin{aligned} & \text { L29C520 } \\ & \text { L29C521 } \end{aligned}$	4×8-Bit, Variable Delay, 1-4 4×8-Bit, Variable Delay, $1-4$	ges 22	24	50	24/28	DIP, LCC, PLCC Flat Pack
$\begin{aligned} & \text { LPR520 } \\ & \text { LPR521 } \\ & \hline \end{aligned}$	4×16-Bit, Variable Delay, 1 4×16-Bit, Variable Delay, $1-4$	$\begin{aligned} & \text { tages } 22 \\ & \text { tages } \end{aligned}$	24	50	40/44	DIP, LCC, PLCC
L29C524	14×8-Bit, Variable Delay, 0-1	Stages	Call Factory		28	DIP, LCC
L29C525	16×8-Bit, Variable Delay, 0-1	Stages	Call Factory		28	
L10C11	18×8-Bit, Variable Delay, 3-1	Stages	Call Factory		24	DIP
L29C818	Shadow Register		Call Factory		24	DIP
REGISTER FILES						
LRF07	$8 \times 8,3$ Independent Port	35	35	40	40	DIP, LCC
LRF08	$8 \times 8,5$ Independent Port	35	35	60	64/68	DIP, LCC, PLCC, Pin Grid Array
ARITHMETIC LOGIC UNITS						
L4C381	16-Bit, Add/Sub	26	30	60	68	Pin Grid Array, LCC, PLCC
L29C101	16-Bit Slice, Quad 2901	35	45	75	64/68	DIP, LCC, Pin Grid Array
SPECIAL FUNCTIONS						
LSH32	32-Bit Barrel Shifter	32	40	60	68	Pin Grid Array, LCC, PLCC
L10C23	64×1 Digital Correlator	20	20	125	24/28	DIP, LCC

DEVICES INCORPORATED

Cross Reference Guide

LOGIC DEVICES		TRW	Analog Dev	IDT	Cypress	AMD	Weitek
LMU08	8×8 MULT	MPY008	ADSP1080				
LMU8U	8×8 MULT	MPY08U	ADSP1081				
LMU557	8×8 MULT					AM25S557 SN54557 SN74557	
LMU558	8×8 MULT					AM25S558 SN54558 SN74558	
LMU12	12×12 MULT	MPY012	ADSP1012	IDT7212			
LMU112	12×12 MULT	MPY112					
LMU16/ LMU216	16 X 16 MULT	MPY016 TMC216	ADSP1016	IDT7216	CY7C516	AM29516 AM29C516	WTL1016 WTL1516
LMU17/ LMU217	16×16 MULT		ADSP1017	IDT7217	CY7C517	AM29517 AM29C517	
LMA1009/ LMA2009	$12 \times 12 \mathrm{MAC}$	TDC1009 TMC2009 TMC2109	ADSP1009	IDT7209			
LMA1010/ LMA2010	16×16 MAC	TDC1010 TMC2010 TMC2110 TMC2210	ADSP1010	IDT7210	CY7510	AM29510 AM29C510	WTL1010 WTL2010

LOGIC DEVICES		AMD	Performance	Wafer Scale	Intersil	IDT
L29C520-1	PIPELINE	AM29520A	P29PCT520	WS59520	ISP9520	IDT29FCT520A
	REGISTER	29C520CNS				
L29C521-1	PIPELINE REGISTER	AM29521A	P29PCT521	WS59521	ISP9521	IDT29FCT521A

LOGIC DEVICES	TRW	IDT	Cypress	AMD	
L29C101	16-BIT ALU		IDT49C401	CY7C9101	AM29C101
L10C23	CORRELATOR	TDC10231			

8×8-bit Parallel Multiplier

Features

- 35 ns worst-case multiply time
- Low-power CMOS technology

LMU08 replaces TRW MPY008H

- LMU8U replaces TRW MPY08HU

Two's complement (LMU08), or unsigned (LMU8U) operands

- Three-state outputs
- Available screened to MIL-STD883, Class B
\square Package styles available:
- 40-pin Plastic DIP
- 40-pin Sidebraze, Hermetic DIP
- 44-pin Plastic LCC, J-Lead (LMU08 only)
- 44-pin Ceramic LCC (Type C)

Description

The LMU08 and LMU8U are 8-bit parallel multipliers which feature high speed with low power consumption. They are pin-for-pin equivalents with TRW MPY08H and MPY008HU type multipliers. Full military ambient temperature range operation is attained by the use of advanced CMOS technology.

Both the LMU08 and the LMU8U produce the 16 -bit product of two 8 -bit numbers. The LMU08 accepts operands in two's complement format, and produces a two's complement result. The product is provided in two halves with the sign bit replicated as the most significant bit of

Input Formats

LMU08 Integer Two's Complement

$\left.\begin{array}{\|lll} \hline 7 & 6 & 5 \\ -2^{7} & 2^{6} & 2^{5} \end{array}\right] \begin{array}{llll} \hline \end{array} \begin{array}{llll} 2^{2} & 2^{1} & 2^{0} \end{array}$	

7	6	5	T	\checkmark	2		1	0	
	2^{6}	2^{5}					1		

LMU8U Unsigned Fractional

| 7 | 6 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2^{-1} | 2^{-2} | 2^{-3} |

7	6	5		
2^{-1}	2^{-2}	2^{-3}	2	1
2^{-6}	2^{-7}	2^{-8}		

LMU8U Unsigned Integer

7	6	5			
2^{7}	2^{6}	2^{5}		2	1
2^{2}	2^{1}	2^{0}			

7	6	5					
2^{7}	2^{6}	2^{5}			2	1	0
:---:	:---:	:---:	:---:				
2^{2}	2^{1}	2^{0}					

Output Formats

$-2^{14} 2^{13} 2^{12} \quad 2^{9} 2^{8} 2^{7}$	$\begin{array}{lllllll} \\ -2^{14} & 2^{6} & 2^{5} & 2^{2} \quad 2^{1} \quad 2^{0}\end{array}$

(Sign)
LMU8U Unsigned Fractional

$$
\begin{array}{|lll|}
\hline 7 & 6 & 5 \\
2^{-9} 2^{-10} 2^{-11} & 2 & 2 \\
2^{-14} & 1 & 0 \\
2^{-15} & 2^{-16}
\end{array}
$$

	7 6 5
$2^{15} 2^{14} 2^{13} \quad 2^{10} 2^{9} 2^{8}$	$\begin{array}{lllllll}2^{7} & 2^{6} & 2^{5} & 2^{2} & 2^{1} & 2^{0}\end{array}$

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$Operating ambient temperature$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current $>400 \mathrm{~mA}$

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{lOH}=-2.0 \mathrm{~mA}$	3.5			V
Vol	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VIL	Input Low Voltage	Note 3	0.0		0.8	V
IIX	Input Current	Ground \leq VI \leq Vcc			± 20	$\mu \mathrm{A}$
loz	Output Leakage Current	Ground \leq Vo \leq Vcc			± 20	$\mu \mathrm{A}$
los	Output Short Current	$\mathrm{Vo}=$ Ground, Vcc $=$ Max, Note 4, 8			-250	mA
ICC1	Vcc Current, Dynamic	Notes 5, 6		8	24	mA
ICC2	Vcc Current, Quiescent	Note 7			1.0	mA

8×8-bit Parallel Multiplier

Switching Characteristics Over Commercial Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMU08/8U-70		LMU08/8U-50		LMU08/8U-35	
		Min	Max	Min	Max	Min	Max
tMC	Multiply Time (Clocked)		70		50		35
tD	Output Delay		25		18		16
tena	Output Enable Time (Note 11)		20		18		18
tDIS	Output Disable Time (Note 11)		18		17		17
tPW	Clock Pulse Width	20		20		10	
tH	Input Register Hold Time	4		0		0	
ts	Input Register Setup Time	12		12		12	

Switching Characteristics Over Military Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMU08/8U-90		LMU08/8U-60		LMU08/8U-45	
		Min	Max	Min	Max	Min	Max
tMC	Multiply Time (Clocked)		90		60		45
tD	Output Delay		35		20		20
tena	Output Enable Time (Note 11)		35		20		20
tDIS	Output Disable Time (Note 11)		35		18		18
tPW	Clock Pulse Width	25		20		15	
tH	Input Register Hold Time	5		0		0	
ts	Input Register Setup Time	20		12		12	

Switching Waveforms

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ suppy voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified IOL and IOH plus 30 pF capacitance.

This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between Vcc and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device Vcc and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)

Package Style	Performance			
	70 ns	50 ns	35 ns	
LMU08				
40-pin Plastic DIP (0.6") - P3	LMU08PC70	LMU08PC50	LMU08PC35	
40-pin Sidebraze (0.6") Hermetic DIP - D3	LMU08DC70	LMU08DC50	LMU08DC35	
44-pin Plastic LCC, J-Lead - J1	LMU08JC70	LMU08JC50	LMU08JC35	
44-pin Ceramic LCC - K2	LMU08KC70	LMU08KC50	LMU08KC35	
LMU8U				
40-pin Plastic DIP (0.6") - P3	LMU8UPC70	LMU8UPC50	LMU8UPC35	
40-pin Sidebraze (0.6") Hermetic DIP - D3	LMU8UDC70	LMU8UDC50	LMU8UDC35	
44-pin Ceramic LCC - K2	LMU8UKC70	LMU8UKC50	LMU8UKC35	

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance			
	90 ns	60 ns	45 ns	
LMU08				
40-pin Sidebraze (0.6") Hermetic DIP - D3	LMU08DM90 LMU08DME90 LMU08DMB90	LMU08DM60 LMU08DME60 LMU08DMB60	LMU08DM45 LMU08DME45 LMU08DMB45	
LMU8U				
$\begin{array}{r} \text { 40-pin Sidebraze (} 0.6 \text { " }) \\ \text { Hermetic DIP - D3 } \end{array}$	LMU8UDM90 LMU8UDME90 LMU8UDMB90	LMU8UDM60 LMU8UDME60 LMU8UDMB60	LMU8UDM45 LMU8UDME45 LMU8UDMB45	

Pin Assignments

Pin		Function	Pin		Function
D，P	J，K		D，P	J，K	
1	1	R10	23	25	CLK A
2	2	R9	24	26	CLK B
3	3	R8	25	27	RND
4	4	CLK R	26	29	B0
5	5	OEM	27	30	B1
6	7	$\overline{\text { OEL }}$	28	31	B2
7	8	R7（RSL）	29	32	B3
8	9	R6	30	33	VcC
9	10	R5	31	34	B4
10	11	R4	32	35	GND
11	12	R3	33	36	B5
12	13	R2	34	37	B6
13	14	R1	35	38	B7（BS）
14	15	R0	36	40	R15（RSM）
15	16	A0	37	41	R14
16	18	A1	38	42	R13
17	19	A2	39	43	R12
18	20	A3	40	44	R11
19	21	A4		6	NC
20	22	A5		17	NC
21	23	A6		28	NC
22	24	A7（AS）		39	NC

（c）1988，Logic Devices Incorporated．Re－ production of any portion hereof without written consent is prohibited．Information contained in this specification is intended as a general product description and is subject to change without notice．Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied．

8×8-bit Parallel Multiplier

LMU557/558

Features

60 ns worst-case multiply time
Low-power CMOS technology

- Replaces Am25S557/558, 54S557/558

Fully combinatorial, no clocks required

Two's complement, unsigned, or mixed operands

Three-state outputs
\square Available screened to MIL-STD883, Class B

- Package styles available:
- 40-pin Plastic DIP
- 40-pin Sidebraze, Hermetic DIP

Description

The LMU557 and LMU558 are 8-bit parallel multipliers with high speed and low power operation. They are pin for pin equivalents with 54 S 557 and 54S558 type multipliers. Full military ambient temperature range operation is attained by the use of advanced CMOS technology.

Both the LMU557 and LMU558 produce the 16-bit product of two 8 -bit signed or unsigned numbers in a single unclocked operation. Assertion of control inputs TCA and TCB indicate that the corresponding input value is in two's complement notation.

LMU557/558 Block Diagram

8×8－bit Parallel Multiplier

Input Formats

$\mathrm{A}_{\text {in }}$	$B_{\text {in }}$				
Fractional Two＇s Complement					
			5 仙	1	0
$-2^{0} 2^{-1} 2^{-2} \quad 2^{-5} 2^{-6} 2^{-7}$	-2^{0}		$2^{-2} \quad 2^{-5}$	2^{-6}	2^{-7}

$\begin{array}{lllll}7 & 6 & 5\end{array} 山 2210$	7 6 5
$\left(2^{7} 2^{6} 2^{5} \quad 2^{2} 2^{1} 2^{0}\right.$	$2_{(\text {Sign })}^{7} 2^{6} 2^{5} \quad 2^{2} 2^{1} 2^{0}$

Unsigned Fractional

－Unsigned Integer

7	6	5				
2^{7}	2^{6}	2^{5}		2^{2}	2^{1}	2^{0}
:---:	:---:	:---:	:---:			

7	6	5	芹	2		1	0	
2^{7}	2^{6}	2^{5}		2		，	$2{ }^{\circ}$	${ }^{0}$

Output Formats

Integer Two＇s Complement

\(\left.\begin{array}{|ccccccc|}\hline 7 \& 6 \& 5

\hline 2^{7} \& 2^{6} \& 2^{5}\end{array}\right]\)

－Unsigned Fractional

$$
\begin{array}{|llll}
\hline 15 & 14 & 13 \\
2^{-1} & 2^{-2} & 2^{-3}
\end{array} \frac{10}{4} \begin{array}{lll|}
\hline 10 & 9 & 8 \\
2^{-6} & 2^{-7} & 2^{-8}
\end{array}
$$

$$
\begin{array}{|lll|}
\hline 7 & 6 & 5 \\
\hline 2^{-9} & 2^{-10} & 2^{-11} \\
\hline 2^{-14} & 2^{-15} 2^{-16} & 0 \\
\hline
\end{array}
$$

	Unsigned Integer	
$2^{15} 2^{14} 2^{13} \quad 2^{10} 2^{9} 2^{8}$		$\begin{array}{lllllll}2^{7} & 2^{6} & 2^{5} & 2^{2} & 2^{1} & 2^{0}\end{array}$

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Operating ambient temperature ... $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$Vcc supply voltage with respect to ground... 0.5 V to +7.0 VInput signal with respect to ground... -3.0 V to +7.0 VSignal applied to high impedance output ... -3.0 V to +7.0 VOutput current into low outputs25 mA
Latchup current $>400 \mathrm{~mA}$

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{VCC} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	3.5			V
VOL	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	Note 3	0.0		0.8	V
IIX	Input Current	Ground \leq VI \leq Vcc			± 20	$\mu \mathrm{A}$
loz	Output Leakage Current	Ground \leq Vo \leq Vcc			± 20	$\mu \mathrm{A}$
IOS	Output Short Current	$\mathrm{Vo}=$ Ground, Vcc $=$ Max, Note 4, 8			-250	mA
ICC1	Vcc Current, Dynamic	Notes 5, 6		17	35	mA
ICC2	Vcc Current, Quiescent	Note 7			1.0	mA

8×8-bit Parallel Multiplier

Switching Characteristics Over Commercial Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMU557/558-60	
		Min	Max
tPD	A, B, TC, R Inputs to R15-R8, $\overline{\mathrm{R} 15}$		60
tPD	A, B, TC, R Inputs to R7-Ro		55
teng	G Enable to Result		30
tena	Output Enable Time (Note 11)		25
tDIS	Output Disable Time (Note 11)		20
tPW	G Pulse Width	15	
th	G to A, B, TC, R Hold Time	0	
ts	A, B, TC, R, Inputs to G Setup Time	45	

Switching Characteristics Over Military Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMU557/558-70	
	A, B, TC, R Inputs to R15-R8, $\overline{R 15}$	Min	Max
tPD	A, B, TC, R Inputs to R7-Ro		70
teNG	G Enable to Result	60	
tENA	Output Enable Time (Note 11)		35
tDIS	Output Disable Time (Note 11)		30
tPW	G Pulse Width	20	
tH	G to A, B, TC, R Hold Time	0	
ts	A, B, TC, R, Inputs to G Setup Time	55	

Switching Waveforms

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{N C V^{2} F}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$C=$ capacitive load per output
$\mathrm{V}=$ suppy voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100\% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified IOL and IOH plus 30 pF capacitance.

This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Package Style	
	Performance
LMU557	60 ns
40-pin Plastic DIP (0.6") - P3	LMU557PC60
40-pin Sidebraze (0.6") Hermetic DIP - D3	LMU557DC60
LMU558	LMU558PC60
40-pin Plastic DIP (0.6") - P3	LMU558DC60
40-pin Sidebraze (0.6") Hermetic DIP -D3	

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance
	70 ns
LMU557	
40-pin Sidebraze (0.6") Hermetic DIP - D3	LMU557DM70 LMU557DME70 LMU557DMB70
LMU558	
$\begin{array}{r} \text { 40-pin Sidebraze (0.6") } \\ \text { Hermetic DIP - D3 } \end{array}$	LMU558DM70 LMU558DME70 LMU558DMB70

Pin Assignments

Pin	Function	Pin	Function
1	A0	21	$\overline{\mathrm{OE}}$
2	A 1	22	$\overline{\mathrm{R} 15}$
3	A 2	23	R 15
4	A 3	24	R 14
5	A 4	25	R 13
6	A 5	26	R12
7	A 6	27	R11
8	A7	28	R10
9	RS/R	29	R9
10	VCC	30	GND
11	RU/G	31	R8
12	B0	32	R7
13	B1	33	R6
14	B2	34	R5
15	B3	35	R4
16	B4	36	R3
17	B5	37	R2
18	B6	38	R1
19	B7	39	R0
20	TCB	40	TCA

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Features

- 35 ns worst-case multiply time

Low-power CMOS technology

- Replaces TRW MPY12HJ

Two's complement, unsigned, or mixed operands

- Three-state outputs
- Available screened to MIL-STD883, Class B
- Package styles available:
- 64 -pin Plastic DIP
- 64-pin Sidebraze, Hermetic DIP
- 68 -pin Pin Grid Array

Description

The LMU12 is a 12 -bit parallel multiplier with high speed and low power consumption. It is pin and functionally compatible with TRW MPY12HJ devices. Full military ambient temperature range operation is attained by the use of advanced CMOS technology.
The LMU12 produces the 24-bit product of two 12 -bit numbers. Data present at the A inputs, along with the TCA control bit, is loaded into the A register on the rising edge of CLK A. B data and the TCB control are similarly loaded by CLK B. The

LMU12 Block Diagram

mode controls TCA and TCB specify the operands as two's complement when high, or unsigned magnitude when low.

RND is loaded on the rising edge of the logical OR of CLK A and CLK B. RND, when high, adds ' 1 ' to the most significant bit position of the least significant half of the product. Subsequent truncation of the 12 least significant bits produces a result correctly rounded to 12-bit precision.
At the output, the right shift control RS selects either of two output formats: RS low produces a 31-bit product with a copy of the sign bit inserted in the MSB postion of the least significant half. Rs high gives a full 32-bit product. Two 12-bit output registers are provided to hold the most and least significant halves of the result (MSP and LSP) as defined by RS. These registers are loaded on the rising edge of CLK M and CLK L respectively. For asynchronous output these registers may be made transparent by taking the feed through control (FT) high.

Input Formats

—_ Integer Two's Complement (TCA, TCB = 1)

(Sign)
Unsigned Fractional (TCA, TCB $=0$)

11	10	9
2^{-1}	2^{-2}	2^{-3}

$$
\begin{array}{|lll}
\hline 11 & 10 & 9 \\
2^{-1} & 2^{-2} & 2^{-3}
\end{array}
$$

Output Formats

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

$$
\text { Operating ambient temperature .. }-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

$$
\text { VCC supply voltage with respect to ground.. - } 0.5 \mathrm{~V} \text { to +7.0 V }
$$

Input signal with respect to ground... -3.0 V to +7.0 V
Signal applied to high impedance output .. -3.0 V to +7.0 V

$$
\text { Output current into low outputs ... } 25 \text { mA }
$$

$$
\text { Latchup current .. }>400 \text { mA }
$$

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{VCC} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{VCC} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
VOH	Output High Voltage	$1 \mathrm{OH}=-2.0 \mathrm{~mA}$	3.5			V
Vol	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VIL	Input Low Voltage	Note 3	0.0		0.8	V
IIX	Input Current	Ground \leq VI \leq Vcc			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vo \leq Vcc			± 20	$\mu \mathrm{A}$
Ios	Output Short Current	$\mathrm{Vo}=$ Ground, Vcc $=$ Max, Note 4, 8			-250	mA
ICC1	Vcc Current, Dynamic	Notes 5, 6		12	25	mA
ICC2	Vcc Current, Quiescent	Note 7			1.0	mA

12×12-bit Parallel Multiplier

Switching Characteristics Over Commercial Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMU12-65		LMU12-45		LMU12-35	
		Min	Max	Min	Max	Min	Max
tMC	Multiply Time (Clocked)		65		45		35
tmuc	Unclocked Multiply Time		95		65		55
tD	Output Delay		26		25		25
tENA	Output Enable Time (Note 11)		22		22		20
tDIS	Output Disable Time		20		20		18
tPW	Clock Pulse Width	25		15		15	
tH	Input Register Hold Time	0		0		0	
ts	Input Register Setup Time	15		15		12	

Switching Characteristics Over Military Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMU12-75		LMU12-55		LMU12-45	
		Min	Max	Min	Max	Min	Max
tMC	Multiply Time (Clocked)		75		55		45
tMUC	Unclocked Multiply Time		110		75		65
tD	Output Delay		30		30		25
tena	Output Enable Time (Note 11)		26		26		24
tDIS	Output Disable Time		24		24		22
tPW	Clock Pulse Width	25		20		15	
tH	Input Register Hold Time	0		0		0	
ts	Input Register Setup Time	18		15		12	

Switching Waveforms

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ suppy voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified IOL and IOH plus 30 pF capacitance.

This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between Vcc and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device Vcc and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

12×12-bit Parallel Multiplier

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Package Style	Performance			
	65 ns	45 ns	35 ns	
64-pin Plastic DIP (0.9") - P4	LMU12PC65	LMU12PC45	LMU12PC35	
64-pin Sidebraze (0.9") Hermetic DIP - D6	LMU12DC65	LMU12DC45	LMU12DC35	
68-pin Pin Grid Array - G2	LMU12GC65	LMU12GC45	LMU12GC35	

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance			
	75 ns	55 ns	45 ns	
$\begin{array}{r} \text { 64-pin Sidebraze (0.9") } \\ \text { Hermetic DIP - D6 } \end{array}$	LMU12DM75 LMU12DME75 LMU12DMB75	LMU12DM55 LMU12DME55 LMU12DMB55	LMU12DM45 LMU12DME45 LMU12DMB45	
68-pin Pin Grid Array - G2	LMU12GM75 LMU12GME75 LMU12GMB75	LMU12GM55 LMU12GME55 LMU12GMB55	LMU12GM45 LMU12GME45 LMU12GMB45	

Pin Assignments

Pin		Function	Pin		Function
P,D	G		P,D	G	
1	F02	A7	35	G10	R18
2	F01	A6	36	G11	R19
3	E02	A5	37	H10	R20
4	E01	A4	38	H11	R21
5	D02	A3	39	J 10	R22
6	D01	A2	40	111	R23
7	C02	A1	41	K10	TCB
8	C01	A0	42	L10	B11
9	B02	Ro	43	K09	B10
10	A02	R1	44	L09	B9
11	B03	R2	45	K08	B8
12	A03	R3	46	L08	B7
13	B04	R4	47	K07	B6
14	A04	R5	48	L07	Vcc
15	B05	R6	49	K06	Vcc
16	A05	R7	50	L06	Vcc
17	B06	R8	51	K05	B5
18	A06	R9	52	L05	B4
19	B07	R10	53	K04	B3
20	A07	R11	54	L04	B2
21	B08	$\overline{\text { OEL }}$	55	K03	B1
22	A08	$\overline{\text { OEM }}$	56	L03	Bo
23	B09	GND	57	K02	TCA
24	A09	GND	58	K01	RND
25	B10	FT	59	J 02	CLK B
26	B11	RS	60	J 01	CLKA
27	C10	CLKL	61	H02	A11
28	C11	CLK M	62	H01	A10
29	D10	R12	63	G02	A9
30	D11	R13	64	G01	A8
31	E10	R14		A10	NC
32	E11	R15		K11	NC
33	F10	R16		L02	NC
34	F11	R17		B01	NC

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Features

50 ns worst-case multiply timeLow-power CMOS technologyReplaces TRW MPY112KTwo's complement or unsigned operandsThree-state outputsAvailable screened to MIL-STD883, Class B- Package styles available:
- 48-pin Plastic DIP
- 48-pin Sidebraze, Hermetic DIP
- 52-pin Plastic LCC, J-lead

Description

The LMU112 is a high-speed, low power, 12-bit parallel multiplier built using advanced CMOS technology. The LMU112 is pin and functionally compatible with TRW's MPY112K.

The A and B input operands are loaded into their respective registers on the rising edge of the separate clock inputs (CLK A and CLK B). Two's complement or unsigned magnitude operands are accommodated via the operand control bit, TC, which is loaded along with the B operands. The operands are specified

to be in two's complement format when TC is asserted and unsigned magnitude when TC is de-asserted. Mixed mode operation is not allowed.

For two's complement operands, the 17 most significant bits at the output of the asynchronous multiplier array are shifted one bit position to the left. This is done to discard the redundant copy of the sign-bit, which is in the most significant bit position, and extend the bit precision by one bit. The result is then truncated to the 16 MSB's and loaded into the output register on the rising edge of CLK B.

The contents of the output register are made available via three-state buffers by asserting $\overline{\mathrm{OE}}$. When $\overline{\mathrm{OE}}$ is deasserted, the outputs (R23-R8) are in the high impedance state.

Input Formats

Integer Two's Complement (TC=1)

Unsigned Fractional ($\mathrm{TC}=0$)

| 11 | 10 | 9 |
| :--- | :--- | :--- | :--- |
| 2^{-1} | 2^{-2} | 2^{-3} |$\frac{2}{\leftrightarrows}$

$$
\begin{array}{|lll}
\hline 11 & 10 & 9 \\
2^{-1} & 2^{-2} & 2^{-3}
\end{array} \underbrace{4}_{2^{-10}} 2^{-11} 2^{-12}
$$

Unsigned Integer ($\mathrm{TC}=0$)

Output Formats

MSP	LSP
Fractional Two's Complement	
	11 10 9 8
$-2^{0} 2^{-1} 2^{-2} \quad 2^{-9} 2^{-10} 2^{-11}$	$\begin{aligned} & -2^{-12} 2^{-13} 2^{-14} 2^{-15} \\ & (\text { Sign }) \end{aligned}$
Integer Two's Complement	
	11 10 9 8 1
$\overline{-2}_{(\text {Sign })}^{22} 2^{21} 2^{20} \quad 2^{13} 2^{12} 2^{11}$	$2^{10} 2^{9} 2^{8} 2^{7}$
Unsigned Fractional	
	11 10 9 8
$2^{-1} 2^{-2} 2^{-3} \quad 2^{-10} 2^{-11} 2^{-12}$	$2^{-13} 2^{-14} 2^{-15} 2^{-16}$
- Unsigned Integer -	
23 22 21	11 10 9 8 17 10
$2^{23} 2^{22} 2^{21} \quad 2^{14} 2^{13} 2^{12}$	$2^{11} 2^{10} 2^{9} 2^{8}$

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current $>400 \mathrm{~mA}$

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{VCC} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	3.5			V
Vol	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.5	V
V H	Input High Voltage		2.0		Vcc	V
VLL	Input Low Voltage	Note 3	0.0		0.8	V
IIX	Input Current	Ground $\leq \mathrm{VI} \leq \mathrm{VCC}$			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vo \leq Vcc			± 20	$\mu \mathrm{A}$
Ios	Output Short Current	$\mathrm{Vo}=$ Ground, $\mathrm{Vcc}=$ Max, Note 4, 8			-250	mA
ICC1	Vcc Current, Dynamic	Notes 5, 6		10	20	mA
ICC2	Vcc Current, Quiescent	Note 7			1.0	mA

DEVICES INCORPORATED

12×12-bit Parallel Multiplier

Switching Characteristics Over Commercial Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMU112-60		LMU112-50	
		Min	Max	Min	Max
tMC	Multiply Time (Clocked)		60		50
tD	Output Delay		25		25
tena	Output Enable Time (Note 11)		25		25
tDIS	Output Disable Time (Note 11)		25		25
tPW	Clock Pulse Width	15		15	
tH	Input Register Hold Time	0		0	
tS	Input Register Setup Time	15		15	

Switching Characteristics Over Military Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMU112-65		LMU112-55	
		Min	Max	Min	Max
tMC	Multiply Time (Clocked)		65		55
tD	Output Delay		30		30
tena	Output Enable Time (Note 11)		30		30
tDIS	Output Disable Time (Note 11)		30		30
tPW	Clock Pulse Width	20		20	
th	Input Register Hold Time	0		0	
ts	Input Register Setup Time	15		15	

Switching Waveforms

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where

$$
\begin{aligned}
& \mathrm{N}=\text { total number of device outputs } \\
& \mathrm{C}=\text { capacitive load per output } \\
& \mathrm{V}=\text { suppy voltage } \\
& \mathrm{F}=\text { clock frequency }
\end{aligned}
$$

6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of VCC or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified IOL and IOH plus 30 pF capacitance.

This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VcC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Package Style	Performance	
	$\mathbf{6 0} \mathbf{n s}$	$\mathbf{5 0} \mathbf{n s}$
48-pin Plastic DIP (0.6") - P5	LMU112PC60	LMU112PC50
48-pin Sidebraze (0.6") Hermetic DIP - D5	LMU112DC60	LMU112DC50
52-pin Plastic LCC, J-Lead (J5)	LMU112JC60	LMU112JC50

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance	
	65 ns	55 ns
48-pin Sidebraze (0.6")	LMU112DM65	LMU112DM55
Hermetic DIP - D5	LMU112DME65	LMU112DME55
	LMU112DMB65	LMU112DMB55

Pin Assignments

P, D	J	Function	P, D	J	Function
1	1	A10	27	29	R16
2	2	A11	28	30	R15
3	3	Bo	29	31	R14
4	4	B1	30	32	R13
5	5	B2	31	34	R12
6	6	B3	32	35	R11
7	8	B4	33	36	R10
8	9	B5	34	37	R9
9	10	B6	35	38	R8
10	11	B7	36	39	GND
11	12	B8	37	40	GND
12	13	Vcc	38	41	CLK A
13	14	Vcc	39	42	A0
14	15	B9	40	43	A1
15	16	B10	41	44	A2
16	17	B11	42	45	A3
17	18	TC	43	47	A4
18	19	CLK B	44	48	A5
19	21	$\overline{\mathrm{OE}}$	45	49	A6
20	22	R23	46	50	A7
21	23	R22	47	51	A8
22	24	R21	48	52	A9
23	25	R20		7	NC
24	26	R19		20	NC
25	27	R18		33	NC
26	28	R17		46	NC

> © 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

16×16-bit Parallel Multiplier

Features

45 ns worst-case multiply time\square Low-power CMOS technology
Replaces TRW MPY016HJ and AMD Am 29516

Two's complement, unsigned, or mixed operands

- Three-state outputs

Available screened to MIL-STD883, Class B
\square Package styles available:

- 64-pin Plastic DIP
- 64-pin Sidebraze, Hermetic DIP
- 68-pin Plastic LCC, J-Lead
- 68-pin Pin Grid Array
- 68-pin Ceramic LCC (Type C)

Description

The LMU16 and LMU216 are 16-bit parallel multipliers with high speed and low power consumption. They are pin and functionally compatible with TRW MPY016HJ and AMD Am 29516 devices. The LMU16 and LMU216 are functionally identical; they differ only in packaging. Full military ambient temperature range operation is attained by the use of advanced CMOS technology.
The LMU16 and LMU216 produce the 32 -bit product of two 16 -bit numbers. Data present at the A inputs, along with the TCA control bit, is loaded into the A register on the rising edge of CLK A. B data and the TCB control

are similarly loaded by CLK B. The modecontrols TCA and TCB specify the operands as two's complement when high, or unsigned magnitude when low.
RND is loaded on the rising edge of the logical OR of CLK A and CLK B. RND, when high, adds 1 to the most significant bit position of the least significant half of the product. Subsequent truncation of the 16 least significant bits produces a result correctly rounded to 16 -bit precision.
At the output, the right shift control RS selects either of two output formats: RS low produces a 31-bit product with a copy of the sign bit inserted in the MSB postion of the least significant half. RS high gives a full 32-bit product. Two 16-bit output registers are provided to hold the most and least significant halves of the result (MSP and LSP) as defined by RS. These registers are loaded on the rising edge of CLK M and CLK L respectively. For asynchronous output these registers may be made transparent by taking the feed through control (FT) high.
The two halves of the product may be routed to a single 16-bit three-state output port (MSP) via a multiplexer. MSPSEL low causes the MSP outputs to be driven by the most significant half of the result. MSPSEL high routes the least significant half of the result to the MSP pins. In addition, the LSP is available via the B input port through a separate three-state buffer.
The output multiplexer control MSPSEL uses a pin which is a supply ground in the TRW MPY16HJ. When this control is LOW (GND) the function is that of the MPY16HJ, thus allowing full compatibility.

Input Formats

$\mathrm{A}_{\text {in }}$	$\mathrm{B}_{\text {in }}$
Fractional Two's Complement ($\mathrm{TCA}, \mathrm{TCB}=1$)	
$\left(-2^{0} 2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}\right.$	$-2^{0} 2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}$

Integer Two's Complement (TCA, TCB = 1)

$\begin{array}{lllll}15 & 14 & 13\end{array}$	
$\left(-2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}\right.$	$-2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$

Unsigned Fractional (TCA, TCB $=0$)

15	14	13				
2^{-1}	2^{-2}	2^{-3}	2			
2^{-14}	1	0				
2^{-15}	2^{-16}					

15	14	13
2^{-1}	2^{-2}	2^{-3}

Unsigned Integer $(T C A, T C B=0)$

| 15 | 14 | 13 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2^{15} | 2^{14} | 2^{13} |$\underset{2^{2}}{ } \quad 2^{1} \quad 2^{0}$

Output Formats

MSP
LSP
Fractional Two's Complement ($\mathrm{RS}=0$)

$\begin{array}{llll}31 & 30 & 29 & \text { 号 } \\ 18 & 17 & 16\end{array}$	
$-2^{0} 2^{-1} 2^{-2} 2^{-13} 2^{-14} 2^{-15}$	$-2^{0} 2^{-16} 2^{-17} \quad 2^{-28} 2^{-29} 2^{-30}$ (Sign)

Fractional Two's Complement-Shifted (RS = 1)

31 30 29	15 14 13
$\mathrm{-2}^{1} \quad 2^{0} 2^{-1} \quad 2^{-12} 2^{-13} 2^{-14}$	$2^{-15} 2^{-16} 2^{-17} \quad 2^{-28} 2^{-29} 2^{-30}$

(Sign)
Integer Two's Complement ($\mathrm{RS}=1$)

(Sign)
Unsigned Fractional (RS = 1)

31	30	29	岩
18 17 16 2^{-1} 2^{-2} 2^{-3}			
2^{-14}	2^{-15}	2^{-16}	

$$
\begin{array}{|lll}
\hline 15 & 14 & 13 \\
2^{-17} 2^{-18} 2^{-19}
\end{array} \frac{2}{} 2^{-30} 2^{-31} 2^{-32}
$$

Unsigned Integer $(\mathrm{RS}=1)$

$$
\begin{array}{|llll}
\hline 31 & 30 & 29 \\
2^{31} & 2^{30} & 2^{29}
\end{array} \frac{18}{} 17 \begin{array}{lll}
17 & 16 \\
2^{18} & 2^{17} & 2^{16}
\end{array}
$$

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground. -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current $>400 \mathrm{~mA}$

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol Parameter Test Conditions			Min	Typ	Max	Unit
VOH	Output High Voltage	$1 \mathrm{OH}=-2.0 \mathrm{~mA}$	3.5			V
Vol	Output Low Voltage	$\mathrm{loL}=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VLL	Input Low Voltage	Note 3	0.0		0.8	V
IIx	Input Current	Ground $\leq \mathrm{V}_{1} \leq \mathrm{Vcc}$			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vo \leq Vcc			± 20	$\mu \mathrm{A}$
los	Output Short Current	$\mathrm{VO}=$ Ground, $\mathrm{Vcc}=$ Max, Note 4, 8			-250	mA
IcC1	Vcc Current, Dynamic	Notes 5,6		12	25	mA
Icc2	Vcc Current, Quiescent	Note 7			1.0	mA

Switching Characteristics Over Commercial Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMU16/216-65		LMU16/216-55		LMU16/216-45	
		Min	Max	Min	Max	Min	Max
tMC	Multiply Time (Clocked)		65		55		45
tMUC	Unclocked Multiply Time		85		75		65
to	Output Delay		30		30		30
tSEL	Output Select Delay		25		25		25
tena	Output Enable Time (Note 11)		25		25		25
tDIS	Output Disable Time (Note 11)		25		25		25
tPW	Clock Pulse Width	15		15		15	
tH	Input Register Hold Time	1		1		1	
ts	Input Register Setup Time	15		15		15	

Switching Characteristics Over Military Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMU16/216-75		LMU16/216-65		LMU16/216-55	
		Min	Max	Min	Max	Min	Max
tMC	Multiply Time (Clocked)		75		65		55
tMuc	Unclocked Multiply Time		95		85		75
tD	Output Delay		35		30		30
tSEL	Output Select Delay		30		30		30
tena	Output Enable Time (Note 11)		25		25		25
tDIS	Output Disable Time (Note 11)		25		25		25
tPW	Clock Pulse Width	20		15		15	
tH	Input Register Hold Time	2		2		2	
ts	Input Register Setup Time	15		15		15	

Switching Waveforms

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{N C V^{2} F}{4}
$$

where

$$
\begin{aligned}
& \mathrm{N}=\text { total number of device outputs } \\
& \mathrm{C}=\text { capacitive load per output } \\
& \mathrm{V}=\text { suppy voltage } \\
& \mathrm{F}=\text { clock frequency }
\end{aligned}
$$

6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified IOL and IOH plus 30 pF capacitance.

This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and VcC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and Vcc noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)

Package Style	Performance			
	65 ns	55 ns	45 ns	

LMU16

64-pin Plastic DIP (0.9") — P4	LMU16PC65	LMU16PC55	LMU16PC45	
64-pin Sidebraze (0.9") Hermetic DIP -D6	LMU16DC65	LMU16DC55	LMU16DC45	
68-pin Pin Grid Array -G2	LMU16GC65	LMU16GC55	LMU16GC45	

LMU216

68-pin Plastic LCC, J-Lead - J2	LMU216JC65	LMU216JC55	LMU216JC45	
68-pin Ceramic LCC - K3	LMU216KC65	LMU216KC55	LMU216KC45	

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$)

Package Style	Performance			
	75 ns	65 ns	55 ns	
LMU16				
64-pin Sidebraze (0.9") Hermetic DIP - D6	LMU16DM75 LMU16DME75 LMU16DMB75	LMU16DM65 LMU16DME65 LMU16DMB65	LMU16DM55 LMU16DME55 LMU16DMB55	
68-pin Pin Grid Array - G2	LMU16GM75 LMU16GME75 LMU16GMB75	LMU16GM65 LMU16GME65 LMU16GMB65	LMU16GM55 LMU16GME55 LMU16GMB55	
LMU216				
68-pin Ceramic LCC - K3	LMU216KM75 LMU216KME75 LMU216KMB75	LMU216KM65 LMU216KME65 LMU216KMB65	LMU216KM55 LMU216KME55 LMU216KMB55	

16×16-bit Parallel Multiplier

Pin Assignments

LMU16		216	Function	LMU16		$\begin{array}{r} 216 \\ \hline \mathrm{~J}, \mathrm{~K} \end{array}$	Function
P, D	G	J,K		P, D	G		
1	F02	51	A4	35	G10	15	R26
2	F01	50	A3	36	G11	14	R27
3	E02	49	A2	37	H10	13	R28
4	E01	48	A1	38	H11	12	R29
5	D02	47	A 0	39	J 10	11	R30
6	D01	46	$\overline{\mathrm{OEL}}$	40	111	10	R31
7	C02	45	CLK L	41	K10	8	CLK M
8	C01	44	CLK B	42	L10	7	$\overline{\text { OEM }}$
9	B02	42	Ro,Bo	43	K09	6	RS
10	A02	41	R1, B1	44	L09	5	FT
11	B03	40	R2,B2	45	K08	4	$\overline{\text { MSPSEL }}$
12	A03	39	R3, B3	46	L08	3	GND
13	B04	38	R4,B4	47	K07	2	GND
14	A04	37	R5,B5	48	107	1	Vcc
15	B05	36	R6,B6	49	K06	68	Vcc
16	A05	35	R7,B7	50	L06	67	TCB
17	B06	34	R8,B8	51	K05	66	TCA
18	A06	33	R9, B9	52	L05	65	RND
19	B07	32	R10,B10	53	K04	64	CLK A
20	A07	31	R11, B11	54	L04	63	A15
21	B08	30	R12,B12	55	K03	62	A14
22	A08	29	R13,B13	56	L03	61	A13
23	B09	28	R14,B14	57	K02	59	A12
24	A09	27	R15,B15	58	K01	58	A11
25	B10	25	R16	59	J02	57	A10
26	B11	24	R17	60	101	56	A9
27	C10	23	R18	61	H02	55	A8
28	C11	22	R19	62	H01	54	A7
29	D10	21	R20	63	G02	53	A6
30	D11	20	R21	64	G01	52	A5
31	E10	19	R22		A10	43	NC
32	E11	18	R23		K11	26	NC
33	F10	17	R24		L02	9	NC
34	F11	16	R25		B01	60	NC

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Features

- 45 ns worst-case multiply time
\square Low-power CMOS technology
\square Replaces AMD Am29517
\square Single clock architecture with register enables
Two's complement, unsigned, or mixed operands
- Three-state outputs
\square Available screened to MIL-STD883, Class B
\square Package styles available:
- 64-pin Plastic DIP
- 64-pin Sidebraze, Hermetic DIP
- 68-pin Plastic LCC, J-Lead
- 68-pin Pin Grid Array
- 68-pin Ceramic LCC (Type C)

Description

The LMU17 and LMU217 are 16-bit parallel multipliers with high speed and low power consumption. They are pin and functionally compatible with AMD Am 29517 devices. The LMU17 and LMU217 are functionally identical; they differ only in packaging. Full military ambient temperature range operation is attained by the use of advanced CMOS technology.

The LMU17 and LMU217 produce the 32-bit product of two 16-bit numbers. Data present at the A inputs, along with the TCA control bit, is loaded into the A register on the rising edge of CLK A. B data and the TCB control are similarly loaded. Loading of the A and B registers is controlled by the

$\overline{\mathrm{ENA}}$ and $\overline{\mathrm{ENB}}$ controls. When high, these prevent application of the clock to the respective register. The mode controls TCA and TCB specify the operands as two's complement when high, or unsigned magnitude when low.

RND is loaded on the rising edge of CLK, providing either ENA or ENB are low. RND, when high, adds 1 to the most significant bit position of the least significant half of the product. Subsequent truncation of the 16 least significant bits produces a result correctly rounded to 16 -bit precision.

At the output, the right shift control RS selects either of two output formats: RS low produces a 31-bit product with a copy of the sign bit inserted in the MSB postion of the least significant half. RS high gives a full 32-bit product. Two 16-bit output registers are provided to hold the most and least significant halves of the result (MSP and LSP) as defined by RS. These registers are loaded on the rising edge of CLK, subject to the $\overline{\text { ENR }}$ control. When ENR is high, clocking of the result registers is prevented. For asynchronous output these registers may be made transparent by taking the feed through control (FT) high.
The two halves of the product may be routed to a single 16-bit three-state output port (MSP) via a multiplexer. MSPSEL low causes the MSP outputs to be driven by the most significant half of the result. MSPSEL high routes the least significant half of the result to the MSP pins. In addition, the LSP is available via the B input port through a separate three-state buffer.

Input Formats

$\mathrm{A}_{\text {in }}$	$B_{\text {in }}$
Fractional Two's Complement (TCA, TCB = 1)	
$-2^{0} 2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}$	$-2^{0} 2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}$

$-2^{- \text {Sign }^{15}} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$	$-2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$

Unsigned Fractional (TCA, TCB $=0$)

15	14	13	
2^{-1}	2^{-2}	2^{-3}	$2 \quad 1 \quad 0$
$2^{-14} 2^{-15} 2^{-16}$			

15	14	13		
2^{-1}	2^{-2}	2^{-3}	2	1
2^{-14}	2^{-15}	2^{-16}		

Unsigned Integer (TCA, TCB $=0$)

$$
\begin{array}{|llll}
\hline 15 & 14 & 13 \\
2^{15} & 2^{14} & 2^{13}
\end{array} \quad \begin{array}{llll|}
\hline 2^{2} & 2^{1} & 2^{0} \\
\hline
\end{array}
$$

Output Formats

(Sign)
Integer Two's Complement (RS = 1)

$$

$$
\left.\begin{array}{|lllll|}
\hline 15 & 14 & 13 \\
\hline 2^{15} & 2^{14} & 2^{13}
\end{array}\right] \begin{array}{llll|}
\hline
\end{array}
$$

Unsigned Fractional (RS =1)

31	30	29	
2^{-1}	2^{-2}	2^{-3}	$\left.\begin{array}{llll}18 & 17 & 16 \\ 2^{-14} & 2^{-15} & 2^{-16}\end{array}\right)$

$$
\begin{array}{|lll|}
\hline 15 & 14 & 13 \\
2^{-17} 2^{-18} 2^{-19} & 2 & 2 \\
2^{-30} 2^{-31} 2^{-32}
\end{array}
$$

Unsigned Integer ($\mathrm{RS}=1$)

$31 \quad 30$	29				
2^{31}	2^{30}	2^{29}	18 17 16 2^{18} 2^{17} 2^{16}		

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature ... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground... -0.5 V to +7.0 V
Input signal with respect to ground.. -3.0 V to +7.0 V
Signal applied to high impedance output ... 3.0 V to +7.0 V
Output current into low outputs .. 25 mA
Latchup current ... > 400 mA

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	3.5			V
Vol	Output Low Voltage	$\mathrm{loL}=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	Note 3	0.0		0.8	V
IIx	Input Current	Ground $\leq \mathrm{V}_{1} \leq \mathrm{Vcc}$			± 20	$\mu \mathrm{A}$
loz	Output Leakage Current	Ground \leq Vo \leq Vcc			± 20	$\mu \mathrm{A}$
los	Output Short Current	Vo $=$ Ground, Vcc $=$ Max, Note 4, 8			-250	mA
IcC1	Vcc Current, Dynamic	Notes 5, 6		12	25	mA
Icc2	Vcc Current, Quiescent	Note 7			1.0	mA

16×16-bit Parallel Multiplier

Switching Characteristics Over Commercial Operating Range (Notes 9, 10) (ns)

| Symbol | Parameter | LMU17/217-65 | | LMU17/217-55 | LMU17/217-45 | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Min | Max | Min | Max | Min | Max | |
| tMC | Multiply Time (Clocked) | | 65 | | 55 | | 45 |
| tMUC | Unclocked Multiply Time | | 85 | | 75 | | 65 |
| tD | Output Delay | | 30 | | 30 | | 30 |
| tSEL | Output Select Delay | | 25 | | 25 | | 25 |
| tENA | Output Enable Time (Note 11) | | 25 | | 25 | | 25 |
| tDIS | Output Disable Time (Note 11) | | 25 | | 25 | | 25 |
| tPW | Clock Pulse Width | 15 | | 15 | | 15 | |
| tH | Input Register Hold Time | 3 | | 3 | | 3 | |
| tS | Input Register Setup Time | 15 | | 15 | | 15 | |

Switching Characteristics Over Military Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMU17/217-75	LMU17/217-65	LMU17/217-55			
	Min	Max	Min	Max	Min	Max	
tMC	Multiply Time (Clocked)		75		65		55
tMUC	Unclocked Multiply Time		95		85		75
tD	Output Delay		35		30		30
tSEL	Output Select Delay		30		30		30
tENA	Output Enable Time (Note 11)		25		25		25
tDIS	Output Disable Time (Note 11)		25		25		25
tPW	Clock Pulse Width	20		15		15	
tH	Input Register Hold Time	3		3		3	
ts	Input Register Setup Time	15		15		15	

Switching Waveforms

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
V = suppy voltage
F = clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified Iol and IOH plus 30 pF capacitance.

This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device Vcc and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)

Package Style	Performance			
	65 ns	55 ns	45 ns	
LMU17				
64-pin Plastic DIP (0.9") - P4	LMU17PC65	LMU17PC55	LMU17PC45	
64-pin Sidebraze (0.9") Hermetic DIP - D6	LMU17DC65	LMU17DC55	LMU17DC45	
68-pin Pin Grid Array - G2	LMU17GC65	LMU17GC55	LMU17GC45	
LMU217				
68-pin Plastic LCC, J-Lead - J2	LMU217JC65	LMU217JC55	LMU217JC45	
68-pin Ceramic LCC - K3	LMU217KC65	LMU217KC55	LMU217KC45	

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance			
	75 ns	65 ns	55 ns	
LMU17				
64-pin Sidebraze (0.9") Hermetic DIP - D6	LMU17DM75 LMU17DME75 LMU17DMB75	LMU17DM65 LMU17DME65 LMU17DMB65	LMU17DM55 LMU17DME55 LMU17DMB55	
68-pin Pin Grid Array - G2	LMU17GM75 LMU17GME75 LMU17GMB75	LMU17GM65 LMU17GME65 LMU17GMB65	LMU17GM55 LMU17GME55 LMU17GMB55	
LMU217				
68-pin Ceramic LCC - K3	LMU217KM75 LMU217KME75 LMU217KMB75	LMU217KM65 LMU217KME65 LMU217KMB65	LMU217KM55 LMU217KME55 LMU217KMB55	

16×16-bit Parallel Multiplier

Pin Assignments

LMU17		217	Function	LMU17		217	Function
P, D	G	J,K		P, D	G	J,K	
1	F02	51	A4	35	G10	15	R26
2	F01	50	A3	36	G11	14	R27
3	E02	49	A2	37	H10	13	R28
4	E01	48	A1	38	H11	12	R29
5	D02	47	A0	39	110	11	R30
6	D01	46	$\overline{\text { OEL }}$	40	J 11	10	R31
7	C 02	45	CLK	41	K10	8	ENR
8	C01	44	$\overline{\mathrm{ENB}}$	42	L10	7	$\overline{\text { OEM }}$
9	B02	42	Ro,Bo	43	K09	6	RS
10	A02	41	R1, B1	44	L09	5	FT
11	B03	40	R2,B2	45	K08	4	$\overline{\text { MSPSEL }}$
12	A03	39	R3, B3	46	L08	3	GND
13	B04	38	R4,B4	47	K07	2	GND
14	A04	37	R5,B5	48	L07	1	Vcc
15	B05	36	R6,B6	49	K06	68	Vcc
16	A05	35	R7,B7	50	L06	67	TCB
17	B06	34	R8,B8	51	K05	66	TCA
18	A06	33	R9,B9	52	L05	65	RND
19	B07	32	R10,B10	53	K04	64	ENA
20	A07	31	R11,B11	54	L04	63	A15
21	B08	30	R12,B12	55	K03	62	A14
22	A08	29	R13,B13	56	L03	61	A13
23	B09	28	R14,B14	57	K02	59	A12
24	A09	27	R15,B15	58	K01	58	A11
25	B10	25	R16	59	J02	57	A10
26	B11	24	R17	60	J 01	56	A9
27	C10	23	R18	61	H02	55	A8
28	C11	22	R19	62	H01	54	A7
29	D10	21	R20	63	G02	53	A6
30	D11	20	R21	64	G01	52	A5
31	E10	19	R22		A10	43	NC
32	E11	18	R23		K11	26	$N C$
33	F10	17	R24		L02	9	$N C$
34	F11	16	R25		B01	60	$N C$

(c) 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Features

- 35 ns worst-case multiply time

Low-power CMOS technology
Full 32-bit output port no multiplexing required

Two's complement, unsigned, or mixed operands

Three-state outputs
\square Available screened to MIL-STD883, Class B

- Package styles available:
- 84-pin Plastic LCC, J-Lead
- 84-pin Pin Grid Array

Description

The LMU18 is a 16-bit parallel multiplier featuring high speed and low power consumption. The LMU18 is an 84 -pin device which provides simultaneous access to all outputs. Full military ambient temperature range operation is attained by the use of advanced CMOS technology.

