COMMUNICATION ICs

solutions

quality control support confidence

neliability

THE LEVEL ONE CREDO

- **OUR MISSION:** We shall strive to be the leader in supplying Silicon Connectivity Solutions and to provide a fair return on investment to our shareholders while being a responsible corporate citizen in our community.
- **OUR QUALITY GOAL:** We shall strive to achieve Total Customer Satisfaction.
 - **OUR PLEDGE:** We pledge to both external and internal customers that we shall strive to anticipate, understand, and fulfill their needs. We shall continuously improve each of our work functions to enhance the value of our products and services.

Robert S. Pepper

Robert S. Pepper, Ph.D. President and Chief Executive Officer

A leading producer of mixed-signal Silicon Connectivity Solutions for high-speed digital communications networks

1997 Data Book

Current Product Information

Here are two ways to obtain the most current product information:Literature Request Hotline:(916) 854-1155Web Site URL:http://www.level1.com

Product Status Indicators

For Level One product documentation, the term "Preliminary Information" has the following meaning:

Preliminary Information:

Indicates a product which has not been released to production. Some specifications may be changed or added until full qualification and production release.

The following is a list of trademarks currently used by Level One:

Level One,

Level One has made every effort to supply trademark and service mark information about company names, products and services mention herein. Product and service names profiled herein are trademarks and service marks of Level One. Other manufacturers' product and service names profiled herein are trademarks and service marks of their respective companies.

Disclaimer of Warranty:

Level One Communications, Incorporated, assumes no responsibility for errors or omissions in these materials. These materials are provided "as is" without warranty of any kind, either express or implied, including but not limited to, any implied warranties of merchantability, fitness for a particular purpose, or non-infringement. Level One does not warrant the accuracy or completeness of any text or graphic information contained in the material presented herein. Level One shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may arise from any person's use of these materials. Level One may make changes to these materials, or to the products described by these materials, from time to time, without notice. Level One is not obligated to update these materials.

Patent Information:

The products listed in this publication are covered by one or more of the following patents. Additional patents pending. 5,008,637; 5,028,888; 5,057,794; 5,059,924; 5,068,628; 5,077,529; 5,084,866; 5,148,427; 5,153,875; 5,157,690; 5,159,291; 5,162,746; 5,166,635; 5,181,228; 5,204,880; 5,249,183; 5,257,286; 5,267,269; 5,267,746

Level One and " are registered trademarks of Level One Communications, Incorporated

General Information 5 2 Integrated T1/E1 Short-Haul Transceivers and Receivers 3 T1/E1 Long-Haul Transceivers 4 T1/E1 Repeaters Switched 56/DDS Products 5 6 T1/E1 Clock Adapters Digital Subscriber Line (DSL) Products 8 **PDH Multiplexers** 9 **Telecom Application Notes** 10 **Telecom Product Evaluation Boards Ethernet Phy Products** 12 Ethernet Hub And Repeater Products 13 LAN Application Notes 14 Package Specifications and Ordering Information 15 Sales Offices

1	General Information	Page
	About Level One	
	Quality and Reliability	
	Product Reference Gui	de 1-11
2	Integrated T1/E1 Short	-Haul Transceivers and Receivers
	LXT300Z/301Z	Advanced T1/E1 Transceivers
	LXT304A	Low Power T1/E1 Transceiver with Receive Jitter Attenuation 2-21
	LXT305A	Low Power T1/E1 Transceiver with Transmit Jitter Attenuation 2-39
	LXT307	Low Power E1 Transceiver
	LXT325	Quad T1/E1 Receiver with Loss of Signal Detector
	LXT331	Dual T1/E1 Line Interface Unit 2-87
	LXT332	Dual T1/E1 Transceivers with Crystal-less Jitter Attenuation 2-107
	LXT334	Quad Short Haul Transceiver with Clock Recovery 2-139
	LXT335	Quad Short Haul PCM Analog Interface
	LXT350/351	Integrated T1/E1 Transceivers with Crystal-less Jitter Attenuation 2-179
3	T1/E1 Long-Haul Tran	sceivers
	LXT310	T1/CSU/ISDN PRI Transceiver
	LXT317	Transceiver for DECT Base Station Interfaces
	LXT318	E1 Transceiver for NTU and ISDN PRI Interfaces
	LXT360/361	T1/E1 Long-Haul/Short-Haul Transceivers
4	T1/E1 Repeaters	
-	LXT312/315	Low Power T1 PCM Repeaters 4-1
	LXT313/316	Low Power E1 PCM Repeaters
5	Switched 56/DDS Prod	
	LXT400	All Rate Extended Range Switched 56/DDS Transceiver
	LXT441	Switched 56/DDS Integrated DSU/CSU 5-19
6	T1/E1 Clock Adapters	
	LXP600A/602/604	Low-Jitter Clock Adapters: 1.544, 2.048, 4.096 MHz 6-1
	LXP610	Low-Jitter Multi-Rate Selectable Clock Adapter
7	Digital Subscriber Line	(DSL) Products
	SK70704/70706	784 kbps HDSL Chipset
	SK70704/70707	1168 kbps HDSL Chipset
	LXP710	HDSL Framer/Mapper
	SK70720/70721	Multi-Rate DSL Chipset 7-83
8	PDH Multiplexers	
	SXT6234	Single-Chip E1/E2/E3 Multiplexer 8-1
9	Telecom Application N	otes
	AN21	LXT304A Transceiver
	AN25	LXT300 and LXT310 Interchangeability
	AN26a	LXT310 Line Protection Circuitry
	AN29	LXT30x Transceiver/Frame Interface
	AN31A	LXT318 Long-Haul E1 Transceiver Solution
	AN32	T1 Jitter Performance Measurement 9-11
	AN34	LXT30x and LXT318 Interchangeablity 9-17
	AN36	LXT318 Long-Haul E1 Transceiver
	AN38	LXT332 Dual Channel T1/E1 Transceiver Solution
	AN39	LXT332 Dual Channel T1/E1 Transceiver Solution

	AN41	Level One Short-Haul Devices	9-33
	AN42	Crystal-Less El Long-Haul Solutions	
	AN44	Jitter Performance Requirements for E1 Leased Lines	9-43
	AN46	LXT300/300Z/304A/305A Integrated Short-Haul Transceivers	9-47
	AN47	LXT360/361 Line Protection Circuitry	9-49
	AN48	SCR Latch-up Model	9-53
	AN50	Crystal-Less El Long-Haul Solutions	9-55
	AN52	Migration From CS61574A/CS61575 to LXT350	9-61
	AN54	Migration From LXT324 to LXT325	9-67
	AN55	Universal 120/100/75 Ohm Transceiver Termination	
	AN56	Designing an ITU G.742 Compliant PDH Multiplexer W/ LXT332 Dual T	ran. 9-73
	AN57	TBR12/13 Compliant Design Solutions For LXT360	
	AN9501	SXT6234 E-Rate Multiplexer; 16-E1/E3 Multiplexer/Demultiplexer	
	AN9601	SXT6234 E-Rate Multiplexer; Multiplexing/Demultiplexing 4 Data Chann	
	Transformers	Transformer Specifications.	
	Crystals	Quartz Crystals for TI/EI Transceivers	
10	•		
10	Telecom Product Eva		10.1
	LDB300	Evaluation Board for T1/E1 Transceivers	
	LDB332	Evaluation Board for T1/E1 Applications	
	LDB334	Evaluation Board for Quad E1 Applications	
	LDB350/360	Evaluation Board for T1/E1 Short- and Long-Haul Applications	
	LDB70206	HDSL Evaluation Kit for 784 kbps Applications	
	LDB70207	HDSL Evaluation Kit for 1168 kbps Applications	10-11
	LXD710	Evaluation Board for HDSL Framer/Mapper	10-13
	LXDMDSL	Mult-Rate DSL Transceiver Evalutaion Board	
	SDB6208	Evaluation Board for the SXT6234	
	SDB6234	Evaluation Board for the SXT6234	10-19
11	Ethernet Phy Produc	ts	
**	LXT901A/907A	Universal Ethernet Interface Transceivers	11-1
	LXT902	10BASE-T Media Attachment Unit	
	LXT904	Ethernet AUI Transceiver	
	LXT905	10BASE-T Transceiver.	
		Ethernet Twisted-Pair/Coax Adapter	
	LXT906	Universal Ethernet Interface Adapter	11 107
	LXT908		
	LXT944	Quad 10BASE-T Transceiver Fast Ethernet Transceiver for 100BASE-TX/FX and 10BASE-T	11 165
	LXT970		
	LXT974	Fast Ethernet 10/100 Quad Transceiver	. 11-221
12	Ethernet Hub and Re	peater Products	
	LXT914	Flexible Ethernet Multi-Port Hub Repeater	12-1
	LXT915	Simple Quad Ethernet Repeater	12-31
	LXT916/917	Multi-Port Hub Repeater	
	LXT918	Multi-Segment Hub Repeater	
10			
13	LAN Application Not		10.1
	AN23	LXT902 and 906 Line Impedance Matching	
	AN35	Design Guide for LXT901/907 Ethernet Interface	
	AN45	Design Guide for LXT914 Flexible Quad Ethernet Repeater	
	AN51	MAC Interface Design Guide	
	AN60	LXT905 MAC Interface Update	
	Transformers	Transformer Manufacturers	13-19

14	Package Specifications and Ordering Information Package Specifications	14-1
	Key to Part Numbers (Package and Temperature Range Designations) Literature Request Form (Sample - Please call to request current form)	14-9
15	Sales Representative and Distributor Addresses, and Level O	ne Offices
	Corporate Offices	
	North American Offices	
	International Offices	
	Distributors (USA)	
	Distributors (Canada)	
	Sales Representatives (USA)	
	Sales Representatives (Canada).	
	Sales Locations (Europe).	
	Sales Locations (Asia / Pacific).	
	Sales Locations (South America)	15-12

1

General Information

Providing Silicon Connectivity Solutions for Communications Systems

Background

Level One Communications, Incorporated of Sacramento, California, is a leading supplier of Silicon Connectivity Integrated Circuit (IC) Solutions for complex analog and digital (mixed-signal) transmission and networking applications. The company specializes in the development of integrated circuit Application Specific Standard Products (ASSPs), such as transceivers, repeaters and related devices used in two key areas of the telecommunications and data communications industry. These are:

- 1. Interface solutions for digital access and transport transmission systems, including fast-growing T1/E1, and
- 2. Local/Wide Area Networking (LAN and WAN) solutions, including Ethernet LAN, and datacom.

A majority of Level One's products contain complex functions integrated onto a single silicon chip for applications formerly requiring multiple chip or board level solutions.

The company's products target the mixed-signal communications IC market which was estimated to be \$4.9 billion in 1995. This market is projected to reach \$10.8 billion by 2000, according to VLSI Research.

History & Revenue Growth

Level One was founded in November 1985. The company completed an initial public offering in August, 1993, followed by a secondary offering which was completed in February, 1994. Level One is traded on the Nasdaq exchange under the symbol LEVL. As its name implies, Level One's initial focus was related to the physical layer (layer one) of the Open Systems Interconnection (OSI) seven-layer network reference model developed by the International Standards Organization.

In April 1994, Level One moved from its original Folsom, California location to a new 87,000 square foot facility in Sacramento, California. In April 1996, company operations were expanded with the addition of a 51,000 square foot building in the same industrial park.

During 1995, the company acquired San Francisco Telecom of San Francisco, California, a design firm specializing in system and IC level designs related to SONET/SDH, cable modems, and wireless applications. The company also made an investment in Maker Communications of Waltham, Massachusetts, which specializes in ATM cell processing. In December 1996, Level One acquired Silicon Design Experts, Inc. (SDE.). This strategic technology acquisition enhances Level One's mixed-signal connectivity expertise with the addition of world class, customizable DSP technology, tools and cores immediately applicable for accelerated development of 1 gigabit Ethernet and other high speed DSP-based communications applications.

Level One achieved 80% annual compound revenue growth for the five year period from 1992 to 1996. The company's revenues were \$112 million in 1996, and it has been profitable in each quarter since the first quarter of 1992. Total assets were \$112 million at year end 1996.

The Electronic Communications Infrastructure

Level One's advanced Silicon Connectivity Solutions are key building blocks for digitized voice, data and multimedia networks, linking homes and businesses across the nation and around the world. While the telephone and cable TV operating companies in North America today have a total installed plant of 430,000 miles of coaxial cable and 12 million miles of fiber optic cable, there is a total of 1.2 billion miles of copper phone wire in place.

Demand is increasing for mixed-signal Silicon Connectivity Solutions. Level One will continue to leverage the installed base of copper wire to implement the growing number of advanced interactive, multimedia, and enterprise networking applications. These include videoconferencing, Group IV Fax, telecommuting, image retrieval, teleconferencing, wide area connectivity, leased line backup, file transfer, PC access, remote LAN, CAD, CAE, and CAM. Simultaneously, the company has initiated programs to provide solutions which serve the growing needs of the future mixed-media, coax cable, fiber and wireless environments.

New Products

Level One continues to add to its portfolio of more than 60 products by integrating higher layers of the OSI model into its IC functions, such as data transfer/conditioning functions (layer two), as well as network switching, routing and control functions (layer three). Level One's products are aimed directly at the rapidly growing digital telecom/datacom market. These Level One Silicon Connectivity Solutions are essential in an age when new technologies and customer demands are increasing the need for higher transmission speeds and greater system performance.

As demand increases for higher data transmission speeds— (beyond 64 kilobits per second) to megabit and gigabit levels—Level One continues to implement its product migration strategy by developing mixed-signal devices required at these higher bit rates. The technologies and IC design techniques Level One has perfected for current mixed-signal communication markets are also applicable for the development of solutions addressing broadband coaxial cable or fiber optic transmission environments.

Industry Leadership

Major ingredients of a firm's success can be found in the number of industry leadership positions a company achieves for itself, as well as by the number of industry "firsts" and proprietary products it develops. With a growing list of patents, Level One maintains an extensive research and development program to develop state-of-theart Silicon Connectivity Solutions for the mixed-signal transmission and networking markets. Level One's R&D program has already yielded significant successes, as evidenced by the following partial list of accomplishments:

Transmission Achievements

- A world leader in twisted-pair telecom/datacom transceivers
- World's first supplier of long-haul T1 transceivers with a one-chip CSU for networking applications
- A complete line of fully integrated T1/E1 short-haul transceivers (Level One is the number one supplier in this market)
- The industry's first fully integrated quad T1/E1 receivers used in the growing SONET multiplexing and T1/E1 test, monitoring and performance market
- Exclusive worldwide provider of integrated Clock Rate Adapters for E1 and T1 interfaces
- The world's only integrated T1 and E1 repeater chips (Level One offers four repeaters: single T1, dual T1, single E1 and dual E1)
- Organized consortium of leading manufacturers to develop chips compliant with the new industry standard for High bit rate Digital Subscriber Line (HDSL) interface at T1 or E1 speeds: our Level One HDSL data pump is the world's most integrated solution
- Level One's new MDSL data pump chip set, introduced in February 1997, delivers high-speed internet access to homes and small business up to ten times faster than today's analog modems at a lower component cost

Networking Achievements

- Developed the world's first fully integrated extended range transceivers for Digital Data Service (DDS) originally called Dataphone Digital Service by AT&T— and Switched 56 service
- Assisted in the rapid growth of the LAN market with 10BASE-T Ethernet network interface connectivity designs
- Introduced a single-chip Media Attachment Unit (MAU) used to connect to an Ethernet LAN and a hub transceiver for multipoint repeaters. Level One is one of the world's top three 10BASE-T transceiver suppliers (Source: DataQuest)
- Introduced the industry's first Ethernet twisted-pairto-coaxial cable adapter IC
- The first firm (in 1992) to address the data communications industry's electromagnetic interference needs by integrating transmit filter functions onto a chip
- Developed the first multiport quad hub repeater chip, the LXT914, with integrated transmit filters for 10BASE-T networks
- Introduced the LXT970, one of the industry's first commercially available CMOS, single-chip 10/100 Mbps Ethernet solutions

Unique Design and Modeling/ Simulation Systems

At the heart of Level One's product development effort is a world-class team of silicon designers specializing in mixed-signal communications. This rare breed of IC design engineer is very much in demand among original equipment manufacturers and also among developers of tele-com/datacom chip-level components. To assist this team in its R&D pursuits, Level One is using a state-of-the-art Computer Aided Design (CAD) system as well as a proprietary software modeling and simulation system (LxWAVE[®]). This unique design environment enables Level One to develop fully simulated mixed-signal products quickly, taking the characteristics of target transmission lines into account.

LxWAVE is a very effective proprietary software simulation tool used to model both the physical-level communications system and the associated metallic transmission networks. It is composed of two modules: LxNET[®] and LxSYS^M. LxNET is transmission simulation software used to model dispersion and attenuation of baseband signals for a given set of twisted-pair transmission line characteristics. The LxSYS software module simulates interrelated functional blocks as a system, and models the transceiver's resulting behavior and performance. Together

LxNET and LxSYS accurately predict system-level performance of Silicon Connectivity Solutions in actual transmission networks. These software tools, combined with very powerful automatic test equipment, enable Level One to test its ICs as if they were transmitting in the real world.

Multiple Foundry Strategy

Level One's flexible design methodology utilizes multiple independent wafer foundries to fabricate its integrated circuits. This enables Level One to optimize its manufacturing base to take advantage of process innovations and production schedules. The Company has entered into longterm wafer supply agreements with some of its suppliers.

Quality and Reliability Assurance

Extremely stringent quality and reliability standards are every employee's responsibility. Level One's quality and reliability assurance focus starts at the product definition stage and continues through every aspect of product design, manufacture, testing and customer support.

The company has developed an exacting quality assurance process that has proven successful in reducing failure rates to an absolute minimum for the more than fifteen million ICs produced by the company to date. A rigorous program of wafer foundry and assembly subcontractor selection, audit, qualification and monitoring — as well as internal controls — ensures a consistent supply of high quality and reliable devices.

To qualify to be a Level One wafer foundry or assembly subcontractor, each site must meet an established benchmark performance level. Once qualified, all parties must continue to comply with these benchmarks to maintain Level One's exacting, state-of-the-art manufacturing and production standards.

Low Failure Rates

The success of Level One's quality and reliability assurance program is demonstrated by the company's extremely low failure/return rate. Level One's defect return rate is less than 0.2 percent of annual sales. The average Mean Time Before Failure (MTBF) for Level One's ICs is in excess of 10 million hours.

ISO 9001 Worldwide Registration

In February 1997, Level One achieved registration of its quality management system to the International Organization for Standardization ISO 9001 standard. Registration was granted by Underwriters Laboratories Inc. (UL) under UL's accreditation by Raad voor Accreditatie (RVA), the Dutch Council for Accreditation, and by ANSI-RAB.

ISO 9001 is one of the ISO 9000 series of quality system standards developed by the International Organization for Standardization, a worldwide federation of national standards bodies. The importance of the ISO 9000 movement is being driven by a global marketplace that demands a baseline for verifying the quality systems of suppliers worldwide. ISO 9001 provides a model for quality assurance (and continuous improvement) in Design/Development, Production, Installation and Servicing which focuses on meeting customer requirements.

"Achieving ISO 9001 certification status reinforces Level One's dedication to providing the highest quality products to our customers," said Dr. Robert Pepper, president and CEO, Level One Communications, Incorporated. "ISO certification shows our customers that we are committed to world-class standards while also laying the foundation to manage the continued growth of our company and the growing demand for our products. This is another significant milestone in Level One's growth."

"Our customers include the world's largest telecom and network system providers, who have zero tolerance for error and require extreme confidence in the components they use," said Dan Koellen, vice president, quality and reliability assurance for Level One Communications. "As demand for our products grows, ISO 9001 certification is a reflection of our continued daily commitment to quality and innovation. It is also a recognition of the disciplines and processes we use to manage our business."

Summary

Level One's goal is to become the prime source for the bestperforming, highest quality communication IC products. Our goal will be achieved by delivering products on time with strong field sales and application support, and better customer service than any other semiconductor provider in the market. The company is focused on developing the most cost-effective Silicon Connectivity Solutions. To maintain its leadership position, Level One strives to continue to reduce the cost of its products and to provide its customers with higher added-value Silicon Connectivity Solutions.

* LxWAVE[®], LxNET[®], and LxSYS[™] are trademarks of Level One Communications, Incorporated.

Quality and Reliability

Designing in Quality

Level One has developed a unique approach to transceiver design and testing. This approach enables us to ensure that all of the devices we manufacture meet performance specifications. We use $LxWAVE^{TM}$, our proprietary simulation tool, to generate analog signals that model transmission through various networks and systems. This enables Level One to test designs and finished devices under simulated conditions to ensure performance to specifications in extremely demanding scenarios.

LxWAVE consists of two simulation tools: LxNET[™] and LxSYS[™]. LxNET starts with a transmission line model using stored transmission line parameters, many of which are actual laboratory measured values. Level One has constructed a wide variety of line models of various gauges , including single and multi-pair bundles. The transmission loop environment can then be modeled by simulating the effect of topology on the transmission network. The topology can include transformers, inductors, capacitors, resistors, active circuitry, bridge taps and other external disturbers. With a given line model, LxNET calculates the response of the loop anywhere along the loop.

LxSYS, the second part of LxWAVE, simulates the behavior of the transceiver in design. To construct the behavior model, LxSYS uses software modules corresponding to circuitry in the Level One design library. Jitter and noise, analog offsets and non-linearities, and bandwidth limitations may also be added.

In the design stage, Level One engineers use LxWAVE to simulate the response of the transceiver for various inputs and under various operating conditions. With these responses, we develop a template defining the range into which the transceiver's output should fall. These templates are saved for later testing.

Designing In Reliability

During design, the reliability aspect of the device is as important to Level One as performance, die size, and yield. Therefore, Level One has established design/layout rules and guidelines aimed at ensuring reliability. These guidelines are followed carefully for all Level One designs; they are updated as required by processing and packaging advances, as well as failure analysis history. Design and layout guidelines used for Level One designs are intended to ensure reliable circuit operation. Included in the guidelines are rules intended to reduce susceptibility to latch-up, enhance circuit ESD robustness, avoid trace and contact electromigration, ensure dielectric integrity, reduce metal stress, and provide compatibility with packaging. These guidelines are determined in conjunction with the wafer foundries to guarantee compatibility with their processes. Packaging and assembly related guidelines are developed with the assembly house to enhance package reliability and die protection.

In addition, Level One designs are conservative. Chip components are not designed to the limits of process capabilities or operated under conditions that could lead to instability. Designs are subjected to in-depth circuit simulation at temperature, voltage and processing extremes before being committed to silicon. In order to guarantee operation at these extremes, circuit designs must be conservative.

Level One devices are designed for fabrication at more than one targeted foundry. The processes used by these different foundries are similar, but not identical. Therefore, our designs must be able to encompass the process differences between foundries. This results in devices less sensitive to variations that may occur during processing or during the life of the device.

Foundry and Assembly House Selection and Qualification

The process of choosing and qualifying a wafer foundry or an assembly house starts long before any product is built at the facility. Each subcontractor is studied in detail by a team consisting of representatives from quality and reliabilty, operations, production, and design. This ensures compatibility with Level One requirements.

Factors examined at an assembly house include: package capabilities, attach types, temperature profiles, mold compound and epoxy types, inspections, process control, moisture sensitivity, and quality procedures.

Foundries are evaluated for their ability to produce Level One designs. The foundry's device models or Level One generated models are used to determine the foundry's compatibility. Extensive simulation is performed at process,

Quality and Reliability

voltage and temperature extremes to ensure circuit functionality. The process flow and construction topology are evaluated for top coat effectiveness, glassivation and metallization step coverages, effectiveness of planarization, electromigration performance, etc. Reliability data is evaluated for compliance with Level One reliability requirements.

The manufacturing and quality procedures followed by the foundry are evaluated carefully to be sure they can control the process to Level One specifications. Also, complete lot traceability must be retained.

Finally, both the foundry and the assembly house must be committed to constant quality improvement through the use of control charts, quality groups, and corrective/preventive actions on anomalies reported by customers. Currently, the company has qualified foundries in North America, Europe and Asia. Multiple foundries reduce the risks associated with dependency on a single vendor.

Level One assembly in plastic DIP, PLCC, TQFP and PQFP packages is currently being handled by assembly houses in Asia and the USA.

Level One product is used to assess the capability of the subcontractor to meet Level One requirements through product verification, characterization, and reliability qualification.

Subcontractor Control

Subcontractor control is important to ensure consistent performance. Control is a continuous process, accomplished through a multifaceted approach. Subcontractor surveillance is an important part of the Level One standard product flow. Electrical measurements of basic transistor and topology structures are examined for each wafer lot received. Each incoming packaged device lot is subjected to material verification and QC monitor report review. In addition, incoming wafers and packaged devices are visually inspected on a sample basis. Any anomalies or trends are detected and reported early in the process.

A team consisting of quality engineering, operations, and purchasing monitors the performance of the subcontractor. This team meets with the subcontractor periodically to evaluate performance. In addition, this team maintains continuous contact with the subcontractor to ensure a good working relationship. The subcontractor's performance is monitored by evaluating the results of subcontractor surveillance, product monitor, quick reaction quality and reliability monitor, and process capability index reports. Periodically, Level One audits foundry and assembly house process monitor and control procedures, quality and reliability monitoring, incoming material quality assurance, and process capability indexes.

Product Reliability Qualification

Level One products must undergo a strenuous reliability qualification procedure before production shipments begin. Product reliability qualification includes: establishment of functional and parametric test procedures; reliability qualification of the device; reliability qualification of the process to be used; and reliability qualification of the package.

A device built using a new foundry or a new assembly house must undergo the most encompassing reliability qualification procedure. Because subsets of the reliability qualification procedure are specific to foundry processes and packages, products using pre-qualified processes or packages require qualification only of the portions of the procedure not satisfied by prior qualification. Every qualified product is capable of meeting each applicable reliability qualification requirement.

Among the tests and stresses included in the reliability qualification procedure are the following:

- operating life tests
- Temperature Humidity Bias (THB) 85 °C/85% RH or 130 °C/85% RH
- autoclave
- temperature cycling
- thermal shock
- latch-up immunity
- ESD susceptibility
- · package and lead mechanical integrity
- · moisture sensitivity evaluation

Such comprehensive testing stresses the device design, process and package. For example, operating life tests stress the device with bias (in a static or dynamic mode) at elevated temperatures to accelerate possible failure mechanisms that could occur during the life of the device. Failure mechanisms accelerated during life testing include parameter shifts, leakages, electromigration and oxide defects. These failure mechanisms have been thoroughly studied, and found to follow the Arrhenius relationship for reaction rate acceleration with temperature. This enables Level One to simulate life at a nominal operating temperature in a relatively short time. Autoclave and THB tests are used to evaluate the resistance to moisture of devices packaged in plastic. The ability of the package to protect the die is evaluated in autoclave, in an unbiased, high temperature, pressurized steam environment. Metallization corrosion is the dominant failure mechanism. Bias-dependent moisture effects are enhanced through THB, which is a humid (85% RH), high temperature (85 °C or 130 °C) environment. Failure mechanisms include metallization corrosion, leakages and voltage shifts. The package, process, and circuit design are all stressed with THB.

Package and bond integrity are evaluated using temperature cycling, thermal shock, and package and lead mechanical testing. Level One also evaluates the moisture sensitivity of surface mount devices according to JEDEC and IPC standards.

Destructive physical analysis (DPA) is used to evaluate the details of construction, workmanship, and potential reliability. In this analysis, the package and/or die is dissected and examined in detail, using X-ray, optical microscopy, and scanning electron microscopy. Items such as bond wire dress, ball formation, die attach, lead frame, package or mold compound, passivation integrity, die construction and workmanship are analyzed.

Product Monitoring

After a product is qualified, Level One's product monitoring program continues to verify quality and long-term reliability. Under this program, the Quality and Reliability Department takes periodic samples of the product from finished goods and subjects them to selected product qualification tests. Process related tests are performed on a quarterly basis. Each process/foundry used in production is monitored separately. Package reliability testing is performed biannually-annually. Each production package type/assembly is monitored individually.

The results of the reliability testing performed for the product monitoring program are published in Level One Reliability Reports.

An important area of product monitoring is reviewing failure history for indications of process or assembly anomalies. If trends are seen, the anomaly is identified through failure analysis, pinpointing possible process or assembly influences. Level One then implements corrective actions, working with the foundry or assembly house. Design rules and guidelines are modified, if necessary, to prevent future recurrence of the failure mechanism.

Quick Reaction Quality and Reliability Monitor (QR)²M

Assembled devices are monitored monthly in the $(QR)^2M$ using tests of short duration. These tests include solderability, x-ray, ball shear, physical dimensions, autoclave, and others. These tests provide insight into the performance of the subcontractors' processes. The key points of the program are to provide quick feedback, to enable quick detection of trends, and to establish a baseline for each processes' capability.

Production Flow

The Level One production flow is shown in Figure 1. Level One participates in quality and reliability monitoring through each aspect of the production cycle by reviewing electrical and inspection data from the foundry and assembly house. All device testing and lot certification, as well as wafer and package inspections, are performed by Level One and certified subcontractors.

With each wafer lot, the foundry sends results of electrical measurements of basic transistor and topology structures. These measurements are reviewed and compared to specified values for the process. If the deviation falls outside the specification limits, the material is held by the foundry until disposition by Level One. Feedback to the foundry is immediate, and a mutually-agreed-upon corrective action plan is executed.

A similar inspection and QC monitoring report is received with each assembled lot from the assembly house. This report is reviewed for each incoming lot.

Before disposition to finished goods, the lot traveler is reviewed by Quality Assurance to ensure that all test, inspection and production steps have been performed.

A sample of the product must pass a rigorous quality acceptance test before authorization to ship is given. Upon successful completion of this test, authorization to ship is given by Quality Assurance.

By maintaining close working relationships with the foundries and assembly houses, Level One is involved throughout the production of the product.

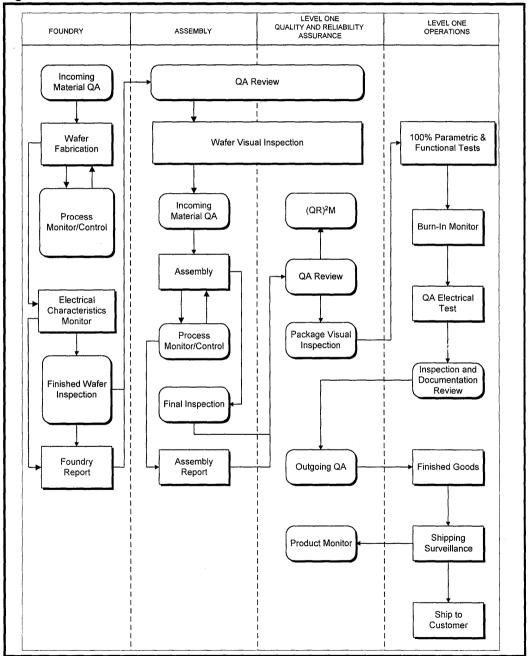


Figure 1: Level One Production Flow

Testing

The test development effort starts at the first stages of design to ensure that the device will be able to be tested completely. This may include special requirements on the design to maximize test effectiveness.

All devices are 100% tested using parametric and functional tests using analog waveforms and digital test vectors. Test vectors are downloaded to the production tester for incorporation into test programs. The analog and digital signals transmitted through various networks are reconstructed by the tester and used as stimuli to the device under test (DUT). Noise can be added to further evaluate the device's response under less than optimum operating conditions. The response is sampled by the tester and compared to the template constructed for the particular input stimulus. Using the reconstructed waveforms, the DUT is also tested for response to various line lengths and superimposed noise amplitudes.

These dynamic functional tests, combined with parametric tests, ensure that the devices are rigorously tested under various operating conditions without the use of cable spools or other hardware.

Product Traceability

To ensure traceability, each lot traveler tracks the product history as follows: foundry lot, assembly, inspections, tests, burn-in monitor, quality control and quality acceptance testing, and shipping destination. This documentation is retained for future reference. The lot traveler enables Level One to determine which lots were shipped to a particular customer. In addition, each device is branded with the lot number and a special trace code to enable complete traceability. The trace code identifies the wafer foundry, assembly, and die revision immediately by inspection.

Electrostatic Discharge

Electrostatic discharge (ESD) can damage sensitive semiconductor devices. Damage occurs unless precautions are taken to eliminate the generation of dangerous static levels, and to design robust circuitry with sufficient protection. Level One uses both approaches to ensure that the devices shipped to our customers are not compromised, and that they will survive industry accepted handling for semiconductor devices.

Level One's design guidelines for ESD protection produce devices which tolerate nominal ESD levels without damage. Before use in device designs, we test the susceptibility to ESD damage of standard input and output cells. In addition, the ESD susceptibility of each device type is determined as part of the product qualification before release to production.

Proper ESD handling of devices is policy at Level One. Those who handle devices are fully trained in the proper procedures for handling static-sensitive devices and know that handling devices incorrectly may damage them. Packaged devices are handled only at special workstations designed to eliminate damaging static levels. All equipment used in the handling of devices is designed to ensure damaging static levels are not present. Packaged devices are shipped in containers designed to eliminate risk of damage caused by ESD.

Constant Improvement Program

To assure shipment of high-quality, highly reliable devices, Level One pursues constant improvement in all aspects of production and testing. Small group problem-solving teams have been assembled. The teams consist of personnel from both operations and quality, working together to solve problems and improve our manufacturing flow.

Periodic quality system reviews examine the effectiveness of internal Level One quality, manufacturing, and product development systems. Recommendations for improvement are made to and approved by Level One senior management.

Quality and Reliability

APPLICATIONS	PRODUCT FAMILY	PART NUMBER	COMMENTS
Test Equipment Line Monitors Line Interface	Quad Receiver	LXT325	 Industry's first quad receiver Incorporates four independent receivers in 28-pin DIP or PLCC Sensitivity allows for up to 20 dB of jack/ cable attenuation Includes loss of signal indication output for each receiver
Access Systems • MUXes • PBXs • DSUs • CSUs • Routers • Concentrators • Bridges • PCs	Short-Haul T1/E1 Transceivers	LXT300Z	 Constant output impedance independent of marks and spaces Low power consumption (400 mW typ.) Enhanced DPM monitor detects single line shorts Output tristate capability Pulse amplitude stabilization Includes receive Jitter Attenuation starting at 3 Hz
 Video Conferencing Channel Extenders 		LXT301Z	 Similar to LXT300Z without Jitter Attenuator Meets BABT E1 short circuit limit of 50 mA with ext. resistors
 Transport Systems Channel Banks Digital Cross-Connects Trunk Cards for C.O.s and PBXs DLC Systems PDH/SDH MUXes 		LXT304A	 Includes receive Jitter Attenuation starting at 3 Hz Low power consumption of 400 mW max Constant low output impedance driver for high return loss Meets new ETSI TBR 12 standard on output jitter Low receive clock quantization jitter of < 1/ 16 U.I. Analog/Digital LOS processor meets G.775 Programmable Transmit Return LOS using ext. resistors Output driver tristate capability

APPLICATIONS	PRODUCT FAMILY	PART NUMBER	COMMENTS
Access Systems MUXes PBXs DSUs CSUs COncentrators Bridges PCs Video Conferencing Channel Extenders Transport Systems Channel Bank Digital Cross-Connects Trunk Cards for C.O.s and PBXs DLC Systems PDH/SDH MUXes	Short-Haul T1/E1 Transceivers	LXT305A	 Includes Transmit Jitter Attenuation starting at 3 Hz Low power consumption of 400 mW max Constant low output impedance driver for high return loss Meets new ETSI TBR-12 standard on output jitter Low receive clock duty cycle variation Low intrinsic receive clock quantization jitter 32-bit FIFO accommodates up to 28 U.I. of gapped clocks without overflow Output driver tristate capability Analog/Digital LOS processor meets G.775 Meets BABT E1 short circuit limit of 50 mA with ext. resistors
		LXT307	 E1 only transceiver without jitter attenuation Analog/Digital processor meets G.775 Meets BABT short circuit limit of 50 mA with ext. resistors 75/120Ω operation without component changes Low 2.048 MHz reference clock Constant low output impedance driver for high return loss Low receive clock duty cycle variation Output driver tristate capability

APPLICATIONS	PRODUCT FAMILY	PART NUMBER	COMMENTS					
Access Systems MUXes PBXs DSUs CSUs Routers Short-Haul T1/E1 Transceiver		LXT331	 Single chip dual T1 transceiver High transmit and receive return loss Complete line driver and data recovery functions Meets industry specifications including ITU G.703, ANSI T1.403 and AT&T Pub 62411 					
 Concentrators Bridges PCs Video Conferencing Channel Extenders Transport Systems		LXT332	 Single chip dual T1/E1 transceiver Tx/Rx switchable crystal-less Jitter Attenuator On-chip driver short circuit monitoring (DFM) On-chip encoder/decoder QRSS detector/generator AIS/BPV insert and detect Software switchable between T1 and E1 operation Low-frequency reference clock (1.544 or 2.048 MHz) 					
 Channel Banks Digital Cross-Connects Trunk Cards for C.O. and PBXs DLC Systems PDH/SDH MUXes 							LXT334	 Quad E1 transceiver Low power consumption of 410 mW On-chip HDB3 and AMI encoder/decoders, and clock recovery function Independent Loss of Signal processor for each channel conforms to ITU G.775 recommendation Line driver patent pending
			LXT335	 Quad E1 analog interface Low power consumption of 410 mW Simple design for use with integrated digital back-end circuits 				
		LXT350	Single channel version of LXT332Serial microprocessor control port					
		LXT351	 Single channel version of LXT332 8-bit parallel microprocessor control port 					

APPLICATIONS	PRODUCT FAMILY	PART NUMBER	COMMENTS
Access Systems • Network Access • ISDN-PRIs • CSUs	Long-Haul T1 Transceiver	LXT310	 Industry's first fully compliant T1 CSU/ISDN transceiver Operates over 6,000 feet of Twisted-Pair cable
• NTUs Transport Systems	Long-Haul DECT Transceiver	LXT317	 Fully integrated Long-Haul transceiver @ 1.152 Mbit/s Operates over 3.5 km of 0.6mm cable Optimized to address Digital European Cordless Telecommunications (DECT) and Personal Communications Service (PCS) standards
 Office Repeaters Cellular Bays Base Station Networking 	Long-Haul E1 Transceiver	LXT318	 Similar to LXT310, used in E1 applications Fully compliant with ITU-T specifications for E1 Short-Haul (6dB) or Long-Haul (43dB) applications Meets new ETSI TBR 12/13 standard on output jitter
	Short-Haul/ Long-Haul T1/E1 Transceiver	LXT360/ LXT361	 T1/E1 Short-Haul and Long-Haul transceiver Software programmable T1/E1 operation On-chip QRSS, BPV and AIS generator/ detector Analog/Digital LOS processor meets G.775 Crystal-less Jitter Attenuator Serial (LXT360) and parallel (LXT361) control port
 T1/E1 Repeaters Line Repeaters Office Repeaters Test and Monitor Equipment 	T1 Repeaters	LXT312	 Industry's only fully integrated Dual T1 repeater Requires only a crystal and a few other components to complete a repeater design No tuning coil required Low power consumption 0 to 36 dB dynamic range
	Ed Densetten	LXT315	Single version of LXT312
	E1 Repeaters	LXT313	 Industry's only fully integrated Dual T1 repeater Requires only a crystal and a few other components to complete a repeater design No tuning coil required Low power consumption 0 to 43 dB dynamic range
		LXT316	Single version of LXT313

APPLICATIONS	PRODUCT FAMILY	PART NUMBER	COMMENTS
Frame Relay DDS and SW/56 DSU's • Leased-line DDS • Internet Service Provider (ISP) Equipment	DDS/ Switched 56 Transceivers	LXT400	 Fully integrated all-rate extended range transceiver Receive equalizer filter can handle up to 40 dB at rates below 56 kbps, and up to 49 dB at 56 kbps and 72 kbps
 Frame Relay Access Devices (FRAD) 		LXT441	 Single-chip Digital Modem for 56/64 kbps DSUs Allows direct connection between serial port and analog leased lines
Access Systems • PBXs • NTUs • CSUs	Low Jitter T1/E1 Clock Rate Adapters	LXP600A	 Industry's first Clock Adapter (CLAD) for use as internal system timing generator Converts between T1 and E1 Patented locking method enables frequency conversion with no external devices Meets AT&T 62411 and ITU-T G.732 jitter specs when teamed with Level One transceivers Provides 6 MHz High Frequency Output (HFO)
 Transport Systems DACs 		LXP602	• Similar to LXP600A, with 8 MHz HFO
Office Repeater BaysMobile Switches		LXP604	 Converts between 1.544 MHz and 4.096 MHz, with 6 and 8 MHz HFO
		LXP610	 Multi-rate Clock Adapter Pin-selectable frequency conversion between 11 different rates (1.544 MHz to 8 MHz) Accepts seven CLK1 input frequencies and provides five HFO output frequencies
 PDH MUX E1, E2, E3 multiplexers T1 multiplexing (point to point applications) 	PDH Multiplexers	SXT6234	 Performs four-E1 to E2 or four-E2 to E3 multiplexing Compliant with ITU-T G742 and G.751 recommendations Usable for four T1 multiplexing Optimized for microwave radio

APPLICATIONS	PRODUCT FAMILY	PART NUMBER	COMMENTS
 HDSL T1 or E1 (2-pair) and fractional T1 or E1 transport Digital pair-gain Wireless base stations to switch interfaces Campus and private networking High-speed digital modems 	High Bit Rate Digital Subscriber Line (HDSL) Products	SK70704/ SK70706	 HDSL chip set for 784 kbps data transmission Fully-integrated analog core chip Integrated activation/start-up Optimized for one-pair operation
		SK70704/ SK70707/ SK70708	 HDSL chip set for 1168 kbps data transmission Fully-integrated analog core chip Integrated activation/start-up Optimized for one-pair operation
		LXP710 Advance Information	 HDSL framer/mapper Compliant with ETSI ETR-152 requirements E1 to HDSL loop multiplexing/ demultiplexing HDSL overhead management DPLL for E1 timing recovery HDSL transmit stuffing control
 Multi-Rate DSL High speed residential Internet access Extended range fractional T1/E1 transport 4, 6, 8 or 12-channel digital pair-gain Wireless base station to switch access WAN access for LAN routers 	Multi-Rate Digital Subscriber Line (MDSL) Products	SK70720/ SK70721	 Chip set configurable to 272, 400, 528, and 784 kbps data transmission Fully integrated analog core chip Supports transparent repeater applications without an external processor or glue-logic Supports processor directed rate selection driven by receive signal level and noise margin Continuously adaptive echo canceller and equalizers perform to changing noise and line characteristics

Level One Networking Product Reference Guide

APPLICATIONS	PART NUMBER	FEATURES		
	Wide A	rea Networking		
T1/E1 RepeatersLXT312• Line RepeatersOffice Repeaters• Office Repeatersrest and Monitor Equipment		 Industry's only fully integrated Dual T1 repeater Requires only a crystal and a few other components to complete a repeater design No tuning coil required Low power consumption 0 to 36 dB dynamic range 		
	LXT315	Single version of LXT312		
	LXT313	 Industry's only fully integrated Dual E1 repeater Requires only a crystal and a few other components to complete a repeater design No tuning coil required Low power consumption 0 to 43 dB dynamic range 		
	LXT316	Single version of LXT313		
Frame Relay DDS and SW/56 DSU's • Leased-line DDS	LXT400	 Fully integrated all-rate extended range transceiver Receive equalizer filter can handle up to 40 dB at rates below 56 kbps, and up to 49 dB at 56 kbps and 72 kbps 		
 Internet Service Provider (ISP) Equipment Frame Relay Access Devices (FRAD) 	LXT441	 Single-chip Digital Modem for 56/64 kbps DSUs Allows direct connection between serial port and analog leased lines 		
	Specialty Etl	nernet Transceivers		
Ethernet Twisted-Pair MAUs External AUI to TP Transceivers Internal MAUs 	LXT902	 Six LED drivers for diagnostics and status reporting Full-duplex capability Signal Quality Error (SQE) can be disabled for hub and switch applications Automatic AUI/RJ45 selection for internal MAU applications 		
Ethernet Twisted-Pair to Coax Adapters • BNC-TP External Converters	LXT906	 Industry exclusive Direct interface to coax Ethernet transceiver and RJ45 Twisted-Pair connector Level shifted data pass-through Collision detection / correction Reversed polarity detection/ correction LED drivers for Tx, Rx, collision, reversed polarity and link functions 		

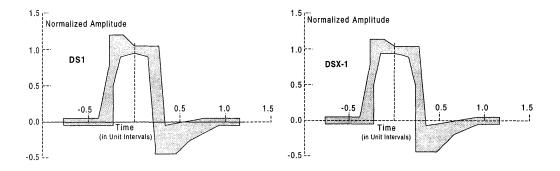
APPLICATIONS	PART NUMBER	FEATURES		
	10 Mbps Eth	nernet Transceivers		
Ethernet Interface Adapter (Universal) • Computer/Laptop/Workstation Interface Boards • LAN Repeaters • Printer Network Attachments • PCMCIA LAN Cards • Workstation/Graphic Terminals • PC-PC Servers (Adapter/ Motherboard) • 10BASE-T Interconnects (MAU) • Bridges/Routers • Terminal Servers • Point-Of-Sale Interfaces • Switching Networks	LXT901A/ LXT907A	 Integrated filters Provides all active circuitry for interfacing 802.3 controllers to an Attachment Unit Interface (AUI) or 10BASE-T media Integrated Manchester encoder/decoder, reversed polarity detection/correction LED drivers Full duplex capability Power Down Mode Four Loopback Modes Selectable termination impedance for use with shielded or unshielded twisted-pair (<i>LXT901A Only</i>) Signal Quality Error (SQE) Disable function for hub and switch applications (<i>LXT907A Only</i>) 		
Ethernet Interface Adapter (AUI) • Bridges, Routers • LAN-to-WAN access equipment	LXT904	 Provides all active circuitry for interfacing 802.3 controllers to an Attachment Unit Interface (AUI) Manchester encoder/ decoder LED drivers Full duplex capability 		
Ethernet Interface Adapter (10BASE-T) • Portable computers • PDAs • Switching Hubs • Printer Adapter Cards • PCMCIA Cards	LXT905	 3.3V or 5V operation Power down mode for battery operation Provides all active circuitry for interfacing 802.3 controllers to a 10BASE-T media Includes Manchester Encoder/ decoder, reversed polarity detection/correction, integrated filters LED drivers Full duplex capability Signal Quality Error (SQE) can be disabled for hub & switch applications 		
 Ethernet Interface Adapter (Universal) 10BASE-T Hub and Switching products 10BASE-T LAN adapter boards for computers/workstations 	LXT908	 Improved Filters - Simplifies FCC Compliance Single 3.3V or 5V operation Integrated Manchester Encoder/Decoder 10BASE-T compliant Transceiver AUI Transceiver AUI Transceiver Supports Standard and Full-Duplex Ethernet Automatic/Manual AUI/RJ45 Selection Automatic Polarity Correction SQE Disable/Enable function Power Down Mode with tristated outputs Four loopback modes Four LED Drivers 		

Level One Networking Product Reference Guide

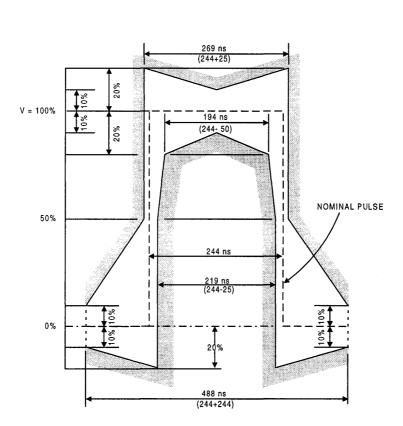
Level One Networking Product Reference Guide PART APPLICATIONS NUMBER **FEATURES** Universal Quad Ethernet LXT944 • Four independent 10BASE-T transceivers with integrated filter, Manchester encoder/decoders Interface Adapter · Four LED drivers per port · Ethernet Switches · Full duplex capability on each port · Multiport File Servers and Print • Signal Quality Error (SQE) can be disabled for hub and Servers switch applications Fast Ethernet Transceivers Fast Ethernet Transceiver LXT970 • IEEE 802.3-compliant 10BASE-T and 100BASE-TX using a single RJ45 connection 10/100 Network Interface Cards · Baseline wander correction (NICs) • 100BASE-FX fiber optic capable • 10/100 Switches • Standard CSMA/CD or full duplex operation at 10 or 100 10/100 Repeaters 100BASE-FX NICs, Switches Mbps · Supports both Auto-Negotiation and parallel detection for and Repeaters legacy 10BASE-T or 100BASE-TX systems • LED drivers · MII interface with extended register capability · Configurable for DTE, repeater or switch applications · Encoder bypass for symbol mode applications Exceptional performance on long line lengths Fast Ethernet Quad Trans-LXT974 • Four independent IEEE 802.3-compliant 10BASE-T or 100BASE-TX ports in a single chip ceiver Advance Information • 100BASE-FX fiber optic capable • 10BASE-T, 10/100-TX, or • Standard CSMA/CD or full duplex operation at 10 or 100 100BASE-FX Switches • 10BASE-T, 10/100-TX, or Mbps Compliant with IEEE 802.3u auto-negotiation protocol 100BASE-FX Repeaters and with legacy 10BASE-T and 100BASE-T systems without auto-negotiation capability • On-chip transmit and receive filtering for 10BASE-T and 100BASE-TX · Baseline wander correction • Configurable on-chip LED drivers as well as serial LED output Super MII Interface Mode for reducing customer ASIC pin requirements. · Configurable through MII serial port or via external control pins

APPLICATIONS	PART NUMBER	FEATURES				
Ethernet Repeaters						
 Managed Repeaters Stackable and stand-alone workgroup hubs Embedded Applications Print Servers Multi-port routers Remote Access SOHOs 	LXT914	 Four 10BASE-T ports Reversible AUI port Configuration/status interface 4 LED modes Cascadeable backplane (no glue logic required) Integrated filters Programmable squelch 				
LED Managed Or Unmanaged Repeaters • "Personal" hubs • Stackable and stand-alone workgroup hubs • Embedded Applications - Multi-port Routers - Print Servers	LXT915	 Four 10BASE-T ports Simple AUI port 4 LED modes Cascadeable backplane (no glue logic required) Integrated filters Programmable squelch 				
RMON Managed Repeaters Stackable/Modular Workgroups Embedded Applications Multi-port File Server 	LXT916/ LXT917	 Eight 10BASE-Tports (<i>LXT916</i>) Twelve 10BASE-T ports (<i>LXT917</i>) Supports RMON and the repeater MIB High speed serial management interface Cascadeable backplane improved for stackability 7-pin MAC interface Reversible AUI port (DTE/MAU) Two address-tracking registers per port Integrated filters Activity, collision and per-port status LEDs 				
 Hybrid Repeater/Switches Next generation port-switching applications 	LXT918	 Four independent 10Mb Ethernet Repeaters Twelve 10BASE-T ports Reversible AUI port (DTE/MAU) Internal switch allows the external ports to be switched to any repeater segment When a port is switched to a new segment, its counters will follow Per-segment and per-port support for RMON and the repeater MIB High speed serial management interface 7-pin "roaming" MAC interface Cascadeable backplane Two address-tracking registers per port Integrated filters Activity, collision and per-port status LEDs 				

Level One Networking Product Reference Guide


T1/E1 Short-Haul Transceivers and Receivers

and General


Specifications

1.544 Mbps Pulse Mask (DS1 and DSX-1)

DS1 Template (per ANSI T1. 403-1995)				DSX-1 Template (per ANSI T1. 102-1993)			
Minimum Curve		Maximum Curve		Minimum Curve		Maximum Curve	
Time (UI)	Amplitude	Time (UI)	Amplitude	Time (UI)	Amplitude	Time (UI)	Amplitude
-0.77	-0.05	-0.77	0.05	-0.77	-0.05	-0.77	0.05
-0.23	-0.05	-0.39	0.05	-0.23	-0.05	-0.39	0.05
-0.23	0.50	-0.27	0.80	-0.23	0.50	-0.27	0.80
-0.15	0.90	-0.27	1.20	-0.15	0.95	-0.27	1.15
0.0	0.95	-0.12	1.20	0.0	0.95	-0.12	1.15
0.15	0.90	0.0	1.05	0.15	0.90	0.0	1.05
0.23	0.50	0.27	1.05	0.23	0.50	0.27	1.05
0.23	-0.45	0.34	-0.05	0.23	-0.45	0.35	-0.07
0.46	-0.45	0.77	0.05	0.46	-0.45	0.93	0.05
0.61	-0.26	1.16	0.05	0.66	-0.20	1.16	0.05
0.93	-0.05			0.93	-0.05		
1.16	-0.05			1.16	-0.05		

1.544 MHz T1 Pulse Mask Corner Point Specifications

2.048 Mbps E1 Pulse Mask

Parameter	TWP	Coax	Unit
Test load impedance	120	75	Ω
Nominal peak mark voltage	3.0	2.37	v
Nominal peak space voltage	0 ±0.30	0 ±0.237	v
Nominal pulse width	244	244	ns
Ratio of positive and negative pulse amplitudes at center of pulse	95-105	95-105	%
Ratio of positive and negative pulse amplitudes at nominal half amplitude	95-105	95-105	%

T1/E1 Primary Rate Specifcations

DATA SHEET

APRIL 1996 Revision 0.0

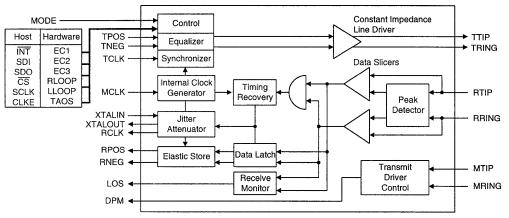
LXT300Z/LXT301Z

Advanced T1/E1 Short-Haul Transceivers

General Description

The LXT300Z and LXT301Z are fully integrated transceivers for both North American 1.544 Mbps (T1) and International 2.048 Mbps (E1) applications. They are pin and functionally compatible with standard LXT300/301 devices, with some circuit enhancements.

The LXT300Z provides receive jitter attenuation starting at 3 Hz, and is microprocessor controllable through a serial interface. The LXT301Z is pin compatible, but does not provide jitter attenuation or a serial interface. An advanced transmit driver architecture provides constant low output impedance for both marks and spaces, for improved Bit Error Rate performance over various cable network configurations. Both transceivers offer a variety of diagnostic features including transmit and receive monitoring. Clock inputs may be derived from an on-chip crystal oscillator or from digital inputs. They use an advanced double-poly, double-metal CMOS process and require only a single 5volt power supply.

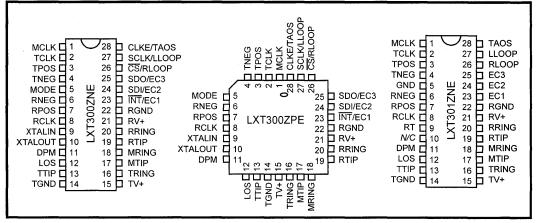

Applications

- PCM/Voice Channel Banks
- · Data Channel Bank/Concentrator
- T1/E1 multiplexer
- Digital Access and Cross-connect Systems (DACS)
- Computer to PBX interface (CPI & DMI)
- · High-speed data transmission lines
- · Interfacing Customer Premises Equipment to a CSU
- Digital Loop Carrier (DLC) terminals

Features

- · Data recovery and clock recovery functions
- Receive jitter attenuation starting at 3 Hz exceeds AT&T Pub 62411, Pub 43801, Pub 43802, ITU G.703, and ITU G.823 (LXT300Z only)
- Line driver with constant low mark and space impedance (3 Ω typical)
- · Minimum receive signal of 500 mV
- Adaptive and selectable (E1/DSX-1) slicer levels for improved SNR
- Programmable transmit equalizer shapes pulses to meet DSX-1 pulse template from 0 to 655 ft
- · Local and remote loopback functions
- · Digital Transmit Driver Monitor
- Digital Receive Monitor with Loss of Signal (LOS) output and first mark reset
- · Receiver jitter tolerance 0.4 UI from 40 kHz to 100 kHz
- Microprocessor controllable (LXT300Z only)
- · Compatible with most popular PCM framers
- Available in 28-pin DIP or PLCC

LXT300Z Block Diagram



LXT300Z / LXT301Z Advanced T1/E1 Short-Haul Transceivers

PIN ASSIGNMENTS & SIGNAL DESCRIPTIONS

Figure 1: Pin Assignments

Table 1: Pin Descriptions

Pin #	Sym	1/O ¹	Description
1	MCLK	DI	Master Clock. A 1.544 or 2.048 MHz clock input used to generate internal clocks. Upon Loss of Signal (LOS), RCLK is derived from MCLK. LXT300Z Only: If MCLK is not applied, this pin should be grounded.
2	TCLK	DI	Transmit Clock. Transmit clock input. TPOS and TNEG are sampled on the falling edge of TCLK. If TCLK is grounded, the output drivers enter a high-Z state, except during Remote Loopback.
3	TPOS	DI	Transmit Positive Data. Input for positive pulse to be transmitted on the twisted-pair line.
4	TNEG	DI	Transmit Negative Data. Input for negative pulse to be transmitted on the twisted-pair line.
5	MODE	DI	Mode Select (<i>LXT300z</i>). Setting MODE High puts the LXT300Z in the Host Mode. In the Host Mode, the serial interface is used to control the LXT300Z and determine its status. Setting MODE Low puts the LXT300Z in the Hardware (H/W) mode. In the Hardware Mode, the serial interface is disabled and hard-wired pins are used to control configuration and report status.
	GND	s	Ground (LXT301Z). Tie to Ground.

Pin Assignments & Signal Descriptions

			Description
6	RNEG	DO	Receive Negative Data; Receive Positive Data. Received data outputs. A signal on
7	RPOS	DO	RNEG corresponds to receipt of a negative pulse on RTIP and RRING. A signal on RPOS corresponds to receipt of a positive pulse on RTIP and RRING. RNEG and RPOS outputs are Non-Return-to-Zero (NRZ). Both outputs are stable and valid on the rising edge of RCLK. LXT300Z only: In the Host Mode, CLKE determines the clock edge at which these outputs are stable and valid. In the Hardware Mode both outputs are stable and valid on the rising edge of RCLK.
8	RCLK	DO	Recovered Clock. This is the clock recovered from the signal received at RTIP and RRING.
9	XTALIN	AI	Crystal Input; Crystal Output (LXT300Z). An external crystal operating at four times the bit rate (6.176 MHz for DSX-1, 8.192 MHz for E1 applications with an 18.7
10	XTALOUT	AO	pF load) is required to enable the jitter attenuation function of the LXT300Z. These pins may also be used to disable the jitter attenuator by connecting the XTALIN pin to the positive supply through a resistor, and floating the XTALOUT pin.
9	RT	AI	Receive Termination (<i>LXT301Z</i>). Connect to RV+ through a 1 k Ω resistor.
10	N/C	_	No Connection (LXT301Z).
11	DPM	DO	Driver Performance Monitor. DPM goes High when the transmit monitor loop (MTIP and MRING) does not detect a signal for 63 ± 2 clock periods. DPM remains High until a signal is detected.
12	LOS	DO	Loss of Signal. LOS goes High when 175 consecutive spaces have been detected. LOS returns Low when a mark is detected.
13	TTIP	AO	Transmit Tip; Transmit Ring. Differential Driver Outputs. These outputs are
16	TRING	AO	designed to drive a 25 Ω load. The transmitter will drive 100 Ω shielded twisted-pair cable through a 1:2 step-up transformer without additional components. To drive 75 Ω coaxial cable, two 2.2 Ω resistors are required in series with the transformer.
14	TGND	S	Transmit Ground. Ground return for the transmit drivers power supply TV+.
15	TV+	S	Transmit Power Supply. +5 VDC power supply input for the transmit drivers. TV+ must not vary from RV+ by more than ± 0.3 V.
17	MTIP	AI	Monitor Tip; Monitor Ring. These pins are used to monitor the tip and ring transmit
18	MRING	Al	outputs. The transceiver can be connected to monitor its own output or the output of another LXT300Z or LXT301Z on the board.
19	RTIP	AI	Receive Tip; Receive Ring. The AMI signal received from the line is applied at these
20	RRING	AI	pins. A center-tapped, center-grounded, 2:1 step-up transformer is required on these pins. Data and clock from the signal applied at these pins are recovered and output on the RPOS/RNEG and RCLK pins.
21	RV+	S	Receive Power Supply. +5 VDC power supply for all circuits except the transmit drivers. (Transmit drivers are supplied by TV+.)
22	RGND	S	Receive Ground. Ground return for power supply RV+.

Table 1: Pin Descriptions - continued

LXT300Z / LXT301Z Advanced T1/E1 Short-Haul Transceivers

Pin #	Sym	I/O ¹	Description
23	ĪNT	DO	Interrupt (<i>Host Mode</i>). This <i>LXT300Z Host Mode</i> output goes Low to flag the host processor when LOS or DPM go active. INT is an open-drain output and should be tied to power supply RV+ through a resistor. INT is reset by clearing the respective register bit (LOS and/or DPM).
	EC1	DI	Equalizer Control 1 (<i>H/W Mode</i>). The signal applied at this pin in the <i>LXT300Z Hardware Mode and LXT301Z</i> is used in conjunction with EC2 and EC3 inputs to determine shape and amplitude of AMI output transmit pulses.
24	SDI	DI	Serial Data In (Host Mode). The serial data input stream is applied to this pin when the LXT300Z operates in the Host Mode. SDI is sampled on the rising edge of SCLK.
	EC2	DI	Equalizer Control 2 (<i>H/W Mode</i>). The signal applied at this pin in the <i>LXT300Z Hardware Mode and LXT301Z</i> is used in conjunction with EC1 and EC3 inputs to determine shape and amplitude of AMI output transmit pulses.
25	SDO	DO	Serial Data Out (Host Mode). The serial data from the on-chip register is output on this pin in the LXT300Z Host Mode. If CLKE is High, SDO is valid on the rising edge of SCLK. If CLKE is Low SDO is valid on the falling edge of SCLK. This pin goes to a high-impedance state when the serial port is being written to and when \overline{CS} is High.
	EC3	DI	Equalizer Control 3 (<i>H/W Mode</i>). The signal applied at this pin in the <i>LXT300Z Hardware Mode and LXT301Z</i> is used in conjunction with EC1 and EC2 inputs to determine shape and amplitude of AMI output transmit pulses.
26	CS	DI	Chip Select (<i>Host Mode</i>). This input is used to access the serial interface in the $LXT300Z$ Host Mode. For each read or write operation, \overline{CS} must transition from High to Low, and remain Low.
	RLOOP	DI	Remote Loopback (<i>H/W Mode</i>). This input controls loopback functions in the <i>LXT300Z Hardware Mode and LXT301Z</i> . Setting RLOOP High enables the Remote Loopback mode. Setting both RLOOP and LLOOP High causes a Reset.
27	SCLK	DI	Serial Clock (Host Mode). This clock is used in the LXT300Z Host Mode to write data to or read data from the serial interface registers.
	LLOOP	DI	Local Loopback (<i>H/W Mode</i>). This input controls loopback functions in the <i>LXT300Z</i> Hardware Mode and <i>LXT301Z</i> . Setting LLOOP High enables the Local Loopback Mode.
28	CLKE	DI	Clock Edge (<i>Host Mode</i>). Setting CLKE High causes RPOS and RNEG to be valid on the falling edge of RCLK, and SDO to be valid on the rising edge of SCLK. When CLKE is Low, RPOS and RNEG are valid on the rising edge of RCLK, and SDO is valid on the falling edge of SCLK.
	TAOS	DI	Transmit All Ones (<i>H/W Mode</i>). When High, TAOS causes the <i>LXT300Z</i> (<i>Hardware Mode</i>) and <i>LXT301Z</i> to transmit a continuous stream of marks at the TCLK frequency. Activating TAOS causes TPOS and TNEG inputs to be ignored. TAOS is inhibited during Remote Loopback.
1. Entries	in I/O column are	e: DI = Dig	ital Input; DO = Digital Output; AI = Analog Input; AO = Analog Output; S = Supply.

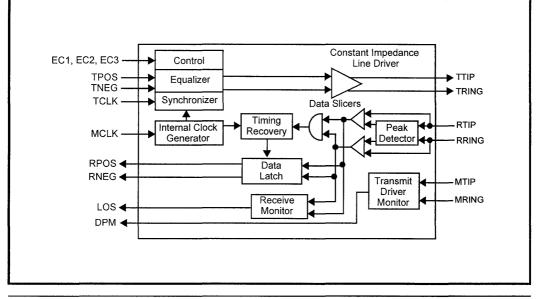
Table 1: Pin Descriptions – continued

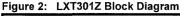
FUNCTIONAL DESCRIPTION

The LXT300Z and LXT301Z are fully integrated PCM transceivers for both 1.544 Mbps (DSX-1) and 2.048 Mbps (E1) applications. Both transceivers allow full-duplex transmission of digital data over existing twisted-pair installations. The first page of this data sheet shows a simplified block diagram of the LXT300Z; Figure 2 shows the LXT301Z. The LXT301Z is similar to the LXT300Z, but does not incorporate the Jitter Attenuator and associated Elastic Store, or the serial interface port.

The LXT300Z and LXT301Z transceivers each interface with two twisted-pair lines (one twisted-pair for transmit, one twisted-pair for receive) through standard pulse transformers and appropriate resistors.

Power Requirements


The LXT300Z and LXT301Z are low-power CMOS devices. Each operates from a single +5 V power supply which can be connected externally to both the transmitter and receiver. However, the two inputs must be within \pm .3V of each other, and decoupled to their respective grounds separately. Refer to Application Information for typical


decoupling circuitry. Isolation between the transmit and receive circuits is provided internally.

Reset Operation (LXT300Z and LXT301Z)

Upon power up, the transceiver is held static until the power supply reaches approximately 3 V. Upon crossing this threshold, the device begins a 32 ms reset cycle to calibrate the transmit and receive delay lines and lock the Phase Lock Loop to the receive line. A reference clock is required to calibrate the delay lines. The transmitter reference is provided by TCLK. MCLK provides the receiver reference for the LXT301Z. The crystal oscillator provides the receiver reference in the LXT300Z. If the LXT300Z crystal oscillator is grounded, MCLK is used as the receiver reference clock.

The transceiver can also be reset from the Host or Hardware Mode. In Host Mode, reset is commanded by simultaneously writing RLOOP and LLOOP to the register. In Hardware Mode, reset is commanded by holding RLOOP and LLOOP High simultaneously for 200 ns. Reset is initiated on the falling edge of the reset request. In either mode, reset clears and sets all registers to 0 and then begins calibration.

Receiver

The LXT300Z and LXT301Z receivers are identical except for the Jitter Attenuator and Elastic Store. The following discussion applies to both transceivers except where noted.

The signal is received from one twisted-pair line on each side of a center-grounded transformer. Positive pulses are received at RTIP and negative pulses are received at RRING. Recovered data is output at RPOS and RNEG, and the recovered clock is output at RCLK. Refer to the Test Specifications section for receiver timing.

The signal received at RPOS and RNEG is processed through the peak detector and data slicers. The peak detector samples the inputs and determines the maximum value of the received signal. A percentage of the peak value is provided to the data slicers as a threshold level to ensure optimum signal-to-noise ratio. For DSX-1 applications (determined by Equalizer Control inputs EC1~EC3 \neq 000) the threshold is set to 70% of the peak value. This threshold is maintained above 65% for up to 15 successive zeros over the range of specified operating conditions. For E1 applications (EC inputs = 000) the threshold is set to 50%.

The receiver is capable of accurately recovering signals with up to -13.6 dB of attenuation (from 2.4 V), corresponding to a received signal level of approximately 500 mV. Maximum line length is 1500 feet of ABAM cable (approximately 6 dB). Regardless of received signal level, the peak detectors are held above a minimum level of 300 mV to provide immunity from impulsive noise. (During LOS, RPOS and RNEG are squelched if the received input signal drops to 300 mV.)

After processing through the data slicers, the received signal is routed to the data and clock recovery sections, and to the receive monitor. In the LXT300Z only, recovered clock signals are supplied to the jitter attenuator and the data latch. The recovered data is passed to the elastic store where it is buffered and synchronized with the dejittered recovered clock (RCLK). The data and clock recovery circuits have an input jitter tolerance significantly better than required by Pub 62411.

Receive (Loss of Signal) Monitor

The receive monitor generates a Loss of Signal (LOS) output upon receipt of 175 consecutive zeros (spaces). The receiver monitor loads a digital counter at the RCLK frequency. The count is incremented each time a zero is received, and reset to zero each time a one (mark) is received. Upon receipt of 175 consecutive zeros the LOS pin goes High, and the RCLK output is replaced with the MCLK. LOS is reset when the first mark is received.

(In the LXT300Z only, if MCLK is not supplied the RCLK output will be replaced with the centered crystal clock.)

Jitter Attenuation (LXT300Z Only)

In the LXT300Z only, recovered clock signals are supplied to the jitter attenuator and the data latch. The recovered data is passed to the elastic store where it is buffered and synchronized with the dejittered recovered clock (RCLK). Jitter attenuation of the LXT300Z clock and data outputs (see Figure 4) is provided by a Jitter Attenuation Loop (JAL) and an Elastic Store (ES). An external crystal oscillating at 4 times the bit rate provides clock stabilization. Refer to Application Information for crystal specifications. The ES is a 32 x 2-bit register. Recovered data is clocked into the ES with the recovered clock signal, and clocked out of the ES with the dejittered clock from the JAL. When the bit count in the ES is within two bits of overflowing or underflowing, the ES adjusts the output clock by 1/8 of a bit period. The ES produces an average delay of 16 bits in the receive path.

Transmitter

The transmitter circuits in the LXT300Z and LXT301Z are identical. The following discussion applies to both models. Data received for transmission onto the line is clocked serially into the device at TPOS and TNEG. Input synchronization is supplied by the transmit clock (TCLK). The transmitted pulse shape is determined by Equalizer Control signals EC1 through EC3 as shown in Table 2. Refer to the Test Specifications section for master and transmit clock timing characteristics. Shaped pulses are applied to the AMI line driver for transmission onto the line at TTIP and TRING. Equalizer Control signals are hard-wired to the LXT301Z.

LXT300Z Only: Equalizer Control signals may be hardwired in the Hardware Mode, or input as part of the serial data stream (SDI) in the Host Mode.

Pulses can be shaped for either 1.544 or 2.048 Mbps applications. DSX-1 applications with 1.544 Mbps pulses can be programmed to match line lengths from 0 to 655 feet of ABAM cable. The LXT300Z and LXT301Z also match FCC specifications for CSU applications. Pulses at 2.048 Mbps can drive coaxial or shielded twisted-pair lines using appropriate resistors in line with the output transformer.

Driver Performance Monitor

The transceiver incorporates an advanced Driver Performance Monitor (DPM) in parallel with the TTIP and TRING at the output transformer. The DPM circuitry uses four comparators and a 150 ns pulse discriminator to filter glitches. The DPM output level goes high upon detection of 63 consecutive zeros, and is cleared when a one is detected on the transmit line, or when a reset command is received. The DPM output also goes High to indicate a ground on TTIP or TRING. A ground fault induced DPM flag is automatically cleared when the ground condition is corrected (chip reset is not required).

Line Code

The LXT300Z and LXT301Z transmit data as a 50% AMI line code as shown in Figure 3. Power consumption is reduced by activating the AMI line driver only to transmit a mark. The output driver is disabled during transmission of a space.

Operating Modes

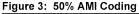
The LXT300Z and LXT301Z transceivers can be controlled through hard-wired pins (Hardware Mode). Both transceivers can also be commanded to operate in one of several diagnostic modes.

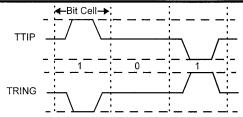
LXT300Z Only: The LXT300Z can be controlled by a microprocessor through a serial interface (Host Mode). The mode of operation is set by the MODE pin logic level.

Host Mode Operation (LXT300Z Only)

To allow a host microprocessor to access and control the LXT300Z through the serial interface, MODE is set to 1. The serial interface (SDI/SDO) uses a 16-bit word consisting of an 8-bit Command/Address byte and an 8-bit Data byte. Figure 4 shows the serial interface data structure and relative timing.

The Host Mode provides a latched Interrupt output (\overline{INT}) which is triggered by a change in the Loss of Signal (LOS) and/or Driver Performance Monitor (DPM) bits. The Interrupt is cleared when the interrupt condition no longer exists, and the host processor enables the respective bit in the serial input data byte. Host Mode also allows control of the serial data and receive data output timing. The Clock Edge (CLKE) signal determines when these outputs are


valid, relative to the Serial Clock (SCLK) or RCLK as listed in Table 3.


The LXT300Z serial port is addressed by setting bit A4 in the Address/Command byte, corresponding to address 16. The LXT300Z contains only a single output data register so no complex chip addressing scheme is required. The register is accessed by causing the Chip Select (\overline{CS}) input to transition from High to Low. Bit 1 of the serial Address/ Command byte provides Read/Write control when the chip is accessed. A logic 1 indicates a read operation, and a logic 0 indicates a write operation. Table 4 lists serial data output bit combinations for each status. Serial data I/O timing characteristics are shown in the Test Specifications section.

Hardware Mode Operation (LXT300Z and LXT301Z)

In Hardware Mode the transceiver is accessed and controlled through individual pins. With the exception of the INT and CLKE functions, Hardware Mode provides all the functions provided in the Host Mode. In the Hardware Mode RPOS and RNEG outputs are valid on the rising edge of RCLK. The LXT301Z operates in Hardware Mode at all times.

LXT300Z Only: To operate in Hardware Mode, MODE must be set Low. Equalizer Control signals (EC1 through EC3) are input on the Interrupt, Serial Data In and Serial Data Out pins. Diagnostic control for Remote Loopback (RLOOP), Local Loopback (LLOOP), and Transmit All Ones (TAOS) modes is provided through the individual pins used to control serial interface timing in the Host Mode.

LXT300Z / LXT301Z Advanced T1/E1 Short-Haul Transceivers

Bit D5	Bit D6	Bit D7	Status					
0	0	0	Reset has occurred, or no program input.					
0	0	1	TAOS is active.					
0	1	0	Local Loopback is active.					
0	1	1	TAOS and Local Loopback are active.					
1	0	0	Remote Loopback is active.					
1	0	1	DPM has changed state since last Clear DPM occurred.					
1	1	0	LOS has changed state since last Clear LOS occurred.					
1	1	1	LOS and DPM have both changed state since last Clear DPM and Clear LOS occurred.					

Table 2: LXT300Z Serial Data Output Bits (See Figure 4)

Table 3: Valid CLKE Settings

-			
CLKE	Output	Clock	Valid Edge
Low	RPOS	RCLK	Rising
	RNEG	RCLK	Rising
	SDO	SCLK	Falling
High	RPOS	RCLK	Falling
	RNEG	RCLK	Falling
	SDO	SCLK	Rising

Table 4: Equalizer Control Inputs

EC3	EC2	EC1	Line Length ¹	Cable Loss ²	Application	Bit Rate
0	1	1	0~133 ft ABAM	0.6 dB		
1	0	0	133 ~ 266 ft ABAM	1.2 dB		
1	0	1	266 ~ 399 ft ABAM	1.8 dB	DSX-1	1.544 Mbps
1	1	0	399 ~ 533 ft ABAM	2.4 dB		
1	1	1	533 ~ 655 ft ABAM	3.0 dB		
0	0	0	ITU Recommend	dation G.703	El	2.048 Mbps
0	1	0	FCC Part 68, Option A		CSU	1.544 Mbps
-	th from transce n cable loss at '		cross-connect point.			

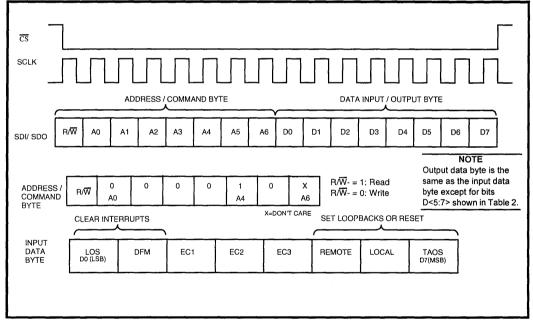
Diagnostic Mode Operation

Transmit All Ones

In Transmit All Ones (TAOS) mode the TPOS and TNEG inputs to the transceiver are ignored. The transceiver transmits a continuous stream of ones when the TAOS mode is activated. TAOS can be commanded simultaneously with Local Loopback, but is inhibited during Remote Loopback.

Remote Loopback

In Remote Loopback (RLOOP) mode, the transmit data and clock inputs (TPOS, TNEG and TCLK) are ignored. The RPOS and RNEG outputs are looped back through the transmit circuits and output on TTIP and TRING at the RCLK frequency. Receiver circuits are unaffected by the RLOOP command and continue

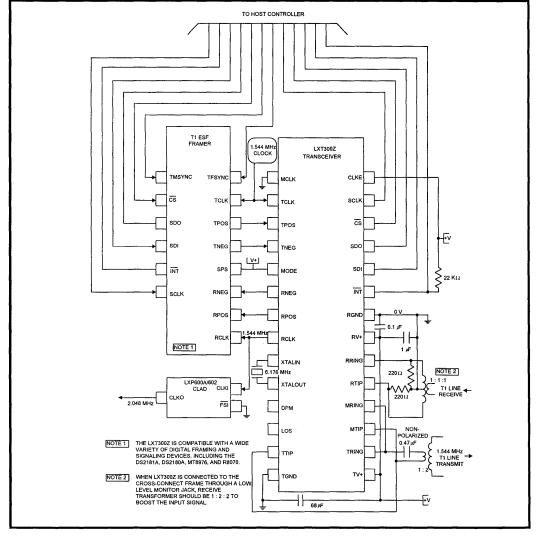

Figure 4: LXT300Z Serial Interface Data Structure

to output the RPOS, RNEG and RCLK signals received from the twisted-pair line.

Local Loopback

In Local Loopback (LLOOP) mode, the receiver circuits are inhibited. The transmit data and clock inputs (TPOS, TNEG and TCLK) are looped back onto the receive data and clock outputs (RPOS, RNEG and RCLK) through the Rx jitter attenuator. The transmitter circuits are unaffected by the LLOOP command. The TPOS and TNEG inputs (or a stream of ones if the TAOS command is active) will be transmitted normally.

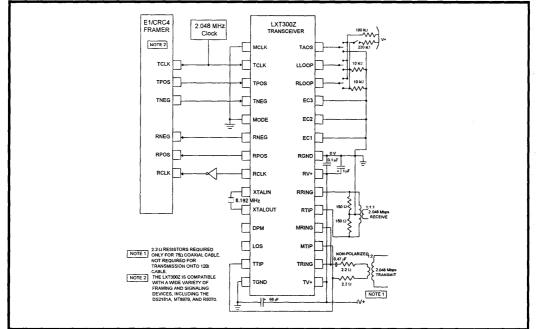
LXT300Z Only: When used in this mode with a crystal, the transceiver can be used as a stand-alone jitter attenuator.


APPLICATION INFORMATION

LXT300Z Host Mode 1.544 Mbps T1 Interface Application

Figure 5 is a typical 1.544 Mbps T1 application. The

LXT300Z is shown in the Host Mode with a typical T1/ ESF framer providing the digital interface with the host controller. Both devices are controlled through the serial interface. An LXP600A Clock Adapter (CLAD) provides the 2.048 MHz system backplane clock, locked to the recovered 1.544 MHz clock signal. The power supply inputs are tied to a common bus with appropriate decoupling capacitors installed (68 μ F on the transmit side, 1.0 μ F and 0.1 μ F on the receive side).



LXT300Z Hardware Mode E1 Interface Application

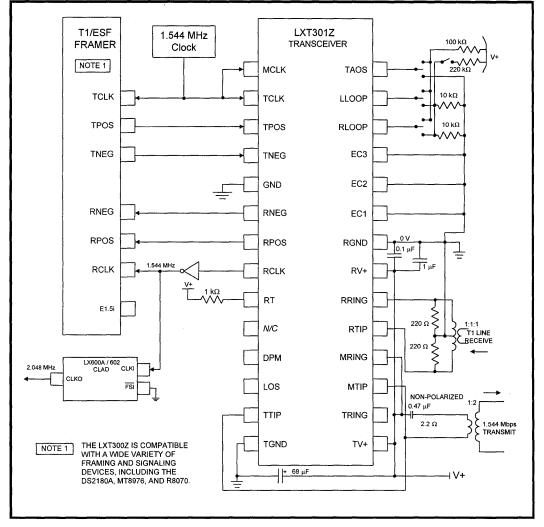
Figure 6 is a typical 2.048 Mbps E1 application. The LXT300Z is shown in Hardware Mode with a typical E1/CRC4 framer. Resistors are installed in line with the transmit transformer for loading a 75 Ω coaxial cable. The in-

line resistors are not required for transmission on 120 Ω shielded twisted-pair lines. As in the T1 application Figure 5, this configuration is illustrated with a crystal in place to enable the LXT300Z Jitter Attenuation Loop, and a single power supply bus. The hard-wired control lines for TAOS, LLOOP and RLOOP are individually controllable, and the LLOOP and RLOOP lines are also tied to a single control for the Reset function

Figure 6: Typical LXT300Z 75 Ω E1 Application (Hardware Mode)

Table 5: LXT300Z Crystal Specifications (E	External)
--	-----------

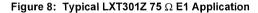
Parameter	T1	E1
Frequency	6.176 MHz	8.192 MHz
Frequency stability	± 20 ppm @ 25 °C ± 25 ppm from -40 °C to 85 °C (Ref 25 °C reading)	± 20 ppm @ 25 °C ± 25 ppm from -40 °C to +85 °C (Ref 25 °C reading)
Pullability	CL = 11 pF to 18.7 pF, $+\Delta F = 175$ to 195 ppm CL = 18.7 pF to 34 pF, $-\Delta F = 175$ to 195 ppm	CL = 11 pF to 18.7 pF, $+\Delta F = 95$ to 115 ppm CL = 18.7 pF to 34 pF, $-\Delta F = 95$ to 115 ppm
Effective series resistance	40 Ω Maximum	30 Ω Maximum
Crystal cut	AT	AT
Resonance	Parallel	Parallel
Maximum drive level	2.0 mW	2.0 mW
Mode of operation	Fundamental	Fundamental
Crystal holder	HC49 (R3W), Co = 7 pF maximum $C_M = 17$ fF typical	HC49 (R3W),Co = 7 pF maximum $C_M = 17$ fF typical

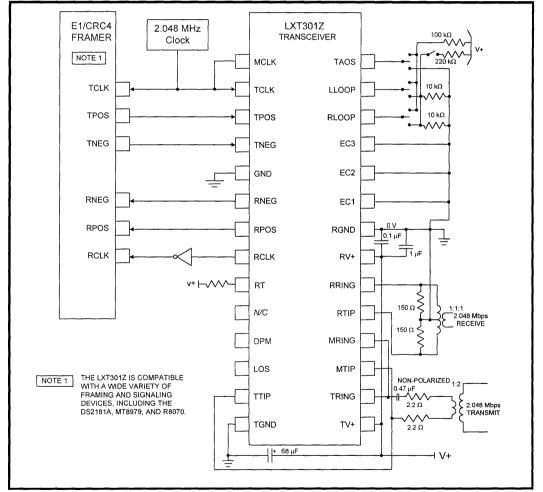


LXT301Z 1.544 Mbps T1 Interface Application

Figure 7 is a typical 1.544 Mbps T1 application of the LXT301Z. The LXT301Z is shown with a typical T1/ESF framer. An LXP600A Clock Adapter (CLAD) provides the

2.048 MHz system backplane clock, locked to the recovered 1.544 MHz clock signal. The power supply inputs are tied to a common bus with appropriate decoupling capacitors installed (68 μ F on the transmit side, 1.0 μ F and 0.1 μ F on the receive side).





LXT301Z 2.048 Mbps E1 Interface Application

Figure 8 is a typical 2.048 Mbps E1 application of the LXT301Z. The LXT301Z is shown with a typical E1/ CRC4 framer. Resistors are installed in line with the transmit transformer for loading a 75 Ω coaxial cable. The inline resistors are not required for transmission on 120 Ω shielded twisted-pair lines. As in the T1 application Figure 7, this configuration is illustrated with a single power supply bus. The hard-wired control lines for TAOS, LLOOP and RLOOP are individually controllable, and the LLOOP and RLOOP lines are also tied to a single control for the Reset function.

LXT300Z / LXT301Z Advanced T1/E1 Short-Haul Transceivers

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 6 through 13 and Figures 11 through 15 represent the performance specifications of the LXT300Z/LXT301Z and are guaranteed by test, except where noted by design.

Table 6: Absolute Maximum Ratings

Parameter	Sym	Min	Мах	Units
DC supply (referenced to GND)	RV+, TV+	-0.3	6.0	V
Input voltage, any pin ¹	VIN	RGND - 0.3	RV++0.3	V
Input current, any pin ²	IIN	-10	10	mA
Storage temperature	Тѕтд	-65	150	°C

CAUTION

Operations at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

1. Excluding RTIP and RRING which must stay between -6V and (RV++0.3) V.

2. Transient currents of up to 100 mA will not cause SCR latch up. TTIP, TRING, TV+ and TGND can withstand a continuous current of 100 mA.

Table 7: Recommended Operating Conditions

Parameter	Sym	Min	Тур	Max	Units
DC supply ¹	RV+, TV+	4.75	5.0	5.25	V
Ambient operating temperature	TA	-40	25	85	°C
1. TV+ must not exceed RV+ by more than 0	3 V.				

Table 8: Electrical Characteristics (Under Recommended Operating Conditions)

Parameter	Sym	Min	Тур	Max	Units	Test Conditions
High level input voltage ^{1,2} (pins 1-5, 10, 23-28)	Vih	2.0	_	_	v	
Low level input voltage ^{1,2} (pins 1-5, 10, 23-28)	Vil	-	-	0.8	v	
High level output voltage ^{1,2} (pins 6-8, 11, 12, 23, 25)	Vон	2.4	-		V	Ιουτ = -400 μΑ
Low level output voltage ^{1,2} (pins 6-8, 11, 12, 23, 25)	Vol	_	-	0.4	V	louт = 1.6 mA
Input leakage current (pins 1-5, and 23-28)	Ill	-10	÷	+10	μΑ	
Input leakage current (pins 9, 17, and 18)	Ill	-50	-	+50	μΑ	
Three-state leakage current ¹ (pin 25)	I3l	-10	-	+10	μA	
Total power dissipation ³	Рр	_	-	700	mW	100% ones density & maximum line length @ 5.25 V

1. Functionality of pins 23 and 25 depends on mode. See Host/Hardware Mode descriptions.

2. Output drivers will output CMOS logic levels into CMOS loads.

3. Power dissipation while driving a 25 Ω load over operating temperature range. Includes device and load. Digital input levels are within 10% of the supply rails and digital outputs are driving a 50 pF capacitive load.

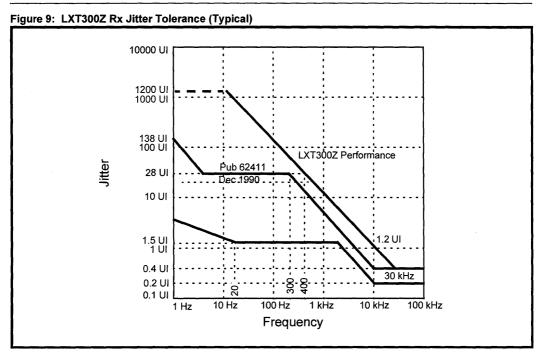
2

Paramete	r	Min	Typ ¹	Max	Units	Test Conditions
AMI output pulse amplitudes	DSX-1	2.4	3.0	3.6	V	measured at the DSX
	Ε1 (120 Ω)	2.7	3.0	3.3	v	measured at line side
	Ε1 (75 Ω)	2.14	2.37	2.6	V	@ 772 kHz
Transmit amplitude variation w	ith supply		1	2.5	%	
Recommended output load at T	TIP and TRING	-	25	-	Ω	RTIP to RRING
Driver output impedance ²	-	3	10	Ω	@ 10 kHz	
	-	-	0.01	UI		
Jitter added by the transmitter ³	8 kHz - 40 kHz	-	-	0.025	UI	
	10 Hz - 40 kHz	-	-	0.025	UI	
	Broad Band	-	-	0.05	UI	
Output power levels ² DS1 2 kHz BW	@ 772 kHz	12.6	-	17.9	dBm	
DST 2 KHZ B W	@ 1544 kHz ⁵	-29.0	-	-	dB	
Positive to negative pulse imba	lance	-		0.5	dB	
Sensitivity below DSX ⁶	(0 dB = 2.4 V)	13.6	-	-	dB	
		500	-	-	mV	
Receiver input impedance		_	40	_	kΩ	
Loss of Signal threshold		-	0.3	-	V	
Data decision threshold	DSX-1	63	70	77	% peak	
	El	43	50	57	% peak	
Allowable consecutive zeros be	fore LOS	160	175	190		
Input jitter tolerance	10 Hz	_	1200	-	UI	
	775 Hz	14	-	_	UI	
!	10 kHz - 100 kHz	0.4	_	-	UI	
Jitter attenuation curve corner f	requency ⁴		3		Hz	
Jitter attenuation	······································		50	-	db	
Jitter attenuation tolerance befo	re FIFO Overflow ²	28	-	_	UI	

Table 9: Analog Characteristics (Under Recommended Operating Conditions)

1. Typical values are measured at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. Not production tested but guaranteed by design and other correlation methods.

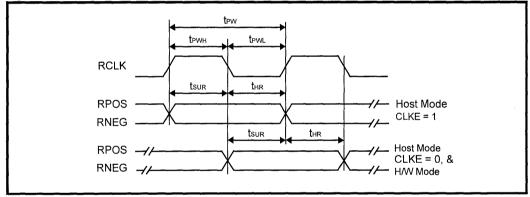

3. Input signal to TCLK is jitter-free.

4. Circuit attenuates jitter at 20 dB/decade above the corner frequency.

5. Referenced to power in 2 kHz band.

6. With a maximum of 6 dB of cable attenuation.

LXT300Z / LXT301Z Advanced T1/E1 Short-Haul Transceivers


Figure 10: LXT300Z Rx Jitter Transfer Performance (Typical)

Parameter	Sym RCLKd		Typ¹	Max 60	Units %	Test Conditions	
Receive clock duty cycle			-				
Receive clock pulse width ²	DSX-1	tpw		324	_	ns	
Receive clock pulse width	El	tpw	_	244	-	ns	
RPOS/RNEG to RCLK rising	DSX-1	tsur		274	-	ns	
setup time	E1	tsur	_	194	-	ns	
RCLK rising to RPOS/RNEG	DSX-1	thr	-	274	-	ns	
hold time	E1	thr	-	194	-	ns	

Table 10: LXT300Z Receiver Timing Characteristics (See Figure 11)

Figure 11: LXT300Z Receive Clock Timing Diagram

LXT300Z / LXT301Z Advanced T1/E1 Short-Haul Transceivers

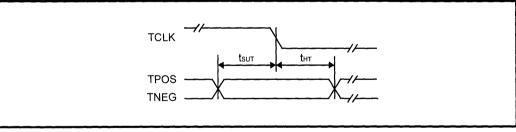
Parameter		Sym	Min	Typ ¹	Мах	Units	Test Conditions
Receive clock duty cycle ²	DSX-1	RCLKd	40	50	60	%	
Receive clock duty cycle	E1	RCLKd	40	50	60	%	
Receive clock pulse width ²	DSX-1	tpw	594	648	702	ns	
Receive clock pulse width-	E1	tpw	447	488	529	ns	
Receive clock pulse width	DSX-1	tрwн	-	324	-	ns	
high	E1	tpwh	-	244	-	ns	
Receive clock pulse width	DSX-1	tpwl.	270	324	378	ns	
low	E1	tpwi.	203	244	285	ns	
RPOS/RNEG to RCLK rising	DSX-1	tsur	50	270	_	ns	
setup time	El	tsur	50	203	-	ns	
RCLK rising to RPOS/RNEG	DSX-1	thr	50	270	_	ns	
hold time	E1	thr	50	203	-	ns	

Table 11: LXT301Z Receive Timing Characteristics (See Figure 12)

I. Typical values are at 25 °C and are for design aid only: they are not guaranteed and not subject to production testing.

2. RCLK duty cycle width will vary depending on extent of received pulse jitter displacement. Max and Min RCLK duty cycles are for worst case jitter conditions (0.4 UI clock displacement for 1.544 MHz, 0.2 UI clock displacement for 2.048 MHz).

Figure 12: LXT301Z Receive Clock Timing Diagram

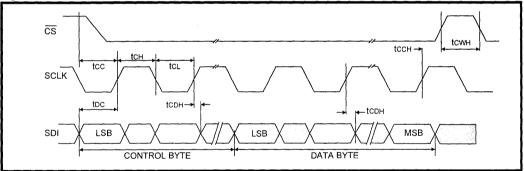


Parameter	Sym	Min	Typ ¹	Max	Units		
M	DSX-1	MCLK	_	1.544		MHz	
Master clock frequency	E1	MCLK		2.048	-	MHz	
Master clock tolerance		MCLKt	-	±100		ppm	
Master clock duty cycle		MCLKd	40	-	60	%	
Crystal frequency	DSX-1	fc	_	6.176	_	MHz	
(LXT300Z only)	E1	fc	-	8.192	_	MHz	
To and the last formation of the last format	DSX-1	TCLK	-	1.544	_	MHz	
Transmit clock frequency	E1	TCLK	-	2.048	-	MHz	
Transmit clock tolerance	TCLKt	-	±50	-	ppm		
Transmit clock duty cycle	TCLKd	10	_	90	%		
TPOS/TNEG to TCLK setup t	tsur	25	_		ns		
TCLK to TPOS/TNEG hold ti	tнт	25		_	ns		

Table 12: LXT300Z/301Z Master Clock and Transmit Timing Characteristics (See Figure 13)

1. Typical values are at 25 $^{\circ}$ C and are for design aid only; they are not guaranteed and not subject to production testing. 2. Not production tested but guaranteed by design and other correlation methods.

Figure 13: LXT300Z/301Z Transmit Clock Timing Diagram



LXT300Z / LXT301Z Advanced T1/E1 Short-Haul Transceivers

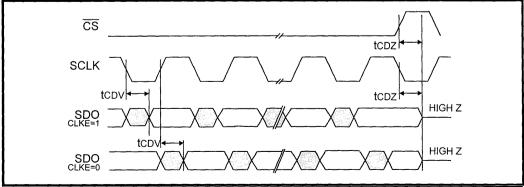

Parameter	Sym	Min	Typ ¹	Max	Units	Test Conditions
Rise/Fall time - any digital output	trf	-		100	ns	Load 1.6 mA, 50 pF
SDI to SCLK setup time	toc	50	_	_	ns	
SCLK to SDI hold time	tсрн	50	_		ns	
SCLK low time	tci	240	-	-	ns	
SCLK high time	tсн	240	-	-	ns	
SCLK rise and fall time	tr, tf	-	-	50	ns	
CS to SCLK setup time	tee	50	-	_	ns	
SCLK to CS hold time	tссн	50	-	-	ns	
CS inactive time	tсwн	250	-	-	ns	
SCLK to SDO valid	tcdv	_	_	200	ns	
SCLK falling edge or \overline{CS} rising edge to SDO high Z	tcdz	-	100	-	ns	

Table 13: LXT300Z Serial I/O Timing Characteristics (See Figures 14 and 15)

Figure 14: LXT300Z Serial Data Input Timing Diagram

DATA SHEET

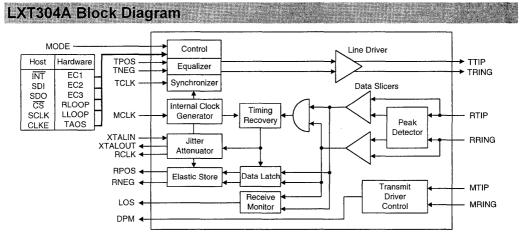
LXT304A

Low-Power T1/E1 Short-Haul Transceiver with Receive JA

General Description

The LXT304A is a fully integrated low-power transceiver for both North American 1.544 Mbps (T1), and International 2.048 Mbps (E1) applications. It features a constant low output impedance transmitter allowing for high transmitter return loss in T1/E1 applications. Transmit pulse shapes (DSX-1 or E1) are selectable for various line lengths and cable types.

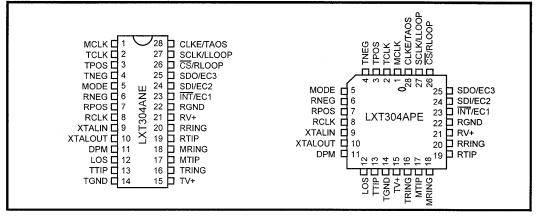
The LXT304A provides receive jitter attenuation starting at 3 Hz, and is microprocessor controllable through a serial interface.


It offers a variety of diagnostic features including transmit and receive monitoring. The device incorporates an onchip crystal oscillator, and also accepts digital clock inputs. It uses an advanced double-poly, double-metal CMOS process and requires only a single 5-volt power supply.

Applications

- PCM/Voice Channel Banks
- · Data Channel Bank/Concentrator
- · T1/E1 multiplexer
- · Digital Access and Cross-connect Systems (DACS)
- Computer to PBX interface (CPI & DMI)
- · High-speed data transmission lines
- · Interfacing Customer Premises Equipment to a CSU
- · Digital Loop Carrier (DLC) terminals

Features


- Low power consumption (400 mW maximum) 40% less than the LXT300
- Constant low output impedance transmitter regardless of data pattern (3 Ω typical)
- High transmit and receive return loss exceeds ETSI ETS 300166 and G.703 recommendations
- Meets or exceeds all industry specifications including ITU G.703, ANSI T1.403 and AT&T Pub 62411
- · Compatible with most popular PCM framers
- · Line driver, data recovery and clock recovery functions
- · Minimum receive signal of 500 mV
- Selectable slicer levels (E1/DSX-1) improve SNR
- Programmable transmit equalizer shapes pulses to meet DSX-1 pulse template from 0 to 655 ft
- · Local and remote loopback functions
- Transmit/Receive performance monitors with DPM and LOS outputs
- · Receiver jitter tolerance 0.4 UI from 40 kHz to 100 kHz
- Receive jitter attenuation starting at 3 Hz meets TBR12/ 13 specification
- Serial control interface
- · Analog/digital LOS monitor per G.775
- · Available in 28-pin DIP or PLCC

PIN ASSIGNMENTS & SIGNAL DESCRIPTIONS

Figure 1: Pin Assignments

Table 1: Pin Descriptions

Sym	I/O ¹	Description
MCLK	DI	Master Clock. A 1.544 or 2.048 MHz clock input used to generate internal clocks. Upon Loss of Signal (LOS), RCLK is derived from MCLK. If MCLK is not applied, this pin should be grounded.
TCLK	DI	Transmit Clock. Transmit clock input. TPOS and TNEG are sampled on the falling edge of TCLK. If TCLK is not supplied, the transmitter remains powered down.
TPOS	DI	Transmit Positive Data. Input for positive pulse to be transmitted on the twisted-pair line.
TNEG	DI	Transmit Negative Data. Input for negative pulse to be transmitted on the twisted-pair line.
MODE	DI	Mode Select. Setting MODE to logic 1 puts the LXT304A in the Host Mode. In the Host Mode, the serial interface is used to control the LXT304A and determine its status. Setting MODE to logic 0 puts the LXT304A in the Hardware (H/W) Mode. In the Hardware Mode, the serial interface is disabled and hard-wired pins are used to control configuration and report status.
RNEG	DO	Receive Negative Data; Receive Positive Data. Received data outputs. A signal on
RPOS	DO	RNEG corresponds to receipt of a negative pulse on RTIP and RRING. A signal on RPOS corresponds to receipt of a positive pulse on RTIP and RRING. RNEG and RPOS outputs are Non-Return-to-Zero (NRZ). Both outputs are stable and valid on the rising edge of RCLK. In the Host Mode, CLKE determines the clock edge at which these outputs are stable and valid. In the Hardware Mode both outputs are stable and valid on the rising edge of RCLK.
	MCLK TCLK TPOS TNEG MODE RNEG	MCLK DI TCLK DI TPOS DI TNEG DI MODE DI RNEG DO

Pin Assignments & Signal Descriptions

2

Pin #	Sym	I/O ¹	Description	
8	RCLK	DO	Recovered Clock. This is the clock recovered from the signal received at RTIP and RRING.	
9	XTALIN	AI	Crystal Input; Crystal Output. An external crystal operating at four times the b	
10	XTALOUT	AO	(6.176 MHz for DSX-1, 8.192 MHz for E1 applications with an 18.7 pF load) is required to enable the jitter attenuation function of the LXT304A. These pins may also be used to disable the jitter attenuator by connecting the XTALIN pin to the positive supply through a resistor, and tying the XTALOUT pin to ground.	
11	DPM	DO	Driver Performance Monitor. DPM goes to a logic 1 when the transmit monitor loop (MTIP and MRING) does not detect a signal for 63 ± 2 clock periods. DPM remains at logic 1 until a signal is detected.	
12	LOS	DO	Loss of Signal. LOS goes to a logic 1 when 175 consecutive spaces have been detected. OS returns to a logic 0 when the received signal reaches 12.5% ones density, based ones in any 32-bit period with no more than 15 consecutive zeros.	
13	TTIP	AO	Transmit Tip; Transmit Ring. Differential Driver Outputs. These low impedance puts achieve maximum power savings through a 1:1.15 transformer (T1), or a 1:1 Ω) or 1:1.26 (120 Ω) transformer (E1) without additional components. To provide higher return loss, resistors may be used in series with a transformer as specified in Application Information.	
16	TRING	AO		
14	TGND	S	Transmit Ground. Ground return for the transmit drivers power supply TV+.	
15	TV+	S	Transmit Power Supply. +5 VDC power supply input for the transmit drivers. TV+ must not vary from RV+ by more than ± 0.3 V.	
17	MTIP	AI	Monitor Tip; Monitor Ring. These pins are used to monitor the tip and ring transmit	
18	MRING	AI	outputs. The transceiver can be connected to monitor its own output or the output of another LXT304A on the board. To prevent false interrupts in the Host Mode if the monitor is not used, apply a clock signal to one of the monitor pins and tie the other monitor pin to approximately the clock's mid-level voltage. The monitor clock can range from 100 kHz to the TCLK frequency.	
19	RTIP	AI	Receive Tip; Receive Ring. The AMI signal received from the line is applied at these	
20	RRING	AI	pins. A center-tapped, center-grounded, 2:1 step-up transformer is required on the pins. Data and clock from the signal applied at these pins are recovered and output the RPOS/RNEG and RCLK pins.	
21	RV+	S	Receive Power Supply. +5 VDC power supply for all circuits except the transmit drivers. (Transmit drivers are supplied by TV+.)	
22	RGND	S	Receive Ground. Ground return for power supply RV+.	
1. Entries	in I/O column are	DI = Dig	ital Input; DO = Digital Output; AI = Analog Input; AO = Analog Output; S = Supply.	

Table 1: Pin Descriptions - continued

LXT304A Low-Power T1/E1 Short-Haul Transceiver

Pin #	Sym	I/O ¹	Description
23	ĪNT	DO	Interrupt <i>(Host Mode)</i> . This LXT304A Host Mode output goes Low to flag the host processor when LOS or DPM go active. INT is an open-drain output and should be tied to power supply RV+ through a resistor. INT is reset by clearing the respective register bit (LOS and/or DPM.)
	EC1	DI	Equalizer Control 1 (<i>H/W Mode</i>). The signal applied at this pin in the LXT304A Hardware Mode is used in conjunction with EC2 and EC3 inputs to determine shape and amplitude of AMI output transmit pulses.
24	SDI	DI	Serial Data In (Host Mode). The serial data input stream is applied to this pin when the LXT304A operates in the Host Mode. SDI is sampled on the rising edge of SCLK.
	EC2	DI	Equalizer Control 2 (<i>H/W Mode</i>). The signal applied at this pin in the LXT304A Hardware Mode is used in conjunction with EC1 and EC3 inputs to determine shape and amplitude of AMI output transmit pulses.
25	SDO	DO	Serial Data Out (<i>Host Mode</i>). The serial data from the on-chip register is output on this pin in the LXT304A Host Mode. If CLKE is High, SDO is valid on the rising edge of SCLK. If CLKE is Low, SDO is valid on the falling edge of SCLK. This pin goes to a high-impedance state when the serial port is being written to and when \overline{CS} is High.
	EC3	DI	Equalizer Control 3 (<i>H/W Mode</i>). The signal applied at this pin in the LXT304A Hardware Mode is used in conjunction with EC1 and EC2 inputs to determine shape and amplitude of AMI output transmit pulses.
26	CS	DI	Chip Select (<i>Host Mode</i>). This input is used to access the serial interface in the LXT304A Host Mode. For each read or write operation, \overline{CS} must transition from High to Low, and remain Low.
	RLOOP	DI	Remote Loopback (<i>H/W Mode</i>). This input controls loopback functions in the LXT304A Hardware Mode. Setting RLOOP High enables the Remote Loopback Mode. Setting both RLOOP and LLOOP causes a Reset.
27	SCLK	DI	Serial Clock (<i>Host Mode</i>). This clock is used in the LXT304A Host Mode to write data to or read data from the serial interface registers.
	LLOOP	DI	Local Loopback (<i>H/W Mode</i>). This input controls loopback functions in the LXT304A Hardware Mode. Setting LLOOP High enables the Local Loopback Mode.
28	CLKE	DI	Clock Edge (<i>Host Mode</i>). Setting CLKE High causes RPOS and RNEG to be valid on the falling edge of RCLK, and SDO to be valid on the rising edge of SCLK. When CLKE is Low, RPOS and RNEG are valid on the rising edge of RCLK, and SDO is valid on the falling edge of SCLK.
	TAOS	DI	Transmit All Ones (<i>H/W Mode</i>). When set High, TAOS causes the LXT304A (Hardware Mode) to transmit a continuous stream of marks at the TCLK frequency. Activating TAOS causes TPOS and TNEG inputs to be ignored. TAOS is inhibited during Remote Loopback.

Table 1: Pin Descriptions – continued

FUNCTIONAL DESCRIPTION

The LXT304A is a fully integrated PCM transceiver for both 1.544 Mbps (DSX-1) and 2.048 Mbps (E1) applications. It allows full-duplex transmission of digital data over existing twisted-pair installations.

The LXT304A transceiver interfaces with two twisted-pair lines, one twisted-pair for transmit, one twisted-pair for receive.

Power Requirements

The LXT304A is a low-power CMOS device. It operates from a single +5 V power supply which can be connected externally to both the transmitter and receiver. However, the two inputs must be within \pm .3 V of each other, and decoupled to their respective grounds separately. Refer to Application Information for typical decoupling circuitry. Isolation between the transmit and receive circuits is provided internally. During normal operation, TAOS or LLOOP, the transmitter powers down if TCLK is not supplied.

Reset Operation

Upon power up, the transceiver is held static until the power supply reaches approximately 3 V. Upon crossing this threshold, the device begins a 32 ms reset cycle to calibrate the transmit and receive delay lines and lock the Phase Lock Loop to the receive line. A reference clock is required to calibrate the delay lines. The transmitter reference is provided by TCLK. MCLK provides the receiver reference. If the crystal oscillator is grounded, MCLK is used as the receiver reference clock.

The transceiver can also be reset from the Host or Hardware Mode. In Host Mode, reset is commanded by simultaneously writing RLOOP and LLOOP to the register. In Hardware Mode, reset is commanded by holding RLOOP and LLOOP High simultaneously for 200 ns. Reset is initiated on the falling edge of the reset request. In either mode, reset clears and sets all registers to 0 and then begins calibration.

Receiver

The LXT304A receives the signal input from one twistedpair line on each side of a center-grounded transformer. Positive pulses are received at RTIP and negative pulses are received at RRING. Recovered data is output at RPOS and RNEG, and the recovered clock is output at RCLK. Refer to Test Specifications for LXT304A receiver timing.

The signal received at RPOS and RNEG is processed through the peak detector and data slicers. The peak detector samples the inputs and determines the maximum value of the received signal. A percentage of the peak value is provided to the data slicers as a threshold level to ensure optimum signal-to-noise ratio. For DSX-1 applications (determined by Equalizer Control inputs EC1 - EC3 \neq 000) the threshold is set to 70% of the peak value. This threshold is maintained above 65% for up to 15 successive zeros over the range of specified operating conditions. For E1 applications (EC inputs = 000 or 001) the threshold is 50%.

The receiver is capable of accurately recovering signals with up to -13.6 dB of attenuation (from 2.4 V), corresponding to a received signal level of approximately 500 mV. Maximum line length is 1500 feet of ABAM cable (approximately 6 dB of attenuation). Regardless of received signal level, the peak detectors are held above a minimum level of .3 V to provide immunity from impulsive noise.

After processing through the data slicers, the received signal is routed to the data and clock recovery sections, and to the receive monitor. The data and clock recovery circuits are highly tolerant with an input jitter tolerance significantly better than required by Pub 62411. Refer to Test Specifications for additional information.

The receiver monitor loads a digital counter at the RCLK frequency. The count is incremented each time a zero is received, and reset to zero each time a one (mark) is received. Upon receipt of 175 consecutive zeros the LOS pin goes high, and a smooth transition replaces the RCLK output with the MCLK. (If MCLK is not supplied the RCLK output will be replaced with the centered crystal clock.) The LOS pin is reset when the received signal reaches 12.5% ones density (4 marks in 32 bits) with no more than 15 consecutive zeros.

Recovered clock signals are supplied to the Jitter Attenuator and the data latch. The recovered data is passed to the Elastic Store where it is buffered and synchronized with the dejittered recovered clock (RCLK).

Jitter Attenuation

Jitter attenuation of the LXT304A clock and data outputs is provided by a Jitter Attenuation Loop (JAL) and an Elastic Store (ES). An external crystal oscillating at 4 times the bit rate provides clock stabilization. Refer to Application Information for crystal specifications. The ES is a 32 x 2-

LXT304A Low-Power T1/E1 Short-Haul Transceiver

bit register. Recovered data is clocked into the ES with the recovered clock signal, and clocked out of the ES with the dejittered clock from the JAL. When the bit count in the ES is within two bits of overflowing or underflowing, the ES adjusts the output clock by 1/8 of a bit period. The ES produces an average delay of 16 bits in the receive path.

Transmitter

Data received for transmission onto the line is clocked serially into the device at TPOS and TNEG. Input synchronization is supplied by the transmit clock (TCLK). If TCLK is not supplied the transmitter remains powered down, except during remote loopback. Refer to Test Specifications for master and transmit clock timing characteristics.

The transmitted pulse shape is determined by Equalizer Control signals EC1 through EC3 as shown in Table 2. Equalizer Control signals may be hardwired in the Hardware mode, or input as part of the serial data stream (SDI) in the Host mode. Shaped pulses are applied to the AMI line driver for transmission onto the line at TTIP and TRING. The line driver provides a constant low output impedance of 3 Ω (typical). This well controlled output impedance provides excellent return loss (> 18 dB) when used with external 9.1 Ω precision resistors (± 1% accuracy) in series with a transmit transformer with a turns ratio of 1:2.3 (± 2% accuracy). Series resistors also provide increased surge protection and reduce short circuit current flow.

Pulses can be shaped for either 1.544 or 2.048 Mbps applications. 1.544 Mbps pulses for DSX-1 applications can be programmed to match line lengths from 0 to 655 feet of ABAM cable. The LXT304A also matches FCC and

Table 2: Equalizer Control Inputs

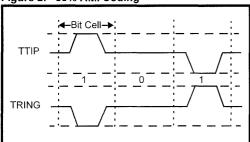
ECSA specifications for CSU applications. A 1:1.15 transmit transformer is used for 1.544 Mbps systems. For higher return loss in DSX-1 applications, use 9.1 Ω resistors in series with a 1:2.3 transmit transformer.

2.048 Mbps pulses can drive coaxial or shielded twistedpair lines. For E1 systems, a 1:2 transmit transformer and series resistors are recommended. This design meets or exceeds all ITU and ETS1 specifications for transmit and receive return loss. A 1:1 or 1:1.26 transformer may be used without series resistors.

Driver Performance Monitor

The transceiver incorporates a Driver Performance Monitor (DPM) in parallel with TTIP and TRING at the output transformer. The DPM output goes High upon detection of 63 consecutive zeros. It is reset when a one is detected on the transmit line, or when a reset command is received.

Line Code


The LXT304A transmits data as a 50% AMI line code as shown in Figure 2. The output driver maintains a constant low output impedance regardless of whether it is driving marks or spaces.

Operating Modes

The LXT304A can be controlled through hard-wired pins (Hardware Mode) or by a microprocessor through a serial interface (Host Mode). The mode of operation is set by the MODE pin logic level. The LXT304A can also be commanded to operate in one of several diagnostic modes.

EC3	EC2	EC1	Line Length ¹	Cable Loss ²	Application	Bit Rate	
0	1	1	0 ~ 133 ft ABAM	0.6 dB			
1.	0	0	133 ~ 266 ft ABAM	1.2 dB			
1	0	1	266 ~ 399 ft ABAM	1.8 dB	DSX-1	1.544 Mbps	
1	1	0	399 ~ 533 ft ABAM	2.4 dB			
1	1	1	533 ~ 655 ft ABAM	3.0 dB			
0	0	0	ITU Recommen	dation G.703	E1 - Coax (75 Ω)	2.048 Mbps	
0	0	1			E1 - Twisted-pair (120 Ω)	-	
0	1	0	FCC Part 68,	Option A	CSU (DS-1)	1.544 Mbps	
	1. Line length from transceiver to DSX-1 cross-connect point. 2. Maximum cable loss at 772 kHz.						

Figure 2: 50% AMI Coding

Host Mode Operation

To allow a host microprocessor to access and control the LXT304A through the serial interface, MODE is set High.

The serial interface (SDI/SDO) uses a 16-bit word consisting of an 8-bit Command/Address byte and an 8-bit Data byte. Figure 3 shows the serial interface data structure and relative timing.

The Host Mode provides a latched Interrupt output (\overline{INT}) which is triggered by a change in the Loss of Signal (LOS) and/or Driver Performance Monitor (DPM) bits. The Interrupt is cleared when the interrupt condition no longer exists, and the host processor enables the respective bit in the serial input data byte. Host Mode also allows control of the serial data and receive data output timing. The Clock Edge (CLKE) signal determines when these outputs are valid, relative to the Serial Clock (SCLK) or RCLK as listed in Table 3.

CLKE	Output	Clock	Valid Edge
LOW	RPOS	RCLK	Rising
	RNEG	RCLK	Rising
	SDO	SCLK	Falling
HIGH	RPOS	RCLK	Falling
	RNEG	RCLK	Falling
	SDO	SCLK	Rising

Table 3	3:	Valid	CLKE	Settings
---------	----	-------	------	----------

Table 4:	LXT304A Serial Data Output Bits (See
	Figure 4)

Bit D5	Bit D6	Bit D7	Status
0	0	0	Reset has occurred, or no program input.
0	0	1	TAOS is active.
0	1	0	Local Loopback is active.
0	1	1	TAOS and Local Loopback are active.
1	0	0	Remote Loopback is active.
1	0	1	DPM has changed state since last Clear DPM occurred.
1	1	0	LOS has changed state since last Clear LOS occurred.
1	1	1	LOS and DPM have both changed state since last Clear DPM and Clear LOS occurred.

The LXT304A serial port is addressed by setting bit A4 in the Address/Command byte, corresponding to address 16. The LXT304A contains only a single output data register so no complex chip addressing scheme is required. The register is accessed by causing the Chip Select ($\overline{\text{CS}}$) input to transition from High to Low. Bit 1 of the serial Address/ Command byte provides Read/Write control when the chip is accessed. A logic 1 indicates a read operation, and a logic 0 indicates a write operation. Table 4 lists serial data output bit combinations for each status. Serial data I/O timing characteristics are shown in the Test Specifications section.

Hardware Mode Operation

In Hardware Mode the transceiver is accessed and controlled through individual pins. With the exception of the INT and CLKE functions, Hardware Mode provides all the functions provided in the Host Mode. In the Hardware Mode RPOS and RNEG outputs are valid on the rising edge of RCLK. To operate in Hardware Mode, MODE must be set Low. Equalizer Control signals (EC1 through EC3) are input on the Interrupt, Serial Data In and Serial Data Out pins. Diagnostic control for Remote Loopback (RLOOP), Local Loopback (LLOOP), and Transmit All Ones (TAOS) modes is provided through the individual pins used to control serial interface timing in the Host Mode.

Diagnostic Mode Operation

Transmit All Ones

In Transmit All Ones (TAOS) mode the TPOS and TNEG inputs to the transceiver are ignored. The transceiver transmits a continuous stream of ones when the TAOS mode is activated. TAOS can be commanded simultaneously with Local Loopback, but is inhibited during Remote Loopback.

Remote Loopback

In Remote Loopback (RLOOP) mode, the transmit data and clock inputs (TPOS, TNEG and TCLK) are ignored. The RPOS and RNEG outputs are looped back through the transmit circuits and output on TTIP and TRING at the RCLK frequency. Receiver circuits are unaffected by the RLOOP command and continue to output the RPOS, RNEG and RCLK signals received from the twisted-pair line.

Local Loopback

In Local Loopback (LLOOP) mode, the receiver circuits are inhibited. The transmit data and clock inputs (TPOS, TNEG and TCLK) are looped back onto the receive data and clock outputs (RPOS, RNEG and RCLK) through the Rx jitter attenuator. The transmitter circuits are unaffected by the LLOOP command. The TPOS and TNEG inputs (or a stream of ones if the TAOS command is active) will be transmitted normally.

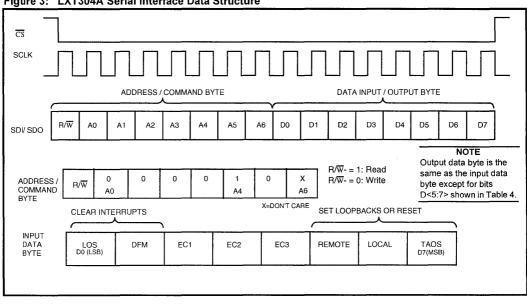
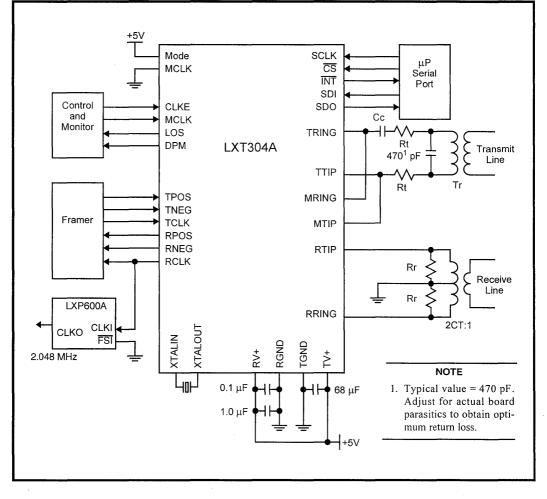


Figure 3: LXT304A Serial Interface Data Structure

2

Parameter	T1	E1
Frequency	6.176 MHz	8.192 MHz
Frequency stability	± 20 ppm @ 25 °C ± 25 ppm from -40 °C to 85 °C (Ref 25 °C reading)	± 20 ppm @ 25 °C ± 25 ppm from -40 °C to +85 °C (Ref 25 °C reading)
Pullability	$CL = 11 \text{ pF to } 18.7 \text{ pF}, +\Delta F = 175 \text{ to } 195 \text{ ppm}$ $CL = 18.7 \text{ pF to } 34 \text{ pF}, -\Delta F = 175 \text{ to } 195 \text{ ppm}$	CL = 11 pF to 18.7 pF, $+\Delta F = 95$ to 115 ppm CL = 18.7 pF to 34 pF, $-\Delta F = 95$ to 115 ppm
Effective series resistance	40 Ω Maximum	30 Ω Maximum
Crystal cut	AT	AT
Resonance	Parallel	Parallel
Maximum drive level	2.0 mW	2.0 mW
Mode of operation	Fundamental	Fundamental
Crystal holder	HC49 (R3W), Co = 7 pF maximum $C_M = 17$ fF typical	HC49 (R3W), $C_0 = 7 \text{ pF}$ maximum $C_M = 17 \text{ fF}$ typical

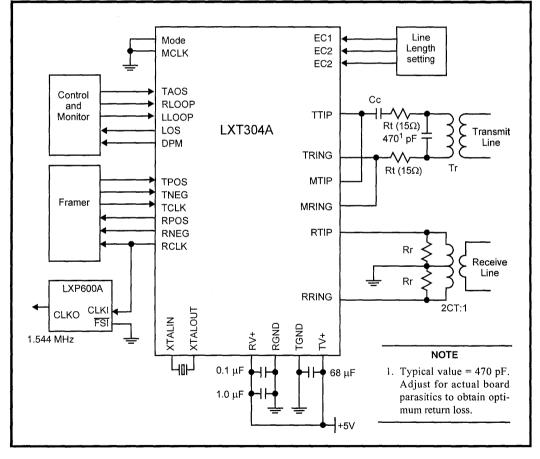
Table 5: LXT304A Crystal Specifications (External)


APPLICATION INFORMATION

1.544 Mbps T1 Interface Application

Figure 4 is a typical 1.544 Mbps T1 application. The LXT304A is shown in the Host Mode with a T1/ESF

framer providing the digital interface with the host controller. Both devices are controlled through the serial interface. An LXP600A Clock Adapter (CLAD) provides the 2.048 MHz system backplane clock, locked to the recovered 1.544 MHz clock signal. The power supply inputs are tied to a common bus with appropriate decoupling capacitors installed (68 μ F on the transmit side, 1.0 μ F and 0.1 μ F on the receive side).



2.048 Mbps E1 Interface Applications

Figure 5 is a 2.048 Mbps E1 TWP application using 15 Ω Rt resistors in line with the transmit transformer to provide high return loss and surge protection. When high return loss is not a critical factor, a 1:1 or 1:1.26 transformer without in-line resistors provides maximum power savings. The LXT304A is shown in Hardware Mode with a typical E1/

CRC4 Framer. The hard-wired control lines for TAOS, LLOOP and RLOOP are individually controllable, and the LLOOP and RLOOP lines are also tied to a single control for the Reset function. This configuration is illustrated with a crystal in place to enable the LXT304A Jitter Attenuation Loop, and a single power supply bus.

Figure 5: Typical LXT304A E1 2.048 Mbps 120 Ω Application (Hardware Mode)

D4 Channel Bank Applications

Existing D4 Channel Bank architectures frequently employ: (1) a plug-in card for T1 pulse generation (6.0 V peak); and (2) a separate card for pulse shaping and Line Build-Out (LBO). The LXT304A integrates the functions of both cards on a single chip producing a DSX-1 compatible, 3.0 V peak output pulse with a standard transformer. In new designs, the LXT304A can replace two cards with one. However, the LXT304A is also compatible with existing dual-card architectures. With an appropriate output transformer, the LXT304A can produce full 6.0 V peak amplitude pulses suitable for D4 Channel Bank applications with separate pulse shaping/LBO cards.

To achieve the 6.0 V peak output, the FCC Part 68-010 Equalizer Code setting is used. (EC = 010.) With the standard 1:1.15 transformer, this code produces a 3.0 V peak pulse. However, doubling the transformer turns ratio to 1:2.30 produces the desired 6.0 V peak pulse.

Bit Rate (Mbps)	Crystal XTAL	Cable (Ω)	Rr ² (Ω)	EC3/2/1	Transmit Transformer ¹ (Tr)	Rt² (Ω)	Typical TX Return Loss ³ (dB)	Cc (μF)
1.544 (T1)	LXC6176	100	200	0/1/1 - 1/1/1 0/1/0 ⁴	1:1.15 1:2 1:2.3 1:2.3	0 9.1 9.1 0	0.5 18 18 0 ⁴	0.47 0 0 0.47
2.048 (E1)	LXC8192	120	240	0/0/0 0/0/0 0/0/1 0/0/1	1:1.26 1:2 1:1 1:2	0 9.1 0 1.5	0.5 12 0.5 18	0.47 0 0.47 0
		75	150	0/0/0 0/0/0 0/0/1 0/0/1	1:1 1:2 1:1 1:2	0 9.1 10 14.3	0.5 18 5 10	0.47 0 0 0

Table 6: T1/E1 Input/Output Configurations

and Rt values are $\pm 1\%$.

3. Typical return loss, 51 kHz to 3.072 MHz band.

4. D4 Channel Bank application.

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 7 through 13 and Figures 6 through 11 represent the performance specifications of the LXT304A and are guaranteed by test, except where noted by design.

Table 7: Absolute Maximum Ratings

Parameter	Sym	Min	Max	Units
DC supply (referenced to GND)	RV+, TV+	-0.3	6.0	V
Input voltage, any pin ¹	Vin	RGND - 0.3	RV++0.3	V
Input current, any pin ²	Iin	-10	10	mA
Storage temperature	Тѕтд	-65	150	°C
Operations at or beyond thes Normal opera	CAUTION se limits may result i tion is not guarantee	1 0	to the device.	
 Excluding RTIP and RRING which must stay between -0 Transient currents of up to 100 mA will not cause SCR la 			vithstand a continuous of	current of 100 mA.

Table 8: Recommended Operating Conditions and Characteristics

Parameter	Sym	Min	Тур	Мах	Units
DC supply ¹	RV+, TV+	4.75	5.0	5.25	V
Ambient operating temperature	TA	-40	25	85	°C

Table 9: Electrical Characteristics (Under Recommended Operating Conditions)

Parameter	Sym	Min	Max	Units	Test Conditions
Total power dissipation ^{1,3}	Pd	_	400	mW	100% ones density & maximum line length @ 5.25 V
High level input voltage ^{2,3} (pins 1-5, 10, 23-28)	Vін	2.0	-	v	
Low level input voltage ^{2,3} (pins 1-5, 10, 23-28)	Vil	-	0.8	v	
High level output voltage ^{2,3} (pins 6-8, 11, 12, 23, 25)	Vон	2.4		v	Ιουτ = -400 μΑ

1. Power dissipation while driving 75 Ω load over operating temperature range. Includes device and load. Digital input levels are within 10% of the supply rails and digital outputs are driving a 50 pF capacitive load.

2. Functionality of pins 23 and 25 depends on mode. See Host/Hardware Mode descriptions.

3. Output drivers will output CMOS logic levels into CMOS loads.

4. Except MTIP and MRING ILL = $\pm 50 \,\mu$ A.

LXT304A Low-Power T1/E1 Short-Haul Transceiver

Parameter	Sym	Min	Max	Units	Test Conditions
Low level output voltage ^{2,3} (pins 6-8, 11, 12, 23, 25)	Vol	-	0.4	V	Ιουτ = 1.6 mA
Input leakage current ⁴	ILL	-10	+10	μΑ	
Three-state leakage current ² (pin 25)	I3L	-10	+10	μA	

Table 9: Electrical Characteristics (Under Recommended Operating Conditions) - continued

1. Power dissipation while driving 75 Ω load over operating temperature range. Includes device and load. Digital input levels are within 10% of the supply rails and digital outputs are driving a 50 pF capacitive load.

2. Functionality of pins 23 and 25 depends on mode. See Host/Hardware Mode descriptions.

3. Output drivers will output CMOS logic levels into CMOS loads.

4. Except MTIP and MRING ILL = $\pm 50 \mu A$.

Table 10: Analog Characteristics (Under Recommended Operating Conditions)

Paran	neter	Min	Ту	p ¹	Max	Units	Test Conditions
AMI output pulse	DSX-1	2.4	3.	.0	3.6	V	measured at the DSX
amplitudes	E1	2.7	3.	.0	3.3	V	measured at line side
Recommended output load at TTIP and TRING			7	5	-	Ω	
	10 Hz - 8 kHz	1	-	-	0.01	UI	·
Jitter added by the	8 kHz - 40 kHz	-	-	-	0.025	UI	
transmitter ²	10 Hz - 40 kHz	-	-	-	0.025	UI	
	Broad Band	-	-	-	0.05	UI	
Sensitivity below DSX	(0 dB = 2.4 V)	13.6	-	-	-	dB	
		500	-	-	-	mV	
Loss of Signal threshold		-	0	.3	-	V	
Data decision threshold	DSX-1	63	7	0	77	% peak	
	El	43	5	0	57	% peak	
Allowable consecutive ze	ros before LOS	160	175		190	-	
Input jitter tolerance	10 kHz - 100 kHz	0.4	-	-	-	UI	
Jitter attenuation curve co	rner frequency ³	-	1	3	-	Hz	
Minimum return loss ^{4.5}		Trans Min	mit Typ	Re Min	eceive Typ	dB	
	51 kHz - 102 kHz	18	-	20	_	dB	
	102 kHz - 2.048 kHz	18		20	-	dB	
	2.048 kHz - 3.072 kHz	18		20		dB	

1. Typical values are measured at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. Input signal to TCLK is jitter-free.

3. Circuit attenuates jitter at 20 dB/decade above the corner frequency.

4. In accordance with ITU G.703/ETS 300166 return loss specifications when wired per Figure 7 (E1).

5. Guaranteed by design.

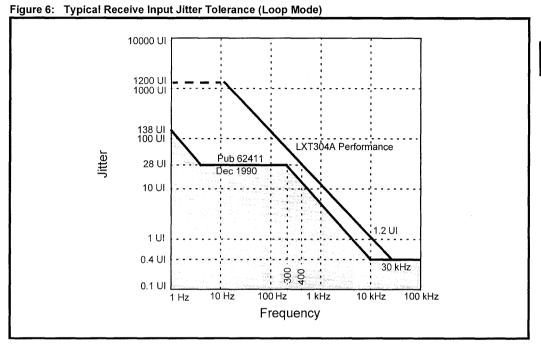
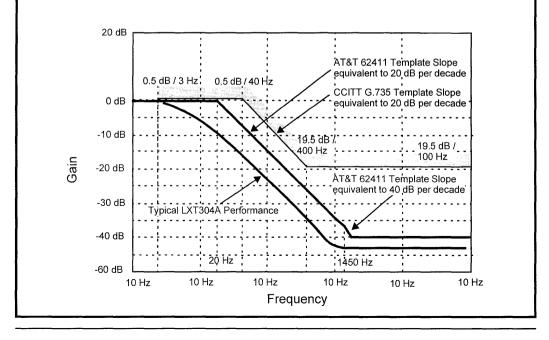
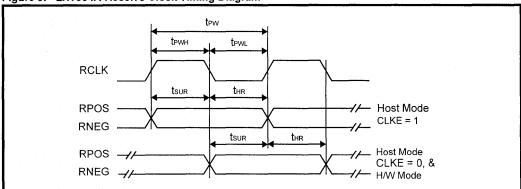



Figure 7: LXT304A Receive Jitter Transfer Performance (Typical)



2

Parameter Receive clock duty cycle		Sym	Min	Typ ¹	Max	Units	Test Conditions
		RCLKd	40	_	60	%	
	DSX-1	tpw		324	-	ns	
Receive clock pulse width	E1	tpw	_	244	_	ns	
RPOS/RNEG to RCLK rising	DSX-1	tsur	_	274	-	ns	
setup time	El	tsur	_	194	_	ns	
RCLK rising to RPOS/RNEG	DSX-1	thr	_	274		ns	
hold time	El	thr		194		ns	

Table 11: LXT304A Receive Timing Characteristics (See Figure 8)

1. Typical values are at 25 °C and are for design aid only; they are not guaranteed and not subject to production testing.

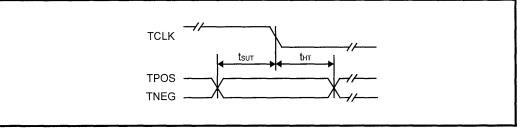
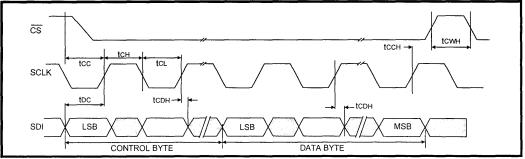


Figure 8: LXT304A Receive Clock Timing Diagram

Parameter		Sym	Min	Typ ¹	Max	Units
Mata da la francesca	DSX-1	MCLK	_	1.544	_	MHz
Master clock frequency	El	MCLK	-	2.048		MHz
Master clock tolerance		MCLKt	-	±100	_	ppm
Master clock duty cycle		MCLKd	40	-	60	%
Crystal frequency	DSX-1	fc	-	6.176	_	MHz
	E1	fc	-	8.192		MHz
	DSX-1	TCLK	-	1.544		MHz
Transmit clock frequency	E1	TCLK	-	2.048	_	MHz
Transmit clock tolerance		TCLKt	_	±50		ppm
Transmit clock duty cycle		TCLKd	10	-	90	%
TPOS/TNEG to TCLK setup time		tsut	25	-		ns
TCLK to TPOS/TNEG hold time		tнт	25	_		ns

Table 12: LXT304A Master Clock and Transmit Timing Characteristics (See Figure 9)

Figure 9: LXT304A Transmit Clock Timing Diagram



LXT304A Low-Power T1/E1 Short-Haul Transceiver

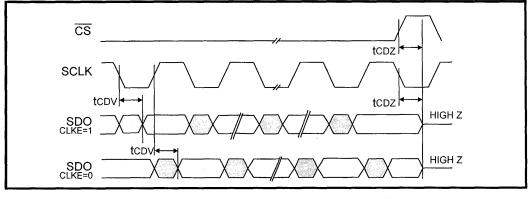

Parameter	Sym	Min	Typ ¹	Max	Units	Test Conditions
Rise/Fall time - any digital output	trf	-	_	100	ns	Load 1.6 mA, 50 pF
SDI to SCLK setup time	toc	50	-	-	ns	
SCLK to SDI hold time	tcdh	50		-	ns	
SCLK low time	tcl.	240	-	-	ns	
SCLK high time	tсн	240	-	-	ns	
SCLK rise and fall time	tr, tf	_	_	50	ns	
CS to SCLK setup time	tcc	50	-	-	ns	
SCLK to \overline{CS} hold time	tссн	50	-	-	ns	
CS inactive time	tcwн	250		-	ns	
SCLK to SDO valid	tcdv	-	-	200	ns	
SCLK falling edge or \overline{CS} rising edge to SDO high Z	tcdz	-	100	-	ns	

Table 13: LXT304A Serial I/O Timing Characteristics (See Figures 10 and 11)

Figure 10: LXT304A Serial Data Input Timing Diagram

Figure 11: LXT304A Serial Data Output Timing Diagram

DATA SHEET

2

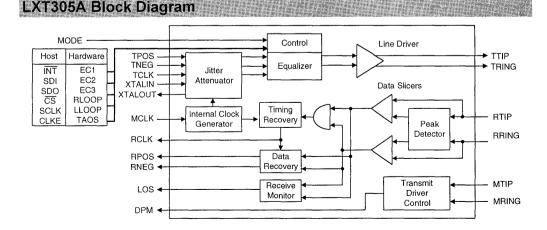
LXT305A

Integrated T1/E1 Short-Haul Transceiver with Transmit JA

General Description

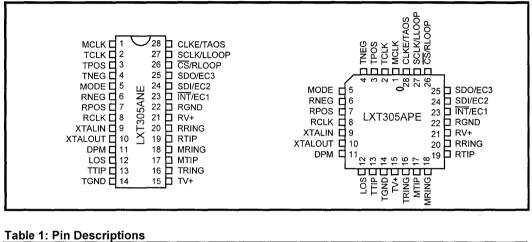
The LXT305A is a fully integrated transceiver for both North American 1.544 Mbps (T1) and International 2.048 Mbps (E1) applications. Transmit pulse shapes (T1 or E1) are selectable for various line lengths and cable types.