The LMU18 produces the 32-bit product of two 16-bit numbers. Data present at the A inputs, along with the TCA control bit, is loaded into the A register on the rising edge of CLK A. B data and the TCB control are similarly loaded. Loading of the A and B

registers is controlled by the ENA and $\overline{\mathrm{ENB}}$ controls. When high, these prevent application of the clock to the respective register. The mode controls TCA and TCB specify the operands as two's complement when high, or unsigned magnitude when low.

RND is loaded on the rising edge of CLK, providing either ENA or ENB are low. RND, when high, adds 1 to the most significant bit position of the least significant half of the product. Subsequent truncation of the 16 least significant bits produces a result correctly rounded to 16 -bit precision.
At the output, the right shift control RS selects either of two output formats: RS low produces a 31-bit product with a copy of the sign bit inserted in the MSB postion of the least significant half. RS high gives a full 32-bit product. Two 16-bit output registers are provided to hold the most and least significant halves of the result (MSP and LSP) as defined by RS. These registers are loaded on the rising edge of CLK, subject to the $\overline{\text { ENR }}$ control. When $\overline{\text { ENR }}$ is high, clocking of the result registers is prevented. For asynchronous output these registers may be made transparent by taking the feed through control (FT) high.

The two halves of the product may be routed to a single 16-bit three-state output port (MSP) via a multiplexer. MSPSEL low causes the MSP outputs to be driven by the most significant half of the result. MSPSEL high routes the least significant half of the result to the MSP pins. The MSB of the result is available in both true and complemented form to aid implementation of higher precision multipliers.

Input Formats

$A_{\text {in }}$	$B_{\text {in }}$
Fractional Two＇s Complement（TCA，TCB＝1）	
15 14 13	15 14 13 岗 2 1 0
$-2^{0} 2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}$	$-2^{0} 2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-1}$

Integer Two＇s Complement（TCA，TCB＝1）

$-2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$ （Sign）	$-2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$

Unsigned Fractional（TCA，TCB $=0$ ）

Unsigned Integer（TCA，TCB＝0）

15	14	13				
2^{15}	2^{14}	2^{13}		2^{2}	2^{1}	2^{0}
:---:	:---:	:---:	:---:			

$$
\begin{array}{|lll}
\hline 15 & 14 & 13
\end{array} 2^{15} 2^{14} 2^{13} \longrightarrow \begin{array}{ccc}
& 2 & 1 \\
2^{2} & 2^{1} & 2^{0} \\
\hline
\end{array}
$$

Output Formats

MSP
LSP
Fractional Two＇s Complement（RS $=0$ ）

31 30 29	
${ }_{(\text {Sign }}{ }^{0} 2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}$	$\overline{-S i g n) ~}^{\left(2^{0}\right.} 2^{-16} 2^{-17} \quad 2^{-28} 2^{-29} 2$

Fractional Two＇s Complement－Shifted（RS＝1）

$\begin{array}{\|llll} \hline 31 & 30 & 29 & 山 \\ \hline-2^{1} & 2^{0} & 2^{-1} & \begin{array}{lll} 18 & 17 & 16 \\ 2^{-12} & 2^{-13} & 2^{-14} \end{array} \\ \hline \end{array}$	

（Sign）
Integer Two＇s Complement（RS＝1）

$$
\begin{array}{|lll}
\hline 15 & 14 & 13 \\
2^{15} & 2^{14} & 2^{13}
\end{array} \longrightarrow \begin{array}{llll|}
\longrightarrow & 2 & 1 & 0 \\
2^{2} & 2^{1} & 2^{0} \\
\hline
\end{array}
$$

（Sign）
Unsigned Fractional（ $\mathrm{RS}=1$ ）

31	30	29				
2^{-1}	2^{-2}	2^{-3}	18	17	16	
2^{-14}	2^{-15}	2^{-16}				

$$
\begin{array}{|lll}
\hline 15 & 14 & 13 \\
2^{-17} 2^{-18} 2^{-19}
\end{array} \underbrace{4}_{2^{-30}} 2^{-31} 2^{-32}
$$

Unsigned Integer（ $\mathrm{RS}=1$ ） \qquad

$\begin{array}{\|llll\|} \hline 31 & 30 & 29 \\ 2^{31} & 2^{30} & 2^{29} & \begin{array}{lll} 18 & 17 & 16 \\ 2^{18} & 2^{17} & 2^{16} \end{array}{ }^{16} \end{array}$	

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
VcC supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current $>400 \mathrm{~mA}$

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{VCC} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{VCC} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	3.5			V
VOL	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VLL	Input Low Voltage	Note 3	0.0		0.8	V
IIX	Input Current	Ground $\leq \mathrm{VI} \leq \mathrm{VCC}$			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vo \leq Vcc			± 20	$\mu \mathrm{A}$
IOS	Output Short Current	$\mathrm{Vo}=$ Ground, $\mathrm{Vcc}=$ Max, Note 4, 8			-250	mA
ICC1	Vcc Current, Dynamic	Notes 5, 6		25	45	mA
ICC2	Vcc Current, Quiescent	Note 7			1.0	mA

16×16-bit Parallel Multiplier

Switching Characteristics Over Commercial Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMU18-65		LMU18-45		LMU18-35	
	Min	Max	Min	Max	Min	Max	
tMC	Multiply Time (Clocked)		65		45		35
tMUC	Unclocked Multiply Time		85		65		55
tD	Output Delay		30		30		25
tSEL	Output Select Delay		25		25		25
tENA	Output Enable Time (Note 11)		25		20		20
tDIS	Output Disable Time (Note 11)		24		20		20
tPW	Clock Pulse Width	15		15		15	
tH	Input Register Hold Time	5		5		5	
ts	Input Register Setup Time	15		15		12	

Switching Characteristics Over Military Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMU18-75		LMU18-55		LMU18-45	
		Min	Max	Min	Max	Min	Max
tMC	Multiply Time (Clocked)		75		55		45
tMUC	Unclocked Multiply Time		95		85		65
tD	Output Delay		35		35		30
tsel	Output Select Delay		30		30		30
tena	Output Enable Time (Note 11)		25		20		20
tDIS	Output Disable Time (Note 11)		24		20		20
tPW	Clock Pulse Width	20		15		15	
tH	Input Register Hold Time	5		5		5	
ts	Input Register Setup Time	15		15		12	

Switching Waveforms

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$C=$ capacitive load per output
$\mathrm{V}=$ suppy voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified IOL and IOH plus 30 pF capacitance.

This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between Vcc and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)

Package Style	Performance			
	$\mathbf{6 5}$ ns	$\mathbf{4 5 n s}$	$\mathbf{3 5} \mathbf{n s}$	
84-pin Plastic LCC, J-Lead - J3	LMU18JC65	LMU18JC45	LMU18JC35	
84-pin Pin Grid Array - G3	LMU18GC65	LMU18GC45	LMU18GC35	

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance			
	$\mathbf{7 5} \mathbf{n s}$			
$\mathbf{5 5} \mathbf{n s}$	$\mathbf{4 5} \mathbf{n s}$			
84-pin Pin Grid Array - G3	LMU18GM75	LMU18GM55	LMU18GM45	
	LMU18GME75	LMU18GME55	LMU18GME45	

16×16-bit Parallel Multiplier

Pin Assignments

Pin		Function	Pin		Function
J	G		1	G	
1	F03	A0	43	F09	R18
2	E03	Bo	44	F11	R19
3	E01	B1	45	G11	R20
4	E02	B2	46	G10	R21
5	F01	B3	47	G09	R22
6	D01	B4	48	H11	R23
7	D02	B5	49	H10	R24
8	C01	B6	50	J 11	R25
9	B01	B7	51	K11	R26
10	C02	B8	52	110	R27
11	A01	B9	53	L11	R28
12	B02	B10	54	K10	R29
13	B03	B11	55	K09	R30
14	A02	B12	56	L10	R31
15	A03	B13	57	L09	$\overline{\text { R31 }}$
16	B04	B14	58	K08	ENR
17	A04	B15	59	L08	$\overline{O E M}$
18	B06	ENB	60	107	RS
19	B05	CLK	61	K07	FT
20	A05	OEL	62	L07	$\overline{\text { MSPSEL }}$
21	C05	GND	63	K06	GND
22	C06	Vcc	64	106	GND
23	A06	Ro	65	105	Vcc
24	A07	R1	66	L05	TCB
25	B07	R2	67	K05	TCA
26	C07	R3	68	L06	RND
27	A08	R4	69	L04	ENA
28	B08	R5	70	K04	A15
29	A09	R6	71	L03	A14
30	A10	R7	72	L02	A13
31	B09	R8	73	K03	A12
32	A11	R9	74	L01	A11
33	B10	R10	75	K02	A10
34	C10	R11	76	102	A9
35	B11	R12	77	K01	A8
36	C11	R13	78	J 01	A7
37	D10	R14	79	H02	A6
38	D11	R15	80	H01	A5
39	F10	Vcc	81	G03	A4
40	E10	GND	82	G02	A3
41	E11	R16	83	G01	A2
42	E09	R17	84	F02	A1

Abstract

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Features

45 ns worst-case multiplyaccumulate time
Low-power CMOS technology

- Replaces TRW TDC1009

Two's complement, unsigned, or mixed operands

- Accumulator performs load, accumulate, subtract
Three-state outputs
Available screened to MIL-STD883, Class B
- Package styles available:
- 64 -pin Plastic DIP
- 64-pin Sidebraze, Hermetic DIP
- 68-pin Plastic LCC, J-Lead
- 68-pin Pin Grid Array
- 68-pin Ceramic LCC (Type C)

Description

The LMA1009 and LMA2009 are 12-bit CMOS multiplier-accumulators. They are pin for pin equivalent to the TRW TDC1009 bipolar multiplieraccumulator. Full ambient temperature range operation is achieved by the use of advanced CMOS technology. The LMA1009 and LMA2009 produce the 24 -bit product of two 12 -bit numbers. The results of a series of multiplications may be accumulated to form the sum of products. Accumulation is performed to 27 -bit precision with the multiplier product sign extended as appropriate.

Data present at the A and B input registers (12-bits) is latched in on the

rising edges of CLK A and CLK B respectively. RND, TC, ACC, and SUB controls are latched on the rising edge of the logical OR of CLK A and CLK B. The TC control specifies the input as two's complement (TC high) or as unsigned magnitude (TC low). RND, when high, adds 1 to the most significant bit position of the least significant half of the product. Subsequent truncation of the 12 least significant bits produces a result correctly rounded to 12 -bit precision.
The ACC and SUB inputs control accumulator operation. Assertion of ACC results in addition of the multiplier result and the accumulator contents, with the result stored in the accumulator register at the rising edge of CLK R. ACC and SUB high results in subtraction of the accumulator contents from the multiplier product, with the result again stored in the accumulator. With ACC low, no accumulation occurs and the next product is loaded directly into the output register.
The LMA1009 and LMA2009 output (accumulator) register is divided into three independently controlled sections. The least significant result (LSR) and most significant result (MSR) registers are 12 bits in length. The extended result register (XTR) is 3 bits long.

Each output register has an independent output enable control. In addition to providing control of the three-state output buffers, when $\overline{\text { OEX, }} \overline{\text { OEM, }}$, or $\overline{\mathrm{OEL}}$ are high and PREL is high, data can be preloaded via the bidirectional output pins into the respective output registers. Data present on the output pins is loaded in on the rising edge of CLK R. The interrelation of PREL and the enable controls is summarized in the preload truth table.

Preload Truth Table

PREL	$\overline{\text { OEX }}$	$\overline{\text { OEM }}$	$\overline{\text { OEL }}$	XTR	MSR	LSR
L	L	L	L	OUT	OUT	OUT
L	L	L	H	OUT	OUT	Z
L	L	H	L	OUT	Z	OUT
L	L	H	H	OUT	Z	Z
L	H	L	L	Z	OUT	OUT
L	H	L	H	Z	OUT	Z
L	H	H	L	Z	Z	OUT
L	H	H	H	Z	Z	Z
H	L	L	L	Z	Z	Z
H	L	L	H	Z	Z	PREL
H	L	H	L	Z	PREL	Z
H	L	H	H	Z	PREL	PREL
H	H	L	L	PREL	Z	Z
H	H	L	H	PREL	Z	PREL
H	H	H	L	PREL	PREL	Z
H	H	H	H	PREL	PREL	PREL

OUT $=$ Register available on output pins
$Z=$ High impedance state
PREL = Data can be preloaded to appropriate register

Input Formats

$\mathrm{A}_{\text {in }}$ $B_{\text {in }}$ Fractional Two's Complement ($\mathrm{TC}=1$)	
11 10 9	11 10 9
$-2^{0} 2^{-1} 2^{-2} \quad 2^{-9} 2^{-10} 2^{-11}$	$-2^{0} 2^{-1} 2^{-2} \quad 2^{-9} 2^{-10} 2^{-11}$
Unsigned Fractional ($\mathrm{TC}=0$)	
11 10 9	$11 \begin{array}{lll}10 & 9\end{array}$
$2^{-1} 2^{-2} 2^{-3} \quad 2^{-10} 2^{-11} 2^{-12}$	$2^{-1} 2^{-2} 2^{-3} \quad 2^{-10} 2^{-11} 2^{-12}$
Integer Two's Complement (TC=1) -	
	11 10 9$山$
$-2_{(\text {Sign })}^{11} 2^{10} 2^{9} \quad 2^{2} \quad 2^{1} 2^{0}$	$\begin{array}{llll} -2^{11} 2^{10} 2^{9} & 2^{2} & 2^{1} & 2^{0} \\ (\text { Sign }) \end{array}$
Unsigned Integer ($\mathrm{TC}=0$)	
$2^{11} 2^{10} 2^{9} \quad 2^{2} 2^{1} \quad 2^{0}$	$2^{11} 2^{10} 2^{9} \quad 2^{2} 2^{1} \quad 2^{0}$

Output Formats

XTR MSR LSR
 (Sign)

Unsigned Fractional

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
VCC supply voltage with respect to ground. -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current $>400 \mathrm{~mA}$

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{VCC} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	3.5			V
Vol .	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	Note 3	0.0		0.8	V
IIX	Input Current	Ground \leq Vı \leq Vcc			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vo \leq Vcc			± 20	$\mu \mathrm{A}$
Ios	Output Short Current	$\mathrm{Vo}=$ Ground, VcC $=$ Max, Note 4, 8			-250	mA
ICC1	Vcc Current, Dynamic	Notes 5, 6		12	25	mA
ICC2	Vcc Current, Quiescent	Note 7			1.0	mA

Switching Characteristics Over Commercial Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMA1009/2009-75		LMA1009/2009-55	LMA1009/2009-45		
	Min	Max	Min	Max	Min	Max	
tMC	Multiply Time (Clocked)		75		55		45
tD	Output Delay		30		25		25
tENA	Output Enable Time (Note 11)		30		30		25
tDIS	Output Disable Time		25		25		25
tHD	Input Register Hold Time	2		2		2	
tHP	Preload Hold Time	2		2		2	
tSD	Input Register Setup Time	15		15		12	
tSP	Preload Setup Time	15		15		12	
tPW	Clock Pulse Width	15		15		15	

Switching Characteristics Over Military Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMA1009/2009-95		LMA1009/2009-65	LMA1009/2009-55		
	(MC	Multiply Time (Clocked)		Max	Min	Max	Min
Max							
tD	Output Delay		95		65		55
tENA	Output Enable Time (Note 11)		35		30		25
tDIS	Output Disable Time		35		35		30
tHD	Input Register Hold Time		30		30		30
tHP	Preload Hold Time	2		2		2	
tSD	Input Register Setup Time	2		2		2	
tSP	Preload Setup Time	20		20		15	
tPW	Clock Pulse Width	20		20		15	

Switching Waveforms

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ suppy voltage
F = clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified IoL and IOH plus 30 pF capacitance.
This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device Vcc and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)

Package Style	Performance			
	75 ns	55 ns	45 ns	
LMA1009				
64-pin Plastic DIP (0.9") - P4	LMA1009PC75	LMA1009PC55	LMA1009PC45	
64-pin Sidebraze (0.9") Hermetic DIP - D6	LMA1009DC75	LMA1009DC55	LMA1009DC45	
68-pin Pin Grid Array - G2	LMA1009GC75	LMA1009GC55	LMA1009GC45	
LMA2009				
68-pin Plastic LCC, J-Lead - J2	LMA2009JC75	LMA2009JC55	LMA2009JC45	
68-pin Ceramic LCC - K3	LMA2009KC75	LMA2009KC55	LMA2009KC45	

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$)

Package Style	Performance				
	$\mathbf{9 5} \mathbf{n s}$				
	$\mathbf{6 5} \mathbf{n s}$				

12×12-bit Multiplier-Accumulator

Pin Assignments

LMA1009		2009	Function	LMA1009		2009 J,K	Function
P,D	G	J,K		P,D	G		
1	F02	52	A4	35	G10	16	R21
2	F01	51	A3	36	G11	15	R22
3	E02	50	A2	37	H10	14	R23
4	E01	49	A1	38	H11	13	R24
5	D02	48	Ao	39	110	12	R25
6	D01	47	ACC	40	111	11	R26
7	C02	46	SUB	41	K10	10	$\overline{\text { OEX }}$
8	C01	45	RND	42	L10	9	TC
9	B02	44	$\overline{\text { OEL }}$	43	K09	8	B11
10	A02	43	Ro	44	L09	7	B10
11	B03	42	R1	45	K08	6	B9
12	A03	41	R2	46	L08	5	B8
13	B04	40	R3	47	K07	4	B7
14	A04	39	R4	48	L07	3	B6
15	B05	38	R5	49	K06	2,68	Vcc
16	A05	37,36	GND	50	L06	67	B5
17	B06	35	R6	51	K05	66	B4
18	A06	33	R7	52	L05	65	B3
19	B07	32	R8	53	K04	64	B2
20	A07	31	R9	54	L04	63	B1
21	B08	30	R10	55	K03	62	Bo
22	A08	29	R11	56	L03	61	CLK B
23	B09	28	CLK R	57	K02	60	CLK A
24	A09	27	PREL	58	K01	59	A11
25	B10	26	$\overline{\text { OEM }}$	59	J02	58	A10
26	B11	25	R12	60	J 01	57	A9
27	C10	24	R13	61	H02	56	A8
28	C11	23	R14	62	H01	55	A7
29	D10	22	R15	63	C02	54	A6
30	D11	21	R16	64	C01	53	A5
31	E10	20	R17		A10	1	$N C$
32	E11	19	R18		K11	34	$N C$
33	F10	18	R19		L02		$N C$
34	F11	17	R20		B01		$N C$

Features

- 45 ns worst-case multiplyaccumulate time

Low-power CMOS technology

- Replaces TRW TDC1010 and AMD Am29510
Two's complement, unsigned, or mixed operands
- Accumulator performs load, accumulate, subtract
- Three-state outputs

A Available screened to MIL-STD883, Class B

- Package styles available:
- 64-pin Plastic DIP
- 64-pin Sidebraze, HermeticDIP
- 68-pin Plastic LCC, J-Lead
- 68-pin Pin Grid Array
- 68-pin Ceramic LCC (Type C)

Description

The LMA1010 and LMA2010 are high speed, low power multiplieraccumulators (MACs). They are pin for pin equivalent to the TRW TDC1010 and the AMD AM29510 bipolar multiplier accumulators. The LMA1010 and LMA2010 are functionally identical; they differ only in packaging. Full military ambient temperature range operation is achieved with advanced CMOS technology.

The LMA1010 produces the 32-bit product of two 16 -bit numbers. The results of a series of multiplications may be accumulated to form the sum of products. Accumulation is performed to 35-bit precision with the multiplier product sign extended as appropriate.

Data present at the A and B inputs is loaded into the input registers on the rising edges of CLK A and CLK B respectively. RND, TC, ACC, and SUB controls are loaded on the rising edge of the logical OR of CLK A and CLK B. The TC control specifies the input as two's complement (TC high) or unsigned magnitude (TC low). RND, when high, adds 1 to the most significant bit position of the least significant half of the product. Subsequent truncation of the 16 least significant bits produces a result correctly rounded to 16-bit precision.

The ACC and SUB inputs control accumulator operation. Assertion of ACC results in addition of the multiplier result and the accumulator contents, with the result stored in the accumulator register at the rising edge of CLK R. ACC and SUB high results in subtraction of the accumulator contents from the multiplier product, with the result again stored in the accumulator. With ACC low, no accumulation occurs and the next product is loaded directly into the output register.
The LMA1010 output (accumulator) register is divided into three independently controlled sections. The least significant result (LSR) and most significant result (MSR) registers are 16 bits in length. The extended result register (XTR) is 3 bits long. The LSR output pins are multiplexed with the B input pins.
Each output register has an independent output enable control. In addition to providing three-state control of the output buffers, when $\overline{\mathrm{OEX}}, \overline{\mathrm{OEM}}$, or $\overline{\text { OEL }}$ are high and PREL is high, data can be preloaded via the bidirectional output pins into the respective output registers. Data present on the output pins is loaded in on the rising edge of CLK R. The interrelation of PREL and enable controls is summarized in the preload truth table.

Preload Truth Table

PREL	OEX	OEM	OEL	XTR	MSR	LSR
L	L	L	L	OUT	OUT	OUT
L	L	L	H	OUT	OUT	Z
L	L	H	L	OUT	Z	OUT
L	L	H	H	OUT	Z	Z
L	H	L	L	Z	OUT	OUT
L	H	L	H	Z	OUT	Z
L	H	H	L	Z	Z	OUT
L	H	H	H	Z	Z	Z
H	L	L	L	Z	Z	Z
H	L	L	H	Z	Z	PREL
H	L	H	L	Z	PREL	Z
H	L	H	H	Z	PREL	PREL
H	H	L	L	PREL	Z	Z
H	H	L	H	PREL	Z	PREL
H	H	H	L	PREL	PREL	Z
H	H	H	H	PREL	PREL	PREL

OUT = Register available on output pins
$Z=$ High impedance state
PREL = Data can be preloaded to appropriate register

Input Formats

$\mathbf{A}_{\text {in }} \quad \mathbf{B}_{\text {in }}$Fractional Two's Complement (TC $=1)$	
	15 14 13 \leftrightarrows
$-2^{0} 2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}$	$-2^{0} 2^{-1} 2^{-2} \quad 2^{-13} 2^{-14} 2^{-15}$
Unsigned Fractional ($T C=0$) -	
$2^{-1} 2^{-2} 2^{-3} \quad 2^{-14} 2^{-15} 2^{-16}$	$2^{-1} 2^{-2} 2^{-3} \quad 2^{-14} 2^{-15} 2^{-16}$
_- Integer Two's Complement ($T C=1$)	
$-2_{(\text {Sign })}^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$	$-2^{25} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$
Unsigned Integer ($T C=0$)	
$2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$	$2^{15} 2^{14} 2^{13} \quad 2^{2} 2^{1} 2^{0}$

Output Formats

XTR
MSR

LSR

Fractional Two's Complement

$34 \quad 33 \quad 32$	31 30 29	15 14 13
$-2^{4} 2^{3} 2^{2}$	$2^{1} \quad 2^{0} 2^{-1} \quad 2^{-12} 2^{-13} 2^{-14}$	$2^{-15} 2^{-16} 2^{-17} \quad 2^{-28} 2^{-29} 2^{-30}$
Unsigned Fractional		
$34 \quad 33 \quad 32$	31 30 29	
$2^{2} 2^{\prime} 2^{0}$	$2^{-1} 2^{-2} 2^{-3} \quad 2^{-14} 2^{-15} 2^{-16}$	$2^{-17} 2^{-18} 2^{-19} \quad 2^{-30} 2^{-31} 2^{-32}$

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current 400 mA

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{VCC} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{VCC} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{lOH}=-2.0 \mathrm{~mA}$	3.5			V
Vol	Output Low Voltage	$\mathrm{IOL}=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	Note 3	0.0		0.8	V
IIX	Input Current	Ground \leq VI \leq Vcc			± 20	$\mu \mathrm{A}$
IOZ	Output Leakage Current	Ground \leq Vo \leq Vcc			± 20	$\mu \mathrm{A}$
Ios	Output Short Current	$\mathrm{Vo}=$ Ground, $\mathrm{Vcc}=$ Max, Note 4, 8			-250	mA
ICC1	Vcc Current, Dynamic	Notes 5, 6		12	25	mA
ICC2	Vcc Current, Quiescent	Note 7			1.0	mA

16×16-bit Multiplier-Accumulator

Switching Characteristics Over Commercial Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMA1010/2010-65		LMA1010/2010-55		LMA1010/2010-45	
		Min	Max	Min	Max	Min	Max
tMC	Multiply Time (Clocked)		65		55		45
tD	Output Delay		30		25		25
tena	Output Enable Time (Note 11)		30		30		30
tDIS	Output Disable Time (Note 11)		30		25		25
tHD	Input Register Hold Time	0		0		0	
thP	Preload Hold Time	0		0		0	
tSD	Input Register Setup Time	15		15		12	
tsp	Preload Setup Time	15		15		12	
tPW	Clock Pulse Width	15		15		15	

Switching Characteristics Over Military Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMA1010/2010-75		LMA1010/2010-65		LMA1010/2010-55	
		Min	Max	Min	Max	Min	Max
tMC	Multiply Time (Clocked)		75		65		55
tD	Output Delay		35		30		30
tena	Output Enable Time (Note 11)		35		30		30
tDIS	Output Disable Time (Note 11)		35		25		25
tHD	Input Register Hold Time	0		0		0	
tHP	Preload Hold Time	0		0		0	
tSD	Input Register Setup Time	20		15		12	
tsp	Preload Setup Time	20		15		12	
tPW	Clock Pulse Width	20		15		15	

Switching Waveforms

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ suppy voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except ten/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified IoL and IOH plus 30 pF capacitance.

This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)

Package Style	Performance			
	65 ns	55 ns	45 ns	
LMA1010				
64-pin Plastic DIP (0.9") - P4	LMA1010PC65	LMA1010PC55	LMA1010PC45	
64-pin Sidebraze (0.9") Hermetic DIP — D6	LMA1010DC65	LMA1010DC55	LMA1010DC45	
68-pin Pin Grid Array - G2	LMA1010GC65	LMA1010GC55	LMA1010GC45	
LMA2010				
68-pin Plastic LCC, J-Lead - J2	LMA2010JC65	LMA2010JC55	LMA2010JC45	
68-pin Ceramic LCC - K3	LMA2010KC65	LMA2010KC55	LMA2010KC45	

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance			
	75 ns	65 ns	55 ns	
LMA1010				
64-pin Sidebraze (0.9") Hermetic DIP - D6	LMA1010DM75 LMA1010DME75 LMA1010DMB75	LMA1010DM65 LMA1010DME65 LMA1010DMB65	LMA1010DM55 LMA1010DME55 LMA1010DMB55	
68-pin Pin Grid Array - G2	LMA1010GM75 LMA1010GME75 LMA1010GMB75	LMA1010GM65 LMA1010GME65 LMA1010GMB65	LMA1010GM55 LMA1010GME55 LMA1010GMB55	
LMA2010				
68-pin Ceramic LCC - K3	LMA2010KM75 LMA2010KME75 LMA2010KMB75	LMA2010KM65 LMA2010KME65 LMA2010KMB65	LMA2010KM55 LMA2010KME55 LMA2010KMB55	

Pin Assignments

LMA1010		2010	Function	LMA1010		2010	Function
P,D	G	J,K		P, D	G	J,K	
1	F02	1	A6	35	G10	34	R26
2	F01	68	A5	36	G11	33	R27
3	E02	67	A4	37	H10	32	R28
4	E01	66	A3	38	H11	31	R29
5	D02	65	A2	39	110	30	R30
6	D01	64	A1	40	J11	29	R31
7	C02	63	A0	41	K10	28	R32
8	C01	62	Ro, Bo	42	L10	27	R33
9	B02	61	R1,B1	43	K09	26	R34
10	A02	60	R2,B2	44	L09	25	CLK R
11	B03	59	R3, 33	45	K08	24	$\overline{\mathrm{OEM}}$
12	A03	58	R4,B4	46	L08	23	PREL
13	B04	57	R5,B5	47	K07	22	$\overline{\text { OEX }}$
14	A04	56	R6,B6	48	L07	21	TC
15	B05	55	R7,B7	49	K06	20,19,18,17	Vcc
16	A05	54,53	GND	50	. L06	16	CLK B
17	B06	52	R8,B8	51	K05	15	CLK A
18	A06	51	R9,B9	52	L05	14	ACC
19	B07	50	R10,B10	53	K04	13	SUB
20	A07	49	R11,B11	54	L04	12	RND
21	B08	48	R12,B12	55	K03	11	$\overline{\mathrm{OEL}}$
22	A08	47	R13,B13	56	L03	10	A15
23	B09	46	R14,B14	57	K02	9	A14
24	A09	45	R15,B15	58	K01	8	A13
25	B10	44	R16	59	J02	7	A12
26	B11	43	R17	60	J01	6	A11
27	C10	42	R18	61	H02	5	A10
28	C11	41	R19	62	H01	4	A9
29	D10	40	R20	63	G02	3	A8
30	D11	39	R21	64	G01	2	A7
31	E10	38	R22		A10		NC
32	E11	37	R23		K11		NC
33	F10	36	R24		L02		NC
34	F11	35	R25		B01		$N C$

(c) 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Features

12×12-bit multiplier with pipelined 26-bit output summer

Summer has 26-bit input port fully independent from multiplier inputs

- Cascadable to form video rate FIR filter with 3-bit headroom

A B, and C input registers separately enabled for maximum flexibility

- 25 MHz data rate for FIR filtering applications

High speed, low power CMOS technology

- Package styles available:
- 84-pin Plastic LCC J-Lead
- 84 -pin Grid Array

Description

The LMS12 is a high speed 12×12-bit combinatorial multiplier integrated with a 26 -bit adder in a single 84 -pin package. It is an ideal building block for the implementation of very high speed FIR filters for video, RADAR, and other similar applications. The LMS12 implements the general form $(A \bullet B)+C$. As a result, it is also useful in implementing polynomial approximations to transcendental functions.

Architecture

A block diagram of the LMS12 is shown below. Its major features are discussed individually in the following paragraphs.

Multiplier

The $\mathrm{A} 11-\mathrm{A} 0$ and $\mathrm{B} 11-\mathrm{B} 0$ inputs to the LMS12 are captured at the rising edge

LMS12 Block Diagram

of the clock in the 12 -bit A and B input register, respectively. These registers are independently enabled by the ENA and ENB inputs. The registered input data are then applied to a 12×12-bit multiplier array, which produces a 24 -bit result. Both the inputs and outputs of the multiplier are in 2's complement format. The multiplication result forms the input to the 24 -bit product register.

Summer

The C25-C0 inputs to the LMS12 form a 26-bit 2's complement number which is captured in the C register at the rising edge of the clock. The C register is enabled by assertion of the $\overline{\mathrm{ENC}}$ input. The summer is a 26 -bit adder which operates on the C register data and the (sign extended) contents of the product register to produce a 26 -bit sum. This sum is applied to the 26 -bit S register.

Output Multiplexer

The FTS input controls a multiplexer which selects the data to be output on the $\mathrm{S}_{25}-\mathrm{S}_{0}$ lines. When FTS is asserted, the summer result is applied directly to the S output port. When FTS is deasserted, the multiplexer selects the S register for output on the S port, effecting a one-cycle delay of the summer result. The S output port can be forced to a high impedance state by driving the OE control line high. FTS would be asserted for conventional FIR filter applications, however the insertion of zero-coefficient filter taps may be accomplished by negating FTS. Negating FTS also allows application of the same filter transfer function to two interleaved datastreams with successive input and output sample points occurring on alternate clock cycles.

Figure 2. Flow diagram for 5-tap FIR filter.

Applications

The LMS12 is designed specifically for high speed FIR filtering applications requiring a throughput rate of one output sample per clock period. By cascading LMS12 units, the transpose form of the FIR transfer function is implemented directly, with each of the LMS12 units supplying one of the filter weights, and the cascaded summers accumulating the results. The signal flow graph for a 5-tap FIR filter and the equivalent implementation using LMS12's is shown in Fig. 2.

The operation of the 5 -tap FIR filter implementation of Fig. 2 is depicted in Table 1. The filter weights h 4 -h 0 are assumed to be latched in the B input registers of the LMS12 units. The $x(n)$ data is applied in parallel to the A input registers of all devices. For descriptive purposes in the table, the A-register contents and Sum output data of each device is labelled according to the index of the weight applied by that device; i.e., S_{0} is produced by the rightmost device, which has ho as
its filter weight and A 0 as its input register contents. Each column represents one clock cycle, with the data passing a particular point in the system illustrated across each row.

Table 1. Timing example for 5 -tap nondecimating FIR filter.

CLK Cycle	1	2	3	4	5	6	7	8	9
$X(n)$	Xn	$\mathrm{X}_{\mathrm{n}+1}$	X_{n+2}	$\mathrm{X}_{\mathrm{n}+3}$	$\mathrm{X}_{\mathrm{n}+4}$	X_{n+5}	X_{n+6}	X_{n+7}	X_{n+8}
A4 Register Sum 4		Xn_{n}	$\begin{aligned} & X_{n+1} \\ & h 4 X_{n} \end{aligned}$	$\begin{aligned} & X_{n+2} \\ & h 4 X_{n+1} \end{aligned}$	$\begin{aligned} & X_{n+3} \\ & h 4 X_{n+2} \end{aligned}$	$\begin{aligned} & X_{n+4} \\ & h 4 X_{n+3} \end{aligned}$	X_{n+5} $h 4 X_{n+4}$	X_{n+6} $h 4 X_{n+5}$	$\mathrm{X}_{\mathrm{n}+7}$ $h 4 X_{n+6}$
A3 Register Sum 3		X_{n}	X_{n+1} $h_{3} X_{n}$ $+h 4 X_{n-1}$	$\begin{aligned} & X_{n+2} \\ & h_{3} X_{n+1} \\ & +h_{4} X_{n} \\ & \hline \end{aligned}$	$\begin{aligned} & X_{n+3} \\ & h 3 X_{n+2} \\ & +h 4 X_{n+1} \end{aligned}$	X_{n+4} $h 3 X_{n+3}$ $+h 4 X_{n+2}$	X_{n+5} $h_{3} X_{n+4}$ $+h 4 X_{n+3}$	X_{n+6} $h_{3} X_{n+5}$ $+h 4 X_{n+4}$	X_{n+7} $h 3 X_{n+6}$ $+h 4 X_{n+5}$
A2 Register Sum 2		Xn_{n}	$\begin{aligned} & X_{n+1} \\ & \quad h 2 X_{n} \\ & +h_{3} X_{n-1} \\ & +h_{4} X_{n-2} \end{aligned}$	$\begin{aligned} & X_{n+2} \\ & h_{2} X_{n+1} \\ & +h_{3} X_{n} \\ & +h_{4} X_{n-1} \end{aligned}$	$\begin{aligned} & X_{n+3} \\ & h_{2} X_{n+2} \\ & +h_{3} X_{n+1} \\ & +h_{4} X_{n} \end{aligned}$	X_{n+4} $\begin{array}{r} h_{2} X_{n+3} \\ +h_{3} X_{n+2} \\ +h_{4} X_{n+1} \end{array}$	$\begin{aligned} & X_{n+5} \\ & h_{2} X_{n+4} \\ & +h_{3} X_{n+3} \\ & +h_{4} X_{n+2} \end{aligned}$	$\begin{aligned} & X_{n+6} \\ & h_{2} X_{n+5} \\ & +h_{3} X_{n+4} \\ & +h_{4} X_{n+3} \end{aligned}$	$\begin{aligned} & X_{n+7} \\ & h 2 X_{n+6} \\ & +h 3 X_{n+5} \\ & +h_{4} X_{n+4} \end{aligned}$
A1 Register Sum 1		Xn	X_{n+1} $\begin{aligned} & h_{1} X_{n} \\ &+ h_{2} X_{n-1} \\ &+ h_{3} X_{n-2} \\ &+ h_{4} X_{n-3} \end{aligned}$	$\mathrm{X}_{\mathrm{n}+2}$ $\begin{aligned} & h_{1} X_{n+1} \\ + & h_{2} X_{n} \\ + & h_{3} X_{n-1} \\ + & h_{4} X_{n-2} \end{aligned}$	$\begin{aligned} & X_{n+3} \\ & h_{1} X_{n+2} \\ & +h_{2} X_{n+1} \\ & +h_{3} X_{n} \\ & +h_{4} X_{n-1} \end{aligned}$	X_{n+4} $\begin{aligned} & h_{1} X_{n+3} \\ &+ h_{2} X_{n+2} \\ &+ h_{3} X_{n+1} \\ &+ h_{4} X_{n} \end{aligned}$	$\begin{aligned} & X_{n+5} \\ & h 1 X_{n+4} \\ & +h_{2} X_{n+3} \\ & +h_{3} X_{n+2} \\ & +h 4 X_{n+1} \end{aligned}$	X_{n+6} $\begin{array}{r} h 1 X_{n+5} \\ +h_{2} X_{n+4} \\ +h_{3} X_{n+3} \\ +h_{4} X_{n+2} \end{array}$	$\mathrm{X}_{\mathrm{n}+7}$ $\begin{array}{r} h_{1} X_{n+6} \\ +h_{2} X_{n+5} \\ +h_{3} X_{n+4} \\ +h_{4} X_{n+3} \end{array}$
Ao Register Sum 0		Xn_{n}	$\begin{aligned} & X_{n+1} \\ & \quad h 0 X_{n} \\ & +h_{1} X_{n-1} \\ & +h_{2} X_{n-2} \\ & +h_{3} X_{n-3} \\ & +h_{4} X_{n-4} \end{aligned}$	$\begin{aligned} & X_{n+2} \\ & \quad h 0 X_{n+1} \\ & +h_{1} X_{n} \\ & +h_{2} X_{n-1} \\ & +h_{3} X_{n-2} \\ & +h_{4} X_{n-3} \end{aligned}$	$\begin{aligned} & X_{n+3} \\ & h 0 X_{n+2} \\ & +h_{1} X_{n+1} \\ & +h_{2} X_{n} \\ & +h_{3} X_{n-1} \\ & +h_{4} X_{n-2} \end{aligned}$	$\begin{aligned} & X_{n+4} \\ & h_{0} X_{n+3} \\ & +h_{1} X_{n+2} \\ & +h_{2} X_{n+1} \\ & +h_{3} X_{n} \\ & +h_{4} X_{n-1} \end{aligned}$	X_{n+5} hoXn+4 $+h_{1} X_{n+3}$ $+h_{2} X_{n+2}$ $+h_{3} X_{n+1}$ $+h 4 X_{n}$	$\begin{aligned} & X_{n+6} \\ & h 0 X_{n+5} \\ & +h_{1} X_{n+4} \\ & +h_{2} X_{n+3} \\ & +h_{3} X_{n+2} \\ & +h_{4} X_{n+1} \end{aligned}$	X_{n+7} $h 0 X_{n+6}$ $+h 1 X_{n+5}$ $+h 2 X_{n+4}$ $+h 3 X_{n+3}$ $+h 4 X_{n+2}$

12-bit Cascadable Multiplier-Summer

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current > 400 mA

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics
 Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{lOH}=-2.0 \mathrm{~mA}$	3.5			V
Vol	Output Low Voltage	$1 \mathrm{OL}=4.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VLL	Input Low Voltage	Note 3			0.8	V
IIX	Input Current	Ground $\leq \mathrm{V}_{1} \leq \mathrm{VCC}$			± 20	$\mu \mathrm{A}$
loz	Output Leakage Current	Ground \leq Vo \leq Vcc			± 20	$\mu \mathrm{A}$
Ios	Output Short Current	Vo $=$ Ground, Vcc $=$ Max, Note 4, 8			-250	mA
ICC1	Vcc Current, Dynamic	Notes 5, 6		15	25	mA
ICC2	Vcc Current, Quiescent	Note 7			1.0	mA

Switching Characteristics Over Commercial Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMS12-65		LMS12-50		LMS12-40	
		Min	Max	Min	Max	Min	Max
tCP	Clock Period		40		35		30
tD	Clock to S-FT = 1		50		40		35
	Clock to S-FT $=0$		25		25		25
tsc	C Data Setup Time	15		10		5	
tsAB	A, B Data Setup Time	15		10		10	
tsen	ENA, ENB , ENC Setup Time	15		10		10	
tHC	C Data Hold Time	5		5		5	
tHAB	A, B Data Hold Time	5		5		5	
tHEN	ENA, $\overline{\text { ENB }}$, $\overline{\text { ENC }}$ Hold Time	5		5		5	
tPW	Clock PulseWidth	15		15		12	
tENA	Output Enable Time (Note 11)		25		25		25
tDIS	Output Disable Time (Note 11)		22		22		22

Switching Characteristics Over Military Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LMS1 2-65		LMS12-50	
		Min	Max	Min	Max
tCP	Clock Period		40		35
tD	Clock to S-FT = 1		50		40
	Clock to S-FT $=0$		25		25
tsc	C Data Setup Time	15		10	
tSAB	A, B Data Setup Time	15		10	
tSEN	ENA, ENB , $\overline{\text { ENC }}$ Setup Time	15		10	
thC	C Data Hold Time	5		5	
tHAB	A, B Data Hold Time	5		5	
then	$\overline{\mathrm{ENA}}, \overline{\text { ENB }}, \overline{\mathrm{ENC}}$ Hold Time	5		5	
tPW	Clock PulseWidth	15		15	
tena	Output Enable Time (Note 11)		25		25
tDIS	Output Disable Time (Note 11)		22		22

DEVICES INCORPORATED

12-bit Cascadable Multiplier-Summer

Switching Waveforms

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{N C V^{2} F}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ suppy voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified Iol and IOH plus 30 pF capacitance.

This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device Vcc and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

12-bit Cascadable Multiplier-Summer

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)

Package Style	Performance			
	$\mathbf{6 5}$ ns	$\mathbf{5 0} \mathbf{n s}$	$\mathbf{4 0} \mathbf{n s}$	
	LMS12JC65	LMS12JC50	LMS12JC40	
84-pin Pin Grid Array - G3	LMS12GC65	LMS12G50	LMS12GC40	

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance			
	$\mathbf{6 5} \mathbf{n s}$			
84-pin Pin Grid Array - G3	LMS12GM65	LMS12GM50		
	LMS12GME65	LMS12GME50		
	LMS12GMB65	LMS12GMB50		

Pin Assignments

Pin		Function	Pin		Function
J,K	G		J,K	G	
1	F03	A4	43	F09	S9
2	E03	A5	44	F11	S8
3	E01	A6	45	G11	S7
4	E02	A7	46	G10	S6
5	F01	A8	47	C09	S5
6	D01	A9	48	H11	S4
7	D02	A10	49	H10	S3
8	C01	A11	50	111	S2
9	B01	ENA	51	K11	S1
10	C02	Bo	52	J 10	So
11	A01	B1	53	L11	C25
12	B02	B2	54	K10	C_{24}
13	B03	B3	55	K09	C_{2}
14	A02	B4	56	L10	C22
15	A03	CLK	57	L09	C_{21}
16	B04	B5	58	K08	C20
17	A04	B6	59	L08	C19
18	B06	B7	60	107	C18
19	B05	B8	61	K07	C17
20	A05	B9	62	L07	C16
21	C05	B10	63	K06	C15
22	C06	B11	64	J06	C14
23	A06	ENB	65	J05	C13
24	A07	S25	66	L05	C12
25	B07	S24	67	K05	C 11
26	C07	S23	68	L06	C10
27	A08	S22	69	L04	C9
28	B08	S21	70	K04	C8
29	A09	S20	71	103	C7
30	A10	$\overline{\mathrm{OE}}$	72	L02	C6
31	B09	FTS	73	K03	C5
32	A11	Vcc	74	L01	GND
33	B10	S19	75	K02	C4
34	C10	S18	76	J02	C3
35	B11	S17	77	K01	C2
36	C11	S16	78	J01	C 1
37	D10	S15	79	H02	Co
38	D11	S14	80	H01	ENC
39	F10	S13	81	C03	A0
40	E10	S12	82	G02	A1
41	E11	S11	83	G01	A2
42	E09	S10	84	F02	A3

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Multilevel Pipeline Register

L29C520/521

Features

Four 8-bit registers
\square Implements double 2-stage pipeline or single 4-stage pipeline register

- Hold, Shift, Load instructions

Separate data in and data out pins

- High-speed, low-power CMOS technology
\square Three-state outputs
- Available 100% screened to MIL-STD-883, Class B
- Plug-compatible with AMD AM29520 and AM29521

Package styles available:

- 24-pin Plastic DIP
- 24-pin CerDIP
- 24-pin Sidebraze, Hermetic DIP
- 24-pin Ceramic Flatpack
- 28-pin Plastic LCC, J-Lead
- 28-pin Ceramic LCC (Type C)

Description

The Logic Devices L29C520 and L29C521 are pin for pin compatible with the Advanced Micro Devices AM29520 and AM29521, implemented in low power CMOS.

The L29C520 and L29C521 contain four registers which can be configured as two independent, 2-level pipelines or as one 4-level pipeline.

The Instruction pins, I0 and I1, control the loading of the registers. For either device, the registers may be configured as a four-stage delay line, with data loaded into R1 and shifted sequentially through R2, R3, and R4. Also, for the L29C520, data may be loaded from the inputs into either R_{1} or R3 with only R2 or R4 shifting. The L29C521 devices differ from the L29C520 in that R2 and R4 remain unchanged during this type of data load, as shown in Tables 1 and 2. Finally, I0 and I1 may be set to prevent any register from changing.

The S 0 and S 1 select lines control a 4 to 1 multiplexer which routes the contents of any of the registers to the Y output pins. The independence of
the I and S controls allows simultaneous write and read operations on different registers.

Table 1

$\mathbf{I} \mathbf{1}$	$\mathbf{l o}$	L29C520 Instruction		
L	L	$D \rightarrow R 1 \quad R 1 \rightarrow R 2 \quad R 2 \rightarrow R 3$	$R 3 \rightarrow R 4$	
L	H	$H O L D \quad H O L D$	$D \rightarrow R 3 \quad R 3 \rightarrow R 4$	
H	L	$D \rightarrow R 1$	$R 1 \rightarrow R 2$	HOLD \quad HOLD
H	H	ALL REGISTERS ON HOLD		

Table 2

\mathbf{I}	$\mathbf{l o}$	L29C521 Instruction		
L	L	D \rightarrow R1 \quad R1 \rightarrow R2	R2 \rightarrow R3	R3 \rightarrow R4
L	H	HOLD HOLD	D \rightarrow R3 HOLD	
H	L	D \rightarrow R1 HOLD	HOLD HOLD	
H	H	ALL REGISTERS ON HOLD		

Table 3

S1	So	Reg. Selected
L	L	Reg 4
L	H	Reg 3
H	L	Reg 2
H	H	Reg 1

L29C520/521 Block Diagram

Multilevel Pipeline Register

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current > 400 mA

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{lOH}=-6.5 \mathrm{~mA}$	3.5			v
Vol	Output Low Voltage	$\mathrm{lOL}=20.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VLL	Input Low Voltage	Note 3			0.8	V
IIx	Input Current	Ground \leq VI \leq Vcc			± 20	$\mu \mathrm{A}$
loz	Output Leakage Current	Ground $\leq \mathrm{Vo} \leq \mathrm{Vcc}$			± 20	$\mu \mathrm{A}$
los	Output Short Current	$\mathrm{Vo}=$ Ground, $\mathrm{Vcc}=$ Max, Note 4, 8	-20		-100	mA
IcC1	Vcc Current, Dynamic	Notes 5, 6		10	15	mA
Icc2	Vcc Current, Quiescent	Note 7			1.0	mA

DEVICES INCORPORATED

Switching Characteristics Over Commercial Operating Range (Notes 9, 10) (ns)

	Symbol	Parameter	L29C52x-25	
	L29C52x-22			
tPD	CLK to Y7-Y0	Min	Max	Min
Max				
tSEL	S1,S0 to Y7-Y1		25	
tSD	D7-Do to CLK Setup	22		
tHD	CLK to D7-Do Hold	13		10
tsI	I1,lo to CLK Setup	3		3
tHI	CLK to I1,lo Hold	13		10
tDIS	$\overline{O E}$ to Output Disable (Note 11)	3		3
tENA	$\overline{O E}$ to Output Enable (Note 11)		25	
tPW	Clock Pulse Width	10		

Switching Characteristics Over Military Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	L29C52x-30	L29C52x-24	
tPD	CLK to Y7-Y0	Min	Max	Min
Max				
tsEL	S1,So to Y7-Y0		30	
tSD	D7-Do to CLK Setup	24		
tHD	CLK to D7-Do Hold	15		10
tsi	I1,lo to CLK Setup	5		3
tHI	CLK to I1,lo Hold	15		10
tDIS	$\overline{O E}$ to Output Disable (Note 11)	5		3
tENA	$\overline{O E}$ to Output Enable (Note 11)		20	
tPW	Clock Pulse Width	16		

Multilevel Pipeline Register

Switching Waveforms

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V. Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where

$$
\begin{aligned}
& \mathrm{N}=\text { total number of device outputs } \\
& \mathrm{C}=\text { capacitive load per output } \\
& \mathrm{V}=\text { suppy voltage } \\
& \mathrm{F}=\text { clock frequency }
\end{aligned}
$$

6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified IOL and IOH plus 30 pF capacitance.

This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between Vcc and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)

Package Style	Performance		
	25 ns	22 ns	
L29C520			
24-pin Plastic DIP (0.3') - P2	L29C520PC25	L29C520PC22	
24-pin Sidebraze ($0.3^{\prime \prime}$) Hermetic DIP - D2	L29C520DC25	L29C520DC22	
24-pin CerDIP (0.3") - C1	L29C520CC25	L29C520CC22	
28-pin Plastic LCC, J-Lead - J4	L29C520JC25	L29C520JC22	
28-pin Ceramic LCC - K1	L29C520KC25	L29C520KC22	
L29C521			
24-pin Plastic DIP (0.3') - P2	L29C521PC25	L29C521PC22	
24-pin Sidebraze (0.3") Hermetic DIP - D2	L29C521DC25	L29C521DC22	
24-pin CerDIP (0.3") - C1	L29C521CC25	L29C521CC22	
28-pin Plastic LCC, J-Lead - J4	L29C521JC25	L29C521JC22	
28-pin Ceramic LCC - K1	L29C521KC25	L29C521 KC22	

Pin Assignments

Pin		Function	Pin		Function
P,D,C,F	J,K		P,D,C,F	J,K	
1	1	10	15	17	Y_{6}
2	2	11	16	19	Y_{5}
3	3	D_{0}	17	20	Y_{4}
4	5	D_{1}	18	21	Y_{3}
5	6	D_{2}	19	22	Y_{2}
6	7	D_{3}	20	23	Y_{1}
7	8	D 4	21	24	Y_{0}
8	9	D 5	22	26	S 1
9	10	D 6	23	27	S 0
10	12	D 7	24	28	VcC
11	13	CLK		4	NC
12	14	GND		11	NC
13	15	$\overline{\mathrm{OE}}$		18	NC
14	16	Y 7		25	NC

Ordering Information

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance		
	30 ns	24 ns	
L29C520			
$\begin{array}{r} \text { 24-pin Sidebraze (} 0.3^{\prime \prime} \text {) } \\ \text { Hermetic DIP - D2 } \end{array}$	$\begin{aligned} & \text { L29C520DM30 } \\ & \text { L29C520DME30 } \end{aligned}$	L29C520DM24 L29C520DME24 L29C520DMB24	
24-pin CerDIP (0.3") - C1	$\begin{aligned} & \text { L29C520CM30 } \\ & \text { L29C520CME30 } \end{aligned}$	$\begin{aligned} & \text { L29C520CM24 } \\ & \text { L29C520CME } 24 \\ & \text { L29C520CMB24 } \end{aligned}$	
24-pin Ceramic Flatpack - F1	L29C520FM30 L29C520FME30	L29C520FM24 L29C520FME24 L29C520FMB24	
28-pin Ceramic LCC - K1	$\begin{aligned} & \text { L29C520KM30 } \\ & \text { L29C520KME30 } \end{aligned}$	$\begin{aligned} & \text { L29C520KM } 24 \\ & \text { L29C520KME24 } \\ & \text { L29C520KMB24 } \end{aligned}$	
L29C521			
$\begin{array}{r} \text { 24-pin Sidebraze (0.3") } \\ \text { Hermetic DIP - D2 } \end{array}$	$\begin{aligned} & \text { L29C521DM30 } \\ & \text { L29C521DME30 } \end{aligned}$	L29C521DM24 L29C521DME24 L29C521DMB24	
24-pin CerDIP (0.3") - C1	L29C521CM30	L29C521CM24 L29C521CME24 L29C521CMB24	
24-pin Ceramic Flatpack - F1	L29C521FM30 L29C521FME30	L29C521FM24 L29C521FME24 L29C521FMB24	
28-pin Ceramic LCC - K1	$\begin{aligned} & \text { L29C521 KM30 } \\ & \text { L29C521KME30 } \end{aligned}$	L29C521 KM24 L29C521KME24 L29C521KMB24	

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Features

F Four 16-bit registers
Implements double 2-stage pipeline or single 4-stage pipeline register
\square Hold, Shift, Load instructionsSeparate data in and data out pins

- High-speed, low-power CMOS technology
\square Three-state outputs
- Available 100\% screened to MIL-STD-883, Class B

Package styles available:

- 40-pin Plastic DIP
- 40-pin Sidebraze, Hermetic DIP
- 44-pin Plastic LCC, J-Lead
- 44-pin Ceramic LCC (Type C)

Description

The Logic Devices LPR520 and LPR521 are functionally compatible with the Advanced Micro Devices AM29520 and AM29521 but are 16 bits wide. They are implemented in low power CMOS.

The LPR520 and LPR521 contain four registers which can be configured as two independent, 2-level pipelines or as one 4 -level pipeline.

The Instruction pins, I0 and I1, control the loading of the registers. For either device, the registers may be configured as a four-stage delay line, with data loaded into R1 and shifted sequentially through $\mathrm{R} 2, \mathrm{R} 3$, and R 4 . Also, for the LPR520, data may be loaded from the inputs into either R1 or R3 with only R2 or R4 shifting. The LPR521 devices differ from the LPR520 in that R2 and R4 remain unchanged during this type of data load, as shown in Tables 1 and 2. Finally, I0 and I1 may be set to prevent any register from changing.

The S0 and S1 select lines control a 4 to 1 multiplexer which routes the contents of any of the registers to the

Y output pins. The independence of the I and S controls allows simultaneous write and read operations on different registers.

Table 1

11	10	LPR520 Instruction
L	L	$\mathrm{D} \rightarrow \mathrm{R} 1 \mathrm{R} 1 \rightarrow \mathrm{R} 2 \mathrm{R} 2 \rightarrow \mathrm{R} 3 \mathrm{R} 3 \rightarrow \mathrm{R} 4$
L	H	HOLD HOLD D \rightarrow R3 R3 \rightarrow R4
H	L	$D \rightarrow$ R1 R1 \rightarrow R2 HOLD HOLD
H	H	ALL REGISTERS ON HOLD

Table 2

11	10	LPR521 Instruction
L	L	$\mathrm{D} \rightarrow \mathrm{R} 1 \mathrm{R} 1 \rightarrow \mathrm{R} 2 \mathrm{R} 2 \rightarrow \mathrm{R} 3 \mathrm{R} 3 \rightarrow \mathrm{R} 4$
L	H	HOLD HOLD D \rightarrow R3 HOLD
H	L	D \rightarrow R1 HOLD HOLD HOLD
H	H	ALL REGISTERS ON HOLD

Table 3

S1	So	Reg. Selected
L	L	Reg 4
L	H	Reg 3
H	L	Reg 2
H	H	Reg 1

LPR520/521 Block Diagram

Multilevel Pipeline Register

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
VcC supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current $>400 \mathrm{~mA}$

Operating Conditions
 To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	3.5			V
Vol	Output Low Voltage	$1 \mathrm{OL}=20.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	Note 3			0.8	V
IIx	Input Current	Ground \leq VI \leq Vcc			± 20	$\mu \mathrm{A}$
loz	Output Leakage Current	Ground \leq Vo \leq Vcc			± 20	$\mu \mathrm{A}$
los	Output Short Current	Vo $=$ Ground, Vcc $=$ Max, Note 4, 8	-20		-100	mA
Icc1	Vcc Current, Dynamic	Notes 5, 6		10	25	mA
Icc2	Vcc Current, Quiescent	Note 7			1.0	mA

Switching Characteristics Over Commercial Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LPR5 2x-25		LPR52x-22	
		Min	Max	Min	Max
tPD	CLK to Y15-Y0		25		22
tSEL	S1, S0 to Y15-Y0		25		20
tsD	D15-Do to CLK Setup	13		10	
tHD	CLK to D15-Do Hold	3		3	
tsI	11, 10 to CLK Setup	13		10	
tHi	CLK to l1, 10 Hold	3		3	
tDIS	$\overline{\mathrm{OE}}$ to Output Disable (Note 11)		25		15
tENA	$\overline{\mathrm{OE}}$ to Output Enable (Note 11)		25		21
tPW	Clock Pulse Width	10		10	

Switching Characteristics Over Military Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LPR52x-30		LPR52x-24	
		Min	Max	Min	Max
tPD	CLK to Y15-Yo		30		24
tsEL	S1,S0 to Y15-Y0		30		22
tsD	D15-Do to CLK Setup	15		10	
thD	CLK to D15-Do Hold	5		3	
tst	I1,10 to CLK Setup	15		10	
tHI	CLK to I1,10 Hold	5		3	
tols	$\overline{\text { OE }}$ to Output Disable (Note 11)		20		16
tena	$\overline{\mathrm{OE}}$ to Output Enable (Note 11)		25		22
tPW	Clock Pulse Width	15		10	

Switching Waveforms

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ suppy voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified IOL and IOH plus 30 pF capacitance.

This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device Vcc and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

Multilevel Pipeline Register

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)

Package Style	Performance		
	25 ns	22 ns	
LPR5 20			
40-pin Plastic DIP (0.6") - P3	LPR520PC25	LPR520PC22	
40-pin Sidebraze (0.6") Hermetic DIP - D3	LPR520DC25	LPR520DC22	
44-pin Plastic LCC, J-Lead - J1	LPR520JC25	LPR520JC22	
44-pin Ceramic LCC - K2	LPR520KC25	LPR520KC22	
LPR521			
40-pin Plastic DIP (0.6") - P3	LPR521PC25	LPR521PC22	
$\begin{array}{r} \text { 40-pin Sidebraze (} 0.6 \text { ") } \\ \text { Hermetic DIP - D3 } \end{array}$	LRP521DC25	LPR521DC22	
44-pin Plastic LCC, J-Lead - J1	LRP521JC25	L29C521JC22	
44-pin Ceramic LCC - K2	LPR521KC25	LPR521KC22	

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance		
	30 ns	24 ns	
LPR520			
40-pin Sidebraze (0.6") Hermetic DIP - D3	LPR520DM30 LPR520DME30	LPR520DM24 LPR520DME24 LPR520DMB24	
44-pin Ceramic LCC - K2	LPR520KM30 LPR520KME30	LPR520KM24 LPR520KME24 LPR520KMB24	
LPR521			
40-pin Sidebraze (0.6") Hermetic DIP - D3	LPR521DM30 LPR521DME30	LPR521DM24 LPR521DME24 LPR521DMB24	
44-pin Ceramic LCC - K2	LPR521KM30 LPR521KME30	LPR521KM24 LPR521KME24 LPR521KMB24	

Pin Assignments

Pin		Function	Pin		Function
P, D	J		P, D	J	
1	1	10	23	25	Y14
2	2	11	24	26	Y_{13}
3	3	Do	25	27	Y12
4	4	D1	26	29	Y11
5	5	D2	27	30	Y10
6	7	D3	28	31	Y9
7	8	D4	29	32	Y8
8	9	D5	30	33	Y7
9	10	D6	31	34	Y6
10	11	D7	32	35	Y5
11	12	D8	33	36	Y 4
12	13	D9	34	37	Y 3
13	14	D10	35	38	Y2
14	15	D11	36	40	Y1
15	16	D12	37	41	Yo
16	18	D13	38	42	S1
17	19	D14	39	43	So
18	20	D15	40	44	Vcc
19	21	CLK		6	NC
20	22	GND		17	NC
21	23	$\overline{\mathrm{OE}}$		28	NC
22	24	Y15		39	NC

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Dual Pipeline Register

Features

\square Pipeline Registers - dual 7-deep (L29C524) or dual 8-deep (L29C525)
\square Configurable to single 14-deep and single 16-deep
\square Hold, Shift, Load instructionsSeparate data in and data out pins
\square High-speed, low-power CMOS technology
\square Three-state outputs

- Available 100\% screened to MIL-STD-883, Class B
\square Plug-compatible with AMD
AM29524 and AM29525
Package styles available:
- 28-pin Plastic DIP
- 28-pin Sidebraze, Hermetic DIP

Description

The Logic Devices L29C524 and L29C525 are high performance, low power CMOS pipeline registers. They are pin-for-pin compatible with the Advanced Micro Devices Am29524 and Am29525. The products can be configured as two independent, 7-level (or 8-level) pipelines single 14-level (or 16-leyef) pipelines. The configuration implexmented is determined by the instruction codey (II, I0) as shown in Table 2.
The I1, I0 instruction code fontrols the internal routing of datarand loadiry of each register. For instruction
$\mathrm{I} 1, \mathrm{I} 0=0($ (Push $\mathrm{A} \& \mathrm{~B})$, data applied at the D7-Dolinputs is loaded into register Al at the rising edgesof the Clock. The contents of Adsimultaneously moves to registex $A 1$, A1 moves to $A 2$, and so on. The contents of the last register ont the "A' side (A6 for the L29C524, A7 for the L29C525) are wrapked back to egister B0. The registers on the Bside are similarly shifted, weth the contents of the last register on the B side ($B 6$ for the L29C524, B7 for the L29C525) lost.

Instruction $\mathrm{I} 1, \mathrm{I} 0=01$ (Push B) acts similarly to the Push A \& B instruction, except that only the B side registers are shifted. The input data is applied to register B0, and the contents of the last register on the B side (B6 for the L29C524, B7 for the L29C525) are lost. The contents of the A side registers are unaffected. Instruction $1, I 0=10$ (Push A) is identical to the Push B instruction, except that A side registers are shifted and B side fegisters are unaffected.
instruction $\mathrm{I} 1, \mathrm{I} 0=11$ (Hold) causes no internal data movement. It is equivalent to preventing the application of a clock edge to any internal register.

The contents of any of the registers is selectable at the output through the use of the S3-S0 control inputs. On the L29C524, the input pins D7-D0 may also be selected to drive the output, and all output pins may be forced to zero. The independence of the I and S control lines allows simultaneous reading and writing. Encoding for the S3-S0 controls is given in Table 3.

L29C524/525 Block Diagram

DEVICES INCORPORATED

Dual Pipeline Register

Table 1. Register Load Operations (See Table 2 for instruction codes.)

*A7 and B7 registers apply only to L29C525

Table 2. Instruction Set Descriptions

Mnemonic	Inputs		
	$\mathbf{I} 1$	$\mathbf{1 0}$	
	0	0	Push A \& B
LDB	0	1	Push B
LDA	1	0	Push A
HLD	1	1	No-Op

Table 3. Select Operation Descriptions

S3	S2	S1	So	Y7-Yo
0	0	0	0	A0
0	0	0	1	A1
0	0	1	0	A2
0	0	1	1	A3
0	1	0	0	A4
0	1	0	1	A5
0	1	1	1	A6
0	1	1	1	$\begin{aligned} & \hline 0 \text { (L29C524) } \\ & \text { A7 (L29C525) } \end{aligned}$
1	0	0	0	Bo
1	0	0	1	B1
1	0	1	0	B2
1	0	1	1	B3
1	1	0	0	B4
1	1	0	1	B5
1	1	1	1	$\begin{aligned} & \text { D7-D0 (L29C524) } \\ & \text { B7 (L29C525) } \end{aligned}$

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current $>400 \mathrm{~mA}$

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{IOH}=-15.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{IOL}=24.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	Note 3			0.8	V
IIX	Input Current	Ground $\leq \mathrm{VI} \leq \mathrm{VCC}$			± 20	$\mu \mathrm{A}$
Ioz	- Output Leakage Current	Ground \leq Vo \leq Vcc			± 20	$\mu \mathrm{A}$
Ios	Output Short Current	$\mathrm{Vo}=$ Ground, $\mathrm{Vcc}=$ Max, Note 4, 8			-100	mA
ICC1	Vcc Current, Dynamic	Notes 5, 6		10	15	mA
ICC2	Vcc Current, Quiescent	Note 7			1.0	mA

Dual Pipeline Register

Switching Characteristics Over Commercial Operating Range (Notes 9, 10) (ns)

Switching Characteristics OverAtinjary Operating Rangef(Notes 9, 10) (ns)

Switching Waveforms

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{N_{C V}{ }^{2} F}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ suppy voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified Iol and IOH plus 30 pF capacitance.
This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device Vcc and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

Ordering Information

Contact Factory

Pin Assignments

Pin	Function	Pin	Function
1	$\mathrm{~S}_{1}$	15	I_{1}
2	S 0	16	Y 7
3	D 0	17	Y_{6}
4	D 1	18	Y_{5}
5	D 2	19	Y_{4}
6	D 3	20	$\overline{\mathrm{OE}}$
7	Vcc	21	GND
8	GND	22	Vcc
9	D 4	23	Y_{3}
10	D 5	24	Y_{2}
11	D 6	25	Y_{1}
12	D 7	26	Y 0
13	I 0	27	S 3
14	CLK	28	S 2

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Description

Features

Variable length 4 or 8 bit-wide shift register

Selectable length from 3 to 18 stagesHold, Shift, Load instructionsSeparate data in and data out pinsHigh-speed, low-power CMOS technology

- Plug-compatible with TRW TDC1011

Package styles available:

- 24-pin Plastic DIP
- 24-pin CerDIP
- 24-pin Sidebraze, Hermetic DIP

The L10C11 consists of two 4 -bit wide, adjustable length shift registers. These registers share control signals and a common clock. Both shift registers can be programmed together to any length from 3 to 18 stages inclusive or one register can be fixed at 18 stages of delay while the other is variable. The configuration implemented is de termined by the Length code (L) $2<\mathrm{L} 0)$ and MODE line as shawn in Kawle 1 Each input is applied to a chain o registers which are docked on he rising edge of the cemmon CLK inpurt. These regsters are numbered R through R17 and R1' to R17', correspendingto the D3-Do and P7-DA data fields, respectivelf. A multip exer serves to route thecontents of any of registers 22 through R10 to the output register denoted R18. A similar muptiplexer operates on the contents of R2' tidrough R17' to

DEVICES INCORPORATED

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground

$$
-3.0 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current > 400 mA

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{IOH}=-15.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$1 \mathrm{OL}=24.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	Note 3			0.8	V
IIx	Input Current	Ground $\leq \mathrm{V}_{1} \leq \mathrm{Vcc}$			± 20	$\mu \mathrm{A}$
loz	Output Leakage Current	Ground \leq Vo \leq Vcc			± 20	$\mu \mathrm{A}$
los	Output Short Current	$\mathrm{Vo}=$ Ground, $\mathrm{Vcc}=$ Max, Note 4, 8			-100	mA
Icc1	Vcc Current, Dynamic	Notes 5, 6		10	15	mA
IcC2	Vcc Current, Quiescent	Note 7			1.0	mA

Switching Characteristics Over Commercial Operating Range (Notes 9, 10) (ns)

Switching Characteristics Over Military Operatiog Range (Aotes 9, 10) (ns)

Switching Waveforms

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ suppy voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except ten/tDis test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified Iol and IOH plus 30 pF capacitance.

This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VcC and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

Ordering Information

Call Factory

Pin Assignments

Pin	Function	Pin	Function
1	D 0	13	Y_{0}
2	D 1	14	Y_{1}
3	D 2	15	Y_{2}
4	D 3	16	Y_{3}
5	L 0	17	L 2
6	L 1	18	L 3
7	Vcc	19	GND
8	CLK	20	MODE
9	D 4	21	Y_{4}
10	D 5	22	Y_{5}
11	D 6	23	Y_{6}
12	D 7	24	Y 7

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Features

Octal register with additional 8-bit shiftable shadow register

- Serial load/verify of writable control store RAM
- Serial stimulus/observation of sequential logic
- High-speed, low-power CMOS technology
- Available 100\% screened to MIL-STD-883, Class B
\square Plug compatible with AMD Am29818
\square Package styles available:
- 24-pin Plastic DIP
- 24-pin Sidebraze, Hermetic DIP
- 28-pin Ceramic LCC

Description

The L29C818 is a high-speed octal register designed especially for applications using serial-scan diagnostics or writable control store. It is pin and functionally compatible with the AMD Am 29818 bipolar device.

The L29C818 consists of an octal regi= ster (the " P " register), internally $80 n$ nected to an 8 -bit shift register 4 the " S " register). Each has its of on corresponding clock pin, and the P register has a three-state output contro.

An input control signal MODE, in combination wth the S register serial data input pin SBlecontrols data routing within the -29 C 818 . When the MODE input is low, indicating normal operation, data present on the D7-ROPins is loaded into the P the register on the rising edge of 0 K P . Whe contents of the P register ane visible on the output pins $\mathrm{Kz-y}$ y when the $\overline{O E}$ control fineistont

Also, data present on the SDI pin is loaded into the least significant position of the S register on the rising edge of CLK S. In this mode, the S register performs a right shift operation, with the contents of each bit position replaced by the value in the next least significant location. The value in S 7 is shifted out on the serial data output (SDO) pin. The SDI and 8DO pins $\sqrt{\text { gow serial comnection of }}$ multipte 129 C 818 devices into a diagnostic lodp. When MODE is low, the operation ϕ f the P and S registers are completely independent, and no timpingretationship is enforced between CLK P and CLK S.
When MODE is high, the internal multiplexers route data between the S and P registers, and the Y port. The contents of the S register are loaded into the P register on the rising edge of CLK P. In diagnostic applications,
this allows a data value input via serial scan to be loaded into the active data path of the machine.
When the MODE pin is high, CLKS causes a parallel rather than serial load of the S register. In this mode, the S register is loaded from the $\mathrm{Y}_{7}-\mathrm{Y}_{0}$ pins at the rising edge of CLK S. This is useful in writable control store applications for readback of the control store via the serial path.

When MODE is high, the SDI pin is used as a control input to enable or disable the loading of the S register, and it also affects routing of the S register contents onto the D7-D0 outputs. When SDI is low, the S register is enabled for loading as above. When SDI is high however, CLKS is prevented from reaching the S register, and no load occurs. In order to allow the SDI pin to serve as an enable signal for all L29C818 devices in a serial configuration, special handling of the SDI input is
required. When MODE is high, the SDI input drives the SDO output directly, bypassing the S register. This means that the SDI value will apply simultaneously to all L29C818s in a serial loop. However, to ensure proper operation of a given device, the user must ensure that the SDI setup time to CLK S is extended by the sum of the SDI to SDO delays of all previous devices in the serial path.

The D_{7}-Do port is normally used as the input port to the D register. For writable control store applications however, this port is connected to the I/O pins of the RAM used as a control store. In order to load this RAM through the serial path, it is necessary to drive the S register contents onto the $\mathrm{D}_{7}-\mathrm{D} 0$ pins. This is accomplished when MODE and SDI are high, and a CLK S rising edge occurs. Note from above that with SDI high, no loading of the S register occurs. However, a flip-flop is set which syncronously
enables the D port output buffer. The D output remains enabled until the first rising edge of CLK S during which either SDI or MODE is low. Thus to load a control store RAM, data would be shifted in with MODE low. When an entire control store word was present in the serial S registers, the SDI and MODE pins are brought high for one or more cycles, preventing further shifting of the S registers and enabling the contents onto the D port for writing into the RAM.

To verify the contents of a control store RAM, the RAM is read into the D register in the normal fashion. Then, the D contents are transferred in parallel to the S register by driving MODE high with SDI low. Then, the S register contents are scanned out serially by returning MODE to low and applying CLK S pulses.

Table 1. Function table.

Inputs				Outputs			Action		
MODE SDI	CLK S	CLK P	P REG	S REG	Y7-Yo	D7-Do	SDO		
0	X	\uparrow	X	N/A	SHIFT	Normal	Hi-Z	S7	
0	X	X	\uparrow	LOAD D	N/A	Normal	Input	S7	
1	0	\uparrow	X	N/A	LOAD Y	Input*	Hi-Z	SDI	
1	1	\uparrow	X	N/A	HOLD	Normal	Output	SDI	
1	X	X	\uparrow	LOAD S	N/A	Normal	Hi-Z	SDI	

* If $\overline{O E}$ is 0 , the D register value will be loaded into the S register. If $\overline{\mathrm{OE}}$ is 1 , a value may be applied externally to the $\mathrm{Y} 7-\mathrm{Yo}$ pins.

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storage temperature	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
VCC supply voltage with respect to ground.	-0.5 V to +7.0 V
Input signal with respect to ground.	-3.0 V to +7.0 V
Signal applied to high impedance output	-3.0 V to +7.0 V
Output current into low outputs	25 mA
Latchup current	. $>400 \mathrm{~mA}$

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{VCC} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{VCC} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{IOH}=-15.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{IOL}=24.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0			V
VL	Input Low Voltage	Note 3			0.8	V
IIX	Input Current	Ground \leq VI \leq VCC			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vo \leq Vcc			± 20	$\mu \mathrm{A}$
Ios	Output Short Current	$\mathrm{Vo}=$ Ground, $\mathrm{Vcc}=$ Max, Note 4, 8			-100	mA
IcC1	Vcc Current, Dynamic	Notes 5, 6		10	15	mA
ICC2	Vcc Current, Quiescent	Note 7			1.0	mA

Serial Scan Register

Switching Characteristics

Symbol	Parameter		Max	Min	Max
		Min			
tPD	CLKP to $\mathrm{Y}_{7}-\mathrm{YO}_{0}$		人		
	MODE to SDO			\triangle	
	SDI to SDO	－	，		
	CLK S to SDO				
ts	D7－Do to CLK P Setup	－			
	MODE to CLK P Setup				
	Y7－Yo to CLK S Setup				
	MODE to CLK S Setup				
	SDI to CLK S Setup				
	CLK S to CLK P Setup				
	CLK P to CLK S setup				
tH	CLK P to D7-SelHold				
	CLK P to NOQDE Hold				
	$\text { CLK } S \text { to Ye } 40 \mathrm{Hold}, \quad(()$				
	CLK S to SDyHold				
tPW	CLK S Pulsewidth（High ant Low）				
	CLK P Pulsewidth（High and Y dow）$^{\text {a }}$				
tENA	$\overline{\mathrm{OE}}$ to Y7 K K Enfole				
	CLK S to D7－－De Enable				
tDIS	$\overline{O E}$ to Y7－Yo Disable				
	CLK S to D7－Do Disable				

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{N C V^{2} F}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
C = capacitive load per output
$\mathrm{V}=$ suppy voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified Iol and IOH plus 30 pF capacitance.
This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

Ordering Information

Call Factory

Pin Assignments

Pin		Function	Pin		Function
P, D	K		P, D	K	
1.	2	$\overline{\mathrm{OE}}$	15	18	Y7
2	3	CLK S	16	19	Y6
3	4	Do	17	20	Y5
4	5	D1	18	21	Y_{4}
5	6	D2	19	23	Y3
6	7	D3	20	24	Y2
7	9	D4	21	25	Y1
8	10	D5	22	26	Yo
9	11	D6	23	27	MODE
10	12	D7	24	28	Vcc
11	13	SDI		1	NC
12	14	GND		8	NC
13	16	CLK P		15	NC
14	17	SDO		22	NC

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Features

- 8-word $\times 8$-bit three port memory
\square Independently addressable ports: 1 input, 1 output, 1 bidirectional
\square High-speed, low-power CMOS technology

Internally-latched control bits
\square High-speed scratchpad memory with overlapped data fetch/store

Fully TTL compatible
$\square 60 \mathrm{~mW}$ typical power dissipation

- Package styles available:
- 40-pin Plastic DIP
- 40-pin Sidebraze, Hermetic DIP
- 44-pin Ceramic LCC (Type C)

Description

The LRF07 is an 8 word $\times 8$ bit expandable register file with three independently addressable ports, designated A, B, and C. Each port has eight data lines, three address lines and a port enable control. All address and control lines are registered to facilitate instruction pipelining in microprogrammed systems. All ports may be used simultaneously in any clock cycle.
The C port is a read only port. C port address lines (CA2-CA0) are latched at the rising edge of the clock. The data indicated by the respective port address will be presented on the output lines one TACC following the clock edge on which the address is latched. If the same register is

LRF07 Block Diagram

simultaneously addressed for writing from a different port, the data presented to the outputs is the contents of the register prior to the write operation.
The B port is a write port. B port address lines ($\mathrm{BA} 2-\mathrm{BA} 0$) are latched at the rising edge of the clock. The contents of the B address register are decoded to control data routing multiplexers. These supply data from the input pins to the desired register. Data meeting the setup time is latched into the addressed register on the clock edge following the one which latched the address. Simultaneous writes to the same register from multiple ports result in storage of the logical 'OR' of the input data.
The A port is a bidirectional port. The A Read/Write control AR/W is latched along with the address lines (AA2-AA0) and determines whether the A port acts as an input or an output during any clock period. When AR/ \bar{W} is a ' 1 ' at the clock edge, the A port presents the addressed data on the A7-A0 data lines. A port read operations are thus performed identically to C port reads. When AR/W is a ' 0 ' at the clock edge, A port writes are executed in the same manner as B port writes, with the data latched on the clock edge following application of the corresponding address.
All ports have associated port enable inputs. These inputs are internally registered and are applied simultaneously with the corresponding port address. In the case of the C port, the $\overline{\mathrm{COE}}$ input is a three state output control. A ' 1 ' at these inputs places the corresponding data lines in a high impedance state beginning one TDIS following the clock edge. The B port enable $\overline{B W E}$ serves as a registered write enable input. A '1' latched on these inputs disables write operations from the port on the following clock edge. The A port enable APE, serves the dual function of write enable or three state enable depending on the direction of the A port.

Three Port Register File

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storage tempera	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground.	-0.5 V to +7.0 V
Input signal with respect to ground..	-3.0 V to +7.0 V
Signal applied to high impedance output	-3.0 V to +7.0 V
Output current into low outputs	.. 25 mA
Latchup current > 150 mA

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{loL}=8.0 \mathrm{~mA}$			0.5	V
$\mathbf{V H}$	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	Note 3			0.8	V
IIX	Input Current	Ground $\leq \mathrm{V} 1 \leq \mathrm{Vcc}$			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vo \leq Vcc			± 20	$\mu \mathrm{A}$
Ios	Output Short Current	$\mathrm{Vo}=$ Ground, $\mathrm{Vcc}=$ Max, Note 4, 8	-20		-100	mA
Icc1	Vcc Current, Dynamic	Notes 5, 6		10	30	mA
IcC2	Vcc Current, Quiescent	Note 7			1.0	mA

Switching Characteristics Over Commercial Operating Range (Notes 9, 10) (ns)

Symbol		Parameter	LRF07-35
tACC	CLK to Output	Min	Max
tDIS	$\overline{\text { OE }}$ to Output Disable (Note 11)		35
tENA	$\overline{\text { OE to Output Enable (Note 11) }}$	25	
tPW	Clock Pulse Width		35
ts	Input Setup Time	25	
tH	Input Hold Time	15	

Switching Characteristics Over Military Operating Range (Notes 9, 10) (ns)

Symbol			
tACC	PLK to Output	LRF07-35	
tDIS	$\overline{\text { OE to Output Disable (Note 11) }}$	Min	Max
teNA	$\overline{\text { OE to Output Enable (Note 11) }}$		35
tPW	Clock Pulse Width	25	
ts	Input Setup Time		
tH	Input Hold Time	25	

Switching Waveforms

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{N C V^{2} F}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ suppy voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDis test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified IOL and IOH plus 30 pF capacitance.
This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and VCC supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

Ordering Information

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Package Style	Performance
	35ns
LRF07	
40-pin Plastic DIP (0.6") - P3	LRF07PC35
40-pin Sidebraze (0.6") Hermetic DIP - D3	LRF07DC35
44-pin Ceramic LCC - K2	LRF07KC35

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance
	35ns
LRF07	
40-pin Sidebraze (0.6") Hermetic DIP - D3	LRF07DM35 LRF07DME35 LRF07DMB35
44-pin Ceramic LCC - K2	LRF07KM35 LRF07KME35 LRF07KMB35

Pin Assignments

Pin		Function	Pin		Function
P, D	K		P, D	K	
1	1	B3	23	25	C5
2	2	B2	24	26	C6
3	3	B1	25	27	C7
4	4	Bo	26	29	CA2
5	5	A0	27	30	CA1
6	7	A1	28	31	CAo
7	8	A2	29	32	CLK
8	9	A3	30	33	AA_{2}
9	10	A4	31	34	AA1
10	11	A5	32	35	AAo
11	12	A6	33	36	$\overline{\text { BWE }}$
12	13	A7	34	37	BA2
13	14	GND	35	38	BA1
14	15	Vcc	36	39	BAO
15	16	$\overline{\text { APE }}$	37	41	B7
16	17	AR/ \bar{W}	38	42	B6
17	19	$\overline{\mathrm{COE}}$	39	43	B5
18	20	Co	40	44	B4
19	21	C1		6	NC
20	22	C2		18	NC
21	23	C3		28	NC
22	24	C4		40	NC

(c) 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Five Port Register File

Features

- 8-word $\times 8$-bit five port memory
\square Independently addressable ports: 2 input, 2 output, 1 bidirectional
\square High-speed, low-power CMOS technology
\square Internally-latched control bitsHigh-speed scratchpad memory with overlapped data fetch/store
- Available 100\% screened to MIL-STD-883, Class B
- Fully TTL compatible

60 mW typical power dissipation
Package styles available:

- 64-pin Plastic DIP
- 64-pin Sidebraze, Hermetic DIP
- 68-pin Plastic LCC, J-Lead
- 68-pin Pin Grid Array

Description

The LRF08 is an 8 word $\times 8$ bit expandable register file with five independently addressable ports, designated A through E. Each port has eight data lines, three address lines and a port enable control. All address and control lines are registered to facilitate instruction pipelining in microprogrammed systems. All ports may be used simultaneously in any clock cycle.
The D and E ports are read only ports. D and E address lines (DA2-DA0 and EA2-EA0) are latched at the rising edge of the clock. The data indicated by the respective port address will be presented on the output lines one TACC following the clock edge on which the address is latched. If the same register is simultaneously

LRF08 Block Diagram

addressed for writing from a different port, the data presented to the outputs is the contents of the register prior to the write operation.
The B and C ports are write ports. B and C address lines (BA2-BA0 and CA2CA 0) are latched at the rising edge of the clock. The contents of the B and C address registers are decoded to control data routing multiplexers. These supply data from the input pins to the desired register. Data meeting the setup time is latched into the addressed register on the clock edge following the one which latched the address. Simultaneous writes to the same register from multiple ports result in storage of the logical 'OR' of the input data.
The A port is a bidirectional port. The A Read/Write control AR/W is latched along with the address lines (AA2-AA0) and determines whether the A port acts as an input or an output during any clock period. When $\mathrm{AR} / \overline{\mathrm{W}}$ is a ' 1 ' at the clock edge, the A port presents the addressed data on the A7-A0 data lines. A port read operations are thus performed identically to D and E port reads. When AR/W is a ' 0 ' at the clock edge, A port writes are executed in the same manner as B and C port writes, with the data latched on the clock edge following application of the corresponding address.
All ports have associated port enable inputs. These inputs are internally registered and are applied simultaneously with the corresponding port address. In the case of the D and E ports, the $\overline{\mathrm{DOE}}$ and $\overline{\mathrm{EOE}}$ inputs are three state output controls. A ' 1 ' at these inputs places the corresponding data lines in a high impedance state beginning one TDIS following the clock edge. The B and C port enables $\overline{B W E}$ and $\overline{C W E}$ serve as registered write enable inputs. A '1' latched on these inputs disables write operations from the port on the following clock edge. The A port enable $\overline{\mathrm{APE}}$, serves the dual function of write enable or three state enable depending on the direction of the A port.

Five Port Register File

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature .. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature ... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground... -0.5 V to +7.0 V
Input signal with respect to ground.. -3.0 V to +7.0 V
Signal applied to high impedance output ... 3.0 V to +7.0 V
Output current into low outputs ... 25 mA
Latchup current ... > 150 mA

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
VoH	Output High Voltage	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VLL	Input Low Voltage	Note 3			0.8	V
IIx	Input Current	Ground $\leq \mathrm{V}_{1} \leq \mathrm{Vcc}$			± 20	$\mu \mathrm{A}$
loz	Output Leakage Current	Ground \leq Vo \leq Vcc			± 20	$\mu \mathrm{A}$
Ios	Output Short Current	Vo $=$ Ground, Vcc $=$ Max, Note 4, 8	-20		-100	mA
Icc1	Vcc Current, Dynamic	Notes 5, 6		10	45	mA
Icc2	Vcc Current, Quiescent	Note 7			1.0	mA

Switching Characteristics Over Commercial Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LRF08-35	
	CLK to Output	Min	Max
tDIS	$\overline{\text { OE to Output Disable (Note 11) }}$		35
tENA	$\overline{\text { OE to Output Enable (Note 11) }}$		25
tpW	Clock Pulse Width		35
ts	Input Setup Time	25	
tH	Input Hold Time	15	

Switching Characteristics Over Military Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LRF08-35	
		Min	Max
tACC	CLK to Output		35
tDIs	$\overline{\mathrm{OE}}$ to Output Disable (Note 11)		25
tena	$\overline{\mathrm{OE}}$ to Output Enable (Note 11)		35
tPW	Clock Pulse Width	25	
ts	Input Setup Time	15	
tH	Input Hold Time	5	

Switching Waveforms

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ suppy voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified IOL and IOH plus 30 pF capacitance.

This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Package Style	
LRF08	Performance
64-pin Plastic DIP - P4	
64-pin Sidebraze Hermetic DIP - D4	LRF08PC35
68-pin Plastic LCC, J-Lead - J2	LRF08JC35
68-pin Pin Grid Array - G1	LRF08GC35
68-pin Ceramic LCC - K3	LRF08KC35

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	
	Performance
LRF08 ns	
64-pin Sidebraze Hermetic DIP - D4	LRF08DM35 LRF08DME35
68-pin Pin Grid Array - G1	LRF08GM35 LRF08GME35

(c) 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Pin Assignments

Pin			Function	Pin			
P, D	J,K	G		P,D	J,K	G	Function
1	1	G01	C1	35	37	G10	D2
2	2	F02	Co	36	38	G11	D3
3	3	F01	B7	37	39	H10	D4
4	4	E02	B6	38	40	H11	D5
5	5	E01	B5	39	41	J 10	D6
6	6	D02	B4	40	42	J11	D7
7	7	D01	B3	41	44	K10	EA2
8	8	C02	B2	42	45	L10	EA1
9	9	C01	B1	43	46	K09	EA0
10	10	B01	Bo	44	47	L09	DA2
11	11	B02	A0	45	48	K08	DA1
12	12	A02	A1	46	49	L08	DAo
13	13	B03	A2	47	50	K07	CLK
14	14	A03	A3	48	51	L07	AA2
15	15	B04	A4	49	52	K06	AA1
16	16	A04	A5	50	53	L06	AA0
17	17	B05	A6	51	54	K05	CWE
18	18	A05	A7	52	55	L05	CA2
19	19,20	B06	GND	53	56	K04	CA1
20	21,22	A06	Vcc	54	57	L04	CA0
21	23	B08	$\overline{\text { APE }}$	55	58	K03	$\overline{\text { BWE }}$
22	24	A08	AR/W	56	59	L03	BA2
23	25	B09	EOE	57	61	L02	BA1
24	26	A09	$\overline{\mathrm{DOE}}$	58	62	K02	BA0
25	27	B10	E0	59	63	K01	C7
26	28	B11	E1	60	64	J 02	C6
27	29	C10	E2	61	65	J 01	C5
28	30	C11	E3	62	66	H02	C4
29	31	D10	E4	63	67	H01	C3
30	32	D11	E5	64	68	G02	C2
31	33	E10	E6		43	A07	NC
32	34	E11	E7		60	B07	NC
33	35	F10	Do			A10	NC
34	36	F11	D1			K34	$N C$

Features

- High-speed (26ns), low power 16bit cascadable ALU
- Implements add, subtract, accumulate, 2's complement, pass, and logic operationsAll registers have a bypass path for complete flexibility
Available in MIL-STD-883 compliant version
- Package styles available:
- 68 -pin Plastic LCC, J-Lead
- 68 -pin Pin Grid Array
- 68 -pin Ceramic LCC (Type C)

Description

The L4C381 is a flexible, high-speed, cascadable 16-bit Arithmetic and Logic Unit implemented in CMOS technology. It combines four 381-type 4-bit ALUs, a lookahead-carry generator, and miscellaneous interface logic - all in a single 68 -pin package.

While containing new features to support high-speed pipelined architectures and single 16-bit bus configurations, the L4C381 retains full performance and functional compatibility with the bipolar ' 381 designs.

Architecture

The L4C381 operates on two 16-bit operands (A and B) and produces a

L4C381 Block Diagram

16-bit result (F). Three select lines control the ALU and provide 3 arithmetic, 3 logical, and 2 initialization functions. Full ALU status is provided to support cascading to longer word lengths. Registers are provided on both the ALU inputs and the output, but these may be bypassed under user control. An internal feedback path allows the registered ALU output to be routed to one of the ALU inputs, accommodating chain operations and accumulation. Furthermore, the A or B input can be forced to Zero allowing unary functions on either operand.

ALU Operations

The $\mathrm{S}_{0}-\mathrm{S}_{2}$ lines specify the operation to be performed. The ALU functions and their select codes are shown below.

S2	S1	So	Function
0	0	0	CLEAR ($F=00 \ldots 0)$
0	0	1	NOT (A) + B
0	1	0	A + NOT (B)
0	1	1	A + B
1	0	0	A XOR B
1	0	1	A OR B
1	1	0	A AND B
1	1	1	PRESET ($\mathrm{F}=11 \ldots 1)$

The functions B minus A and A minus B can be achieved by setting the carry input of the least significant slice and selecting codes 001 and 010 respectively.

ALU Status

The ALU provides Overflow and Zero status bits. Carry, Propagate, and Generate outputs are also provided for cascading. These outputs are defined for the three arithmetic functions only. The ALU sets the Zero output when all 16 output bits are
zero. The Generate, Propagate, C 16 , and OVF flags for the $\mathrm{A}+\mathrm{B}$ operation are defined in Table 1. The status flags produced for NOT(A) +B and $A+\operatorname{NOT}(B)$ can be found by complementing Ai and Bi respectively in Table 1.

Operand Registers

The L4C381 has two 16-bit wide input registers for operands A and B. These registers are rising edge triggered by a common clock. Each register is independently enabled by control signals ENA and ENB.

This architecture allows the L 4 C 381 to accept arguments from a single 16-bit data bus. For those applications that do not require registered inputs, both the A and B operand registers can be bypassed with the FTAB control line. When the FTAB control is asserted, data is routed around the A and B input registers; however, they continue to function normally via the $\overline{\mathrm{ENA}}$ and $\overline{\mathrm{ENB}}$ controls. The contents of the input registers will again be available to the ALU if the FTAB control is released.

Output Register

The output of the ALU drives the input of a 16-bit register. This rising-edge-triggered register is clocked by the same clock as the input registers. The output register is enabled by the $\overline{\mathrm{ENF}}$ control signal. By disabling the output register, intermediate results can be held while loading new input operands. Three-state drivers controlled by the $\overline{\mathrm{OE}}$ input allow the L4C381 to be configured in a single bidirectional bus system.

The output register can be bypassed by asserting the FTF control signal. When the FTF control is asserted, output data is routed around the output register, however, it continues to function normally via the $\overline{\mathrm{ENF}}$ control.

Table 1. ALU Status Flags

Bit Carry Generate $=g i=A i B i$,	for $i=0 \ldots 15$
Bit Carry Propagate $=p i=A i+B i$,	for $i=0 \ldots 15$
$P 0=p 0$	for $i=1 \ldots 15$
$P_{i}=p i(P i-1)$	for $i=1 \ldots 15$

and
$\mathrm{G} 0=\mathrm{g} 0$
$G i=g i+p i(G i-1) \quad$ for $i=1 \ldots 15$
$C i=C_{i-1}+P_{i-1}(C 0) \quad$ for $i=1 \ldots 15$
then
$\overline{\mathrm{G}}=\operatorname{NOT}(\mathrm{G} 15)$
$\overline{\mathrm{P}}=\operatorname{NOT}\left(\mathrm{P}_{15}\right)$
$\mathrm{C}_{16}=\mathrm{G} 15+\mathrm{P}_{15} \mathrm{C} 0$
OVF $=\mathrm{C} 15$ XOR C16

The contents of the output register will again be available on the output pins if FTF is released. With both FTAB and FTF true (high) the LAC381 is functionally identical to four cascaded 54S381-type devices.

Operand Selection

The two operand select lines OSA and OSB control multiplexers that precede the ALU inputs. These multiplexers provide an operand force-to-zero function as well as F-register feedback to the B input. Table 2 shows the inputs to the ALU as a function of the operand select inputs. Either the A or B operands may be forced to zero.

When both operand select lines are low, the L4C381 is configured as a chain calculation ALU. The registered ALU output is passed back to the B input to the ALU. This allows accumulation operations to be performed by providing new operands via the A

Table 2. Operand Selection Control

OSB, OSA	Operand B	Operand A	
0	0	F	A
0	1	0	A
1	0	B	0
1	1	B	A

input port. The accumulator can be preloaded from the A input by setting OSA true. By forcing the function select lines to the CLEAR state (000), the accumulator may be cleared. Note that this feedback operation is not affected by the state of the FTF control. That is, the F outputs of the L4C381 may be driven directly by the ALU (FTF = true). The output register continues to function, however, and provides the ALU B operand source.

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storage temperature ..	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground	. -0.5 V to +7.0 V
Input signal with respect to ground	-3.0 V to +7.0 V
Signal applied to high impedance output	-3.0 V to +7.0 V
Output current into low outputs	. 25 mA
Latchup current > 400 mA

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{VcC} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{VCC} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{lOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.5	V
VH^{\prime}	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	Note 3	0.0		0.8	V
IIX	Input Current	Ground $\leq \mathrm{VI} \leq \mathrm{VCC}$			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vo \leq Vcc			± 20	$\mu \mathrm{A}$
Ios	Output Short Current	$\mathrm{Vo}=$ Ground, $\mathrm{Vcc}=$ Max, Note 4, 8			-250	mA
ICC1	Vcc Current, Dynamic	Notes 5, 6		15	30	mA
ICC2	Vcc Current, Quiescent	Note 7			1.0	mA

16-bit Cascadable ALU

Switching Characteristics

Over Commercial Operating Range (Notes 9, 10)
Guaranteed Maximum Combinational Delays (ns)

\triangle To Output	L4C381-55				14C381-40				L4C381-26			
From Input	F0-F15	P,G	OVF,Z	C16	F0-F15	P,G	OVF,Z	C16	F0-F15	P,G	OVF,Z	C16
$\mathrm{FTAB}=0, \mathrm{FTF}=0$												
Clock	32	38	53	36	26	30	44	32	22	22	26	22
Co	-	-	34	22	-	-	28	20	-	-	28	18
So-S2, OSA, OSB	-	42	42	42	-	32	34	35	-	22	22	22
FTAB $=0, \mathrm{FTF}=1$												
Clock	56	38	53	36	46	30	44	32	28	22	26	22
Co	37	-	34	22	30	-	28	20	22	-	18	18
So-S2, OSA, OSB	55	42	42	42	40	32	34	35	26	22	22	22
$\mathrm{FTAB}=1, \mathrm{FTF}=0$												
A0-A15, B0-B15	-	36	46	37	-	30	40	32	-	22	22	22
Clock	32	-	-	-	26	-	-	-	22	-	-	-
Co	-	-	34	22	-	-	28	20	-	-	18	18
S0-S2, OSA, OSB	-	42	42	42	-	32	34	35	-	22	22	22
$\mathrm{FTAB}=1, \mathrm{FTF}=1$												
A0-A15, B0-B15	55	36	46	37	40	30	40	32	26	22	22	22
Clock (OSA, $\mathrm{B}=0$)	56	38	53	36	46	30	44	32	28	22	26	22
Co	37	-	34	22	30	-	28	20	22	-	18	18
S0-S2, OSA, OSB	55	42	42	42	40	32	34	35	26	22	22	22

Guaranteed Minimum Setup and Hold Times With Respect to Clock Rising Edge (ns)

Input	L4C381-55				L4C381-40				L4C381-26			
	FTAB $=0$		FTAB $=1$		FTAB $=0$		FTAB $=1$		FTAB $=0$		FTAB $=1$	
	Setup	Hold										
A0-A15, B0-B15	8	0	35	0	6	0	28	0	6	0	16	0
Co	21	0	21	0	16	0	16	0	8	0	8	0
So-S2, OSA, OSB	44	0	44	0	32	0	32	0	18	0	18	0
ENA, ENB, $\overline{\mathrm{ENF}}$	8	2	8	2	6	2	6	2	6	2	6	2

Three State Enable/Disable Times (ns) (Note 11)

	L4C381-55	L4C381-40	L4C381-26
tEN	20	18	16
tDIS	20	18	16

Clock Cycle Time and Pulse Width (ns)

	L4C381-55	L4C381-40	L4C381-26
Minimum Cycle Time	43	34	20
Highgoing Pulse	15	10	10
Lowgoing Pulse	15	10	10

Switching Characteristics
Over Military Operating Range (Notes 9, 10)
Guaranteed Maximum Combinational Delays (ns)

\bigcirc To Output	L4C381-65				L4C381-45				L4C381-30			
From Input	F0-F15	P,G	OVF,Z	C16	F0-F15	P,G	OVF,Z	C16	F0-F15	P,G	OVF,Z	C16
$\mathrm{FTAB}=0, \mathrm{FTF}=0$												
Clock	37	44	63	45	28	34	50	34	26	28	34	28
Co	-	-	42	25	-	-	32	23	-	-	22	22
So-S2, OSA, OSB	-	48	48	48	-	38	38	38	-	28	28	28
$\mathrm{FTAB}=0, \mathrm{FTF}=1$												
Clock	68	44	63	45	56	34	50	34	34	28	34	28
Co	42	-	42	25	32	-	32	23	26	-	22	22
So-S2, OSA, OSB	66	48	48	48	46	38	38	38	30	28	28	28
$\mathrm{FTAB}=1, \mathrm{FTF}=0$												
A0-A15, B0-B15	-	44	56	44	-	32	46	36	-	28	28	28
Clock	37	-	-	-	28	-	-	-	26	-	-	-
Co	-	-	42	25	-	-	32	23	-	-	22	22
S0-S2, OSA, OSB	-	48	48	48	-	38	38	38	-	28	28	28
$\mathrm{FTAB}=1, \mathrm{FTF}=1$												
A0-A15, B0-B15	65	44	56	44	45	32	46	36	30	28	28	28
Clock (OSA, $\mathrm{B}=0$)	68	44	63	45	56	34	50	34	34	28	34	28
Co	42	-	42	25	32	-	32	23	26	-	22	22
So-S2, OSA, OSB	66	48	48	48	46	38	38	38	30	28	28	28

Guaranteed Minimum Setup and Hold Times With Respect to Clock Rising Edge (ns)

Input	L4C381-65				L4C381-45				L4C381-30			
	FTAB $=0$		FTAB $=1$		FTAB $=0$		FTAB $=1$		FTAB $=0$		FTAB $=1$	
	Setup	Hold										
A0-A15, B0-B15	10	0	43	0	8	0	33	0	8	0	20	0
Co	25	0	25	0	20	0	20	0	12	0	12	0
So-S2, OSA, OSB	50	0	50	0	36	0	36	0	20	0	20	0
$\overline{\mathrm{ENA}}, \mathrm{ENB}, \mathrm{ENF}$	10	2	10	2	8	2	8	2	8	2	8	2

Three State Enable/Disable Times (ns) (Note 11)

	L4C381-65	L4C381-45	L4C381-30
tEN	22	20	18
tDIS	22	20	18

Clock Cycle Time and Pulse Width (ns)

	L4C381-65	L4C381-45	L4C381-30
Minimum Cycle Time	52	38	26
Highgoing Pulse	20	15	12
Lowgoing Pulse	20	15	12

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{VCC}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{N_{C V}{ }^{2} F}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ suppy voltage
F = clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified IOL and IOH plus 30 pF capacitance.

This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device Vcc and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

Cascading the L4C381

Cascading the LAC 381 to 32 bits is accomplished simply by connecting the C16 output of the least significant slice to the C 0 input of the most significant slice. The $\mathrm{S} 0-\mathrm{S} 2, \mathrm{OSA}, \mathrm{OSB}$, ENA, ENB, and ENF lines are common to both devices. The Zero output flags should be logically ANDed to produce the Zero flag for the 32-bit result. The OVF and C16 outputs of the most significant slice are valid for the 32-bit result.
Propagation delay calculations for this configuration require two steps: First determine the propagation delay from the input of interest to the C16 output of the lower slice. Add this number to the delay from the C 0 input of the upper slice to the output of interest
(of the C 0 setup time, if the F register is used). The sum gives the overall input-to-output delay (or setup time) for the 32-bit configuration. This method gives a conservative result, since the C16 output is very lightly loaded. Formulas for calculation of all critical delays for a 32-bit system are shown in Figure 4.