The LXT305A provides transmit jitter attenuation starting at 3 Hz, and is microprocessor controllable through a serial interface. It is especially well suited for applications in which the T1/E1 signals are demultiplexed from a higher rate service such as DS3 or SONET/SDH. This demultiplexing results in a gapped clock which the 305A smooths out.


The LXT305A, an advanced double-poly, double-metal CMOS device, requires only a single 5-volt power supply.

Applications

- · SDH / SONET Equipment
- · M13 Multiplexers
- · Digital microwave Radio
- PCM / Voice Channel Banks
- · Data Channel Bank / Concentrator
- T1 / E1 multiplexer
- Digital Access and Cross-connect Systems (DACS)
- Computer to PBX interface (CPI & DMI)
- · High-speed data transmission lines
- · Interfacing Customer Premises Equipment to a CSU
- Digital Loop Carrier (DLC) terminals


Features

- Low power consumption (400 mW maximum)
- Constant low output impedance transmitter, regardless of data pattern (3 Ω typical)
- High transmit and receive return loss exceeds ETS 300166 and G.703
- · Compatible with most popular PCM framers
- · Line driver, data recovery and clock recovery functions
- · Minimum receive signal of 500 mV
- · Selectable slicer levels (T1/E1) improve SNR
- Programmable transmit equalizer shapes pulses to meet DSX-1 pulse template from 0 to 655 ft
- · Local and remote loopback functions
- Transmit Driver Performance Monitor (DPM) output
- Receive monitor with analog/digital Loss of Signal (LOS) output per G.775
- · Receiver jitter tolerance 0.4 UI from 40 kHz to 100 kHz
- Transmit jitter attenuation starting at 3 Hz
- Serial control interface
- Available in 28-pin DIP and PLCC

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Figure 1: Pin Assignments

Table 1: Pin Descriptions

Pin #	Sym	I/O ¹	Description
1	MCLK	DI	Master Clock. A 1.544 or 2.048 MHz clock input used to generate internal clocks. Upon Loss of Signal (LOS), RCLK is derived from MCLK. If MCLK is not applied, this pin should be grounded.
2	TCLK	DI	Transmit Clock. Transmit clock input. TPOS and TNEG are sampled on the falling edge of TCLK.
3	TPOS	DI	Transmit Positive Data. Input for positive pulse to be transmitted on the twisted-pair line.
4	TNEG	DI	Transmit Negative Data. Input for negative pulse to be transmitted on the twisted-pair line.
5	MODE	DI	Mode Select. Setting MODE High puts the LXT305A in the Host Mode. In the Host Mode, the serial interface is used to control the LXT305A and determine its status. Setting MODE Low puts the LXT305A in the Hardware (H/W) Mode. In the Hardware Mode, the serial interface is disabled and hard-wired pins are used to control configuration and report status.
6	RNEG	DO	Receive Negative Data; Receive Positive Data. Received data outputs. A signal on
7	RPOS	DO	RNEG corresponds to receipt of a negative pulse on RTIP and RRING. A signal on RPOS corresponds to receipt of a positive pulse on RTIP and RRING. RNEG and RPOS outputs are Non-Return-to-Zero (NRZ). Both outputs are stable and valid on the rising edge of RCLK. In the Host Mode, CLKE determines the clock edge at which these outputs are stable and valid. In the Hardware Mode both outputs are stable and valid on the rising edge of RCLK.
1. Entries	in I/O column are	e: DI = Dig	;ital Input; DO = Digital Output; AI = Analog Input; AO = Analog Output; S = Supply.

Pin Assignments and Signal Descriptions

Pin #	Sym	I/O ¹	Description
8	RCLK	DO	Recovered Clock. This is the clock recovered from the signal received at RTIP and RRING.
9	XTALIN	AI	Crystal Input; Crystal Output. An external crystal operating at four times the bit rate (6.176 MHz for DSX-1, 8.192 MHz for E1 applications with an 18.7pF load) is
10	XTALOUT	AO	required to enable the jitter attenuation function of the LXT305A. These pins may also be used to disable the jitter attenuator by connecting the XTALIN pin to the positive supply through a resistor, and tying the XTALOUT pin to ground.
11	DPM	DO	Driver Performance Monitor. DPM goes High when the transmit monitor loop (MTIP and MRING) does not detect a signal for 63 ± 2 clock periods. DPM remains High until a signal is detected.
12	LOS	DO	Loss of Signal. LOS goes High when 175 consecutive spaces have been detected. LOS returns Low when the received signal reaches 12.5% ones density (based on 4 ones in any 32-bit period) with no more than 15 consecutive zeros.
13	TTIP	AO	Transmit Tip; Transmit Ring. Differential Driver Outputs. These low impedance
16	TRING	AO	outputs achieve maximum power savings through a 1:1.15 transformer (T1), or a 1:1 (75 ý) or 1:1.26 (120 ý) transformer (E1) without additional components. To provide higher return loss, resistors may be used in series with a transformer as specified in Application Information.
14	TGND	S	Transmit Ground. Ground return for the transmit drivers power supply TV+.
15	TV+	S	Transmit Power Supply. +5 VDC power supply input for the transmit drivers. TV+ must not vary from RV+ by more than ± 0.3 V.
17	MTIP	Al	Monitor Tip; Monitor Ring. These pins are used to monitor the tip and ring transmit
18	MRING	AI	outputs. The transceiver can be connected to monitor its own output or the output of another LXT305A on the board. Host Mode only: To prevent false interrupts in the Host Mode if the monitor is not used, apply a clock signal to one of the monitor pins and tie the other monitor pin to approximately the clock's mid-level voltage. The monitor clock can range from 100 kHz to the TCLK frequency.
19	RTIP	AI	Receive Tip; Receive Ring. The AMI signal received from the line is applied at these
20	RRING	AI	pins. A center-tapped, center-grounded, 2:1 step-up transformer is required on these pins. Data and clock from the signal applied at these pins are recovered and output on the RPOS/RNEG and RCLK pins.
21	RV+	S	Receive Power Supply. +5 VDC power supply for all circuits except the transmit drivers. (Transmit drivers are supplied by TV+.)
22	RGND	S	Receive Ground. Ground return for power supply RV+.
1. Entries	in I/O column are	: DI = Dig	ital Input; DO = Digital Output; AI = Analog Input; AO = Analog Output; S = Supply.

Table 1: Pin Descriptions – continued

ELEVEL

2

LXT305A Integrated T1/E1 Short-Haul Transceiver with Transmit JA

D:		I/O ¹	
Pin #	Sym	1/01	Description
23	ĪNT	DO	Interrupt (Host Mode). This LXT305A Host Mode output goes Low to flag the host processor when LOS or DPM go active. \overline{INT} is an open-drain output and should be tied to power supply RV+ through a resistor. \overline{INT} is reset by clearing the respective register bit (LOS and/or DPM).
	EC1	DI	Equalizer Control 1 (<i>H/W Mode</i>). The signal applied at this pin in the LXT305A Hardware Mode is used in conjunction with EC2 and EC3 inputs to determine shape and amplitude of AMI output transmit pulses.
24	SDI	DI	Serial Data In (Host Mode). The serial data input stream is applied to this pin when the LXT305A operates in the Host Mode. SDI is sampled on the rising edge of SCLK.
	EC2	DI	Equalizer Control 2 (<i>H/W Mode</i>). The signal applied at this pin in the LXT305A Hardware Mode is used in conjunction with EC1 and EC3 inputs to determine shape and amplitude of AMI output transmit pulses.
25	SDO	DO	Serial Data Out (Host Mode). The serial data from the on-chip register is output on this pin in the LXT305A Host Mode. If CLKE is High, SDO is valid on the rising edge of SCLK. If CLKE is Low SDO is valid on the falling edge of SCLK. This pin goes to a high-impedance state when the serial port is being written to and when \overline{CS} is High.
	EC3	DI	Equalizer Control 3 (<i>H/W Mode</i>). The signal applied at this pin in the LXT305A Hardware Mode is used in conjunction with EC1 and EC2 inputs to determine shape and amplitude of AMI output transmit pulses.
26	CS	DI	Chip Select (<i>Host Mode</i>). This input is used to access the serial interface in the LXT305A Host Mode. For each read or write operation, \overline{CS} must transition from High to Low, and remain Low.
	RLOOP	DI	Remote Loopback (<i>H/W Mode</i>). This input controls loopback functions in the LXT305A Hardware Mode. Setting RLOOP High enables the Remote Loopback Mode. Setting both RLOOP and LLOOP High causes a Reset.
27	SCLK	DI	Serial Clock (<i>Host Mode</i>). This clock is used in the LXT305A Host Mode to write data to or read data from the serial interface registers.
	LLOOP	DI	Local Loopback (<i>H/W Mode</i>). This input controls loopback functions in the LXT305A Hardware Mode. Setting LLOOP High enables the Local Loopback Mode.
28	CLKE	DI	Clock Edge (<i>Host Mode</i>). Setting CLKE High causes RPOS and RNEG to be valid on the falling edge of RCLK, and SDO to be valid on the rising edge of SCLK. When CLKE is Low, RPOS and RNEG are valid on the rising edge of RCLK, and SDO is valid on the falling edge of SCLK.
	TAOS	DI	Transmit All Ones (<i>H/W Mode</i>). When set High, TAOS causes the LXT305A (Hardware Mode) to transmit a continuous stream of marks at the MCLK frequency. Activating TAOS causes TPOS and TNEG inputs to be ignored. TAOS is inhibited during Remote Loopback.
1. Entries	in I/O column are	e: DI = Dig	ital Input; DO = Digital Output; AI = Analog Input; AO = Analog Output; S = Supply.

Table 1: Pin Descriptions - continued

FUNCTIONAL DESCRIPTION

The LXT305A is a fully integrated PCM transceiver for both 1.544 Mbps (DSX-1) and 2.048 Mbps (E1) applications. It allows full-duplex transmission of digital data over existing twisted-pair installations.

The first page of this data sheet shows a simplified block diagram of the LXT305A. The LXT305A transceiver interfaces with two twisted-pair lines (one twisted-pair for transmit, one twisted-pair for receive) through standard pulse transformers and appropriate resistors.

Power Requirements

The LXT305A is a low-power CMOS device. It operates from a single +5 V power supply which can be connected externally to both the transmitter and receiver. However, the two inputs must be within \pm .3V of each other, and decoupled to their respective grounds separately. Refer to Application Information for typical decoupling circuitry. Isolation between the transmit and receive circuits is provided internally.

The transmitter powers down to conserve power when the required clock input is not supplied. The LXT305A enters the power down mode during normal operation and local loopback if TCLK is not supplied, and during TAOS if MCLK is not supplied.

Reset Operation

Upon power up, the transceiver is held static until the power supply reaches approximately 3 V. Upon crossing this threshold, the device begins a 32 ms reset cycle to calibrate the transmit and receive delay lines and lock the Phase Lock Loop to the receive line. A reference clock is required to calibrate the delay lines. MCLK provides the receiver reference. The crystal oscillator provides the transmitter reference. If the crystal oscillator is grounded, MCLK is used as the transmitter reference clock.

The transceiver can also be reset from the Host or Hardware Mode. In Host Mode, reset is commanded by simultaneously writing RLOOP and LLOOP to the register. In Hardware Mode, reset is commanded by holding RLOOP and LLOOP High simultaneously for 200 ns. Reset is initiated on the falling edge of the reset request. In either mode, reset clears and sets all registers to 0 and then begins calibration.

Receiver

The LXT305A receives the signal input from one twistedpair line on each side of a center-grounded transformer. Positive pulses are received at RTIP and negative pulses are received at RRING. Recovered data is output at RPOS and RNEG, and the recovered clock is output at RCLK. Refer to Test Specifications for LXT305A receiver timing.

The signal received at RPOS and RNEG is processed through the peak detector and data slicers. The peak detector samples the inputs and determines the maximum value of the received signal. A percentage of the peak value is provided to the data slicers as a threshold level to ensure optimum signal-to-noise ratio. For T1 applications (determined by Equalizer Control inputs EC1 - EC3 \neq 000 or 001) the threshold is set to 70% of the peak value. This threshold is maintained above 65% for up to 15 successive zeros over the range of specified operating conditions. For E1 applications (EC inputs = 000 or 001) the threshold is 50%.

The receiver is capable of accurately recovering signals with up to -13.6 dB of attenuation (from 2.4 V), corresponding to a received signal level of approximately 500 mV. Maximum line length is 1500 feet of ABAM cable (approximately 6 dB of attenuation). Regardless of received signal level, the peak detectors are held above a minimum level of .3 V to provide immunity from impulsive noise.

After processing through the data slicers, the received signal is routed to the data and clock recovery sections, and to the receive monitor. The data and clock recovery circuits are highly tolerant with an input jitter tolerance significantly better than required by Pub 62411. Refer to Test Specifications for additional information.

The receiver monitor loads a digital counter at the RCLK frequency. The count is incremented each time a zero is received, and reset to zero each time a one (mark) is received. Upon receipt of 175 consecutive zeros the LOS pin goes High, and a smooth transition replaces the RCLK output with the MCLK. Received marks are output regardless of the LOS status, but the LOS pin will not reset until the ones density reaches 12.5%. This level is based on receipt of at least 4 ones in any 32-bit period with no more than 15 consecutive zeros.

Transmitter

Data received for transmission onto the line is clocked serially into the device at TPOS and TNEG. Input synchronization is supplied by the transmit clock (TCLK). The transmitted pulse shape is determined by Equalizer Control signals EC1 through EC3 as shown in Table 4. Refer to Test Specifications for master and transmit clock timing characteristics. Shaped pulses are applied to the AMI line driver for transmission onto the line at TTIP and TRING. Equalizer Control signals may be hardwired in the Hardware Mode, or input as part of the serial data stream (SDI) in the Host Mode

Pulses can be shaped for either 1.544 or 2.048 Mbps applications. 1.544 Mbps pulses for DSX-1 applications can be programmed to match line lengths from 0 to 655 feet of ABAM cable. The LXT305A also matches FCC and ECSA specifications for CSU applications. 2.048 Mbps pulses can drive coaxial or shielded twisted-pair lines.

Jitter Attenuation

Jitter attenuation of the LXT305A transmit outputs is provided by a Jitter Attenuation Loop (JAL) and an Elastic Store (ES). An external crystal oscillating at 4 times the bit rate provides clock stabilization. Refer to Application Information for crystal specifications. The ES is a 32 x 2-bit register. Transmit data is clocked into the ES with the transmit clock (TCLK) signal, and clocked out of the ES with the dejittered clock from the JAL. When the bit count in the ES is within two bits of overflowing or underflowing, the ES adjusts the output clock by 1/8 of a bit period. The ES produces an average delay of 16 bits in the receive path.

Driver Performance Monitor

The transceiver incorporates a Driver Performance Monitor (DPM) in parallel with TTIP and TRING at the output transformer. The DPM output goes High upon detection of 63 consecutive zeros. It is reset when a one is detected on the transmit line, or when a reset command is received.

Line Code

The LXT305A transmits data as a 50% AMI line code as shown in Figure 2. The output driver maintains a constant low output impedance regardless of whether it is driving marks or spaces. This well controlled output impedance provides excellent return loss (> 18 dB) when used with external 9.1 " precision (\pm 1 % accuracy) in series with a transmit transformer with a turns ratio of 1:2.3 (\pm 2% accu-

racy). Series resistors also provide increased surge protection and reduced short circuit current flow.

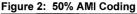


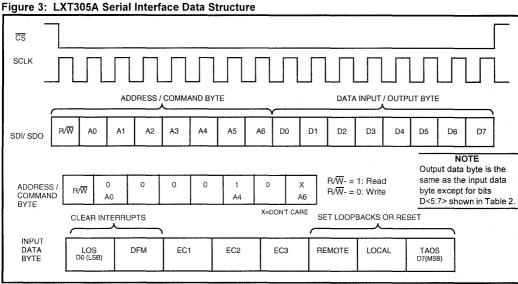
Table 2: LXT305A Serial Data Output Bits (See Figure 4)

Bit D5	Bit D6	Bit D7	Status
0	0	0	Reset has occurred, or no program input.
0	0	1	TAOS is active.
0	1	0	Local Loopback is active.
0	1	1	TAOS and Local Loopback are active.
1	0	0	Remote Loopback is active.
1	0	1	DPM has changed state since last Clear DPM occurred.
1	1	0	LOS has changed state since last Clear LOS occurred.
1	1	1	LOS and DPM have both changed state since last Clear DPM and Clear LOS occurred.

Operating Modes

The LXT305A can be controlled through hard-wired pins (Hardware Mode) or by a microprocessor through a serial interface (Host Mode). The mode of operation is set by the MODE pin logic level. The LXT305A can also be commanded to operate in one of several diagnostic modes.

Host Mode Operation


To allow a host microprocessor to access and control the LXT305A through the serial interface, MODE is set High.

The serial interface (SDI/SDO) uses a 16-bit word consisting of an 8-bit Command/Address byte and an 8-bit Data byte. Figure 3 shows the serial interface data structure and relative timing.

The Host Mode provides a latched Interrupt output (INT) which is triggered by a change in the Loss of Signal (LOS) and/or Driver Performance Monitor (DPM) bits. The Interrupt is cleared when the interrupt condition no longer exists, and the host processor enables the respective bit in the serial input data byte. Host Mode also allows control of the serial data and receive data output timing. The Clock Edge (CLKE) signal determines when these outputs are valid, relative to the Serial Clock (SCLK) or RCLK as listed in Table 3.

Table 3: Valid CLKE Settings

CLKE	Output	Clock	Valid Edge
Low	RPOS	RCLK	Rising
	RNEG	RCLK	Rising
	SDO	SCLK	Falling
High	RPOS	RCLK	Falling
	RNEG	RCLK	Falling
	SDO	SCLK	Rising

Table 4: Equalizer Control Inputs

EC3	EC2	EC1	Line Length ¹	Cable Loss ²	Application	Bit Rate
0	1	1	0 ~ 133 ft ABAM	0.6 dB		
1	0	0	133 ~ 266 ft ABAM	1.2 dB		
1	0	- 1	266 ~ 399 ft ABAM	1.8 dB	DSX-1	1.544 Mbps
1	1	0	399 ~ 533 ft ABAM	2.4 dB		
1	1	1	533 ~ 655 ft ABAM	3.0 dB		
0	0	0	ITU Recommend	lation G.703	E1 - Coax (75 Ω)	2.048 Mbps
0	0	1			E1 - Twisted-pair (120 Ω)	· · · · ·
0	1	0	FCC Part 68,	Option A	CSU (DS-1)	1.544 Mbps

LXT305A Integrated T1/E1 Short-Haul Transceiver with Transmit JA

The LXT305A serial port is addressed by setting bit A4 in the Address/Command byte, corresponding to address 16. The LXT305A contains only a single output data register so no complex chip addressing scheme is required. The register is accessed by causing the Chip Select (CS) input to transition from High to Low. Bit 1 of the serial Address/ Command byte provides Read/Write control when the chip is accessed. A logic 1 indicates a read operation, and a logic 0 indicates a write operation. Table 2 lists serial data output bit combinations for each status. Serial data I/O timing characteristics are shown in the Test Specifications section.

Hardware Mode Operation

In Hardware Mode the transceiver is accessed and controlled through individual pins. With the exception of the INT and CLKE functions, Hardware Mode provides all the functions provided in the Host Mode. In the Hardware Mode RPOS and RNEG outputs are valid on the rising edge of RCLK.

To operate in Hardware Mode, MODE must be set Low. Equalizer Control signals (EC1 through EC3) are input on the Interrupt, Serial Data In and Serial Data Out pins. Diagnostic control for Remote Loopback (RLOOP), Local Loopback (LLOOP), and Transmit All Ones (TAOS) modes is provided through the individual pins used to control serial interface timing in the Host Mode.

Diagnostic Mode Operation

Transmit All Ones

In Transmit All Ones (TAOS) Mode the TPOS and TNEG inputs to the transceiver are ignored. The transceiver transmits a continuous stream of ones when the TAOS mode is activated. TAOS can be commanded simultaneously with Local Loopback, but is inhibited during Remote Loopback. During TAOS, the transmitter is locked to MCLK. If MCLK is not supplied, the transmitter powers down.

Remote Loopback

In Remote Loopback (RLOOP) Mode, the transmit data and clock inputs (TPOS, TNEG and TCLK) are ignored. The RPOS and RNEG outputs are looped back through the transmit circuits and output on TTIP and TRING at the RCLK frequency. Receiver circuits are unaffected by the RLOOP command and continue to output the RPOS, RNEG and RCLK signals received from the twisted-pair line.

Local Loopback

In Local Loopback (LLOOP) Mode, the receiver circuits are inhibited. The transmit data and clock inputs (TPOS, TNEG and TCLK) are looped back onto the receive data and clock outputs (RPOS, RNEG and RCLK). The transmitter circuits are unaffected by the LLOOP command. The TPOS and TNEG inputs (or a stream of ones if the TAOS command is active) will be transmitted normally. During local loopback if TCLK is not supplied, the transmitter powers down. If LOS and LLOOP are both active, LLOOP takes precedence, forcing RCLK = TCLK.

Parameter	T1	E1
Frequency	6.176 MHz	8.192 MHz
Frequency stability	± 20 ppm @ 25 °C ± 25 ppm from -40 °C to 85 °C (Ref 25 °C reading)	± 20 ppm @ 25 °C ± 25 ppm from -40 °C to 85 °C (Ref 25 °C reading)
Pullability	CL = 11 pF to 18.7 pF, $+\Delta F = 175$ to 195 ppm CL = 18.7 pF to 34 pF, $-\Delta F = 175$ to 195 ppm	CL = 11 pF to 18.7 pF, $+\Delta F = 95$ to 115 ppm CL = 18.7 pF to 34 pF, $-\Delta F = 95$ to 115 ppm
Effective series resistance	40 Ω Maximum	30 Ω Maximum
Crystal cut	AT	AT
Resonance	Parallel	Parallel
Maximum drive level	2.0 mW	2.0 mW
Mode of operation	Fundamental	Fundamental
Crystal holder	HC49 (R3W),Co = 7 pF maximum $C_M = 17$ fF typical	HC49 (R3W), $C_0 = 7 \text{ pF maximum}$ $C_M = 17 \text{ fF typical}$

Table 5: LXT305A Crystal Specifications (External)

APPLICATION INFORMATION

1.544 Mbps T1 Interface Applications

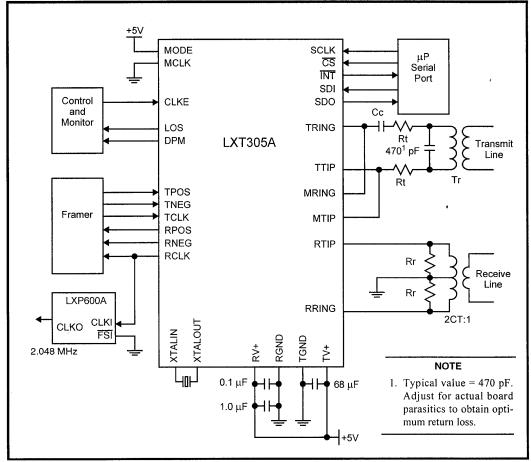
Figure 4 is a typical 1.544 Mbps T1 interface application. Use a 1:1.15 transmit transformer without in-line resistors for maximum power savings. The LXT305A is shown in the Host Mode with a T1/ESF Framer providing the digital interface with the host controller. An LXP600A Clock Adapter (CLAD) provides the 2.048 MHz system backplane clock, locked to the recovered 1.544 MHz clock signal. The power supply inputs are tied to a common bus with appropriate decoupling capacitors installed (68 μ F on the transmit side, 1.0 μ F and 0.1 μ F on the receive side).

For DSX-1 applications, series resistors can be used in line with the transmit transformer to provide higher return loss.

2.048 Mbps E1 Interface Applications

Figure 5 is a typical 2.048 Mbps E1 application. The LXT305A is shown in Hardware Mode with an E1/ CRC4 Framer. As in the DSX-1 application Figure 4, this configuration is illustrated with a crystal in place to enable the LXT305A Jitter Attenuation Loop, and a single power supply bus. The hard-wired control lines for TAOS, LLOOP and RLOOP are individually controllable, and the LLOOP and RLOOP lines are also tied to a single control for the Reset function. With the 1:1 transformer ratio and code 000 selected on the EC inputs, the LXT305A outputs the ITU specified 2.37 V pulse onto 75 " coaxial cable. Simply changing the EC code to 001 allows the LXT305A to match the 3.0 V pulse specification for 120 " shielded twisted-pair cable. No transformer change is required. For situations where at 1:1.26 transformer is desired, EC code 000 selects the correct output for 120" twisted-pair cable.

To achieve higher return loss, increased surge protection and lower output short circuit current, series resistors can be used in line with the transmit transformer.


Bit Rate (Mbps)	Crystal XTAL	Cable (Ω)	Rr² (Ω)	EC3/2/1	Transmit Transformer ¹ (Tr)	Rt² (Ω)	Typical TX Return Loss ³ (dB)	Сс (µF)
1.544 (T1)	LXC6176	100	200	0/1/1 - 1/1/1	1:1.15 1:2 1:2.3	0 9.1 9.1	0.5 18 18	0.47 0 0
2.048 (E1)	LXC8192	120	240	0/0/0 0/0/0 0/0/1 0/0/1	1:1.26 1:2 1:1 1:2	0 9.1 0 15	0.5 12 0.5 18	0.47 0 0.47 0
		75	150	0/0/0 0/0/0 0/0/1 0/0/1	1:1 1:2 1:1 1:2	0 9.1 10 14.3	0.5 18 5 10	0.47 0 0 0

2. Rr and Rt values are $\pm 1\%$.

3. Typical return loss, 51 kHz to 3.072 MHz band

Table 6: T1/E1 Input/Output Configurations

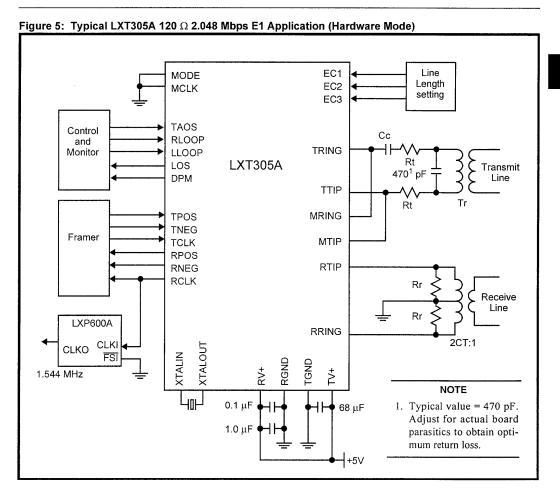

LXT305A Integrated T1/E1 Short-Haul Transceiver with Transmit JA

Figure 4: Typical LXT305A 1.544 Mbps T1 Application (Host Mode)

Application Information

2

LXT305A Integrated T1/E1 Short-Haul Transceiver with Transmit JA

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 7 through 13 and Figures 6 through 11 represent the performance specifications of the LXT305A and are guaranteed by test, except where noted by design.

Table 7: Absolute Maximum Ratings

Parameter	Sym	Min	Мах	Units
DC supply (referenced to GND)	RV+, TV+	-0.3	6.0	V
Input voltage, any pin ¹	Vin	RGND - 0.3	RV++0.3	V
Input current, any pin ²	Iin	-10	10	mA
Storage temperature	Тѕтд	-65	150	°C
	CAUTION ad these limits may result i operation is not guarantee		to the device.	

2. Transient currents of up to 100 mA will not cause SCR latch up. TTIP, TRING, TV+ and TGND can withstand a continuous current of 100 mA.

Table 8: Recommended Operating Conditions and Characteristics

Parameter	Sym	Min	Тур	Max	Units
DC supply ¹	RV+, TV+	4.75	5.0	5.25	v
Ambient operating temperature	TA	-40	25	85	°C

Table 9: Electrical Characteristics (Under Recommended Operating Conditions)

Parameter	Sym	Min	Max	Units	Test Conditions
Total power dissipation ¹	Рр	-	400	mW	100% ones density & maximum line length @ 5.25 V
High level input voltage ^{2,3} (pins 1-5, 10, 23-28)	Vih	2.0	-	V	
Low level input voltage ^{2,3} (pins 1-5, 10, 23-28)	Vil	-	0.8	V	
High level output voltage ^{2,3} (pins 6-8, 11, 12, 23, 25)	Vон	2.4	-	v	Iout = -400 μ A
Low level output voltage ^{2,3} (pins 6-8, 11, 12, 23, 25)	Vol	-	0.4	V	Іоит = 1.6 mA
Input leakage current ⁴	Ill	0	±10	μΑ	
Three-state leakage current ² (pin 25)	I3L	0	±10	μΑ	

1. Power dissipation while driving 75 Ω load over operating temperature range. Includes device and load. Digital input levels are within 10% of the supply rails and digital outputs are driving a 50 pF capacitive load.

2. Functionality of pins 23 and 25 depends on mode. See Host/Hardware Mode descriptions.

3. Output drivers will output CMOS logic levels into CMOS loads.

4. Except MTIP and MRING III = \pm 50 µA.

Test Specifications

Paran	Parameter			′p ¹	Мах	Units	Test Conditions
AMI output pulse	DSX-1	2.4	3	.0	3.6	V	measured at the DSX
amplitudes	E1	2.7	3	.0	3.3	V	measured at line side
Recommended output loa	d at TTIP and TRING	-	7	5	-	Ω	
	10 Hz - 8 kHz	-	-	-	0.01	UI	
Jitter added by the	8 kHz - 40 kHz		-	-	0.025	UI	
transmitter ²	10 Hz - 40 kHz	-	-		0.025	UI	
	Broad Band		-	-	0.05	UI	
Sensitivity below DSX	(0 dB = 2.4 V)	13.6	-	-	-	dB	
		500	-	-	-	mV	
Loss of Signal threshold		-	0	.3	-	V	
Data decision threshold	DSX-1	63	7	0	77	% peak	
	El	43	5	0	57	% peak	· · · · · · · · · · · · · · · · · · ·
Allowable consecutive ze	ros before LOS	160	1'	75	190		
Input jitter tolerance	10 kHz - 100 kHz	0.4		-	-	UI	
Jitter attenuation curve co	rner frequency ³	_		3	-	Hz	
Minimum return loss ^{4,5}		Trans Min	mit Typ	Re Min	eceive Typ	dB	
	51 kHz - 102 kHz	18	-	20		dB	· · · · · · · · · · · · · · · · · · ·
	102 kHz - 2.048 kHz	18	-	20		dB	
	2.048 kHz - 3.072 kHz	18	-	20	-	dB	

Table 10: Analog Characteristics (Under Recommended Operating Conditions)

1. Typical values are measured at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. Input signal to TCLK is jitter-free.

3. Circuit attenuates jitter at 20 dB/decade above the corner frequency.

4. In accordance with ITU G.703/ETS 300166 return loss specifications when wired per Figure 5 (E1).

5. Guaranteed by design.

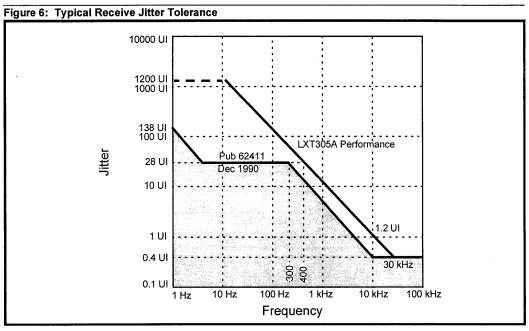
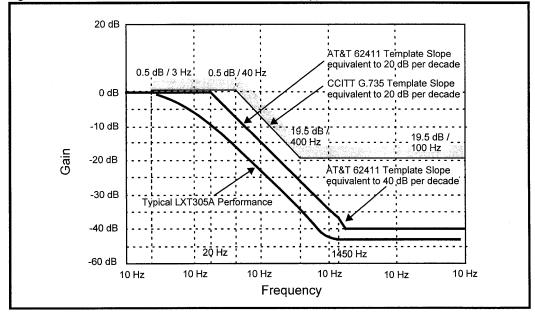



Figure 7: LXT305A Transmit Jitter Transfer Performance (Typical)

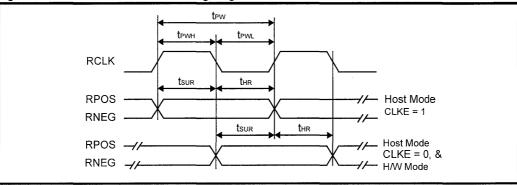
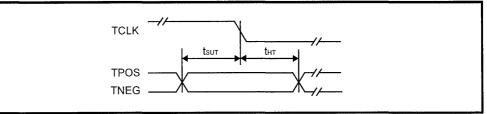

Parameter		Sym	Min	Typ ¹	Max	Units	Test Conditions
Receive clock duty cycle ²	T1	RCLKd	40	50	60	%	
Receive clock duty cycle	E1	RCLKd	40	50	60	%	
Receive clock pulse width ²	T1	tpw	594	648	702	ns	
Receive clock pulse width	E1	tpw	447	488	529	ns	
Receive clock pulse width	T1	tрwн	-	324	-	ns	
high	E1	tрwн	_	244	—	ns	
Receive clock pulse width	T1	tpwl	270	324	378	ns	
low	E1	tpwl.	203	244	285	ns	-
RPOS/RNEG to RCLK rising	T1	tsur	50	270	-	ns	
setup time	E1	tsur	50	203		ns	
RCLK rising to RPOS/RNEG	T1	thr	50	270	-	ns	
hold time	El	thr	50	203	-	ns	

Table 11: LXT305A Receive Timing Characteristics (See Figure 8)

1. Typical values are at 25 °C and are for design aid only; they are not guaranteed and not subject to production testing.

 RCLK duty cycle widths will vary depending on extent of received pulse jitter displacement. Max and Min RCLK duty cycles are for worst case jitter conditions (0.4 UI clock displacement for 1.544 MHz, 0.2 UI clock displacement for 2.048 MHz).

Figure 8: LXT305A Receive Clock Timing Diagram

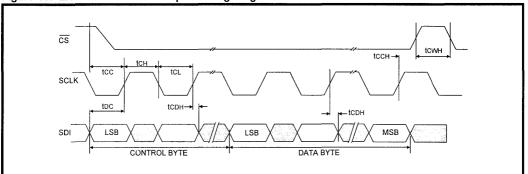


LXT305A Integrated T1/E1 Short-Haul Transceiver with Transmit JA

Parameter		Sym	Min	Typ ¹	Max	Units
Martan ala da Guanna	DSX-1	MCLK	-	1.544		MHz
Master clock frequency	E1	MCLK	_	2.048	_	MHz
Master clock tolerance		MCLKt	—	±100	_	ppm
Master clock duty cycle		MCLKd	40	_	60	%
Crystal frequency	DSX-1	fc		6.176	_	MHz
	E1	fc	-	8.192	_	MHz
T	DSX-1	TCLK	_	1.544	_	MHz
Transmit clock frequency	E1	TCLK	-	2.048	_	MHz
Transmit clock tolerance	L	TCLKt	_	±50		ppm
Transmit clock duty cycle		TCLKd	10	_	90	%
TPOS/TNEG to TCLK setup time		tsuт	25	_		ns
TCLK to TPOS/TNEG hold time		tнт	25			ns

Table 12: LXT305A Master Clock and Transmit Timing Characteristics (See Figure 9)

Figure 9: LXT305A Transmit Clock Timing Diagram



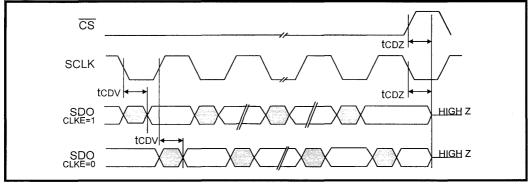

Parameter	Sym	Min	Typ ¹	Max	Units	Test Conditions
Rise/Fall time - any digital output	trf	-	_	100	ns	Load 1.6 mA, 50 pF
SDI to SCLK setup time	tdc	50	_	-	ns	
SCLK to SDI hold time	tcdh	50	-	-	ns	<u> </u>
SCLK low time	tcl.	240	_	-	ns	
SCLK high time	tсн	240	-	-	ns	
SCLK rise and fall time	tr, tf	-		50	ns	
CS to SCLK setup time	tcc	50		-	ns	· · · · · · · · · · · · · · · · · · ·
SCLK to CS hold time	tссн	50	-	-	ns	
CS inactive time	tсwн	250	-	_	ns	
SCLK to SDO valid	tcdv	_	-	200	ns	
SCLK falling edge or \overline{CS} rising edge to SDO high Z	tcdz	-	100	_	ns	

Table 13: LXT305A Serial I/O Timing Characteristics (See Figures 10 and 11)

Figure 10: LXT305A Serial Data Input Timing Diagram

Figure 11: LXT305A Serial Data Output Timing Diagram

LXT305A Integrated T1/E1 Short-Haul Transceiver with Transmit JA

NOTES

DATA SHEET

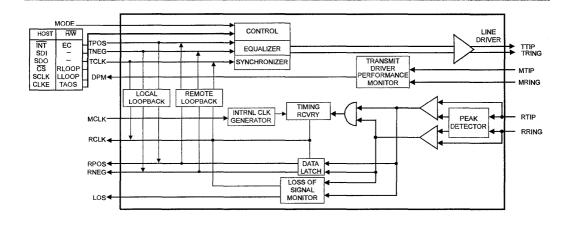
LXT307

Low-Power E1 Integrated Short-Haul Transceiver

General Description

The LXT307 is a fully integrated low-power transceiver optimized for G.703 2.048 Mbps (E1) applications. It features a constant low output impedance transmitter allowing for high transmitter return loss. Transmit pulse amplitudes are selectable for various cable types. It is designed to exceed the latest international specifications, including G.775 and ETS 300 166.

The LXT307 is microprocessor controllable through a serial interface. It can also be controlled through individual pins in Hardware Mode.


The LXT307 offers a variety of diagnostic features, including transmit and receive monitoring. The device requires a single 2.048 MHz clock reference for the on chip high performance clock recovery system. It uses an advanced double-poly, double-metal CMOS process and requires only a single 5-volt power supply.

Applications


- PCM G.703 Interfaces
- E1 multiplexer
- Digital Access and Cross-connect Systems (DACS)
- G.703 Trunk line cards for Public Switching Systems and PABX
- High-speed data transmission lines
 LXT307 Block Diagram

Features

- · Low power dissipation 260 mW typical
- Constant low output impedance transmitter regardless of data pattern (3 Ω typical)
- Low speed reference clock to reduce PC board noise coupling
- Driver short circuit current limited to 50 mA per OFTEL/BABT recommendations
- 75/120 Ω Operation without component changes
- Transmit and receive return loss exceeds ETSI ETS 300 166 and G.703
- Meets or exceeds all ITU specifications including G.703, G.823 (03/93) and G.775
- · Compatible with most popular PCM framers
- Line driver, data recovery and clock recovery functions
- · Minimum receive signal of 500 mV
- Programmable transmit amplitude for 75 Ω and 120 Ω operation without component changes
- · Local and remote loopback functions
- Transmit performance monitor with DPM detecting single line shorts for improved reliability
- · Analog/digital LOS monitor per G.775
- Receiver jitter tolerance 0.4 UI from 40 kHz to 100 kHz
- · Serial Control Interface
- · Available in 28-pin DIP or PLCC

Figure 1: Pin Assignments

Table 1: Pin Assignments and Signal Descriptions

Pin #	Sym	1/O ¹	Description
1	MCLK	DI	Master Clock. A 2.048 MHz clock input used to generate internal clocks. Upon Loss of Signal (LOS), RCLK is derived from MCLK.
2	TCLK	DI	Transmit Clock. Transmit clock input. TPOS and TNEG are sampled on the falling edge of TCLK. If TCLK is not supplied, the transmitter remains powered down.
3	TPOS	DI	Transmit Positive Data. Input for the positive pulse to be transmitted on the line.
4	TNEG	DI	Transmit Negative Data. Input for the negative pulse to be transmitted on the line.
5	MODE	DI	Mode Select. Setting MODE High puts the LXT307 in the Host Mode. In the Host Mode, the serial interface is used to control the LXT307 and determine its status. Setting MODE Low puts the LXT307 in the Hardware (H/W) mode. In the Hardware mode the serial interface is disabled and hard-wired pins are used to control configuration and report status.
6	RNEG	DO	Receive Negative Data; Receive Positive Data. Received data outputs. A signal on
7	RPOS	DO	RNEG corresponds to receipt of a negative pulse on RTIP and RRING. A signal on RPOS corresponds to receipt of a positive pulse on RTIP and RRING. RNEG and RPOS outputs are Non-Return-to-Zero (NRZ). In the Host mode, CLKE determines the clock edge at which these outputs are stable and valid. In the Hardware mode, both outputs are stable and valid on the rising edge of RCLK.
8	RCLK	DO	Recovered Clock. This is the clock recovered from the signal received at RTIP and RRING.
9	RT	AI	Resistor Termination. Connect to RV+ through a 1 k Ω resistor.
1. Entries	in I/O column	are: DI =)	Digital Input; DO = Digital Output; AI = Analog Input; AO = Analog Output; S = Supply.

Pin #	Sym	I/O 1	Description	
10	N/C	-	No connection.	
11	DPM	DO	Driver Performance Monitor. DPM goes High when the transmit monitor (MTIP a MRING) does not detect a signal for 63 ± 2 clock periods. DPM remains High until a sign detected. It is reset to Low with the first transition on MTIP and MRING.	
12	LOS	DO	Loss of Signal. LOS goes High when the signal falls below 20 dB below nominal for morthan 175 consecutive bit periods. LOS returns Low when the received signal detects 4 transitions in any 32-bit window (12.5% 1s density) with no more than 15 consecutive 0s	
13	TTIP	AO	Transmit Tip; Transmit Ring. Differential Driver Outputs. These low-impedance outputs achieve high return loss with resistors used in series with a transformer as specified in	
16	TRING	AO	Tables 9 and 10.	
14	TGND		Transmit Ground. Ground return for the transmit drivers power supply TV+.	
15	TV+	S	Transmit Power Supply. +5 VDC power supply input for the transmit drivers. TV+ must not vary from RV+ by more than ±0.3 V during all operating conditions including start-up	
17	MTIP	AI	Monitor Tip; Monitor Ring. These pins are used to monitor the TTIP and TRING trans-	
18	MRING	Al	mit outputs. The transceiver can be connected to monitor its own output or the output of another LXT307 on the board. To prevent false interrupts in the host mode if the monitis not used, apply a clock signal to one of the monitor pins and tie the other monitor pir approximately the clock's midrange voltage. The monitor clock can range from 100 kH to the TCLK frequency.	
19	RTIP	AI	Receive Tip; Receive Ring. The AMI signal received from the line is applied at these pins. A center-tapped, center-grounded, 2:1 step-up transformer for 75 Ω and 120 Ω is	
20	RRING	AI	required on these pins. Data and clock from the signal applied at these pins are recovered and output on the RPOS/RNEG and RCLK pins.	
21	RV+	S	Receive Power Supply. +5 VDC power supply for all circuits except the transmit drivers. (Transmit drivers are supplied by TV+.)	
22	RGND	S	Receive Ground. Ground return for power supply RV+.	
23	ĪNT	DO	Interrupt (<i>Host Mode</i>). This LXT307 Host mode output goes Low to flag the host processor when LOS or DPM go active. INT is an open-drain output and should be tied to power supply RV+ through a resistor. INT is reset by clearing the respective register bit (LOS and/or DPM).	
	EC	DI	Equalizer Control (<i>H/W Mode</i>). The signal applied at this pin in the LXT307 Hardware mode is used to determine the amplitude of AMI output transmit pulses.	
24	SDI	DI	Serial Data In (Host Mode). The serial data input stream is applied to this pin when the LXT307 operates in the Host mode. SDI is sampled on the rising edge of SCLK.	
	GND	DI	GND (H/W Mode). Signal ground.	
25	SDO	DO	Serial Data Out (<i>Host Mode</i>). The serial data from the on-chip register is output on this pin in the LXT307 Host mode. If CLKE is High, SDO is valid on the rising edge of SCLK. If CLKE is Low, SDO is valid on the falling edge of SCLK. This pin goes to a high-impedance state when the serial port is being written to and when \overline{CS} is High.	
	GND	DI	GND (H/W Mode). Signal ground.	

Table 1: Pin Assignments and Signal Descriptions - continued

Pin #	Sym	I/O 1	Description
26	CS	DI	Chip Select (<i>Host Mode</i>). This input is used to access the serial interface in the LXT307 Host mode. For each read or write operation, \overline{CS} must transition from High to Low, and remain Low.
	RLOOP	DI	Remote Loopback (<i>H/W Mode</i>). This input controls loopback functions in the LXT307 Hardware mode. Setting RLOOP to a logic H enables the Remote Loopback mode. Setting both RLOOP and LLOOP High causes a Reset.
27	SCLK	DI	Serial Clock (<i>Host Mode</i>). This clock is used in the LXT307 Host mode to write data to or read data from the serial interface registers.
	LLOOP	DI	Local Loopback (<i>H/W Mode</i>). This input controls loopback functions in the LXT307 Hardware mode. Setting LLOOP High enables the Local Loopback Mode.
28	CLKE	DI	Clock Edge (<i>Host Mode</i>). Setting CLKE High causes RPOS and RNEG to be valid on the falling edge of RCLK, and SDO to be valid on the rising edge of SCLK. When CLKE is Low, RPOS and RNEG are valid on the rising edge of RCLK, and SDO is valid on the falling edge of SCLK.
	TAOS	DI	Transmit All Ones (<i>H/W Mode</i>). When set High, TAOS causes the LXT307 (Hardware mode) to transmit a continuous stream of marks at the TCLK frequency. Activating TAOS causes TPOS and TNEG inputs to be ignored. TAOS is inhibited during Remote Loopback.
1. Entries	in I/O column	are: DI = I	Digital Input; DO = Digital Output; AI = Analog Input; AO = Analog Output; S = Supply.

Table 1: Pin Assignments and Signal Descriptions - continued

LEVE

Functional Description

The LXT307 is a fully integrated PCM transceiver for G.703 2.048 Mbps (E1) applications. A simplified block diagram of the transceiver appears on page 1. The LXT307 allows full-duplex transmission of digital data over existing twisted-pair or coax installations. It interfaces with two lines, one for receive, one for transmit.

Power Requirements

The LXT307 is a low-power CMOS device. It operates from a single +5 V power supply which can be connected externally to both the transmitter and receiver. However, the two inputs must be within ± 0.3 V of each other, and decoupled separately to their respective grounds. Isolation between transmit and receive circuits is provided internally. During normal operation, and LLOOP, the transmitter powers down if TCLK is not supplied. The transmitter also powers down during TAOS operation if TCLK is not supplied.

Reset Operation

Upon power up, the transceiver is held static until the power supply reaches approximately 3 V. Upon crossing this threshold, the device begins a 32 ms reset cycle to calibrate the transmit and receive delay lines and locks the Phase Lock Loop to the receive line. A reference clock is required to calibrate the delay lines The transmitter reference is provided by TCLK. MCLK is used as the receiver reference clock.

The transceiver can also be reset from the Host or Hardware mode. In Host mode, reset is commanded by simultaneously writing RLOOP and LLOOP to the register. In Hardware mode, reset is commanded by holding RLOOP and LLOOP high simultaneously for 200 ns. Reset is initiated on the falling edge of the reset request. In either mode, reset clears and sets all registers to 0 and then calibration begins.

Receiver

The LXT307 receives the signal input from one line on each side of a center-grounded transformer. Positive pulses are received at RTIP and negative pulses are received at RRING.

The signal received at RTIP and RRING is processed through the peak detector and data slicers. The peak detector samples the inputs and determines the maximum value of the received signal. A percentage of the peak value is provided to the data slicers as a threshold level to ensure optimum signal-to-noise ratio. The threshold is 50% and is maintained over the whole input range.

The receiver is capable of accurately recovering signals with up to -13.6 dB of attenuation (from 2.4 V), corresponding to a received signal level of approximately 500 mV. Regardless of received signal level, the peak detectors are held above a minimum level of 0.3 V to provide immunity from impulsive noise.

After processing through the data slicers, the received signal is routed to the data and clock recovery sections, and to the receive monitor. The data and clock recovery circuits are highly tolerant with an input jitter tolerance significantly better than required by G.823, as shown in Figure 17. Recovered clock signals are supplied to the data latch. Recovered data is output at RPOS and RNEG, and the recovered clock is output at RCLK. Refer to Table 15 and Figure 13 for LXT307 receiver timing.

Loss of Signal Processor

Declaring the LOS Condition

Recommendation G.775 defines basic criteria for detection and clearance of Loss of Signal (LOS) defects.

LXT307 uses a digital-and-analog detection scheme to comply with G.775. If the signal level falls below 20 dB typical, the LXT307 begins to count consecutive bit times and declares LOS after approximately 175 (160 to 190) consecutive zeros. Refer to Table 2.

Clearing the LOS Condition

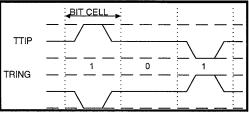
LXT307 clears LOS with a three-step process:

- 1. The signal must first exceed the 20 dB signal level.
- 2. Then a 32-bit repeating window checks for 12.5% Is density. (To meet this parameter, there must be at least four 1s out of the 32 bits in the window.)
- 3. Finally, there must be no more than 15 consecutive 0s to clear the LOS condition.

Transmitter

Data received for transmission onto the line is clocked serially into the device at TPOS and TNEG. Input synchronization is supplied by the transmit clock (TCLK). If TCLK is not supplied, the transmitter remains powered down, except during remote loopback and TAOS. Refer to Table 16 and Figure 14 for master and transmit clock timing characteristics.

Line Code


The LXT307 transmits data as a 50% AMI line code as shown in Figure 2. The output driver maintains a constant low output impedance under dynamic conditions regardless of whether it is driving marks or spaces.

The transmitted pulse amplitude is determined by the equalizer control signal EC as shown in Table 3.

The equalizer control signal may be hardwired in Hardware mode or input as part of the serial data stream (SDI) in Host mode. Shaped pulses are applied to the AMI line driver for transmission onto the line at TTIP and TRING. The line driver provides a constant low output impedance of 3 Ω (typical). This well-controlled output impedance provides excellent return loss when used with external precision resistors (±1% accuracy) in series with a transmit transformer. Series resistors also provide increased surge protection and reduce short circuit current flow.

Pulses can drive coaxial or shielded twisted-pair lines. A 1:2 transmit transformer and series resistors are recommended. This design meets or exceeds all ETSI 300 166 and European PTT specifications for transmit and receive return loss when series resistors are used.

Figure 2: 50% AMI Coding

Table 2: G.775 Requirements and LXT307 Implementation of LOS Detection

Condition	G.775 Recommendation	Level One Implementation
Detect LOS	Signal with no transitions ¹ less than or equal to signal level of 35 dB below nominal for N consecutive intervals where $10 \le N \le 255$.	Signal level below 20 dB and no consecutive tran- sition for 160 to 190 (typical 175) pulse intervals.
Clear LOS	Signal has transitions ¹ and level greater than or equal to 9 dB below nominal for N consecutive pulse intervals where $10 \le N \le 255$.	Signal level above 20 dB with bit density greater than 12.5% for 32-bit positions, and with fewer than 15 consecutive zeros.

A signal with "transitions" corresponds to a G.703 compliant signal.

Table 3: Equalizer Control Inputs for Pulse Amplitude Selection

EC	Line Length & Cable Loss	Application
0	ITU Recommendation G.703	E1 - Coax (75 Ω)
1	ITU Recommendation G.703	E1 - Twisted-Pair (120 Ω)

Driver Performance Monitor

The transceiver incorporates an advanced Driver Performance Monitor (DPM) that can be connected in parallel with the TTIP and TRING at the output transformer. The DPM circuitry uses four comparators and a 150 ns pulse discriminator to filter glitches. The DPM output level goes High upon detection of 63 consecutive zeros, and is cleared when a transition is detected on the transmit line or when a reset command is received. The DPM output also goes High to indicate a signal line short to ground on TTIP or TRING. A ground fault induced DPM flag is automatically cleared when the ground condition is corrected (chip reset is not required).

Operating Modes

The LXT307 transceiver can be controlled through hardwired pins (Hardware Mode–default) or by a microprocessor through a serial interface (Host Mode) depending on the input to pin 5 (MODE). The mode of operation is set by the MODE pin logic level. The LXT307 can also be commanded to operate in one of several diagnostic modes.

Hardware Mode Operation

In Hardware mode the transceiver is controlled through individual pins. With the exception of the \overline{INT} and CLKE functions, Hardware mode provides all the functions provided in the Host mode. In the Hardware mode RPOS and RNEG outputs are valid on the rising edge of RCLK. To operate in Hardware mode, the MODE must be set to 0. Diagnostic Control for Remote Loopback (RLOOP), Local Loopback (LLOOP), and Transmit All 1s (TAOS) modes is provided through the individual pins.

If MODE is set Low, LXT307 operates in Hardware Mode. In Hardware Mode the transceiver is controlled through individual pins; a microprocessor is not required. RPOS and RNEG are valid on the rising edge of RCLK.

The equalizer is controlled through pin 23 (EC). Diagnostic control for Remote Loopback (RLOOP), Local Loopback (LLOOP), and Transmit All 1s (TAOS) is provided through pins 26, 27, and 28.

Host Mode Control

The LXT307 operates in the Host mode when pin 5 (MODE) is asserted High. In Host mode a microprocessor controls the LXT307 through the serial I/O port (SIO) which provides access to the LIU. The LIU contains a pair of data registers, one for command inputs

and one for status outputs. An SIO transaction is initiated by a falling edge on the Chip Select pin. A Highto-Low transition on \overline{CS} is required for each subsequent access to the Host mode registers.

The LIU responds by writing the incoming serial word from the SDI pin into its command register. Figure 3 shows an SIO write operation. The 16-bit serial word consists of an 8-bit Command/Address byte and an 8bit Data byte. If the command word contains a read request, the LIU subsequently outputs the contents of its status register onto the SDO pin. Figure 4 shows an SIO read operation. The Clock Edge (CLKE) signal determines when the SDO and receive data outputs are valid, relative to the Serial Clock (SCLK) or RCLK as listed in Table 4. Table 17 and Figures 15 and 16 show SIO timing.

Serial Input Word

Figure 3 shows the Serial Input data structure. The LXT307 is addressed by setting bit A4 in the Address/ Command byte, corresponding to address 16. Bit 1 of the serial Address/Command byte provides Read/ Write (R/\overline{W}) control when the chip is accessed. The R/ \overline{W} bit is set to logic 1 to read the data output byte from the chip, and set to logic 0 to write the input data byte to the chip.

The second eight bits of a write operation, clear Loss of Signal (LOS) and Driver Performance Monitor (DPM) interrupts, reset the chip, and control diagnostic modes. The first 2 bits (D0 - D1) clear and/or mask LOS and DPM interrupts. The last three bits (D5 - D7) control operating modes (normal and diagnostic) and chip reset. Refer to Table 5 for details on bits D5 - D7.

Serial Output Word

Figure 4 shows the Serial Output data structure. SDO is high impedance when SDI receives an Address/ Command byte. If SDI receives a read command (R/\overline{W} = 1), then SDO becomes active after the last Command/Address bit (A6) and remains active for eight SCLK cycles. Typically the first bit out of SDO changes the state of SDO from high-Z to a Low/High.

The first five bits (D0-D4) of the output data byte reports Loss of Signal (LOS) and Driver Performance Monitor (DPM) conditions, equalizer settings, and operating modes (normal or diagnostic). The last three bits (D5 through D7) report operating modes and interrupt status.

If the \overline{INT} line is High (no interrupt is pending), bits D5 through D7 report the status of the operating mode as listed in Table 6. If the \overline{INT} line is Low, the interrupt

status overrides all other reports and bits D5 - D7 reflect the interrupt status as listed in Table 6.

Interrupt Handling

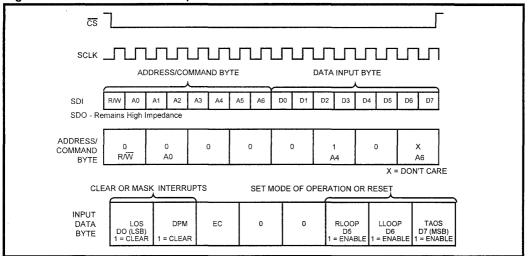
The Host mode provides a latched Interrupt output pin, \overline{INT} . Any change in the LOS or DPM bits (D0 and D1 of the output data byte, respectively) triggers an interrupt. As shown in Figure 5, writing a one to the respective bit of the input data byte (D0 = LOS, D1 = DPM) masks either or both interrupt generators. When an interrupt has occurred the \overline{INT} output pin is pulled Low. The output stage of the \overline{INT} pin consists of a pulldown device. Hence, an external pull-up resistor is required. clear the interrupt as follows:

- If one or both interrupt bits (LOS or DPM, D0 and D1 of the output data byte) = 1, writing a 1 to the input bit (D0 or D1, respectively), of the input data byte will clear the interrupt. Leaving a 1 in either of these bit positions will effectively mask the associated interrupt. To re-enable the interrupt capability, reset D0 and/or D1 to 0.
- 2. If neither LOS or DPM = 1, the interrupt will be cleared by resetting the chip. To reset the chip, set data input bits D5 and D6 = 1, and D7 = 0.

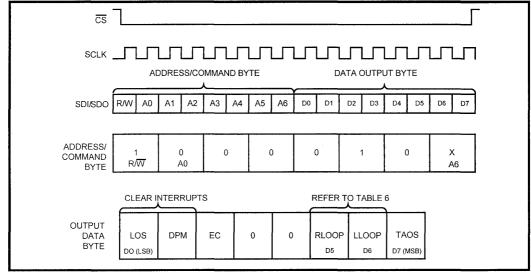
Table 6:	Serial Data Output Bit Coding	

Table 4: CLKE Settings

CLKE	Output	Clock	Valid Edge
LOW	RPOS/RNEG	RCLK	Rising
	SDO	SCLK	Falling
HIGH	RPOS/RNEG	RCLK	Falling
	SDO	SCLK	Rising


Table 5: SIO Input Bit Settings

(see Figure 3)


Mode	RLOOP Bit D5	LLOOP Bit D6	TAOS Bit D7
RLOOP	1	0	-
LLOOP	0	1	0
LLOOP + TAOS	0	1	1
TAOS	0	0	1
RESET	1	1	0

Bit D5	Bit D6	Bit D7	Status
0	0	0	Reset has occurred, or no program input. (i.e., normal operation)
0	0	1	TAOS is active.
0	1	0	Local Loopback is active.
0	1	1	TAOS and Local Loopback are active.
1	0	0	Remote Loopback is active.
			Interrupt Status
1	0	1	DPM has changed state since last clear DPM occurred.
1	1	0	LOS has changed state since last clear LOS occurred.
1	1	1	LOS and DPM have both changed state since last clear DPM and clear LOS occurred.

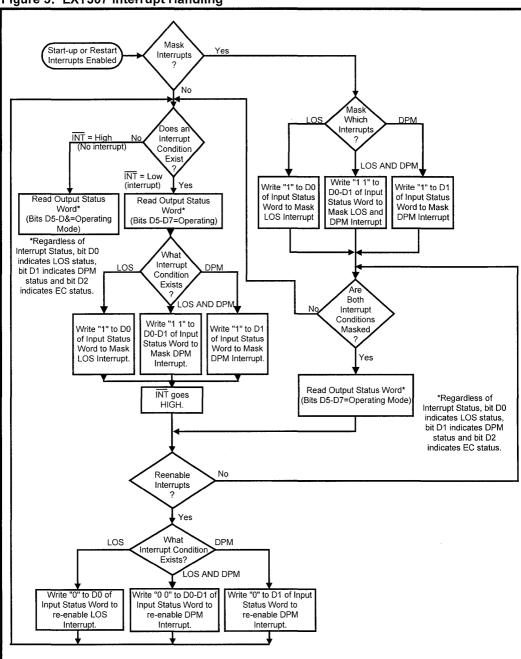
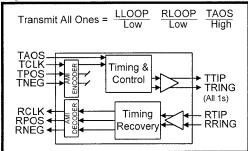
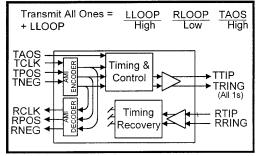

Figure 3: LXT307 SIO Write Operation

Figure 4: LXT307 SIO Read Operation

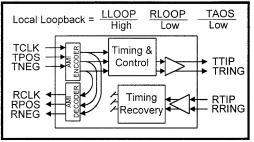


Diagnostic Mode Operation


TAOS

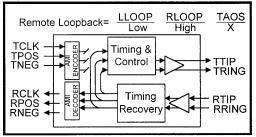
See Figures 6 and 7. In Transmit All Ones (TAOS) mode, the TPOS and TNEG inputs to the transceiver are ignored. The transceiver transmits a continuous stream of 1s at the TCLK frequency when TAOS is activated. TAOS can be commanded simultaneously with Local Loopback, but is inhibited during Remote Loopback.

Figure 6: TAOS


Figure 7: TAOS with LLOOP

LLOOP

See Figure 8. In Local Loopback (LLOOP) mode, the receiver circuits are inhibited. The transmit data and clock inputs (TPOS, TNEG and TCLK) are looped back onto the receive data and clock outputs (RPOS, RNEG and RCLK). The transmitter circuits are unaffected. The TPOS and TNEG inputs (or a stream of 1s if the TAOS command is active) will be transmitted normally.

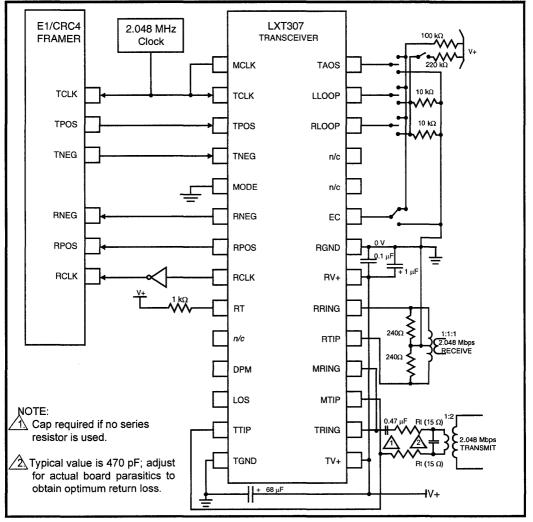

Figure 8: Local Loopback

RLOOP

See Figure 9. In Remote Loopback (RLOOP) mode, the transmit data and clock inputs (TPOS, TNEG and TCLK) are ignored. The RPOS and RNEG outputs are looped back through the transmit circuits and output on TTIP and TRING at the RCLK frequency. Receiver circuits are unaffected by the RLOOP command and continue to output the RPOS, RNEG and RCLK signals received from the twisted-pair line.

Figure 9: Remote Loopback

Application Information


NOTE

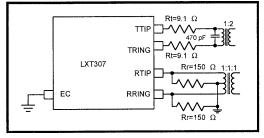
This application information is for design aid only.

Figure 10 is a 2.048 Mbps E1 120 Ω Twisted-Pair Wire application using EC code 1 and 15 Ω Rt resistors in line with the transmit transformer to provide high return loss and surge protection. When high return loss is not a critical

factor, a 1:1 transformer without in-line resistors provides maximum power savings. Tables 7 and 8 list typical return loss figures for various transformer ratios, Rt values and the associated EC code for 75 Ω coax and 120 Ω twistedpair applications, respectively. The LXT307 is shown in Hardware mode with a general G.704 Framer. The hardwired control lines for TAOS, LLOOP and RLOOP are individually controllable, and the LLOOP and RLOOP lines are also tied to a single control for the Reset function.

E1 Coaxial Applications

Figure 11 shows the line interface for a typical E1 coaxial (75Ω) application. The EC code should be set to 0 for coax. With 9.1 Ω Rt resistors in line with the 1:2 output transformers, the LXT307 produces 2.37 V peak pulses as required for coax applications. A 1:1:1 transformer is used on the receive side.


Table 7: Transformer Specifications

Parameter	Value
Turns Ratio Tx	1:2 (±2%)
Primary Inductance	1.2 mH min
Leakage Inductance	0.5 μH max
Interwinding Capacitance	25 pF max
Series Resistance	1.0 Ω PRI

Table 8: Transformer Selection Guide

Transformer Manufacturer	Part Number	Turns Ratio	Description
Pulse	PE65861	1:2	Dual SMD
Engineering	PE 65351	1:2	Single through hole
Bel Fuse	0553-5006	1:2	Dual
Schott	67127370	1:2	Single through hole
Midcom	671-5832	1:2	Single through hole

Figure 11: Line Interface for E1 Coax Applications

Table 9: 75 Ω Output Combinations

EC	Xfmr Ratio ¹	Rt Value ²	Rtn Loss ³
1	1:1	$Rt = 10 \Omega$	5 dB
1	1:2	$Rt = 14.3 \Omega$	10 dB
0	1: 1	$Rt = 0 \ \Omega^4$	0.5 dB
0	1:2	Rt = 9.1 Ω	18 dB

1. Transformer turns ratio accuracy is ±2%.

2. Rt values are ±1%.

3. Typical return loss, 51 kHz - 3.0728 kHz.

4. Cap required if no series resistor is used.

Table 10: 120 Ω Output Combinations

EC	Xfmr Ratio ¹	Rt Value ²	Rtn Loss ³
1	1:1	$Rt = 0 \ \Omega^4$	0.5 dB
1	1:2	$Rt = 15 \Omega$	18 dB
0	1:2	Rt = 9.1 Ω	10 dB
1	C		

1. Transformer turns ratio accuracy is ±2%.

2. Rt values are ±1%.

3. Typical return loss, 51 kHz - 3.0728 kHz.

4. Cap required if no series resistor is used.

2

Test Specifications

NOTE

The minimum and maximum values in Tables 11 through 17 and Figures 12 through 17 represent the performance specifications of the LXT307 and are guaranteed by test, except where noted by design.

Table 11: Absolute Maximum Ratings

Parameter	Sym	Min	Max	Units
DC supply (referenced to GND)	RV+, TV+	_	6.0	V
Input voltage, any pin ¹	VIN	RGND - 0.3	RV++0.3	V
Input current, any pin ²	lin	-10	10	mA
Storage temperature	Tstg	-65	150	°C
	CAUTION			

Operations at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.

1. Excluding RTIP and RRING which must stay between -6V and (RV+ + 0.3) V.

2. Transient currents of up to 100 mA will not cause SCR latch up. TTIP, TRING, TV+ and TGND can withstand a continuous current of 100 mA.

Table 12: Recommended Operating Conditions and Characteristics

Parameter	Sym	Min	Тур	Мах	Units
DC Supply ¹	RV+, TV+	4.75	5.0	5.25	V
Ambient operating temperature	TA	-40	25	85	°C

1. 1 V+ must not exceed RV+ by more than 0.5 V.

Table 13: Electrical Characteristics (Over recommended operating conditions)

Parameter		Sym	Min	Тур	Max	Units	Test Conditions
Total power dissipation ^{1, 2} 75 Ω (EC = 0)		PD	-	260	320	mW	50% 1s density
-	120 Ω (EC = 1)	PD	-	270	320	mW	
Total power consumption ³	120 Ω (EC = 1)	PD	-	400	T.B.D.	mW	100% 1s density
High level input voltage ⁴ (p	ins 1-5, 23)	VIH	2.0	-	_	V	
Low level input voltage ⁴ (pins 1-5, 23)		VIL	-	-	0.8	V	
High level output voltage ^{4, 5} 12, 23, 25)	(pins 6-8, 11,	Vон	2.4	_	_	v	IOUT = -400 μA
Low level output voltage ^{4, 5} 12, 23, 25)	(pins 6-8, 11,	Vol	_	_	0.4	v	IOUT = 1.6 mA
Input leakage current ⁶		ILL	0		±10	μΑ	
Three-state leakage current	(pin 25)	I3L	0	-	±10	μΑ	

1. Device power dissipation while driving a 75 or 120 Ω load over operating temperature range. Digital input levels are within 10% of the supply rails and digital outputs are driving a 50 pF capacitive load. Rt = 0 Ω ; transformer ratio = 1:1.

2. Guaranteed by design and other correlation methods.

3. Power consumption while driving a 60 Ω effective load. Includes device and load. Rt = 15 Ω ; transformer ratio = 1:2; EC = 1.

4. Functionality of pin 23 depends on mode. See Host/Hardware Mode Descriptions.

5. Output drivers will output CMOS logic levels into CMOS loads.

6. Except MTIP and MRING ILL = $\pm 50 \mu A$.

Pa	arameter	Min	Турі	cal ¹	Max	Units	Test Conditions
AMI output pulse	75 Ω	2.14	2.	37	2.6	V	G.703
amplitudes	120 Ω	2.7	3	.0	3.3	V	G.703
Peak voltage of a	75 Ω	-0.237	()	+0.237	v	
space	120 Ω	-0.3	()	+0.3	v	
Ratio of the widths o pulses at the nominal	f positive and negative half amplitude	95	-	-	105	%	
Ratio of the amplitud pulses at the center o	les of positive and negative f the pulse interval	95		-	105	%	
Recommended output	t load at TTIP and TRING	_	75		-	Ω	
Driver output impeda			3		10	Ω	
Driver short circuit current ²					50	mA	
litter added by the 10 Hz - 8 kHz ⁴			-	-	0.01	UI	G.823
transmitter	18 kHz - 100 kHz ⁴	-	-	_	0.025	UI	G.823
	20 Hz - 100 kHz ⁴	_	-	_	0.025	UI	G.823
	Broad Band ³	-	0.025		0.050	UI	
Receiver sensitivity	Receiver sensitivity $(0 \text{ dB} = 2.4 \text{ V})$		-	-	_	dB	
		500	-	_	-	mV	
Receiver input impedance		-	4	0	-	kΩ	
Signal to interference ratio (FEXT) ⁴		15	-	-	_	dB	G.703, O.151
Input jitter tolerance 18 kHz - 100 kHz		0.4	-	_	-	UI	G.823
Loss of Signal threshold		_	2	0	_	dB	below nominal
Data decision thresho	old ⁴	43	5	0	57	% peak	
Allowable consecutiv	ve zeros before LOS ⁴	160	17	75	190	-	G.775
LOS reset transition window ⁴		-	3	2	-	bit	four transitions
		Trans	nsmit Re		ceive		
		Min	Typ ¹	Min	Typ ¹		
Minimum return	51 Hz – 102 kHz	18	20	20		dB	Dynamic condi-
loss ⁴	102 kHz –2.048 MHz	18	20	20	-	dB	tions per ETS 300 166 and
	2.048 MHz – 3.072 MHz	18	20	20	_	dB	ITU G.703. See Figures 10, 11.

Table 14: Analog Characteristics (Over recommended operating conditions)

1. Typical values are measured at 25 °C and are for design aid only. Not guaranteed or subject to production testing.

2. Per OFTEL OTR-001/BABT BS4650 with 15 Ω termination resistors and a 1:2 transmit transformer on a 0.5 Ω test load.

3. Input signal to TCLK is jitter-free.

4. Guaranteed by design or other correlation methods.

2

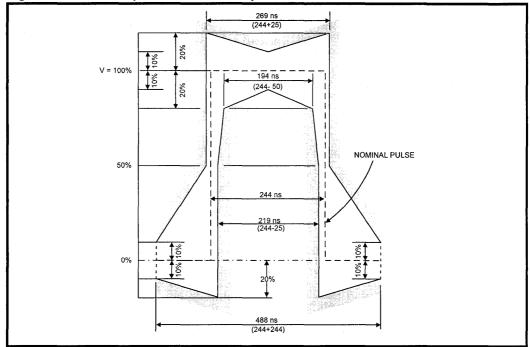


Figure 12: 2.048 Mbps Pulse Mask Template

Table 10. Receive Inning Onalactensuics (Over recommended operating conditions	Table 15:	Receive Timing	Characteristics	(Over recommended operating conditions)
--	-----------	----------------	-----------------	---

Parameter	Sym	Min	Typ1	Max	Units	Test Conditions
Receive clock duty cycle	RCLKd	40	· _	60	%	
Receive clock pulse width	tPW	_	244	-	ns	
RPOS/RNEG to RCLK ris- ing setup time	tSUR	_	194	-	ns	
RCLK rising to RPOS/ RNEG hold time	thr	-	194		ns	
1. Typical values are at 25 °C and are	e for design aid	only; they are	not guaranteed	1 and not subje	ct to production t	esting.

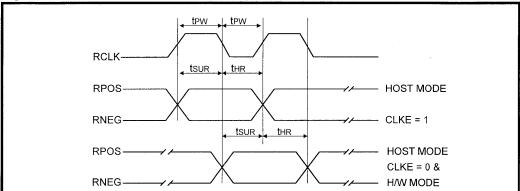
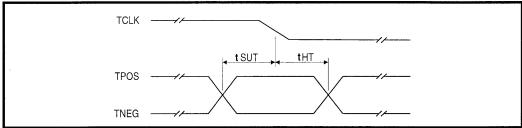
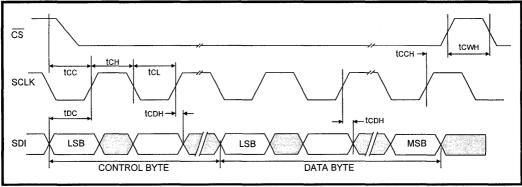
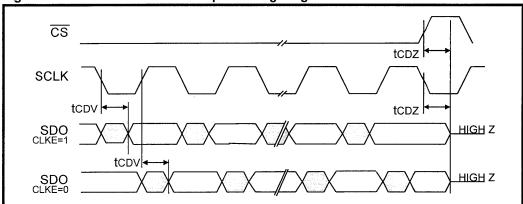



Figure 13: LXT307 Receive Clock Timing

Figure 14: LXT307 Transmit Clock Timing

Table 16: Transmit Timing Characteristics (over recommended operating condit
--


Parameter	Sym	Min	Тур ¹	Max	Units
Master clock frequency	MCLK	_	2.048		MHz
Master clock tolerance	MCLKt	_	±100	_	ppm
Master clock duty cycle	MCLKd	40	-	60	%
Transmit clock frequency	TCLK	_	2.048	_	MHz
Transmit clock tolerance	TCLKt	_	±50	_	ppm
Transmit clock duty cycle	TCLKd	10	_	90	%
TPOS/TNEG to TCLK setup time	tsut	25	-	_	ns
TCLK to TPOS/TNEG hold time	tHT	25	_	_	ns



Parameter	Sym	Min	Typ ¹	Max	Units	Test Conditions	
Rise time - any digital output	tR		-	100	ns	Load 1.6 mA, 50 pF	
Fall time - any digital output	tF	_	_	100	ns	Load -400 µA, 50 pF	
SDI to SCLK setup time	tDC	50	-	_	ns		
SCLK to SDI hold time	tCDH	50	-	_	ns	·····	
SCLK low time	tCL	240		_	ns		
SCLK high time	tCH	240	-		ns		
SCLK rise and fall time	tR, tF	· _		50	ns		
CS to SCLK setup time	tCC	50	-	_	ns		
SCLK to \overline{CS} hold time	tCCH	50	-	-	ns		
CS inactive time	tCWH	250	_	-	ns		
SCLK to SDO valid	tCDV	_	-	200	ns		
SCLK falling edge or \overline{CS} rising edge to SDO high Z	tCDZ	-	100	-	ns		

Table 17: Serial I/O Timing Characteristics (Over recommended operating conditions	Table 17:	Serial I/O Timin	g Characteristics	(Over recommended o	perating conditions
--	-----------	------------------	-------------------	---------------------	---------------------

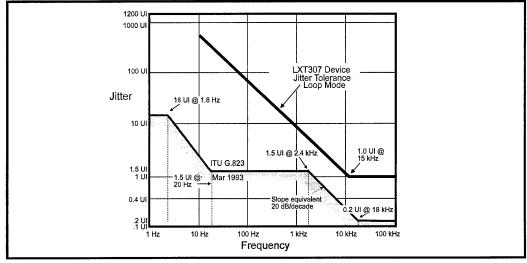

Figure 15: LXT307 Serial Data Input Timing Diagram

Figure 16: LXT307 Serial Data Output Timing Diagram

2

NOTES

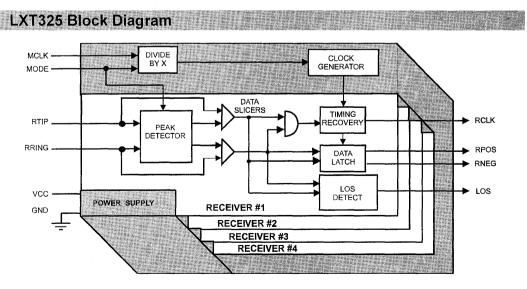
MAY 1996 REVISION 0.0

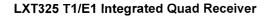
DATA SHEET LXT325 T1/E1 Integrated Quad Receiver

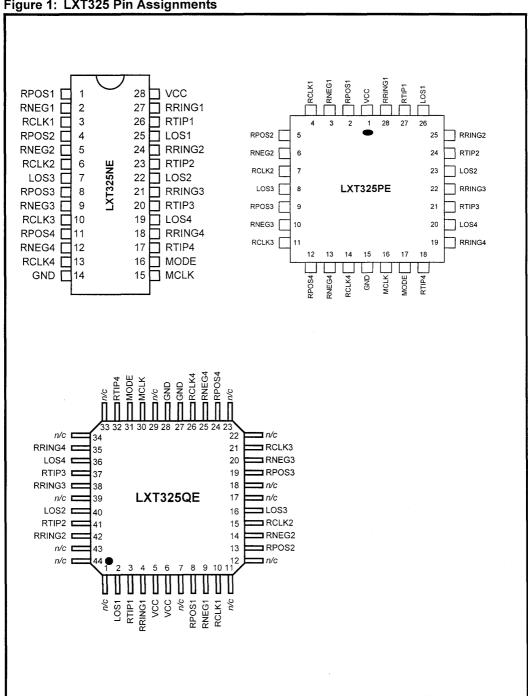
General Description

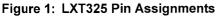
The LXT325 quad receiver is a fully-integrated, quadruple-PCM receiver for both 1.544 Mbps, and 2.048 Mbps applications. It incorporates four independent receivers in a single 28-pin DIP or PLCC, or a 44-pin QFP. Each LXT325 receiver also incorporates a Loss Of Signal (LOS) detection circuit and output driver. The operating frequency is pin selectable.

These receivers perform data and timing recovery, and use peak detection and a variable threshold to reduce impulsive noise. Receiver sensitivity down to 500 mV allows for up to 13.6 dB of attenuation.


The LXT325 quad receiver is an advanced, double-poly, double-metal CMOS device and requires only a single 5-volt power supply.


Applications


- High-density T1/E1 line cards
- M13, E13 line interfaces
- Test equipment
- Line monitoring
- Receive line interface


Features

- Four independent 1.544/2.048 Mbps receivers
- · Loss Of Signal (LOS) output for each receiver
- · Circuit functions include data and clock recovery
- · Single Master Clock input
- Meets or exceeds AT&T PUB 62411 ITU-T G.703 and ITU G.823 requirements for jitter tolerance
- · Unipolar RPOS and RNEG outputs
- · Minimum receive signal of 500 mV
- Selectable slicer levels (DSX-1/E1) to provide improved SNR
- CMOS technology requires only single 5 V power input
- Available in 28-pin plastic DIP and PLCC and 44-pin QFP packages
- -40 °C to 85 °C operating temperature range

	Pin #				
DIP	PLCC	QFP ¹	Symbol	I/O ²	Description
1 2	2 3	8 9	RPOS1 RNEG1	DO	Receiver 1 Positive and Negative Data outputs . A signal on RNEG <i>x</i> corresponds to receipt of a negative pulse on RTIP <i>x</i> and RRING <i>x</i> . A signal on RPOS <i>x</i> corresponds to receipt of a positive pulse on RTIP <i>x</i> and RRING <i>x</i> . RNEG <i>x</i> and RPOS <i>x</i> outputs are Non-Return-to-Zero (NRZ) signals. Both outputs are stable and valid on the rising edge of RCLK <i>x</i> .
3	4	10	RCLK1	DO	Receiver 1 Recovered Clock . Clock recovered from the inputs to RTIP1 and RRING1. See RPOS1/RNEG1.
4 5 6	5 6 7	13 14 15	RPOS2 RNEG2 RCLK2	DO	Receiver 2 Data and Clock outputs. Signals recovered from the inputs to RTIP2 and RRING2. See RPOS1/RNEG1/RCLK1.
7	8	16	LOS3	DO	Receiver 3 Loss of Signal Detector . LOS <i>x</i> pins go high when the associated receiver detects 175 consecutive spaces. The LOS output returns low when a mark is received.
8 9 10	9 10 11	19 20 21	RPOS3 RNEG3 RCLK3	DO	Receiver 3 Data and Clock outputs. Signals recovered from the inputs to RTIP3 and RRING3. See RPOS1/RNEG1/RCLK1.
11 12 13	12 13 14	24 25 26	RPOS4 RNEG4 RCLK4	DO	Receiver 4 Data and Clock outputs . Signals recovered from the inputs to RTIP4 and RRING4. See RPOS1/RNEG1/RCLK1.
14	15	27 28	GND	_	Ground.
15	16	30	MCLK	DI	Master Clock. A 1.544 MHz or 2.048 MHz clock input used to generate internal clocks. Upon loss of signal, MCLK serves as the source for all the RCLKx signals.
16	17	31	MODE	DI	Mode Selection . Set MODE high for 50% slicer level. This set- ting is mandatory for 2.048 Mbit/s operation and provides maxi- mum sensitivity in 1.544 Mbit/s designs. Where undershoot will exceed 45% in 1.544 MHz applications, pull MODE low to set the slicer levels to 70%.
17 18	18 19	32 35	RTIP4 RRING4	AI	Receiver 4 Tip and Ring. The AMI signal received from the 4 th twisted-pair line is applied at these pins. A center-tapped, center- grounded transformer is required on these pins. Data and clock from the signal applied at these pins are recovered and output on the RPOSx/RNEGx, and RCLKx pins.
19	20	36	LOS4	DO	Receiver 4 Loss of Signal Detector. See LOS3.
20 21	21 22	37 38	RTIP3 RRING3	AI	Receiver 3 Tip and Ring Inputs. See RTIP4/RRING4.
22	23	40	LOS2	DO	Receiver 2 Loss of Signal detector. See LOS3.
nected					e no function in the 44-pin QFP package. All applications should leave them uncon- Output; AI = Analog Input.

Table 1: Pin Assignments and Descriptions

	Pin #				
DIP	PLCC	QFP ¹	Symbol	I/O ²	Description
23 24	24 25	41 42	RTIP2 RRING2	AI	Receiver 2 Tip and Ring Inputs. See RTIP4/RRING4.
25	26	2	LOSI	DO	Receiver 1 Loss of Signal Detector. See LOS3.
26 27	27 28	3 4	RTIP1 RRING1	Al	Receiver 1 Tip and Ring Inputs. See RTIP4/RRING4.
28	1	5,6	VCC	-	+5 VDC Power Supply

Table 1: Pin Assignm	ents and Descriptions – continued	d
----------------------	-----------------------------------	---

FUNCTIONAL DESCRIPTION

The LXT325 quad receiver is a fully-integrated, PCM receiver for both 1.544 Mbit/s (DSX-1) and 2.048 Mbit/s (E1) applications. The MCLK frequency and the MODE pin input level set the mode of operation. The LXT325 is a low-power CMOS device operating from a single +5 V power supply.

The figure at the front of the Data Sheet shows a simplified block diagram of the LXT325. The input signal is received from the twisted-pair line on each side of a centergrounded transformer. (Positive pulses are received at RTIP and negative pulses are received at RRING.) This differential signal is processed through the peak detector and data slicers. The peak detector samples the inputs and determines the maximum value of the received signal. A percentage of the peak value is provided to the data slicers as a threshold level to ensure optimum signal-to-noise ratio.

For E1 applications the threshold is set to 50% of the peak value (MODE set High). In 1.544 Mbit/s applications where undershoot does not exceed 45%, MODE may be set High (50% of the peak value) for the maximum sensitivity and noise margin. In applications where the undershoot exceeds 45% the MODE must be set Low. With MODE Low, the slicer threshold is set to 70% of the peak value. This threshold is maintained above 65% for up to 15 consecutive zeros over the range of specified operating conditions.

The slicer threshold is maintained through a capacitive storage arrangement and a combination of Refresh and Bleed-off circuitry. This design balance prevents the refresh circuitry from driving the threshold too high, while ensuring that it is maintained over long strings of successive zeros.

These receivers are capable of accurately recovering signals with up to 13.6 dB of attenuation (from 2.4 V), corresponding to a received signal level of 500 mV. Maximum cable length is 1500 feet of ABAM cable (approximately 6 dB), with the additional attenuation being resistive flat loss. Regardless of received signal level, the peak detectors are held above a minimum level of 150 mV to provide immunity from impulsive noise.

After processing through the data slicers, the received signal is routed to the data and clock recovery sections. Recovered clock signals are supplied to the data latch. The recovered data is synchronized with the recovered clock (RCLK), then output at RNEG and RPOS. RPOS and RNEG outputs are valid on the rising edge of RCLK.

LINE INTERFACE

The LXT325 quad receiver interfaces with four twistedpair lines (one twisted-pair for each receiver) through standard pulse transformers and appropriate resistors. Recommended transformer characteristics are listed in Table 2.

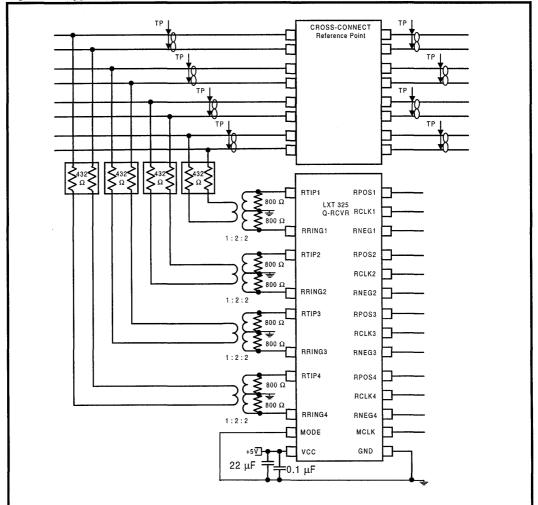
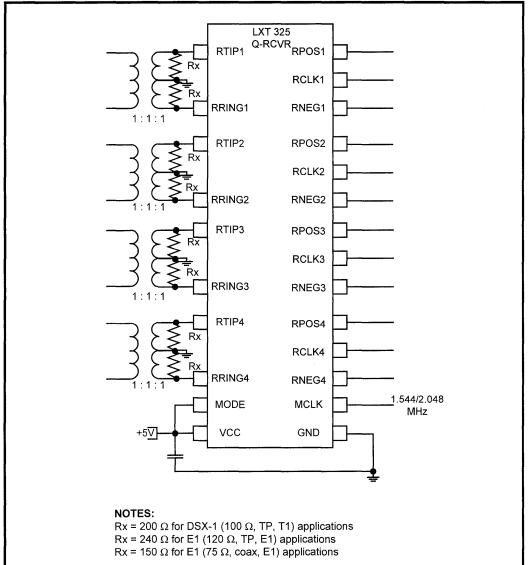

Para	meter	1:1:1	1:2:2	Unit
DC Resistance	Primary	1.0 Maximum	1.0 Maximum	Ω
	Secondary	1.0 Maximum	1.0 Maximum	Ω
Primary inductance (Line Side)		1.2 typical	0.5 Maximum	mH
Leakage inductance		0.5 Maximum	1.0 Maximum	μH
Interwinding capacitance		25 Maximum	40 Maximum	pF

Table 2: Recommended Transformer Characteristics


APPLICATION INFORMATION

The LXT325 quad receiver is compatible with both DSX-1 and E1 systems. Low, +5 V only, power consumption simplifies design considerations where multiple receivers are required. The LXT325 is well-suited for use in both line interface equipment and monitor applications. The primary difference in circuit design between these two applications is the input transformer. The typical DSX-1 pulse seen in test equipment requires a 1:1:1 transformer at the receiver input. The attenuated pulse seen in monitor applications may require a 1:2:2 transformer to boost the input signal. Figure 2 is a typical 1.544 Mbit/s DSX-1 application. The LXT325 is shown tapped into the cross connect frame with 800Ω resistors across each leg of the center-tapped, centergrounded, 1:2:2 step-up transformer.

Figure 3: Typical DSX-1/E1 Receiver Application

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 3 through 6 and Figures 4 represent the performance specificatons of the LXT325 and are guaranteed by test, except where noted by design.

Table 3: Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units
Supply voltage	Vcc	-0.3 V	6 V	V
Input voltage, any I/O pin ¹	VI/O	GND - 0.3 V	VCC + 0.3 V	V
Input current, any I/O pin ²	II/O	-10	10	mA
Storage temperature	Тѕт	-65	150	°C
	(

CAUTION

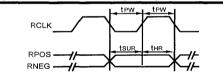
Exceeding these values may cause permanent damage to the device. Operation under these conditions is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1. Excluding RTIP and RRING which must stay within -6 V to VCC +0.3 V

2. Transient currents of up to 100 mA will not cause SCR latch-up.

Table 4: Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units
Supply Voltage ¹	Vcc	4.75	5	5.25	v
Power dissipation	PD	1	-	1	W
Operating Temperature	Тор	-40	_	85	°C


Table 5: DC Electrical Characteristics¹

Parameter	Sym	Min	Тур	Max	Units	Test Conditions
Supply current	ICC	_	-	40	mA	
Input High voltage	VIH	2.0	-	_	v	Digital Inputs
Input Low voltage	VIL	-	_	0.8	V	Digital Inputs
Output High voltage	Voн	2.4	_	· _	V	IO = 0.4 mA
Output Low voltage	VOL	-	-	0.4	v	IO = 1.6 mA
Input leakage current	ILL	-		±10	μΑ	Digital inputs
Output current	Ін	-		1.6	mA	Vo = 0.4 V
Output rise/fall time	TRF	-	_	25	ns	15 pF load
1. Clocked operation over recommended	ed temperature and p	ower supply ra	inges.			

Parameter		Sym	Min	Тур ¹	Max	Units	Test Conditions	
Slicer ratio	Slicer ratio Mode=Low		63	70	77	%		
	Mode=High	SRC	43	50	57	%		
Dynam	nic Range	DR	0.50	-	3.6	VPEAK		
Undershoot		US	_	-	62	%		
Sensitivity below DSX		-	13.6	-	-	dB	maximum of 6 dB cable loss, wit	
(0 dB	= 2.4 V)		500	_	-	mV	balance being resistive loss.	
Error-Free	2.048 MHz	S/X	14	-	-	dB	Single frequency interference pro-	
Signal-to- Crosstalk ratio	1.544 MHz	S/X	12	-	_	dB	duction test guarantees error-free operation as specified in G.703, f 6.3.4 (Testing for 1.544 MHz systems uses a 1.544 Mbit/s QRSS interfering signal; MODE = 1.)	

Table 6: Receiver Characteristics

Figure 4: Clock Timing Diagram

Table 7: Master and Receive Clock Timing Characteristics (See Figure 4)

Paramet	er	Sym	Min	Тур ¹	Max	Units	Test Conditions	
Master Clock	DSX-1	MCLK		1.544	_	MHz		
Frequency	E1	MCLK	-	2.048	-	MHz		
Master Clock Toleranc	e	MCLKt		±100	-	ppm		
Master Clock duty cycl	e	MCLKd	40	50	60	%		
Receive Clock duty cy	cle	RCLKd	40	50	60	%		
Receive Clock pulse	pulse 1.544 Mbit/s		270	325	378	ns		
width	2.048 Mbit/s	tPW	203	244	285	ns		
RPOS/RNEG to	1.544 Mbit/s	tSUR	50	270	-	ns		
RCLK rising setup time	2.048 Mbit/s	tSUR	50	203	_	ns		
RCLK rising to	1.544 Mbit/s	tHR	50	270	-	ns		
RPOS/RNEG hold time	2.048 Mbit/s	tHR	50	203	-	ns		
Rise/fall time-any digit	al output	TRF	_	-	25	ns		
1. Typical figures are at 25 °C and are design aids only; not guaranteed and not subject to production testing.								

NOTES

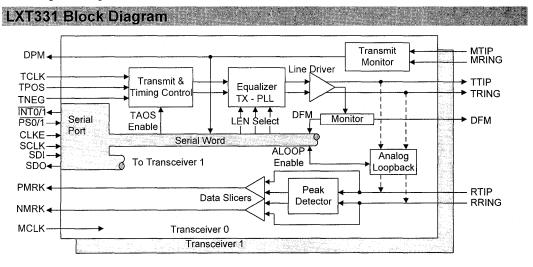
data sheet LXT331

Dual T1/E1 Line Interface Unit

General Description

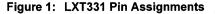
The LXT331 is a Dual Line Interface Unit (DLIU) optimized for North America 1.544 Mbps (T1) and international 2.048 Mpbs (E1/CEPT) applications. It features a constant low output impedance transmitter for high return loss. Transmit pulse shape is selectable for various line lengths and cable types. The data recovery circuit also offers selectable slicer ratios for T1 or E1 applications.

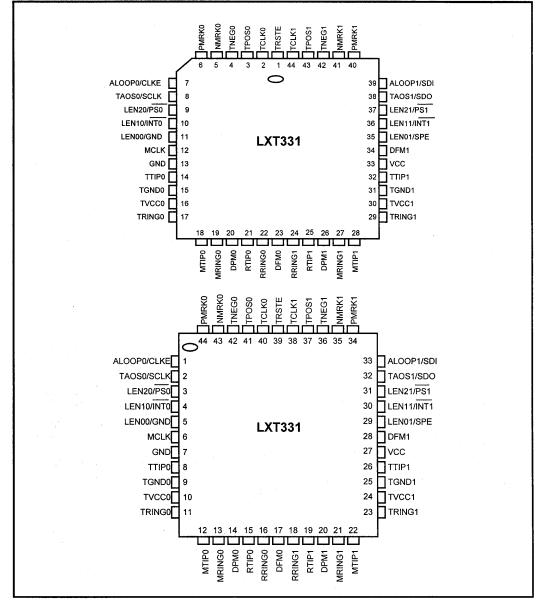
The LXT331 offers both a serial interface (SIO) for microprocessor control and a hardware control mode for standalone operation.


The LXT331 offers a variety of advanced diagnostic and performance monitoring features. It uses an advanced double-poly, double-metal CMOS process and requires only a single 5-volt power supply.

Applications

- · Digital Access and Cross-connect Systems (DACS)
- T1 / E1 Multiplexer
- · SONET/SDH Multiplexers
- · Digital Loop Carrier (DLC) terminals
- Cost efficient analog frontend for Digital Backend ASICS
- Analog LOS using PMRK/NMRK


Features


- · Complete line driver and data recovery functions
- Constant low output impedance transmitter with programmable equalizer shapes pulses to meet DSX-1 pulse template from 0 to 655 ft
- · High transmit and receive return loss
- Meets or exceeds industry specifications including ITU G.703 and ANSI T1. 102-1993
- · Compatible with industry standard framers
- Minimum receive signal of 500 mV, with selectable slicer levels (E1/DSX-1) to improve SNR
- · Analog loopback function
- Transmit performance monitors with Driver Fail Monitor (DFM) output for transmit driver short circuit detection
- Transmit Driver Performance Monitor (DPM) output with external monitor pins MTIP and MRING
- · Available in 44-pin PLCC and 44-pin QFP

PIN ASSIGNMENTS & SIGNAL DESCRIPTION

Pin PLCC	Pin QFP	Symbol	I/O ¹	Description
I	39	TRSTE	DI	Tristate Enable . Forces all output pins to tri-state when held High and forces chip into reset mode. Holds reset mode for 6 μ s after TRSTE returns Low.
2	40	TCLK0	DI	Transmit Clock — Port 0 . 1.544 MHz for T1, 2.048 MHz for E1. The transmit data inputs are sampled on the falling edge of TCLK. If TCLK0 is pulled Low, the transmit drivers are powered down and TTIP0 and TRING0 transmit outputs go to a high impedance state.
3 4	41 42	TPOS0 TNEG0	DI DI	Transmit Positive and Negative Data — Port 0 . These pins are the positive and negative sides of a bipolar input pair for port 0. Data to be transmitted onto the line is input at these pins.
5 6	43 44	NMRK0 PMRK	DO DO	Receive Negative and Positive Marks — Port 0 . These pins are the data outputs from port 0. A signal on NMRK corresponds to receipt of a negative pulse on RTIP/RRING. A signal on PMRK corresponds to receipt of a positive pulse on RTIP/RRING. NMRK/PMRK outputs are Return-to-Zero (RZ).
12	6	MCLK	DI	Master Clock (1.544 MHz for T1. 2.048 MHz for E1). Can be held Low if TCLK is present.
13	7	GND	S	Ground. Ground return for power supply VCC.
14	8	TTIP0	AO	Transmit Tip — Port 0 . The tip and ring pins for each port are differential driver outputs designed to drive a 35-200 Ω load. Line matching resistors and transformers can be selected to give the desired pulse height.
15	9	TGND0	S	Ground. Ground return for supply TVCC0.
16	10	TVCC0	S	+ 5 volt power supply input for the port 0 transmit driver. TVCC0 must not vary from TVCC1 or VCC by more than \pm 0.3 V.
17	11	TRING0	AO	Transmit Ring — Port 0. The tip and ring pins for each port are differential driver outputs designed to drive a 35-200 Ω load. Line matching resistors and transformers can be selected to give the desired pulse height.
18 19	12 13	MTIP0 MRING0	AI AI	Monitor Tip and Ring — Port 0. These pins monitor tip and ring outputs, either its own or those of an adjacent LXT331 on the same board. If the application does not use this feature, tie one of these pins to a clock source and the other to a mid-level (referenced to the clock signal) voltage. (The clock frequency can range from 100 kHz to the TCLK frequency).
20	14	DPM0	DO	Driver Performance Monitor — Port 0 . Output goes High on detection of 63 consecutive zeros, and goes Low on receipt of a one on transmit monitor loop (MTIP/MRING).
21 22	15 16	RTIP0 RRING0	AI AI	Receive Tip and Ring — Port 0 . RTIP and RRING comprise the receive line interface. This input pair should be connected to the line through a 1:1 transformer.
23	17	DFM0	DO	Driver Fail Monitor - Port 0. Signal goes High to indicate driver output short.
24 25	18 19	RRING1 RTIP1	AI AI	Receive Tip and Ring — Port 1. Refer to pins RRING0 and RTIP0.
26	20	DPM1	DO	Driver Performance Monitor — Port 1. Refer to pin 20.
27 28	21 22	MRING1 MTIP0	AI	Monitor Ring and Tip — Port 1. Refer to pins MRING0 and MTIP0.
29	23	TRING1	AO	Transmit Ring — Port 1. Refer to pin TRING0.
30	24	TVCC1	DI	+ 5 volt power supply input for the port 0 transmit driver. TVCC1 must not deviate from TVCC0 or VCC by more than \pm 0.3 V.
31	25	TGND1	S	Ground. Ground return for power supply TVCC1.
32	26	TTIP1	AO	Transmit Tip — Port 1. Refer to pin TTIP0.

Table 1: Pin Descriptions

2

Pin PLCC	Pin QFP	Symbol	I/O ¹	Description
33	27	VCC	DI	+ 5 VDC power supply input for all circuits except the transmit drivers.
34	28	DFM1	DO	Driver Fail Monitor — Port 1. Refer to pin DFM0.
40 41	34 35	PMRK1 NMRK1	DO	Receive Negative and Positive Marks — Port 1. Refer to pins PMRK0 and NMRK0.
42 43	36 37	TNEG1 TPOS1	DI DI	Transmit Negative and Positive Data — Port 1. Refer to pins TNEG0 and TPOS0.
44	38	TCLKI	DI	Transmit Clock — Port 1. Refer to pin TCLK0.

Table 1: Pin Descriptions - continued

Table 2: Host Mode Pin Descriptions

Pin PLCC	Pin QFP	Symbol	1/0 ¹	Description
7	1	CLKE	DI	Clock Edge Select. When CLKE is High, SDO is valid on the rising edge of SCLK. When CLKE is Low, SDO is valid on the falling edge of SCLK.
8	2	SCLK	DI	Serial Clock. Shifts data into or our from the serial interface register of the selected port.
9	3	PSO	DI	Port Select — Port 0 . Inputs access the serial interface registers for the respective port. For each read or write operation, PS <i>n</i> must transition from High to Low, and remain Low.
10	4	ĪNT0	DO	Interrupt — Port 0. Outputs go Low to flag the host processor that the respective port has changed state. INT0 and INT1 are open drain outputs. Each must be tied to VCC through a resistor.
11	5	GND	S	Ground. Tie to ground.
35	29	SPE	DI	Serial Port Enable. SPE must be clocked with MCLK, TCLK0 or TCLK1 to enable Host Mode control through the serial port.
36	30	INT1	DO	Interrupt — Port 1. Refer to pin INTO.
37	31	PS1	DI	Port Select — Port 1. Refer to pin $\overline{PS0}$.
38	32	SDO	DO	Serial Data Output. If CLKE is High, SDO is valid on the rising edge of SCLK. If CLKE is Low, SDO is valid on the falling edge of SCLK.
39	33	SD1	DI	Serial Data Input. SDI is sampled on the rising edge of SCLK.
1. I/O De	signations:	Al = Analog I	nput, AO	= Analog Output, DI = Digital Input, DO = Digital Output, S = Power Supply

Pin PLCC	Pin QFP	Symbol	I/O ¹	Description
7	1	ALOOP0	DI	Analog Local Loopback Enable — Port 0. When ALOOP is High, the RTIP/ RRING inputs from the port 0 twisted-pair line are disconnected and the transmit data outputs (TTIP/TRING) are routed back into the receive inputs. For normal operation, hold ALOOP Low.
8	2	TAOS0	DI	Transmit All Ones Enable — Port 0 . When TAOS is High, the TPOS/TNEG input is ignored and Port 0 transmits a stream of ones at the TCLK frequency. With no TCLK the MCLK input becomes the transmit reference. For normal operation, hold TAOS Low.
9 10 11	3 4 5	LEN20 LEN10 LEN00	DI DI DI	Line Length Equalizer — Port 0. Determine the shape and amplitude of the transmit pulse.
35 36 37	29 30 31	LEN01 LEN11 LEN21	DI DI DI	Line Length Equalizer — Port 1. Determine the shape and amplitude of the transmit pulse.
38	32	TAOS1	DI	Transmit All Ones Enable — Port 1. Refer to pin TAOS0.
39	33	ALOOP1	DI	Analog Local Loopback Enable — Port 1. Refer to pin ALOOP1.
1. 1/0 Des	ignations: A	1 = Analog In	put, AO =	Analog Output, DI = Digital Input, DO = Digital Output, S = Power Supply

Table 3: Hardware Mode Pin Descriptions

FUNCTIONAL DESCRIPTION

The LXT331 is a Dual Line Interface Unit (DLIU), which contains two ports. Refer to the simplified block diagram on page 1. The DLIU is designed for both 1.544 Mbps (DSX-1) and 2.048 Mbps (E1) applications. Both ports operate at the same frequency, which is determined by the TCLK input.

Each DLIU port front end interfaces with two lines, one line for transmit, one line for receive. These two lines comprise a digital data loop for full duplex transmission.

Each DLIU port back-end interfaces with a layer processor through bipolar data I/O channels. The DLIU may be controlled by a microprocessor through the serial port (Host control mode), or by hard-wired pins for stand-alone operation (Hardware control mode).

Receiver

The two receivers in the LXT331 DLIU are identical. The following paragraphs describe the operation of a single receiver.

The input signal is received via a 1:1 transformer. The receiver requires fully differential inputs which are internally self-biased into 2.5 V. Recovered data is output at PMRK and NMRK. Refer to Test Specifications for receiver timing.

The receive signal is processed through an adaptive peak detector and data slicers. The peak detector samples the received signal and determines its maximum value. A percentage of the peak value is provided to the data slicers as a threshold level to ensure optimum signal-to-noise ratio. For DSX-1 applications (line length inputs LEN0-LEN2 \neq

000 or 001) the threshold is set to 70% (typical) of the peak value. This threshold is maintained above the specified level for up to 15 successive zeros over the range of specified operating conditions. For E1 applications (LENxn inputs = 000 or 001) the threshold is 50% (typical).

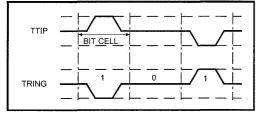
The receiver is capable of accurately recovering signals with up to -13.6 dB of attenuation (from 2.4 V), corresponding to a received signal level of approximately 500 mV. Maximum line length is 1500 feet of ABAM cable (approximately 6 dB of attenuation). Regardless of received signal level, the peak detectors are held above a minimum level of 0.3 V (typical) to provide immunity from impulsive noise. Built in pulse stretching circuitry maintains a minimum positive and negative mark pulse width (see Table 15 and Figure 14 on page 105).

Transmitter

The two transmitters in the LXT331 DLIU are identical. The following paragraphs describe the operation of a single transmitter.

Transmit data is clocked serially into the device at TPOS/ TNEG. Input synchronization is supplied by the transmit clock (TCLK). The TPOS/TNEG inputs are sampled on the falling edge of TCLK. If TCLK is held Low the transmitter remains powered down and the TTIP/TRING outputs are held in a high-Z state, except during TAOS if MCLK is available. Each output driver is supplied by a separate power supply (TVCC0 or TVCC1). Current limiters on the output drivers provide short circuit protection. Refer to Test Specifications for TCLK timing characteristics. The LXT331 transmits data as a 50% AMI line code as shown in Figure 2.

Table 4: Equalizer Control Inputs - Hardware Mode¹


LEN2	LEN1	LEN0	Line Length ²	Cable Loss ³	Application	Frequency						
Low High High High High	High Low Low High High	High Low High Low High	0 - 133 ft ABAM 133-266 ft ABAM 266-399 ft ABAM 399-533 ft ABAM 533-655 ft ABAM	0.6 dB 1.2 dB 1.8 dB 2.4 dB 3.0 dB	DSX-1	1.544 MHz						
Low Low	Low Low	Low High	ITU Recommend	ation G.703	E1 - Coax (75 Ω) E1 - Twisted-pair (120 Ω)	2.048 MHz						
Low	High	Low	FCC Part 68, 0	Option A	CSU	1.544 MHz						
2. Line ler	igth from L2	XT331 to DS	X-1 cross-connect point.	 LENn inputs are shown as High or Low for Hardware mode. For Host Mode serial inputs, High = 1 and Low = 0. Line length from LXT331 to DSX-1 cross-connect point. 								

Pulse Shape

The transmitted pulse shape is determined by Line Length equalizer control signals LEN0 through LEN2. Equalizer codes are hard-wired in Hardware mode as shown in Table 4. In Host mode the LENxn codes are input through the serial interface. Shaped pulses are applied to the AMI line driver for transmission onto the line at TTIP and TRING. The line driver provides a constant Low output impedance of $< 3 \Omega$ (typical) regardless of whether it is driving marks or spaces or during transitions. This well-controlled impedance provides excellent return loss when used with external precision resistors ($\pm 1\%$ accuracy). See Tables 8 and 9 for recommended transformer specifications, ratios, series resistor (Rt) values, and typical return losses for various LENxn codes. To minimize power consumption the DC block capacitor and LXT331 can be connected directly to a 1:1.15 transformer without series resistors.

Pulses can be shaped for either 1.544 or 2.048 Mbps applications. 1.544 Mbps pulses for DSX-1 applications can be programmed to match line lengths from 0 to 655 feet of 22 AWG ABAM cable. A combination of 9.1 Ω resistors and a 1:2.3 transformer is recommended for DSX-1 applications and maximum transmit return loss. The LXT331 also matches FCC pulse mask specifications for CSU applications.

Figure 2:	50% A	١M	Coding
-----------	-------	----	--------

The LXT331 produces 2.048 Mbps pulses for both 75 Ω coaxial (2.37 V) or 120 Ω shielded twisted-pair (3.0 V) lines through an output transformer with a 1:2 turns ratio.

Driver Performance Monitor

The LXT331 incorporates a Driver Performance Monitor (DPM) as shown in Figure 3 on page 94. The DPM output goes High on receipt of 63 consecutive zeros and returns Low on receipt of a transition. A reset command also drives the output signal Low.

The LXT331 uses its MTIP and MRING pins to monitor its own TTIP and TRING outputs or those of an adjacent chip. Mark detection involves two measures:

- 3. Voltage threshold: a pulse must trip a threshold voltage above or below (depending on its polarity) the input bias voltage level. The LXT331 bias voltage is 2.5 V and the threshold for a mark is 2.5 ± 0.79 V.
- Pulse width: the monitor distinguishes between marks and noise pulses by the pulse width. LXT331 requires a mark pulse to be at least 120 ns wide (typically).

There are two type of marks: Figure 2 labels them "A" and "B". C1 and C2 detect "A" marks; the AND gate (A1) ensures that both mark signals are present at the same time. If the pulse widths are adequate, with both a positive mark on MTIP and a negative mark on MRING, the A1 output goes High. Likewise C3 and C4 detect "B" marks. If the pulse meets the minimum width requirement, the AND gate (A2) output goes High when there are both a negative mark on MTIP and a positive mark on MRING. The OR gate (O1) passes the mark, as the signal "zero", on to the clock/counter circuit which controls the DPM output.

A latch samples the counter which goes High if the DPM circuit sees 63 consecutive zeros. Any mark resets the counter. The DPM signal goes High after the 63^{rd} zero.

Driver Failure Monitor

The transceiver incorporates an internal Driver Failure Monitor (DFM) in parallel with TTIP and TRING. A capacitor, charged via a measure of the driver output current and discharged by a measure of the maximum allowable current detects driver failure. Shorted lines draw excess current, overcharging the cap. When the capacitor charge deviates outside the nominal charge window, a driver failure is reported. In Host mode the DFM bit is set in the serial word. In both Hardware and Host modes the DFM pin goes High. During a long string of spaces, a shortinduced overcharge eventually bleeds off, clearing the DFM flag.

Control Modes

The LXT331 transceiver operates in standalone Hardware (default) Mode or Host Mode depending on the input to pin 35. When pin 35 is clocked by MCLK, TCLK0 or TCLK1, it acts as a Serial Port Enable (SPE) signal to force the LXT331 into the Host mode.

Host Mode Control

The LXT331 operates in the Host mode when pin 35 (SPE) is clocked. In Host mode a microprocessor controls the LXT331 through the serial I/O port (SIO) which provides common access to both LIUs. Each of the two LIUs contains a pair of data registers, one for command inputs and one for status outputs. An SIO transaction is initiated by a falling pulse on one of the two Port Select pins, $\overline{PS0}$ or $\overline{PS1}$. Only one LIU can be selected at a time. A High-to-Low transition on PS*n* is required for each subsequent access to the Host mode registers. If both $\overline{PS0}$ and $\overline{PS1}$ are active simultaneously, Port 0 has priority over Port1.

The LIU addressed by the \overline{PSn} pulse responds by writing the incoming serial word from the SDI pin into its command register. Figure 4 on page 95 shows an SIO write operation. The 16-bit serial word consists of an 8-bit Command/Address byte and an 8-bit Data byte. If the command word contains a read request, the addressed LIU subsequently outputs the contents of its status register onto the SDO pin.

Figure 5 on page 96 shows an SIO read operation. The Clock Edge(CLKE) signal determines when the SDO output is valid, relative to the Serial Clock (SCLK) as follows:

If CLKE = High, SDO is valid on the rising edge of SCLK. If CLKE = Low, SDO is valid on the falling edge of SCLK. Refer to Test Specifications for SIO timing.

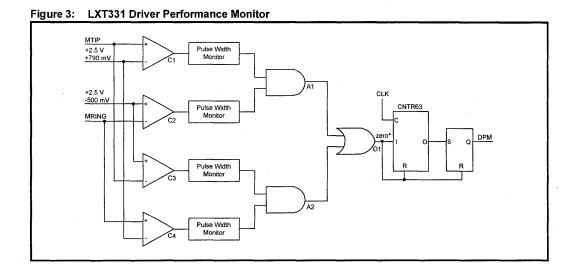

Serial Input Word

Figure 4 shows the Serial Input data structure. The LXT331 is addressed by setting bit A4 in the Address/Command byte, corresponding to address 16. Bit 1 of the serial Address/Command byte provides Read/Write (R/W) control when the chip is accessed. The R/W bit is set to logic 1 to read the data output byte from the chip, and set to logic 0 to write the input data byte to the chip.

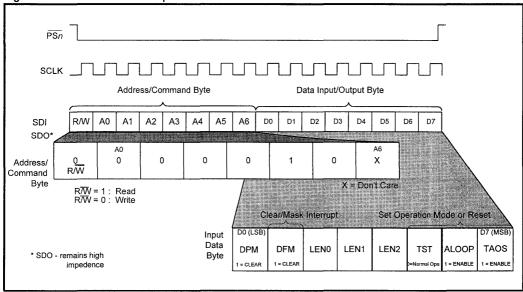
The second 8 bits of a write operation, the Data Input byte, clear the Driver Performance Monitor (DPM) and Driver Fail Monitor (DFM) interrupts, reset the chip, and control diagnostic modes. The first and second bits (D0-1) clear and/or mask the DPM and DFM interrupts, and the last 2 bits (D6-7) control operating modes (normal and diagnostic) and chip reset. Refer to Table 5 for details on bits D6-7.

Table 5: SIO Input Bit Settings (See Figure 4)

Mode	TST Bit D5	ALOOP Bit D6	TAOS Bit D7
ALOOP	0	1	· 0
TAOS	0	Х	1
RESET	1	1	0

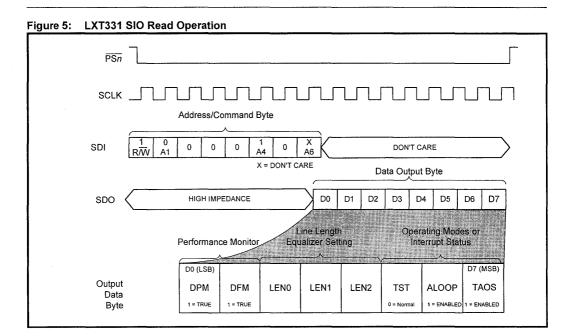
Serial Output Word

Figure 5 shows the Serial Output data structure. SDO is high impedance when SDI receives an Address/Command byte. If SDI receives a write command ($R/\overline{W} = 0$), SDO remains in high impedance. If the command is a read ($R/\overline{W} = 1$), then SDO becomes active after the last Command/ Address bit (A6) and remains active for eight SCLK cycles. Typically the first bit out of SDO changes the state of SDO from high Z to a Low/High. This occurs approximately 100 ns after the eighth following edge of SCLK.

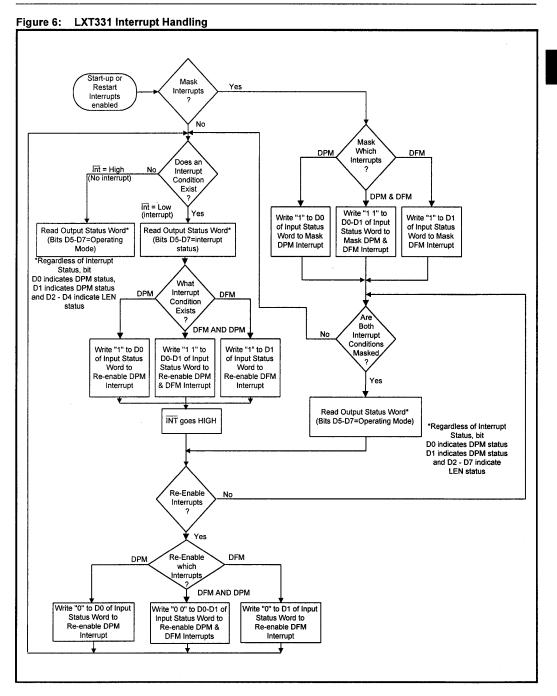

The output data byte reports DPM and DFM conditions, equalizer settings, and operating modes (normal or diagnostic). The first 5 bits (D0-4) report DPM and DFM status and the Line Length Equalizer settings. The last 3 bits (D5-7) report operating modes and interrupt status as defined in Table 6 on page 96.

If the \overline{INT} line for the respective port is High (no interrupt is pending), bits D5-7 report the operating modes listed in Table 6 on page 96. If the \overline{INT} line for the respective port is Low, the interrupt status overrides all other reports and bits D5-7 reflect the interrupt status as listed in Table 6.

Interrupt Handling


The Host mode provides two latched Interrupt output pins, \overline{INTO} and $\overline{INT1}$, one for each LIU. An interrupt is triggered by a change in the DPM or DFM bit (D0=DPM, D1=DFM). As shown in Figure 6, either or both interrupt generators can be masked by writing a 1 to the corresponding bit (D0 or D1) of the input data byte. When an interrupt has occurred, the \overline{INT} output pin is pulled Low. The output stage of each \overline{INT} pin consists only of a pull-down device. Hence, an external pull-up resistor is required. Clear the interrupts as follows:

- 1. If one or both interrupt bits (DPM or DFM D0 or D1 of the output data byte) are high, write a 1 to the corresponding bit of the input data byte to clear the interrupt. Leave a 1 in either bit position to effectively mask that interrupt. To re-enable the interrupt capability, reset either D0 or D1 or both to 0.
- 2. If neither DPM nor DFM is high, reset the chip to clear the interrupt. To reset the chip, set data input bits D5 and D6 = 1, and D7 = 0.


Figure 4: LXT331 SIO Write Operations

LXT331 Dual T1/E1 Line Interface Unit

Table 6: LXT331 Serial Data Output Bit Coding

Bit D5	Bit D6	Bit D7	Operating Modes
0	0	0	Reset has occurred, or no program input (i.e, normal operation).
0	0	1	TAOS active
0	1	0	ALOOP active
0	1	1	TAOS and ALOOP active
Bit D5	Bit D6	Bit D7	Interrupt Status
1	0	1	DFM has changed state since the last Clear DFM occurred
1	1	0	DPM has changed state since the last Clear DPM occurred
1	1	1	DPM and DFM have changed state since the last Clear DPM and DMF occurred

Hardware Mode Control

Hardware control is the default operating mode; the LXT331 operates in Hardware mode unless pin 35 (LEN21/SPE) is clocked. In Hardware mode the transceiver is controlled through individual pins; a μ P is not required. The SIO pins are re-mapped to provide control functions. In Hardware mode the PMRK/NMRK outputs are valid on the rising edge of RCLK.

Diagnostic Mode Operation

The LXT331 offers two diagnostic modes. Analog Loopback (ALOOP) and Transmit All Ones (TAOS) are available under both Host and Hardware control modes.

In Host mode, diagnostic modes are selected by writing the appropriate SIO bits. In Hardware mode, diagnostic modes are selected by a combination of pin settings. The pins must be held at the specified levels for a minimum of 20 ns (typically). Table 7 lists Hardware Mode control settings for the various diagnostic modes.

Transmit All Ones. See Figure 7. Transmit All Ones (TAOS) is selected when TAOS = 1. In TAOS mode the TPOS and TNEG inputs are ignored, but the transmitter remains locked to the TCLK input. When TAOS is selected, the transceiver transmits a continuous stream of 1s at the TCLK frequency. If TCLK is not supplied, MCLK is used as the transmit reference. TAOS and Analog Loopback can be selected simultaneously as shown in Figure 8.

Analog Loopback. See Figure 9. Analog Loopback (ALOOP) is selected when ALOOP = 1. In ALOOP mode the receive line input (RTIP/RRING) is blocked. The transmit outputs (TTIP and TRING) are looped back through the receiver input and output at PMRK and NMRK. The transmitter circuits are unaffected by ALOOP. Transmitting onto an improperly terminated line may produce unexpected pulse widths at PMRK and NMRK.

Tri-State. By holding pin 1 (TRSTE) High for at least 200 ns all output drivers (both digital and analog) go to high Z state and the chip logic goes into a reset condition which lasts 6 μ s longer than in the tri-state. All pins go to a high-Z condition, and the internal circuits go to a known condition.

Table 7: Hardware Mode Diagnostic Settings

Mode	TRSTE	ALOOP	TAOS
ALOOP	L	Н	L
TAOS	L	Х	Н
RESET	Н	Х	X

Initialization/Reset Operation

Upon initial power up, the transceiver is held static until the power supply reaches approximately 3 V. Upon crossing this threshold, the device clears all internal registers. TCLK is the transmit reference, and MCLK is the bias reference. The PLLs are continuously calibrated.

The transceiver can be reset from the Host or Hardware mode. In Host mode, reset is commanded by writing 1s to TST and ALOOP, and a 0 to TAOS (bits D5, D6 and D7, respectively, of the SIO input data byte). In either mode, command reset by holding TRSTE High for approximately 200 ns. All output signals are tri-stated at this time. The falling edge of the TRSTE initiates reset. Both modes reset each port independently. Reset clears and sets all SIO registers to 0 at the affected port. Reset is not generally required for the port to be operational.

Figure 7: TAOS Data Path

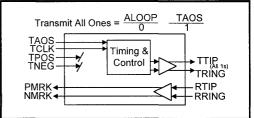


Figure 8: TAOS with ALOOP

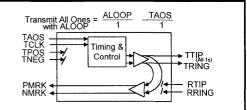
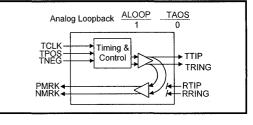



Figure 9: Analog Loopback

APPLICATION INFORMATION

Power Requirements

The LXT331 is a low-power CMOS device. It operates from a single +5 V power supply which can be tied to all three VCC inputs. However, all inputs must be within \pm .3 V of each other, and decoupled to their respective grounds separately. Isolation between the transmit and receive circuits is provided internally. During normal operation or analog loopback, the transmitter powers down if TCLK is not supplied.

Line Interface Requirements

Table 8 lists transformer values for 1.544 Mbps and 2.048 Mbps applications. Table 9 shows combinations of transformers, series resistors and the LENxn settings that produce a variety of return loss values.

Parameter	Value
Turns Ratio (T1)	1:2.3 (Tx) / 1: 1 (Rx)
Turns Ratio (E1)	1:2 (Tx) / 1: 1 (Rx)
Primary Inductance	1.2 mH minimum
Leakage Inductance	0.5 μH maximum
Interwinding Capacitance	25 pF maximum
DC Resistance (Primary)	1 Ω maximum
ET (Breakdown Voltage)	1 kV minimum

Table 8: Recommended Transformer Values

1.544 Mbps T1 Applications

Figure 11 on page 100 shows a typical host mode application. The eight serial interface pins are grouped at the top. Host mode is selected by the clock input to SPE. Other mode selection pins are shown at the bottom. With the TRSTE pin pulled Low, the LXT331 operates normally. Pulling this pin High causes all outputs to go to a high impedance state.

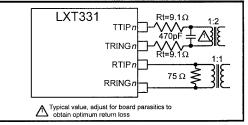
Figure 11 on page 100 shows a pair of framers. An LXP600A Clock Adapter (CLAD) converts the 2.048 MHz backplane clock to provide the 1.544 MHz input to the MCLK and TCLK inputs of both LIU ports.

The DFM indicator shown in the diagram lower left is available to drive optional external circuits. The driver power supply inputs (bottom) are tied to a common bus with 68 μ F decoupling capacitors installed. The power sup-

ply for the remaining (non-driver) circuitry is shown at center right with 1.0 μF and 0.1 μF decoupling capacitors.

The line interface circuitry is identical for both LIU ports. The precision resistors in line with the transmit transformer provide optimal return loss. The recommended transformer/resistor combination is listed at the bottom of Figure 10. 1:1 transformers are used on the receive side.

LEN	Xfmr Ratio ¹	Rt Value ²	Rtn Loss ³					
For T1/D	SX-1 100 Ω Tw	visted-Pair Ap	oplications:					
011-111	1:2	Rt = 9.1 Ω	14dB					
011-111	1:2.3	Rt = 9.1 Ω	18dB					
011-011	1:1.15	Rt = 0 Ω	1dB					
For E1 120) Ω Twisted-Pai	r Application	s:					
001	1:2	Rt = 15 Ω	18dB					
000	1:2	Rt = 9.1 Ω	10dB					
For E1 75	Ω Coaxial Appl	ications:						
001	1:2	$Rt = 14.3 \Omega$	10dB					
000	000 1:2 Rt = 9.1 Ω 18dB							
 Rt values are Typical return 	 Transformer turns ratio accuracy is ± 2%. Rt values are ± 1%. Typical return loss, 51kHz - 3.072 MHz band, with a capacitor in parallel with the primary side of the transformer. 							

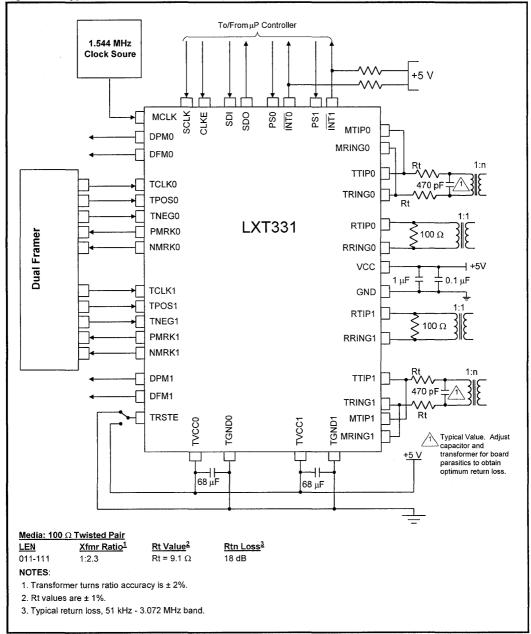
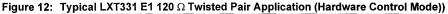

Table 9: Transformer Combinations

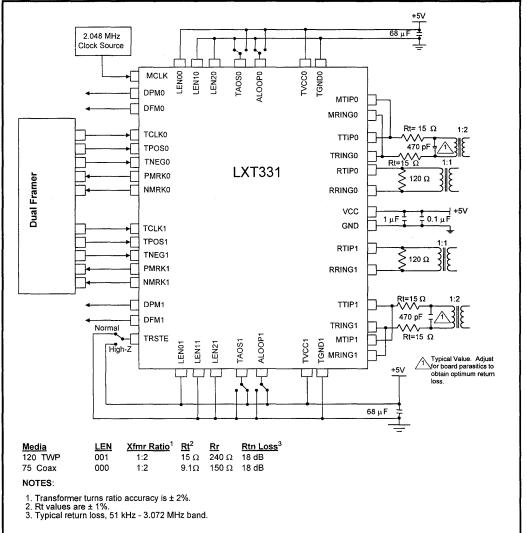
2.048 Mbps E1 Applications

E1 Coaxial Applications

Figure 11 on page 100 shows the line interface for a typical 2.048 Mbps E1/CEPT coaxial (75 Ω) application. The LEN code should be set to 000 for coax. With 9.1 Ω Rt resistors in line with the 1:2 output transformers, the LXT331 produces 2.37 V peak pulses as required for coax applications. As in the T1 application shown in Figure 10, 1:1 transformers are used on the receive side.

Figure 10: Line Interface for E1 Coax


Figure 11: Typical LXT331 T1 Application (Host Control Mode, Bipolar I/O))

E1 Twisted-Pair Applications

Figure 12 shows a typical 2.048 Mbps E1 twisted-pair (120 Ω) application. The line length equalizers are controlled by the hardwired LEN inputs. With the

LEN code set to 001 and 15 Ω Rt resistors in line with the 1:2 output transformers, the LXT331 produces the 3.0 V peak pulses required for this application.

TEST SPECIFICATIONS

Table 10: Absolute Maximum Ratings

Parameter	Sym	Min	Max	Units							
DC supply (referenced to GND)	VCC, TVCC0, TVCC1	-0.3	6.0	v							
Input voltage, any pin ¹	Vin	GND - 0.3	Vcc + 0.3	V							
Input current, any pin ²	IIN	-10	10	mA							
Storage temperature	Тѕт	150	°C								
CAUTION Operations at or beyond these limits may result in permanent damage to the device. Normal operation not guaranteed or implied at these extremes.											
e		NG0 & 1, VCC, TVC	C0 & 1 and TGND0 &	 Excluding RTIP and RRING which must stay within - 6 V to VCC + 0.3 V. Transient currents of up to 100 mA will not cause SCR latch-up. TTIP0 & 1, TRING0 & 1, VCC, TVCC0 & 1 and TGND0 & 1 can withstand 							

Table 11: Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical ¹	Maximum	Units
DC supply ²	VCC, TVCC0, TVCC1	4.75	5.0	5.25	v
Ambient operating temperature ³	TA	-40	25	85	°C
Ambient operating temperature 4	Та	-5	25	85	°C

1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. Variation between TVCC0, TVCC1 and VCC must be - 0.3 V.

3. LXT331PE & QE

4. LXT331PH & QH

Parameter	Sym	Min	Typ ¹	Мах	Units	Test Conditions
Total power dissipation - T1 ²	РР	-	-	680	mW	-40 to +85 °C
(Maximum line length, 75 Ω load)	PD	-	-	650	mW	0 to +85 °C
Total power dissipation - T1 ³	РР	-	-	1000	mW	-40 to +85 °C
(Maximum line length, 43 Ω load)	Pd	-	-	980	mW	0 to +85 °C
Total power dissipation - E1 ²	Pd	-	-	520	mW	100% ones density
High level input voltage 4,5	VIH	2.0	-	-	v	
Low level input voltage 4,5	VIL	-	-	0.8	v	
High level output voltage 4,5	Voh	2.4	-	-	V	Ιουτ = - 400 μΑ
Low level output voltage 4,5	Vol	-	-	0.4	V	IOUT = 1.6 mA
Input leakage current ⁶	Illd	0	-	± 10	μΑ	
Input leakage current ⁷	ILLM	0	-	± 50	μΑ	
Three-state leakage current ⁴	ISL	-	-	± 10	μΑ	
TTIP/TRING leakage current	ITR	-	-	1.2	mA	in power down and tri-state

Table 12: Electrical Characteristics (Over Recommended Operating Range)

1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

 100% 1s density and maximum line length. Driving 75 Ω load over operating temperature range. Includes device and load. Digital input levels are within 10% of the supply rails and digital outputs are driving a 50 pF capacitive load.

3. 100% Is density and maximum line length. Driving 43 Ω load (corresponding to an Rt value of 9.1 Ω and a 1.2 transformer ratio) over operating range. include device and load. Digital input levels are within 10% of the supply rails and digital outputs are driving a 50 pF capacitive load.

4. Functionality of pins depends on mode.

5. Output drivers will output CMOS logic levels into CMOS loads.

6. All digital input pins.

7. For MTIP0, MRING0, MTIP1 AND MRING1.

Table 13: Analog Specifications (Over Recommended Operating Range)

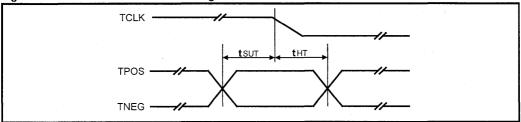
Parameter			Typ ¹	Max	Units	Test Conditions
AMI output pulse amplitudes	MI output pulse amplitudes DSX-1		3.0	3.6	V	measured at the DSX
E1 (120 Ω)		2.7	3.0	3.3	V	measured at line side
	Ε1 (75 Ω)	2.13	2.37	2.61	V	measured at line side
Transmit amplitude variation with supply ³			1	2.5	%	
Recommended output load at TTI	P and TRING	-	75	-	Ω	
Driver output impedance ³		-	3	10	Ω	@ 772 kHz
Jitter added by the transmitter ²	10 Hz - 8kHz ³	-	0.005	0.01	UI	T1 Jitter Bands
	8 kHz - 40 kHz ³		0.015	0.025	UI	
10 Hz - 40 Hz ³		-	0.02	0.025	UI	
Broad band			0.03	0.05	UI	
1. Typical figures are at 25 °C and are for	design aid only; not gua	anteed at	nd not subject t	to productio	on testing.	

2. Input signal at TCLK is jitter-free.

3. Not production tested, but guaranteed by design and other correlation methods.

LXT331 Dual T1/E1 Line Interface Unit

Parameter			Typ ¹	Max	Units	Test Conditions
Jitter added by the transmitter ²	20 Hz - 100 kHz	-	-	0.05	UI	E1 Jitter Band
Output power levels ³	@ 772 kHz	12.6	-	17.9	dBm	
DSI 2 kHz BW	@ 1544 kHz	-29	-	-	dB	
Positive-to-negative pulse imbalance			-	0.5	dB	
Differential			40	-	kΩ	
Sensitivity below DSX (0 dB = 2.4 V) (max 6 dB cable attenuation)		13.6	-	-	dB	
		500	-	-	mV	
Peak detector sqelch level		-	226	-	mV	
Data decision threshold	DSX-1	63	70	77	% peak	
	El	43	50	57	% peak	


Table 13: Analog Specifications (Over Recommended Operating Range) - continued

3. Not production tested, but guaranteed by design and other correlation methods.

Table 14: LXT331 Master Clock and Transmit Timing Characteristics (See Figure 13)

Parameter		Sym	Min	Typ ¹	Max	Units
Falameter		- Sylli	141111	тур	IVIAA	Units
Master clock frequency	DSX-1	MCLK	-	1.544	-	MHz
	E1	MCLK	-	2.048	-	MHz
Master clock tolerance		MCLKt	-	± 50	-	ppm
Master clock duty cycle		MCLKd	40	-	60	%
Transmit clock frequency	DSX-1	TCLK	-	1.544	-	MHz
	E1	TCLK	-	2.048	-	MHz
Transmit clock tolerance		TCLKt	-	± 50	-	ppm
Transmit clock duty cycle		TCLKd	10	-	90	%
TPOS/TNEG to TCLK setup t	ime	tSUT	25	-	· -	ns
TCLK to TPOS/TNEG Hold t	tHT	25	-	-	ns	
1. Typical figures are at 25 °C and ar	e for design aid only; I	not guaranteed and not	subject to produ	uction testing.		