Cascading to greater than 32 bits can be accomplished in two ways: The simplest (but slowest) method is to simply connect the C16 output of each slice to the C 0 input of the next more significant slice. Propagation delays are calculated as for the 32 -bit case, except that the C 0 to C 16 delays for all intermediate slices must be added to the overall delay for each path. A faster method is to use an external
carry-lookahead generator. The $\overline{\mathrm{P}}$ and \bar{G} outputs of each slice are connected as inputs to the CLA generator, which in turn produces the C 0 inputs for each slice except the least significant. The C16 outputs are not used in this case, except for the most significant one, which is the carry out of the overall system. The carry in to the system is connected to the C0 input of the least significant slice, and also to the carry lookahead generator. Propagation delays for this configuration are the sum of the time to $\overline{\mathrm{P}}, \overline{\mathrm{G}}$, for the least significant slice, the propagation delay of the carry lookahead generator, and the C0 to output time of the most significant slice.

16-bit Cascadable ALU

$\begin{aligned} & \mathrm{FTAB}=0 \\ & \mathrm{FTF}=0 \end{aligned}$	From Clock Clock Co So-S2, OSA, OSB A, B Co So-S2, OSA, OSB ENA, ENB, ENF Minimum cycle time	To \rightarrow F \rightarrow Other \rightarrow Other \rightarrow Other Setup time Setup time Setup time Setup time	
Sig			
$\begin{aligned} & \text { FTAB }=0 \\ & \text { FTF }=1 \end{aligned}$	From Clock Clock Co Co So-S2, OSA, OSB So-S2, OSA, OSB A, B Co So-S2, OSA, OSB $\overline{\mathrm{ENA}}, \overline{\mathrm{ENB}}, \overline{\mathrm{ENF}}$ Minimum cycle time	To \rightarrow F \rightarrow Other \rightarrow F \rightarrow Other \rightarrow F \rightarrow Other Setup time Setup time Setup time Setup time	$\begin{aligned} & \text { Calculated Specification Limit } \\ = & (\text { Clock } \rightarrow \mathrm{C} 16)+(\mathrm{C} 0 \rightarrow \mathrm{~F}) \\ = & (\mathrm{Clock} \rightarrow \mathrm{C} 16)+(\mathrm{C} 0 \rightarrow \text { Out }) \\ = & (\mathrm{C} 0 \rightarrow \mathrm{C} 16)+(\mathrm{C} 0 \rightarrow \mathrm{~F}) \\ = & (\mathrm{C} 0 \rightarrow \mathrm{C} 16)+(\mathrm{C} 0 \rightarrow \text { Out }) \\ = & (\mathrm{So}-\mathrm{S} 2, \mathrm{OSA}, \mathrm{OSB} \rightarrow \mathrm{C} 16)+(\mathrm{C} 0 \rightarrow \mathrm{~F}) \\ = & (\mathrm{S} 0-\mathrm{S} 2, \mathrm{OSA}, \mathrm{OSB} \rightarrow \mathrm{C} 16)+(\mathrm{C} 0 \rightarrow \text { Out }) \\ = & \text { Same as } 16 \text {-bit case } \\ = & (\mathrm{C} 0 \rightarrow \mathrm{C} 16)+(\mathrm{C} 0 \text { Setup time }) \\ = & (\text { So-S2, OSA, OSB } \rightarrow \mathrm{C} 16)+(\mathrm{Co} \text { Setup time }) \\ = & \text { Same as } 16-\text { bit case } \\ = & (\text { Clock } \rightarrow \mathrm{C} 16)+(\mathrm{C} 0 \text { Setup time }) \end{aligned}$
		31	

FTAB $=1$
FTF $=1$
From
A, B
A, B
Co
Co
So-S2, OSA, OSB
So-S2, OSA, OSB
A, B
Co
So-S2, OSA, OSB $\overline{E N A}, \overline{E N B}, \overline{E N F}$
Minimum cycle time (F register accumulate loop)

Calculated Specification Limit

$=(A, B \rightarrow C 16)+(\mathrm{Co} \rightarrow F)$
$=(\mathrm{A}, \mathrm{B} \rightarrow \mathrm{C} 16)+(\mathrm{Co} \rightarrow$ Out $)$
$=(\mathrm{C} 0 \rightarrow \mathrm{C} 16)+(\mathrm{Co} \rightarrow \mathrm{F})$
$=(\mathrm{C} 0 \rightarrow \mathrm{C} 16)+(\mathrm{Co} \rightarrow \mathrm{Out})$
$=(\mathrm{S} 0-\mathrm{S} 2, \mathrm{OSA}, \mathrm{OSB} \rightarrow \mathrm{C} 16)+(\mathrm{Co} \rightarrow \mathrm{F})$
$=(\mathrm{So}-\mathrm{S} 2$, OSA, OSB $\rightarrow \mathrm{C} 16)+(\mathrm{Co} \rightarrow$ Out $)$
$=(A, B \rightarrow C 16)+(C 0$ Setup time $)$
$=(\mathrm{Co} \rightarrow \mathrm{C} 16)+(\mathrm{Co}$ Setup time
$=($ So-S2, OSA, OSB \rightarrow C16 $)+($ Co Setup time $)$
$=$ Same as 16 -bit case
$=($ Clock $\rightarrow \mathrm{C} 16)+($ Co Setup time $)$

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Package Style	Performance		
	$\mathbf{5 5} \mathbf{n s}$	$\mathbf{4 0} \mathbf{n s}$	$\mathbf{2 6} \mathbf{n s}$
	L4C381JC55	L4C381JC40	L4C381JC26
68-pin Plastic LCC, J-Lead - J2	L4C381GC55	L4C381GC40	L4C381GC26
68-pin Pin Grid Array -G1	L4C381KC55	L4C381KC40	L4C381KC26
68-pin Ceramic LCC -K3			

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance		
	65 ns	45 ns	30 ns
L4C381			
68-pin Pin Grid Array - G1	L4C381GM65 L4C381GME65	L4C381GM45 L4C381GME45 L4C381GMB45	L4C381GM30 L4C381GME30 L4C381GMB30
68-pin Ceramic LCC - K3	L4C381KM65 L4C381KME65	L4C381KM45 L4C381KME45 L4C381KMB45	L4C381KM30 L4C381KME30 L4C381KMB30

Pin Assignments

Pin		Function	Pin		Function
J,K	G		J,K	G	
1	F02	A0	35	F10	F8
2	F01	A1	36	F11	F7
3	E02	A2	37	G10	F6
4	E01	A3	38	G11	F5
5	D02	A4	39	H10	F4
6	D01	A5	40	H11	F3
7	C 22	A6	41	110	F2
8	C01	A7	42	111	F1
9	B01	A8	43	K11	Fo
10	B02	A9	44	K10	Co
11	A02	A10	45	L10	So
12	B03	A11	46	K09	S1
13	A03	A12	47	109	S2
14	B04	A13	48	K08	OSA
15	A04	A14	49	L08	OSB
16	B05	A15	50	K07	FTAB
17	A05	CLK	51	107	$\overline{\text { ENB }}$
18	B06	Vcc	52	K06	ENA
19	A06	GND	53	L06	B0
20	B07	C16	54	K05	B1
21	A07	$\overline{\mathrm{P}}$	55	L05	B2
22	B08	$\overline{\mathrm{G}}$	56	K04	B3
23	A08	ZERO	57	L04	B4
24	B09	OVF	58	K03	B5
25	A09	ENF	59	L03	B6
26	A10	FTF	60	L02	B7
27	B10	$\overline{\mathrm{OE}}$	61	K02	B8
28	B11	F15	62	K01	B9
29	C10	F14	63	102	B10
30	C11	F13	64	101	B11
31	D10	F12	65	H02	B12
32	D11	F11	66	H01	B13
33	E10	F10	67	C02	B14
34	E11	F9	68	G01	B15

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Features

- Four-wide 2901 ALU plus carry look-ahead logic and full 16-bit data paths
\square High speed, low power CMOS technology
Fast: 35 ns Commercial, 45 ns Military clock period
Available 100% screened to MIL-STD-883, Class B
Functionally equivalent to Am29C101 from AMD and to similar IDT and Cypress devices
Package styles available:
- 64-pin Plastic DIP
- 64-pin Sidebraze, Hermetic DIP
- 68-pin Pin Grid Array
- 68-pin Ceramic LCC (Type C)

Description

The L29C101 is a high-performance, expandable, 16 -bit Arithmetic Logic Unit slice manufactured using CMOS technology. Completely code compatible with its 4-bit predecessors, the part can be used to implement the arithmetic section of central processors or many types of programmable controllers.

The microinstruction set of the L29C101 is straightforward, yet versatile enough so that the part can be used to emulate the ALU operations of most digital computers.

The L29C101 is comprised of functions equivalent to four 2901 bit-slice ALU's plus the 2902 carry-look-ahead
logic, all in a single 64 -pin device. Included are a 16 -word by 16 -bit dualport register file, a 16 -bit 8 -function ALU, 16 -bit shifters, and all the necessary decoding and control logic.

All status, shift linkage, and carry functions are cascadable to allow construction of architectures wider than 16-bits if desired. Expanded designs can take advantage of full carry-lookahead for improved performance.

The L29C101 is fully pin and function compatible with the Am29C101.

The L29C101 is available in High-Rel versions that are fully compliant with MIL-STD-883C, class B.

L29C101 Instruction Decoding

L29C101 Block Diagram

L29C101 Architecture

A typical execution cycle for the L29C101 consists of reading two operands simultaneously from the two-port register file, performing an ALU operation on these operands, and returning the result to the file. This entire operation can be completed in a single clock cycle, providing high performance and simple microcode. Optionally, the ALU operands may be sourced by the external data port, an auxiliary register denoted the Quotient or "Q" register, or forced to zero under instruction control. Also, the data returned to the register file and the
Q register may be shifted one bit in either direction to aid multiplication and division operations.

Register File

The two-port register file has a capacity of 16 words of 16 bits each. The A-port address (A0-A3) specifies the register to be read from the A-port, and the B-port address ($\mathrm{B} 0-\mathrm{B} 3$) specifies the register to the read from the B-port. Both A and B addresses may be the same, in which case identical data will appear at both A and B ports. In addition, the B-port address can specify a register location for writing. Data from the locations indicated by the A and B addresses
are read from the register file during the low period of the clock. The data is applied to two latches which are transparent during the clock low period, and hold their state during the clock high period. The purpose of these latches is to hold the A and B ALU operands constant while a computation result is written back to the register file at the B address. This allows for a read-modify-write cycle, which is useful in applications such as accumulation. Under control of the Result Destination Field (I6, I8), data to be written to the register file is stored into the register addressed by the B field on the rising edge of the clock.

ALU Control

The ALU is capable of performing eight operations. These functions are described in Table 2. The control inputs I3-I5 select one of three arithmetic or five logical operations to be performed on the input operands. The integral carry-lookahead circuitry across all 16 ALU bits is functionally equivalent to the 2902 carry-lookahead unit and provides significant speed advantages.

In the arithmetic mode, the ALU result is also a function of the Carry In input. When executing ALU Add or Subtract instructions, setting the C(n) input to ' 1 ' causes the addition of ' 1 ' to the result. Thus for 2's complement operations, $C(n)$ of the least significant slice would be set to zero for addition, and to ' 1 ' for subtraction. This is because the L29C101 ALU naturally implements 1's complement subtraction,
that is, a bitwise complement of one of the operands. In order to achieve a 2 's complement result, a ' 1 ' must be added in the least significant position. This is accomplished using C(n). PASS and Negate operations are also available by combining arithmetic instructions (Add, Subtract) with any of the operand source options which set one operand to zero. Tables 5 and 6 show the detailed ALU logic and arithmetic functions and the operands selected. Table 5 includes ALU function selection.

Operand Source Control

As shown in the figure below, each of the ALU operands is supplied by a multiplexer, which allows significant flexibility in the selection of the operand source. The two 16-bit ALU inputs are denoted R and S . The R operand may be sourced by the A read port of the register file, from the

Dinput pins, or may be forced to zero. The S operand may be sourced by the B read port of the register file, the A read port, (when the R operand is D or zero), the Q register, or forced to zero. Control of the operand selection multiplexers is encoded into control field I2-I0, as described in Table 1.

Result Destination Control

The instruction field $\mathrm{I} 6-\mathrm{I} 8$ is encoded to control the routing of the ALU result field, denoted F, and the Q register contents. The encoding is defined in Table 3. Under instruction control, the ALU result can be stored in the register file, the Q register, or both. A No Operation capability is also provided during which the result is not stored in either location. This field also controls the value presented at the $\mathrm{Y} 0-\mathrm{Y} 15$ outputs. These outputs generally reflect the ALU result F, but for one of the instruction decodes are

16-bit ALU Slice

driven by the A port value read from the register file. This provides the capability to read data from the register file while simultaneously performing an ALU operation. This is useful in applications such as postincrement address generation, for example.

In addition to destination control, up or down shifting of both the register file and Q register load values are controlled by the I6-I8 field. Each can be up or down shifted one position prior to storing in the destination register. The RAM0 or Q0 pins output the least significant bit of the value being stored for downshifts, and accept the bit to be stored in the least signficant position for upshifts. Similarly, the RAM15 or Q15 pins output the most significant bit for
upshifts, and accept the bit to be stored in the most significant position for downshifts. Table 3 gives the various shift actions and data destinations controlled by the I6-I8 inputs.

Q-Register

The Q-register is intended primarily for use as a separate working register for multiplication and division routines but it also serves as an accumulator or for temporary storage. The Q register is loaded via a multiplexer, which allows either up or downshift of the Q register contents, or an unshifted load of the Q register with the ALU result.

Status Outputs

The $\overline{\mathrm{G}}$ and $\overline{\mathrm{P}}$ outputs are low-true
Carry Generate and Carry Propagate
signals. They are used in conjunction with an external carry-lookahead generator when cascading L29C101 slices beyond 32 bits. The $C(n+16)$ is the Carry Out signal, which can be directly connected to the $C(n)$ input of another L29C101 to implement a 32-bit system. The OVR output indicates 2's complement overflow for addition and subtraction. The logical definitions of the $\bar{G}, \bar{P}, C(n+16)$, and OVR signals are given in Table 7.

The MSB of the ALU result (F15) is provided so that the sign bit may be examined easily. The Z output is used for zero detection and is high when all of the F output bits are low. It is an open drain output which may be wire OR'ed across multiple slices.

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Input signal with respect to ground -3.0 V to +7.0 V
Signal applied to high impedance output -3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current $>400 \mathrm{~mA}$

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{VCC} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{VCC} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{lOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{lOL}=8.0 \mathrm{~mA}$			0.4	V
VH	Input High Voltage		2.0		Vcc	V
VIL	Input Low Voltage	Note 3	0.0		0.8	V
IIX	Input Current	Ground \leq VI \leq Vcc			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground \leq Vo \leq Vcc			± 20	$\mu \mathrm{A}$
los	Output Short Current	$\mathrm{Vo}=$ Ground, Vcc $=$ Max, Note 4, 8			-250	mA
ICC1	Vcc Current, Dynamic	Notes 5, 6		15	30	mA
ICC2	Vcc Current, Quiescent	Note 7			1.0	mA

Table 1. ALU Source Operand Control

Mnemonic	Micro Code				ALU Source Operands	
	I2	l1	lo	Octal Code	R	S
AQ	L	L	L	0	A	Q
AB	L	L	H	1	A	B
ZQ	L	H	L	2	O	Q
ZB	L	H	H	3	O	B
ZA	H	L	L	4	O	A
DA	H	L	H	5	D	A
DQ	H	H	L	6	D	Q
DZ	H	H	H	7	D	O

Table 2. ALU Function Control

Mnemonic	Micro Code				ALU Function	
	I5	I4	I3	Octal Code		
	L	L	L	0	R Plus S	R + S
SUBR	L	L	H	1	S Minus R	S - R
SUBS	L	H	L	2	R Minus S	R - S
OR	L	H	H	3	R OR S	
AND	H	L	L	4	R AND S	
NOTRS	H	L	H	5	R AND S	
EXOR	H	H	L	6	R EX-OR S	
EXNOR	H	H	H	7	R EX-NOR S	

Table 3. ALU Destination Control

Mnemonic	Micro Code				RAM Function		Q-Reg. Function		$\stackrel{\mathbf{Y}}{\text { Output }}$	RAM Shifter		Q Shifter	
	Is	17	16	Octal Code	Shift	Load	Shift	Load		RAMo	RAM15	Q0	Q15
Qreg	L	L	L	0	X	None	None	$\mathrm{F} \rightarrow \mathrm{Q}$	F	X	X	X	X
Nop	L	L	H	1	X	None	X	None	F	X	X	X	X
RAMA	L	H	L	2	None	$F \rightarrow B$	x	None	A	X	X	X	x
RAMf	L	H	H	3	None	$F \rightarrow B$	x	None	F	X	X	X	X
RAMQD	H	L	L	4	DOWN	$F / 2 \rightarrow B$	DOWN	$\mathrm{Q} / 2 \rightarrow \mathrm{Q}$	F	Fo	IN15	Qo	IN15
RAMD	H	L	H	5	DOWN	$\mathrm{F} / 2 \rightarrow \mathrm{~B}$	X	None	F	Fo	IN15	Qo	X
RAMQU	H	H	L	6	UP	$2 \mathrm{~F} \rightarrow \mathrm{~B}$	UP	$2 \mathrm{Q} \rightarrow \mathrm{Q}$	F	INo	F15	INo	Q15
RAMU	H	H	H	7	UP	$2 \mathrm{~F} \rightarrow \mathrm{~B}$	X	None	F	INo	F15	X	Q15

Table 4. Source Operand and ALU Function Matrix

	1210 Octal	0	1	2	3	4	5	6	7
$\begin{gathered} \text { Octal } \\ \text { I543 } \end{gathered}$	ALU Source ALU Function	A, Q	A, B	O, Q	O, B	O, A	D, A	D, Q	D, 0
0	$\begin{aligned} & C(n)=L \\ & R \text { plus } S \\ & C(n)=H \end{aligned}$	$\begin{gathered} A+Q \\ A+Q+1 \end{gathered}$	$\begin{gathered} A+B \\ A+B+1 \end{gathered}$	$\begin{gathered} Q \\ Q+1 \end{gathered}$	$\begin{gathered} B \\ B+1 \end{gathered}$	$\begin{gathered} A \\ A+1 \end{gathered}$	$\begin{gathered} D+A \\ D+A+1 \end{gathered}$	$\begin{gathered} \mathrm{D}+\mathrm{Q} \\ \mathrm{D}+\mathrm{Q}+1 \end{gathered}$	$\begin{gathered} D \\ D+1 \end{gathered}$
1	$\begin{gathered} C(n)=L \\ S \text { minus } R \\ C(n)=H \end{gathered}$	$\begin{gathered} Q-A-1 \\ Q-A \end{gathered}$	$\begin{gathered} B-A-1 \\ B-A \end{gathered}$	$\overline{Q-1}$ Q	$\begin{gathered} B-1 \\ B \end{gathered}$	$\begin{gathered} \text { A - } 1 \\ \text { A } \end{gathered}$	$\begin{gathered} A-D-1 \\ A-D \end{gathered}$	$\begin{gathered} Q-D-1 \\ Q-D \end{gathered}$	$\begin{gathered} -D-1 \\ -D \end{gathered}$
2	$\begin{gathered} C(n)=L \\ R \text { minus } S \\ C(n)=H \end{gathered}$	$\begin{gathered} \mathrm{A}-\mathrm{Q}-1 \\ \mathrm{~A}-\mathrm{Q} \\ \hline \end{gathered}$	$\begin{gathered} A-B-1 \\ A-B \end{gathered}$	$\begin{gathered} -\mathrm{Q}-1 \\ -\mathrm{Q} \end{gathered}$	$\begin{gathered} -B-1 \\ -B \\ \hline \end{gathered}$	$\begin{gathered} -\mathrm{A}-1 \\ -\mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{D}-\mathrm{A}-1 \\ \mathrm{D}-\mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{D}-\mathrm{Q}-1 \\ \mathrm{D}-\mathrm{Q} \end{gathered}$	D-1
3	R OR S	$A \vee Q$	AvB	Q	B	A	Dva	DvQ	D
4	R AND S	$\mathrm{A} \wedge \mathrm{Q}$	$\overline{\text { A}}$ ^Q	0	0	0	D^A	D^Q	0
5	$\overline{\mathrm{R}}$ AND S	$\bar{A} \wedge Q$	A^B	Q	B	A	D^A	D^Q	0
6	R EX-OR S	A $\forall \mathrm{Q}$	$A \forall B$	Q	B	A	D $\forall \mathrm{A}$	D \forall Q	D
7	R EX-NOR S	$\overline{A \nabla Q}$	$\bar{A} \forall \mathrm{~B}$	$\overline{\mathrm{Q}}$	\bar{B}	$\overline{\text { A }}$	DVA	DVQ	D

Table 5. ALU Logic Mode Functions

Octal I543, $\mathbf{I 2 1 0}^{2}$	Group	Function
40	AND	$A \wedge Q$
41		$A \wedge B$
45		$\mathrm{D} \wedge \mathrm{A}$
46		$D \wedge Q$
30	OR	$A \vee Q$
31		$A \vee B$
35		D $\vee \mathrm{A}$
36		$D \vee A$
60	EX-OR	$A \forall Q$
61		$A \forall B$
65		$D \forall A$
66		$\mathrm{D} \forall \mathrm{Q}$
70	EX - NOR	$\overline{A \forall Q}$
71		$\overline{A \forall B}$
75		$\overline{D \forall A}$
76		$\overline{\mathrm{DVQ}}$
72	INVERT	$\overline{\mathrm{Q}}$
73		$\overline{\mathrm{R}}$
74		$\overline{\text { A }}$
77		$\overline{\mathrm{D}}$
62	PASS	Q
63		B
64		A
67		D
32	PASS	Q
33		B
34		A
37		D
42	ZERO	0
43		0
44		0
47		0
50	MASK	$\overline{\mathrm{A}} \wedge \mathrm{Q}$
51		$\bar{A} \wedge B$
55		$\overline{\mathrm{D}} \wedge \mathrm{A}$
56		$\overline{\mathrm{D}} \wedge \mathrm{Q}$

Table 6. ALU Arithmetic Mode Functions

Octal I543, 1210	$\mathbf{C}(\mathrm{n})=0$ (Low)		$C(n)=1($ High $)$	
	Group	Function	Group	Function
00	ADD	A + Q	ADD Plus one	$A+Q+1$
01		$A+B$		$A+B+1$
05		D +A		$D+A+1$
06		$D+Q$		$D+Q+1$
02	PASS	Q	Increment	$\mathrm{Q}+1$
03		B		$B+1$
04		A		A +1
07		D		$D+1$
12	Decrement	Q-1	PASS	Q
13		B - 1		B
14		A - 1		A
27		D-1		D
22	1's Comp.	-Q-1	2's Comp. (Negate)	-Q
23		-B-1		- B
24		- A - 1		- A
17		-D-1		-D
10	Subtract(1's Comp.)	Q-A -1	Subtract$(2$'s Comp.)	Q-A
11		B-A - 1		B - A
15		A-D-1		A-D
16		Q-D-1		Q-D
20		A-Q-1		A-Q
21		A-B-1		A-B
25		D-A-1		D-A
26		D-Q-1		D-Q

Table 7. Logic Functions for Carry and Overflow Conditions

1543	Function	P	G	$\mathrm{C}(\mathrm{n}+16)$	OVR
0	R + S	$\overline{P_{0}-P_{1} \ldots P_{15}}$		C16	$\mathrm{C}_{16} \forall \mathrm{C}_{15}$
1	S - R	\leftarrow Same as R + S equations, but substitute $\overline{\mathrm{Ri}}$ for Ri in definitions \rightarrow			
2	R-S	\leftarrow Same as $\mathrm{R}+\mathrm{S}$ equations, but substitute $\overline{\mathrm{i}}$ for Si in definitions \rightarrow			
3	RvS	HIGH	HIGH	LOW	LOW
4	$R \wedge S$				
5	$R \wedge S$				
6	$\mathrm{R} \forall \mathrm{S}$				
7	R \forall S				

16-bit ALU Slice

Switching Characteristics

Over Commercial Operating Range (Note 9)

Output Enable/Disable Times (Note 11)

Device	Input	Output	teN	tDIs
L29C101-35	$\overline{\mathrm{OE}}$	Y	20	17

Cycle Time and Clock Characteristics

Read - Modify - Write Cycle (from selection of A, B registers to end of cycle)	35 ns
Maximum Clock Frequency to shift Q (50\% duty cycle, I $=432$ or 632)	30 MHz
Minimum Clock LOW Time	15 ns
Minimum Clock HIGH Time	20 ns

Combinational Propagation Delays (Note 12)

To Output From Input	Y	F15	$\mathrm{C}(\mathrm{n}+16)$	$\overline{\mathbf{G}, ~ \bar{P}}$	$\mathrm{F}=0$	OVR	RAM0 RAM15	$\begin{aligned} & \text { Q0 } \\ & \text { Q15 } \end{aligned}$
A,B Address	46	43	35	37	49	41	40	-
D	34	34	27	27	40	29	33	-
$\mathrm{C}(\mathrm{n})$	27	24	20	-	28	23	28	-
$10,11,12$	40	40	33	30	42	32	35	-
$13,14,15$	41	38	32	28	40	36	38	-
$16,17,18$	20	-	-	-	-	-	26	26
A bypass ALU $(1=2 X X)$	26	-	-	-	-	-	-	-
Clock	38	34	30	30	36	32	34	25

Set-Up and Hold Times Relative to Clock Input (Note 12)

Input	Setup Time Before $\mathrm{H} \rightarrow \mathrm{L}$	Hold Time After $\mathrm{H} \rightarrow \mathrm{L}$	Setup Time Before L \rightarrow H	Hold Time After L $\rightarrow \mathrm{H}$
A,B Source Address (Note 14, 15)	24	3	35	-
B Destination Address (Note 13)	24	\leftarrow Do Not Change \rightarrow		0
D	-	-	26	0
$\mathrm{C}(\mathrm{n})$	-	-	16	0
10, 11, 12	-	-	30	0
$13,14,15$	-	-	31	0
16, 17, I8 (Note 13)	10	\leftarrow Do Not Change \rightarrow		0
RAM0, RAM15, Q0, Q15	-	-	12	0

Switching Characteristics

Over Military Operating Range (Note 9)

Output Enable/Disable Times (Note 11)

Device	Input	Output	teN	tDIs
L29C101-45	$\overline{\mathrm{OE}}$	Y	23	20

Cycle Time and Clock Characteristics

Read - Modify - Write Cycle (from selection of A, B registers to end of cycle)	45 ns
Maximum Clock Frequency to shift Q (50\% duty cycle, I = 432 or 632)	25 MHz
Minimum Clock LOW Time	20 ns
Minimum Clock HIGH Time	20 ns

Combinational Propagation Delays (Note 12)

To Output From Input	Y	F15	$\mathrm{C}(\mathrm{n}+16)$	$\overline{\mathbf{G}, \bar{P}}$	$\mathrm{F}=0$	OVR	RAM0 RAM15	$\begin{aligned} & \text { Q0 } \\ & \text { Q15 } \end{aligned}$
A,B Address	52	50	40	38	48	46	43	-
D	37	36	30	32	40	32	35	-
$\mathrm{C}(\mathrm{n})$	30	28	24	-	29	27	30	-
$10,11,12$	44	43	36	34	46	38	41	-
$13,14,15$	47	44	35	35	45	44	45	-
$16,17,18$	22	-	-	-	-	-	30	30
A bypass ALU $(1=2 X X)$	27	-	-	-	-	-	-	-
Clock	44	39	32	32	40	36	34	28

Set-Up and Hold Times Relative to Clock Input (Note 12)

Input	Setup Time Before $\mathrm{H} \rightarrow \mathrm{L}$	Hold Time After $\mathrm{H} \rightarrow \mathrm{L}$	Setup Time Before $\mathrm{L} \rightarrow \mathrm{H}$	Hold Time After L \rightarrow H
A,B Source Address (Note 14, 15)	22	3	40	-
B Destination Address (Note 13)	22	\leftarrow Do Not Change \rightarrow		0
D	-	-	30	0
$\mathrm{C}(\mathrm{n})$	-	-	20	0
$10,11,12$	-	-	37	0
13, 14, 15	-	-	36	0
16, 17, 18 (Note 13)	10	\leftarrow Do Not Change \rightarrow		0
RAM0, RAM15, Q0, Q15	-	-	12	2

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above Vcc will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6$ volts. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{N C V^{2} F}{4}
$$

where

```
\(\mathrm{N}=\) total number of device outputs
C = capacitive load per output
\(\mathrm{V}=\) suppy voltage
\(\mathrm{F}=\) clock frequency
```

6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified IoL and IOH plus 30 pF capacitance.
This device has high speed outputs capable of large instantaneous current pulses and fast turnon/turnoff times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the
point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition for tEN is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.
12. A dash indicates a propagation delay or set-up time constraint that does not exist.
13. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change."
14. Source addresses must be stable prior to the clock $\mathrm{H} \rightarrow \mathrm{L}$ transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e., if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
15. The set-up time prior to the clock $\mathrm{L} \rightarrow \mathrm{H}$ transition is to allow time for data to be accessed, passed through the ALU, and returned to the RAM. It includes all the time from stable A and B addresses to the clock $L \rightarrow H$ transition, regardless of when the clock $\mathrm{H} \rightarrow$ L transition occurs.

DEVICES INCORPORATED

Ordering Information

Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Package Style	
	Performance
L29C101 ns	
64-pin Plastic DIP (0.9") - P4	L29C101PC35
64-pin Sidebraze (0.9") Hermetic DIP - D4	L29C101DC35
68-pin Ceramic LCC - K3	L29C101KC35
68-pin Pin Grid Array - G1	L29C101GC35

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

| Package Style | |
| :---: | :---: | Performance | 45 ns | |
| :---: | :---: |
| L29C101 | L29C101DM45
 L29C101DME45 |
| 64-pin Sidebraze (0.9")
 Hermetic DIP - D4 | L29C101KM45 |
| 68-pin Ceramic LCC - K3 | L29C101KMB45 |

Pin Assignments

Pin	Function	Pin	Function
1	14	33	16
2	15	34	Q0
3	$\overline{\mathrm{P}}$	35	RAM0
4	\bar{G}	36	CP
5	$\mathrm{C}(\mathrm{n}+16)$	37	B3
6	OVR	38	B2
7	F15	39	B1
8	Y15	40	Bo
9	Y14	41	Do
10	Y13	42	D1
11	Y12	43	D2
12	Y11	44	D3
13	Y10	45	D4
14	Y9	46	D5
15	Y8	47	D6
16	GND	48	D7
17	$\overline{O E}$	49	Vcc
18	Y7	50	D8
19	Y6	51	D9
20	Y5	52	D10
21	Y4	53	D11
22	Y3	54	D12
23	Y2	55	D13
24	Y1	56	D14
25	Yo	57	D15
26	$F=0$	58	A0
27	CIN	59	A1
28	12	60	A2
29	11	61	A3
30	10	62	RAM15
31	18	63	Q15
32	17	64	13

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Features

- 32-bit input, 32-bit output multiplexed to 16 lines
Full 0-31 position barrel shift capability
- Integral priority encoder for 32-bit floating point normalization
- Sign-magnitude or two's complement mantissa representation
- 32-bit linear shifts with sign or zero fill
I Independent priority encoder outputs for block floating point
- Package styles available:
- 68-pin Plastic LCC, J-Lead
- 68-pin Ceramic LCC (Type C)
- 68-pin Pin Grid Array

Description

The LSH32 is a 32-bit high speed shifter designed for use in floating point normalization, word pack/ unpack, field extraction, and similar applications. It has 32 data inputs, and 16 output lines. Any shift configuration of the 32 inputs, including circular (barrel) shifting, left shifts with zero fill, and right shift with sign extend are possible. In addition, a built-in priority encoder is provided to aid floating point normalization.

The major features of the LSH32 architecture are discussed in the following paragraphs.

Shift Array

The 32 inputs to the LSH32 are applied to a 32 -bit shift array. The 32 outputs of this array are multiplexed down to 16 lines for presentation at the device outputs. The array may be configured such that any contiguous 16 -bit field (including wraparound of the 32 inputs) may be presented to the output pins under control of the shift code field (wrap mode). Alternatively, the wrap feature may be disabled, resulting in zero or sign bit fill, as appropriate (fill mode). The shift code control assignments and the resulting input to output mapping for the wrap mode are shown in Table 1.

Essentially the LSH32 is configured as a left shift device. That is, a shift code of 000002 results in no shift of the input field. A code of 000012 provides an effective left shift of 1 position, etc. When viewed as a right shift, the shift code corresponds to the two's complement of the shift distance, i.e., a shift code of 111112 (-110) results in a right shift of one position, etc.
When not in the wrap mode, the LSH32 fills bit positions for which there is no corresponding input bit. The fill value and the positions filled depend on the Right/Left ($\mathrm{R} / \overline{\mathrm{L}}$) direction pin. This pin is a don't care input when in wrap mode. For left shifts in fill mode, lower bits are filled with zero as shown in Table 2. For right shifts, however, the SIGN input is used as the fill value. Table 3 depicts the bits to be filled as a function of shift code for the right shift case. Note that the R/Linput changes only the fill convention, and does not affect the definition of the shift code.

Table 1. Wrap mode shift code definitions

Shift Code	Y_{31}	Y30	-	-	Y16	Y15	-	-	Y1	Yo
00000	131	130	-	-	116	115	-	-	11	10
00001	130	129	-	\bullet	115	114	-	-	10	131
00010	129	128	-	\bullet	114	113	-	-	129	130
00011	128	127	-	-	113	112	-	-	130	129
-	-	-	\bullet	\bullet	\bullet	\bullet	\bullet	-	-	\bullet
-	-	-	-	\bullet	\bullet	-	-	-	-	\bullet
\bullet	\bullet	\bullet	-	-	\bullet	-	-	-	-	-
01111	116	115	114	-	11	10	-	-	118	117
10000	115	114	113	-	10	131	-	-	117	116
10001	114	113	112	\bullet	131	130	-	\bullet	116	115
10010	113	112	111	-	130	129	-	-	115	114
-	\bullet	-	\bullet	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	\bullet
11100	113	112	11	-	120	119	-	-	15	14
11101	12	11	10	-	119	118	-	-	14	13
11110	11	10	131	-	118	117	-	-	13	12
11111	10	131	130	-	117	116	\bullet	\bullet	12	11

Table 2. Fill mode shift code definitions (Left shift)

Shift Code	Y_{31}	Y30	-	-	Y16	Y15	-	-	Y1	Yo
00000	131	130	\bullet	-	116	115	-	-	11	10
00001	130	129	\bullet	-	115	114	-	-	10	0
00010	129	128	-	\bullet	114	113	-	-	0	0
00011	128	127	-	-	113	112	-	\bullet	0	0
-	-	\bullet	\bullet	\bullet	-	\bullet	\bullet	-	-	\bullet
-	\bullet	-	-	\bullet	-	\bullet	\bullet	-	-	\bullet
-	-	\bullet	-	\bullet	-	-	\bullet	-	-	\bullet
01111	116	115	114	-	11	10	-	-	0	0
10000	115	114	113	-	10	0	-	-	0	0
10001	114	113	112	-	0	0	-	-	0	0
10010	113	112	111	-	0	0	-	-	0	0
-	-	\bullet	-	-	-	-	\bullet	-	-	-
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
11100	13	12	11	-	0	0	-	-	0	0
11101	12	11	10	-	0	0	-	-	0	0
11110	11	10	0	-	0	0	\bullet	-	0	0
11111	10	0	0	-	0	0	\bullet	-	0	0

In fill mode, as in wrap mode, the shift code input represents the number of shift positions directly for left shifts, but the two's complement of the shift code results in the equivalent right shift. However, for fill mode the R/ \bar{L} input can be viewed as the most significant bit of a 6-bit two's complement shift code, comprised of R/L concatenated with the SI4-SIo lines. Thus a positive shift code ($\mathrm{R} / \mathrm{L}=0$) results in a left shift of $0-31$ positions, and a negative code $(\mathrm{R} / \overline{\mathrm{L}}=1)$ a right shift of up to 32 positions. The LSH32 can thus effectively select any contiguous 32-bit field out of a (sign extended and zero filled) 96 -bit "input."

Output Multiplexer

The shift array outputs are applied to a $2: 1$ multiplexer controlled by the $\mathrm{MS} / \overline{\mathrm{LS}}$ select line. This multiplexer makes available at the output pins either the most significant or least significant 16 outputs of the shift array.

Priority Encoder

The 32-bit input bus drives a priority encoder which is used to determine the first significant position for purposes of normalization. The priority encoder produces a five-bit code representing the location of the first non-zero bit in the input word. Code assignment is such that the priority encoder output represents the number of shift positions required to left align the first non-zero bit of the input word. Prior to the priority encoder, the input bits are individually exclusive OR'ed with the SIGN input. This allows normalization in floating point systems using two's complement mantissa representation. A negative value in two's complement representation will cause the exclusive OR gates to invert the input data to the encoder. As a result the leading significant digit will always be "1." This affects only the encoder inputs;

Table 3. Fill mode shift code definitions (Right shift)

Shift Code	Y31	Y30	-	-	Y16	Y15	-	-	- Y_{1}	Yo
00000	S	S	-	-	S	S	-	-	- S	S
00001	S	S	-	-	S	S	-	-	- S	131
00010	S	S	-	-	S	S	-	-	- 131	130
00011	S	S	\bullet	-	S	S	-	-	- 130	129
-	-	-	-	-	-	-	\bullet	-	- -	-
-	-	-	-	\bullet	-	-	\bullet	-	- •	-
-	-	-	-	-	-	-	-		-	-
01111	S	S	S	-	S	S	-		118	117
10000	S	S	S	-	S	131	-	-	117	116
10001	S	S	S	-	131	130	-	-	116	115
10010	S	S	S	-	130	129	-	-	- 115	114
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	- -	-
-	-	-	-	-	-	\bullet	-			\bullet
11100	S	S	S	-	120	119	-	-	- 15	14
11101	S	S	S	-	119	118	-	-	- 14	13
11110	S	S	131	-	118	117	-	-	- 13	12
11111	S	131	130	-	117	116	-	-	- 12	11

Table 4. Priority encoder function table

131	130	129	-••	116	115	114	-••	10	Shift Code
1	X	X	-..	X	X	X	-••	X	00000
0	1	X	-..	X	X	X	-••	X	00001
0	0	1	- \cdot	X	X	X	-••	X	00010
-	\bullet	-	-••	\bullet	-	\bullet	-••	\bullet	\bullet
-	-	\bullet	- \cdot -	\bullet	-	-	-••	-	-
0	0	0	-..	1	X	X	-••	X	01111
0	0	0	-..	0	1	X	-0.	X	10000
0	0	0	-••	0	0	1	-..	X	10001
-	-	-	- \cdot	-	-	-	-••	-	-
-	-	-	- \cdot -	-	-	-	-••	-	-
0	0	0	-••	0	0	0	-..	1	11111
0	0	0	-••	0	0	0	-..	0	11111

the shift array always operates on the raw input data. The priority encoder function table is shown in Table 4.

Normalize Multiplexer

The NORM input, when asserted results in the priority encoder output driving the internal shift code inputs directly. It is exactly equivalent to routing the $\mathrm{SO}_{4}-\mathrm{SO}_{0}$ outputs back to the SI4-SI0 inputs. The NORM input provides faster normalization of 32-bit data by avoiding the delay associated with routing the shift code off chip. When using the NORM function, the LSH32 should be placed in fill mode, with the $R /$ L input low.

Applications Examples

Normalization of mantissas up to 32 bits can be accomplished directly by a single LSH32. The NORM input is asserted, and fill mode and left shift are selected. The normalized mantissa is then available at the device output in two 16-bit segments, under the control of the output data multiplexer select, the MS/ $\overline{\mathrm{LS}}$.

If it is desirable to avoid the necessity of multiplexing output data in 16-bit segments, two LSH32 devices can be used in parallel. Both devices receive the same input word, with the MS/LS select line of one wired high, and the other low. Each device will then independently determine the shift distance required for normalization, and the full 32 bits of output data will be available simultaneously.

Long-Word Normalization (Multiple Cycles)

Normalization of floating point mantissas longer than 32 bits can be accomplished by cascading LSH32 units. When cascading for normalization, the device inputs are overlapped such that each device lower in priority than the first shares 16 inputs with its more significant neighbor. Fill mode and left shift are selected, however, internal normalization ($\overline{\mathrm{NORM}})$ is not used. The most significant result half of each device is enabled to the output. The shift out (SO4-SO0) lines of the most significant slice are connected to the shift in lines of all slices,
including the first. The exception is that all SI4 lines are grounded, limiting the shift distance to 16 positions. The shift distance required for normalization is produced by the priority encoder in the most significant slice. The priority encoder will produce the shift code necessary to normalize the input word if the leading non-zero digit is found in the upper 16 bits. If this is the case, the number of shift positions necessary to accomplish normalization is placed on the $\mathrm{SO}_{4}-\mathrm{SO}_{0}$ outputs for use by all slices, and the appropriate $0-15$ bit shift is accomplished. If the upper 16 bits are all zero, then the maximum shift of 15 places is executed. Single clock nor-
malization requiring shifts longer than 16 bits can be accomplished by a bank-select technique described below.

Single Cycle Long-Word Normalization

An extension of the above concept is a single clock normalization of long words (potentially requiring shifts of more than 15 places). The arrangement of LSH32s required is shown in Figure 1. Cascading of LSH32 units is accomplished by connecting the SI3-SI0 input lines of each unit to the $\mathrm{SO}_{3}-\mathrm{SO} 0$ outputs of the most significant device in the row as before. Essentially the LSH32s are arranged in multiple rows or banks such that the

Figure 1. Single cycle long-word normalization using LSH32s

inputs to successive rows are leftshifted by 16 positions. The outputs of each row are multiplexed onto a three-state bus. The normalization problem then reduces to selecting from among the several banks that one which has the first non-zero bit of the input value among its 16 most significant positions. If the most significant one in the input file was within the upper 16 locations of a given bank, the SO_{4} output of the most significant slice in that bank will be low. Single clock normalization can thus be accomplished simply by enabling onto the three-state output bus the highest priority bank in which this condition is met. In this way the input word will be normalized regardless of the number of shift positions required to accomplish this. The number of shift positions can be determined simply by concatenation of the SO3-SO0 outputs of the most significant slice in the selected row
with the encoded Output Enable-bits determining the row number. Note that lower rows need not be fully populated. This is because they represent left shifts in multiples of 16 positions, and the lower bits of the output word will be zero filled. In order to accomplish this zero fill, the least significant device in each row is always enabled, and the row select is instead connected to the SI4 input. This will force the shift length of the least significant device to a value greater than 15 whenever the row containing that device is not selected. This results in zero fill being accomplished by the equivalently positioned slice in a higher bank, as shown in the diagram.

Block Floating Point

With a small amount of external logic, block floating point operations are easily accomplished by the LSH32. Data resulting from a vector operation
are applied to the LSH32 with the $\overline{\text { NORM-input deasserted. The }}$ SO4-SO0 outputs fill then represent the normalization shift distance for each vector element in turn. By use of an external latch and comparator, the maximum shift distance encountered across all elements in the vector is saved for use in the next block operation (or block normalization). During this subsequent pass through the data, the shift code saved from the previous pass is applied uniformly across all elements of the vector. Since the LSH32 is not used in the internal normalize mode, this operation can be pipelined, thereby obtaining the desired shift distance for the next pass while simultaneously applying the normalization required from the previous pass.

32-bit Cascadable Barrel Shifter

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)

Storage temperature ... $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Operating ambient temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground.	-0.5 V to +7.0 V
Input signal with respect to ground..	-3.0 V to +7.0 V
Signal applied to high impedance output	-3.0 V to +7.0 V
Output current into low outputs 25 mA
Latchup current > 150 mA

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
Voh	Output High Voltage	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	2.4			V
Vol	Output Low Voltage	$\mathrm{IOL}=8.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	Note 3			0.8	V
IIx	Input Current	Ground $\leq \mathrm{V}$ I $\leq \mathrm{Vcc}$			± 20	$\mu \mathrm{A}$
loz	Output Leakage Current	Ground \leq Vo $\leq \mathrm{Vcc}$			± 20	$\mu \mathrm{A}$
los	Output Short Current	$\mathrm{Vo}=$ Ground, $\mathrm{Vcc}=$ Max, Note 4, 8	-20		-100	mA
Icc1	Vcc Current, Dynamic	Notes 5, 6		10	30	mA
IcC2	Vcc Current, Quiescent	Note 7			1.0	mA

Switching Characteristics Over Commercial Operating Range (Notes 9, 10) (ns)

	Symbol	Parameter	LSH32-42	LSH32-32
tIY	I, SIGN Inputs to Y Outputs	Min	Max	Min
Max				
tISO	I, SIGN Inputs to SO Outputs		42	
tIYN	I, SIGN Inputs to Y Outputs, Normalize Mode	32		
tSIY	SI, RIGHT/LEFT to Y Outputs	55		42
tMSY	MS/LS Select to Y Outputs		75	
tDIS	$\overline{O E}$ to Output Disable (Note 11)	60		
tENA	$\overline{O E}$ to Output Enable (Note 11)		28	

Switching Characteristics Over Military Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	LSH32-50		LSH32-40	
		Min	Max	Min	Max
tiY	I, SIGN Inputs to Y Outputs		50		40
tiso	I, SIGN Inputs to SO Outputs		65		52
tIYN	I, SIGN Inputs to Y Outputs, Normalize Mode		85		75
tSIY	SI, RIGHT/ $\overline{\text { LEFT }}$ to Y Outputs		62		52
tMSY	MS/LS Select to Y Outputs		32		26
tDIS	$\overline{\mathrm{OE}}$ to Output Disable (Note 11)		22		20
tena	$\overline{\mathrm{OE}}$ to Output Enable (Note 11)		22		20

Switching Waveforms

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VCC will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$\mathrm{C}=$ capacitive load per output
$\mathrm{V}=$ suppy voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified IoL and IOH plus 30 pF capacitance.

This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device Vcc and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

Ordering Information

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Package Style		Performance	
	$\mathbf{4 2} \mathbf{~ n s}$		
$32 \mathbf{n s}$			
LSH32	LSH32JC42	LSH32JC32	
68-pin Plastic LCC, J-Lead - J2	LH	LSH32GC32	
68-pin Pin Grid Array - G1	LSH32GC42	LH3	
68-pin Ceramic LCC - K3	LSH32KC42	LSH32KC32	

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

Package Style	Performance	
	$\mathbf{5 0} \mathbf{n s}$	
$\mathbf{y y y}$	$\mathbf{4 0} \mathbf{n s}$	
LSH32	LSH32GM50 LSH32GME50	LSH32GM40 LSH32GME40
68-pin Pin Grid Array - G1	LSH32KM50 LSH32KME50	LSH32KM40 LSH32KME40
68-pin Ceramic LCC - K3		

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Pin Assignments

Pin		Function	Pin		Function
J,K	G		J,K	G	
1	F02	121	35	F10	$\mathrm{Y}_{22} / \mathrm{Y}_{6}$
2	F01	122	36	F11	$\mathrm{Y} 21 / \mathrm{Y} 5$
3	E02	123	37	G10	$\mathrm{Y} 20 / \mathrm{Y}_{4}$
4	E01	124	38	G11	$\mathrm{Y}_{19} / \mathrm{Y}_{3}$
5	D02	125	39	H10	$\mathrm{Y} 18 / \mathrm{Y} 2$
6	D01	126	40	H11	$\mathrm{Y}_{17} / \mathrm{Y}_{1}$
7	C02	127	41	J 10	Y16/Yo
8	C01	128	42	111	$\overline{\mathrm{OE}}$
9	B01	129	43	K11	MS/LS
10	B02	130	44	K10	Vcc
11	A02	131	45	L10	Vcc
12	B03	SIGN	46	K09	10
13	A03	SO4	47	L09	11
14	B04	SO_{3}	48	K08	12
15	A04	SO2	49	L08	13
16	B05	SO1	50	K07	14
17	A05	SO0	51	L07	15
18	B06	NORM	52	K06	16
19	A06	Sl4	53	L06	17
20	B07	Sl3	54	K05	18
21	A07	Sl2	55	L05	19
22	B08	Sl1	56	K04	110
23	A08	Slo	57	L04	111
24	B09	$\mathrm{R} / \overline{\mathrm{L}}$	58	K03	112
25	A09	F/W	59	L03	113
26	A10	Y_{31} / Y_{15}	60	L02	GND
27	B10	Y30/Y14	61	K02	GND
28	B11	Y29/Y13	62	K01	114
29	C10	Y28/Y12	63	J02	115
30	C11	Y27/Y11	64	J01	116
31	D10	Y26/Y10	65	H02	117
32	D11	Y25/Y9	66	H01	118
33	E10	Y24/Y8	67	G02	119
34	E11	$\mathrm{Y} 23 / \mathrm{Y} 7$	68	G01	120

Features

- High-speed (50 MHz), low power (125 mW), CMOS 64-bit Digital Correlator
Functionally and pin compatible with the TRW TDC1023J
\square Bits can be selectively masked
Three-state outputs
- Available 100% screended to MIL-STD-883, Class B
- Package styles available:
- 24-pin Plastic DIP
- 24-pin Sidebraze, Hermetic DIP
- 28-pin Ceramic LCC (Type C)

Description

The L10C23 is a high speed CMOS 64-bit digital correlator. It is pin-forpin equivalent to the TDC1023 bipolar correlator. The L10C23 operates over the full military ambient temperature range using advanced CMOS technology.
The L10C23 produces the 7 -bit correlation score of two input words of up to 64 bits, denoted A and B. The A and B inputs are serially shifted into two independently clocked 64 -bit regis-

L10C23 Block Diagram

ters. The A register is clocked on the rising edge of CLK A, and the B register is clocked on the rising edge of CLK B.

The outputs of the B register drive a 64-bit transparent latch, denoted the Clatch. The Clatch is controlled by the LCL (Load C Latch) input. A high level on the LCL input causes the C latch to be transparent, allowing the contents of the B register to be applied directly to the correlator array. When the LCL input is low, the data in the Clatch is held, so that the B input may be loaded with a new correlation reference without affecting the current reference value stored in C .

Each bit in the A register is exclusive NOR'ed with the corresponding bit in the C latch, implementing a single bit multiplication at each bit position.
The mask register, denoted by M, is a third 64-bit register, which is serially loaded from the M input on the rising edge of CLK M. Bit positions in the M register which are set to zero mask the corresponding bits in the A and C registers from participating in the correlation score. This can be used to reduce the effective length of the correlation, or to correlate against only one channel of a bit-multiplexed datastream without deinterleaving the data.