Figure 13: LXT331 Transmit Clock Timing

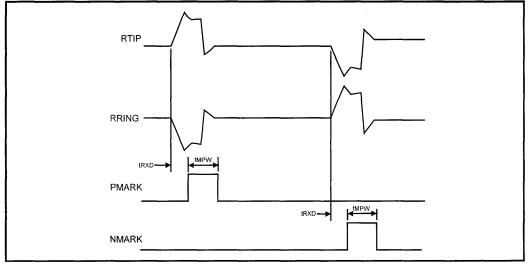

Parameter		Sym	Min	Typ ¹	Max	Units	Test Conditions	
PMRK/NMRK pulse width	T1	tMPW	-	324	-	ns		
	E1	tMPW	-	244	-	ns		
Receiver throughput delay		tRXD	-	65	-	ns	3.0 V pulse	

Table 15: LXT331 Receive Characteristics (See Figure 14)

Table 16: LXT331 Serial I/O Timing Characteristics (See Figures 15 and 16)

Parameter	Sym	Min	Typ ¹	Max	Units	Test Conditions
Rise/Fall time - any digital output	tRF	-	-	100	ns	Load 1.6 mA, 50pF
SDI to SCLK setup time	tDC	50	-	-	ns	
SCLK to SDI hold time	tCDH	50	-	-	ns	
SCLK low time	tCL	240	-	-	ns	
SCLK high time	tCH	240	-	-	ns	
SCLK rise and fall time	tR _, tF	-	-	50	ns	
PS to SCLK setup time	tPC	50	-	-	ns	
SCLK to PS hold time	tCPH	50	-	-	ns	
PS inactive time	tPWH	250	-	-	ns	
SCLK to SDO valid	tCDV	-	-	200	ns	
16th SCLK falling edge or PS rising edge to SDO high Z	tCDZ	-	100	-	ns	
1. Typical figures are at 25 °C and are for desig	gn aid only; no	ot guarantee	d and not subje	ct to production	on testing.	

Figure 14: LXT331 Receive Timing

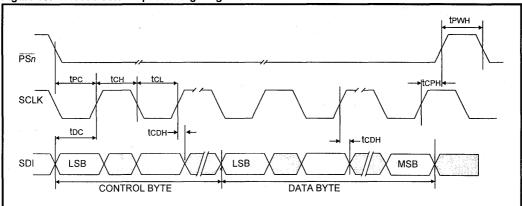
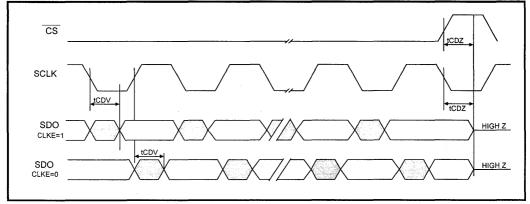



Figure 15: LXT331 Serial Input Timing Diagram

DATA SHEET

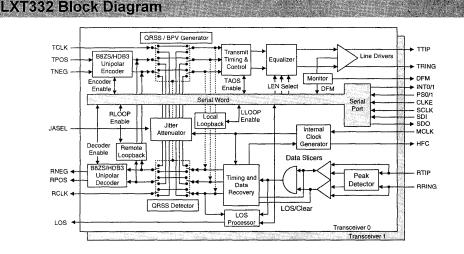
LXT332

Dual T1/E1 Line Interface Unit with Crystal-less Jitter Attenuation

General Description

The LXT332 is a fully integrated Dual Line Interface Unit (DLIU) for both 1.544 Mbps (T1) and 2.048 Mbps (E1) applications. It features B8ZS/HDB3 encoders and decoders, and a constant low output impedance transmitter for high return loss. Transmit pulse shape is selectable for various line lengths and cable types.

The LXT332 incorporates an advanced crystal-less digital jitter attenuator, switchable to either the transmit or receive side. This eliminates the need for an external quartz crystal. It offers both a serial interface (SIO) for microprocessor control and a hardware control mode for stand-alone operation.


The LXT332 offers a variety of advanced diagnostic and performance monitoring features. It uses an advanced double-poly, double-metal CMOS process and requires only a single 5-volt power supply.

Applications

- · PCM / Voice Channel Banks
- · Data Channel Bank / Concentrator
- T1 / E1 multiplexer
- Digital Access and Cross-connect Systems (DACS)
- · Computer to PBX interface (CPI & DMI)
- · SONET/SDH Multiplexers
- · Interfacing Customer Premises Equipment to a CSU
- Digital Loop Carrier (DLC) terminals

Features

- Digital (crystal-less) jitter attenuation, selectable for receive or transmit path, or may be disabled
- · High transmit and receive return loss
- Constant low output impedance transmitter with programmable equalizer shapes pulses to meet DSX-1 pulse template from 0 to 655 ft
- Meets or exceeds industry specifications including ITU G.703, ANSI T1.403 and AT&T Pub 62411
- · Compatible with most industry standard framers
- Complete line driver, data recovery and clock recovery functions
- Minimum receive signal of 500 mV, with selectable slicer levels (E1/DSX-1) to improve SNR
- · Local, remote, and dual loopback functions
- · Built-In Self Test with QRSS Pattern Generator
- Transmit / Receive performance monitors with Driver Fail Monitor (DFM) and Loss of Signal (LOS) outputs
- Receiver jitter tolerance 0.4 UI from 40 kHz to 100 kHz
- · Available in 44-pin PLCC and 44-pin QFP

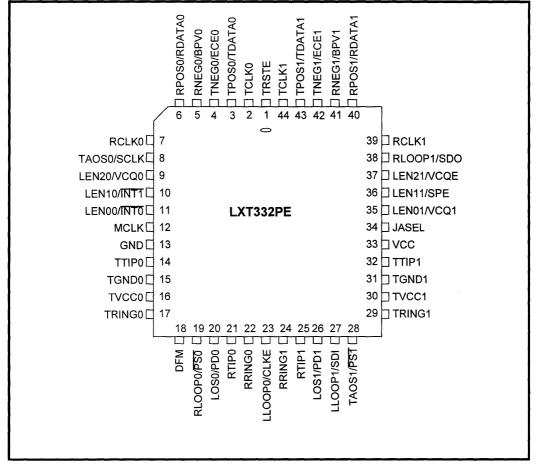
OVERVIEW

In addition to the inherent advantages of a DLIU, the LXT332 also provides several advanced features which are not available in other LXT30x-series devices. All of the added features are easily implemented. Many require only a clock pulse to change from one mode to another. Some features are available in Host Mode only.

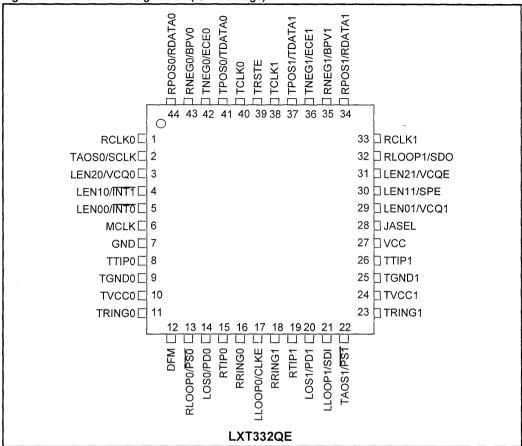
- Two complete LIUs in a single PLCC or QFP package
- · Simplifies board design, saves real estate
- Proven architecture (LXT3xx series)
- · Crystal-less Jitter Attenuation
- New Features

Standard LXT332 Features

- Tri-state Outputs
 - All LXT332 output pins can be forced to a high-Z Tri-state mode. The Tri-state mode is enabled or disabled by the TRSTE pin.
- Bipolar or Unipolar Data I/O
 - The LXT332 / Framer interface can be either bipolar (default) or unipolar (selectable). The unipolar mode is selected by applying MCLK to the TRSTE pin.
- B8ZS or HDB3 Zero Suppression
 - The LXT332 incorporates zero suppression encoders and decoders for use in the unipolar data I/O mode. The encoders/decoders can be activated or deactivated by changing the logic level on the remapped TNEG pin.
- Selectable Jitter Attenuation
 - Jitter attenuation can be placed in either the transmit or receive path or deactivated. The Jitter Attenuation Select (JASEL) pin determines the jitter attenuation mode. No crystal required.
- Dual Loopback
 - This option enables simultaneous loopbacks to both the framer and the line. The TCLK, TPOS and TNEG framer inputs are routed through the jitter attenuator and looped back to the RCLK, RPOS and RNEG outputs. The RTIP/RRING line inputs are looped back through the timing recovery block and line driver onto the TTIP/TRING outputs.


Additional Host-Mode Features

- High Frequency Clocks
 - The LXT332 provides a pair of high frequency clock outputs, one for each LIU. These 8x clocks (12.352 MHz for T1, 16.384 MHz for E1) are tied to the de-jittered clock from the JA of the respective LIU.
- Bipolar Violation Insertion
 - The same pins which provide the High Frequency Clocks can also be used to insert bipolar violations into the outgoing data stream. Violations can be inserted into each LIU channel independently.
- Built-In Self Test (QRSS)
 - The LXT332 can generate and transmit a QRSS pattern to Built-In Self Test (BIST) applications. Logic errors and bipolar violations can be inserted into the QRSS output. The LXT332 also detects QRSS pattern synchronization and reports bit errors in the received QRSS pattern data stream.
- AIS Detection
 - The LXT332 detects the AIS alarm signal on the receive side independent of the loopback modes. When AIS is detected (less than 3 zeros in 2048 bits), the LXT332 provides an indicator output.


PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Figures 1 and 2 show the pinout diagrams for the PLCC and QFP packages, respectively. Table 1 describes the Host Mode signal functions, except signals that change when in Unipolar Host Mode. Table 2 describes signal functions that change when in Unipolar Most Mode. Table 3 describes all Hardware Mode signal functions, except signals that change when in Unipolar Mode. Table 4 describes signal functions that change when in Unipolar Hardware Mode.

Figure 2: LXT332 Pin Assignments (QFP Package)

 Table 1: Host Mode Pin and Bipolar Host Mode Pin Descriptions

Pin QFP	Pin PLCC	Symbol	I/O ¹	Description		
39	1	TRSTE	DI	Tristate Output Enable Input Pin. Forces all output pins to high-Z tri-state when held High. Enables Bipolar I/O mode when held Low. In this mode the framer interface is bipolar (TPOS/TNEG and RPOS/RNEG), and the B8ZS/HDB3 encoders are disabled. Enables Unipolar I/O mode when clocked by MCLK. In this mode the framer interface is unipolar (TDATA and RDATA), and the TNEG and RNEG pins are re-mapped. The TNEG pins are re-mapped as Encoder Enable (ECE) to individually enable the B8ZS/HDB3 encoder/decoder for each port. The RNEG pins are re-mapped as Bipolar Violation (BPV) indicators to report BPVs received at the respective ports.		
40	2	TCLK0	DI	Transmit Clock - Port 0. 1.544 MHz for T1, 2.048 MHz for E1. The transmit data inputs are sampled on the falling edge of TCLK.		
1 DI = D	1 DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output					

Pin	Pin	Symbol	I/O ¹	Description	
QFP	PLCC				
41 42	3	TPOS0 (Bipolar)	DI	Transmit Positive and Negative Data - Port 0. In the Bipolar I/O mode, these pins are the positive and negative sides of a bipolar input pair for port 0. Data to be transmitted onto the twisted-pair line is input at these pins.	
42	4	TNEG0 (Bipolar)	DI	However, when the TRSTE pin is clocked by MCLK, the LXT332 switches to a unipolar mode. Table 2 describes Unipolar mode pin functions.	
43	5	RNEG0 (Bipolar)	DO	Receive Positive and Negative Data - Port 0. In the Bipolar I/O mode, these pins are the data outputs from port 0. A signal on RNEG corresponds	
44	6	RPOS0 (Bipolar)	DO	to receipt of a negative pulse on RTIP/RRING. A signal on RPOS corre- sponds to receipt of a positive pulse on RTIP/RRING. RNEG/RPOS outputs are Non-Return-to-Zero (NRZ). In Host mode, CLKE determines the clock edge at which these outputs are stable and valid.	
1	7	RCLK0	DO	Receive Clock - Port 0. This clock is recovered from the input signal. Under Loss of Signal (LOS) conditions, this output is derived from MCLK.	
2	8	SCLK	DI	Serial Clock. The Serial Clock shifts data into or out from the serial inter- face register of the selected port.	
3	9	VCQ0	DI/O	Provides Violation insert, High Frequency Clock, or QRSS generation/detec- tion functions for Port 0. Pin operation is determined by the VCQE pin.	
				 Violation Insertion Function. When the Violation insertion function is enabled, this pin is sampled on the falling edge of TCLK to control bipolar violation (BPV) insertion. If High, a BPV is inserted at the next available mark transmitted from port 0. A Low-to-High transition is required for each subsequent violation insertion. (B8ZS and HDB3 zero suppression codes are not violated.) Clock Function. When the Clock function is enabled, this pin outputs a High Frequency Clock (12.352 MHz for T1, 16.384 MHz for E1) tied to the 	
				jitter attenuated clock of port 0. If no JA clock is available, HFC is locked to the 8x receive timing recovery clock.	
				Quasi Random Signal Source (QRSS) Function. When the QRSS function is enabled, a High on this pin enables the QRSS detection circuit and causes the LXT332 to transmit the QRSS pattern onto the twisted-pair line from port 0. For error-free QRSS transmission, TPOS0 must be held Low. To insert errors into the pattern, TPOS must transition from Low to High (TPOS is sampled on the falling edge of MCLK). A Low-to-High transition is required for each subsequent violation insertion. (B8ZS and HDB3 zero suppression codes are not violated.)	
4 5	10 11	INTI INTO	DO DO	Interrupt Outputs. The interrupt outputs go Low to flag the host processor that the respective port has changed state. INT0 and INT1 are open drain outputs. Each must be tied to VCC through a resistor.	
6	12	MCLK	DI	Master Clock. The master clock (1.544 MHz for T1, 2.048 MHz for E1) input must be independent, free-running, continuously active and jitter free for receiver operation. Since the transceivers derive their RCLK timing from the MCLK input on Loss of Signal (LOS), MCLK cannot be derived from RCLK.	
7	13	GND		Ground. Ground return for power supply VCC.	
I DI = Di	gital Input; D	O = Digital Out	put; DI/O	= Digital Input/Output; AI = Analog Input; AO = Analog Output	

Table 1: Host Mode Pin and Bipolar Host Mode Pin Descriptions - continued

Pin QFP	Pin PLCC	Symbol	I/O ¹	Description	
8 11	14 17	TTIP0 TRING0	AO AO	Transmit Tip and Ring - Port 0. The tip and ring pins for each port are differential driver outputs designed to drive a $35 - 200 \Omega$ load. Line matching resistors and transformers can be selected to give the desired pulse height. See Figures 19 through 21.	
9	15	TGND0	-	Ground. Ground return for power supply TVCC0.	
10	16	TVCC0	Ι	+ 5 volt power supply input for the port 0 transmit driver. TVCC0 must not vary from TVCC1 or VCC by more than ± 0.3 V.	
12	18	DFM	, O	Driver Fail Monitor. This signal goes High to indicate a driver output short in one or both ports.	
13	19	PSO	Ι	Port Select - Port 0. This input accesses the serial interface registers for port 0. For each read or write operation, PS must transition from High to Low, and remain Low.	
14	20	PD0	DO	Pattern Detect - Port 0. Unless the QRSS function is selected by the VCQE pin, PD0 functions as an AIS alarm indicator. The AIS pattern is detected by the receiver, independent of any loopback mode. AIS goes High when less than three zeros have been detected in any string of 2048 bits. AIS returns Low when the received signal contains more than three zeros in 2048 bits. (LOS is available via the SIO register and interrupt.) If the QRSS function is enabled by the VCQE pin, PD0 remains High until pattern sync is reached with the received signal. Once pattern lock is obtained, PD0 goes Low. (The sync/out-of-sync criteria is less than 3/4 errors in 128 bits.) After sync acquisition, bit errors cause PD0 to go High for half a clock cycle. This output can be used to trigger an external error	
15 16	21 22	RTIP0 RRING0	DI DI	counter. Receive Tip and Ring - Port 0. RTIP and RRING comprise the receive line interface. This input pair should be connected to the line through a center-tapped 1:2 transformer.	
17	23	CLKE	Dĭ	Clock Edge Select. When CLKE is High, RPOS/RNEG or RDATA outputs are valid on the falling edge of RCLK, and SDO is valid on the rising edge of SCLK. When CLKE is Low, RPOS/RNEG or RDATA outputs are valid on the rising edge of RCLK, and SDO is valid on the falling edge of SCLK.	
18 19	24 25	RRING1 RTIP1	AI AI	Receive Tip and Ring - Port 1. RTIP and RRING comprise the receive line interface. This input pair should be connected to the line through a center-tapped 1:2 transformer.	
20	26	PD1	DO	Pattern Detect - Port 1. Reports AIS and QRSS pattern reception. See PD0 signal description for details.	
21	27	SDI	DI	Serial Data Input. SDI is sampled on the rising edge of SCLK.	
22	28	PS1	DI	Port Select - Port 1. This input accesses the serial interface registers for port 1. For each read or write operation, PS must transition from High to Low, and remain Low.	
23 26	29 32	TRINGI TTIP1	AO AO	Transmit Tip and Ring - Port 1. The tip and ring pins for each port are differential driver outputs designed to drive a 35 - 200 Ω load. Line matching resistors and transformers can be selected to give the desired pulse height. See Figures 13 through 15.	

Table 1: Host Mode Pin and Bipolar Host Mode Pin Descriptions - continued

Pin QFP	Pin PLCC	Symbol	I/O ¹	Description	
24	30	TVCC1	AI	+ 5 volt power supply input for the port 1 transmit driver. TVCC1 must not vary from TVCC0 or VCC by more than ± 0.3 V.	
25	31	TGND1		Ground. Ground return for power supply TVCC1.	
27	33	VCC	AI	+5 VDC power supply input for all circuits, except the transmit drivers.	
28	34	JASEL	DI	Jitter Attenuation Select. Selects jitter attenuation for both ports. When $JASEL = 1$, JA circuits are placed in the receive paths. When $JASEL = 0$, JA circuits are placed in the transmit paths. When JASEL is clocked with MCLK, the JA circuit is disabled.	
29	35	VCQ1	DI/O	Violation insert, Clock, or QRSS. Function (Violation insert, Clock, or QRSS) is determined by the VCQE pin. Provides Violation Insertion, High Frequency Clock or QRSS Generation functions for Port 1. Refer to VCQ0 signal description for details.	
30	36	SPE	DI	Serial Port Enable. SPE must be clocked with MCLK to enable Host Mode control through the serial port.	
31	37	VCQE	DI	Violation - Clock - QRSS Enable. When set High, enables the Bipolar Violation Insert functions of VCQ0 and VCQ1 pins. When set Low, enables the High Frequency Clock functions of VCQ0 and VCQ1. When clocked with MCLK, enables the QRSS functions of VCQ0 and VCQ1, and enables the QRSS Generate and Detect function of PD0 and PD1 pins.	
32	38	SDO	DO	Serial Data Output. If CLKE is High, SDO is valid on the rising edge of SCLK. If CLKE is Low, SDO is valid on the falling edge of SCLK.	
33	39	RCLK1	DO	Receive Clock - Port 1. This clock is recovered from the input signal. Under Loss of Signal (LOS) conditions, this output is derived from MCLK.	
34	40	RPOS1 (Bipolar)	DO	Receive Positive and Negative Data - Port 1. In the Bipolar I/O mode, these pins are the data outputs from port 1. A signal on RPOS corresponds to	
35	41	RNEG1 (Bipolar)	DO	receipt of a positive pulse on RTIP/RRING. A signal on RNEG corresponds to receipt of a negative pulse on RTIP/RRING. RNEG/RPOS outputs are Non-Return-to-Zero (NRZ). CLKE determines the clock edge at which these outputs are stable and valid.	
36	42	TNEG1 (Bipolar)	DI	Transmit Positive and Negative Data - Port 1. In the Bipolar I/O mode, these pins are TPOS and TNEG, the positive and negative sides of a bipolar	
37	43	TPOS1 (Bipolar)	DI	input pair for port 1. Data to be transmitted onto the twisted-pair line is input at these pins. However, when TRSTE is clocked by MCLK, the LXT332 switches to a unipolar mode. Unipolar mode pin functions are described sep- arately.	
38	44	TCLK1	DI	Transmit Clock - Port 1. 1.544 MHz for T1, 2.048 MHz for E1. The transmit data inputs are sampled on the falling edge of TCLK.	
I DI = Di	gital Input; D	O = Digital Out	put; DI/O	= Digital Input/Output; AI = Analog Input; AO = Analog Output	

Table 1: Host Mode Pin and Bipolar Host Mode Pin Descriptions - continued

Table 2: Unipolar Host Mode Pin Descriptions¹

Pin QFP	Pin PLCC	Symbol	I/O	Description		
41	3	TDATA0	DI	Transmit Data - Port 0. In the Unipolar mode, the data to be transmitted onto the twisted-pair line from port 0 is input at this pin.		
1 Table 1 de	1 Table 1 describes the pins that do not change function in Unipolar Host Mode and functions of pins unique to Bipolar Mode.					

Pin QFP	Pin PLCC	Symbol	I/O	Description	
42	4	ECE0	DI	Encoder Enable - Port 0. In the Unipolar mode, a High on this pin enables the B8ZS or HDB3 encoder and decoder for port 0.	
43	5	BPV0	DO	Bipolar Violation - Port 0. In the Unipolar mode this indicator output goes High when a bipolar violation is received at port 0.	
44	6	RDATA0	DO	Receive Data - Port 0. In the Unipolar mode, RDATA is a Non-Return-to-Zero (NRZ) output. CLKE determines the RCLK edge which RDATA is stable and valid.	
34	40	RDATA1	DO	Receive Data - Port 1. In the Unipolar mode, RDATA is a Non-Return-to-Zero (NRZ) output. CLKE determines the RCLK edge which RDATA is stable and valid.	
35	41	BPVI	DO	Bipolar Violation - Port 1. In the Unipolar mode this indicator output goes High when a bipolar violation is received at port 1.	
36	42	ECE1	DI	Encoder Enable - Port 1. In the Unipolar mode, a High on this pin enables the B8ZS or HDB3 encoder and decoder for port 1.	
37	43	TDATA1	DI	Transmit Data - Port 1. In the Unipolar mode, the data to be transmitted onto the twisted-pair line from port 1 is input at this pin.	

Table 2: Unipolar Host Mode Pin Descriptions ¹ – continu

Table 3: Hardware Mode Pin and Bipolar Hardware Mode Pin Descriptions¹

Pin QFP	Pin PLCC	Symbol	I/O ²	Description			
39	1	TRSTE	DI	Tristate Output Enable Input Pin. Forces all output pins to high-Z Tri-state when held High. Enables Bipolar I/O mode when held Low. In this mode the framer interface is bipolar (TPOS/TNEG and RPOS/RNEG), and the B8ZS/HDB3 encoders are disabled. Enables Unipolar I/O mode when clocked by MCLK. In this mode the framer interface is unipolar (TDATA and RDATA), and the TNEG and RNEG pins are re-mapped. The TNEG pins are re-mapped as Encoder Enable (ECE) to individually enable the B8ZS/HDB3 encoder/ decoder for each port. The RNEG pins are re-mapped as Bipolar Violation (BPV) indicators to report BPVs received at the respective ports.			
40	2	TCLK0	DI	Transmit Clock - Port 0. 1.544 MHz for T1, 2.048 MHz for E1. The transmit data inputs are sampled on the falling edge of TCLK.			
41	3	TPOS0 (Bipolar)	DI	Transmit Data Positive and Negative - Port 0. In the Bipolar I/O mode, these pins are the positive and negative sides of a bipolar input pair for port 0.			
42	4	TNEG0 (Bipolar)		Data to be transmitted onto the twp line is input at these pins. However, when TRSTE is clocked by MCLK, the LXT332 switches to a unipolar mode. Unipolar mode pin functions are described separately.			
43	5	RNEG0	DO	Receive Data Positive and Negative - Port 0. In the Bipolar I/O mode, a sig-			
44	6	(Bipolar) RPOS0 (Bipolar)		nal on RNEG corresponds to receipt of a negative pulse on RTIP/RRING. A signal on RPOS corresponds to receipt of a positive pulse on RTIP/RRING. RNEG/RPOS outputs are Non-Return-to-Zero (NRZ). RPOS and RNEG are stable and valid on the rising edge of RCLK.			
1 Table 4	describes the	pins used in Uni	polar Har	dware Mode.			

2. DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output

Pin QFP	Pin PLCC	Symbol	I/O ²	Description	
1	7	RCLK0	DO	Receive Clock - Port 0. This clock is recovered from the input signal. Under Loss of Signal (LOS) conditions, this output is derived from MCLK.	
2	8	TAOS0	DI	Transmit All Ones Enable - Port 0. When TAOS is High and RLOOP is Low, the TPOS/TNEG or TDATA input is ignored and port 0 transmits a stream of ones at the TCLK frequency. If TCLK is not provided, the MCLK input is used as the transmit reference.	
3 4 5	9 10 11	LEN20 LEN10 LEN00	DI DI DI	Line Length Equalizer Inputs - Port 0. This pins determine the shape and amplitude of the transmit pulse.	
6	12	MCLK	DI	Master Clock. The master clock (1.544 MHz for T1, 2.048 MHz for E1) input must be independent, free-running, continuously active and jitter free for receiver operation. Since the transceivers derive their RCLK timing from the MCLK input on Loss of Signal (LOS), MCLK cannot be derived from RCLK.	
7	13	GND	-	Ground. Ground return for power supply VCC.	
8 11	14 17	TTIP0 TRING0	AO AO	Transmit Tip and Ring - Port 0. The tip and ring pins for each port are dif- ferential driver outputs designed to drive a 35 - 200 Ω load. Line matching resistors and transformers can be selected to give the desired pulse height. See Figures 13 through 15.	
9	15	TGND0		Ground. Ground return for power supply TVCC0.	
10	16	TVCC0	AI	+ 5 volt power supply input for the port 0 transmit driver. TVCC0 must not vary from TVCC1 or VCC by more than ± 0.3 V.	
12	18	DFM	DO	Driver Fail Monitor. This signal goes High to indicate a driver output short in one or both ports.	
13	19	RLOOP0	DI	Remote Loopback Enable - Port 0. When RLOOP = 1, the port 0 clock and data inputs from the framer are ignored and the data received from the twisted-pair line is transmitted back onto the line at the RCLK frequency. (LLOOP0 must be Low for RLOOP0 to occur.)	
14	20	LOS0	DO	Loss of Signal - Port 0. LOS goes High when 175 consecutive spaces have been detected. LOS returns Low when the received signal reaches a mark den- sity of 12.5% (determined by receipt of four marks with a sliding 32-bit period with no more than 15 consecutive zeros). Received marks are output on RPOS/RNEG or RDATA even when LOS is High.	
15 16	21 22	RTIP0 RRING0	AI AI	Receive Tip and Ring - Port 0. RTIP and RRING comprise the receive line interface. This input pair should be connected to the line through a center-tapped 1:2 transformer.	
17	23	LLOOP0	DI	Local Loopback Enable - Port 0. When LLOOP is High, the RTIP/RRING inputs from the port 0 line are disconnected and the transmit data inputs are routed back into the receive inputs (through JA if enabled). (RLOOP0 must be Low for LLOOP0 to occur.)	
18 19	24 25	RRINGI RTIP1	AI AI	Receive Tip and Ring - Port 1. RTIP and RRING comprise the receive line interface. This input pair should be connected to the line through a center-tapped 1:2 transformer.	
		pins used in Uni 00 = Digital Ou		dware Mode. O = Digital Input/Output; AI = Analog Input; AO = Analog Output	

Table 3: Hardware Mode Pin and Bipolar Hardware Mode Pin Descriptions¹ - continued

Pin QFP	Pin PLCC	Symbol	I/O ²	Description			
20	26	LOS1	DO	Loss of Signal - Port 1. LOS goes High when 175 consecutive spaces have been detected. LOS returns to a logic 0 when the received signal reaches a mark density of 12.5% (refer to LOS0 signal description for details).			
21	27	LLOOP1	DI	Local Loopback Enable - Port 1. (RLOOP1 must be Low for LLOOP1 to occur.)			
22	28	TAOS1	DI	Transmit All Ones Enable - Port 1. (RLOOP1 must be Low for TAOS1 to occur.)			
23 26	29 32	TRING I TTIPI	AO AO	Transmit Ring - Port 1. The tip and ring pins for each port are differential driver outputs designed to drive a 35 - 200 Ω load. Line matching resistors and transformers can be selected to give the desired pulse height. See Figures 19 through 21.			
24	30	TVCC1	AI	+ 5 volt power supply input for the port 1 transmit driver. TVCC1 must not vary from TVCC0 or VCC by more than ± 0.3 V.			
25	31	TGND1	_	Ground. Ground return for power supply TVCC1.			
27	33	VCC	AI	+5 VDC power supply input for all circuits, except the transmit drivers.			
28	34	JASEL	DI	Jitter Attenuation Select. Selects jitter attenuation for both ports. When JASEL = 1, JA circuits are placed in the receive paths. When JASEL = 0, JA circuits are placed in the transmit paths. When JASEL is clocked with MCLK, the JA circuit is disabled.			
29	35	LEN01	DI	Line Length Equalizer inputs - Port 1. These pins determine the shape and			
30 31	36 37	LENII	DI	amplitude of the transmit pulse.			
		LEN21	DI				
32	38	RLOOPI	DI	Remote Loopback Enable - Port 1. (LLOOP1 must = 0 for RLOOP to occur.)			
33	39	RCLK1	DO	Receive Clock - Port 1. This clock is recovered from the twisted-pair input signal. Under Loss of Signal (LOS) conditions, this output is derived from MCLK.			
34	40	RPOS1 (Bipolar)	DO	Receive Data Positive and Negative - Port 1. In the Bipolar I/O mode, these pins are the data outputs from port I. A signal on RPOS corresponds to receipt of a positive pulse on RTIP/RRING. A signal on RNEG corresponds			
35	41	RNEG1 (Bipolar)	DO	to receipt of a negative pulse on RTIP/RRING. RNEG/RPOS outputs are Non-Return-to-Zero (NRZ). RPOS and RNEG are stable and valid on the ris ing edge of RCLK.			
36	42	TNEG1	DI	Transmit Data Positive and Negative - Port 1. In the Bipolar I/O mode, these pins are TPOS and TNEG, the positive and negative sides of a bipolar			
37	43	TPOS1	DI	input pair for port 1. Data to be transmitted onto the twisted-pair line is input at these pins. However, when the TRSTE pin is clocked by MCLK, the LXT332 switches to a unipolar mode. Unipolar mode pin functions are described separately.			
38	44	TCLK1	DI	Transmit Clock - Port 1. 1.544 MHz for T1, 2.048 MHz for E1. The transmit data inputs are sampled on the failing edge of TCLK.			

Table 3: Hardware Mode Pin and Bipolar Hardware Mode Pin Descriptions¹ - continued

Pin QFC	Pin PLCC	Symbol	1/0	Description	
41	3	TDATA0	DI	Transmit Data - Port 0. In the Unipolar mode, the data to be transmitted onto the line from port 0 is input at this pin.	
42	4	ECE0	DI	Encoder Enable - Port 0. In the Unipolar mode, a High on this pin enables the B8ZS or HDB3 encoder and decoder for port 0.	
43	5	BPV0	DO	Bipolar Violation - Port 0. In the Unipolar mode this indicator output goes High when a bipolar violation is received at port 0.	
44	6	RDATA0	DO	Receive Data - Port 0. In the Unipolar mode, RDATA is a Non-Return-to-Zero (NRZ) output. RDATA is stable and valid on the rising edge of RCLK.	
34	40	RDATA1	DO	Receive Data - Port 1. In the Unipolar mode, RDATA is a Non-Return-to-Zero (NRZ) output. RDATA is stable and valid on the rising edge of RCLK.	
35	41	BPV1	DO	Bipolar Violation - Port 1. In the Unipolar mode this indicator output goes High when a bipolar violation is received at port 1.	
36	42	ECE1	DI	Encoder Enable - Port 1. In the Unipolar mode, a High on this pin enables the B8ZS or HDB3 encoder and decoder for port 1.	
37	43	TDATA1	DI	Transmit Data - Port 1. In the Unipolar mode, the data to be transmitted onto the line from port 1 is input at this pin.	
1 Table 3 de	escribes the pi	ns that do not cha	ange funct	ion in Unipolar Hardware Mode and the functions of pins unique to Bipolar Mode.	

Table 4: Unipolar Hardware Mode Pin Descriptions¹

FUNCTIONAL DESCRIPTION

The figure at the beginning of this Data Sheet shows a simplified block diagram of the LXT332. The LXT332 is a fully integrated Dual Line Interface Unit (DLIU) which contains two complete transceivers. The DLIU is designed for both 1.544 Mbps (DSX-1) and 2.048 Mbps (E1) applications. Both transceivers operate at the same frequency, which is determined by the MCLK input.

Each DLIU transceiver front end interfaces with two twisted-pair lines, one pair for transmit, one pair for receive. These two twisted-pair lines comprise a digital data loop for full duplex transmission. The integrated crystal-less jitter attenuator may be positioned in either the transmit or receive path, or disabled.

Each DLIU transceiver back-end interfaces with a framer through either bipolar or unipolar data I/O channels. The DLIU may be controlled by a microprocessor through the serial port (Host control mode), or by hard-wired pins for stand-alone operation (Hardware control mode).

Receiver

The two receivers in the LXT332 DLIU are identical. The following paragraphs describe the operation of one.

The twisted-pair input is received via a center-tapped 1:2 transformer. Positive pulses are received at RTIP, negative pulses at RRING. Recovered data is output at RPOS and RNEG in the bipolar mode and at RDATA in the unipolar mode. The recovered clock is output at RCLK. RPOS/RNEG or RDATA outputs are valid on the rising edge of RCLK. Refer to the Test Specifications Section for receiver timing.

The receive signal is processed through the peak detector and data slicers. The peak detector samples the received signal and determines its maximum value. A percentage of the peak value is provided to the data slicers as a threshold level to ensure optimum signal-to-noise ratio. For DSX-1 applications (line length inputs LEN0 - LEN2 \neq 000 or 001) the threshold is set to 70% (typical) of the peak value. This threshold is maintained above the specified level for up to 15 successive zeros over the range of specified operating conditions. For E1 applications (LEN inputs = 000 or 001), the threshold is 50 % (typical).

The receiver is capable of accurately recovering signals with up to -13.6 dB of attenuation (from 2.4 V), corresponding to a received signal level of approximately 500 mV. Maximum line length is 1500 feet of ABAM cable (approximately 6 dB of attenuation). Regardless of received signal level, the peak detectors are held above a minimum level of 0.3 V (typical) to provide immunity from impulsive noise.

After processing through the data slicers, the received signal goes to the data and timing recovery section, and to the receive monitor. The data and timing recovery circuits provide an input jitter tolerance better than required by Pub 62411 or ITU G.823, as shown in Test Specifications.

The receiver monitor loads a digital counter at the RCLK frequency. The count is incremented each time a zero is received, and reset to zero each time a one (mark) is received. Upon receipt of 175 consecutive zeros the LOS flag is set, and the recovered clock is replaced by MCLK at the RCLK output in a smooth transition. (MCLK is required for receive operation.) When the received signal reaches 12.5% ones density (4 marks in a sliding 32-bit period) with no more than 15 consecutive zeros, the LOS flag is reset and another smooth transition replaces MCLK with the recovered clock at RCLK. During LOS conditions, received data is output on RPOS/RNEG (or RDATA if unipolar I/O is selected).

Depending on the options selected, recovered clock and data signals may be routed through the jitter attenuator, through the B8ZS/HDB3 decoder, and may be output to the framer as either bipolar or unipolar data. In unipolar data I/O mode, the LXT332 reports bipolar violations via an output for one RCLK period on the respective BPV pin.

Transmitter

The two transmitters in the LXT332 DLIU are identical. The following paragraphs describe the operation of a single transmitter.

Transmit data from the framer is clocked serially into the device at TPOS/TNEG in the bipolar mode or at TDATA in the unipolar mode. The transmit clock (TCLK) supplies the input synchronization. The transmitter samples TPOS/ TNEG or TDATA inputs on the falling edge of TCLK. If TCLK is not supplied, the transmitter remains powered down and the TTIP/TRING outputs are held in a high-Z state, except during RLOOP, DLOOP, QRSS or TAOS modes. A separate power supply (TVCC0 or TVCC1) supplies each output driver. Current limiters on the output drivers provide short circuit protection. Refer to the Test Specifications Section for MCLK and TCLK timing characteristics. The LXT332 transmits data as a 50% AMI line code as shown in Figure 3. Enabling the zero suppression encoders/decoders overrides the default and the transmission complies with the selected encoding scheme.

Zero suppression is available only in Unipolar Mode. The two zero-suppression types are B8ZS, used in T1 environ-

ments, and HDB3, used in E1 environments. The scheme selected depends on whether the application is T1 or E1.

Bipolar Violation Insertions

In the Host mode with unipolar data I/O selected, a Bipolar Violation (BPV) insert function is available. When the VCQE pin is held High, VCQ0 and VCQ1 pins control bipolar Violation Insertion (VI) for ports 0 and 1, respectively. TDATA and VI are both sampled on the falling edge of TCLK. If VI is High, the next available mark is transmitted as a BPV, except as follows:

- 1. B8ZS and HDB3 zero suppression is not violated.
- If Local Loopback (LLOOP) and Transmit All Ones (TAOS) are both active, the BPV is looped back to RDATA but the line driver transmits All Ones (no violations).
- 3. During Remote Loopback (RLOOP = 1), BPV Insert is disabled.

A Low-to-High transition on VI is required for each subsequent BPV insertion.

Table 5:	Equalizer	Control Inputs
----------	-----------	-----------------------

Pulse Shape

The transmitted pulse shape is determined by Line Length equalizer control signals LEN0 through LEN2 as shown in Table 5. Equalizer codes are hardwired in Hardware mode. In Host mode the LEN codes are input through the serial interface. Shaped pulses are applied to the AMI line driver for transmission onto the line at TTIP and TRING. The line driver provides a constant low output impedance of $< 3\Omega$ (typical), regardless of whether it is driving marks or spaces. This well controlled impedance provides excellent return loss when used with external precision resistors $(\pm 1 \%$ accuracy) in series with the transformer. Table 8 lists recommended transformer specifications. The Application Information Section lists transformer specifications, recommended transformer ratios, series resistor (Rt) values, and typical return losses for various LEN codes. To minimize power consumption the LXT332 can be tied directly to a 1:1.15 transformer without series resistors.

Pulses can be shaped for either 1.544 Mbps or 2.048 Mbps applications. 1.544 Mbps pulses for DSX-1 applications can be programmed to match line lengths from 0 to 655 feet of 22 AWG ABAM cable. A combination of 9.1 Ω resistors and a 1:2.3 transformer is recommended for DSX-1 applications. The LXT332 also matches FCC pulse mask specifications for CSU applications.

The LXT332 produces 2.048 Mbps pulses for both 75 Ω coaxial (2.37 V) or 120 Ω shielded (3.0 V) lines through an output transformer with a 1:2 turns ratio. For coaxial systems, 9.1 Ω series resistors are recommended. For twisted-pair lines, use 15 Ω resistors.

LEN2	LEN1	LEN0	Line Length ¹	Cable Loss ²	Application	Transmit Rate
0 1 1 1	1 0 0 1 1	1 0 1 0 1	0 – 133 ft. ABAM 133 – 266 ft ABAM 266 – 399 ft ABAM 399 – 533 ft ABAM 533 – 655 ft ABAM	0.6 dB 1.2 dB 1.8 dB 2.4 dB 3.0 dB	DSX-1	1.544 Mbps
0 0	0 0	0 1	ITU Recommendat	tion G.703	E1 – Coax (75Ω) E1 – Twisted-pair (120Ω)	2.048 Mbps
0	1	0	FCC Part 68, O	1.544 Mbps		
1 Line lengt 2. Maximum			cross-connect point			

Driver Failure Monitor

The transceiver incorporates an internal Driver Failure Monitor (DFM) in parallel with TTIP and TRING. A capacitor, charged via a measure of the driver output current and discharged by a measure of the maximum allowable current detects driver failure. Shorted lines draw excess current, overcharging the cap. When the capacitor charge deviates outside the nominal charge window, a driver fail is reported. In Host mode the DFM bit is set in the serial word. In Hardware mode the DFM bit overcharge eventually bleeds off, clearing the DFM flag.

Jitter Attenuation

A digital Jitter Attenuation Loop (JAL) combined with an Elastic Store (ES) provides Jitter attenuation. The JAL is internal and requires no external crystal nor high-frequency (higher than line rate) clock. When JASEL = 1, the JAL is positioned in the receive path. When JASEL = 0, the JAL is positioned in the transmit path. With JASEL clocked by MCLK, the JAL is disabled. MCLK is the reference for the JAL.

The ES is a 32 x 2-bit register. Data is clocked into the ES with the associated clock signal (TCLK or RCLK), and clocked out of the ES with the dejittered JAL clock. When the ES is within two bits of overflowing or underflowing, the ES adjusts the output clock by 1/8 of a bit period. The ES produces an average delay of 16 bits in the associated path.

Host Mode provides a dejittered High Frequency Clock (HFC). This 8x clock (12.352 MHz for T1, 16.384 MHz for E1) is tied to the output clock from the JAL. With JA active in the receive path, HFO is tied to RCLK and under LOS conditions defaults to MCLK. With JA active in the transmit path, HFO is tied to TCLK and defaults to MCLK if TCLK is not available. If JA is disabled, HFO is tied to MCLK.

Built-In Self Test

In Host mode, the LXT332 provides a Built-In Self Test (BIST) mode. Quasi-Random Signal Source (QRSS) generation and detection circuitry is integrated into the LXT332. When the QRSS BIST mode is selected, the LXT332 detects and reports QRSS pattern sync on the incoming signal. When triggered, the LXT332 also transmits the QRSS pattern onto the line. Pattern transmission and detection is independently triggered and reported for each port. Refer to Diagnostic Mode Operation for detailed description.

Control Modes

The LXT332 transceiver operates in stand alone Hardware (default) Mode or Host Mode depending on the input to the SPE pin. When tied to SPE, MCLK acts as a Serial Port Enable signal to force the LXT332 into its Host mode. The data I/O mode, bipolar or unipolar, is controlled by the TRSTE pin. With TRSTE Low, bipolar I/O is selected. With TRSTE clocked, unipolar I/O is selected. Several diagnostic modes are available on command.

Host Mode Control

The LXT332 operates in the Host mode when the SPE pin is clocked with MCLK. In Host mode a microprocessor controls the LXT332 through the serial I/O port (SIO) which provides common access to both LIUs. Each of the two LIUs contains a pair of data registers, one for command inputs and one for status outputs. Only one LIU can be selected at a time. If both PS0 and PS1 are active, Port 0 has priority over Port 1. An SIO transaction is initiated by a falling pulse on one of the two Port Select pins, PS0 or PS1. A High-to-Low transition on PS0/1 is required for each subsequent access to the Host mode registers. If both PS0 and PS1 are active simultaneously, Port 0 has priority over Port 1.

The LIU addressed by the PS pulse responds by writing the incoming serial word from the SDI pin into its command register. Figure 4 shows an SIO write operation. The 16bit serial word consists of an 8-bit Command/Address byte and an 8-bit Data byte. If the command word contains a read request, the addressed LIU subsequently outputs the contents of its status register onto the SDO pin. Figure 5 shows an SIO read operation. The Clock Edge (CLKE) signal determines when the SDO and receive data outputs are valid, relative to the Serial Clock (SCLK) or RCLK as listed in Table 6. Refer to the Test Specifications section for SIO timing.

Serial Input Word

Figure 4 shows the Serial Input data structure. The LXT332 is addressed by setting bit A4 in the Address/ Command byte, corresponding to address 16. Bit 1 of the serial Address/Command byte provides Read/Write (R/\overline{W}) control when the chip is accessed. The R/\overline{W} bit is set to logic 1 to read the data output byte from the chip, and set to logic 0 to write the input data byte to the chip.

The second 8 bits of a write operation, the Data Input byte, clear Loss of Signal (LOS) and Driver Fail Monitor (DFM) interrupts, reset the chip, and control diagnostic modes. The first 2 bits (D0 – D1) clear and/or mask LOS and DFM interrupts, and the last 3 bits (D5 – D7) control operating

modes (normal and diagnostic) and chip reset. Refer to Table 7 for details on bits D5 – D7 Serial Output Word.

Serial Output Word

Figure 4 shows the Serial Output data structure. SDO is high impedance when SDI receives an Address/Command byte. If SDI receives a write command (R/W = 0), SDO remains in high impedance. If the command is a read (R/W = 1), then SDO becomes active after the last Command/ Address bit (A6) and remains active for eight SCLK cycles. Typically the first bit out of SDO changes the state of SDO from high-z to a Low/High. This occurs approximately 100 μ s after the eighth following edge of SCLK.

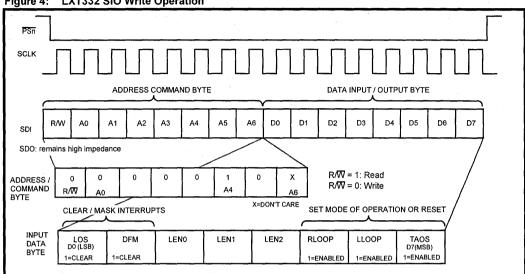
The output data byte reports Loss of Signal (LOS) and Driver Fail Monitor (DFM) conditions, equalizer settings, and operating modes (normal or diagnostic). The first 5 bits (D0 - D4) report LOS and DFM status, and the Line Length Equalizer settings. The last 3 bits (D5 - D7) report operating modes and interrupt status.

If the \overline{INTx} line for port x is High (no interrupt is pending), bits D5 - D7 report the operating modes listed in Table 8. If the \overline{INTx} line for port x is Low, the interrupt status overrides all other reports and bits D5 - D7 reflect the interrupt status as listed in Table 8.

Table 6: CLKE Settings

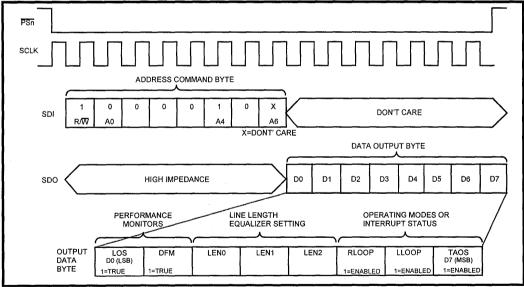
CLKE	Output	Clock	Valid Edge
LOW	RPOS/RNEG	RCLK	Rising
	RDATA	RCLK	Rising
	SDO	SCLK	Falling
HIGH	RPOS/RNEG	RCLK	Falling
	RDATA	RCLK	Falling
	SDO	SCLK	Rising

Table 7: SIO Input Bit Settings(See Figure 4)


Mode	RLOOP Bit D5	LLOOP Bit D6	TAOS Bit D7
RLOOP	1	0	N/A
LLOOP	0	1	N/A
DLOOP	1	1	1
TAOS	0	n/a	1
RESET	1	1	0

Bit			One writing Medice					
D5	D6	D7	Operating Modes					
0	0	0	Reset has occurred, or no program input (<i>i.e.</i> , normal operation) or DLOOP active. ¹					
0	0	1	TAOS active					
0	1	0	LLOOP active					
0	1	1	TAOS and LLOOP active					
1	0	0	RLOOP active					
			Interrupt Status					
1	0	1	DFM has changed state since last Clear DFM occured					
1	1	0	LOS has changed since last Clear LOS occurred					
1	1	1	DFM and LOS have changed since last Clear DFM and Clear LOS occurred					
1 No exp	licit status i	nformation	is available on DLOOP.					

Table 8: LXT332 Serial Data Output Bit Coding (See Figure 5)



LXT332 Dual T1/E1 Line Interface Unit with Crystal-less Jitter Attenuation

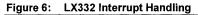
Figure 4: LXT332 SIO Write Operation

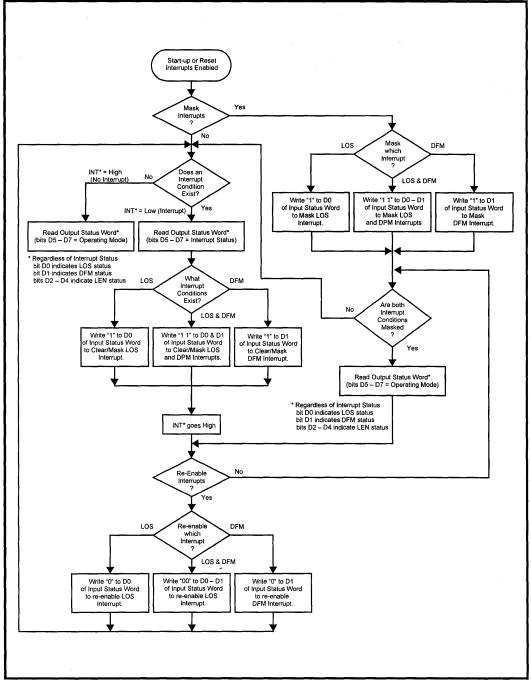
Figure 5: LXT332 SIO Read Operation

Interrupt Handling

The Host mode provides two latched Interrupt output pins, INT0 and INT1, one for each LIU. An interrupt is triggered by a change in the LOS or DFM bits (D0 and D1 of the output data byte, respectively). As shown in Figure 6, either or both interrupt generators can be masked by writing a one to the respective bit of the input data byte (D0 = LOS, D1 = DFM). When an interrupt has occurred, the INTx output pin is pulled Low. The output stage of each INTx pin consists only of a pull-down device. Hence, an external pull-up resistor is required. The interrupt is cleared as follows:

- If one or both interrupt bits (LOS or DFM, D0 and D1 of the output data byte) =1, writing a 1 to the respective input bit (D0 or D1, respectively, of the input data byte) will clear the interrupt. Leaving a 1 in either of these bit positions will effectively mask the associated interrupt. To re-enable the interrupt capability, reset D0 and/or D1 to 0.
- If neither LOS or DFM=1, the interrupt will be cleared by resetting the chip. To reset the chip, set data input bits D5 and D6 = 1, and D7 = 0.


Hardware Mode Control


Hardware control is the default operating mode; the LXT332 operates in Hardware mode unless LEN11/SPE pin is clocked. In Hardware mode the transceiver is controlled through individual pins; a μ P is not required. The SIO pins are re-mapped to provide control functions. (Data I/O mode selection is unaffected by the control mode. The TRSTE pin selects either unipolar or bipolar data I/O.) In Hardware mode the RPOS/RNEG or RDATA/BPV outputs are valid on the rising edge of RCLK.

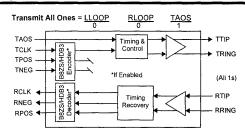
Diagnostic Mode Operation

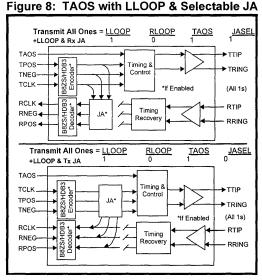
The LXT332 offers multiple diagnostic modes. Local Loopback (LLOOP), Remote Loopback (RLOOP), Dual Loopback (DLOOP) and Transmit All Ones (TAOS) are available under both Host and Hardware control. An additional Quasi-Random Signal Source (QRSS) mode is available under Host control only.

Under Host control, diagnostic modes are selected by writing the appropriate SIO bits. Under Hardware control, diagnostic modes are selected by a combination of pin settings. The pins must be held at the specified levels for a minimum of 20 ns. The SIO bit names (Host Mode) and pin identifiers (Hardware Mode) for diagnostic functions are identical. Where a particular function can be enabled in either mode, 1=High and 0=Low.

Transmit All Ones. See Figure 7. Transmit All Ones (TAOS) is selected when TAOS = 1 and RLOOP = 0. In TAOS mode the TPOS and TNEG inputs are ignored. The TAOS reference clock is determined by setting the jitter attenuator. When jitter attenuation is set for the transmit side, MCLK is used as the reference clock and TCLK is the fall back clock. When JA is set for the receive side, TCLK is the reference clock and MCLK is the fall back clock. When JA is inactive, MCLK is the TAOS reference clock and TCLK is the fall back. TAOS reference clock and TCLK is the fall back. TAOS can be commanded simultaneously with Local Loopback as shown in Figure 8, but is inhibited during Remote and Dual Loopback.

Local Loopback. See Figures 8 and 9. Local Loopback (LLOOP) is selected when LLOOP = 1 and RLOOP = 0. In LLOOP mode the receiver circuits are inhibited. The transmit clock and data inputs (TCLK and TPOS/TNEG or TDATA) are looped back and output at RCLK and RPOS/RNEG or RDATA. During local loopback, the JASEL input functions as follows: If JASEL=0, JA is enabled and active in both the Transmit path and the loopback circuit. If JASEL=1, JA is enabled in the Loopback circuit only. If JASEL = MCLK, JA is disabled.


The transmitter circuits are unaffected by LLOOP. The TPOS/TNEG or TDATA inputs (or a stream of 1s if the TAOS command is active) will be transmitted normally. When used in this mode, the transceiver can be used as a stand-alone jitter attenuator.


Remote Loopback. See Figure 10. Remote Loopback (RLOOP) is selected when RLOOP = 1 and LLOOP = 0. (Under this condition, TAOS is ignored. TAOS cannot be commanded simultaneously with RLOOP.) In RLOOP mode, the transmit clock and data inputs (TCLK and TPOS/TNEG or TDATA) are ignored. The RPOS/RNEG or RDATA outputs are looped back to the transmit circuits and output on TTIP and TRING at the RCLK frequency. Receiver circuits are unaffected by the RLOOP command and continue to output the data and clock signals received from the line. During remote loopback, the JASEL input functions as follows: If JASEL = 1, JA is enabled and active in both the Receive path and the loopback circuit. If JASEL = 0, JA is enabled in the Loopback circuit only. If JASEL = MCLK, JA is disabled.

Dual Loopback. See Figure 11. Dual Loopback (DLOOP) is selected when RLOOP = 1, LLOOP = 1 and TAOS = 1. In DLOOP mode, the transmit clock and data inputs (TCLK and TPOS/TNEG or TDATA) are looped back through the jitter attenuator (unless disabled by a clock input to the JASEL pin) and output at RCLK and RPOS/RNEG or RDATA. The data and clock recovered from the line are looped back through the transmit circuits and output on TTIP and TRING without jitter attenuation. Unlike the other diagnostic modes, no explicit SIO status indicator is available for DLOOP in the SIO status register.

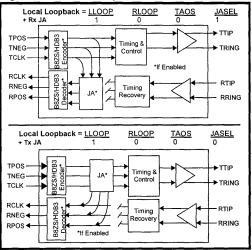
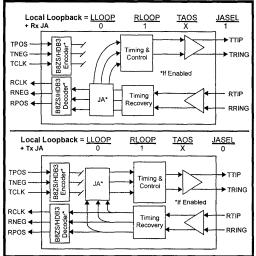


Figure 7: TAOS Data Path

LXT332 Dual T1/E1 Line Interface Unit with Crystal-less Jitter Attenuation

QRSS Built-In Self Test (Host Mode only). See Figure 12. The QRSS Built-In Self Test (BIST) mode is available only under Host control. The QRSS BIST mode is selected by clocking the VCQE pin with MCLK. Once the QRSS BIST mode is selected, the VCQ0 and VCQ1 pins are re-mapped to trigger the QRSS transmission. A High on one of these pins triggers QRSS pattern transmission from the appropriate port. The QRSS pattern for DSX-1 systems is 2^{20} -1, with no more than 14 consecutive zeros. For CEPT systems the QRSS pattern is 2¹⁵-1. The QRSS pattern is locked to MCLK. Once the QRSS transmission is activated, errors can be inserted into the transmit data stream by causing a Low-to-High transition on the TPOS/ TDATA pin for the respective port. In Bipolar mode, Low-High transitions cause both a logic error and a bipolar violation to be inserted into the QRSS data stream. In Unionly a logic inserted. polar mode. error is


The Pattern Detect circuitry is activated by the QRSS BIST mode, although the basic receive circuits are unaffected. The Pattern Detect (PD*n*) pins indicate QRSS pattern sync. The Pattern Detect pin stays High until synchronization is achieved on the QRSS pattern. The QRSS pattern is considered in sync when there are fewer than 4 errors in 128 bits. The PD pin goes High indicating an out-of-sync conditions if 4 or more errors are detected in 128 bits (i.e. sync is defined as fewer than 4 errors in 128 bits).

Initialization/Reset Operation


Upon initial power up, the transceiver is held static until the power supply reaches approximately 3 V. Upon crossing this threshold, the device clears all internal registers and begins calibration of the delay lines. A reference clock is required to calibrate the delay lines. TCLK is the transmit reference, and MCLK is the receive reference. The PLLs are continuously calibrated.

The transceiver can be reset from the Host or H/W mode. In Host mode, reset is commanded by writing 1s to RLOOP and LLOOP, and a 0 to TAOS (bits D5, D6 and D7, respectively, of the SIO input data byte). In H/W mode, reset is commanded by simultaneously holding RLOOP and LLOOP High, and TAOS Low, for approximately 200 ns. Reset is initiated on the falling edge of the reset request. In either mode, each port is reset independently. Reset clears and sets all SIO registers to 0 at the affected port. Reset is not generally required for the port to be operational.

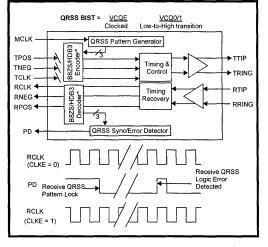

Figure 10: Remote Loopback with Selectable JA

Figure 11: Dual Loopback

APPLICATION INFORMATION

Power Requirements

The LXT332 is a low-power CMOS device. It operates from a single +5 V power supply which can be tied to all three VCC inputs. However, all inputs must be within ± .3 V of each other, and decoupled to their respective grounds separately. Isolation between the transmit and receive circuits is provided internally. During normal operation or local loopback, the transmitter powers down if TCLK is not supplied.

Transformers

The transformer specifications listed in Table 9 give the correct impedance matching for balanced transmit or receive lines. Table 10 shows the combinations of resistors and transformers to produce a variety of return loss values depending on the LEN code settings chosen for a specific design

1.544 Mbps T1 Applications

Figure 13 shows a typical host mode application. The eight serial interface pins are grouped at the top. Host mode is selected by the clock input to SPE. Other mode selection pins are shown at the bottom. With the TRSTE pin switched Low, the LXT332 operates in the bipolar I/O mode. Driving JASEL Low switches the jitter attenuation circuits into the transmit paths for both LIU ports.

Figure 13 shows a pair of framers (a dual framer could also be used). A LXP600A Clock Adapter (CLAD) converts the 2.048 MHz backplane clock to provide the 1.544 MHz input to the MCLK and TCLK inputs of both LIU ports.

The DFM and PD indicators and High frequency clocks are grouped in the diagram lower left. These outputs are available to drive optional external circuits. The driver power supply inputs (lower right) are tied to a common bus with 1.0 µF decoupling capacitors installed. The power supply for the remaining (non-driver) circuitry is shown at center right with 68 µF and 0.1 µF decoupling capacitors.

The line interface circuitry is identical for both LIU ports. The precision resistors in line with the transmit transformer provide optimal return loss. The recommended transformer/resistor combinations are listed at the bottom of Figure 15. Center tapped 2:1 transformers are used on the receive side.

Table 9: Recommended Transformer Values

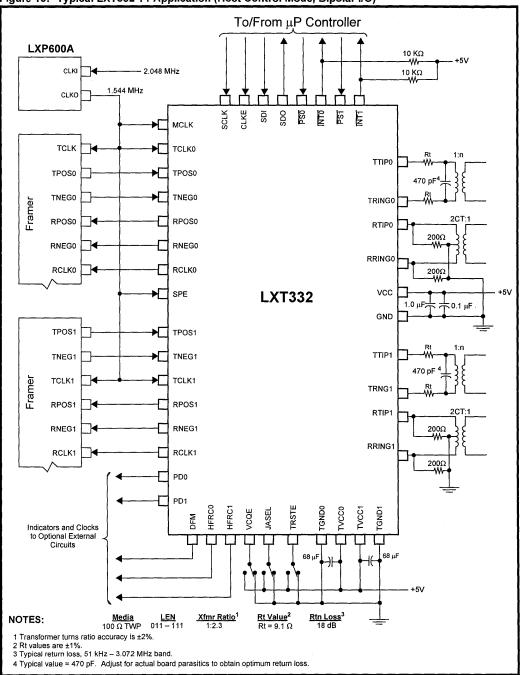

Parameter	Value
Turns Ratio (T1)	1:2.3 (Tx) / 1:2 CT (Rx)
Turns Ratio (E1)	1:2 (Tx) / 1:2 CT (Rx)
Primary Inductance	1.2 mH maximum
Leakage Inductance	0.5 μH maximum
Interwinding Capacitance	25 pF maximum
DC Resistance (Pri.)	l Ω maximum
ET (Breakdown Voltage)	1 kV minimum

Table 10: Transformer Combinations

LEN	Xfmr Ratio ¹	Rt Value ²	Rtn Loss ³				
For T1/DSX-1 100 Ω Twisted-Pair Applications:							
011 111	1:2	$Rt = 9.1 \Omega$	14 dB				
011 - 111	1:2.3	$Rt = 9.1 \Omega$	18 dB				
011 – 111	1:1.15	$Rt = 0 \Omega$	18 dB				
For E	1 120 Ω Tw	isted-Pair App	lications:				
001	1:2	$Rt = 15 \Omega$	18 dB				
000	1:2	$Rt = 9.1 \Omega$	10 dB				
Fo	r E1 75 Ω C	oaxial Applica	tions:				
001	1:2	$Rt = 14.3 \Omega$	10 dB				
000	000 1:2 $Rt = 9.1 \Omega$ 18 dB						
1 Transformer turns ratio accuracy is ±2 %. 2 Bt values are ±1 %							

3. Typical return loss, 51 kHz - 3.072 MHz, with a capacitor in parallel with the primary side of the transformer.

Figure 13: Typical LXT332 T1 Application (Host Control Mode, Bipolar I/O)

2.048 Mbps E1/CEPT Interface Applications

E1 Coaxial Applications

Figure 14 shows the line interface for a typical 2.048 Mbps E1 coaxial (75Ω) application. The LEN code should be set to 000 for coax. With 9.1 Ω Rt resistors in line with the 1:2 output transformers, the LXT332 produces 2.37 V peak pulses as required for coax applications. As in the T1 application shown in Figure 13, center tapped 1:2 transformers are used on the receive side.

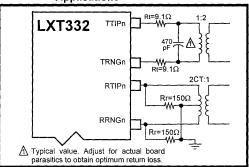
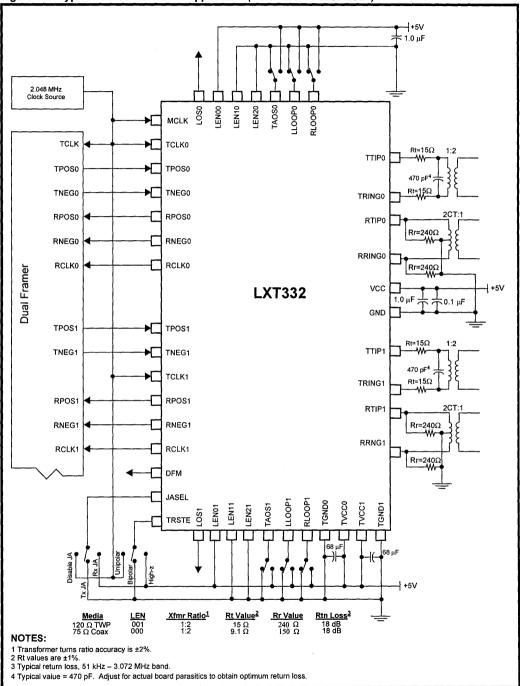

E1 Twisted-Pair Applications

Figure 15 shows a typical 2.048 Mbps E1 twisted-pair (120 Ω) application. With the TRSTE pin tied to ground the LXT332 operates in the bipolar data I/O mode. The JA circuit is placed in the transmit path by the Low on JASEL The line length equalizers are controlled by the hardwired LEN inputs. With the LEN code set to 001 and 15 Ω Rt resistors in line with the 1:2 output transformers, the LXT332 produces the 3.0 V peak pulses required for this application. Center tapped 1:2 transformers are used on the receive side.


A single clock source provides the 2.048 MHz input to MCLK and TCLK. The DFM pin may routed to an LED driver or other indicator, or be left unconnected. Switches on the TAOS, LLOOP and RLOOP inputs provide mode control and hardware reset capability.


As in Figure 15, the power supply inputs are tied to a common bus with appropriate decoupling capacitors installed (1.0 μ F on the transmit side, 68 μ F and 0.1 μ F on the receive side.)

Figure 14: Line Interface for E1 Coax Applications

TEST SPECIFICATIONS

NOTE

Information in Tables 11 through 17 and Figures 16 through 21 represent the performance specifications of the LXT332 Dual Line Interface Unit and are guaranteed by test, except as noted, by design.

Table 11: Absolute Maximum Ratings

Parameter	Sym	Min	Max	Units	
DC supply (referenced to GND)	VCC, TVCC0, TVCC1		6.0	V	
Input voltage, any pin ¹	Vin	GND - 0.3	Vcc + 0.3	V	
Input current, any pin ²	IIN	-10	10	mA	
Storage temperature	Тѕтд	-65	+150	°C	
	CAUTION				

CAUTION

Operations at or beyond these limits may result in damage to the device. Normal operation not guaranteed at these extremes.

1 Excluding RTIP and RRING which must stay between -6 V and Vcc + 0.3 V.

2. Transient currents of up to 100 mA will not cause SCR latch-up. TTIP, TRING, TV+, and TGND can withstand continuous current of 100 mA.

Table 12: Recommended Operating Conditions

Parameter	Symbol	Minimum	Typical	Maximum	Units	
DC supply ¹	VCC, TVCC0, TVCC1	4.75	5.0	5.25	v	
Ambient operating temperature	Та	-40	25	85	°C	

1 Variation between TVCC0, TVCC1 and VCC must be within ±0.3 V of each other during steady state and transient conditions.

Table 13: Electrical Characteristics (Over Recommended Range)

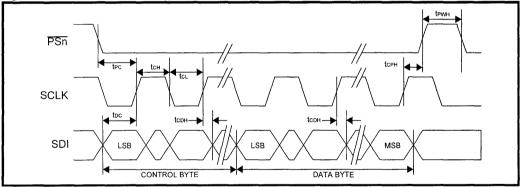
Parameter	Sym	Min	Тур	Max	Units	Test Conditions
Total power dissipation – T1 ¹	PD	-	700	900	mW	100% ones density
(Maximum line length)	Pd	-	550	700	mW	50% ones density
Total power dissipation – E1 ¹	Pd		575	700	mW	100% ones density
	PD	-	490	600	mW	50% ones density
High level input voltage ^{2,3}	Vih	2.0	-	-	v	
Low level input voltage ^{2,3}	Vil	_	-	0.8	v	
High level output voltage ^{2,3}	Vон	2.4	-	-	v	Ιουτ = -400 μΑ
Low level output voltage ^{2,3}	Vol	-	-	0.4	v	Iout = 1.6 mA
Input leakage current 4	ILL	0	-	±10	μΑ	
Three-state leakage current ²	Isl	0		±10	μΑ	
Input pull down current (MCLK) ⁵			-	100	μΑ	
TTIP/TRING leakage current	Itr	-	-	1.2	mA	In tri-state and power down modes

Total power dissipation includes the device power consumption and load power dissipation while driving a 75 Ω load on the secondary side. The 1 T1 test circuit is a 100 Ω line load connected to the driver outputs via a 1:1.15 turns ratio transformer without series resistors.

Functionality of pins depends on mode.
 Output drivers will output CMOS logic levels into CMOS loads.
 Except for MCLK, RTIP0, RRING0, RTIP1, and RRING1.

Applies to pins 8,11,23,26

Parame	ter	Min	Тур	Max	Units	Test Conditions
AMI Output Pulse	DSX-1	2.4	3.0	3.6	v	measured at the DSX
Amplitudes	Ε1 (120 Ω)	2.7	3.0	3.3	v	measured at line side
	E1 (75 Ω)	2.13	2.37	2.61	v	measured at line side
Transmit amplitude variation	-	1	2.5	%		
Recommended output load at	TTIP and RRING	_	75	_	Ω	
Driver output impedance ³		·	3	10	Ω	@ 772 kHz
Jitter added by the	10 Hz - 8 kHz ³	_	0.005	0.01	UI	T1 Jitter based
transmitter ¹	8 kHz - 40 kHz ³	-	0.015	0.025	UI	
	10 Hz - 40 kHz ³	· _ '	0.02	0.025	UI	
	Broad Band	-	0.03	0.05	UI	
Jitter added by the transmitter ¹	20 Hz – 100 kHz	-		0.05	UI	E1 Jitter Band
Output power levels ³	@772 kHz	12.6	_	17.9	dBm	
DS1 2 kHz BW	@ 1544 kHz			-	dB	referenced to power in 2 kHz band at 772 kH
Positive to negative pulse iml	balance	-		0.5	dB	
Receive input impedance		-	40	_	kΩ	
Sensitivity below DSX	(0 dB = 2.4 V)	13.6	-	— ⁻	dB	
(max 6 dB cable attenuation)		500	-	-	mV	
Loss of Signal threshold		-	0.3	-	V	
Data decision threshold	DSX-1	60	70	77	% peak	
	E1	43	50	57	% peak	
Input jitter tolerance	10 Hz	· —	1200		UI	
	750 Hz	14	_ ·	-	UI	
	10 kHz – 100 kHz	0.4	_		UI	
Allowable consecutive zeros	before LOS	160	175	190	-	
Jitter attenuation curve cor-	Tl		6	-	Hz	
ner frequency ^{2,3}	E1		10	-	Hz	
Attenuation input jitter tolera FIFO overflow ³	nce before	28	_		UI	
Jitter attenuation @ 10 kHz			45	-	dB	


Table 14: Analog Specifications (Over Recommended Range)

Circuit attenuates lifter at 20 dB/decade above the corner frequency.
 Not production tested, but guaranteed by design and other correlation models.

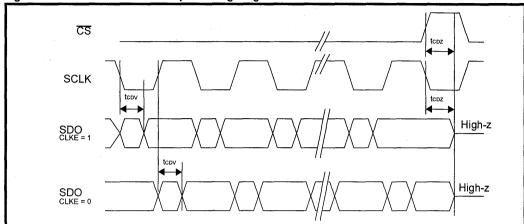
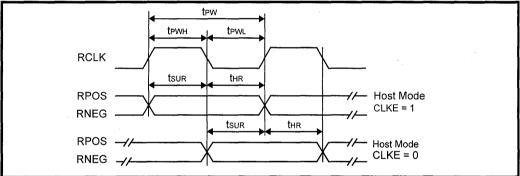

trf					
		-	100	ns	Load 1.6 mA, 50 pF
tDC	50	-	-	ns	
tcdh	50			ns	
tCL	240	-		ns	
tсн	240	-	-	ns	
tr, tf		-	50	ns	······································
tpc	50	-	-	ns	
tсрн	50	-	-	ns	
tpwh	250		-	ns	
tcdv	_	_	200	ns	
tcdz	_	100	-	ns	
	tCL tCH R, tF tPC tCPH PWH tCDV tCDZ	tcl 240 tch 240 R, tF - tPC 50 tCPH 50 PWH 250 tCDV - tCDZ -	tcl 240 tch 240 - rch 240 - R, tF - - tPC 50 - tCPH 50 - PWH 250 - tCDV - - tCDZ - 100	tcl 240 - - tch 240 - - tr, tF - - 50 tpc 50 - - tcPH 50 - - pwH 250 - - tcDv - 200	tcl 240 ns tch 240 ns rch 240 ns R, tF 50 ns tPC 50 ns tCPH 50 ns PWH 250 ns tCDV 200 ns tCDZ 100 ns

Table 15: LXT332 Serial I/O Timing Characteristics (See Figures 16 and 17)

Figure 16: LXT332 Serial Data Input Timing Diagram



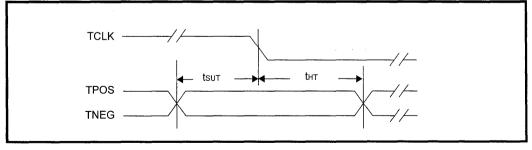


Figure 18: LXT332 Receive Clock Timing

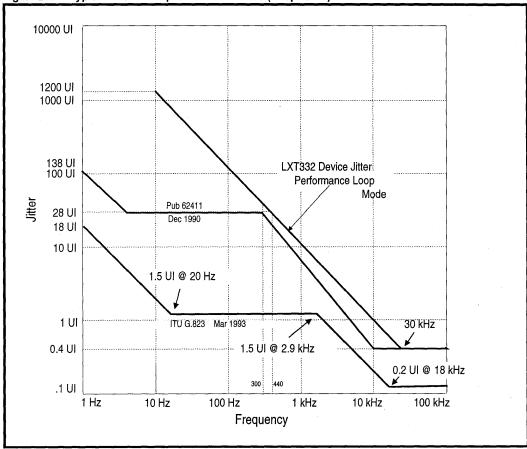

Parameter		Sym	Min	Typ ¹	Max	Units	Test Conditions
Receive clock period	DSX-1	tpw	583	648	713	ns	Elastic store not in over- flow or underflow.
	El	tPW	439	488	537	ns	
Receive clock duty cycle	Receive clock duty cycle		40	50	60	ns	
Receive clock pulse width	DSX-1	tрwн	259	324	389	ns	
High	El	tрwн	195	244	293	ns	
Receive clock pulse width	DSX-1	tpwl	259	324	389	ns	
Low	E1	tPWL	195	244	293	ns	
RPOS / RNEG to RCLK ris-	DSX-1	tsur	50	274	-	ns	
ing setup time	EI	tsur	50	194	-	ns	
RCLK rising to RPOS /	DSX-1	thr	50	274	-	ns	
RNEG hold time	E1	thr	50	194	-	ns	
1 Typical figures are at 25 °C and are	for design aid	d only; not guar	anteed and	not subject t	o productio	on testing.	

Table 16: LXT332 Receive Timing Characteristics (See Figure 18)

Parameter	Sym	Min	Typ ¹	Max	Units	
Master clock frequency	DSX-1	MCLK		1.544	_	MHz
	El	MCLK	_	2.048	-	MHz
Master clock tolerance		MCLKt	-	±50	-	ppm
Master clock duty cycle	w	MCLKd	40	_	60	%
Transmit clock frequency	DSX-1	TCLK		1.544	-	MHz
	E1	TCLK		2.048	_	MHz
Transmit clock tolerance	TCLKt		±50	-	ppm	
Transmit clock duty cycle	TCLKd	10	_	90	%	
TPOS/TNEG to TCLK setup time	tsut	50	-	-	ns	
TCLK to TPOS/TNEG Hold time		tнт	50	_	_	ns
1 Typical figures are at 25 °C and are for de	sign aid only; not gu	aranteed and not s	subject to produc	ction testing.	***	*

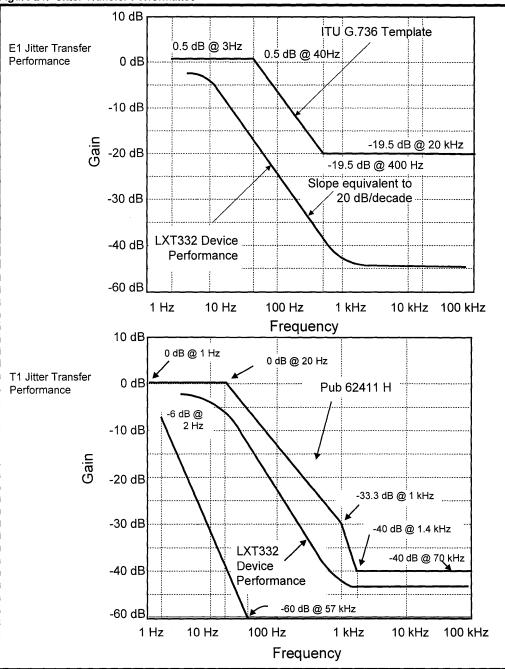


Figure 21: Jitter Transfer Performance

APPENDIX A

Data Sheet Changes

The following table lists changes that have been made to the February 1997 printing of the LXT332 data sheet. The previous version of the data sheet is dated May 1996.

Page Number	Section/Figure/Table	Change Made
12	Functional Description, Receiver subhead	For T1 applications, changed to say LEN does not equal 000 to 001
14	Functional Description, Driver Failure Monitor subhead	Removed sentences pertaining to the assertion of an interrupt line in host mode—already covered in the "Interrupt Handling" section on page 17.
19	Functional Description, Trans- mit All Ones subsection	Information added about how jitter attenuator affects TAOS reference clock.
20	Figure 10: Remote Loopback with Selectable JA	In second figure, changed JASEL from 1 to 0
24	Figure 15: Typical 120 Ω Application (Hardware Mode)	Swapped High Z and Unipolar switches at the bottom left corner of the figure
26	Table 14: Analog Specifica- tions	The Typical value of data decision threshold for DSX-1 was changed from 50 to 70 % peak.
28	Figure 18: LXT332 Receive Clock Timing	New figure
29	Table 17: Master Clock and Transmit Timing Characteris- tics	Minimum values for TCLK setup and hold times (last two rows) changed from 25 ns to 50 ns

DATA SHEET

SEPTEMBER 1997 Revision 0.1

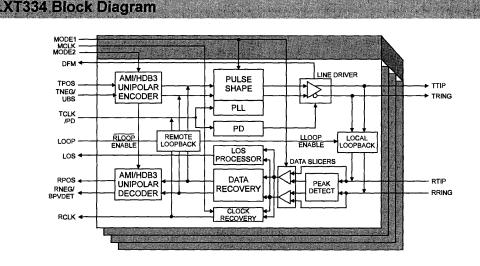
LXT334 Quad Short Haul Transceiver with Clock Recovery

General Description

The LXT334 is a quad, short-haul, PCM transceiver for 2.048 MHz or 1.544 MHz transmission systems. Its low impedance transmit output drivers provide constant line impedance whether transmitting marks or spaces. The output pulse amplitudes are also constant, stabilized against supply voltage variations.

The LXT334 can be configured for balanced 100/120 Ω or unbalanced 75 Ω systems and exceeds the latest ETSI return loss recommendations. An on-chip pulse shaping circuit generates accurate transmit pulses independent of the transmit clock duty cycle. All transmitters and receivers incorporate a power down mode with output tri-stating.

The LXT334 features differential receiver architecture with high noise interference margin. It uses peak detection with a variable threshold for reliable recovery of data as low as 500 mV (up to 12 dB of cable attenuation).

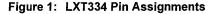

The receiver is programmable for transformer-coupled line interfaces. The fully digital clock recovery system uses a low frequency master clock of 2.048 MHz or 1.544 MHz as its reference. Each receiver incorporates a combination analog/digital Loss Of Signal (LOS) processor that meets the latest ITU G.775 standard. The LXT334 features a driver failure monitoring circuit in parallel to TTIP and TRING that reports driver shorts.

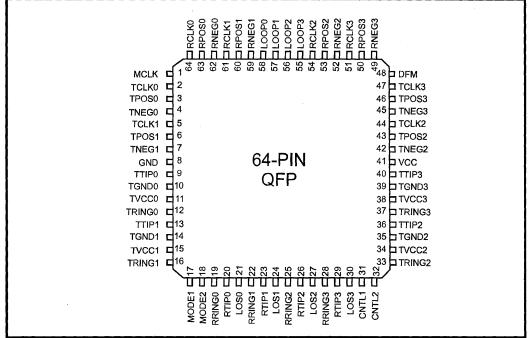
Features

- Fully integrated quad, short-haul PCM transceiver for G.703 2.048 Mbps or I.431 1.544 Mbps operation
- Single rail supply voltage of 5 V (typical)
- Low power consumption of 410 mW (typical)
- Programmable G.703 transmit pulse shaping for G.703 75 Ω and 120 Ω and I.431 100 Ω systems
- High performance line drivers with constant low impedance for 20 dB return loss (typical) exceeds ETSI 300 166
- On-chip band gap voltage reference for stabilized, constant output amplitude
- High-performance receivers recover data with up to 12 dB cable attenuation
- Low frequency 1.544 or 2.048 MHz reference clock
- · On-chip clock recovery function
- Programmable unipolar and bipolar PCM interface
- · On-chip AMI and HDB3 encoder/decoder
- · On-chip Driver Failure Monitoring circuit
- · Local and remote loopback testing function
- Independent Loss of Signal processor for each channel conforms to ITU G.775 recommendation
- Small-footprint 64-pin QFP

Applications

· High density line cards using digital backend ASICs





2

LXT334 Quad Short Haul Transceiver with Clock Recovery

PIN ASSIGNMENTS & SIGNAL DESCRIPTIONS

Table 1: LXT334 Pin Descriptions

Pin #	Sym	I/O ¹	Description	
1	MCLK	DI	Master Clock Input.An independent and free-running 2.048 or 1.544 MHz clock input generates the internal reference clocks for all transceivers. On Loss of Signal (LOS), the LXT334 derives RCLKx from this master clock. With MCLK asserted High, the LXT334 disables the PLL clock recovery circuits. The transceiver then feeds RPOSx and RNEGx to an internal XOR gate that performs logically-exclusive ORs for both data signals and con- nects this output to RCLKx for external clock recovery. In this mode, the LXT334 operates as a data recovery circuit. With MCLK asserted Low, the LXT334 powers down its clock and data recovery circuits and switches the output pins RCLKx, RPOSx and RNEGx to tri- state mode. Driving both MCLK and TCLKx Low powers the device down.MCLK Clocked Clocked Data/Clock Recovery L Power Down HData Recovery	
	 Entries in I/O column are: DI = digital input; DO = digital output; DI/O = digital input/output; AI = analog input; AO = analog output; S = supply. Note: do not leave digital inputs floating, with the exception of pins 17, 18, and 55-58. 			

Pin Assignments & Signal Descriptions

Pin #	Sym	I/O ¹	Description
2	TCLK0	DI	Transmit Clock/Transmit Power Down Input–Port 0. All TCLKx pins are identical. The LXT334 samples TPOSx and TNEGx on the falling edge of TCLKx. With TCLKx asserted Low, the total transmit path, including the output drivers, enters a low-power, high-Z mode with all analog and digital circuitry powered down. With TCLKx asserted High for more than 16 clock cycles, the TPOSx and TNEGx duty cycles determine the transmit output pulse widths. In this mode, the LXT334 operates as a line driver. TCLKx Operating Mode Clocked Transmitter H Line Driver (or TAOS if MCLK is Clocked) L Power Down MCLK active with TCLKx High sets TAOS (Transmit All Ones) Mode.
3	TPOS0/ TDATA0	DI	Transmit Positive Data/Transmit Data Input–Port 0. All TPOSx/TDATAx pins are identical. In bipolar mode this pin (TPOSx) acts as active High input for the positive pulse to be transmitted. In unipolar mode this pin (TDATAx) acts as active High input for the data to be transmitted on the line.
4	TNEG0/ UBS0	DI	Transmit Negative Data/Unipolar-Bipolar Select Input–Port 0. All TNEGx/UBSx pins are identical. In bipolar mode, this pin acts as input for the negative pulse to be transmitted. If this pin is asserted High for more than 16 TCLK cycles, the LXT334 switches to unipolar mode. The device immediately returns to bipolar mode once this pin goes Low. UBSx Operating Mode L Bipolar Mode H Unipolar Mode
5	TCLK1	DI	Transmit Clock/Transmit Power Down Input–Port 1. See TCLK0, pin 2.
6	TPOS1/ TDATA1	DI	Transmit Positive Data/Transmit Data Input–Port 1. See TPOS0/TDATA0, pin 3.
7	TNEG1/ UBS1	DI	Transmit Negative Data/Unipolar-Bipolar Select Input-Port 1. See TNEG0/UBS0, pin 4.
8	GND	s	Ground.
9	TTIPO	AO	Transmit Tip Output–Port 0. All pin pairs TTIPx/TRINGx are identical. Pin pairs TTIPx/ TRINGx are differential line driver outputs designed to drive 75Ω unbalanced or $100 \Omega/120 \Omega$ balanced cables using transformer coupling.
10	TGND0	S	Transmit Ground–Port 0. Ground return for transmit driver 0.
11 -	TVCC0	s	Transmit Positive Supply–Port 0. +5 VDC power supply input for transmit driver 0.
12	TRING0	AO	Transmit Ring Output–Port 0. All pin pairs TTIPx/TRINGx are identical. Pin pairs TTIPx/TRINGx are differential line driver outputs designed to drive 75 Ω unbalanced or 100 Ω /120 Ω balanced cables using transformer coupling. See TTIP0, pin 9.
13	TTIP1	AO	Transmit Tip Output-Port 1. See TTIP0, pin 9.
			digital input; DO = digital output; DI/O = digital input/output; AI = analog input; AO = analog output; S = supply. Its floating, with the exception of pins 17, 18, and 55-58.

Table 1: LXT334 Pin Descriptions – continued

Pin #	Sym	I/O ¹	Description	
14	TGND1	S	Transmit Ground–Port 1. Ground return for transmit driver 1.	
15	TVCC1	S	Transmit Positive Supply–Port 1. +5 VDC power supply input for transmit driver 1.	
16	TRING1	AO	Transmit Ring Output-Port 1. See TRING0, pin 12.	
17	MODE1	DI	Mode 1 Select Input.While CNTL1 is Low, and if this pin is asserted Low, all the LXT334 drivers are configured for low power mode with a typical peak pulse output voltage of 3 V. If this pin is asserted High, the LXT334 configures its line drivers for matched line drive mode with a typical peak pulse output voltage of 4 V. Both the driver and the receivers are set to drive transformers.MODE1 LOperating Mode L Low Power Mode (See Figures 3 and 6) HMODE1 LOperating Mode Low Power Mode (See Figures 4 and 5)If CNTL1 is High, MODE1 controls the load-matching circuitry in the transceiver:MODE1 HLoad T 5 Ω LI120 Ω	
18	MODE2	DI	Mode 2 Select Input. If this pin is pulled Low, all transceivers operate in E1 mode using AMI encoding. With this pin pulled High, all transceivers enter E1 mode using HDB3 encoding if operated in Unipolar Mode. With this pin left open the LXT334 enters T1 mode according to Recommendation G.703. MODE2 Operating Mode L E1 Mode with AMI Encoding H E1 Mode with HDB3 Encoding Open T1 Mode with AMI Encoding	
19 20	RRING0 RTIP0	AI AI	Receive Ring Input–Port 0/Receive TIP Input–Port 0. These pins are the inputs of the fully differential line receiver.	
21	LOS0	DO	Loss of Signal Output–Port 0. All LOSx pins are identical. This output is High when the incoming signal has no transitions, i.e., when it is more than 22 dB below the nominal 0 dB level for more than 32 consecutive pulse intervals. The LOS condition is cleared and the output pin returns Low when the incoming signal has transitions (i.e., when the signal level is equal to or greater than 21 dB below the nominal 0 dB level and the average ones density reaches 12.5%.). In data receiver mode, LOSx is a pure analog energy detector. In case of a driver fail condition (DFM = High) this pin acts as a Driver Fail Monitor change of status output to identify the specific driver with the problem.	
22 23	RRING1/ RTIP1	AI AI	Receive Ring Input–Port 1/Receive TIP Input–Port 1. See RRING0, pin 19; RTIP0, pin 20.	
24	LOS1	DO	Loss of Signal Output-Port 1. See LOS0, pin 21.	
25 26	RRING2/ RTIP2	AI AI	Receive Ring Input–Port 2/Receive TIP Input–Port 2. See RRING0, pin 19; RTIP0, pin 20.	
	. Entries in I/O column are: DI = digital input; DO = digital output; DI/O = digital input/output; AI = analog input; AO = analog output; S = supply. Note: do not leave digital inputs floating, with the exception of pins 17, 18, and 55-58.			

 Table 1: LXT334 Pin Descriptions – continued

2

Pin #	Sym	I/O ¹	Description	
27	LOS2	DO	Loss of Signal Output-Port 2. See LOS0, pin 21.	
28 29	RRING3/ RTIP3	AI AI	Receive Ring Input–Port 3/Receive TIP Input–Port 3. See RRING0, pin 19; RTIP0, pin 20.	
30	LOS3	DO	Loss of Signal Output-Port 3. See LOS0, pin 21.	
31 32	CNTL1 CNTL2	DI DI	Control 1/Control 2. Settings Result CNTL1 CNTL2 L L RPOS, RNEG valid on falling edge of RCLK L H RPOS, RNEG valid on rising edge of RCLK H L RPOS, RNEG valid on falling edge of RCLK; 120 Ω, 75 Ω load matching selected by MODE1 pin. H H reserved-do not use this setting.	
33	TRING2	AO	Transmit Ring Output-Port 2. See TRING0, pin 12; TTIP0, pin 9.	
34	TVCC2	S	Transmit Power Supply–Port 2. +5 VDC power supply input for transmit driver 2.	
35	TGND2	S	Transmit Ground–Port 2. Ground return for transmit driver 2.	
36	TTIP2	AO	Transmit Tip Output–Port 2. See TTIP0, pin 9.	
37	TRING3	AO	Transmit Ring Output–Port 3. See TRING0, pin 12; TTIP0, pin 9.	
38	TVCC3	S	Transmit Power Supply–Port 3. +5 VDC power supply input for transmit driver 3.	
39	TGND3	S	Transmit Ground–Port 3. Ground return for transmit driver 3.	
40	TTIP3	AO	Transmit Tip Output–Port 3. See TTIP0, pin 9.	
41	VCC	S	Positive Supply.	
42	TNEG2/ UBS2	DI	Transmit Negative Data/Unipolar-Bipolar Select Input–Port 2. See TNEG0/UBS0, pin 4.	
43	TPOS2/ TDATA2	DI	Transmit Positive Data/Transmit Data Input–Port 2. See TPOS0/TDATA0, pin 3.	
44	TCLK2	DI	Transmit Clock/Transmit Power Down Input-Port 2. See TCLK0, pin 2.	
45	TNEG3/ UBS3	DI	Transmit Negative Data/Unipolar-Bipolar Select Input–Port 3. See TNEG0/UBS0, pin 4.	
46	TPOS3/ TDATA3	DI	Transmit Positive Data/Transmit Data Input–Port 3. See TPOS0/TDATA0, pin 3.	
	I. Entries in I/O column are: DI = digital input; DO = digital output; DI/O = digital input/output; AI = analog input; AO = analog output; S = supply. Note: do not leave digital inputs floating, with the exception of pins 17, 18, and 55-58.			

Table 1: LXT334 Pin Descriptions - continued

LXT334 Quad Short Haul Transceiver with Clock Recovery

Pin #	Sym	I/O ¹	Description
47	TCLK3	DI	Transmit Clock/Transmit Power Down Input–Port 3. See TCLK0, pin 2.
48	DFM	DO	Driver Failure Monitor Output. When High, indicates a driver short in one of the output drivers. The LOSx output identifies the specific failing driver in this case.
49	RNEG3/ BPV3	DO	Receive Negative Data/Bipolar Violation Indication Output–Port 3. All RNEGx/BPVx pins are identical. In bipolar mode these pins act as active High bipolar non-return-to-zero (NRZ) receive signal outputs. A High signal on RNEGx corresponds to receipt of a negative pulse on RTIPx/RRINGx. A High signal on RPOSx corresponds to receipt of a positive pulse on RTIPx/RRINGx. Both signals are valid on the same edge of RCLKx, as determined by CNTL1 and CNTL2. In unipolar mode, the LXT334 asserts the BPVx pin High any time it senses an In-Service Line Code violation. (<i>In data recovery mode, this pin is active Low.</i>) See RPOS3/RDATA3, pin 50; and Functional Description.
50	RPOS3/ RDATA3	DO	Receive Positive Data/Receive Data Output–Port 3. A High signal on RPOSx corresponds to receipt of a positive pulse on RTIPx/RRINGx. This signal is valid on the edge of RCLKx determined by CNTL1 and CNTL2. In unipolar mode (selected by pulling TNEGx High for more than 16 TCLKx periods) the LXT334 asserts RDATAx High when a mark has been received and is valid on the falling edge of RCLKx. RDATAx is an NRZ receive data output. (<i>In Data Recovery mode, this pin is active Low.</i>) See RNEG3/BPV3, pin 49.
51	RCLK3	DO	Receive Clock Output–Port 3. All RCLKx pins are identical. This pin provides the recovered clock from the signal received at RTIPx and RRINGx. In loss of signal conditions the LXT334 connects MCLK to this pin through internal circuitry. Asserting the MCLK pin High disables the clock recovery circuit and internally connects RPOSx and RNEGx to an XOR that is fed to the RCLKx output for external clock recovery applications.
52	RNEG2/ BPV2	DO	Receive Negative Data/Violation Indication Output–Port 2. See RNEG3/BPV3, pin 49; RPOS3/RDATA3, pin 50.
53	RPOS2/ RDATA2	DO	Receive Positive Data/Receive Data Output-Port 2. (In Data Recovery Mode, this signal is active Low.) See RPOS3/RDATA3, pin 50; RNEG3/BPV3, pin 49.
54	RCLK2	DO	Receive Clock Output-Port 2. See RCLK3, pin 51.
	I. Entries in I/O column are: DI = digital input; DO = digital output; DI/O = digital input/output; AI = analog input; AO = analog output; S = supply. Note: do not leave digital inputs floating, with the exception of pins 17, 18, and 55-58.		

Table 1: LXT334 Pin Descriptions - continued

Pin Assignments & Signal Descriptions

Pin #	Sym	I/O ¹	Description
55	LOOP3	DI	Loopback Mode Select Input–Port 3. All LOOPx pins are identical. Driving this pin Low selects Remote Digital Loopback which causes the LXT334 to ignore any incoming data on TPOSx and TNEGx. It then retransmits data from RTIPx and RRINGx back to TTIPx and TRINGx at the RCLKx rate. Driving this pin High selects Local Loopback which causes the LXT334 to ignore data received on RTIPx and RRINGx and loop data internally from TTIPx and TRINGx back around to the receive inputs. Leaving this pin open selects normal operation mode. <u>LOOP1</u> <u>Operating Mode</u> L Remote Loopback H Local Loopback Open Normal Operation Mode
56	LOOP2	DI	Loopback Mode Select Input-Port 2. See LOOP3, pin 55.
57	LOOP1	DI	Loopback Mode Select Input-Port 1. See LOOP3, pin 55.
58	LOOP0	DI	Loopback Mode Select Input-Port 0. See LOOP3, pin 55.
59	RNEG1/ BPV1	DO	Receive Negative Data/Bipolar Violation Indication Output–Port 1. See RNEG3/BPV3, pin 49; RPOS3/RDATA3, pin 50.
60	RPOS1/ RDATA1	DO	Receive Positive Data/Receive Data Output-Port 1. (In Data Recovery Mode, this signal is active Low.) See RPOS3/RDATA3, pin 50; RNEG3/BPV3, pin 49.
61	RCLK1	DO	Receive Clock Output-Port 1. See RCLK3, pin 51.
62	RNEG0/ BPV0	DO	Receive Negative Data/Bipolar Violation Indication Output–Port 0. See RNEG3/ BPV3, pin 49; RPOS3/RDATA3, pin 50.
63	RPOS0/ RDATA0	DO	Receive Positive Data/Receive Data Output-Port 0. (In Data Recovery Mode, this signal is active Low.) See RPOS3/RDATA3, pin 50; RNEG3/BPV3, pin 49.
64	RCLK0	DO	Receive Clock Output-Port 0. See RCLK3, pin 51.
	 Entries in I/O column are: DI = digital input; DO = digital output; DI/O = digital input/output; AI = analog input; AO = analog output; S = supply. Note: do not leave digital inputs floating, with the exception of pins 17, 18, and 55-58. 		

FUNCTIONAL DESCRIPTION

The LXT334 is a fully integrated, quad line interface unit (QLIU) with four complete, independent transceivers. It supports G.703 applications at both 2.048 Mbps and 1.544 Mbps. All transceivers operate at the same frequency, determined by the MCLK input. Refer to the LXT334 block diagram on page 1.

The front end of each transceiver interfaces with four lines, one pair for transmit, and one pair for receive. Each transmit/receive line set constitutes a digital data loop for full duplex transmission.

Each transceiver also interfaces with back-end processors through bipolar or unipolar data I/O channels, and allows control by hardwired pins for stand-alone operation.

Receiver

The four receivers in the LXT334 are identical. The following paragraphs describe the operation of a single receiver.

In Transformer Coupled Mode, the LXT334 receives the input signal at RTIP/RRING via a 1:1 transformer.

Data slicers and a peak detector process the received signal. The peak detector samples the received signal and determines its maximum value. A data-rate dependent percentage of peak value goes to the data slicers as a threshold level to ensure an optimum signal-to-noise ratio.

The receiver accurately recovers signals with up to -12 dB of cable loss. The minimum receiver sensitivity signal level is approximately 500 mV. Regardless of the received signal level, the LXT334 holds its peak detectors above a minimum level (0.225 V) to provide immunity from impulse noise.

After the data slicers process the received signal, it is fed to the data and timing recovery section, and to the receive monitor. The data and timing recovery circuits provide an input jitter tolerance significantly better than required by G.823 as shown in the Test Specifications section.

The recovered clock is output at RCLK in both bipolar and unipolar modes.

In bipolar mode, recovered data is active High and output at RPOS and RNEG; in unipolar mode recovered data is active High and output at RDATA.

If CNTL2 is Low, RPOS and RNEG outputs are valid on

the falling edge of RCLK. IF CNTL1 is Low and CNTL2 is High, RPOS and RNEG outputs are valid on the rising edge of RCLK.

Asserting MCLK High disables the clock recovery function and switches all receivers to data recovery mode. In data recovery mode the RPOS/RNEG outputs are active Low. Asserting MCLK Low powers all receivers down and holds RPOS/RNEG and RCLK in a high impedance state.

Loss Of Signal Detector

LOS Detection at 2.048 MHz

During 2.048 MHz operation, the Loss of Signal (LOS) detector uses a combination analog and digital detection scheme and complies with the ITU G.775 recommendation.

The receiver monitor loads a digital counter at the RCLK frequency. The monitor increments the counter with each received 0, and resets it to 0 with each received 1 (mark). Any signal \sim 21 dB below the nominal 0 dB signal for 32 consecutive pulse intervals generates a LOS condition.

The LXT334 sets the LOS flag, and replaces the recovered clock with MCLK at the RCLK output in a smooth transition. (Receive operation requires MCLK.) LOS is cleared again when the signal level rises above ~21 dB (typical) below the minimum 0 dB level and the average 1s density reaches 12.5% (4 marks in a 32-bit window). Another smooth transition replaces MCLK with the recovered clock at RCLK. During LOS conditions, received data is output on RPOS/RNEG (or RDATA in unipolar I/O mode).

In data recovery mode, the LOS detector uses an analog detection scheme and complies with G.775. During LOS conditions, received data is output on RPOS/ RNEG. Any signal 22 dB (typical) below the nominal 0 dB signal for more than approximately 16 µs generates a LOS condition. LOS is cleared when the signal level of the first 1 rises to more than 21 dB (typical) below the minimum 0 dB level.

LOS Detection at 1.544 MHz

During 1.544 MHz operation, the LXT334 asserts LOS if it receives 175 consecutive zeros, and deasserts LOS when the signal reaches 12.5% ones density (16 marks in a 128-bit window with no more than 99 consecutive zeros).

In-Service Code Violation Monitoring

In unipolar AMI I/O Mode, the LXT334 reports bipolar violations using an active High output for one RCLK cycle on the BPV output. A bipolar violation in AMI encoding mode is two consecutive marks of the same polarity. With the HDB3 detector enabled (pulling MODE2 High), the decoder will detect AMI code violations that are not part of a zero substitution code.

HDB3 code violations omit sequences of zeros that violate the coding rules. If an HDB3 code violation occurs, the decoder asserts the BPV output for one RCLK cycle during the period of the violating bit. In the event the decoder input receives a sequence of four or more zeros, it asserts the BPV output during the entire sequence of violating data bits.

Transmitter

The four low-power transmitters in the LXT334 are identical. The following paragraphs describe the operation of a single transmitter. The LXT334 has separate power supply (TVCCx/TGNDx) for each output driver.

The LXT334 clocks transmit data from the back end serially into the device at TPOS/TNEG in the bipolar mode, or at TDATA in the unipolar mode.

The transmit clock (TCLK) supplies input synchronization. The LXT334 samples the TPOS/TNEG or TDATA input on the falling edge of TCLK. With no TCLK, the transmitter remains powered down and the TTIP/TRING outputs stay in their high-Z state.

Current limiters on the output drivers provide short circuit protection. (Refer to the Test Specifications section.) The LXT334 transmits data as a 50% AMI line code as shown in Figure 2. Pulling TCLK High with no MCLK input bypasses the transmitter PLL. In this case, TPOS and TNEG control the pulse width and polarity on TTIP and TRING.

The line driver provides a constant low output impedance of <3 Ω (typical), regardless of whether it is driving marks or spaces. This well-controlled impedance provides excellent return loss when used with external precision resistors (±1% accuracy) in series with the transformer.

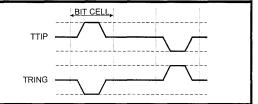
The Application Information section lists recommended transformer specifications and ratios, and series resistor (Rt) values.

Transmit All Ones Mode

Pulling TCLK High for more than 16 MCLK cycles activates Transmit All Ones Mode (TAOS) Mode. In TAOS Mode, the LXT334 ignores the TPOS and TNEG inputs and transmits marks continuously at the MCLK frequency.

Pulse Shape

The LXT334 generates transmit pulse shapes internally using a high-speed PLL and digital-to-analog converters and applies them to the AMI line driver for transmission onto the line at TTIP and TRING.


Driver Failure Monitor

In the event of a short circuit on any transmit line, the Driver Failure Monitor (DFM, common to all transceivers) goes High. The LOS pin (LOSx) for that specific port changes its indication status to flag a driver short condition.

DFM is in parallel with TTIP and TRING. The LXT334 uses a capacitor, charged by a measure of the driver output current and discharged by a measure of the maximum allowable current, to detect driver failure.

Shorted lines draw excessive current, overcharging the capacitor. When the capacitor charge is outside the nominal charge window, the LXT334 reports a driver short circuit failure. During a long string of spaces, this short-induced overcharge eventually bleeds off, clearing the DFM flag.

Figure 2: 50% AMI Pulse Form

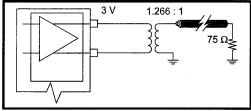
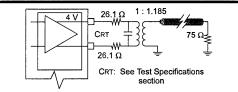
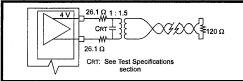
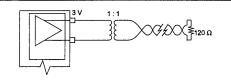


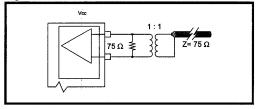
Table 2.	Operating mode Summary							
MCLK	TCLK	LOOP	Receive Mode	Transmitter Mode	Loop			
clocked	clocked	Open	Data/Clock Recovery	Normal	No Loopback			
clocked	clocked	L	Data/Clock Recovery	Normal	Remote Loopback			
clocked	clocked	Н	Data/Clock Recovery	Normal	Local Loopback			
L	clocked	Open	Power Down	Normal	No Loopback			
L	clocked	L	Power Down	Normal	No Remote Loopback			
L	clocked	Н	Power Down	Normal	No Effect on Operation			
L	Н	Open	Power Down	Line Driver	No Loopback			
L	Н	L	Power Down	Line Driver	No Remote Loopback			
L	Н	Н	Power Down	Line Driver	No Effect on Operation			
L	L	Х	Power Down	Power Down	No Loopback			
Н	clocked	Open	Data Recovery	Normal	No Loopback			
Н	clocked	L	Data Recovery	Line Driver	Remote Loopback			
Н	clocked	Н	Data Recovery	Normal	Local Loopback			
Н	L	Open	Data Recovery	Power Down	No Loopback			
Н	L	L	Data Recovery	Power Down	No Effect on Operation			
Н	L	Н	Data Recovery	Power Down	No Local Loopback			
Н	Н	Open	Data Recovery	Line Driver	No Loopback			
Н	Н	L	Data Recovery	Line Driver	Remote Loopback			
Н	Н	Н	Data Recovery	Line Driver	Local Loopback			
clocked	L	Open	Data/Clock Recovery	Power Down	No Loopback			
clocked	L	L	Data/Clock Recovery	Power Down	No Effect on Operation			
clocked	L	Н	Data/Clock Recovery	Power Down	No Local Loopback			
clocked	Н	Open	Data/Clock Recovery	Transmit All Ones	No Loopback			
clocked	Н	L	Data/Clock Recovery	Normal	Remote Loopback			
clocked	Н	Н	Data/Clock Recovery	Transmit All Ones	Local Loopback			

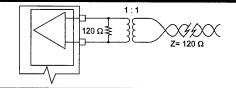

Table 2: Operating Mode Summary

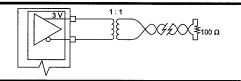
APPLICATION INFORMATION

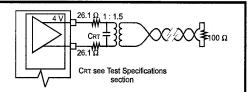

Figure 3: E1 Low Power Tx I/F for Coax Cables


Figure 4: E1 Matched Line Tx I/F for Coax Cables for High Return Loss


Figure 5: E1 Matched Line Tx I/F for Twisted-Pair Lines for High Return Loss


Figure 6: E1 Low Power Tx I/F for Twisted-Pair Lines


Figure 7: E1 Rx I/F for Coax Cables


Figure 8: E1 Rx I/F for Twisted-Pair Lines

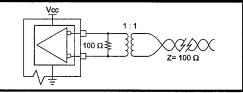

Figure 9: T1 Low Power Tx I/F for Twisted-Pair Lines

Figure 10: T1 Matched Line Tx I/F for Twisted-Pair Lines

Figure 11: T1 Rx I/F for Twisted-Pair Lines

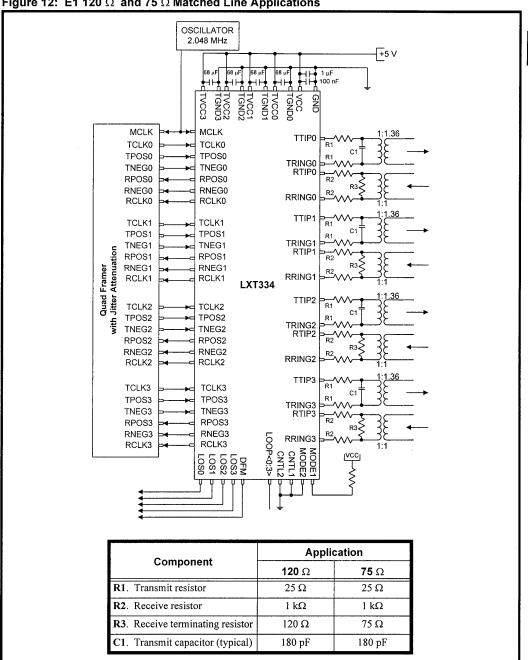

Manufacturer	Tra	Receive side (1:1 Ratio) (20 dB Return Loss)	
	Part Number	Transformer Turns Ratio	Туре
Pulse	PE-65586	1:1.36	Quad
Engineering	PE-65766	1:1.266	Dual
	PE-68789	1:1.5	Dual
	PE-65762	1:1.36	Dual
	PE-65861	1:2	Dual
	PE-65861	1:1	Dual
	PE-68789	1:1.185	Single
	PE-65389	1.266:1	Single
HALO	TG27-1505NX	1:1.36	Octal
	TD64-1205D	1:1.26	Dual
	TG29-1205NX	1:2	Octal
Bel-Fuse	0553-0013	1:1.36	Dual
	5006-1C	1:2	Dual
Schott Corp	67129300	1:2	Single

Table 3: Transformer Selection Guide¹

1. As of the publication date, Level One Communications, Inc., has tested the transformers listed in this table. However, part numbers and specifications change without notice. Design engineers should validate components before committing to their use.

Table 4: Transmit Transformer and Resistor Combinations

Transformer	Resistor	Return Loss ¹	CNTL1	MODE1	Impedance
1.266:1	0 Ω	< 1 dB	Low	Low	75 Ω
1:1	0 Ω	< 1 dB	Low	Low	120 Ω
1:1.185	26.1 Ω	20 dB	Low	High	75 Ω
1:1.5	26.1 Ω	20 dB	Low	High	120 Ω
1:1.36	25 Ω	18 dB	Low	High	75 Ω
1:1.36	25 Ω	18 dB	Low	High	120 Ω
1:2	15 Ω	≥ 8 dB	High	High	75 Ω
1:2	15 Ω	≥ 8 dB	High	Low	120 Ω

LXT334 Quad Short Haul Transceiver with Clock Recovery

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 5 through 14 and Figures 13 through 18 represent the performance specifications of the LXT334 and are guaranteed by test except, where noted, by design or other correlation methods.

Parameter	Sym	Min	Max	Unit
DC supply voltage	RVCC, RGND	-0.3	6.0	v
Input voltage on any pin ¹	VIN	GND -0.3	RVCC + 0.3	V
Input voltage on RTIP/RRING	VIN	-6	RVcc + 0.3	v
Transient latchup current on any pin ²	Iin	_	100	mA
Input current on any digital pin ³	Iin	-10	10	mA
DC input current on TTIP, TRING ³	IIN		±100	mA
DC input current on RTIP, RRING ³	lin		±20	mA
Storage temperature	TSTOR	-65	+150	°C
Total package power dissipation	_	_	1	W

Table 5: Absolute Maximum Ratings

Exceeding these values may cause permanent damage to the device. Operation is not guaranteed under these conditions. Exposure to absolute maximum rating conditions for extended periods may adversely affect device reliability.

1. Referenced to ground.

2. Exceeding these values will cause SCR latch-up.

3. Constant input current.

Table 6: Recommended Operating Conditions

Parameter	Sym	Min	Тур	Max	Unit	Test Condition
DC supply voltage ¹	V+	4.75	5.0	5.25	v	
Ambient operating temperature	ТА	-40	25	+85	° C	
1. TVcc must not differ from RVcc by more than ± 0.3	V.	· · · · · ·		·		

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$ \frac{1}{120 \ \text{evel input voltage}} Vil - 0.8 V V IOUT= 400 \mu \text{A} V IOUT= 400 \mu \text{A} V IOUT= 1.6 \text{ mA} Iout = 1.6 $		Parameter	Sym	Min	Typ ¹	Max	Unit	Test Condition
$ \frac{ \mbox{High level output voltage}^2 \ VOH \ 3.5 \ - \ - \ V \ IOUT= -400 \mu A \ Low level output voltage^2 \ VOL \ \ - \ 0.4 \ V \ IOUT= 1.6 mA \ Input leakage current (digital input pins) \ IIL \ -10 \ - \ +10 \ \mu A \ IOUT= 1.6 mA \ IOUT=$	Digital I/O pins	High level input voltage	VIH	2.0	-	-	v	
$ \frac{1}{100 \ \text{Low level output voltage}^2} \text{Vol.} 0.4 \text{V} \text{IoUT= 1.6 mA} \\ \text{Input leakage current (digital input pins)} \text{Int.} -10 +10 \mu\text{A} \\ \text{Tristate leakage current}^5 \text{IHZ} -10 +10 \mu\text{A} \\ \text{Tristate leakage current}^5 \text{IHZ} -10 50 \text{mA} \text{See Figures 4 and 5} \\ \hline \text{T1} 50 \text{mA} \text{See Figure 9} \\ \text{MODE input pins} \\ \text{MODE input pins} \text{Low level input voltage} \text{VINL} 1.5 \text{V} \\ \text{High level input voltage} \text{VINL} 1.5 \text{V} \\ \text{High level input voltage} \text{VINH} 3.5 \text{V} \\ \text{Midrange input voltage} \text{VINM} 2.3 2.5 2.7 \text{V} \\ \text{Iow level input current} \text{IINL} 50 \mu\text{A} \\ \text{High level input current} \text{IINH} 50 \mu\text{A} \\ \text{Total power dissipation}^3 \begin{array}{c} 75 \ \Omega \text{ system (MODE1=H)} \\ 120 \ \Omega \text{ system (MODE1=H)} \\ \text{MODE1=D} \\ \text{IO} \ \Omega \text{ system (MODE1=L)} \\ 120 \ \Omega \text{ system (MODE1=L)} \\ \text{MODE1=D} \\ \hline 120 \ \Omega \text{ system (MODE1=L)} \\ \text{PD} 410 470 \text{mW} \\ \text{Figure 3} \\ \text{Figure 6} \\ \hline 100 \ \Omega \text{ system (MODE1=L)} \\ \text{PD} 370 500 \text{mW} \\ \text{Figure 9} \\ \end{array} $		Low level input voltage	VIL		-	0.8	v	
Input leakage current (digital input pins) III. -10 - +10 μ A Tristate leakage current III. -10 - +10 μ A Driver short circuit current E1 - - - 50 mA See Figures 4 and 5 MODE input pins Low level input voltage VINL - - 150 mA See Figure 9 MODE input pins Low level input voltage VINL - - 1.5 V High level input voltage VINH 3.5 - - V Vint 500 μ A Total power dissipation 3 75 Ω system (MODE1=H) PD - 660 750 mW Figure 5 Total power dissipation 3 75 Ω system (MODE1=H) PD - 660 750 mW Figure 5 Total power dissipation 4 120 Ω system (MODE1=H) PD - 660 750 mW Figure 5 Total power dissipation 4 75 Ω system (MODE1=L) PD - 410		High level output voltage ²	Voн	3.5	-	-	v	lout= -400μA
Tristate leakage current ⁵ IHZ -10 +10 μ A Driver short circuit current E1 - - 50 mA See Figures 4 and 5 T1 - - - 150 mA See Figure 9 MODE input pins Low level input voltage VINL - - 1.5 V High level input voltage VINH 3.5 - - V Midrange input voltage VINH 2.3 2.5 2.7 V Low level input current IINL - - 50 μ A Total power dissipation ³ 75 Ω system (MODE1=H) PD - 660 750 mW Figure 4 120 Ω system (MODE1=H; MODE2=Open) PD - 680 895 mW Figure 10 Total power dissipation ⁴ 75 Ω system (MODE1=L; MODE2=Open) PD - 410 470 mW Figure 3 Total power dissipation ⁴ 75 Ω system (MODE1=L; MODE2=Open) PD - 410 470 mW Figure 6		Low level output voltage ²	Vol		-	0.4	v	IOUT= 1.6 mA
Driver short circuit current E1 - - - 50 mA See Figures 4 and 5 T1 - - - 150 mA See Figures 4 and 5 MODE input pins Low level input voltage VINL - - 1.50 mA See Figures 4 and 5 MODE input pins Low level input voltage VINL - - 1.50 MA See Figures 4 and 5 Midrange input voltage VINL - - 1.5 V pins 17, 18, 55, 56, 5 S8 Midrange input voltage VINH 3.5 - - V V Low level input current IINL - - 50 μA Total power dissipation 3 75 Ω system (MODE1=H) PD - 660 750 mW Figure 5 Total power dissipation 4 75 Ω system (MODE1=H; MODE2=Open) - - 680 895 mW Figure 3 Total power dissipation 4 75 Ω system (MODE1=L) PD - 410 <t< td=""><td colspan="2">Input leakage current (digital input pins)</td><td>IIL</td><td>-10</td><td>-</td><td>+10</td><td>μA</td><td></td></t<>	Input leakage current (digital input pins)		IIL	-10	-	+10	μA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tristate leakage c	urrent ⁵	IHZ	-10		+10	μΑ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		E1	-		-	50	mA	See Figures 4 and 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	circuit current	T1	-	_	-	150	mA	See Figure 9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Low level input voltage	VINL	-	-	1.5	v	pins 17, 18, 55, 56, 57,
$\frac{1}{100 \text{ Low level input current}} = \frac{1}{100 \text{ Low level input current}} = \frac{1}{100 \text{ Low level input current}} = \frac{1}{100 \Omega \text{ system (MODE1=H)}} = \frac{1}{120 \Omega \text{ system (MODE1=L)}} = \frac{1}{100 \Omega \text{ system (MODE1=L)}} =$	pins	High level input voltage	VINH	3.5	-		v	50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Midrange input voltage	VINM	2.3	2.5	2.7	v	
$\frac{75 \Omega \text{ system (MODE1=H)}}{120 \Omega \text{ system (MODE1=H)}} PD - 660 750 mW Figure 4$ $\frac{75 \Omega \text{ system (MODE1=H)}}{120 \Omega \text{ system (MODE1=H)}} PD - 660 750 mW Figure 5$ $\frac{100 \Omega \text{ system (MODE1=H)}}{MODE2=Open)} D - - 680 895 mW Figure 10$ $\frac{75 \Omega \text{ system (MODE1=L)}}{120 \Omega \text{ system (MODE1=L)}} PD - 410 470 mW Figure 3$ $\frac{120 \Omega \text{ system (MODE1=L)}}{100 \Omega \text{ system (MODE1=L)}} PD - 410 470 mW Figure 6$ $\frac{100 \Omega \text{ system (MODE1=L)}}{MODE2=Open)} D - 370 500 mW Figure 9$		Low level input current	Iinl	-	_	50	μΑ	
$\frac{120 \Omega \text{ system (MODE1=H)}}{100 \Omega \text{ system (MODE1=H)}} \frac{\text{PD}}{\text{PD}} - \frac{660}{600} \frac{750}{750} \text{ mW} \text{ Figure 5}$ $\frac{100 \Omega \text{ system (MODE1=H;}}{\text{MODE2=Open)}} - \frac{100 \Omega \text{ system (MODE1=H;}}{120 \Omega \text{ system (MODE1=L)}} \frac{\text{PD}}{\text{PD}} - \frac{410}{410} \frac{470}{470} \text{ mW} \text{ Figure 3}$ $\frac{120 \Omega \text{ system (MODE1=L)}}{120 \Omega \text{ system (MODE1=L)}} \frac{\text{PD}}{\text{PD}} - \frac{410}{410} \frac{470}{470} \text{ mW} \text{ Figure 6}$ $\frac{100 \Omega \text{ system (MODE1=L;}}{\text{MODE2=Open)}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - \frac{100 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} - 100 \Omega \text{ system (MOD$		High level input current	IINH	-	-	50	μA	
$\frac{120 \Omega \text{ system (MODE1=H)}}{100 \Omega \text{ system (MODE1=H;}} = \frac{PD}{PD} = - \frac{660}{750} \frac{750}{\text{mW}} \text{ Figure 5}$ $\frac{100 \Omega \text{ system (MODE1=H;}}{\text{MODE2=Open}} = - \frac{680}{750} \frac{895}{\text{mW}} \text{ Figure 10}$ $\frac{75 \Omega \text{ system (MODE1=L)}}{120 \Omega \text{ system (MODE1=L)}} = \frac{PD}{PD} = - \frac{410}{410} \frac{470}{470} \frac{\text{mW}}{\text{mW}} \text{ Figure 3}$ $\frac{120 \Omega \text{ system (MODE1=L;}}{100 \Omega \text{ system (MODE1=L;}} = - \frac{7}{700} \frac{370}{500} \frac{500}{\text{mW}} \text{ Figure 9}$		75 Ω system (MODE1=H)	PD	_	660	750	mW	Figure 4
$\frac{\text{MODE2=Open})}{\text{Total power}} \underbrace{\begin{array}{ccccccccccccccccccccccccccccccccccc$	dissipation °	120 Ω system (MODE1=H)	PD	-	660	750	mW	Figure 5
dissipation ⁴ $\frac{120 \Omega \text{ system (MODE1=L)}}{100 \Omega \text{ system (MODE1=L;}} \qquad PD \qquad - \qquad 410 \qquad 470 \qquad \text{mW} \text{Figure 6}$ $\frac{100 \Omega \text{ system (MODE1=L;}}{\text{MODE2=Open)}} \qquad - \qquad 370 \qquad 500 \qquad \text{mW} \text{Figure 9}$			_	-	680	895	mW	Figure 10
$\frac{120 \ \Omega \text{ system (MODE1=L)}}{100 \ \Omega \text{ system (MODE1=L;}} \qquad PD \qquad - \qquad 410 \qquad 470 \qquad \text{mW} \text{Figure 6}$ $\frac{100 \ \Omega \text{ system (MODE1=L;}}{\text{MODE2=Open)}} \qquad - \qquad 370 \qquad 500 \qquad \text{mW} \text{Figure 9}$		75 Ω system (MODE1=L)	PD	-	410	470	mW	Figure 3
MODE2=Open)	dissipation '	120 Ω system (MODE1=L)	PD	-	410	470	mW	Figure 6
	Į		_	_	370	500	mW	Figure 9
Power down current ICCO – – 10 mA	Power down curr	ent	Icco	-	-	10	mA	

Table 7: DC Characteristics (over recommended range)

1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. Output Drivers will output CMOS logic levels into CMOS loads.

3. 100% Is density. Power dissipation including device load while driving a matched line over the operating temperature range. Digital inputs are within 10% of the supply rails and digital outputs are driving a 50 pF load.

4. 50% Is density. Power dissipation including device load while driving a line without matching resistors over the operating temperature range. Digital inputs are within 10% of the supply rails and digital outputs are driving a 50 pF load.

5. Applies to the following pins: 9, 12, 13, 16, 33, 36, 37, 40, 49-54, 59-64.

LXT334 Quad Short Haul Transceiver with Clock Recovery

Parai	neter	Sym	Min	Typ ¹	Мах	Unit	Test Condition	
Output pulse amplitude	75 Ω	-	2.13	2.37	2.61	V	Tested at the line side.	
	120 Ω		2.7	3.0	3.3	v	Tested at the line side.	
Peak voltage of	75 Ω	_	-0.237	0	0.237	v	- <u> </u>	
a space	120 Ω	-	-0.3	0	0.3	V .		
Positive to negative pulse imbalance			0.95		1.05	-		
Transmit amplitude variation with supply			-	1	-	%		
Driver output impedance ⁴			_	3	-	Ω		
Difference between pulse sequences ^{2, 4}		-	_	_	200	mV		
Transmit output jitter	20 Hz to 100 kHz ³		_	-	0.04	U.I.	peak to peak	
Output jitter in loopback mode ⁴	20 Hz to 100 kHz	-	-	-	0.09	U.I.	peak to peak	
Pulse width ratio of the pos	itive and negative pulses	-	0.95		1.05	-	At the nominal half amplitude.	
Transmit return loss ⁴	51 kHz to 102 kHz	_	20	-	-	dB	See Application Infor-	
	102 kHz to 2.048 MHz	_	20	-	_	dB	mation, Figures 4, 5.	
	2.048 MHz to 3.072 MHz	-	20		_	dB		
Transmit load capacitance	·	Crt	_	180	-	pF		

Table 8: 2.048 MHz Transmit Characteristics in Transformer Coupling Mode (over recommended range)

1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. Per ITU I.431 recommendation (4.1.2.3.) for a window of 17 consecutive bits.

3. With no jitter at the input used for synchronization or when using an externally supplied jitter free master clock the peak to peak jitter will not exceed the specified value.

4. Guaranteed by design and other correlation methods.

Par	ameter	Sym	Min	Typ ¹	Max	Unit	Test Condition
Output pulse amplitude	<u></u>	_	2.4	3.0	3.6	v	$Z_L = 100 \ \Omega.$
Peak voltage of a space		-	-0.15	0	0.15	V	$Z_L = 100 \ \Omega.$
Transmit amplitude vari	ation with supply	-	-	1	-	%	· · · · · · · · · · · · · · · · · · ·
Driver output impedanc	e ⁴	-	-	3	-	Ω	
Positive to negative puls	se imbalance	-	-	-	0.5	dB	
Transmit output jitter ²	10 Hz to 8 kHz ⁴	-	-	-	0.02	U.I	peak to peak
	8 kHz to 40 kHz ⁴	_		-	0.025	U.I.	
	10 Hz to 40 kHz ⁴	-	_	-	0.025	U.I.	1
	Broad Band	-	-	-	0.05	U.I.	
Output power level	772 kHz ^{3, 4}	-	12	-	19	dB	
Output power	1544 kHz relative to power at 772 kHz ⁴	-	-29	_	_	dB	
Ratio of the pulse widths of the positive and negative pulses at the nominal half amplitude		_	0.95	_	1.05		
Transmit return loss ⁴	51 kHz to 102 kHz	-	18	-	-	dB	See Applications
	102 kHz to 2.048 MHz	-	18	-	-	dB	Information section Figure 10.
	2.048 MHz to 3.072 MHz	-	18	_	-	dB	1
Transmit load capacitan	ce	Crt	_	180	-	pF	

Table 9: 1.544 MHz Transmit Characteristics (over recommended range)

1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. With no jitter at the input used for synchronization or when using an externally supplied jitter free master clock the peak to peak jitter will not exceed the specified value.

3. The signal level is the power level measured in a 3 kHz bandwidth at the point where the signal arrives at the distribution frame for an all 1s pattern transmitted.

Guaranteed by design and other correlation methods.

LXT334 Quad Short Haul Transceiver with Clock Recovery

Param	eter	Sym	Min	Typ ¹	Max	Unit	Test Condition	
Permissible cable attenuation	1 ²	-	-	-	12	dB	@1024 kHz	
Receiver dynamic range		DR	0.5	-	4.2	Vp		
Signal to noise interference margin ^{2, 6}		S/I	15	-	-	dB	Per G.703, O.151, 6 dB of cable.	
Signal to single tone interfer	ence margin	S/X	14	-	-	dB	O.151, 6 dB of cable	
Data decision threshold		SRE	43	50	57	%	Relative to peak input voltage.	
Analog loss of signal threshold			-	225 ⁵	-	mV		
Loss of signal threshold hysteresis			_	2.5	_	dB		
Consecutive zeros before loss of signal			-	32	-		G.775 recommendation	
Low limit input jitter tolerance ³	1.2E-5 Hz to 20 Hz ⁶	· —	36	-	_	U.I.	G.735 recommendation See Note 1.	
toleranee	20 Hz to 2.4 kHz ⁴	-	1.5	-		U.I.		
	8 kHz to 100 kHz	-	0.2	-	-	U.I.		
RCLK output jitter ^{4, 6}	0 Hz to100 kHz	-	-	0.01	-	U.I.	peak to peak	
Clock recovery PLL 3 dB ba	ndwidth	-	-	10	-	kHz		
PLL peaking ⁶		_	-	-	0	dB		
Receiver input impedance		-	-	40	-	kΩ	@1024 kHz RTIP to RRING	
Receiver return loss ⁶	51 kHz-102 kHz	-	20	_		dB	See Application Infor- mation section, Figures	
	102–2048 kHz	-	20	_	-	dB	7, 8.	
	2048 kHz–3072 kHz	-	20	-	-	dB		

Table 10: 2.048 MHz Receive Characteristics (over recommended range)

1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

 No errors shall occur when the combined signal attenuated by the maximum specified interconnecting cable loss is applied to the input port. See ITU 0.151 recommendation for further details.

3. Sine wave jitter and wander with a peak to peak amplitude that corresponds at least to what is specified in Figure 17 shall not cause either a bit error or loss of frame alignment. As test signal an HDB3-coded digital signal with an electrical characteristic that complies with what is set forth in ITU G.703 shall be used. Test sequence is pseudo-random 2^{15} -1. See also ITU O.151.

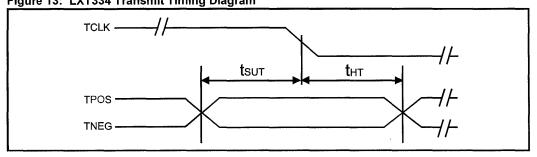
4. If the LXT334 is configured as data receiver only and if a jitter free signal is applied to RTIP and RRING the added jitter must not exceed the specified value.

5. Equal to 22 dB below the nominal 0 dB level in 120 Ω systems.

6. Guaranteed by design and other correlation methods.

Para	meter	Sym	Min	Typ ¹	Max	Unit	Test Condition	
Permissible cable atte	nuation	-	-	-	12	dB	@772 kHz	
Receiver dynamic ran	ge	DR	0.5	-	4.2	Vp		
Undershoot		US	-	-	62	%		
Data decision thresho	ld	SRT	63	70	77	%	Relative to peak input voltage.	
Loss of signal thresho	ld	-	-	0.225		v		
Allowable consecutiv	Allowable consecutive 0s before LOS			175				
Low limit input jitter tolerance	18 kHz to 100 kHz	-	0.430	-	_	U.I.	C.735 recommendation	
Clock recovery PLL 3	dB bandwidth	-	-	10	-	kHz		
PLL peaking ²		_	_	-	0	dB		
Receiver input impede	ance	-	-	40	_	kΩ	RTIP to RRING @ 772 kHz	
Input return loss ²	51 kHz–102 kHz	-	20	-	_	dB	See Application Information	
	102–2048 kHz	-	20	-	-	dB	section, Figure 11.	
	2048 kHz–3072 kHz	-	20	-	_	dB		
 Typical figures are at 25 Guaranteed by design and 	^P C and are for design aid only d other correlation methods.	; not guai	ranteed an	d not subj	ect to produ	ction testin	<u>g</u> .	

Table 11: 1.544 MHz Receive Characteristics (over recommended range)



LXT334 Quad Short Haul Transceiver with Clock Recovery

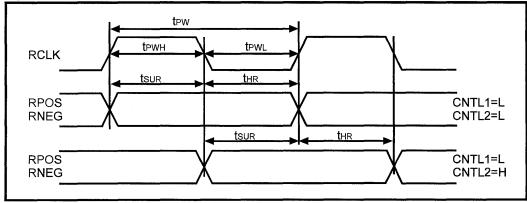
Parameter		Sym	Min	Typ ¹	Max	Units	Test Condition
Master clock frequency	E1	MCLK	-	2.048	-	MHz	
	Tl	MCLK		1.544	-	MHz	
Master clock tolerance		MCLKt	-	±50	-	ppm	
Master clock duty cycle		-	40		60	%	
Output pulse width	E1	tPW	219	244	269	ns	
	T1	tPW	274	324	374	ns	
Transmit clock frequency	E1	TCLK	_	2.048		MHz	
	Т1	TCLK	-	1.544	-	MHz	
Transmit clock tolerance		TCLKt	-	±50	-	ppm	
Transmit clock duty cycle		TCLKd	10	-	90	%	Normal mode
TPOS/TNEG duty cycle		TPNd	48.4	-	51.6	%	Line driver mode
TPOS/TNEG to TCLK setup ti	me	tSUT	25	_	_	ns	
TCLK to TPOS/TNEG hold tin	ne	tHT	25	-	-	ns	
1. Typical figures are at 25 °C and are f	or design aid on	y; not guaranteed	and not su	bject to pro	oduction tes	ting.	

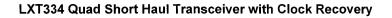
Table 12: Ti	ransmit Timing	Characteristics	(over recommended range)
--------------	----------------	-----------------	--------------------------

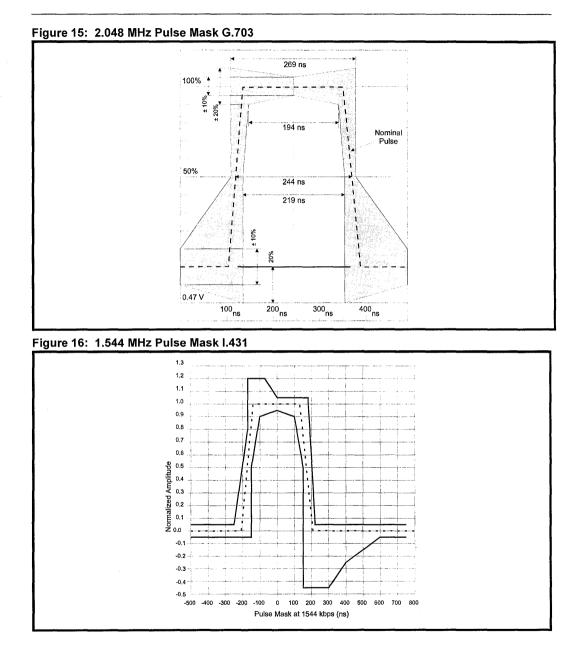
Figure 13: LXT334 Transmit Timing Diagram

Parameter	Sym	Min	Typ ¹	Max	Unit	Test Condition	
Receive clock capture range				±80	-	ppm	
Receive clock duty cycle ²		RLCKd	40	50	60	%	
Receive clock pulse width ²	E1	tPW	447	488	529	ns	
·	TI	tPW	594	648	702	ns	
Receive clock pulse	E1	tPWL	203	244	285	ns	
width low time	T1	tPWL	270	324	378	ns	
Receive clock pulse	E1	tPWH	-	244	-	ns	
width high time	TI	tPWH	-	324	-	ns	
RPOS/RNEG data low time (MCL)	K=H) ^{3,4}	tPWD1	200	244	300	ns	
RPOS/RNEG to RCLK	E1	tSUR	50	203	_	ns	
rising setup time	T1	tSUR	50	270	-	ns	
RCLK rising to RPOS/RNEG	El	tHR	50	203	-	ns	
hold time	T1	tHR	50	270		ns	
Delay time between RPOS/RNEG a	nd RCLK	-	-	5	-	ns	MCLK = H

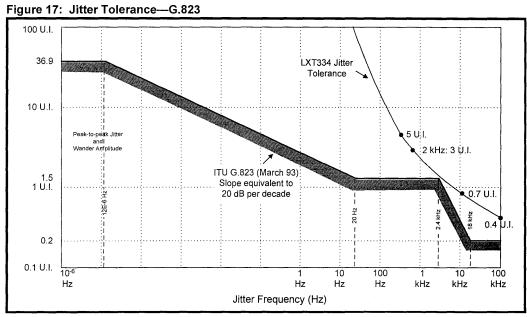
Table 13: Receive Timing Characteristics (over recommended range)

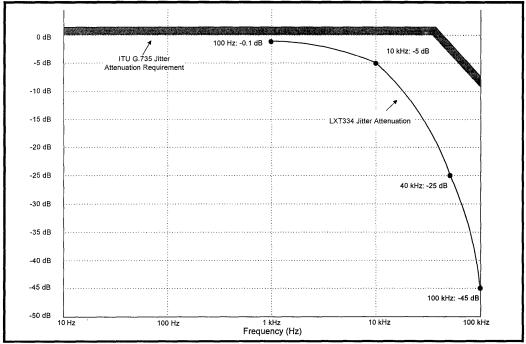

1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.