The output of the masking process is a 64-bit vector which contains ones in the locations in which A and B data match, and which are unmasked (M register contains a 1). This 64-bit vector is applied to a pipelined digital summer which calculates the total number of ones in the vector (the correlation score). The summer network contains three pipeline stages, which
are clocked on the rising edge of CLKS. Calculation of a correlation score therefore requires three clock cycles, but a new result can be obtained on each cycle once the pipeline is filled.

Because a portion of the summer logic is located between the input registers and the first pipeline register, some timing restrictions exist between CLK S and CLK A, CLK B, or CLK M. CLK S may be tied to an input clock (usually CLK A) to obtain a continuously updated correlation score, delayed by three cycles from the data. Under this condition, CLK S may be skewed later than CLK A by no more than tsK to assure that the A register outputs have not changed before the S clock occurs.

Alternatively, CLK S may be asyncronous to the input clocks, as long as data is stable at the pipeline register inputs prior to the CLK S rising edge. This condition can be met by assuring that CLK S occurs at least tPS after the input clock.

The summer output represents a count of the number of matching positions in the input data streams. This 7-bit result can be inverted (one's-complemented) by loading a ' 1 ' into the INV register.

Correlation values which exceed a predetermined threshold can be detected via the Threshold register and Comparator. The Threshold register is loaded with a 7-bit value via the R6-R0 pins at the rising edge of CLK C and while $\overline{\mathrm{OE}}$ is logic high. To achieve synchronization with the digital summer, the Threshold register contents are fed into pipeline registers clocked by CLK S. The compare flag output (CFL) goes high when the summer output is equal to or greater than the contents of the Threshold register.

Cascading the L10C23 devices for longer correlation lengths and more bits of reference or data precision is easily accomplished. The A, B, and M registers have serial outputs to directly drive the corresponding inputs of succeeding devices. The correlation scores of multiple devices in such a system should be added together to obtain the overall correlation score.

Correlation on data exceeding one bit of precision can be accomplished by first calculating single-bit correlation scores at each bit position, then adding the results after weighting them appropriately. Thus, one L10C23 would be used for each bit of precision in the data.

Logic Devices' L4C381 16-bit ALU can be used to assist in adding the outputs of several L10C23 correlators. When adding several 7 -bit correlation scores, advantage can be taken of the fact that the sum of two 7-bit numbers will not exceed 8 bits. Thus the L4C381 can simultaneously perform two 7-bit additions. The first two operands are applied to $\mathrm{A} 6-\mathrm{A} 0$ and $\mathrm{B} 6-\mathrm{B} 0$, with the result appearing on $\mathrm{F} 7-\mathrm{F} 0$. The second pair of operands are applied to A14-A8 and B14-B8, with the result appearing in $\mathrm{F} 15-\mathrm{F} 8$. The unused inputs are tied to ground. If it can be guaranteed that at least one of the input scores will not reach its maximum value of 64 , then this technique can also be applied in the second tier of adders. In this case, while the inputs have 8 bits of precision, the maximum value their sum can assume is 255, which is expressable in 8 bits.

Alternatively, when performing long correlations on relatively slow datastreams, one L4C381 can be configured using its feedback mode to accumulate the correlation scores of a number of L10C23s. To accomplish this, the outputs of all the correlators are tied together on a three-state bus. Each one is sequentially enabled and clocked into the L4C381, which accumulates the total resulting score.

Maximum Ratings

Above which useful life may be impaired (Notes 1, 2, 3, 8)
Storage temperature .. $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating ambient temperature .. $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
VCC supply voltage with respect to ground.. -0.5 V to +7.0 V
Input signal with respect to ground.. -3.0 V to +7.0 V
Signal applied to high impedance output ... -3.0 V to +7.0 V
Output current into low outputs ... 25 mA
Latchup current ... > 400 mA

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{VCC} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{VCC} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol Parameter Test Conditions			Min	Typ	Max	Unit
VOH	Output High Voltage	$\mathrm{IOH}=-2.0 \mathrm{~mA}$	3.5			V
Vol	Output Low Voltage	$\mathrm{OL}=4.0 \mathrm{~mA}$			0.5	V
VH	Input High Voltage		2.0		Vcc	V
VL	Input Low Voltage	Note 3	0.0		0.8	V
IIX	Input Current	Ground $\leq \mathrm{VI} \leq \mathrm{Vcc}$			± 20	$\mu \mathrm{A}$
Ioz	Output Leakage Current	Ground $\leq \mathrm{VO} \leq \mathrm{Vcc}$			± 20	$\mu \mathrm{A}$
los	Output Short Current	$\mathrm{Vo}=$ Ground, $\mathrm{Vcc}=$ Max, Note 4, 8			-250	mA
IcC1	Vcc Current, Dynamic	Notes 5, 6		25	100	mA
IcC2	Vcc Current, Quiescent	Note 7			0.5	mA

DEVICES INCORPORATED

Digital Correlator

Switching Characteristics Over Commercial Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	L10C23-50		L10C23-30		L10C23-20	
		Min	Max	Min	Max	Min	Max
tPABM	A, B, M Clock Period	50		28		20	
ts	Input Data Setup Time	20		8		8	
t H	Input Data Hold Time	0		0		0	
tPW	A, B, M, S, C Clock Pulse Width	20		12		8	
tDABM	A, B, M Clock to A, B, M Out		25		20		18
tPS	S Clock Period, A, B, M Clock to S Clock Delay	50		28		20	
tsk	A, B, M Clock to S Clock Skew (Note 8)		3		3		3
tDR	S Clock to R6-Ro		35		30		22
tDC	S Clock to CFL		25		20		18
tois	Output Disable Time (Note 11)		35		16		14
tena	Output Enable Time (Note 11)		30		18		16

Switching Characteristics Over Military Operating Range (Notes 9, 10) (ns)

Symbol	Parameter	L10C23-60		L10C23-35		L10C23-20	
		Min	Max	Min	Max	Min	Max
tPABM	A, B, M Clock Period	58		33		20	
ts	Input Data Setup Time	22		10		10	
tH	Input Data Hold Time	0		0		0	
tPW	A, B, M, S Clock Pulse Width	20		14		8	
tDABM	A, B, M Clock to A, B, M Out		30		23		18
tPS	S Clock Period, A, B, M Clock to S Clock Delay	58		33		20	
tsk	A, B, M Clock to S Clock Skew (Note 8)		3		3		3
tDR	S Clock to R6-Ro		40		35		25
tDC	S Clock to CFL		30		23		18
tDIS	Output Disable Time (Note 11)		40		18		16
tena	Output Enable Time (Note 11)		35		20		18

Switching Waveforms

Notes

1. Maximum Ratings indicate stress specifications only. Functional operation of these products at values beyond those indicated in the Operating Conditions table is not implied. Exposure to maximum rating conditions for extended periods may affect reliability.
2. The products described by this specification include internal circuitry designed to protect the chip from damaging substrate injection currents and accumulations of static charge. Nevertheless, conventional precautions should be observed during storage, handling, and use of these circuits in order to avoid exposure to excessive electrical stress values.
3. This device provides hard clamping of transient undershoot and overshoot. Input levels below ground or above VcC will be clamped beginning at -0.6 V and $\mathrm{Vcc}+0.6 \mathrm{~V}$. The device can withstand indefinite operation with inputs in the range of -3.0 V to +7.0 V . Device operation will not be adversely affected, however, input current levels will be well in excess of 100 mA .
4. Duration of the output short circuit should not exceed 30 seconds.
5. Supply current for a given application can be accurately approximated by

$$
\frac{\mathrm{NCV}^{2} \mathrm{~F}}{4}
$$

where
$\mathrm{N}=$ total number of device outputs
$C=$ capacitive load per output
$\mathrm{V}=$ suppy voltage
$\mathrm{F}=$ clock frequency
6. Tested with all outputs changing every cycle and no load, at a 5 MHz clock rate.
7. Tested with all inputs within 0.1 V of Vcc or Ground, no load.
8. These parameters are guaranteed but not 100% tested.
9. AC specifications tested with input transition times less than 3 ns , output reference levels of 1.5 V (except tEN/tDIS test) and input levels of nominally 0 to 3.0 V . Output loading is a resistive divider which provides for specified IOL and IOH plus 30 pF capacitance.

This device has high speed outputs capable of large instantaneous current pulses and fast turn-on/turn-off times. As a result, care must be exercised in the testing of this device. The following measures are recommended:
a. A $0.1 \mu \mathrm{~F}$ ceramic capacitor should be installed between VCC and Ground leads as close to the Device Under Test (DUT) as possible. Similar capacitors should be installed between device VCC and the tester common, and device ground and tester common.
b. Ground and Vcc supply planes must be brought directly to the DUT socket or contactor fingers.
c. Input voltages should be adjusted to compensate for inductive ground and VCC noise to maintain required DUT input levels relative to the DUT ground pin.
10. Each parameter is shown as a minimum or maximum value. Input requirements are specified from the point of view of the external system driving the chip. Setup time, for example, is specified as a minimum since the external system must supply at least that much time to meet the worst-case requirements of all parts. Responses from the internal circuitry are specified from the point of view of the device. Output delay, for example, is specified as a maximum since worst-case operation of any device always provides data within that time.
11. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage with specified loading.

Ordering Information
Commercial Operating Range $\left(0^{\circ} \mathrm{C}\right.$ to $+70^{\circ} \mathrm{C}$)

Package Style	Performance		
	$\mathbf{5 0} \mathbf{n s}$	$\mathbf{3 0} \mathbf{n s}$	$\mathbf{2 0} \mathbf{n s}$
24-pin Plastic DIP (0.3") -P2	L10C23NC50	L10C23NC30	L10C23NC20
24-pin Plastic DIP (0.6") -P1	L10C23PC50	L10C23PC30	L10C23PC20
24-pin Sidebraze (0.3") Hermetic DIP - D2	L10C23HC50	L10C23HC30	L10C23HC20
24-pin Sidebraze (0.6") Hermetic DIP -D1	L10C23DC50	L10C23DC30	L10C23DC20

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

	Performance		
Package Style	$\mathbf{6 0} \mathbf{n s}$		
35 ns	20 ns		
24-pin Sidebraze (0.3")	L10C23HM60	L10C23HM35	L10C23HM20
Hermetic DIP - D2	L10C23HME60	L10C23HME35	L10C23HME20
	L10C23HMB60	L10C23HMB35	L10C23HMB20
24-pin Sidebraze (0.6")	L10C23DM60	L10C23DM35	L10C23DM20
Hermetic DIP - D1	L10C23DME60	L10C23DME35	L10C23DME20
	L10C23DMB60	L10C23DMB35	L10C23DMB20
24-pin Ceramic LCC - K1	L10C23KM60	L10C23KM35	L10C23KM20
	L10C23KME60	L10C23KME35	L10C23KME20
	L10C23KMB60	L10C23KMB35	L10C23KMB20

Pin Assignments

Pin			Pin		
P,D,H	K	Function	P,D,H	K	
1	1,2	VCC	13	14	R2
2	3	M IN	14	16	R1
3	4	A IN	15	17	Ro
4	6	B IN	16	19,20	GND
5	7	CLKC	17	21	CFL
6	8	CLK S	18	22	B OUT
7	9	INV	19	23	A ouT
8	10	$\overline{\text { OE }}$	20	24	M OUT
9	11	R6	21	25	LCL
10	12	R5	22	26	CLKA
11	13	R4	23	27	CLK M
12	14	R3	24	28	CLK B
				5	NC
				18	NC

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Ordering Information

Memory Products

Logic Products

Peripheral Products

Quality and Reliability

Technology and Design Features

Packaging

Application Notes

Technical Articles

Sales Offices

Contents

Product Selection Guide/Competitive Cross Reference Guide 4-3
L5380 SCSI Controller 4-5
L53C80 SCSI Controller 4-5

Peripheral Products

Product Selection /Cross Reference Guide

Product Selection

Part No.	Description	Speed (ns)		Power (mW)	Pins	Packages Available
		Com.	Mil.			
15380	SCSI Controller	$4 \mathrm{Mbytes} / \mathrm{s}$	2 Mbytes/s	50	40/44	DIP, PLCC
L53C80	SCSI Controller	4 Mbytes/s	2 Mbytes/s	50	48/44	DIP, PLCC

Product Cross Reference

LOGIC DEVICES	AMD	NCR	National	
L5380	SCSI	AM5380	NCR5380	DP5380
L53C80	SCSI	AM53C80	NCR53C80	

Features

Asyncronous transfer rate up to 4 Mbytes/sec

- Pin and functionally compatible with NCR5380, but $2.5 \times$ faster
- Low-power CMOS technology

On-chip SCSI bus drivers
Supports arbitration, selection/reselection, initiator or target roles

- Programmed or DMA I/O, handshake or wait state DMA interlock
- Package styles available:
- 40/48-pin Plastic DIP
- 40/48-pin Sidebraze, Hermetic DIP
-44-pin Plastic LCC, J-Lead

Description

The L5380/ L53C80 are very high performance CMOS controllers which support the physical layer of the SCSI (Small Computer System Interface) bus as defined by the ANSI X3T9.2 committee. It is pin and functionally compatible with the NMOS NCR5380, while offering up to a $2.5 \times$ performance improvement, $10 \times$ power reduction, and lower cost. Replacement of the NMOS 5380 by the LOGIC Devices L5380/L53C80 will result in an immediate transfer rate improvement due to $\overline{R E Q} / \overline{\mathrm{ACK}}$ and $\mathrm{DRQ} / \overline{\mathrm{DACK}}$ handshake response times up to 5 times faster than previous devices.

While remaining firmware compatible with the NCR5380, the L5380/L53C80 provides bug fixes and state machine enhancements allowing even larger throughput gains for new designs.

The L5380/L53C80 supports asyncronous data transfer between initiator and target at up to $4 \mathrm{Mbytes} / \mathrm{sec}$. It operates in either initiator or target roles, and offers a choice of programmed I/O (direct microprocessor manipulation of handshake) or any of several DMA modes (autonomous handshake and data transfer operations). The L5380/L53C80 has

L5380/L53C80 Function Diagram

internal hardware to support arbitration, and can monitor and generate interrupts for a variety of error conditions. It provides extensive bus status monitoring features, and includes buffers capable of directly driving a terminated SCSI bus for a compact implementation.

PIN DEFINITION

A. SCSI Bus

$\overline{S D B}_{7-0}$ — SCSI DATA BUS 7-0: Bidirectional/Active low. The 8-bit SCSI data bus is defined by these pins. $\overline{\mathrm{SDB}}$ 7 is the most significant bit. During arbitration phase, these lines contain the SCSI ID numbers of all initiators arbitrating for the SCSI bus; $\overline{\mathrm{SDB}} 7$ represents the initiator with the highest priority. During the selection/reselection phase, these lines contain the ID number of the device that won the arbitration along with the ID number of the device to be selected/reselected.
$\overline{\text { SDBP }}$ - SCSI DATA BUS PARITY: Bidirectional/Active low. $\overline{\text { SDBP }}$ is the parity bit of the SCSI data bus. Odd parity is used, meaning that the total number of ones on the bus, including the parity bit, is odd. Parity is always generated when sending information, however checking for parity errors when receiving information is a user option. Parity is not valid during arbitration phase.
$\overline{\text { SEL }}$ - SELECT:
Bidirectional/Active low. $\overline{\text { SEL }}$ is asserted by the initiator to select a target. It is also asserted by the target when reselecting it as an initiator.
$\overline{B S Y}-$ BUSY:
Bidirectional/Active low. $\overline{\mathrm{BSY}}$ is asserted to indicate that the SCSI bus is active.

$\overline{\text { ACK }}$ - ACKNOWLEDGE:

Bidirectional/Active low. $\overline{\mathrm{ACK}}$ is asserted by the initiator, during any information transfer phase, in response

Pin Assignments

L5380 Pin Assignment						L53C80 Pin Assignment					
Pin		Function									
P,D	J,K		P, D	J,K		P, D	J,K		P, D	J,K	
1	2	D0	23	26	IRQ	1	1	$\overline{\text { SDB7 }}$	27	25	D3
2	3	$\overline{\mathrm{SDB}} 7$	24	27	$\overline{\mathrm{IOR}}$	2	2	$\overline{\mathrm{RST}}$	28	26	D2
3	4	$\overline{\mathrm{SDB}} 6$	25	28	READY	3	3	GND	29	27	D1
4	5	$\overline{\text { SDB }}$	26	29	$\overline{\text { DACK }}$	4	4	$\overline{\text { BSY }}$	30	28	D0
5	6	$\overline{\text { SDB4 }}$	27	30	$\overline{\text { EOP }}$	5	5	$\overline{\text { SEL }}$	32	29	$\overline{\text { MSG }}$
6	7	$\overline{\text { SDB3 }}$	28	31	RESET	6	6	$\overline{\text { ATN }}$	33	30	$\overline{C / D}$
7	8	$\overline{\mathrm{SDB}} 2$	29	32	IOW	8	7	RESET	34	31	GND
8	9	$\overline{\mathrm{SDB}} 1$	30	33	AO	9	8	IRQ	35	32	$\overline{\mathrm{V} / \mathrm{O}}$
9	10	$\overline{\mathrm{SDB}} 0$	31	35	Vcc	10	9	DRQ	36	33	$\overline{\text { ACK }}$
10	11	$\overline{\text { SDBP }}$	32	36	A1	11	10	$\overline{\mathrm{EOP}}$	37	34	REQ
11	12	GND	33	37	A2	12	11	$\overline{\text { DACK }}$	38	35	$\overline{\text { SDBP }}$
12	14	$\overline{\text { SEL }}$	34	38	D7	13	12	GND	39	36	GND
13	15	$\overline{\text { BSY }}$	35	39	D6	14	13	READY	40	37	$\overline{\text { SDB0 }}$
14	16	$\overline{\text { ACK }}$	36	40	D5	15	14	A0	41	38	$\overline{\text { SDB1 }}$
15	17	$\overline{\text { ATN }}$	37	41	D4	16	15	A1	43	39	$\overline{\mathrm{SDB}} 2$
16	18	$\overline{\mathrm{RST}}$	38	42	D3	17	16	A2	44	40	$\overline{\mathrm{SDB}} 3$
17	19	I/O	39	43	D2	19	17	$\overline{\mathrm{CS}}$	45	41	$\overline{\mathrm{SDB}} 4$
18	20	$\overline{\mathrm{C} / \mathrm{D}}$	40	44	D1	20	18	IOW	46	42	GND
19	21	$\overline{\text { MSG }}$		13	GND	21	19	$\overline{\mathrm{IOR}}$	47	43	$\overline{\text { SDB5 }}$
20	22	$\overline{\text { REQ }}$		1	NC	22	20	D7	48	44	$\overline{\text { SDB6 }}$
21	24	$\overline{C S}$		23	NC	23	21	D6	7		NC
22	25	DRQ		34	NC	24	22	D5	18		NC
$\begin{aligned} P, D= & L 5380 P C \\ & L 5380 D C \end{aligned}$						25	23	VCC	31		NC
						26	24	D4	42		NC
$\begin{aligned} \mathrm{J}, \mathrm{~K}= & \mathrm{L} 5380 \mathrm{JC} \\ & \mathrm{~L} 3380 \mathrm{KC} \end{aligned}$						$\begin{aligned} & P, D= \text { L53C80PC } \\ & \text { L53C80DC } \end{aligned}$					

to assertion of $\overline{\mathrm{REQ}}$ by the target. Similarly, $\overline{\mathrm{ACK}}$ is deasserted after $\overline{\mathrm{REQ}}$ becomes inactive. These two signals form the data transfer handshake between the initiator and target. Data is latched by the target on the lowgoing edge of $\overline{A C K}$ for target receive operations.

$\overline{\text { ATN }}$ - ATTENTION:

Bidirectional/Active low. $\overline{\text { ATN }}$ is asserted by the initiator after successful selection of a target, to indicate an intention to send a message to the target. The target responds to ATN by entering the MESSAGE OUT phase.
$\overline{\mathrm{RST}}$ - SCSI BUS RESET:
Bidirectional/Active low. $\overline{\mathrm{RST}}$ when active indicates a SCSI bus reset condition.
$\overline{\mathbf{I} / \mathbf{O}}$ - INPUT/OUTPUT:
Bidirectional/Active low. $\overline{\mathrm{I} / \mathrm{O}}$ is controlled by the target and specifies the direction of information transfer.
When $\overline{\mathrm{I} / \mathrm{O}}$ is asserted, the direction of transfer is to the initiator. $\overline{\mathrm{I} / \mathrm{O}}$ is also asserted by the target during RESELECTION phase to distinguish it from SELECTION phase.

$\overline{\mathbf{C} / \mathbf{D}}$ - CONTROL/DATA:

Bidirectional/Active low. $\overline{\mathrm{C}} / \mathrm{D}$ is controlled by the target and when asserted, indicates CONTROL (command or status) information is on the SCSI data bus. DATA is specified when \bar{C} / D is deasserted.

MSG - MESSAGE:
Bidirectional/Active low. MSG is controlled by the target, and when asserted indicates MESSAGE phase.

$\overline{\text { REQ }}$ - REQUEST:

Bidirectional/Active low. $\overline{R E Q}$ is asserted by the target to begin the handshake associated with transfer of a byte over the SCSI data bus. $\overline{\mathrm{REQ}}$ is deasserted upon receipt of $\overline{\mathrm{ACK}}$ from the initiator. Data is latched by the initiator on the lowgoing edge of $\overline{\mathrm{REQ}}$ for initiator receive operations.

B. Microprocessor Bus

$\overline{\mathbf{C S}}-\mathrm{CHIP}$ SELECT:

Input/Active low. This signal enables reading or writing of the internal registers by the microprocessor, using memory mapped I/O. An alternate method for reading selected registers is available for DMA.

DRQ - DMA REQUEST:
Output/Active high. This signal is used to indicate that the L5380/

L 53 C 80 is ready to execute the next cycle of a DMA transfer on the microprocessor bus. For send operations, it indicates that the output data register is ready to receive the next byte from the DMA controller or CPU. For receive operations, it indicates that the input data register contains the next byte to be read by the DMA controller or CPU.

IRQ - INTERRUPT REQUEST:

 Output/Active high. The L5380/ L53C80 asserts this signal to indicate to the microprocessor that one of the several interrupt conditions have been met. These include SCSI bus fault conditions as well as other events requiring microprocessor intervention. Most interrupt types are individually maskable.
$\overline{\text { IOR }}$ - I/O READ:

Input/Active low. $\overline{\mathrm{IOR}}$ is used in conjunction with $\overline{\mathrm{CS}}$ and $\mathrm{A} 2-0$ to execute a memory mapped read of a L5380/ L53C80 internal register. It is also used in conjunction with $\overline{\mathrm{DACK}}$ to execute a DMA read of the SCSI input data register.
READY - READY:
Output/Active high. Ready is used rather than DRQ as an alternate method for controlling DMA data transfer. This DMA type is termed blockmode DMA, and must be specifically enabled by the CPU. In blockmode DMA, data is throttled by treating the L5380/L53C80 as wait state memory. $\overline{\mathrm{I} / \mathrm{O}}$ (DMA) cycles are initiated at the maximum rate sustainable by the DMA controller/memory subsystem, but all cycles are extended (wait-states inserted) until READY is asserted by the L5380/L53C80. This is generally the fastest DMA method since memory subsystem addressing can be overlapped with SCSI operations (flyby mode).
$\overline{\text { DACK }}$ - DMA ACKNOWLEDGE: Input/Active low. $\overline{\mathrm{DACK}}$ is used in conjunction with $\overline{\mathrm{IOR}}$ or $\overline{\mathrm{IOW}}$ to enable reading or writing the SCSI Input and Output Data Registers when in DMA mode. $\overline{\mathrm{DACK}}$ resets DRQ and must not occur simultaneously with $\overline{\mathrm{CS}}$.
$\overline{\mathrm{EOP}}$ - END OF PROCESS: Input/Active low. This input is used to indicate to the L5380/L53C80 that a DMA transfer is to be concluded. The L5380/L53C80 can automatically generate an interrupt in response to receiving $\overline{\text { EOP }}$ from the DMA controller.

RESET - CPU BUS RESET:
Input/Active low. This input clears all internal registers and state machines. It does not result in assertion of the RST signal on the SCSI bus and therefore affects only the local L5380/ L53C80 and not other devices on the bus.
$\overline{\text { IOW }}$ - I/O WRITE:
Input/Active low. $\overline{\mathrm{IOW}}$ is used in conjunction with $\overline{\mathrm{CS}}$ and $\mathrm{A} 2-0$ to execute a memory mapped write of a L5380/L53C80 internal register. It is also used in conjunction with $\overline{\mathrm{DACK}}$ to execute a DMA write of the SCSI output data register.

A2, A1, A0 - ADDRESS 2,1,0:

Inputs/Active high. These signals, in conjunction with $\overline{\mathrm{CS}}, \overline{\mathrm{IOR}}$, and $\overline{\mathrm{IOW}}$, address the L5380/L53C80 internal registers for CPU read/write operations.

D7-0 - DATA 7-0:
Bidirectional/Active high. These signals are the microprocessor data bus. D7 is the most significant bit.

L5380/L53C80 INTERNAL REGISTERS

Overview

The L5380/L53C80 contains registers that are directly addressed by the microprocessor. These registers allow for monitoring of SCSI bus activity, controlling the operation of the L5380/L53C80, and determining the cause of interrupts. In many cases, a read-only and a write-only register are mapped to the same address. Some addresses are dummy registers which are used to implement a control operation but do not correspond to a physical register. The state of the CPU data bus when writing or reading these dummy registers is 'don't care.' Tables 1 and 3 show the address and name of each register as well as bit definitions.

Register Descriptions

A. WRITE OPERATIONS

The following paragraphs give detailed descriptions of the function of each bit in the L5380/L53C80 internal registers for write operations as shown in Table 1.

WRITE ADDRESS 0 Output Data Register

The Output Data Register is a writeonly register used for sending information to the SCSI data bus. During arbitration, the arbitrating SCSI device asserts its ID via this register. The device which wins arbitration also asserts the "OR" of its ID and the ID of the target/initiator to be selected/ reselected. In programmed I/O, this register is written using $\overline{\mathrm{CS}}$ and $\overline{\mathrm{IOW}}$ with $\mathrm{A}_{2}-0=000$. In DMA mode, it is written when $\overline{I O W}$ and $\overline{D A C K}$ are simultaneously active, irrespective of the state of the address lines. Note that a "1" written to the Output Data Register becomes a low state when asserted on the active-low SCSI bus.

WRITE ADDRESS 1 Initiator Command Register

The Initiator Command Register is a read/write register which allows CPU control of the SCSI signals asserted by the initiator. Some bits in this register are not readable, and these positions are mapped to status bits useful in monitoring the progress of arbitration. These, along with the initiation of systemwide reset and test functions may also be of use to the target.

R1 Bit 7 -Assert $\overline{R S T}$

When this bit is set, the L5380/L53C80 asserts the $\overline{\mathrm{RST}}$ line on the SCSI bus, initializing all devices on the bus to the reset condition. All logic and internal registers of the L5380/L53C80 are reset, except for the Assert $\overline{\mathrm{RST}}$ bit itself, the Testmode bit (R1 bit 6) and the IRQ (interrupt request) latch. The IRQ pin becomes active indicating a SCSI bus reset interrupt. This interrupt is not maskable.

R1 Bit 6-Testmode

When this bit is set, the L5380/L53C80 places all outputs including both SCSI and CPU signals, in a high impedance state. This effectively removes the device from the system as an aid to system diagnostics. Note that internal registers may still be written while in testmode. The L5380/L53C80 returns to normal operation when Testmode is reset. The Testmode bit is reset by writing a 0 to R1 bit 6 , or via the RESET (CPU reset) pin. Testmode is not affected by the $\overline{\mathrm{RST}}$ (SCSI bus reset) signal, or by the Assert $\overline{\mathrm{RST}}$ bit in the Initiator Command Register (R1 bit 7).

R1 Bit 5-Not Used

R1 Bit 4 - Assert $\overline{A C K}$
When this bit is set, $\overline{\mathrm{ACK}}$ is asserted on the SCSI bus. Resetting this bit deasserts $\overline{\mathrm{ACK}}$. Note that $\overline{\mathrm{ACK}}$ will be asserted only if the TARGETMODE bit ($R 2$ bit 6) is reset, indicating that
the L5380/L53C80 is acting as an initiator.

R1 Bit 3-Assert $\overline{B S Y}$

When this bit is set, $\overline{\mathrm{BSY}}$ is asserted on the SCSI bus. Resetting this bit deasserts $\overline{\mathrm{BSY}} . \overline{\mathrm{BSY}}$ is asserted to indicate that the device has been selected or reselected, and deasserting $\overline{\mathrm{BSY}}$ causes a bus free condition.

R1 Bit 2 - Assert $\overline{S E L}$

When this bit is set, $\overline{\mathrm{SEL}}$ is asserted on the SCSI bus. Resetting this bit deasserts $\overline{\mathrm{SEL}} . \overline{\mathrm{SEL}}$ is normally asserted after a successful arbitration.

R1 Bit 1 - Assert $\overline{\text { ATN }}$
When this bit is set, $\overline{\text { ATN }}$ is asserted on the SCSI bus. Resetting this bit deasserts $\overline{\text { ATN. }} \overline{\text { ATN }}$ is asserted by the initiator to request message out phase. Note that ATN will be asserted only if the TARGETMODE bit (R2 bit 6) is reset, indicating that the L5380/ L 53 C 80 is acting as an initiator.

R1 Bit 0 - Assert Data Bus

When this bit is set, the open drain SCSI data bus and parity drivers are enabled and the contents of the Output Data Register are driven onto the SCSI data lines. In addition to the Assert Data Bus bit, enabling of the SCSI bus drivers requires one of the following two sets of conditions:
When the L5380/L53C80 is operating as an initiator, the Targetmode bit (R2 bit 6) must be reset, the I/O pin must be negated (initiator to target transfer) and no phase mismatch condition exist. A phase mismatch occurs when the $\overline{M S G}, \overline{C / D}$, and $\overline{I / O}$ bits of the Target Command Register (R3) do not match the corresponding SCSI control lines.
When the L5380/L53C80 is operating as a target, the Targetmode bit will be set, and in this case Assert Data Bus will enable the outputs unconditionally.

DEVICES INCORPORATED

The Assert Data Bus bit need not be set for arbitration to occur; when the Arbitrate bit (R 2 bit 0) is set, and a bus free condition is detected, the data bus will be enabled for arbitration independent of the state of the Assert Data Bus bit.

Finally, note that the Testmode bit (R1 bit 6) overrides all other controls including Assert Data Bus and Arbitrate, and disables all outputs.

WRITE ADDRESS 2 -

Mode Register

The Mode register is a read/write register which provides control over several aspects of L5380/L53C80 operation. Programmed I/O or two different types of DMA transfer may be selected, initiator or target device operation is accommodated, and parity checking and interrupts may be enabled via this register. The function of each individual bit is described as follows:

R2 Bit 7 -Blockmode

This bit must be used in conjunction with DMA Mode (R2 bit 1). It is used to select the type of handshake desired between the L5380/L53C80 and the external DMA controller. See "L5380/L53C80 Data Transfers" for a complete discussion of the transfer types supported.

R2 Bit 6 -Targetmode

When this bit is set, the L5380/L53C80 will operate as a SCSI target device. This enables the SCSI signals $\overline{I / O}$, $\overline{\mathrm{C} / \mathrm{D}, \mathrm{MSG}}$, and $\overline{\mathrm{REQ}}$ to be asserted. When Targetmode is reset, the device will operate as an initiator. This enables the SCSI signals $\overline{\text { ATN }}$ and $\overline{\mathrm{ACK}}$ to be asserted. Targetmode also affects state machine operation for DMA transfers, and the conditions necessary for enabling the SCSI Data bus drivers. (See Assert Databus, R1 bit 0).

Table 1. WRITE Register Chart.

Address 0 - Output Data Register							
7	6	5	4	3	2	1	0
$\overline{\text { SDB7 }}$	$\overline{\text { SDB6 }}$	$\overline{\text { SDB5 }}$	$\overline{\text { SDB4 }}$	$\overline{\text { SDB3 }}$	$\overline{\text { SDB2 }}$	$\overline{\text { SDB1 }}$	$\overline{\text { SDB0 }}$

Address 1 - Initiator Command Register

| $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASSERT
 $\overline{R S T}$ | TEST
 MODE | | ASSERT
 $\overline{A C K}$ | ASSERT
 $\overline{\mathrm{BSY}}$ | ASSERT
 $\overline{S E L}$ | ASSERT
 $\overline{\mathrm{ATN}}$ | ASSERT
 DATA
 BUS |

Address 2 - Mode Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
BLOCK	TARGET	ENABLE	ENABLE	ENABLE	MONI-	DMA	ARBI-
MODE							
	MODE	$\begin{array}{c}\text { PARITY } \\ \text { CHECK }\end{array}$	$\begin{array}{c}\text { PARITY } \\ \text { INT'RUPT }\end{array}$	EODMA			
		INT'RUPT	TOR				
BUSY							

Address 3 - Target Command Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
LAST BYTE SENT				ASSERT $\overline{R E Q}$	ASSERT $\overline{M S G}$	ASSERT $\overline{\mathrm{C} / \mathrm{D}}$	ASSERT $\overline{\mathrm{I} / \mathrm{O}}$	

Address 4 - ID Select Register

$\mathbf{7}$	6	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
$\overline{\mathrm{SDB7}}$	$\overline{\mathrm{SDB}}$	$\overline{\mathrm{SDB5}}$	$\overline{\mathrm{SDB}} 4$	$\overline{\mathrm{SDB}} 3$	$\overline{\mathrm{SDB}} 2$	$\overline{\mathrm{SDB1}}$	$\overline{\mathrm{SDB}}$

Address 5 - Start DMA Send

7	6	5	4	3	2	1	0

Address 6 - Start DMA Target Receive

7	6	5	4	3	2	1	0

Address 7 - Start DMA Initiator Receive

| 7 | 6 | 5 | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |

R2 Bit 5 -Enable Parity Check

When this bit is set, information received on the SCSI data bus is checked for odd parity. When Enable Parity Check is set, the Parity Error latch will be set whenever data is received under DMA control or the Current SCSI Data Register (Read Register 0) is read by the CPU. The state of the parity error latch can be determined by reading R 5 bit 5, and it can be reset by a read to Address 7. Note that enable parity check must be set if parity error interrupts are to be generated. This interrupt can be separately masked by the Enable Parity Interrupt bit (R2 bit 4) while retaining the state of the parity error latch for later examination by the CPU.

R2 Bit 4 -Enable Parity Interrupt

When this bit is set, the L5380/L53C80 will set the interrupt request latch, and assert IRQ (interrupt request) if it detects a parity error. Enable Parity Check (R2 bit 5) must also be set if parity error interrupts are desired.

R2 Bit 3 -Enable End Of DMA Interrupt When this bit is set, the L5380/L53C80 will set the interrupt request latch, and assert IRQ (interrupt request) if it detects a valid $\overline{\mathrm{EOP}}$ (End of Process) signal. $\overline{\mathrm{EOP}}$ is normally generated by a DMA controller to indicate the end of a DMA transfer. EOP is valid only when coincident with $\overline{\mathrm{IOR}}$ or $\overline{\mathrm{IOW}}$ and DACK.

R2 Bit 2 -Monitor Busy

When this bit is set, the L5380/L53C80 continuously monitors the state of the $\overline{\mathrm{BSY}}$ signal. Absence of $\overline{\mathrm{BSY}}$ for a period longer than 400 ns (but less than 1200 ns) will cause the L5380/ L53C80 to set the BSYERR and IRQ (interrupt request) latches. In addition, the 6 least significant bits of the Initiator Command Register are reset, and all SCSI data and control outputs are disabled until the BSYERR latch is
reset. This effectively disconnects the L5380/L53C80 from the SCSI bus in response to an unexpected disconnect by another device. It also allows the CPU to be interrupted when the SCSI bus becomes free in systems where arbitration is not used and an $\overline{\mathrm{EOP}}$ signal is not available.

R2 Bit 1 -DMA Mode

When this bit is set, the L5380/ L53C80's internal state machines automatically control the SCSI signals $\overline{\mathrm{REQ}}$ and $\overline{\mathrm{ACK}}$ (as appropriate for initiator or target operation) and the CPU signals' DRQ and READY. DMA Mode must be set prior to starting a DMA transfer in either direction. The DMA Mode bit is reset whenever a bus free condition is detected ($\overline{\mathrm{BSY}}$ is not active). This aborts DMA operations when a loss of BSY occurs, regardless of the state of the Monitor Busy bit (R2 bit 2.) The DMA Mode bit is not reset when $\overline{\mathrm{EOP}}$ is received, but must be specifically reset by the CPU. $\overline{E O P}$ does however inhibit additional DMA cycles from occurring.

R2 Bit 0-Arbitrate

This bit is set to indicate a desire to arbitrate for use of the SCSI bus. Before setting the Arbitrate bit, the SCSI Output Data Register (Write Register 0) must be written with the SCSI ID assigned to the arbitrating SCSI device. The bit position of
register R0 which is set represents the priority number of the SCSI device, with bit 7 the highest priority. See the section on "Arbitration" for a full discussion of the L5380/L53C80 arbitration procedure.

WRITE ADDRESS 3 -

Target Command Register

The Target Command Register is a read/write register which allows CPU control of the SCSI signals asserted by the target. In addition, this register contains a read-only status flag useful in unambiguously determining when the last byte of a DMA transfer has actually been sent over the SCSI bus.

When operating as an initiator with DMA mode set, the ASSERT MSG, ASSERT C/D, and ASSERT I/O bits are used as a template to compare against the corresponding SCSI control signals provided by the target. A phase mismatch interrupt will be generated on the falling edge of the REQ input if the template does not match the state of the signals. Therefore the CPU should initialize these bits to the phase of the expected data transfer. An interrupt then will signal an intent by the target to change to a new phase. The SCSI information transfer phases and their associated direction of data transfer are given in Table 2.

Table 2. SCSI Information Transfer Phases

MSG C/D	I/O	Phase	Direction			
0	0	0	Data Out	Initiator	\rightarrow	Target
0	0	1	Data In	Target	\rightarrow	Initiator
0	1	0	Command	Initiator	\rightarrow	Target
0	1	1	Status	Target	\rightarrow	Initiator
1	0	0	Unused			
1	0	1	Unused			
1	1	0	Message Out	Initiator	\rightarrow	Target
1	1	1	Message In	Target	\rightarrow	Initiator

DEVICES INCORPORATED

R3 Bits 7-4-Not Used

R3 Bit 3 - Assert $\overline{R E Q}$

When this bit is set, $\overline{\mathrm{REQ}}$ is asserted on the SCSI bus. Resetting this bit deasserts $\overline{\mathrm{REQ}}$. Note that $\overline{\mathrm{REQ}}$ will be asserted only if the TARGETMODE bit (R 2 bit 6) is set, indicating that the L5380/L53C80 is acting as a target.

R3 Bit 2 - Assert $\overline{M S G}$

When this bit is set, MSG is asserted on the SCSI bus. Resetting this bit deasserts MSG. Note that MSG will be asserted only if the TARGETMODE bit (R 2 bit 6) is set, indicating that the L5380/L53C80 is acting as a target. When operating as an initiator, this bit is compared against the MSG input, and an interrupt is generated if they differ at the falling edge of $\overline{\mathrm{REQ}}$.

R3 Bit 1-Assert C/D

When this bit is set, $\overline{C / D}$ is asserted on the SCSI bus. Resetting this bit deasserts $\overline{C / D}$. Note that $\overline{C / D}$ will be asserted only if the TARGETMODE bit (R 2 bit 6) is set, indicating that the L5380/L53C80 is acting as a target. When operating as an initiator, this bit is compared against the $\overline{\mathrm{C}} / \mathrm{D}$ input, and an interrupt is generated if they differ at the falling edge of $\overline{\mathrm{REQ}}$.

R3 Bit 0-Assert $\overline{I / O}$

When this bit is set, $\overline{\mathrm{I} / \mathrm{O}}$ is asserted on the SCSI bus. Resetting this bit deasserts $\overline{\mathrm{I} / \mathrm{O}}$. Note that $\overline{\mathrm{I} / \mathrm{O}}$ will be asserted only if the TARGETMODE bit (R 2 bit 6) is set, indicating that the L5380/L53C80 is acting as a target. When operating as an initiator, this bit is compared against the $\overline{\mathrm{I} / \mathrm{O}}$ input, and an interrupt is generated if they differ at the falling edge of $\overline{\mathrm{REQ}}$.

WRITE ADDRESS 4 -

ID Select Register

The ID Select Register is a write-only register which is used to monitor for selection or reselection attempts to the L5380/L53C80. In arbitrating systems, an ID number is assigned to each SCSI device by setting a single bit position of the ID select register. Each SCSI data pin is inverted and compared with the corresponding bit in the ID Select Register. If any matches are found while a bus free condition exists and SEL is active, the L5380/L53C80 will generate an interrupt to indicate a selection or reselection. During selection or reselection, parity checking may be enabled by setting the Enable Parity Check bit (R2 bit 5). This interrupt may be masked by resetting all bits in this register.

WRITE ADDRESS 5 -

Start DMA Send

This is a dummy register. Writes to this location are detected and cause the L5380/L53C80 internal state machine to execute a DMA send operation. This location is used for either initiator or target DMA send. The DMAMODE bit (R2 bit 1) must be set prior to writing this location.

WRITE ADDRESS 6 Start DMA Target Receive

This is a dummy register. Writes to this location are detected and cause the L538/L53C80 internal state machine to execute a target DMA receive operation. The DMAMODE bit (R2 bit 1) and the TARGETMODE bit (R2 bit 6) must be set prior to writing this location.

WRITE ADDRESS 7 Start DMA Initiator Receive

This is a dummy register. Writes to this location are detected and cause the L5380/L53C80 internal state machine to execute an initiator DMA receive operation. The DMAMODE bit (R2 bit 1) must be set and the TARGETMODE bit (R2 bit 6) must be reset prior to writing this location.

B. READ OPERATIONS

The following paragraphs give detailed descriptions of the function of each bit in the L5380/L53C80 internal registers for read operations as shown in Table 3.

READ ADDRESS 0 -
 Current SCSI Data Bus

The Current SCSI Data Bus Register allows the microprocessor to monitor the SCSI data bus at any time, by asserting CS and IOR with address lines A2-0 $=000$. The SCSI data lines are not actually registered, but gated directly onto the CPU bus whenever address 000 is read by the CPU. Therefore, reads of this location should only be done when the SCSI data lines are guaranteed to be stable by the SCSI protocol. For systems which implement SCSI bus arbitration, this location is read to determine whether devices having higher priorities are also arbitrating. Programmed I/O data transfer uses this location for reading data transferred on the SCSI data bus. With parity checking enabled, SCSI data bus parity checking is done at the beginning of the read cycle for fast error detection. Note that the SCSI data bus is inverted to become active high when presented to the CPU.

READ ADDRESS 1 Initiator Command Register

Reading bit 7 or bits 4-0 of the Initiator Command Register simply reflects the status of the corresponding bit in the register. Bits 6 and 5 are mapped to other signals as discussed below:

R1 Bit 6-Arbitration In Progress

For this bit to be active, the ARBITRATE bit (R2 bit 0) must be set. When ARBITRATION IN PROGRESS is set, it indicates that the L5380/ L53C80 has detected a bus free condition and is currently arbitrating
for control of the bus. See the section on "Arbitration" for a complete discussion of the L5380/L53C80 arbitration mechanism. Resetting the ARBITRATE bit will reset ARBITRATION IN PROGRESS.

R1 Bit 5-Lost Arbitration

For this bit to be active, the ARBITRATE bit (R2 bit 0) must be set. When LOST ARBITRATION is set, it indicates that the L5380/L53C80 has arbitrated for the SCSI bus (see R1 bit 6 above) and has detected the assertion of SEL by another (higher priority) device. The L5380/L53C80 responds to loss of arbitration by immediately discontinuing the arbitration attempt. Resetting the ARBITRATE bit will reset LOST ARBITRATION.

READ ADDRESS 2 -
 Mode Register

Reading the Mode Register simply reflects the status of the bits in that register.

READ ADDRESS 3 -
 Target Command Register

Reading the Target Command Register simply reflects the status of the bits in that register, except for bit 7, LAST BYTE SENT.

R3 bit 7 -Last Byte Sent

This read only bit indicates that the last byte of data loaded into the L5380/L53C80 during a DMA send operation has actually been transferred over the SCSI bus. Note that the end of process flag and the corresponding interrupt occur when this byte is loaded into the L5380/ L53C80, but do not reflect whether it has actually been sent. This bit is not present in the NCR5380, but is present in the NCR53C80. Last Byte Sent is reset when the DMAMODE bit (R2 bit 1) is reset.

READ ADDRESS 4 -

Current SCSI Control Register

The Current SCSI Control Register provides a means for the CPU to directly monitor the state of the SCSI bus control signals. The SCSI control lines are not actually registered, but gated directly onto the CPU bus whenever Address 100 is read by the CPU. The value of each bit position represents the complement of the corresponding (low true) SCSI Signal Pin.

READ ADDRESS 5DMA Status Register

The DMA Status Register provides a means for the CPU to determine the status of a DMA transfer and to determine the cause of an interrupt. It also makes available the final two SCSI bus signals which are not included in the Current SCSI Control Register. The function of each individual bit is defined as follows:

R5 Bit 7 -End of DMA

When this bit is set, it indicates that a valid $\overline{\text { EOP }}$ has been received during a DMA transfer. A valid $\overline{E O P}$ occurs when $\overline{\mathrm{EOP}}, \overline{\mathrm{DACK}}$, and either $\overline{\mathrm{IOR}}$ or $\overline{\text { IOW }}$ are simultaneously active for the minimum specified time. End of DMA is reset when the DMAMODE bit (R2 bit 1) is reset.
Note that for DMA send operations, an END OF DMA status indicates only that the last byte of the transfer is loaded into the Output Data Register of the sending device, not that it has actually been transferred over the SCSI bus. For this reason, the L5380/ L53C80 provides an additional status bit; LAST BYTE SENT (R3 bit 7) which indicates that this final byte has been transferred to the receiving end. This bit is not present in the NCR5380.
Also, note that the DMAMODE bit is reset automatically whenever a loss of busy condition is detected, which in turn resets END OF DMA. Therefore

DEVICES INCORPORATED
the DMA Status Register should be read prior to resetting the ASSERT $\overline{\mathrm{BSY}}$ bit (R1 bit 3) at the conclusion of a DMA transfer.

R5 Bit 6-DMA Request

This bit reflects the state of the DRQ (DMA Request) signal. In programmed I/O, this bit can be polled by the CPU to determine whether there is a pending request for byte transfer. For DMA send operations, DMA REQUEST is reset when $\overline{\mathrm{DACK}}$ and $\overline{\mathrm{IOW}}$ are simultaneously asserted. For DMA receive operations, simultaneous $\overline{\mathrm{DACK}}$ and $\overline{\mathrm{IOR}}$ will reset DMA REQUEST. DMA REQUEST is reset unconditionally when the DMAMODE bit (R 2 bit 1) is reset.

R5 Bit 5 - Parity Error

This bit can only be set if ENABLE PARITY CHECK (R2 bit 5) is set. When enabled, the PARITY ERROR bit is set if incoming SCSI data in either initiator or target mode, or during selection phase, does not correctly reflect odd parity. PARITY ERROR can be reset by a read to the Reset Error/Interrupt Register (Register 7).

R5 Bit 4 -Interrupt Request

This bit reflects the state of the IRQ signal. The L5380/L53C80 asserts IRQ to generate an interrupt to the CPU. See the section on "Interrupts" for further information on the possible sources of interrupts in the L5380/ L53C80. INTERRUPT REQUEST can be reset by a read to the Reset Error/ Interrupt Register (Register 7).

R5 Bit 3 - Phase Match

When this bit is set, it indicates that the $\overline{\mathrm{MSG}}, \overline{\mathrm{C} / \mathrm{D}}$, and $\overline{\mathrm{I} / \mathrm{O}}$ lines match the state of the ASSERT $\overline{\mathrm{MSG}}, \mathrm{AS}$ SERT $\overline{C / D}$, and ASSERT I/O bits in the Target Command Register.
PHASEMATCH is not actually registered, but represents a continuous comparison of these three phase bits to the corresponding internal register

Table 3. READ Register Chart.
Address 0 - Current SCSI Data Bus

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
$\overline{\mathrm{SDB7}}$	$\overline{\mathrm{SDB6}}$	$\overline{\mathrm{SDB5}}$	$\overline{\mathrm{SDB4}}$	$\overline{\mathrm{SDB3}}$	$\overline{\mathrm{SDB2}}$	$\overline{\mathrm{SDB}} 1$	$\overline{\mathrm{SDB}}$

Address 1 - Initiator Command Register

| $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ASSERT
 RST | ARB. IN
 PRO-
 GRESS | LOST
 ARB. | ASSERT
 $\overline{\text { ACK }}$ | ASSERT
 $\overline{B S Y}$ | ASSERT
 $\overline{\text { SEL }}$ | ASSERT
 $\overline{\text { ATN }}$ | ASSERT
 DATA
 BUS |

Address 2 - Mode Register

7	6	5	3		2	1	0
BLOCK	TARGET	ENABLE	ENABLE	ENABLE	MONI-	DMA	ARBI-
MODE	MODE	PARITY	PARITY	EODMA	TOR	MODE	TRATE
		CHECK	INT'RUPT	INT'RUPT	BUSY		

Address 3 - Target Command Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
LAST BYTE SENT				ASSERT $\overline{R E Q}$	ASSERT $\overline{M S G}$	ASSERT $\overline{\mathrm{C} / \mathrm{D}}$	ASSERT $\overline{/ O}$	

Address 4 - Current SCSI Control Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
$\overline{\mathrm{RST}}$	$\overline{\mathrm{BSY}}$	$\overline{\mathrm{REQ}}$	$\overline{\mathrm{MSG}}$	$\overline{\mathrm{C} / \mathrm{D}}$	$\overline{\overline{/ O}}$	$\overline{\mathrm{SEL}}$	$\overline{\text { PARITY}}$

Address 5 - DMA Status Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
END OF DMA	DMA	REQUEST	PARITY	INTER-	PRROR	PUSE RUPT REQUEST	BUSY MATCH ERROR

Address 6 - Input Data Register

$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
$\overline{\mathrm{SDB7}}$	$\overline{\mathrm{SDB6}}$	$\overline{\mathrm{SDB5}}$	$\overline{\mathrm{SDB4}}$	$\overline{\mathrm{SDB3}}$	$\overline{\mathrm{SDB2}}$	$\overline{\mathrm{SDB1}}$	$\overline{\mathrm{SDB}}$

Address 7 - Reset Error/Interrupt Register

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |

locations. This bit is intended for use by the initiator to detect that the target device has changed to a different information transfer phase. When the L5380/L53C80 detects a phase mismatch, PHASEMATCH is reset, and information transfer to or from the SCSI bus is inhibited.

R5 Bit 2 -Busy Error

This bit can only be set if the MONITOR BUSY bit (R2 bit 2) is set. When set, BUSY ERROR indicates that the BSY pin has been false for a period at least equal to a bus settle delay (400 ns) When the BUSY ERROR condition is detected, all SCSI signal pins are disabled, and the DMAMODE bit (R2 bit 1) and bits $0-5$ of the Initiator Command Register are reset. BUSY ERROR can be reset by a read to the Reset Error/Interrupt Register (Register 7).