 RCLK duty cycle will vary depending on extent of received pulse jitter displacement. Maximum and minimum RCLK duty cycles are for worst case jitter conditions (0.2 U.I. displacement for E1 and 0.4 U.I. for T1 operation).


3. This mode disables clock recovery.

4. If MCLK is High, the PLL clock recovery circuits are disabled. RPOSx and RNEGx are fed to an internal XOR gate that connects this output to RCLKx for external clock recovery.


Figure 14: LXT334 Receive Timing Diagram



Recommendation	Description
ITU	
G.703	Physical/electrical characteristics of hierarchical digital interfaces
G.704	Functional characteristics of interfaces associated with network nodes
G.735	Characteristics of Primary PCM multiple equipment operating at 2048 kbit/s and offering digital access at 384 kbit/s and/or synchronous digital access at 64 kbit/s
G.736	Characteristics of a synchronous digital multiplex equipment operating at 2048 kbit/s
G.775	Loss of signal (LOS) and alarm indication (AIS) defect detection and clearance criteria
G.823	The control of jitter and wander within digital networks which are based on the 2048 kbit/s hierarchy
O.151	Specification of instruments to measure error performance in digital systems
I.431	ISDN Primary Rate: user netework interface layer 1 specification
ETSI	
ETS 300 166	Transmission and Multiplexing (TM); Physical and electrical characteristics of hierar- chical digital interfaces for equipment using the 2.048 kbp/s-based plesiochronous or synchronous digital hierarchies

Table 14: Relevant Recommendations

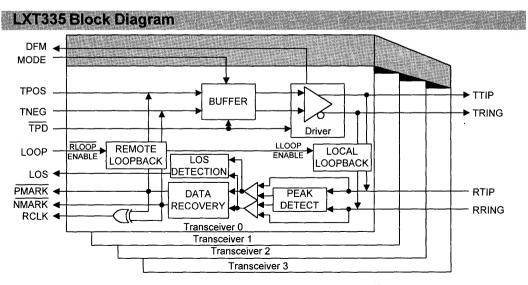
DATA SHEET

SEPTEMBER 97 Revision 0.1

LXT335

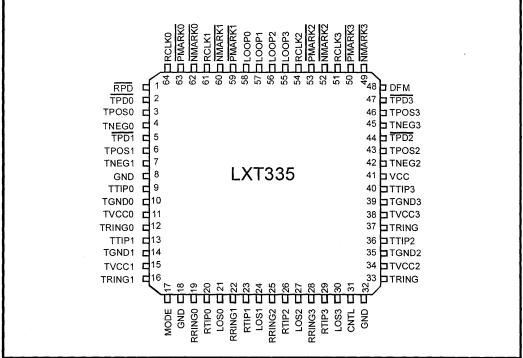
Quad Short Haul PCM Analog Interface

General Description


The LXT335 is a quad, short-haul, PCM analog line interface for 2.048 Mhz transmission systems. It includes four independent data receivers and four independent line drivers in a single, 64-pin QFP package. Its low impedance transmit output drivers provide constant line impedance whether transmitting marks or spaces. The output pulse amplitudes are also constant, and are stabilized against supply voltage variations. The LXT335 is configurable for either balanced 120 Ω or unbalanced 75 Ω systems and exceeds latest ETSI return loss recommendations. All transmitters incorporate a power down mode with output tri-stating.

The LXT335 features a differential receiver architecture with high noise interference margin. It uses peak detection with a variable threshold for reliable data recovery as low as 500 mV (up to 12 dB of cable attenuation). Each receiver incorporates an analog loss of signal (LOS) detector that meets latest ITU standards. The LXT335 features a driver failure monitoring circuit in parallel to TTIP and TRING that reports driver shorts.

Applications


- High-density E1 line interface cards using digital backend ASICS
- · Multiplexers, digital crossconnects, SDH systems

- Features
- Quad E1 short haul PCM analog front-end per ITU G.703
- Single rail supply voltage of 5 V (typical)
- Low power consumption of 410 mW (typical)
- Four independent high-performance line drivers with constant low impedance for typical 20 db return loss
- · Voltage stabilized output amplitudes
- Four high performance line receivers with 14 db, single tone interference margin
- Data recovery for cable attenuation of up to 12 db at 1024 khz
- · On-chip driver short circuit monitoring function
- · Local and remote loopback testing function
- Small footprint 64-pin QFP package

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Figure 1: LXT335 (QE) Pinout Diagram

Table 1: Pin Descriptions

Pin #	Sym	I/O ¹	Description
1	RPD	· DI	Receive Power Down. When this pin is asserted Low, LXT335 powers down all four receivers and switches the receiver output pins PMARK, NMARK and RCLK to tri-state mode.
2	TPD0	DI	Transmit Power Down Input–Port 0. All TPDx pins are identical. With TPD asserted Low, the transmit drivers enter a low-power, High-Z mode with all analog and digital circuitry powered down. <u>TPD</u> <u>Operating Mode</u> H Normal Operation Mode L Power Down Transmitter
1. Entries High Z	in 1/O column a = high impedan	re DI = Di ce input/o	gital Input; DO = Digital Output; DIO = Digital Input Output; AI = Analog Input; AO = Analog Output; utput; S = power/ground pins

Pin #	Sym	I/O ¹	Description
3	TPOS0 TNEG0	DI DI	Transmit Positive Data-Port 0. Transmit Negative Data-Port 0. All TPOSx/TNEGx pins are identical. These pins act as active High RZ data inputs for the positive and negative pulse to be transmitted to the line. The transmit pulse width is determined by the duty cycle of TPOS and TNEG.
5	TPDI	DI	Transmit Power Down Input–Port 1. See TPD0, pin 2.
6	TPOS1	DI	Transmit Positive Data–Port 1. Transmit Negative Data–Port 1.
7	TNEG1	DI	See TPOS0/TNEG0, pins 3 and 4.
8	GND	S	Ground.
9	TTIPO	AO	Transmit Tip Output–Port 0. All TTIPx pins are identical. The TTIP0/TRING0 pins are the differential line driver outputs of transceiver 0.
10	TGND0	S	Transmit Ground-Port 0.
11	TVCC0	S	Transmit Positive Supply–Port 0.
12	TRING0	AO	Transmit Ring Output–Port 0. All TRINGx are identical. The TTIP0/TRING0 pins are the differential line driver outputs of transceiver 0.
13	TTIP1	AO	Transmit Tip Output–Port 1. See TTIP0, pin 9.
14	TGND1	S	Transmit Ground-Port 1.
15	TVCC1	S	Transmit Positive Supply–Port 1.
16	TRING1	AO	Transmit Ring Output–Port 1. See TRING0, pin 12.
17	MODE	DI	Mode Select Input. If this pin is asserted Low all LXT335 drivers are configured for low power unmatched line drive mode. If this pin is asserted High all LXT335 line drivers are configured for matched line drive mode. MODE Operating Mode L Unmatched Line Drive Mode H Matched Line Drive Mode
18	GND	S	Ground.
1. Entries High Z	in I/O column a = high impedan	re DI = Di ce input/o	igital Input; DO = Digital Output; DIO = Digital Input Output; AI = Analog Input; AO = Analog Output; utput; S = power/ground pins

Table 1: Pin Descriptions - continued

ELEVEL

Pin #	Sym	I/O ¹	Description
19 20	RRING0 RTIP0	AI AI	Receive Ring Input–Port 0. Receive Tip Input–Port 0. All RTIPx/RRINGx pins are identical. These pins are the inputs of the fully differential line receiver.
21	LOS0	DO High Z	Loss of Signal Output–Port 0. All LOSx pins are identical. This output is asserted High when the incoming signal is more than 22 dB below the nominal 0 dB level. The LOS condition is cleared and the out- put is deasserted if the incoming signal is equal to or greater than 21 dB below the nomi- nal 0 dB level. During a driver fail condition this pin acts as driver 0 fail monitor output.
22 23	RRING1/ RTIP1	AI AI	Receive Ring Input–Port 1. Receive TIP Input–Port 1. See RTIP0/RRING0, pins 19 and 20.
24	LOSI	DO	Loss of Signal Output–Port 1. See LOS0, pin 21.
25 26	RRING2/ RTIP2	AI AI	Receive Ring Input–Port 2. Receive TIP Input–Port 2. See RTIP0/RRING0, pins 19 and 20.
27	LOS2	DO	Loss of Signal Output–Port 2. See LOS0, pin 21.
28 29	RRING3/ RTIP3	AI AI	Receive Ring Input–Port 3. Receive TIP Input–Port 3. See RTIPO/RRINGO, pins 19 and 20.
30	LOS3	DO	Loss of Signal Output–Port 3. See LOS0, pin 21.
31	CNTL	DI	Pulse Amplitude Control Input.If this pin is asserted High the transmitter operation mode is pin selectable via MODEbetween 75 and 120 Ohm without changing external components. If this pin is assertedLow the line driver operation modes may be selected via MODE.CNTLMODEResultLLUmmatched Line Driver ModeLHMatched Line Driver ModeHLPin Selectable Driver Mode (120 Ω)HHPin Selectable Driver Mode (75 Ω)
32	GND	s	Ground.
1. Entries High Z	in I/O column a = high impedan	re DI = Di ce input/o	gital Input; DO = Digital Output; DIO = Digital Input Output; AI = Analog Input; AO = Analog Output; utput; S = power/ground pins

Table 1: Pin Descriptions - continued

Pin Assignments and Signal Descriptions

2

Pin #	Sym	I/O^1	Description
33	TRING2	AO	Transmit Ring Output–Port 2. See TRING0, pin 12.
34	TVCC2	S	Transmit Power Supply-Port 2.
35	TGND2	S	Transmit Ground-Port 2.
36	TTIP2	AO	Transmit Tip Output–Port 2. See TTIP0, pin 9.
37	TRING3	AO	Transmit Ring Output–Port 3. See TRING0, pin 12.
38	TVCC3	S	Transmit Power Supply-Port 3.
39	TGND3	S	Transmit Ground-Port 3
40	TTIP3	AO	Transmit Tip Output–Port 3 See TTIP0, pin 9.
41	VCC	S	Receiver Positive Supply.
42	TNEG2	DI	Transmit Negative Data Input-Port 2.
43	TPOS2	DI	Transmit Positive Data Input–Port 2. See TPOS0/TNEG0, pins 3 and 4.
44	TPD2	DI	Transmit Power Down Input–Port 2. See TPDO, pin 2.
45	TNEG3	DI	Transmit Negative Data Input-Port 3.
46	TPOS3	DI	Transmit Positive Data Input–Port 3 . See TPOS0/TNEG0, pins 3 and 4.
47	TPD3	DI	Transmit Power Down Input–Port 3. See TPD0, pin 2.
48	DFM	DO	Driver Failure Monitor Output . When this pin is High it indicates that a driver short has been detected in one of the four drivers. The transceiver LOSx output identifies the specific failing driver in this case.
49	NMARK3	DO	Receive Negative Data Output-Port 3.
50	PMARK3	DO	Receive Positive Data Output–Port 3. All $\overline{\text{NMARKx}/\text{PMARKx}}$ pins are identical. These pins act as active Low bipolar return- to-zero (RZ) receive data outputs. A Low on an $\overline{\text{NMARKx}}$ pin corresponds to a receipt of a positive pulse on RRING. A Low on a $\overline{\text{PMARKx}}$ pin corresponds to a receipt of a posi- tive pulse on RTIP.
1. Entries High Z	in I/O column a = high impedan	re DI = Di ce input/o	gital Input; DO = Digital Output; DIO = Digital Input Output; AI = Analog Input; AO = Analog Output; utput; S = power/ground pins

Table 1: Pin Descriptions - continued

CELEVEL ONE.

Pin #	Sym	I/O ¹	Description
51	RCLK3	DO	Receive Clock Output–Port 3. All RCLK <i>x</i> pins are identical. This pin provides a timing signal from the received data at RTIP and RRING. <u>PMARK3</u> and <u>NMARK3</u> are internally connected to an XOR gate. The output of this gate goes to the RCLK3 output for external clock recovery applications.
52	NMARK2	DO	Receive Negative Data Output–Port 2. Receive Positive Data–Port 2.
53	PMARK2	DO	SEE NMARK3/PMARK3, pins 49, 50.
54	RCLK2	DO	Receive Clock Output–Port 2 See RCLK3, pin 51.
55	LOOP3	DI	Loopback Mode Select Input-Port 3.
56	LOOP2	DI	Loopback Mode Select Input–Port 2. Loopback Mode Select Input–Port 1.
57	LOOP1	DI	Loopback Mode Select Input–Port 0. All LOOPx pins are identical. If this pin is asserted High Local Analog Loopback is
58	LOOP0	DI	selected which causes LXT335 to ignore data received on RTIP and RRING and loop data internally from TTIP and TRING back to the receive inputs. If this pin is asserted Low Remote Loopback is selected which causes LXT335 to ignore data on MARK and PMARK and to loop internally data received on RTIP and RRING to TTIP and TRING. If this pin is left open or unconnected normal operation mode is selected. LOOPx L Remote Loopback H Local Loopback Open Normal Operation Mode
59	NMARK1	DO	Receive Negative Data / Bipolar Violation Indication Output–Port 1 Receive Positive Data/ Receive Data Output–Port 1
60	PMARK1	DO	See NMARK3/PMARK3, pins 49, 50.
61	RCLK1	DO	Receive Clock Output–Port 1 See RCLK3, pin 51.
62	NMARK0	DO	Receive Negative Data Output–Port 0
63	PMARK0	DO	Receive Positive Data/ Receive Data Output–Port 0 See NMARK3/PMARK3, pins 49, 50.
64	RCLK0	DO	Receive Clock Output–Port 0 See RCLK3, pin 51.
1. Entries High Z	in I/O column and a state of the second seco	re DI = Di ce input/or	gital Input; DO = Digital Output; DIO = Digital Input Output; AI = Analog Input; AO = Analog Output; utput; S = power/ground pins

Table 1: Pin Descriptions - continued

FUNCTIONAL DESCRIPTION

Page 1 shows a simplified block diagram of the LXT335. The LXT335 is a quad line interface unit with four on-chip transmit drivers and four data receivers optimized for G.703 2.048 MHz applications. The front end of each line interface interfaces with four lines, one pair for transmit, one pair for receive. These two lines comprise a digital data loop for full duplex transmission. Each line interface also interfaces with back-end processors, through bipolar data I/ O channels, and allows control by hardwired pins for stand-alone operation.

Receiver

The four LXT335 receivers are identical. The following paragraphs describe the operation of a single receiver. LXT335 receives the input signal via a 1:1 transformer. Recovered data is active low and output at PMARK and NMARK. Timing information for external clock recovery is output at RCLK.

A peak detector and data slicers process the received signal. The peak detector samples the received signal and determines its maximum value. A percentage of the peak value is provided to the data slicers as a threshold level of 50% to ensure an optimum signal-to-noise ratio.

The receiver is capable of accurately recovering signals with up to 12 dB of cable attenuation (from 2.4 V), corresponding to a received signal level of approximately 500 mV. Regardless of received signal level, LXT335 holds its peak detectors above a minimum level of 0.225 V (typical) to provide immunity from impulsive noise.

After the data slicers process, the received signal goes to the data recovery and pulse stretcher section and then to the receive outputs $\overrightarrow{\text{PMARK}}$ and $\overrightarrow{\text{NMARK}}$.

Loss Of Signal Detector

The Loss of Signal Detector uses an analog detection scheme and complies with the ITU G.775 recommendation. During LOS conditions, received data is output on $\overrightarrow{PMARK}/\overrightarrow{NMARK}$. Any signal ~22 dB below the nominal 0 dB signal generates a loss of signal condition. LOS is deactivated again when the signal level rises to more than ~21 dB (typical) below the minimum 0 dB level. The \overrightarrow{PMARK} and \overrightarrow{NMARK} outputs stay active for external digital signal transition detection.

Transmitter

The four LXT335 low power transmitters are identical. The following paragraphs describe the operation of a single transmitter.

Bipolar transmit data from the digital backend processor is fed into the device at TPOS/TNEG and is passed through "as is". If TPD is asserted Low the transmitter remains powered down and the TTIP/TRNG outputs are held in a High-Z state. This feature allows use of the LXT335 in fully redundant applications.

Each output driver is supplied by a separate power supply (TVCC0 to TVCC3, TGND0 to TGND3). Current limiters on the output drivers provide short circuit protection and generate a driver failure monitoring signal in case the current limit is exceeded.

The transmitted pulse shape must be generated externally. Pulses are applied to the line drivers for transmission onto the line at TTIP and TRING. The line driver provides a constant low output impedance of $< 3 \Omega$ (typical) regardless of whether it is driving marks or spaces or during transitions. LXT335 provides programmable pulse amplitude output voltages.

If MODE is asserted High, the LXT335 is configured for matched line driver applications. In conjunction with external series resistors a well controlled driver output impedance provides excellent transmit return loss exceeding ETSI ETS300166 and Swiss PTT recommendations. If MODE is asserted Low, the LXT335 is configured for unmatched low power line driver applications where it drives a transformer without series resistors.

Asserting CNTL High and MODE Low, configures the LXT335 for 120 Ω loads. Asserting CNTL High and MODE High configures the LXT335 for 75 Ω loads. In transformer coupled applications the LXT335 produces 2.048 MHz pulses for both 75 Ω coaxial (2.37 V) and 120 Ω shielded twisted-pair (3.0 V) lines. Different transformer and resistor combinations are used for optimum transmit return loss performance. Internal circuitry stabilizes the output pulse amplitudes against supply variations and references them to an on-chip bandgap voltage reference.

Certain applications require common 1:2 transformers for the transmitter and receiver and software switchable 75/ 120 Ω operation while maintaining return loss in compliance with ETS300166. The LXT335 can be used with 25 Ω transmit series resistors for both 75 Ω and 120 Ω operation (Figure 8).

Driver Failure Monitor

All transceiver incorporate internal Driver Failure Monitors (DFM) in parallel with TTIP and TRING. A capacitor, charged via a measure of the driver output current and discharged by a measure of the maximum allowable current, is used to detect driver failures. Shorted lines draw excess current, overcharging the cap. When the capacitor charge deviates outside the nominal charge window for one of the 4 drivers, the common DFM output pin reports a driver short circuit fail. The individual driver failure monitor output takes precedence and overwrites the transceiver specific LOS output. During a long string of spaces, a shortinduced overcharge eventually bleeds off, clearing the DFM flag.

Diagnostic Mode Of Operation

Loopback

All LOOPx pins are identical. If this pin is asserted High, Local Analog Loopback is selected which causes LXT335 to ignore data received on RTIP and RRING and loop data internally from TTIP and TRING back to the receive inputs. If this pin is asserted Low, Remote Loopback is selected which causes LXT335 to ignore data on NMARK and PMARK and to loop internally data received on RTIP and RRING to TTIP and TRING.

If this pin is left open or unconnected normal operation mode is selected.

APPLICATION INFORMATION

Figure 2: Low Power Transmit Interface for Coax Cables

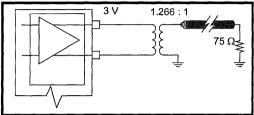


Figure 3: Transmit Interface for Coax Cables

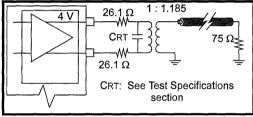
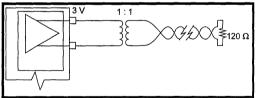
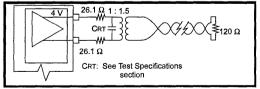




Figure 4: Low Power Transmit Interface for Twisted Pair Lines

Figure 5: Transmit Interface for Twisted Pair Lines

Figure 6: Receive Interface for Twisted Pair Lines

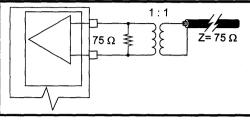
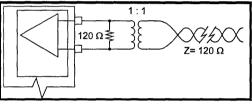



Figure 7: Receive Interface for Twisted-Pair Lines

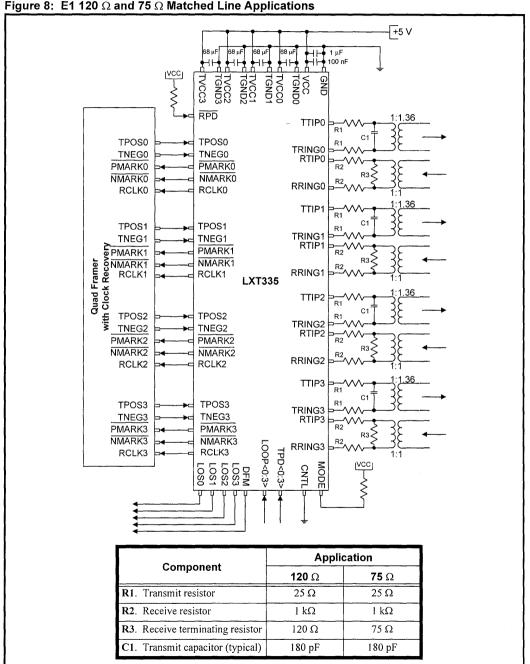

Manufacturer	Trai	Transmit Side				
	Part Number	Part Number Transformer Turns Ratio				
Pulse	PE-65586	1:1.36	Quad			
Engineering	PE-65766	1:1.266	Dual			
	PE-68789	1:1.5	Dual			
	PE-65762	1:1.36	Dual			
	PE-65861	1:2	Dual			
	PE-65861	1:1	Dual			
	PE-68789	1:1.185	Single			
	PE-65389	1.266:1	Single			
HALO	TG27-1505NX	1:1.36	Octal			
	TD64-1205D	1:1.26	Dual			
	TG29-1205NX	1:2	Octal			
Bel-Fuse	0553-0013	1:1.36	Dual			
	5006-1C	1:2	Dual			
Schott Corp	67129300	1:2	Single			

Table 2: Transformer Selection Guide¹

I. As of the publication date, Level One Communications, Inc., has tested the transformers listed in this table. However, part numbers and specifications change without notice. Design engineers should validate components before committing to their use.

Table 3: Transmit Transformer and Resistor Combinations

Transformer	Resistor	Return Loss ¹	CNTL1	MODE1	Impedance
1.266:1	0 Ω	< 1 dB	Low	Low	75 Ω
1:1	0 Ω	< 1 dB	Low	Low	120 Ω
1:1.185	26.1 Ω	20 dB	Low	High	75 Ω
1:1.5	26.1 Ω	20 dB	Low	High	120 Ω
1:1.36	25 Ω	18 dB	Low	High	75 Ω
1:1.36	25 Ω	18 dB	Low	High	120 Ω
1:2	15 Ω	≥ 8 dB	High	High	75 Ω
1:2	15 Ω	≥ 8 dB	High	Low	120 Ω

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 4 through 9 and Figures 9 and 10 are performance specifications of the LXT335 and are guaranteed by test except, where noted, by design.

Table 4: Absolute Maximum Ratings

Parameter	Sym	Min.	Max.	Unit
DC supply voltage	Vcc, GND	-0.3	6.0	V
Input voltage on any pin ¹	Vin	GND-0.3	RVcc + 0.3	V
Input voltage on RTIP, RRING	Vin	-6	RVcc + 0.3	V
Transient latchup current on any pin ²	lin	-	100	mA
Input current on any digital pin ³	Iin	-10	10	mA
DC input current on TTIP, TRING ³	IIN	-	±100	mA
DC input current on RTIP, RRING ³	IIN	_	±20	mA
Storage temperature	TSTOR	-65	+150	°C
Total package power dissipation	-	_	1	W

CAUTION

Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Exposure to absolute maximum ratings conditions for external periods may affect device reliability.

1. Reference to ground.

2. Exceeding these values will cause SCR latchup.

3. Constant input current.

Table 5: Recommended Operating Conditions

Parameter	Sym	Min	Тур	Max	Units	Test Condition
C supply voltage '	Vcc	4.75	5.0	5.25	V	
nbient operating temperature	ТА	-40	+25	+85	°C	
TVcc must not exceed RVcc BY 0.3 V	ТА	-40	+25	+85	°C	

	Parameter	Sym	Min	Typ ¹	Max	Unit	Test Condition
Digital I/O pins	High-level input voltage	VIH	2.0	-	-	v	
	Low-level input voltage	VIL		-	0.8	v	
	High-level output voltage ²	Vон	3.5	-	-	V	IOUT= -400µA
	Low-level output voltage ²	VOL		-	0.4	V	IOUT= 1.6 mA
Input leakage cu	rent (digital input pins)	IIL	-10	-	+10	μΑ	
Tristate leakage	current ⁵	IHZ	-10		+10	μΑ	
Driver short circu	uit current	_	-	-	50	mA	See Figures 3 and 5
MODE input	Low-level input voltage	VINL	-	-	1.5	v	pins 17, 55, 56, 57, 58
pins	High-level input voltage	VINH	3.5	-	-	v	
	Mid-range input voltage	VINM	2.3	2.5	2.7	V	
	Low-level input current	IINL	_	-	50	μΑ	
	High-level input current	Iinh	-	-	50	μΑ	
Total power	75 Ω system (MODE=H)	PD	-	660	750	mW	Figure 3
dissipation ³	120 Ω system (MODE=H)	PD	_	660	750	mW	Figure 5
Total power	75 Ω system (MODE=L)	PD	-	410	470	mW	Figure 2
dissipation ⁴	120 Ω system (MODE=L)	PD	-	410	470	mW	Figure 4
Power down curr	ent	Icco	-	-	10	mA	

Table 6: DC Characteristics (over recommended range)

1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. Output Drivers will output CMOS logic levels into CMOS loads.

3. 100% Is density. Power dissipation including device load while driving a matched line over the operating temperature range. Digital inputs are within 10% of the supply rails and digital outputs are driving a 50 pF load.

4. 50% 1s density. Power dissipation including device load while driving a line without matching resistors over the operating temperature range. Digital inputs are within 10% of the supply rails and digital outputs are driving a 50 pF load.

5. Applies to the following pins: 9, 12, 13, 16, 33, 36, 37, 40, 49-54, 59-64.

LXT335 Quad Short Haul PCM Analog Interface

Table 7:	Receive	Characteristics
----------	---------	-----------------

Parameter			Min	Тур	Max	Units	Test Condition
Permissible cable attenuation			500	-	-	mV	
		-	-	· _	12	dB	@1024 kHz
Receiver dynamic ra	nge	DR	0.5	-	4.2	VP	
Signal to noise inter	ference margin ¹	S/I	15	_	-	dB	per G.703, O.151
Signal to single tone interference margin			14	_	-	dB	0.151
PMARK / NMARK output Jitter				0.01	-	U.I.	peak to peak
Slicer ratio	SRE	43	50	57	%	rel. to peak input voltage	
Analog loss of signa	-	22	-	-	dB		
Loss of signal thresh	old	-	-	1	-	dB	
Receiver input impedance		-	-	40	-	kΩ	@ 1.024 kHz, RTIP to RRING
Input return loss ²	51 kHz – 102 kHz		20	_	_	dB	measured against
	102 – 2048 kHz		20	-	-	dB	nominal impedance, Fig- ures 6, 7.
	2048 kHz – 3072 kHz	-	20	_		dB	
I. No errors shall occur when the combined signal attenuated by the maximum specified interconnting cable loss is applied to the input port. See ITU							

I. No errors shall occur when the combined signal attenuated by the maximum specified interconnting cable loss is applied to the input port. See ITU 0.151 recommendation for further details.

2. Guaranteed by design and other correlation factors.

Table 8: Transmit Timing Characteristics

Parameter	Sym	Min	Тур	Max	Unit	Test Condition
Transmit data rate	-	-	2.048	-	Mbps	
Transmit data tolerance	-	-50	-	50	ppm	
Output pulse width	tPW	-	244	-	ns	

Table 9: Receive Timing Characteristics (See Figure 9)

Parameter	Sym	Min	Тур	Max	Units	Test Condition
PMARK/NMARK pulse width	tMPW	200	244	300	ns	
Receiver throughput delay	tRXD	-	65	-	ns	
Receive data rate tolerance	-	-	±80	-	ppm	
Receive data to receive clock delay time	-	-	5	-	ns	

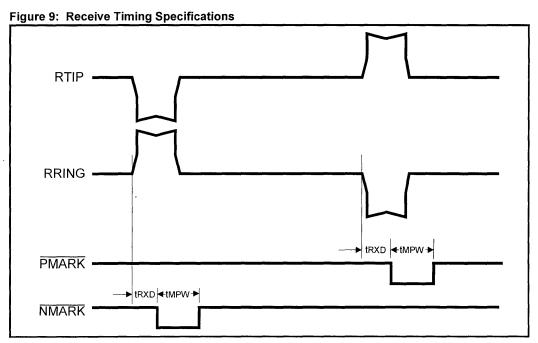
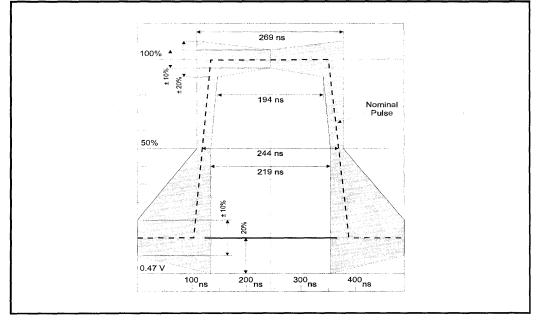



Figure 10: 2.048 MHz Pulse Mask G.703

LXT335 Quad Short Haul PCM Analog Interface

NOTES

DATA SHEET

JULY 1996 Revision 0.0

LXT350/351 Integrated T1/E1 S/H Transceivers

With Crystal-less Jitter Attenuation

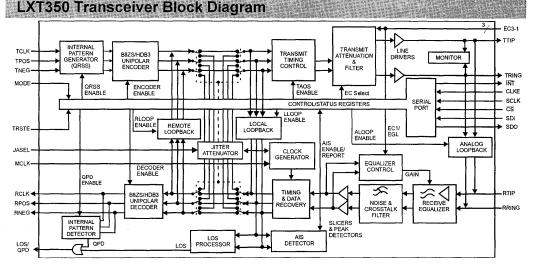
General Description

The LXT350 and LXT351 are full-featured, fully-integrated transceivers for T1 and E1 short-haul applications. They are software switchable between T1 and E1 operation, and offer pulse equalization settings for all short-haul T1 and E1 line interface (LIU) applications.

The LXT350 and LXT351 are identical except for their control interface. The LXT350 provides both a serial I/O port for microprocessor control and a hardware control mode for stand alone operation. The LXT351 offers an Intel- or Motorola-bus compatible parallel I/O port for microprocessor control. Both incorporate advanced crystal-less digital jitter attenuation in either the transmit or receive data path starting at 3 Hz. B8ZS/HDB3 encoding/ decoding and unipolar or bipolar data I/O are available. Both LIUs provide loss of signal monitoring and a variety of diagnostic loopback modes.

The LXT350/351 design uses an advanced double-poly, double-metal fabrication process and requires only a single 5-volt power supply.

Applications


- T1/E1 Asynchronous Multiplexers
- · Digital Loop Carrier Subscriber Carrier Systems
- SDH/SONET Multiplexers
- · T1/E1 LAN/WAN interfaces for Bridges
- Digital Cross Connects

Features

- Fully integrated transceiver for short-haul T1 or E1 interfaces
- Crystal-less digital jitter attenuation
 - -Selectable either transmit or receive path

-No crystal or high-speed external clock required

- Meet or exceed specifications in ANSI T1.403 and T1.408; ITU G.703, G.736, G.775 and G.823; ITU-T I.431; ETSI 300-166 and 300-233; and AT&T Pub 62411
- Support 75 Ω (E1 coax), 100 Ω (T1 twisted-pair) and 120 Ω (E1 twisted-pair) applications
- Fully restores the received signal after transmission through a cable with attenuation of 18dB, at 1024 kHz
- Five Pulse Equalization Settings for T1 short-haul applications
- Transmit/receive performance monitors with Driver Fail Monitor Open (DFM) and Loss of Signal (LOS) outputs
- Selectable unipolar or bipolar data I/O and B8ZS/ HDB3 encoding/decoding
- · QRSS generator/detector for testing or monitoring
- · Output short circuit current limit protection
- · Local, remote and analog loopback capability
- Multiple-register serial- or parallel-control interface
- Compatible with Level One's LXT360/361 T1/E1 Long Haul/Short Haul Transceiver (Universal LIU)

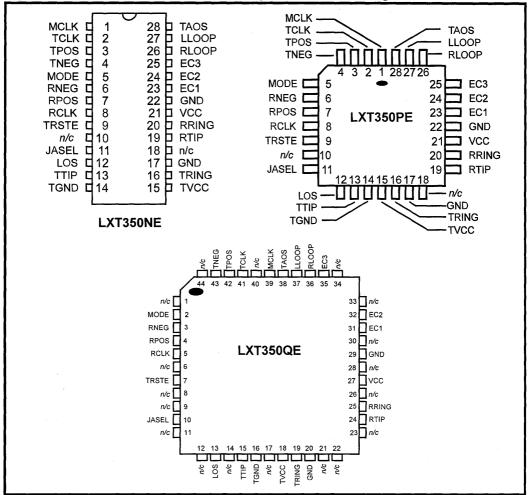


Figure 1: LXT350 Hardware Controlled Bipolar Mode Pin Assignments

Unipolar Mode							
Unipolar Mode							
1 39 MCLK							
TCLK							
ER							
E							

Pin #	Pin#	External E	Data Modes	QRSS	Modes						
NE/ PE	QE	Bipolar Mode	Unipolar Mode	Bipolar Mode	Unipolar Mode						
4	43	TNEG	TNEG INSBPV INSBPV								
6	3	RNEG	BPV	RNEG	BPV						
7	4	RPOS	RDATA	RPOS	RDATA						
8	5 RCLK										
13	15		TTIP								
14	16		TGND								
15	18		TVCC								
16	19		TRING								
19	24		RTIP								
20	25		RRING								
21	27		VCC								
22	29	GND									

Table 1: LXT3	50 Clock and	l Data Pin	Assignments	by Mode ¹

Pin	Pin	Hardware	Modes	Host M	odes	Pin		Hardware	Modes	Host Mo	odes
NE/ PE	QE	Unipolar/ Bipolar	QRSS	Unipolar/ Bipolar	QRSS	NE/ PE	Pin QE	Unipolar/ Bipolar	QRSS	Unipolar/ Bipolar	QRSS
. 5	2	MOD	ЭЕ	MODE		24	32	EC2		SDI	
9	7	TRST	ΓE	TRST	ΓE	25	35	EC3		SDO	
11	10	JASEL		Low		26	36	RLOO)P	\overline{CS}	
12	13	LOS	LOS/ QPD	LOS	LOS/ QPD	27	37	LLOOP		SCLI	K
23	31	ECI		ĪNĪ		28	38	TAOS	QRSS	CLK	E

Table 2: LXT350 Control Pins by Mode

Table 3: LXT350 Hardware Controlled Bipolar Mode Signal Descriptions

Pin NE/ PE	Pin QE ¹	Symbol	I/O ²	Description
1	39	MCLK	DI	Master Clock. Connect to 1.544 MHz for T1 operation; to 2.048 MHz for E1. MCLK requires an external, independent input to generate internal clocks. Required accuracy is better than \pm 32 ppm with a typical duty cycle of 50%. Upon Loss of Signal (LOS), RCLK is derived from MCLK.
2	41	TCLK	DI	Transmit Clock . 1.544 MHz or 2.048 MHz clock input. Transceiver samples TPOS and TNEG on the falling edge of TCLK
3 4	42 43	TPOS TNEG	DI	Transmit Data – Positive and Negative . In the Bipolar I/O mode, these pins are the positive and negative sides of a bipolar input pair. Data to be transmitted onto the line is input at these pins. Table 4 describes Unipolar Mode functions.
5	2	MODE	DI	Mode Select. Connecting MODE Low puts the LXT350 in Hardware Mode. In Hardware Mode, the serial interface is disabled and hardwired pins are used to control configuration and report status. Leaving MODE open activates Hardware Mode and enables the B8ZS/HDB3 encoder/decoder and Unipolar Mode. Connecting MODE High puts the LXT350 in Host Mode. In Host Mode, the serial interface controls the LXT350 and displays its status.
6 7	3 4	RNEG RPOS	DO	Receive Data – Negative and Positive. In the Bipolar I/O mode, these pins are the pos- itive and negative sides of a bipolar output pair. Data recovered from the line interface is output on these pins. A signal on RNEG corresponds to receipt of a negative pulse on RTIP/RRING. A signal on RPOS corresponds to receipt of a positive pulse on RTIP/ RRING. RNEG/RPOS outputs are Non-Return-to-Zero. Both outputs are stable and valid on the rising edge of RCLK. Refer to Table 4 for Unipolar mode function descriptions.
8	5	RCLK	DO	Recovered Clock . The clock recovered from the line input signal is output on this pin. Under LOS conditions there is a smooth transition from RCLK to MCLK output.
9	7	TRSTE	DI	Tristate . Connecting TRSTE High forces all output pins to a high-impedance state. Connecting TRSTE Low sets the LXT350 to the Hardware Bipolar Mode. Leaving TRSTE open enables the Unipolar Mode. (See Table 4 for Unipolar function descriptions.)
				2, 23, 26, 28, 33, 34, 40 and 44 are not connected (n/c). Pins 9 and 21 must be left floating. Input; DO = Digital Output; AI = Analog Input; AO = Analog Output.

Pin NE/ PE	Pin QE ¹	Symbol	I/O ²	Description
10		n/c	DO	No connection. Leave this pin floating.
11	10	JASEL	DI	Jitter Attenuation Select. Selects jitter attenuation location. Connecting JASEL High activates the jitter attenuator in the receive path. Connecting JASEL Low activates the jitter attenuator in the transmit path. Leaving JASEL open disables JA.
12	13	LOS	DO	Loss of Signal Indicator. In T1 mode, LOS goes High on receipt of 175 consecutive spaces and returns Low when the received signal reaches a mark density of 12.5% (determined by receipt of 16 marks within a sliding window of 128 bits with fewer than 100 consecutive zeros). In E1 modes, LOS goes High on receipt of 32 consecutive spaces, and returns Low when the receiver detects 12.5% mark density (determined by receipt of 4 marks within a sliding window of 32 bits with fewer than 16 consecutive zeros). The transceiver outputs receives marks on RPOS and RNEG even when LOS is High.
13 16	15 19	TTIP TRING	AO	Transmit Tip and Ring. Differential Driver Outputs. These outputs are designed to drive a 50 - 200 Ω load. The transformer and line matching resistors should be selected to give the desired pulse height and return loss performance.
14	16	TGND		Ground. Ground return for the transmit driver power supply TVCC.
15	18	TVCC	DI	+5 VDC Power Supply input for the transmit drivers. TVCC must not vary from VCC by more than ± 0.3 V.
17	29	GND	-	Ground. Tie this pin to ground.
18	-	n/c	-	Leave this pin open.
19 20	24 25	RTIP RRING	AI	Receive Tip and Ring. The AMI signal received from the line is applied at these pins. A 1:1 transformer is required. Data and clock from the signal applied at these pins are recovered and output on the RPOS/RNEG, and RCLK pins.
21	27	VCC	_	+5 VDC Power Supply for all circuits except the transmit drivers. (Transmit drivers are supplied by TVCC.)
22	29	GND	-	Ground. Ground return for power supply VCC.
23 24 25	31 32 35	EC1 EC2 EC3	DI	Equalization Control 3-1 . These pins define the Pulse Equalization settings. See Table 12 for additional details.
26	36	RLOOP	DI	Remote Loopback. When held High, the clock and data inputs from the framer (TPOS/ TNEG or TDATA) are ignored and the data received from the line is transmitted back onto the line at the RCLK frequency. During remote loopback, the device ignores the in- line encoders/decoders. See Figure 8.
27	37	LLOOP	DI	Local Loopback . When held High, the data on TPOS and TNEG loops back digitally to RPOS and RNEG outputs (through JA if enabled). Leaving this pin open enables Analog Loopback (TTIP and TRING looped back to RTIP and RRING). See Figures 5, 6, and 7.
28	38	TAOS	DI	Transmit All Ones . When held High the transmit data inputs are ignored and the LXT350 transmits a stream of 1s at the TCLK frequency. (If TCLK is not supplied, MCLK is the transmit clock reference.) TAOS is inhibited during Remote Loopback. Leaving this pin open enables QRSS pattern generation and detection. See Figures 5, 10, and 11.
				2, 23, 26, 28, 33, 34, 40 and 44 are not connected (n/c). Pins 9 and 21 must be left floating. Input; DO = Digital Output; AI = Analog Input; AO = Analog Output.

Table 3: LXT350 Hardware Controlled Bipolar Mode Signal Descriptions - continued

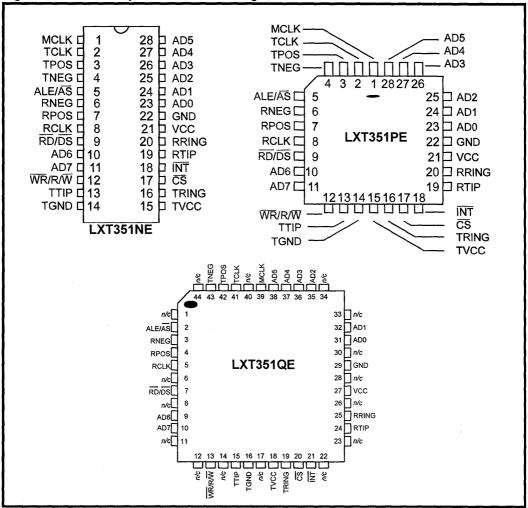
Pin NE/ PE	Pin QE	Symbol	1/0 ¹	Description
3	42	TDATA	DI	Transmit Data. Unipolar input for data to be transmitted onto the line.
4	43	INSBPV	DI	Insert Bipolar Violation . This pin is sampled on the falling edge of TCLK to control Bipolar Violation Insertions in the transmit data stream. A Low-to-High transition is required to insert subsequent BPVs.
6	3	BPV	DO	Bipolar Violation. BPV goes High to report receipt of a bipolar violation from the line. This is an NRZ output, valid on the rising edge of RCLK.
7	4	RDATA	DO	Receive Data . RDATA is a unipolar NRZ output of data recovered from the line interface. In Hardware Mode RDATA is stable and valid on the rising edge of RCLK.
1.1/00	Column e	ntries: DI = D	igital Inp	out; DO = Digital Output; AI = Analog Input; AO = Analog Output.

Table 4: LXT350 Hardware Controlled Unipolar Mode Signal Assignments

Table 5: LXT350 Hardware Controlled QRSS Unipolar Mode Signal Assignments

n / Pin E QE	Symbol	I/O ¹	Description
42	INSLER	DI	Insert Logic Error . When this pin goes from Low to High, the transceiver inserts a logic error into the transmitted QRSS data pattern. The error follows the data flow in whatever loopback mode is in effect. The LXT350 samples this pin on the falling edge of TCLK (or MCLK, if TCLK is not present).
43	INSBPV	DI	Insert Bipolar Violation . When this pin goes from Low to High, the transceiver inserts a bipolar violation error into the transmitted QRSS data pattern. A subsequent insertion requires another Low to High transition. The LXT350 samples this pin on the falling edge of TCLK (or MCLK, if TCLK is not present).
3	BPV ²	DO	Bipolar Violation . BPV goes High to report receipt of a bipolar violation from the line. This is an NRZ output, valid on the rising edge of RCLK.
4	RDATA ²	AO	Received Data . RDATA is a unipolar NRZ output of data recovered from the line interface. In hardware Mode, RDATA is stable and valid on the rising edge of RCLK.
13 1	LOS/QPD	DO	Loss of Signal/QRSS Pattern Detect. This pin acts as a QPD indicator as well as LOS indicator. The QRSS Pattern synchronization criterion is fewer than four errors in 128 bits. In this mode, as long as the transceiver does not detect a QRSS pattern QPD stays High. As soon as the device does detect a QRSS pattern, the pin goes Low; any bit errors cause QPD to go High for half a clock cycle. This output can trigger an external error counter. An LOS condition also makes this pin go High. See Figure 11.
38	QRSS	DI	QRSS. Leaving this pin open, enables QRSS pattern generation and detection. The transceiver transmits the QRSS pattern at the TCLK rate (or MCLK, if TCLK is not present).
38 O Column entri			

2. In QRSS Bipolar Mode, pins 6 and 7 (or pins 3 and 4 on the QFP package) act as RNEG and RPOS output, respectively.



Pin NE/ PE	Pin QE	Symbol	I/O ³	Description
6 7	3	RNEG RPOS	DO	Received Data–Negative and Positive . In the Bipolar I/O Mode, these pins are the negative and positive sides of a bipolar output pair. The transceiver outputs the data recovered from the line interface on these pins. A signal on RNEG corresponds to receipt of a negative pulse on RTIP/RRING. A signal on RPOS corresponds to receipt of a positive signal on RTIP/RRING. RNEG/RPOS outputs are Non-Return-to-Zero (NRZ). CLKE determine the clock edge at which these outputs are stable and valid. See Figure 19.
9	7	TRSTE	DI	Tristate . Connecting TRSTE High forces all output pins to high-impedance state. Connect this pin Low for normal operation.
10	-	n/c	-	Not connected.
11	10	GND		Tie this pin to ground.
17	29	GND	_	Tie this pin to ground
23	31	ĪNT	DO	Interrupt (Active Low-Maskable). INT goes Low to flag the host when any of LOS, AIS, QRSS or DFMO changes state or when there is an Elastic Store overflow or underflow. INT is an open drain output which requires a connection to power supply VCC through a resistor. Reset INT by writing a one to the respective bit in the Interrupt Clear Register.
24	32	SDI	DI	Serial Data Input. Input port for the 16-bit serial address/command and data word. LXT350 samples SDI on the rising edge of SCLK. See Figure 20.
25	35	SDO	DO	Serial Data Output. If CLKE is High, SDO is valid on the rising edge of SCLK. If CLKE is Low, SDO is valid on the falling edge of SCLK. This pin goes to a high-impedance state when the serial port is being written to or when \overline{CS} is High. See Figure 21.
26	36	CS	DI	Chip Select (Active Low). This input is used to access the serial interface. For each read or write operation, \overline{CS} must transition from High to Low, and remain Low.
27	37	SCLK	DI	Serial Clock . This clock is used to write data to or read data from the serial inter- face registers. The clock frequency can be any rate up to 2.048 MHz.
28	38	CLKE	DI	Clock Edge. Setting CLKE High causes RPOS and RNEG to be valid on the falling edge of RCLK, with SDO valid on the rising edge of SCLK. Setting CLKE Low makes RPOS and RNEG valid on the rising edge of RCLK and SDO valid on the falling edge of SCLK.

Table 6: LXT350 Host Controlled Bipolar Mode Signal Assignments ^{1,2}

2. In QRSS Bipolar Mode, pins 6 and 7 (or pins 3 and 4 on the QFP package) seven act as RNEG and RPOS, respective 3. I/O Column entries: DI = Digital Input; DO = Digital Output; AI = Analog Input; AO = Analog Output.

Figure 2: LXT351 Bipolar Mode Pin Assignments

Pin		External D	Data Modes	QRSS Modes			
NE/ PE	Pin QE	Bipolar Mode	Unipolar Mode	Bipolar Mode	Unipolar Mode		
1	39		М	CLK			
2	41		TCLK				
3	42	TPOS	TDATA	INS	LER		
	pins chan lost Mode		al data or internal QRSS mod	e is active. These pins remain	n the same in both Hardware		

Pin		External D	ata Modes	QRSS Modes					
NE/ PE	Pin QE	Bipolar Mode	Unipolar Mode	Bipolar Mode	Unipolar Mode				
4	43	TNEG	INSBPV	INS	BPV				
6	3	RNEG	BPV	RNEG	BPV				
7	4	RPOS	RDATA	RPOS	RDATA				
8	5		RC	CLK					
13	15		T	ГІР					
14	16	TGND							
15	18	TVCC							
16	19	TRING							
19	24		R	ГІР					
20	25		RR	ING					
21	27		VCC						
22	29		Gl	ND					

Table 7: LXT351 Clock and Data Pin Assignments by Mode¹

1. Data pins change based on whether external data or internal QRSS mode is active. These pins remain the same in both Hardware and Host Modes.

Table 8: LXT351 Processor Interface Pins

Pin	Dim	Address/Da	ta Bus Type	Pin	D:	Address/Data Bus Type		
NE/ PE	Pin QE	Intel	Motorola	NE/ PE	Pin QE	Intel	Motorola	
5	2	ALE	ĀS	25	35	AI	02	
9	7	RD	DS	26	36	AI)3	
12	13	WR	R/W	27	37	AD4		
17	20	Ē	<u>s</u>	28	38	AI	5	
18	21	ĪN	10	9	Al	D6		
23	31	AI	11	10	AI	D7		
24	32	AI	AD1					

Pin NE/ PE	Pin QE ²	Symbol	1/0 ¹	Description
1	39	MCLK	DI	Master Clock. Connect to 1.544 MHz for T1 operation; to 2.048 MHz for E1. MCLK requires an external, independent input to generate internal clocks. Required accuracy is better than ± 32 ppm with a typical duty cycle of 50%. Upon Loss of Signal (LOS), the transceiver derives RCLK from MCLK.
2	41	TCLK	DI	Transmit Clock . 1.544 MHz or 2.048 MHz bit rate clock input. The transceiver samples TPOS and TNEG on the falling edge of TCLK
3	42 43	TPOS TNEG	DI	Transmit Data – Positive and Negative. In the Bipolar I/O Mode, these pins are the positive and negative sides of a bipolar input pair. Data for transmission onto the line is input at these pins.
5	2	ALE AS	DI	Address Latch Enable/Address Strobe (Active Low). Connects to Intel (ALE) or Motorola $\overline{(AS)}$ signal. On Motorola bus, this signal is Active Low. Leaving this pin floating forces all output pins into a high impedance state.
6 7	3	RNEG RPOS	DO	Receive Data – Negative and Positive. In the Bipolar I/O mode, these pins are the positive and negative sides of a bipolar output pair. Data recovered from the line interface is output on these pins. A signal on RNEG corresponds to receipt of a negative pulse on RTIP/RRING. A signal on RPOS corresponds to receipt of a positive pulse on RTIP/RRING. RNEG/RPOS outputs are Non-Return-to Zero. Both outputs are stable and valid on the rising edge of RCLK. Refer to Table 10 for Unipolar mode function descriptions.
8	5	RCLK	DO	Recovered Clock . The output on this pin is the clock recovered from the line input signal. Under LOS conditions there is a smooth transition from RCLK to MCLK output.
9	7	RD DS	DI	Read (Active Low)/Data Strobe (Active Low). On an Intel bus, this signal, Read, goes Low to command a read operation. On a Motorola bus, this signal, Data Strobe, goes Low when data is being driven on the address/data bus. Data is valid on the rising edge of $\overline{\text{DS}}$.
10	9	AD6	DI/ O	Address/Data bus lines 6 and 7. Used with pins 24-28 as the address/data bus.
11	10	AD7	DI/ O	
12	13	W <u>R</u> R/W	DI	Write (Active Low) or Write/Read. On an Intel bus, driving this signal (Write) Low enables a write operation on the Address/Data bus. On a Motorola bus, driving this signal (Read/Write) High commands a read opera- tion, driving it Low commands a write operation.
13	15	TTIP	AO	Transmit Tip and Ring . Differential Driver Outputs. The design load for these outputs is $50 - 200 \Omega$. Select the transformer and line matching resistors to give the
16	19	TRING		desired pulse height.
14	16	TGND		Ground. Ground return for the transmit drivers power supply TVCC.
Outp	ut.			; DO = Digital Output, DI/O = Digital Input and Output; AI = Analog Input, AO = Analog 30, 33, 34, 40 and 44 are not connected (<i>n/c</i>).

Table 9: LXT351 Bipolar Mode Signal Assignments

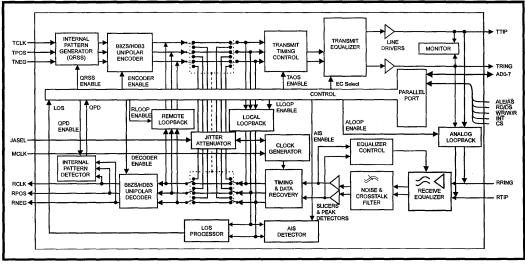
Pin NE/ PE	Pin QE ²	Symbol	I/O ¹	Description	
15	18	TVCC		+5 VDC Power Supply input for the transmit drivers. TVCC must not vary from VCC by more than \pm 0.3 V.	
17	20	CS	DI	Chip Select (Active Low). For each read or write on the Address/Data bus, this pin must go Low during the operation. See Figures 22 and 23 for timing requirements. In the case of a single processor controlling several chips, this is the line it uses to command a specific transceiver.	
18	21	ĪNT	DO	Interrupt (Active Low). This pin goes Low to signal an interrupt on the chip. To identify the specific interrupt, read the Performance Status Register. To clear or mask an interrupt, write a one to the appropriate bit in the Clear Interrupt Register.	
19 20	24 25	RTIP RRING	AI	Receive Tip and Ring. The AMI signal received from the line is applied at these pins. A 1:1 transformer is required. Data and clock from the signal applied at these pins are recovered and output on the RPOS/RNEG, and RCLK pins.	
21	27	VCC		+5 VDC Power Supply for all circuits except the transmit drivers. (Transmit drivers are supplied by TVCC.)	
22	29	GND		Ground return for power supply VCC.	
23 24 25 26 27 28	31 32 35 36 37 38	AD0 AD1 AD2 AD3 AD4 AD5	DI/ O	Address/Data Lines 0-5. (Also pins 10, 11–AD6 and 7) Conform to Intel and Motorola Address/Data bus specifications.	
Outp	 28 38 AD3 1. I/O column entries DI = Digital Input; DO = Digital Output, DI/O = Digital Input and Output; AI = Analog Input, AO = Analog Output. 2. Pins 1, 6, 8, 11, 12, 17, 22, 23, 26, 28, 30, 33, 34, 40 and 44 are not connected (n/c). 				

Table 9: LXT351 Bipolar Mode Signal Assignments - continued

Table 10: LXT351 Unipolar Mode Signal Assignments¹

Pin NE/ PE	Pin QE	Symbol	I/O ²	Description		
3	42	TDATA	DI	Transmit Data. Unipolar data for transmission onto the line.		
4	43	INSBPV	DI	Insert Bipolar Violation . Controls bipolar violation insertions, requires Low-to- High transition to insert each violation, the LXT351 samples the signal on the falling edge of TCLK.		
6	3	BPV	DO	Bipolar Violation . BPV goes High on receipt of a bipolar violation from the line. This is an NRZ output, valid on the rising edge of RCLK.		
7	4	RDATA	DO	Received Data . RDATA is an NRZ output of the data recovered from the line inter- face. RDATA is valid on the rising edge of RCLK.		
2. I/O c	 For the descriptions of pins not identified in this table, see Table 9: LXT351 Bipolar Mode Signal Assignments. I/O column entries DI = Digital Input; DO = Digital Output, DI/O = Digital Input and Output; AI = Analog Input , AO = Analog Output. 					

Pin NE/ PE	Pin QE	Symbol	I/O ³	Description
3	42	INSLER	DI	Insert Logic Error . When this pin goes from Low to High, the transceiver inserts a logic error into the transmitted QRSS data pattern. The error follows the data flow in whatever loopback mode is in effect. The LXT351 samples this pin on the falling edge of TCLK (or MCLK, if TCLK is not present).
4	43	INSBPV	DI	Insert Bipolar Violation . When this pin goes from Low to High, the transceiver inserts a bipolar violation error into the transmitted QRSS data pattern. A subsequent insertion requires another Low to High transition. The LXT351 samples this pin on the falling edge of TCLK (or MCLK, if TCLK is not present).
6	3	BPV	DO	Bipolar Violation . BPV goes High on receipt of a bipolar violation from the line. This is an NRZ output, valid on the rising edge of SCLK.
7	4	RDATA	DO	Received Data . RDATA is an NRZ output of the data recovered from the line interface. RDATA is valid on the rising edge of RCLK.


Table 11: LXT351 QRSS Unipolar Mode Signal Assignments^{1,2}

1. For the descriptions of pins not identified in this table, see Table 9: LXT351 Bipolar Mode Signal Assignments.

2. In QRSS Bipolar Mode, pins 6 and 7of the NE/PE packages or pins 3 and 4 of the QE package act as RNEG and RPOS, respectively.

3. I/O column entries DI = Digital Input; DO = Digital Output, DI/O = Digital Input and Output; AI = Analog Input, AO = Analog Output.

Figure 3: LXT351 Block Diagram

FUNCTIONAL DESCRIPTION

The LXT350 and LXT351 are fully-integrated, PCM transceivers for or short-haul, 1.544 Mbps (T1) or 2.048 Mbps (E1) applications allowing full-duplex transmission of digital data over existing twisted-pair installations. They interface with two lines (one pair each for transmit and receive) through standard pulse transformers and appropriate resistors.

The figure on the front of this Data Sheet shows a block diagram of the LXT350. In Host Mode the device is controlled through a serial microprocessor. In Hardware Mode it is controlled via individual pins. Figure 3 is a block diagram of the LXT351. The LXT351 has a parallel port for microprocessor control. Both transceivers provide a high-precision, crystal-less jitter attenuator. The user may place it in the transmit or receive path, or bypass it completely. The transceivers meet or exceed ANSI, ITU and E1 requirements.

INITIALIZATION

During power up, the transceiver remains static until the power supply reaches approximately 3 V. On crossing this threshold, the device begins a 32 ms reset cycle to calibrate the Phase Locked Loops. The transceiver uses a reference clock to calibrate the PLL-the transmitter reference is TCLK, and the receiver reference clock is MCLK. MCLK is mandatory for chip operation.

Reset Operation

Reset clears and sets all registers to 0 and resets the status and state machines for the LOS, AIS and QRSS blocks. In Hardware Mode, holding pins RLOOP, LLOOP and TAOS High for at least one clock cycle resets the device. Writing a 1 to the bit CR2.RESET commands reset in Host Mode. Allow 32 ms for the device to settle after removing all reset conditions.

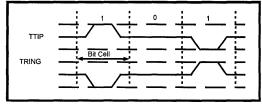
TRANSMITTER

Digital Data Interface

Input data for transmission onto the line is clocked serially into the device at the TCLK rate. TPOS and TNEG are the bipolar data inputs. TDATA accepts unipolar data. (Leaving TRSTE open enables Hardware Unipolar Mode.)

Input data may pass through either the Jitter Attenuator or B8ZS/HDB3 encoder or both. Bit CR1.ENCENB = 1 enables B8ZS/HDB3 encoding in Host Mode. In Hardware Mode, leaving the MODE pin open selects zero suppression coding. With zero suppression enabled, the ECx inputs (see Table 12) determine the coding scheme (B8ZS for T1 or HDB3 for E1 mode). For the HDB3 scheme, set EC3-1 to 000 or 001. Other ECx settings select the B8ZS option. The transmit clock (TCLK) supplies input synchronization. The Test Specifications section defines the transmit timing requirements for TCLK and the Master Clock (MCLK).

Short Circuit Current Limit


The transmitter includes a short-circuit limiter. This limits the current sourced into a low-impedance load. It automatically resets when the load current drops below the limit. The current is determined by the interface circuitry (total resistance on transmit side).

In Host Mode, the Performance Status Register flags open circuits in bit PSR.DFMO. A transition on DFMO will provide an interrupt and the transition sets bit TSR.DFMO = 1. Writing a 1 in bit ICR.CDFMO clears the interrupt; leaving a 1 in the bit masks that interrupt.

Output Drivers

The transceivers transmit data as a 50% line code as shown in Figure 4. Activating the line driver only during a mark reduces power consumption. The output driver is disabled during transmission of a space. Biasing of the transmit DC level is on-chip.

LXT350/351 Integrated T1/E1 S/H Transceivers With Crystal-less Jitter Attenuation

Idle Mode

Transmit Idle Mode is a normal operational mode (as opposed to modes) which allows multiple transceivers to be connected to a single line for redundant applications. TTIP and TRING remain in a high impedance state when TCLK is not present. Remote or Dual Loopback, TAOS or any internal transmit patterns temporarily disable the high impedance state.

Pulse Shape

The Equalizer Control inputs (EC3 through EC1) determine the transmitted pulse shape. In Host Mode, the I/O port controls the ECx values. For the LXT350 in Hardware Mode, three individual pins provide the ECx inputs.

Shaped pulses meeting the T1 DSX-1 and E1 specifications are applied to the AMI line driver for transmission onto the line at TTIP and TRING. Refer to the Test Specifications section for pulse mask specifications.

RECEIVER

A 1:1 transformer provides the interface to the line. Recovered data is output at RPOS/RNEG (RDATA in Unipolar mode), and the recovered clock is output at RCLK. The Test Specifications section shows receiver timing.

The transceiver filters the equalized signal and applies it to the peak detector and data slicers. The peak detector samples the inputs and determines the maximum value of the received signal. The data slicers are set at 50% of the peak value to ensure optimum signal-to-noise performance for T1 or E1 operation.

After processing through the data slicers, the received signal goes to the data and timing recovery section, then to the B8ZS/HDB3 decoder (if selected) and to the receive monitor. The data and timing recovery circuits provide input jitter tolerance significantly better than required by AT&T Pub 62411 and ITU G.823. See the Test Specifications section.

EC3	EC2	EC1	Function	Pulse	Cable	Coding ¹		
0	0	0	El	ITU Rec G.703	75 Ω Coax/120 Ω TP	HDB3		
0	1	1	T1	0-133 ft / 0.6 dB	100 Ω TP	B8ZS		
1	0	0	T1	133-266 ft / 1.2 dB	100 Ω TP	B8ZS		
1	0	1	Tl	266-399 ft / 1.8 dB	100 Ω TP	B8ZS		
1	1	0	T1	399-533 ft / 2.4 dB	100 Ω TP	B8ZS		
1	1	1	T1	533-655 ft / 3.0 dB	100 Ω TP	B8ZS		
1. When	1. When enabled.							

Digital Data Interface

In either Host or Hardware Control Mode the recovered data goes to the Loss of Signal (LOS) Monitor. In Host Control Mode, it also goes through the Alarm Indication Signal (AIS, Blue Alarm) Monitor. The jitter attenuator circuit may be enabled or disabled in the receive data path or the transmit path. Received data may go through either the B8ZS or HDB3 decoder or neither. Finally, the device may send the digital data to the framer as either unipolar or bipolar data.

When transmitting unipolar data to the framer, the device reports receiving bipolar violations by driving the BPV pin High. During E1 operation in Host Control Mode, the device can report HDB3 code violations and Zero Substitution Violations on the BPV pin. The diagnostics section explains these options in more detail.

JITTER ATTENUATION

A Jitter Attenuation Loop (JAL) with an Elastic Store (ES) provides jitter attenuation as shown in the Test Specifications section. The JAL requires no special circuitry, such as an external quartz crystal or high-frequency clock (higher than the line rate). Its timing reference is the master clock, MCLK.

In Hardware Control Mode the ES is a 32 x 2-bit register. Setting the JASEL pin High places the JA circuitry in the received data path; setting JASEL Low places the JA in the transmit data path; leaving it open disables the JA.

In Host Mode, bit CR1.JASEL0 enables or disables the JA circuit. With bit CR1.JASEL0 = 1, bit CR1.JASEL1 controls the JA circuit placement (see Table 17). The ES can be either a 32×2 -bit or 64×2 -bit register depending on the value of bit CR3.ES64 (see Table 19.)

The device clocks data into the ES using either TCLK or RCLK depending on whether the JA circuitry is in the transmit or receive data path, respectively. Data is shifted out of the elastic store using the dejittered clock from the JAL. When the FIFO is within two bits of overflowing or underflowing, the ES adjusts the output clock by 1/8 of a bit period. The ES produces an average delay of 16 bits (or 32 bits, with the 64-bit ES option selected in Host Control Mode) in the associated data path. When the Jitter Attenuator is in the receive path, the output RCLK transitions smoothly to MCLK in the event of an LOS condition.

The Transition Status Register bits TSR.ESOVR and TSR.ESUNF indicate an overflow or underflow, respectively in the ES. These are sticky bits: Once set to 1, they remain set until the host reads the register. The ES can also provide a maskable interrupt on either overflow or underflow.

DIAGNOSTIC MODE OPERATION

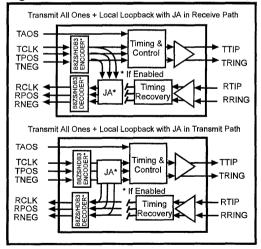
LXT350/351 offers multiple diagnostic modes as shown in Table 13. In Hardware Mode, the diagnostic modes are selected by a combination of pin settings. In Host Mode, the diagnostic modes are selected by writing appropriate bits in the Diagnostic Control Register.

	Availa	ability ¹	Host	
Diagnostic Mode	H/W	Host	Mode ² Maskable	
Loopback Modes				
Local Loopback (LLOOP)	Yes	Yes	No	
Analog Loopback (ALOOP)	Yes	Yes	No	
Remote Loopback (RLOOP)	Yes	Yes	No	
Dual Loopback (DLOOP)	Yes	Yes	No	
Internal Data Pattern Generation and Detection				
Transmit All Ones (TAOS)	Yes	Yes	No	
Quasi-Random Signal Source (QRSS)	Yes	Yes	Yes	
Error Insertion and Detection				
Bipolar Violation Insertion (INSBPV)	Yes	Yes	No	
Logic Error Insertion (INSLER)	Yes	Yes	No	
Bipolar Violation Detection (BPV)	Yes	Yes	No	
Logic Error Detection, QRSS (QPD)	Yes	Yes	No	
HDB3 Code Violation Detection (CODEV)	No	Yes	No	
HDB3 Zero violation Detection (ZEROV)	No	Yes	No	
Alarm Condition Monitoring				
Receive Loss of Signal (LOS) Monitoring	Yes	Yes	Yes	
Receive Alarm Indication Signal (AIS) Monitoring	No	Yes	Yes	
Transmit Driver Failure Monitoring—Open (DFMO)	No	Yes	Yes	
Elastic Store Overflow and Underflow Monitoring	No	Yes	Yes	
Built-In Self Test (BIST)	No	Yes	Yes	

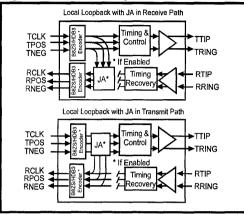
1. In Hardware Control Mode, a combination of pin settings selects the Diagnostic Modes; in Host Control Mode, writing appropriate bits into the Control Registers selects the Diagnostic Modes.

2. Host Control Mode allows interrupt masking by writing a "1" to the corresponding bit in the Interrupt Clear Register. Hardware Control Mode has no interrupt masking feature.

LOOPBACK MODES


NOTE Hardware Mode pins discussed in this section refer to the LXT350 only.

Local Loopback


See Figures 5 and 6. In Hardware Mode, Local Loopback (LLOOP) is selected by tying LLOOP High; in Host Mode, by setting CR2.ELLOOP to 1. LLOOP inhibits the receiver circuits. The transmit clock and data inputs (TCLK and TPOS/TNEG or TDATA) loop back through the jitter attenuator (if enabled) and show up at RCLK and RPOS/RNEG or RDATA. (During LLOOP, the JASEL input is strictly an Enable/Disable control; it does not affect the placement of the JAL. If JA is enabled, it is active in the loopback circuit.)

The transmitter circuits are unaffected by LLOOP. LXT350/351 transmits the TPOS/TNEG or TDATA inputs (or a stream of 1s if TAOS is asserted) normally. When used in this mode, the transceiver can function as a stand-alone jitter attenuator.

Figure 5: TAOS with LLOOP (JA Selected)

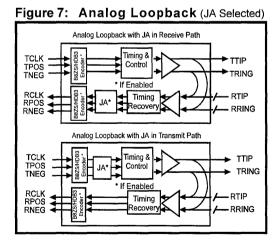
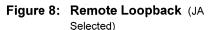
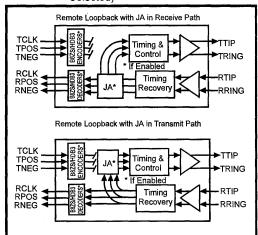


Figure 6: Local Loopback (JA Selected)

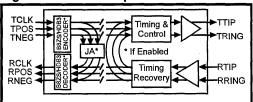
Analog Loopback

See Figure 7. Analog Loopback (ALOOP) exercises the maximum number of functional blocks. ALOOP operation disconnects the RTIP/RRING inputs from the line and routes the transmit outputs back into the receive inputs. This tests the encoders/decoders, jitter attenuator, transmitter, receiver and timing recovery sections. In Hardware Mode, leaving pin 27 open commands Analog Loopback; in Host Mode, writing a 1 to bit CR2.EALOOP enables the function. The ALOOP function overrides all other loopback modes.

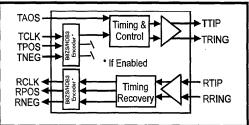



Remote Loopback

See Figure 8. In Remote Loopback (RLOOP) mode, the device ignores the transmit data and clock inputs (TCLK and TPOS/TNEG or TDATA), and bypasses the in-line encoders/decoders. The RPOS/RNEG or RDATA outputs loop back through the transmit circuits to TTIP and TRING at the RCLK frequency. The RLOOP command does not affect the receiver circuits which continue to output the RCLK and RPOS/RNEG or RDATA signals received from the twisted-pair line. In Host Mode, command RLOOP by writing a 1 to bit CR2.ERLOOP. In Hardware Mode, RLOOP is commanded by setting pin 26 High.


Dual Loopback

See Figure 9. To select Dual Loopback (DLOOP), set both RLOOP and LLOOP High in Hardware Mode or set bits CR2.ERLOOP and CR2.ELLOOP to 1 in Host Mode. In DLOOP mode, the transmit clock and data inputs (TCLK and TPOS/TNEG or TDATA) loop back through the Jitter Attenuator (unless disabled) to RCLK and RPOS/RNEG or RDATA. The data and clock recovered from the line loop back through the transmit circuits to TTIP and TRING without jitter attenuation.



INTERNAL PATTERN GENERATION AND DETECTION

Transmit All Ones

See Figure 10. In Transmit All Ones (TAOS) Mode the transceiver ignores the TPOS and TNEG inputs and transmits a continuous stream of 1s at the TCLK frequency. (With no TCLK, the TAOS output clock is MCLK.) This can be used as the Alarm Indication Signal (AIS–also called the Blue Alarm). In Host Mode, TAOS is commanded by writing a 1 to bit CR2.ETAOS. In Hardware Mode setting pin 28 High does so. Both TAOS and Local Loopback can occur simultaneously as shown in Figure 5, but Remote Loopback inhibits TAOS. When both TAOS and LLOOP are active, TCLK and TPOS/TNEG loop back to RCLK and RPOS/RNEG through the jitter attenuator (if enabled), and an all ones pattern goes to TTIP/TRING.

Figure 10: TAOS Data Path

Quasi-Random Signal Source (QRSS)

For T1 operation the Quasi-Random Signal Source (QRSS) is a 2^{20} -1 pseudo-random bit sequence (PRBS) with no more than 14 consecutive zeros. For E1 operation, QRSS is 2^{15} -1 PRBS with inverted output.

Both Hardware and Host Modes allow QRSS Mode. The QRSS pattern is normally locked to TCLK; but if there is no TCLK, MCLK is the clock source. Bellcore Pub 62411 defines the T1 QRSS transmit format and ITU G.703 defines the E1 format.

Leaving TAOS (pin 28) open enables QRSS transmission in Hardware Mode. In Host Mode, setting bits CR2.EPAT0 = 0 and CR2.EPAT1=1enables this function.

With QRSS transmission enabled, it is possible to insert a logic error into the transmit data stream by causing a Low-to-High transition on INSLER (pin 3). However, if no logic or bit errors are to be inserted into the QRSS pattern, INSLER must remain Low. Logic Error insertion waits until the next bit if the current bit is "jammed". (When there are more than 14 consecutive 0s, the output is jammed to a 1.)

Furthermore a bipolar violation in the QRSS pattern is possible by causing a Low-to-High transition on INSBPV (pin 4) without regard to whether the device is in bipolar or unipolar operating mode.

MCLK QRSS Pattern Generator TCLK TTIP Timing & TPOS Control TRING TNEG RCLK RTIP Timing RPOS Recovery RRING RNEG PD QRSS Sync/Error Detector RCLK (CLKE = 1) PD RCI K (CLKE = 0)

Figure 11: QRSS Mode

Choosing QRSS Mode also enables the QRSS Pattern Detection (QPD) in the receive path. The QRSS pattern is synchronized when there are fewer than four errors in 128 bits. After achieving synchronization the device drives OPD (pin 12) Low (OPD output is available on LXT350 only). The LXT351 does not support bit error detection in ORSS Mode. In the LXT350 ORSS Mode, any subsequent bit error in the QRSS pattern causes QPD to go High for half an RCLK clock cycle (the precise relationship to RCLK depends on the value of CLKE-when CLKE is Low, QPD goes High while RCLK is High; if CLKE is High, QPD goes High while RCLK is Low). This signal edge can serve as a trigger for an external bit-error counter. An LOS condition or a loss of QRSS synchronization will cause this output to go High continuously. In this case, and with either Unipolar Mode or the encoders/decoders enabled, the BPV pin indicates BPVs, CODEVs or ZEROVs as chosen.

Host Mode offers an additional interrupt to indicate that QRSS detection and sychronization have occurred, or that synchronization is lost. This interrupt is available when bit ICR.CQRSS = 0. If the QPD signal triggers a bit error counter, the interrupt could start or reset the counter.

Also in Host Mode, the PSR.QRSS bit provides an indication of the QRSS pattern synchronization. This bit goes Low with no QRSS pattern detected (*i.e.*, when there are more than four errors in 128 bits). The TQRSS bit in the Transition Status Register indicates that QRSS status has changed since the last QRSS Interrupt Clear command.

ERROR INSERTION AND DETECTION

Bipolar Violation Insertion (INSBPV)

In Unipolar Mode, both Hardware and Host Modes provide for Bipolar Violation Insertion (INSBPV). Choosing Unipolar Mode configures pin 4 as INSBPV. Bipolar violation insertion requires a Low-to-High transition on INSBPV. Sampling occurs on the falling edge of TCLK. When INSBPV goes High a BPV is inserted on the next available mark except in the three following situations:

- Zero suppression (HDB3 or B8ZS) is not violated
- If LLOOP and TAOS are both active, the BPV is looped back to RNEG/BPV indicator and the line driver transmits all ones with no violation.
- BPV insertion is disabled with RLOOP (remote loopback) active.

With the LXT350/351 configured to transmit internally generated QRSS data patterns a BPV can be inserted on the transmit pattern independent of whether the device is in the unipolar or bipolar mode of operation.

Logic Error Insertion (INSLER)

When configured to transmit internally generated QRSS data patterns, the device can insert a logic error on the transmit data pattern when there is a Low-to-High transition on INSLER. The transceiver treats data patterns the same way it treats data applied to TPOS/TNEG, so the inserted logic error will follow the data flow path as defined by the loopback mode in effect.

Logic Error Detection (QPD) (LXT350 Only)

After receiving pattern synchronization when configured in the QRSS Mode, LXT350 reports logic errors on QPD (pin 12). To indicate a logic error, this pin goes High for half an RCLK cycle (during the High period of RCLK if CLKE is Low but during the Low RCLK period if CLKE is High). To monitor logic errors, connect an error counter to QPD. A continuous High level on this pin indicates loss of either the QRSS pattern lock or LOS condition. The QRSS section has additional details on QRSS pattern lock criteria.

Bipolar Violation Detection (BPV)

With the internal encoders/decoders enabled or when configured in Unipolar Mode, the LXT350/351 reports received Bipolar Violations at BPV (pin 6). The pin goes High for a full clock cycle to indicate receipt of a BPV. However, if the encoders/decoders are enabled, LXT350/ 351 does not report bipolar violations due to the line coding scheme.

2-197

2

HDB3 Code Violation Detection (CODEV)

LXT350/351 can detect HDB3 code violations in Host Mode with HDB3 encoders enabled. This requires CR1.ENCENB = 1 and CR1.EC3-1 = 000, 001 or 010, which establishes E1 operation. To enable CODEV, set bit CR4.CODEV = 1.

An HDB3 code violation (CODEV) occurs when the device receives two consecutive bipolar violations of the same polarity (refer to ITU 0.161). With CODEV detection enabled, LXT350/351 reports a violation on the BPV pin along with received BPVs and ZEROVs (if these options are enabled). LXT350/351 forces the BPV pin High for a full RCLK cycle to report a CODEV.

HDB3 Zero Substitution Violation Detection (ZEROV)

With encoders/decoders enabled, the LXT350/351 can detect HDB3 zero substitution violations (ZEROV) in Host Mode. This requires CR1.ENCENB = 1 and CR1.EC3-1 = 000, 001, or 1010, which establish E1 operation, and CR4.ZEROV = 1.

LXT350/351 forces the BPV pin High for a full RCLK cycle to report a ZEROV. An HDB3 ZEROV is the receipt of four or more consecutive zeros. This does not occur with correctly encoded HDB3 data unless there are transmission errors. With ZEROV detection enabled, the device reports a violation on the BPV pin along with received BPVs and CODEVs (if these options are enabled).

ALARM CONDITION MONITORING

Loss of Signal (LOS)

The LXT350/351 Loss of Signal (LOS) monitor function is compatible with ITU G.775 and ETSI 300233. They use a combination analog and digital detection scheme. The receiver LOS monitor loads a digital counter at the RCLK frequency. The counter increments with each received 0 and it resets to 0 on receipt of a 1. Any signal that remains 25 dB typical below the nominal 0dB signal for n consecutive pulse generates an internal LOS condition. For T1 operations, n = 175; for E1 operations, n = 32. In Host Mode, either number can be changed to 2048 by setting bit CR4.LOS2048 to 1. MCLK replaces the recovered clock at the RCLK output in a smooth transition.

For T1 operation, when the received signal has 12.5% 1s density (16 marks in a sliding 128-bit period, with fewer than 100 consecutive 0s), the LOS flag returns Low and the recovered clock replaces MCLK at the RCLK output in another smooth transition.

For E1 operation, the LOS condition is cleared when the received signal rises above 25 dBtypical below the minimum 0 dB level and has 12.5% 1s density (four 1s in a sliding 32-bit window with fewer than 16 consecutive 0s). In Host Mode E1 operation, the out-of-LOS criterion can be modified from 12.5% marks density to 32 consecutive marks by setting bit CR4.COL32CM = 1.

During LOS, the device sends received data to the RPOS/ RNEG pins (or RDATA in Unipolar Mode). LXT350 reports an LOS condition on the LOS pin in Hardware Mode. In Host Mode, the LOS bit in the Performance Status Register goes High to indicate an LOS condition and will interrupt the host controller if so programmed.

Alarm Indication Signal Detection (AIS)

The Alarm Indication Signal (AIS) is available only in Host Mode. The receiver detects an AIS pattern when it receives fewer than three 0s in any string of 2048 bits. The device clears the AIS condition when it receives three or more 0s in a string of 2048 bits.

The AIS bit in the Performance Status Register indicates AIS detection. When the AIS status changes, the TAIS bit in the Transition Status Register goes High. The change of status interrupts the host controller by pulling \overline{INT} Low, unless the interrupt is masked. Writing a 1 to the ICR.CAIS bit masks the interrupt until the bit returns to 0.

Driver Failure Mode Open (DFMO)

In Host Mode a DFM Open (DFMO) bit is available in the Performance Status Register to indicate an open condition on the lines. DFMO can generate an INT to the host controller. The Transition Status Register bit DFMO indicates a transition in the status of the bit. Writing a 1 to ICR.CDFMO will clear or mask the interrupt.

Elastic Store Overflow/Underflow (ESOVR/ESUNF)

When the bit count in the Elastic Store (ES) is within two bits of overflowing or underflowing the ES adjusts the output clock by $1/_8$ of a bit period. In Host Mode, the ES provides an indication of overflow and underflow in the TRS.ESOVR and TSR.ESUNF. These are sticky bits and will stay set to 1 until the host controller reads the register. These interrupts can be cleared or masked by writing a 1 to the bits ICR.CESO and ICR.CESU, respectively.

OTHER DIAGNOSTIC MODES

Built-In Self Test (BIST)

LXT350/351 provides a Built-In Self Test (BIST) capability in Host Mode. The BIST exercises the internal circuits

by providing an internal QRSS pattern, running it through the encoders and the transmit drivers then looping it back through the receive equalizer, Jitter Attenuator and decoders to the QRSS pattern detection circuitry. If all the blocks in this data path work correctly, the receive pattern detector locks onto the pattern. It then pulls INT Low and sets the following bits High:

- TSR.TQRSS
- PSR.QRSS
- PSR.BIST

The QPD pin (pin 12) also indicates completion status of the test. Starting the test forces this pin High. During the test, it remains High until the test finishes successfully at which time it goes Low.

OPERATING MODES

The LXT350/351 share many features. However, their control modes are very different.

• The LXT350 operates in either Hardware or (Serial Port) Host Mode

• The LXT351 operates in (Parallel Port) Host Mode only.

In the Hardware Mode (LXT350 only) individual pins control the transceiver.

The logic level at the MODE pin sets the LXT350 mode of operation. In Host Mode (LXT350/351), a microprocessor controls the device through a data interface. The LXT350 has a serial interface and the LXT351 uses a parallel interface.

Hardware Mode Operation (LXT350 Only)

The LXT350 operates in Hardware Mode when MODE is left open or set Low. In Hardware Mode individual pins access and control the transceiver. The outputs (RPOS/RNEG or RDATA) are valid on the rising edge of RCLK.

There are some advanced functions provided only in Host Mode. Interrupt (\overline{INT}), AIS detection indicator, DFM open indicator and CLKE functions are some of the features available in Host Mode.

Input to Pin ¹		Mode of Operation						
Mode	TRSTE	Hardware	Software	Unipolar	Bipolar	AMI Enc/Dec	B8ZS/HDB3 Encoder/Decoder	All Outputs Tristated
Low	Low	On	Off	Off	On	Off ³	Off	No
Low	High	On	Off	Off	On	Off ³	Off	Yes
Low	Open	On	Off	On	Off	On	Off	No
High ²	Low	Off	On	х	x	x	Х	No
High ²	High	Off	On	х	x	x	Х	Yes
High ²	Open	Off	On	х	х	x	Х	No
Open	Low	On	Off	On	Off	Off	On	No
Open	High	On	Off	On	Off	Off	On	Yes
Open	Open	On	Off	On	Off	Off	On	No

Table 14: Control and Operational Mode Selection for LXT350 Transceiver

1. Open is either a midrange voltage or the pin is floating

2. In Software Mode, the contents of register CR1 determine the operation mode.

3. Encoding is done externally.

Host Mode Operation

The LXT350 operates in Host Mode when MODE is set High. In Host Mode a microprocessor accesses and controls the transceiver through a data port using the internal registers. The outputs (RPOS/RNEG or RDATA) are valid on the rising edge of RCLK In Host Mode there are eight control and status registersfive read/write and three read-only registers. The LXT350 accesses them through its serial interface (SIO). The LXT351 provides this access using an 8-bit parallel interface (PIO).

The host processor/controller can completely configure the device as well as get a full diagnostic/status report

LXT350/351 Integrated T1/E1 S/H Transceivers With Crystal-less Jitter Attenuation

through the SIO or PIO. Only the clocks and data for Bipolar Mode and BPV/Logic Error insertions for Unipolar or QRSS Mode need to be provided directly to the input pins. Similarly, the recovered clock, data, and BPV/Logic Error occurrences are available only at output pins. All other mode settings and diagnostic information are available through the data port.

Table 15 shows the address used by the SIO or PIO to access each register on the LXT350 or LXT351, respectively. Table 16 summarizes the control and status registers and labels each bit they contain. Tables 17 through 23 identify the bits in each register.

Register	· · · · ·	Address ¹					
Name	Abbr	Serial Port (A7-A1)	Parallel Port (A7-A0)				
Control #1	CR1	x010000	x010000x				
Control #2	CR2	x010001	x010001x				
Control #3	CR3	x010010	x010010x				
Interrupt Clear	ICR	x010011	x010011x				
Transition Status	TSR	x010100	x010100x				
Performance Status	PSR	x010101	x010101x				
Control #4	CR4	x010111	x010111x				
1. x = "don't care".	1.x = "don't care".						

Table 15: Serial (LXT350) and Parallel (LXT351) **Port Register Addresses**

Table 16: Register Addresses and Bit Names

Register Type				Bit							
Name	Sym		7	6	5	4	3	2	1	0	
Control #1	CR1	R/W	JASLE1	JASEL0	ENCEB	UNIENB	reserved ²	EC3	EC2	EC1	
Control #2	CR2	R/W	RESET	EPAT1	EPAT0	ETAOS	reserved ²	EALOOP	ELLOOP	ERLOOP	
Control #3	CR3	R/W	JA6HZ	PCLKE ¹	SBIST	reserved ²	reserved ²	ES64	ESCEN	ESJAM	
Interrupt Clear	ICR	R/W	CESU	CESO	CDFMO	reserved ³	CQRSS	CAIS	reserved ³	CLOS	
Transition Status	TSR	R	ESUNF	ESOVR	TDFMO	reserved ²	TQRSS	TAIS	reserved ²	TLOS	
Performance Status	PSR	R	reserved ²	BIST	DFMO	reserved ²	QRSS	AIS	reserved ²	LOS	
Control #4	CR4	R/W	reserved ²	reserved ²	reserved ²	reserved ²	COL32CM	LOS2048	ZEROV	CODEV	

 Bit CR3.PCLKE is available only in the LXT351; for the LXT350, set this bit to zero.
 In write registers, bits labeled reserved should be set to 0 (except as in note 3 below) for normal operation and ignored in read only registers.

Write a 1 into this bit for normal operation.

	-		Jitter Attenuation		tion
Bit	Name	Function	JASEL0	JASEL1	Position
0	EC1		1	0	Transmit
1	EC2	Set the Equalizer Control codes (see Table 12).	1	1	Receive
2	EC3	(500 1 2010 12))	0	X	disabled
3		reserved, set this bit to 0, ignore when reading.			
4	UNIENB	Enables Unipolar I/O Mode and insertion/detection of BPVs.			
5	ENCENB	Enables B8ZS/HDB3 encoders/decoders; device enters Unipolar Mode and pins 3, 4, 6 and 7 change to their unipolar functions.			
6	JASEL0	Jitter Attenuation Mode, selects jitter attenuation circuitry			
7	JASEL1	position in data path or disables it. See right hand section of table for values.			

Table 17: Control Register #1 Read/Write, Address (A7-A1) = x010000

Table 18: Control Register #2 Read/Write, Address (A7-A1) = x010001

			Pattern		Pattern
Bit	Name	Function	EPAT0	EPAT1	Selected
0	ERLOOP ¹	Enables Remote Loopback (RLOOP)	0	0	Transmit TPOS/TNEG
1	ELLOOP ¹	Enables Local Loopback (LLOOP)	0	1	Detect and transmit QRSS
2	EALOOP	Enables Analog Loopback (ALOOP)			
3		reserved, set this bit to 0, ignore when reading.			
4	ETAOS	Enables Transmit All Ones (TAOS)			
5	EPAT0	Enables internal data pattern transmis-			
6	EPATI	sion. See right hand section of table for values.			
7	RESET	RESET = 1 resets device state and all registers.			
1. To ei	nable Dual Loopt	pack (DLOOP), set both ERLOOP = 1, ELLOO	P = 1.		

Bit	Name	Description
0	ESJAM	Disables Jamming of Elastic Store Read Out Clock ($^{1}/_{8}$ bit-time adjustment for over/underflow).
1	ESCEN	Centers ES pointer for a difference of 16 or 32 (depending on depth-clears automatically).
2	ES64	Increases ES depth from 32 to 64 bits.
3		reserved-set to 0 for normal operation.
4		reserved-set to 0 for normal operation.
5	SBIST	Starts Built-In Self Test.
6	PLCKE	This bit is meaningful only in the LXT351– <i>for LXT350, set this bit to 0.</i> PCLKE = 0 sets RPOS/RNEG valid on the rising edge of RCLK. PCLKE = 1 sets RPOS/RNEG valid on the falling edge of RCLK.
7	JA6HZ	When $JA6HZ = 1$, changes bandwidth of Jitter Attenuation Loop from 3 Hz (default) to 6 Hz.

 Table 19: Control Register #3 Read/Write, Address (A7-A1) = x010010

Table 20: Interrupt Clear Register Read/Write, Address (A7-A1) = x010011

Bit	Name	Function ¹			
0	CLOS	Clears/Masks LOS Interrupt.			
1		reserved, set this bit to 1 for normal operation.			
2	CAIS	Clears/Masks AIS Interrupt.			
3	CQRSS	Clears/Masks QRSS Interrupt.			
4		reserved-set this bit to 1 for normal operation.			
5	CDFMO	Clears/Masks DFMO.			
6	CESO	Clears/Masks ES Overflow Interrupt.			
7	CESU	Clears/Masks ES Underflow Interrupt.			
1. Lea	I. Leaving a one in any of these bits masks the associated interrupt.				

Bit	Name	Function
0	TLOS	Loss of Signal (LOS) has changed since last clear LOS interrupt occurred.
1		reserved-ignore.
2	TAIS	AIS has changed since last clear AIS interrupt occurred.
3	TQRSS	QRSS has changed since last clear QRSS interrupt occurred ¹ .
4		reserved-ignore.
5	TDFMO	DFMO has changed since last clear DFMS interrupt occurred.
6	ESOVR	ES overflow status sticky bit ² .
7	ESUNF	ES underflow status sticky bit ² .

Table 21: Transition Status Register Read Only, Address (A7-A1) = x010100

2. Tripping the overflow or underflow indicator in the ES sets the ESOVR/ESUNF status bit(s). Reading the Transition Status Reg-ister clears these bits. Setting CESO and CESU in the Interrupt Clear Register masks these interrupts.

Table 22:	Performance	Status	Register	Read Only,	Address (A	7-A1) = x010101
-----------	-------------	--------	----------	------------	------------	-----------------

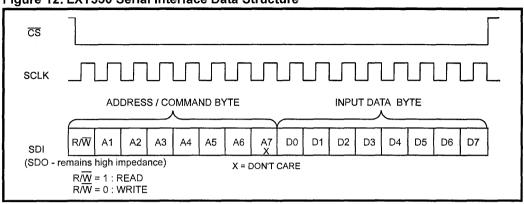
Bit	Name	Function
0	LOS	Loss of Signal (LOS) Status.
1		reserved-ignore.
2	AIS	Alarm Indicator (AIS) Status.
3	QRSS	QRSS Pattern Detect Status.
4		reserved-ignore.
5	DFMO	Driver Open Indication.
6	BIST	Built-In Self Test Status.
7		reserved-ignore

Bit	Name	Function
0	CODEV	Enables detection of HDB3 code violation on the BPV pin along with bipolar violations and ZEROVs (as enabled).
1	ZEROV	Enables detection of four consecutive zeros (an HDB3 coding violation) on the BPV pin along with bipolar violation and ZEROVs (as enabled).
2	LOS2048	Changes LOS detection threshold from 32 consecutive zeros (for E1 operation) or 175 consecutive zeros (T1 operation) to 2048 consecutive zeros in either environment.
3	COL32CM	In E1 Mode, changes "clear LOS condition" criterion from 12.5% marks density (default) to receipt of 32 consecutive marks.
4		reserved–set to 0 for normal operation; ignore when reading.
5		reserved–set to 0 for normal operation; ignore when reading.
6		reserved–set to 0 for normal operation; ignore when reading.
7		reserved–set to 0 for normal operation; ignore when reading.

Table 23: Control Register #4 Read/Write, Address (A7-A1) = x010111

Serial Port Operation (LXT350 Only)

The LXT350 operates in Host Mode when the MODE pin is set High. Figure 12 shows the SIO data structure. The registers are accessible through a 16-bit word: an 8-bit Command/Address byte (bits R/\overline{W} and A1-A7) and a subsequent 8-bit data byte (bits D0-7). Bit R/\overline{W} determines whether a read or a write operation occurs. Bits A6-1 in the Command/Address byte address specific registers (the address decoder ignores bit A7). The data byte depends on both the value of bit R/\overline{W} and the address of the register as set in the Command/Address byte.


Host Mode provides a latched interrupt output (\overline{INT}). A change in the state of any of the following bits in the Performance Status Register will drive \overline{INT} Low: LOS, AIS, QRSS, or DFMO. An interrupt will also occur when there is an elastic store overflow or underflow. When the interrupt has occurred, the \overline{INT} output pin is pulled Low. The output stage of each \overline{INT} pin consists only of a pull-down device, so each one requires an external pull-up resistor. The interrupt is cleared when the interrupt condition no longer exists, and the host processor writes a lto the respective interrupt causing bit(s) in the Interrupt Register. Leaving a 1 in any of these interrupt status bits masks that interrupt.

Host Mode also allows control of the serial data and receive data output timing. The clock edge (CLKE) signal determines when the outputs are valid, relative to the Serial Clock (SCLK) or RCLK as shown in Table 24.

Table 24: CLKE Settings

		-	
CLKE	Output	Clock	Valid Edge
	RPOS	RCLK	Rising
	RNEG	RCLK	Rising
Low	SDO SCLK Falli		Falling
	RPOS	RCLK	Falling
	RNEG	RCLK	Falling
High	SDO	SCLK	Rising

Figure 12: LXT350 Serial Interface Data Structure

Parallel Port Operation (LXT351 Only)

The LXT351 address/control bus pins and control pins are compatible with both the Intel and Motorola address/data buses. See Figures 22 and 23 for the I/O timing diagram for each bus. The device automatically detects bus timing based on the Intel and Motorola microprocessor bus specifications. The maximum recommended processor speed for an Intel device is 20 MHz; for a Motorola device, 16.78 MHz. Table 17 summarizes the control and status registers for the LXT351. Tables 17 through 23 identify and explain the bits in the control registers.

The LXT351 provides a latched interrupt output (\overline{INT}). A change in the state of any of the following bits in the Performance Status Register will drive \overline{INT} Low: LOS, AIS, QRSS, DFMO. When the interrupt has occurred, the \overline{INT} output pin is pulled Low. The output stage of \overline{INT} pin consists only of a pull-down device, so each pin requires an external pull-up resistor. The interrupt is cleared when the interrupt condition no longer exists, and the host processor writes a 1 to the respective interrupt causing bit(s) in the Interrupt Register. Leaving a 1 in any of these interrupt status bits masks that interrupt.

The received data output is valid on the rising edge of RCLK, when bit CR3.PCLKE = 0. The data output is valid on the falling edge of RCLK when CR3.PCLKE =1.

There are five read/write and three read-only registers. Only bits A6-1 in the address byte are valid. (The address decoder ignores bits A7 and A0.) Tables 17 through 23 show the register address bits A7-1, without regard to bit A0.

APPLICATION INFORMATION

NOTE

This application information is for design aid only.

Table 25 shows the specification for transmit return loss in E1 applications. (The G.703/CH PTT specification is a Swiss Telecommunications Ministry specification.)

Table 26 shows the transmit return loss values for T1 applications. Table 34 shows the receive return loss values.

Table 25: E1 Transmit Return LossRequirements

	Return Loss					
Frequency Band	ETS 300 166	G.703/CH PTT				
51-102 kHz	6 dB	8 dB				
102-2048 kHz	8 dB	14 dB				
2048 - 3072 kHz	8 dB	10 dB				

Table 26: Transmit Return Loss (2.048 Mbps)

EC3-1	Xfrmr/ Rt	Rload (Ω)	CI (pF)	Return Loss (dB)
000	1:2/	75	0	14
	9.1 Ω		470	16
		120 -	0	12
			470	13
	1:2.3/			13
	9.1 Ω		470	16

Table 27: Transmit Return Loss (1.544 Mbps)

EC3-1	Xfrmr/ Rt	Rload (Ω)	CI (pF)	Return Loss (dB)
011 ²	1:2/	100	0	16
	9.1 Ω		470	17
	1:1.15 ¹ /	100	0	2
	0.0 Ω		470	2

1. A 1:1.15 transmit transformer keeps the total transceiver power dissipation at a low level, a 0.47 μ F DC blocking capacitor must be placed on TTIP or TRING.

2. Refer to Table 12.

Table 28: Transformer Specifications for LXT350/LXT351

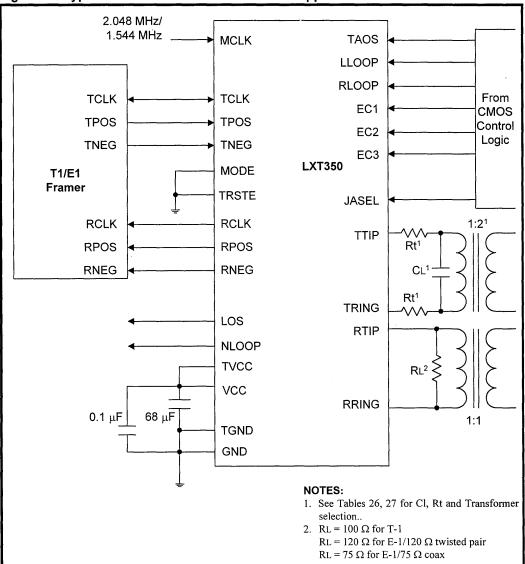
Tx/ Rx	Frequency MHz	Turns Ratio	Primary Inductance μΗ (minimum)	Leakage Inductance μΗ (max)	Interwinding Capacitance pF (max)	DCR Ω (maximum)	Dielectric ¹ Breakdown V (minimum)
Tx	1.544	1:1.15	600	0.80	60	0.90 pri 1.70 sec	1500 VRMS
	2.048	1:2.3	600	0.80	60	0.70 pri 1.20 sec	1500 VRMS ² (3000 VRMS)
	1.544/2.048	1:2	600	0.80	60	1.0 pri 1.70 sec	1500 VRMS ² (3000 VRMS)
Rx	1.544/2.048	1:1	600	1.10	60	1.10 pri 1.10 sec	1500 VRMS ² (3000 VRMS)

1. Some ETSI applications may require a 2.3 kV dielectric breakdown voltage.

 Some applications require transformers to guarantee performance in extended temperature range (-40° to +85° C) ETSI applications require a dielectric breakdown voltage of 3000 VRMS.

Tx/Rx	Turns Ratio	Part Number	Manufacturer
Tx	1:1.15	PE-65388	Pulse Engineering
		PE-65770	
		16Z5952	Vitec
	1:2	PE-65351	Pulse Engineering
		PE-65771	
		0553-5006-IC	Bell-Fuse
		66Z-1308	Fil-Mag
		671-5832	Midcom
		67127370	Schott Corp
		67130850	
		TD61-1205D	HALO (combination Tx/Rx set)
		TG26-1205NI	HALO (surface mount dual transformer 1CT:2CT & 1CT:2CT)
		TG48-1205NI	HALO (surface mount dual transformer 1CT:2CT & 1:1)
		16Z5946	Vitec
Ī	1:2.3	PE-65558	Pulse Engineering
Rx	l:1	FE 8006-155	Fil-Mag
		671-5792	Midcom
		PE-64936	Pulse Engineering
I [PE-65778	
		67130840	Schott Corp
		67109510	
		TD61-1205D	HALO (combination Tx/Rx set)

Table 29: Recommended Transformers for LXT350/LXT351


2

LXT350/351 Integrated T1/E1 S/H Transceivers With Crystal-less Jitter Attenuation

Figure 13 shows a typical LXT350 application in either or T1 or E1 environment. See Tables 26 through 31 to select the transformers (T1 and T2), resistors (Rt and Rl) and capacitors (Cl) needed for this application.

NOTE

If the application includes surge protection, such as a varistor or sidactor on the TTIP/TRING lines, it may also require reducing the value of the capacitor CL or eliminating it completely. Excessive capacitance at CL will distort the transmitted signals.

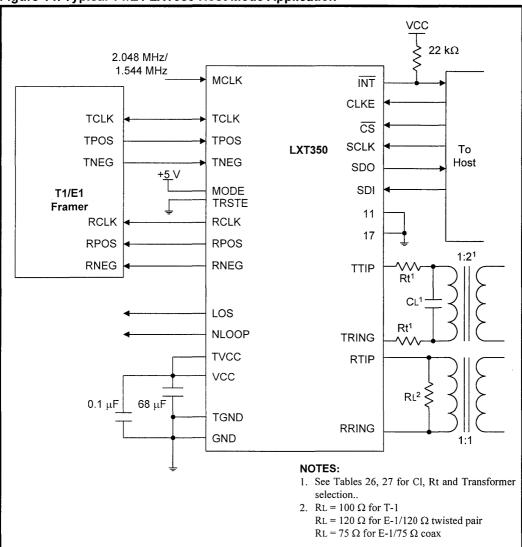
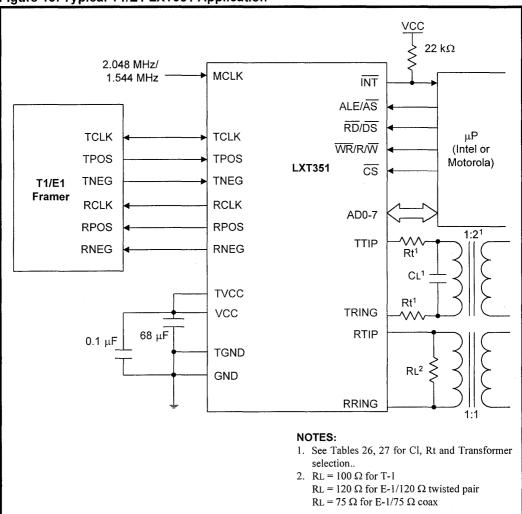

Figure 13: Typical T1/E1 LXT350 Hardware Mode Application

Figure 14 shows an application using the LXT350 in its Host Controlled Mode. See Tables 26 through 27 to select the transformers (T1 and T2), resistors (Rt and Rl) and capacitors (Cl) needed for this application.

NOTE

If the application includes surge protection, such as a varistor or sidactor on the TTIP/TRING lines, it may also require reducing the value of the capacitor CL or eliminating it completely. Excessive capacitance at CL will distort the transmitted signals.

Figure 14: Typical T1/E1 LXT350 Host Mode Application



LXT350/351 Integrated T1/E1 S/H Transceivers With Crystal-less Jitter Attenuation

Figure 15 shows an application using the LXT351. See Tables 26 through 27 to select the transformers (T1 and T2), resistors (Rt and Rl) and capacitors (Cl) needed for this application.

NOTE

If the application includes surge protection, such as a varistor or sidactor on the TTIP/TRING lines, it may also require reducing the value of the capacitor CL or eliminating it completely.

Figure 15: Typical T1/E1 LXT351 Application

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 30 to 42 and Figures 16 through 26 represent the performance spcifications of the LXT350 and LXT351 and are guaranteed by test, except where noted by design.

Table 30: Absolute Maximum Ratings

Parameter	Sym	Min	Max	Units
DC supply (reference to GND)	Vcc,TVcc	_	6.0	V
Input voltage, any pin ¹	VIN	GND -0.3 V	Vcc + 0.3 V	v
Input current, any pin ²	IIN	- 10	10	mA
Storage Temperature	Тѕтд	-65	150	°C

CAUTION

Operation at these limits may permanently damage the device. Normal operation at these extremes not guaranteed.

1. TVCC and VCC must not differ by more than 0.3 V during operation. TGND and GND must not differ by more than 0.3 V during operation.

2. Transient currents of up to 100 mA will not cause SCR latch-up. TTIP, TRING, TVCC, and TGND can withstand continuous currents of up to 100 mA.

Table 31: Recommended Operating Conditions

Parameter		Sym	Min	Typ ¹	Max	Units	Test Conditions
DC Supply ²		Vcc,TVcc	4.75	5.0	5.25	v	
Ambient Operating Temperature		ТА	- 40	25	85	°C	
Total	T1	PD	-	310	380	mW	100% mark density
Power Dissipation ³		Pd	-	225	295	mW	50% mark density
	E1	Pd	-	275	330	mW	100% mark density
		PD	_	215	270	mW	50% mark density

1. Typical figures are at 25° C and are for design aid only; not guaranteed and not subject to production testing.

2. TVCC and VCC must not differ by more than 0.3 V.

3. Power dissipation while driving 75 Ω load over operating range for T1 operation or 60 Ω load for E1 operation. Includes power dissipation on device and load. Digital levels are within 10% of the supply rails and digital outputs driving a 50 pF capacitive load.

Parameter		Sym	Min	Тур	Max	Units	Test Conditions
Digital I/O Pins							
High level input voltage ^{1,2} (pins 1-4, 23-25) ⁴		Vih	2.0	_		v	
Low level input voltage ^{1,2} (pins 1-4, 23-25) ⁴		VIL		_	0.8	v	
High level output voltage ^{1,2} (pins 6-8, 12, 23, 23)	5) ⁴	Vон	2.4			V	IOUT = -400 μA
Low level output voltage ^{1,2} (pins 6-8, 12, 23, 25) ⁴			_		0.4	v	IOUT = 1.6 mA
Tri-state leakage current ¹ (all outputs)			0		±10	μA	
Mode Input Pins					<u></u>		
High level input voltage ³ (pins 5, 9, 11, 26-28) ⁴		Vih	3.5	-	-	v	
Midrange output voltage ³ (pins 5, 9, 11, 26-28) ⁴	ł	Vом	2.3	_	2.7	v	
Low level input voltage ³ (pins 5, 9, 11, 26-28) ⁴ Host Mode H/W Mode		Vil Vil	-	-	0.8 1.5	V V	
Input leakage current (pins 5, 9, 11, 26-28) ⁴			0	-	±50	μA	
Tri-state Leakage current ¹ (all outputs)			0	_	±10	μA	
TTIP/TRING Leakage current			_	_	1.2	mA	In power down and tristate

Table 32: LXT350 DC Electrical Characteristics ((over recommended operating range)
--	------------------------------------

2. Output drivers will output CMOS logic levels into CMOS loads.

3. As an alternative to supplying 2.3 - 2.7 V to these pins, they may be left open.

4. Listed pins are for 28-pin DIP and PLCC packages. Refer to I/O description for 44-pin QFP package.

Table 33: LXT351 DC Electrical Characteristics (over recommended operating range)

Parameter	Sym	Min	Тур	Max	Units	Test Conditions		
Digital I/O Pins								
High level input voltage ^{1,2} (pins 1-5, 9-12, 17, 23-28) ³	Vih	2.0	-	-	V			
Low level input voltage ^{1,2} (pins 1-5, 9-12, 17, 23-28) ³	Vil	-	-	0.8	v			
High level output voltage 1,2 (pins 6-8, 10, 11,23, 28) ³	Vон	2.4	-	-	v	IOUT = $-400 \ \mu A$		
Low level output voltage 1,2 (pins 6-8, 10, 11,23, 28) ³	Vol	-	_	0.4	v	IOUT = 1.6 mA		
Input leakage current	ILL	_	_	±10	μA			
1 Europionality of pins 23 and 25 depends on mode. See Ho	st Mode d	escription						

1. Functionality of pins 23 and 25 depends on mode. See Host Mode description.

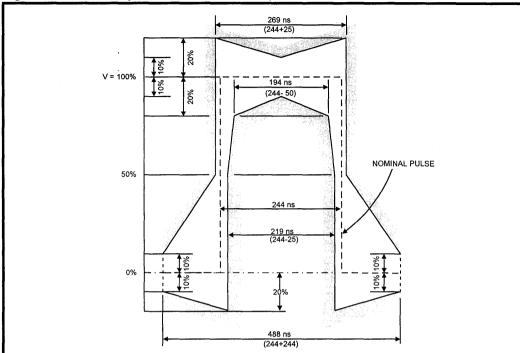
2. Output drivers will output CMOS logic levels into CMOS loads.

3. Listed pins are for 28-pin DIP and PLCC packages. Refer to I/O description for 44-pin QFP package.

Parameter		Min	Typ ¹	Max	Units	Test Conditions
Recommended output load	on TTIP/TRING	50	-	200	Ω	
AMI Output Pulse Ampli- tudes	T1	2.4	3.0	3.6	v	$RL = 100 \Omega$
	E1	2.7	3.0	3.3	v	RL = 120 Ω
Jitter added by the transmitter ²	10 Hz - 8 kHz ³	-	-	0.02	UI	
	8 kHz - 40 kHz ³	-	-	0.025	UI	
	10 Hz - 40 kHz ³	-	-	0.025	UI	
	Broad Band	-	_	0.05	UI	
Receiver Sensitivity		0		18	dB	@ 1024 kHz 1.431
Allowable consecutive zeros before LOS (T1)		160	175	190	-	
Allowable consecutive zeros before LOS (E1)		_	32	_	_	
Input jitter tolerance (T1)	10 kHz - 100 kHz	0.4	_	_	UI	0 dB line
	1 Hz ³	138			UI	AT&T Pub 62411
Input jitter tolerance (E1)	10 kHz - 100 kHz	0.2	_	_	UI	0 dB line
	1 Hz ³	37	-	_	UI	ITU (G.823)
Jitter attenuation curve corr	her frequency ⁴	_	3	-	Hz	selectable in data port
Driver Output Impedance		-	3	-	Ω	
Receiver Input Impedance		-	40	_	kΩ	RTIP to RRING
Receive Return Loss (E1)	51 kHz - 102 kHz ³	20	22	-	dB	
	102 kHz - 2.048 MHz ³	20	28	-	dB	
	2.048 MHz - 3.072 MHz ³	25	30	-	dB	

Table 34: Analog Characteristics (over recommended operating range)

1. Typical figures are at 25° C and are for design aid only; not guaranteed and not subject to production testing.


2. Input signal to TCLK is jitter-free. The Jitter Attenuator is in the receive path or disabled.

3. Guaranteed by characterization; not subject to production testing.

4. Circuit attenuates jitter at 20 dB/decade above the corner frequency.

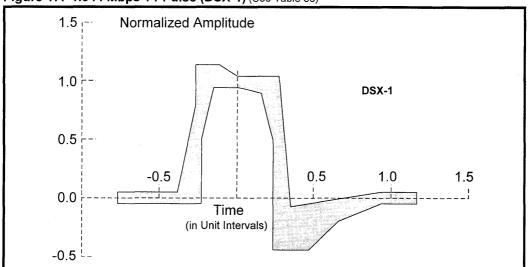

LXT350/351 Integrated T1/E1 S/H Transceivers With Crystal-less Jitter Attenuation

Figure 16: 2.048 Mbps E1 Pulse (See Table 35)

Table 35: 2.048 Mbps E1 Pulse Mask Specifications

Parameter	TPW	Coax	Unit
Test load impedance	120	75	Ω
Nominal peak mark voltage	3.0	2.37	v
Nominal peak space voltage	0 ±0.30	0 ±0.237	v
Nominal pulse width	244	244	ns
Ratio of positive and negative pulse amplitudes at center of pulse	95-105	95-105	%
Ratio of positive and negative pulse amplitudes at nominal half amplitude	95-105	95-105	%

Figure 17: 1.544 Mbps T1 Pulse (DSX-1) (See Table 36)

Table 36: 1.544 Mbps T1 (DSX-1) Pulse Mask Corner Point Specifications

DSX-1 Template (per ANSI T1. 102-1993)							
Minimu	Minimum Curve		ım Curve				
Time (UI)	Amplitude	Time (UI)	Amplitude				
-0.77	-0.05	-0.77	0.05				
-0.23	-0.05	-0.39	0.05				
-0.23	0.50	-0.27	0.80				
-0.15	0.95	-0.27	1.15				
0.0	0.95	-0.12	1.15				
0.15	0.90	0.0	1.05				
0.23	0.50	0.27	1.05				
0.23	-0.45	0.35	-0.07				
0.46	-0.45	0.93	0.05				
0.66	-0.20	1.16	0.05				
0.93	-0.05						
1.16	-0.05						

Sym	Min	Typ1	Max	Units	Notes
MCLK	_	1.544	-	MHz	must be supplied
MCLKt	_	±32	-	ppm	
MCLKd	40	-	60	%	
TCLK	-	1.544	-	MHz	
TCLKt	_	-	±100	ppm	
TCLKd	10	_	90	%	
tSUT	50	-	-	ns	
tHT	50	-	-	ns	
	MCLK MCLKt MCLKd TCLK TCLKt TCLKd tSUT	MCLK - MCLKt - MCLKd 40 TCLK - TCLKt - TCLKd 10 tsur 50	MCLK - 1.544 MCLKt - ±32 MCLKd 40 - TCLK - 1.544 TCLKt - - TCLKt - - TCLKd 10 - tSUT 50 -	MCLK - 1.544 - MCLKt - ±32 - MCLKd 40 - 60 TCLK - 1.544 - TCLKt - 1.544 - TCLKt - ±100 - TCLKd 10 - 90 tSUT 50 - -	MCLK - 1.544 - MHz MCLKt - ±32 - ppm MCLKd 40 - 60 % TCLK - 1.544 - MHz TCLK - 1.544 - MHz TCLKt - 1.544 - MHz TCLKt - - ±100 ppm TCLKd 10 - 90 % tsur 50 - - ns

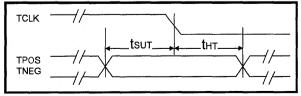

Table 37: Master and Transmit Clock Timing Characteristics for T1 Operation (over recommended operating range) (see Figure 18)

Table 38: Master and Transmit Clock Timing Characteristics for E1 Operation (see Figure 18)

Parameter	Sym	Min	Typ ¹	Max	Units	Notes
Master clock frequency	MCLK		2.048	-	MHz	must be supplied
Master clock tolerance	MCLKt		±32	-	ppm	
Master clock duty cycle	MCLKd	40	-	60	%	
Transmit clock frequency	TCLK		2.048	-	MHz	
Transmit clock tolerance	TCLKt	_	_	±100	ppm	
Transmit clock duty cycle	TCLKd	10	-	90	%	
TPOS/TNEG to TCLK setup time	tSUT	50	-	_	ns	
TCLK to TPOS/TNEG hold time	tHT	50	_	_	ns	

1. Typical figures are at 25° C and are for design aid only; not guaranteed and not subject to production testing.

Figure 18: Transmit Clock Timing

Parameter	Sym	Min	Тур ¹	Max	Units
Receive clock duty cycle ^{2, 3}	RLCKd	40	50	60	%
Receive clock pulse width ^{2, 3}	tPW	_	648	_	ns
Receive clock pulse width high	tPWH	_	324	-	ns
Receive clock pulse width low ^{1,3}	tPWL	260	324	388	ns
RPOS/RNEG to RCLK rising time	tSUR	_	274	-	ns
RCLK rising to RPOS/RNEG hold time	tHR	_	274	_	ns

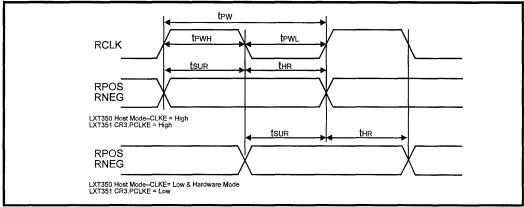
Table 39: Receive Timing Characteristics for T1 Operation (See Figure 19)

1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. RCLK duty cycle widths will vary according to extent of received pulse jitter displacement. Max and Min RCLK duty cycles are for worst case jitter conditions.

3. Worst case conditions guaranteed by design only.

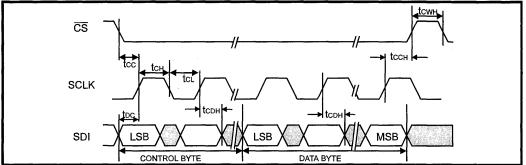
Table 40: Receive Timing Characteristics for E1 Operation (See Figure 19)

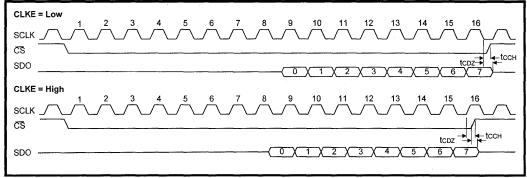

Parameter	Sym	Min	Тур ¹	Max	Units
Receive clock duty cycle ^{2, 3}	RLCKd	40	50	60	%
Receive clock pulse width ^{2, 3}	tPW		488	-	ns
Receive clock pulse width high	tPWH	_	244	-	ns
Receive clock pulse width low ^{1,3}	tPWL	195	244	293	ns
RPOS/RNEG to RCLK rising time	tsur	-	194	_	ns
RCLK rising to RPOS/RNEG hold time	tHR	_	194		ns

1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

 RCLK duty cycle widths will vary according to extent of received pulse jitter displacement. Max and Min RCLK duty cycles are for worst case jitter conditions (0.4 UI clock displacement for 1.544 MHz.)

3. Worst case conditions guaranteed by design only.

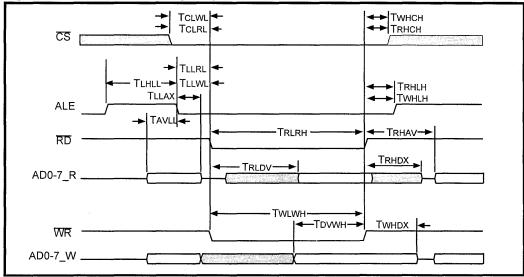

Figure 19: Receive Clock Timing


LXT350/351 Integrated T1/E1 S/H Transceivers With Crystal-less Jitter Attenuation

Parameter	Sym	Min	Typ ¹	Max	Units	Parameter
Rise/fall time—any digital output	tRF	-	-	100	ns	Load 1.6 mA, 50 pF
SDI to SCLK setup time	tDC	50	_		ns	
SCLK to SDI hold time	tCDH	50	-		ns	
SCLK low time	tCL	240	-	-	ns	
SCLK high time	tCH	240	-	-	ns	
SCLK rise and fall time	tR, tF	_	-	50	ns	
$\overline{\text{CS}}$ falling edge to SCLK rising edge	tCC	50	-	-	ns	
Last SCLK edge to \overline{CS} rising edge	tCCH	50	_	_	ns	
CS inactive time	tCWH	250	_	_	ns	
SCLK to SDO valid time	tCDV	-	-	200	ns	
SCLK falling edge or \overline{CS} rising edge to SDO high-Z	tCDZ	-	100	-	ns	

Figure 20: LXT350 Serial Data Input Timing Diagram

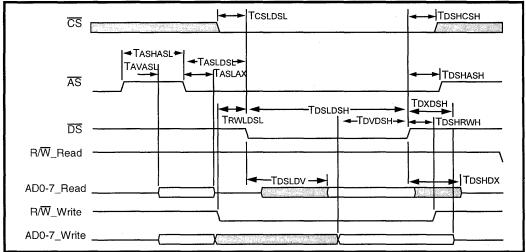
Figure 21: Serial Data Output Timing Diagram



Parameter	Sym	Min	Max	Units	Test Conditions
ALE pulse width	TLHLL	35	_	ns	
Address valid to ALE falling edge	TAVLL	10	_	ns	
ALE falling edge to address hold time	TLLAX	10	-	ns	
ALE falling edge to \overline{RD} falling edge	TLLRL	10		ns	
ALE falling edge to \overline{WR} falling edge	TLLWL	10		ns	
$\overline{\text{CS}}$ falling edge to $\overline{\text{RD}}$ falling edge	TCLRL	10	-	ns	
$\overline{\text{CS}}$ falling edge to $\overline{\text{WR}}$ falling edge	TCLWL	10	-	ns	
RD low pulse width	Trlrh	95	-	ns	
RD falling edge to data valid	Trldv	10	55	ns	
Data hold time after \overline{RD} rising edge	TRHDX	5	35	ns	
RD rising edge to ALE rising edge	TRHLH	15	-	ns	
RD rising edge to address valid	TRHAV	35	-	ns	
$\overline{\text{CS}}$ low hold time after $\overline{\text{RD}}$ rising edge	TRHCH	0	_	ns	
WR low pulse width	Twlwh	95		ns	
Data setup time before \overline{WR} rising edge	Tdvwh	40	-	ns	
Data hold time after \overline{WR} rising edge	Twhdx	30	-	ns	
$\overline{\mathrm{WR}}$ rising edge to ALE rising edge	TWHLH	15	_	ns	
$\overline{\text{CS}}$ low hold time after $\overline{\text{WR}}$ rising edge	Тwнсн	15		ns	

Table 42: LXT351 20 MHz Intel Bus Parallel I/O Timing Characteristics (See Figure 22)

Figure 22: LXT351 I/O Timing Diagram for Intel Address/Data Bus


2

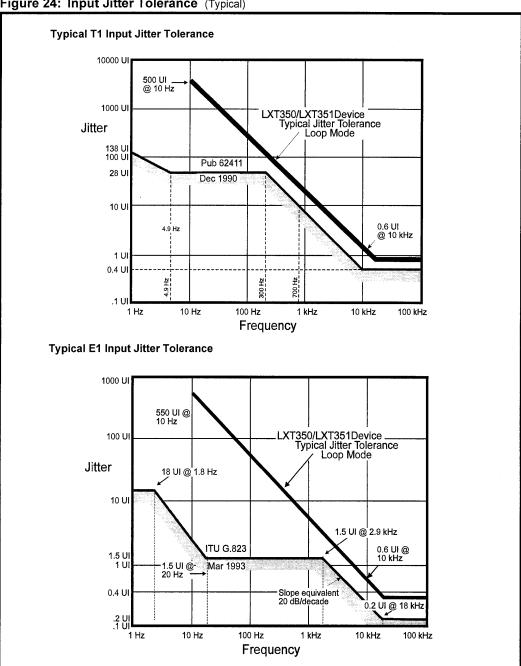

Parameter	Sym	Min	Max	Units	Test Conditions
$\overline{\mathrm{DS}}$ rising edge to $\overline{\mathrm{AS}}$ rising edge	TDSHASH	15	-	ns	
$\overline{\mathrm{AS}}$ high pulse width	TASHASL	35	-	ns	
Address valid setup time at \overline{AS} falling edge	Tavasl	10	-	ns	
$\overline{\mathrm{AS}}$ falling edge to Address valid hold time	TASLAX	10	-	ns	
$\overline{\text{AS}}$ falling edge to $\overline{\text{DS}}$ falling edge	Tasldsl	20		ns	
$\overline{\text{CS}}$ falling edge to $\overline{\text{DS}}$ falling edge	TCSLDSL	10	-	ns	
$\overline{\mathrm{DS}}$ low pulse width	Tdsldsh	95	-	ns	
$\overline{\mathrm{DS}}$ falling edge to data valid	TDSLDV	10	55	ns	
Data hold time after $\overline{\text{DS}}$ rising edge	TDSHDX	5	35	ns	
R/\overline{W} falling edge to \overline{DS} falling edge	Trwldsl	10	-	ns	
Data setup time before $\overline{\text{DS}}$ rising edge	Tdvdsh	40	-	ns	
Data hold time after DS rising edge	Tdxdsh	30	-	ns	
R/\overline{W} low hold time after \overline{DS} rising edge	TDSHRWH	15	-	ns	
$\overline{\text{CS}}$ low hold time after $\overline{\text{DS}}$ rising edge	TDSHCSH	15	_	ns	

Table 43: LXT351 16.78 MHz Motorola Bus Parallel I/O Timing Characteristics (See Figure 23)

Figure 23: LXT351 I/O Timing Diagram for Motorola Address/Data Bus

Figure 24: Input Jitter Tolerance (Typical)

LEVEL ONE.

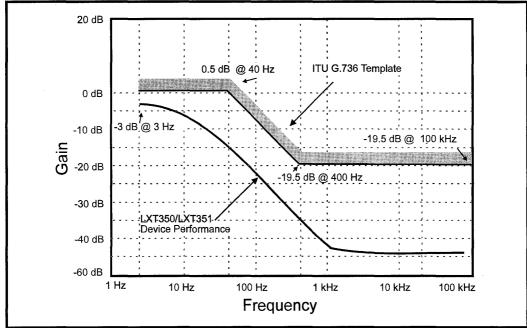
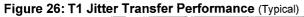
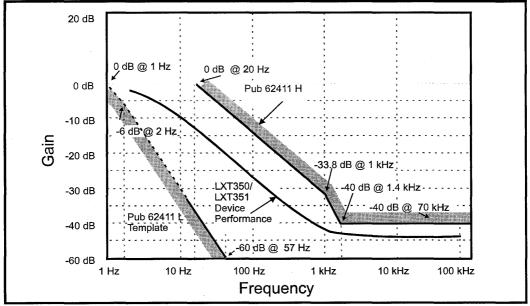




Figure 25: E1 Jitter Transfer Performance (Typical)

T1/E1 Long-Haul Transceivers

1997 Communications Data Book

•

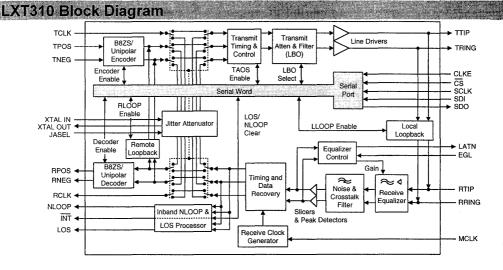
DATA SHEET

LXT310 T1 CSU/ISDN PRI Transceiver

General Description

The LXT310 is the first fully integrated transceiver for T1 CSU and ISDN Primary Rate Interface (ISDN PRI) applications at 1.544 Mbps. This transceiver operates over 6,000 feet of 22 AWG twisted-pair cable without any external components. To compensate for shorter lines, 7.5 dB, 15 dB, and 22.5 dB frequency-dependent transmit Line Build-Outs (LBOs) are provided.

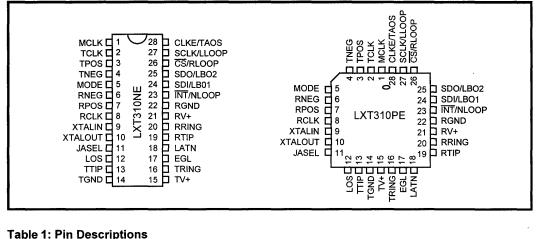
The device offers selectable B8ZS encoding/decoding, and unipolar or bipolar data I/O. The LXT310 also provides jitter attenuation in either the transmit or receive direction starting at 6 Hz, and incorporates a serial interface (SIO) for microprocessor control.


The LXT310 offers a variety of diagnostic features including loopbacks and loss of signal monitoring. It uses an advanced double-poly, double-metal CMOS process and requires only a single 5-volt power supply.

Applications

- ISDN Primary Rate Interface (PRI) (ANSI T1.408)
- CSU Interface to T1 Service (Pub 62411)
- DS1 Metallic Interface (ANSI T1.403)
- T1 LAN bridge
- CPU to CPU Channel Extenders
- Digital Loop Carrier Subscriber Carrier Systems
- T1 Mux
- Channel Banks

Features


- Fully integrated transceiver comprising: on-chip equalizer; timing recovery/control; data processor; receiver; and transmitter with Line Build-Out and digital control
- Meets or exceeds ANSI and ITU specifications including T1.403, T1.408, and AT&T Pub 62411
- Selectable Receiver Sensitivity. Fully restores the received signal after transmission through a cable with attenuation of either 0 to 26 dB, or 0 to 36 dB @ 772 kHz
- Selectable Unipolar or Bipolar data I/O
- Selectable B8ZS encoding/decoding
- Line attenuation indication output
- 138 UI jitter tolerance at 1 Hz
- · Output short circuit current limit protection
- · On-line idle mode for redundant systems
- 7.5 dB, 15 dB, and 22.5 dB transmit LBOs
- · Local, remote and inband network loopback functions
- · Receive monitor with Loss of Signal (LOS) output
- Jitter attenuation starting at 6 Hz, switchable to transmit or receive path
- · Microprocessor controllable

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Figure 1: Pin Assignments

Table 1: Pin Descriptions

Pin #	Sym	1/0	Description
1	MCLK	I	Master Clock. A 1.544 MHz clock input used to generate internal clocks. Upon Loss of Signal (LOS), RCLK is derived from MCLK. If MCLK is not applied, this pin should be grounded.
2	TCLK	I	Transmit Clock. Transmit clock input. TPOS and TNEG are sampled on the falling edge of TCLK.
3	TPOS/ TDATA	I	Transmit Data Input; Data Input/Polarity Select. Input data to be transmitted on the twisted-pair line. Normally, pin 3 is TPOS and pin 4 is TNEG, the positive and nega-
4	TNEG/ UBS	I	tive sides of a bipolar input pair. However, if pin 4 is held High for at least 16 TCLK cycles (equivalent to 15 successive bipolar violations), the LXT310 switches to a unipolar mode. The LXT310 returns to bipolar I/O when pin 4 goes Low.
5	MODE	I	Mode Select. Setting MODE High selects the Host Mode. In Host Mode, the serial interface is enabled for control and status reporting. Setting MODE Low selects the Hardware (H/W) Mode. In Hardware Mode the serial interface is disabled; hard-wired pins control configuration and report status. Tying MODE to RCLK enables Hardware Mode and the B8ZS encoder/decoder.
6	RNEG	0	Receive Negative Data; Receive Positive Data. In Bipolar Data I/O Mode pins 6 and
7	RPOS	0	7 are bipolar data outputs. A signal on RNEG corresponds to receipt of a negative pulse on RTIP/RRING, and a signal on RPOS corresponds to a positive pulse on RTIP/ RRING. RNEG/RPOS outputs are Non-Return-to-Zero (NRZ). In Host Mode, CLKE determines the clock edge at which these outputs are stable and valid. In Hardware Mode both outputs are stable and valid on the RCLK rising edge.
6	BPV	0	Bipolar Violation. In Unipolar Data I/O Mode, pin 6 goes High to indicate receipt of a Bipolar Violation of the AMI code.

Pin #	Sym	I/O	Description
7	RDATA	0	Bipolar Violation. In Unipolar Mode, data received from the twisted-pair line is output at pin 7.
8	RCLK	0	Recovered Clock. This is the clock recovered from the signal received at RTIP and RRING.
9	XTALIN	Ι	Crystal Input; Crystal Output. An external crystal (18.7 pF load capacitance, pul-
10	XTALOUT	0	lable) operating at 6.176 MHz (four times the bit rate) is required to enable the jitter attenuation function of the LXT310. These pins may also be used to disable the jitter attenuator by connecting the XTALIN pin to the positive supply through a resistor, and leaving the XTALOUT pin unconnected.
11	JASEL	0	Jitter Attenuation Select. Selects jitter attenuation location. When JASEL is High, the jitter attenuator is active in the receive path. When JASEL is Low, the jitter attenuator is active in the transmit path.
12	LOS	0	Loss of Signal. LOS goes High when 175 consecutive spaces have been detected. LOS returns Low when the received signal reaches a mark density of 12.5% (determined by receipt of four marks within 32 bit periods). Received marks are output on RPOS and RNEG even when LOS is High.
13	TTIP	0	Transmit Tip; Transmit Ring. Differential Driver Outputs. These outputs are
16	TRING	0	designed to drive a 50 - 200 Ω load. Line matching resistors and transformer can be selected to give the desired pulse height.
14	TGND	-	Transmit Ground. Ground return for the transmit drivers power supply TV+.
15	TV+	Ι	Transmit Power Supply. +5 VDC power supply input for the transmit drivers. TV+ must not vary from RV+ by more than ± 0.3 V.
17	EGL	Ι	Equalizer Gain Limit. Input sets equalizer gain. When EGL is Low, up to 36 dB of equalizer gain may be added. When EGL is High, equalizer gain is limited to no more than 26 dB.
18	LATN	Ο	Line Attenuation Indication (See Figure 2). Encoded output. Pulse width, relative to RCLK, indicates receive equalizer gain setting (line insertion loss at 772 kHz) in 7.5 dB steps. When LATN = 1 RCLK pulse, the equalizer is set at 7.5 dB gain, 2 pulses = 15 dB, 3 pulses = 22.5 dB and 4 pulses = 0 dB. Output is valid on the rising edge of RCLK.
19	RTIP	Ι	Receive Tip; Receive Ring. The AMI signal received from the line is applied at these
20	RRING	I	pins. A 1:1 transformer is required. Data and clock from the signal applied at these pins are recovered and output on the RPOS/RNEG and RCLK pins.
21	RV+	I	Receive Power Supply. +5 VDC power supply for all circuits except the transmit drivers. (Transmit drivers are supplied by TV+.)
22	RGND	-	Receive Ground. Ground return for power supply RV+.