R5 Bits 1,0- $\overline{A T N}, \overline{A C K}$

Like the Current SCSI Control Register, these bits provide a means for the CPU to directly monitor the state of the SCSI bus control signals. The SCSI control lines are not actually registered, but gated directly onto the CPU bus whenever Address 5 is read by the CPU. The value of each bit position represents the complement of the corresponding (low true) SCSI Signal Pin.

READ ADDRESS 6 Input Data Register

This register acts as a temporary holding register for information received from the SCSI data bus during DMA transfers (DMAMODE bit, R2 bit 1 is set). In the initiator mode, the L5380/L53C80 latches the SCSI data when $\overline{\mathrm{REQ}}$ goes active, while in the target mode data is latched when $\overline{\mathrm{ACK}}$ goes active. The contents of this register represent the negation of the low-true SCSI data. The contents of the SCSI Input Data Register are gated
onto the CPU data bus when $\overline{\text { DACK }}$ and $\overline{I O R}$ are simultaneously true, or by a CPU read of location 6 . Note that $\overline{\mathrm{DACK}}$ and $\overline{\mathrm{CS}}$ must never be active simultaneously, to prevent conflicting read operations. Parity may optionally be checked on the data as it is loaded into this register.

READ ADDRESS 7 -

Reset Error/Interrupt Register This is a dummy register. Reads to this location are detected and used to reset the Interrupt Request Latch (IRQ signal) and the PARITY ERROR, INTERRUPT REQUEST, and BUSY ERROR latches (visible as bits 5,4 , and 2 of Register 5).

INTERRUPTS

The L5380/L53C80 generates interrupts to the CPU by setting the Interrupt Request Latch, which directly drives the IRQ (Interrupt Request) line. The IRQ output will reflect the state of the Interrupt Request Latch under all conditions except when TESTMODE (R1 bit 6) is active, when it is in a high impedance state. The Interrupt Request Latch may be reset by reading Address 7, the Reset Error/Interrupt Register. A read of this location also resets several error condition latches as discussed in the section on "Internal Registers."
Interrupts may be caused by any of six conditions, most of which may be masked by resetting enable bits in the appropriate registers. The following sections describe each interrupt type, its cause, and how it may be reset. Upon receiving an interrupt, the CPU may read the Current SCSI Control Register (R4) and the DMA Status Register (R5) to determine the cause of the interrupt. While the following discussions indicate the expected
values of these registers following an interrupt, it is recommended that bits in these registers which are not germane to determining the cause of an interrupt be masked off in firmware prior to implementing a comparison. A typical operational sequence for an interrupt service routine is given at the end of this section.

SCSI Bus Reset Interrupt

A SCSI Bus Reset Interrupt occurs when the SCSI $\overline{\operatorname{RST}}$ signal becomes active. This may be due to another SCSI device driving the $\overline{\mathrm{RST}}$ line, or because the ASSERT $\overline{\operatorname{RST}}$ bit (R1 bit 7) has been set, causing the L5380/ L53C80 to drive the SCSI $\overline{\text { RST line. }}$ The value of the SCSI $\overline{\text { RST }}$ line is visible as R4 bit 7; however, this line is not latched and therefore may have changed state by the time the CPU responds to the interrupt and polls this location. For this reason a SCSI Bus Reset Interrupt should be assumed if no other interrupt condition is active when reading Registers 4 and 5.
The SCSI Bus Reset Interrupt is nonmaskable. The expected read values for the Current SCSI Control Register and the DMA Status Register upon encountering this interrupt are given in Table 4.

Selection/Reselection Interrupt

A Selection/Reselection Interrupt occurs when the SCSI SEL signal becomes active, the SCSI bus matches the bit set in the ID Select Register, and $\overline{\mathrm{BSY}}$ has been false for at least a bus settle delay. When the $\overline{\mathrm{I} / \mathrm{O}} \mathrm{pin}$ is as-serted, the interrupt should be interpreted as a reselection. The Selection/Reselection Interrupt may be masked by resetting all bits in the ID Select Register. The expected read values for the Current SCSI Control Register and the DMA Status Register upon encountering this interrupt are given in Table 4.

DEVICES INCORPORATED

Loss of Busy Interrupt

A Loss of Busy Interrupt occurs when the SCSI $\overline{\text { BSY }}$ signal has been inactive for at least a bus settle delay (400 ns). The Loss of Busy Interrupt may be masked by resetting the MONITOR BUSY bit (R2 bit 2). Resetting MONITOR BUSY also prevents the BUSY ERROR latch (Read R5 bit 2) from being set. The expected read values for the Current SCSI Control Register and the DMA Status Register upon encountering this interrupt are given in Table 4.

Phase Mismatch Interrupt

A Phase Mismatch Interrupt occurs when the DMAMODE bit (R2 bit 1) is set, $\overline{\mathrm{REQ}}$ is active on the SCSI bus, and the SCSI phase signals MSG, $\overline{\mathrm{C} / \mathrm{D}}$, and $\overline{\mathrm{I} / \mathrm{O}}$ do not match the corresponding bits in the Target Command Register. This interrupt is intended for use by the initiator to detect a change of phase by the target during a DMA transfer. When operating as a target, the SCSI phase lines will normally be asserted via the Target Command Register, so no phase mismatch will be generated unless another SCSI device is erroneously driving the phase lines to an unintended state.

The result of the continuous comparison of the SCSI phase lines to the Target Command Register contents is visible as the PHASE MATCH bit (Read R5 bit 3). This flag operates irrespective of the state of
DMAMODE and $\overline{\mathrm{REQ}}$. As long as a phase mismatch condition persists, the L5380/L53C80 is prevented from recognizing active $\overline{\mathrm{REQ}}$ inputs, and SCSI output data drivers are disabled.

The Phase Mismatch interrupt is nonmaskable, however it will only occur when operating in DMAMODE. The expected read values for the Current SCSI Control Register and the DMA Status Register
upon encountering this interrupt are given in Table 4.

Parity Error Interrupt

A Parity Error Interrupt occurs when incorrect parity is detected during a

Table 4. Interrupt Read Values

Read Address 4 - Current SCSI Control Register							
7	6	5	4	3	2	1	0
$\overline{\text { RST }}$	$\overline{\text { BSY }}$	$\overline{\mathrm{REQ}}$	$\overline{\mathrm{MSG}}$	$\overline{C / D}$	I/O	$\overline{\text { SEL }}$	$\overline{\text { PARITY }}$
SCSI Bus Interrupt							
X	0	0	0	0	0	0	0
Selection/Reselection Interrupt							
0	0	0	X	X	1=RESEL	1	X
Loss of Busy Interrupt							
0	0	0	0	0	0	0	0
Phase Mismatch Interrupt							
0	1	1	X	X	X	0	X
Parity Error Interrupt							
0	X	X	X	X	X	X	X
End of DMA Interrupt							
0	1	X	X	X	X	0	X

Read Address 5 - DMA Status Register

7	6	5	4	3	2	1	0
$\begin{gathered} \hline \text { END } \\ \text { OF } \\ \text { DMA } \end{gathered}$	DMA REQUEST	PARITY ERROR	$\begin{array}{\|c\|} \hline \text { INTER- } \\ \text { RUPT } \\ \text { REQUEST } \\ \hline \end{array}$	PHASE MATCH	$\begin{aligned} & \text { BUSY } \\ & \text { ERROR } \end{aligned}$	$\overline{\text { ATN }}$	$\overline{\text { ACK }}$
SCSI Bus Interrupt							
0	0	0	1	1	0	0	0
Selection/Reselection Interrupt							
0	0	0	1	X	0	X	0
Loss of Busy Interrupt							
0	0	0	1	X	1	0	0
Phase Mismatch Interrupt							
0	0	0	1	0	X	X	0
Parity Error Interrupt							
X	X	1	1	X	X	X	X
End of DMA Interrupt							
1	0	0	1	X	0	0	X

lines are 000 . Parity is also checked during DMA read operations (DMAMODE bit, R2 bit 1 is set) when $\overline{\mathrm{ACK}}$ is active for target receive, or $\overline{\mathrm{REQ}}$ is active for initiator receive.

The PARITY ERROR latch is set when parity error checking is enabled and one of the above parity error conditions is encountered. This latch is visible as bit 5 of the DMA Status Register (Read R5). The Parity Error Interrupt may be masked and setting of the PARITY ERROR latch prevented by resetting the ENABLE PARITY CHECK bit (Write R2 bit 5). The PARITY ERROR latch can be reset by reading the Reset Error/Interrupt Register (Read R7). The expected read values for the Current SCSI Control Register and the DMA Status Register upon encountering this interrupt are given in Table 4.

End of DMA Interrupt

An End of DMA Interrupt occurs when a valid $\overline{E O P}$ (End of Process) signal is detected during a DMA transfer. $\overline{E O P}$ is valid when $\overline{E O P}$, $\overline{\mathrm{DACK}}$, and either $\overline{\mathrm{IOR}}$ or $\overline{\mathrm{IOW}}$ are simultaneously asserted for the minimum specified time. $\overline{E O P}$ inputs not occurring during I/O read or write operations are ignored.
The End of DMA latch is set whenever the DMAMODE bit (R 2 bit 1) is set and a valid $\overline{\mathrm{EOP}}$ is received. This latch is visible as bit 7 of the DMA Status Register (Read R5). The End of DMA Interrupt may be masked by resetting the ENABLE EODMA INTERRUPT bit (Write R2 bit 3). This bit does not affect the END OF DMA latch, however. The End of DMA latch can be reset by resetting the DMAMODE bit in the Mode Register. The expected read values for the Current SCSI Control Register and the DMA Status Register upon encountering this interrupt are given in Table 4.

DATATRANSFERS

The L5380/L53C80 supports programmed I/O under CPU control or DMA transfer via a DMA controller when transferring information to and from the SCSI data bus. Programmed I/O can be implemented entirely in firmware or using minimum external logic for accessing the appropriate registers. Under DMA control, the L5380/L53C80's DMA interface logic and internal state machines provide the necessary control of the $\overline{\mathrm{REQ}}-\overline{\mathrm{ACK}}$ handshake. Each type of transfer is fully described in the following sections.

Programmed I/O

Two forms of programmed I/O are supported by the L5380/L53C80. For normal programmed I/O, the SCSI handshake is accomplished by setting bits in the Initiator or Target Command registers to assert SCSI control lines, and polling the Current SCSI Control and DMA Control registers for the appropriate responses. Since for this method the control is contained in firmware, the cycle times are relatively slow. It is most appropriate for transferring small blocks of data such as SCSI command blocks or messages, where the overhead of

Table 5. Typical Interrupt Service Routine Polling Service

Read Address 5 > TEMP	: Read DMA Status Reg to variable TEMP
IF TEMP "AND" HEX (10) = 0 THEN GO TO NEXT DEVICE	: IRQ not active, so L5380/L53C80 was not the source of this interrupt
TEMP "AND" HEX (AC) \rightarrow TEMP	: Mask off irrevelant bits
$\begin{aligned} & \text { IF TEMP }>\text { HEX (} 7 \text { F) THEN } \\ & \text { GO TO EODA } \end{aligned}$: End of DMA Interrupt
IF TEMP > HEX (1F) THEN GO TO PARERR	: Parity Error Interrupt
$\begin{aligned} & \text { IF TEMP > HEX (07) THEN } \\ & \text { GO TO PHASERR } \end{aligned}$: Phase Mismatch Interrupt
IF TEMP > HEX (03) THEN GO TO BYSERR	: Loss of Busy Interrupt
Read Address $4 \rightarrow$ TEMP	: Read Current SCSI Control Reg to variable TEMP
TEMP "AND" HEX (06) \rightarrow TEMP	: Mask off irrevelant bits
$\begin{aligned} & \text { IF TEMP = HEX (06) THEN } \\ & \text { GO TO RESEL } \end{aligned}$: Reselection Interrupt
$\begin{aligned} & \text { IF TEMP = HEX (02) THEN } \\ & \text { GO TO SEL } \end{aligned}$: Selection Interrupt
$\begin{aligned} & \text { IF TEMP }=\text { HEX (00) THEN } \\ & \text { GO TO RESET } \end{aligned}$: SCSI Bus Reset Interrupt

setting up a DMA controller could be significant.

Pseudo DMA

An alternate method of programmed I/O allows the state machines of the L5380/L53C80 to handle the SCSI handshake, thereby improving performance in systems which do not employ a hardware DMA controller. To implement Pseudo DMA, the DMAMODE bit is set. The CPU polls the DRQ bit in the DMA Control Register to determine when a byte should be written to or read from the L5380/L53C80. When reading or writing, external logic must be used to decode the L5380/L53C80 location and produce $\overline{\mathrm{DACK}}$, since it is used by the internal state machines. Also, $\overline{\mathrm{CS}}$ must be suppressed since it may not be asserted simultaneously with DACK.

Normal DMA Mode

Normal DMA mode is obtained when the DMAMODE bit is set but the BLOCKMODE bit is reset. The DMA process is started by writing to the Start DMA Send, Start DMA Initiator Receive, or Start DMA Target Receive locations as appropriate. Once started, the internal state machines of the L5380/L53C80 manage the $\overline{\mathrm{REQ}}$ $\overline{\mathrm{ACK}}$ handshake protocol, as well as the DRQ- $\overline{D A C K}$ handshake with the DMA controller.

The L5380/L53C80 will assert DRQ whenever it is ready to transfer a byte to or from the DMA controller. In response to DRQ, the controller asserts $\overline{\mathrm{DACK}}$ and $\overline{\mathrm{IOR}}$ to read the byte, or $\overline{\text { DACK }}$ and $\overline{\text { IOW }}$ to write a byte to the L5380/L53C80. For write operations, the byte is latched at the rising edge of the logical AND of $\overline{D A C K}$ and $\overline{I O W}$. The transfer can be terminated by asserting EOP during a read or write operation, or by resetting the DMAMODE bit.

Block DMA Mode

When the BLOCKMODE bit is set, the DMA handshake is no longer dependent on interlocked DRQ-DACK cycles. Instead, the DMA controller may be allowed to free-run, with data flow throttled by inserting "wait-states" in the DMA transfer to or from the L5380/L53C80. Wait-states, which are idle clock cycles inserted during the I/O read or write operation, are inserted by the DMA controller until the READY output of the L5380/L53C80 goes true, allowing the bus cycle to conclude.

The READY output will be deasserted under the following conditions: For send operations, READY will be false whenever the Output Data Register contains a byte which has not been transferred over the SCSI bus. This allows the DMA controller to access RAM to fetch the next byte, but postpones the end of the CPU bus cycle until the previous byte has been transferred, freeing the Output Data Register to receive it.
For receive operations, READY will be false whenever the Input Data Register is empty. This allows the DMA controller to address the RAM for a write operation, but postpones the end of the CPU bus cycle until the incoming byte is stored in the Input Data Register and is available on the CPU bus.

Note that when blockmode is employed, $\overline{\text { DACK }}$ may optionally remain asserted throughout the DMA transfer, since it is not used in an interlocked DMA handshake. (Its interlock function is replaced by $\overline{\mathrm{IOR}}$ or $\overline{\mathrm{IOW}}$.) Also, DRQ will be asserted in the normal way when operating in blockmode. To gain the abovementioned performance benefits, it should be used only to initiate the first byte transfer, with READY used to throttle succeeding transfers. This methodol-
ogy is compatible with DMA controllers such as the Intel 8237 and AMD Am9516/9517.

In summary, blockmode operation offers the potential for improved transfer rates by overlapping the DMA memory access with the SCSI transfer. This is of particular value when used with DMA controllers capable of "flyby" operation, where the data is transferred directly from memory to the peripheral, and does not pass through the DMA controller itself. This transfer rate gain is achieved at the expense of locking up the CPU bus for a time equal to the SCSI transit time of the entire block. This may be strongly preferable in some systems where net disk access time is a crucial performance factor. Also, the time required to arbitrate for the CPU bus on a byte-by-byte basis may well be longer than the cycles wasted waiting for SCSI transfers to take place, especially with fast peripherals which operate from a high speed sector buffer.

Terminating DMA Transfers

DMA transfers, either normal or blockmode, may be terminated in a number of ways. The following sections describe these methods, along with providing information about correct sequencing of various signals to effect a clean exit from a DMA process.

$\overline{\text { EOP }}$ Signal

The EOP signal is usually generated by a DMA controller to indicate that its transfer counter has decremented to zero. In order to be recognized by the L5380/L53C80, it should be asserted simultaneously with the DACK and $\overline{\mathrm{IOR}}$ or $\overline{\mathrm{IOW}}$ signals corresponding to the last byte in the transfer. Note that in the case of send operations, asserting EOP indicates to the L5380/L53C80 that SCSI transfers should cease after transmission of the
byte loaded while $\overline{\mathrm{EOP}}$ is asserted. In order to determine when this last byte has actually been sent, the LAST BYTE SENT flag in the Target Command Register may be examined. This flag is not present in the NCR implementation of the 5380, but is available in the 53C80, a non-pin-compatible variant. The $\overline{E O P}$ input does not reset the DMAMODE bit, but after transmission of the last byte causes the internal state machine to return to an idle condition, so that no further SCSI handshaking will occur until another transmission is explicitly initiated. Note that the NCR version of the 5380 , upon receiving an $\overline{\mathrm{EOP}}$, will stop asserting DRQ, but will continue to issue $\overline{\mathrm{ACK}}$ in response to additional $\overline{\mathrm{REQ}}$ inputs, potentially causing data loss if the target initiates another data transmission without an intervening phase change. The L5380/L53C80 prevents this spurious DMA handshake from occurring.

DMAMode Bit

Resetting the DMAMODE bit in the Mode Register causes a hard reset of the internal DMA state machines, and thus an effective termination of a DMA transfer. Since unlike the $\overline{\mathrm{EOP}}$ case the state machine is not allowed to exit gracefully, care must be taken in the timing of DMAMODE reset.

For receive operations, the
DMAMODE bit should be reset after the last $D R Q$ is received, but prior to asserting $\overline{\mathrm{DACK}}$ to prevent an additional $\overline{\mathrm{REQ}}$ or $\overline{\mathrm{ACK}}$ from occurring. For normal DMA mode, resetting this bit will cause DRQ to go inactive. However the last byte received remains in the SCSI Input Data Register and may be read either by the normal $\overline{D A C K}$ and $\overline{I O R}$ DMA read or using a CPU read of Address 6. For blockmode DMA, READY will remain asserted when DMAMODE is reset, allowing the DMA controller to
retrieve the last byte in the normal fashion. The NCR version of the 5380 fails to keep ready asserted when DMAMODE is reset, potentially causing deadlock on the CPU bus.

Bus Phase Mismatch

When operating in DMAMODE as an initiator, a bus phase mismatch can be used to terminate a data transfer. If the $\overline{C / D}, \overline{I / O}$, and $\overline{\mathrm{MSG}}$ lines fail to match the corresponding bits in the Target Command Register, it will prevent recognition of $\overline{\mathrm{REQ}}$, and will disable the SCSI data and parity output drivers. Also, when $\overline{\mathrm{REQ}}$ becomes active, an interrupt will be generated. Because $\overline{\mathrm{REQ}}$ is not recognized, the effect is to stop the DMA transfer, although the state machine does not return to idle until either DMAMODE is reset or a valid $\overline{\mathrm{EOP}}$ is received.

One caution should be observed when using phase changes to end DMA transfers: While this method obviates the need for the initiator to keep a transfer counter, it depends on the target causing a phase change between any two consecutive information transfer phases. Since this is not required by the protocol, it must be guaranteed by the target software. Otherwise the target may begin a new information transfer without the initiator recognizing the boundary between the two.

ARBITRATION

The L5380/L53C80 contains on-chip hardware to assist in arbitrating for the SCSI bus. This arbitration logic cooperates with the host firmware to effect SCSI arbitration, as described in the following paragraphs:

The SCSI arbitration timeline begins with detection of a bus free condition at time $t 0$. Bus free is defined as BSY
and $\overline{\text { SEL }}$ inactive for at leasi a bus settle delay (400 ns). Following the bus settle delay, the SCSI device must wait an additional bus free delay of 800 ns , for a total of 1200 ns after t0, prior to driving any signal. Thus a minimum of 1200 ns must elapse from initial deassertion of $\overline{\mathrm{BSY}}$ to the beginning of an arbitration attempt. A final constraint is that arbitration may not begin if more than a bus set delay (1800 ns) has elapsed since $\overline{\mathrm{BSY}}$ became active (arbitration began), corresponding to 2200 ns after to.

The CPU indicates a desire to arbitrate by setting the ARBITRATE bit (R2 bit 0.) When ARBITRATE is set, the L5380/L53C80 will monitor the state of $\overline{\mathrm{BSY}}$ and $\overline{\mathrm{SEL}}$ to detect a bus free condition. The actual implementation uses an internal delay line to provide a time reference for detection of a bus free condition. This delay is nominally 800 ns during which $\overline{\mathrm{BSY}}$ and $\overline{\text { SEL }}$ must be inactive. This time represents the center of the window between the Bus Settle Delay (400 ns) and the Bus Free Delay $(400+800=$ 1200 ns). When Bus Free is detected, the L5380/L53C80 waits for an additional time of nominally 900 ns (1700 ns nominal since $\mathbf{t} 0$) and asserts $\overline{\mathrm{BSY}}$ and the contents of the Output Data Register. This time represents the center of the $1200 \mathrm{~ns}-2200 \mathrm{~ns}$ window between the earliest and latest legal arbitration attempt. Since the actual delays are process and temperature dependent, they will vary in practice, but will always remain well within the specified limits.
Once arbitration has begun ($\overline{\mathrm{BSY}}$ and the Output Data Register asserted, the ARBITRATION IN PROGRESS bit (R1 bit 6) will be set, allowing the CPU to detect the fact that arbitration has begun. The CPU should then wait one arbitration delay $(2.2 \mu \mathrm{~s})$ before reading the bus to determine whether
arbitration has been won or lost. The LOST ARBITRATION bit (R2 bit 7) will be active if the L5380/L53C80 has detected $\overline{\text { SEL }}$ active on the SCSI bus, indicating that another SCSI device has declared itself the winner of the arbitration. $\overline{\text { SEL }}$ active also disables the SCSI output drivers, allowing the winning arbitrator to proceed with its transfer.

BUG FIXES/ENHANCMENTS

The NCR5380 and the Am5380 have some architectural bugs, both published and unpublished. The Logic Devices L5380/L53C80 was designed to eliminate these bugs while maintaining pin and architectural compatibility. A list of these errors along with solutions implemented in the L5380/ L53C80 is itemized below.

1. When executing blockmode DMA send operations, the READY signal is intended to insert memory wait states as a mechanism to throttle data transfer, with the DMA controller in a free-running loop. The NCR/Am5380 erroneously allows the contents of the Output Data Register to be overwritten by subsequent bytes prior to acknowledgment of the current byte by the SCSI receiver. This causes loss of data when operating in blockmode if the sender's DMA cycle is faster than the receiver's.

2. Assertion of $\overline{\mathrm{EOP}}$ during

blockmode DMA transfers fails to cause assertion of READY in the NCR/Am5380. This may prevent the CPU from becoming bus master and can result in lockup of the CPU bus in a not-ready state. In block DMA send
mode when $\overline{\mathrm{EOP}}$ is received, the L5380/L53C80 reasserts READY immediately after transmitting the final byte. For receive mode, READY is asserted immediately.
3. When a valid $\overline{\mathrm{EOP}}$ is detected, the NCR/Am5380 prevents assertion of additional DRQ's, but continues to respond to SCSI handshakes. This means that additional data transmitted without phase change may be lost. The L5380/L53C80, like the NCR/ Am 5380 remains in DMAMODE after an $\overline{\mathrm{EOP}}$. However, the internal state machine returns to an idle condition and does not respond to additional SCSI handshake attenpts until another data transfer is explicitly initiated.
4. When operating as an initiator in DMAMODE, the NCR/Am5380 leaves $\overline{\mathrm{ACK}}$ asserted after receipt of a valid $\overline{E O P}$, requiring the $C P U$ to deassert it. When a valid $\overline{\mathrm{EOP}}$ is detected, the L5380/L53C80 deasserts $\overline{\mathrm{ACK}}$ properly.
5. If the NCR / Am5380 is not terminated on the SCSI side, the floating $\overline{\text { RST }}$ pin will cause spurious interrupts. The L5380/L53C80 contains internal high value pullups to set unterminated SCSI pins to the inactive state.
6. During DMA send operations, when a valid $\overline{\mathrm{EOP}}$ signal is received by the NCR / Am5380, no convenient indication exists to indicate that the last byte of data (loaded simultaneously with EOP) has in fact been successfully transmitted. The L5380/ L53C80 provides LAST BYTE status bit mapped to bit 7 of the Target Command Register. This bit will be
set after a valid $\overline{\mathrm{EOP}}$ has occurred, and the final byte has been transmitted successfully.
7. During the reselection phase, the NCR/AM5380 may reset the reselection interrupt if the contents of the Target Command Register do not match the current SCSI bus phase. The L5380/L53C80 does not spuriously reset this interrupt.
8. In the NCR / Am5380, the phase mismatch interrupt is captured in an edge triggered fashion on the active edge of $\overline{R E Q}$. During reselection, this interrupt might not be generated even though a phase change has occurred. The reason for this is as follows:

- The initiator DMAMODE bit must be set in order to receive a phasematch interrupt.
- However, the DMAMODE bit cannot be set unless $\overline{\mathrm{BSY}}$ is active.
- $\overline{\mathrm{BSY}}$ will be driven active by the target only after the relesection has occurred.
- Once $\overline{\mathrm{BSY}}$ has been asserted by the target, it may then assert $\overline{\mathrm{REQ}}$ before the initiator has set the DMAMODE bit, and the initiator will then fail to generate an interrupt.

The L5380/L53C80 interrupt latch will be set if a phase mismatch condition exists when the later of $\overline{\mathrm{REQ}}$ or DMAMODE become active. In this way, the mismatch will always be detected, even if the target asserts request before the initiator sets DMAMODE.

DMA Interface with 8237 A.

SWITCHING CHARACTERISTICS

A. CPU Write Timing -(Units measured in ns except where noted)

Symbol	Parameter	Commercial				Military	
		2 Mbytes/sec		4 Mbytes/sec		2 Mbytes/sec	
		Min	Max	Min	Max	Min	Max
T1	Address Setup to Write Enable	10		5		10	
T2	Address Hold from End of Write Enable	0		0		0	
T3	Width of Write Enable	40		20		40	
T4	Data Setup to End of Write Enable	20		5		20	
T5	Data Hold from End of Write Enable	10		5		10	

CPU Write Waveforms

B. CPU Read Timing -(Units measured in ns except where noted)

Symbol	Parameter	Commercial				Military	
		2 Mbytes/sec		4 Mbytes/sec		2 Mbytes/sec	
		Min	Max	Min	Max	Min	Max
T1	Address Setup to Read Enable	10		5		10	
T2	Address Hold from End of Read Enable	0		0		0	
T3	Data Access Time from Read Enable		50		20		50

CPU Read Waveforms

DEVICES INCORPORATED
C. Arbitration -(Units measured in ns except where noted)

Symbol	Parameter	Commercial		Military	
		Min	Max	Min	Max
T1	$\overline{\text { BSY False Duration to Detect Bus Free Condition }}$	$0.4 \mu \mathrm{~s}$	$1.1 \mu \mathrm{~s}$	$0.4 \mu \mathrm{~s}$	$1.1 \mu \mathrm{~s}$
T2	SCSI Bus Clear (High Z) from $\overline{\text { BSY False }}$		$1.1 \mu \mathrm{~s}$		$1.1 \mu \mathrm{~s}$
T3	Arbitrate ($\overline{\mathrm{BSY}}$ and SCSI ID asserted) from $\overline{\mathrm{BSY}}$ False (Bus Free Detected)	$1.2 \mu \mathrm{~s}$	$2.2 \mu \mathrm{~s}$	$0.8 \mu \mathrm{~s}$	$2.4 \mu \mathrm{~s}$
T4	SCSI Bus Clear (High Z) from SEL True (Lost Arbitration)		60		60

Arbitration Waveforms

D. DMA Write Initiator Send -(Units measured in ns)

Symbol	Parameter	Commercial				Military	
		2 Mbytes/sec		4 Mbytes/sec		2 Mbytes/sec	
		Min	Max	Min	Max	Min	Max
The following apply for all DMA Modes							
T1	DRQ False from Write Enable (concurrence of $\overline{\mathrm{OWW}} \& \overline{\mathrm{DACK}})$		60		30		60
T2	Width of Write Enable (concurrence of IOW \& $\overline{\text { DACK }}$)	60		20		60	
T4	Data Setup to End of Write Enable	20		5		20	
T5	Data Hold from End of Write Enable	15		5		15	
T6	Concurrent Width of $\overline{\mathrm{EOP}}, \overline{\mathrm{IOW}}$, and $\overline{\text { DACK }}$	50		20		50	
T9	$\overline{\text { REQ }}$ False to $\overline{A C K}$ False		90		45		90
T13	End of Write Enable to Valid SCSI Data		65		45		65
T14	SCSI Data Setup Time to $\overline{\mathrm{ACK}}$ True	60		65		60	
The following apply for Normal DMA Mode only							
T7	$\overline{\mathrm{REQ}}$ False to DRQ True		60		30		60
T8	$\overline{\text { DACK False to } \overline{A C K} \text { True (} \overline{\mathrm{REQ}} \text { True) }}$		140		140		140
T10	$\overline{\mathrm{REQ}}$ True to $\overline{A C K}$ True ($\overline{\mathrm{DACK}}$ False)		70		35		70
The following apply for BLOCKMODE DMA only							
T3	$\overline{\text { IOW }}$ Recovery Time	40		20		40	
T8	$\overline{\mathrm{OWW}}$ False to $\overline{\mathrm{ACK}}$ True ($\overline{\mathrm{REQ}}$ True)		140		140		140
T10	$\overline{\mathrm{REQ}}$ True to $\overline{\mathrm{ACK}}$ True ($\overline{\mathrm{OWW}}$ False)		70		35		70
T11	$\overline{\text { REQ }}$ False to READY True		60		30		60
T12	$\overline{\text { IOW }}$ False to Ready False		70		35		70

CMOS SCSI Bus Controller

DMA Write Initiator Send Waveforms

E. DMA Read Initiator Receive -(Units measured in ns)

Parameter	Commercial				Military	
	2 Mbytes/sec		4 Mbytes/sec		2 Mbytes/sec	
	Min	Max	Min	Max	Min	Max

The following apply for all DMA Modes

T 1	DRQ False from Concurrence of $\overline{\mathrm{OR}}$ and $\overline{\mathrm{DACK}}$		60		30		60
T 3	Data Access Time from Concurrence of $\overline{\mathrm{OR}} \& \overline{\mathrm{DACK}}$		60		20		60
T 4	Concurrence Width of $\overline{\mathrm{EOP}}, \overline{\mathrm{OR},}$ and $\overline{\mathrm{DACK}}$	50		20		50	
T 7	$\overline{\mathrm{REQ}}$ True to $\overline{\mathrm{ACK}}$ True		70		35		70
T 12	SCSI Data Setup Time to REQ True	20		5		20	
T 13	SCSI Data Hold Time from $\overline{\mathrm{REQ}}$ True	15		5		15	

The following apply for Normal DMA Mode only

T5	$\overline{\mathrm{REQ}}$ True to DRQ True	60	30	60
T6		90	45	90
T8	$\overline{\mathrm{REQ}}$ False to $\overline{\mathrm{ACK}}$ False ($\overline{\text { DACK }}$ False)	80	45	80

The following apply for BLOCKMODE DMA only

T2	$\overline{\mathrm{OR}}$ Recovery Time	40		20		40	
T6	$\overline{\mathrm{IOR}}$ False to $\overline{\mathrm{ACK}}$ False ($\overline{\mathrm{REQ}}$ False)		90		45		90
T8	$\overline{\mathrm{REQ}}$ False to $\overline{\mathrm{ACK}}$ False ($\overline{\mathrm{IOR}}$ False)		80		45		80
T9	$\overline{\text { REQ }}$ False to READY True		60		30		60
T10	READY True to CPU Data Valid		15		15		15
T11	$\overline{\mathrm{IOR}}$ False to Ready False		70		35		70

CMOS SCSI Bus Controller

DMA Read Initiator Receive Waveforms

F. DMA Write Target Send -(Units measured in ns)

Symbol	Parameter	Commercial				Military	
		2 Mbytes/sec		4 Mbytes/sec			
		Min	Max	Min	Max	Min	Max
The following apply for all DMA Modes							
T1	DRQ False from Write Enable (concurrence of $\overline{\text { IOW }} \& \overline{\text { DACK }})$		60		$` 30$		60
T2	Width of Write Enable (concurrence of $\overline{\mathrm{OW}} \& \overline{\text { DACK }}$)	60		20		60	
T4	Data Setup to End of Write Enable	20		5		20	
T5	Data Hold from End of Write Enable	15		5		15	
T6	Concurrent Width of ETOP, IOW, and $\overline{\text { DACK }}$	50		20		50	
T9	$\overline{\text { ACK }}$ True to $\overline{\mathrm{REQ}}$ False		90		45		90
T13	End of Write Enable to Valid SCSI Data		60		45		60
T14	SCSI Data Setup Time to $\overline{R E Q}$ True	60		65		60	
The following apply for Normal DMA Mode only							
T7	$\overline{\text { ACK False to DRQ True }}$		60		30		60
T8	$\overline{\text { DACK False to } \overline{\mathrm{REQ}} \text { True (} \overline{\mathrm{ACK}} \text { False) }}$		130		130		140
T10	$\overline{\mathrm{ACK}}$ False to $\overline{\mathrm{REQ}}$ True ($\overline{\mathrm{DACK}}$ False)		70		35		70
The following apply for BLOCKMODE DMA only							
T3	IOW Recovery Time	40		20		40	
T8	$\overline{\mathrm{OW}}$ False to $\overline{\mathrm{REQ}}$ True ($\overline{\mathrm{ACK}}$ False)		130		130		140
T10			70		35		70
T11	$\overline{\text { ACK }}$ True to READY True		60		30		60
T12	$\overline{\mathrm{OW}}$ False to Ready False		70		35		70

CMOS SCSI Bus Controller

DMA Write Target Send Waveforms

G. DMA Read Target Receive -(Units measured in ns)

Symbol	Parameter	Commercial				Military	
		2 Mbytes/sec		4 Mbytes/sec		2 Mbytes/sec	
		Min	Max	Min	Max	Min	Max

The following apply for all DMA Modes

T1	DRQ False from Concurrence of $\overline{\mathrm{IOR}}$ and $\overline{\mathrm{DACK}}$		60		30		60
T3	Data Access Time from Concurrence of $\overline{\mathrm{OR}} \& \overline{\mathrm{DACK}}$		60		20		60
T4	Concurrence Width of $\overline{\mathrm{EOP}}, \overline{\mathrm{IOR}}$, and $\overline{\mathrm{DACK}}$	50		20		50	
T7	$\overline{\mathrm{ACK}}$ True to $\overline{\mathrm{REQ}}$ False		90		45		90
T12	SCSI Data Setup Time to $\overline{\mathrm{ACK}}$ True	20		5		20	
T13	SCSI Data Hold Time from $\overline{\mathrm{ACK}}$ True	15		5		15	

The following apply for Normal DMA Mode only

T5	$\overline{\text { ACK }}$ True to DRQ True	60	30	60
T6		70	35	70
T8	$\overline{\text { ACK }}$ False to $\overline{\text { REQ }}$ True ($\overline{\text { DACK False) }}$	70	35	70

The following apply for BLOCKMODE DMA only

T2	$\overline{\mathrm{IOR}}$ Recovery Time	40		20		40	
T6	$\overline{\mathrm{OR}}$ False to $\overline{\mathrm{REQ}}$ True ($\overline{\mathrm{ACK}}$ False)		70		35		70
T8	$\overline{\mathrm{ACK}}$ False to $\overline{\mathrm{REQ}}$ True ($\overline{\mathrm{IOR}}$ False)		70		35		70
T9	$\overline{\mathrm{ACK}}$ True to READY True		60		30		60
T10	READY True to CPU Data Valid		15		15		15
T11	$\overline{\mathrm{IOR}}$ False to Ready False		70		35		70

CMOS SCSI Bus Controller

DMA Read Target Receive Waveforms

Maximum Ratings

Above which useful life may be impaired
Storage temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Vcc supply voltage with respect to ground -0.5 V to +7.0 V
Output voltage 0.0 to Vcc
Input Voltage 0.0 to 5.5 V
Iol Low Level Output Current (SCSI bus) 48 mA
Iol Low Level Output Current (other pins) 8 mA
Іон High Level Output Current (other pins) $-4 \mathrm{~mA}$

Operating Conditions

To meet specified electrical and switching characteristics

Mode	Temperature Range (Ambient)	Supply Voltage
Active Operation, Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$4.75 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.25 \mathrm{~V}$
Active Operation, Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$4.50 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.50 \mathrm{~V}$

Electrical Characteristics

Over Operating Conditions

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
ViL	Low Level Input Voltage		0.0		0.8	V
VH	High Level Input Voltage		2.0		Vcc	V
Vol	Low Level Output Voltage (SCSI bus)	$\mathrm{VcC}=\mathrm{min}, \mathrm{loL}=48 \mathrm{~mA}$			0.5	V
Vol	Low Level Output Voltage (other pins)	$\mathrm{VCC}=\mathrm{min}, \mathrm{lOL}=8 \mathrm{~mA}$			0.5	V
VOH	High Level Output Voltage (other pins)	$\mathrm{VCC}=\mathrm{min}, \mathrm{OH}=-4 \mathrm{~mA}$	3.5			V
II	Input Current*	$\mathrm{Vcc}=$ max, $\mathrm{VI}=0-\mathrm{Vcc}$ (SCSI bus)			65	$\mu \mathrm{A}$
II	Input Current*	$\mathrm{Vcc}=$ max, $\mathrm{VI}=0-\mathrm{Vcc}$ (other pins)			20	$\mu \mathrm{A}$
Icc	Supply Current	$\mathrm{VCC}=$ max,$~ V \mathrm{VH}=2.4$, VIL $=0.4,4 \mathrm{MHz}$ cycle, no load, no termination		10	20	mA
Icc	Supply Current Quiescent	As above, inputs stable			1.0	mA

* Not tested at low temperature extreme.

DEVICES INCORPOPATED

CMOS SCSI Bus Controller

Ordering Information

Commercial Operating Range ($0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)

Package Style	Performance	
	4 Mbytes/sec	2 Mbytes/sec
40-pin Plastic DIP (0.6") - P3	L5380PC4	L5380PC2
40-pin Sidebraze (0.6") Hermetic DIP -D3	L5380DC4	L5380DC2
48-pin Plastic DIP (0.6") - P5	L53C80PC4	L53C80PC2
48-pin Sidebraze (0.6") Hermetic DIP - D5	L53C80DC4	L53C80DC2
44-pin Plastic LCC, J-Lead - J1	L5380JC4 L53C80JC4	L5380JC2 L53C80JC2
44-pin Ceramic LCC - K2	L5380KC4 L53C80KC4	L5380KC2 L53C80KC2

Military Operating Range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$

	Performance
Package Style	2 Mbytes/sec
40-pin Sidebraze (0.6")	L5380DM2
Hermetic DIP - D3	L5380DMB2
48-pin Sidebraze (0.6")	L53C80DM2
Hermetic DIP - D5	L53C80DMB2
44-pin Ceramic LCC - K2	L5380KM2
	L53C80KM2
	L5380KMB2
	L53C80KMB2

© 1988, Logic Devices Incorporated. Reproduction of any portion hereof without written consent is prohibited. Information contained in this specification is intended as a general product description and is subject to change without notice. Logic Devices does not assume any responsibility for use of any product or circuit described and no patent license rights are implied.

Ordering Information

Memory Products

Logic Products

Peripheral Products
Quality and Reliability
5

Technology and Design Features

Packaging

Application Notes

Technical Articles

Sales Offices

DEVICES INCORPORATED

Contents

Overview 5-3
Reliability and Failure Rate Prediction 5-5
Assembly Flows 5-7
Commercial Plastic 5-8
Commercial Hermetic 5-10
High Reliability 5-12
MIL-STD-883 5-14

Overview - Commitment to Quality

Management Commitment Statement

A successful quality program requires that every employee act as a member of the quality organization. This applies particularly to the management team who establish acceptable behavior by their actions. Bill Volz, President/CEO of Logic Devices Incorporated encourages active participation of all departments in a quality oriented operation.

At Logic Devices, the quality department strives to maintain a proactive relationship with Manufacturing, Design, Marketing, and Sales emphasizing training and procedural controls. Training and good communication allow employees to understand which practices lead to good quality and reliability and make them willing participants in the quality program. This attitude has allowed Logic Devices to continually improve the quality of its product line.

Organization

The Quality/Reliability Department reports directly to the President/CEO. The quality operation is divided into two functions:

1. Quality Administration
2. Reliability Engineering

Quality Administration performs all inspections/Q.A. monitors in
assembly/test operations including incoming inspection of all direct materials. Q.A. Administration also includes the document control function.

The Reliability Engineering function is responsible for assuring that all products manufactured by Logic Devices meet our rigid standards for reliability. Activities that support this function include qualifications of new products, reliability monitor testing, failure analysis, and corrective action.

Documentation

All manufacturing and Q.A. procedures are controlled in the document control area and are available in controlled binders located in the appropriate manufacturing areas. In addition, the program plans for the quality and reliability functions are described in individual manuals:

Quality Manual. The quality function is described in the quality program plan as outlined in the Quality Manual. The program plan has been designed to the requirements of Appendix A of Mil-M-38510.
Reliability Manual. The reliability of Logic Devices' products is among the best in the industry and will continue to be. The Reliability Manual has been created to insure that we maintain high visibility of reliability data. This
manual also describes the reliability function and goals at Logic Devices.

Mil-Std-883C. All products to be sold as 883C compliant are manufactured to this specification. As new revisions are released, they are evaluated and changes implemented as required.
Mil-M-38510. This document is referenced continuously by Mil-Std883C and specifically defines program requirements for compliance to 883C programs.

Available Processing Flows

Logic Devices offers many processing flows to provide the best combination of reliability assurance and cost. Available flows are:

1. Commercial Plastic Flow.
2. Commercial Plastic Flow with 48 hr burn-in.
3. Commercial Hermetic Flow 0° to $+70^{\circ} \mathrm{C}$.
4. Commercial Hermetic Flow -$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
5. Hi Rel Hermetic Flow $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ with 48 hr burn-in.
6. Hi Rel 883C Flow - Per Mil-Std883C, Methods 5004 and 5005.
7. Hi Rel Extended Flow Per Logic Devices Flow pages 5-14 to 5-17.

Reliability Monitor Program

Logic Devices' reliability monitor program is designed for early detection of any potential reliability problems and taking appropriate actions for evaluation and correction. Data gathered from monitor testing is evaluated and utilized in a continuous effort to improve the reliability of products at Logic Devices.

Test Name	Conditions	Sample Size/Accept
Early Failure Rate	$80 \mathrm{hrs}, 125^{\circ} \mathrm{C}$	$77 / 1$
Latent Failure Rate	$2000 \mathrm{hrs}, 125^{\circ} \mathrm{C}$	$77 / 1$
Pressure Cooker	$96 \mathrm{hrs}, \mathrm{A} 102^{*}$	$100 / 1$
Biased Humidity Life	$1000 \mathrm{hrs}, \mathrm{A} 101^{*}$	$77 / 1$
Temperature Cycle	15 cycles, A104	$77 / 1$

*JEDEC STD-22B Test Methods

Quality and Reliability

Reliability and Failure Rate Prediction

The failure rate of semiconductor devices over time is due to a variety of mechanisms. Most of these are chemical reactions which eventually degrade device functionality beyond prescribed limits. Determining the effects of time, temperature, current flow, applied field, etc. on the rate of these reactions is central to predicting reliability of a group of semiconductor devices. If these effects can be known or approximated, then failure rates under actual use conditions can be extrapolated from data taken under accelerated stress. This is useful because the failure rate of modern semiconductor devices under commercial operating conditions is so low that an inordinate amount of time would be required to gather a statistically meaningful sample of failed devices.

The usual method of accelerating stress is to subject the devices to elevated temperature (i.e., burn-in). The electrical environment during burn-in attempts to model actual use so that the effects of current and voltage on failure rate are normalized out. If the failure rate vs time is assumed constant, then the remaining parameter of failure rate is temperature.

The expression which relates reaction rate and temperature is called the Arrhenius equation, and is given below:

$$
R(t)=C e^{\frac{-E a}{k T}}
$$

where

$$
\begin{aligned}
\mathrm{R}(\mathrm{t})= & \text { reaction rate (failure rate), } \\
\mathrm{C}= & \text { a constant, } \\
\mathrm{Ea}= & \text { activation energy, a parameter } \\
& \text { which varies with the failure } \\
& \text { mechanism but is generally be- } \\
& \text { tween } 0.3 \text { and } 1.3 \mathrm{eV}, \\
\mathrm{k}= & \text { Boltzmann's constant; } \\
& 8.625 \times 10^{-5} \mathrm{eV} / \text { degree } \mathrm{K}, \\
\mathrm{~T}== & \text { temperature in degrees } \mathrm{K} .
\end{aligned}
$$

A more useful equation results from taking the ratio of the Arrhenius equation at the elevated stress temperature and the intended operating temperature. This will give the failure rate acceleration factor, denoted lambda (λ). λ is a measure of the increase in failure rate of the devices at the higher temperature relative to that at the lower temperature.

$$
\begin{aligned}
\lambda & =\frac{R\left(T_{\mathrm{acc}}\right)}{\mathrm{R}\left(\mathrm{~T}_{\mathrm{op}}\right)} \\
& =\mathrm{e}^{\frac{-\mathrm{Ea}}{\mathrm{k}}\left(\frac{1}{\mathrm{~T}_{\mathrm{acc}}}-\frac{1}{\mathrm{~T}_{\mathrm{op}}}\right)}
\end{aligned}
$$

where
\(\left.\begin{array}{rl}\mathrm{T}_{\mathrm{acc}}= \& accelerated temperature in

\& degrees \mathrm{K}\end{array}\right]\)\begin{tabular}{rl}

$\mathrm{T}_{\mathrm{op}}=$ \& | operating temperature in |
| :--- |
| degrees K |

\end{tabular}

This equation is commonly used for calculations relating to elevated-
temperature burn-in. In burn-in, semiconductor devices are operated for a short period (typically 48 or 160 hours) at a temperature of 125 or $150^{\circ} \mathrm{C}$. The acceleration equation is used to derive an estimate of the number of hours of high-temperature exposure necessary to produce the same number of device failures as a much longer period of operation at normal temperature.
As an example of the use of the acceleration equation, for a failure mechanism with an activation energy of 0.8 eV , a burn-in temperature of $125^{\circ} \mathrm{C}$, and an expected operating junction temperature of $27^{\circ} \mathrm{C}$, the failure rate acceleration with burnin would be:

$$
e^{\frac{-0.8}{8.63 \times 10^{-5}}\left(\frac{1}{398}-\frac{1}{300}\right)}=2015
$$

Therefore the expected failure rate under actual operating conditions would be 2015 times less than the failure rate experienced during burn-in.

Life test data taken from representative Logic Devices products is kept on file and is available to customers. This data allows the calculation of expected failure rates over time for Logic products under given operating conditions. Contact your local Logic Devices representative for more information.

Assembly Flows

KEY:

The following diagrams represent nominal process flows as of the date of issue. Specific details are available in Logic Devices Manufacturing Instructions.
PLASTIC
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Commercial Screening
(No Suffix)

DEVICES INCORPORATED

HERMETIC
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
48Hour Burn-In
("R" Suffix)

INCOMING INSPECTION
ALL MATERIALS AND PEIECE PARTS ONLY
FROM APPROVED/AUDITED VENDORS
PER APPLICABLE LOGIC, JEDEC, AND
MILITARY SPECIFICATIONS

SAW - IOP 1001
BREAK - IOP 1002
SND OPTICAL - IOP 1019
（Continued from
previous page）

TEST $70^{\circ} \mathrm{C}$ — IOP 1015

BURN－IN 48 HOURS－IOP 1013

TEST $70^{\circ} \mathrm{C}$－IOP 1015

QA PDA－7\％MAX

QA TEST $70^{\circ} \mathrm{C}$－QAP 1037

EXTERNAL VISUAL－IOP 1005

PACK — IOP 1021

QA FINAL VISUAL — QAP 1029

RELEASE TO INVENTORY

(Continued
from
previous page)

QA GROUP A ELECTRICAL TEST T $=-55^{\circ} \mathrm{C}$ PER MIL-STD-883 METHOD 5005 SUBGROUPS 3, 8B, 11 LTPD $=2$ (B SUFFIX), LTPD $=10$ (E SUFFIX)

100\% EXTERNAL VISUAL INSPECTION PER MIL-STD-883 METHOD 2009

FINISHED PRODUCT UNIT PACKAGING PER LOGIC SPECIFICATION

QA EXTERNAL VISUAL INSPECTION PER LOGIC SPECIFICATION, AQL $=0.10 \%$

TO INVENTORY

FROM INVENTORY
FINAL MARK
MARK PART NUMBER PER LOGIC OR CUSTOMER SPEC .
ELECTRICAL SAMPLE TEST
$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{AQL}=0.10 \%$
FINAL VISUAL INSPECTION PER MIL-STD-883 METHOD 2009

FINISHED PRODUCT UNIT REPACKAGING PER CUSTOMER SPECIFICATION IF DIFFERENT FROM LOGIC STANDARD PACKAGING

QA FINAL VISUAL INSPECTION PER LOGIC SPECIFICATION

QA PLANT CLEARANCE GROUPS A, B, C, D ATTRIBUTES DATA (WHEN REQUIRED)

ISSUE CERTIFICATE OF COMPLIANCE

PACK \& SHIP

DEVICES INCORPORATED

Ordering Information

Memory Products

Logic Products

Peripheral Products

Quality and Reliability

Technology and Design Features

Packaging

Application Notes

Technical Articles

Sales Offices

Contents

Latchup and ESD Protection 6-3
Power Dissipation in Logic Devices Products 6-7

Technology and Design Features

Latchup and ESD Protection

Latchup is a destructive phenomenon which was once common in CMOS circuits but has now been largely eliminated by improved circuit design techniques. Latchup takes place because of the existence in CMOS of an inherent $\mathrm{p} / \mathrm{n} / \mathrm{p} / \mathrm{n}$ or $\mathrm{n} / \mathrm{p} / \mathrm{n} / \mathrm{p}$ structure between VCC and ground. Either of these two can form a pair of transistors connected so as to form a positive feedback loop, with the collector of one transistor driving the base of the other. The result is a lowimpedance path from VCC to ground, which cannot be interrupted except by the removal of power. This condition can be destructive if the area involved is sufficiently large to dissipate excessive power. One example of the formation of such a structure is shown in Fig. 1. The equivalent circuit is shown in Fig. 2.

As shown in Fig. 1, the $n+$ regions which form the source and drain of an n-channel MOS transistor, also act as the emitters of a parasitic npn transistor. The p-well forms the base region, and the n -substrate is the collector. The current gain of this transistor is relatively high because it is formed vertically and therefore the base width is quite small. This is especially true of fine-geometry CMOS processes which tend to have very shallow wells to reduce sidewall capacitance. The $\mathrm{p}+$ region in the well is called a well tap, and is present to form a lowresistance connection between the well and ground. The source region cannot serve this function because it
forms a diode between the $n+$ source and the p-well.

Also shown in Fig. 1 is an additional parasitic pnp transistor. The source and drain regions of the p -channel MOS device form the emitters, the n-substrate is the base, and the p-well is the collector. This transistor is a pnp, and generally has a beta much less than 1 since it is formed laterally and the gate region is relatively large. Like the vertical npn, it can have multiple emitters. The $\mathrm{n}+$ region tied to VCC in the substrate functions similarly to the well tap discussed above.
Note that the base of the npn and the collector of the pnp are a common region (the p-well), and similarly the base of the pnp and the collector of the npn are common (the n-substrate). Thus, the pnpn structure necessary for latchup is formed. Also, due to the the physical distance between the well and substrate taps and the base regions which they attempt to contact, a small resistance exists between the base regions and their respective well taps, denoted Rs (substrate) and RW (well).

Latchup begins when a perturbation causes one of the bipolar transistors to turn on. An example would be excursion of the output pad below ground or above VCC due to transmission-line ringing. If the pad goes more than 0.7 V below ground, the npn will turn on since its base is at approximately ground potential. The npn's collector current will cause a voltage drop
across Rs, the bulk substrate resistance. This voltage drop turns on the pnp.

The pnp transistors' collector current forces a similar voltage drop across RW, the well resistance. This raises the base voltage of the npn above ground, and can cause the npn to continue to conduct even after the output pad returns to a normal voltage range. In this case, the current path shifts to the grounded emitter.

Note that any effect which can cause a transient turn-on of either transistor can cause the latchup process. Common causes include:

1. Ringing of unprotected I/O pins outside the ground to Vcc region.
2. Radiation-induced carriers generated in the base of the bipolar transistors.
3. Hot-powerup of the device, with inputs driven high before VCC is applied.
4. Electrostatic discharge.

Protecting Against Latchup

Latchup, while once a severe problem for CMOS, is now a relatively wellunderstood phenomenon. In order for latchup to occur, the product of the current gains of the two parasitic transistors must exceed 1. Thus, the primary means for avoiding latchup is the insertion of structures known as "guard rings" around all MOS

Figure 1. Parasitic transistor structures in parallel CMOS.

Figure 2. Equivalent circuit for Latchup path.

transistors (and other structures) likely to be subjected to latchupcausing transients. This includes output buffer transistors and any devices which form a part of the ESD protection network. These guard rings absorb current which would otherwise drive the base of the lateral device, and thus dramatically reduce its gain.

Since external electrical perturbations are the dominant cause of latchup in non-radiation environments, protecting the "periphery" of the chip is most important. Therefore, since guard rings require a lot of area, they are generally used only in critical areas such as those mentioned above.

As an additional protective measure, strict rules are enforced in the layout regarding the positioning of the substrate and well taps. They are spaced closely together throughout the die, reducing the values of Rs and RW. This makes it more difficult to develop the base drive necessary to regenerate the latchup condition.
Measurement of susceptibility to latchup is done by connecting a current source to an input or output of the device under test. By increasing the current forced to flow into the pin
and noting the point at which latchup occurs, a measure of the device's ability to resist latchup-inducing carrier injection is obtained. Note that depending on the device, the current source may require a rather large voltage compliance in order to provide an adequate test.
While early CMOS devices had a latchup trigger current of a few tens of milliamps, most current Logic Devices products typically can withstand more than 1 amp without latching. As a result, latchup is no longer a practical concern, except for extreme conditions such as driving multiple inputs high with a lowimpedance source during powerup of the device.

Electrostatic Discharge

Input protection structures on CMOS devices are used to protect against damage to the gate oxides of input transistors when accumulated static charge is discharged through a device. This charge can often reach potentials of several thousand volts. The input protection network is designed to shunt this charge safely to ground or Vcc, bypassing the delicate MOS transistors.

Several features are required of a good input protection network. Since static discharge pulses exhibit very fast risetimes, it must have a very fast turnon time. It must be capable of carrying large instantaneous currents without damage. It must prevent the voltage at the circuit input from rising above about 10 V during the time when the several-thousandvolt discharge is shunted to ground. It must not create appreciable delay for fast edges which are within the $0-5 \mathrm{~V}$ input range. And finally, it must be well protected against latchup caused by inputs which are driven beyond the supply rails, injecting current into the substrate. Much research and experimentation has been devoted to optimizing the tradeoffs between these conflicting goals.
All Logic Devices products employ one of three input protection structures shown in Fig. 3. Most devices currently use the Type 1 input protection. This structure is designed to absorb very high static discharge energies and will draw substantial current from the input pin if driven beyond either supply rail. Hence, it
provides a "hard" clamp. Besides its advantages for static protection, this clamp can effectively reduce undershoot energy, preventing oscillation of an unterminated input back above the 0.8 V Vil MAX level. This makes the circuit ideal for noisy environments and ill-behaved signals. This input structure may not be driven to a high level without power applied to the device, however. To do so would result in current flowing through the diode connected to the devices' Vcc rail, and supplying power to the entire board or system backward through the device Vcc pin. This may overstress the bond wire or device metallization, resulting in failure.

The Type 2 structure employs a series resistor prior to the two clamp diodes. This results in a "soft" clamping effect. This structure will withstand the transient application of voltages outside the supply rails for brief periods without drawing excessive current. In contrast to the Type 1 structure, this circuit will provide only a modest reduction of the energy in an undershoot pulse. It is somewhat more tolerant of power-up sequences which cause the inputs to be driven before

VcC is applied, however. In the course of routine product upgrades, devices employing this structure are being redesigned to use a Type 1 input protection.
The Type 3 structure uses a large area N-channel transistor (part of an opendrain output buffer) to protect the input. The drain-well junction of this device serves the function of a diode connected between the input and ground, protecting against negative excursions of the input. The avalanche breakdown of the output device serves to protect against positive pulses, giving the effect of a zener diode between the input and ground. This circuit is used only for inputs which are designed to have their inputs driven without power applied. The lack of a diode to Vcc prevents sourcing of power from the inputs to the Vcc supply.
Table 1 gives Latchup figures for the three input protection structures used in Logic Devices products. Table 2 indicates the input structure used for each part type.

Figure 3. Input protection devices.

Table 1. Latchup immunity.

Structure	Latchup Current Immunity	
	Min	
Type 1	400 mA	
Type 2	1000 mA	
Type 3	150 mA	
	250 mA	

Table 2. Input structure list by part number.

Device	Input Structure	Device	Input Structure
Multipliers/Multiplier Accumulators	Register Files		
LMU08/8U	Type 1	LRF07	Type 2
LMU557/558	Type 1	LRF08	Type 2
LMU12/112	Type 1	Peripheral Products	
LMU16/216	Type 1	L5380	Type 1,3
LMU17/217	Type 1	L53C80	Type 1,3
LMU18	Type 1	16K Static RAMS	
LMA1009/2009	Type 1	L7C167	Type 1
LMA1010/2010	Type 1	L7C168/170	Type 1
LMS12	Type 1	L7C171/172	Type 1
Arithmetic/Logic Units		L6116	Type 1
L4C381	Type 1	64K Static RAMS	
L29C101	Type 1	L7C187	Type 1
Special Functions		L7C164/165/166	Type 1
LSH32	Type 2	L7C161/162	Type 1
L10C23	Type 1	L7C185	Type 1
Pipeline Registers			
L29C520/521	Type 1		
LPR520/521	Type 2		

Technology and Design Features

Power Dissipation in Logic Devices Products

In calculating the power dissipation of Logic Devices products, attention must be given to a number of formerly second-order effects which were generally ignored when dealing with bipolar and NMOS technologies. By far the dominant contributor to power dissipation in most CMOS devices is the effective current path from the supply to ground, created by the repetitive charging and discharging of the load capacitance. This is distinct from DC loading effects, which may also consume power. The power dissipated in the load capacitance is proportional to ${C V^{2}}^{2} \mathrm{~F}$, where C is the load capacitance, V is the voltage swing, and F is the switching frequency. This mechanism can frequently contribute 80% or more of the total device dissipation of a truly complementary device operating at a high clock rate.

The second contributor to the power dissipation of a CMOS device is the DC current path between VCC and ground present in the input level translators. These circuits are voltage amplifiers which are designed to convert worst case $0.8-2.0 \mathrm{~V}$ TTLcompatible input levels to 0 and 5 V internal levels. With 2.0 V applied to the input of most level translator circuits, about 1 mA will flow from the power supply to ground. A floating input will at best have similar results, and may result in oscillations which can dissipate orders of magnitude more power and cause malfunctioning of the device.

The power dissipation of input level translators exhibits a strong peak at about 1.4 V , but is reduced substantially when the input voltage exceeds 3.0 V (see Fig. 1). Fortunately, this voltage is easy to achieve in practice, even for bipolar devices with TTL I/O structures. These generally will pro-
duce a VOH of at least 3.5 V if not fully loaded. As a result, dissipation in the input structures is usually negligible compared to other sources.

Two further sources of power dissipation in CMOS come from the core logic. The sources of internal power dissipation are the same as those

Figure 1.

discussed for external nodes, namely repetitive charging of the parasitic load capacitances on each gate output, and the power drawn due to a direct current path to ground when gate input voltage levels transition through the linear region. In practice, the internal voltage waveforms are characterized by high edge rates and rail-to-rail swings. For this reason, the latter source of dissipation is usually negligible, unless NMOS or other noncomplementary logic design techniques have been used.

The capacitance of typical internal nodes in CMOS logic circuits are a few femtofarads. However, there can be thousands, or tens of thousands of such nodes. As a result, the core power dissipation is strongly dependent on the average rate at which these nodes switch (the " F " in $\mathrm{CV}^{2} \mathrm{~F}$). Fortunately, for most complex logic circuits, with non-pathological external stimulus only a small fraction of the logic nodes switch on any given cycle. For this reason, internal power is generally quite small for these device types. Exceptions include devices containing long shift registers or other structures which can exhibit high duty cycles on most internal nodes. These devices
can dissipate significant power in the core logic if stimulated with alternating data patterns and clocked at a high rate.
To summarize, of the several contributors to power dissipation, the $\mathrm{CV}^{2} \mathrm{~F}$ power of the outputs is usually dominant. Because output loading is system-dependent, it is not possible for the manufacturer to accurately predict total power dissipation in actual use. As a result, Logic Devices extrapolates measured power dissipation values to a zero-load environment, and publishes the resulting value. This value includes the effects of worst-case input and power-supply voltages, temperature, and stimulus pattern, but not $\mathrm{CV}^{2} \mathrm{~F}$. This value is weakly frequency dependent, and the frequency at which it is measured is published in the device data sheet. The maximum value is for worst-case pattern, and the typical is for a more random pattern and is therefore more representative of what would be experienced in actual practice.
A good estimate of total power dissipation in a particular system under worst-case conditions can be obtained by adding the calculated output
power to the typical published figure. The output power is given by:

$$
\frac{\mathrm{N}}{2}\left(\mathrm{cv}^{2} \frac{\mathrm{~F}}{2}\right)
$$

where:
$\mathrm{N}=$ the number of device outputs (divided by 2 to account for the assumption that on average half of the outputs switch on any given cycle)
$C=$ the output load capacitance, per pin, given in Farads
$\mathrm{V}=$ the power supply voltage
F = the clock frequency (divided by 2 to account for the fact that a registered output can at most switch at only half the clock rate).

A less pessimistic estimate, appropriate for complex devices when reasonable input voltage levels and nonpathological patterns can be expected, would neglect the published value and use only the calculated value as given above.

Ordering Information

Memory Products

Logic Products

Peripheral Products

Quality and Reliability

Technology and Design Features

Packaging

Application Notes

Technical Articles

Sales Offices

Contents

Product Marking Guide 7-3
Mechanical Data 7-7
Thermal Considerations 7-27

Product Marking Guide

Manufacturers Logo（designator）

Pin 1 mark（optional if there is a notch，tab，etc．）
MIL－STD－883 compliant indicator（optional）

Logic Devices，Inc．part number prefix
Device number
Package code
Temperature Range

Speed
Screening

Fab code
Die stepping（rev）
SA9A A \triangle

ESD class

USA 1234 A 8903

Sublot
Quality Assurance job number
Country of origin

Plastic Package Marking (Plastic DIP, SOIC, SOJ, PLCC)

Sidebraze Hermetic Package Marking

sidebraze, cavity up TOP ONLY		
D		
SIDEBRAZE, CAVITY DOWN TOP ONLY		

NOTE: Package marking may vary due to space limitations.

Flatpack Package Marking

Leadless Chip Carrier Package Marking

Pin Grid Array Package Marking

Mechanical Drawings

CerDIP - Type C

CerDIP - Type C

Sidebraze，Hermetic DIP－Type D

Sidebraze, Hermetic DIP - Type D

Sidebraze, Hermetic DIP - Type D

D8 - 22-Pin Hermetic DIP

D9 - 28-Pin Hermetic DIP

Sidebraze, Hermetic DIP - Type D

Ceramic Flat Pack - Type F

Ceramic Pin Grid Array - Type G

G3-84-Pin Grid Array

Plastic J-Lead Chip Carrier - Type J

Plastic J-Lead Chip Carrier - Type J

J4-28-Pin Plastic J-Lead

J5 - 52-Pin Plastic J-Lead

Ceramic Leadless Chip Carrier－Type K

K2－44－Pin Ceramic LCC

K3－68－Pin Ceramic LCC

Ceramic Leadless Chip Carrier - Type K

Ceramic Leadless Chip Carrier - Type K

K7 - 28-Pin Ceramic LCC (450×450)

Ceramic Leaded Chip Carrier - Type L

L1 - 68-Pin Ceramic Leaded Chip Carrier

Plastic DIP - Type P

P2 - 24-Pin Plastic DIP

P3 - 40-Pin Plastic DIP

Plastic DIP - Type P

Plastic DIP - Type P

P8 - 22-Pin Plastic DIP

P9 - 28-Pin Plastic DIP

Plastic DIP — Type P

```
P10 - 28-Pin Plastic DIP
```


P11 - 28-Pin Plastic DIP

Plastic SOIC (Gull-wing) ($0.300^{\prime \prime}$ wide) - Type U

Plastic SOIC (Gull-wing) (0.331" wide) - Type V

$$
\begin{gathered}
\text { V1 - } 24 \text {-pin Plastic SOIC } \\
(0.331 " \text { wide })
\end{gathered}
$$

24

V2 - $\underset{(0.331 " \text { wide })}{28 \text { pin Plastic SOIC }}$

Plastic SOJ (J-lead) - Type W

DEVICES INCORPORATED

Packaging

Thermal Considerations

The temperature at which a semiconductor device operates is one of the primary determinants of its reliability. This temperature is often referred to as the "junction temperature", although this term is more appropriate for bipolar than MOS technologies. Heat dissipated in the device during operation escapes through a path consisting of one or more series thermal impedances terminating in the surrounding air (see Fig. 1).
The presence of this nonzero thermal impedance causes the temperature of the device to rise above that of the air. Each of the components of the overall thermal impedance causes a rise in temperature which is linearly dependent on the power dissipated in the device. The coefficient is called θ, and has the units ${ }^{\circ} \mathrm{C} / \mathrm{W}$. The θ value for each thermal impedance represents the amount of temperature rise across the impedance as a function of the power dissipation. Usually, θ is given a subscript indicating the two points between which the impedance
is measured. Thus the junction temperature of an operating device is given by:

$$
\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{AMB}}+\left(\mathrm{Pd} \bullet \theta_{\mathrm{JA}}\right)
$$

where:
$\mathrm{T}_{\mathrm{j}}=\underset{\text { junction temperature of the }}{\text { device, }{ }^{\circ} \mathrm{C} \text {, }}$
$\mathrm{T}_{\mathrm{AMB}}=$ ambient air temperature, $\mathrm{in}^{\circ} \mathrm{C}$
$\mathrm{Pd}=$ power dissipation of the device, in W,
$\theta_{\mathrm{JA}}=$ sum of all thermal impedances between the die and the ambient air, in ${ }^{\circ} \mathrm{C} / \mathrm{W}$.
The thermal impedance of a given device is dependent on several factors. The package type is the predominant effect; ceramic packages have much lower thermal impedances than plastic, and packages with large surface areas tend to dissipate heat faster. Another factor which is beyond the control of the device manufacturer but which is nonetheless important is the temperature and flow
rate of the cooling air. Secondary effects include the size of the die, the method of attaching the die to the package, and the organization of high power dissipation elements on the die.

Because all Logic Devices products are built with low-power CMOS technology, thermal impedance is less of a concern than it would be for higher power technologies. As an example, consider a typical NMOS multiplier similar to the LMU16, packaged in a 64 -pin plastic DIP. Assuming 1 W power dissipation and θ_{JA} of $50^{\circ} \mathrm{C} / \mathrm{W}$, the actual die temperature would be $50^{\circ} \mathrm{C}$ above the surrounding air. By contrast, the Logic Devices LMU16 has a typical power dissipation of only 60 mW . This device in the same package would operate at only 3° above the ambient air temperature. Since operating temperature has an exponential relationship to device failure rate (see Quality \& Reliability, Section 5), the reduction of die temperature available with Logic Devices low-power CMOS translates to a marked increase in expectedreliability.

Figure 1.

To assist the user in calculating cooling requirements and in making reliability predictions based on MIL-HDBK-217, the following table of estimated $\theta_{J A}$ values for Logic Devices products is provided below:

No. Leads	Width (in)	Package Code	Approx. $\theta_{\text {JA }}$ (Still air)
Plastic Dual-Inline			
20		P6	$65-80$
22		P8	$65-80$
24	0.3	P2	$60-75$
24	0.6	P1	$50-70$
28	0.3	P10	$60-80$
28	0.6	P9	$50-80$
40		P3	$50-60$
48		P5	$40-60$
64		P4	$40-60$
Sidebraze, Dual-Inline			
20		D7	$35-45$
22		D8	$35-45$
24	0.3	D2	$30-40$
24	0.6	D1	$25-40$
28	0.3	D10	$30-40$
28	0.6	D9	$25-40$
40		D3	$25-35$
48		D5	$20-40$
64		D4	$20-30$
64	Cav. dn	D6	$20-30$

No. Leads	Width (in)	Package Code	$\begin{aligned} & \text { Approx. } \\ & \theta_{\mathrm{JA}} \text { (Still air) } \end{aligned}$
CerDIP, Dual-Inline			
20		C2	60-75
22		C3	60-75
24	0.3	C1	55-70
24	0.6	C4	40-55
28	0.3	C5	55-70
28	0.6	C6	40-55
Pin Grid Array			
68		G1	40-60
68	Cav Dn	G2	30-50
84		G3	20-40
Plastic J-Lead Chip Carrier			
28		J 4	50-70
44		J1	40-60
68		J2	35-55
84		J3	35-55
Ceramic Leadless Chip Carrier			
28		K1	40-60
44		K2	35-60
68		K3	25-50
84		K4	20-40

$\left.$| No.
 Leads | Width
 (in) | Package
 Code |
| :--- | :---: | :---: | | Approx. |
| :---: |
| IAA $^{\text {(Still air) }}$ | \right\rvert\, | Plastic SOIC (Gull-Wing) | | |
| :--- | :---: | :--- |
| 24 | U1 | $65-80$ |
| 28 | U2 | $60-75$ |
| Plastic SOJ (J-Lead) | | |
| 24 | W1 | $65-80$ |
| 28 | W2 | $60-75$ |

Ordering Information

Memory Products

Logic Products

Peripheral Products

Quality and Reliability

Technology and Design Features

Packaging

Application Notes

Technical Articles

Sales Offices

Contents

"Real-Time Digital Image Transformation" 8-3
"Ultra-High Performance FFT Using DSP Designer Chips" 8-13

Real-Time Digital Image Transformation

by

Joel H. Dedrick

This application brief describes the design of a special effects generator for commercial broadcast television application. It demonstrates efficient realization of real-time pixel filtering, two dimensional interpolation, first order coordinate transformation, and display memory address generation. These operations are used in a variety of applications including mechanical and electrical CAD/CAM, image recognition, machine vision, RADAR/SONAR display processing, and other similar problems in which two or three dimensional data must be reformatted or manipulated for display.

Introduction

The television special effects generator is commonly used to provide a range of effects for broadcast use. These include the inclusion of reduced size, live or frozen inset pictures (e.g., "scene of the accident" shots in news programs) contained anywhere in the main video shot. Also, causing images or text (the network logo, a photograph and statistics of an athlete, etc.) to overlay the main video, and to be moved around the screen, rotated, and sized as appropriate.

The design described here can accomplish any first order translation (displacement in 2D space), rotation, and scaling (enlargement or reduction) on the input image in real time. By first order we mean that the translation, rotation, and scaling of the image is constant throughout the image for a given direction (X or Y), and thus no curvature of the image may be produced. Introducing second or higher order warping is a straightforward extension of the concepts presented. By real time, we mean that the system is capable of altering the effect generated throughout its range on a frame-by-frame basis, effectively providing for smooth progressions in the
translation, rotation, and scaling operations giving the appearance of motion of the processed image around the screen.

Image Transformation A System Overview

The image transformation system works essentially in two steps: First, the incoming image is lowpass filtered in both the vertical and horizontal directions. This is done because the effect required may include shrinking the picture. This essentially amounts to subsampling, or extracting every " n th" pixel sample from the input image to form the output image. Subsampling the input image without filtering would result in aliasing, since the new spatial sample rate may be insufficient to meet the Nyquist criterion. (The Nyquist criterion for calculating the required sample rate in a sampled data system states that the sampling frequency must be at least twice that of the highest frequency component in the signal. Aliasing is the term for the type of distortion which occurs if this condition is not met.)

It is important to note that the cutoff frequency for the lowpass filters
should be selected so that the above criterion is met, but a lower cutoff frequency than necessary results in loss of information (a "smearing" of the output image). For this reason, the cutoff frequency, and therefore the coefficients, of this filter must be adjusted according to the amount of scaling desired. This is done independently in the horizontal (X) and vertical (Y) directions.

The second step in the transformation process is to extract the individual pixels in the input image in the specific sequence required to form the output image.

Simple Transformation Examples

Some examples of the transformation process will illustrate the steps required:
For a simple shrink of an image by a factor of two in each direction, (Figs. 1 and 2) every other pixel (PIcture ELement) of the image would be extracted to form a scan line in the output image. Since this results in only half the number of pixels required on the scanline for television, the remaining pixels are blanked. Similarly, in the
vertical direction every other scanline is skipped, effecting a similar shrink along the Y axis.

The capability of moving the input image around the output image plane, called translation, is accomplished during the creation of the output image. By controlling on a line-by-line basis, when the sampling of the input image begins, and by blanking all pixels which map to coordinates out-
side the input image, translation can be accomplished. In addition to scaling, Fig. 2 shows translation of the (reduced size) input image to the center of the output image.

A more complex example arises when the image must be reduced in size as above, and also rotated 45° (Fig. 3). In this case, the scan direction (order in which pixels are displayed to produce an image) has changed between
the input and output image, as shown by the arrows in Fig. 3. Because the in-put image is now being scanned at an angle rather than in the normal horizontal direction, the desired sample points will generally fall in between the actual locations of available pixels (Fig. 4). Note that this will also occur with simple scaling when the scale factor is not an integer. Because of this phenomenon, some type of interpolation will be required

Figure 1. Normal TV image.

Figure 2. Same image after 2:1 shrink in both axes, and translation to center of output frame.

Figure 3. Addition of 45° rotation to the scaled image. The arrows show the scan directions in the input (small arrow) and output coordinate frames.

Figure 4. Sample points on one scanline through the input to form the result in Fig. 3. The black dots are the input (normal) image samples, the white dots are the desired sample points for the scaled and rotated output. The sample rate is reduced (spacing increased) to shrink the image, and the scan angle causes rotation.

to calculate the value of a point which does not fall exactly on a pixel location. For the system under discussion, bilinear interpolation is used for this calculation.

Image Transformation SystemImplementation

The video effects generator block diagram is shown in Fig. 5. Television signals are expressed digitally as three channels of data. One channel, containing luminance or brightness information, is sampled at 14.3 MHz . The other two channels together express the chrominance or color of the image, and the aggregate of these also represents a 14.3 MHz data stream. It is common practice to split the datapath into two halves, one operating on the
luminance channel, and the other operating in an interleaved fashion on the chrominance channel, with control information common between the two. The diagram represents a single such channel easily capable of sustaining a 14.3 MHz datarate.

Display Memory, Display Address Counter

The system is composed of several major blocks as shown in Fig. 5. The Display Memory contains the output video image. The address sequence for this memory is provided by a Display Address Counter, which counts in a fixed sequence, scanning the pixels within a line from left to right, and sequential lines from the top to the bottom of the image. The address
provided to this memory uniquely selects an individual pixel in the output image, and is denoted by (X, Y), respectively the horizontal and vertical displacement from the upper left corner.

Coordinate Transformer

The Coordinate Transformer calculates the address of the pixel location in the input image, denoted by ($\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$), corresponding to the location currently addressed by the Display Address Counter. A general first order transformation from one 2D coordinate space to another can be implemented as:

$$
\begin{align*}
& X^{\prime}=a X+b Y+c \\
& Y^{\prime}=d X+e Y+f \tag{1}
\end{align*}
$$

Figure 5. Video special effects generator block diagram.

By appropriate choice of the six coefficients a-f, this set of equations can map any point in the X, Y (output) image plane to the corresponding point in the X^{\prime}, Y^{\prime} plane if the two images are related by any combination of translation, rotation, and scaling.

However, since the Display Memory (X, Y) is always scanned in a fixed order, a generalized transformation as given above is not required. Significant hardware savings can be realized by taking advantage of the fact that once the input image point corresponding to the first pixel on an output image scan line is known, the locations of successive input points are related to the first by fixed offsets in X^{\prime} and Y^{\prime}. This is true because while the input image may be scanned at any angle, the path through the input image corresponding to an output scan line is always a straight line (for first order transformations). Thus, generating addresses in the X^{\prime}, Y^{\prime} space is reduced to a simple recursion formula requiring only two additions and no multiplications. This formula takes the form:

$$
\begin{align*}
& X_{i+1}^{\prime}=X_{i}^{\prime}+d X^{\prime} / d X \\
& Y_{i+1}^{\prime}=Y_{i}^{\prime}+d Y^{\prime} / d X \tag{2}
\end{align*}
$$

Note here that $\mathrm{dX} \mathrm{X}^{\prime} / \mathrm{dX}$ and $\mathrm{d} Y^{\prime} / \mathrm{dX}$ are constants, so a simple programmable accumulator suffices to calculate input image addresses once the starting point for a given scanline is known.

Figure 6 shows the coordinate transformer implemented with two Logic Devices L4C381 ALU's. The operand select function of the L4C381 is used to feed back the contents of the output register to the B input, implementing a programmable-rate increment function. By allocating one ALU for X^{\prime} and one for Y^{\prime}, the recursions in Eq. (2) are implemented in only two devices. The B operand register of the ALUs holds the starting value for the
next scanline, which is passed to the F register to initialize it. The A operand register holds the increment value $\mathrm{d} \mathrm{X}^{\prime} / \mathrm{dX}$ or $\mathrm{d} \mathrm{Y}^{\prime} / \mathrm{dX}$ which is added to the accumulator (F register) contents on each cycle.

As discussed above, the desired pixel location in general does not correspond to the actual location of a pixel in the Frame Store. As a result, the X^{\prime}, Y^{\prime} address must provide much finer resolution than the actual pixel grid used in the image. This is accomplished by providing both an integer and a fraction part of the X^{\prime} and Y^{\prime} displacements. For example, if 10 bits of integer and 4 bits of fraction (14 bits each for X^{\prime} and Y^{\prime}) then a 1024×1024 image could be addressed to a spatial resolution of one sixteenth of a pixel. This fine resolution is required to produce adequate interpolation of the pixel value which is stored in the Display Memory. The L4C381 implementation of the coordinate
transformer easily meets this requirement: In implementing a 16-bit accumulator for both X^{\prime} and Y, the L4C381 provides two additional bits of resolution so that the address increments in X^{\prime} and Y^{\prime} directions can be specified to a full 16 bits of precision, even though only 14 bits are actually used. This is important because in a recursion formula, small errors in the desired increment accumulate with each cycle. The net effect is quantization error in the desired angle of rotation. The additional bits provide finer control over the desired angle.

Video Frame Store

The Video Frame Store is a RAM bank which stores the filtered input image. It is designed to execute four simultaneous read operations per clock cycle. For each address ($\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$) of the desired location provided by the Coordinate Transformer, the

Figure 6. Coordinate Transformer. The L4C381 ALU is used as an address counter with programmable step size.

Frame Store outputs the values of the four stored pixel values closest to the addressed point. In order to accomplish this, only the integer part of the X^{\prime}, Y^{\prime} address need be considered. If $I\left(X^{\prime}\right)$ is taken to mean the integer part of X^{\prime}, and similarly with Y^{\prime}, then for an input address X^{\prime}, Y^{\prime} the desired four pixel locations are:

$I\left(X^{\prime}\right), I\left(Y^{\prime}\right)$	$I\left(X^{\prime}\right)+1, I\left(Y^{\prime}\right)$
$I\left(X^{\prime}\right), I\left(Y^{\prime}\right)+1$	$I\left(X^{\prime}\right)+1, I\left(Y^{\prime}\right)+1$

The organization of a memory capable of executing these simultaneous read operations is shown in Fig. 7. Pixel data is assigned to four internal RAM banks in such a way that adjacent pixels are never stored in the same bank, i.e., one bank is assigned to even
row numbers and even column numbers only, etc.
The X^{\prime} and Y^{\prime} addresses are processed by a set of L4C381 ALU devices in order to generate internal addresses used to access the four RAM banks. The input X^{\prime} and Y^{\prime} addresses are each applied to a pair of ALU's configured so as to selectively increment the address depending on whether it is even or odd. For example, if the Y^{\prime} address (row number) is even, then the RAM banks containing data for even row numbers should be supplied with this address directly, and those containing odd row numbers should be supplied with $Y^{\prime}+1$. Conversely, if Y^{\prime} is odd, it will be incremented for presentation to the even row RAM,
and passed directly to the odd RAM. As an aside, note that since the data for any row is distributed between two RAM banks, the least significant bit of the address generated above will be discarded. This is so that data elements are stored in contiguous locations in the RAM banks, fully utilizing the available storage. As a result, the actual address supplied to the even and odd row data may be the same, or may differ by one.

The X^{\prime} address is similarly modified to produce internal addresses for even and odd column numbers, and the resulting four addresses are combined to access the four RAM banks. The assumption here is that a row and column address can be concatenated

Figure 7. Video Frame Store. This special purpose memory accepts a desired sample location (X and Y Address) and reads the four pixel values closest to the desired point.

to address a RAM bank, i.e., the internal plane sizes are integral powers of 2. Once these addresses are formed, four memory accesses are executed in parallel. Finally, multiplexers route the appropriate data to the four output ports, with selection of these muxes again determined by whether X^{\prime} and Y^{\prime} are even or odd.

Bilinear Interpolation

The four pixel values read from the Frame Store on each clock cycle are processed by the Bilinear Interpolator to produce the actual value written to the Display Memory. Bilinear interpolation is a means for interpolating a value between sample points in a two dimensional grid. It operates as shown in Fig. 8.
The four shaded points P1-P4 in the figure represent actual pixel values in the Frame Store. These are the four closest pixels to the desired point, denoted by P. P represents location of the point addressed by ($\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$). As discussed above, X^{\prime} and Y^{\prime} have both an integer and fractional part, with the fractional part of each representing offsets in the horizontal and vertical direction between pixels in the Frame Store. The interpolator is presented with the four pixel values P1-P4, and the fractional parts of X^{\prime} and Y^{\prime}, denoted dX ' and d^{\prime}. The interpolation process can then be derived as follows:

First, the value of an imaginary pixel located between P1 and P2 is determined. This point, labeled P^{\prime} in Fig. 8, is offset from P1 by dX', the same horizontal offset as the output point P. Unlike P, however, P^{\prime} has the same vertical value as P1 and P2, so it represents interpolation in the X direction only. P^{\prime} can be seen in Eq. 3 to be a weighted sum of P1 and P2, with the weights inversely proportional to the distance of P^{\prime} from P1 and P2.

$$
\begin{equation*}
\mathrm{P}^{\prime}=\mathrm{P} 1\left(1-\mathrm{d} \mathrm{X}^{\prime}\right)+\mathrm{P} 2\left(\mathrm{~d} \mathrm{X}^{\prime}\right) \tag{3}
\end{equation*}
$$

Note that the weights applied to P 1 and $P 2$, namely ($1-\mathrm{dX}^{\prime}$) and (dX^{\prime}) sum to one, resulting in no net amplitude gain through this process.

In a similar way, a point $\mathrm{P}^{\prime \prime}$ can be determined which is a horizontal axis interpolation between P3 and P4 (Eq. 4).

$$
\begin{equation*}
P^{\prime \prime}=P 3\left(1-d X^{\prime}\right)+P 4\left(d X^{\prime}\right) \tag{4}
\end{equation*}
$$

Having determined P^{\prime} and $\mathrm{P}^{\prime \prime}$, the final step is to interpolate between these two to determine the desired point P, with the fractional part of the Y axis address dY' used as the weighting factor (Eq. 5).

$$
\begin{equation*}
P=P^{\prime}\left(1-d Y^{\prime}\right)+P^{\prime \prime}\left(d Y^{\prime}\right) \tag{5}
\end{equation*}
$$

By substituting Eqs. (1) and (2) into (3), the following is obtained:

$$
\begin{align*}
P= & P 1\left(1-d X^{\prime}\right)\left(1-d Y^{\prime}\right)+ \\
& P 2\left(d X^{\prime}\right)(1-d Y)+ \\
& P 3\left(1-d X^{\prime}\right)\left(d Y^{\prime}\right)+ \\
& P 4\left(d X^{\prime}\right)\left(d Y^{\prime}\right) \tag{6}
\end{align*}
$$

Figure 9 shows the implementation of the bilinear interpolator. The inputs are dX' and dY'; the fractional parts of the coordinate transform address. Each of these fractions is 4 bits, for a total of 8 bits. A 256 word lookup table PROM is used to derive the four weights required for the interpolation in parallel. Four LMU112 multipliers apply these weights to the four pixel values P1-P4 in parallel. The LMU112 is a 12×12 multiplier which is available in a 48-pin package, due to the fact that only the 16 most significant outputs are brought out. Since 16 bits of information is more than sufficient for video, it is an appropriate choice to save space over the more typical 64pin implementations of 12×12 multipliers. The four weighted pixel values are then summed using a network of three L4C381 ALU devices. These provide the 16 -bit add function required, as well as integrating the

Figure 8. Bilinear Interpolation. Bilinear interpolation involves first executing linear interpolations between two pairs of adjacent points on successive scanlines, resulting in P^{\prime} and $P^{\prime \prime}$. Then, a final linear interpolation is performed between these two intermediate results to form an approximation of the image value at the desired location P.

pipeline registers necessary to maintain the desired clock rate.

One final function is performed by the interpolator: The transformations available on the input image may result in portions of the output display which contain no video data. A simple instance occurs when the input image is reduced in size, in which case the remaining portions of the display must be blanked. Also, since the amount of size reduction can be changed in real time, the pixels to be blanked must also be set on a scanline-by-scanline basis. This requirement is conveniently met by the L4C381, since its instruction set contains a force-to-zero function. By

Figure 9．Bilinear Interpolator．LMU112 12×12 multipliers and L4C381 ALUs form a compact implementation of the equations in Fig．8．The coefficients are precomputed and stored in PROM．

setting the function control lines of the last ALU stage to 000 （force－to－zero in－ struction）when writing the nonimage areas of the display memory，the pixel data stored in these locations is blanked．This instruction control is provided by the system controller．

Horizontal／Vertical Anti－aliasing Filters

Prior to any operation on the data which involves resampling，a lowpass
filtering pass must be applied to the data to avoid aliasing distortion．The filter chosen here is a Finite Impulse Response（FIR）type．
Figure 10 shows the conventional flow diagram for an FIR filter．The data is applied to a delay network，the length of which corresponds to the desired filter length．Each delay element output is weighted（multiplied）by the appropriate coefficient，and the results are summed to form the filter output．

Figure 11 shows an alternate，but equivalent implementation of the same flow diagram．In this implem－ entation（known as the transpose form，）the delay elements are distrib－ uted through the summation or output path，with the input data distributed simultaneously to all of the weighting operators．This form of the flow graph is more convenient for implementation in LSI form，since it results in a series of identical func－ tional blocks，each of which performs
a multiply, add, and delay function. The dotted line in Fig. 11 illustrates the repeated function, and Fig. 12 shows an implementation of the flow diagram for the horizontal filter using the LOGIC Devices LMS12.

The LMS12 is a filter building block especially suited to the transpose form FIR structure. It provides a 12×12 bit multiplication, and addition of a third input of 26 bits to the result. Thus the

FIR structure under consideration can be implemented with no external logic using this device, saving considerable real estate over more conventional implementations using multipliers and discrete external adders and delay elements.
The vertical (Y dimension) filter is formed in a similar way (Fig. 13) except that a delay equal to the length of each horizontal scanline is inserted

Figure 10. F.I.R. Filter (Canonical Form).

Figure 11. F.I.R. Filter (Transpose Form).
An alternate formulation of the equation in Fig. 10 allowing implementation by cascading identical functional blocks. The summation is now distributed across the filter delay and is therefore inherently pipelined.

Figure 12. Horizontal Anti-aliasing Filter.
This realization of the transfer function in Fig. 11 uses the LMS12 filter building block. it is capable of exceeding $25 \mathbf{M H z}$ data rates for any filter length, while allowing instantaneous coefficient changes.

Figure 13. Vertical Anti-aliasing Filter.
A modification of Fig. 12 allows filtering in the vertical direction by inserting a delay equal to the length of a scanline between each pair of filter taps.

Application Note

Ultra-High Performance FFT Using DSP 'Designer Chips'

by
Edgar R. Macachor and
Joel H. Dedrick

Abstract

New high-speed CMOS building blocks provide a clean implementation of the FFT for applications where single-chip DSP microprocessors cannot provide the necessary throughput.

Introduction

> As single-chip microprocessors for DSP mature, digital spectrum analysis for low to medium bandwidth application has become widely available at reasonably low cost. For many realtime applications however, the singlechip units do not have the throughput to do the job. This article shows how to determine when you've outgrown a single-chip solution, and gives implementation details for an FFT engine which is 10 to 100 times faster than the single-chip units studied.

The FFT and Current SingleChip DSP Microprocessors

In digital signal processing (DSP), the Fast Fourier Transform (FFT) is used to evaluate the Discrete Fourier Transform (DFT) of a signal. Typically, the signal is continuous and periodic in the time domain. To obtain the DFT of a continuous signal, the FFT is necessary to reduce the computation time. For example, if the original signal is represented as having real and imaginary components and sampled N times during its full period it takes $4 N^{2}$ multiplications and $\mathrm{N}(4 \mathrm{~N}-2)$ additions to com-
pute the DSP directly. In contrast, the FFT, in particular the decimation-in-time algorithm, only requires ($\mathrm{N} / 2$) $\log _{2} \mathrm{~N}$ stages of multiplications and additions. Each stage is defined by the basic cell of the FFT, the butterfly flow graph, and shown in Fig. 1(a) using the notation of Ref. 1. By taking advantage of the symmetric property of the $\mathrm{W}_{\mathrm{N}}^{\mathrm{r}}$ term, Fig. 1(b) allows for better computational efficiency. Figure 1(c) is further obtained to serve as the working model and shows that four multiplications, three additions and three subtractions are required per butterfly. The additions and subtractions are combined with the multiplications via a multiplier/ accumulator (subtractor) unit.
The FFT butterfly computation can be accomplished using presently available single-chip DSP units. These current third-generation products can be categorized into two groups. The first group contains some on-chip memory to hold the executable instructions and the data to be processed. The TI TMS32010/20 and the NEC μ PD77230 belong to this group. The architecture of these devices allows the process to be "optimized" if both program and data are in the
on-chip memory at all times throughout the whole process. However, the computational throughput is still slow since only two data elements can be operated on at any given cycle. Another drawback is that, if the number of sample data points to be processed exceeds the on-chip memory capacity, then data need to be stored externally. As a result, additional cycles to fetch data from external memory further degrade the computational throughput. Still another factor is the increase in software overhead. Since data is now fetched from external memory, instructions that would have enabled parallel processing cannot be taken advantage of anymore. Therefore, one has to resort to straight-line coding to get maximum performance at the expense of increasing the code size.
The second group of "single-chip" DSP units require external memory for program and data storage. The National LM32900 and the Analog Devices ADSP2100 belong in this category. Their architecture allows for efficient access to both program and data memory via independent busses. However, these DSP units still can only process one set of operands at

Figure 1. Butterfly Cell working models
(a)

(b)

(c)

$$
X_{m+1}(p)=X_{m}(p)+X_{m}(q) w_{N}^{r}
$$

$$
=\left\{\operatorname{Re}\left[X_{m}(p)\right]+(A-D)\right\}+\left\{I m\left[X_{m}(p)\right]+(B+C)\right\}
$$

$$
x_{m+1}(q)=X_{m}(p)-X_{m}(q) w_{N}^{r}
$$

$$
=\left\{\operatorname{Re}\left[X_{m}(p)\right]-(A-D)\right\}+\left\{I m\left[X_{m}(p)\right]-(B+C)\right\}
$$

$$
A=\operatorname{Re}\left[X_{m}(q)\right] \cdot \operatorname{Re}\left[W_{N}^{r}\right] \quad C=\operatorname{Re}\left[X_{m}(q)\right] \cdot \operatorname{Im}\left[W_{N}^{r}\right]
$$

$$
B=\operatorname{Re}\left[W_{N}^{r}\right] \cdot \operatorname{Im}\left[X_{m}(q)\right]
$$

$$
D=\operatorname{Im}\left[X_{m}(q)\right] \cdot \operatorname{Im}\left[W_{N}^{r}\right]
$$

any given cycle. For FFTs involving 32-bit complex data, external memory fetch cycles degrade the computational throughput. One method of improving the performance is by operating two devices in parallel to handle two sets of operands at a time. In this case, however, the user is faced with issues regarding synchronization and control of the two devices.

Building Block Approach

The "functional building block" architecture overcomes the limitations of the "single-chip" DSP units. This method allows the user flexibility in achieving the high-throughput requirement by minimizing the number of machine cycles per butterfly computation. The only penalty is the typical increase in the number of components used. However, this penalty is more than offset by the increased performance. An efficient functional building block architecture for high-speed DSP is shown in the block diagram of Fig. 2. The architecture achieves 2 machine cycles per butterfly, pipelined for 32-bit complex data FFT. The detailed implementation of the butterfly cell is shown in Fig. 3. The architecture is described as follows.

In the block diagram of Fig. 2, the butterfly cell is embedded in the system, under microprogram control, to handle the FFT computation. The overall architecture utilizes both a general purpose CPU, i.e., a Motorola 68000 or equivalent and functional building blocks to serve as the FFT coprocessor. The architecture allows for the execution of four phases to obtain the DFP. The four phases are: sampling, data formatting, computation, and outputting the DFP via the DAC.

The analog input signal is first fed into a pre-processor where it is bandlimited via an anti-aliasing filter. The input signal can also be split into its quadrature components at this stage

Figure 2. A representative system block diagram DSP

or this may occur as a result of other operations such as heterodyning implemented digitally. The SAMPLER converts the analog signal into its equivalent digital data representation. The sampling process can be controlled either by the CPU or the DMA controller. Reference 2 shows that the controlling element also determines the maximum throughput rate of the sampling process; hence, the maximum input signal bandwidth. After sampling, or at the conclusion of other DSP processes, each of the real and imaginary data samples is assumed to be stored in contiguous memory locations in main memory. Therefore, real data can be stored in even address and imaginary data in odd addresses.

Data Formatting

Assume that in the 16 -bit system of Fig. 1 the analog input signal is sampled 1024 times to represent one sample period. Furthermore, if all the samples are real numbers and storage is to begin at address 0000 H , then the normal data storage sequence is such that the consecutive samples are stored in contiguous memory locations in main memory. This is particularly true in the case where the sampling process is treated as a data block transfer under CPU or DMA control. However, to be able to execute an in-place computation of the decimation-in-time FFT algorithm, the original data sequence obtained during the sampling phase must be restructured. This process involves
address-bit reversal and is illustrated in Fig. 4.

An algorithm for generating the addresses in the bit-reverse order is discussed in Ref. 3. As pointed out, a highly flexible FFT Address Sequencer is sometimes required if the data buffer is not located at address 0000 H , or if the FFT size is variable, due to the different sizes and fields of the address bits that need to undergo bit-reversal. Further complications are encountered when $\mathrm{X}(\mathrm{N})$ data is complex. As shown in Fig. 2, the 16 -bit real and 16 -bit imaginary data in main memory is to be mapped into a 32-bit field in the COMPLEX DATA RAM. A general purpose FFT Address Sequencer can be efficiently implemented with the combination of Logic

Figure 3. Detailed Butterfly Cell implementation with the control field.

Devices' LRF08 multiport register file and LAC381 16-bit ALU. Because of their ability to be controlled by microcode, these two high-speed CMOS LSI devices provide the flexibility required of the FFT Address Sequencer. Also, the overhead time required to pre-sort the complex data sequence prior to the computation phase is reduced.

Handling the Computation

In Figure 1, the butterfly operands $X_{m}(p), X_{m}(q)$, and W_{N}^{r} are all complex variables. The results of the computations $X_{m+1}(p)$ and $X_{m+1}(q)$ are also complex variables. $\mathrm{W}_{\mathrm{N}}^{\mathrm{r}}$ are known coefficients and stored in a read-only memory device as part of the COM-

PLEX DATA FILE in Fig. 2. The other part of the COMPLEX DATA FILE consist of the input data samples stored in COMPLEX DATA RAM in sorted order as defined by the bitreversal process. The elements of the COMPLEX DATA FILE are 32 bits wide to accommodate the 16 -bit real and 16 -bit imaginary components.
The computation phase starts with the CPU generating a code for the MICROSEQUENCER. The MICROSEQUENCER interprets this code to access the first microinstruction in the MICROPROGRAM MEMORY and stores it in the MICROINSTRUCTION REGISTER. The microinstruction is horizontally organized so that different processing blocks can be con-

Figure 4. Normal data sequence during sampling phase and result of re-structuring via address bit reversal. The new data sequence is stored in the complex data RAM.

trolled simultaneously; thus executing one microinstruction in one cycle of CLOCK2. The microinstruction field for controlling the butterfly cell is shown in Fig. 3 along with the detailed hardware implementation of the butterfly which consist of Logic Devices' LRF08 multiport register file (2), LPR520 pipeline register (2), LMA1010 16-bit multiplier/accumulator (2) and L4C381 16-bit ALU (2). The operands $X_{m}(q)$ and W_{N}^{r} are to be held in the register file temporarily while the $\mathrm{Xm}_{\mathrm{m}}(\mathrm{p})$ is passed down the pipeline register. The computations are done in a pipelined fashion and facilitated by the internal pipeline registers of the LMA1010s and L4C381s. The results of the computations can then be stored back into the COMPLEX DATA RAM to be used in the next iteration. This is really the essence of the in-place computation of the decimation-in-time FFT algorithm. The status of the components comprising the butterfly cell is outlined in the state matrix of Fig. 5.

Digging into the Microcode

During state SO, the Address for storing one of the first set of operands, $X_{m}(q)$ is loaded into the B and C Address Port register of the LRF08s. Since $X_{m}(\mathrm{q})$ is composed of 16 -bit real, $\operatorname{Re}[\mathrm{Xm}(\mathrm{q})]$, and 16-bit imaginary data, $\operatorname{Im}[\operatorname{Xm}(q)]$, the LRF08s' registers are set up such that $\operatorname{Re}\left[X_{m}(q)\right]$ will be stored in register Ro and $\operatorname{Im}\left[X_{m}(q)\right]$ in R1. This is easily done by setting up the microcode to take advantage of the simultaneous register access capability of the LRF08. In this case, the address bits are $\mathrm{B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}=000$ and $\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C} 0=001$ respectively. During S1, $X_{m}(q)$ is written into the LRF08s via the B and C input ports and at the same time the address for storing the real and imaginary part of $\mathrm{W}_{\mathrm{N}}^{\mathrm{r}}$, $\operatorname{Re}\left[W_{N}^{r}\right]$ and $\operatorname{Im}\left[W_{N}^{r}\right]$ respectively, are also written into the B and C Address Port registers. This time the address bits are $\mathrm{B}_{2} \mathrm{~B}_{1} \mathrm{B0}=010$ and $\mathrm{C}_{2} \mathrm{C}_{1} \mathrm{C} 0=$ 011 . This will allow storage of $\operatorname{Re}\left[W_{N}^{r}\right]$

Figure 5. Butterfly computation state matrix.