Table 1: Pin Descriptions - continued

LXT310 T1 CSU/ISDN PRI Transceiver

Pin #	Sym	I/O	Description
23	NLOOP	0	Network Loopback (<i>H/W Mode</i>). When High, indicates Inband Network Loopback has been activated by reception of 00001 pattern for five seconds. NLOOP is reset by reception of 001 for five seconds, or by activation of RLOOP or LLOOP.
	INT	I	Interrupt (Host Mode). This LXT310 Host Mode output goes Low to flag the host processor when LOS or NLOOP changes state. \overline{INT} is an open-drain output and should be tied to power supply RV+ through a resistor. \overline{INT} is reset by clearing the LOS or NLOOP register bit.
24	SDI	I	Serial Data In (Host Mode). The serial data input stream is applied to this pin when the LXT310 operates in the Host Mode. SDI is sampled on the rising edge of SCLK.
	LBO1	I	Line Build-Out Select 1 (<i>H/W Mode</i>). In Hardware Mode this input is used in conjunction with LBO2 to select the transmit line build-outs: $00 = 0 \text{ dB}$, $01 = 7.5 \text{ dB}$, $10 = 15 \text{ dB}$, and $11 = 22.5 \text{ dB}$.
25	SDO	0	Serial Data Out (Host Mode). The serial data from the on-chip register is output on this pin in the LXT310 Host Mode. If CLKE is High, SDO is valid on the rising edge of SCLK. If CLKE is Low, SDO is valid on the falling edge of SCLK. This pin goes to a high-impedance state when the serial port is being written to and when \overline{CS} is High.
	LBO2	I	Line Build-Out Select 2 (<i>H/W Mode</i>). The signal applied at this pin in the LXT310 Hardware Mode is used in conjunction with LBO1 to select the transmit line build-outs. $00 = 0 \text{ dB}, 01 = 7.5 \text{ dB}, 10 = 15 \text{ dB}, \text{ and } 11 = 22.5 \text{ dB}.$
26	CS	I	Chip Select (Host Mode). This input is used to access the serial interface in the Host Mode. For each read or write operation, \overline{CS} must transition from High to Low, and remain Low.
	RLOOP	I	Remote Loopback (<i>H/W Mode</i>). This input controls loopback in the Hardware Mode. Setting RLOOP High enables Remote Loopback. During Remote Loopback, in-line encoders and decoders are bypassed. Setting both RLOOP and LLOOP High while holding TAOS Low causes a Reset. Setting both RLOOP and LLOOP with TAOS High (or tying RCLK to RLOOP) enables Network Loopback detection.
27	SCLK	I	Serial Clock (<i>Host Mode</i>). This clock is used in the Host Mode to write data to or read data from the serial interface registers.
	LLOOP	I	Local Loopback (H/W Mode). This input controls loopback functions in the Hardware Mode. Setting LLOOP High enables the Local Loopback Mode. Setting both LLOOP and RLOOP while holding TAOS Low causes a Reset.
28	CLKE	I	Clock Edge (<i>Host Mode</i>). Setting CLKE High causes RPOS and RNEG to be valid on the falling edge of RCLK, and SDO to be valid on the rising edge of SCLK. When CLKE is Low, RPOS and RNEG are valid on the rising edge of RCLK, and SDO is valid on the falling edge of SCLK.
	TAOS	I	Transmit All Ones (<i>H/W Mode</i>). When set High in the Hardware Mode, TAOS causes the LXT310 to transmit a stream of marks at the TCLK frequency. Activating TAOS causes TPOS and TNEG inputs to be ignored. TAOS is inhibited during Remote Loopback. Setting TAOS, LLOOP and RLOOP High simultaneously enables Network Loopback detection.

Table 1: Pin Descriptions – continued

FUNCTIONAL DESCRIPTION

The LXT310 is a fully integrated PCM transceiver for 1.544 Mbps (T1) applications. It allows full-duplex transmission of digital data over existing twisted-pair installations.

The LXT310 interfaces with two twisted-pair lines (one pair for transmit, one pair for receive) through standard pulse transformers and appropriate resistors.

The figure on the front page of this section is a block diagram of the LXT310. The transceiver may be controlled by a microprocessor through the serial port (Host Mode), or by individual pin settings (Hardware Mode). The jitter attenuator may be positioned in either the transmit or receive path.

Power Requirements

The LXT310 is a low-power CMOS device. It operates from a single +5 V power supply which can be connected externally to both the transmitter and receiver. However, the two inputs must be within \pm .3 V of each other, and decoupled to their respective grounds separately. Refer to Application Information for typical decoupling circuitry. Isolation between the transmit and receive circuits is provided internally.

Initialization and Reset Operations

Upon power up, the transceiver is held static until the power supply reaches approximately 3 V. Upon crossing

this threshold, the device begins a 32 ms reset cycle to calibrate the transmit and receive delay lines and lock the Phase Lock Loop to the receive line. A reference clock is required to calibrate the delay lines. The transmitter reference is provided by TCLK. The crystal oscillator provides the receiver reference. If the crystal oscillator is grounded, MCLK is used as the receiver reference clock.

The transceiver can also be reset from the Host or Hardware Mode. In Host Mode, reset is commanded by simultaneously writing ones to RLOOP and LLOOP, and a zero to TAOS. In Hardware Mode, reset is commanded by holding RLOOP and LLOOP High simultaneously for 200 ns while holding TAOS Low. In either mode, reset clears and sets all registers to 0.

Receiver

The twisted-pair input is received via a 1:1 transformer. Recovered data is output at RPOS/RNEG (RDATA in unipolar mode), and the recovered clock is output at RCLK. Refer to Test Specifications for receiver timing.

The signal received at RPOS and RNEG is processed through the receive equalizer. The Equalizer Gain Limit (EGL) input determines the maximum gain that may be applied at the equalizer. When set Low, up to 36 dB of gain may be applied.

When EGL is High, gain is limited to no more than 26 dB providing for increased noise margin in shorter loop operation. Insertion loss of the line in 7.5 dB steps, as indicated by the receive equalizer setting, is encoded in the LATN output as shown in Figure 2.

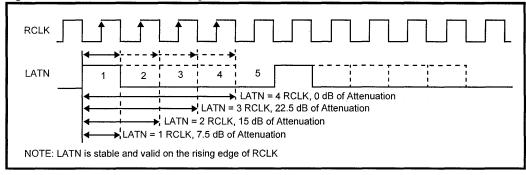


Figure 2: LATN Pulse Width Encoding

LXT310 T1 CSU/ISDN PRI Transceiver

The equalized signal is filtered and applied to the peak detector and data slicers. The peak detector samples the inputs and determines the maximum value of the received signal. A percentage of the peak value is provided to the data slicers as a threshold level to ensure optimum signal-to-noise ratio. The threshold is set to 50% of the peak value. The receiver is capable of accurately recovering signals with up to 36 dB of cable attenuation (from 2.4 V)

After processing through the data slicers, the received signal is routed to the data and timing recovery section, then to the B8ZS decoder (if selected) and to the LOS processor. The LOS Processor loads a digital counter at the RCLK frequency. The count is incremented each time a zero (space) is received, and reset to zero each time a one (mark) is received. Upon receipt of 175 consecutive zeros the LOS pin goes High, and a smooth transition replaces the RCLK output with the MCLK. (During LOS if MCLK is not supplied and JASEL = 1, the RCLK output is replaced with the centered crystal clock.)

Received marks will be output regardless of the LOS status, but the LOS pin will not reset until the ones density reaches 12.5 %. This level is based on receipt of at least 4 ones in any 32-bit period.

Transmitter

Input data (bipolar or unipolar) for transmission onto the line is clocked serially into the device. Bipolar data is input at pin 3 (TPOS) and pin 4 (TNEG). Unipolar data is input at pin 3 (TDATA) only. (Unipolar mode is enabled by holding pin 4 high for 16 RCLK cycles). Input data may be passed through the Jitter Attenuator and/or B8ZS encoder, if selected. In Host Mode, B8ZS is selected by setting bit D3 of the input data byte. In Hardware Mode, B8ZS is selected by connecting the MODE pin to RCLK. Input synchronization is supplied by the transmit clock (TCLK). Timing requirements for TCLK and the Master Clock (MCLK) are defined in Test Specifications.

Idle Mode

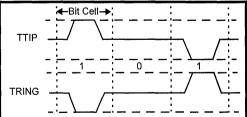
The LXT310 incorporates a transmit idle mode. This allows multiple transceivers to be connected to a single line for redundant applications. TTIP and TRING remain in a high- impedance state when TCLK is not present (TCLK grounded). The high-impedance state can be temporarily disabled by enabling either TAOS, Remote Loopback or Network Loopback.

The transmitted pulse shape is determined by Line Build Out (LBO) inputs LBO1 and LBO2 as follows:

Line Build-Out (dB)	0	7.5	15	22.5
LBO1	0	1	0	1
LBO2	0	0	1	1

LBO settings are input through the serial port in the Host Mode. In the Hardware Mode, LBO inputs are applied through individual pins. Shaped pulses meeting the various T1 CSU and ISDN PRI requirements are applied to the AMI line driver for transmission onto the line at TTIP and TRING. Refer to Test Specifications for T1 pulse mask specifications.

Short Circuit Limit


The LXT310 transmitter is equipped with a short-circuit limiter. This feature limits to approximately 120 mA RMS the current the transmitter will source into a low-impedance load. The limiter trips when the RMS current exceeds the limit for 100 μ s (~ 150 marks). It automatically resets when the load current drops below the limit.

The LXT310 meets or exceeds FCC and AT&T specifications for CSU and NI applications, as well as ANSI T1E1, and CCITT requirements for ISDN PRI.

Line Code

The LXT310 transmits data as a 50% AMI line code as shown in Figure 3. Power consumption is reduced by activating the AMI line driver only to transmit a mark. The output driver is disabled during transmission of a space. Biasing of the transmit DC level is on-chip.

Figure 3: 50% AMI Coding

Functional Description

Jitter Attenuation

Jitter attenuation is provided by a Jitter Attenuation Loop (JAL) and an Elastic Store (ES). An external crystal oscillating at 4 times the bit rate provides clock stabilization. Refer to Table 6 for crystal specifications. The ES is a 32 x 2-bit register. When JASEL = 1, the JAL is positioned in the receive path. When JASEL = 0, the JAL is positioned in the transmit path.

Data (TPOS/TNEG / TDATA or RPOS/RNEG / RDATA) is clocked into the ES with the associated clock signal (TCLK or RCLK), and clocked out of the ES with the dejittered clock from the JAL. When the bit count in the ES is within two bits of overflowing or underflowing, the ES adjusts the output clock by 1/8 of a bit period. The ES produces an average delay of 16 bits in the associated path.

Operating Modes

The LXT310 can be controlled by a microprocessor through a serial interface (Host Mode), or through individual pins (Hardware Mode). The mode of operation is set by the MODE pin logic level.

Host Mode Operation

The LXT310 operates in the Host Mode when MODE is set High. The 16-bit serial word consists of an 8-bit Command/Address byte and an 8-bit Data byte. Table 3 lists the output data bit combinations. Figure 4 shows the serial interface data structure and timing. The Host Mode pro-

 \overline{CS} SCLK ADDRESS / COMMAND BYTE DATA INPUT / OUTPUT BYTE R/₩ A0 A1 A2 A3 A4 A5 A6 D0 D1 D2 D3 D4 D5 D6 D7 SDI/ SDO NOTE Output data byte is the R/W- = 1: Read same as the input data 0 0 0 0 1 0 х ADDRESS / R/W B/W = 0: Write byte except for bits COMMAND A0 A6 Δ4 D<5:7> shown in Table 3. BYTE X=DON'T CARE CLEAR INTERRUPTS SET DIAGNOSTICS OR RESET INPUT RLOOP LLOOP TAOS D7(MSB) 1=ENABLE DATA LOS D0 (LSB) NLOOP B8ZS LBO1 LBO2 BYTE 1=ENABLE 1=ENABLE 1=ENABLE 1=ENABLE

Figure 4: LXT310 Serial Interface Data Structure

vides a latched Interrupt output (INT) which is triggered by a change in the LOS or NLOOP bits. The Interrupt is cleared when the interrupt condition no longer exists, and the host processor writes a one to the respective bit in the serial input data byte.

Host Mode also allows control of the serial data and receive data output timing. The Clock Edge (CLKE) signal determines when these outputs are valid, relative to the Serial Clock (SCLK) or RCLK as listed in Table 2.

Table 2: CLKE Settings

Output	Clock	CLKE = 0	CLKE = 1
RPOS/RNEG	RCLK	Rising	Falling
SDO	SCLK	Falling	Rising

The LXT310 serial port is addressed by setting bit A4 in the Address/Command byte, corresponding to address 16. The LXT310 contains only a single output data register so no complex chip addressing scheme is required. The register is accessed by causing the Chip Select (CS) input to transition from High to Low. Bit 1 of the serial Address/Command byte provides Read/Write control when the chip is accessed. A logic 1 indicates a read operation, and a logic 0 indicates a write operation. Serial data I/O timing characteristics are shown in Table 14, and Figures 11 and 12 in the Test Specifications section.

Bit D5	Bit D6	Bit D7	Status
0	0	0	Reset has occurred, or no program input.
0	0	1	TAOS is active.
0	1	0	Local Loopback is active.
0	1	1	TAOS and Local Loopback are active.
1	0	0	Remote Loopback is active.
1	0	1	DPM has changed state since last Clear DPM occurred.
1.	1	0	LOS has changed state since last Clear LOS occurred.
1	1	1	LOS and DPM have both changed state since last Clear DPM and Clear LOS occurred.

Table 3: LXT310 Serial Data Output Bits (See Figure 4)

Hardware Mode Operation

In Hardware Mode the transceiver is accessed and controlled through individual pins. With the exception of the INT and CLKE functions, Hardware Mode provides all the functions provided in the Host Mode. In the Hardware Mode RPOS/RNEG or RDATA outputs are valid on the rising edge of RCLK. The LXT310 operates in Hardware Mode only when MODE is set Low or connected to RCLK.

Diagnostic Mode Operation

Transmit All Ones

In Transmit All Ones (TAOS) Mode, the TPOS and TNEG inputs to the transceiver are ignored and the transceiver transmits a continuous stream of ones at the TCLK frequency. (If TCLK is not provided, TAOS is locked to the MCLK.) This can be used as the Blue Alarm Indicator (AIS). In Host Mode, TAOS is commanded by writing a one to bit D7 of the input data byte. In Hardware Mode, TAOS is commanded by setting pin 28 High. TAOS can be commanded simultaneously with Local Loopback, but is inhibited during Remote Loopback.

Local Loopback

Local Loopback (LLOOP) is designed to exercise the maximum number of functional blocks. During LLOOP operation, the RTIP/RRING inputs from the

line are disconnected. Instead, the transmit outputs are routed back into the receive inputs. This tests the encoders/decoders, jitter attenuator, transmitter, receiver and timing recovery sections. In Host Mode, Local Loopback is commanded by writing a one to bit D6 of the input data byte. In Hardware Mode, Local Loopback is commanded by setting pin 27 High. If TAOS and LLOOP are both set, the All Ones pattern is transmitted onto the line while the TPOS/TNEG input data is looped back to the RPOS/RNEG outputs.

Remote Loopback

In Remote Loopback (RLOOP) Mode, the transmit data and clock inputs (TCLK and TPOS/TNEG or TDATA) are ignored, and the in-line encoders and decoders are bypassed. The RPOS/RNEG or RDATA outputs are looped back through the transmit circuits and output on TTIP and TRING at the RCLK frequency. Receiver circuits are unaffected by the RLOOP command and continue to output the RCLK and RPOS/RNEG or RDATA signals received from the twisted-pair line. In Host Mode, Remote Loopback is commanded by writing a one to bit D5 of the input data byte. In Hardware Mode, Remote Loopback is commanded by setting pin 26 High.

Network Loopback

Network Loopback can be commanded from the network when the Network Loopback detect function is enabled. In Host Mode, Network Loopback (NLOOP) detection is enabled by simultaneously writing ones to RLOOP, LLOOP and TAOS, then writing zeros in the next cycle. In Hardware Mode, Network Loopback detection is enabled by holding RLOOP, LLOOP and TAOS High simultaneously for 200 ns then bringing them Low, or by tying RCLK to RLOOP. NLOOP detection may be disabled by resetting the chip.

When NLOOP detection is enabled, the receiver monitors the input data stream for the NLOOP data patterns (00001 = enable, 001 = disable). When an NLOOP enable data pattern is repeated for a minimum of five seconds (with 10-3 BER), the device begins remote loopback operation. The LXT310 responds to both framed and unframed NLOOP patterns. Once remote network loopback detection is enabled at the chip and activated by the correct data pattern, it is identical to remote loopback initiated at the chip. NLOOP is reset by receiving the disable pattern for 5 seconds, or by activation of RLOOP. NLOOP is temporarily interrupted by LLOOP, but the NLOOP state is not reset.

APPLICATION INFORMATION

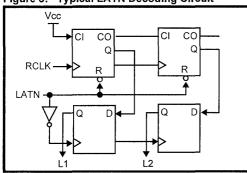


Figure 5: Typical LATN Decoding Circuit

Table 5: Approved Crystals and Transformers

LATN Decoding Circuits and External Components

To conserve pins, the line attenuation output is encoded as a simple serial bit stream. Table 4 provides the decoded output for each equalizer setting. Figure 5 is a typical decoding circuit for the LATN output. It uses a 2-bit synchronous counter (half of a 4-bit counter) with synchronous reset, and a pair of flip-flops. Table 5 lists approved crystals and transformers.

Table 4: LATN Output Coding

L1	L2 Line Attenuation		
0	0	0.0 dB	
0	1	-7.5 dB	
1	0	-15.0 dB	
1	1	-22.5 dB	

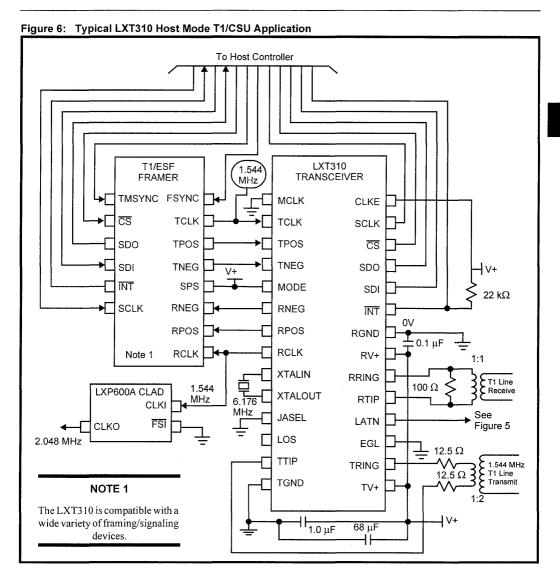
Component	Manufacturer	Part Numbers
Crystal	M-Tron	MP-1 3808-010/4144-002
(6.176 MHz)	Monitor Products	MSC1311-01B
	CTS Knights	6176-180
	Valpey Fisher	VF49A16FN1
	U.S. Crystal	U18-18-6176SP
Tx Transformer	Bell Fuse	0553-5006-IC
(1:2)	FEE Fil-Mag	66Z1308
	Midcom	671-5832
	Pulse Engineering	65351, 65771
	Schott Corp	67127370 and 67130850
	HALO	TD61-1205G and TD67-1205G (combo Tx/Rx)
Rx Tranformer	FEE Fil-Mag	FE 8006-155
(1:1)	Midcom	671-5792
	Pulse Engineering	64936 and 65778
	Schott Corp	67130840 and 67109510
	HALO	TD61-1205G and TD67-1205G (combo Tx/Rx)

LXT310 T1 CSU/ISDN PRI Transceiver

Host Mode Applications

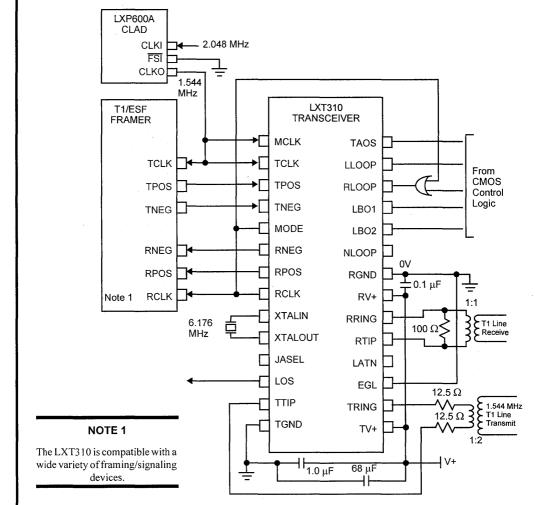
Figure 6 shows a typical T1 CSU application with the LXT310 operating in the Host Mode (MODE pin tied high). A T1/ESF Framer provides the digital interface with the host controller. Both devices are controlled through the serial interface. In the Host Mode, the LOS alarm is reported via the serial port so the LOS pin is allowed to float.

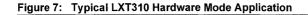
An LXP600A Clock Adapter (CLAD) provides the 2.048 MHz system backplane clock, locked to the recovered


1.544 MHz clock signal. The 6.176 MHz crystal across XTALIN and XTALOUT enables the JAL which is switched to the transmit side by the ground on JASEL. (Refer to Table 5 for approved crystals and transformers.) The power supply inputs are tied to a common bus with appropriate decoupling capacitors (68 μ F and 0.1 μ F) installed on each side.

The twisted-pair interfaces are relatively simple. A 100 Ω resistor across the input of a 1:1 transformer is used on the receive side, and a pair of 12.5 Ω resistors are installed in line with the 1:2 output transformer.

Parameter	Specification
Frequency	6.176 MHz
Frequency stability	± 20 ppm @ 25 °C ± 25 ppm from -40 °C to 85 °C (Ref 25 °C reading)
Pullability	CL = 11 pF to 18.7 pF, $+\Delta F$ = 175 to 195 ppm CL = 18.7 pF to 34 pF, $-\Delta F$ = 175 to 195 ppm
Effective series resistance	40 Ω Maximum
Crystal cut	AT
Resonance	Parallel
Maximum drive level	2.0 mW
Mode of operation	Fundamental
Crystal holder	HC49 (R3W), $C_0 = 7 \text{ pF}$ maximum $C_M = 17 \text{ fF}$ typical


Table 6: LXT310 Crystal Specifications (External)



LXT310 Hardware Mode Applications

Figure 7 is a typical 1.544 Mbps ISDN PRI application with the LXT310, a T1/ESF framer and an LXP600A clock adapter. The LXT310 is operating in the Hardware Mode with B8ZS encoding enabled (MODE pin 5 tied to RCLK). As in the T1/CSU application, Figure 6, this configuration is illustrated with a single power supply bus. CMOS control logic is used to set both LBO pins high, selecting the 22.5 dB LBO, and the EGL pin is tied low, allowing for full receiver gain. The TAOS, LLOOP and RLOOP diagnostic modes are individually controllable. The RCLK input to the OR gate at RLOOP allows for clocking of the RLOOP pin, which enables network loopback detection. The receive and transmit line interfaces are identical to the Host Mode application shown in Figure 6.

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 7 through 14 and Figures 8 through 12 represent the performance specifications of the LXT310 and are guaranteed by test, except where noted by design.

Table 7: Absolute Maximum Ratings

Parameter	Sym	Min	Max	Units			
DC supply (referenced to GND)	RV+, TV+	-0.3	6.0	V			
Input voltage, any pin	Vin	RGND - 0.3	RV++0.3	V			
Input current, any pin ¹	Iin	-10	10	mA			
Ambient operating temperature	Тл	-40	85	°C			
Storage temperature	Тѕтб	-65	150	°C			
CAUTION Operations at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes.							
1. Transient currents of up to 100 mA will not cause S	CR latch up. TTIP, TRING,	TV+ and TGND can w	vithstand a continuous	current of 100 mA.			

Table 8: Recommended Operating Conditions and Characteristics

Parameter	Sym	Min	Тур	Max	Units
DC supply ¹	RV+, TV+	4.75	5.0	5.25	V
Ambient operating temperature	TA	-	25		°C

Table 9: Electrical Characteristics (Under Recommended Operating Conditions)

Parameter	Sym	Min	Typ ¹	Мах	Units	Test Conditions
High level input voltage ^{2,3} (pins 1-5, 10, 23-28)	VIH	2.0	-	-	V	
Low level input voltage ^{2,3} (pins 1-5, 10, 23-28)	Vil	-	-	0.8	V	
High level output voltage ^{2,3} (pins 6-8, 11, 12, 23, 25)	Vон	2.4	-	-	v	Ιουτ = -400 μΑ
Low level output voltage ^{2,3} (pins 6-8, 11, 12, 23, 25)	Vol	-		0.4	V	Іоυт = 1.6 mA
Input leakage current	Ili.	0	-	±10	μA	

1. Typical values are measured at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. Functionality of pins 23 and 25 depends on mode. See Host/Hardware Mode descriptions.

3. Output drivers will output CMOS logic levels into CMOS loads.

4. TTIP, TRING only in Idle or Power Down Mode.

5. Power dissipation while driving a 25 Ω load over operating temperature range. Includes device and load. Digital input levels are within 10% of the supply rails and digital outputs are driving a 50 pF capacitive load.

LXT310 T1 CSU/ISDN PRI Transceiver

Parameter		Min	Typ ¹	Max	Units	Test Conditions
Three-state leakage current ² (pin 25)	I3L	0	-	±10	μA	
Driver power down current ⁴	Ipd	-	-	±1.2	mA	Direct connection to Vcc or GND
Total power dissipation ⁵		-	620	_	mW	100% ones density & maximum line length @ 5.25 V

Table 9: Electrical Characteristics (Under Recommended Operating Conditions)

1. Typical values are measured at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

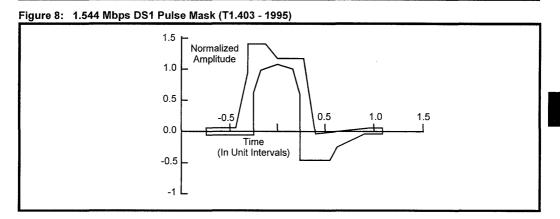
2. Functionality of pins 23 and 25 depends on mode. See Host/Hardware Mode descriptions.

3. Output drivers will output CMOS logic levels into CMOS loads.

4. TTIP, TRING only in Idle or Power Down Mode.

5. Power dissipation while driving a 25 Ω load over operating temperature range. Includes device and load. Digital input levels are within 10% of the supply rails and digital outputs are driving a 50 pF capacitive load.

Paramete	Min	Typ ¹	Max	Units	Test Conditions	
Recommended output load at	TTIP and TRING	50	-	200	Ω	
AMI Output Pulse Amplitude	S	2.4	3.0	3.6	V	
Warm Israel II	10 Hz - 8 kHz	-	-	0.01	UI	Measured at the
Jitter added by the transmitter ²	8 kHz - 40 kHz	-	-	0.02	UI	output with LBO1 = 0, and
	10 Hz - 40 kHz		_	0.02	UI	LBO2 = 0
	Broad Band	-	—	0.04	UI	
Receive signal attenuation	Mode 1 (EGL = 1)	0	26	-	dB	
range @ 772 kHz	Mode 2 (EGL = 0)	0	36	_	dB	
Allowable consecutive zeros before LOS		160	175	190	-	
Input jitter tolerance	10 kHz - 100 kHz	0.4	_	_	UI	
	1 Hz	13.8	-	-		
Jitter attenuation curve corner	frequency ³		3	-	Hz	


Table 10: Analog Characteristics (Over Recommended Range)

1. Typical values are measured at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

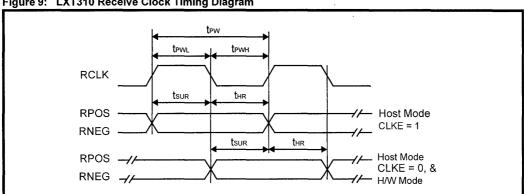
2. Input signal to TCLK is jitter-free.

3. Guaranteed by characterization; not subject to production testing.

4. Circuit attenuates jitter at 20 dB/decade above the corner frequency.

Table 11: Pulse Mask Corner Point Specifications

Maximu	n Curve	Minimum Curve		
Time (ns)	% V	Time (ns)	% V	
0	5	0	-5 -5	
250 325	5 80	350 350	-5 50	
325 425.	120 120	400 500	90 95	
500	105	600	90	
675 725	105 5	650 650	50 -45	
1100 1250	5 5	800 896	-45 -26	
1230	5	1100	-20 -5 -5	
		1250	-5	


Table 12: LXT310 Receive Timing Characteristics (See Figure 9)

Parameter	Sym	Min	Typ1	Max	Units
Receive clock duty cycle ²	RCLKd	40	50	60	%
Receive clock pulse width	tpw	600	648	700	ns
Receive clock pulse width high	tрwн	_	324	-	ns
Receive clock pulse width low	tpwl.	303	324	345	ns
RPOS/RNEG to RCLK rising setup time	tsur	_	274	-	ns
RCLK rising to RPOS/RNEG hold time	thr	-	274	_	ns

1. Typical values are at 25 °C and are for design aid only; they are not guaranteed and not subject to production testing.

2. RCLK duty cycle widths will vary depending on extent of received pulse jitter displacement. Max and Min RCLK duty cycles are for worst case jitter conditions (0.4 UI clock displacement for 1.544 MHz).

LXT310 T1 CSU/ISDN PRI Transceiver

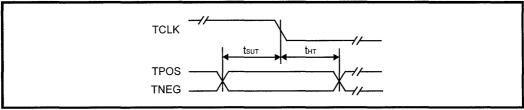
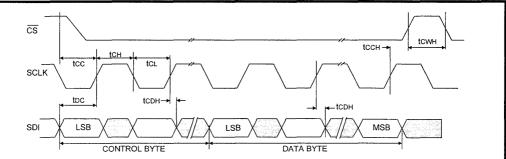

Figure 9: LXT310 Receive Clock Timing Diagram

Table 13: LXT310 Master Clock and Transmit Timing Characteristics (See Figure 10)

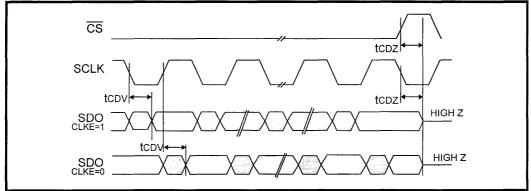
Parameter	Sym	Min	Typ ¹	Max	Units	Notes
Master clock frequency	MCLK		1.544		MHz	
Master clock tolerance	MCLKt	-	±100	-	ppm	
Master clock duty cycle	MCLKd	40	-	60	%	
Crystal frequency	fc	-	6.176	_	MHz	LXT310 only
Transmit clock frequency	TCLK	_	1.544	_	MHz	
Transmit clock tolerance	TCLKt	-		±100	ppm	
Transmit clock duty cycle	TCLKd	10	_	90	%	
TPOS/TNEG to TCLK setup time	tsut	50	-		ns	
TCLK to TPOS/TNEG hold time	tнт	50	_	-	ns	

1. Typical values are at 25 °C and are for design aid only; they are not guaranteed and not subject to production testing.

Figure 10: LXT310 Transmit Clock Timing Diagram


Test Specifications

Parameter	Sym	Min	Typ ¹	Max	Units	Test Conditions
Rise/Fall time - any digital output	trf	_	_	100	ns	Load 1.6 mA, 50 pF
SDI to SCLK setup time	tdc	50	-	_	ns	
SCLK to SDI hold time	tсрн	50	-	-	ns	
SCLK low time	tcl.	240	-	-	ns	
SCLK high time	tсн	240	-	-	ns	
SCLK rise and fall time	tr, tf	-	-	50	ns	
CS to SCLK setup time	tcc	50	-	-	ns	
SCLK to CS hold time	tссн	50	-	-	ns	
CS inactive time	tсwн	250			ns	
SCLK to SDO valid	tcdv	-	-	200	ns	· · · · · · · · · · · · · · · · · · ·
SCLK falling edge or \overline{CS} rising edge to SDO high Z	tcdz	-	100	-	ns	


Table 14: LXT310 Serial i/O Timing Characteristics (See Figures 11 and 12)

1. Typical values are at 25° C and are for design aid only; they are not guaranteed and not subject to production testing.

Figure 11: LXT310 Serial Data Input Timing Diagram

Figure 12: LXT310 Serial Data Output Timing Diagram

NOTES

MAY 1996

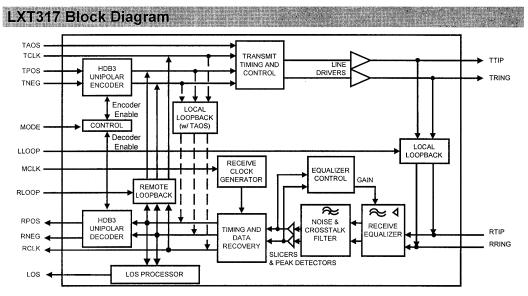
DATA SHEET

DECT Twisted-Pair LIU Transceiver

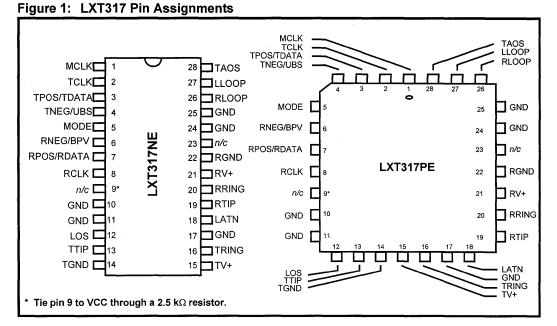
General Description

The LXT317 is the first fully integrated, long-haul transceiver for Digital European Cordless Telephony (DECT) base station interface applications at 1.152 Mbps. The transceiver operates over twisted-pair cable to a maximum of 43 dB (3.5 km at 0.6 mm, 40 nF/km cable) with no external components.

The LXT317 offers selectable HDB3 encoding/decoding, and unipolar or bipolar data I/O. The LXT317 also offers a variety of diagnostic features including loopbacks and Loss of Signal monitoring.


Its advanced double-poly, double-metal CMOS process requires only a single 5-volt power supply.

Applications


- · DECT base stations to switch/PBX interface
- NTU (interface to E1 Service)
- LAN bridge
- · Private network data pump

Features

- · Fully integrated transceiver comprising:
 - · on-chip equalizer
 - timing recovery/control
 - data processor
 - receiver
 - transmitter
 - digital control
- Fully restores the received signal after transmission via a cable with attenuation of 43 dB @ 576 kHz
- · Selectable Unipolar or Bipolar data I/O
- Selectable HDB3 encoding/decoding
- · Output short circuit current limit protection
- · On-line idle mode for testing or for redundant systems
- · Local and remote loopback functions
- · Receive monitor with Loss of Signal (LOS) output
- · High input jitter tolerance
- · Constant through-chip delay
- · Available in 28-pin DIP and PLCC
- · -40 °C to +85 °C operating temperature

Pin #	Symbol	I/O	Description
1	MCLK	I	Master Clock. A 1.152 MHz clock input used to generate internal clocks. Upon Loss of Signal (LOS), RCLK is derived from MCLK. If MCLK is not applied tie this pin Low.
2	TCLK	I	Transmit Clock. Transmit clock input. TPOS and TNEG are sampled on the falling edge of TCLK. If TCLK is not supplied tie this pin Low.
3	TPOS/ TDATA	I	Transmit Data Input; Data Input/Polarity Select. Bipolar input for data to be transmitted on the twisted-pair line. Normally, pin 3 is TPOS and pin 4 is TNEG, the
4	TNEG/ UBS	1	positive and negative sides of a bipolar input pair. However, when pin 4 is held High for at least 16 TCLK cycles (equivalent to 15 successive bipolar violations), the LXT317 switches to a unipolar mode. See Table 2 for Unipolar mode pin functions.
5	MODE	I	Mode Select. Enables or disables zero suppression. Enables the HDB3 encoder/ decoder when tied to RCLK. Disables HDB3 encoder/decoder when tied Low.
6	RNEG/ BPV	0	Receive Negative Data; Receive Positive Data. Bipolar data outputs. A signal on RNEG corresponds to receipt of a negative pulse on RTIP/RRING. A signal on
7	RPOS/ RDATA	0	RPOS corresponds to receipt of a positive pulse on RTIP/RRING. RNEG/RPOS outputs are Non-Return-to-Zero (NRZ). Both outputs are stable and valid on the rising edge of RCLK. In Unipolar mode, pin 6 output is a bipolar violation indicator and pin 7 is the unipolar data output. See Table 2 for Unipolar mode functions.
8	RCLK	0	Receive Clock. This is the clock recovered from the signal received at RTIP and RRING.
9	-	-	<i>not used.</i> Tie this pin to VCC through a 2.5 k Ω resistor.

Pin #	Symbol	1/0	Description
10	GND	-	Ground. Tie this pin to ground.
11	GND	-	Ground. Tie this pin to ground.
12	LOS	0	Loss Of Signal. LOS goes High after 175 consecutive spaces and returns Low when the received signal reaches 12.5% mark density (minimum of four 1s within 32 bit periods, with no more than 15 consecutive 0s). Received marks are output on RPOS and RNEG even when LOS is High (during LOS condition).
13	TTIP	0	Transmit Tip; Transmit Ring. Differential Driver Outputs. These outputs are designed to drive a 50 - 200 Ω load. Line matching resistors and transformer can be
16	TRING	0	selected to give the desired pulse height.
14	TGND	-	Tx Ground. Ground return for the transmit drivers power supply TV+.
15	TV+	I	Transmit Power Supply. +5 VDC power supply input for the transmit drivers. TV+ must not vary from RV+ by more than ± 0.3 V.
17	GND	-	Ground. This pin must be tied to ground.
18	LATN	0	Line Attenuation Indication. Encoded output. Pulse width, relative to RCLK, indi- cates receive equalizer gain setting (line insertion loss at 1024 kHz). When LATN = one RCLK pulse, the equalizer is set at 10 dB of gain; two pulses = 21 dB; three pulses =32 dB and four pulses = 0 dB. Output is valid on the rising edge of RCLK.
19	RTIP	I	Receive Tip; Receive Ring. The AMI signal received from the line is applied at these pins. A 1:1 transformer is required. Data and clock from the signal applied at
20	RRING	I	these pins are recovered and output on the RPOS/RNEG, and RCLK pins.
21	RV+	I	Receive Power Supply. +5 VDC power supply for all circuits except the transmit drivers. (Transmit drivers are supplied by TV+.)
22	RGND	-	Rx Ground. Ground return for power supply RV+.
23	_	_	not used. This pin is inactive-leave this pin floating.
24	GND	-	Ground. This pin is inactive-tie this pin to ground.
25	GND	_	Ground. This pin is inactive-tie this pin to ground.
26	RLOOP	I	Remote Loopback. This input controls remote loopback. Setting RLOOP High enables Remote Loopback. During Remote Loopback, inline encoders and decoders are bypassed. Setting both RLOOP and LLOOP High while holding TAOS Low causes a Reset.
27	LLOOP	I	Local Loopback. This input controls local loopback. Setting LLOOP High enables Local Loopback Mode. Setting both RLOOP and LLOOP High while holding TAOS Low causes a Reset. Allow 32 ms to recover from Reset.
28	TAOS	Ι	Transmit All Ones. This pin controls the TAOS function. When tied High, TAOS causes the LXT317 to transmit a stream of marks at the TCLK frequency. Activating TAOS causes TPOS and TNEG inputs to be ignored. TAOS is inhibited during Remote Loopback, but can be activated simultaneously with Local Loopback.

Table 1: Pin Descriptions-continued

Pin #	Symbol	I/O	Description
3	TDATA	I	Transmit Data. Unipolar input for data to be transmitted on the twisted-pair line.
4	UBS	I	Unipolar/Bipolar Select. When pin 4 is held High for at least 16 TCLK cycles (equiva- lent to 15 successive bipolar violations), LXT317 switches to unipolar data I/O. The device immediately returns to bipolar I/O when pin 4 goes Low.
6	BPV	0	Bipolar Violation. Pin 6 goes High when a bipolar violation is received.
7	RDATA	0	Receive Data. Unipolar data output. RDATA is a Non-Return-to-Zero (NRZ) output. RDATA is stable and valid on the rising edge of RCLK.
1. Table 2	lists only those	pins which	are affected by the switch to unipolar data I/O.

Table 2: Unipolar Data I/O Pin Descriptions¹

FUNCTIONAL DESCRIPTION

NOTE

This functional description information is for design aid only

The LXT317 is a fully integrated PCM transceiver for 1.152 Mbps DECT applications. It allows full-duplex transmission of digital data over existing twisted-pair installations.

Table 1 lists the LXT317 pin assignments and signal descriptions. Table 2 lists the alternative pin assignments for unipolar data I/O mode. The LXT317 transceiver interfaces with two twisted-pair lines (one twisted-pair for transmit, one twisted-pair for receive) through standard pulse transformers and appropriate resistors.

The figure on the front of this Data Sheet shows a block diagram of the LXT317. Individual hard-wired pins control the transceiver. It can operate in either a bipolar (default) or unipolar data transmission mode. The LXT317 can also operate in one of several diagnostic modes, including Local Loopback, Remote Loopback and Transmit All Ones (TAOS).

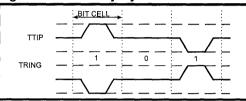
TRANSMITTER

Input data (bipolar or unipolar) for transmission onto the line is clocked serially into the LXT317. The bipolar data inputs are at pin 3 (TPOS) and pin 4 (TNEG). The unipolar data input is at pin 3 (TDATA) only. Input data passes through the HDB3 encoder, if selected by connecting the MODE pin to RCLK. Input synchronization is supplied by the transmit clock (TCLK). Refer to the Test Specifications section for transmit timing.

Idle Mode

The LXT317 incorporates a transmit idle mode. This allows multiple transceivers to be connected to a single line for redundant applications or for testing purposes. TTIP and TRING remain in a high impedance state when TCLK is not present (TCLK grounded). Enabling Remote Loopback temporarily disables the high impedance state.

Short Circuit Limit


The LXT317 transmitter is equipped with a short-circuit limiter. This feature limits to approximately 120 mA RMS the current the transmitter will source into a low-impedance load. The limiter trips when the RMS current exceeds the limit for 120 μ s (~ 150 marks). It automatically resets when the load current drops below the limit.

Line Code

The LXT317 transmits data as a 50% AMI line code as shown in Figure 2. Biasing of the transmit DC level is onchip. Shaped pulses meeting the DECT requirements are applied to the AMI line driver for transmission onto the line at TTIP/TRING. The pulse conforms to the mask defined in ITU G.703, with the time scale expanded by a factor of 16 /9 for a nominal pulse width of 434 ns. Refer to Figure 11 and Table 8 for 1.152 Mbps pulse mask specifications.

Figure 2: 50% Duty Cycle Transmit Pulse

RECEIVER

The input from the twisted-pair is received via a 1:1 transformer. Recovered data is output at RPOS/RNEG (RDATA in unipolar mode), and the recovered clock is output at RCLK. Refer to the Test Specifications section for receiver timing.

The signal received at RTIP and RRING is processed through the receive equalizer which may apply up to 43 dB of gain. Insertion loss of the line, as indicated by the receive equalizer setting, is encoded in the LATN output as shown in Figure 5.

The equalized signal is filtered and applied to the peak detector and data slicers. The peak detector samples the inputs and determines the maximum value of the received signal. Fifty percent of the peak value is provided to the data slicers as a threshold level to ensure optimum signal-to-noise ratio.

The receiver is capable of accurately recovering signals with up to 43 dB of cable attenuation (from 2.7 V).

After processing through the data slicers, the received signal is routed to the data and timing recovery section, then to the HDB3 decoder (if selected) and to the LOS processor. The data and timing recovery sections provide an input jitter tolerance significantly better than required by ITU G.823, as shown in the Test Specifications section. The Test Specifications section also includes the jitter tolerance template.

If the incoming bit stream has jitter, the jitter transfer limit for the LXT317 is less than 1 dB up to 25 kHz; it then decreases by 20 dB per decade from 25 kHz to 100 kHz (using a 2^{15} -1 bit, PRBS signal). Refer to Figure 15 for the jitter transfer template.

LXT317 DECT Twisted-Pair LIU Transceiver

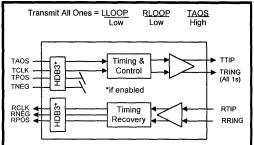
The LOS processor loads a digital counter at the RCLK frequency. The count is incremented each time a 0 (space) is received, and reset to 0 each time a 1 (mark) is received. Upon receipt of 175 consecutive 0s the LOS pin goes High, and a smooth transition replaces the RCLK output with the MCLK.

Received marks will be output regardless of the LOS status, but the LOS pin will not reset until the 1s density reaches 12.5% (receipt of at least four 1s in any 32-bit periods, with no more than 15 consecutive 0s).

SELECTING UNIPOLAR OR BIPOLAR DATA MODE

The LXT317 operates in Bipolar Data mode by default. To enable Unipolar Mode, hold pin 4 High for 16 TCLK cycles. To return to Bipolar Mode immediately, pull pin 4 Low. To enable the HDB3 encoder/decoder circuits, connect pin 5 to RCLK.

INITIALIZATION AND RESET OPERATION


Upon power up, the transceiver is held static until the power supply reaches approximately 3V. Upon crossing this threshold, the device begins a 32 ms reset cycle to lock the transmit and receive Phase Lock Loops. The transmitter reference is provided by TCLK; the receive reference is provided by MCLK. All PLLs are continuously calibrated.

Command reset by holding RLOOP and LLOOP High simultaneously for 200 ns while holding TAOS Low. When the reset conditions end, the device begins the 32 ms cycle to calibrate the transmit and receive PLLs.

DIAGNOSTIC MODE OPERATION

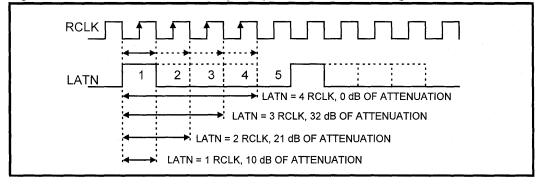

Transmit All Ones. See Figure 3. In Transmit All Ones (TAOS) mode the TPOS and TNEG inputs to the transceiver are ignored and the transceiver transmits a continuous stream of 1s at the TCLK frequency. If there is no TCLK provided, TAOS is locked to the MCLK. This can be used as the AIS Alarm Indicator (AIS also called the Blue Alarm). Command TAOS by setting pin 28 High. TAOS can be commanded simultaneously with LLOOP as shown in Figure 4, but is inhibited during Remote Loopback.

Figure 3: Transmit All Ones

Figure 4: TAOS with LLOOP Data Path

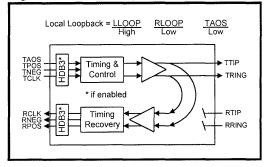


Figure 5: LXT317 Line Attenuation (LATN) Pulse Width Encoding

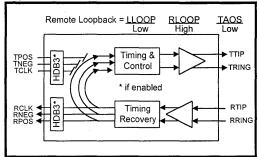
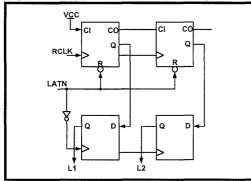

Local Loopback. Local Loopback (LLOOP) is designed to exercise the maximum number of functional blocks (See Figure 7). During LLOOP operation, the RTIP/ RRING inputs from the line are disconnected. Instead, the transmit outputs are routed back into the receive inputs. This tests the encoders/decoders, transmitter, receiver and timing recovery sections. Enable Local Loopback by setting pin 27 High. If TAOS and LLOOP are both active, the All Ones pattern is transmitted onto the line while the TPOS/TNEG input data loops back to the RPOS/RNEG outputs.

Figure 6: Local Loopback

Remote Loopback. See Figure 7. In Remote Loopback (RLOOP) mode, the transmit clock and data inputs (TCLK and TPOS/TNEG or TDATA) are ignored, and the in-line encoders and decoders are bypassed. The RPOS/RNEG or RDATA outputs are looped back through the transmit circuits and output on TTIP and TRING at the RCLK frequency. Receiver circuits are unaffected by the RLOOP command and continue to output the RCLK and RPOS/RNEG or RDATA signals received from the twisted-pair line. Command Remote Loopback by setting pin 26 High.

Figure 7: Remote Loopback

APPLICATION INFORMATION


NOTE

This application information is for design aid only.

LATN DECODING CIRCUITS AND EXTERNAL COMPONENTS

The line attenuation (LATN) output is encoded as a simple serial bit stream for use in line monitoring applications. Figure 8 is a typical decoding circuit for the LATN output. It uses a 2-bit synchronous counter (half of a 4-bit counter) with synchronous reset, and a pair of flip-flops. Table 3 provides the decoded output for each equalizer setting.

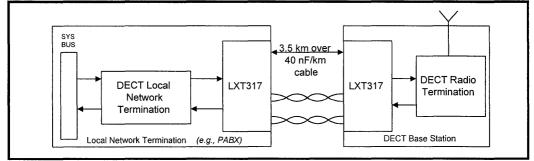

Figure 8: Typical LATN Decoding Circuit

Table 3: Line Attenuation Decoding

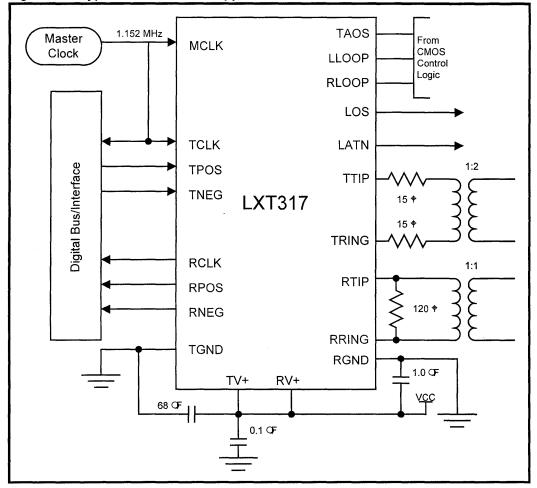
L2	L1	Line Attenuation
0	0	0.0 dB
0	1	-10 dB
1	0	-21 dB
1	1	-32 dB

Figure 9: Typical DECT Application

POWER REQUIREMENTS

The LXT317 is a low-power CMOS device. It operates from a single +5 V power supply which can be connected externally to both the transmitter and receiver. However, the two inputs must be within \pm .3 V of each other, and decoupled separately to their respective grounds, as shown in Figure 10. Isolation between the transmit and receive circuits is provided internally.

Transformer Type	Manufacturer	Part Number			
Transmit	Bell Fuse	0553-50061C			
(1:2)	Fil-Mag	66Z1308			
	Midcom	671-5832			
and the second	Pulse	PE 65351			
	Engineering	PE65771			
	Schott	67127370			
	Corp	67130850			
Receive	Fil-Mag	FE 8006-155			
(1:1)	Midcom	671-5792			
· · ·	Pulse	PE 64936			
	Engineering	PE 65778			
	Schott	67130840			
	Corp	67109510			
Combination	HALO	TD61-1205D2			
(Tx & Rx)	VALOR	PT5083			


Table 4: Approved Transformers

LXT317 CIRCUITRY

Figure 9 shows a typical DECT application with the LXT317. Figure 10 shows typical LXT317 circuit connections. The power supply inputs are tied to a common bus with appropriate decoupling capacitors (68 μ F and 1.0 μ F) installed on each side.

The line interfaces are relatively simple. A 120 Ω resistor (for TWP applications) across the input of a 1:1 transformer is used on the receive side, and a pair of 15 Ω resistors are installed in series with the 1:2 transmit transformer. (Table 4 lists approved transformers.)

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 5 through 11 and Figures 11 through 15 represent the performance specifications of the LXT317 and are not guaranteed by test, except where noted by design.

Table 5: Absolute Maximum Ratings

Parameters	Symbol	Min	Max	Units
DC supply (referenced to GND)	RV+, TV+	_	6.0	V
Input voltage, any pin	VIN	RGND, -0.3	RV+, +0.3	v
Input current, any pin ¹	IIN	-10	10	mA
Ambient operating temperature	ТА	-40	85	° C
Storage temperature	TSTG	-65	150	° C
CAU Operation at or beyond these limits r Normal operation is not gu			evice.	
1. Transient Currents of up to 100 mA will not cause SCR latch-up. TTIF	, TRING, TV+, TC	GND can withstand of	continuous current	of 100 mA.

Table 6: Recommended Operating Conditions and Characteristics

Parameter	Symbol	Min	Тур ¹	Max	Units	Test Conditions
DC supply ²	RV+, TV+	4.75	5.0	5.25	v	
Ambient operating temperature	T _A	-40	-	+85	°C	
Power dissipation ³	PD	-	300	400	mW	100% ones density & maxi- mum line length @ 5.25 V

1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. TV+ must not differ from RV+ by more than 0.3 V.

3. Power dissipation while driving 25 Ω load over operating temperature range. Includes device and load. Digital input levels are within 10% of the supply rails and digital outputs are driving a 50 pF capacitive load.

Table 7: Digital Characteristics (over the Recommended Range)

Parameter		Min	Тур	Max	Units	Test Conditions		
High level input voltage (pins 1-5, 10, 26-28)	Vih	2.0	-	-	V			
Low level input voltage (pins 1-5, 10, 26-28)	Vil	-	-	0.8	V			
High level output voltage ¹ (pins 6-8, 12)	Vон	3.8	-	-	V	IOUT = -400 μA		
Low level output voltage ¹ (pins 6-8, 12)	Vol	-	-	0.4	V	IOUT = 1.6 mA		
Input leakage current	Ill	. 0	-	±10	μΑ			
Driver power down current ²	Ipd	-	-	±1.2	mA	direct connection to VCC or GND		
1. Output drivers will output CMOS logic levels into 2. TTIP.TRING only in Idle or Power Down Mode.	CMOS lo	ads.						

Figure 11: 1.152 MHz Pulse Mask

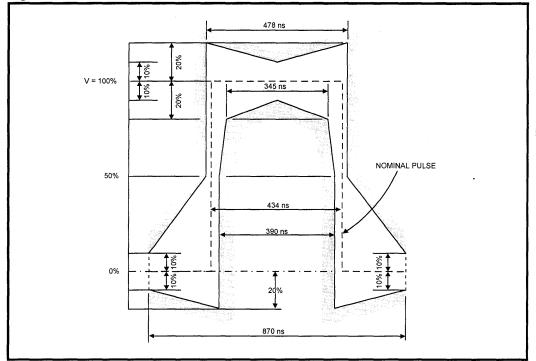


Table 8: 1.152 MHz Pulse Mask Parameters

Parameter	TPW	Units
Test load impedance	120	Ω
Nominal peak mark voltage	3.0	v
Nominal peak space voltage	0 ± 0.30	v
Nominal pulse width	434	ns
Ratio of positive and negative pulse amplitude at center of pulse	95-105	%
Ratio of positive and negative pulse amplitudes at nominal half amplitude	95-105	%

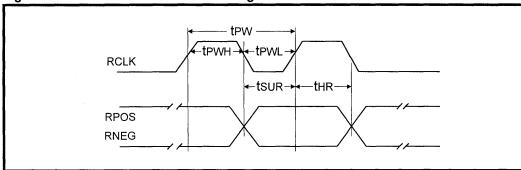
Parameter			Min		Max	Units	Test Conditions
Recommended output load at TTIP and TRING		5	50		200	Ω	
AMI output pulse amplitudes		2.7		3.0	3.3	v	Measured at the
Jitter added by the transmitter ²			_		0.05	UI (pp)	output
Input jitter tolerance 20 kHz - 100 kHz		0	0.2		-	UI	0 - 43 dB line
	10 Hz	100		500	-	UI	
Round Trip Chip Data Delay ^{2, 3, 4}	TDATA to Transmitter	-	-	5.5		bits	
Delay ^{2, 3, 4}	Receiver to RDATA	_		7.0	_	bits	
Receive signal attenuation range @ 576 kHz		+1		-43.0	_	dB	
Allowable consecutive 0s	before LOS declared	160		175	190		
		Transmit		Receive			
Return loss ³		Min	Тур	Min	Тур		
	29 kHz - 58 kHz	12	15	12	15	dB	
	58 kHz - 1.152 MHz	15	16	16	18	dB	
	1.152 MHz - 2.304 MHz	14	18	14	18	dB	


4. Using HDB3 encoders and decoders in data path.

Sym	Min	Тур ¹	Max	Units	Notes
MCLK	-	1.152	-	MHz	
MCLKt		-	±100	ppm	
MCLKd	40	-	60	%	
TCLK	-	1.152	-	MHz	
TCLKt	_	-	±100	ppm	
TCLKd	10	_	90	%	
tsut	50	-	_	ns	
thT	50	_	_	ns	
	MCLK MCLKt MCLKd TCLK TCLKt TCLKd tSUT	MCLK - MCLKt - MCLKd 40 TCLK - TCLKt - TCLKt 50	MCLK - 1.152 MCLKt - - MCLKd 40 - TCLK - 1.152 TCLKt - 1.152 TCLKt - - TCLKt - - TCLKd 10 - tsut 50 -	MCLK - 1.152 - MCLKt - - ±100 MCLKd 40 - 60 TCLK - 1.152 - TCLK - 1.152 - TCLKt - 1.152 - TCLKt - 1.152 - TCLKt - 90 ±100 TCLKd 10 - 90 tsut 50 - -	MCLK - 1.152 - MHz MCLKt - - ±100 ppm MCLKd 40 - 60 % TCLK - 1.152 - MHz TCLK - 1.152 - MHz TCLKt - 1.152 - MHz TCLKt - - ±100 ppm TCLKd 10 - 90 % tsut 50 - - ns

Table 10:LXT317 Master Clock and Transmit Timing Characteristics (See Figure 12)

Figure 12: LXT317 Transmit Clock Timing



3

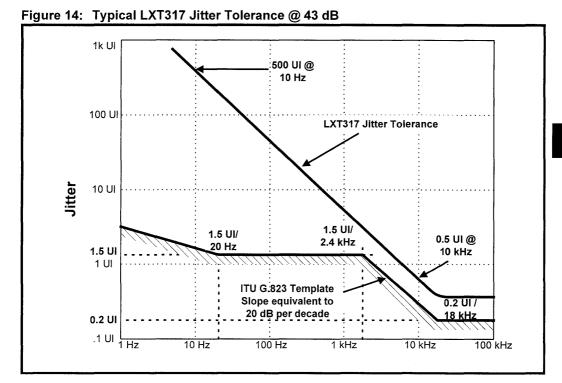

Parameter	Sym	Min	Тур ¹	Max	Units	Notes
RCLK duty cycle ²	RCLKd	40	50	60	%	
RCLK width ²	tPW	-	868	_	ns	
RCLK pulse width high	tPWH	398	434	-	ns	<u></u>
RCLK pulse width low	tPWL	398	434	470	ns	
RPOS/RNEG to RCLK rising setup time	tSUR	300	384	-	ns	
RCLK rising to RPOS/RNEG hold time	tHR	300	384	_	ns	

Table 11:	LXT317	Receive	Timing	Characteristics	(see Figure 13)
-----------	--------	---------	--------	-----------------	-----------------

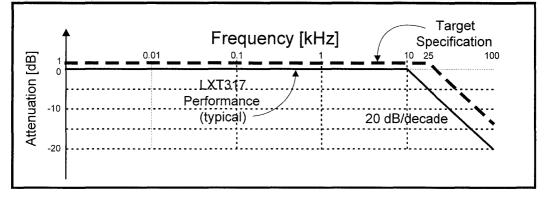

Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
 RCLK duty cycle widths will vary depending on extent of received pulse jitter displacement. Max and min RCLK duty cycles are for worst case jitter conditions (0.4 UI clock displacement for 1.152 MHz.)

Figure 13: LXT317 Receive Clock Timing

LEVEL ONE. R

NOTES

MAY 1996

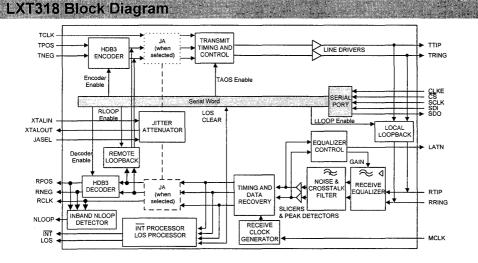
DATA SHEET

LXT318 E1 NTU/ISDN PRI Transceiver

General Description

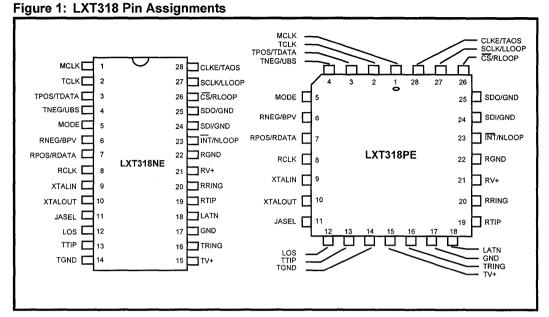
The LXT318 is the first fully integrated transceiver for E1 Network Termination Unit (NTU) and ISDN Primary Rate Interface (ISDN PRI) applications at 2.048 Mbps. The transceiver operates from 0.0 km to 2.6 km of 0.6 mm (22 AWG) twisted-pair cable with no external components.

The LXT318 offers selectable HDB3 encoding/decoding, and unipolar or bipolar data I/O. The LXT318 also provides jitter attenuation in either the transmit or receive direction starting at 3 Hz, and incorporates a serial interface (SIO) for microprocessor control.


The LXT318 offers a variety of diagnostic features including loopbacks and loss of signal monitoring. It is built using an advanced double-poly, double-metal CMOS process and requires only a single 5-volt power supply.

Applications

- PCM 30/ISDN PRI Interface (ITU G.703, I.431)
- NTU (interface to E1 Service)
- E1 Mux or LAN bridge Campus Networking
- Wireless Base Stations/Networking
- CPU to CPU Channel Extenders
- Digital Loop Carrier Subscriber Carrier Systems
- Channel Banks
- HDSL E1 Extension


Features

- Fully integrated transceiver comprising: on-chip equalizer; timing recovery/control; data processor; receiver; transmitter and digital control
- Pin compatible with the LXT310 T1 CSU/ISDN PRI (1.544 Mbps) transceiver
- Meets or exceeds latest ITU specifications including G.703, G.736, G.823, and 1.431
- Meets ETSI 300011 and 300233 standards
- Jitter attenuation starting at 3 Hz, switchable to transmit or receive path
- Exceeds ETSI TBR12/13 jitter transfer performance specifications
- Fully restores the received signal after transmission via a cable with attenuation of 43 dB @ 1024 kHz
- Selectable Unipolar or Bipolar data I/O
- Selectable HDB3 encoding/decoding
- Output short circuit current limit protection
- Meets 50 mARMs short-circuit current limit (per OFTEL OTR-001)
- On-line idle mode for testing or for redundant systems
- Local and remote loopback functions
- Receive monitor with Loss of Signal (LOS) output
- Microprocessor controllable
- Available in 28-pin DIP and PLCC
- Extended Temperature Range (-40° C to +85° C)

LXT318 E1 NTU/ISDN PRI Transceiver

Pin #	Symbol	I/O	Description
1	MCLK	I	Master Clock. A 2.048 MHz clock input used to generate internal clocks. Upon loss of Signal (LOS), RCLK is derived from MCLK. If MCLK is not applied, this pin should be grounded.
2	TCLK	I	Transmit Clock. Transmit clock input. TPOS and TNEG are sampled on the falling edge of TCLK. Ground this pin if TCLK is not supplied.
3	TPOS/ TDATA	I	Transmit Data Input; Data Input/Polarity Select. Input for data to be transmitted on the twisted-pair line. Normally, pin 3 is TPOS and pin 4 is TNEG, the positive and
4	TNEG/UBS	I	negative sides of a bipolar input pair. However, when pin 4 is held High for at least 16 TCLK cycles (equivalent to 15 successive bipolar violations), the LXT318 switches to a unipolar mode. Unipolar mode pin functions are listed in Table 2.
5	MODE	I	Mode Select. Setting MODE High puts the LXT318 in the Host mode. In the Host mode, the serial interface is used to control the LXT318 and determine its status. Setting MODE Low puts the LXT318 in the Hardware (H/W) mode. In the Hardware mode the serial interface is disabled and hard-wired pins are used to control configuration and report status. Tying MODE to RCLK activates the Hardware mode and enables the HDB3 encoder/decoder.
6	RNEG/BPV	0	Receive Negative Data; Receive Positive Data. Bipolar data outputs. A signal on
7	RPOS/ RDATA	0	RNEG corresponds to receipt of a negative pulse on RTIP/RRING. A signal on RPOS corresponds to receipt of a positive pulse on RTIP/RRING. RNEG/RPOS outputs are Non-Return-to-Zero (NRZ). In Host mode, CLKE determines the clock edge at which these outputs are stable and valid. In Hardware mode both outputs are stable and valid on the rising edge of RCLK. In Unipolar mode, pin 6 output is a bipolar Violation indication and pin 7 is the unipolar data output. See Table 2 for Unipolar mode functions.

Table 1: Pin Descriptions

Pin #	Symbol	I/O	Description		
8	RCLK	0	Receive Clock. This is the clock recovered from the signal received at RTIP and RRING.		
9	XTALIN	I	Crystal Input; Crystal Output. An external crystal (18.7 pF load capacitance, pul-		
10	XTALOUT	0	lable) operating at four times the bit rate (8.192 MHz) is required to enable the jit attenuation function of the LXT318. These pins may also be used to disable the ji attenuator by connecting the XTALIN pin to the positive supply through a resisto and leaving the XTALOUT pin unconnected or tied to ground.		
11	JASEL	I	Jitter Attenuation Select. Selects jitter attenuation location. When JASEL is High, the jitter attenuator is active in the receive path. When JASEL is Low, the jitter attenuator is active in the transmit path.		
12	LOS	0	Loss Of Signal. LOS goes High after 175 consecutive spaces and returns Low when the received signal reaches 12.5% mark density (minimum of four marks within 32 bit periods, with no more than 15 consecutive 0s). Received marks are output on RPOS and RNEG even when LOS is High.		
13	TTIP	0	Transmit Tip. Differential Driver Outputs. These outputs are designed to drive a 50 -		
16	TRING		200Ω load. Line matching resistors and transformer can be selected to give the desired pulse height.		
14	TGND	-	Tx Ground. Ground return for the transmit drivers power supply TV+.		
15	TV+	I	Transmit Power Supply. +5 VDC power supply input for the transmit drivers. TV+ must not vary from RV+ by more than ± 0.3 V.		
17	GND		Ground. This pin must be tied to ground.		
18	LATN	0	Line Attenuation Indication. Encoded output. Pulse width, relative to RCLK, indi- cates receive equalizer gain setting (line insertion loss at 1024 kHz) in 9.5 dB steps. When LATN is High for one RCLK pulse, the equalizer is set at 9.5 dB gain; 2 pulses = 19 dB; 3 pulses = 28.5 dB and 4 pulses = 0 dB. Output is valid on the rising edge of RCLK.		
19	RTIP	I	Receive Tip; Receive Ring. The HDB3 signal received from the line is applied at		
20	RRING	I	these pins. A 1:1 transformer is required. Data and clock from the signal applied at these pins are recovered and output on the RPOS/RNEG, and RCLK pins.		
21	RV+	I	Receive Power Supply. +5 VDC power supply for all circuits except the transmit drivers. (Transmit drivers are supplied by TV+.)		
22	RGND		Rx Ground. Ground return for power supply RV+.		
23	INT	0	Interrupt (<i>Host Mode</i>). In Host mode, this pin goes Low to flag the host processor when LOS changes state. INT is an open drain output and should be tied to power supply RV+ through a resistor. Reset INT by clearing the LOS register bit.		
	NLOOP	0	Network Loopback Detection (<i>H/W Mode</i>). In Hardware mode, this pin indicates that inband network loopback is active by going High. To set this signal High, the device must receive the NLOOP activation pattern (00001) for five seconds. To reset it Low, either the device must receive the deactivation pattern (001) for five seconds or either RLOOP or LLOOP must be activated.		
24	SDI	I	Serial Data In (<i>Host Mode</i>). The serial data input stream is applied to this pin when the LXT318 operates in the Host mode. SDI is sampled on the rising edge of SCLK.		
	GND	_	Ground (<i>H/W Mode</i>). This pin is inactive in the Hardware mode and should be tied to ground.		

Table 1: Pin Descriptions - continued

LXT318 E1 NTU/ISDN PRI Transceiver

Pin #	Symbol	1/0	Description
25	SDO	0	Serial Data Out (Host Mode). In the Host mode, serial data from the on-chip regis- ter is output on this pin. If CLKE is High, SDO is valid on the rising edge of SCLK. If CLKE is Low, SDO is valid on the falling edge of SCLK. SDO goes to a high- impedance state when the serial port is being written to.
:	GND	-	Ground (<i>H/W Mode</i>). This pin is inactive in the Hardware mode and should be tied to ground.
26	CS	I	Chip Select (<i>Host Mode</i>). In the Host mode, this input is used to access the serial interface. For each read or write operation, \overline{CS} must transition from High to Low, and remain Low.
	RLOOP	I	Remote Loopback (<i>H/W Mode</i>). In the Hardware mode, this input controls remote loopback. Setting RLOOP High enables Remote Loopback. During Remote Loopback, inline encoders and decoders are bypassed. Setting both RLOOP and LLOOP while holding TAOS Low causes a Reset.
27	SCLK	I	Serial Clock (<i>Host Mode</i>). In the Host mode, this clock is used to write data to, or read data from the serial interface register.
	LLOOP	I	Local Loopback (<i>H/W Mode</i>). In the Hardware mode, this input controls local loopback. Setting LLOOP High enables Locale Loopback Mode. Setting both RLOOP and LLOOP while holding TAOS Low causes a Reset.
28	CLKE	I	Clock Edge (Host Mode). In the Host mode, this pin controls transitions of the data outputs. Setting CLKE High causes RPOS and RNEG to be valid on the falling edge of RCLK, and SDO to be valid on the rising edge of SCLK. When CLKE is Low, RPOS and RNEG are valid on the rising edge of RCLK, and SDO is valid on the falling edge of SCLK.
	TAOS	I	Transmit All Ones (<i>H/W Mode</i>). In the Hardware mode, this pin controls the TAOS function. When set High, TAOS causes the LXT318 to transmit a stream of marks at the TCLK frequency. Activating TAOS causes TPOS and TNEG inputs to be ignored. TAOS is inhibited during Remote Loopback.

Table 1: Pin Descriptions - continued

Table 2: Unipolar Data I/O Pin Descriptions¹

Pin #	Symbol	I/O	Description
3	TDATA	I	Transmit Data. Unipolar input for data to be transmitted on the twisted-pair line.
4	UBS	I	Unipolar/Bipolar Select. When pin 4 is held High for at least 16 TCLK cycles (equivalent to 15 successive bipolar violations), LXT318 switches to unipolar data I/O. The device immediately returns to bipolar I/O when pin 4 goes Low.
6	BPV	0	Bipolar Violation. Pin 6 goes High when a bipolar violation is received.
7	RDATA	0	Receive Data. Unipolar data output. RDATA is a Non-Return-to-Zero (NRZ) output. In Host mode, CLKE determines the clock edge at which RDATA is stable and valid. In Hardware mode RDATA is stable and valid on the rising edge of RCLK.
1. Table 2 li	sts only those pins	s which are	affected by the switch to unipolar data I/O.

FUNCTIONAL DESCRIPTION

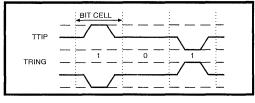
NOTE

This functional description is for design aid only.

The LXT318 is a fully integrated PCM transceiver for 2.048 Mbps (E1) applications. It allows full-duplex transmission of digital data over existing twisted-pair installations.

The LXT318 transceiver interfaces with two twisted-pair lines (one twisted-pair for transmit, one twisted-pair for receive) through standard pulse transformers and appropriate resistors.

The figure on the front page of this data sheet shows a block diagram of the LXT318. This transceiver may be controlled by a microprocessor through the serial port (Host Mode), or by individual pin settings (Hardware Mode). The jitter attenuator may be positioned in either the transmit or receive path, as determined by JASEL.


TRANSMITTER

Input data (bipolar or unipolar) for transmission onto the line is clocked serially into the LXT318. Bipolar data is input at TPOS and TNEG. Unipolar data is input at TDATA only (Unipolar mode is enabled by holding TNEG High for 16 RCLK cycles). Input data may be passed through the Jitter Attenuator and/or HDB3 encoder, if selected. In Host mode, HDB3 is selected by setting bit D2 of the input data byte. In Hardware mode, HDB3 is selected by connecting the MODE pin to RCLK. Input synchronization is supplied by the transmit clock (TCLK). Timing requirements for TCLK and the Master Clock (MCLK) are defined in the Test Specifications section. When TCLK is not supplied, the TCLK pin must be grounded.

Line Code

The LXT318 transmits data as a 50% HDB3 line code as shown in Figure 2. Biasing of the transmit DC level is onchip. Shaped pulses meeting the various ITU requirements are applied to the HDB3 line driver for transmission onto the line at TTIP and TRING. Refer to Figure 22 and Table 15 for 2.048 Mbps pulse mask specifications.

Figure 2: 50% Duty Cycle Coding Diagram

Idle Mode

The LXT318 incorporates a transmit idle mode. This allows multiple transceivers to be connected to a single line for redundant applications or for testing purposes. TTIP and TRING remain in a high impedance state when TCLK is not present (TCLK grounded). The high impedance state can be temporarily disabled by enabling Remote Loopback.

Short Circuit Limit

The LXT318 transmitter is equipped with a short-circuit limiter. This feature limits to approximately 120 mA RMS the current the transmitter will source into a low-impedance load. The limiter trips when the RMS current exceeds the limit for 100 μ s (~ 150 marks). It automatically resets when the load current drops below the limit.

The LXT318 will meet or exceed the OFTEL OTR-001 short circuit limit (50 mARMS) when the design includes a 1:2 transmit transformer and 15 Ω resistors on TTIP and TRING. The device also meets or exceeds ITU specifications for NTU applications, as well as requirements for ISDN PRI.

RECEIVER

The receiver input from the twisted-pair is received via a 1:1 transformer. Recovered data is output at RPOS/RNEG (RDATA in unipolar mode), and the recovered clock is output at RCLK. Refer to the Test Specifications section.

The signal received at RTIP and RRING is processed through the receive equalizer which may apply up to 43 dB of gain. Insertion loss of the line, as indicated by the receive equalizer setting, is encoded in the LATN output as shown in Figure 3.

The equalized signal is filtered and applied to the peak detector and data slicers. The peak detector samples the inputs and determines the maximum value of the received signal. A percentage of the peak value is provided to the data slicers as a threshold level to ensure optimum signal-to-noise ratio. The threshold is set to 50% of the peak value. The receiver is capable of accurately recovering signals with up to 43 dB of cable attenuation (from 2.7 V).

After processing through the data slicers, the received signal is routed to the data and timing recovery section, then to the HDB3 decoder (if selected) and to the LOS processor. The data and timing recovery sections provide an input jitter tolerance significantly better than required by ITU G.823, as shown in the Test Specifications section.

The LOS Processor loads a digital counter at the RCLK frequency. The count is incremented each time a 0 (space)

LXT318 E1 NTU/ISDN PRI Transceiver

is received, and reset to 0 each time a one (mark) is received. Upon receipt of 175 consecutive 0s the LOS pin goes High, and a smooth transition replaces the RCLK output with the MCLK. (During LOS, if MCLK is not supplied and JASEL is High, the RCLK output is replaced with the centered quartz crystal frequency.)

Received marks will be output regardless of the LOS status, but the LOS pin will not reset until the ones density reaches 12.5%. This level is based on receipt of at least four 1s in any 32 bit periods, with no more than 15 consecutive 0s.

Jitter Attenuation

Jitter attenuation is provided by a Jitter Attenuation Loop (JAL) and an Elastic Store (ES). The Test Specifications show the LXT318 jitter attenuation performance compared with the jitter template specified by ITU G.736. The 3 dB corner frequency for the LXT318 is at 3 Hz. The performance complies with ETSI TBR-12 and TBR-13. An external crystal oscillating at four times the bit rate provides clock stabilization. The ES is a 32 x 2-bit register. When JASEL is High, the JAL is positioned in the receive path. When JASEL Low, the JAL is positioned in the transmit path.

Data (TPOS/TNEG or TDATA; or RPOS/RNEG or RDATA) is clocked into the ES with the associated clock signal (TCLK or RCLK), and clocked out of the ES with the dejittered clock from the JAL. When the bit count in the ES is within two bits of overflowing or underflowing, the ES adjusts the output clock by 1/8 of a bit period. The ES produces an average delay of 16 bits in the associated path.

CONTROL MODES

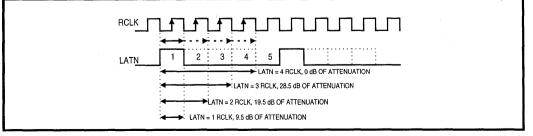
The LXT318 transceiver can be controlled by a microprocessor through a serial interface (Host mode), or through individual hard-wired pins (Hardware mode). The mode of operation is determined by the input to MODE. With MODE set High, the LXT318 operates in the Host mode. With MODE set Low, the LXT318 operates in the Hardware mode. With MODE tied to RCLK, the LXT318 operates in the Hardware mode with the HDB3 encoder/ decoder enabled. The LXT318 can also be commanded to operate in one of several diagnostic modes.

Host Mode Control

The LXT318 operates in the Host mode when MODE is set High. In Host mode the LXT318 is controlled through the serial I/O port (SIO) by a microprocessor. The LXT318 provides a pair of data registers, one for command inputs and one for status outputs, and an interrupt output.

An SIO transaction is initiated by a High-to-Low transition on \overline{CS} . The LXT318 responds by writing the incoming serial word from the SDI pin into its command register. If the command word contains a read request, the LXT318 subsequently outputs the contents of its status register onto the SDO pin. The Clock Edge (CLKE) signal determines when the SDO and receive data outputs are valid, relative to the Serial Clock (SCLK) or RCLK as in Table 3.

The 16-bit serial word consists of an 8-bit Command/ Address byte and an 8-bit Data byte as shown in Figures 4 and 5. SIO timing characteristics are shown in Table 14.


Table 3: CLKE Settings

		_	
CLKE	Output	Clock	Valid Edge
LOW	RPOS	RCLK	Rising
	RNEG	RCLK	Rising
	SDO	SCLK	Falling
HIGH	RPOS	RCLK	Falling
	RNEG	RCLK	Falling
	SDO	SCLK	Rising

Table 4: SIO Input Bit Settings (Figure 4)

Mode	RLOOP Bit D5	LLOOP Bit D6	TAOS Bit D7
RLOOP	1	0	n/a
LLOOP	0	1	n/a
TAOS	0	n/a	1
RESET	1	1	0

Figure 3: LXT318 Line Attenuation (LATN) Pulse Width Encoding

SERIAL INPUT WORD

Figure 4 shows the Serial Input data structure. The LXT318 is addressed by setting bit A4 in the Address/ Command byte, corresponding to address 16. Bit 1 of the serial Address/Command byte provides Read/Write (R/W) control when \overline{CS} is Low. The R/W bit is set to logic 1 to read the data output byte from the chip, and set to logic 0 to write the input data byte to the chip.

The Data Input byte is the second eight bits of a write operation. The first bit (D0) clears and/or masks LOS interrupts. The second bit (D1) clears and/or masks NLOOP detection interrupts. The third bit (D2) enables or disables HDB3 coding/decoding, and the last 3 bits (D5 - D7) control operating modes (normal and diagnostic) and chip reset. Refer to Table 4 for details on bits D5 - D7.

SERIAL OUTPUT WORD

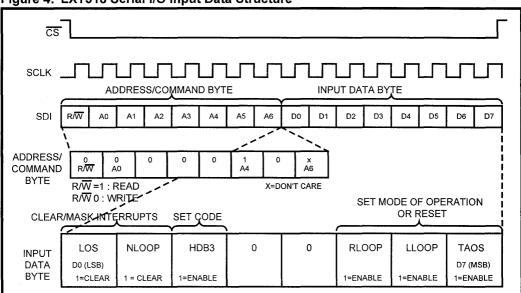
Figure 5 shows the Serial Output data structure. When the Serial Input word has bit A0 = 1, the LXT318 drives the output data byte onto the SDO pin. The output data byte reports Loss of Signal (LOS) conditions, NLOOP detection status, HDB3 code setting, and operating modes (normal or diagnostic as shown in Table 5. The first bit (D0) reports LOS status. The second bit (D1) reports network loopback detection status. The third bit (D2) reports the HDB3 setting. The last 3 bits (D5 - D7) report operating modes and interrupt status.

The Host mode provides a latched Interrupt output pin, INT. An interrupt is triggered by a change in the LOS bit (D0 of the output data byte). If the INT line is High (no interrupt is pending), bits D5 - D7 report the operating modes listed in Table 5. If the \overline{INT} line is Low, the interrupt status overrides all other reports and bits D5 - D7 reflect the interrupt status as listed in Table 5.

Hardware Mode Operation

In Hardware mode the transceiver is accessed and controlled through individual pins. With the exception of the INT and CLKE functions, Hardware mode provides all the functions provided in the Host mode. In the Hardware mode RPOS/RNEG or RDATA outputs are valid on the rising edge of RCLK. The LXT318 operates in Hardware mode only when MODE is Low or connected to RCLK.

INITIALIZATION AND RESET OPERATION


Upon power up, the transceiver is held static until the power supply reaches approximately 3V. Upon crossing this threshold, the device begins a 32 ms reset cycle to calibrate the transmit and receive delay lines and lock the Phase Lock Loop to the receive line. A reference clock is required to calibrate the delay lines. The transmitter reference is provided by TCLK. The crystal oscillator provides the receiver reference. If the crystal oscillator is grounded, MCLK is used as the receiver reference clock. All PLLs are continuously calibrated.

The transceiver can also be reset from the Host or Hardware mode. In Host mode, command reset by simultaneously writing 1s to RLOOP and LLOOP, and a 0 to TAOS. In Hardware mode, reset by holding RLOOP and LLOOP High simultaneously for 200 ns while holding TAOS Low. In either mode, reset sets all registers to 0.

Table 5: LXT318 Serial Data Output Bit Coding (Se	See Figure 5)
---	---------------

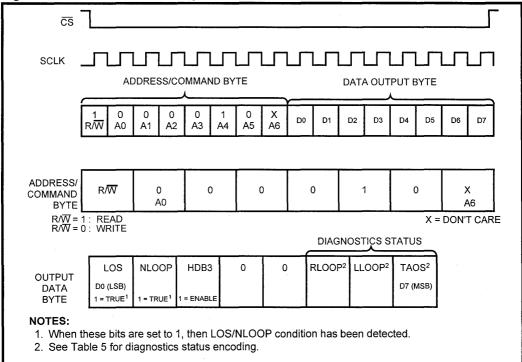
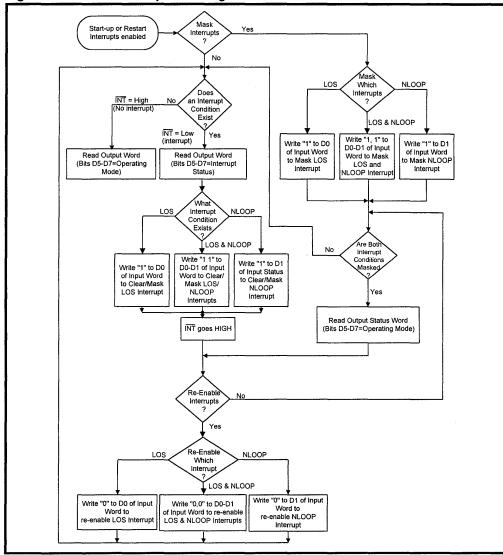

	Bit		Status						
D5	D6	D7							
	Operating Modes								
0	0	0	Reset has occurred, or no program input.						
0	0	1	TAOS active						
0	1	0	LLOOP active						
0	1	1	TAOS and LLOOP active						
1	0	0	RLOOP active						
			Interrupt Status						
1	0	1	NLOOP has changed state since last Clear NLOOP occurred.						
1	1	0	LOS has changed state since last Clear LOS occurred.						
1	1	1	LOS and NLOOP have both changed state since last Clear NLOOP and Clear LOS occurred.						

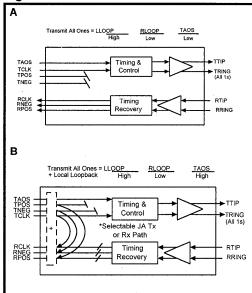
Figure 4: LXT318 Serial I/O Input Data Structure

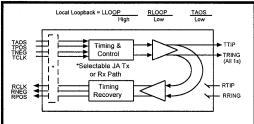
Figure 5: LXT318 Serial I/O Output Data Structure



Interrupt Handling

Figure 6 shows how to mask the interrupt generator by writing a one to the respective bit of the input data byte LOS (D0) or NLOOP (D1). Either interrupt pulls the INT output pin Low. The output stage of the INT pin consists only of a pull-down device which requires an external pull-up resistor for it to function. To clear either interrupt:

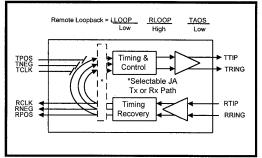

- If either of the interrupt bits LOS (D0) and NLOOP (D1) of the output data byte) is High, writing a one to the respective input bit (D0 or D1, of the input data byte) will clear the interrupt. Leaving a one in this bit position will effectively mask the interrupt. To re-enable the interrupt capability, reset D0 and/or D1 to 0.
- 2. If either the LOS or the NLOOP bit is Low, resetting the device will clear both interrupts. To reset the chip, set input bits D5 and D6 to one, and D7 to 0.


Diagnostic Mode Operation

Transmit All Ones. See Figure 7. In Transmit All Ones (TAOS) mode the TPOS and TNEG inputs to the transceiver are ignored and the transceiver transmits a continuous stream of 1s at the TCLK frequency. (In the LXT318 with JASEL set Low and TCLK not provided, TAOS is locked to the MCLK.) This can be used as the Blue Alarm Indicator (AIS). In Host mode, TAOS is commanded by writing a one to bit D7 of the input data byte. In Hardware mode, TAOS is commanded simultaneously with Local Loopback as shown in Figure 7B, but is inhibited during Remote Loopback.

Figure 7: Transmit All Ones

Figure 8: Local Loopback



Local Loopback. See Figure 8. Local Loopback (LLOOP) is designed to exercise the maximum number of functional blocks. During LLOOP operation, the RTIP/RRING inputs from the line are disconnected. Instead, the transmit out-

puts are routed back into the receive inputs. This tests the encoders/decoders, jitter attenuator, transmitter, receiver and timing recovery sections. In Host mode, writing a one to bit D6 of the input data byte commands Local Loopback In Hardware mode, Local Loopback is commanded by setting LLOOP High. If TAOS and LLOOP are both active, the All Ones pattern is transmitted onto the line while the TPOS/TNEG input data loops back to the RPOS/RNEG outputs through the jitter attenuator.

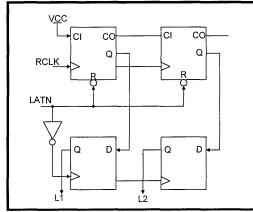
Remote Loopback. See Figure 9. In Remote Loopback (RLOOP) mode, the transmit data and clock inputs (TCLK and TPOS/TNEG or TDATA) are ignored, and the in-line encoders and decoders are bypassed. The RPOS/RNEG or RDATA outputs are looped back through the transmit circuits and output on TTIP and TRING at the RCLK frequency. Receiver circuits are unaffected by the RLOOP command and continue to output the RCLK and RPOS/RNEG or RDATA signals received from the twisted-pair line. In Host mode, writing a one to bit D5 of the input data byte commands Remote Loopback. In Hardware mode, Remote Loopback is commanded by setting RLOOP High.

Figure 9: Remote Loopback

Network Loopback Detection. In Host mode, to start the Network Loopback detection mode, write a one to each of RLOOP, LLOOP, and TAOS simultaneously and write all 0s in the next cycle. In Hardware mode, hold RLOOP, LLOOP and TAOS High simultaneously for 200 ns, then pull them all Low. Alternatively, tying RLOOP to RCLK will enable NLOOP.

With NLOOP detection enabled, the receiver monitors the input data for the NLOOP enable data pattern (00001). When either pattern repeats for five seconds, the device begins remote loopback operation. The LXT318 responds to either framed or unframed NLOOP patterns. Once the device begins NLOOP operation, the function is identical to remote loopback. When it detects the disable pattern (001) for five seconds or if RLOOP is enabled, the chip resets NLOOP. Activating LLOOP interrupts NLOOP temporarily, but it does not reset NLOOP.

APPLICATION INFORMATION


NOTE

This application information is for design aid only.

LATN DECODING CIRCUITS AND EXTER-NAL COMPONENTS

The line attenuation (LATN) output is encoded as a simple serial bit stream for use in line monitoring applications. Figure 10 is a typical decoding circuit for the LATN output. Table 6 provides the decoded output for each equalizer setting. It uses a 2-bit synchronous counter (half of a 4-bit counter) with synchronous reset, and a pair of flip-flops.

Figure 10: Typical LATN Decoding Circuit

Table 6: Line Attenuation Decoding

L2	L1	Line Attenuation
0	0	0.0 dB
0	1	-9.5 dB
1	0	-19.5 dB
1	1	-28.5 dB

POWER REQUIREMENTS

The LXT318 is a low-power CMOS devices. It operates from a single +5 V power supply which can be connected externally to both the transmitter and receiver. However, the two inputs must be within $\pm .3V$ of each other, and decoupled to their respective grounds separately, as shown in Figure 11. Isolation between the transmit and receive circuits is provided internally.

JITTER ATTENUATION CIRCUITRY EX-TERNAL CRYSTAL SPECIFICATIONS

Table 7 shows the minimum specifications for the external crystal used by the LXT318 jitter attenuation loop.

Table 7: 1 XT318 Crystal Specifications

Parameter	Specification
Frequency	8.192 MHz
Frequency stability	±20 ppm @ 25° C ±25 ppm @ -40° to +85° C (ref 25° C reading)
Pullability (Pull range may be slightly asymmetri- cal)	CL = 19 pF to 37 pF, crystal should pull -95 ppm to -115 ppm from nominal frequency CL = 19 pF to 11.6 pF, crystal should pull +95 ppm to +130 ppm from nominal frequency
Effective series resistance	30Ω maximum
Crystal cut	AT
Resonance	Parallel
Drive level	2.0 mW maximum
Mode of operation	Fundamental
Crystal holder	HC49 (R3W), Co = 7 pF maxi- mum CM = 17 fF typical;

3

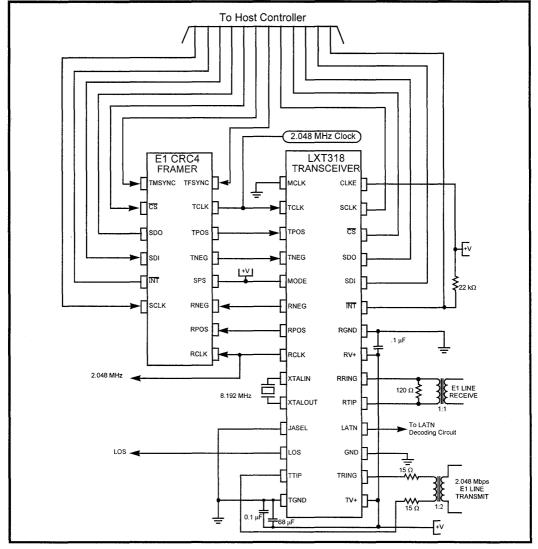
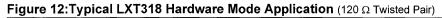
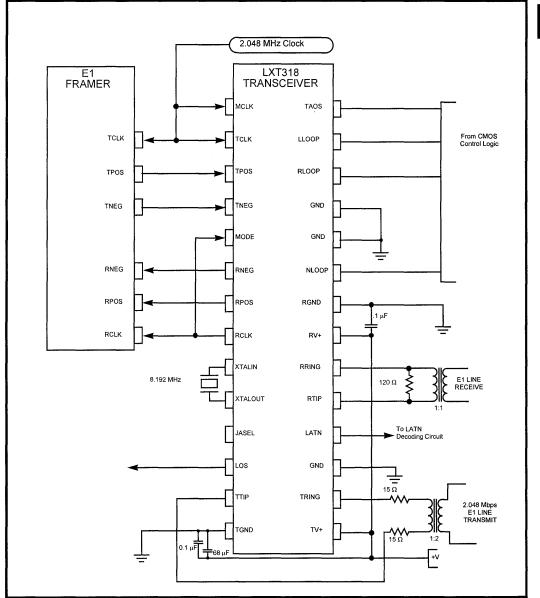

LXT318 Host Mode Applications

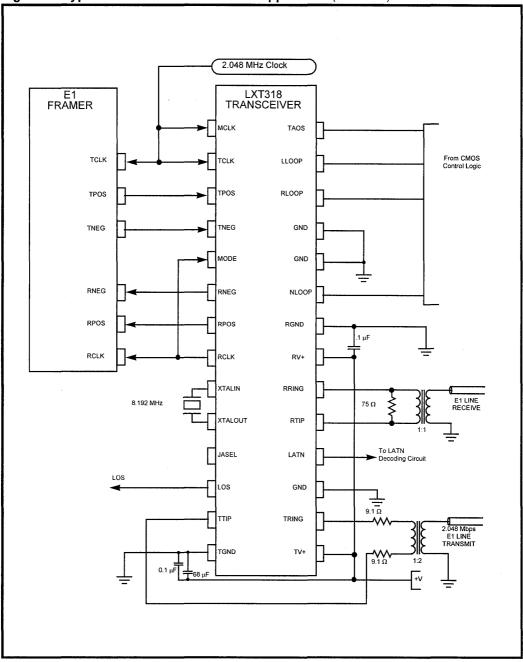
Figure 11 shows a typical E1 NTU application with the LXT318 operating in the Host mode (MODE pin tied High). The E1/CRC Framer provides the digital interface with the host controller. Both devices are controlled through the serial interface. In the Host mode, the LOS alarm is reported via the serial port so the LOS pin is not used (although it still reports valid LOS status.)

The 8.192 MHz crystal across XTALIN and XTALOUT enables the JAL which is switched to the transmit side by the ground on JASEL. The power supply inputs are tied to a common bus with appropriate decoupling capacitors (68 mF and 0.1 μ F) installed on each side.

The line interfaces are relatively simple. A 120 Ω resistor (for TWP applications) across the input of a 1:1 transformer is used on the receive side, and a pair of 15 Ω resistors are installed in series with the 1:2 transmit transformer.







LXT318 Hardware Mode Applications

Figure 12 shows a typical 2.048 Mbps application with the LXT318 operating in the Hardware mode. This configuration is illustrated with a single power supply bus. CMOS control logic is used to set the TAOS, LLOOP and RLOOP diagnostic modes individually. The RCLK output is tapped to clock the MODE pin, enabling HDB3 encoding. The receive and transmit line interfaces are identical to the Host mode application shown in Figure 11.

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 8 through 14 and Figures 18 through 22 represent the performance specifications of the LXT318 and are guaranteed by test, except where noted by design.

Table 8: Absolute Maximum Ratings

Parameters	Symbol	Min	Max	Units
DC supply (referenced to GND)	RV+, TV+	-	6.0	V
Input voltage, any pin	Vin	RGND, -0.3	RV+, +0.3	V
Input current, any pin ¹	IIN ·	-10	10	mA
Storage temperature	TSTG	-65	150	° C
Operation at or beyond these limits may permanently	TION damage the de extremes.	vice. Normal op	peration not gua	ranteed
1. Transient Currents of up to 100 mA will not cause SCR latch-up. TTIP	TRING, TV+, TG	ND can withstand c	ontinuous current o	f 100 mA.

Table 9: Operating Conditions and Characteristics

Parameter	Symbol	Min	Typ ¹	Max	Units	Test Conditions
DC supply ²	RV+, TV+	4.75	5.0	5.25	V	
Ambient operating temperature	ТА	-40	-	+85	°C	
Power dissipation ³	Pd	-	300	400	mW	100% ones density & maxi- mum line length @ 5.25 V

1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. TV+ must not differ from RV+ by more than 0.3 V.

3. Power dissipation while driving 25 Ω load over operating temperature range. Includes device and load. Digital input levels are within 10% of the supply rails and digital outputs are driving a 50 pF capacitive load.

Table 10: Digital Characteristics (TA = -40 to 85 °C, V+ = $5.0 \text{ V} \pm 5\%$, GND = 0 V)

Parameter	Sym	Min	Тур	Max	Units	Test Conditions
High level input voltage ^{1,2} (pins 1-5, 10, 23-28)	Vih	2.0	-	-	V	
Low level input voltage ^{1,2} (pins 1-5, 10, 23-28)	VIL	-	-	0.8	V	
High level input voltage ^{1,2} (pins 6-8, 12, 23, 25)	Vон	2.4	-	-	V	IOUT = -400 μA
Low level input voltage ^{1,2} (pins 6-8, 12, 23, 25)	Vol	-	-	0.4	V	IOUT = 1.6 mA
Input leakage current	Ill	0	-	±10	μA	
Three-state leakage current ¹ (pin 25)	I3l	0		±10	μΑ	
Driver power down current ³	IPD	-	-	±1.2	mA	Direct connection to Vcc or GND

1. Functionality of pins 23 and 25 depends on mode. See Host/Hardware Mode descriptions.

2. Output drivers will output CMOS logic levels into CMOS loads.

3. TTIP, TRING only in Idle or Power Down Mode.

Parame	Min	Тур	Max	Units	Test Conditions	
Recommended output load at T	50	120	200	Ω		
AMI output pulse amplitudes		2.7	3.0	3.3	v	Measured at the output
Jitter added by the transmitter ²	20 Hz - 100kHz ³	-	-	0.05	UI	
Input jitter tolerance	20 Hz - 100kHz	0.2	0.3	-	UI	0 - 43 dB line
	10 Hz	100	500	_	UI	
Jitter attenuation curve corner frequency ⁴			3		Hz	
Receive signal attenuation range			43	-	dB	
Allowable consecutive zeros be	fore LOS	160	175	190	-	
Transmitter return loss ³	51 kHz - 102 kHz	-	18		dB	
	102 kHz - 2.048 MHz	-	24	_	dB	
2.048 MHz - 3.072 MHz		_	22	-	dB	
Receiver return loss ^{3, 5} 51 kHz - 102 kHz 102 kHz - 2.048 MHz		-	20	-	dB	
		-	24	-	dB	
	2.048 MHz - 3.072 MHz	-	22	-	dB	

Table 11: Analog Characteristics (TA = -40 to 85 °C, V+ = $5.0 \text{ V} \pm 5\%$, GND = 0 V)

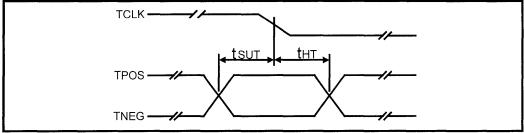
1. Typical figures are at 25 °C and are for design aid only, not guaranteed and not subject to production testing.

2. Input signal to TCLK is jitter free.

3. Guaranteed by characterization; not subject to production testing.

4. Circuit attenuates jitter at 20 dB/decade above the corner frequency.

5. Measured with 1:1 transformer terminated with 120 Ω resistance.



			T . 1			
Parameter	Sym	Min	Тур	Max	Units	Notes
Master clock frequency	MCLK	-	2.048	_	MHz	
Master clock tolerance	MCLKt	-	±100	-	ppm	
Master clock duty cycle	MCLKd	40	_	60	%	
Crystal frequency	fc	-	8.192	_	MHz	
Transmit clock frequency	TCLK	-	2.048	-	MHz	
Transmit clock tolerance	TCLKt	_	_	±100	ppm	
Transmit clock duty cycle	TCLKd	10	_	90	%	
TPOS/TNEG to TCLK setup time	tSUT	50	-	-	ns	
TCLK to TPOS/TNEG hold time	tHT	50	_	_	ns	

Table 12: LXT318 Master Clock and Transmit Timing Characteristics (See Figure 14)

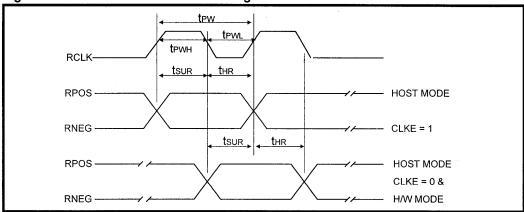

1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

Figure 14:LXT318 Transmit Clock Timing

3-51

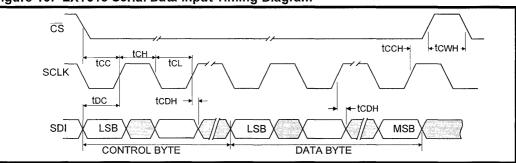
3

Figure 15: LXT318 Receive Clock Timing

Table 13: LXT318 Receive Timing Characteristics (See Figure 15)

Parameter	Sym	Min	Тур	Max	Units	Notes
Receive clock duty cycle ²	RCLKd	40	50	60	%	
Receive clock pulse width ²	tpw	-	488	-	ns	
Receive clock pulse width High	tрwн	· -	244	-	ns	
Receive clock pulse width Low	tpwl	220	244	268	ns	
RPOS/RNEG to RCLK rising setup time	tsur	-	194	-	ns	
RCLK rising to RPOS/RNEG hold time	thr	-	194	-	ns	

I. Typical figures are at 25° C and are for design aid only; not guaranteed and not subject to production testing.


2. RCLK duty cycle widths will vary depending on extent of received pulse jitter displacement. Max and min RCLK duty cycles are for worst case jitter conditions (0.4 UI clock displacement for 2.048 Mbps.)

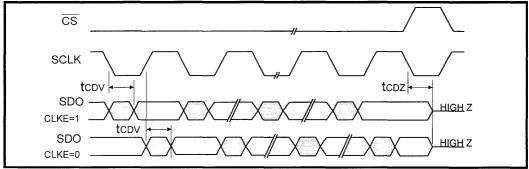

Parameter	Sym	Min	Тур ¹	Max	Units	Parameter
Rise/fall time—any digital output	tRF	-	-	100	ns	Load 1.6 mA, 50 pF
SDI to SCLK setup time	tDC	50	-	-	ns	
SCLK to SDI hold time	tCDH	50	_	-	ns	
SCLK low time	tCL	240	-		ns	
SCLK high time	tCH	240	-	-	ns	
SCLK rise and fall time	tR, tF	_	_	50	ns	
CS falling edge to SCLK rising edge	tCC	50	_		ns	······································
Last SCLK edge to \overline{CS} rising edge	tCCH	150	-	-	ns	
CS inactive time	tCWH	250	_	-	ns	
SCLK to SDO valid time	tCDV	-	-	200	ns	
SCLK falling edge or \overline{CS} rising edge to SDO high-Z	tCDZ	-	100		ns	

Table 14: LXT318 Serial I/O Timing Characteristics (See Figures 16 and 17)

Figure 16: LXT318 Serial Data Input Timing Diagram

Figure 17: LXT318 Serial Data Output Timing Diagram

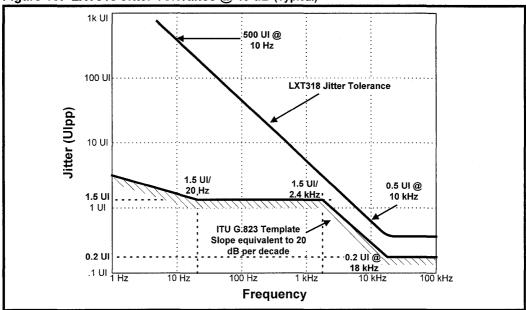
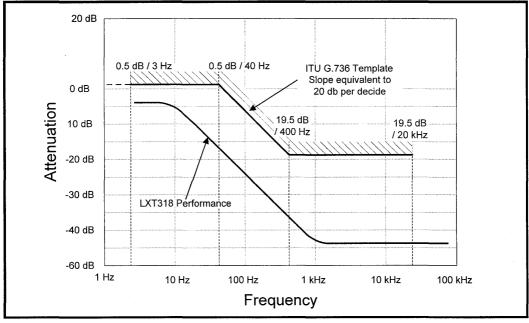
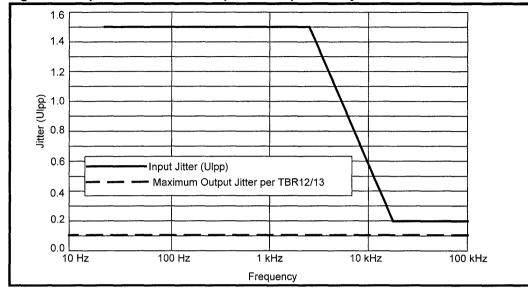
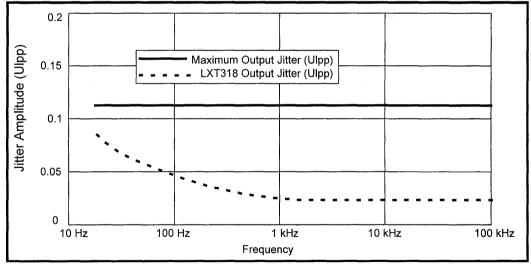



Figure 18: LXT318 Jitter Tolerance @ 43 dB (Typical)

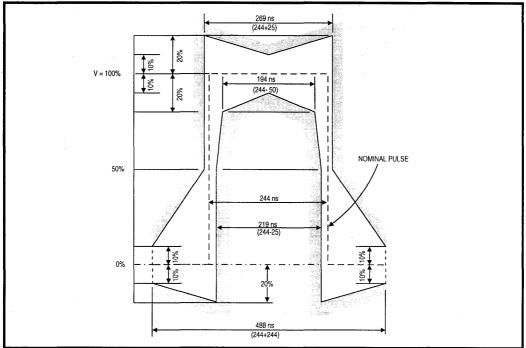

Figure 20: Input and Maximum Output Jitter Specified by TBR12/13

Figure 21: LXT318 Jitter Attenuation Performance (Typical-Measured Against TBR12/13)

Table 15: 2.048 Mbps Pulse Mask Parameters

Parameter	ТРЖ	Units
Test load impedance	120	Ω
Nominal peak mark voltage	3.0	v
Nominal peak space voltage	0 ± 0.30	v
Nominal pulse width	244	ns
Ratio of positive and negative pulse amplitude at center of pulse	95-105	%
Ratio of positive and negative pulse amplitudes at nominal half amplitude	95-105	%

MARCH 1997

Version 1.0

LXT360/361 Integrated T1/E1 LH/SH Transceivers for DS1/DSX-1/CSU or NTU/ISDN PRI Applications

General Description

The LXT360 and LXT361 are the first full-featured, fully integrated, combination transceivers for E1 ISDN Primary Rate Interface and T1 long- and short-haul applications. They operate over 0.63 mm (22 AWG) twisted-pair cables for 0 to 2 km (6 kft) and offer Line Build-Outs and pulse equalization settings for all T1 and E1 Line Interface Unit (LIU) applications.

The LXT360 and LXT361 are identical except for their control options. The LXT361 offers an Intel or Motorola compatible parallel port for microprocessor control. The LXT360 provides both a serial port for microprocessor control and a hardware control mode for stand alone operation. Both incorporate advanced crystal-less digital jitter attenuation in either the transmit or receive data path starting at 3 Hz. B8ZS/HDB3 encoding/decoding and unipolar or bipolar data I/O are available. Both LIUs provide loss of signal monitoring and a variety of diagnostic loopback modes.

The LXT360/361 uses an advanced double-poly, doublemetal fabrication process and requires only a single 5-volt power supply.

Applications

- ISDN Primary Rate Interface (ISDN PRI)
- · CSU/NTU interface to T1/E1 Service
- · Wireless Base Station interface
- T1/E1 LAN/WAN bridge/routers
- T1/E1 Mux; Channel Banks
- Digital Loop Carrier Subscriber Carrier Systems

Features

- Fully integrated transceivers for Long- or Short-Haul T1 or E1 interfaces
- · Crystal-less digital jitter attenuation
 - Select either transmit or receive path
- No crystal or high speed external clock required
 Meet or exceed specifications in ANSI T1.403 and T1.408; ITU I.431, G.703, G.736, G.775 and G.823;
- ETSI 300-166 and 300-233; and AT&T Pub 62411 • Support 75 Ω (E1 coax), 100 Ω (T1 twisted-pair) and
- 120 Ω (E1 twisted-pair) applications
 Selectable receiver sensitivity Fully restores the received signal after transmission through a cable with attenuation of either 0 to 26 dB, or 0 to 36 dB @ 772 kHz and 0 to 43 dB @ 1024 kHz
- Five Pulse Equalization Settings for T1 short-haul applications
- Four Line Build-Outs for T1 long-haul applications from 0 dB to -22.5 dB
- Transmit/receive performance monitors with Driver Fail Monitor Open and Loss of Signal outputs
- Selectable unipolar or bipolar data I/O and B8ZS/HDB3 encoding/decoding
- Line attenuation indication output in 2.9 dB steps
- · QRSS generator/detector for testing or monitoring
- · Output short circuit current limit protection
- Local, remote, analog and inband network loopback generation and detection
- Multiple-register serial- or parallel-interface for microprocessor control
- Available in 28-pin DIP, 28-pin PLCC, and 44-pin PQFP packages

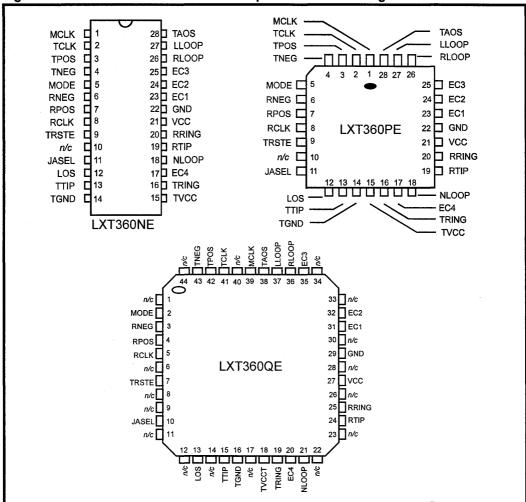


Figure 1: LXT360 Hardware Controlled Bipolar Mode Pin Assignments

Table 1: LXT360 Clock and Data	Pin Assignments by Mode ¹
--------------------------------	--------------------------------------

Pin # DIP/	Pin #	External D	ata Modes	QRSS	S Modes		
PLCC		Bipolar Mode	Unipolar Mode	Bipolar Mode	Unipolar Mode		
1	39		MCI	LK	Second C BAULT		
2	41		TCI	.K			
3	42	TPOS	TDATA	INSLER			
4	43	TNEG	INSBPV	INSBPV			
6	3	RNEG	BPV	RNEG BPV			

Pin # DIP/	Pin # QEP	External D	Data Modes	QRSS	Modes					
PLCC		Bipolar Mode	Unipolar Mode	Bipolar Mode	Unipolar Mode					
7	4	RPOS	RDATA	RPOS	RDATA					
8	5		RCI	_K						
13	15		TTIP							
14	16	TGND								
15	18	TVCC								
16	19		TRI	NG						
19	24		RT	IP						
20	26		RRING							
21	27	VCC								
22	29		GND							
1. Data pi	ns change ba	sed on whether external data o	r internal QRSS mode is active. C	lock pins remain the same in bo	oth Hardware and Host Mod					

Table 1: LXT360 Clock and Data Pin Assignments by Mode¹- continued

Table 2: LXT360 Control Pins by Mode

Pin # DIP/	Pin # QFP	Hardware	Modes	Host M	odes	Pin # DIP/		Hardware	Modes	Host M	odes
PLCC	Set 1	Unipolar/ Bipolar	QRSS	Unipolar/ Bipolar	QRSS	PLCC	GII	Unipolar/ Bipolar	QRSS	Unipolar/ Bipolar	QRSS
5	2	MOE	ЭЕ	MOL	ЭE	25	35	EC3	5	SDC)
9	7	TRSTE		TRSTE TRSTE		17	20	EC4	ļ	Lон	,
11	10	JASEL		Low		18	21	NLOO	OP	NLO	OP
12	13	LOS	LOS/ QPD	LOS	LOS/ QPD	26	36	RLOO	OP	CS	
23	31	EC	1	ĪNI		27	37	LLOC	OP	SCL	к
24	32	EC2	2	SDI	[28	38	TAOS	QRSS	CLK	E

Pin # DIP/ PLCC	Pin # QFP ⁴	Symbol	I/O ²	Description	
11	39 ¹	MCLK	DI	Master Clock . Connect to 1.544 MHz for T1 operation; to 2.048 MHz for E1. MCLK input requires an external, independent clock signal to generate internal clocks. Required accuracy is better than \pm 32 ppm with a typical duty cycle of 50%. Upon Loss of Signal (LOS), RCLK is derived from MCLK.	
2 ¹	41 ¹	TCLK	DI	Transmit Clock . 1.544 MHz or 2.048 MHz clock input. Transceiver sample TPOS and TNEG on the falling edge of TCLK	
3 4	42 43	TPOS TNEG	DI	Transmit Data – Positive and Negative . In the Bipolar I/O mode, these pins are the positive and negative sides of a bipolar input pair. Data to be transmitted onto the twisted-pair line is input at these pins. Table 4 describes Unipolar Mode functions.	
51	2	MODE	DI	Mode Select. Connecting MODE Low puts the LXT360 in the Hardware Mode. In Hardware Mode, the serial interface is disabled and hardwired pins are used to control configuration and report status. Connecting MODE to Midrange ³ activates the Hardware Mode and enables the B8ZS/HDB3 encoder/decoder and Unipolar Mode. Connecting MODE High puts the LXT360 in the Host Mode. In the Host Mode, the serial interface controls the LXT360 and displays its status.	
6 7	3 4	RNEG RPOS	DO	Receive Data – Negative and Positive. In the Bipolar I/O mode, these pins are the positive and negative sides of a bipolar output pair. Data recovered from the line interface is output on these pins. A signal on RNEG corresponds to receipt of a negative pulse on RTIP/RRING. A signal on RPOS corresponds to receipt of a positive pulse on RTIP/RRING. RNEG/RPOS outputs are Non-Return-to-Zero. Both outputs are stable and valid on the rising edge of RCLK. Refer to Table 4 for Unipolar Mode function descriptions.	
8	15	RCLK	DO	Recovered Clock. The clock recovered from the line input signal is output on this pin. Under LOS conditions there is a smooth transition from RCLK signal (derived from the recovered data) to MCLK signal at the RCLK output.	
9	7	TRSTE	DI	Tristate . Connecting TRSTE High forces all output pins to a high impedance state. Connecting TRSTE Low sets LXT360 to the Hardware Bipolar Mode. Connecting TRSTE to Midrange ³ enables the Unipolar Mode. (See Table 4 for Unipolar function descriptions.)	
10	-	n/c		No connection. Leave this pin floating.	

1. These pins do not change function as the operating mode changes. Tables 4 through 6 do not describe these pins.

2. I/O column entries: DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output.

Midrange is a voltage level such that 2.3 V ≤ Midrange ≤ 2.7 V or the pin may float.
 Pins 1, 6, 8, 11, 12, 14, 17, 22, 23, 26, 28, 30, 33, 34, 40, and 44 are not connected (n/c).

Pin # DIP/ PLCC	Pin # QFP ⁴	Symbol	I/O ²	Description			
11	10	JASEL	DI	Jitter Attenuation Select. Selects jitter attenuation location. Connecting JASEL High activates the jitter attenuator in the receive path. Connecting JASEL Low activates the jitter attenuator in the transmit path. Connecting JASEL to Midrange ³ disables JA.			
12	13	LOS	DO	oss of Signal Indicator. In T1 modes, LOS goes High on receipt of 175 co ccutive spaces and returns Low when the received signal reaches a mark der ty of 12.5% (determined by receipt of 16 marks within a sliding window of 28 bits with fewer than 100 consecutive zeros). If E1 modes, LOS goes High on receipt of 32 consecutive spaces, and returns ow when the receiver detects 12.5% mark density (determined by receipt of arks within a sliding window of 32 bits with fewer than 16 consecutive zero he transceiver outputs received marks on RPOS and RNEG even when LOS igh. ransmit Tip and Ring. Differential Driver Outputs. These outputs are esigned to drive a 50 - 200 Ω load. The transformer and line matching resis			
13 ¹ 16 ¹	15 ¹ 19 ¹	TTIP TRING	AO	Transmit Tip and Ring. Differential Driver Outputs. These outputs are designed to drive a 50 - 200 Ω load. The transformer and line matching resistors should be selected to give the desired pulse height and return loss performance.			
14 ¹	16 ¹	TGND		Ground return for the transmit drivers power supply TVCC.			
15 ¹	18 ¹	TVCC	DI	+5 VDC Power Supply input for the transmit drivers. TVCC must not vary from VCC by more than ± 0.3 V.			
17	20	EC4	DI	Equalization Control 4 . Used with EC3-1 (pins 23-25) for pulse equalization and LBO settings.			
18 ¹	211	NLOOP	DO	Network Loopback Detection . If the LXT360 is configured to detect Network Loopback (NLOOP) (by connecting the RLOOP pin to Midrange ³), this pin goes High when an Inband Network Loopback has been activated by the reception of a 00001 pattern for five seconds. NLOOP is reset by reception of 001 for five seconds, or by activation of RLOOP.			
19 ¹ 20 ¹	24 ¹ 25 ¹	RTIP RRING	AI	Receive Tip and Ring . The AMI signal received from the line is applied at these pins. A 1:1 transformer is required. Data and clock from the signal applied at these pins are recovered and output on the RPOS/RNEG, and RCLK pins.			
21 ¹	27 ¹	VCC		+5 VDC Power Supply for all circuits except the transmit drivers. (Transmit drivers are supplied by TVCC.)			
22 ¹	29 ¹	GND		Ground return for power supply VCC.			

Table 3: LXT360 Hardware Controlled Bipolar Mode Signal Descriptions - continued

1. These pins do not change function as the operating mode changes. Tables 4 through 6 do not describe these pins.

I/O column entries: DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output.
 Midrange is a voltage level such that 2.3 V ≤ Midrange ≤ 2.7 V or the pin may float.
 Pins 1, 6, 8, 11, 12, 14, 17, 22, 23, 26, 28, 30, 33, 34, 40, and 44 are not connected (n/c).

3

Pin # DIP/ PLCC	Pin # QFP ⁴	Symbol	I/O ²	Description
23 24 25	31 32 35	EC1 EC2 EC3	DI	Equalization Control 3-1. EC4-1 (including pin 17) define the Pulse Equal- ization, Line Build Outs and Equalizer Gain Limit settings. See Table 12 for additional details.
26	36	RLOOP	DI	Remote Loopback. When held High, the clock and data inputs from the framer (TPOS/TNEG or TDATA) are ignored and the data received from the twisted- pair line is transmitted back onto the line at the RCLK frequency. During remote loopback, the device ignores the in-line encoders/decoders. Connecting this pin to Midrange enables Network Loopback. See Figure 8.
27	37	LLOOP	DI	Local Loopback . When held High, the data on TPOS and TNEG loops back digitally to RPOS and RNEG outputs (through JA if enabled). Connecting this pin to Midrange ³ enables Analog Loopback (TTIP and TRING looped back to RTIP and RRING). See Figures 5, 6, and 7.
28	38	TAOS	DI	Transmit All Ones. When held High the transmit data inputs are ignored and the LXT360/361 transmits a stream of 1s at the TCLK frequency. (If TCLK is not supplied, MCLK is the transmit clock reference.) TAOS is inhibited during Remote Loopback. Connecting this pin to Midrange enables QRSS pattern generation and detection. See Figure 5, 10, and 11.
2. I/O col 3. Midran	umn entries ge is a volt	: DI = Digital Inp age level such that	out; DO = t 2.3 V ≤	ating mode changes. Tables 4 through 6 do not describe these pins. Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output. Midrange ≤ 2.7 V or the pin may float. 33, 34, 40, and 44 are not connected (<i>n/c</i>).

Table 4: LXT360 Hardware Controlled Unipolar Mode Signal Assignments

Pin # DIP/ PLCC	Pin# QFP	Symbol	I/O ¹	Description
3	42	TDATA	DI	Transmit Data . Unipolar input for data to be transmitted onto the twisted-pair line.
4	43	INSBPV	DI	Insert Bipolar Violation . This pin is sampled on the falling edge of TCLK to control Bipolar Violation Insertions in the transmit data stream. A Low-to-High transition is required to insert subsequent BPVs.
6	3	BPV	DO	Bipolar Violation. BPV goes High to report receipt of a bipolar violation from the line. This is an NRZ output, valid on the rising edge of RCLK.
7	4	RDATA	DO	Receive Data . RDATA is a unipolar NRZ output of data recovered from the line interface. In Hardware Mode RDATA is stable and valid on the rising edge of RCLK.
1. I/O col	umn entrie	es: DI = Digital I	nput; DO	= Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output.

Table 5: LXT360 Hardware Controlled QRSS Unipolar Mode Signal Assignments

Pin # DIP/ PLCC	Pin# QFP	Symbol	1/O ¹	Description
3	42	INSLER	DI	Insert Logic Error . When this pin goes from Low to High, the transceiver inserts a logic error into the transmitted QRSS data pattern. The error follows the data flow in whatever loopback mode is in effect. The LXT360 samples this pin on the falling edge of TCLK (or MCLK, if TCLK is not present).
4	43	INSBPV	DI	Insert Bipolar Violation . When this pin goes from Low to High, the transceiver inserts a bipolar violation error into the transmitted QRSS data pattern. A subsequent insertion requires another Low to High transition. The LXT360 samples this pin on the falling edge of TCLK (or MCLK, if TCLK is not present).
6	3	BPV ³	DO	Bipolar Violation . BPV goes High to report receipt of a bipolar violation from the twisted-pair line. This is an NRZ output, valid on the rising edge of RCLK.
7	4	RDATA ³	AO	Received Data . RDATA is a unipolar NRZ output of data recovered from the line interface. In hardware Mode, RDATA is stable and valid on the rising edge of RCLK.
12	13	LOS/ QPD	DO	Loss of Signal/QRSS Pattern Detect. This pin acts as a QPD indicator as well as LOS indicator. The QRSS Pattern synchronization criterion is fewer than four errors in 128 bits. In this mode, as long as the transceiver does not detect a QRSS pattern QPD stays High. As soon as the device does detect a QRSS pattern, the pin goes Low; any bit errors cause QPD to go High for half a clock cycle. This output can trigger an external error counter. An LOS condition will also make this pin go High. See Figure 11.
28	38	QRSS	DI	QRSS . Setting this pin to Midrange ² , enables QRSS pattern generation and detection. The transceiver transmits the QRSS pattern at the TCLK rate (or MCLK, if TCLK is not present).

Midrange is a voltage level such that 2.3 V ≤ Midrange ≤ 2.7 V or the pin may float.
 In QRSS Bipolar Mode, pins 6 and 7 for NE/PE pckg. or 3 and 4 for QE pckg. act as RNEG and RPOS, respectively.

Table 6: LXT360 Host Controlled Bipolar Mode Signal Assignments ^{1,2}

Pin # DIP/ PLCC	Pin # QFP ⁴	Symbol	I/O ³	Description
5	2	MODE	DI	Mode. Connecting MODE High puts the LXT360 in Host Mode. In Host Mode, the serial interface controls the LXT360 and displays its states.
6 7	34	RNEG RPOS	DO	Received Data–Negative and Positive . In the Bipolar I/O Mode, these pins are the negative and positive sides of a bipolar output pair. The transceiver outputs the data recovered from the line interface on these pins. A signal on RNEG corresponds to receipt of a negative pulse on RTIP/RRING. A signal on RPOS corresponds to receipt of a positive signal on RTIP/RRING. RNEG/RPOS outputs are Non-Return-to-Zero (NRZ). CLKE determine the clock edge at which these outputs are stable and valid. See Figure 19.

 For pins not described in this table, see Table 3. Pin out for data pins in Unipolar and QRSS Modes remains the same as in Tables 4 and 5. In Host Mode, the control pins (23-28) change as shown in Table 6.

2. In QRSS Bipolar Mode, pins 6 and 7 seven act as RNEG and RPOS, respectively.

3. I/O column entries: DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output.

4. Pins 1, 6, 8, 11, 12, 14, 17, 22, 23, 26, 28, 30, 33, 34, 40, and 44 are not connected (n/c).

Pin # DIP/ PLCC	Pin # QFP ⁴	Symbol	I/O ³	Description			
9	7	TRSTE	DI	Tristate. Connecting TRSTE High forces all output pins to high-impedance state. Connect this pin Low for normal operation.			
10	-	n/c	_	Not connected.			
11	10	n/c	_	Connect Low.			
17	20	n/c	_	Connect Low.			
18	21	NLOOP	DO	Network Loopback. This pin goes High when an Inband Network Loopback has been activated.			
23	31	ĪNT	DO	Interrupt (Active Low–Maskable). INT goes Low to flag the host when any of the LOS, NLOOP, AIS, QRSS, DFMS or DFMO changes state or when there is an Elastic Store overflow or underflow. INT is an open drain output which requires a connection to power supply VCC through a resistor. Reset INT by writing a one to the respective bit in the Interrupt Clear Register.			
24	32	SDI	DI	Serial Data Input. Input port for the 16-bit serial address/command and data word. LXT360 samples SDI on the rising edge of SCLK. See Figures 20 and 21.			
25	35	SDO	DO	word. LX 1360 samples SDI on the rising edge of SCLK. See Figures 20 and 21 Serial Data Output. If CLKE is High, SDO is valid on the rising edge of SCLK. If CLKE is Low, SDO is valid on the falling edge of SCLK. This pin goes to a high-impedance state when the serial port is being written to or when \overline{CS} is High. See Figure 21.			
26	36	CS	DI	Chip Select (Active Low). This input is used to access the serial interface. For each read or write operation, \overline{CS} must transition from High to Low, and remain Low.			
27	37	SCLK	DI	Serial Clock. This clock is used to write data to or read data from the serial inter- face registers. The clock frequency can be any rate up to 2.048 MHz.			
28	38	CLKE	DI	Clock Edge . Setting CLKE High causes RPOS and RNEG to be valid on the fall- ing edge of RCLK, with SDO valid on the rising edge of SCLK. Setting CLKE Low makes RPOS and RNEG valid on the rising edge of RCLK and SDO valid on the falling edge of SCLK.			

Table 6: LXT360 Host Controlled Bipolar Mode Signal Assignments- continued^{1,2}

Mode, the control pins (23-28) change as shown in Table 6. 2. In QRSS Bipolar Mode, pins (a) 50 standy at a RNEG and RPOS, respectively.
3. I/O column entries: DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output.
4. Pins 1, 6, 8, 11, 12, 14, 17, 22, 23, 26, 28, 30, 33, 34, 40, and 44 are not connected (n/c).

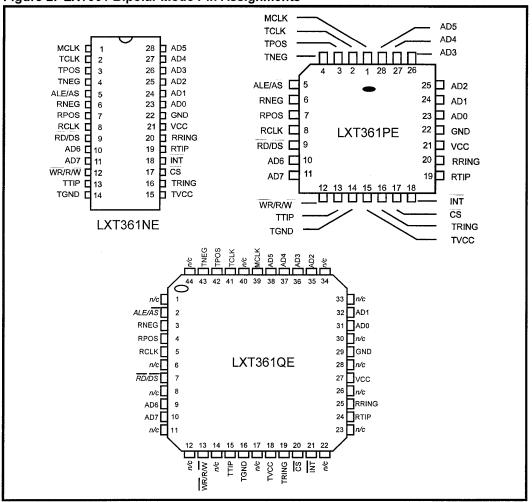


Figure 2: LXT361 Bipolar Mode Pin Assignments

Pin #	Pin #	External D	ata Modes	QRSS	Modes			
DIP/ PLCC	QFP -	Bipolar Mode	Unipolar Mode	Bipolar Mode	Unipolar Mode			
1	39		MC	LK				
2	41	TCLK						
3	42	TPOS	TDATA	INSLER				
4	43	TNEG INSBPV INSBPV						
1. Data pi	ns change b	ased on whether external data o	r internal QRSS mode is active.	These pins remain the same in b	oth Hardware and Host Modes.			

Pin # DIP/ PLCC	Pin #	External D	ata Modes	QRSS	Modes				
	QFP	Bipolar Mode	Unipolar Mode	Bipolar Mode	Unipolar Mode				
6	3	RNEG	BPV	RNEG	BPV				
7	4	RPOS	RDATA	RPOS	RDATA				
8	5		RC	LK					
13	15		TT	ΊΡ					
14	16		TGND						
15	18		TVCC						
16	19		TRING						
19	24		RT	ΊΡ					
20	25		RRING						
21	27		VCC						
22	29		GN	1D	· · · ·				
1. Data pi	ns change	based on whether external data	or internal QRSS mode is active.	These pins remain the same in b	ooth Hardware and Host Mod				

Table 7: LXT361 Clock and Data Pin Assignments by Mode¹

Table 8: LXT361 Processor Interface Pins

Pin # DIP/ PLCC	Pin # QFP	Address/Data Bus Type		Pin # DIP/	Pin # QFP	Address/Data Bus Type	
		Intel	Motorola	PLCC	QFP	Intel	Motorola
5	2	ALE	ĀS	25	35	AD2	
9	7	RD	DS	26	36	AD3	
12	13	WR	R∕₩	27	37	AD4	
17	20	CS		28	38	AD5	
18	21	ĪNT		10	9	AD6	
23	31	AD0		11	10	AD7	
24	32	AD1				*	

			Description
39	MCLK	DI	Master Clock. Connect to 1.544 MHz for T1 operation; to 2.048 MHz for E1. MCLK requires an external, independent input to generate internal clocks. Required accuracy is \pm 32 ppm with a typical duty cycle of 50%. Upon Loss of Signal (LOS), the transceiver derives RCLK from MCLK.
41	TCLK	DI	Transmit Clock . 1.544 MHz or 2.048 MHz bit rate clock input. The transceiver samples TPOS and TNEG on the falling edge of TCLK
42 43	TPOS TNEG	DI	Transmit Data – Positive and Negative . In the Bipolar I/O Mode, these pins are the positive and negative sides of a bipolar input pair. Data for transmission onto the twisted-pair line is input at these pins.
2	$\frac{ALE}{AS}$	DI	Address Latch Enable/Address Strobe (Active Low). Connects to Intel (ALE) or Motorola (\overline{AS}) signal. On Motorola bus, this signal is Active Low. Leaving this pin floating forces all output pins into a high impedance state.
3 4	RNEG RPOS	DO	Receive Data – Negative and Positive . In the Bipolar I/O mode, these pins are the positive and negative sides of a bipolar output pair. Data recovered from the line interface is output on these pins. A signal on RNEG corresponds to receipt of a negative pulse on RTIP/RRING. A signal on RPOS corresponds to receipt of a positive pulse on RTIP/RRING. RNEG/RPOS outputs are Non-Return-to Zero. Both outputs are stable and valid on the rising edge of RCLK. Refer to Table 10 for Unipolar Mode function descriptions.
5	RCLK	DO	Recovered Clock . The output on this pin is the clock recovered from the line input signal. Under LOS conditions there is a smooth transition from RCLK to MCLK output.
7	RD DS	DI	Read (Active Low)/Data Strobe (Active Low). On an Intel bus, this signal, Read, goes Low to command a read operation. On a Motorola bus, this signal, Data Strobe, goes Low when data is being driven on the address/data bus. Data is valid on the rising edge of DS.
9 10	AD6 AD7	DI/ O DI/ O	Address/Data bus lines 6 and 7. Used with pins 24-28 as the address/data bus.
13	WR R/W	DI	Write (Active Low) or Write/Read. On an Intel bus, driving this signal, Write, Low enables a write operation on the Address/Data bus. On a Motorola bus, driving this signal, Read/Write, High commands a read opera- tion, driving it Low commands a write operation.
15 19	TTIP TRING	AO	Transmit Tip and Ring . Differential Driver Outputs. The design load for these outputs is 50 - 200 Ω . Select the transformer and line matching resistors to give the desired pulse height.
	42 43 2 3 4 5 7 7 9 10 13 15 19 n entries	42 43TPOS TNEG2ALE AS2ALE ROS3 4RNEG RPOS5RCLK7RD DS9 10AD6 AD713WR R/W15 19TTIP TRINGn entries: DI = Digital	42 43TPOS TNEGDI42 43TPOS TNEGDI2ALE ASDI3 4RNEG RPOSDO3 4RNEG RPOSDO5RCLKDO7RD DSDI9 10AD6 AD7 DI/ ODI/ O13WR R/WDI15TTIPAO

Table 9:	LXT361	Bipolar	Mode	Signal	Assignments
14010 01				•.g	

Pin # DIP/ PLCC	Pin # QFP ²	Symbol	I/O ¹	Description
14	16	TGND	_	Ground return for the transmit drivers power supply TVCC.
15	18	TVCC	-	+5 VDC Power Supply input for the transmit drivers. TVCC must not vary from VCC by more than \pm 0.3 V.
17	20	टड	DI	Chip Select (Active Low). For each read or write on the Address/Data bus, this pin must go Low during the operation. See Figures 22 and 23 for timing requirements. In the case of a single processor controlling several chips, this is the line it uses to command a specific transceiver.
18	21	ĪNT	DO	Interrupt (Active Low). This pin goes Low to signal an interrupt on the chip. To identify the specific interrupt, read the Performance Status Register. To clear or mask an interrupt, write a one to the appropriate bit in the Clear Interrupt Register.
19 20	24 25	RTIP RRING	AI	Receive Tip and Ring . The AMI signal received from the line is applied at these pins. A 1:1 transformer is required. Data and clock from the signal applied at these pins are recovered and output on the RPOS/RNEG, and RCLK pins.
21	27	VCC	-	+5 VDC Power Supply for all circuits except the transmit drivers. (Transmit drivers are supplied by TVCC.)
22	29	GND	_	Ground return for power supply VCC.
23 24 25 26 27 28	31 32 35 36 37 38	AD0 AD1 AD2 AD3 AD4 AD5	DI/ O	Address/Data Lines 0-5. (Also pins 10, 11–AD6 and 7) Conform to Intel and Motorola Address/Data bus specifications.
28	38 umn entrie	AD5 s: DI = Digital) = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output. 30, 33, 34, 40, and 44 are not connected (n/c).

Table O.	I VTOCA	DimalarB			
ladie 9:	LA 1 301	Bibolar I	viode Sidnai	I Assignments – continued	1

Table 10:	LXT361	Unipolar	Mode Signal	Assignments ¹
		emperar	mous eigna.	,

Pin # DIP/ PLCC	Pin# QFP	Symbol	I/O ²	Description			
3	42	TDATA	DI	Transmit Data. Unipolar data for transmission onto the twisted-pair line.			
4	43	INSBPV	DI	Insert Bipolar Violation . Controls bipolar violation insertions, requires Low-to-High transition to insert each violation, the LXT361 samples the signal on the falling edge of TCLK.			
6	3	BPV	DO	Bipolar Violation . BPV goes High on receipt of a bipolar violation from twisted- pair line. This is an NRZ output, valid on the rising edge of RCLK.			
7	4	RDATA	DO	Received Data . RDATA is an NRZ output of the data recovered from the line inter- face. RDATA is valid on the rising edge of RCLK.			
	 For the descriptions of pins not identified in this table, see Table 9: LXT361 Bipolar Mode Signal Assignments. I/O column entries DI = digital input; DO = digital output, DI/O = digital input and output; AI = analog input , AO = analog output. 						

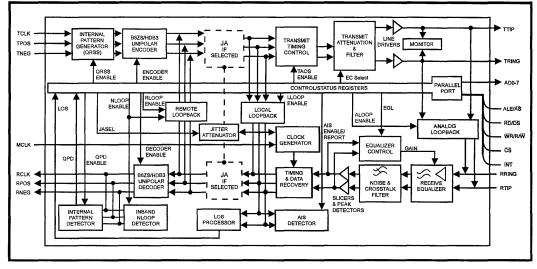

Pin # DIP/ PLCC	Pin# QFP	Symbol	I/O ³	Description
3	42	INSLER	DI	Insert Logic Error . When this pin goes from Low to High, the transceiver inserts a logic error into the transmitted QRSS data pattern. The error follows the data flow in whatever loopback mode is in effect. The LXT361 samples this pin on the falling edge of TCLK (or MCLK, if TCLK is not present).
4	43	INSBPV	DI	Insert Bipolar Violation . When this pin goes from Low to High, the transceiver inserts a bipolar violation error into the transmitted QRSS data pattern. A subsequent insertion requires another Low to High transition. The LXT361 samples this pin on the falling edge of TCLK (or MCLK, if TCLK is not present).
6	3	BPV	DO	Bipolar Violation . BPV goes High on receipt of a bipolar violation from twisted-pair line. This is an NRZ output, valid on the rising edge of SCLK.
7	4	RDATA	DO	Received Data . RDATA is an NRZ output of the data recovered from the line interface. RDATA is valid on the rising edge of RCLK.

Table 11: LXT361 QRSS Unipolar Mode Signal Assignments^{1,2}

1. For the descriptions of pins not identified in this table, see Table 9.

In QRSS Bipolar Mode, pins 6 and 7 for NE/PE pckg. or 3 and 4 for QE pckg. act as RNEG and RPOS, respectively.
 I/O column entries DI = digital input; DO = digital output, DI/O = digital input and output; AI = analog input, AO = analog output.

Figure 3: LXT361 Integrated T1/E1 Transceiver Block Diagram

FUNCTIONAL DESCRIPTION

The LXT360 and LXT361 are fully integrated, PCM transceivers for long- or short-haul, 1.544 Mbps (T1) or 2.048 Mbps (E1) applications allowing full-duplex transmission of digital data over existing twisted-pair installations. They interface with two twisted-pair lines (one pair each for transmit and receive) through standard pulse transformers and appropriate resistors.

The figure at the front of this Data Sheet shows a block diagram of the LXT360. Control of this chip is via either a serial microprocessor port or, in Hardware Mode, via individual pin settings. Figure 3 is a block diagram of the LXT361. The LXT361 has a parallel port for microprocessor control. Both transceivers provide a high-precision, crystal-less jitter attenuator. The user may place it in the transmit or receive path, or bypass it completely.

The transceivers meet or exceed FCC and AT&T specifications for CSU and DSX-1 applications, as well as ANSI T1/E1, and ITU and ETSI requirements for E1 ISDN PRI applications.

INITIALIZATION

During power up, the transceiver remains static until the power supply reaches approximately 3 V. On crossing this threshold, the device begins a 32 ms reset cycle to calibrate the Phase Lock Loops (PLL). The transceiver uses a reference clock to calibrate the PLL; the transmitter reference is TCLK, and the receiver reference clock is MCLK. MCLK is mandatory for chip operation.

Reset Operation

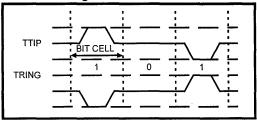
Reset clears and sets all registers to 0 and resets the status and state machines for the LOS, AIS, NLOOP, and QRSS blocks. In Hardware Mode, holding pins RLOOP, LLOOP and TAOS High for at least one clock cycle resets the device. Writing a 1 to the bit CR2.RESET commands reset in Host Mode. Allow 32 ms for the device to settle after removing all reset conditions.

TRANSMITTER

Digital Data Interface

Input data for transmission onto the line is clocked serially into the device at the TCLK rate. TPOS and TNEG are the bipolar data inputs. TDATA accepts unipolar data. (Setting the TRSTE pin to Midrange enables Hardware Unipolar Mode.) Input data may pass through either the Jitter Attenuator or B8ZS/HDB3 encoder or both. Bit CR1.ENCENB = 1 enables B8ZS/HDB3 encoding in Host Mode. In Hardware Mode, connecting the MODE pin to Midrange selects zero suppression coding. With zero suppression enabled, the ECx inputs (see Table 12) determine the coding scheme (B8ZS for T1 or HDB3 for E1 mode). To select the HDB3 scheme, set EC4-1 to 1000, 1001 or 1010. Other ECx settings select the B8ZS option. The transmit clock (TCLK) supplies input synchronization. The Test Specifications section defines the transmit timing requirements for TCLK and the Master Clock (MCLK).

Short Circuit Limit


The transmitter includes a short circuit limiter. This limits the current sourced into a low impedance load. It automatically resets when the load current drops below the limit. The current is determined by the interface circuitry (total resistance on transmit side).

In Host Mode, the Performance Status Register flags open circuits in bit PSR.DFMO. A transition on DFMO will provide an interrupt and the transition sets bit TSR.DFMO = 1. Writing a 1 in bit ICR.CDFMO clears the interrupt; leaving a 1 in the bit masks that interrupt.

Output Drivers

The transceivers transmit data as a 50% line code as shown in Figure 4. Activating the line driver only during a mark reduces power consumption. The output driver is disabled during transmission of a space. Biasing of the transmit DC level is on-chip.

Figure 4: 50% Duty Cycle Coding Diagram

Idle Mode

Transmit Idle Mode is a normal operational mode (as opposed to modes) which allows multiple transceivers to be connected to a single line for redundant applications. TTIP and TRING remain in a high impedance state when TCLK is not present. Remote or Dual Loopback, TAOS or any internal transmit patterns temporarily disable the high impedance state as will detection of Network Loop Up code in the receive direction.

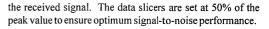
Pulse Shape

The Equalizer Control inputs (EC4-1) determine the transmitted pulse shape as in Table 12. In Host Mode, the I/O port controls the ECx values. For the LXT360 in Hardware Mode, four individual pins provide the ECx inputs.

Shaped pulses meeting the various T1, DS1, DSX-1 and E1 specifications are applied to the AMI line driver for transmission onto the line at TTIP and TRING. The transceivers produce DSX-1 pulses for short-haul T1 applications (settings from 0 dB to +3.0 dB), DS1 pulses for long-haul T1 applications (settings from 0 dB to -22.5 dB), and a G.703 pulse for E1 applications. Refer to the Test Specifications section for pulse mask specifications.

RECEIVER

A 1:1 transformer provides the interface to the twisted-pair line. Recovered data is output at RPOS/RNEG (RDATA in Unipolar Mode), and the recovered clock is output at RCLK. The Test Specifications section shows receiver timing.


Receiver Equalizer

The receive equalizer processes the signal received at RTIP and RRING. The equalizer gain is up to 43 dB in E1 longhaul applications. In T1 long-haul applications, the equalizer control (ECx) input pins or register bits determine the maximum gain applied at the equalizer. With EC1 Low, up to 36 dB of gain may be applied. When EC1 is High, 26 dB is the gain limit to provide an increased noise margin in shorter loop operations.

The receiver can accurately recover signals with up to 36 dB of cable attenuation (from 2.4 V) for T1 and up to 43 dB of cable attenuation (from 2.7 V) for E1 operation.

Data Recovery

The transceiver filters the equalized signal and applies it to the peak detector and data slicers. The peak detector samples the inputs and determines the maximum value of

After processing through the data slicers, the received signal goes to the data and timing recovery section, then to the B8ZS/HDB3 decoder (if selected) and to the receive monitor. The data and timing recovery circuits provide input jitter tolerance significantly better than required by AT&T Pub 62411 and ITU G.823. See the Test Specifications section.

Digital Data Interface

In either Host or Hardware Control Mode the recovered data goes to the Loss of Signal (LOS) Monitor. In Host Control Mode, it also goes through the Alarm Indication Signal (AIS, Blue Alarm) Monitor. The jitter attenuator circuit may be enabled or disabled in the receive data path or the transmit path. Received data may go through either the B8ZS or HDB3 decoder or neither. Finally, the device may send the digital data to the framer as either unipolar or bipolar data.

When transmitting unipolar data to the framer, the device reports receiving bipolar violations by driving the BPV pin High. During E1 operation in Host Control Mode, the device can report HDB3 code violations and Zero Substitution Violations on the BPV pin. The diagnostics section explains these options in more detail.

Receiver Monitor Mode

The receive equalizer of the LXT360/361 can be used in Monitor Mode applications. Monitor Mode applications are those requiring a resistive attenuation of the signal in addition to a small amount of cable attenuation (less than 6 dB). Setting bit CR3.EQZMON = 1 configures the device to work in its Monitor Mode. The device must be in its long-haul receiver mode (set bits CR1.ECx = 0xx0 or 1001 or 1010) for Monitor Mode. This feature is not available in the LXT360 Hardware Mode.

With the device in Monitor Mode, the receive equalizer handles signals attenuated resistively by 20 to 30 dB, along with 0 to 6 dB of cable attenuation for both E1 and T1 applications.

JITTER ATTENUATION

A Jitter Attenuation Loop (JAL) with an Elastic Store (ES) provides jitter attenuation as shown in the Test Specifications section. The JAL requires no special circuitry, such as an external quartz crystal or high-frequency clock (higher than the line rate). Its timing reference is the master clock, MCLK.

3

In Hardware Control Mode the ES is a 32×2 -bit register. Setting the JASEL pin High places the JA circuitry in the received data path; setting JASEL Low places the JA in the transmit data path; tying it to Midrange disables the JA.

In Host Mode, bit CR1.JASEL0 enables or disables the JA circuit. With bit CR1.JASEL0 = 1, bit CR1.JASEL1 controls the JA circuit placement (see Table 17). The ES can be either a 32×2 -bit or 64×2 -bit register depending on the value of bit CR3.ES64 (see Table 19.)

The device clocks data into the ES using either TCLK or Receiver Recovered Clock depending on whether the JA circuitry is in the transmit or receive data path, respectively. Data is shifted out of the elastic store using the dejittered clock from the JAL. When the FIFO is within two bits of overflowing or underflowing, the ES adjusts the output clock by $\frac{1}{8}$ of a bit period. The ES produces an average delay of 16 bits (or 32 bits, with the 64-bit ES option selected in Host Control Mode) in the associated data path. When the Jitter Attenuator is in the receive path, the output RCLK transitions smoothly to MCLK in the event of an LOS condition.

The Transition Status Register bits TSR.ESOVR and TSR.ESUNF indicate an overflow or underflow, respectively, in the ES. These are sticky bits: once set to 1, they remain set until the host reads the register. The ES can also provide a maskable interrupt on either overflow or underflow.

Table 12: Equalizer Control Input Settings

EC4	EC3	EC2	EC1 ¹	Function	Pulse	Cable	Gain	Coding ²
0	0	0	0	T1 Long Haul	0.0 dB pulse	100 Ω TP	36 dB	B8ZS
0	0	1	0	T1 Long Haul	-7.5 dB pulse	100 Ω TP	36 dB	B8ZS
0	1	0	0	T1 Long Haul	-15.0 dB pulse	100 Ω TP	36 dB	B8ZS
0	1	1	0	T1 Long Haul	-22.5 dB pulse	100 Ω TP	36 dB	B8ZS
0	0	0	1	T1 Long Haul	0.0 dB pulse	100 Ω TP	26 dB	B8ZS
0	0	1	_1	T1 Long Haul	-7.5 dB pulse	100 Ω TP	26 dB	B8ZS
0	1	0	1	T1 Long Haul	-15.0 dB pulse	100 Ω TP	26 dB	B8ZS
0	1.	1	1	T1 Long Haul	-22.5 dB pulse	100 Ω TP	26 dB	B8ZS
1	0	0	0	E1 Short Haul	ITU G.703	120 Ω TP/75 Ω Coax	12 dB	HDB3
1	0	0	1	E1 Long Haul	ITU G.703	120 Ω TP	43 dB	HDB3
1	0	1	0	E1 Long Haul	ITU G.703	120 Ω TP/75 Ω Coax	43 dB	HDB3
1	0	1	1	T1 Short Haul	0-133 ft / 0.6 dB	100 Ω TP	12 dB	B8ZS
1	1	0	0	T1 Short Haul	133-266 ft / 1.2 dB	100 Ω TP	12 dB	B8ZS
1	1	0	1	T1 Short Haul	266-399 ft / 1.8 dB	100 Ω TP	12 dB	B8ZS
1	1	1	0	T1 Short Haul	399-533 ft / 2.4 dB	100 Ω TP	12 dB	B8ZS
1	1	1	1	T1 Short Haul	533-655 ft / 3.0 dB	100 Ω TP	12 dB	B8ZS
1. EC1 se 2. When		ive equaliz	zer gain (E	GL) during T1 long-h	aul operation.			

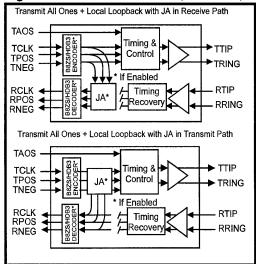
DIAGNOSTIC MODE OPERATION

LXT360/361 offers multiple diagnostic modes as shown in Table 13. In Hardware Mode, the diagnostic modes are selected by a combination of pin settings. In Host Mode, the diagnostic modes are selected by writing appropriate bits in the Diagnostic Control Register.

Table 13: Diagnostic Mode Availability

Diagnostic Mode	Availa	Host Mode ²	
	H/W	Host	– Maskable
Loopback Modes		<u> </u>	····
Local Loopback (LLOOP)	Yes	Yes	No
Analog Loopback (ALOOP)	Yes	Yes	No
Remote Loopback (RLOOP)	Yes	Yes	No
In-band Network Loopback (NLOOP)	Yes	Yes	Yes
Dual Loopback (DLOOP)	Yes	Yes	No
Internal Data Pattern Generation and Detection			
Transmit All Ones (TAOS)	Yes	Yes	No
Quasi-Random Signal Source (QRSS)	Yes	Yes	Yes
In-band loop up/down code generator	No	Yes	No
Error Insertion and Detection			
Bipolar Violation Insertion (INSBPV)	Yes	Yes	No
Logic Error Insertion (INSLER)	Yes	Yes	No
Bipolar Violation Detection (BPV)	Yes	Yes	No
Logic Error Detection, QRSS (QPD)	Yes	Yes	No
HDB3 Code Violation Detection (CODEV)	No	Yes	No
HDB3 Zero violation Detection (ZEROV)	No	Yes	No
Alarm Condition Monitoring			
Receive Loss of Signal (LOS) monitoring	Yes	Yes	Yes
Receive Alarm Indication Signal (AIS) monitoring	No	Yes	Yes
Transmit Driver Failure Monitoring—Open (DFMO)	No	Yes	Yes
Elastic store overflow and underflow monitoring	No	Yes	Yes
Other Diagnostic Reports			
Receive Line Attenuation Indicator (LATN)	No	Yes	No
Built-In Self Test (BIST)	No	Yes	Yes

LOOPBACK MODES


NOTE Hardware Mode pins discussed in this section refer to the LXT360 only.

Local Loopback

See Figures 5 and 6. In Hardware Mode, Local Loopback (LLOOP) is selected by tying LLOOP High; in Host Mode, by setting CR2.ELLOOP to 1. LLOOP inhibits the receiver circuits. The transmit clock and data inputs (TCLK and TPOS/TNEG or TDATA) loop back through the jitter attenuator (if enabled) and show up at RCLK and RPOS/RNEG or RDATA. (During LLOOP, the JASEL input is strictly an Enable/Disable control; it does not affect the placement of the JAL. If JA is enabled, it is active in the loopback circuit.)

The transmitter circuits are unaffected by LLOOP. LXT360/361 transmits the TPOS/TNEG or TDATA inputs (or a stream of 1s if TAOS is asserted) normally. When used in this mode, the transceiver can function as a stand-alone jitter attenuator.

Figure 5: TAOS with LLOOP (JA Selected)

Local Loopback with JA in Receive Path Timing & TCLK TTIP Control TPOS TNEG TRING If Enabled RCLK-Timing RTIP RPOS Recover **RNEG** RRING Local Loopback with JA in Transmit Path ►TTIP TCLK Timing & TPOS Control ►TRING TNEG Enabled If RCLK RPOS RTIP Timina

Recover

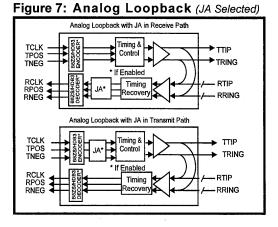

RRING

Figure 6: Local Loopback (JA Selected)

Analog Loopback

RNEG

See Figure 7. Analog Loopback (ALOOP) exercises the maximum number of functional blocks. ALOOP operation disconnects the RTIP/RRING inputs from the line and routes the transmit outputs back into the receive inputs. This tests the encoders/decoders, jitter attenuator, transmitter, receiver and timing recovery sections. In Hardware Mode, tying pin 27 to Midrange commands Analog Loopback; in Host Mode, writing a 1 to bit CR2.EALOOP enables the function. The ALOOP function overrides all other loopback modes.

Remote Loopback

See Figure 8. In Remote Loopback (RLOOP) mode, the device ignores the transmit data and clock inputs (TCLK and TPOS/TNEG or TDATA), and bypasses the in-line encoders/decoders. The RPOS/RNEG or RDATA outputs loop back through the transmit circuits to TTIP and TRING at the RCLK frequency. The RLOOP command does not affect the receiver circuits which continue to output the RCLK and RPOS/RNEG or RDATA signals received from the twisted-pair line. In Host Mode, command RLOOP by writing a 1 to bit CR2.ERLOOP. In Hardware Mode, RLOOP is commanded by setting pin 26 High.

Network Loopback

Network Loopback (NLOOP) can be initiated only when the Network Loopback detect function is enabled. In Host Mode, writing a 1 to CR2.ENLOOP enables NLOOP detection. In Hardware Mode, setting RLOOP to Midrange enables Network Loopback detection.

With NLOOP detection enabled, the receiver looks for the NLOOP data patterns (00001 = enable, 001 = disable) in the input data stream. When the receiver detects an NLOOP enable data pattern repeated for a minimum of five seconds, the device enables RLOOP. The device responds to both framed and unframed NLOOP patterns. Once NLOOP detection is enabled at the chip and activated by the appropriate data pattern, it is identical to Remote Loopback (RLOOP). NLOOP is disabled by receiving the 001 pattern for five seconds, or by activating RLOOP or ALOOP, or by disabling NLOOP detection. The device goes into Dual Loopback Mode (DLOOP) in the case where it detects both the NLOOP and LLOOP functions.

Dual Loopback

See Figure 9. To select Dual Loopback (DLOOP), set both RLOOP and LLOOP High in Hardware Mode or set bits CR2.ERLOOP and CR2.ELLOOP to 1 in Host Mode. In DLOOP mode, the transmit clock and data inputs (TCLK and TPOS/TNEG or TDATA) loop back through the Jitter Attenuator (unless disabled) to RCLK and RPOS/RNEG or RDATA. The data and clock recovered from the twisted-pair line loop back through the transmit circuits to TTIP and TRING without jitter attenuation.

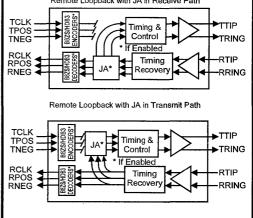
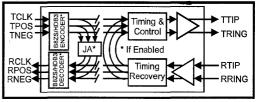
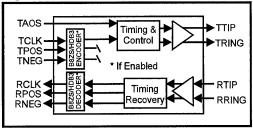



Figure 9: Dual Loopback



INTERNAL PATTERN GENERATION AND DETECTION

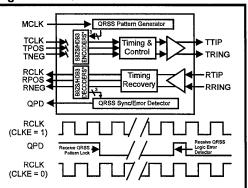
Transmit All Ones

See Figure 10. In Transmit All Ones (TAOS) Mode the transceiver ignores the TPOS and TNEG inputs and transmits a continuous stream of 1s at the TCLK frequency. (With no TCLK, the TAOS output clock is MCLK.) This can be used as the Alarm Indication Signal (AIS–also called the Blue Alarm). In Host Mode, TAOS is commanded by writing a 1 to bit CR2.ETAOS. In Hardware Mode setting pin 28 High does so. Both TAOS and Local Loopback can occur simultaneously as shown in Figure 5, but Remote Loopback inhibits TAOS. When both TAOS and LLOOP are active, TCLK and TPOS/TNEG loop back to RCLK and RPOS/RNEG through the jitter attenuator (if enabled), and an all ones pattern goes to TTIP/TRING.

Figure 10: TAOS Data Path

Quasi-Random Signal Source (QRSS)

See Figure 11. For T1 operation, the Quasi-Random Signal Source (QRSS) is a 2^{20} -1 pseudo-random bit sequence (PRBS) with no more than 14 consecutive zeros. For E1 operation, QRSS is 2^{15} -1 PRBS with inverted output.


Both Hardware and Host Modes allow QRSS Mode. The QRSS pattern is normally locked to TCLK; but if there is no TCLK, MCLK is the clock source. Bellcore Pub 62411 defines the T1 QRSS transmit format and ITU G.703 defines the E1 format.

Connecting TAOS (pin 28) Midrange enables QRSS transmission in Hardware Mode. In Host Mode, setting bits CR2.EPAT0 = 0 and CR2.EPAT1=1 enables this function.

With QRSS transmission enabled, it is possible to insert a logic error into the transmit data stream by causing a Low-to-High transition on INSLER (pin 3). However, if no logic or bit errors are to be inserted into the QRSS pattern, INSLER must remain Low. Logic Error insertion waits until the next bit if the current bit is "jammed".

(When there are more than 14 consecutive 0s, the output is jammed to a 1.)

Furthermore a bipolar violation in the QRSS pattern is possible by causing a Low-to-High transition on INSBPV (pin 4) without regard to whether the device is in bipolar or unipolar operating mode.

Figure 11: QRSS Mode

Choosing QRSS Mode also enables the QRSS Pattern Detection (QPD) in the receive path. The QRSS pattern is synchronized when there are fewer than four errors in 128 bits. After achieving synchronization the device drives QPD (pin 12) Low (QPD output is available on LXT360 only). The LXT361 does not support bit error detection in QRSS Mode. In the LXT360 QRSS Mode, any subsequent bit error in the QRSS pattern causes QPD to go High for half an RCLK clock cycle (the precise relationship to RCLK depends on the value of CLKE-when CLKE is Low, QPD goes High while RCLK is High; if CLKE is High, QPD goes High while RCLK is Low). This signal edge can serve as a trigger for an external bit-error counter. An LOS condition or a loss of QRSS synchronization will cause this output to go High continuously. In this case, and with either Unipolar Mode or the encoders/decoders enabled, the BPV pin indicates BPVs, CODEVs or ZEROVs as chosen.

Host Mode offers an additional interrupt to indicate that QRSS detection and sychronization have occurred, or that synchronization is lost. This interrupt is available when bit ICR.CQRSS = 0. If the QPD signal triggers a bit error counter, the interrupt could start or reset the counter.

Also in Host Mode, the PSR.QRSS bit provides an indication of the QRSS pattern synchronization. This bit goes Low with no QRSS pattern detected (*i.e.*, when there are more than four errors in 128 bits). The TQRSS bit in the Transition Status Register indicates that QRSS status has changed since the last QRSS Interrupt Clear command.

In-Band Network Loop Up or Down Code Generator

In Host Mode, LXT360/361 can transmit in-band Network Loop Up or Loop Down code. The Loop Up code is 00001; Loop Down code is 001. A Loop Up code transmission occurs when Control Register #2 bits EPAT0 = 1 and EPAT1 = 0. A Loop Down code transmission requires that both EPAT0 and EPAT1 = 1.

With this mode enabled, logic errors and bipolar violations can be inserted into the transmit data stream. Inserting a logic error requires a Low-to-High transition in INSLER (pin 3). (If there are no logic or bit errors to insert, INSLER must remain Low.) Inserting a bipolar violation requires a Low-to-High transition on INSBPV (pin 4), independent of Unipolar or Bipolar operation.

ERROR INSERTION AND DETECTION

Bipolar Violation Insertion (INSBPV)

In Unipolar Mode, both Hardware and Host Modes provide for Bipolar Violation Insertion (INSBPV). Choosing Unipolar Mode configures pin 4 as INSBPV. Bipolar violation insertion requires a Low-to-High transition on INSBPV. Sampling occurs on the falling edge of TCLK. When INSBPV goes High a BPV is inserted on the next available mark except in the four following situations:

- · Zero suppression (HDB3 or B8ZS) is not violated
- If LLOOP and TAOS are both active, the BPV is looped back to RNEG/BPV indicator and the line driver transmits all ones with no violation.
- BPV insertion is disabled with RLOOP (remote loopback) active.
- BPV insertion is disabled with NLOOP asserted (pin 10 High).

With the LXT360/361 configured to transmit internally generated data patterns (QRSS or NLOOP), a BPV can be inserted on the transmit pattern independent of whether the device is in the unipolar or bipolar mode of operation.

LOGIC ERROR INSERTION (INSLER)

When configured to transmit internally generated data patterns (QRSS or NLOOP Up/Down codes), the device can insert a logic error on the transmit data pattern when there is a Low-to-High transition on INSLER. In QRSS Mode, there is no logic error insertion on a jammed bit (a bit forced to one to suppress transmission of more than 14 consecutive zeros). The transceiver treats data patterns the same way it treats data applied to TPOS/TNEG, so the inserted logic error will follow the data flow path as defined by the loopback mode in effect.

Logic Error Detection (QPD) (LXT360 Only)

After receiving pattern synchronization when configured in the QRSS Mode, LXT360 reports logic errors on QPD (pin 12). To indicate a logic error, this pin goes High for half an RCLK cycle (during the High period of RCLK if CLKE is Low but during the Low RCLK period if CLKE is High). To tally logic errors, connect an error counter to QPD. A continuous logic one on this pin indicates loss of either the QRSS pattern lock or LOS condition. The QRSS section has additional details on QRSS pattern lock criteria.

Bipolar Violation Detection (BPV)

With the internal encoders/decoders enabled or when configured in Unipolar Mode, the LXT360/361 reports received Bipolar Violations at BPV (pin 6). The pin goes High for a full clock cycle to indicate receipt of a BPV. However, if the encoders/decoders are enabled, LXT360/ 361 does not report bipolar violations due to the line coding scheme.

HDB3 Code Violation Detection (CODEV)

LXT360/361 can detect HDB3 code violations in Host Mode with HDB3 encoders enabled. This requires CR1.ENCENB = 1 and CR1.EC4-1 = 100x or 1010, which establishes E1 operation. To enable CODEV, set bit CR4.CODEV = 1.

An HDB3 code violation (CODEV) occurs when the device receives two consecutive bipolar violations of the same polarity (refer to ITU 0.161). With CODEV detection enabled, LXT360/361 reports a violation on the BPV pin along with received BPVs and ZEROVs (if these options are enabled). LXT360/361 forces the BPV pin High for a full RCLK cycle to report a CODEV.

HDB3 Zero Substitution Violation Detection (ZEROV)

With encoders/decoders enabled, the LXT360/361 can detect HDB3 zero substitution violations (ZEROV) in Host Mode. This requires CR1.ENCENB = 1 and CR1.EC4-1 = 100x or 1010, which establish E1 operation, and CR4.ZEROV = 1.

LXT360/361 forces the BPV pin High for a full RCLK cycle to report a ZEROV. An HDB3 ZEROV is the receipt of four or more consecutive zeros. This does not occur with correctly encoded HDB3 data unless there are transmission errors. With ZEROV detection enabled, the device reports a violation on the BPV pin along with received BPVs and CODEVs (if these options are enabled).

ALARM CONDITION MONITORING

Loss of Signal (LOS)

The LXT360/361 Loss of Signal (LOS) monitor function is compatible with ITU G.775 and ETSI 300233. The receiver LOS monitor loads a digital counter at the RCLK frequency. The count increments with each received 0 and the counter resets to 0 on receipt of a 1. When the count reaches "n" 0s, the LOS flag goes High, and the MCLK replaces the recovered clock at the RCLK output in a smooth transition. For T1 operations, the number of 0s, n = 175, and for E1 operations, n = 32. In Host Mode, either number can be changed to 2048 by setting bit CR4.LOS2048 to 1.

For T1 operation, when the received signal has 12.5% 1s (16 marks in a sliding 128-bit period, with fewer than 100 consecutive 0s), the LOS flag returns Low and the recovered clock replaces MCLK at the RCLK output in another smooth transition.

For E1 operation, the LOS condition is cleared when the received signal has 12.5% 1s density (four 1s in a sliding 32-bit window with fewer than 16 consecutive 0s). In Host Mode E1 operation, the out-of-LOS criterion can be modified from 12.5% marks density to 32 consecutive marks by setting bit CR4.COL32CM = 1.

During LOS, the device sends received data to the RPOS/ RNEG pins (or RDATA in Unipolar Mode). LXT360 reports an LOS condition on the LOS pin in Hardware Mode. In Host Mode, the LOS bit in the Performance Status Register goes High to indicate an LOS condition and will interrupt the host controller if so programmed.

Alarm Indication Signal Detection (A/S)

The Alarm Indication Signal (AIS) is available only in Host Mode. The receiver detects an AIS pattern when it receives fewer than three 0s in any string of 2048 bits. The device clears the AIS condition when it receives three or more 0s in a string of 2048 bits.

The AIS bit in the Performance Status Register indicates AIS detection. When the AIS status changes, the TAIS bit in the Transition Status Register goes High. The change of status interrupts the host controller by pulling \overline{INT} Low, unless the interrupt is masked. Writing a 1 to the ICR.CAIS bit masks the interrupt until the bit returns to 0.

Driver Failure Open Mode (DFMO)

In Host Mode a DFM Open (DFMO) bit is available in the Performance Status Register to indicate an open condition

on the lines. DFMO can generate an \overline{INT} to the host controller. The Transition Status Register bit DFMO indicates a transition in the status of the bit. Writing a 1 to ICR.CDFMO will clear or mask the interrupt.

Elastic Store Overflow/Underflow (ESOVR/ESUNF)

When the bit count in the Elastic Store (ES) is within two bits of overflowing or underflowing the ES adjusts the output clock by $1/_8$ of a bit period. In Host Mode, the ES provides an indication of overflow and underflow in the TRS.ESOVR and TSR.ESUNF. These are sticky bits and will stay set to 1 until the host controller reads the register. These interrupts can be cleared or masked by writing a 1 to the bits ICR.CESO and ICR.CESU, respectively.

OTHER DIAGNOSTIC REPORTS

Receive Line Attenuation Indication (LATN)

The equalizer status register (ESR) provides an approximation of the line attenuation encountered by the device. The four most significant bits of the register (ESR.LATN7-4) indicate line attenuation in approximately 2.9 dB steps for both T1 and E1 operation of the receive equalizer. For instance, if ESR.LATN7-4 is 10 (decimal), then the receiver is seeing a signal attenuated by approximately 29 dB (2.9 dB * 10) of cable loss.

Built-In Self Test (BIST)

LXT360/361 provides a Built-In Self Test (BIST) capability in Host Mode. The BIST exercises the internal circuits by providing an internal QRSS pattern, running it through the encoders and the transmit drivers then looping it back through the receive equalizer, Jitter Attenuator and decoders to the QRSS pattern detection circuitry. If all the blocks in this data path work correctly, the receive pattern detector locks onto the pattern. It then pulls INT Low and sets the following bits High:

- TSR.TQRSS
- PSR.QRSS
- PSR.BIST

The QPD pin (pin 12) also indicates completion status of the test. Starting the test forces this pin High. During the test, it remains High until the test finishes successfully at which time it goes Low.

The most reliable test will result with separate TCLK and MCLK and LBO = -22.5 dB (CR1.EC4-1 = 011x).

OPERATING MODES

The LXT360/361 share many features. However, their control modes are very different.

- The LXT360 operates in either Hardware or (Serial Port) Host Mode
- The LXT361 operates in (Parallel Port) Host Mode only.

In the Hardware Mode (LXT360 only) individual pins control the transceiver.

The logic level at the MODE pin sets the LXT360 mode of operation. In Host Mode (LXT360/361), a microprocessor controls the device through a data interface. The LXT360

has a serial interface and the LXT361 uses a parallel interface.

Hardware Mode Operation (LXT360 Only)

The LXT360 operates in Hardware Mode when MODE is set to Midrange or Low. In Hardware Mode individual pins access and control the transceiver. The outputs (RPOS/RNEG or RDATA) are valid on the rising edge of RCLK

There are some advanced functions provided only in Host Mode. Interrupt (\overline{INT}), AIS detection indicator, DFM open indicator and CLKE functions are some of the features available in Host Mode.

Table 14:	Control and Operational	Mode Selection	for LXT360 Transceiver
-----------	-------------------------	----------------	------------------------

Input to Pin ¹		Mode of Operation							
Mode	TRSTE	Hardware	Software	Unipolar	Bipolar	AMI Enc/Dec	B8ZS/HDB3 Encoder/Decoder	All Outputs Tristated	
Low	Low	On	Off	Off	On	Off ³	Off	No	
Low	High	On	Off	Off	On	Off ³	Off	Yes	
Low	Open	On	Off	On	Off	On	Off	No	
High ²	Low	Off	On	х	x	x	х	No	
High ²	High	Off	On	х	х	x	х	Yes	
High ²	Open	Off	On	х	x	x	х	No	
Open	Low	On	Off	On	Off	Off	On	No	
Open	High	On	Off	On	Off	Off	On	Yes	
Open	Open	On	Off	On	Off	Off	On	No	

1. Open is either a midrange voltage or the pin is floating

2. In Software Mode, the contents of register CR1 determine the operation mode.

3. Encoding is done externally.

Host Mode Operation

The LXT360 operates in Host Mode when MODE is set High. In Host Mode a microprocessor accesses and controls the transceiver through a data port using the internal registers. The outputs (RPOS/RNEG or RDATA) are valid on the rising edge of RCLK

In Host Mode there are eight control and status registersfive read/write and three read-only registers. The LXT360 accesses them through its serial interface (SIO). The LXT361 provides this access using an 8-bit parallel interface (PIO). The host processor/controller can completely configure the device as well as get a full diagnostic/status report through the SIO or PIO. Only the clocks and data for Bipolar Mode and BPV/Logic Error insertions for Unipolar or QRSS Mode need to be provided directly to the input pins. Similarly, the recovered clock, data, and BPV/Logic Error occurrences are available only at output pins. All other mode settings and diagnostic information are available through the data port.

LXT360/361 Integrated T1/E1 LH/SH Transceivers

Table 15 shows the address used by the SIO or PIO to access each register on the LXT360 or LXT361, respectively. Table 16 summarizes the control and status registers and labels each bit they contain. Tables 17 through 24 identify the bits in each register.

Addresses								
Register	Address ¹							
Name	Abbr	Serial Port (A7-A1)	Parailel Port (A7-A0)					
Control #1	CR1	x010000	x010000x					
Control #2	CR2	x010001	x010001x					
Control #3	CR3	x010010	x010010x					
Interrupt Clear	ICR	x010011	x010011x					
Transition Status	TSR	x010100	x010100x					
Performance Status	PSR	x010101	x010101x					
Equalizer Status	ESR	x010110	x010110x					
Control #4	CR4	x010111	x010111x					

Table 15: Serial (LXT360) and Parallel (LXT361) Port Register Addresses

Register		Туре	Bit							
Name			7	6	5	4	3	2	1	0
Control #1	CR1	R/W	JASELI	JASEL0	ENCEB	UNIENB	EC4	EC3	EC2	EC1
Control #2	CR2	R/W	RESET	EPAT1	ЕРАТО	ETAOS	ENLOOP	EALOOP	ELLOOP	ERLOOP
Control #3	CR3	R/W	JA6HZ	PCLKE ¹	SBIST	EQZMON	reserved ²	ES64	ESCEN	ESJAM
Interrupt Clear	ICR	R/W	CESU	CESO	CDFMO	reserved ³	CQRSS	CAIS	CNLOOP	CLOS
Transition Status	TSR	R	ESUNF	ESOVR	TDFMO	reserved ²	TQRSS	TAIS	TNLOOP	TLOS
Performance Status	PSR	R	reserved ²	BIST	DFMO	reserved ²	QRSS	AIS	NLOOP	LOS
Equalizer Status	ESR	R	LATN7	LATN6	LATN5	LATN4	reserved ²	reserved ²	reserved ²	reserved ²
Control #4	CR4	R/W	reserved ²	reserved ²	reserved ²	reserved ²	COL32CM	LOS2048	ZEROV	CODEV

1. Bit CR3.PCLKE is available only in the LXT361; for the LXT360, set this bit to zero.

2. In write registers, bits labeled reserved should be set to 0 (except as in note 3 below) for normal operation and ignored in read only registers.

3. Write a 1 into this bit for normal operation.

Bit	Name	Name Function		Jitter Attenuation		
		· · · · · · · · · · · · · · · · · · ·	JASEL0	JASEL1	Position	
0	EC1		1	0	Transmit	
1	EC2	Set the Equalizer Control codes (see Table 12).	1	1	Receive	
2	EC3		0	x	disabled	
3	EC4					
4	UNIENB	Enables Unipolar I/O Mode and insertion/detection of BPVs.				
5	ENCENB	Enables B8ZS/HDB3 encoders/decoders; device enters Unipo- lar Mode and pins 3, 4, 6 and 7 change to their unipolar func- tions.				
6	JASEL0	Jitter Attenuation Mode, selects jitter attenuation circuitry				
7	JASEL1	position in data path or disables it. See right hand section of table for values.				

Table 17: Control Register #1 Read/Write, Address (A7-A1) = x010000

Table 18:	Control Register #2 Read/Write, Address (A7-A1) = x010001
-----------	---

Bit	Name Function			Pattern			
			EPAT0	EPAT1	Selected		
0	ERLOOP ¹	Enables Remote Loopback (RLOOP)	0	0	Transmit TPOS/TNEG		
1	ELLOOP ¹	Enables Local Loopback (LLOOP)	0	1	Detect and transmit QRSS		
2	EALOOP	Enables Analog Loopback (ALOOP)	1	0	In-band Loop Up Code 00001		
3	ENLOOP	Enables Network Loopback Detection (NLOOP)	1	1	In-band Loop Down Code 001		
4	ETAOS	Enables Transmit All Ones (TAOS)					
5	EPAT0	Enables internal data pattern transmission.					
6	EPAT1	See right hand section of table for values.					
7	RESET	RESET = 1 resets device state and all regis- ters.					
1. To en	I. To enable Dual Loopback (DLOOP), set both ERLOOP = 1, ELLOOP = 1.						

Bit	Name	Description
0	ESJAM	Disables jamming of elastic store read out clock ($^{1}/_{8}$ bit-time adjustment for over/underflow).
1	ESCEN	Centers ES pointer for a difference of 16 or 32 (depending on depth-clears automatically).
2	ES64	Increases ES depth from 32 to 64 bits.
3	_	reserved-set to 0 for normal operation.
4	EQZMON	Configures receiver equalizer for monitor mode application .
5	SBIST	Starts built-in self test.
6	PLCKE	This bit is available only in the LXT361– <i>for LXT360, set this bit to 0.</i> PCLKE = 0 sets RPOS/RNEG valid on the rising edge of RCLK. PCLKE = 1 sets RPOS/RNEG valid on the falling edge of RCLK.
7	JA6HZ	When JA6HZ = 1, changes bandwidth of Jitter Attenuation Loop from 3 Hz (default) to 6 Hz.

 Table 19: Control Register #3 Read/Write, Address (A7-A1) = x010010

Table 20: Interrupt Clear Register Read/Write, Address (A7-A1) = x010011

Bit	Name	Function ¹
0	CLOS	Clears/Masks LOS interrupt.
1	CNLOOP	Clears/Masks NLOOP interrupt.
2	CAIS	Clears/Masks AIS interrupt.
3	CQRSS	Clears/Masks QRSS Interrupt.
4	—	reserved-set to 1 for normal operation.
5	CDFMO	Clears/Masks DFMO.
6	CESO	Clears/Masks ES overflow interrupt.
7	CESU	Clears/Masks ES underflow interrupt.
1. Leavi	ng a one of in any	of these bits masks the associated interrupt.

Table 21: Transition Status Register Read Only, Address (A7-A1) = x010100

Bit	Name	Function		
0	TLOS	Loss of Signal (LOS) has changed since last clear LOS interrupt occurred.		
1	TNLOOP	NLOOP has changed since last clear NLOOP interrupt occurred.		
2. Trippi	A QRSS transition indicates receive QRSS pattern sync or loss. A simple error in QRSS pattern is not reported as a transition. Tripping the overflow or underflow indicator in the ES sets the ESOVR/ESUNF status bit(s). Reading the Transition Status Register clears these bits. Setting CESO and CESU in the Interrupt Clear Register masks these interrupts.			

Bit	Name	Function
2	TAIS	AIS has changed since last clear AIS interrupt occurred.
3	TQRSS	QRSS has changed since last clear QRSS interrupt occurred ¹ .
4		reserved-ignore.
5	TDFMO	DFMO has changed since last clear DFMS interrupt occurred.
6	ESOVR	ES overflow status sticky bit ² .
7	ESUNF	ES underflow status sticky bit ² .
1 A OR	SS transition indicates	s receive ORSS pattern sync or loss. A simple error in ORSS pattern is not reported as a transition.

Table 21: Transition Status Register Read Only, Address (A7-A1) = x010100

A QRSS transition indicates receive QRSS pattern sync or loss. A simple error in QRSS pattern is not reported as a transition.
 Tripping the overflow or underflow indicator in the ES sets the ESOVR/ESUNF status bit(s). Reading the Transition Status Register clears these bits. Setting CESO and CESU in the Interrupt Clear Register masks these interrupts.

Table 22: Performance Status Register Read Only, Address (A7-A1) = x010101

Bit	Name	Function
0	LOS	Loss of signal (LOS) status.
1	NLOOP	Network Loop (NLOOP) status.
2	AIS	Alarm Indicator (AIS) status.
3	QRSS	QRSS pattern detect status.
4		reserved-ignore.
5	DFMO	Driver open indication.
6	BIST	Built-in self test status.
7		reserved–ignore

 Table 23: Equalizer Status Register Read Only, Address (A7-A1) = x010110

Bit	Name	Function
0		reserved-ignore (Least Significant Bit)
1		reserved-ignore
2		reserved-ignore
3	—	reserved-ignore
4	LATN4	Receive Line Attenuation Indicators. Convert this binary output to a decimal number and
5	LATN5	multiply by 2.9 dB to determine the approximate cable attenuation as seen by the receiver. For instance, if LATN7-4 = 1010_{BIN} (= 10_{DEC}), then the receiver is seeing a signal attenu-
6	LATN6	ated by approximately 29 dB (2.9 dB x 10) of cable.
7	LATN7	

Bit	Name	Function
0	CODEV	Enables detection of HDB3 code violation on the BPV pin along with bipolar violations and ZEROVs (as enabled).
1	ZEROV	Enables detection of four consecutive zeros (an HDB3 coding violation) on the BPV pin along with bipolar violation and ZEROVs (as enabled).
2	LOS2048	Changes LOS detection threshold from 32 consecutive zeros (for E1 operation) or 175 con- secutive zeros (T1 operation) to 2048 consecutive zeros in either environment.
3	COL32CM	In E1 Mode, changes "clear LOS condition" criterion from 12.5% marks density (default) to receipt of 32 consecutive marks.
4		reserved-set to 0 for normal operation; ignore when reading.
5		reserved-set to 0 for normal operation; ignore when reading.
6		reserved-set to 0 for normal operation; ignore when reading.
7		reserved-set to 0 for normal operation; ignore when reading.

Table 24: Control Register #4 Read/Write, Address (A7-A1) = x010111

Serial Port Operation (LXT360 Only)

The LXT360 operates in Host Mode when the MODE pin is set High. Figure 12 shows the SIO data structure. The registers are accessible through a 16-bit word: an 8-bit Command/Address byte (bits R/\overline{W} and A1-A7) and a subsequent 8-bit data byte (bits D0-7). Bit R/\overline{W} determines whether a read or a write operation occurs. Bits A6-1 in the Command/Address byte address specific registers (the address decoder ignores bit A7). The data byte depends on both the value of bit R/\overline{W} and the address of the register as set in the Command/Address byte.

Host Mode provides a latched interrupt output (\overline{INT}). A change in the state of any of the following bits in the Performance Status Register will drive \overline{INT} Low: LOS, NLOOP, AIS, QRSS, or DFMO. An interrupt will also occur when there is an elastic store overflow or underflow. When the interrupt has occurred, the \overline{INT} output pin is pulled Low. The output stage of each \overline{INT} pin consists only of a pull-down device, so each one requires an external pull-up resistor. The interrupt is cleared when the interrupt condition no longer exists, and the host processor writes a lto the respective interrupt causing bit(s) in the Interrupt Register. Leaving a 1 in any of these interrupt status bits masks that interrupt.

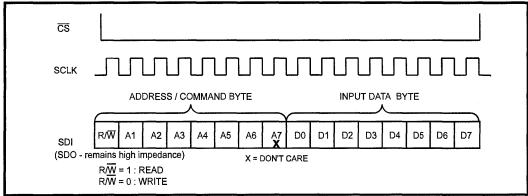
Table 25: CLKE Settings

CLKE	Output	Clock	Valid Edge
Low	RPOS	RCLK	Rising
	RNEG	RCLK	Rising
	SDO	SCLK	Falling
High	RPOS	RCLK	Falling
	RNEG	RCLK	Falling
	SDO	SCLK	Rising

Host Mode also allows control of the serial data and receive data output timing. The clock edge (CLKE) signal determines when the outputs are valid, relative to the Serial Clock (SCLK) or RCLK as shown in Table 25.

Parallel Port Operation (LXT361 Only)

The LXT361 address/control bus pins and control pins are compatible with both the Intel and Motorola address/data buses. See Figures 22 and 23 for the I/O timing diagram for each bus. The device automatically detects bus timing based on the Intel and Motorola microprocessor bus specifications. The maximum recommended processor speed for an Intel device is 20 MHz; for a Motorola device, 16.78 MHz. Table 17 summarizes the control and status registers for the LXT361. Tables 17 through 24 identify and explain the bits in the control registers.


The LXT361 provides a latched interrupt output (\overline{INT}). A change in the state of any of the following bits in the Performance Status Register will drive \overline{INT} Low: LOS, NLOOP, AIS, QRSS, DFMO. When the interrupt has occurred, the \overline{INT} output pin is pulled Low. The output stage of \overline{INT} pin consists only of a pull-down device, so

each pin requires an external pull-up resistor. The interrupt is cleared when the interrupt condition no longer exists, and the host processor writes a 1 to the respective interrupt causing bit(s) in the Interrupt Register. Leaving a 1 in any of these interrupt status bits masks that interrupt.

The received data output is valid on the rising edge of RCLK, when bit CR3.PCLKE = 0. The data output is valid on the falling edge of RCLK when CR3.PCLKE =1.

There are five read/write and three read-only registers. Only bits A6-1 in the address byte are valid. (The address decoder ignores bits A7 and A0.) Tables 17 through 24 show the register address bits A7-1, without regard to bit A0.

APPLICATION INFORMATION

NOTE

This application information is for design aid only.

Table 26 shows the specification for transmit return loss in E1 applications. (The G.703/CH PTT specification is a Swiss Telecommunications Ministry specification.)

Tables 27 through 30 show the transmit return loss values for E1 short- and long-haul and T1 applications. Table 37 shows the receive return loss values.

Table 26:E1 Transmit Return LossRequirements

Frequency Band	Return Loss					
Dand	ETS 300 166	G.703/CH PTT				
51-102 kHz	6 dB	8 dB				
102-2048 kHz	8 dB	14 dB				
2048 - 3072 kHz	8 dB	10 dB				

Table 27:Transmit Return Loss (2.048
Mbit/s-Short-Haul)

EC4-1	Xfrmr/Rt	Rload (Ω)	Ci (pF)	Return Loss (dB)
1000	1:2/	75	0	14
	9.1 Ω		470	16
	120		0	12
			470	13
	1:2.3/	120	0	13
	9.1 Ω 4		470	16

Table 28: Transmit Return Loss (2.048 Mbit/s–Long-Haul) High Return

Loss Configuration

EC4-1	Xfrmr/ Rt	Rload (Ω)	CI (pF)	Return Loss (dB)
1001	1:2/	120	0	19
	15 Ω		470	28
	1:1.53/	75	0	18
	15 Ω		470	28

Table 29: Transmit Return Loss (2.048 Mbit/s–Long-Haul)

EC4-1	Xfrmr/ Rt	Rload (Ω)	CI (pF)	Return Loss (dB)
1010	1:2/	120	0	12
	9.1 Ω	.1.52	470	13
			0	16
			470	18

Table 30: Transmit Return Loss (1.544 Mbit/s–Long- or Short-Haul)

EC4-1	Xfrmr/Rt	Rload (Ω)	CI (pF)	Return Loss (dB)			
Refer	1:2/9.1 Ω	100	0	16			
to Table			470	17			
12	1:1.15 ¹ /	100	0	2 dB			
	0Ω		470	2 dB			
1. A 1:1.15 transmit transformer keeps the total transceiver power dis- sipation at a low level, a $0.47 \mu F$ DC blocking capacitor must be placed on TTIP or TRING.							

Table 31: Transformer Specifications for LXT360/LXT361

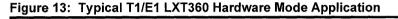
Tx/Rx	Frequency MHz	Turns Ratio	Primary Inductance μH (minimum)	Leakage Inductance µH (max)	Interwinding Capacitance pF (max)	DCR Ω (maximum)	Dielectric ¹ Breakdown V (minimum)
Тx	1.544	1:1.15	600	0.80	60	0.90 pri 1.70 sec	1500 VRMS
	2.048	1:2.3	600	0.80	60	0.70 pri 1.20 sec	1500 Vrms ²
	1.544/2.048	1:2	600	0.80	60	0.70 pri 1.20 sec	1500 VRMS ²
Rx	1.544/2.048	1:1	600	1.10	60	1.10 pri 1.10 sec	1500 Vrms ²

Some ETSI applications may require a 2.3 kV dielectric breakdown voltage.

2. Some applications require transformers with center tap (Long-Haul applications with DC current in the E1/T1 loop).

Tx/Rx	Turns Ratio	Part Number	Manufacturer
Тx	1:1.53	PE-68663	Pulse Engineering
	1:1.15	PE-65388	
		PE-65770	
		16Z5952	Vitec
	1:2	PE-65351	Pulse Engineering
		PE-65771	
		0553-5006-IC	Bell-Fuse
		66Z-1308	Fil-Mag
		671-5832	Midcom
		67127370	Schott Corp
		67130850	
		TD61-1205D	HALO (combination Tx/Rx set)
		TG26-1205NI	HALO (surface mount dual transformer 1CT:2CT & 1CT:2CT)
		TG48-1205NI	HALO (surface mount dual transformer 1CT:2CT & 1:1)
		16Z5946	Vitec
	1:2.3	PE-65558	Pulse Engineering
Rx	l:1	FE 8006-155	Fil-Mag
		671-5792	Midcom
		PE-64936	Pulse Engineering
		PE-65778	
		67130840	Schott Corp
		67109510	
		TD61-1205D	HALO (combination Tx/Rx set)
		16Z5936	Vitec
		16Z5934	

Table 32: Recommended Transformers for LXT360/LXT361



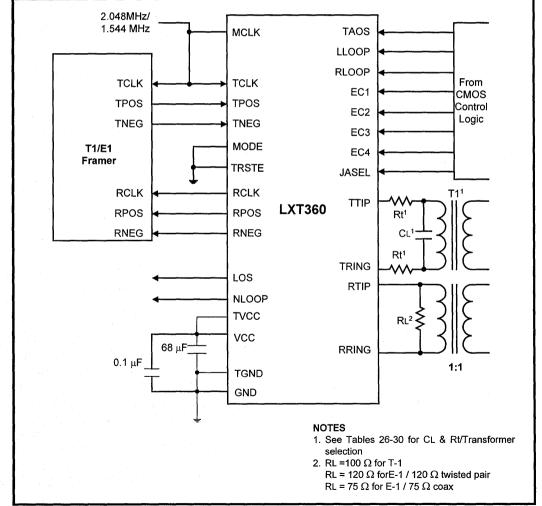

NOTE

Figure 13 shows a typical LXT360 application in either or T1 or E1 environment. See Tables 27 through 31 to select the transformers (T1 and T2), resistors (Rt and Rl) and capacitors (Cl) needed for this application.

NOTE

If the application includes surge protection, such as a varistor or sidactor on the TTIP/TRING lines, it may also require reducing the value of the capacitor CL or eliminating it completely. Excessive capacitance at CL will distort the transmitted signals.

NOTE

Figure 14 shows an application using the LXT360 in its Host Controlled Mode. See Tables 27 through 31 to select the transformers (T1 and T2), resistors (Rt and Rl) and capacitors (Cl) needed for this application.

NOTE

If the application includes surge protection, such as a varistor or sidactor on the TTIP/TRING lines, it may also require reducing the value of the capacitor CL or eliminating it completely. Excessive capacitance at CL will distort the transmitted signals.

Figure 14: Typical T1/E1 LXT360 Host Mode Application

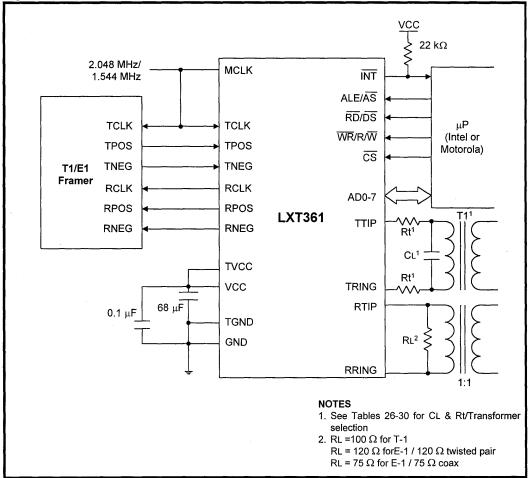

NOTE

Figure 15 shows an application using the LXT361. See Tables 27 through 31 to select the transformers (T1 and T2), resistors (Rt and Rl) and capacitors (Cl) needed for this application.

NOTE

If the application includes surge protection, such as a varistor or sidactor on the TTIP/TRING lines, it may also require reducing the value of the capacitor CL or eliminating it completely.

Figure 15: Typical T1/E1 LXT361 Application

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 33 to 45 and Figures 16 through 26 represent the performance spcifications of the LXT360 and LXT361 and are guaranteed by test, except where noted by design.

Table 33: Absolute Maximum Ratings

Parameter	Sym Mir		Мах	Units				
DC supply (reference to GND)	Vcc, TVcc		6.0	V				
Input voltage, any pin ¹	Vin	GND -0.3 V	VCC + 0.3 V	V				
Input current, any pin ²	lin	- 10	10	mA				
Storage Temperature	Тѕтд	-65	150	°C				
CAUTION Operation at these limits may permanently damage the device.								

Normal operation at these extremes not guaranteed.

TVCC and VCC must not differ by more than 0.3 V during operation. TGND and GND must not differ by more than 0.3 V during operation.
 Transient currents of up to 100 mA will not cause SCR latch-up. TTIP, TRING, TVCC, and TGND can withstand continuous currents of up to 100 mA.

Table 34: Operating Conditions/Characteristics

Parameter		Sym	Min	Typ ¹	Max	Units	Test Conditions	
DC Supply ²			Vcc, TVcc	4.75	5.0	5.25	v	
Ambient operat	ting ter	nperature	TA	-40	-	85	°C	
Total	T1	Short Haul	PD	_	310	380	mW	100% mark density
Power Dissipation ³			PD	_	225	295	mW	50% mark density
		Long Haul	PD	-	245	325	mW	100% mark density
			PD	-	195	265	mW	50% mark density
	E1	Short	Pd	-	275	330	mW	100% mark density
		Haul/ Long Haul	PD	-	215	270	mW	50% mark density

1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. TVCC and VCC must not differ by more than 0.3 V.

3. Power dissipation while driving 75 Ω load over operating range for T1 operation or 60 Ω load for E1 operation. Includes power dissipation on device and load. Digital levels are within 10% of the supply rails and digital outputs driving a 50 pF capacitive load.

Parameter			Min	Тур	Max	Units	Test Conditions
High level input voltage ^{1,2} (pins 1-4, 17, 23-25) ⁴		VIH	2.0	_		v	
Low level input voltage ^{1,2} (pins 1-4, 17, 23-25) ⁴		Vil	-	-	0.8	v	
High level output voltage ^{1,2} (pins 6-8, 10, 12, 23	, 25) ⁴	Vон	2.4	-	_	v	Ιουτ = 400 μΑ
Low level output voltage 1,2 (pins 6-8, 10, 12, 23, 25) ⁴			-	-	0.4	v	IOUT = 1.6 mA
High level input voltage ³ (pins 5, 9, 11, 26-28) ⁴			3.5	-	-	v	
Midrange input voltage ³ (pins 5, 9, 11, 26-28) ⁴		Vim	2.3	-	2.7	v	
Low level input voltage 3 (pins 5, 9, 11, 26-28) ⁴	Host Mode H/W Mode	Vil Vil	-		0.8 1.5	v v	
Input leakage current		ILL	0	-	±50	μΑ	
Three-state leakage current ¹ (all outputs)		I3L	0	-	±10	μΑ	
TTIP/TRING leakage current (pins 13, 16) ⁴			-	-	±1.2	mA	in Idle and Power Down

Table 35: LXT360 Digital Characteristics (Ta = -40 to 85 °C, V+ = 5.0 V ± 5%, GND = 0 V)

2. Output drivers will output CMOS logic levels into CMOS loads.

3. As an alternative to supplying 2.3 - 2.7 V to these pins, they may be left open.

4. Referenced pin numbers are for the NE and PE packages only. Refer to the diagram on page 2 for the appropriate LXT360QE pin assignments.

Table 36: LXT361 Digital Characteristics (Ta = -40 to 85 °C, V+ = 5.0 V ± 5%, GND = 0 V)

Parameter	Sym	Min	Тур	Мах	Units	Test Conditions
High level input voltage ^{1,2} (pins 1-5, 9-12, 17, 23-28) ³	Vih	2.0	_	-	v	
Low level input voltage ^{1,2} (pins 1-5, 9-12, 17, 23-28) ³	VIL	_	_	0.8	v	
High level output voltage 1,2 (pins 6-8, 10, 11,23, 28) ³	Voн	2.4	_	-	v	Ιουτ = 400 μΑ
Low level output voltage ^{1,2} (pins 6-8, 10, 11,23, 28) ³	Vol	-	_	0.4	v	IOUT = 1.6 mA
Input leakage current	ILL	-		±50	μA	

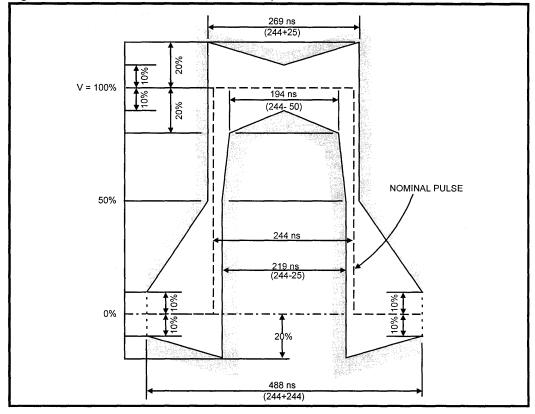
1. Functionality of pins 23 and 25 depends on mode. See Host Mode description.

2. Output drivers will output CMOS logic levels into CMOS loads.

3. Referenced pin numbers are for the NE and PE packages only. Refer to the diagram on page 2 for the appropriate LXT360QE pin assignments.

Parame	ter	Min	Typ ¹	Max	Units	Test Conditions
Recommended output load on T	TIP/TRING	50		200	Ω	
AMI Output Pulse Amplitudes	DSX-1, DS1	2.4	3.0	3.6	v	$RL = 100 \Omega$
	CEPT (ITU)	2.7	3.0	3.3	v	RL = 120 Ω
Jitter added by the transmitter ²	10 Hz - 8 kHz ³	-	-	0.02	UI	
	8 kHz - 40 kHz ³	-	-	0.025	UI	
	10 Hz - 40 kHz ³		-	0.025	UI	
	Broad Band	-	_	0.05	UI	
Receiver sensitivity @ 772 kHz (T1)	Mode 1 (EC1 = 1) (T1 Long-Haul)	0	-	26	dB	See Table 12 for Gain Setting
	Mode 2 (EC1 = 0) (T1 Long-Haul)	0	-	36	dB	
	Mode 3 (EC4 = 1) (T1 Short-Haul)	0	-	13.6	dB	
Receiver Sensitivity @ 1024 kHz (E1 line loss)	Mode 1 (EC4-1 = 1000) (E1 Short-Haul/12 dB)	0	_	13.6	dB	
	Mode 2 (EC4-1 = 1001 or EC4-1 = 1010) (E1 Long-Haul/43 dB)	0	-	43	dB	
Allowable consecutive zeros be	fore LOS (T1)	160	175	190	-	
Allowable consecutive zeros be	fore LOS (E1)		32	-	-	
Input jitter tolerance (T1)	10 kHz - 100 kHz	0.4	-	-	UI	0 dB line
	1 Hz ³	138	_		UI	AT&T Pub 62411
Input jitter tolerance (E1)	10 kHz - 100 kHz	0.2	_	-	UI	0 dB line
	1 Hz ³	37	_	-	UI	ITU (G.823)
Jitter attenuation curve corner frequency ⁴		-	3	_	Hz	selectable in data por
Receive Return Loss (E1)	51 kHz - 102 kHz	-	22	-	dB	
	102 kHz - 2.048 MHz	-	28	-	dB	
	2.048 MHz - 3.072 MHz	_	30	-	dB	n, - 1,

Table 37: Analog Characteristics (Ta = -40 to 85 °C, V+ = 5.0 V ± 5%, GND = 0 V)


1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. Input signal to TCLK is jitter-free. The Jitter Attenuator is in the receive path or disabled.

3. Guaranteed by characterization; not subject to production testing.

4. Circuit attenuates jitter at 20 dB/decade above the corner frequency.

Figure 16: 2.048 MHz E1 Pulse (See Table 38)

Table 38: 2.048 MHz E1 Pulse Mask Specifications

Parameter	TWP	Coax	Unit
Test load impedance	120	75	Ω
Nominal peak mark voltage	3.0	2.37	v
Nominal peak space voltage	0 ±0.30	0 ±0.237	v
Nominal pulse width	244	244	ns
Ratio of positive and negative pulse amplitudes at center of pulse	95-105	95-105	%
Ratio of positive and negative pulse amplitudes at nominal half amplitude	95-105	95-105	%

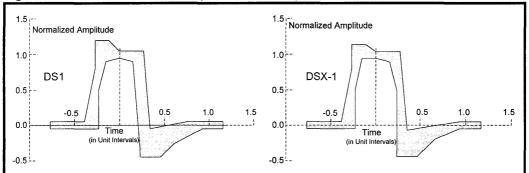


Figure 17: 1.544 MHz T1 Pulse (DS1 and DSX-1) (See Table 39)

Table 39: 1.544 MHz T1 Pulse Mask Corner Point Specifications

DS1 Template (per ANSI T1. 403-1995)			DSX-1 Template (per ANSI T1. 102-1993)					
Minimu	m Curve	Maximu	m Curve	Minimum Curve		Maximu	m Curve	
Time (UI)	Amplitude	Time (UI)	Amplitude	Time (UI)	Amplitude	Time (UI)	Amplitude	
-0.77	-0.05	-0.77	0.05	-0.77	-0.05	-0.77	0.05	
-0.23	-0.05	-0.39	0.05	-0.23	-0.05	-0.39	0.05	
-0.23	0.50	-0.27	0.80	-0.23	0.50	-0.27	0.80	
-0.15	0.90	-0.27	1.20	-0.15	0.95	-0.27	1.15	
0.0	0.95	-0.12	1.20	0.0	0.95	-0.12	1.15	
0.15	0.90	0.0	1.05	0.15	0.90	0.0	1.05	
0.23	0.50	0.27	1.05	0.23	0.50	0.27	1.05	
0.23	-0.45	0.34	-0.05	0.23	-0.45	0.35	-0.07	
0.46	-0.45	0.77	0.05	0.46	-0.45	0.93	0.05	
0.61	-0.26	1.16	0.05	0.66	-0.20	1.16	0.05	
0.93	-0.05			0.93	-0.05			
1.16	-0.05			1.16	-0.05			

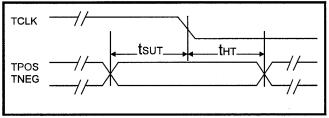

				(), 3				
Parameter	Sym	Min	Typ ¹	Max	Units	Notes		
Master clock frequency	MCLK	-	1.544	-	MHz	must be supplied		
Master clock tolerance	MCLKt	-	±32	_	ppm			
Master clock duty cycle	MCLKd	40	-	60	%			
Transmit clock frequency	TCLK	_	1.544	-	MHz			
Transmit clock tolerance	TCLKt	-		±100	ppm			
Transmit clock duty cycle	TCLKd	10	-	90	%			
TPOS/TNEG to TCLK setup time	tSUT	50	-	_	ns			
TCLK to TPOS/TNEG hold time	tHT	50	-	-	ns			
I. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.								

Table 40: Master and Transmit Clock Timing Characteristics (T1 Operation) (Figure 18)

Table 41: Master and Transmit Clock Timing Characteristics (E1 Operation) (Figure 18)

Parameter	Sym	Min	Typ ¹	Max	Units	Notes
Master clock frequency	MCLK	-	2.048	-	MHz	must be supplied
Master clock tolerance	MCLKt		±32	-	ppm	
Master clock duty cycle	MCLKd	40	-	60	%	
Transmit clock frequency	TCLK	-	2.048	-	MHz	
Transmit clock tolerance	TCLKt	-	_	±100	ppm	
Transmit clock duty cycle	TCLKd	10		90	%	
TPOS/TNEG to TCLK setup time	tSUT	50	-	-	ns	
TCLK to TPOS/TNEG hold time	tHT	50	_	-	ns	
1. Typical figures are at 25 °C and are for design	aid only; not gua	ranteed and no	ot subject to pro	oduction testing	g.	

Figure 18: Transmit Clock Timing

<u> </u>	•				
Parameter	Sym	Min	Тур ¹	Max	Units
Receive clock duty cycle ^{2, 3}	RLCKd	40	50	60	%
Receive clock pulse width ^{2, 3}	tPW	-	648	-	ns
Receive clock pulse width high	tPWH	_	324	-	ns
Receive clock pulse width low ^{1,3}	tPWL	260	324	388	ns
RPOS/RNEG to RCLK rising time	tSUR	-	274	-	ns
RCLK rising to RPOS/RNEG hold time	tHR	_	274	-	ns

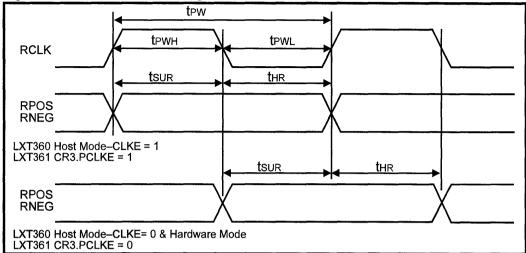
Table 42: Receive Timing Characteristics for T1 Operation (See Figure 19)

1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. RCLK duty cycle widths will vary according to extent of received pulse jitter displacement. Max and Min RCLK duty cycles are for worst case jitter conditions.

3. Worst case conditions guaranteed by design only.

Table 43: Receive Timing Characteristics for E1 Operation (See Figure 19)


Parameter	Sym	Min	Тур ¹	Мах	Units
Receive clock duty cycle ^{2, 3}	RLCKd	40	50	60	%
Receive clock pulse width ^{2, 3}	tPW	_	488	_	ns
Receive clock pulse width high	tPWH	-	244	_	ns
Receive clock pulse width low ^{1,3}	tPWL	195	244	293	ns
RPOS/RNEG to RCLK rising time	tSUR	-	194		ns
RCLK rising to RPOS/RNEG hold time	thr		194	_	ns

1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. RCLK duty cycle widths will vary according to extent of received pulse jitter displacement. Max and Min RCLK duty cycles are for worst case jitter conditions (0.4 UI clock displacement for 1.544 MHz.)

3. Worst case conditions guaranteed by design only.

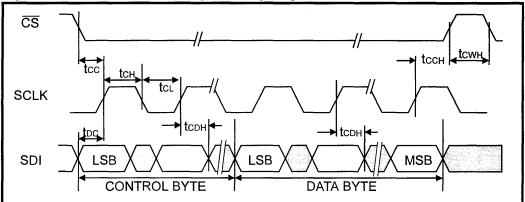
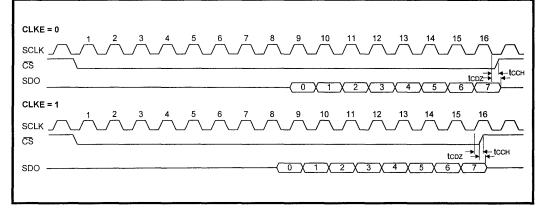
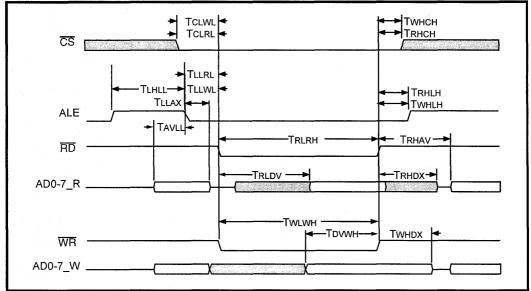


Figure 19: Receive Clock Timing

Table 44: LXT360 Serial I/O Timing Characteristics (See Figures 20 and 21)


Parameter	Sym	Min	Тур ¹	Max	Units	Parameter			
Rise/fall time—any digital output	tRF	-	-	100	ns	Load 1.6 mA, 50 pF			
SDI to SCLK setup time	tDC	50		-	ns				
SCLK to SDI hold time	tCDH	50		-	ns				
SCLK low time	tCL	240	-	-	ns				
SCLK high time	tCH	240	-	-	ns				
SCLK rise and fall time	tR, tF	_	-	50	ns				
$\overline{\text{CS}}$ falling edge to SCLK rising edge	tCC	50		-	ns				
Last SCLK edge to \overline{CS} rising edge	tCCH	50		_	ns				
CS inactive time	tCWH	250	-	-	ns				
SCLK to SDO valid time	tCDV	-	-	200	ns				
SCLK falling edge or \overline{CS} rising edge to SDO high-Z	tCDZ		100	-	ns				
1. Typical figures are at 25 °C and are for design aid only; not guar	anteed and 1	1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.							



Parameter	Sym	Min	Max	Units	Test Conditions
ALE pulse width	TLHLL	35		ns	
Address valid to ALE falling edge	TAVLL	10	-	ns	
ALE falling edge to address hold time	TLLAX	10	-	ns	
ALE falling edge to RD falling edge	TLLRL	10	-	ns	
ALE falling edge to WR falling edge	TLLWL	10	-	ns	
$\overline{\text{CS}}$ falling edge to $\overline{\text{RD}}$ falling edge	TCLRL	10	-	ns	
$\overline{\text{CS}}$ falling edge to $\overline{\text{WR}}$ falling edge	TCLWL	10	_	ns	
RD low pulse width	TRLRH	95	-	ns	
RD falling edge to data valid	TRLDV	10	55	ns	· · · · · · · · · · · · · · · · · · ·
Data hold time after $\overline{\text{RD}}$ rising edge	TRHDX	5	35	ns	
RD rising edge to ALE rising edge	TRHLH	15	_	ns	
RD rising edge to address valid	TRHAV	35	-	ns	
$\overline{\text{CS}}$ low hold time after $\overline{\text{RD}}$ rising edge	TRHCH	0	-	ns	· · · · · · · · · · · · · · · · · · ·
WR low pulse width	Twlwh	95	-	ns	
Data setup time before WR rising edge	Tdvwh	40	-	ns	
Data hold time after \overline{WR} rising edge	Twhdx	30	-	ns	
WR rising edge to ALE rising edge	Twhlh	15	-	ns	
$\overline{\text{CS}}$ low hold time after $\overline{\text{WR}}$ rising edge	Тwнсн	15	_	ns	

Table 45: LXT361 20 MHz Intel Bus Parallel I/O Timing Characteristics (See Figure 22)

Figure 22: LXT361 I/O Timing Diagram for Intel Address/Data Bus



Parameter	Symbol	Min	Max	Units	Test Conditions
$\overline{\mathrm{DS}}$ rising edge to $\overline{\mathrm{AS}}$ rising edge	TDSHASH	15	-	ns	
AS high pulse width	TASHASL	35	-	ns	
Address valid setup time at \overline{AS} falling edge	TAVASL	10	-	ns	
$\overline{\text{AS}}$ falling edge to Address valid hold time	TASLAX	10	-	ns	
$\overline{\text{AS}}$ falling edge to $\overline{\text{DS}}$ falling edge	TASLDSL	20	-	ns	
$\overline{\text{CS}}$ falling edge to $\overline{\text{DS}}$ falling edge	TCSLDSL	10		ns	
$\overline{\mathrm{DS}}$ low pulse width	Tdsldsh	95	-	ns	
$\overline{\mathrm{DS}}$ falling edge to data valid	Tdsldv	10	55	ns	
Data hold time after $\overline{\text{DS}}$ rising edge	TDSHDX	5	35	ns	
R/\overline{W} falling edge to \overline{DS} falling edge	Trwldsl	10	-	ns	
Data setup time before $\overline{\text{DS}}$ rising edge	Tdvdsh	40	-	ns	
Data hold time after $\overline{\text{DS}}$ rising edge	Tdxdsh	30	_	ns	
R/\overline{W} low hold time after \overline{DS} rising edge	TDSHRWH	15	-	ns	
\overline{CS} low hold time after \overline{DS} rising edge	TDSHCSH	15	-	ns	

Table 46: LXT361 16.78 MHz Motorola Bus Parallel I/O Timing Characteristics (See Figure 23)

Figure 23: LXT361 I/O Timing Diagram for Motorola Address/Data Bus

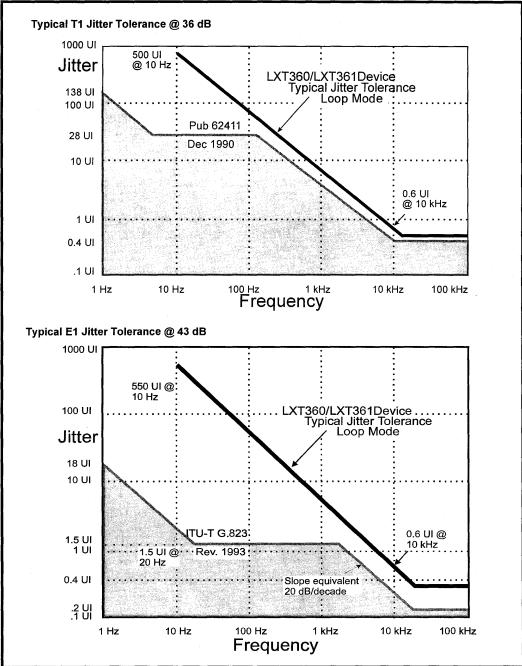


Figure 25: E1 Jitter Attenuation (Typical)

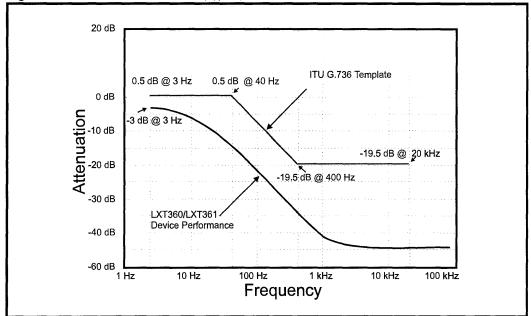
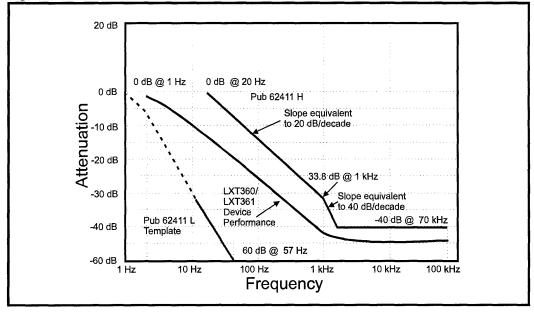



Figure 26: T1 Jitter Attenuation (Typical)

3

NOTES

1997 Communications Data Book

T1/E1 Repeaters

1997 Communications Data Book

DATA SHEET

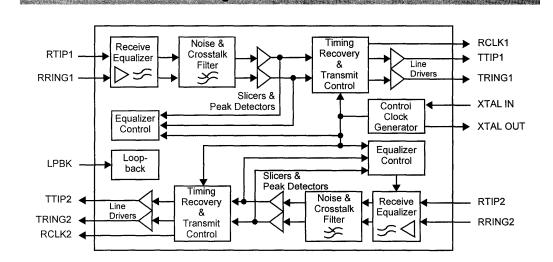
APRIL 1997 Revision 2.1

LXT312 / LXT315

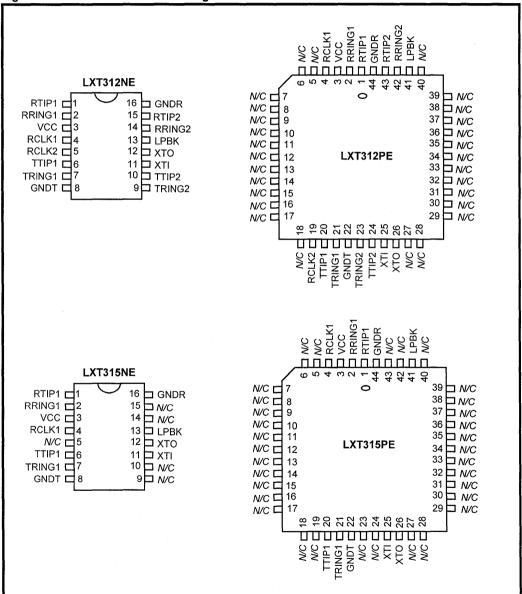
Low Power T1 PCM Repeaters / Transceivers

General Description

The LXT312 and LXT315 are integrated repeater/transceiver circuits for T1 carrier systems. The LXT312 is a dual repeater/transceiver and the LXT315 is a single repeater/ transceiver. The LXT312 and LXT315 are designed to operate as regenerative repeaters/transceivers for 1.544 Mbps data rate PCM lines. Each includes all circuits required for a regenerative repeater/transceiver system including the equalization network, automatic line buildout (ALBO), and a state-of-the-art analog/digital clock extraction network tuned by an external crystal.


The key feature of the LXT312 family is that it requires only a crystal and a minimum of other components to complete a repeater/transceiver design. Compared with traditional tuned coil-type repeaters/transceivers, they offer significant savings in component and labor costs, along with reduced voltage drop/power consumption, and improved reliability. To ensure performance for all loop lengths, the LXT312 and LXT315 are 100% AC/DC tested using inputs generated by Level One's proprietary transmission line and network simulator.

The LXT312 and LXT315 are advanced CMOS devices which require only a single 5-volt power supply.


_XT312 / LXT315 Block Diagram

Features

- Integrated repeater/transceiver circuit on a single CMOS chip
- On-chip equalization network
- · On-chip ALBO
- · Low power consumption
- · No tuning coil
- · On-chip Loopback
- · Recovered Clock Output
- · 0 to 36 dB dynamic range
- -11 dB interference margin
- · Compatible with CB113/TA24 specifications
- · Single 5 V only CMOS technology
- Available in 16-pin PDIP and 44-pin PLCC

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Figure 1: LXT312 / LXT315 Pin Assignments

Pin #		Currels all	1/0				
PDIP			1/0	Description			
1	1	RTIP1	I	Repeater Tip and Ring Inputs. Tip and ring receive inputs for Channel 1.			
2	2	RRING1	1				
4	4	RCLK1	0	Recovered Clock. Clock output recovered from Channel 1 receive input.			
6	20	TTIP1	0	Repeater Tip and Ring Outputs. Open-drain output drivers for Channel 1.			
7	21	TRING1	0				
11	25	XTI	I	Crystal Oscillator Pins. A 6.176 MHz crystal must be connected across these			
12	26	XTO	0	two pins.			
3	3	VCC	-	Power Supply. Power supply input for all circuits. $+5 V (\pm 0.25 V)$.			
8	22	GNDT	-	Transmit Ground. Ground return for transmit circuits.			
16	44	GNDR	-	Receive Ground. Ground return for receive circuits.			
9 ¹	23 ¹	TRING2	0	Side 2 Ring and Tip Outputs. On the LXT312 dual repeater/transceiver, the			
10 ¹	24 ¹	TTIP2	0	are open-drain output drivers for Channel 2.			
14 ¹	42 ¹	RRING2	I	Side 2 Ring and Tip Inputs. On the LXT312 repeater/transceiver, these are t			
15 ¹	43 ¹	RTIP2	I	and ring receive inputs for Channel 2.			
5 ¹	19 ¹	RCLK2	0	Recovered Clock. On the LXT312 dual repeater/transceiver, this is the recovered clock output for Channel 2.			
13	41	LPBK	I	Loopback Control. On the LXT312, this pin controls Loopback Selection: High = Loopback side 1 data to side 2. Low = No Loopback. On LXT315 single repeater/transceiver, this pin must be connected to GND			

Table 1: LXT 312 / LXT315 Signal Descriptions

2. On the LXT312PE and LXT315PE, pins 5 through 18 and 27 through 40 are not connected (N/C).

FUNCTIONAL DESCRIPTION

Introduction

PCM signals are attenuated and dispersed in time as they travel down a transmission line. Repeaters/transceivers are required to amplify, reshape, regenerate and retime the PCM signal, then retransmit it.

The LXT312 and LXT315 each contain all the circuits required to build a complete PCM repeater/transceiver. The operational range of the repeaters/transceivers is 0 to 36 dB of cable loss at 772 kHz (equal to 6300 feet of 22 gauge pulp-insulated cable between repeaters).

Receive Function

The signal is received through a 1:1 transformer at RTIP and RRING and equalized for up to 36 dB of cable loss. The receive equalizer uses a proprietary on-chip adaptive filter technique which is equivalent to a 3-port ALBO equalizer design. The monolithic structure of the filter and the absence of external components provide excellent ISI and dispersion elimination, and accurate data transfer over temperature.

Receiver noise immunity is optimized by a proprietary crosstalk elimination filter which eliminates the unneeded high-frequency components of the received signal.

Timing Recovery Function

The equalized signal is full wave rectified and used to generate information for the timing recovery circuit. This circuit uses a mixed analog/digital technique to provide a lowjitter PLL similar to a tuned tank with excellent jitter tracking ability. But unlike a tuned tank, the free running frequency of the PLL clock is accurately controlled by the external reference crystal. No adjustment is required. Refer to Application Information for crystal specifications.

Recovered clock signals are available on the RCLK pins for applications that require synchronization to the bit stream.

Transmit Function

Recovered data is re-synchronized to the recovered clock signal by the timing recovery and transmit control section. The data is then retransmitted to the network via two opendrain, high-voltage transistors.

Loopback Function (LXT312 Only)

The LXT312 includes a loopback function for network diagnostics. With the LPBK pin Low, the repeater/transceiver operates in the normal mode. When the LPBK pin is pulled High, the data is looped back from side 1 to side 2.

APPLICATION INFORMATION

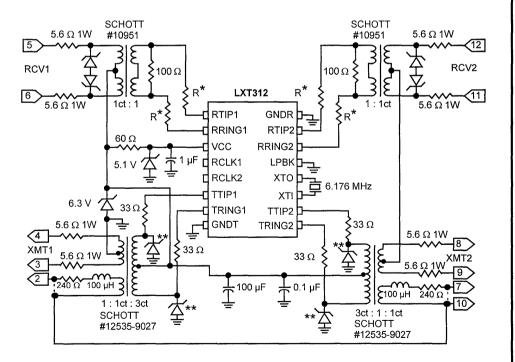

Introduction

Figure 2 shows a typical T1 dual repeater/transceiver application using an LXT312 repeater/transceiver with standard PCB edge connectors. It includes a jumper-selectable shorting option (dashed lines at connector pins 2 and 7) for the fault location circuitry. Table 2 lists the specifications required for the crystal used with the LXT312 or LXT315 repeater/transceiver.

Table 2: Crystal Specifications

Parameter	Specification
Frequency	6.176 MHz
Frequency tolerance ¹	± 50 ppm
Effective series resistance	40 Ω Maximum
Crystal cut	AT
Resonance	Parallel
Maximum drive level	2.0 mW
Mode of operation	Fundamental
1. @ 25 °C, C Load = 10 pF; an (Ref 25 °C reading)	d from -40 °C to +85 °C

Figure 2: Typical T1 Dual Repeater/Transceiver Application

NOTES:

- * RTIP/RRING Resistors are used to provide surge protection. Values can be $0 100 \Omega$.
- ** TTIP/TRING Zeners are used to reduce surge susceptibility. Values can be 12 14 V.

LXT312 / LXT315 Low Power T1 PCM Repeaters / Transceivers

TEST SPECIFICATIONS

NOTE

Minimum and maximum values in Table 3 through Table 6 and Figure 3 through Figure 11 represent the performance specifications of the LXT312/315 repeaters/transceivers and are guaranteed by test except, as noted, by design

Table 3: Absolute Maximum Ratings

Parameter	Symbol	Units		
Supply voltage (min to max)	Vcc	-0.3 V to +6 V		
Driver Voltage	Voh	18 V		
Receiver Current	Icc	100 mA		
Operating temperature (min to max)	Тор	-40 °C to +85 °C		
Storage temperature (min to max)	TST	-65 °C to +150 °C		

Table 4: Recommended Operating Conditions (Voltages are with respect to ground.)

Parameter	Symbol	Min	Тур	Max	Units
Supply voltage	. Vcc	4.75	5.0	5.25	V
Operating temperature	Тор	-40		85	°C

Table 5: Electrical Characteristics (Over Recommended Range)

Parameter		Symbol SNR	Min -11 -36	Typ ¹ –	Max –	Units dB
Interference Margin						
Receiver Dynamic Range	_	-		0	dB	
Digital Outputs - Low (IOL = 1.6 mA		VOL	_	-	0.4	v
	$(IOL = 10 \ \mu A)$	VOL		0.2	-	v
Digital Outputs - High	(IOH = 0.4 mA	Voh	2.4	-		v
	(IOH < 10 μA)	Voh	-	4.5	-	v
Digital Inputs - High	VIH	2.0	-	-	v	
Digital Inputs - Low	- nin	VIL	_		0.8	V
Supply Current (from VCC supply) ²	All zeros	ICC	-	15	22	mA
	All ones	ICC	_	-	23	mA
Driver Leakage Current (VDVR = 18 V)	ILL	-	-	100	μA	
Driver Pulse Amplitude (Driver output IC	Ар	0.65	- 1	0.95	v	

Figure 3: Digital Timing Characteristics

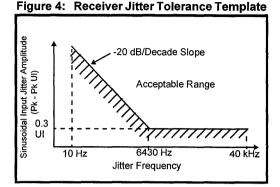
Table 6: Digital Timing Characteristics (Over Recommended Range) see Figure 3

Parameter	Symbol	Min	Typ ⁱ	Max	Units
Driver Pulse Width	tPW	299	324	349	ns
Driver Pulse Imbalance		_	-	15	ns
Rise and Fall Time (any digital output ²)	tr / tr		_	18	ns
Setup Time - TTIP/TRING to RCLK	tīsu	90	_	-	ns
Hold Time - TTIP/TRING from RCLK	tтн	90	_	_	ns

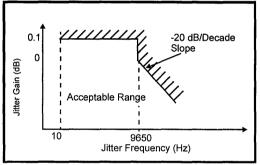
LXT312 / LXT315 Low Power T1 PCM Repeaters / Transceivers

Test Setups

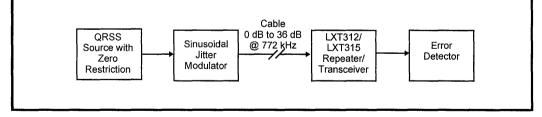
Introduction


Both the LXT312 and LXT315 are fully tested (100% AC and DC parameters) using inputs generated by Level One's proprietary transmission line and network simulator. Device testing includes receiver jitter tolerance, jitter transfer and interference margin, and receiver immunity to gaussian and 60 Hz noise. Specifications and bench test setups are shown in Figures 4 through 11.

Receiver Jitter Tolerance Testing


Receiver jitter tolerance meets the template shown in Figure 4, when operated at line losses from 0 to 36 dB. Figure 6 shows the setup used for jitter tolerance testing.

Receiver Jitter Transfer Testing


Receiver jitter transfer meets the template shown in Figure 5, when operated with line losses from 0 to 36 dB and input jitter amplitude of 0.15 UI peak-to-peak. Jitter gain at a given frequency is defined as the difference between intrinsic jitter and additive jitter at the measurement frequency, divided by the amplitude of the input jitter. Figure 7 shows the setup used for jitter transfer testing.

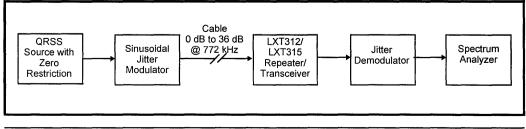


Figure 7: Receiver Jitter Transfer Test Setup

Interference Margin Testing

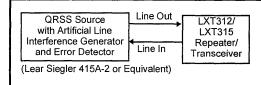
The LXT312 and LXT315 receiver noise interference margin is specified at a minimum of -11 dB for line losses from 0 dB to 36 dB. The test setup used to measure noise margin is shown in Figure 8.

Gaussian Noise Immunity Testing

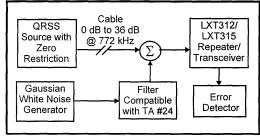
Receiver immunity to gaussian noise is specified at a maximum BER of 10^{-7} for a quasi-random T1 signal at 1.544 MHz (±130 ppm). The receiver must be immune to noise power expressed as Np = -(L + 4.7) dBm, where L corresponds to the line loss and is valid for 0 to 36 dB.

Figure 9 shows the setup used to test gaussian noise immunity. The noise source is gaussian to at least 6 sigma and filtered to simulate expected noise in a binder group (per AT&T TA #24/CB113).

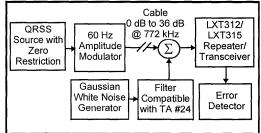
60 Hz Pulse Modulation Immunity Testing


Receiver immunity to 60 Hz pulse amplitude modulation is specified using the gaussian noise source described in the previous paragraph on gaussian noise immunity. Pulse amplitude modulation is specified between 10% and 30% of the nominal amplitude (see AT&T TA #24/CB113 for details on the modulation envelope). Figure 10 shows the setup used for testing receiver immunity to 60 Hz pulse amplitude modulation. The following data reflect noise power for 10^{-7} BER at each modulation level, where L corresponds to the line loss and is valid for 0 to 36 dB:

Modulation Level	Noise Power
10%	Np = -(L + 5.7) dBm
20%	Np = -(L + 6.7) dBm
30%	Np = -(L + 8.7) dBm


Receiver Timing Recovery Testing

Receiver timing recovery phase shift modulation for repetitive 8-bit patterns is specified at less than 0.07 UI. This is tested using any two out of 35 possible 8-bit patterns and measuring the change in output pulse timing from one pattern to the other (see AT&T TA #24/CB113 for details on the patterns). Switching rate from one pattern to the other is specified at between 300 Hz and 500 Hz. The setup used to test receiver timing recovery phase shift modulation is shown in Figure 11.


Figure 8: Receiver Noise Interference Margin Test Setup

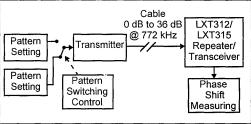

Figure 9: Receiver Gaussian Noise Immunity Test Setup

Figure 10: Receiver 60 Hz Pulse Amplitude Modulation Immunity Test Setup

Figure 11: Receiver Timing Recovery Phase Shift Modulation Test Setup

LXT312 / LXT315 Low Power T1 PCM Repeaters / Transceivers

NOTES

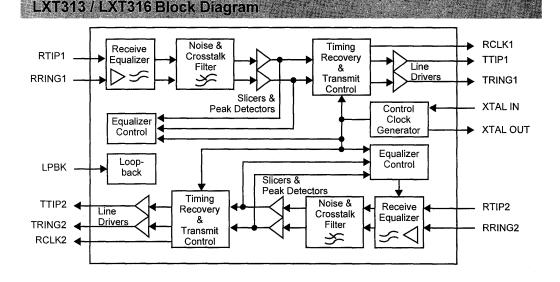
DATA SHEET

JULY 1997 Revision 2.2

LXT313 / LXT316

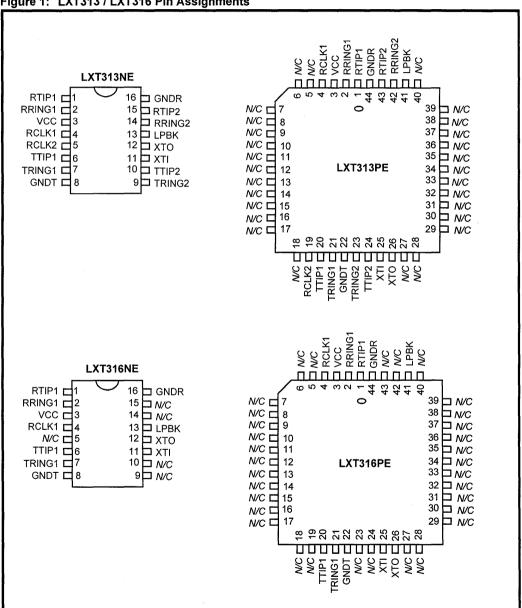
Low Power E1 PCM Repeaters / Transceivers

General Description


The LXT313 and LXT316 are integrated repeater/transceiver circuits for E1 carrier systems. The LXT313 is a dual repeater/transceiver and the LXT316 is a single repeater/transceiver. The LXT313 and LXT316 are designed to operate as regenerative repeaters/transceivers for 2.048 Mbps data rate PCM lines. Each includes all circuits required for a regenerative repeater/transceiver system including the equalization network, automatic line build-out (ALBO), and a state-of-the-art analog/digital clock extraction network tuned by an external crystal.

The key feature of the LXT313 family is that it requires only a crystal and a minimum of other components to complete a repeater/transceiver design. Compared with traditional tuned coil-type repeaters/transceivers, they offer significant savings in component and labor costs, along with reduced voltage drop/power consumption, and improved reliability. To ensure performance for all loop lengths, the LXT313 and LXT316 are 100% AC/DC tested using inputs generated by Level One's proprietary transmission line and network simulator.

The LXT313 and LXT316 are advanced CMOS devices which require only a single 5-volt power supply.


Features

- Integrated repeater/transceiver circuit on a single CMOS chip
- · On-chip equalization network
- On-chip ALBO
- · Low power consumption
- · No tuning coil
- On-chip Loopback
- · Recovered Clock Output
- 0 to 43 dB dynamic range
- · -14 dB interference margin
- · Single 5 V only CMOS technology
- · Available in 16-pin PDIP and 44-pin PLCC

LXT313 / LXT316 Low Power E1 PCM Repeaters / Transceivers

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Figure 1: LXT313 / LXT316 Pin Assignments

Pin #		Symbol I/O		Description			
DIP	PLCC			Description			
1	1	RTIP1	I	Repeater Tip and Ring Inputs. Tip and ring receive inputs for Channel 1.			
2	2	RRING1	1				
4	4	RCLK1	0	Recovered Clock. Clock output recovered from Channel 1 receive input.			
6	20	TTIP1	0	Repeater Tip and Ring Outputs. Open-drain output drivers for Channel 1.			
7	21	TRING1	0				
11	25	XTI	1	Crystal Oscillator Pins. An 8.192 MHz crystal should be connected across			
12	26	ХТО	0	these two pins. For alternative timing references, refer to Application In- tion.			
3	3	VCC	_	Power Supply. Power source for all circuits. +5 V (±0.25 V).			
8	22	GNDT	-	Transmit Ground. Ground return for transmit circuits.			
16	44	GNDR	-	Receive Ground. Ground return for receive circuits.			
9 ¹	23 ¹	TRING2	0	Side 2 Ring and Tip Outputs. On the LXT313 dual repeater/transceiver, these			
10 ¹	24 ¹	TTIP2	0	are open-drain output drivers for Channel 2.			
14 ¹	42 ¹	RRING2	I	Side 2 Ring and Tip Inputs. On the LXT313 repeater/transceiver, these are tip			
15 ¹	43 ¹	RTIP2	I	and ring receive inputs for Channel 2.			
5 ¹	19 ¹	RCLK2	0	Recovered Clock. On the LXT313 dual repeater/transceiver, this is the recovered clock output for Channel 2.			
13	41	LPBK	I	Loopback Control. On the LXT313, this pin controls Loopback Selection:			
				High = Loopback side 1 data to side 2; Low = No Loopback.			
			[On the LXT316 single repeater/transceiver, this pin must be connected to GND.			

Table 1: LXT313 / LXT316 Signal Descriptions

FUNCTIONAL DESCRIPTION

Introduction

CM signals are attenuated and dispersed in time as they travel down a transmission line. Repeaters/transceivers are required to amplify, reshape, regenerate and retime the PCM signal, then retransmit it.

The LXT313 and LXT316 each contain all the circuits required to build a complete PCM repeater/transceiver. The operational range of the repeaters/transceivers is 0 to 43 dB of cable loss at 1.024 MHz (equal to 2 km of 22 gauge pulp-insulated cable between repeaters).

Receive Function

The signal is received through a 1 : 1 transformer at RTIP and RRING and equalized for up to 43 dB of cable loss. The receive equalizer uses a proprietary on-chip adaptive filter technique which is equivalent to a 3-port ALBO equalizer design. The monolithic structure of the filter and the absence of external components provide excellent ISI and dispersion elimination, and accurate data transfer over temperature.

Receiver noise immunity is optimized by a proprietary crosstalk elimination filter which eliminates the unneeded high frequency components of the received signal.

Timing Recovery Function

The equalized signal is full wave rectified and used to generate information for the timing recovery circuit. This circuit uses a mixed analog/digital technique to provide a lowjitter PLL similar to a tuned tank with excellent jitter tracking ability. But unlike a tuned tank, the free running frequency of the PLL clock is accurately controlled by the external reference crystal. No adjustment is required. Refer to Application Information for crystal specifications.

Recovered clock signals are available on the RCLK pins for applications that require bit stream synchronization.

Transmit Function

Recovered data is re-synchronized to the recovered clock signal by the timing recovery and transmit control section. The data is then retransmitted to the network via two opendrain, high-voltage transistors.

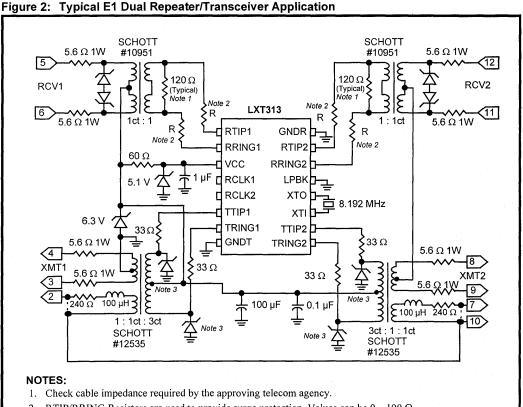
Loopback Function (LXT313 Only)

The LXT313 includes a loopback function for network diagnostics. With the LPBK pin Low, the repeater/transceiver operates in the normal mode. When the LPBK pin is pulled High, the data is looped back from side 1 to side 2.

APPLICATION INFORMATION

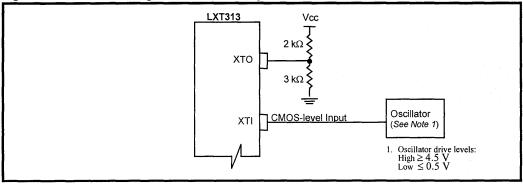
Typical Application

Figure 2 shows a typical E1 dual repeater/transceiver application circuit using standard repeater/transceiver card edge connections. It includes a jumper-selectable shorting option for the fault location circuitry (dashed lines at connector pins 2 and 7). Table 2 lists the specifications for the crystal used with the LXT313 or LXT316 repeater.


Alternate Timing Reference

For applications where a crystal is not appropriate, a 2.048 MHz or 8.192 MHz, CMOS-level (High \ge 4.5V, Low \le 0.5V) oscillator may be connected to XTI. In this situation, XTO must be tied to Vcc and GND via a voltage divider as shown in Figure 3

Table 2: Crystal Specifications


Parameter	Specification
Frequency	8.192 MHz
Frequency tolerance ¹	± 50 ppm
Effective series resistance	30 Ω Maximum
Crystal cut	AT
Resonance	Parallel
Maximum drive level	2.0 mW
Mode of operation	Fundamental
1. @ 25 °C, C Load = 10 pF; an (Ref 25 °C reading)	d from -40 °C to +85 °C

RTIP/RRING Resistors are used to provide surge protection. Values can be 0 - 100 Ω.
 TTIP/TRING Zeners are used to reduce surge susceptibility. Values can be 12 - 14 V.

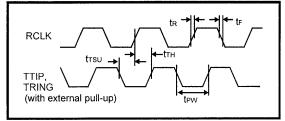
TEST SPECIFICATIONS

NOTE

Minimum and maximum values in Tables 3 through 6 and Figures 4 through 9 represent the performance specifications of the LXT313/316 repeaters/transceivers and are guaranteed by test except, as noted, by design.

Table 3: Absolute Maximum Ratings

Parameter	Symbol	Units
Supply voltage (min to max)	Vcc	-0.3 V to +6 V
Driver Voltage	Voh	18 V
Receiver Current	Icc	100 mA
Operating temperature (min to max)	Тор	-40 °C to +85 °C
Storage temperature (min to max)	Tst	-65 °C to +150 °C
Exceeding these values may cause perma implied. Exposure to maximum rating		


Table 4: Recommended Operating Conditions (Voltages are with respect to ground.)

Parameter	Symbol	Min	Тур	Max	Units
Supply voltage	Vcc	4.75	5.0	5.25	V
Operating temperature	Тор	-40		85	°C

Table 5: Electrical Characteristics (Over Recommended Range)

Parameter Interference Margin		Symbol	Min	Typ ¹	Max	Units
		SNR	-14	-	- 0	dB
Receiver Dynamic Range	-	-43	-	dB		
Digital Outputs - Low	(IOL = 1.6 mA	VOL	_	_	0.4	v
	$(IOL = 10 \ \mu A)$	VOL		0.2	-	V
Digital Outputs - High	(IOH = 0.4 mA	Vон	2.4			v
	(IOH < 10 μA)	Voh	_	4.5	-	v
Digital Inputs - High		VIH	2.0	-	-	v
Digital Inputs - Low	<u></u>	VIL			0.8	v
Supply Current (from VCC supply) ²	All zeros	ICC		15	23	mA
	All ones	ICC	-	-	25	mA
Driver Leakage Current (VDVR = 18 V)	ILL	_	_	100	μA	
Driver Pulse Amplitude (Driver output IC	АР	0.65	_	0.95	V	

Figure 4: Digital Timing Characteristics

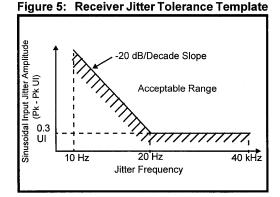
Table 6: Digital Timing Characteristics (Over Recommended Range) see Figure 4

Parameter	Symbol	Min	Typ ¹	Max	Units
Driver Pulse Width	tpw	219	244	269	ns
Driver Pulse Imbalance	-	_	_	15	ns
Rise and Fall Time (any digital output ²)	tr / tr	-		25	ns
Setup Time - TTIP/TRING to RCLK	tTSU	90	-	_	ns
Hold Time - TTIP/TRING from RCLK	tтн	90	-	_	ns

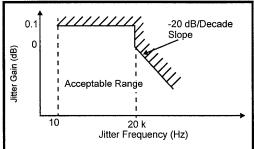
CELEVEL ONE.

Test Setups

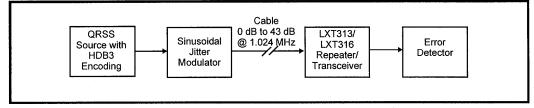
Introduction


Both the LXT313 and LXT316 are fully tested (100% AC and DC parameters) using inputs generated by Level One's proprietary transmission line and network simulator. Device testing includes receiver jitter tolerance, jitter transfer and interference margin for line losses from 0 dB to 43 dB @ 1.024 MHz. Specifications and bench test setups are shown in Figures 5 through 9.

Receiver Jitter Tolerance Testing


Receiver jitter tolerance meets the template shown in Figure 5, when operated at line losses from 0 to 43 dB. Figure 7 shows the setup used for jitter tolerance testing.

Receiver Jitter Transfer Testing


Receiver jitter transfer meets the template shown in Figure 6, when operated with line losses from 0 to 43 dB and input jitter amplitude of 0.15 UI peak-to-peak. Jitter gain at a given frequency is defined as the difference between intrinsic jitter and additive jitter at the measurement frequency, divided by the amplitude of the input jitter. Figure 8 shows the setup used for jitter transfer testing.

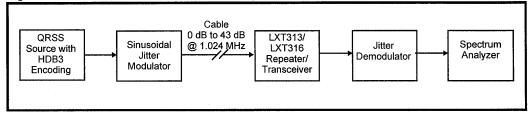
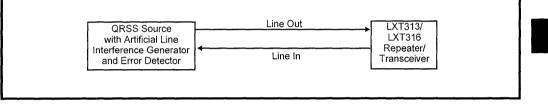


Figure 7: Receiver Jitter Tolerance Test Setup

Figure 8: Receiver Jitter Transfer Test Setup



Interference Margin Testing

The LXT313 and LXT316 receiver noise interference margin is specified at a minimum of -14 dB for line losses from 0 dB to 43 dB. The test setup used to measure noise margin is shown in Figure 9.

Figure 9: Receiver Noise Interference Margin Test Setup

4

LXT313 / LXT316 Low Power E1 PCM Repeaters / Transceivers

NOTES

Switched 56/DDS Products

1997 Communications Data Book

DATA SHEET

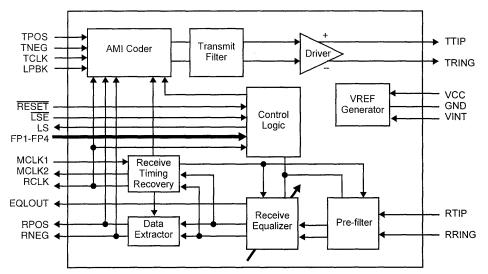
APRIL 1997 Revision 3.1

LXT400

All Rate Extended Range Switched 56/DDS Transceiver

General Description

The LXT400 is an integrated line interface circuit for Switched 56 (SW 56) and Digital Data Service (DDS), compatible with any combination of 19 to 26 AWG cable. The LXT400 operates at any of 17 preset data rates from 2.4 kbps to 72.0 kbps, providing appropriate transmit pulse shaping, receive signal detection and timing recovery at the metallic interface between the carrier and the customer installation. The LXT400 offers a variety of diagnostic features including loopback, line status and equalizer monitor outputs, while conforming to AT&T, ANSI and Bellcore specifications.

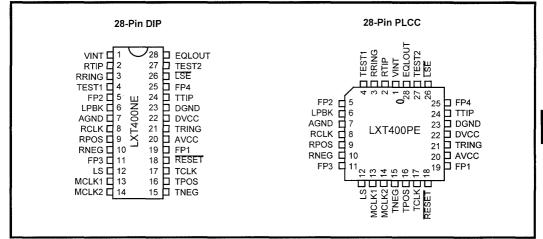

The LXT400 transmit section includes switched capacitor filters, continuous reconstruction filters, and a 50% AMI encoder. The AMI pulse is synchronized with the transmit clock.

The LXT400 receive section performs line equalization, data extraction and timing recovery. The LXT400 has a BER of less than 10^{-7} with up to 49 dB of cable attenuation at the Nyquist frequency for 56, 64 and 72 kbps, and 40 dB at the lower rates. The LXT400 is an advanced CMOS device which requires only a single +5 V power supply.

Features

- Enhancements:
- Three new data rates: 38.4, 51.2, and 64.0 kbps
- Improved accuracy in line attenuation reporting
- Simplified transmit digital timing
- Integrated transmitter, receiver and timing recovery on a single CMOS chip
- · Transparent to framing and coding
- Receive equalizer filters allow data recovery from signals with up to 40 dB of attenuation at the Nyquist frequency at line rates below 56 kbps, and up to 49 dB at the 56, 64 and 72 kbps line rates
- · Single 4.096 MHz crystal or master clock input
- · Digital back-end loopback
- · Equalizer output monitor pin
- Line status (loop length, RLOS, etc.) information available for maintenance purposes
- Low power consumption (200 mW typical)
- Available in 28-pin plastic DIP and PLCC
- · Single 5 V only CMOS technology

LXT400 All Rate Extended Range Switched 56/DDS Transceiver


TABLE OF CONTENTS

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS	5-3
FUNCTIONAL DESCRIPTION	5-5
Introduction	. 5-5
Initialization	. 5-5
Reset	. 5-5
Transmission	. 5-6
Reception	. 5-7
Changes in Received Signal Strength	. 5-7
Receive Loss of Signal	. 5-8
Timing Recovery	. 5-9
Data Extraction	. 5-9
Loopback Operation	5-9
Serial Port Operation	5-9
APPLICATION INFORMATION	5-11
Introduction	5-11
Cross-talk	5-11
PCB Layout	5-12
External Component Recommendations	5-13
TEST SPECIFICATIONS	5-14
Absolute Maximum Ratings	5-14
Recommended Operating Conditions	5-14
DC Electrical Characteristics	5-14
AC Electrical Characteristics	5-15
Timing Characteristics	5-15
Receive Digital Timing Diagram	5-16
Transmit Digital Timing Diagram	5-16
LS Serial Port Timing Diagram (8-Bit Word)	5-17
LS Serial Port Timing Diagram (16-Bit Word)	5-17
MCLK and RESET Timing Diagram	5-17

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Figure 1: LXT400 Pin Assignments

Pin #	Sym	1/0	Description			
1	VINT	I	Intermediate Voltage Reference. Reference voltage used for internal analog circuits. This pin must be connected through a $1k\Omega$ resistor (Rv) to the center node between the two termination resistors, Rr, as shown in Figure 8 and 9.			
2	RTIP	Ι	Receive Tip and Receive Ring. Receive data input pair. RTIP and RRING are a fully			
3	RRING		differential input for the receive line interface.			
4	TEST1	I	Test 1. Factory Test Pin. Do not connect.			
19	FP1	I	Frequency Programming Inputs 1 through 4. The LXT400 data rate is set by the			
5	FP2	I	logic levels present at the FP1 through FP4 inputs as shown in Table 2. For operation at 28.4 files and 64.0 kbcs the POLK extends what he evel is data the FP2 input			
11	FP3	I	38.4, 51.2, and 64.0 kbps, the RCLK output must be applied to the FP3 input.			
25	FP4	I				
6	LPBK	1	Loopback. When set High, activates digital back-end loopback.			
7	AGND	-	IC Ground. Ground for all IC circuitry except the transmit driver.			
8	RCLK	0	Recovered Clock. Clock recovered from signal input at RTIP and RRING, based on the data rate setting on the FP1 - FP4 inputs.			
9	RPOS	0	Receive Data Positive and Negative. Receive data outputs. A signal on RPOS corre-			
10	RNEG	0	sponds to receipt of a positive pulse on RTIP and RRING. A signal on RNEG corre- sponds to a negative pulse on RTIP and RRING. Both outputs transition on the rising edges of RCLK, and are never High simultaneously.			

Table 1: LXT400 Signal Descriptions

LXT400 All Rate Extended Range Switched 56/DDS Transceiver

Pin #	Sym	1/0	Description		
12	LS	0	Line Status Output. A 16-bit serial word indicating activation state, line loss, and loss of signal (LOS). LS transitions occur on falling edges of RCLK. LS goes to a high impedance state when LSE is High. If LSE is tied Low, the LS output represents LOS only.		
13	MCLK1	I	Master Clock 1 and Master Clock 2. The required 4.096 MHz master clock may be		
14	MCLK2	0	provided by a crystal connected across these pins, or by a digital clock connected to MCLK1. If a clock is provided on MCLK1, MCLK2 must be left unconnected.		
15	TNEG	I	Transmit Data Negative and Positive. These inputs are sampled on the falling edges		
16	TPOS	I	of TCLK. AMI pulses are encoded as follows:		
			TPOSTNEGTransmit Signal00Space01Negative Pulse10Positive Pulse11Space		
17	TCLK	I	Transmit Clock. Transmit clock at the data rate set by the FP1 - FP4 inputs.		
18	RESET	I	Reset . Hardware reset pin. Must be pulsed Low on power-up to initialize all internal circuits. Must also be pulsed Low after changing the data rate setting, and after forcing or releasing any loopback condition.		
20	AVCC	-	IC Power. Power supply for all IC circuits except the transmit driver. +5 V (±5%).		
21	TRING	0	Transmit Ring and Transmit Tip. Differential driver outputs. Designed to drive the		
24	TTIP	0	135Ω twisted-pair cable through the transmit line interface shown in application dia- grams (see Figure 8 and 9).		
22	DVCC	-	Driver Power. Transmit driver power supply. +5 V (±5%). Tie to AVCC, pin 20.		
23	DGND	-	Driver Ground. Transmit driver ground. Tie to AGND, pin 7.		
26	LSE	Ι	Line Status Enable. Active Low enable for the LS serial port. This pin must transition from High to Low to read LS serial data. LSE is sampled on the rising edges of RCLK.		
27	TEST2	I	Test 2. Analog test pin. Must be tied to ground.		
28	EQLOUT	0	Equalizer Output Monitor. Monitors Equalizer. Must be left open when not used.		

Table 1: LXT400 Signal Descriptions – continued

FUNCTIONAL DESCRIPTION

Introduction

The LXT400 comprises three basic sections: transmit, receive and control logic.

The transmit section includes a 50% AMI encoder, a programmable switched-capacitor low-pass filter, a low-pass notch filter, a transmit timing re-synchronizer and a continuous reconstruction filter. An on-chip CMOS driver is also incorporated to drive a 135Ω line through a transformer.

The receive section includes pre-filters and line equalizers, and the timing recovery and data extraction blocks. An internal digital phase-locked loop (DPLL) is used in conjunction with the MCLK input to synchronize the recovered clock and data.

The control logic block initializes the transceiver, selects receive filters and reports status information on the serial port. Control logic inputs FP1 through FP4 determine the data rate as specified in Table 2. The control logic executes the initialization procedure upon automatic re-synchronization or external **RESET**. Filter selection optimizes the receive signal-to-noise ratio (SNR) by matching the filter in the equalizer section to the strength of the received signal (a function of loop length/line loss). The control logic block also reports receiver status, estimated line length (as indicated by filter selection) and a receive loss of signal (RLOS) alarm on the serial port.

Initialization

Upon power-up, or after changing the baud rate or loopback condition of the line interface, a RESET pulse is required to initialize the LXT400. On receipt of the RESET pulse, the LXT400 executes an iterative cycle of level detection and offset cancellation to select the appropriate equalizer settings for the received signal. Receiver initialization can be monitored on the serial channel. When received data has a 50% ones density, full operation is achieved within one second after RESET. Under the minimum ones density condition specified in Table 3, full operation is achieved within eight seconds after RESET. Correct initialization assumes the presence of an AMIcoded signal at the RTIP and RRING inputs. The LXT400 will not correctly initialize unless a stable signal which meets the network interface specifications of AT&T Pub 62310 is present at the RTIP and RRING inputs during the entire initialization process. The RPOS/RNEG outputs are not valid until full operation is achieved. During offset cancellation, the RPOS/RNEG outputs do not adhere to the AMI rule. However, once initialized (assuming that a proper baud rate is selected), RPOS and RNEG outputs are never simultaneously High.

Reset

A hardware reset is required after any of the following changes in transceiver configuration:

- 1. A change in Data Rate setting
- 2. A change in the local analog loopback configuration
- A local change in the line upon which the transceiver is communicating (for example, configurations for changing lines in a "1 for n" redundancy scheme).

Table 2: Data Rate Programming

FP4	FP3	FP2	FP1	Data Rate ¹	
Low	Low	Low	Low	2.4 kbps	
Low	Low Low		High	3.2 kbps	
Low	Low	High	Low	4.8 kbps	
Low	Low	High	High	6.4 kbps	
Low	High	Low	Low	9.6 kbps	
Low	High	Low	High	12.8 kbps	
Low	High	High	Low	19.2 kbps	
Low	High	High	High	25.6 kbps	
High	Low	Low	Low	56.0 kbps	
High	Low	Low	High	72.0 kbps	
High	Low	High	Low	3.5 kbps	
High	Low	High	High	7.0 kbps	
High	High	Low	Low	14.0 kbps	
High	High	Low	High	28 kbps	
Low	RCLK ¹	Low	Low	38.4 kbps	
Low	RCLK ¹	Low	High	51.2 kbps	
Low	RCLK ¹	High	Low	64.0 kbps	
 These plied t 	data rates are o the FP3 inpu	activated wh t on pin 11.	en RCLK ot	itput on pin 8 is ap-	

Data Rate (kbps)	Minimum Average Ones Density					
2.4, 4.8, 9.6, 19.2, 38.4	1 / 12					
3.2, 6.4, 12.8, 25.6, 51.2	1 / 16					
56.0	1 / 14					
64.0	1 / 16					
72.0	1 / 18					
3.5, 7.0, 14.0, 28.0	≈ 1 / 16					

Table 3: Ones Density Requirements

Automatic re-initialization may be triggered by changes in received signal strength as follows:

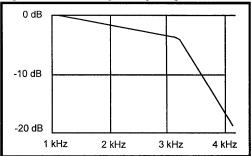
- If received signal strength increases by more than about 6 dB after full operation is achieved, automatic re-initialization occurs.
- If received signal strength decreases by more than about 4 dB, re-initialization occurs. If the decrease in received signal strength exceeds 6 dB, the LXT400 reports an LOS condition and performs an automatic re-initialization.

The time required to achieve full operation after re-initialization, is the same as required for power-on initialization (i.e., 1 second max with 50% ones density, 8 seconds under minimum ones density conditions). Re-initialization is not triggered by impulse noise events.

Transmission

TPOS and TNEG must have transitions coincident with the rising edges of TCLK. The transmit section generates a 50% AMI pulse according to the pulse encoding rules, which is synchronized with the TCLK input. In DSU applications, RCLK is typically routed back into the TCLK input. The instantaneous baud period varies with the receive DPLL phase adjustments, however, the pulse duty cycle is maintained at 50% of the nominal baud period by

Table	4: No	otch	Filter	r Attei	nuation
20 Company and	in the tableaut time		where we have a set of the		


internal re-synchronization to TCLK. The AMI pulse is then processed through a set of frequency dependent filters.

Initial filtering at all rates is accomplished by a programmable, switched-capacitor, low-pass filter. This filter is a single-pole type with the pole set at 1.3 times the bit rate (as determined by inputs FP1 - FP4).

For data rates of 2.4, 3.2, 4.8, 6.4, 9.6 and 12.8 kbps, the filtered pulses go through an additional low-pass notch filter. The notch filter is required to protect other DDS services with specific band requirements, and provides the attenuation listed in Table 4. The additional rejection requirement is weighted within each band by "C-Message" weighting over double speech sidebands around a carrier in the middle of each band (28 kHz and 76 kHz). The C-Message weighting function is graphed in Figure 2. Depending on the data rate, the frequency template extends to different limits as shown in Table 5. (An alternate notch filter is used for data rates of 3.5 and 7.0 kbps.) The single pole, low-pass filter would maintain the frequency within \pm 5%. The notch filter attenuation is added to this.

A continuous filter, common to all data rates, is the final stage. The continuous filter removes high frequency components which remain after processing by the low-pass filter stages. The pulse is then applied to the line driver for transmission onto the twisted-pair line.

Figure 2: C-Message Weighting

OCU/Loop	Customer (Primary Channel)	Rejection Band			
Data Rate (kbps)	Data Rate (kbps)	22 - 32 kHz	72 - 80 kHz		
2.4 or 3.2	2.4	5 dB	1 dB		
4.8 or 6.4	4.8	13 dB	9 dB		
9.6 or 12.8	9.6	17 dB	8 dB		

Reception

RTIP and RRING inputs are differentially detected, then processed through the pre-filters and equalizer section. The continuous pre-filter removes high frequency noise and prevents aliasing problems for the switched capacitor (SC) line equalizers which follow. Pulse reshaping is achieved by the receive equalizer, which consists of an SC step equalizer and an adaptive decision feedback equalizer (DFE). The DFE eliminates residual inter-symbol interference (ISI) due to echoing by multiple bridged tap connections and the quantized frequency responses of the SC step filters. The DFE is continuously adapted to compensate for ISI due to time-varying line characteristics such as temperature, humidity and age. Nine different filter selections based on signal strength are available.

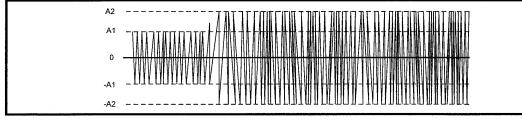
Changes in Received Signal Strength

During initialization, the LXT400 selects filters appropriate to the strength of the received signal. After initialization, the LXT400 continually monitors the receive signal strength to ensure the optimum signal/filter match. Data reception is not affected by impulsive noise events or by slow changes in signal amplitude, such as may be caused by temperature and humidity changes on the line. (The maximum constant rate of change which the LXT400 can track is 6 dB per minute.) However, instantaneous "step" changes (see Figure 3) may temporarily interfere with data reception. Step changes may be due to sudden changes in loop loss, far end transmitter output, etc.

After normal operation has been established, an instantaneous single-step change may cause one of three conditions, as shown in Figure 4.

Under Condition 1, the LXT400 automatically adapts to minor step changes in signal strength (assuming that the new input is a valid DDS signal).

Under Condition 3, the LXT400 responds to significant step changes by re-initializing.

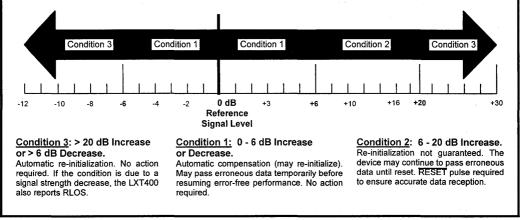

Condition 2, while unlikely to occur in an actual DDS implementation, may be observed in the laboratory due to artificial line simulators. Condition 2, which results from a 6 - 20 dB step increase in received signal strength, may result in a signal/filter mismatch. This condition is characterized by excessive bipolar violations (BPVs) which can be observed on RPOS and RNEG. External signal quality detection circuitry can be used to detect excessive BPVs that are not recognized as standard DDS BPV code words. Upon detection of unrecognized BPVs, the user may force a reset on the LXT400 to resume error-free operation.

Under normal operating conditions, step changes in received signal strength are all under local control. Thus, the user can reset the LXT400 once the new receive signal has stabilized at the chip inputs. Remote changes typically involve disconnecting one line and re-connecting another line of different length. These changes trigger the RLOS report and automatic re-initialization. Any remote changes in line length or transceiver configuration are beyond the local user's control. Remote changes in data rate are not detected.

Table 5:	Frequency	y Limits	per	Data	Rate
----------	-----------	----------	-----	------	------

Data Rate (kbps)	Upper Frequency Limit (kHz)
2.4 (3.2)	100
4.8 (6.4)	150
9.6 (12.8)	150
19.2 (25.6)	150
38.4 (51.2)	150
56.0 (72.0)	150
64.0	150
3.5	100
7.0	150
14.0	150
28.0	150

LXT400 All Rate Extended Range Switched 56/DDS Transceiver


Receive Loss of Signal

RLOS goes High when more than 32 consecutive zeros are received, caused either by a true loss of signal, or a signal strength drop greater than 6 dB. The LXT400 automatically re-initializes when RLOS goes High, and 40 consecutive zeros are counted. Figure 5 shows the RTIP/RRING input and RLOS output timing relationships for a true loss of signal. When signal energy returns to the chip input, the

LXT400 executes one full activation cycle in the presence of this signal. The result is that RLOS will remain High for a period of time (0.13 s < tH < 16 s) after signal energy reappears.

Figure 6 shows the RTIP/RRING input timing and RLOS output timing relationship for a signal strength decrease greater than 6 dB. In this case, RLOS will go High for a time 0.26 s < tP < 16 s.

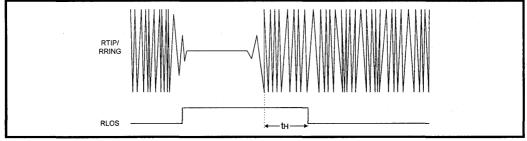
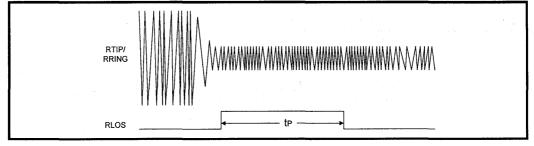



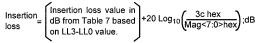
Figure 6: RLOS Timing for a Drop in Signal Strength > 6 dB

Timing Recovery

The timing recovery circuit uses a rate synchronizer to generate a high frequency internal clock from the MCLK input. A DPLL is used to synchronize this internal clock to the received data pulses. The output clock from the DPLL is divided down to generate RCLK and all other required clocks (except TCLK which is an external input).

Data Extraction

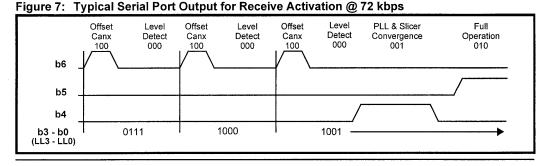
The data extraction block provides RPOS and RNEG outputs. A positive differential pulse received between RTIP and RRING results in a High on RPOS. A negative differential pulse between RTIP and RRING results in a High on RNEG. RPOS and RNEG are output at the received data rate and are valid on the falling edge of RCLK.


Receiver operation is not affected by the data patterns, provided the ones density requirements of Table 3 are met with no more than 26 consecutive zeros. RLOS is declared after 32 consecutive zeros. However, the RCLK output remains synchronized to the RTIP/RRING input for up to 40 consecutive zeros, after which re-initialization occurs. Bipolar violations are received properly. The bipolar violation coding rule that successive violations be of alternating polarity must be followed. However, if this rule is temporarily broken (due to channel noise, etc.), long term LXT400 data reception will not be adversely affected.

Loopback Operation

When the LPBK pin is set High, the recovered data and clock are sent back through the transmit section and onto the line interface, as well as being output on the RPOS/RNEG and RCLK pins. TPOS/TNEG and TCLK inputs are ignored in the loopback mode.

Serial Port Operation


The line status (LS) output is an 8-bit or 16-bit serial word enabled by pulling $\overline{\text{LSE}}$ Low for 8 or 16 bit-periods as shown in Figures 12 and 13. Refer to Test Specifications for Serial Port Timing. Bit assignments are listed in Table 6. Approximate line loss and loop length (based on received signal strength/filter selection, assuming far-end pulse transmission compliant with AT&T Pub 62310 or T1E1/90-051) are reported via bits b0 through b3 as listed in Table 7. When combined with the receive signal magnitude bits in positions b8-b15, the line attenuation may be calculated to within ±1 dB of actual value using the following equation:

Bits b4 through b6 indicate the receiver activation state. Bit b7 is the RLOS alarm.

Figure 7 shows the serial output for a typical LXT400 initialization sequence. Bits b0 - b3 report filter selection and bits b4 - b6 report receiver status. Bit b6 toggles to indicate that the receiver is alternating between offset cancellation (b6 - b4 = 100) and receive level detection (b6 - b4 = 000). The receiver starts with the highest-gain filter (b3 - b0 = 0111), cancels systematic voltage offset at the filter output. If the signal exceeds the threshold for that filter, the LXT400 steps down to the filter with the next-highest gain (b3 - b0 = 1000). This process is repeated until the receive signal level does not exceed the filter threshold.

Once the appropriate filter is selected, the receiver phaselocked loop (PLL) and slicer levels converge to match the receive signal for optimum SNR. During receiver convergence (b6 - b4 = 001), the PLL adapts to sample the peak of the receive pulses and the slicer level adapts to the midway point between zero and the pulse peak voltage. Once convergence is complete, the LXT400 begins full operation (b6 - b4 = 010).

Bit #	Name	Description	Bit #	Name	Description
b0	LLO	Loop Length Indication, bit 0	b8	MAG0	Rx signal magnitude bit 0
b1	LL1	Loop Length Indication, bit 1	b9	MAG1	Rx signal magnitude bit 1
b2	LL2	Loop Length Indication, bit 2	b10	MAG2	Rx signal magnitude bit 2
b3	LL3	Loop Length Indication, bit 3	b11	MAG3	Rx signal magnitude bit 3
b4	S1	Receiver Converging when High	b12	MAG4	Rx signal magnitude bit 4
b5	S2	Full Operation when High	b13	MAG5	Rx signal magnitude bit 5
b6	S0	Level Detection when High	b14	MAG6	Rx signal magnitude bit 6
b7	RLOS	Receive Loss of Signal when High	b15	MAG7	Rx signal magnitude bit 7

Table 6: LS Word Bit Assignments

Table 7: LS Loop Length Bits LL3 - LL0

Rate kbps	Insertior	n Loss @ fb Values are		ine Range i m receiver					L3 - LL0
	0111	1000	1001	1010	1011	1100	1101	1110	1111
2.4	N/A	42.3 / 23	36.0 / 19.2	30.0 / 15.3	24.2 / 11.5	20.0 / 8.6	15.5 / 5.0	10.6 / 2.4	3.4 / 0.8
3.2	N/A	42.0 / 19.9	36.0 / 16.9	30.7 / 14.3	25.2 / 11.6	20.0 / 7.8	15.0/4.9	10.3 / 2.4	3.0/0.7
4.8	N/A	42.3 / 17.3	36.3 / 14.7	30.5 / 12.0	24.7 / 9.3	18.8 / 6.7	13.5 / 4.0	9.3 / 2.0	3.1/0.7
6.4	N/A	42.4 / 15.4	36.5 / 13.2	31.2 / 11.0	25.6 / 8.8	20.0 / 6.6	15.0/4.4	10.0 / 2.2	3.3 / 0.7
9.6	N/A	40.0 / 12.5	35.0 / 10.7	29.6 / 8.9	24.2 / 7.1	18.9 / 5.4	13.8/3.6	9.0 / 1.8	2.5 / 0.5
12.8	N/A	42.3 / 11.7	36.2 / 10.0	30.7 / 8.3	25.0 / 6.7	19.3 / 5.0	13.8/3.3	8.8 / 1.7	2.6/0.5
19.2	N/A	42.2 / 10.0	36.2 / 8.6	30.5 / 7.1	24.9 / 5.7	14.0 / 4.3	13.0/2.9	7.7 / 1.4	1.0 / 0.2
25.6	N/A	42.0 / 9.0	36.0 / 7.7	30.2 / 6.4	24.5 / 5.1	18.4 / 3.9	13.6 / 2.6	7.5 / 1.3	0.5 / 0.1
38.4	N/A	42.5 / 8.4	36.5 / 7.1	30.7 / 6.0	25.0 / 4.7	18.9/3.6	14.0 / 2.4	7.4 / 1.2	1.0/0.2
51.2	N/A	43.0 / 7.7	37.0 / 6.6	31.2 / 5.5	25.5 / 4.4	19.4 / 3.3	14.0 / 2.2	7.4 / 1.1	0.5 / 0.1
56.0	50.5 / 8.5	44.4 / 7.5	38.4 / 6.4	32.3 / 5.3	26.0 / 4.2	19.7 / 3.2	13.6 / 2.1	7.3 / 1.1	0.0/0.0
72.0	50.7 / 8.0	45.0 / 7.0	38.8 / 6.0	32.5 / 5.0	26.3 / 4.0	20.0 / 3.0	14.0 / 2.0	7.4 / 1.0	0.0/0.0
64.0	50.0 / 8.3	44.0 / 7.2	38.0 / 6.2	32.0 / 5.3	26.0 / 4.1	19.7 / 3.1	14.0 / 2.1	7.4 / 1.1	0.0/0.0
3.5	N/A	43.0 / 20.4	37.4 / 17.3	31.5 / 14.2	26.0 / 11.2	20.2 / 8.1	15.0 / 5.0	10.3 / 2.5	4.1 / 1.0
7.0	N/A	43.8 / 15.4	37.8 / 13.2	32.3 / 11.0	26.4 / 8.8	20.5 / 6.6	15.0/4.4	10.0 / 2.2	3.6/0.8
14.0	N/A	43.0 / 11.7	37.5 / 10.1	31.9 / 8.34	25.6 / 6.67	19.8 / 5.0	13.9/3.3	8.5 / 1.7	2.5 / 0.5
28.0	N/A	43.7 / 9.0	37.5 / 7.7	31.9 / 6.4	25.7 / 5.1	19.5 / 3.9	13.0 / 2.6	7.5 / 1.3	0.5 / 0.1
NOTE:	A MAG7 - M	AG0 value of 3	C hex represe	nts a 1V slicer	level at the po	int of receive	data detection	n.	

APPLICATION INFORMATION

Figure 8 shows a typical LXT400 application circuit. A

DSU crystal (4.096 MHz) is connected across MCLK1 and

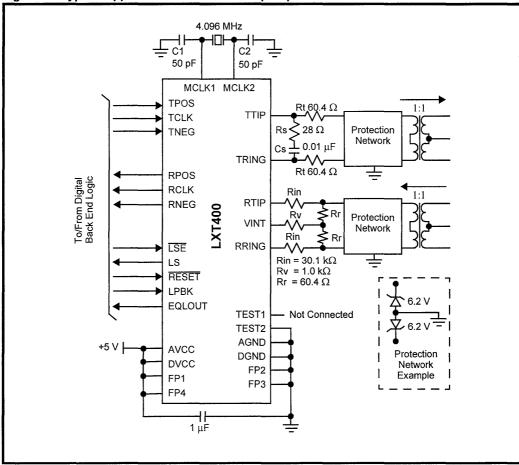
MCLK2, with two grounded loading capacitors. The line

interface consists of a pair of 1:1 transformers, center-tapped

on the line side, with appropriate load resistors. The Rs/Cs

shunt network provides high frequency compensation for

the transmit driver. The input signal is developed across the


Rr/Rin network. Rv limits current into the low-impedance

Introduction

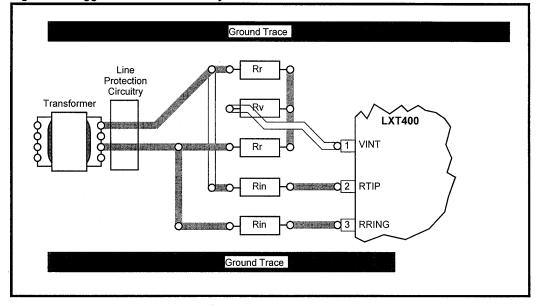
VINT driver during over-voltage conditions on the line. Table 8 lists external component recommendations.