DEVICE	So	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10
LRF08 REGISTER FILE	LOAD Xm(qo). WRITE ADR.	WRITE Xim(q) 2 LOAD $\left[W_{N}^{r}\right] 0$ WRITE ADR.	WRITE $\left[W_{N}^{r}\right] 0$. READ $\operatorname{Im}\left[X_{m}(q 0)\right]$ $\&\left[W_{N}^{r}\right] 0$. LOAD Xm(q1) WRITE ADR.	WRITE $X_{m}(q 1)$ LOAD $\left[W_{N}^{r}\right]_{1}$ WRITE ADR. READ $\left[W_{N}^{r}\right] 0$	WRITE $\left[W_{N}^{r}\right] 1$. $R E A D$ $\operatorname{Im}\left[X_{m}(q 1)\right]$ $\&\left[W_{N}^{r}\right] 1$ LOAD $X_{m}(q 2)$ WRITE ADR.	S3	S4	S3	S4	S3	S4
LRP520 PIPELINE REGISTER			$\mathrm{X}_{\mathrm{m}}(\mathrm{p} 0) \rightarrow \mathrm{R} 1$	$\begin{aligned} & X_{m}(p 0) \rightarrow R 2 \\ & X_{m}(p 1) \rightarrow R 1 \end{aligned}$	$\begin{aligned} & X_{m}(p 0) \rightarrow R 3 \\ & X_{m}(p 1) \rightarrow R 2 \\ & X_{m}(p 2) \rightarrow R 1 \end{aligned}$	$\begin{array}{\|l\|} \left.\hline \mathrm{Xm}_{\mathrm{m}} \mathrm{p} 0\right) \rightarrow \mathrm{R} 4 \\ \left.\mathrm{Xm}_{\mathrm{m}} \mathrm{p} 1\right) \rightarrow \mathrm{R} 3 \\ \left.\mathrm{X}_{\mathrm{m}(\mathrm{p} 2)}\right) \rightarrow \mathrm{R} 2 \\ \hline \end{array}$	HOLD	$\begin{aligned} & X_{m}(p 1) \rightarrow R 4 \\ & X_{m}(p 2) \rightarrow R 3 \end{aligned}$	HOLD	$\underset{\rightarrow R 4}{\substack{\mathrm{Xm} \\ \hline \\ \hline}}$	HOLD
LMA1010 MAC1				$\begin{array}{\|c\|} \hline \text { LOAD } \\ \operatorname{Im}\left[W_{N}^{r}\right] 0 \& \\ \operatorname{Im}\left[X_{m(q 0)}\left(q^{2}\right)\right. \end{array}$	$\begin{gathered} \operatorname{lm}\left[X_{m}(q)\right] \times \\ \operatorname{lm}\left[W_{N}^{r}\right]=D \\ L O A D \\ \operatorname{Re}\left[W_{N}^{r}\right] 0 \& \\ \operatorname{Re}\left[X_{m}(q 0)\right] \end{gathered}$	$\begin{gathered} \left\{\operatorname{Re}\left[X_{m}(q 0)\right] \times\right. \\ \left.\operatorname{Re}\left[W_{N}^{r}\right] 0\right\}- \\ D=\operatorname{Re}\left[X^{\prime}\right] . \\ \text { S3 LOAD. } \end{gathered}$	OUTPUT $\operatorname{Re}\left[\mathrm{X}^{\prime}\right]$. EVALUATE "NEW" D.	S5	S6	S5	S6
LMA1010 MAC2				LOAD $\operatorname{Re}\left[W_{N}^{r}\right] 0$ \& $\operatorname{Im}\left[X_{m}^{\prime}(q)\right]$	$\begin{gathered} \operatorname{lm}\left[X_{m}(q)\right] \\ \operatorname{Re}\left[W_{N}^{r}\right]=B \\ L O A D \\ \operatorname{Lo}\left[W_{N}^{r}\right] 0 \& \\ \operatorname{Re}\left[X_{m}\left(q^{\prime}\right)\right] \end{gathered}$	$\begin{gathered} \left\{\operatorname{Re}\left[X_{m}(q)\right)\right] \times \\ \left.\operatorname{lm}\left[W_{N}^{r}\right] 0\right\}+ \\ B=1 m_{n}\left[X^{\prime}\right] . \\ S 3 \text { LOAD. } \end{gathered}$	OUTPUT Im [$\left.\mathrm{X}^{\prime}\right]$. EVALUATE "NEW" B.	S5	S6	S5	S6
L4C381 ALU 1							$\operatorname{Re}\left[X_{m}(\mathrm{po})\right]$ $-\operatorname{Re}\left[X^{\prime}\right]=$ $\operatorname{Re}\left[X_{m+1}\left(q_{0}\right)\right]$	$\operatorname{Re}\left[X_{m}(p o)\right]$ $-\operatorname{Re}\left[X^{\prime}\right]=$ $\operatorname{Re}\left[X_{m+1}(p)\right]$	S6	S7	S6
L4C381 ALU2							$\begin{aligned} & \operatorname{Im}\left[X_{m}(p o)\right] \\ & -\operatorname{Im}\left[X^{\prime}\right]= \\ & \left.\operatorname{Im}\left[X_{m+1}(q)^{0}\right)\right] \end{aligned}$	$\begin{aligned} & \operatorname{Im}\left[X_{m}(p o)\right] \\ & -\operatorname{Im}\left[X^{\prime}\right]= \\ & \operatorname{lm}\left[X_{m+1}(p o)\right] \end{aligned}$	S6	S7	S6
								$\mathrm{X}_{\mathrm{m}+1}$ (q0)	$X_{m+1}(\mathrm{p})$	$X_{m+1}(q)$	$X_{m+1}(q)$

into register R 2 and $\operatorname{Im}\left[\mathrm{W}_{\mathrm{N}}^{\mathrm{r}}\right]$ into R 3 of the LRF08s. During S2, W_{N} is written via the B and C input ports and simultaneously read out via the D and E output ports. The imaginary part of $\mathrm{X}_{\mathrm{m}}(\mathrm{q})$ is also read out of the bidirectional A-port. In addition, the address for storing a "new" $\mathrm{Xm}(\mathrm{q})$ is written into the B and C Address Port registers. $X_{m}(p)$ is also loaded into the LPR520 pipeline register. Note that during this state two sets of complex operands, W_{N}^{r} and $X_{m}(p)$, are simultaneously accessed from the COMPLEX DATA FILE. During this state all the complex data operands for the first FFT butterfly computation are available in the working registers. For a

1024-point FFT, the first set of operands correspond to
$X_{m}(p)=X(0)$, the first sample
$X_{m}(q)=X(512)$, the 513 th sample
$\mathrm{W}_{\mathrm{N}}^{\mathrm{r}}=\mathrm{W}_{\mathrm{N}}^{\mathrm{o}}=1$
The operands $\operatorname{Im}\left[W_{N}^{r}\right], \operatorname{Re}\left[W_{N}^{r}\right]$ and $\operatorname{Im}\left[W_{N}^{r}\right]$ are latched into the LMA1010s input registers during S3. From Fig. 1(c), note that the $\operatorname{Im}\left[X_{m}(q)\right]$ term is common to the expressions for B and D . Therefore, B and D can be simultaneously evaluated during S 4 and the result stored in the corresponding LMA1010's accumulator. During S6, ALU1 and ALU2 control bits are set so that both L4C381s will
act as subtractors. The contents of the MAC1 and MAC2 output registers are shifted into the input registers of the L4C381s. The other operands are the real and imaginary components of $X_{m}(p), \operatorname{Re}\left[X_{m}(p)\right]$ and $\operatorname{Im}\left[X_{m}(p)\right]$ respectively, which has been shifted down the LPR520 pipeline registers during states S2, S3, S4 and S5. Referring to Figs. 1(c), 4, and 5, the real component of $X_{m+1}(q)$ is evaluated by ALU1 while the imaginary component is evaluated in ALU2. A new set of D and B values are also evaluated. The new D and B values correspond to the new set of $X_{m}(q)$ and W_{N}^{r} operands loaded into the $\mathrm{MAC1}$ and MAC2 input registers
during S5. The real and imaginary components of $X_{m+1}(p)$ are evaluated in ALU1 and ALU2 respectively during S7. By holding the contents of the LPR520s, all the operands needed to obtain $X_{m+1}(\mathrm{q})$ during S 6 are also available to obtain $X_{m+1}(p)$ during $S 7$. The in-place computation is realized by storing $X_{m+1}(q)$, during $S 7$, into the location in COMPLEX DATA FILE occupied by $X_{m}(q)$. In the same manner, $X_{m+1}(p)$ is loaded into $X_{m}(p)$ during 58.

From the state matrix of Fig. 5, note that a steady state condition occurs after, the state S6 such that a butterfly computation is completed every two cycles after an initial overhead of only 6 cycles. The efficient handling of the computation is largely aided by the flexibility of the LRF08 multiport register file. A good example is illustrated during state S3 when the real and imaginary components of a new $\mathrm{X}_{\mathrm{m}}(\mathrm{q})$ are written into register R_{4} and $R 5$ via the B and C data input ports and at the same time "previous" $\operatorname{Re}\left[X_{m}(q)\right], \operatorname{RE}\left[W_{N}^{r}\right]$ and $\operatorname{Im}\left[W_{N}^{r}\right]$ are read out of register R0, R1 and R3 via the output ports A, D and E respectively.

Dealing with Overflow, Underflow and Precision

Overflow can occur at the front end when the input signal exceeds the fullscale range of the ADC. Depending upon the application, this can be prevented by using an automatic gain control (AGC) stage within the INPUT SIGNAL PROCESSOR or a hard limiting circuit to limit the maximum excursion of ADC. Another overflow condition involves exceeding the dynamic range of the fractional number representation. If the operands $X_{m}(p), X_{m}(q)$ and W_{N}^{r} are fractions in fractional 2's-complement form, then the product of any of two operands is always a fraction. However, the FFT also involves accumula-
tion of the product terms and the addition of two large positive fractions could result in an integer and a fraction. In this case the highest fractional number represented is exceeded and an overflow condition occurs.

From Fig. 3, the output of the LMA1010s are rounded to a 16-bit, single precision value and applied to the ALUs. However, the internal accumulation/subtraction process uses the full 35-bit double precision value. Overflow occurs when the MAC1 / MAC2 operands are both -1.0 , i.e., 8000 H , and the product is added to an accumulator containing +1.0. One way of handling this is to provide a fixed divide-by-two scale factor by using the R31-R16 output bits of the MACs. Since the bits have the significance of 2^{1} to 2^{-14}, the dynamic range is reduced by 1 bit, which might be unacceptable in certain applications. Another method is to limit the most negative number representation of the coefficient, $\mathrm{W}_{\mathrm{N}}^{\mathrm{r}}$, to be $-1.0+1 \mathrm{LSB}$ (8001 H). This guarantees the result of the multiplication/accumulation to be less than 2.0. In this case, the MACs R30-R15 output bits having the significance 2^{0} to 2^{-15} are used and the dy-namic range is improved by 1 bit. Another potential source of overflow is at the ALU1 and ALU2 when the MACs outputs are added with the operands at the output of the LPR520s.

The modified butterfly cell, shown in Fig. 6, implements block-floatingpoint arithmetic to handle the potential overflows by means of the LSH32 32-bit Barrel Shifter/Normalizer. In this configuration, for a given stage of the FFT the ALU's outputs are fed into the SHIFT ENCODER LOGIC block. If either one or both the ALU's output is greater than 0.5 , a shift code corresponding to the maximum output of either ALU is generated and latched. This is done because if either ALU's outputs is equal to or greater than 0.5 for the current FFT stage, then an
overflow could occur during the next stage. To avoid this possibility, the shift code that is latched during the current stage is fed into the $\mathrm{S} 14-\mathrm{S} 0$ inputs of the LSH32s. Then during the next stage all the input operands are uniformly scaled down by shifting right.
Underflow can occur when two large negative fractions produce a result less than the most negative fractional number that can be represented by the system. The hardware that handles the overflow condition at the $X_{m+1}(p)$ output can be replicated and used to handle the underflow condition at the $X_{m+1}(q)$ output.

The addition of the LSH32 for input scaling certainly adds flexibility to the system at the expense of additional hardware. However, it may not be needed in applications where it is known that overflow or underflow cannot possibly occur. In this situation, only the sign bit (R31) and the 15 most significant fractional parts (R30-R16) at the LMA1010s outputs are applied to the input of the L4C381s. Regardless of the presence or absence of the LSH32s, the conversion to single precision result is obtained by rounding up the accumulator contents of the LMA1010s. Rounding up is done automatically by asserting the RND control bit of the LMA1010s. The performance rating of the Logic Devices' "functional building block" architecture is shown in Fig. 7 along with the single-chip DSP units. Note that although the instruction cycle time is approximately the same, the Logic Devices' architecture is close to an order of magnitude faster. It is also important to note that the 100 ns cycle time of the Logic Devices' architecture using high-speed CMOS components is comparable to architectures implemented with bipolar components with an added advantage of much lower power dissipation.

Figure 6. Modified Butterfly Cell implements block-floating-point arithmetic to handle potential overflows.

Figure 7. Performance ratings for different DSP units based on execution time of 1024-point, complex FFT.

DSP UNIT	MEMORY (1)	INSTRUCTION CYCLE TIME	1024-POINT COMPLEX FFT	SAMPLING RATE (MAX)
TMS32010 (TI)	$144 \times 16-$-RAM $1536 \times 16-P-R O M$	200 ns	$75.9 \mathrm{~ms}(2)$	13.1 kHz
μ PD77230 (NEC)	$2-512 \times 32-$-RAM $1 \mathrm{~K} \times 32-\mathrm{D}-$ ROM $1 \mathrm{~K} \times 32-P-R O M$	150 ns	$10.75 \mathrm{~ms}(3)$	100 kHz
LM32900 (NNational)	EXTERNAL	100 ns	$13.42 \mathrm{~ms} \mathrm{(3)}$	78 kHz
ADSP2100 (Analog Dev.)	EXTERNAL	125 ns	$7.2 \mathrm{~ms} \mathrm{(3)}$	142 kHz
LOGIC DEVICES (Fig. 3) BUILDING BLOCKS	EXTERNAL	50 ns	0.5 ms	2 MHz

References:

1. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, 1975.
2. E. Macachor and G. McGlinchey, Logic and Interfacing Aspects of HighSpeed A/D Conventers, Wescon/81 Technical Paper.
3. J. H. Dedrick, Multiport Register File Streamlines Signal Processing, EDN, November 15, 1984.

DEVICES INCORPORATED

Ordering Information

Memory Products

Logic Products

Peripheral Products

Quality and Reliability

Technology and Design Features

Packaging

Application Notes

Technical Articles

Sales Offices

Contents

"Multiport Register File Simplifies and Speeds Digital Signal Processing" 9-3
"Multiport Register File Streamlines Signal Processing" 9-11

Multiport register file simplifies and speeds digital signal processing

A byte-wide eight-register chip with five independent ports overcomes bit-slice barriers and puts digital data into registers simultaneously with processing operations.

Bit-slice processors have achieved broad acceptance in digital signal processing. However, inflexibility and a small memory-to-register bandwidth limit their effectiveness for many applications.

For example, the transfer of data between registers and memory cannot often occur simultaneously with ALU processing.

These limitations can be overcome with a multiport CMOS register file IC that not only increases signal-processing bandwidths, but also adds a new dimension of flexibility.

The file, the LFR08, contains eight registers of eight bits each and is easily expandable to more registers and wider words. The device has five independent parallel ports, each of which may be individually addressed to access any of the eight internal registers on a given clock cycle.

Two of the five ports, B and C, are writeonly memory ports. Two, D and E, are read-

Joel H. Dedrick, Logic Devices Inc.

Joel H. Dedrick, director of product development, joined Logic Devices in Sunnyvale, Calif., in January. Earlier he worked with Texas Instruments, where he helped develop CMOS LSI signal processors and other digital signal-processing systems for military use. He earned his BSEE from the University of Nebraska and his MSEE from Southern Methodist University.
only ports; and the fifth, A, is bidirectional. With so many ports, microprogrammable digital signal-processing systems take on new flexibility.

A closer look

Each of the five parallel ports has an 8-bit data bus, three address lines, and one or two control lines (Fig. 1). All address and controlline inputs are latched on the rising edge of the clock signal. During the following clock period, the addressed data is available at the read ports. Input data is latched on the rising

DESIGN ENTRY

Signal Processing: Multiport register chip
edge following application of the address. This timing allows for efficient use of the LRF08 in horizontally microcoded architectures with pipelining.
A logic low on the enable lines of ports D and E enables the corresponding three-state outputs, which in turn allows these ports to produce the contents of the register selected by address lines 0 through 2 .
Input ports B and C are enabled in the same way. A logic low on their enable lines allows the selection of the target register for the write operation on the next rising clock signal after addressing. The addressing is similarly performed by B and C port address lines 0 through 2.

Because it is bidirectional, port A is served not only by address lines 0 through 2 and an enable line, but also a read/write line. The last line is latched with all other control lines to determine when port A will be used for reading or writing. When the read/write line is high, the A port is in the read mode, and its enable line functions as a three-state control line. When the read/write line goes low, the A port is in the write mode. Here its enable line functions the same as the port B and C enable lines for write clock cycles.

The five independent ports of the LRF08 also allow data to be transferred between the register file and external system memory. The transfer occurs while arithmetic operations

1. Five independently accessible ports that address eight 8 -bit registers make the LRF08 multiport register file an extremely flexible chip in digital signal-processing circuits. The two output ports, D and E, are for reading only; the two input ports B and C, are for writing only; and the A port is bidirectional.
are being performed on data in the file and while the results are being returned to the file. If a register addressed for reading is the target of a write operation during the same clock period, the data at the output port will be the register contents prior to the write operation. Since the user can write to and read from any register during the same clock cycle, any of the eight registers can be used as accumulators for arithmetic operations.
With this five-port, eight-register flexibility, a word-slice approach to digital signal processing is available. It is superior to the traditional bit-slice approach, embodied in such parts as those in the Am2900 family, and a closer examination of the two architectures will show why.
In the bit-slice architecture of the Am2903, for example, each chip has a slice of the ALU and register file memory (Fig. 2a). The registers are in a three-port RAM-two read ports and one write. The read ports supply operands to the ALU, and the ALU feeds back results to the write port for storage.
Writing external data to the registers of a bit-slice system can be performed in two ways. The ALU's output port can be disabled by use of an off-chip, three-state enable circuit. This allows the user to write in external data to the RAM through the feedback line.
Alternatively, off-chip multiplexers can be used to allow external data into the system through the two operand ports, A and B. Data is passed through the ALU and stored through the feedback line in the three-port RAM.
In many cases, the ALU's operation must be suspended, with resulting computational delays, while the external data is brought in.
As for reading data from a bit-slice sysiem, it can be done at the output of the ALU or at the ALU's operand ports. In the latter case, ALU results are read out at the A and B ports simultaneously with ALU operations. This operation is useful for such applications as address generation for vector processing. Here, the address is read to the A port from the RAM and is simultaneously incremented by the ALU. The result is stored in the RAM in place of the old address.
The word-slice system, in contrast, is divided along functional boundaries, with the

2. The bit-slice architecture of processors like the Am2903 (a) limits the memory-to-ALU bandwidth and leads to delays when outside data is introduced, because the ALU's operation may have to be suspended while the external data is written into the three-port RAM. Using the LRF08 allows complete overlap of an ALU operand and result transfers with external read/write of the register set (b).

DESIGN ENTRY

Signal Processing: Multiport register chip

register file and the ALU partitioned into separate chips (Fig. 2b).

In the circuit shown, the data flow for dyadic operations (those that require two operands) is the same as that in the bit-slice system: Two operands are sent from the register file to the ALU, and the result is fed back to the register file through a write port. But there is a significant difference in the way data enters and leaves the circuit.

The most obvious difference in I/O organization is the fact that reading into and writing out of the register file can now be done simultaneously with ALU processing. In the bit-slice approach, the memory buses used for I/O are the same as those used for ALU operations. Thus unless the data is immediately used as an operand, ALU no-op instructions must be inserted to prevent register file read/write operations and ALU processes from conflicting.

With complex signal-processing algorithms, fetching data with the correct sequence and timing to avoid these no-op cycles
is difficult, since only a limited number of independent address generators are available. True, the no-op states can be held down by the use of wide-word or complex (real plus imaginary) memory organizations, but then additional circuitry is needed to store the data temporarily, perhaps even rearrange it, for the ALU. With the completely independent I/O ports in the LRF08, all these problems are eliminated.

A more subtle advantage of the word-slice approach results from timing considerations in the design of the processor-memory interface. When data is multiplexed into the ALU at the operand ports in the bit-slice approach, provision must be made for sufficient setup time so that data can propagate through the ALU before the next rising edge of the clock signal.

Depending on the complexity of the instruction being executed, this setup time can range from 100 ns upward. Since many digital signal-processing system clock periods are 150 ns or less, a staging register is required be-

3. Used in a pipeline processor, the multiport register file makes reconfiguration easy. The large number of independent ports allows data routing through the system to be software controlled. The dotted lines show system data flow for a finite-impulse-response filter algorithm.

DESIGN ENTRY

Signal Processing: Multiport register chip
tween the external system memory and the ALU. The LRF08 essentially performs the function of such a staging register, reducing effective memory data setup time to 15 ns .

A reconfigurable pipeline processor

Consider the utility of the LRF08 in a reconfigurable pipeline processor, where two of the multiport register file ICs are paired with an ALU and a multiplier-accumulator (Fig. 3). The outputs of the ALU and multiplieraccumulator are fed back to their associated register files, and they may also be selectively gated onto auxiliary data buses running the length of the pipeline.

Bidirectional buffers on the data buses make them reconfigurable. System memory, which is accessed through ports A and B of each register file, can also be reconfigured for greater I/O bandwidth by the addition of memory ports to the buses. Likewise, the number of arithmetic elements, like the ALU and multiplier-accumulator, can be increased by a simple extension of each bus.

A typical application of the circuit shown is

4. In a radix-two decimation-in-time butterfly, the basic unit of the fast Fourier transform, four real multiplications and six real additions take place.
the finite-impulse-response (FIR) filter algorithm, frequently encountered in digital signal processing. For a nonrecursive Nth-order filter algorithm, each output sample consists of the sum of the past N points, each weighted by the appropriate filter coefficient. This can be expressed as follows:

$$
Y_{n}=\sum_{k=0}^{N-1} h_{k}\left(X_{n-k}\right)
$$

where:

$$
\mathrm{Y}_{\mathrm{n}}=\text { the nth output sample }
$$

$\mathrm{n}=$ the data index
$\mathrm{k}=$ the coefficient index
$\mathrm{N}=$ order of filter
$\mathrm{h}_{\mathrm{k}}=$ the kth coefficient
$\mathrm{x}=$ the input sample
$\mathrm{x}_{\mathrm{n}-\mathrm{k}}=$ input sample delayed by k sample periods
A key feature of the FIR filter algorithm is its linear-phase transfer characteristic. A necessary and sufficient condition for linear phase is that the coefficients of the filter be symmetric or antisymmetric about the center of the impulse response. Thus, for a filter with N coefficients, where the first coefficient has the value h_{0}, coefficient h_{N-1} must equal $\pm h_{0}$, and so on, from h_{1} through $h_{\left(\mathrm{N}^{2} / 2\right)-1}$, with N being an even number. Such a filter can be expressed as:

$$
Y_{n}=\sum_{k=0}^{(N / 2)-1} h_{k}\left(x_{n-k}+x_{n-N+k+1}\right)
$$

The symmetry of the filter coefficients offers the possibility of computational shortcuts. By adding the input points corresponding to coefficients that are equal prior to weighting, the designer can reduce the total number of multiplications required for each output point to $\mathrm{N} / 2$. Although this reduction comes at the expense of an extra addition for each pair of input points, it offers the advantage of a 2:1 adder-to-multiplier ratio, typical of many signal-processor architectures.

The flow of data to implement the FIR filter is shown by dotted lines in Fig. 3. It is assumed that the filter coefficients are stored in the multiplier register file prior to entering the kernel (the smallest processing loop or itera-

DESIGN ENTRY

Signal Processing: Multiport register chip

tion). Data enters the system from the memory ports and is placed in the ALU register file.

Points corresponding to a single coefficient are assumed to be read from memory simultaneously. If memory limitations preclude simultaneous readings, the designer can obtain an equivalent throughput by doubling the kernel length from one to two clock periods and processing input points four at a time. In this way adjacent points can be fetched from memory by a single address generator and a double-width memory organization.

The addition of the two input values is accomplished in the ALU, and the result is fed back to the multiplier-accumulator register file. The file performs weighting and accumulation and holds the result until all pertinent input points have been processed.

Taking on the FFT

Yet another illustration of the flexibility of the LRF08 is its use for calculating fast Fourier transforms, a type of algorithm en-
countered frequently in digital signal processing. The fundamental unit of the FFT, the butterfly, is of interest. One of several common forms is the radix two, decimation-in-time butterfly (Fig. 4).

For complex (real plus imaginary) input data, the decimation-in-time butterfly requires four real multiplications and six real additions. The multiplications and two of the additions are used in the complex multiplication which phase-rotates the lower input, $\mathrm{x}_{\mathrm{m}}(\mathrm{q})$. The remaining four additions combine the upper input, $\mathrm{x}_{\mathrm{m}}(\mathrm{p})$, with the weighted lower input to produce the pair of complex output points, $x_{m+1}(p)$ and $x_{m+1}(q)$.

For this example, the weighting coefficients, W , are assumed to be stored in the multiplier-accumulator register file of Fig. 5 at kernel entry. In practice, the kernel is usually four or eight butterflies long. It takes advantage of the extensive symmetry in the weighting coefficients ($\pm 90^{\circ}$ and $\pm 180^{\circ}$ rotations, and reflections about the 45° axes). Thus, given one coefficient, three others may

5. The LRF08 multiport register file allows reconfiguration of the pipeline architecture for a different algorithm, in this case, the complex decimation-in-time FFT butterfly (Fig. 4).

DESIGN ENTRY

Signal Processing: Multiport register chip
be calculated by sign changes in the real and imaginary parts of the complex input data. In this way the butterfly can be computed efficiently without the need for a memory dedicated to storage of the complex weights.

The data flow of the decimation-in-time butterfly in the figure is heavily pipelined. It has a net throughput of one complex output pair for every four clock pulses. The total pipeline delay is 12 clock periods. The table (below) shows a symbolic listing of the various data movements and arithmetic operations.

During the first two clocks of every fourclock iteration, the real and imaginary parts of $x_{m}(p)$ are read from memory to the multi-plier-accumulator register file. This transfer of data occurs through the lower I/O port. The last two clocks are used for reading the real and imaginary parts of $x_{m}(q)$ from memory to the ALU register file. The paths of the data flowing from memory to the register are represented by dotted lines in the figure.

The second column in the table shows the
complex multiplication of the weighting coefficient and the $x_{m}(q)$ input from the previous iteration. Results are passed to the ALU register file, where the additions needed to produce the real parts of the output values occur during the latter half of the iteration. This transfer of data is accomplished over the upper bus in the figure, a bus isolated from the memory port by bidirectional buffers.

The last column in the table shows the final iteration, when the imaginary portions of the results are calculated. These results are returned to the multiplier register file through the C port bus. Finally, the results stored in the multiplier file are sent out to the upper memory bus, one word during each of the four clocks of the iteration. \square

Symbolic listing of operations for an FFT decimation-in-time butterfly iteration			
	K	-	\%
	$\operatorname{Re}\left[\mathrm{X}_{\mathrm{m}}(\mathrm{p})\right] \rightarrow \underset{\substack{\text { Megipter } \\ \text { file }}}{\substack{\text { Mulier }}}$	$\operatorname{Re}\left[X_{m}(q)\right]+\underset{\text { accumulator }}{\operatorname{Re}\left[W_{n}^{r}\right] \rightarrow}$	$\operatorname{Re}\left[X_{m+1}(t)\right] \rightarrow$ output $\operatorname{Im}\left[X_{m}(s)\right]+\operatorname{Im}\left[X_{m}^{\prime}(t)\right] \rightarrow$ multiplier register file
	$I_{m}\left[X_{m}(p)\right] \rightarrow \underset{\substack{\text { Multiplier } \\ \text { file }}}{\substack{\text { Rister }}}$	Accumulator $-I_{m}\left[X_{m}(s)\right]^{*} A L U$ $I_{m}\left[W_{m}^{r}\right] \rightarrow$ register file	$\begin{aligned} & \operatorname{Im}\left[X_{m}+1(t)\right] \rightarrow \text { output } \\ & \operatorname{Im}\left[X_{m}(s)\right]-\operatorname{Im}\left[X_{m}^{\prime}(t)\right] \rightarrow \\ & \text { multiplier register file } \end{aligned}$
	$\operatorname{Re}\left[X_{m}(q)\right] \rightarrow \underset{\substack{\text { register } \\ \text { file }}}{\text { ALU }}$	$\begin{aligned} & \operatorname{Re}\left[X_{m}(s)^{*} \operatorname{Im}\left[W_{n}^{r}\right] \rightarrow\right. \\ & \text { accumulator } \\ & \operatorname{Re}\left[X_{m}(r)\right]+\operatorname{Re}\left[X_{m}^{\prime}(s)\right] \rightarrow \\ & \text { multiplier register file } \end{aligned}$	$\operatorname{Re}\left[\mathrm{X}_{\mathrm{m}}+1(\mathrm{U})\right] \rightarrow$ output
	$I_{m}\left[X_{m}(q)\right] \rightarrow \underset{\substack{\text { register } \\ \text { file }}}{\text { ALU }}$	Accumulator $+\operatorname{Im}\left[X_{m}(\mathbf{s})\right]^{*}$ $R e\left[W_{n}^{r}\right] \rightarrow A L U$ register file $\operatorname{Re}\left[X_{m}(r)\right]-\operatorname{Re}\left[X_{m}^{\prime}(s)\right] \rightarrow$ multiplier register file	$\operatorname{lm}\left[X_{m+1}(\mathrm{U})\right] \rightarrow$ output

Technical Article

Multiport register file streamlines signal processing

> A register-file IC that incorporates five access ports and allows simultaneous use of its eight registers increases flexibility and throughput in signal-processing applications. But effective use of the part requires attention to new design concepts.

Joel H Dedrick, Logic Devices Inc
You can simplify signal- and image-processing system design by using a 5 -port, 8 -register IC. The LRF08 lets you design digital filters that you can reconfigure by reprogramming rather than by rewiring. Because it allows simultaneous use of its five ports, the LRF08 eliminates interference between I/O or memory transfers and arithmetic operations (see box, "Independent I/O ports yield flexibility").
The simultaneous use of ports is the LRF08's key feature. For example, while two read ports source operands to an ALU or multiplier, and a third write port records the result, the remaining two ports allow unimpeded data movement to external memory. These external data accesses don't interfere with arithmetic operations, so you don't need the Wait states or No Op cycles commonly found in less flexible architectures. You can thus increase throughput by as much as a factor of two for some algorithms. In addition, you can expand the device's eight 8 -bit registers for greater word width or memory depth.
In contrast, most horizontally microprogrammed systems dedicate independent subsystems to memoryaddress and data calculations. Although memory addressing and data processing have different arithmetic requirements, both require that the calculations overlap efficiently with data storage and retrieval. To provide efficient overlap, such systems, especially those requiring data-dependent addressing, often use address generators to calculate a new data address on nearly every cycle while simultaneously storing or retrieving variables from system memory.
The LRF08's multiport write capability simplifies address generation, but it's not limited to that task: It's equally well suited to the data-handling and I/O por-

Fig 1-A pipeline address generator comprising the LRFO8 register file and an ALU uses the file's bidirectional A port for data transfers. The D'port supplies the memory address as well as one of the ALU inputs. The E port supplies the remaining ALU operand while the ALU results return to the register file through the C port.
tions of programmable-signal or image processors. Applications such as multiprocessor interfacing and shared-resource protection can also benefit from the LRF08's high bandwidth and flexible port structure.

To understand the concepts involved in application of the register-file IC, consider a data-address generator used in signal- or image-processing systems (Fig 1). The address generator, comprising an ALU and LRF08, uses the register file's D and E ports to source ALU operands. The ALU result returns via the C port. The bidirectional A port then serves as a data port for transferring register-file values to or from memory.

Multiport register file requires new design techniques

Further, the A port's 3 -state capability lets you wire this port directly to the system data bus. The D port, in addition to being used as an operand source, supplies the memory address.
The typical sequence for simple indexing operations (such as those required for vector addition and subtraction) is this: The system sources the accumulator register contents to the D port and the increment value (eg, 1) to the E port; the ALU performs an addition and returns the result to the accumulator. (Note that the register file's read-before-write operation allows you to use any register as the accumulator.) Thus, the effective address presented to memory is the accumulator value prior to the increment. The address increment occurs simultaneously with the memory access.
Now consider the addressing requirement that re-
sults when you apply an $\mathrm{N} \times \mathrm{N}$ space-invariant filter to 2 -dimensional-image data stored in a linear memory. Such filtering helps to remove high-frequency noise from image data. The filtering algorithm consists of replacing each output-image pixel with the weighted sum of its neighboring pixels in the input image. In this case, define a pixel's neighbors as the pixels contained in a square, centered on the target pixel, with N pixels on each side (N odd). You can express this filtering operation as:

$$
g(x, y)=\sum_{j=-\frac{(N-1)}{2}}^{\frac{N-1}{2}} \sum_{i=-\frac{(N-1)}{2}}^{\frac{N-1}{2}} h(i, j) f(x+i, y+j),
$$

where $g(x, y)$ is the output image, $f(x, y)$ is the input

Independent I/O ports yield flexibility

The LRF08 high-speed CMOS multiport register file suits signaland image-processing systems; it contains eight 8 -bit registers accessible via five parallel ports (figure). Designated A through E, these ports each have eight data lines, three address inputs, and either one or two port-control lines. All address and control signals are latched on the clock's rising edge, so device activity is pipelined by one cycle (reads or writes occur one cycle following the cycle when corresponding controls are applied). This pipelining eliminates the need for discrete registers on microcontrol ROM outputs for microprogrammed applications.
The register file's D_{0} to D_{7} and E_{0} to E_{7} lines are output ports; $D A_{0}$ to $D A_{2}$ and $E A_{0}$ to $E A_{2}$ are their corresponding address inputs. An address applied to these inputs is latched at the clock's rising edge, and corresponding register contents appear on the data lines. $\overline{D O E}$ and EOE are the outputenable controls for the D and E ports, respectively; they control 3-state output drivers on the D_{0} to D_{7} and E_{0} to E_{7} lines. Asserting
these inputs enables the corresponding port for output following the clock's next rising edge.
Write operations are processed in much the same way as read operations. B_{0} to B_{7} and C_{0} to C_{7} are input ports that write data to the LRFO8's internal registers. You dictate the destination register for write operations with portaddress lines $B A_{0}$ to $B A_{2}$ and $C A_{0}$ to CA_{2}. The address presented on these lines at the clock's rising edge gets latched and determines the destination register for a write operation on the next clock.
Port-enable inputs $\overline{B P E}$ and CPE allow selective control of Band C -port write operations. To write to any port, you assert the corresponding port-enable control while presenting the write address. The control are latched along with the address lines, and an inactive port control causes the device to ignore the corresponding address input and suspend the write operation on that port during the next clock period.
The A port forms an interface to a bidirectional 3 -state bus. The bidirectional A_{0} to A_{7} lines operate in conjunction with three address
lines $\left(A A_{0}\right.$ to $A A_{2}$), a port-enable control ($\overline{\mathrm{APE}}$), and a read/write control (AR \bar{W}). The AR \bar{W} input controls whether this port operates as a read or write port during the next clock cycle: Making this signal Low causes the A port to operate identically to the B and C ports, and you use the address lines and port-enable control to handle the write; a High input on AR \bar{W} makes it an output port with the $\overline{\text { APE }}$ line controlling the 3 state drivers on the A_{0} to A_{7} data lines similarly to the D - and E -port enables.

All ports are independent; the only usage restriction is that two ports can't write to the same register simultaneously. Two or more output ports can read a register simultaneously, though, and any other combination of address values and port enables is allowed. A final feature is useful for read-modify-write operations: When you read a register to an output port during the same cycle in which you write to it from an input port, the output data is the register contents prior to the write.

For further information on the LRF08 multiport register file.
image, and $\mathrm{h}(\mathrm{i}, \mathrm{j})$ is the filter's $\mathrm{N} \times \mathrm{N}$ impulse response.
Next, assume that the input image $f(x, y)$ is stored in memory such that the increasing memory addresses scan left to right across the image, with the rightmost pixel of one row followed by the leftmost pixel of the row below it. Thus, to find the address of a pixel directly below a target pixel in an n-row \times m-column image, you need only an address increment of m . Assume also that the input image $f(x, y)$ is padded with ($\mathrm{N}-1$)/2 Zero pixels around each border, corresponding to half the filter impulse response (Fig 2). This padding provides orderly filter calculations for elements near the image's edge.
Fig 3 gives a symbolic listing of the algorithm that implements the spatial filter. The left side of the Action column gives the required instruction words in a typical
microprogrammed image-processing system. Looping and subsequent program flow control occurs simultaneously with data manipulation and doesn't require a separate microinstruction.
In this example, several assumptions have been made. First, assume that for every output-image point g (denoted $\mathrm{G}_{\text {CENTER }}$), the filter function $\mathrm{h}(\mathrm{i}, \mathrm{j})$ is centered over the corresponding input pixel $\mathrm{F}_{\mathrm{CENTER}}$, and all pixels covered by h are fetched in a left-to-right, top-to-bottom sequence. Also assume that the filtering functions operating on these points execute in a separate processing element, and that Fig 4 shows only address-calculation operations. Finally, assume that the filter coefficients $h(i, j)$ are stored in a separately addressed coefficient ROM (the algorithm could fetch them from RAM with some loss in throughput).

Five independent access ports in the LRF08 register file direct data to and from eight registers upon proper manipulation of port-address and port-enable signals. The A port is bidirectional.

All five ports

operate independently

The first two instructions (Fig 3) initialize the variables $F_{\text {CENTER }}$ and $G_{\text {CENTER }}$ to point to the upper left pixel in the input and output images, respectively. To accomplish this task, an offset is added to the F buffer's base address to account for the zero padding.

After initialization, the algorithm loops over all elements in the output image. For each new point in g, instruction 3 initializes a temporary index, k, to the filter function's upper left corner. This address is related to $\mathrm{F}_{\text {center }}$ by the constant offset $-[(\mathrm{N}-1)(\mathrm{N}+\mathrm{m}) / 2]$. To fetch successive input-image pixels from memory, the system increments k by one at each step and applies the old value as the memory address. This process repeats for N cycles, where N corresponds to the number of pixels along the top of the filter impulse response $h(i, j)$. When that row is completed, instruction 5 increments k by the image's width (m) to wrap processing back to the left edge of the impulse response area, on the next line down. This sequence of operations repeats for the impulse response's N rows until the output pixel's processing is complete.

After the algorithm has calculated a particular output pixel, instruction 6 stores the result in g while $\mathrm{G}_{\text {Center }}$ gets updated for the next pass. The LRF08 allows you to overlap address modification with memory operations by simultaneously reading and writing the $\mathrm{G}_{\text {center }}$ register. Instruction 7 implements the corresponding update of $\mathrm{F}_{\text {center. }}$ The process repeats for each pixel in a row of output array g . When all elements in the output rows have been processed, instruction 8 adds the offset ($\mathrm{N}-1$) to correct $\mathrm{F}_{\text {center }}$ for input-image padding; this procedure wraps $\mathrm{F}_{\text {center }}$

Fig 2-To perform space-invariant filtering on image data, replace each pixel in the input image ($f(x, y)$) with the sum of its neighboring pixels (centered in an $N \times N$ square) weighted by $h(i, i)$, the filter's impulse response.

Fig 3-A symbolic listing of the spatial filter algorithm shows that looping and other program flow control is performed simultaneously with data manipulation and doesn't require a separate microinstruction.
into the next line's first image pixel.
In this application, data is efficiently accessed through the manipulation of multiple addressing variables, including several preloaded offsets and base addresses. The simultaneous use and updating of data pointers also improves throughput.

Bit reversal complicates FFTs

Now that you're familiar with the LRF08's basic operation, consider a specific application. To evaluate a fast Fourier transform (FFT) using a decimation-intime algorithm, for example, a system must presort input data into bit-reversed order. "Bit reversed" refers to the following transformation: For an N-bit binary word A defined as

$$
A=A_{n-1} 2^{n-1}+A_{n-2} 2^{n-2}+\ldots+A_{1} 2^{1}+A_{0} 2^{\prime \prime}
$$

you construct the bit-reversed word A by reversing the coefficients such that the new coefficient for 2^{k} is A_{n-1-k} :

$$
A=A_{0} 2^{n-1}+A_{1} 2^{n-2}+\ldots+A_{n-2} 2^{1}+A_{n-1} 2^{0}
$$

Thus, for this type of FFT algorithm, the system must provide data to working storage in bit-reversed order or perform the bit-reversal operation after the algorithm.
In either case, you can see the necessity for the efficient generation of bit-reversed addresses. You could accomplish bit reversal by hardwiring the conductors for each bit in reversed sequence (eg, at register inputs). But this rudimentary technique isn't generally the most efficient for two reasons: First, the FFT buffer doesn't usually require the entire machine address space. Instead, the algorithm uses only a small portion of a larger memory with the effective address consisting of the buffer base address plus an offset. This
factor complicates matters because only the offset portion must undergo bit reversal, while the base address remains in its usual form.

The second problem stems from the fact that most systems are required to execute FFTs of varying length. This flexibility requires the number of offset bits in the bit-reversal operation to be variable also. In addition, each offset bit's resulting position in the effective address word changes with the FFT's length.

Bit reversal with the LRF08

You can implement bit reversal with the LRF08, but note that the algorithm used is not widely known, so it deserves some explanation. The following notation defines desired operations:

- Base=base address of the FFT buffer.
- Offset=offset from base address to obtain effective address.
- Increment=increment used in indexing through the buffer (usually 1).
- $\mathrm{W}=$ bits in the machine address word.
- $B=$ bits in the offset portion of the address ($\mathrm{B} \leq \mathrm{W}$).
- $\mathrm{BR}_{\mathrm{w}}(\mathrm{x})=$ bit-reversal operation over W bits applied to x.
- $\mathrm{BR}_{\mathrm{B}}(\mathrm{x})=$ bit-reversal operation on x applied over only the B least significant bits.
- ${ }^{-} \mathrm{A}=$ the variable A that has undergone the bitreversal operation.
Using these definitions, the desired effective address becomes

$$
\begin{aligned}
\text { ADDRESS }_{=}=\text {BR }_{\mathrm{B}} & \left(\text { OFFSET }_{\mathrm{B}}+\text { INCREMENT }_{\mathrm{n}-1}\right) \\
& + \text { BASE. }
\end{aligned}
$$

As noted, the difficulty with this form is that the $\mathrm{BR}_{\mathrm{B}}(\mathrm{x})$ operation is difficult to implement when x can vary. An easier-to-handle form of Eq 1 is

$$
\begin{gathered}
\left.{\text { ADDRESS }=\mathrm{BR}_{w}\left[\mathrm{BR}_{w}\left(\mathrm{OFFSET}_{\mathrm{n}-1}\right)\right.}^{+} \mathrm{BR}_{\mathrm{w}}\left\{\mathrm{BR}_{\mathrm{B}}(\mathrm{INCREMENT})\right\}\right]+\mathrm{BASE}^{2} .
\end{gathered}
$$

In this form, the only occurrence of the bit-reversal operation not applied over the entire address word has a constant (the increment value) as its argument. In fact, the result of the BR_{B} operation becomes the argument of a full-width reversal. The resulting value is also a constant, which serves as a new increment for an indexing operation carried out in the upper end of the word. Note also that you generally map variables into hardware registers, so this operation's accumulator is represented by the first term inside the square brackets in Eq $2\left(\mathrm{BR}_{w} \mathrm{OFFSET}_{\mathrm{n}-1}\right)$. The increment that's added to this accumulator comes from $\mathrm{BR}_{\mathrm{w}}\left(\mathrm{BR}_{\mathrm{B}}(\right.$ INCREMENT $)$), which equals $2(\mathrm{~W}-\mathrm{B})-1$

Fig 4-A bit-reversed addressing operation operates in a pipeline fashion. The memory address column shows the results of the calculations from the previous iteration of the action column.
for an increment of 1.
Now simplify Eq 2 by using ${ }^{-} \mathrm{K}$ to represent the new
 mulator.

ADDRESS $_{n-1}=\mathrm{BR}_{\mathrm{w}}\left[-{ }^{-} \mathrm{INADDR}_{\mathrm{n}}+{ }^{-} \mathrm{K}\right]+$ BASE.
This relationship establishes an equivalence between the accumulation of prereversed (over B bits) offset values as in $\mathbf{E q}$ 1, and the accumulation of a corresponding constant increment value with full-width bit reversal of the result. Eq 2 gives the origin of the new increment value.
A final note about computational efficiency: If the FFT buffer's base address resides on a 2^{B} boundary, you don't have to add the buffer base address because the base and offset fields are disjoint. In such a case, the desired base address undergoes a full-width bit reversal to become the initial input accumulator value ${ }^{-} \mathrm{INADDR}_{0}$, and each successive iteration of Eq 3 automatically produces the correct base+offset value.

Special hardware eases bit reversals

The previous discussion demonstrates the need for a flexible address generator in implementing efficient FFT designs. With one minor modification, you can adapt the LRF08-based architecture shown in Fig 1 to calculate bit-reversed addresses efficiently for an arbi-trary-length FFT buffer, starting at an arbitrary position within the machine space.

To implement this architecture, have the bit-reversed ALU output source the register file's B port. Note that the system applies the bit reversal over the full width of the address-generator word. As previously discussed, Fig 4 is a symbolic listing of the bit-reversed addressing operation for the special case where the input buffer resides on a $2^{\text {B }}$ boundary. Each row represents all operations active during a given clock cycle, with the algorithm kernel requiring three clocks; the

Space-invariant image filter removes high-frequency noise

columns describe the action of the ALU and resulting memory addresses.
A key factor of Fig 4 is that it gives a cycle-by-cycle description of the system, which performs two functions at once: It calculates a memory address in the middle column and then performs a memory read or write using that value in the next cycle while calculating the next required address. The system cycles repeatedly through these three steps.

Look at each cycle in detail. During the first clock period, the input address calculated during the previous iteration is sent to memory. The value comes from the D port (Fig 1) with no ALU operation executed, and a new input value is fetched.
During the second clock period, the register file adds the input-address accumulator - INADDR_{n}) to the increment value (${ }^{-} \mathrm{K}$), where those values follow the notation in Eq 3. The unit then stores the result simultaneously in two registers. The updated bit-reverse accumulator (${ }^{-1 N A D D R}{ }_{n-1}$) is stored in its original memory location via the B port. Finally, to effect the required bitreversal operation, the register file produces the effective input address, $\left.\mathrm{BR}_{\mathrm{w}}{ }^{-} \mathrm{INADDR}_{\mathrm{n}}+{ }^{-} \mathrm{K}\right]$, by storing the sum in a different register via the C port.
In the last clock period, the register file simultaneously increments the non-bit-reversed accumulator OUTADDR $_{n}$ and supplies it as the output buffer address. As with the input address, the system should initialize this accumulator to the buffer's base address.

EDN

Author's biography

Joel H Dedrick is director of product planning for Logic Devices Inc (Sunnyvale, CA). Before joining that firm, he worked at Texas instruments, where he helped to develop several signal-processing systems for radar and sonar applications as well as CMOS LSI devices for military signalprocessing systems. He earned his BSEE degree from
 the University of Nebraska (Lincoln) and his MSEE from Southern Methodist University (Dallas, TX). Joel enjoys woodworking, snow skiing, and entertaining his baby daughter.

DEVICES INCORPORATED

Ordering Information

Memory Products

Logic Products

Peripheral Products

Quality and Reliability

Technology and Design Features

Packaging

Application Notes

Technical Articles

Sales Offices

Corporate Headquarters

Logic Devices Incorporated
 628 East Evelyn Avenue Sunnyvale, CA 94086

Telephone:
(408) 720-8630
(800) 851-0767 (Toll free inside U.S. - except California) (800) 233-2518 (Toll free inside California)

FAX: (408) 733-7690
TLX: 172387
FSCM: 65896

North American Sales Representatives

North American Sales Representatives

Company	City/State	Telephone	Company	City/State	Telephone
MICHIGAN			OREGON		
C. B. Jensen	Troy, MI	(313) 643-0506	Westmark	Beaverton, OR	(503) 641-8780
		FAX: (313) 643-4735			FAX: (503) 641-8738
Applied Data Management			PENNSYLVANIA (Eastern)		
	Ann Arbor, MI	(313) 662-5759	Deltatronics	Blue Bell, PA	(215) 641-9930
		FAX: (313) 579-8510			FAX: (215) 641-9934
MINNESOTA			PUERTO RICO		
Cahill, Schmitz, \& Cahill, Inc.			TSI	San Germain, PR	(809) 892-4745
	St. Paul, MN	(612) 646-7217			(809) 892-1128
		FAX: (612) 646-4484	RHODE ISL		
MISSISSIPPI			TSI	Waltham, MA	(617) 890-5700
Electramark	Norcross, GA	(404) 446-7915			FAX: (617) 890-3913
		FAX: (404) 263-6389	TENNESSEE		
NEW HAMPSHIRE			Electramark	Norcross, GA	(404) 446-7915
TSI	Waltham, MA	(617) 890-5700			FAX: (404) 263-6389
		FAX: (617) 890-3913	TEXAS		
NEW JERSEY (North)			Comptech	Irving, TX	(214) 751-1181
Trionic	Great Neck, NY	(516) 466-2300			FAX: (214) 550-8113
		FAX: (516) 466-2319		Austin, TX	(512) 343-0300
NEW JERSEY (South)					FAX: (512) 345-2530
Deltatronics	Chestnut Hill, PA	(215) 248-0294		Houston, TX	(713) 492-0005
		FAX: (215) 247-2655			FAX: (713) 492-6116
NEW MEXICO			UTAH		
Q. A. Electronics	Albuquerque, NM	(505) 888-1121	Western Region Marketing		
		FAX: (505) 883-9044		Salt Lake City, UT	(801) 486-1646
NEW YORK (Metro Area)			VERMONT		
Trionic	Great Neck, NY	(516) 466-2300	TSI	Waltham, MA	(617) 890-5700
		FAX: (516) 466-2319			FAX: (617) 890-3913
NEW YORK (Upstate)			VIRGINIA		
Labtronics	Syracuse, NY	(315) 455-7314	Advanced Technology Sales		
		FAX: (315) 355-7316		Richmond, VA	(804) 320-8756
OHIO					FAX: (804) 320-8761
Applied Data Management			WASHINGTON		
	Cincinnati, OH	(513) 579-8108	Westmark	Bellevue, WA	(206) 454-1944
		FAX: (513) 579-8510			FAX: (206) 454-2483
OKLAHOMA					
Comptech	Tulsa, OK	(918) 622-7744			
		FAX: (918) 660-0340			

International Distributors

AUSTRIA

Cebos Electronic＇s GES．M．B．H．
Tichtelgasse 10
1120 Vienna
Austria
Tel：22283－4101 or 4219
FAX：22287－2007

DENMARK

Distributoren Interelko A／S
Silovej 18
D－2690 Karlsunde
Denmark
Tel：45－3－140700
FAX：45－3－146805

FINLAND

OY Comdax AB
Itälahdenkatu 23 A
00210 Helsinki
Findland
Tel：90－670277
FAX：90－6922326

FRANCE

A2M
Hall B
6，Avenue De Gaulle
78150 Le Chesnay
France
Tel：（1）39－54－91－13
FAX：（1）39－54－30－61

ISRAEL

PEL
P．O．Box 106
Ramat Hasharon
4700 Israel
Tel：972－3－482492 -482241
FAX：972－3－483124

JAPAN

MCM Japan Ltd．
2－11－1 Komazawa Setagaya－ku
Tokyo 154，Japan
Syuukaen Bldg $2 F$
Tel：03－487－8477
FAX：03－487－8825

MCM Japan Ltd．－Tama Sales Office
446－2 Ichinomiya Tama－Shi
Tokyo 206，Japan
R－Court Bldg 3F
Tel：0423－72－8600
FAX：0423－72－8603

MCM Japan Ltd．－Registered Office
1－1－6 Sakurashinmachi Setagaya－ku
Tokyo 154，Japan
Maison－L
Tel：03－705－5612
FAX：03－705－5616

NORWAY

OTE Komponent
Stromsveien 323
P．O．Box 200
Leirdal，N－1011 Oslo 10
Norway
Tel：（02）30－66－00
FAX：（02）32－13－60

SWEDEN

Traco AB
P．O．Box 103
S 12322 Farsta
Sweden
Tel：（0）8－93－00－00
FAX：（0）8－94－77－32

SWITZERLAND

Dimos AG
Badenerstr． 701
CH－8048 Zürich
Switzerland
Tel：（01）62－61－40
FAX：（01）62－60－44

UNITED KINGDOM

Abacus Electronics
Abacus House
Bone Lane，Newbury
Berkshire RG14 5SF
England
Tel：（0635） 30680
FAX：（0635） 38670

WEST GERMANY

Neumüller
Eschenstraße 2
8028 Taufkirchen，Münich
West Germany
Tel：（089）61208－0
FAX：（089）61208－248

Milgray Electronics
Industriegebiet Ost
Heilbronner Straße 23
7320 Göppingen
West Germany
Tel：（07161）73054
FAX：（07161） 76855
Milgray Electronics
Werner－von－Siemens－Straße 6
2358 Kaltenkirchen
West Germany
Tel：（04191） 4011
FAX：（04191） 3888
Milgray Electronics
Goethestr． 28
6252 Diez
West Germany
Tel：（06432） 1073
Milgray Electronics
Stauferstr． 27
8070 Ingolstadt
West Germany
Tel：（0841） 76734
FAX：（0841） 76636

628 East Evelyn Avenue
Sunnyvale, California 94086
Tel: (408) 720-8630
Fax: (408) 733-7690

[^0]: Printed in U. S. A