Crosstalk

It is important to prevent crosstalk between the transmitter and receiver circuits. Steps were taken to reduce this interference inside the LXT400, but precautions must be taken with the line interface circuitry outside the chip as well. Crosstalk is especially high when the idle pattern (alternate positive and negative pulses) is being transmitted because the transmit power is concentrated around the Nyquist frequency (half the baud rate).

Figure 8: Typical Application Circuit for 72 kbps Operation

5


PCB Layout

The external line interface circuit must be laid out to minimize coupling of other digital and analog signals into RTIP and RRING (see Figure 9). These inputs, pins 2 and 3, are high impedance nodes which can pick up interference from adjacent PCB traces. The line interface circuit must be designed for loops with up to 50 dB of loss at the Nyquist frequency, even if the product will never be used on such long lines. When no receive signal is present, the LXT400 will switch to the highest gain filter, which at 56, 64 and 72 kbit/s produces an internal gain of about 50 dB. Unless precautions are taken, substantial interference coupling into RTIP and RRING could exceed the internal slicer levels and prevent the RLOS report. Layout considerations for LXT400 application circuits include:

- 1. Minimum PCB trace lengths between the LXT400 and the 4.096 MHz crystal and loading capacitors.
- Minimum PCB trace lengths between resistors Rin and the RTIP and RRING pins. Shield these connections with ground traces.
- 3. Minimum PCB trace lengths between the receive transformer and the receive termination network.

Even with good PCB layout practices, RLOS reporting can be unreliable if the twisted pair line cable is not connected to the OCU or CSU/DSU when the LXT400 is set for operation at 56, 64, or 72 kbit/s. The unterminated receive lines can pick up enough noise to trip the data detectors and force RLOS Low. However, equipment designers can safely assume that the highest-gain filter with 50 dB of signal amplification will never be selected for normal operation on lines with up to 45 dB of attenuation at the Nyquist frequency. Therefore, the status word on the LS output can be used as a secondary LOS indicator - the occurrence of RLOS=0 and LL3-0 = 0111 at 56, 64 or 72 kbps reliably indicates the loss of carrier condition.

The 50dB filters were designed for applications in which the line attenuation is 48 dB or greater. The DDS specification requires an insertion loss at 56, 64, and 72 kbit/s of 43 dB or less. The LXT400 incorporates built-in headroom up to 45 dB. So for standard applications, the highest-gain filter will never be selected. The critical element is operating frequency. The highest gain filter (50 dB) is only available at 56, 64, and 72 kbit/s settings. At the lower operating frequencies, the highest-gain filter is about 44 dB, well above the interference levels arising from unterminated lines.

Figure 9: Suggested LXT400 PCB Layout

Component	Parameter	Recommended Value
Line Transformer	Turns ratio	1:1, ± 1%
	Structure	Center tapped (line side only)
Suggested Manufacturers	Primary Inductance	200 mH minimum
Midcom - Phone 800/643-2661	Leakage Inductance	22 to 43 µH maximum
Schott - Phone 615/889-8800	Interwinding Capacitance	350 pF maximum
	DC Resistance (Primary, Rwp)	7 to 15 Ω
	DC Resistance (Secondary, Rws)	7 to 15 Ω , See Rt, Rr calculation
Rin	Resistance, Tolerance, Rating	30.1 kΩ, ± 1%, 1/4 W
Rt, Rr	Resistance, Tolerance, Rating	$(135 \Omega - \text{Rwp} - \text{Rws}) / 2, \pm 1\%, 1/4 \text{ W}$
Rv	Resistance, Tolerance, Rating	1 kΩ, ± 5%, 1/4 W
DSU Crystal	Nominal frequency	4.096 MHz
	Holder style	HC-49/U
Suggested Manufacturers	Operating Mode	Fundamental, parallel resonant
Fox - Phone 813/693-0099	Load Capacitance	28 pF nominal
Monitor - Phone 815/432-5296	Tolerance	± 35 ppm @ 25 °C
	Range	± 50 ppm, -40 to 85 °C
	Aging	3 ppm per year maximum
	Maximum ESR	100 Ω
	Drive Level	1 mW maximum
DSU Crystal Loading Capacitors	Capacitance, Tolerance, Rating	50 pF, ±5%, 10 V
	Construction	NPO ceramic or equivalent
Transmit Shunt Network		
Rs	Resistance, Tolerance, Rating	28 Ω, ± 5%, 1/4 W
Cs	Capacitance, Tolerance, Rating	0.01 μF, ± 20%, 10 V

Table 8: External Component Recommendations

LXT400 All Rate Extended Range Switched 56/DDS Transceiver

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 9 through 13 and Figures 10 through 14 represent the performance specifications of the LXT400 and are guaranteed by test, except where noted by design.

Table 9: Absolute Maximum Ratings

Parameter	Minimum	Maximum	Units
AVCC referenced to AGND	-0.3	6.0	V
DVCC referenced to DGND	-0.3	6.0	V
DVCC referenced to AVCC	-0.3	0.3	V
DGND referenced to AGND	-0.3	0.3	V
, any pin ^{1,2}	AGND - 0.3	AVCC + 0.3	V
it diode current, any pin ²	_	±20	mA
atput current, any pin ²		±25	mA
urrent, VCC or GND pins		±60	mA
erature	-40	±150	°C
	DVCC referenced to DGND DVCC referenced to AVCC DGND referenced to AGND any pin ^{1,2} t diode current, any pin ² intput current, any pin ² rrrent, VCC or GND pins	DVCC referenced to DGND -0.3 DVCC referenced to AVCC -0.3 DGND referenced to AGND -0.3 any pin ^{1,2} AGND - 0.3 t diode current, any pin ² - antput current, any pin ² - rrrent, VCC or GND pins -	DVCC referenced to DGND-0.36.0DVCC referenced to AVCC-0.30.3DGND referenced to AGND-0.30.3any pin ^{1,2} AGND - 0.3AVCC + 0.3t diode current, any pin ² - ± 20 atput current, any pin ² - ± 25 rrrent, VCC or GND pins- ± 60

Table 10: Recommended Operating Conditions and Characteristics

Parameter	Sym	Min	Тур	Max	Units
DC supply	AVCC/DVCC	4.75	5.0	5.25	V
Ambient operating temperature	TA	-40	_	85	°C

Table 11: DC Electrical Characteristics (Under Recommended Operating Conditions)

Parameter	Sym	Min	Тур	Max	Units	Test Conditions
Supply current (transmitting spaces)	Icc	-	40	60	mA	270Ω resistor across TTIP and TRING
Supply current (transmitting all marks)	Icc	-	47.5	60	mA	270Ω resistor across TTIP and TRING
Input Low voltage	Vil		-	0.8	V	Digital inputs
Input High voltage	Vih	2.0			V	Digital inputs

Test Specifications

Parameter	Sym	Min	Typ1	Max	Units	Test Conditions
Output Low voltage	Vol		-	0.4	v	$I_{OL} = 1.6 \text{ mA}$
Output Low voltage	Vol	-	0.2	-	V	Iol < 10 μA
Output High voltage	Vон	2.4	-		V	Iон = 0.4 mA
Output High voltage	Vон	_	4.5	-	μΑ	Іон < 10 μА
Input leakage current	In	-40	-	40	μA	$0 < V_{IN} < Vcc$

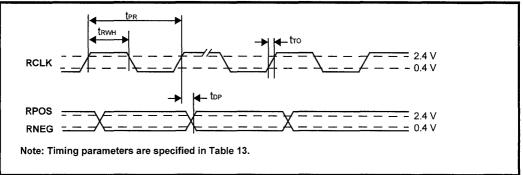
Table 11: DC Electrical Characteristics (Under Recommended Operating Conditions) - continued

Table 12: AC Electrical Characteristics

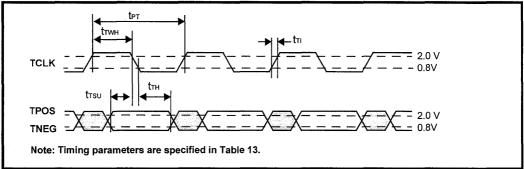
Para	Sym	Min	Тур	Max	Units	
Input capacitance	Cin	-	7		pF	
TCLK jitter at DSU with r	tır	-	-	2	% tpr at DSU	
RCLK isochronous distortion at DSU		глт	_	-	5	% tpt at OCU
Transmit output jitter with respect to TCLK		ОЛТ	_	-	3	% tpt at DSU
Transmit pulse amplitude	at 9.6 and 12.8 kbps	Ατ	1.44	1.55	1.75	v
at TTIP/TRING 2	at all other rates	Ат	2.56	2.74	2.92	v

Table 13: Timing Characteristics

	Parameter	Sym	Min	Тур	Max	Unit	
Receive	RCLK period	tpr	-	1/fb	-	ns	
Timing Figure 10	RCLK pulse width High	trwн	1/ (2 fb) - 150	1/ (2 fb)	1/(2 fb)+150	ns	
	RPOS/RNEG delay from RCLK rising edge ²	tdp	-	-	200	ns	
	Transition time on any digital output ²	tтo	_	10	20	ns	
Transmit	TCLK period	tрт		1/ fb		μs	
Timing	TCLK pulse width High	tтwн	400	-		ns	
Figure 11	TPOS/TNEG setup time to TCLK falling edge	tтsu	200	-	-	ns	
	TPOS/TNEG hold time from TCLK falling edge	tтн	200	-	_	ns	
	Transition time on any digital input	tтı	-	-	40	ns	
	TCLK frequency tolerance	fttol	-50	0	+50	ppm	


5

LXT400 All Rate Extended Range Switched 56/DDS Transceiver


gan Barra Sa	Parameter	Sym	Min	Typ ¹	Max	Unit
LS Serial	LS delay from RCLK falling edge ²	tlsp	_	_	200	ns
Port Timing	LSE setup to RCLK rising edge	tlsu	200	-	_	ns
Figure 12	LSE hold time from RCLK rising edge	tlsh	trwн	_		ns
Figure 13	LSE Low to low Z state	tız	_	-	100	ns
	LSE High to high Z state	tHZ	-	-	100	ns
MCLK &	MCLK1 input frequency	fmclk	-	4.096		MHz
RESET	MCLK1 frequency tolerance	f mtol	-100	0	+100	ppm
Timing Figure 14	MCLK1 pulse width High	tмwн	98	122	146	ns
	RESET pulse width Low	trwl	1000	_		ns

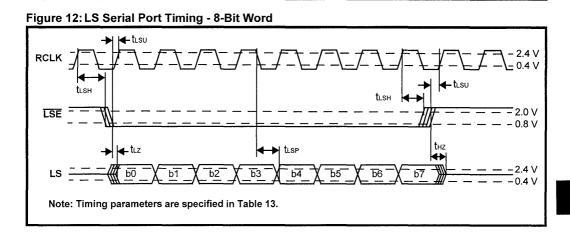

Table 13: Timing Characteristics - continued

Figure 10: Receive Digital Timing

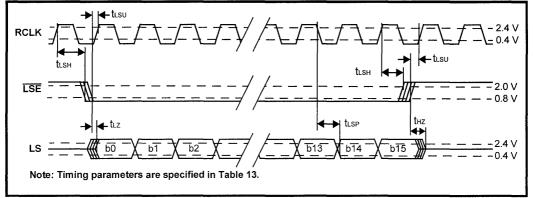


Figure 11: Transmit Digital Timing

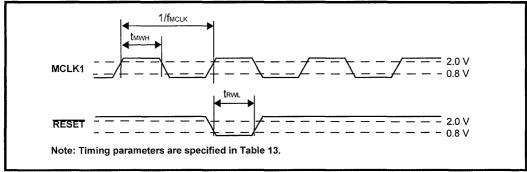


Figure 13: LS Serial Port Timing - 16-Bit Word

Figure 14: MCLK and RESET Timing

LXT400 All Rate Extended Range Switched 56/DDS Transceiver

NOTES

DATA SHEET

Switched 56 / DDS Integrated DSU / CSU

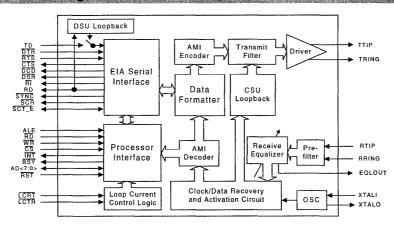
General Description

The LXT441 is an integrated transceiver and data formatter for Switched 56 (SW56) and Digital Data Service (DDS) Data Service Unit/Channel Service Unit (DSU/CSU) and Office Channel Unit (OCU) applications.

The LXT441 line interface section performs transmit pulse shaping and receive signal data and timing recovery at the user-network 4-wire metallic interface. The device operates at loop speeds of 56 kbps and 72 kbps, supporting SW56, 56 kbps DDS with or without secondary channel (SC) and 64 kbps clear channel DDS services.

The integrated DSU circuit provides a DCE interface and connects directly to data terminal equipment (DTE) using standard EIA530 control leads. Data formatting includes DDS framing, control code handling, loop code generation and detection, and zero code suppression processing.

The LXT441 has an on-chip 8-bit microprocessor interface that simplifies device configuration, status reporting, and SW56 call processing, and may be used for parallel data transfer to and from the 4-wire physical link.


Features

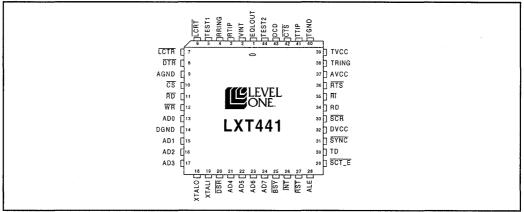
- · Supports most popular data rates for new DSU/CSUs
 - Switched 56 and 56 kbps DDS (DDS-PRI, 56 kbps loop speed)
 - 56 kbps DDS with secondary channel (DDS-SC, 72 kbps loop speed)
 - 64 kbps clear-channel DDS (CC-64K, 72 kbps loop speed)
- Switched 56 Call Control via EIA control leads or microprocessor
- · Receiver performance monitoring
- Idle Code Transmission (CMI, DMI)
- Transmit timing recovered from network or supplied by system
- · Network Control Code Detection and Generation
- CSU and DSU latching and non-latching loopbacks
- Available in 44-pin PLCC
- Single 8.192 MHz crystal or clock input
- 5V only CMOS process technology

Applications

- · Leased-line DDS and Switched 56 DSU/CSUs
- · Internet Service Provider (ISP) Equipment
- · Internal DSU for Routers, Bridges and PC add-in cards
- Frame Relay Access Devices (FRAD)
- · OCU Cards for Channel Banks and DLC Systems

LXT441 Block Diagram

APRIL 1997 Revision 1.1


TABLE OF CONTENTS

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS	5-22
FUNCTIONAL DESCRIPTION	5-25
Initialization	
Frame Alignment	5-25
Reception	
Clock Recovery	5-26
Data Extraction	5-26
Receiver Bipolar to NRZ Conversion	5-26
Receiver Code Detection	5-26
Control Code Detection	5-27
Loss of Frame Alignment	5-27
Recovery of Frame Alignment	5-27
Changes in Signal Strength	5-27
Receive Loss of Signal	5-28
Transmission	5-30
Transmit Serial Interface	5-30
Transmit NRZ to Bipolar Conversion	5-30
Transmit Code Generation	5-30
DSU Loopback Code Generation in an OCU Application	5-30
Loopback Operation	5-31
CSU Loopback	5-31
DSU-Nonlatching-Loopback	5-31
System Serial Interface and Data Formatting	
Device Configuration	5-31
Switched 56 Call Control	5-31
APPLICATION INFORMATION	
Design Considerations	
Microprocessor Interfacing	
BSY Operation	
Crosstalk	
PCB Layout	5-34
Power Supply Decoupling	5-35

TEST SPECIFICATIONS
Absolute Maximum Ratings5-38
Recommended Operating Conditions5-38
Electrical Characteristics5-39
AC Timing Characteristics5-39
EIA Timing
Microprocessor Timing Characteristics5-41
Microprocessor Timing - Read Operations
Microprocessor Timing - Write Operations
REGISTER DEFINITIONS
Introduction
LXT441 Register Set5-43
LXT441 Register Bit Mapping5-44
Register WR0 - Device Control - Address 0x005-45
Register WR1 - Transmit Control (DDS-PRI Mode) - Address 0x01
Register WR1 - Transmit Control (DDS-SC Mode) - Address 0x01
Register WR2 - Receive Control - Address 0x02
Register WR5 - EIA select - Address 0x055-47
Register WR7 - Transmit EIA Data - Address 0x07
Register WR7 - Transmit EIA Data Formats5-48
Register RD7 - Rx EIA Data - Address 0x075-48
Register WR8 - Interrupt Enable - Address 0x08
Register WR8 - Interrupt Status - Address 0x08
Register WR9 - EIA Control - Address 0x095-50
Register RD9 - EIA Status - Address 0x095-50
Register WRC - Rx Code Interrupt Enable - Address 0x0C
Register RDC - Rx Codes - Address 0x0C5-51
Summary of Transmit and Receive Control Codes
Register RDA - Device Status - Address 0x0A
Insertion Loss and Line Length Values for bits LL<3:0>
Register RDB - Rx Slicer Level - Address 0x0B
Register RDD - Rx Invalid BPV Count - Address 0x0D

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Figure 1: LXT441 Pin Assignments

Table 1: LXT441 Microprocessor Interface Signal Descriptions

Pin	Symbol	1/0	Name / Description
10	CS	I	Chip Select. Active Low. A Low on this pin enables the 8-bit parallel interface to perform read and write operations.
11	RD	I	Read . Active Low. During read cycles, a Low on this pin turns on the internal drivers to present data to the 8-bit address/data bus.
12	WR	I	Write. Active Low. During write cycles, a Low-to-High transition on this pin latches data present on the 8-bit bus into internal registers.
13	AD0	I/O	Address Data Bus. Multiplexed 8-bit parallel address data bus. These pins are used
15	AD1		to access the read and write registers located within the LXT441.
16	AD2		
17	AD3		
21	AD4		
22	AD5		
23	AD6		
24	AD7		
25	BSY	0	Busy . Active Low open-drain indication. Signal to host microcontroller that device has not completed read or write operation.
26	INT	0	Interrupt . Active Low open-drain Interrupt. Signal to host microcontroller that an unmasked interrupt condition has been detected.
27	RST	I	Reset. Active Low hardware reset pin. Must be pulsed Low on power-up to initial- ize all internal circuits. Must also be pulsed Low after changing the data rate setting, and after certain receive line conditions occur.
28	ALE	I	Address Latch Enable. When High, internal address latch is transparent. A High-to-Low transition latches the address present on pins AD<7:0>.

Pin	Symbol	I/O	Name / Description
8	DTR	I	Data Terminal Ready. Active Low EIA signaling lead from DTE.
20	DSR	0	Data Set Ready. Active Low EIA signaling lead to DTE.
29	SCT_E	I/O	Extended Transmit Serial Clock . Input or Output transmit clock dependent upon setting of TCCT control bit.
30	TD	Ι	Transmit Data. Transmit NRZ data from DTE.
31	SYNC	0	Word/Bit Synchronization. 1-bit wide active Low output indicates word bound- aries at DTE interface.
33	SCR	0	Receive Serial Clock . Smooth 56 kHz for DDS-PRI, gapped 72 kHz (64 kHz) for DDS-SC and CC-64K.
34	RD	0	Receive Data. Receive NRZ data to DTE.
35	RĪ	0	Ring Indicator . Indicates the presence of receive data (not control codes) when the receiver is in the control sequence mode (CALLMD = 1). Signifies incoming call for SW56 operation.
36	RTS	Ι	Request to Send . Indicates a request by the DTE to transmit data. When High, CMI is transmitted on the line in DDS-PRI and DDS-SC. When this line goes High for a time greater than one byte period, the transmitter enters data mode for at least four byte periods.
42	CTS	0	Clear to Send . Active Low EIA signaling lead indicates DCE readiness to transmit live data.
43	DCD	0	Data Carrier Detect. Active Low EIA signaling lead indicating that the LIU receiver is fully operational; meaning that it is active, and that frame or bit sync is achieved, if enabled.

Table 2: LXT441 EIA Serial Interface Signal Descriptions

Table 3: LXT441 Line Interface Signal Descriptions

Pin	Symbol	1/0	Name / Description
1	EQLOUT	0	Equalizer Monitor. Must be left open when not used.
2	VINT	I	Intermediate Voltage Reference. Reference voltage used for internal analog circuits. This pin must be connected through a 1 k Ω resistor (Rv) to the center node between the two termination resistors, Rr, as shown in Figure 8.
3 4	RTIP RRING	I	Receive Tip and Ring. Receive data input pair. RTIP and RRING are a fully differ- ential input for the receive line interface.
6	LCRT	I	Loop Current Rx/Tx. A Low input, supplied by an external current sensing circuit, indicates the presence of loop current flowing from the receive to the transmit twisted pair wires, and initiates a CSU loopback.
7	LCTR	I	Loop Current Tx/Rx . A Low input supplied by an external current sensing circuit indicates the presence of loop current flowing from the transmit to the receive twisted pair wires.
38 41	TRING TTIP	0 0	Transmit Ring and Tip. Differential driver outputs. Designed to drive 135Ω twisted- pair cable through transmit line interface shown in application diagram, Figure 8.

Pin	Symbol	I/O	Name / Description
39	TVCC	-	Transmit Supply. Line driver power supply.
40	TGND	-	Transmit Ground. Line driver ground.
9	AGND	- 1	Analog Ground. Reference for all analog LIU circuits except the transmit driver.
37	AVCC	-	Analog Supply. Line interface primary power supply.
18 19	XTALO XTALI	O I	Crystal Oscillator . The required 8.192 MHz master clock may be provided by a crystal connected across these pins, or by a digital clock connected to XTALI. If a clock is provided on XTALI, XTALO must be left unconnected.
14	DGND	-	Digital Ground. Ground reference for all internal digital circuitry.
32	DVCC	-	Digital Supply. Digital circuitry power supply.
5 44	TEST1 TEST2	I I	Factory Test Pins. Leave unconnected.

Table 4: LXT441 Miscellaneous Signal Descriptions

Functional Description

FUNCTIONAL DESCRIPTION

The LXT441 is comprised of five basic sections: receiver, transmitter, microprocessor interface, data formatter and back-end system serial interface.

The receive section includes pre-filters and line equalizers, and the timing recovery and data extraction blocks. An internal digital phase-locked loop (DPLL) is used in conjunction with the oscillator circuit to synchronize the recovered clock and data.

The transmit section includes a 50% AMI encoder, a programmable switched-capacitor low-pass filter, a low-pass notch filter, a transmit timing re-synchronizer and a continuous reconstruction filter. An on-chip CMOS driver is also incorporated to drive a 135Ω line through a coupling transformer.

The microprocessor block employs an 8-bit multiplexed parallel interface to transfer status and control information to and from the system host controller. This processor port connects to both Intel[®] multiplexed and Motorola[®] non-multiplexed controllers with a minimum of external 'glue' logic.

The system serial interface facilitates the connection of a DTE (data terminal equipment) device to the LXT441, which in turn behaves as a DCE (data communication equipment.) The LXT 441 uses 6 standard EIA530 control leads (DTR, RTS, CTS, DCD, DSR and RI) for flow control, status reporting and SW56 signaling. The serial interface supports both DSU and OCU operation, with the transmit clock provided by either the recovered receive clock, or an external reference.

Initialization

A hardware reset (RST) is required under any of the following circumstances:

- · Initial power-up
- · A change in Data Rate setting
- A change in the local analog loopback configuration
- A local change in the line upon which the transceiver is communicating (for example, configurations for changing lines in a "1 for n" redundancy scheme)
- The detection of an invalid line condition by the LXT441 receiver. (This will be indicated by either an XBPV or V_OFL interrupt.)

On receipt of the RST pulse, the LXT441 executes an iterative cycle of level detection and offset cancellation to select the appropriate equalizer settings for the received signal. When received data has a 50% ones density, full operation is achieved within one second after RST. Under the minimum ones density condition specified in Table 5, full operation is achieved within eight seconds after RST. Correct initialization assumes the presence of an AMI-coded signal at the RTIP and RRING inputs. The LXT441 will not correctly initialize unless a stable signal which meets the network interface specifications of AT&T Pub 62310 is present at the RTIP and RRING inputs during the entire initialization process. The RD output is not valid until full operation is achieved.

Table 5: Ones Density Requirements

Data Rate (kbps)	Minimum Average Ones Density
56.0	1/14
72.0	1/18

Automatic re-initialization may be triggered by changes in received signal strength as follows:

- If received signal strength increases by more than about 6 dB after full operation is achieved, automatic re-initialization occurs.
- If received signal strength decreases by more than about 4 dB, re-initialization occurs. If the decrease in received signal strength exceeds 6 dB, the LXT441 reports an LOS (Loss of Signal) condition and performs an automatic re-initialization.

The time required to achieve full operation after reinitialization, is the same as required for power-on initialization (i.e., 1 second max with 50% ones density, 8 seconds under minimum ones density conditions). Reinitialization is not triggered by impulse noise events.

Frame Alignment

When in DDS-SC or CC-64K modes, the LXT441 begins a frame alignment search at channel connection time. Channel connection time is defined as the time when the ACTIVE bit changes to a '1'.

The mean time to Frame Alignment is less than 5 ms. This means that, at 72 kHz on average, fewer than five frame comparisons are required to establish frame alignment.

Frame alignment is declared when the LXT441 detects three consecutive Frame Alignment Word (FAW) sequences matching the FAW. Detection of consecutive FAW sequences requires that each FAW sequence matches the FAW, and that each FAW sequence is exactly one frame apart.

Reception

RTIP and RRING inputs are differentially detected, then processed through the pre-filters and equalizer section. The continuous pre-filter removes high frequency noise and prevents aliasing problems for the line equalizers which follow. Receive pulses are reconstructed by the receive equalizer, which is comprised of a step equalizer stage and an adaptive decision feedback equalizer (DFE). The DFE eliminates residual inter-symbol interference (ISI) due to echoing by multiple bridged tap connections and time varying line characteristics such as temperature, humidity and age.

Clock Recovery

The clock recovery circuit uses a rate synchronizer to generate a high frequency internal clock from the oscillator input. A DPLL is used to synchronize this internal clock to the received data pulses. The output clock from the DPLL is divided down to generate \overline{SCR} and all other required clocks (except $\overline{SCT_E}$ when it is supplied as an external input).

Data Extraction

The data extraction block delivers raw recovered bipolar line data to the data formatter and decoder so that it may output the NRZ RD stream to the EIA interface and the receive EIA microprocessor register. A positive or negative differential pulse received between RTIP and RRING results in a logic 1 sent to the formatter, while no pulse is reported to the formatter as a logic 0. After decoding in the formatter section, the final RD output at the received data rate is valid on the falling edge of \overline{SCR} .

Receiver operation is not affected by the data patterns, provided the ones density requirements of Table 5 are met, and the receive line signal contains at least one valid pulse every 26 bit periods. Loss of signal is declared after 32 consecutive zeros. However, the SCR output remains synchronized to the RTIP/RRING input for up to 40 consecutive zeros, after which re-initialization occurs. Spurious bipolar violations (due to channel noise, etc.), will not adversely affect long term LXT441 data reception.

Receiver Bipolar to NRZ Conversion

The receiver converts Bipolar data into NRZ data in the following manner:

- Bipolar B's are marks (of alternate polarity with respect to last mark) converted to NRZ 1s.
- Bipolar V's are marks (of same polarity with respect to last mark) converted to NRZ 1s.
- Bipolar O's are spaces converted to NRZ 0s.

This conversion process takes 1 byte plus 1 bit period, with corresponding NRZ data available 8 bit periods after the Bipolar data is received. There are, however, a few exceptions to this. Reception of the DSU Loopback control code and reception of the Zero Suppression control code require that a code replacement be performed upon the received data prior to conversion to NRZ format. See Table 28 for RX_DLP & RX_ZSC code replacement.

In DDS-SC mode, there are no violations. Thus, the receiver only converts O's and B's (bipolar data) to NRZ 0s or 1s respectively. Frame synchronization must be established to enable network code detection. Reception of the DSU Loopback code requires a code replacement operation to be performed prior to conversion to NRZ format. See Table 28 for R_DLP code replacement.

CC-64K mode is very much the same as DDS-SC mode. There are no byte replacements, and the only code is idle data (RX_DMI). See Table 28 for control codes & replacement policy for various modes.

Receiver Code Detection

The receiver converts bipolar received data into NRZ data. In DDS-PRI mode, this process requires bipolar violation (BPV) detection, valid/invalid BPV detection, and control code detection. A violation is detected upon receipt of Bipolar data which violates the Alternate Mark Inversion (AMI) Rule. A BPV is valid if, and only if, it belongs to a 7-bit Control Code, satisfying the following set of criteria:

- At least seven bit periods have passed without a violation since receipt of the violation in question.
- An odd number of B's (non-violation marks) were received since the last violation.
- The bit received prior to the violation was an O (a space).

Control Code Detection

The data presented at the RTIP/RRING pins undergoes bipolar to NRZ conversion, with automatic detection and decoding of control codes according to the following criteria:

- Detection of Idle (CMI), OOS, and OOF codes in DDS-PRI mode.
- Detection and conversion of DSU Loop code in DDS-PRI mode, and DSU Loop control code in DDS-SC mode.
- Detection of DDS-SC control codes for DDS-SC mode.
- Detection of the DDS-SC six-bit frame pattern for byte alignment of data and control streams for DDS-SC mode, and 8-bit data for CC-64K mode.
- Control of EIA handshake signals based on receiver status from the line interface unit.

All control codes except RX_DMI are encoded into valid BPVs. Thus, upon receipt of a valid BPV, control codes are decoded (as listed in Table 28). Any valid BPV which doesn't match a control code listed in the table results in an 'unmatched' code. The exception, RX_DMI, is detected when an all-marks (all B's and no V's) code is received. All control codes remain active for 7 bit periods after detection.

Bipolar received codes in both DDS-SC and CC-64K modes contain no violations. Therefore, data must be synchronized with the frame pattern, to establish the beginning of each word. The C/S bit is used to determine whether the unit is receiving network codes or data. When two of three consecutive C-bits are 0s the network code detector is enabled which tests if the data matches any of the control codes listed in Table 27. When two of three consecutive C-bits are 1s the unit reverts to data mode.

Loss of Frame Alignment

The LXT441 declares loss of frame alignment when it receives five consecutive Frame Alignment Word (FAW) sequences in error. Here, consecutive FAW sequences implies that each FAW sequence is expected to occur an integral number of frames after the FAW sequence which produced alignment. The initial alignment algorithm is the same as the frame recovery algorithm.

Recovery of Frame Alignment

The LXT441 begins recovery of frame alignment immediately after detecting loss of frame alignment.

Frame Alignment Recovery is identical to the initial Frame Alignment search process described under Initialization.

Changes in Received Signal Strength

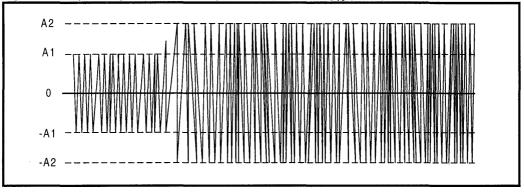
During initialization, the LXT441 selects filters appropriate to the strength of the received signal. After initialization, the LXT441 continually monitors the receive signal strength to ensure the optimum signal/filter match. Data reception is not affected by impulse noise events or by slow changes in signal amplitude caused by normal temperature and humidity variations (The maximum constant rate of change which the LXT441 can track is 6 dB per minute.) However, instantaneous "step" changes (see Figure 2) may temporarily interfere with data reception. Step changes may be caused by sudden changes in loop attenuation, far end transmitter output, etc.

After normal operation has been established, an instantaneous single-step change may cause one of three conditions, as shown in Figure 3.

Under Condition 1, the LXT441 automatically adapts to minor step changes in signal strength (assuming that the new input is a valid DDS signal).

Under Condition 3, the LXT441 responds to significant step changes by re-initializing.

Condition 2, while unlikely to occur in an actual DDS implementation, may be observed in the laboratory when working with artificial line simulators. Condition 2, which results from a 6 - 20 dB step increase in received signal strength, may result in a signal/filter mismatch. This condition is characterized by excessive bipolar violations (BPVs). Excessive BPVs which are not valid code words are detected and counted by the LXT441. The XBPV interrupt flag will be set when excessive BPVs are detected by the LXT441 receiver. The device should be reinitialized via the application of a valid RST pulse in the presence of excessive BPVs.


Under normal operating conditions, step changes in received signal strength are all under local control. Thus, the user can reset the LXT441 once the new receive signal has stabilized at the chip inputs. Remote changes typically involve disconnecting one line and re-connecting another line of different length. These changes trigger the RLOS report and automatic re-initialization.

Receive Loss of Signal

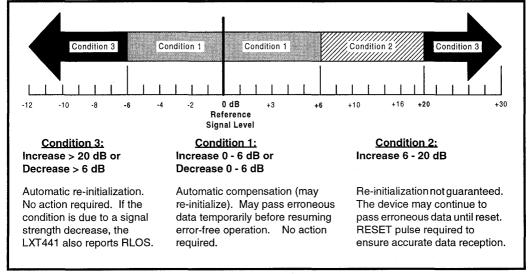
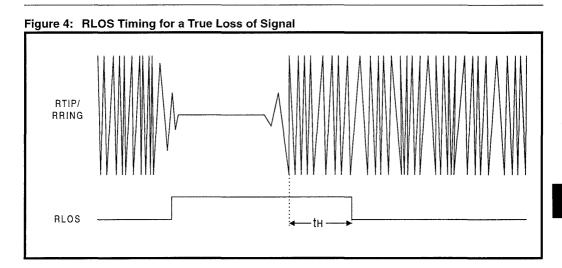
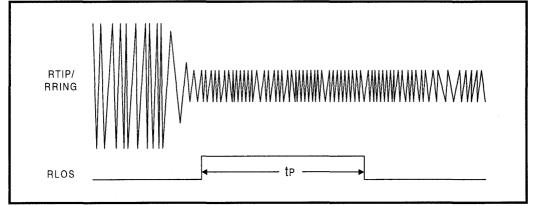

Receive loss of signal (RLOS) is detected when more than 32 consecutive zeros are received, caused either by a true loss of signal, or a signal strength drop greater than 6 dB. The LXT441 automatically re-initializes when RLOS is present, and 40 consecutive zeros are counted. Figure 4 shows the RTIP/RRING input and RLOS control bit timing relationships for a true loss of signal. When signal energy returns to the chip input, the LXT441 executes one full activation cycle in the presence of this signal. The result is that RLOS will remain active for a period of time (0.13 s < tH < 16 s) after signal energy reappears.

Figure 5 shows the RTIP/RRING input timing and RLOS output timing relationship for a signal strength decrease greater than 6 dB. In this case, RLOS will go High for a time 0.26 s < tP < 16 s.


Figure 2: Step Changes in Receive Signal Strength = 20 log₁₀ (^{A2}/A1) dB



Functional Description

Transmission

Transmit data (TD) from the DTE is sampled on the rising edge of SCT_E. The transmit section generates a 50% AMI pulse according to the pulse encoding rules, which is synchronized with the SCT_E input/output clock. In DSU applications with TCCT=0, SCR is typically routed back out of the SCT_E input/output pin to serve as a transmit demand clock. If EIAREG=1, then data at the serial interface is ignored, and the Transmit EIA 8-bit microprocessor register is used as the source of transmit data.

Once the transmit data is sampled and encoded, resulting AMI output pulses are processed through a set of frequency dependent filters. Initial filtering at all rates is accomplished by a programmable, switched-capacitor, low-pass filter. This filter is a single-pole type with the pole set at 1.3 times the bit rate (as determined by control bits MODE0 and MODE1.) A continuous filter, common to all data rates, is the final stage. The continuous filter removes high frequency components which remain after processing by the low-pass filter stages. The resulting transmit pulses are then applied to the line driver for transmission onto the twisted-pair line.

Transmit Serial Interface

User data presented at the TD pin undergoes NRZ to bipolar conversion, with automatic generation of zero suppression code for DDS-PRI. In DDS-PRI mode, controlled generation of Control Mode Idle (CMI), and Data Mode Idle (DMI) may be accomplished by manipulating the DTR/RTS control leads, or by writing to the TX_CMI or TX_DMI control bits. The microprocessor control bits take precedence over the DTR/RTS for commanding CMI/ DMI transmission.

In DDS-SC and CC-64K modes, controlled generation of the DDS-SC control codes may be selected, and the six-bit frame pattern is automatically inserted into the transmitted data stream.

Transmit timing is derived from the receive clock for a loop timed DSU/CSU, or from the <u>SCT_E</u> input for tail-circuit loop timing, or in OCU applications.

Transmit NRZ to Bipolar Conversion

The Transmitter converts NRZ data and control codes into bipolar transmitted data. It is possible that several control codes are requested for transmission, thus a priority encoder must resolve which code should be transmitted; if no control code is requested, the transmitter sends out converted NRZ data (see Table 28 for priority of transmit control codes). The position of injected code words is set arbitrarily by a free-running internal bit counter. In DSU operation without a 'tail-circuit' (TCCT=0), the transmit word position is aligned to the receive word position. In DDS-SC and CC-64K modes, the receive word position is determined by the receive frame pattern, while in DDS-PRI mode, the receive word position is arbitrary.

In DDS-PRI MODE, code injection must take into account the polarity of the last transmitted mark (B or V), and whether an even or odd number of B's have been sent since the last V. The first criterion is used to assure that violations are transmitted correctly. The second criterion assures that any X's will be transmitted correctly - as O or B to maintain an odd number of B's since the last V.

In DDS-SC and CC-64K modes, code injection is accompanied by the injection of a frame pattern as the 8th bit of every outgoing data byte or code word. When no code is requested, the transmitter simply converts NRZ 0s and 1s into Bipolar O's and B's, respectively, and injects the frame bit at the proper location. See Table 28 for control codes in DDS-SC and CC-64K modes.

Transmit Code Generation

CONTROL-MODE-IDLE (CMI) can be generated from a logic-Low on EIA handshake signal $\overline{\text{RTS}}$ in DDS-PRI mode and DDS-SC mode.

Clear-To-Send (CTS) goes High after receiving a Request-To-Send (RTS) with delay based upon the time required to transmit the last complete CMI code, plus three idle data bytes.

DSU Loopback Code Generation in an OCU Application

If the TX_DLP control is set (register WR2-bit 6), then the controls which normally force transmission of CMI will now force transmission of DSU Loopback Code (DLP). The user can inject test data by pulling RTS High, and waiting for CTS High; indicating the end of a DLP byte and the start of a test data byte. In this case, the RTS-to-CTS delay is not three to four bytes, but is less than one byte.

Loopback Operation

The LXT441 incorporates both a CSU loopback and a DSU loopback.

CSU Loopback

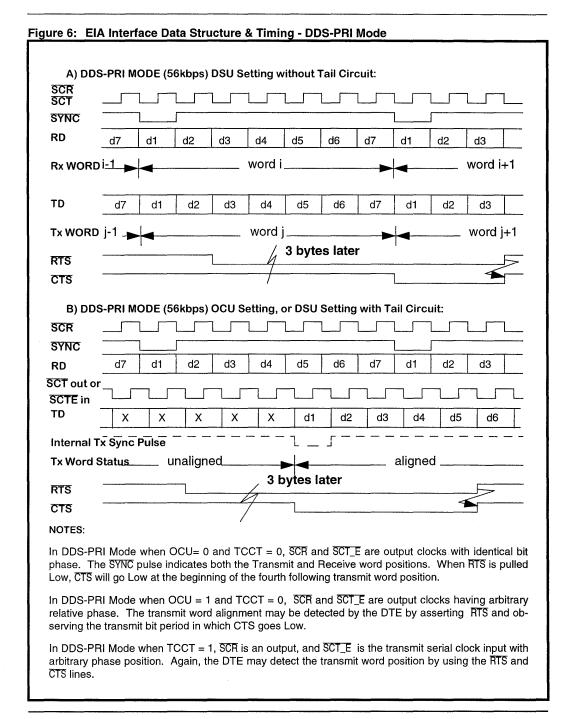
When the LCRT pin is set Low, a CSU loopback is engaged, with the recovered line data and clock being sent back through the transmit section and onto the line interface, as well as being output on the RD and SCR pins. TD and SCT_E inputs are ignored in the loopback mode.

DSU Nonlatching Loopback

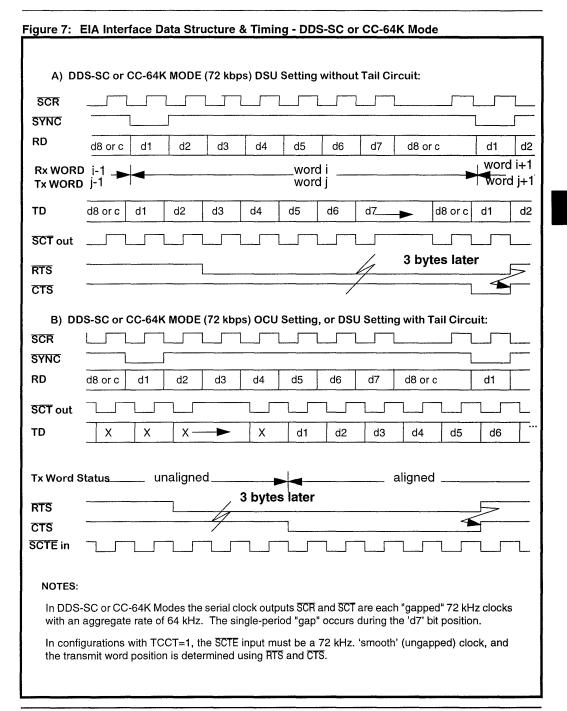
A nonlatching loopback operates upon receipt of a minimum of four consecutive bytes of the specified loopback code at the proper data rate, and continues for a minimum of four consecutive bytes after receipt of the last loopback code. The loopback is terminated upon receipt of five successive byte intervals without the loopback code (refer to Table 28 for the DSU-Loopback codes for all data rates). The four consecutive bytes must be contiguous; having no "filler" bits between DLP code bytes. In DDS-PRI operation, a loopback code byte is a 7-bit word, and in DDS-SC and CC-64K operation, a loopback code byte is an 8-bit word, with a ninth framing bit injected between the 7th and 8th bits of the code word.

System Serial Interface and Data Formatting

The LXT441 provides a EIA DCE serial interface with TD, RD, SCT/SCT_E, SCR, DTR, RTS, DSR, DCD, RI, & CTS pins for attaching data terminal equipment (DTE). The signal levels are TTL/CMOS compatible, allowing a direct connection to Serial Communication Controllers (SCC), while connection to external terminals require standard V.35/RS449 transceivers. User data for transmission undergoes processing in the data formatter to insert required zero suppression codes for DDS-PRI, and framing information for DDS-SC and CC-64K. Receive line data has zero suppression codes removed from DDS-PRI streams, while the framing bits are stripped from DDS-SC and CC-64K data. Secondary channel bits are passed to the RD and TD pins in DDS-SC, allowing transparent secondary channel processing. Refer to Figures 6 and 7 for EIA interface data structure and relative timing. For specific timing parameters, refer to Test Specifications.


Device Configuration

The user can select the operating mode and loop rate (DDS-PRI, DDS-SC, CC-64K) by writing the appropriate values to control bits MODE0 and MODE1.


Transmit timing modes are selected by configuring bits OCU and TCCT. Switched 56 call flow control is performed using either the EIA handshake lines or the microprocessor port. In DDS-SC mode, the secondary channel bandwidth is available transparently by interpreting transmit and receive data in relation to the <u>SYNC</u> signal.

Switched 56 Call Control

Switched 56 call control is performed between OCU and DSU by the interpretation of CMI and DMI codes sent from one end-point to the other. These codes correspond to 'on-hook' and off-hook' conditions on the metallic trunk. Refer to the TIA/EIA-596 specification for specific signalling and timing requirements. The DSU 'dials' a call by seizing the trunk, waiting for a valid network 'wink' and then sending alternating CMI/DMI sequences which are interpreted as dial digits, much in the manner of pulse dialing. The DSU 'answers' a call by detecting non-CMI data from the OCU. CMI/DMI detection is performed by the LXT441 and may be monitored via the host controller. CMI/DMI transmission may be accomplished using either the RTS signal or the TXCODE register.

APPLICATION INFORMATION

Design Considerations

Figure 8 shows a typical LXT441 application circuit. A DSU crystal (8.192 MHz) is connected across XTALI and XTALO, with two grounded loading capacitors. The line interface consists of a pair of 1:1 transformers, center-tapped on the line side, with appropriate load resistors. The Rs/Cs shunt network provides high frequency compensation for the transmit driver. The input signal is developed across the Rr/Rin network. Rv limits current into the low-impedance VINT driver during over-voltage conditions on the line.

The DTE is connected to the LXT441 EIA interface. NRZ data is required at TD and RD, so level conversion is required for standard bipolar signals such as V.35 and RS-232. Device configuration pins may be tied to Vcc or GND, or may be supplied with logic inputs from an external control circuit. Figure 9 provides details of typical protection and current sensing circuits. Table 6 lists external component recommendations. Refer to the following documents for DDS electrical specifications:

- ANSI T1.410 1992
- AT&T TR 62310 1993

Microprocessor Interfacing

The microprocessor interface is an 8-bit parallel port with multiplexed address/data pins and associated bus control signals. Interfacing to Motorola, Intel and Zilog controllers may be accomplished with a minimum of glue logic by following the guidelines below, and observing the timing parameters in Figures 11 and 12.

CS does not have to be asserted before ALE transitions Low, latching the address present on the multiplexed address/data bus.

The INT signal is cleared to inactive High following a read of the Interrupt Status register at address 08h.

BSY Operation

BSY indicates stable data available for read on $\overline{\text{RD}}$ cycles, and the proper internal latching of data on write cycles. Consecutive write cycles require that $\overline{\text{BSY}}$ goes inactive High before the next write. $\overline{\text{BSY}}$ may be used to 'stretch' the RD strobe. RD should not go High before $\overline{\text{BSY}}$ goes inactive High.

Crosstalk

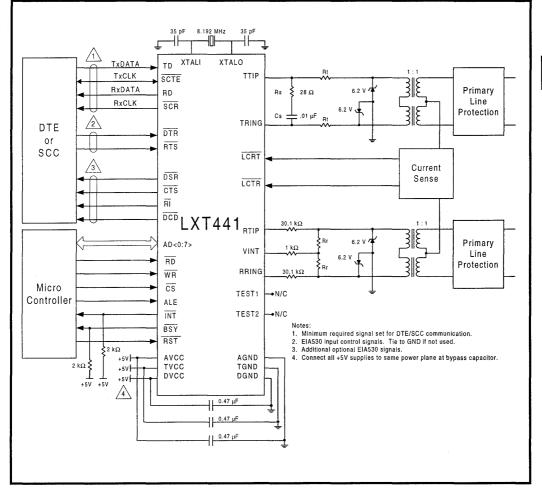
It is important to prevent crosstalk between the transmitter and receiver circuits. Steps were taken to reduce this interference inside the LXT441, but precautions must be taken with the line interface circuitry outside the chip as well. Crosstalk is especially high when the idle pattern (alternate positive and negative pulses) is being transmitted because the transmit power is concentrated around the Nyquist frequency (half the baud rate).

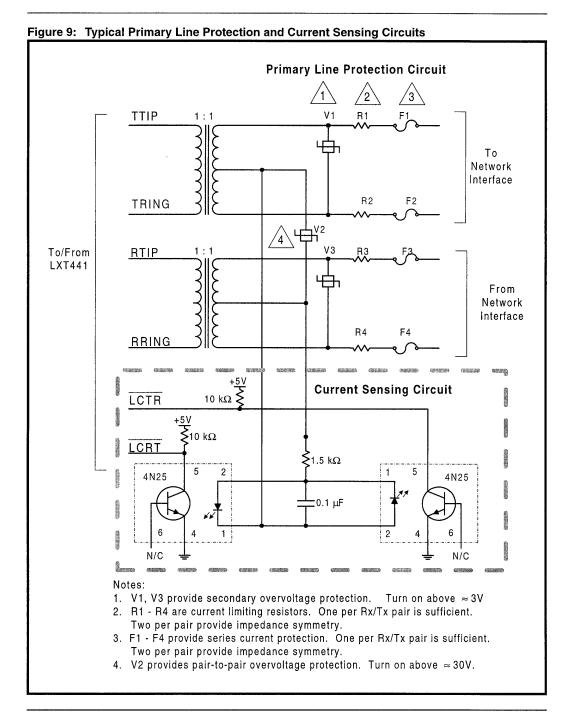
PCB Layout

The external line interface circuit must be laid out to minimize coupling of other digital and analog signals into RTIP and RRING (see Figure 8.) These inputs, pins 3 and 4, are high impedance nodes which can pick up interference from adjacent PCB traces. The line interface circuit must be designed for loops with up to 50 dB of loss at the Nyquist frequency, even if the product will never be used on such long lines. When no receive signal is present, the LXT441 will switch to the highest gain filter, which produces an internal gain of about 50 dB. Unless precautions are taken, substantial interference coupling into RTIP and RRING could exceed the internal slicer levels and prevent the RLOS report.

Layout considerations for LXT441 application circuits include:

- Minimum PCB trace lengths between the LXT441 and the 8.192 MHz crystal and loading capacitors.
- Minimum PCB trace lengths between resistors Rin and the RTIP and RRING pins. Shield these connections with ground traces.
- Minimum PCB trace lengths between the receive transformer and the receive termination network.


Even with good PCB layout practices, RLOS reporting can be unreliable if the twisted pair line cable is not connected to the OCU or CSU/DSU. The unterminated receive lines can pick up enough noise to trip the data detectors and cause an inaccurate RLOS reading. However, equipment designers can safely assume that the highest-gain filter with 50 dB of signal amplification will never be selected for normal operation on lines with up to 45 dB of attenuation at the Nyquist frequency.


The 50 dB filters were designed for applications in which the line attenuation is 48 dB or greater. The DDS specification requires an insertion loss at 56 and 72 kbps of 43 dB or less. The LXT441 incorporates built-in headroom up to 45 dB. So, for standard applications, the highest-gain filter will never be selected.

Power Supply Decoupling

Each +5V input should be tied to the same power plane, and each should be bypassed by a 0.47 μ F decoupling capacitor. The bypass caps should be located as closely as possible to the device power and ground pins.

Table 6: External Component Recommendations

A stranger of an Acceleration Annual Stranger Management of Acceleration Stranger Stranger Stranger Stranger Stranger		Recommended Value				
Component	Parameter	LXT400 Compatible	LXT441 Only			
Line Transformer	Turns ratio	1:1, ± 1%	1:1, ± 1%			
	Structure	Center tapped (for line side)	Center tapped (for line side)			
Suggested Manufacturers: Midcom (800) 643-2661	Primary Inductance	200 mH minimum	40 mH minimum			
B and H (612) 894-9590	Leakage Inductance	22 to 43 µH maximum	43 µH maximum			
Vitec (209) 651-1535	DC Resistance (Primary, Rwp)	7 - 17 Ω	8 Ω maximum (6 $\Omega \pm 10\%$ preferred)			
	DC Resistance (Secondary, Rws)	$(32 \pm 10\%)$ μcl $7 - 17 \Omega$ 8 Ω maximum $(6\Omega \pm 10\%)$ pref				
•	Interwinding Capacitance	350 pF maximum	80 pF maximum			
Rin	Resistance, Tolerance, Rating	30.1 kΩ, ± 1 %, ¼ W				
Rt, Rr	Resistance Calculation, Tolerance, Rating	$(135 \ \Omega - \text{Rwp} - \text{Rws})/2, \pm 1\%, \frac{14}{4} \text{ W}^{-1}$				
Rv	Resistance, Tolerance, Rating	$1 \text{ k}\Omega, \pm 5\%, \frac{1}{4} \text{ W}$				
DSU Crystal	Nominal frequency	8.192 MHz				
	Holder style	HC-49/U				
	Operating Mode	Fundamental, parallel res	onant			
	Cut	AT				
	Load Capacitance	22 pF nominal (excluding	g crystal C0)			
	Tolerance	± 35 ppm @ 25 °C				
	Range	± 50 ppm, -40 to +85 °C				
	Aging	3 ppm per year maximum				
	Maximum ESR	100 Ω				
	Drive Level	1 mW maximum				
DSU Crystal Loading	Capacitance, Tolerance, Rating	35 pF, ± 5 %, 10 V				
Capacitors	Construction	NPO ceramic or equivale	nt			
Transmit Shunt Network						
Rs	Resistance, Tolerance, Rating	28 Ω, ± 5 %, ¼ W				
Cs	Capacitance, Tolerance, Rating	0.01 µF, ± 20 %, 10 V				

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 7 through 11 and Figures 10 through 12 represent the performance specifications of the LXT441 and are guaranteed by test, except where noted by design

Parameter	Symbol	Min	Max	Units
AVCC referenced to AGND	Vcc	-0.3	6	v
DVCC referenced to DGND	Vcc	-0.3	6	v
TVCC referenced to TGND	Ced to AGND VCC -0.3 6 ced to DGND VCC -0.3 6 ced to TGND VCC -0.3 6 ced to TGND VCC -0.3 6 ced to TGND VCC -0.3 0.3 ced to DVCC VCCV -0.3 0.3 ced to TVCC VCCV -0.3 0.3 ced to TVCC VCCV -0.3 0.3 ced to TVCC VCCV -0.3 0.3 ced to TGND GNDV -0.3 0.3 iced to TGND GNDV -0.3 AVCC + 0.3 i ² - - ±20 - - ±25 150	v		
AVCC referenced to DVCC	Vccv	-0.3	0.3	v
DVCC referenced to TVCC	Vccv	-0.3	0.3	v
AVCC referenced to AGNDVCC-0.36DVCC referenced to DGNDVCC-0.36TVCC referenced to TGNDVCC-0.36ariationAVCC referenced to TVCCVCCv-0.30.3DVCC referenced to TVCCVCCv-0.30.3DVCC referenced to TVCCVCCv-0.30.3AVCC referenced to TVCCVCCv-0.30.3AVCC referenced to TVCCVCCv-0.30.3AVCC referenced to TVCCVCCv-0.30.3AVCC referenced to TGNDGNDv-0.30.3DGND referenced to TGNDGNDv-0.30.3age, any pin ^{1, 2} -AGND - 0.3AVCC -us output diode current, any pin ² ± 20 us output current, any pin ² ± 50 us current, any VCC or GND pin ± 50 CAUTIONCAUTION-150eding these values may cause permanent damage. Functional operation under these contraction-	0.3	v		
AGND referenced to DGND	Gndv	-0.3	0.3	v
DGND referenced to TGND	GNDV	-0.3	0.3	v
AGND referenced to TGND	GNDV	-0.3	0.3	v
in ^{1, 2}	-	AGND - 0.3	AVCC + 0.3	V
e current, any pin ²	-	-	±20	mA
urrent, any pin ²	-	-	±25	mA
any VCC or GND pin	-	-	±50	mA
)	Тѕт	-50	150	°C
e values may cause permanent da	mage, Function	8004000.05 4 00000000000000000000000000000000000	ees all way and a sign of a second periode	is not
	AVCC referenced to AGND DVCC referenced to DGND TVCC referenced to TGND AVCC referenced to DVCC DVCC referenced to TVCC AVCC referenced to TVCC AGND referenced to TGND DGND referenced to TGND AGND referenced to TGND an ^{1, 2} e current, any pin ² urrent, any pin ² any VCC or GND pin	AVCC referenced to AGND VCC DVCC referenced to DGND VCC TVCC referenced to TGND VCC AVCC referenced to TVCC VCCv DVCC referenced to TVCC VCCv AVCC referenced to TVCC VCCv AVCC referenced to TVCC VCCv AVCC referenced to TVCC VCCv AGND referenced to TGND GNDv DGND referenced to TGND GNDv agn1, 2 - e current, any pin ² - urrent, any pin ² - may VCC or GND pin - cAUTION Function	AVCC referenced to AGND VCC -0.3 DVCC referenced to DGND VCC -0.3 TVCC referenced to TGND VCC -0.3 AVCC referenced to DVCC VCCv -0.3 DVCC referenced to TVCC VCCv -0.3 AVCC referenced to TVCC VCcv -0.3 AVCC referenced to TVCC VCcv -0.3 AVCC referenced to TVCC VCcv -0.3 AGND referenced to TGND GNDv -0.3 DGND referenced to TGND GNDv -0.3 AGND referenced to TGND GNDv -0.3 agn1.2 - AGND - 0.3 e current, any pin ² - - urrent, any pin ² - - any VCC or GND pin - - cAUTION CAUTION - e values may cause permanent damage. Functional operation under -	AVCC referenced to AGNDVCC-0.36DVCC referenced to DGNDVCC-0.36TVCC referenced to TGNDVCC-0.36AVCC referenced to DVCCVCCV-0.30.3DVCC referenced to TVCCVCCV-0.30.3AVCC referenced to TVCCVCCV-0.30.3AVCC referenced to TVCCVCCV-0.30.3AGND referenced to TVCCVCCV-0.30.3DGND referenced to TGNDGNDV-0.30.3AGND referenced to TGNDGNDV-0.30.3agn1.2-AGND - 0.3AVCC + 0.3e current, any pin ² ± 20 urrent, any pin ² ± 25 any VCC or GND pin ± 50 tableTST-50150CAUTION

Table 7: Absolute Maximum Ratings

Table 8: Recommended Operating Conditions

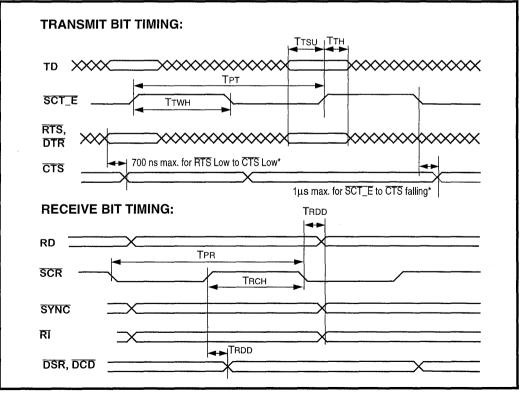
Parameter	Symbol	Min	Тур	Max	Units
Recommended Supply Voltage TVcc, AVcc, DVcc	Vcc	4.75	5.0	5.25	v
Recommended Operating Temperature	Тор	-40	-	85	°C

Parameter	Symbol	Min	Typ ¹	Max	Units	Test Conditions
Supply Current	ICC	-	60	80	mA	Vcc = 5.0 V
Input Low Voltage ²	VIL	-	-	0.8	v	Digital Inputs
Input High Voltage ²	Vih	2.0	-	-	v	Digital Inputs
Output Low Voltage	VOL	-	-	0.4	V	IOL= 1.6 mA (TTL)
	Vol	-	0.2	-	V	Iol< 10µA (CMOS)
Output High Voltage	Voh	2.4	-	-	v	Іон= 400µА (TTL)
	Voh	-	4.5	-	V	$IOL < 10 \mu A (CMOS)$
Input Leakage Current	IIL	-40		40	μA	0 < VIN < VCC
Open Drain Leakage Current 3	IODL	-	-	10	μA	

Table 9: Electrical Characteristics (Over Recommended Range)

1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

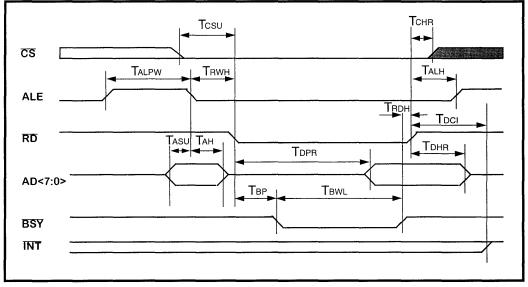
Limited functional test patterns are performed at these input levels. The majority of functional tests are performed at levels of 0V and 3V.
 Applies to INT and BSY only.


Table 10: AC Timing Characteristics (Over Recommended Range)

	Parameter	Symbol	Min	Typ1	Max	Units	Test Conditions
Receive Timing	SCR period - out of lock	TPR (ol)	$\frac{1-5\times10^{-3}}{\text{fb(rec)}}$	l fb(rec)	$\frac{1+5\times10^{-3}}{\text{fb(rec)}}$	μs	no Rx input at RTIP/RRING
(Figure 10)	SCR period - in lock	Tpr (il)	-	fb(rec)	-	μs	Rx input present at RTIP/ RRING
	SCR pulse width High	Trch	Tpr/2 - 200	TPR 2	TPR/2 + 200	ns	
	Rx signal input at RTIP/ RRING frequency tolerance	RXTOL	-50	0	+50	ppm	
	RD delay from SCR falling edge	Trdd	-500	-	500	ns	into 20 pF load
	Transition time on any digital output	Тто	-	-	20	ns	into 20 pF load
Transmit	SCT_E period	Трт	-100ppm	1/Data Rate	+100ppm	μs	
(Figure 10) Transmit Timing (Figure 10)	SCT_E input pulse width High	Ттwнi	3	$\frac{1}{2fb(tx)}$	10	μs	
	SCT_E output pulse width High	Ттwно	1/2fb(tx) -200	$\frac{1}{2fb(tx)}$	1/2fb(tx) + 200	μs	
	TD setup to SCT_E rising edge	TTSU	700	-	-	ns	

Parameter		Symbol	Min	Typ1	Max	Units	Test Conditions
Transmit Timing	TD hold time after SCT_E rising edge	Ттн	700	-	-	ns	
(Figure 10)	Transition time on any digital input	Тті			40	ns	
	SCT_E input frequency tolerance (with respect to fb(tx)	TXTOL	-100	0	+100	ppm	
Crystal	XTALI input frequency	FXTAL	-	8.192	-	MHz	
Tolerances	XTALI frequency toler- ance	Fmtol	-100	0	+100	ppm	
Reset Timing	RST pulse width Low	TRWL	1000	-	-	ns	

Table 10: AC Timing Characteristics (Over Recommended Range) – continued


Figure 10: EIA Timing

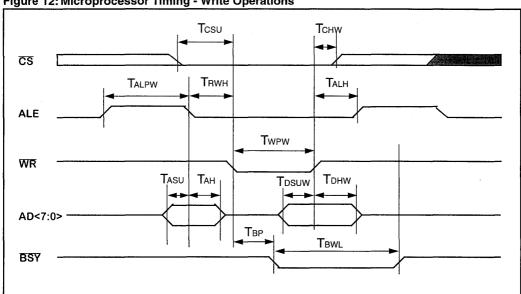

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
CS setup to RD or WR falling edge	TCSU	15	-	-	ns	CLOAD = 20 pF
$\overline{\text{CS}}$ hold from $\overline{\text{RD}}$ or $\overline{\text{WR}}$ rising edge	TCHR TCHW	15	-	-	ns	CLOAD = 20 pF
ALE pulse width High	TALPW	35	-	-	ns	CLOAD = 100 pF
RD or WR hold from ALE rising edge	TRWH	10	-	-	ns	CLOAD = 100 pF
ALE hold from \overline{RD} or \overline{WR} rising edge	TALH	15	-	-	ns	CLOAD = 100 pF
ADDR setup to ALE falling edge	TASU	15	-	-	ns	CLOAD = 100 pF
ADDR hold from ALE falling edge	Тан	15	-	-	ns	CLOAD = 100 pF
WR pulse width Low	Twpw	95	-	-	ns	CLOAD = 100 pF
RD hold time after BSY High	Trdh	0	-	-	ns	$CLOAD = 100 \text{ pF on } \overline{RD}$
DATA valid from RD falling edge	Tdpr	5	-	70	ns	CLOAD = 100 pF
DATA hold from RD rising edge	TDHR	2	-	15	ns	CLOAD = 100 pF
$\overrightarrow{\text{BSY}}$ Low delay from $\overrightarrow{\text{RD}}$ or $\overrightarrow{\text{WR}}$ Low	Твр	5	-	55	ns	CLOAD = 20 pF / 2 k Ω
BSY Low duration	Tbwl	122	-	344	ns	CLOAD = 20 pF / 2 k Ω
DATA setup to WR rising edge	TDSUW	30	-	-	ns	CLOAD = 100 pF
DATA hold from WR rising edge	Tdhw	25	-	-	ns	CLOAD = 100 pF
\overline{INT} clear after \overline{RD} High for ADDR = 08h	TdCI	244	-	470	ns	Cload = 20 pF / 2 k Ω
1. Typical values are at 25° C and are for design aid	only; not guara	nteed and	not subj	ect to prod	luction testi	ng.

Table 11: Microprocessor Timing Characteristics (Over Recommended Range)

Figure 11: Microprocessor Timing - Read Operations

Figure 12: Microprocessor Timing - Write Operations

REGISTER DEFINITIONS

Introduction

The LXT441 incorporates a total of 19 registers, 8 Write and 11 Read registers. Refer to Table 12 for a complete list of register designations and addresses. Register addresses and other hexadecimal numbers are represented as "0xnn" where "nn" is the hex value.

Address		Write Registers		Read Registers				
AD<7:0>	WRx	Name	RDx	Name				
xxx00000	WR0	Device Control Register	RD0	readback of WR0				
xxx00001	WR1	Transmit Control Register	RD1	readback of WR1				
xxx00010	WR2	Receive Control Register	RD2	readback of WR2				
xxx00011	Reserved							
xxx00100	Reserved		1					
xxx00101	WR5	EIA Select Register	RD5	readback of WR5				
xxx00110	Reserved							
xxx00111	WR7	Transmit EIA Data Register	RD7	Receive EIA Data Register				
xxx01000	WR8	Interrupt Enable Register	RD8	Interrupt Status Register				
xxx01001	WR9	EIA Control Register	RD9	EIA Status Register				
xxx01010	Reserved		RDA	Device Status Register				
xxx01011	Reserved		RDB	Rx Slicer Level Register				
xxx01100	WRC	Rx Code Interrupt Enables	RDC	Rx Codes Register				
xxx01101	Reserved		RDD	Invalid BPV Counter				
xxx01110	Reserved							
xxx01111	Reserved							

Table 12: LXT441 Register Set

Register	R/W	Addr	b7	b6	b5	b4	b3	b2	b1	b0
Device Control	R/W	0x00	0	OCU	TCCT	SCT_EN	0	0	MODEI	MODE0
Transmit Control	R/W	0x01	BONDEN	CALLMD	0	TX_MRK	ZS_DIS	TX_CMI	TX_OOS	TX_OOF
Receive Control	R/W	0x02	DSU_LP	TX_DLP	CSU_LP	FILFCE	FFILT3	FFILT2	FFILTI	FFILT0
EIA Select	R/W	0x05	0	0	EIAREG	0	0	0	0	0
Tx EIA Data	W	0x07	DI	D2	D3	D4	D5	D6	D7	X, C, or D8
Rx EIA Data	R	0x07	DI	D2	D3	D4	D5	D6	D7	X, BF, C, or D8
Interrupt Enable	W	0x08	EIADEL	IDEL	RX_CODE	V_OFL	XBPV	FSYNC	RSYNC	ACTIVE
Interrupt Status	R	0x08	EIADEL	IDEL	RX_CODE	V_OFL	XBPV	FSYNC	RSYNC	ACTIVE
EIA Control	W	0x09	FC_DCE	DSR	DCD	RI	CTS	FC_DTE	DTR	RTS
(reset value)			(0)	(1)	(1)	(0)	(1)	(0)	(1)	(1)
EIA Status	R	0x09	FC_DCE	DSR	DCD	RI	CTS	FC_DTE	DTR	RTS
Device Status	R	0x0A	RLOS	FSYNC	ACTIVE	ISTATE	LL3	LL2	LLI	LLO
Rx Slicer Level	R	0x0B	MAG7	MAG6	MAG5	MAG4	MAG3	MAG2	MAGI	MAG0
Rx Code Interrupt Enable (reset value)	W	0x0C	MRK_EN (1)	ZSC_EN (0)	CMI_EN (1)	OOS_EN (0)	OOF_EN (0)	DLP_EN (0)	0 (0)	UNM_EN (0)
Rx Codes	R	0x0C	RX_DMI	RX_ZSC	RX_CMI	RX_OOS	RX_OOF	RX_DLP	RX_UMC	UNMTCH
BPV Count	R	0x0D	IBPV7	IBPV6	IBPV5	IBPV4	IBPV3	IBPV2	IBPV1	IBPV0

Table 13: LXT441 Register Bit Mapping

Register Definitions

Table 14: Register WR0 - Device Control - Address 0x00							
 b7	b6	b5	b4	b3	b2	b1	ьо
-	OCU	TCCT	SCT_EN	-	FTEST	MODE1	MODE0

Bit	Mnemonic	Function						
b7	-	Reserved. Program to 0.						
b6	OCU		OCU and DSU Mode Selection. Controls timing sources in conjunction with TCCT (see TCCT bit description for additional information).					
b5	TCCT	Tail Circuit. Controls timing sources in conjunction with OCU as follows:						
		Bits<6:5> Source for SCT_E			Source for TCLK			
		10 11 00 01	XTALI via Intern N/A RCLK N/A	al Oscillator	XTALI via Internal Oscillator ¹ SCT_E input pin RCLK SCT_E input pin			
b4	SCT_EN	Serial Clock Transmit Enable. $0 = \overline{SCT}_{E}$ pin set to high impedance state; 1 = \overline{SCT}_{E} pin enabled as an output.						
b3	-	Reserved. Program to 0.						
b2	FTEST	Factory Test (FTEST). Program to 0.						
b<1:0>	MODE<1:0>	E<1:0> Mode Select (MODE<1:0>). Sets Mode and Line Rate as follows:						
		Bits<1:0>	Operating Mode	Line Rate	2			
		00 11 01 10	DDS-PRI DDS-PRI DDS-SC CC-64K	56 kbps 56 kbps 72 kbps 72 kbps				

Table 15: Register WR1 - Transmit Control (DDS-PRI Mode) - Address 0x01							
b7	b6	b5	b4	b3	b2	b1	b0
BONDEN	CALLMD	-	TX_MRK	ZS_DIS	TX_CM	TX_OOS	TX_OOF

Table 15: Register WR1 - Transmit Control (DDS-PRI Mode) - Address 0x01

Bit	Mnemonic	Function			
b7	BONDEN	Bonding Enable. 0 = Bonding frame detection disabled; 1 = Bonding frame detection enabled.			
b6	CALLMD	Call Mode. 0 = Allow data transfer from DTE; 1 = Indicate to DTE that call processing is underway			
b5	-	Reserved. Program to 0.			
b4	TX_MRK	Transmit All Marks. 1 = Transmit All Marks, the Data Mode Idle (DMI) sequence. (also sends all 1s DMI in CC-64K mode)			
b3	ZS_DIS	Zero Suppression Disable. 1 = Disable Transmit Zero Suppression			
b2	TX_CMI	Transmit Control Mode Idle. 1 = Transmit Control Mode Idle sequence			
bl	TX_OOS	Transmit Out Of Service. 1 = Transmit Out Of Service sequence			
b0	TX_OOF	Transmit Out Of Frame. 1 = Transmit Out Of Frame sequence			

Table 16: Register WR1 - Transmit Control (DDS-SC Mode) - Address 0x01

b7.	b6	b5	b4	b3	b2	b1	b0
T_UMC	-	-	T_IDLE	T_ZER	T_CMI	T_ASC	T_MOS

Bit	Mnemonic	Function
b7	T_UMC	Transmit UMC. 1 = Transmit Unassigned Multiplex Code sequence
b<6:5>	-	Reserved. Program to 0.
b4	T_IDLE	Transmit Idle. 1 = Transmit the Data Mode Idle (DMI) sequence. (also sends all 1s DMI in CC-64K mode)
b3	T_ZER	Transmit All 0s. 1 = Transmit all Zeros
b2	T_CMI	Transmit Control Mode Idle. 1 = Transmit Control Mode Idle sequence.
bl	T_ASC	Transmit Abnormal Station Code. 1 = Transmit Abnormal Station Code sequence
b0	T_MOS	Transmit Mux Out of Sync. I = Transmit Multiplexer Out of Sync sequence

Table 17: H	legister WR	2 - Receive	Control - A	ddress 0x02			
b7	b6	b5	b4	b3	b2	b1	b0
DSU_LP	TX_DLP	CSU_LP	FILFCE	FFILT3	FFILT2	FFILT1	FFILT0

WDO سامام ۸ 0...00 n ~

Bit	Mnemonic	Function
b7 ¹	DSU_LP	DSU Loopback. 1 = Forces local DSU loopback (EIA RD connected to TD)
b6	TX_DLP	Transmit Non-Latching DSU Loopback. 1 = Transmit Non-Latching DSU Loopback Code in DDS-SC, or BPV sequence in DDS-PRI. Not used in CC-64K
b5 ²	CSU_LP	CSU Loopback. 1 = Forces CSU loopback
b4	FILFCE	Filter Force Enable. 0 = Filter Forcing Disabled (Program to 0 for normal operation.); 1 = Filter Forcing Enabled
b<3:0>	FFILT<3:0>	Filter Forcing Control Bits. Filter Gain = (0X0F - FFILT<3:0>)*6dB.

2. Readback of RD2 yields the logical OR of the value written to bit b5 (CSU_LP) and CSU loop status.

Table 18: Register WR5 - EIA Select - Address 0x05

D/	b6	b5	b4	b3	b2	b1	b0
-	-	EIAREG	-	-	-	-	-

Bit	Mnemonic	Function
b<7:6>	-	Reserved. Program to 0.
b5	EIAREG	EIA Register Mode. 0 = Transmit data sourced by EIA TD pin; 1 = Transmit data sourced by transmit EIA data register.
b<4:0>	-	Reserved. Program to 0.

Table 19: Register WR7 - Transmit EIA Data - Address 0x07

b7	b6	b5	b4	b3	b2	b1	b0
D1	D2	D3	D4	D5	D6	D7	X, C, D8

Bit	Mnemonic	Function
b<7:1>	D<1:7>	Data Bits. Data transmitted on 4-wire link when EIAREG = 1. Refer to Table 20 for data formats.
b0	X,C,D8	EIA Register Mode. X = Don't Care in DDS-PRI. C = Secondary channel bit in DDS-SC. D8 = Data bit 8 in CC-64K.

LXT441 Switched 56 / DDS Integrated DSU / CSU

Mode	Line Rate	4-Wire Data Format									Comments
DDS-PRI	56 kbps	Dl	D2	D3	D4	D5	D6	D7			7-bit byte
DDS-SC	72 kbps	D1	D2	D3	D4	D5	D6	D7	F	C	9-bit byte
CC-64K	72 kbps	DI	D2	D3	D4	D5	D6	D7	F	D8	9-bit byte
Mode	DTE Clock	DTE Serial Data Format							Comments		
DDS-PRI	56 kbps smooth	DI	D2	D3	D4	D5	D6	D7	1		7-bit byte
DDS-SC	64 kbps gapped	DI	D2	D3	D4	D5	D6	D7	C		8-bit byte
	64 kbps gapped	DI	D2	D3	D4	D5	D6	D7	D8		8-bit byte

Table 20: Register WR7 - Transmit EIA Data Formats

Table 21: Register RD7 - Rx EIA Data - Address 0x07

b7	b6	b5	b4	b3	b2	b1	60
D1	D2	D3	D4	D5	D6	D7	X, BF, C, D8

Bit	Mnemonic	Function
b<7:1>	D<1:7>	Data Bits. Data received on 4-wire link
ь0	X,BF,C,D8	EIA Register Mode. X = Don't Care in DDS-PRI. BF = Bonding Frame indicator in DDS-PRI, if BONDEN=1. C = Secondary channel bit in DDS-SC. D8 = Data bit 8 in CC-64K

Table 22: Register WR8 - Interrupt Enable - Address 0x08

b7	b6	b5	b4	b3	b2	b1	b0
EIADEL	IDEL	RX_CODE	V_OFL	XBPV	FSYNC	RSYNC	ACTIVE

Bit	Mnemonic	Function
b7	EIADEL	EIA Control Lead Change Interrupt Enable. 0 = Disable; 1 = Enable.
b6	IDEL	Loop Current Change Interrupt Enable. 0 = Disable; 1 = Enable.
b5	RX_CODE	Receive BPV Control Code Interrupt Enable. 0 = Disable; 1 = Enable.
b4	V_OFL	Violations Count Overflow Interrupt Enable. 0 = Disable; 1 = Enable.
b3	XBPV	Excess Invalid BPV Interrupt Enable. 0 = Disable; 1 = Enable.
b2	FSYNC	Bonding, or DDS FAW Sync Interrupt Enable. 0 = Disable; 1 = Enable.
b1	RSYNC	Receive SYNC Interrupt Enable. 0 = Disable; 1 = Enable.
b0	ACTIVE	Active State Interrupt Enable. 0 = Disable; 1 = Enable.

Table 23: Register RD8 - Interrupt Status - Address 0x08

Bit	Mnemonic	Function
b7	EIADEL	EIA Control Lead Change Interrupt. 1 = Interrupt has occurred. This interrupt is generated when either the DTR or RTS input line changes state in the LXT441.
b6	IDEL	Loop Current Change Interrupt. $1 =$ Interrupt has occurred. This interrupt is generated when the loop current state changes. For changes in loop current direction, both inputs LCTR and LCRT will change state. State transitions of these two signals are debounced for 1.5 ms and multiple transitions within this time period are resolved into only one IDEL event.
b5	RX_CODE	Receive BPV Code Interrupt , 1 = Interrupt has occurred. This interrupt is generated upon reception of or cessation of reception of the codes listed in Table 27 (Register RDC description) as enabled by the corresponding bits in register WRC. In DDS-PRI mode, RX_DMI will generate an interrupt only when CALLMD (in register WR1) is set to logic 1 by the user. In DDS-SC mode, RX_DMI will never generate an interrupt.
b4	V_OFL	Violations Count Overflow Interrupt. 1 = Interrupt has occurred. This interrupt is generated when the Invalid Bipolar Violations Counter (V_CNT0 to V_CNT7) overflows at an invalid BPV count of 256.
b3	XBPV	Excess Invalid BPV Interrupt. 1 = Interrupt has occurred. If eight or more occurrences of invalid BPV events in sixteen groups of consecutive mark symbols are received, the XBPV interrupt is generated. This high density of BPV's requires re-activation of the LXT441, via an external RST pulse.
b2	FSYNC (BSYNC)	Bonding, or DDS FAW Sync. 1 = Interrupt has occurred. The Bonding Frame Sync (BSYNC) or Bit Frame Sync (FSYNC) interrupt is generated when either going into or out of synchronization for Bonding Sync or DDS-SC/CC-64K FAW sync.
bl	RSYNC	Receive SYNC Interrupt. 1 = Interrupt has occurred. The RSYNC interrupt is generated coincident with the falling edge of the SYNC pulse.
b0	ACTIVE	Active State Interrupt. 1 = Interrupt has occurred. The ACTIVE interrupt is generated when the LXT441 enters or exits the receiver active state. When activation sequence has completed, and reliable data transmission is achieved, the receiver enters the active state. When receive signal energy is lost, or is detected to be outside the range required for optimal equalization, the receiver exits the active state, and attempts to re-activate.

LXT441 Switched 56 / DDS Integrated DSU / CSU

b7	b6	b5	b4	b3	b2	b1	b0
FC_DCE	DSR	DCD	RI	CTS	FC_DTE	DTR	RTS

Table 24: Register WR9 - EIA Control - Address 0x09

Bit	Mnemonic	Function
b7	FC_DCE	Force DCE Enable. 0 (Default) = Disables User Programming of DCE Control Leads; 1 = Enables User Programming of DCE Control Leads.
b6	DSR	Data Set Ready. 0 = DSR Inactive; 1 (Default) = DSR Active.
b5	DCD	Data Carrier Detect. 0 = DCD Inactive; 1 (Default) = DCD Active.
b4	RI	Ring Indicator. 0 (Default)= RI Inactive; 1 = RI Active.
b3	CTS	Clear to Send. 0 = CTS Inactive; 1 (Default) = CTS Active.
b2	FC_DTE	Force DTE Enable. 0 (Default) = Disables User Programming of DTE Control Leads; 1 = Enables User Programming of DTE Control Leads.
bl	DTR	Data Terminal Ready. 0 = DTR Inactive; 1 (Default) = DTR Active.
b0 ¹	RTS	Request to Send. 0 = RTS Inactive; 1 (Default) = RTS Active.

Table 25: Register RD9 - EIA Status - Address 0x09

b7	b6	b5	b4	b3	b2	b1	b0
FC_DCE	DSR	DCD	RI	CTS	FC_DTE	DTR	RTS

Bit	Mnemonic	Function
b7	FC_DCE	Force DCE Enable. 0 (Default) = User Programming of DCE Control Leads Disabled; 1 = User Programming of DCE Control Leads Enabled
b6 ¹	DSR	Data Set Ready. 0 = DSR Inactive; 1 (Default) = DSR Active.
b5 ¹	DCD	Data Carrier Detect. 0 = DCD Inactive; 1 (Default) = DCD Active.
b4 ¹	RI	Ring Indicator. 0 (Default) = RI Inactive; 1 = RI Active.
b3 ¹	CTS	Clear to Send. 0 = CTS Inactive; 1 (Default) = CTS Active.
b2	FC_DTE	Force DTE Enable. 0 (Default) = User Programming of DTE Control Leads Disabled; I = User Programming of DTE Control Leads Enabled.
b1 ²	DTR	Data Terminal Ready. 0 = DTR Inactive; 1 (Default) = DTR Active.
$b0^2$	RTS	Request to Send. 0 = RTS Inactive; 1 (Default) = RTS Active.

Register Definitions

IDLE	ZSC	CMI	OOS	OOF	DLP	UMC	UNM
b7	b6	b5	b4	b3	b2	b1	b0

Table 26: Register WRC - Rx Code Interrupt Enable - Address 0x0C

Bit	Mnemonic	Function
b7	IDLE	RX_DMI Interrupt Enable. 0 = Disable; 1 = Enable.
b6	ZSC	Zero Code Interrupt Enable. 0 = Disable; 1 = Enable.
[(ZERO)	(all zeros in DDS-SC/CC-64K). 0 = Disable; 1 = Enable.
b5	CMI	Receive Control mode Idle Interrupt Enable. 0 = Disable; 1 = Enable.
b4	OOS	Out of Sync. 0 = Disable; 1 = Enable.
	(ASC)	Abnormal Station Code Interrupt Enable. 0 = Disable; 1 = Enable.
b3	OOF	Out of Frame Interrupt Enable. 0 = Disable; 1 = Enable.
	(MOS)	Mux out of Sync Interrupt Enable. 0 = Disable; 1 = Enable.
b2	DLP	DSU Loopback Interrupt Enable. 0 = Disable; 1 = Enable.
b1	UMC	Unassigned Mux Code Interrupt Enable. 0 = Disable; 1 = Enable.
b0	UNM	Unmatched Code Interrupt Enable. 0 = Disable; 1 = Enable.

Table 27: Register RDC - Rx Codes - Address 0x0C

b7	b6	b5	b4	b3	b2	b1	b0
RX_DMI	RX_ZSC	RX_CMI	RX_OOS	RX_OOF	RX_DLP	RX_UMC	UNMTCH

Bit	Mnemonic	Function ^{1.2}
b7	RX_DMI	Receiving DMI. 1 = Receiving Data Mode Idle
b6	RX_ZSC	Receiving ZSC. 1 = Receiving Zero Suppression Code in DDS-PRI
	(RX_ZER)	(All Zeros). 1 = Receiving All 0s in DDS-SC
b5	RX_CMI	Receiving CMI. 1 = Receiving Control Mode Idle
b4	RX_OOS	Receiving OOS. 1 = Receiving Out of Service code in DDS-PRI
	(RX_ASC)	(Receiving ASC). 1 = Receiving Abnormal Station Code in DDS-SC
b3	RX_OOF	Receiving OOF. 1 = Receiving Out of Frame code in DDS-PRI
	(RX_MOS)	(Receiving MOS). 1 = Receiving Mux Out of Sync Code in DDS-SC
b2	RX_DLP	Receiving DLP. 1 = Receiving valid DSU Non-latching loopback code
bl	RX_UMC	Receiving UMC. 1 = Receiving Unassigned Mux Code in DDS-SC
b0	UNMTCH	Unmatched Code. 1 = Receiving control code that does not match codes in Table 28
receiv of the	ed for the correspond RX_DLP code are re	ed due to the presence of a control code if the corresponding enable bit in WRC is set. Only one code word need be ing bit to go High in all cases except for RX_DLP. In the case of DSU loopback code, four consecutive repetitions quired. The code must be absent for at least five consecutive word periods for the bit to be cleared. not latched, and are updated every 125 µs.

LXT441 Switched 56 / DDS Integrated DSU / CSU

		DD)S-F	PRI	Coc	le	pe i s		DDS-SC Code								cc-	Turninit		
Code Description	Name	D 1	D 2	D 3	D 4	D 5	D 6	D 7	Name	D 1	D 2	D 3	1.10.10.20.20		D 6	D 7	F	С	64K	Tx Priority
Data Mode Idle	MRK	В	В	В	В	B	В	В	IDLE	1	1	1	1	1	1	1	F	1	IDLE	Priority 1 (highest)
Control Mode Idlo	СМІ	В	В	В	В	Х	0	v	СМІ	1	1	1	1	1	1	1	F	0	N/A	Priority 2; Priority 6 ¹ with TX_DLP =0
DSU Loopback	DLP	N	0	В	0	X	0	V	DLP	N	0	1	0	1	1	0	F	0	N/A	Priority 2;
				repl	ace	with	1					r	epla	ace	with	1				Priority 6 ¹
		0	0	В	0	0	0	0		N	0	1	0	0	0	0	F	1		with TX_DLP =1
Out of Service or	OOS	N	0	0	В	X	0	V	ASC	N	0	0	1	1	1	1	F	0	N/A	Priority 3
Abnormal Station Out of Sync	OOF	N	0	В	В	x	0	v	MOS	N	0	0	1	1	0	1	F	0	N/A	Priority 4
Unassigned Mux	N/A		0		N/A		0	v	UMC	N	0	0	1	1	0	0	F	0	N/A	Priority 5
Zero-Suppression	ZSC		0	0	0	x	0	v	ZER	0	0	0	0	0	0	0	F	0	N/A	Priority 6;
(All Zeros)	250	_	L		ace				LLI	Ū		U		Ū	Ŭ	Ū		Ū	1071	For DDS- PRI replace
		-	0	0	0	0	0	0												0000000 with
																				ooooxov
Data			L				L					L						-		Priority 7

Table 28: Summary of Transmit and Receive Control Codes

Table 29: Register RDA - Device Status - Address 0x0A

b7	b6	b5	b4	b3	b2	b1	b0
RLOS	FSYNC	ACTIVE	ISTATE	LL3	LL2	LL1	LL0

Bit	Mnemonic	Function
b7	RLOS	Receive Loss of Signal. 1 = LXT441 Receiver has lost signal due to level being below threshold, or step change in signal magnitude. RLOS indicator, goes High after initial activation if receive signal level drops to zero volts, or drops by more than 6 dB. RLOS will then stay High until the receiver automatically re-initializes in the presence of the receive signal at a new voltage level, or the return of the signal at the old voltage level. An ACTIVE interrupt is generated in register RD8 when RLOS goes High, and again when RLOS goes Low to indicate the resumption of normal data reception. RLOS is not a latched bit.
b6	FSYNC	FAW Sync. 1 = DDS FAW Sync in DDS-SC or CC-64k
b5	ACTIVE	Receiver Active. 1 = LXT441 Receiver Activated
b4	ISTATE	Loop Current Present. 1 = Presence of loop current determined by a logic 0 level at LCRT or LCTR device pins. The LCRT and LCTR inputs are debounced for 1.5 ms after the initial transition by either signal. Also, up to 1.5 ms of skew between the state transitions in these signals is resolved into only one IDEL interrupt event as reported in RD8.
b<3:0>	LL<3:0>	Loop Loss Indicator Bits. Value of the receive filter selected by receive activation circuit. Refer to Table 30 for the nominal Nyquist frequency loop loss (+/-3dB) corresponding to the LL<3:0> value.

Table 30: Insertion Loss and Line Length Values for bits LL<3:0>

Line		Bit Codes LL<3:0>								
Rate	Parameter	0111	1000	1001	1010	1011	1100	1101	1110	1111
56 kbps	Insertion Loss (dB)	50.5	44.4	38.4	32.3	26.0	19.7	13.6	7.3	0.0
	Line Length (km)	8.5	7.5	6.4	5.3	4.2	3.2	2.1	1.1	0.0
72 kbps	Insertion Loss (dB)	50.7	45.0	38.8	32.5	26.3	20.0	14.0	7.4	0.0
F	Line Length (km)	8.0	7.0	6.0	5.0	4.0	3.0	2.0	1.0	0.0

LXT441 Switched 56 / DDS Integrated DSU / CSU

b 7	b6	b5	b4	b3	b2	b1	b0
MAG7	MAG6	MAG5	MAG4	MAG3	MAG2	MAG1	MAG0

Table 31: Register RDB - Rx Slicer Level - Address 0x0B

Bit	Mnemonic	Function
b<7:0>	MAG<7:0>	Receive Signal Magnitude. MAG<7:0> represents the receive slicer level, and is used with the LL0-LL3 bits from register RD_A to calculate the twisted-pair loop attenuation using the following formula ¹ : Nyquist frequency Loop Attenuation in dB equals [Attenuation Value in dB for LL<3:0> at selected data rate ²] + 20log10(0x3C/MAG<7:0>hex).

Table 32: Register RDD - Rx Invalid BPV Count - Address 0x0D

b7	b6	.b5	64	b3	b2	b1	b
IBPV7	IBPV6	IBPV5	IBPV4	IBPV3	IBPV2	IBPV1	IBP

Bit	Mnemonic	Function
b<7:0>	IBPV<7:0>	Invalid BPV Count. IBPV<7:0> is an 8-bit count of receive pulses that are judged to be BPVs that are not legal DDS-PRI codes. When this counter is read, it is reset 00h. If this counter overflows, the V_OFL interrupt is set.

T1/E1 Clock Adapters

1997 Communications Data Book

DATA SHEET

LXP600A, LXP602 and LXP604 Low-Jitter Clock Adapters (CLADs)

General Description

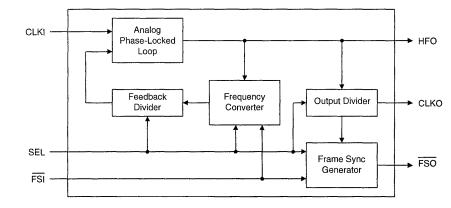
The LXP600A, LXP602 and LXP604 Clock Adapters (CLADs) incorporate Level One's patented frequency conversion circuitry. The LXP600A and LXP602 convert a 1.544 MHz input clock to a 2.048 MHz output clock, or vice versa. The LXP604 converts between 1.544 MHz and 4.096 MHz. Each CLAD produces two different high frequency output (HFO) clocks for applications which require a higher-than-baud rate backplane or system clock.

Level One's patented locking method enables the CLAD to perform frequency conversion with no external components, while generating very little jitter on the output clock. The conversion is digitally controlled so the output clock (CLKO) is as accurate as the input clock (CLKI), and the two clocks are frequency-locked together. When an input frame sync pulse (FSI) is provided, the CLAD also phaselocks CLKI and CLKO together, and locks the output frame sync pulse (FSO) to 600.

Frequence	y Conve	ersion	
CLAD	CLKI	CLKO	HFO
LXP600A	1.544	2.048	6.144
	2.048	1.544	6.178
LXP602	1.544	2.048	8.192
	2.048	1.544	6.176
LXP604	1.544	4.096	8.192
	4.096	1.544	6.176

LXT600 Block Diagram

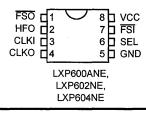
Features


 Generates a 1.544 MHz clock and its frame sync from a 2.048 MHz or 4.096 MHz clock and its frame sync, or vice versa

APRIL 1996 Revision 0.0

- Low output jitter meets AT&T Publication 62411 for 1.544 MHz, and ITU Recommendation G.823 for 2.048 MHz
- · Digital control of frequency conversion process
- · No external components
- · Available in 8-pin plastic DIP
- · Pin-selectable operation mode
- Advanced CMOS device requires only a single +5 V power supply

Applications


- Internal timing system for Channel Banks, Digital Loop Carriers, Multiplexers, Internal Timing Generators, PBX, etc.
- Conversion between 2.048 MHz or 4.096 MHz backplane rates and 1.544 MHz T1 clock rate
- Conversion between North American and International standards (T1/E1 Converter)

LXP600A, LXP602 and LXP604 Low-Jitter Clock Adapters (CLADs)

Figure 1: LXT600 Pin Assignments

Table 1: Pin Descriptions

Pin #	Sym	I/O	Description
1	FSO	0	Frame Sync Output. Frame synchronization output at 8 kHz. \overline{FSO} is synced to CLKO and to \overline{FSI} (if \overline{FSI} is provided).
2	HFO	0	High Frequency Output. HFO is used to derive CLKO. HFO can also clock external devices. HFO is always a multiple of CLKO (CLKO x2, x3, or x4). Actual frequencies are determined by device, CLKI and CLKO frequencies and Mode Select (SEL) input, as listed in Table 2.
3	CLKI	I	Clock Input. Input clock (1.544, 2.048 or 4.096 MHz) to be converted.
4	CLKO	0	Clock Output. Output clock (1.544, 2.048 or 4.096 MHz) derived from CLKI.
5	GND	-	Ground.
6	SEL	I	Mode Select. controls frequency conversion as listed in Table 2. When SEL = High, higher frequency CLKI (2.048 for LXP600A and LXP602, or 4.096 MHz for LXP604) is converted to 1.544 MHz CLKO. When SEL = Low, 1.544 MHz CLKI is converted to higher frequency CLKO (2.048 for LXP600A and LXP602, or 4.096 MHz for LXP604).
7	FSI	I	Frame Sync Input. 8 kHz frame synchronization pulse. Tie High or Low if not used.
8	VCC	-	Power Supply. +5 V power supply input.

FUNCTIONAL DESCRIPTION

The CLADs convert an input clock (CLKI) at a particular frequency to an output clock (CLKO) at a different frequency. They also produce a frame sync output ($\overline{\text{FSO}}$) and a high frequency output (HFO) clock. The HFO is a multiple (2x, 3x, or 4x) of CLKO. The HFO and CLKI/CLKO conversion frequencies are different for each device, and controlled by the Mode Select input as listed in Table 2.

The LXP600A and LXP602 convert between 1.544 MHz and 2.048 MHz. When converting from 2.048 MHz to 1.544 MHz, both CLADs produce a 6.176 MHz HFO. However, when converting from 1.544 MHz to 2.048 MHz, the LXP600A produces a 6.144 MHz HFO and the LXP602 produces an 8.192 MHz HFO.

The LXP604 converts between 1.544 MHz and 4.096 MHz. When converting from 4.096 to 1.544 MHz the LXP604 HFO is 6.176. When converting from 1.544 MHz to 4.096 MHz, the LXP604 produces an 8.192 MHz HFO.

Mode Select

The Mode Select (SEL) input controls whether the device converts to a higher or lower frequency as described below:

- <u>2.048 or 4.096 to 1.544 MHz</u>: To produce a 1.544 MHz output clock from a 2.048 MHz or 4.096 MHz input clock, SEL must be set High. In this mode HFO = 6.176 MHz for all CLADs.
- <u>1.544 to 2.048 MHz or 4.096 MHz</u>: To produce a 2.048 MHz or 4.096 MHz output clock from a 1.544 MHz input clock, SEL must be set Low. In this mode the LXP600A HFO = 6.144 MHz, and the LXP602 and LXP604 HFO = 8.192 MHz.

In both frequency modes, CLKO is frequency-locked to CLKI. When \overline{FSI} is applied, CLKO and CLKI are also phase- locked with \overline{FSO} and \overline{FSI} synchronized. Refer to Test Specifications for detailed timing.

When $\overline{\text{FSI}}$ is first asserted, the CLKI and CLKO rising edges will be aligned within a maximum of 500 ms.

If FSI is not provided, pin 7 should be tied High or Low. CLKO and FSO are still generated with the CLKO frequency-locked to CLKI.

Output Jitter

2.048 MHz or 4.096 MHz to 1.544 MHz

In this mode of operation, the CLADs meet the output jitter requirements of AT&T Publication 62411. When there is no jitter on input clock CLK1, the maximum jitter on CLKO is 0.020 UI pp with no bandlimiting, 0.010 UI pp over the range of 10 Hz to 40 kHz, and 0.012 UI pp in the 8 - 40 kHz band.

1.544 MHz to 2.048 MHz or 4.096 MHz

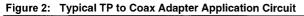
In this mode of operation, the CLADs meet the output jitter requirements of CCITT Recommendation G.823. When there is no jitter on input clock CLKI, the maximum jitter on CLKO is 0.035 UI pp over the range of 20 Hz to 100 kHz, and 0.025 UI pp in the 18 - 100 kHz band.

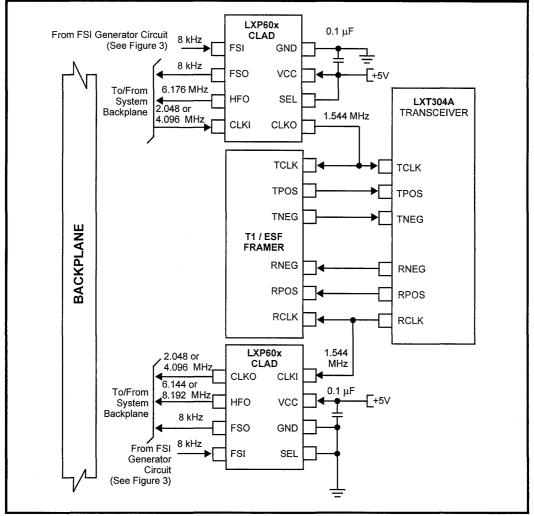
Jitter Transfer

The CLADs are sensitive to jitter on the input clock in certain frequency bands. The jitter transfer curve is determined by the frequency and amplitude of the input jitter. Test Specification Figures 4 and 5 show nominal jitter transfer measured in nanoseconds. These figures graph output jitter (less intrinsic jitter) divided by input jitter (0.25 UI). Jitter transfer from a 2.048 MHz CLKI to a 1.544 MHz CLKO is shown in Figure 4. In this mode, jitter in the critical 8 kHz band is slightly attenuated while jitter in the 18 - 70 kHz band is transferred with a small net gain. Jitter transfer from a 1.544 MHz CLKI to a 2.048 MHz CLKO is shown in Figure 5. In both modes, with an input jitter level of 0.25 UI, jitter transfer is held below a net gain of 1.110.

(Jitter transfer varies with input jitter. Performance in a specific application should be verified in the actual circuit.)

Table 2: CLAD Frequency Conversions


CLAD	CLKI	CLKO	HFO	SEL
LXP600A	1.544	2.048	6.144	0
	2.048	1.544	6.178	1
LXP602	1.544	2.048	8.192	0
	2.048	1.544	6.176	1
LXP604	1.544	4.096	8.192	0
	4.096	1.544	6.176	1

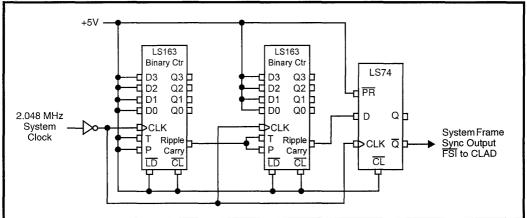


APPLICATION INFORMATION

Power-up

Standard CMOS device precautions apply to the CLAD. Inputs must be applied either simultaneously with or after the power supply VCC. CLAD input signals include CLKI, \overline{FSI} and SEL. The CLAD internal circuitry takes a maximum of 200 ms to stabilize. There is an additional delay of 500 ms maximum for CLKO to be phase-locked to the incoming clock CLKI during frame synchronization FSI.

Power Supply Decoupling and Filtering


The CLADs are designed to meet AT&T Publication 62411 specifications for jitter in the range from 10 Hz to 100 kHz. Proper power supply decoupling is critical for meeting these specifications. As shown in Figure 2, a typical application with a pair of CLADs for backplane frequency conversion, a standard 0.1 μ F bypass capacitor is recommended.

The CLADs are monolithic silicon devices which incorporate both analog and digital circuits. CLAD application circuit design may require closer attention to power supply filtering and bypassing than required for strictly digital devices.

Switching power supplies which operate below 100 kHz may produce noise spikes which can affect the analog sections of the CLAD. These spikes should be filtered with an RC network at the CLAD VCC pin.

Frame Sync Generation

A frame sync pulse is required to synchronize the input and output clocks. If a frame sync pulse is not provided on the backplane, one can be generated from the existing 2.048 MHz backplane clock. A typical FSI generation circuit is shown in Figure 3.

Figure 3: Frame Sync (FSI) Generation Circuit

6

LXP600A, LXP602 and LXP604 Low-Jitter Clock Adapters (CLADs)

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 3 through 8 and Figures 4 through 11 represent the performance specifications of the LXT600 and are guaranteed by test, except where noted by design.

Table 3: Absolute Maximum Values

Parameter	Symbol	Min	Max	Units
Supply voltage	RV+. TV+	-0.3	7.0	V
Voltage, any I/O pin	VIO	GND - 0.3	VCC + 0.3	V
Current, any I/O pin ¹	lio	-10	10	mA
Storage temperature	TSTG	-65	+150	°C
Power dissipation	PD	-	340	mW

CAUTION

Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

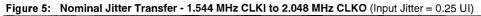
1. Transient currents of up to 100 mA will not cause SCR latch-up.

Table 4: Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Supply voltage ¹	Vcc	4.75	5.0	5.25	V	
Supply current	ICC	_	-	8	mA	No TTL loading
	ICC	-	-	14	mA	Full TTL loading
Operating temperature	Тор	-40	-	85	°C	

Table 5: Digital Electrical Characteristics (Over Recommended Range)


Parameter	Sym	Min	Max	Units
Input Low voltage	VIL		0.8	V
Input High voltage	VIH	2.0	-	V
Output Low voltage (IOL = +1.6 mA)	VOL		0.4	V
Output Low voltage (IOL $< +10\mu$ A)	Vol	-	0.2	V
Output High voltage (IOH = -0.4 mA)	Voh	2.4	-	V
Output High voltage (IOH < -10µA)	Voh	4.5	-	V
Input leakage current	ILL	-10	10	μA



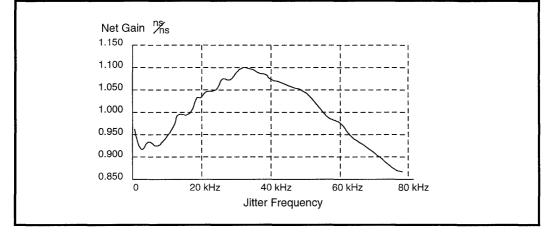
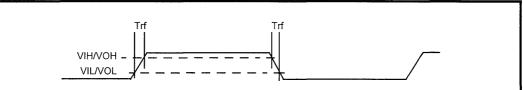

Parameter	Sym	Frequency	Spec ¹	Typ ²	Max	Units	Test Conditions
Output Jitter on CLKO		No Bandlimiting	0.050	0.010	0.20	UI pp	CLKI=2.048 or 4.096 MHz
CLKO=1.544 MHz	1tT	10 Hz to 40 kHz	0.025	0.005	0.010	UI pp	JI=0
(All CLADS)		8 kHz to 40 kHz	0.025	0.006	0.012	UI pp	FSI applied
Output Jitter on CLKO	TJ2	20 Hz to 100 kHz	1.500	0.025	0.035	UI pp	CLKI=1.544 MHz,
CLKO=2.048 Mhz (LXP600A and 602 only)	IJZ	18 kHz to 100 kHz	0.200	0.015	0.025	UI pp	JI=0 FSI applied
1. Specifications from AT&T 2. Typical values are at 25 °C							

Table 6: Output Jitter Specifications

Figure 4: Nominal Jitter Transfer - 2.048 MHz CLKI to 1.544 MHz CLKO (Input Jitter = 0.25 UI)



LXP600A, LXP602 and LXP604 Low-Jitter Clock Adapters (CLADs)

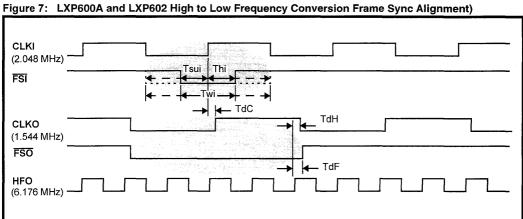
Table 7: Timing Values (see Figure 6)

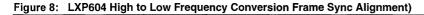
Parameter	Sym	Minimum	Maximum	Units
Capture range on CLKI	-	±10000	-	ppm
Lock range on CLKI	_	±10000	-	ppm
Input clock duty cycle	-	35	65	%
Rise/fall time on CLKI, FSI	Trf	-	40	ns
Rise/fall time on CLKO, FSO, HFO with a 25 pF load	Trf	_	40	ns

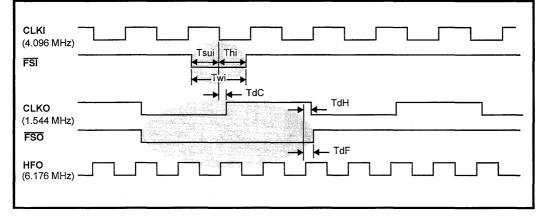
Figure 6: Rise and Fall Times

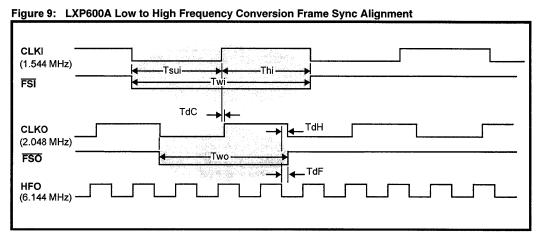
Table 8: Timing Values (see Figures 7 through 11)

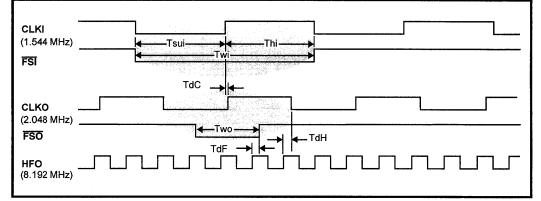
Parameter	Sym	Minimum	Typ ¹	Maximum	Units
FSI setup time from CLKI rising	Tsui	46	-	-	ns
FSI/CKLI hold time	Thi	30	-	-	ns
FSI pulse width (low)	Twi	76	-	TCLKI2	ns
CLKO delay from CLKI	TdC	-15	0	+15	ns
CLKO duty cycle	Cdc	49	_	51	%
FSO delay from HFO	TdF	-5		30	ns
FSO pulse width (low)	Two	-	-	TCLKO3	ns
CLKO delay from HFO	Тdн	-15	-	+15	ns

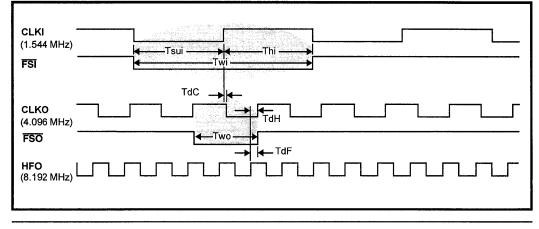

1. Typical figures are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.


2. TCLKI is the period of CLKI.


3. TCLKO is the period of CLKO.







LXP600A, LXP602 and LXP604 Low-Jitter Clock Adapters (CLADs)

Figure 10: LXP602 Low to High Frequency Conversion Frame Sync Alignment)

Figure 11: LXP604 Low to High Frequency Conversion Frame Sync Alignment)

APRIL 1996 Revision 0.0

LXP610

DATA SHEET

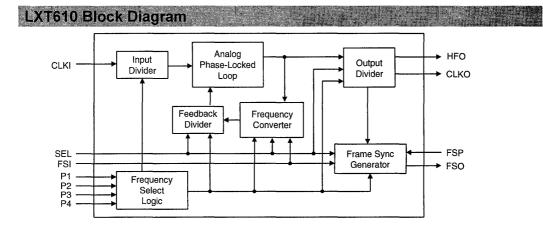
Low-Jitter Multi-Rate Clock Adapter (CLAD)

General Description

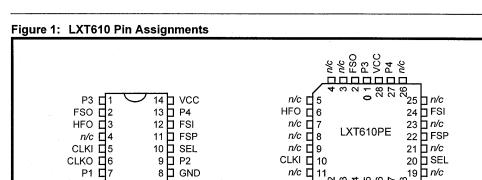
The LXP610 Multi-Rate Clock Adapter (CLAD) offers pin-selectable frequency conversion between T1 and E1 rates as well as 8 additional rates from 1.544 MHz to 8.192 MHz. The output clock is frequency-locked to the input clock. When an input frame sync pulse is provided, the CLAD phase-locks the input and output clocks together, and locks the 8 kHz output frame sync pulse to the input frame sync pulse. The frame sync polarity is also pin-selectable.

Five different high frequency output clocks are available for applications which require a higher-than-baud rate backplane or system clock. The high frequency output (HFO) clock varies with the input clock frequency.

Level One's patented locking method enables the CLAD to perform frequency conversion with no external components, while generating very little jitter on the output clock. The conversion is digitally controlled so the output clock is as accurate as the input clock.


The CLAD is an advanced CMOS device. It requires only a single +5 V power supply.

Features


- Translates between 10 different frequencies. Generates basic and high frequency output clocks and frame sync from an input clock and its frame sync.
- High Frequency Output clock for higher-than-baud rate backplane systems
- Low output jitter meets AT&T Publication 62411 for 1.544 MHz, and ITU Recommendation G.823 for 2.048 MHz
- Digital control of frequency conversion process
- No external components
- · Pin-selectable operation mode
- Low-power 5 V only CMOS in 14-pin plastic DIP or 28-pin PLCC

Applications

- Internal timing system for Channel Banks, Digital Loop Carriers, Multiplexers, Internal Timing Generators, etc.
- Conversion between T1/E1 clock rates and higher frequency backplane rates (T1/E1 converter)
- Special backplane interfaces (e.g. NTI 2.56 MHz)

LXP610 Low-Jitter Multi-Rate Clock Adapter (CLAD)

Table 1: Pin Descriptions

CLKO 6

P1 07

LXP610NE

Pi	Pin # Sym I/O		1/0	Description						
DIP	PLCC									
1 7 9 13	1 14 16 27	P3 P1 P2 P4	I I I I	Program Pins 3, 1, 2, 4. Program pins control frequency conversion and FSO pulse width in conjunction with the SEL pin as listed in Table 2.						
2	2	FSO	0	Frame Sync Output. Frame synchronization output at 8 kHz. FSO is synched to CLKO and to FSI (if FSI is provided.) Active Low unless FSP = 1.						
3	6	HFO	0	High Frequency Output. A high frequency output which can be used to clock external devices. HFO outputs are determined in accordance with Table 2.						
5 .	10	CLKI	I	Clock Input. Primary rate clock to be converted.						
6	13	CLKO	0	Clock Output. Primary rate clock derived from CLKI.						
8	15	GND		Ground.						
10	20	SEL	1	Mode Select. Controls frequency conversion and FSO pulse width in conjunction with Program pins 1-4, as listed in Table 2.						
11	22	FSP	I	Frame Sync Polarity. When High, causes FSI and FSO to be active High pulses.						
12	24	FSI	I	Frame Sync Input . Frame synchronization pulse (8 kHz or any sub-rate multiple). Active Low when FSP = 0. Active High when FSP = 1.						
14	28	VCC	I	Power Supply Input. +5 V power supply input.						

n/c 11

n/c|

20 SEL

CLKO [P1 [GND [P2 [P2 [P2 [P2 [P2 [

FUNCTIONAL DESCRIPTION

The CLAD converts an input clock (CLKI) at a particular frequency to an output clock (CLKO) at a different frequency. It also produces a frame sync output (FSO) and a high frequency output clock (HFO). The HFO frequency is a multiple (2x, 3x, 4x, or 5x) of CLKO. The specific frequencies are determined by the Mode Select (SEL) and Program (P1 - P4) inputs. Tables 2 and 3 list the CLKO and HFO frequencies available with a given input CLKI. (Table 2 is keyed to Program Pin settings; Table 3 is keyed to CLKI frequencies.) Refer to Test Specifications for output frame sync alignments.

CLKO is always frequency-locked to CLKI. When a frame sync input (FSI) is supplied, CLKI and CLKO are also phase-locked. The CLAD accepts FSI pulses at 8 kHz, or at any sub-rate multiple (i.e., 1, 2 or 4 kHz). The frame sync output (FSO) pulse is synchronized to the FSI pulse.

When an 8 kHz FSI is first asserted, the CLKI and CLKO rising edges will be aligned within a maximum of 500 ms. For other FSI rates, the alignment period is correspondingly lengthened. For example, at 4 kHz, the FSI/FSO alignment is completed within a maximum of one second.

If an input frame sync pulse is not provided, the FSI pin should be tied High or Low. CLKO and FSO are still generated with the CLKO frequency locked to CLKI.

Output Jitter

The CLAD output jitter meets the following specifications:

- 2.048 MHz or 4.096 MHz to 1.544 MHz: In this mode of operation, the CLAD meets the output jitter requirements of AT&T Publication 62411. When there is no jitter on input clock CLKI, the maximum jitter on CLKO is 0.020 UI pp with no bandlimiting, 0.010 UI in the 10 Hz - 40 kHz band, and 0.012 UI in the 8 - 40 kHz band.
- <u>1.544 MHz to 2.048 MHz or 4.096 MHz</u>: In this mode of operation when there is no on, jitter input clock CLKIjitter on input clock CLKI, maximum, the jitter on CLKO is 0.035 UI pp over the maximum jitter on CLKO is 0.035 UI pp over the range of 20 Hz to 100 kHz, 0.025, and UP pp in the 18-100 KHz and 0.025 UP pp in the 18-100 kHz band.

Table 2: Program Pin Functions								
Mode Select		SEL = 0				SEL	. = 1	
P4 P3 P2 P1	CLKI	CLKO	HFO	FSO	CLKI	CLKO	HFO	FSO
0 0 0 0	1.544	2.048	6.144	Long (L)	2.048	3.088	6.176	L
0 0 0 1	3.088	2.048	8.192	Short (S)	2.048	3.088	6.176	L
0 0 1 0	1.544	2.048	6.144	L	2.048	1.544	6.176	L
0 0 1 1	1.544	2.048	8.192	S	2.048	1.544	6.176	L
0 1 0 0	1.544	2.560	7.680	L	2.560	1.544	7.720	L
0 1 0 1	6.176	4.096	8.192	L	8.192	3.088	6.176	L
0 1 1 0	1.544	2.560	7.680	L	2.560	1.544	7.720	L
0 1 1 1	6.176	2.048	8.192	S	8.192	1.544	6.176	L
1 0 0 0	3.088	2.048	6.144	L	2.048	3.088	6.176	L
1 0 0 1	3.088	4.096	8.192	L	4.096	3.088	6.176	L
1010	3.088	2.048	6.144	L	2.048	3.088	6.176	L
1011	1.544	4.096	8.192	L	4.096	1.544	6.176	L
1 1 0 0	6.176	2.560	7.680	L	2.560	1.544	7.720	L
1 1 0 1	6.176	4.096	8.192	L	8.192	3.088	6.176	Ļ
1 1 1 0	6.176	2.560	7.680	L	2.560	1.544	7.720	L
1 1 1 1	6.176	4.096	8.192	L	8.192	1.544	6.176	L

Table 2: Program Pin Functions

6

Jitter Transfer

The CLAD is sensitive to jitter on the input clock in certain frequency bands The jitter transfer curve is determined by the frequency and amplitude of the input jitter. Test Specification Figures 4 and 5 show nominal jitter transfer measured in nanoseconds. These figures graph output jitter (less intrinsic jitter) divided by input jitter (0.25 Ul). Jitter transfer from a 2.048 MHz CLKI to a 1.544 MHz CLKO is shown in Figure 4. In this mode, jitter in the critical 8 kHz

band is attenuated while jitter in the 18 - 70 kHz band is transferred with a small net gain. Jitter transfer from a 1.544 MHz CLKI to a 2.048 MHz CLKO is shown in Figure 5. In both modes, with an input jitter level of 0.25 UI, jitter transfer is held below a net gain of 1.110. (Jitter transfer varies with the input jitter level. Performance in a particular application should be verified in the actual circuit.)

CLKI	CLKO	HFO	FSO	P4 P3 P2 P1	SEL
1.544	2.048	6.144	Long (L)	0 0 X 0	0
1.544	2.048	8.192	Short (S)	0 0 1 1	0
1.544	2.560	7.680	L	0 1 X 0	0
1.544	4.096	8.192	L	1 0 1 1	0
2.048	1.544	6.176	L	0 0 1 X	1
2.048 2.048	3.088 3.088	6.176 6.176	L L	0 0 0 X 1 0 X 0	1 1
2.560	1.544	7.720	L L	X 1 X 0	1
3.088	2.048	6.144	L	1 0 X 0	0
3.088	2.048	8.192	S	0 0 0 1	0
3.088	4.096	8.192	L	1 0 0 1	0
4.096	1.544	6.176	L	1 0 1 1	1
4.096	3.088	6.176	L	1 0 0 1	1
6.176	2.048	8.192	S	0 1 1 1	0
6.176	2.560	7.680	L	1 1 X 0	0
6.176 6.176	4.096 4.096	8.192 8.192	L L	0 1 0 1 1 1 X 1	0 0
8.192	1.544	6.176	L	X 1 1 1	1
8.192	3.088	6.176	L	X 1 0 1	1

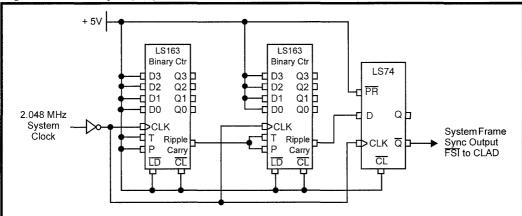
Table 3: Input to Output Frequency Conversion Options

APPLICATION INFORMATION

Frame Sync Generation

A frame sync pulse is required to synchronize the input and output clocks. If a frame sync pulse is not provided on the backplane, one can be generated from the existing 2.048 MHz backplane clock. A typical FSI generation circuit is shown in Figure 2.

Power Supply Decoupling and Filtering


The LXP610 CLAD is designed to meet AT&T Publication 62411 specifications for jitter in the range from 10 Hz to 100 kHz. Proper power supply decoupling is critical for meeting these specifications. As shown in Figure 3, a standard 0.1 μ F bypass capacitor is recommended.

The CLAD is a monolithic silicon device which incorporates both analog and digital circuits. CLAD application circuit design may require closer attention to power supply filtering and bypassing than required for strictly digital devices. Switching power supplies which operate below 100 kHz may produce noise spikes which can affect the analog sections of the CLAD. These spikes should be filtered with an RC network at the CLAD VCC pin.

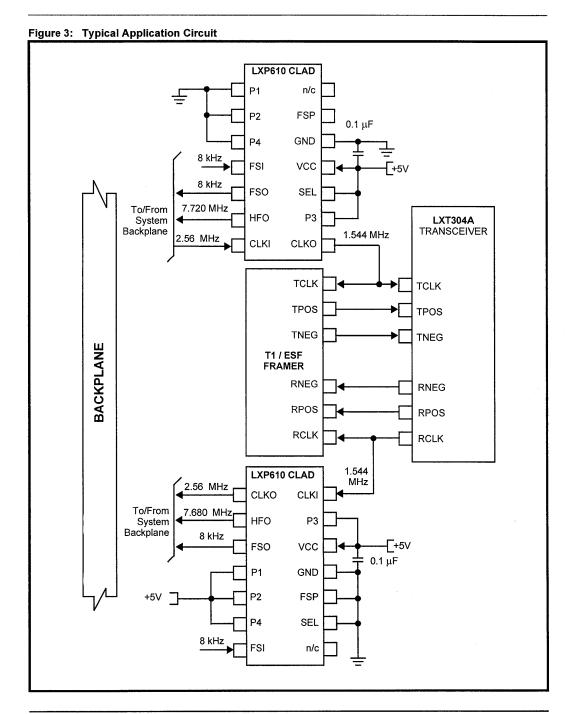

Typical Application

Figure 3 shows a typical application circuit using a pair of LXP610 CLADs to convert between the 2.56 MHz backplane frequency and the 1.544 MHz T1 rate. The CLAD at the top of the figure provides the 1.544 MHz TCLK for the T1 framer and transceiver. For conversion from 2.56 MHz to 1.544 MHz, P1, P2, and P4 are tied Low; and P1 and SEL are tied High. In this configuration, the LXP610 HFO is 7.720 MHz.

The CLAD at the bottom of Figure 3 produces the 2.56 MHz backplane clock. For conversion from 1.544 MHz to 2.56 MHz, P1, P2, P3 and P4 are tied High; and SEL is tied Low. The HFO produced in this configuration is 7.680 MHz.

Figure 2: Frame Sync (FSI) Generation Circuit

LXP610 Low-Jitter Multi-Rate Clock Adapter (CLAD)

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 4 through 8 and Figures 4 through 11 represent the performance specifications of the LXT610 and are guaranteed by test, except where noted by design.

Table 4: Absolute Maximum Values

Parameter	Symbol	Min	Max	Units
Supply voltage (referenced to GND)	RV+, TV+	-0.3	7.0	v
Voltage, any I/O pin	VIO	GND - 0.3	VCC + 0.3	V
Current, any I/O pin ¹	lio	-10	10	mA
Storage temperature	TSTG	-65	+150	°C
Power dissipation	PD	-	340	mW

CAUTION

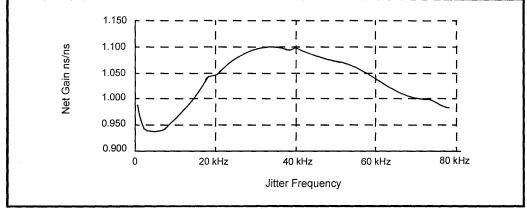
Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

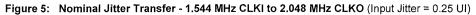
1. Transient currents of up to 100 mA will not cause SCR latch-up.

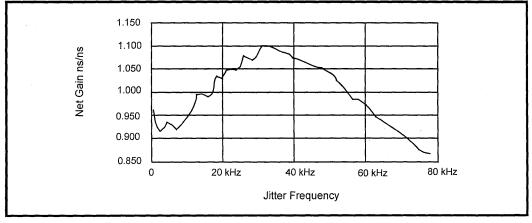
Table 5: Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions		
Supply voltage ¹	Vcc	4.75	5.0	5.25	V			
Supply current	ICC	-	-	8	mA	No TTL loading		
	ICC	-	-	14	mA	Full TTL loading		
Operating temperature	Тор	-40	-	85	°C			
1. Voltages with respect to ground unless otherwise specified.								

Table 6: Digital Electrical Characteristics (Over Recommended Range)


Parameter	Sym	Min	Max	Units
Input Low voltage	VIL	-	0.8	V
Input High voltage	VIH	2.0	-	V
Output Low voltage (IOL = +1.6 mA)	VOL	-	0.4	V
Output Low voltage (IOL $< +10 \mu A$)	VOL	-	0.2	V
Output High voltage (IOH = -0.4 mA)	Voh	2.4	-	V
Output High voltage (IOH < -10 µA)	Voh	4.5	-	V
Input leakage current	ILL	-10	10	μA


Parameter Sym		Frequency	Spec ¹	Typ ²	Max	Units	Test Conditions	
Output Jitter on CLKO		No Bandlimiting	0.050	0.010	0.20	UI pp	CLKI=2.048 or 4.096 MHz	
CLKO=1.544 MHz	TJ1	10 Hz to 40 kHz	0.025	0.005	0.010	UI pp	JI=0	
		8 kHz to 40 kHz	0.025	0.006	0.012	UI pp	FSI applied	
Output Jitter on CLKO	TJ2	20 Hz to 100 kHz	1.500	0.025	0.035	UI pp	CLKI=1.544 MHz,	
CLKO=2.048 MHz	I JZ	18 kHz to 100 kHz	0.200	0.015	0.025	UI pp	$\frac{JI=0}{FSI}$ applied	
1. Specifications from AT&T Publication 62411 and ITU Recommendations G.823 (for 1.544 MHz and 2.048 MHz, respectively).								


Table 7: Output Jitter Specifications

Specifications from AT&T Publication 62411 and ITU Recommendations G.823 (for 1.544 MHz and 2.048 MHz, respectively)
 Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

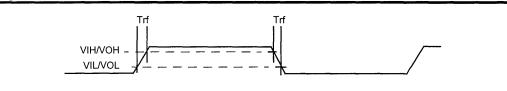


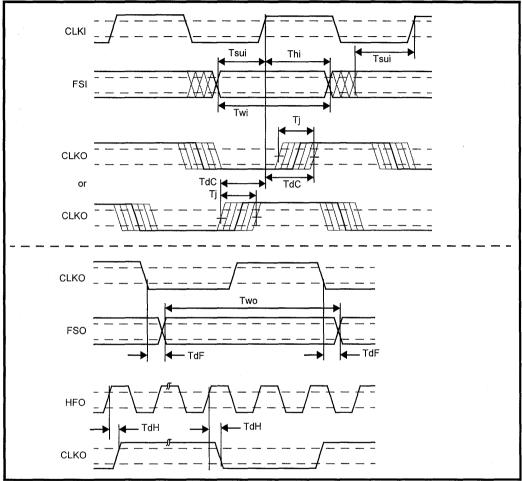
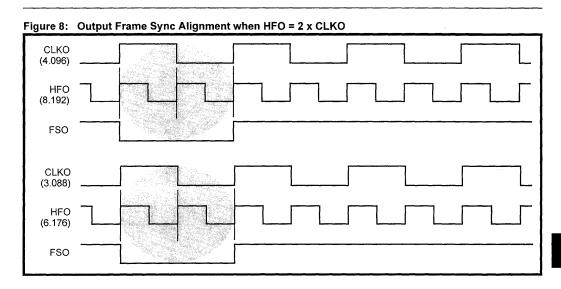
Table 8: Timing Values (see Figure 6)

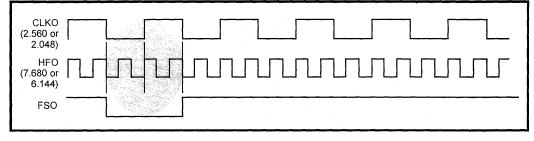
Parameter	Sym	Minimum	Maximum	Units
Capture range on CLKI	-	±10000		ppm
Lock range on CLKI	-	±10000	-	ppm
Input clock duty cycle	-	35	65	%
Rise/fall time on CLKI, FSI	Trf	-	40	ns
Rise/fall time on CLKO, FSO, HFO with a 25 pF load	Trf	_	40	ns

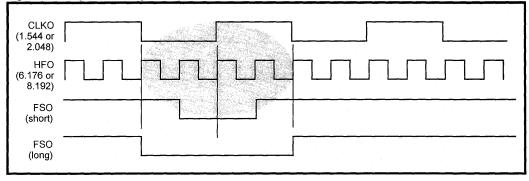
Figure 6: Rise and Fall Times

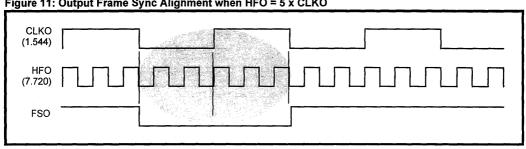
Table 9: Timing Values (see Figure 7 through Figure 11)

Parameter	Sym	Minimum	Тур	Maximum	Units
FSI setup time from CLKI rising	Tsui	46	-	-	ns
FSI/CKLI hold time	Thi	30	-	-	ns
FSI pulse width (Low)	Twi	76	_	TCLKI ¹	ns
CLKO delay from CLKI	TdC	-15	0	+15	ns
CLKO duty cycle	Cdc	49	_	51	%
FSO delay from HFO	TdF	-5	-	30	ns
FSO pulse width (low)	Two		_	TCLKO ²	ns
CLKO delay from HFO	Тдн	-15		+15	ns
1. TCLKI is the period of CLKI. 2. TCLKO is the period of CLKO.				· · · · · · · · · · · · · · · · · · ·	


Figure 7: Timing Relationships - FSI / CLKI to CLKO / FSO and HFO


Test Specifications



LEVEL

6

LXP610 Low-Jitter Multi-Rate Clock Adapter (CLAD)

Figure 11: Output Frame Sync Alignment when HFO = 5 x CLKO

1997 Communications Data Book

Digital Subscriber Line (DSL) Products

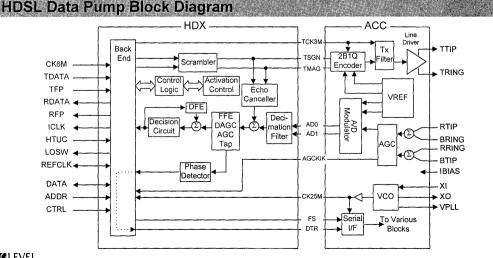
1997 Communications Data Book

DATA SHEETAllSK70704/SK70706784 kbps HDSL Data Pump Chip Set

General Description

The HDSL Data Pump is a chip set consisting of the following two devices:

- SK70704 Analog Core Chip (ACC)
- SK70706 HDSL Digital Transceiver (HDX)


The HDSL Data Pump is a 2-wire transceiver which provides echo-cancelling and 2B1Q line coding. It incorporates transmit pulse shaping, filtering, line drivers, receive equalization, timing and data recovery to provide 784 kbps, clear-channel, "data pipe" transmission. The Data Pump provides Near-End Cross-Talk (NEXT) performance in excess of that required over all ANSI and ETSI test loops. Typical transmission range on 26 AWG (0.4 mm) cable exceeds 13 kft (4 km) in a noise-free environment or 9.5 kft (2.9 km) with ANSI-specified noise levels.

The Data Pump meets the requirements of Bellcore TA-NWT-001210, ANSI T1 Technical Report No. 28-1994 and ETSI ETR-152. It provides one end of a single-channel HDSL transmission system from the twisted pair interface back to the Data Pump/HDSL data interface. The Data Pump can be used at either the HTU-R or the HTU-C end of the interface.

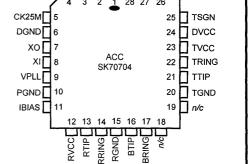
Applications

- T1 (2-pair) and fractional T1 transport
- · N-channel digital pair-gain
- · Wireless base station to switch interface
- · Campus and private networking
- · High-Speed digital modems

- Features
 - Fully integrated, 2-chip set for interfacing to 2-wire HDSL lines at 784 kbps
 - Single +5 V supply
 - Integrated line drivers, filters and hybrid circuits result in greatly reduced external logic and simplified support circuitry requirements
 - Simple line interface circuitry, via transformer coupling, to twisted pair line
 - Internal ACC voltage reference
 - Converts serial binary data to scrambled 2B1Q encoded data
 - Self-contained activation/start-up state machine for simplified single loop designs
 - Programmable for either central office (HTU-C) or remote site (HTU-R) applications
 - Compliant with:
 - Bellcore TA-NWT-001210
 - ANSI HDSL Technical Report No. 28-1994
 - ETSI ETR-152 (1995)
 - Design allows for operation in either Software Control or stand alone Hardware Control mode
 - Typical power consumption less than 1.0 W allowing remote power feeding for repeater and HTU-R equipment
 - · Input or Output Reference Clock of 12.544 MHz
 - Digital representation of receive signal level and noise margin values available for SNR controlled activation.

7

AUGUST 1997 Revision 2.0


SK70704/SK70706 784 kbps HDSL Data Pump Chip Set

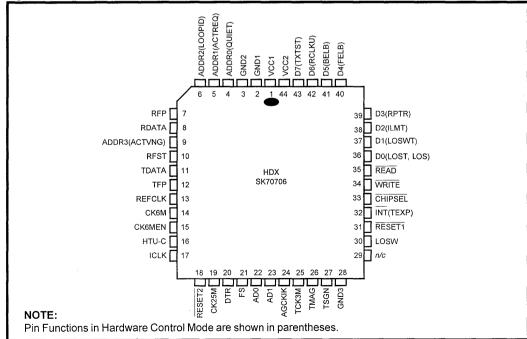
PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

The ACC is packaged in a 28-pin PLCC. Figure 1 shows the ACC pin locations. Table 1 lists signal descriptions for each pin, except pins 18 and 19, which are not connected.

The HDX is packaged in a 44-pin PLCC. Figure 2 shows the HDX pin locations. Table 2 lists signal descriptions for each pin, including pin 29, which is not connected.

Figure 1: SK70704 ACC Pin Locations

Table 1: SK70704 ACC Pin Assignments/Signal Descriptions


Group	Pin#	Symbol	I/O ¹	Description
Line	13	RTIP	AI	Receive Tip and Ring inputs. Connect these pins to the line transformer per network requirements.
	14	RRING	AI	per network requirements.
	16	BTIP	AI	Bias Tip and Ring. Inputs provide a bias setting for the receiver. Provide balanced network inputs.
	_ 17	BRING	AI	balanced network inputs.
	21	TTIP	AO	Transmit Tip and Ring. Line driver outputs.
	22	TRING	AO	
PLL	7	хо	AO	Crystal Oscillator. Connect a 25.088 MHz crystal across these two pins.
	8	XI	AI	
	9	VPLL	AO	PLL Voltage Control. Supplies control voltage to the VCXO.
Power	10	PGND	S	PLL Ground. 0 V.
	12	RVCC	S	Receive Power supply. +5 V (± 5%).
	23	TVCC	S	Transmit Power supply. +5 V (± 5%).
ſ	24	DVCC	S	Digital Power Supply. +5 V (± 5%).
	6	DGND	S	DVCC Ground. 0 V.
	15	RGND	S	RVCC Ground. 0 V.
	20	TGND	S	TVCC Ground. 0 V.
		DI = Digital Input Output; S = Supp		al Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output;

Group	Pin#	Symbol	I/O ¹	Description	
Clock	3	FS	DI	392 kHz Clock Input. From HDX FS.	
and Control	4	DTR	DI	Serial Control Data. Input from HDX at 12.544 Mbps.	
	5	CK25M	DO	25.088 MHz HDSL Reference Clock. Used as the receive timing reference for the HDX. Tie to HDX CK25M.	
	27	ТСК3М	DI	3.136 MHz Clock. Input from HDX TCK3M.	
Data	28	AGCKIK	DO	AGC Adjust Signal. Output to HDX AGCKIK.	
Input and	1	AD1	DO	A-to-D Converter Data Line 1. Connect to HDX AD1.	
Output	2	AD0	DO	A-to-D Converter Data Line 0. Connect to HDX AD0.	
	25	TSGN	DI	Transmit Quat Sign. Input from HDX.	
	26	TMAG	DI	Transmit Quat Magnitude. Input from HDX.	
Analog Input	11	IBIAS	AI	Input Bias. Provides input bias current.	
	 I //O column entries: DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output; AI/O = Analog Input/Output; S = Supply. 				

Table 1: SK70704 ACC Pin Assignments/Signal Descriptions - continued

Figure 2: SK70706 HDX Pin Assignments

Group	Pin#	Symbol	I/O ⁴	Description
Power	1	VCC1	S	Logic supply input. (Refer to Table 27)
	44	VCC2	S	I/O supply input.
	2	GND1	S	Ground.
	3	GND2	S	Ground.
	28	GND3	S	Ground.
User Port	10	RFST	DO	Receive Frame and Stuff Bit Indicator. Goes High for 18 consecutive ICLK periods to indicate four stuffing bits (b4703 - 4706) and 14 frame bits (b1-14) on RDATA.
	13	REFCLK	DI ¹ DO	12.544 MHz HDSL Reference Clock. In HTU-C Mode, this clock generates transmit and receive timing and must have ± 32 ppm accuracy. In HTU-R Mode, this output is derived by dividing CK25M by two.
	16	HTU-C	DI	Operation Mode Select. When HTU-C is High, the Data Pump operates in HTU-C mode; when HTU-C is Low, the Data Pump operates in HTU-R mode. Tied to internal pull-up device.
	17	ICLK	DO	Bit Rate Clock. Nominally 784 kHz, REFCLK is the source of ICLK in HTU-C Mode. CK25M is the source of ICLK in HTU-R Mode.
	30	LOSW	DO	Loss of Sync Word Indicator. Normally Low in Active States, goes High to indicate receipt of six consecutive mismatched frame synch words. LOSW is logic High in all states except Active States.
	8	RDATA	DO	Receive HDSL Data Stream. Output data to HDSL framer at 784 kbps: HDSL payload of Loop 1 or Loop 2 bytes plus the F-bits, eoc, crc, losd, febe, ps, bpv, hrp, indc/indr and uib bits, Sync bits for frame positions b1-14, Stuff bits for frame positions b4703 - 4706. RDATA bits are forced high in all states except the Active State.
	7	RFP	DO	Receive Frame Pulse. Low for one ICLK cycle during the last bit of the current HDSL receive frame on RDATA, either b4702 or b4706. Period is within one baud time of 6 ms. ² RFP is valid when LOSW transitions Low.
	11	TDATA	DI1	 Transmit HDSL Data Stream. Input data from HDSL framer at 784 kbps: HDSL payload of Loop 1 or Loop 2 bytes plus the F-bits, eoc, crc, losd, febe, ps, bpv, hrp, indc/indr and uib bits, Sync bits for frame positions b1-14, Stuff dummy bits; may be 1s or 0s. Tied to internal pull-up device. When ACTIVE, the Data Pump is transparent and the HDSL framer must generate the appropriate bits on TDATA as shown in Table 5.
	12	TFP	DI ¹	Transmit Frame Pulse. Should be Low for one ICLK cycle the during last bit of the current HDSL frame on TDATA, either b4702 or b4706. Period is within one baud time of 6 ms. ² If TFP is pulled Low and is Low again three ICLK cycles later, RDATA, RFP, RFST, ICLK, CK6MEN, and LOSW go to tri-state. Tied to internal pull-up device.

SK70706 HDX Pin Assignments/Signal Descriptions Table 2:

This input is a Schmidt Triggered circuit and includes an internal pull-up device.
 The period is 6 ms ±¹/₃₀₂ ms.
 This input is a Schmidt Triggered circuit and includes an internal pull-down device.
 I/O column entries: DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output; AI/O = Analog Input/Output; S = Supply.

Pin Assignments and Signal Descriptions

Group	Pin#	Symbol	I/O ⁴		Description		
Hardware Interface	4	QUIET	DI ³		nable. Pull High to force HDX into Deactivated State. Any to Low will not return HDX to Active State. See ACTREQ.		
(Hardware Control Mode)	5	ACTREQ	DI ³	this pin Low in	quest (HTU-C mode) or no function (HTU-R mode). Tie HTU-R mode. If QUIET is Low, a rising edge on this pin ion, but the signal is ignored after activation. See QUIET.		
	6	LOOPID	DI ³ /O	(HTU-R mode mode, output fo is Low.	Control (HTU-C mode) or Loop Number Indicator). Low = loop 1; High = loop 2. Input Signal for HTU-C or HTU-R mode. In HTU-R mode valid only when LOSW <i>SI recommendation uses overhead bits for loop identifica</i> -		
	9	ACTVNG	DO	Activating Sta State.	te Indication. High when the HDX is in the Activating		
	18	RESET2	DI ¹	Reset Pulse. P	ull Low on power up to initialize circuits and stop all clocks.		
	31	RESET1	DI ¹	Reset Pulse. P	Reset Pulse. Pull Low to initialize internal circuits.		
	33 CHIPSEL DI ³ Chip Select Assert these three pins Low to active		Goes High to indicate 30 second timer expiration in all				
			Assert these three pins Low to activate Hardware Control				
	34	WRITE	DI ³	Write Pulse	Mode. When any of them goes High, the HDX reverts immediately to Software Control Mode.		
	35	READ	DI ³	Read Pulse			
	36	LOST (HTU-C)	HTU-C) when the Data Pump enters the Inactive State. The tran Deactivated to the Inactive State occurs 1 second after sion by the HTU-R when deactivation began from eithe Active-2 State. When the Data Pump transitions from the	Timer Expiration. In HTU-C mode, LOST goes High Pump enters the Inactive State. The transition from the the Inactive State occurs 1 second after the end of transmis- U-R when deactivation began from either the Active-1 or When the Data Pump transitions from the Activating State ted State it may immediately enter the Inactive State without U-R transmission to cease. (See Figure 6.)			
		LOS <i>(HTU-R)</i>	DO		Energy Indicator. In HTU-R mode LOS goes High to signal energy on entering the Inactive State. (See Figure 8.)		
	37	LOSWT	DO	Loss of Sync V for longer than	Vord Timer. LOSWT goes High when LOSW is sustained 2 sec.		
	38	ILMT	DI1	scrambled, "all valid sync word	Measurement Test. Set High to transmit a framed & 1s", 2B1Q pulse sequence. Pulse sequence will have a d. In the HTU-R configuration, when the ILMT mode is ata Pump may begin activation.		
	39	RPTR	DI1		e Enable. When in HTU-C mode, ICLK output phase is TFP input pulse width. Ignored in HTU-R mode.		
	40	FELB	DI	Front-End Loopback (HTU-C only). In Inactive State, set High the ACC to loopback. The returned signal activates the HDX wh receives its own transmitted data. The system ignores incoming de HTU-R during loopback irrespective of status.			

Table 2. <u> </u> ntinued 700 11

This input is a Schmidt Triggered circuit and includes an internal pull-up device.
 The period is 6 ms ±¹/₃₀₂ ms.
 This input is a Schmidt Triggered circuit and includes an internal pull-down device.
 Tho common entries: DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output; AI/O = Analog Input/Output; S = Supply.

Group	Pin#	Symbol	I/O ⁴	Description
Hardware Interface (Hardware	41	BELB	DI ¹	Back-End Loopback. In Active State a High forces an internal, transparent loopback with RDATA connected to TDATA and RFP connected to TFP.
Control Mode) -cont'd	42	RCLKU	DO	Receive Baud Rate (392 kHz) Clock. Aligned with ICLK in HTU-R mode, phase synchronous with receive pulse stream, However, during Activating State, the clocks may not be aligned. In the HTU-C mode RCLKU has a constant, arbitrary, phase relationship with ICLK in Active State.
	43	TXTST	DI	Transmit Test. Set high to enable isolated transmit pulse generation. The time between pulses is approximately 6 ms. TDATA controls the sign and TFP controls the magnitude of the transmitted quat pulses according to the 2B1Q encoding rules. In the HTU-R configuration, when the TXTST mode is selected, the Data Pump may begin activation.
Processor	36	D0	DI ¹ /O	Data bit 0. Eight-bit, parallel data bus.
Interface	37	D1	DI ¹ /O	Data bit 1
(Software	38	D2	DI ¹ /O	Data bit 2
Control	39	D3	DI ¹ /O	Data bit 3
Mode)	40	D4	DI ¹ /O	Data bit 4
	41	D5	DI ¹ /O	Data bit 5
	42	D6	DI ¹ /O	Data bit 6
	43	D7	DI ¹ /O	Data bit 7
	4	ADDR0	DI ³	Address bit 0. Four-bit address, selects read or write register.
	5	ADDR1	DI ³	Address bit 1
	6	ADDR2	DI ³	Address bit 2
	9	ADDR3	DI ³	Address bit 3
	18	RESET2	DI1	Reset Pulse. Pull Low on power up to initialize circuits and stop all clocks.
	31	RESET1	DI1	Reset Pulse. Pull Low to initialize internal circuits. ICLK continues.
	32	ĪNT	DO	Interrupt Output. Open drain output. Requires an external 10 k Ω pull up resistor. Goes Low on interrupt.
	33	CHIPSEL	DI ³	Chip Select. Pull Low to read or write to registers.
	34	WRITE	DI ³	Write Pulse. Pull Low to write to registers.
	35	READ	DI ³	Read Pulse. Pull Low to read from registers.
Misc.	29	n/c		No internal connection
1. This input is a 2. The period is 6	Schmidt T ms $\pm 1/392$	ms.		es an internal pull-up device.

Table 2:	SK70706 HDX Pin Assignments/Signal Descriptions – continued
----------	---

Ihe period is 6 ms ± 1/392 ms.
 This input is a Schmidt Triggered circuit and includes an internal pull-down device.
 I/O column entries: DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output; AI/O = Analog Input/Output; S = Supply.

Pin Assignments and Signal Descriptions

Group	Pin#	Symbol	I/O ⁴	Description
Clock and Control	14	CK6M	DI ³	6.272 or 12.544 MHz Reference Clock. Mandatory in HTU-R mode. Tie High or Low in HTU-C Mode. Clock input requires ± 32 ppm accuracy.
	15	CK6MEN	DO	CK6M Enable. Active High enable for CK6M clock. In HTU-R mode, this pin goes Low to indicate the PLL is tracking the input signal from the HTU-C. Not used in HTU-C.
l	19	CK25M	DI	Receive Timing Clock (25.088 MHz). Tie to CK25M on ACC.
	20	DTR	DO	Serial Control Data Link. Transfers data at 12.544 Mbps. Tie to DTR on ACC.
	21	FS	DO	392 kHz Clock . Derived from CK25M. Tie to FS on ACC.
	22	AD0	DI	Analog to Digital Converter input pin. Tie to AD0 on ACC
	23	AD1	DI	Analog to Digital Converter input pin. Tie to AD1 on ACC
	24	AGCKIK	DI	AGC Adjust Signal. Controls analog gain circuit. Tie to AGCKIK on ACC.
	25	TCK3M	DO	Transmit Clock. Tie to TCK3M on ACC.
ļ	26	TMAG	DO	Transmit Magnitude Bit. Tie to TMAG on ACC.
	27	TSGN	DO	Transmit Sign Bit. Tie to TSGN on ACC.

Table 2: SK70706 HDX Pin Assignments/Signal Descriptions - continued

This input is a Schmidt Triggered circuit and includes an internal pull-up device.
 The period is 6 ms ±¹/₃₉₂ ms.
 This input is a Schmidt Triggered circuit and includes an internal pull-down device.
 I/O column entries: DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output; AI/O = Analog Input/Output; S = Supply.

FUNCTIONAL DESCRIPTION

The HDSL Data Pump is a fully-integrated, two-chip solution (see block diagram on front page) which includes an SK70704 Analog Core Chip (ACC) and an SK70706 HDSL Digital Transceiver (HDX).

Transmit

The transmit data stream is supplied to the HDX at the TDATA input in a binary fashion. The HDX scrambles and 2B1Q encodes the data and adds the sync word and stuff quats based on the TFP frame pulse position. The injected stuff quats in a frame are equal to the last scrambled data symbol in that frame. The 2B1Q encoded transmit quat data stream (TSGN / TMAG) is then passed to the ACC which filters and drives it onto the line. For additional details on the transmit function, refer to Component Description.

Receive

The composite waveform of the receive signal plus transhybrid echo is filtered and converted to digital words at a rate of 392 k-words/second in the ACC. The ACC passes the digitized receive quat stream (AD0 and AD1) to the HDX. The HDX performs digital filtering, linear echo cancellation, frame recovery and descrambling. The HDX uses the transmit quat stream to generate the echo estimates and estimate error values. Using this error and the delayed transmit quat stream, the echo canceller coefficients are updated. The recovered, decoded and descrambled data is then output to the framer-mux from the HDX RDATA pin. For additional details on the receive function, refer to Component Description.

Control

The Data Pump offers two control modes - Hardware Mode and Software Mode. In Hardware mode the HDX receives control inputs via individually designated pins. In Software mode the HDX control data is supplied via an 8-bit parallel port. In either mode, communication between the HDX and the ACC is established via a unidirectional serial port (DTR).

Component Description

The following paragraphs describe the chip set components individually with reference to internal functions and the interfaces between Data Pump components.

Analog Core Chip (ACC)

The ACC incorporates the following analog functions:

- · the transmit driver
- · transmit and receive filters
- Phase-Locked Loop (PLL)
- · hybrid circuitry analog-to-digital converter

The ACC provides the complete analog front end for the HDSL Data Pump. It performs transmit pulse shaping, line driving, receive A/D, and the VCO portion of the receiver PLL function. Transmit and receive controls are implemented through the serial port. The ACC line interface uses a single twisted pair line for both transmit and receive. Table 1 lists the ACC pin descriptions. Refer to Test Specifications for ACC electrical and timing specifications.

ACC Transmitter

The ACC performs the pulse shaping and driving functions. The ACC transmitter generates a 4-level output of 1/(8*f(TCK3M)) defined by TMAG and TSGN. Table 3 lists 2B1Q pulse coding parameters. Refer to Test Specifications for frequency and voltage templates.

ACC Receiver

The ACC receiver is a sophisticated sigma-delta converter. It sums the differential signal at RTIP/RRING minus the signal at BTIP/BRING. The first A/D signal comes out of AD0 at a bit stream rate of 12.544 MHz. The second stage of the A/D samples the noise of the first and generates the AD1 bit stream at 12.544 MHz.

Receiver gain is controlled by the HDX via the AGC2-0 bits in the DTR serial control stream. The AGCKIK output from the ACC is normally Low. It goes High when the signal level in the sigma delta A/D is approaching its clipping level, signaling the HDX to lower the gain.

The VCO is part of a phase-locked loop (PLL) locked to the receive data baud rate using an external phase detector. The VCO frequency is varied by pulling an external crystal with external varactor diodes that are controlled by the VPLL output. The VPLL output is, in turn, controlled by the serial port VCO and PLL bits.

TSGN	TMAG	Output Symbol (quat)
1	0	+3
1	1	+1
0	1	-1
0	0	-3

ACC Transmit Control Table 3:

HDSL Digital Transceiver (HDX)

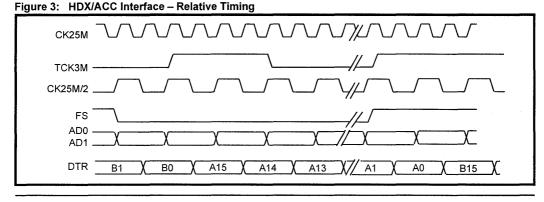
The HDX incorporates the following digital functions:

- · bit-rate transmit and receive signal-processing
- adaptive Echo-Cancelling (EC)
- · adaptive decision feedback-equalization (DFE) using the receive quat stream and the internal error signal
- · fixed and adaptive digital-filtering functions
- · activation/start-up control and the microprocessor interface to the HDSL framer.

The HDX also provides the Data Pump Back-End interface for the customer defined/developed HDSL framer via serial data channels and clock signals. A simple, parallel 8-bit microprocessor interface on the HDX allows highspeed access to control, status and filter coefficient words. Table 2 lists the HDX pin descriptions. Refer to Test Specifications for HDX electrical and timing specifications.

The microprocessor interface on the HDX provides bit flags for signal presence, synchronization, activation completion, and loss of synchronization for a time greater than two seconds. Single-byte words representing receive signal level and the noise margin of the transceiver are also available on the microprocessor interface. One control byte allows the user to start the Data Pump activation sequence. The HDX controls the complete activation/ start-up sequence, allowing flexible, single-loop, fractional applications.

HDX/ACC Interface


The ACC provides the 25.088 MHz master clock, CK25M, to the HDX. The serial control stream framing signal FS is sampled inside the ACC with the CK25M rising edge. The serial control stream, DTR, is sampled inside the ACC by the rising edge of an internally-generated clock at f(CK25M)/2. This ACC internal clock has the same phase relationship with a similar clock inside the HDX, as established by the FS signal. In the HDX, the half-rate clock CK25M/2 and FS transition on the rising edge of CK25M, and DTR transitions coincide with the falling edge of CK25M/2. The output REFCLK in HTU-R Mode is equal to CK25M/2.

The A/D converter outputs, AD0 and AD1, are clocked out of the ACC with CK25M, having transitions coincidental with the rising edge of CK25M/2. The HDX samples AD0 and AD1 with the falling edge of its internal CK25M/2.

Transmit data, represented by TSGN and TMAG, is clocked from the HDX using the falling edge of TCK3M, the 3.136 MHz (f(REFCLK)/4) transmit time base clock. The ACC uses the rising edge of TCK3M to sample TSGN and TMAG. TSGN and TMAG change state at the baud rate, or every 8 cycles of TCK3M. Figure 3 shows relative timing for the HDX/ACC interface.

HDX/ACC Serial Port

The HDX continually writes to the ACC serial port. This serial stream consists of two 16-bit words as shown in Table 4. The data flows from the HDX to the ACC at a rate of f(CK25M)/2. Refer to the Test Specifications section for serial port timing relationships and electrical parameters.

Line Interface

The Data Pump line interface consists of three differential pairs. The transmit outputs TTIP and TRING, receive inputs RTIP and RRING, and the balance inputs BTIP and BRING, all connect through a common transformer to a single twisted-pair line (see Figures 12 and 13). The transmit outputs require resistors in series with the transformer. A passive prefilter is required for the receive inputs. The balance inputs feed the transmit signals back to the Data Pump providing passive echo cancellation. Protection circuitry should be inserted between all Data Pump line interface pins and the transformer. Refer to the Applications section for typical schematics.

 Table 4:
 HDX/ACC Serial Port Word Bit Definitions (See Figure 3)

Bit	Word A (on DTR)	Word B (on DTR)
15	INIT	COR4
14	n/a	COR3
13	n/a	COR2
12	TXOFF	COR1
11	TXDIS	COR0
10	TXTST	VCO2
9	AGC2	VCO1
8	AGC1	VCO0
7	AGC0	PLL7
6	FELB	PLL6
5	n/a	PLL5
4	PTR4	PLL4
3	PTR3	PLL3
2	PTR2	PLL2
1	PTR1	PLL1
0	PTR0	PLLO

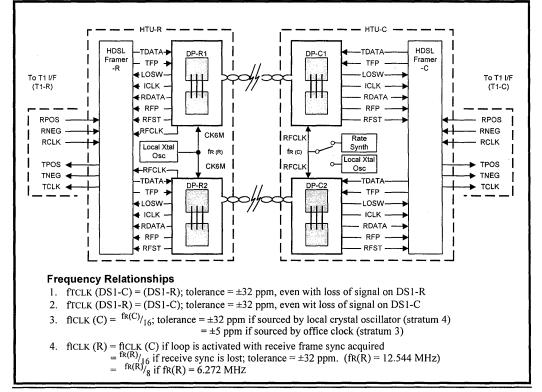
HDSL Data Interface

The HDSL data interface includes the transmit and receive binary data streams, transmit and receive frame pulses, the 784 kHz clock (ICLK) and the receive frame and stuff quat indicator (RFST). Figure 4 shows relative timing for the framer interface. Refer to Test Specifications section for details on the Data Pump/framer interface. Figure 6 shows a complete HDSL system with both the remote HTU-R and central office HTU-C HDSL framer interfaces illustrated. Table 5 shows the TDATA requirements for the framer interface through the activation sequence. Once the ACTIVE 0-to-1 transition occurs, the Data Pump becomes transparent. Therefore, the HDSL framer must supply appropriate data to TDATA. Table 5 summarizes this requirement.

Table 5: HDSL Framer TDATA Requirements

Activatio	n Process	TDATA		
Framer	Data Pump	Overhead	Data	
Idle	Activating	don't care	don't care	
Idle	Active 1	live	all 1s	
Active-R	Active 1	live	all 1s	
Active-T	Active 1	live	live	
Link Active	Active 1	live	live	
Link Active	Active 2	live	live	

Figure 4: HDX/ACC Framer Interface – Relative Timing
A) Transmit Timing–Without Stuff Bits
TFP
TDATA b4699 X b4700 X b4701 X b4702 X b1 X b2 X b3 X b4
B) Transmit Timing–With Stuff Bits
TFP
TDATA b4701 X b4702 X b4703 X b4704 X b4705 X b4706 X b1 X b2
C) Receive Timing–Without Stuff Bits
RFP
RDATA <u>b4699 b4700 b4701 b4702 b1 b2 (b14 b15</u>
RFST
D) Receive Timing–With Stuff Bits
RFP
RDATA <u>X b4702 b4703 x b4704 x b4705 x b4706 b1</u> (<u>b14 x b1</u> 5
RFST))


The HDSL framer interface is subject to the following rules:

- 1. When frame sync is not present (LOSW is High), all RDATA bits are set to 1.
- 2. If frame sync is lost on both Data Pump-R1 and Data Pump-R2, both units will fall back on the local reference frequency with ± 32 ppm tolerance, and stuff bits will be injected in their RDATA streams on every other frame. If frame sync is lost on either Data Pump-R1 or Data Pump-R2, that unit can be made to fall back on the REFCLK from the Data Pump-R which is still in frame sync, and stuff bits will be injected in the RDATA stream on every other frame of the out-of-frame Data Pump-R.
- If frame sync is lost on either Data Pump-C1 or Data Pump-C2, both unit's receiver will fall back on the reference clock with ± 32 ppm or ± 5 ppm tolerance, and inject stuff bits in the RDATA stream on every other frame.
- If either T1-R or T1-C loses sync or signal, it is assumed that the corresponding T1 receiver will fall back on a local reference with ± 32 ppm tolerance, and

that transmit bit-stuffing control will still be applied through the TFP signal from the HDSL framer.

- 5. The HDSL framer should provide TFP signal with a period of 6 ms $\pm 1/392$ ms prior to an activation request for the HTU-C Data Pump(s). The framer should provide a valid TFP after power-up, before or immediately after LOS goes Low for the HTU-R Data Pump(s).
- 6. If for any reason the TFP signal from the HDSL framer is inactive (always High or unconnected), then the Data Pump will inject stuff bits in the TDATA stream in every other frame, although the Data Pump will not be synchronized to the HDSL framer. When a new TFP is provided the Data Pump will immediately reset the transmit frame alignment, typically causing loss of alignment at the other end.
- A simultaneous RESET2 to all HTU-C Data Pumps which use a common REFCLK eliminates phase shift between the ICLK outputs which may exist after power-up.

The ICLK outputs of all HTU-R Data Pumps may have an arbitrary phase difference even using a common CK6M reference.

Figure 5: Model for HDSL Data Pump and HDSL Framer Applications

Microprocessor Interface (HDX)

Three primary control pins, CHIPSEL (Chip Select), READ and WRITE, execute the Software Mode which also uses an interrupt output pin to report status changes. Four additional pins are used for the parallel bus addressing and eight pins for data I/O. Refer to Test Specifications for µprocessor interface timing in Software Mode.

Control Pins

Chip Select: The Chip Select (CHIPSEL) pin requires an active Low signal to enable Data Pump read or write transfers over the data bus. To enable Hardware Mode hold this pin Low, along with READ and WRITE.

Data Read: The Data Read pin (READ) requires an active Low pulse to enable a read transfer on the data bus. When READ is pulled Low, the Data Pump data bus lines go from tristate to active and output the data from the register addressed by ADDR0-ADDR3. To avoid reading data during register updates, reads should be synchronized to the falling edge of FS. Alternatively, each read should be repeated until the same data is read twice within one baud time.

Data Write: The Data Write pin ($\overline{\text{WRITE}}$) requires an active Low pulse to enable a write transfer on the data bus. Data transfer is triggered by the rising edge of the $\overline{\text{WRITE}}$ pulse. To ensure data is written to the register addressed by ADDR0-ADDR3, valid data must be present on the HDX data bus lines before $\overline{\text{WRITE}}$ goes High.

Interrupt: The Interrupt pin (\overline{INT}) is an open drain output requiring an external pull-up resistor. The \overline{INT} output is pulled active Low when an internal interrupt condition occurs. \overline{INT} is latched and held until Main Status Register RD0 is read. An internal interruption results from a Low-to-High transition in any of four status indicators: ACTIVE, LOSW, LOSWT or TEXP. Any transition on LOS will also generate an interrupt. If an interrupt mask bit in register WR2 is set, any transition of the corresponding status bit will not trigger the \overline{INT} output.

Register Access

Write

To write to an HDX register, proceed as follows:

- 1. Drive CHIPSEL Low.
- 2.Drive an address (0000, 0010, or 0011) onto ADDR0-ADDR3.
- 3.Observe address setup time.
- 4.Set 8-bit input data word on D0-D7.
- 5.Pull WRITE Low, observing minimum pulse width.
- 6.Pull WRITE High, observing hold time for data and address lines.

Read

Procedures for reading the HDX registers vary according to which register is being read. Accessing registers RD0, RD1, RD2, RD5 and RD6 is relatively simple. Reading registers RD3 and RD4 is more complex. Unless parallel port reads are synchronized with the falling edge of FS, all read operations should be repeated until the same data is read twice within one baud time.

To read register RD0, RD1, RD2, RD5 or RD6 proceed as follows:

- 1. Drive CHIPSEL Low.
- 2. Pull READ Low, observing minimum pulse width.

3.Pull READ High to complete the read cycle.

Registers RD3 and RD4 hold the coefficient values from the DFE, EC, FFE and AGC as shown in Table 9. Register RD3 holds the lower byte value and register RD4 holds the upper byte value. To reconstruct the complete 16-bit word, concatenate the least significant and most significant bytes.

To read registers RD3 and RD4 proceed as follows:

- 1. Select the desired coefficient by writing the appropriate code from Table 9 to register WR3.
- 2.Enable the Coefficient Read Register by writing a 1 to bit b0 (CRD1) in register WR2.
- 3.Perform standard register read procedure listed in steps I through 6 above to read the lower byte from RD3 and the upper byte from RD4.
- 4.Concatenate the RD3 and RD4 to obtain the complete 16-bit word.

Registers

Three write registers and seven read registers are available to the user. Table 6 lists these registers and the following paragraphs describe them in more detail.

Some of the registers contain *reserved* bits. Software must deal correctly with reserved fields. For reads, software

must use appropriate masks to extract the defined bits and not rely on reserved bits being any particular value. In some cases, software must program reserved bit positions to a particular value. This value is defined in the individual bit descriptions.

After asserting the $\overrightarrow{\text{RESETI}}$ or $\overrightarrow{\text{RESET2}}$ signal, the Data Pump initializes its registers to the default value.

ADDR		Write Registers			Read Registers	
A3-A0	WR#	Name	Table	RD#	Name	Table
0000	WR0	Main Control	7	RD0	Main Status	10
0001		reserved	n/a	RD1	Receiver Gain Word	11
0010	WR2	Interrupt Mask	8	RD2	Noise Margin	12
0011	WR3	Read Coefficient Select	9	RD3	Coefficient Read Register (lower byte)	13
0100		reserved		RD4	Coefficient Read Register (upper byte)	13
0101		reserved		RD5	Activation Status	14
0110		reserved		RD6	Receiver AGC and FFE Step Gain	15
0111-1001		reserved			reserved	

 Table 6:
 Register Summary

WR0-Main Control Register

Address: A3-0 = 0000

Default 00h

Attributes: Write Only

Control Register bits serve the same purpose in Software Mode as the like-named individual pins in Hardware Mode. Table 7 lists bit assignments for the WR0 register.

Table 7: Main Control Register WR0

Bit	Description
b7	Transmit Test Pattern Enable (TXTST). Set TXTST to 1 to enable isolated transmit pulse generation. The time between pulses is 6 ms. TDATA controls the sign and TFP controls the magnitude of the transmitted symbols according to the 2B1Q encoding rules. In the HTU-R configuration when the TXTST mode is selected, the Data Pump may begin activation.
b6	Back-End Loop Back (BELB). In the Active State, set BELB to 1 to enable an internal, transparent loopback of the HDX RDATA to TDATA and RFP to TFP.
b5	Front End Loop Back (FELB). In the HTU-C mode with the Data Pump in the Inactive State, set FELB to 1 to enable an ACC front-end loopback. The Data Pump will begin activation and transmission on the line, but will ignore any signal from the HTU-R instead synchronizing to its own transmit signal.
b4	Repeater Mode (RPTR). The RPTR bit is set to 1 and the HTU-C pin is pulled High to program the Data Pump for operation on the side of the HDSL repeater driving the remote HTU-R. RPTR is set to 0 and the HTU-C pin is tied Low to program the Data Pump for operation on the side of the repeater driven by the central office HTU-C.
b3	Loop Control (LOOPID). For 2-pair ANSI HDSL applications, LOOPID defines the frame sync word format to encode the loop number in HTU-C mode. Set LOOPID to 0 for Loop1 or to 1 for Loop2. The Data Pump transmits a 7-quat, time-reversed, double-Barker code on Loop2. For 3-pair ETSI HDSL applications, LOOPID should be set to 0 on all loops because the loop number is encoded in the HDSL overhead using the Z bits.
b2	Insertion Loss Measurement Test (ILMT). Set ILMT to 1 to enable transmission of a scrambled all ones insertion loss measurement test pattern. In the HTU-R configuration when the ILMT mode is selected, the Data Pump may begin activation.
bl	Quiet Mode (QUIET). Set QUIET to 1 to force the Data Pump into the De-Activated State with the transmitter silent. Setting QUIET to 0 will not cause the Data Pump to reactivate. In the HTU-R mode, the Data Pump will not respond to an S0 signal from the HTU-C when QUIET is set to 1, but may activate after QUIET is set to 0 even if the HTU-C transmission has already ceased.
ь0	Activation Request (ACTREQ). In the HTU-C mode when the Data Pump is in the Inactive State and Quiet is set to 0, setting the ACTREQ bit to 1 will initiate an activation sequence. Because ACTREQ is a level- rather than an edge-triggered signal, it should be reset to 0 again within approximately 25 seconds to prevent the immediate start of another activation cycle if the current activation attempt fails. If an activation attempt fails, the processor should allow the Data Pump to remain in the Inactive State where the transmitter is silent for 32 seconds before generating another activation request to allow the HTU-R to return to the Inactive State. It is possible to shorten this quiet period following a failed activation by implementing additional algorithms described in the section entitled "Activation State Machines."

WR2-Interrupt Mask Register

Address:A3-0 = 0010Default:00hAttributes:Write OnlyTable 8 shows the various interrupt masks provided in register WR2.

Table 8: Interrupt Mask Register WR2

Bit	Description			
b7:6	Reserved. Must be set to 0.			
b5	LOSMSK. 1=Masked. 0=Not Masked. Interrupt mask for the LOS condition			
b4	LSWTMSK. 1=Masked. 0=Not Masked. Interrupt mask for the LOSWT condition			
b3	LSWMSK. 1=Masked. 0=Not Masked. Interrupt mask for the LOSW condition			
b2	ACTMSK. 1=Masked. 0=Not Masked. Interrupt mask for the TEXP condition and the ACTIVE condition			
b1	Reserved. Must be set to 0.			
b0	Enable coefficient read register (CRD1). 1=Enable. 0=Disable. Used in conjunction with WR3 for reading coefficient values.			

WR3—Read Coefficient Select Register

 Address:
 A3-0 = 0011

 Default:
 00h

 Attributes:
 Write Only

 Table 9 lists the bit maps used to select the coefficient read from the HDX.

Table 9: Read Coefficient Select Register WR3

Hex Value	Selected Registers	Description
00-07	DFE1-DFE8	DFE coefficients
08-0F	EC1-EC8	Echo Cancellation
10-15	FFE1-FFE6	FFE coefficients 1-6
16-19	reserved	
1A	AGC Tap	AGC Tap
1B-FF	reserved	

RD0—Main Status Register

Address: A3-0 = 0000

Default: xxh (x=undefined)

Attributes: Read Only

Status Register bits serve the same purpose in Software Mode as the like-named individual pins in Hardware mode. Table 10 lists the bit assignments in this register.

Table 10: Main Status Register RD0

Bit	Active Description
b7	 Timer Expiry (TEXP). Set to 1 to indicate 30-second timer expiration in the Active State. Causes interrupt on changing from 0 to 1; masked by ACTMSK = 1. Latched event; reset on read, with persistence while in the Active State.
b6	TIP/RING polarity reversed (INVERT). 0 = polarity reversal. Valid only in Active State.
b5	Change Of Frame Alignment (COFA). Indicates that re-acquisition of frame sync is in a different position with respect to the last frame position. Does not cause interrupt. Latched event; reset on read
b4	Loss Of Signal for HTU-R (LOS). 1 = loss of line signal energy on entering Inactive State.
	 Loss of Signal Timer Expiration for HTU-C (LOST). 1 = loss of signal for 1 second on entering Inactive State. Causes interrupt on transitions from 0 to 1 or 1 to 0 that are masked by LOSMSK = 1. LOS/LOST is not a latched event.
b3	Loop Number Control (LOOPID). 0 = loop 1; 1 = loop 2. Valid only in Active States, 0 in all others <i>Note: This bit is used only for ANSI systems. The ETSI recommendation defines overhead bits for loop identification.</i>
b2	 Loss of Sync Word Timer Expiry (LOSWT). Indicates two seconds of LOSW. Causes interrupt on changing from 0 to 1; masked when LSWTMSK = 1. Latched event; reset on read; with persistence while in the Deactivated State.
b1	 Loss of Sync Word (LOSW). Causes interrupt on changing from 0 to 1; masked by LSWMSK = 1. Latched event; reset on read; with persistence while in the Pending Deactivation State.
b0	 Active State (ACTIVE). 1 = Completion of layer 1 activation. Causes interrupt on changing from 0 to 1; masked by ACTMSK = 1. Latched event; reset on read with persistence if still in the Active State.

RD1—Receiver Gain Word Register

Address: A3-0 = 0001Default: xxh (x=undefined)

Attributes: Read Only

The 8-bit word in this register is the eight most significant bits of the main FFE AGC tap, which, along with the AGC and DAGC values (RD6), represent the receiver gain required to compensate for line loss, and to normalize the receive 2B1Q pulses to a fixed threshold. Bit b7 (sign bit, always 0) is the MSB with bit b0 the LSB. The AGC tap value is determined as follows:

AGC Tap =
$$\sum_{i=0}^{6} b_i * 2^{i-6}$$

Table 11: Receiver Gain Word Register

Bit	Description
b7-b0	FFE AGC Tap Value (eight most significant bits).

RD2—Noise Margin Register

Address: A3-0 = 0010 Default: xxh (x=undefined) Attributes: Read Only

The noise margin of the received signal is an input to the HDSL framer's Activation State Machine. The noise margin must reach a threshold level before the HDSL framer can transition to the fully Active State. The HDX provides a calculated, logarithmic noise margin value used by the HDSL framer. This eight-bit word, stored in register RD2, is available every baud, although updated only every 64 baud. Table 12 shows the noise margin coding. To calculate the SNR, use this equation:

SNR =Noise Margin + 21.5 dB

Error propagation in the DFE and de-scrambler may introduce some fractional errors in this formula, however, the relationship between the SNR and the noise margin remains valid as long as the noise follows a Gaussian distribution.

Since the average period of the calculation is very short (64 baud = $163 \mu_z$), the recommended procedure for evaluating transmission quality is to average at least 1000 samples over a 163 ms period.

Table 12: Noise Margin Register RD2 (Noise Margin Coding)

M		(oaing	_	SB	Noise	
b7	b6	b5	b4	b3	b2	b1	b0	Margin ¹	
0	0	1	1	0	1	0	1	+26.5	
0	0	1	0	1	1	1	1	+23.5	
0	0	1	0	1	0	1	1	+21.5	
0	0	1	0	1	0	0	1	+20.5	
0	0	1	0	0	1	1	1	+19.5	
0	0	1	0	0	1	0	1	+18.5	
0	0	1	0	0	1	0	0	+18.0	
0	0	1	0	0	0	1	0	+17.0	
0	0	1	0	0	0	0	0	+16.0	
0	0	0	1	1	1	1	0	+15.0	
0	0	0	1	1	1	0	0	+14.0	
0	0	0	1	1	0	1	0	+13.0	
0	0	0	1	1	0	0	0	+12.0	
0	0	0	1	0	1	1	0	+11.0	
0	0	0	1	0	1	0	0	+10.0	
0	0	0	1	0	0	1	0	+9.0	
0	0	0	1	0	0	0	0	+8.0	
0	0	0	0	1	1	1	0	+7.0	
0	0	0	0	1	1	0	0	+6.0	
0	0	0	0	1	0	1	0	+5.0	
0	0	0	0	1	0	0	0	+4.0	
0	0	0	0	0	1	1	0	+3.0	
0	0	0	0	0	1	0	0	+2.0	
0	0	0	0	0	0	1	0	+1.0	
0	0	0	0	0	0	0	0	0.0	
1	1	1	1	1	1	1	0	-1.0	
1	1	1	1	1	1	0	0	-2.0	
1	1	1	1	1	0	1	0	-3.0	
1	1	1	1	1	0	0	0	-4.0	
1	1	1	1	0	1	1	0	-5.0	
1	1	1	1	0	1	0	0	-6.0	
1. Ac	1. Accuracy of noise margin is ±1 dB.								

RD3 (LSB), RD4 (MSB)---Coefficient Read Register

Address: RD3 (A3-0 = 0011) RD4 (A3-0 = 0100)

Default: xxh (x=undefined)

Attributes: Read Only

Coefficient Read Word (read from the HDX) comes from the location configured in the Read Coefficient Select Register (WR3, Address A3-0 = 0011). The HDX updates this word on the rising edge of the receive clock, FS. Read register RD3 is the lower byte, and RD4 is the upper byte.

Table 13: Coefficient Read Register

Bit	Description
b7-b0	Coefficient Word Value. RD3 contains the lower byte; RD4 the upper byte.

RD5—Activation Status Register

Address: A3-0 = 0101Default: xxh (x=undefined)

Attributes: Read Only

The ACT bits indicate the current state of the HDX transceiver during the Activating State as listed in Table 14. (For any state other than the Activating State, the ACT bits will be "0000".)

Table 14: Activation Status Register RD5

ACT Bits 3-0	State in HTU-C Mode	State in HTU-R Mode
0000	Inactive	Inactive
0001	Pre-AGC	Wait
0010	Pre-EC	AAGC
0011	SIGDET	EC
0100	AAGC	PLL1
0101	EC	PLL2
0110	PLL	4LVLDET
0111	4LVLDET	FRMDET
1000	FRMDET	_

RD6—Receive Step Gain Register

Address: A3-0 = 0110Default: xxh (x=undefined)

Attributes: Read Only

This 8-bit register represents AGC and FFE gain coefficients (GAGC and GFFE, respectively). Bit assignments are listed in Table 15. The approximate line loss (LL) can be determined using these values in the following equation:

 $LL = 20\log_{10} (GFFE * AGC tap) + GAGC + 28 dB$

GFFE corresponds to DAGC in the HDX and GAGC is from the ACC. Bits ST0-ST2 indicate the Data Pump activation states as shown in Figures 6 and 8 and Table 16.

Table 15: Receiver AGC and FFE Step Gain Register RD6

Bit	Description						
b7	ST2. Data Pump Activation State-bit 2						
b6	ST1. Data Pump Activation State-bit 1						
b5-b4	GFFE1, GFFE0. Digital Gain Word-bit 1 and Digital Gain Word-bit 0.						
	Bits <5:4> GFFE Value 00 $2^0 = 1$ 01 $2^1 = 2$ 10 $2^2 = 4$ 11 $2^3 = 8$						
b3	ST0. Data Pump Activation State-bit 0						
b2-b0	GAGC2-GAGC0. Analog Gain Word-bit 2,1 and 0.						
	Bits <2:0> GAGC Value (dB) 000 -12 001 -10 010 -8 011 -6 100 -4 101 -2 110 0 111 +2						

Activation State Machines

The Data Pump Activation/Start-Up circuitry is compatible with ANSI T1E1.4/94-006. Full HTU-C activation is partitioned between the Data Pump and the framer. Figure 6 represents the HTU-C Data Pump Activation State Machine, and Figure 7 shows the HTU-C framer activation state machine. Figures 8 and 9 present the correspondence between the Data Pump and Framer state machines. In Software Mode, the ST*n* bits in Read Register 6 (ADDR 0110) show the current status of the state machine.

HTU-C Data Pump Activation

When the HTU-C Data Pump is powered up and reset is applied, the chip is in the Inactive State as shown at the top of Figure 6. Starting at the Inactive State, the device progresses in a clockwise direction through the Activating, Active-1, Active-2, Pending De-Activation and De-Activated States.

In the hardware mode when the Data Pump is in the Inactive State and the QUIET pin is Low, a Low-to-High transition on the ACTREQ pin initiates activation of the link. In the software mode when the Data Pump is in the Inactive State and the QUIET bit is set to 0, setting the ACTREQ bit to 1 initiates activation of the link. Because the ACTREQ control bit is level sensing, it should be set to 1 and then reset to 0 again within 25 seconds to generate a single activation request.

During the Activating State, the echo canceller, equalizer and timing recovery circuits are all adapting during the simultaneous transmission and reception of the framed, scrambled-ones data transmitted as a two-level code (S0) or as the four-level code (S1). If the receive frame sync word is not detected in two consecutive frames within 30 seconds, the timer expires and the device moves to the De-Activated State and ceases transmission. It will then immediately transition to the Inactive State (setting LOST regardless of whether HTU-R transmission has ceased). Another activation request should not be generated for 32 seconds allowing the HTU-R to timeout, detect LOS and move from the De-Activated to the Inactive State. In microprocessor-based systems, this time may be shortened by implementing a processor routine to reset the HTU-R Data Pumps which are in the Activating State when no HTU-C signal is present.

Successful detection of the sync word drives the State machine to the Active-1 State. This is indicated by a 0-to-1 transition of the ACTIVE bit (Software Mode). If the

HTU-C Data Pump remains locked to the sync word until the Activation Timer expires, the device transitions to the Active-2 (fully active) State. If sync is lost, as indicated by a 0-to-1 transition on LOSW, the HTU-C Data Pump transitions to the Pending De-Activation State.

In Pending De-Activation, the HTU-C Data Pump progresses to the De-Activated and Inactive States with the expiration of the respective timers. If the sync word is detected before the LOSW timer expires, the HTU-C Data Pump returns to either Active 1 or Active-2. (The HTU-C Data Pump returns to whichever state it occupied before transitioning to Pending De-Activation.)

The HTU-C Data Pump will exit the Active-2 State in one of two ways. A Low-to-High transition on the QUIET pin (Hardware Mode) or the QUIET bit (Software Mode), forces the HTU-C Data Pump directly to the De-Activated State. The only other means of exiting the Active State is through a loss of receive sync word (LOSW). LOSW is set when six consecutive frames occur without a sync word match. The LOSW event puts the HTU-C Data Pump into the Pending De-Activation State.

The HTU-C Data Pump remains in the Pending De-Activation State for a maximum of two seconds. If a sync word is detected within two seconds after the LOSW event, the HTU-C Data Pump reenters the Active State. If the LOSW condition exceeds two seconds, an LOSWT event occurs which sends the chip to the De-Activated State. When the De-Activated State is reached from Pending De-Activation, the HTU-C Data Pump returns to the Inactive State and declares LOST when it detects no signal from the HTU-R for one second. The Data Pump should remain in the Inactive State for 15 seconds before another activation attempt.

ST2	ST1	ST0	Data Pump State	Framer State			
0	0	0	Inactive	Idle			
0	0	1	Activating – 30 s timer run- ning	Idle			
0	1	0	Active -30 s timer running (Active-1) ¹	Idle, Active-R or Active-T, or Link Active			
0	1	1	Active -30 s timer expired (Active-2) ¹	Link Active			
1	0	0	Pending De- Activation ¹	Link Active or Active-R or Active-T			
1	0	1	De-Activated	Idle			
1	1	0	unused	unused			
1	1	1	unused	unused			
1. The data pump samples the TDATA input for all transmit data except the 14 sync bits at the start of each frame during states 010, 011 and 100.							

Table 16: Data Pump/Framer Activation State Machine Correspondences

HTU-C Framer Activation

Figure 7 shows the activation state machine for the HTU-C HDSL framer. Transition to the Link Active stage from the Idle stage (upper left) requires successful exchange of a pair of indicator bits, **indc** and **indr**. ("INDC" and "INDR" are internal status signals within the HDSL framer; "**indc**" and "**indr**" are bits in the overhead channel.) The HTU-C device transmits the **indc** bit, and the HTU-R device transmits the **indr** bit. The overhead frame carries these indicator bits during transmission of the S1 training pattern.

Figure 7 illustrates the two partially active states (Active-R and Active-T) which may serve as transitions between the Idle and Link Active States. If the HTU-C device reaches the SNR threshold, its framer sets the INDC bit and the device transitions to the Active-R State. If the HTU-R device reaches the SNR threshold, it will transmit the **indr** bit to the HTU-C. The HTU-C will then transition to the Active-T State. From either of the partially Active States, the devices transition to the full Link Active State only with both Indication bits set.

Upon entering the Active States (Active-R, Active-T or Link Active), the chip will open up the full duplex communication link with the HTU-R. Only the Active and Pending De-Activation States allow full payload transmission. In all states except Active-1 and Active-2, the RDATA output is clamped High.

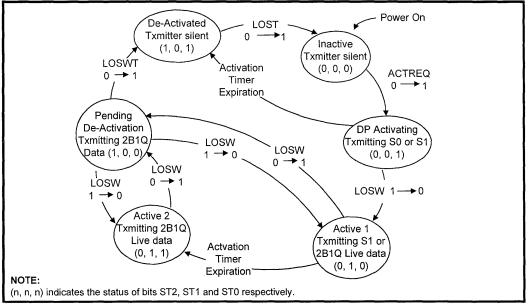
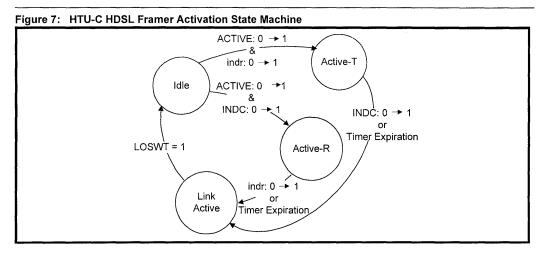



Figure 6: HTU-C Data Pump Activation State Machine

HTU-R Data Pump Activation

Figures 8 and 9 represent the HTU-R Data Pump Activation State Machine and the HTU-R HDSL Framer State Machine. The activation state machines for HTU-R and HTU-C devices are similar. Both Data Pump machines start at the Inactive State and progress clockwise through the Activating, Active-1, Active-2, Pending De-Activation, and De-Activated States. One difference between them is in the initial condition required to exit from the Inactive State. The HTU-C Data Pump responds to the Activation Request (ACTREQ) signal. The HTU-R device responds only to the presence of signal energy on the link. Thus, only an active HTU-C device can bring up the link. Once the HTU-C begins transmitting, the HTU-R device will automatically activate and attempt synchronization.

The other difference between the Data Pump state machines is the impetus for the change from the De-Activated to the Inactive State. In the HTU-C Data Pump, expiration of a one-second loss of signal timer (LOST) causes the transition. In the HTU-R the transition occurs immediately on Loss of Signal (LOS).

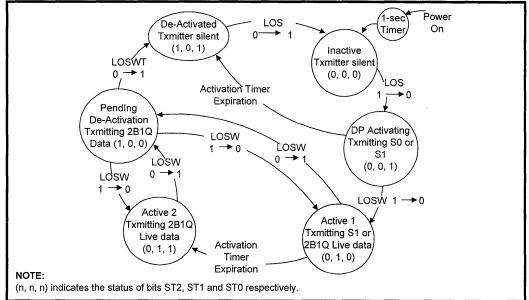
HTU-R Framer Activation

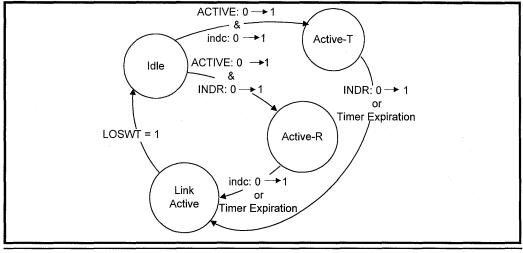
The HDSL framer activation state machines for HTU-C and HTU-R are also similar. The difference is in the indicator bits which cause the transition to either the Active-T or Active-R State. On the HTU-R side, the INDR bit causes the transition to the Active-R State, and the **indc** bit causes the transition to the Active-T State. From either partially active state, receipt of the remaining indicator bit or timer expiry causes the transition to the full Link Active State.

HDSL Synchronization State Machine

Figure 10 shows the HDSL Synchronization State Machine incorporated in the HDX. It applies to both HTU-C and HTU-R devices. Table 17 lists the correspondence between the Synchronization states and Activation states. The Sync state machine is clocked by the receive signal framing. Starting at the initial Out-of-Sync condition (State 0), the device progresses in a clockwise direction through State 1 until Sync is declared in State 2. Two consecutive frame sync word matches are required to achieve synchronization.

Once the In-Sync condition is declared, six consecutive frame sync mismatches will cause the device to transition through States 3 through 7 and declare an Out-of-Sync condition in State 8. From State 8, the device will return either to State 2 or to State 0. If the 2-second timer expires without reestablishing frame sync (LOSWT = 1) or if the receive signal is lost entirely (LOS = 1), the device returns directly to State 0.


If frame sync is reestablished, the device will return to the In-Sync condition (State 2) through State 9 if two consecutive frames are received without any change of frame alignment (COFA = 0). If a change of frame alignment does occur (COFA = 1), two consecutive matches are required to transition through State 10 back to State 2.


Table 17. Activation – Synchronization				
Synchronization States				
State 0				
State 1				
States 2, 3, 4, 5, 6, and 7				
States 8, 9, and 10				

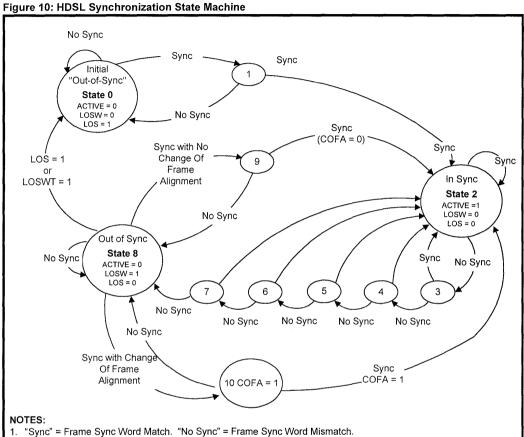

Table 17: Activation – Synchronization

Figure 8: HTU-R Data Pump Activation State Machine

Figure 9: HTU-R HDSL Framer Activation State Machine

- 2. A 0-to-1 transition on QUIET will set the Sync State Machine from any State to State 0.
- 3. Expiration of the Activation Timer will set the Sync State Machine from State 1 to State 0.

APPLICATION INFORMATION

HDSL Framer State Machine Design

Because of data transparency characteristics of the Data Pump, two issues impact on implementing the HDSL Framer Activation State machines for both HTU-C and HTU-R devices:

- 1. Once the ACTIVE 0-to-1 transition occurs, the Data Pump becomes transparent. Therefore, the HDSL framer must put appropriate data in TDATA. Table 5 summarizes this requirement.
- 2. The link indicator bits (indc and indr) must stabilize before the device makes the transition from the ldle to the Active-T State. Thus, the HDSL framer design may detect 6 consecutive matches for the indication bit transition. This is particularly important for non-CSA loops where a lower SNR may be experienced.

PCB Layout

The following are general considerations for PCB layout using the HDSL Data Pump chip set:

- Refer to Figures 12 and 13, and Table 18. Keep all shaded components close to the pins they connect to.
- Use a four-layer or more PCB layout, with embedded power and ground planes.
- Break up the power and ground planes into the following regions. Tie these regions together at the common point where power connects to the circuit:
 - Digital Region
 - Analog Region
 - -VCXO subregion
 - -ACC, Line I/F, and IBIAS subregion
- Use larger feedthroughs ("vias") and tracks for connecting the power and ground planes to the power and ground pins of the ICs than for signal connections. Place the decoupling capacitors right at the feedthrough power/ground plane ties, or on the tracks to the IC power/ground pins as close to the pins as possible.
- On the User Interface Connector, route digital signals to avoid proximity to the TIP, RING, and CT lines.
- Provide at least 100 µF or more of bulk power supply decoupling at the point where power is connected to the Data Pump circuit.

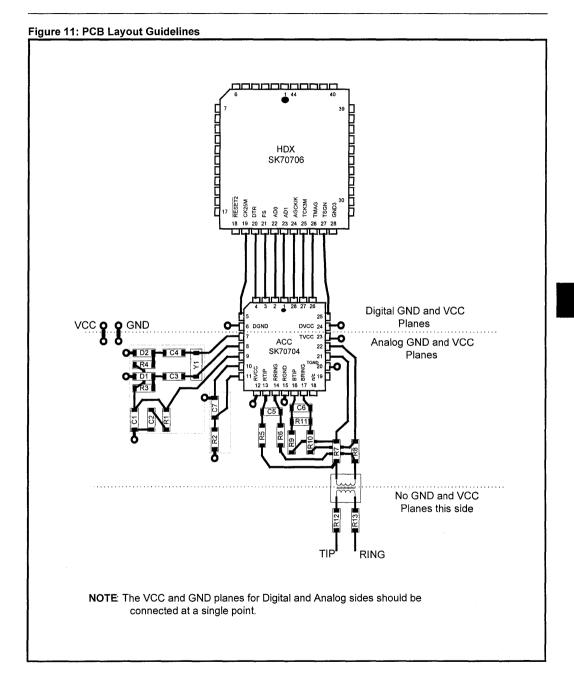
Digital Section

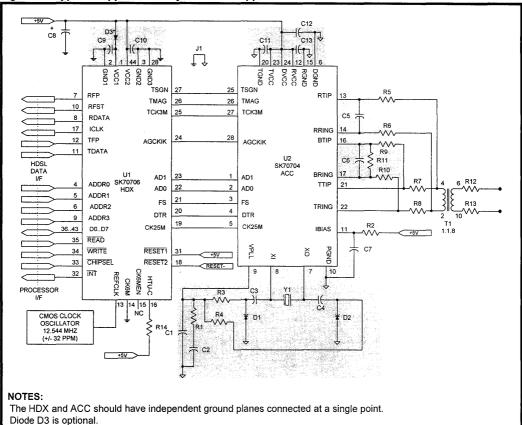
- Keep all digital traces separated from the analog region of the Data Pump layout.
- Provide high frequency decoupling capacitors (0.01 μ F ceramic or monolithic) around the HDX as shown in Figures 12 and 13.
- It is possible to replace the NAND gate (shown in Figure 13) with an AND gate.

Analog Section

The analog section of the PCB consists of the following subsections:

- 1. ACC and power supply decoupling capacitors
- 2. Bias Current Generator
- 3. Voltage Controlled Crystal Oscillator
- 4. Line Interface Circuit
- Route digital signals AD0, AD1, FS, DTR, TSGN, TMAG, TCK3M, and AGCKIK on the solder side of the PCB, and route all analog signals on the component side as much as possible.
- Route the following signal pairs as adjacent traces:
 - TTIP/TRING
 - BTIP/BRING
 - RTIP/RRING


but keep the pairs separated from each other as much as possible.


• Do not run the analog ground plane under the transformer line side to maximize high voltage isolation.

User Interface

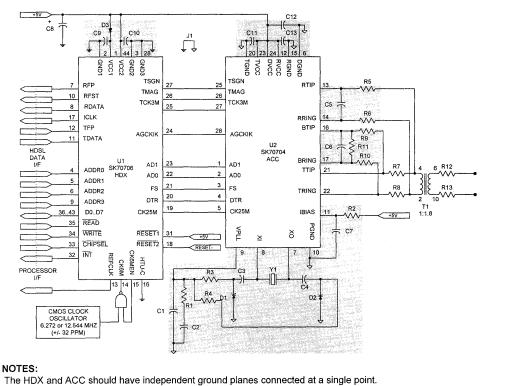
The REFCLK and CK6M signals are sensitive to capacitive loading and rise time. Keep the rise time (from 10%-90%) for these signals less than 5 ns.

Figure 12: Typical Support Circuitry for HTU-C Applications

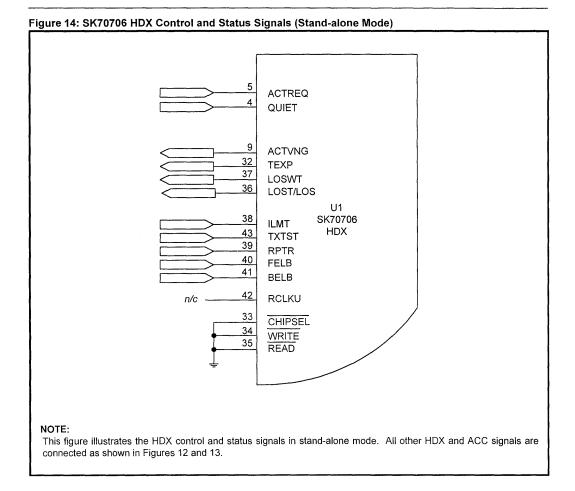
Table 18: Components for Suggested Circuitry (See Figures 12 and 13)

		Description	Ref	Description
0.01 μF, ceramic, 10%	R1	5.11 kΩ, 1%	R12, 13	5.6 Ω , line feed fuse resistor
	R2	35.7 kΩ, 1%		(ALFR-2-5.6-1 IRC)
low leakage ≤5 μA @ 25° C	R3, 4	20.0 kΩ, 1%	D1, 2	Varicap diode (Motorola MV209)
1000 pF, ceramic, 20%	R5, 6	301 Ω, 1%	D3	Silicon rectifier diode (1N4001)
470 pF, COG or mica, 10%	R7, 8 ¹	18.2 Ω, 1%	Y1	25.088 MHz crystal
0.1 μF, ceramic, 10%	R9, 10	604 Ω, 1%]	(Hy-Q International 80546/1)
100 µF, electrolytic, 20%	R11	909 Ω, 1%	T1	1:1.8 (Midcom 671-7376 or Pulse Engineering PE-68614)
	R14,R15	10.0 kΩ, 1%		
	ow leakage ≤5 μA @ 25° C 000 pF, ceramic, 20% 170 pF, COG or mica, 10% 0.1 μF, ceramic, 10% 00 μF, electrolytic, 20%	ow leakage ≤5 μA @ 25° C R3, 4 000 pF, ceramic, 20% R5, 6 170 pF, COG or mica, 10% R7, 8 ¹ 0.1 μF, ceramic, 10% R9, 10 00 μF, electrolytic, 20% R11 R14,R15 R14,R15	ow leakage $\leq 5 \ \mu A \ @ 25^{\circ} C$ R3, 4 20.0 k Ω , 1% 000 pF, ceramic, 20% R5, 6 301 Ω , 1% 170 pF, COG or mica, 10% R7, 8 ¹ 18.2 Ω , 1% 0.1 μ F, ceramic, 10% R9, 10 604 Ω , 1% 00 μ F, electrolytic, 20% R11 909 Ω , 1%	ow leakage ≤5 μA @ 25° C R3, 4 20.0 kΩ, 1% D1, 2 000 pF, ceramic, 20% R5, 6 301 Ω, 1% D3 170 pF, COG or mica, 10% R7, 8 ¹ 18.2 Ω, 1% Y1 0.1 μF, ceramic, 10% R9, 10 604 Ω, 1% T1 00 μF, electrolytic, 20% R11 909 Ω, 1% T1

Measure	Value	Tolerance
Turns Ratio (IC:Line)	1:1.8	±1%
Secondary Inductance (Line Side)	2.75 mH	±6%
Leakage Inductance	≤ 50 μH	
Interwinding Capacitance	≤ 60 pF	
THD	≤ -70 dB	
Longitudinal Balance	≥ 50 dB	5-196 kHz
Return Loss	≥ 20 dB	40-200 kHz
Isolation	2000 VRMS	
Primary DC Resistance	≤ 3.2 Ω	
Secondary DC Resistance	≤ 6.0 Ω	
Operating Temperature	-40 to +85° C	


Table 19: Transformer Specifications

(Figures 12 and 13, Reference T1)


Table 20: Crystal Specifications (Figures 12 and 13, Reference Y1)

Measure	Value	Tolerance					
Calibration Frequency	25.088 MHz @CL = 20 pF	+0-+40 ppm					
Mode	Fundamental, Parallel Resonance						
Pullability (CL = 24 pF \Rightarrow 16 pF)	≥ +160 ppm						
Operating Temperature	-40-+85 ° C						
Temperature Drift	≤±30 ppm						
Aging Drift	≤ 5 ppm/year						
Series Resistance	≤ 15 Ω						
Drive Level	0.5 mW						
Holder	HC-49						

Figure 13: Typical Support Circuitry for HTU-R Applications

Diode D3 is optional.

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 21 through 31 and Figures 14 through 20 represent the performance specifications of the Data Pump and are guaranteed by test, except where noted by design.

Table 21: ACC Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units
Supply voltage ¹ reference to ground ²	TVCC, RVCC, DVCC	-0.3	+6.0	v
Input voltage ^{2, 3} , any input pin	TVCC, RVCC, DVCC	- 0.3V	VCC + 0.3	V
Continuous output current, any output pin	-	· _	±25	mA
Storage temperature	Tstor	-65	+150	°C
	CAUTION			

Operations at the limits shown may result in permanent damage to the Analog Core Chip. Normal operation at these limits is neither implied nor guaranteed

No supply input may have a maximum potential of more than ±0.3 V from any other supply input.
 TGND = 0V; RGND = 0V; DGND = 0V.
 TVCC = RVCC = DVCC = VCC.

Table 22: ACC Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units
DC supply	TVCC, DVCC, RVCC	4.75	5.0	5.25	v
Ambient operating temperature	ТА	-40	+25	+85	°C

Table 23: ACC DC Electrical Characteristics (Over Recommended Range)

Parameter	Sym	Min	Typ ¹	Max	Unit	Test Conditions
Supply current (full operation)	ICC	-	92	120	mA	83 Ω resistor across TTIP and TRING
DVCC current		-	3	6	mA	
RVCC current		-	26	33	mA	
TVCC current	_	-	63	79	mA	Normal Mode 8+3, 8-3, 8+3,
		-	38	48	mA	Off Mode
Input Low voltage	Vil	-	-	0.5	V	IIL < 40 μA
Input High voltage	Vih	4.5		-	v	IIH < 40 μA
Output Low voltage	Vol	-	-	0.2	V	$IOL < 40 \ \mu A$
Output High voltage	Vон	4.5		-	v	IOH < 40 µA
1. Typical values are at 25° C and are for design	aid only: n	ot quaran	teed and n	ot subject	to produ	tion testing

Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing.
 Applies to pins 3, 4, 25, 26 and 27.

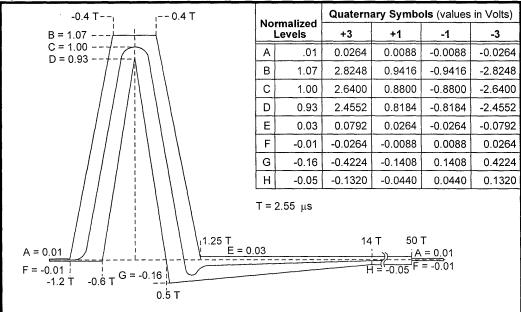
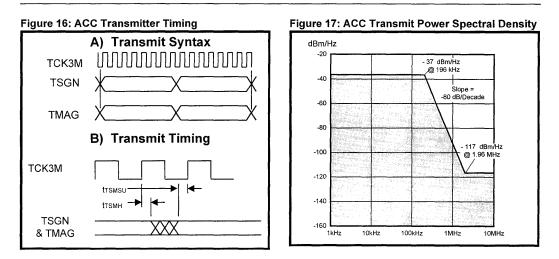

Parameter	Sym	Min	Typ ¹	Max	Unit	Test Conditions
Input leakage current ²	IIL	_	_	±50	μA	0 < VIN < VCC
Input capacitance (individual pins)	Cin	-	12	_	pF	
Load capacitance (REFCLK output)	CLREF		-	20	pF	

Table 23: ACC DC Electrical Characteristics (Over Recommended Range) - continued


Table 24:	ACC Transmitter Electrical Parameters	(Over Recommended Range)
Table 24.	ACC ITalisilliller Electrical Parameters	(Over Recommended Range)

Sym	Min	Тур	Max	Unit	Test Conditions
	+2.455	+2.640	+2.825	Vp	TDATA High, TFP Low (+3)
	-2.825	-2.640	-2.455	Vp	TDATA Low, TFP Low (-3)
	+0.818	+0.880	+0.941	Vp	TDATA High, TFP High (+1)
	-0.941	-0.880	-0.818	Vp	TDATA Low, TFP High (-1)
tTSMSU	5	-	-	ns	
t TSMH	12	_	-	ns	
	tTSMSU	+2.455 -2.825 +0.818 -0.941 tTSMSU 5	+2.455 +2.640 -2.825 -2.640 +0.818 +0.880 -0.941 -0.880 tTSMSU 5 -	+2.455 +2.640 +2.825 -2.825 -2.640 -2.455 +0.818 +0.880 +0.941 -0.941 -0.880 -0.818 tTSMSU 5 - -	+2.455 +2.640 +2.825 Vp -2.825 -2.640 -2.455 Vp +0.818 +0.880 +0.941 Vp -0.941 -0.880 -0.818 Vp tTSMSU 5 - - ns

Figure 15: ACC Normalized Pulse Amplitude Transmit Template

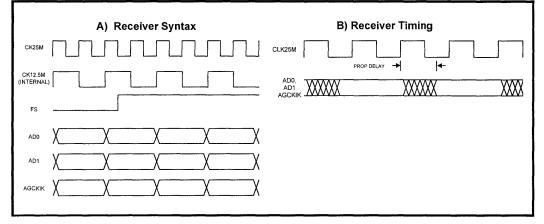


Table 25: ACC Receiver Electrical Parameters (Over Recommended Range)

Parameter	Sym	Min	Тур	Max	Unit	Test Conditions
Propagation delay (AD0, AD1)	tADD	-		25	ns	
Total harmonic distortion		_	-80	_	dB	V(RTIP, RRING) = 3 Vpp @ 50 kHz
RTIP, RRING, to BTIP, BRING gain ratio		-	1.0	1%	V/V	

Figure 18: ACC Receiver Syntax and Timing

7

Table 26:	HDX	Absolute	Maximum	Ratings
-----------	-----	----------	---------	---------

Table 27: HDX Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units
DC supply	VCC1 ¹	3.95	5.0	5.25	V
	VCC2	4.75	5.0	5.25	v
	VCC2-VCC1	-0.25	-	+0.9	V
Ambient operating temperature	ТА	-40		+85	°C

Table 28: HE	IDX DC Electrical	Characteristics	(Over Recommended	Range)
--------------	--------------------------	-----------------	-------------------	--------

Parameter	Sym	Min	Typ ¹	Max	Unit	Test Conditions
Supply current (full operation)		_	100	175	mA	
Input Low voltage	VIL	_	-	0.5	v	IIL $< 40 \ \mu A$
Input High voltage	Vih	4.0	-	_	V	IIH < 40 μA
Output Low voltage	Vol		_	GND +0.3	v	lol < 40 μA
Output High voltage	Vон	VCC2-0.5	-	-	v	IOH < 40 μA
Input leakage current ²	IIL	-	-	±50	μΑ	$0 < VIN < VCC_2$
Tristate leakage current ³	Itol	-	-	±30	μΑ	$0 < V < VCC_2$
Input capacitance (individual pins)	CIN		12	_	pF	
Load capacitance (REFCLK output)	CLREF	-	_	15	pF	
1. Typical values are at 25° C and are for desig	n aid only; n	ot guaranteed and	not subjec	et to production testin	g.	

Applies values are at 25 C and are to resign and only, not guaranteed and not subject to production testing.
 Applies to pins 4, 5, 11, 12, 14, 16, 18, 19, 22, 23, 24, 29, 31, 33, 34 and 35. Applies to pins 5, 6, 9, 13, and 36-43, when configured as inputs.
 Applies to pins 7, 8, 10, 15, 17, 30, 32 and 36-43, when tristated.

Test Specifications

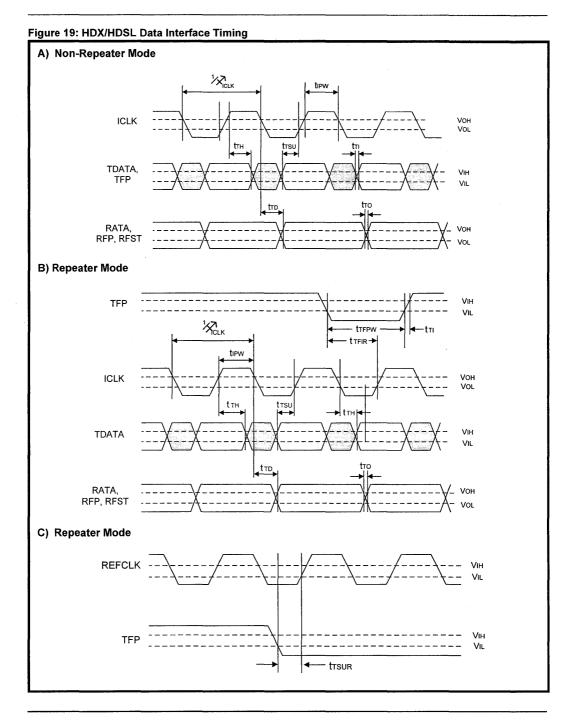

Parameter	Symbol	Min	Typ ¹	Max	Unit
ICLK frequency	ficlk	-	784	_	kHz
REFCLK frequency	frefclk	_	12.544	_	MHz
REFCLK frequency tolerance (HTU-C Mode)	tolRCLK	-32	0	+32	ppm
CK6M frequency tolerance (HTU-R Mode) ²	tolCK6M	-32	0	+32	ppm
ICLK pulse width high	tIPW	_	638	-	ns
Transition time on any digital output ³	tTO	-	5	10	ns
Transition time on any digital input	tTI	-	_	25	ns
TDATA, TFP setup time to ICLK rising edge	tTSU	100	-	_	ns
TDATA, TFP hold time from ICLK rising edge	tтн	100	-	-	ns
RDATA, RFP, RFST delay from ICLK falling edge	tTD	0	-	150	ns
TFP pulse width ⁴	tTFPW	1248	1276	1304	ns
TFP falling edge to ICLK rising edge ⁴	ttfir	480	_	610	ns
TFP setup time to REFCLK rising edge ⁴	ttsur	25	-	_	ns

Table 29: HDX/HDSL Data Interface Timing Specifications (See Figure 18)

Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing.
 CK6M must meet this tolerance about an absolute frequency of 6.272000 MHz or 12.544000 MHz in HTU-R mode.
 Measured with 15 pF load.

4. These parameters apply only to an HTU-C mode Data Pump programmed for repeater applications as shown in Figure 19.

Test Specifications

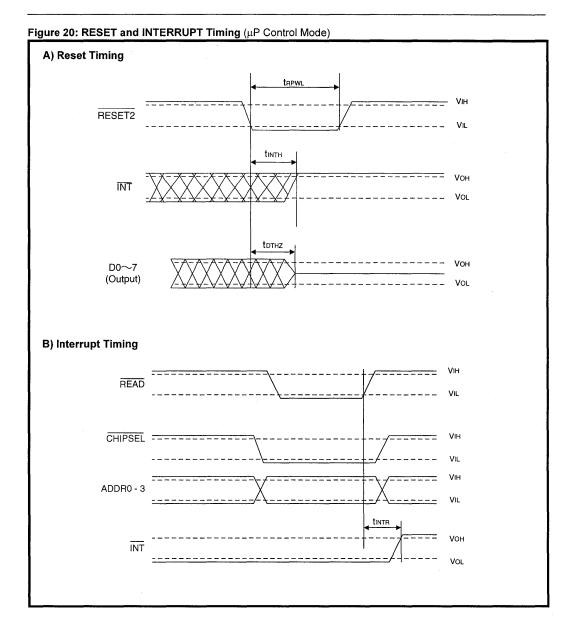
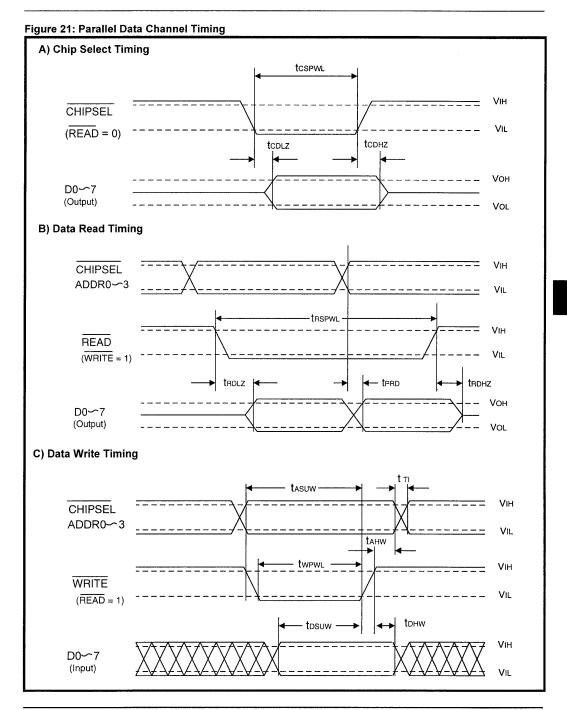

Parameter	Symbol	Min	Тур	Max	Unit
RESET2 pulse width Low	tRPWL	0.1	-	1,000	μs
$\overline{\text{RESET2}}$ to $\overline{\text{INT}}$ clear (10 k Ω resistor from $\overline{\text{INT}}$ to VCC2)	tINTH	-	-	300	ns
RESET2 to data tristate on D0-7	tDTHZ		—	100	ns
CHIPSEL pulse width Low	tCSPWL	200		_	ns
CHIPSEL Low to data active on D0-7	tCDLZ	_	-	80	ns
CHIPSEL High to data tristate on D0-7	tCDHZ	-	-	80	ns
READ pulse width Low	tRSPWL	100	-	-	ns
READ Low to data active	tRDLZ	_	-	80	ns
READ High to data tristate	tRDHZ	-	_	80	ns
Address to valid data	tPRD	-	-	80	ns
Address setup to WRITE rising edge	tasuw	20		-	ns
Address hold from WRITE rising edge	tAHW	10	-	_	ns
WRITE pulse width Low	tWPWL	100	_	-	ns
Data setup to $\overline{\text{WRITE}}$ rising edge	tDSUW	20		_	ns
Data hold from WRITE rising edge	tDHW	10		_	ns
$\overline{\text{READ}}$ High to $\overline{\text{INT}}$ clear when reading register RD0	tINTR			400	ns
1. Timing for all outputs assumes a <u>maximum</u> load of 30 pF. 2. "Address" refers to input signals CHIPSEL, A0, A1, A2, and A3. "Da	ta" refers to I/O	signals D0, D1	. D2, D3, D4, E	05, D6, and D7.	

Table 30: HDX/Microprocessor Interface Timing Specifications (See Figures 19 and 20)

Table 31: General System and Hardware Mode Timing


Parameter		Min	Typ ¹	Max	Unit
Throughput delay	TDATA to TTIP/TRING	_	10.2	12.5	μs
	RTINP/RRING to RDATA	_	53.6	72	μs
	"ACTREQ" input transitional pulse width (High or Low)	5	_	-	μs
	"QUIET" transitional pulse width (High-to-Low)	5		-	μs

Test Specifications

7

SK70704/SK70706 784 kbps HDSL Data Pump Chip Set

NOTES

DATA SHEET

SK70704/SK70707 or SK70708

1168 kbps HDSL Data Pump Chip Set

General Description

The HDSL Data Pump is a chip set consisting of the following two devices:

- SK70704 Analog Core Chip (ACC)
- SK70707 (68-pin PLCC) or SK70708 (44-pin PLCC) HDSL Digital Transceiver (HDX)

The HDSL Data Pump is a 2-wire transceiver which provides echo-cancelling and 2B1Q line coding. It incorporates transmit pulse shaping, filtering, line drivers, receive equalization, timing and data recovery to provide 1168 kbps, clear-channel, "data pipe" transmission. The Data Pump provides Near-End Cross-Talk (NEXT) performance in excess of that required over all ETSI test loops. Typical transmission range on 0.4 mm cable exceeds 3.6 km in a noise-free environment or 2.8 km with a 0 dB margin over 10 μ V/ $\sqrt{\text{Hz}}$ ETSI noise.

The Data Pump meets the requirements of ETSI ETR-152. It provides one end of a single-channel HDSL transmission system from the twisted pair interface back to the Data Pump/HDSL data interface. The Data Pump can be used at either the NTU or the LTU end of the interface.

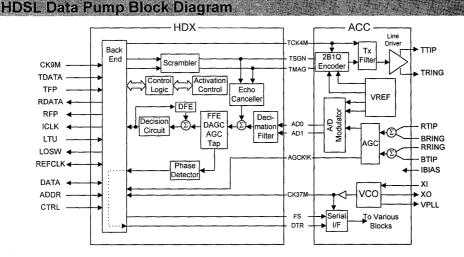
Applications

- E1 (2-pair) and fractional E1 transport
- N-channel digital pair-gain
- · Wireless base station to switch interface
- Campus and private networking
- · High-Speed digital modems

Features

AUGUST 1997 Revision 3.0

- Fully integrated, 2-chip set for interfacing to 2-wire HDSL lines at 1168 kbps
- Single +5 V supply
- Integrated line drivers, filters and hybrid circuits result in greatly reduced external logic and simplified support circuitry requirements
- Simple line interface circuitry, via transformer coupling, to twisted pair line
- · Internal ACC voltage reference
- · Integrated VCXO circuitry
- Converts serial binary data to scrambled 2B1Q encoded data
- Self-contained activation/start-up state machine for simplified single loop designs
- Programmable for either line termination (LTU) or network termination (NTU) applications
- Compliant with ETSI ETR-152 (1995)
- Design allows for operation in either Software Control or stand alone Hardware Control mode
- Typical power consumption less than 1.2 W allowing remote power feeding for repeater and NTU equipment
- · Input or Output Reference Clock of 18.688 MHz
- Digital representation of receive signal level and noise margin values available for SNR controlled activation



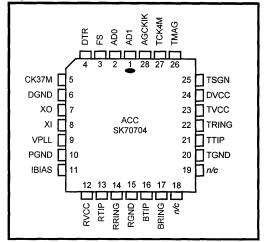
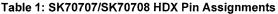
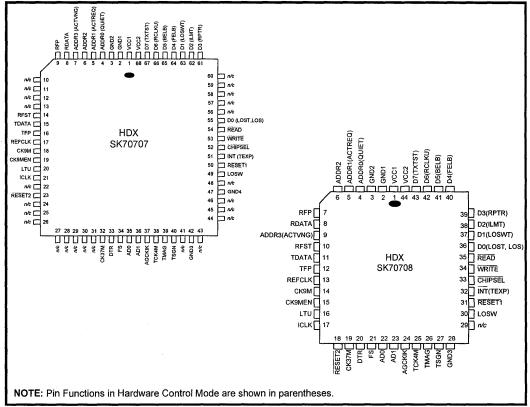


Figure 1:


PIN ASSIGNMENTS AND SIGNAL DESCRIPTION


The ACC is packaged in a 28-pin PLCC. Figure 1 shows the ACC pin locations. Table 2 lists signal descriptions for each pin, except pins 18 and 19 which are not connected.

The HDX is available in two packages: 68-pin PLCC (SK70707) and 44-pin PLCC (SK70708). Figure 1 shows the HDX pin assignments. Table 3 lists signal descriptions for each pin, corresponding to the specific package.

SK70704 ACC Pin Locations

Pin Assignments and Signal Description

Table 2:	SK7070	4 ACC Pin A	ssign	ments/Signal Descriptions
Group	Pin #	Symbol	1/0	Description
Line	13	RTIP	I	Receive Tip and Ring. Connected these input pins to the line transformer
	14	RRING	I	per network requirements.
	16	BTIP	I	Bias Tip and Ring. Inputs provide a bias setting for the receiver. Provide
	17	BRING	Ι	balanced network inputs.
	21	TTIP	0	Transmit Tip and Ring. Line driver outputs.
	22	TRING	0	
PLL	7	хо	0	Crystal Oscillator. Connect a 37.376 MHz crystal across these two pins.
	8	XI	I	
	9	VPLL	0	PLL Voltage Control. Supplies control voltage to the VCXO.
Power	10	PGND	I	PLL Ground. 0 V.
	12	RVCC	I	Power supply. + 5 V (± 5%).
	23	TVCC	I	Power supply. $+5V (\pm 5\%)$.
	24	DVCC	I	Digital Power Supply. +5 V (± 5%).
	6	DGND	I	DVCC Ground. 0V.
	15	RGND	I	RVCC Ground. 0V.
	20	TGND	I	TVCC Ground. 0V.
Clock and	3	FS	I	584 kHz clock. Input from HDX FS.
Control	4	DTR	I	Serial control data. Input from the HDX at 18.688 Mbps.
	5	CK37M	0	37.376 MHz HDSL Reference Clock. Used as the receive timing reference for the HDX. Tie to HDX CK37M.
	27	TCK4M	I	4.672 MHz Clock. Input from HDX TCK4M.
Data	28	AGCKIK	0	AGC adjust signal. Output to HDX AGCKIK.
Input and	1	AD1	0	A-to-D converter data line 1. Connect to HDX AD1.
Output	2	AD0	0	A-to-D converter data line 0. Connect to HDX AD0.
	25	TSGN	Ι	Transmit quat sign. Input from HDX.
	26	TMAG	I	Transmit quat magnitude. Input from HDX.
Analog Input	11	IBIAS	I	Input BIAS. Provides input bias current.

Group	707 Pin #	708 Pin #	Symbol	1/0	Description
User Port	14	10	RFST	0	Receive Frame and Stuff Bit Indicator. Goes High for 18 consecutive ICLK periods to indicate four stuffing bits (b7007 - 7010) and 14 frame bits (b1-14) on RDATA.
	17	13	REFCLK	I ¹ O	18.688 MHz HDSL Reference Clock. In LTU Mode, this clock generates transmit and receive timing and must have ± 32 ppm accuracy. In NTU Mode, this output is derived by dividing CK37M by two.
	20	16	LTU	I	Operation Mode Select. When LTU is High, the Data Pump oper- ates in LTU mode; when LTU is Low, the Data Pump operates in NTU mode. Tied to internal pull-up device.
	21	17	ICLK	0	Bit Rate Clock. Nominally 1168 kHz, REFCLK is the source of ICLK in LTU Mode. CK37M is the source of ICLK in NTU Mode.
	49	30	LOSW	0	Loss of Sync Word Indicator. Normally Low in Active States, goes High to indicate receipt of six consecutive mismatched frame synch words. LOSW is logic High in all states except Active States.
	8	8	RDATA	0	Receive HDSL Data Stream. Output data to HDSL framer at 1168 kbps: HDSL payload of Loop 1 or Loop 2 bytes plus the Z-bits, eoc, crc, losd, febe, ps, bpv, hrp, indc/indr and uib bits, Sync bits for frame positions b1-14, Stuff bits for frame positions b7007 - 7010. RDATA bits are forced high in all states except the Active State.
	9	7	RFP	0	Receive Frame Pulse. Low for one ICLK cycle during the last bit of the current HDSL receive frame on RDATA, either b7006 or b7010. Period is within one baud time of 6 ms. ² RFP is valid when LOSW transitions Low.
	15	11	TDATA	I	Transmit HDSL Data Stream. Input data from HDSL framer at 1168 kbps: HDSL payload of Loop 1 or Loop 2 bytes plus the Z-bits, eoc, crc, losd, febe, ps, bpv, hrp, indc/indr and uib bits, Sync bits for frame positions b1-14, Stuff dummy bits; may be 1s or 0s. Tied to internal pull-up device. When ACTIVE, the Data Pump is transparent and the HDSL framer must generate the appropriate bits on TDATA as shown in Table 6.

Table 3: SK70707/SK70708 HDX Pin Assignments/Signal Descriptions

2. The period is 6 ms $\pm {}^{1}/_{584}$ ms. 3. This input is a Schmidt Triggered circuit and includes an internal pull-down device.

Pin Assignments and Signal Description

Group	707 Pin #	708 Pin #	Symbol	I/O		Description			
User Port	16	12	TFP	I ¹	the last bit of b7010. Period Low and is Lo	ame Pulse. Must be Low for one ICLK cycle during the current HDSL frame on TDATA, either b7006 or d is within one baud time of 6 ms. ² If TFP is pulled w again three ICLK cycles later, RDATA, RFP, RFST EN and LOSW go to tri-state. Tied to internal pull-up			
Hardware Interface (Hardware	4	4	QUIET	I ³	Quiet Mode Enable. Pull High to force HDX into Deactivated State. Any later transition to Low will not return HDX to Active State. See ACTREQ.				
Control Mode)	5	5	ACTREQ	I ³	I ³ Activation Request (LTU mode) or no function (NTU this pin Low in NTU mode. If QUIET is Low, a rising pin initiates activation, but the signal is ignored after act QUIET.				
	6	6	reserved	-	Pull Low in L	Pull Low in LTU mode, leave open in NTU mode.			
	7	9	ACTVNG	0	Activating State Indication. High when the HDX is in the Activat- ing State.				
	23	18	RESET2	I1	Reset Pulse. Pull Low on power up to initialize circuits and stop all clocks.				
	50	31	RESET1	I1	Reset Pulse. Pull Low to initialize internal circuits.				
	51	32	TEXP O Timer Expiry. Goes High to indicate 30 all states.		y. Goes High to indicate 30 second timer expiration in				
	52	33	CHIPSEL	I ³	Chip Select	Assert these three pins Low to activate Hardware			
i	53	34	WRITE	I3	Write Pulse	Control Mode. When any of them goes High, the HDX reverts immediately to Software Control Mode			
	54	35	READ	I ³	Read Pulse				
	55	36	LOST (LTU)	Ο	Loss of Signal Timer Expiration. In LTU mode, LOST goes when the Data Pump enters the Inactive State. The transition f the Deactivated to the Inactive State occurs 1 second after the e transmission by the NTU when deactivation began from either Active-1 or Active-2 State. When the Data Pump transitions f the Activating State to the Deactivated State it may immediate enter the Inactive State without waiting for NTU transmission cease. (See Figure 5.)				
			LOS (NTU)	0		Il Energy Indicator. In NTU mode LOS goes High t of signal energy on entering the Inactive State. (See			

inti tin uo d 2 SK70707/SK70709 UDV B te/Si u n . .

1. This input is a Schmidt Triggered circuit and includes an internal pull-up device. 2. The period is $6 \text{ ms} \pm 1/_{584} \text{ ms.}$ 3. This input is a Schmidt Triggered circuit and includes an internal pull-down device.

Group	707 Pin #	708 Pin #	Symbol	1/0	Description
Hardware Interface	63	37	LOSWT	0	Loss of Sync Word Timer. LOSWT goes High when LOSW is sus- tained for longer than 2 sec.
(Hardware Control Mode) -cont'd	62	38	ILMT	I	Insertion Loss Measurement Test. Set High to transmit a framed & scrambled, "all 1s", 2B1Q pulse sequence. Pulse sequence will have a valid sync word. In the NTU configuration, when the ILMT mode is selected, the Data Pump may begin activation.
	61	39	RPTR	II	Repeater Mode Enable. When in LTU mode, ICLK output phase is aligned to the TFP input pulse width. Ignored in NTU mode.
	64	40	FELB	I	Front-End Loopback (LTU only). In Inactive State, set High to cause the ACC to loopback. The returned signal activates the HDX which receives its own transmitted data. The system ignores incoming data from NTU during loopback irrespective of status.
	65	41	BELB	I	Back-End Loopback. In Active State a High forces an internal, transparent loopback with RDATA connected to TDATA and RFP connected to TFP.
	66	42	RCLKU	0	Receive Baud Rate (584 kHz) Clock. Aligned with ICLK in NTU mode, phase synchronous with receive pulse stream, However, during Activating State, the clocks may not be aligned. In the LTU mode RCLKU has a constant, arbitrary, phase relationship with ICLK in Active State.
	67	43	TXTST	I	Transmit Test. Set high to enable isolated transmit pulse generation. The time between pulses is approximately 6 ms. TDATA controls the sign and TFP controls the magnitude of the transmitted quat pulses according to the 2B1Q encoding rules. In the NTU configu- ration, when the TXTST mode is selected, the Data Pump may begin activation.
Processor Interface	55 63	36 37	D0 D1	I ¹ /O I ¹ /O	Data bit 0. Eight-bit, parallel data bus. Data bit 1
(Software	62	38	D2	I ¹ /O	Data bit 2
Control	61	39	D3	I ¹ /O	Data bit 3
Mode)	64	40 41	D4 D5	$I^{1/O}$ $I^{1/O}$	Data bit 4 Data bit 5
	65 66	41	D3 D6	I ¹ /0	Data bit 6
	67	42	D0	I ¹ /O	Data bit 7
	4	4	ADDR0	I ³	Address bit 0. Four-bit address, selects read or write register.
	5	5	ADDR0 ADDR1	I ¹ I ³	Address bit 1
	6	6	ADDR1 ADDR2	I ³	Address bit 2
	7	9	ADDR3	I ³	Address bit 3
ł	23	18	RESET2	I1	Reset Pulse. Pull Low on power up to initialize circuits and stop all

Table 3: SK70707/SK70708 HDX Pin Assignments/Signal Descriptions - continued

The period is 6 ms ± 7584 ms.
 This input is a Schmidt Triggered circuit and includes an internal pull-down device.

Pin Assignments and Signal Description

Group	707 Pin #	708 Pin #	Symbol	1/0	Description	
Processor Interface	50	31	RESETI	I1	Reset Pulse. Pull Low to initialize internal circuits. ICLK continues.	
(Software Control Mode)	51	32	ĪNT	0	Interrupt Output. Open drain output. Requires an external 10 k Ω pull up resistor. Goes Low on interrupt.	
110000	52	33	CHIPSEL	I ³	Chip Select. Pull Low to read or write to registers.	
	53	34	WRITE	I ³	Write Pulse. Pull Low to write to registers.	
	54	35	READ	I ³	Read Pulse. Pull Low to read from registers.	
Clock and Control	18	14	СК9М	I ³	9.344 or 18.688 MHz Reference Clock. Mandatory in NTU mode. Tie High or Low in LTU Mode. Clock input requires ± 32 ppm accuracy.	
	19	15	CK9MEN	0	CK9M Enable. Active High enable for CK9M clock. In NTU mode, this pin goes Low to indicate the PLL is tracking the input signal from the LTU. Not used in LTU.	
	32	19	CK37M	I	Receive Timing Clock (37.376 MHz). Tie to CK37M on ACC.	
	33	20	DTR	0	Serial Control Data Link. Transfers data at 18.688 Mbps. Tie to DTR on ACC.	
	34	21	FS	0	584 kHz Clock. Derived from CK37M. Tie to FS on ACC.	
	35	22	AD0	Ι	Analog to Digital Converter input pin. Tie to AD0 on ACC	
	36	23	AD1	I	Analog to Digital Converter input pin. Tie to AD1 on ACC	
	37	24	AGCKIK	I	AGC Adjust. Controls analog gain circuit. Tie to AGCKIK on ACC.	
	38	25	TCK4M	0	Transmit Clock. Tie to TCK4M on ACC.	
	39	26	TMAG	0	Transmit Magnitude Bit. Tie to TMAG on ACC.	
	40	27	TSGN	0	Transmit Sign Bit. Tie to TSGN on ACC.	

Table 3: SK70707/SK70708 HDX Pin Assignments/Signal Descriptions - continued

This input is a Schmidt Triggered circuit and includes an internal pull-up device.
 The period is 6 ms ±¹/₅₈₄ ms.
 This input is a Schmidt Triggered circuit and includes an internal pull-down device.

Power 1 68 2 3 42 47 47 Misc 10 11 12 13 22 25 26 25 26	1 44 2 3 28 - 29	VCC1 VCC2 GND1 GND2 GND3 GND4	I I I I I I	Logic supply input. (Refer to Table 28) I/O supply input. Ground. Ground. Ground. Ground.
2 3 42 47 Misc 10 1 12 13 22 25 20	2 3 28 -	GND1 GND2 GND3	I I I	Ground. Ground.
3 42 47 Misc 10 11 12 13 22 22 25 20	3 28 -	GND2 GND3	I	Ground. Ground.
42 47 Misc 10 1 12 13 22 22 5 20	28	GND3	I	Ground.
47 Misc 10 11 12 13 22 24 25 20				
Misc 10 11 12 13 22 24 25 20		GND4	I	Ground.
12 13 22 24 25 26	29			
27 28 29 3(31 4) 43 44 45 4(48 50 57 58 59 60 1. This input is a Schmid		-	es an infe	No internal connection.

Table 3: SK70707/SK70708 HDX Pin Assignments/Signal Descriptions – continued

ELEVEL ONE.

FUNCTIONAL DESCRIPTION

The HDSL Data Pump is a fully-integrated, two-chip solution (see front page block diagram) which includes an SK70704 Analog Core Chip (ACC) and an SK70707/SK70708 HDSL Digital Transceiver (HDX).

Transmit

The transmit data stream is supplied to the HDX at the TDATA input in a binary fashion. The HDX scrambles and 2B1Q encodes the data and adds the sync word and stuff quats based on the TFP frame pulse position. The injected stuff quats in a frame are equal to the last scrambled data symbol in that frame. The 2B1Q encoded transmit quat data stream (TSGN/TMAG) is then passed to the ACC which filters and drives it onto the line.

Receive

The composite waveform of the receive signal plus transhybrid echo is filtered and converted to digital words at a rate of 584 k-words/second in the ACC. The ACC passes the digitized receive quat stream (AD0 and AD1) to the HDX. The HDX performs digital filtering, linear echo cancellation, frame recovery and descrambling. The HDX uses the transmit quat stream to generate the echo estimates and estimate error values. Using this error and the delayed transmit quat stream, the echo canceller coefficients are updated. The recovered, decoded and descrambled data is then output to the framer-mux from the HDX RDATA pin.

Control

The Data Pump offers two control modes - Hardware Mode and Software Mode. In Hardware mode the HDX receives control inputs via individually designated pins. In Software mode the HDX control data is supplied via an 8-bit parallel port. In either mode, the HDX and the ACC communicate via a unidirectional serial port (DTR).

ACC and HDX Overview

The following paragraphs describe the chip set components individually with reference to internal functions and the interfaces between Data Pump components.

Analog Core Chip (ACC)

The ACC incorporates the following analog functions:

- the transmit line driver
- · transmit and receive filters
- Phase-Locked Loop (PLL), including VCXO
- · hybrid circuitry analog-to-digital converter.

The ACC provides the complete analog front end for the HDSL Data Pump. It performs transmit pulse shaping, line driving, receive A/D, and the VCO portion of the receiver PLL function. Transmit and receive controls are implemented through the serial port. The ACC line interface uses a single twisted pair line for both transmit and receive. Table 1 lists the ACC pin descriptions. Refer to Test Specifications section for ACC electrical and timing specifications.

ACC Transmitter

The ACC performs the pulse shaping and driving functions. The ACC transmitter generates a 4-level output of 1/(8*f(TCK4M)) defined by TMAG and TSGN. Table 4 lists 2B1Q pulse coding parameters. Refer to Test Specifications for frequency and voltage templates.

ACC Receiver

The ACC receiver is a sophisticated sigma-delta converter. It sums the differential signal at RTIP/RRING minus the signal at BTIP/BRING. The first A/D signal comes out of AD0 at a bit stream rate of 18.688 MHz. The second stage of the A/D samples the noise of the first and generates the AD1 bit stream at 18.688 MHz.

Receiver gain is controlled by the HDX via the AGC2-0 bits in the DTR serial control stream. The AGCKIK output from the ACC is normally Low. It goes High when the signal level in the sigma-delta A/D is approaching its clipping level, signaling the HDX to lower the gain.

The VCO is part of a phase-locked loop (PLL) locked to the receive data baud rate using an external phase detector. The VCO frequency is varied by pulling an external crystal with external varactor diodes that are controlled by the VPLL output. The VPLL output is, in turn, controlled by the serial port VCO and PLL bits.

HDSL Digital Transceiver (HDX)

The HDX incorporates the following digital functions:

- · bit-rate transmit and receive signal-processing
- adaptive echo-cancelling (EC)
- adaptive decision feedback-equalization (DFE) using the receive quat stream and the internal error signal
- · fixed and adaptive digital-filtering functions
- activation/start-up control and the microprocessor interface to the HDSL framer.

The HDX also provides the Data Pump Back-End interface for the customer defined/developed HDSL framer via serial data channels and clock signals. A simple, parallel 8bit microprocessor interface on the HDX allows highspeed access to control, status and filter coefficient words. Table 3 lists the HDX pin descriptions. Refer to Test Specifications section for HDX electrical and timing specifications.

The microprocessor interface on the HDX provides bit flags for signal presence, synchronization, activation completion, and loss of synchronization for a time greater than two seconds. Single-byte words representing receive signal level and the noise margin of the transceiver are also available on the microprocessor interface. One control byte allows the user to start the Data Pump activation sequence. The HDX controls the complete activation/startup sequence, allowing flexible, single-loop, fractional applications.

TSGN	TMAG	Output Symbol (quat)
1	0	+3
1	1	+1
0	1	-1
0	0	-3

Table 4: ACC Transmit Control

HDX/ACC Interface

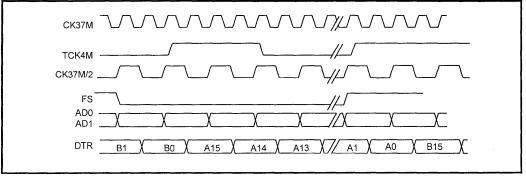
The ACC provides the 37.376 MHz master clock, CK37M, to the HDX. The serial control stream framing signal FS is sampled inside the ACC with the CK37M rising edge. The serial control stream, DTR, is sampled inside the ACC by the rising edge of an internally-generated clock at f(CK37M)/2. This ACC internal clock has the same phase relationship with a similar clock inside the HDX, as established by the FS signal. In the HDX, the half-rate clock CK37M/2 and FS transition on the rising edge of CK37M/2. The output REFCLK in NTU Mode equals CK37M/2.

The A/D converter outputs, AD0 and AD1, are clocked out of the ACC with CK37M, having transitions coincidental with the rising edge of CK37M/2. The HDX samples AD0 and AD1 with the falling edge of its internal CK37M/2.

Transmit data, represented by TSGN and TMAG, is clocked from the HDX using the falling edge of TCK4M, the 4.672 MHz (f(REFCLK)/4) transmit time base clock. The ACC uses the rising edge of TCK4M to sample TSGN and TMAG. TSGN and TMAG change state at the baud rate, or every 8 cycles of TCK4M. Figure 2 shows relative timing for the HDX/ACC interface.

HDX/ACC Serial Port

The HDX continually writes to the ACC serial port. This serial stream consists of two 16-bit words as shown in Table 5. The data flows from the HDX to the ACC at a rate of f(CK37M)/2. Refer to the Test Specifications section for serial port timing relationships and electrical parameters.


Line Interface

The Data Pump line interface consists of three differential pairs. The transmit outputs TTIP and TRING, receive inputs RTIP and RRING, and the balance inputs BTIP and BRING, all connect through a common transformer to a single twisted-pair line (see Figures 11 and 14). The transmit outputs require resistors in series with the transformer. A passive prefilter is required for the receive inputs. The balance inputs feed the transmit signals back to the Data Pump providing passive echo cancellation. Protection circuitry should be inserted between all Data Pump line interface pins and the transformer. Refer to the Applications section for typical schematics.

	Definitions (See Figure 2)							
Bit	Word A (on DTR)	Word B (on DTR)						
15	INIT	COR4						
14	n/a	COR3						
13	n/a	COR2						
12	TXOFF	COR1						
11	TXDIS	COR0						
10	TXTST	VCO2						
9	AGC2	VC01						
8	AGC1	VCO0						
7	AGC0	PLL7						
6	FELB	PLL6						
5	n/a	PLL5						
4	PTR4	PLL4						
3	PTR3	PLL3						
2	PTR2	PLL2						
1	PTR1	PLL1						
0	PTR0	PLL0						

Table 5: HDX/ACC Serial Port Word Bit Definitions (See Figure 2)

Figure 2: HDX/ACC Interface – Relative Timing

HDSL Data Interface

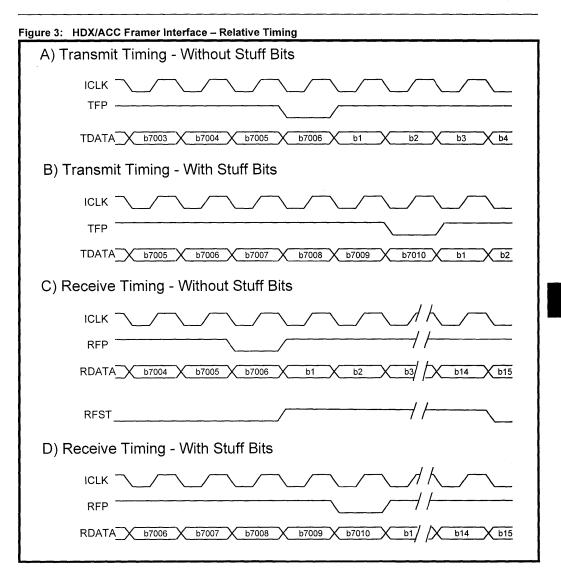
The HDSL data interface includes the transmit and receive binary data streams, transmit and receive frame pulses, the 1168 kHz clock (ICLK) and the receive frame and stuff quat indicator (RFST). Figure 3 shows relative timing for the framer interface. Refer to Test Specifications section for details on the Data Pump/framer interface. Figure 6 shows a complete HDSL system with both the remote NTU and central office LTU HDSL framer interfaces illustrated. Table 6 shows the TDATA requirements for the framer interface through the activation sequence. Once the ACTIVE Low-to-High transition occurs, the Data Pump becomes transparent. Therefore, the HDSL framer must supply appropriate data to TDATA. Table 6 summarizes this requirement.

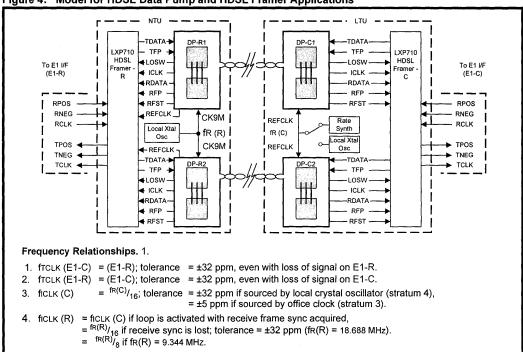
The HDSL framer interface is subject to the following rules:

- 1. When frame sync is not present (LOSW is High), all RDATA bits are set to 1.
- If frame sync is lost on both Data Pump-R1 and Data Pump-R2, both units will fall back on the local reference frequency with ±32 ppm tolerance, and stuff bits will be injected in their RDATA streams on every other frame.

Activatio	n Process	TDATA		
Framer	Data Pump	Overhead	Data	
Idle	Activating	don't care	don't care	
Idle	Active 1	live	all 1s	
Active-R	Active 1	live	all Is	
Active-T	Active 1	live	live	
Link Active	Active 1	live	live	
Link Active	Active 2	live	live	

Table 6: HDSL Framer TDATA Requirements


- 3. If frame sync is lost on either Data Pump-R1 or Data Pump-R2, that unit can be made to fall back on the REFCLK from the Data Pump-R which is still in frame sync, and stuff bits will be injected in the RDATA stream on every other frame of the out-offrame Data Pump-R.
- 4. If frame sync is lost on either Data Pump-C1 or Data Pump-C2, both unit's receiver will fall back on the reference clock with ±32 ppm or ±5 ppm tolerance, and inject stuff bits in the RDATA stream on every other frame.


- 5. If either E1-R or E1-C loses sync or signal, it is assumed that the corresponding T1 receiver will fall back on a local reference with ± 32 ppm tolerance, and that transmit bit-stuffing control will still be applied through the TFP signal from the HDSL framer.
- 6. The HDSL framer should provide TFP signal with a period of 6 ms $\pm 1/_{584}$ ms prior to an activation request for the LTU Data Pump(s). The framer should provide a valid TFP after power-up, before or immediately after LOS goes Low for the NTU Data Pump(s).

If the TFP signal from the HDSL framer is inactive (always High or unconnected), the Data Pump will inject stuff bits in the TDATA stream in every other frame, although the Data Pump will not be synchronized to the HDSL framer. When a new TFP is provided, the Data Pump will immediately reset the transmit frame alignment, typically causing loss of alignment at the other end.

7. A simultaneous RESET2 to all LTU Data Pumps which use a common REFCLK eliminates phase shift between the ICLK outputs which may exist after power-up.

The ICLK outputs of all NTU Data Pumps may have an arbitrary phase difference even using a common CK9M reference.

Figure 4: Model for HDSL Data Pump and HDSL Framer Applications

Microprocessor Interface (HDX)

Three primary control pins, CHIPSEL (Chip Select), READ and WRITE, execute the Software Mode which also uses an interrupt output pin to report status changes. Four additional pins are used for the parallel bus addressing and eight pins for data I/O. Refer to Test Specifications for µprocessor interface timing in Software Mode. The following control pins are used during register access.

Control Pins

Chip Select: The Chip Select (CHIPSEL) pin requires an active Low signal to enable Data Pump read or write transfers over the data bus. To enable Hardware Mode hold this pin Low, along with READ and WRITE.

Data Read: The Data Read pin (\overline{READ}) requires an active Low pulse to enable a read transfer on the data bus. When READ is pulled Low, the Data Pump data bus lines go from tristate to active and output the data from the register addressed by ADDR0-ADDR3. To avoid reading data during register updates, reads should be synchronized to the falling edge of FS. Alternatively, each read should be repeated until the same data is read twice within one baud time.

Data Write: The Data Write pin (WRITE) requires an active Low pulse to enable a write transfer on the data bus. Data transfer is triggered by the rising edge of the WRITE pulse. To ensure data is written to the register addressed by ADDR0-ADDR3, valid data must be present on the HDX data bus lines before WRITE goes High.

Interrupt: The Interrupt pin (\overline{INT}) is an open drain output requiring an external pull-up resistor. The \overline{INT} output is pulled active Low when an internal interrupt condition occurs. \overline{INT} is latched and held until Main Status Register RD0 is read. An internal interruption results from a Lowto-High transition in any of four status indicators: ACTIVE, LOSW, LOSWT or TEXP. Any transition on LOS will also generate an interrupt. If an interrupt mask bit in register WR2 is set, any transition of the corresponding status bit will not trigger the \overline{INT} output.

Register Access

Write: To write to an HDX register, proceed as follows:

- 1. Drive CHIPSEL Low.
- Drive an address (0000, 0010, or 0011) onto ADDR0-ADDR3.
- 3. Observe address setup time.
- 4. Set 8-bit input data word on D0-D7.
- 5. Pull WRITE Low, observing minimum pulse width.
- Pull WRITE High, observing hold time for data and address lines.

Read: Procedures for reading the HDX registers vary according to which register is being read. Accessing registers RD0, RD1, RD2, RD5 and RD6 is relatively simple. Reading registers RD3 and RD4 is more complex. Unless parallel port reads are synchronized with the falling edge of FS, all read operations should be repeated until the same data is read twice within one baud time.

To read register RD0, RD1, RD2, RD5 or RD6 proceed as follows:

- 1. Drive CHIPSEL Low.
- 2. Drive the desired address onto ADDR0-ADDR3.
- 3. Pull READ Low, observing minimum pulse width.
- 4. Pull READ High to complete the read cycle.

Registers RD3 and RD4 hold the coefficient values from the DFE, EC, FFE and AGC as shown in Table 10. Register RD3 holds the lower byte value and register RD4 holds the upper byte value. To reconstruct the complete 16-bit word, concatenate the least significant and most significant bytes. To read registers RD3 and RD4 proceed as follows:

- 1. Select the desired coefficient by writing the appropriate code from Table 10 to register WR3.
- 2. Enable the Coefficient Read Register by writing a 1 to bit b0 (CRD1) in register WR2.
- 3. Perform standard register read procedure listed in steps 1 through 6 above to read the lower byte from RD3 and the upper byte from RD4.
- 4. Concatenate the RD3 and RD4 to obtain the complete 16-bit word.

Registers

Three write registers and seven read registers are available to the user. Table 7 lists these registers and the following paragraphs describe them in more detail.

Some of the registers contain *reserved* bits. Software must deal correctly with *reserved* fields. For reads, software must use appropriate masks to extract the defined bits and not rely on *reserved* bits being any particular value. In some cases, software must program *reserved* bit positions to a particular value. This value is defined in the individual bit descriptions.

After asserting the RESET1 and RESET2 signals, the Data Pump initializes its registers to the **default** value.

ADDR		Write Registers		Read Registers			
A3-A0	WR#	Name	Table	RD#	Name	Table	
0000	WR0	Main Control	8	RD0	Main Status	11	
0001		reserved		RD1	Receiver Gain Word	12	
0010	WR2	Interrupt Mask	9	RD2	Noise Margin	13	
0011	WR3	Read Coefficient Select	10	RD3	Coefficient Read Register (lower byte)	14	
0100		reserved		RD4	Coefficient Read Register (upper byte)	14	
0101		reserved		RD5	Activation Status	15	
0110		reserved		RD6	Receiver AGC and FFE Step Gain	16	
0111-1001		reserved			reserved		

Table 7: Register Summary

WR0---Main Control Register

Address:A3-0 = 0000Default:00hAttributes:Write Only

Control Register bits serve the same purpose in Software Mode as the like-named individual pins in Hardware Mode. Table 8 lists bit assignments for the WR0 register.

Table 8: Main Control Register WR0

Bit	Description
b7	Transmit Test Pattern Enable (TXTST). Set TXTST to 1 to enable isolated transmit pulse generation. The time between pulses is 6 ms. TDATA controls the sign and TFP controls the magnitude of the transmitted symbols according to the 2B1Q encoding rules. In the NTU configuration when the TXTST mode is selected, the Data Pump may begin activation.
b6	Back-End Loop Back (BELB). In the Active State, set BELB to 1 to enable an internal, transparent loopback of the HDX RDATA to TDATA and RFP to TFP.
b5	Front End Loop Back (FELB). In the LTU mode with the Data Pump in the Inactive State, set FELB to 1 to enable an ACC front-end loopback. The Data Pump will begin activation and transmission on the line, but will ignore any signal from the NTU instead synchronizing to its own transmit signal.
b4	Repeater Mode (RPTR). The RPTR bit is set to 1 and the LTU pin is pulled High to program the Data Pump for operation on the side of the HDSL repeater driving the remote NTU. RPTR is set to 0 and the LTU pin is tied Low to program the Data Pump for operation on the side of the repeater driven by the central office LTU.
b3	reserved. This bit must be set to 0.
b2	Insertion Loss Measurement Test (ILMT). Set ILMT to 1 to enable transmission of a scrambled all ones insertion loss measurement test pattern. In the NTU configuration when the ILMT mode is selected, the Data Pump may begin activation.
b1	Quiet Mode (QUIET). Set QUIET to 1 to force the Data Pump into the De-Activated State with the transmitter silent. Setting QUIET to 0 will not cause the Data Pump to reactivate. In the NTU mode, the Data Pump will not respond to an S0 signal from the LTU when QUIET is set to 1, but may activate after QUIET is set to 0 even if the LTU transmission has already ceased.
Ь0	Activation Request (ACTREQ). In the LTU mode when the Data Pump is in the Inactive State and Quiet is set to 0, setting the ACTREQ bit to 1 will initiate an activation sequence. Because ACTREQ is a level-rather than an edge-triggered signal, it should be reset to 0 again within approximately 25 seconds to prevent the immediate start of another activation cycle if the current activation attempt fails. If an activation attempt fails, the processor should allow the Data Pump to remain in the Inactive State where the transmitter is silent for 32 seconds before generating another activation request to allow the NTU to return to the Inactive State. It is possible to shorten this quiet period following a failed activation by implementing additional algorithms described in the section entitled "Activation State Machines."

WR2-Interrupt Mask Register

Address:A3-0 = 0010Default:00hAttributes:Write Only

Table 9 shows the various interrupt masks provided in register WR2.

Table 9: Interrupt Mask Register WR2

Bit	Description
b7-b6	Reserved. Must be set to 0.
b5	LOSMSK. 1=Masked. 0=Not Masked. Interrupt mask for the LOS condition
b4	LSWTMSK. 1=Masked. 0=Not Masked. Interrupt mask for the LOSWT condition
b3	LSWMSK. 1=Masked. 0=Not Masked. Interrupt mask for the LOSW condition
b2	ACTMSK. 1=Masked. 0=Not Masked. Interrupt mask for the TEXP condition and the ACTIVE condition
b1	Reserved. Must be set to 0.
b0	CRD1. Enable coefficient read register. Used in conjunction with WR3 for reading coefficient values.

WR3-Read Coefficient Select Register

Address: A3-0 = 0011 Default: 00h Attribute: Write Only

Table 10 lists the bit maps used to select the coefficient read from the HDX.

Table 10: Read Coefficient Select Register WR3

Hex Value	Selected Registers	Register Description
00-07	DFE1-DFE8	DFE coefficients
08-0F	EC1-EC8	Echo Cancellation
10-15	FFE1-FFE6	FFE coefficients 1-6
16-19	reserved	
1A	AGC Tap	AGC Tap
1B-FF	reserved	

RD0—Main Status Register

Address:A3-0 = 0000Default:xxh (x=undefined)Attribute:Read Only

Status Register bits serve the same purpose in Software Mode as the like-named individual pins in Hardware mode. Table 11 lists the bit assignments in this register

Table 11: Main Status Register RD0

Bit	Active Description
b7	 Timer Expiry (TEXP). Set to 1 to indicate 30-second timer expiration in the Active State. Causes interrupt on changing from 0 to 1; masked by ACTMSK = 1. Latched event; reset on read, with persistence while in the Active State.
b6	TIP/RING polarity reversed (INVERT). 0 = polarity reversal. Valid only in Active State.
b5	Change Of Frame Alignment (COFA). Indicates that re-acquisition of frame sync is in a different position with respect to the last frame position. Does not cause interrupt. Latched event; reset on read
b4	Loss Of Signal (NTU) (LOS). 1 = loss of line signal energy on entering Inactive State.
	 Loss of Signal Timer Expiration (LTU) (LOST). 1 = loss of signal for 1 second on entering Inactive State. Causes interrupt on transitions from 0 to 1 or 1 to 0 that are masked by LOSMSK = 1. LOS/LOST is not a latched event.
b3	reserved. This bit should be ignored.
b2	 Loss of Sync Word Timer Expiry (LOSWT). Indicates two seconds of LOSW. Causes interrupt on changing from 0 to 1; masked when LSWTMSK = 1. Latched event; reset on read; with persistence while in the Deactivated State.
bl	 Loss of Sync Word (LOSW). Causes interrupt on changing from 0 to 1; masked by LSWMSK = 1. Latched event; reset on read; with persistence while in the Pending Deactivation State.
b0	 Active State (ACTIVE). 1 = Completion of layer 1 activation. Causes interrupt on changing from 0 to 1; masked by ACTMSK = 1. Latched event; reset on read with persistence if still in the Active State.

RD1-Receiver Gain Word Register

Address:A3-0 = 0001Default:xxh (x=undefined)Attributes:Read Only

The 8-bit word in this register is the eight most significant bits of the main FFE AGC tap, which, along with the AGC and DAGC values (RD6), represent the receiver gain required to compensate for line loss, and to normalize the receive 2B1Q pulses to a fixed threshold. Bit b7 (sign bit, always 0) is the MSB with bit b0 the LSB. The AGC tap value is determined as follows:

AGC Tap =
$$\sum_{i=0}^{\circ} b_i * 2^{i-6}$$

Table 12: Receiver Gain Word Register

Bit	Description
b7-b0	FFE AGC Tap Value (eight most significant bits).

RD2-Noise Margin Register

Address:A3-0 = 0010Default:xxh (x=undefined)Attributes:Read Only

The noise margin of the received signal is an input to the HDSL framer's Activation State Machine. The noise margin must reach a threshold level before the HDSL framer can transition to the fully Active State. The HDX provides a calculated, logarithmic noise margin value used by the HDSL framer. This eight-bit word, stored in register RD2, is available every baud, although updated only every 64 baud. Table 22 shows the noise margin coding. To calculate the SNR, use this equation:

SNR =Noise Margin + 21.5 dB

Error propagation in the DFE and de-scrambler may introduce some fractional errors in this formula, however, the relationship between the SNR and the noise margin remains valid as long as the noise follows a Gaussian distribution.

Since the average period of the calculation is very short (64 baud = $110 \ \mu$ s), the recommended procedure for evaluating transmission quality is to average at least 1000 samples over a 110 ms period.

Table 13:	Noise Margin Register RD2	
	Noise Margin Coding ¹	

MSB LSB N						Noine		
b7	b6	b5	b4	b3	b2	b1	b0	Noise Margin
0	0	1	1	0	1	0	1	+26.5
0	0	1	0	1	1	1	1	+23.5
0	0	1	0	1	0	1	۱	+21.5
0	0	1	0	1	0	0	1	+20.5
0	0	1	0	0	1	1	1	+19.5
0	0	1	0	0	1	0	1	+18.5
0	0	1	0	0	1	0	0	+18.0
0	0	1	0	0	0	1	0	+17.0
0	0	1	0	0	0	0	0	+16.0
0	0	0	1	1	1	1	0	+15.0
0	0	0	1	1	1	0	0	+14.0
0	0	0	1	1	0	1	0	+13.0
0	0	0	1	1	0	0	0	+12.0
0	0	0	1	0	1	1	0	+11.0
0	0	0	1	0	1	0	0	+10.0
0	0	0	1	0	0	1	0	+9.0
0	0	0	1	0	0	0	0	+8.0
0	0	0	0	1	1	1	0	+7.0
0	0	0	0	1	1	0	0	+6.0
0	0	0	0	I	0	1	0	+5.0
0	0	0	0	1	0	0	0	+4.0
0	0	0	0	0	1	1	0	+3.0
0	0	0	0	0	1	0	0	+2.0
0	0	0	0	0	0	1	0	+1.0
0	0	0	0	0	0	0	0	0.0
1	1	1	1	1	1	1	0	-1.0
1	1	1	1	1	1	0	0	-2.0
1	1	1	1	1	0	1	0	-3.0
1	1	1	1	1	0	0	0	-4.0
1	1	1	1	0	1	1	0	-5.0
1	1	, 1	1	0	1	0	0	-6.0
1. Acc	curacy of	of noise	margir	1 is ± 1	dB			

RD3(LSB), RD4(MSB)—Coefficient Read Register

 Address:
 RD3 (A3-0 = 0011) RD4 (A3-0 = 0100)

 Default:
 xxh (x=undefined)

 Attributes:
 Read Only

Coefficient Read Word (read from the HDX) comes from the location configured in the Read Coefficient Select Register (WR3, Address A3-0 = 0011). The HDX updates this word on the rising edge of the receive clock, FS. Read register RD3 is the lower byte, and RD4 is the upper byte.

Table 14: Coefficient Read Register

Bit	Description
b7-b0	Coefficient Word Value. RD3 contains the lower byte; RD4 the upper byte.

RD5—Activation Status Register

Address:A3-0 = 0101Default:xxh (x=undefined)Attributes:Read Only

The ACT bits indicate the current state of the HDX transceiver during the Activating State as listed in Table 15. (For any state other than the Activating State, the ACT bits will be "0000".)

Table 15: Activation Status Register RD5

ACT Bits 3-0	State in LTU Mode	State in NTU Mode
0000	Inactive	Inactive
0001	Pre-AGC	Wait
0010	Pre-EC	AAGC
0011	SIGDET	EC
0100	AAGC	PLL1
0101	EC	PLL2
0110	PLL	4LVLDET
0111	4LVLDET	FRMDET
1000	FRMDET	

RD6—Receive Step Gain Register

Address: A3-0 = 0110

Default: xxh (x=undefined)

Attributes: Read Only

This 8-bit register represents AGC and FFE gain coefficients (GAGC and GFFE, respectively). Bit assignments are listed in Table 16. The approximate line loss (LL) can be determined using these values in the following equation:

 $LL = 20\log_{10} (GFFE * AGC tap) + GAGC + 28 dB$

GFFE corresponds to DAGC in the HDX and GAGC is from the ACC. Bits ST0-ST2 indicate the Data Pump activation states as shown in Figures 5 and 7 and Table 17.

Table 16: Receiver AGC and FFE Step Gain Register RD6

Bit	Description
b7	Data Pump Activation State-bit 2 (ST2).
b6	Data Pump Activation State-bit 1 (ST1).
b5-b4	Digital Gain Word–bit 1 and 0 (GFFE1,0).
	Bits <5:4> GFFE Value 00 $2^0 = 1$ 01 $2^1 = 2$ 10 $2^2 = 4$ 11 $2^3 = 8$
b3	Data Pump Activation State-bit 0 (ST0).
b2-b0	Analog Gain Word–bit 2,1 and 0 (GAGC2,1,0).
	Bits <2:0> GAGC Value (db) 000 -12 001 -10 010 -8 011 -6 100 -4 101 -2 110 0 111 +2

Activation State Machines

The Data Pump Activation/Start-Up circuitry is compatible with ETSI ETR-152. Full LTU activation is partitioned between the Data Pump and the framer. Figure 5 represents the LTU Data Pump Activation State Machine, and Figure 6 shows the LTU framer activation state machine. Figures 7 and 8 present the corresponding NTU state machines. Table 17 lays out the correspondence between the Data Pump and Framer state machines. In Software Mode, the ST*n* bits in Read Register 6 (ADDR 0110) show the current status of the state machine.

LTU Data Pump Activation

When the LTU Data Pump is powered up and reset is applied, the chip is in the Inactive State as shown at the top of Figure 5. Starting at the Inactive State, the device progresses in a clockwise direction through the Activating, Active-1, Active-2, Pending De-Activation and De-Activated States.

In the hardware mode when the Data Pump is in the Inactive State and the QUIET pin is Low, a Low-to-High transition on the ACTREQ pin initiates activation of the link. In the software mode when the Data Pump is in the Inactive State and the QUIET bit is set to 0, setting the ACTREQ bit to 1 initiates activation of the link. Because the ACTREQ control bit is level sensing, it should be set to 1 and then reset to 0 again within 25 seconds to generate a single activation request.

During the Activating State, the echo canceller, equalizer and timing recovery circuits are all adapting during the simultaneous transmission and reception of the framed, scrambled-ones data transmitted as a two-level code (S0) or as the four-level code (S1). If the receive frame sync word is not detected in two consecutive frames within 30 seconds, the timer expires and the device moves to the De-Activated State and ceases transmission. It will then immediately transition to the Inactive State (setting LOST regardless of whether NTU transmission has ceased). Another activation request should not be generated for 32 seconds allowing the NTU to timeout, detect LOS and move from the De-Activated to the Inactive State. In microprocessor-based systems, this time may be shortened by implementing a processor routine to reset the NTU Data Pumps which are in the Activating State when no LTU signal is present.

Successful detection of the sync word drives the State machine to the Active-1 State. This is indicated by a 0-to-1 transition of the ACTIVE bit (Software Mode). If the

LTU Data Pump remains locked to the sync word until the Activation Timer expires, the device transitions to the Active-2 (fully active) State. If sync is lost, as indicated by a 0-to-1 transition on LOSW, the LTU Data Pump transitions to the Pending De-Activation State.

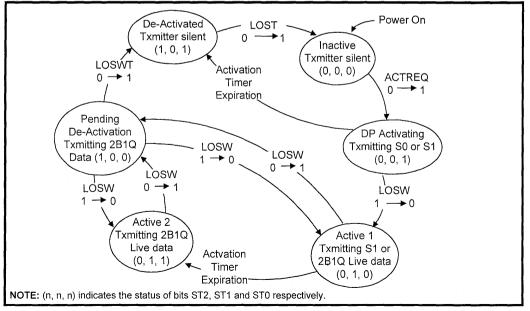
In Pending De-Activation, the LTU Data Pump progresses to the De-Activated and Inactive States with the expiration of the respective timers. If the sync word is detected before the LOSW timer expires, the LTU Data Pump returns to either Active 1 or Active-2. (The LTU Data Pump returns to whichever state it occupied before transitioning to Pending De-Activation.)

The LTU Data Pump will exit the Active-2 State in one of two ways. A Low-to-High transition on the QUIET pin (Hardware Mode) or the QUIET bit (Software Mode), forces the LTU Data Pump directly to the De-Activated State. The only other means of exiting the Active State is through a loss of receive sync word (LOSW). LOSW is set when six consecutive frames occur without a sync word match. The LOSW event puts the LTU Data Pump into the Pending De-Activation State.

The LTU Data Pump remains in the Pending De-Activation State for a maximum of two seconds. If a sync word is detected within two seconds after the LOSW event, the LTU Data Pump re-enters the Active State. If the LOSW condition exceeds two seconds, an LOSWT event occurs which sends the chip to the De-Activated State. When the De-Activated State is reached from Pending De-Activation, the LTU Data Pump returns to the Inactive State and declares LOST when it detects no signal from the NTU for one second. The Data Pump should remain in the Inactive State for 15 seconds before another activation attempt.

Machine Correspondences						
ST2	ST1	ST0	Data Pump State	Framer State		
0	0	0	Inactive	Idle		
0	0	1	Activating – 30 sec timer running	Idle		
0	1	0	Active $-30 \sec$ timer running (Active-1) ¹	Idle, Active-R or Active-T, or Link Active		
0	1	1	Active $-30 \sec$ timer expired (Active-2) ¹	Link Active		
1	0	0	Pending De-Activation ¹	Link Active or Active-R or Active-T		
1	0	1	De-Activated	Idle		
1	1	0	unused	unused		
1	1	1	unused	unused		
cept	 The data pump samples the TDATA input for all transmit data except the 14 sync bits at the start of each frame during states 010, 011 and 100. 					

Table 17: Data Pump/Framer Activation State Machine Correspondences


Figure 5: LTU Data Pump Activation State Machine

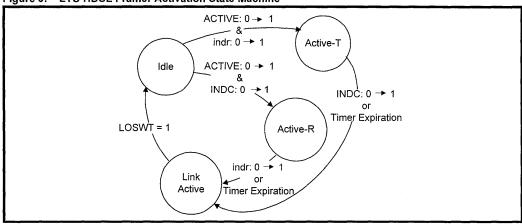

LTU Framer Activation

Figure 6 shows the activation state machine for the LTU HDSL framer. Transition to the Link Active stage from the Idle stage (upper left) requires successful exchange of a pair of indicator bits, **indc** and **indr**. ("INDC" and "INDR" are internal status signals within the HDSL framer; "**indc**" and "**indr**" are bits in the overhead channel.) The LTU device transmits the **indc** bit, and the NTU device transmits the **indr** bit. The overhead frame carries these indicator bits during transmission of the S1 training pattern.

Figure 6 illustrates the two partially active states (Active-R and Active-T) which may serve as transitions between the Idle and Link Active States. If the LTU device reaches the SNR threshold, its framer sets the INDC bit and the device transitions to the Active-R State. If the NTU device reaches the SNR threshold, it will transmit the **indr** bit to the LTU. The LTU will then transition to the Active-T State. From either of the partially Active States, the devices transition to the full Link Active State only with both Indication bits set.

Upon entering the Active States (Active-R, Active-T or Link Active), the chip will open up the full duplex communication link with the NTU. Only the Active and Pending De-Activation States allow full payload transmission. In all states except Active-1 and Active-2, the RDATA output is clamped High.

Figure 6: LTU HDSL Framer Activation State Machine

NTU Data Pump Activation

Figures 7 and 8 represent the NTU Data Pump Activation State Machine and the NTU HDSL Framer State Machine. The activation state machines for NTU and LTU devices are similar. Both Data Pump machines start at the Inactive State and progress clockwise through the Activating, Active-1, Active-2, Pending De-Activation, and De-Activated States. One difference between them is in the initial condition required to exit from the Inactive State. The LTU Data Pump responds to the Activation Request (ACTREQ) signal. The NTU device responds only to the presence of signal energy on the link. Thus, only an active LTU device can bring up the link. Once the LTU begins transmitting, the NTU device will automatically activate and attempt synchronization.

The other difference between the Data Pump state machines is the impetus for the change from the De-Activated to the Inactive State. In the LTU Data Pump, expiration of a one-second loss of signal timer (LOST) causes the transition. In the NTU the transition occurs immediately on Loss of Signal (LOS).

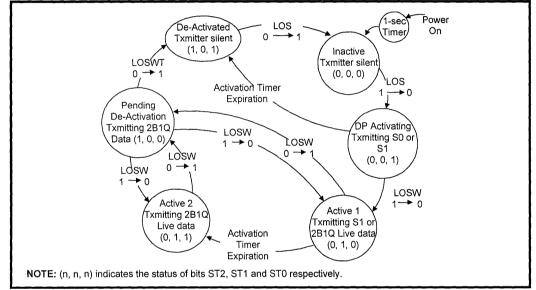
NTU Framer Activation

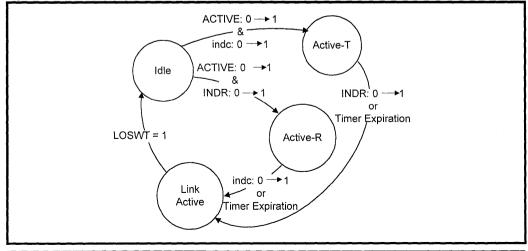
The HDSL framer activation state machines for LTU and NTU are also similar. The difference is in the indicator bits which cause the transition to either the Active-T or Active-R State. On the NTU side, the INDR bit causes the transition to the Active-R State, and the **indc** bit causes the transition to the Active-T State. From either partially active state, receipt of the remaining indicator bit or timer expiry causes the transition to the full Link Active State.

HDSL Synchronization State Machine

Figure 9 shows the HDSL Synchronization State Machine incorporated in the HDX. It applies to both LTU and NTU devices. Table 18 lists the correspondence between the Synchronization states and Activation states. The Sync state machine is clocked by the receive signal framing. Starting at the initial Out-of-Sync condition (State 0), the device progresses in a clockwise direction through State 1 until Sync is declared in State 2. Two consecutive frame sync word matches are required to achieve synchronization.

Once the In-Sync condition is declared, six consecutive frame sync mismatches will cause the device to transition through States 3 through 7 and declare an Out-of-Sync condition in State 8. From State 8, the device will return either to State 2 or to State 0. If the 2-second timer expires without re-establishing frame sync (LOSWT = 1) or if the receive signal is lost entirely (LOS = 1), the device returns directly to State 0.


If frame sync is re-established, the device will return to the In-Sync condition (State 2) through State 9 if two consecutive frames are received without any change of frame alignment (COFA = 0). If a change of frame alignment does occur (COFA = 1), two consecutive matches are required to transition through State 10 back to State 2.


Table 18: Activation – Synchronization

Activation State	Synchronization States				
Inactive	State 0				
Activating	State 1				
Active	States 2, 3, 4, 5, 6, and 7				
Pending De-Activation	States 8, 9, and 10				

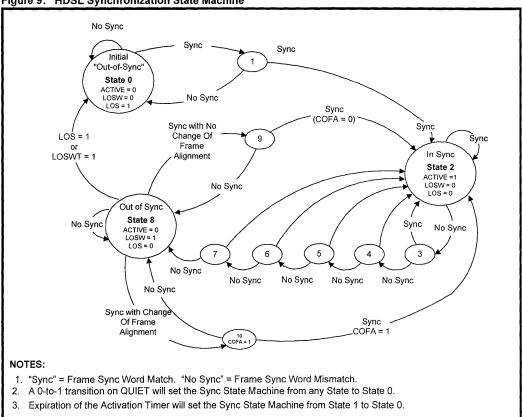

Figure 7: NTU Data Pump Activation State Machine

Figure 8: NTU HDSL Framer Activation State Machine

Figure 9: HDSL Synchronization State Machine

APPLICATION INFORMATION

HDSL Framer State Machine Design

Because of data transparency characteristics of the Data Pump, two issues impact on implementing the HDSL Framer Activation State machines for both LTU and NTU devices:

- 1. Once the ACTIVE 0-to-1 transition occurs, the Data Pump becomes transparent. Therefore, the HDSL framer must put appropriate data in TDATA. Table 5 summarizes this requirement.
- 2. The link indicator bits (indc and indr) must stabilize before the device makes the transition from the ldle to the Active-T State. Thus, the HDSL framer design may detect 6 consecutive matches for the indication bit transition. This is particularly important for non-CSA loops where a lower SNR may be experienced.

PCB Layout

The following are general considerations for PCB layout using the HDSL Data Pump chip set:

- Refer to Figures 10, 11, 12 and 13, and Table 19. Keep all shaded components close to the pins they connect to.
- Use a four-layer or more PCB layout, with embedded power and ground planes.
- Break up the power and ground planes into the following regions, and tie these regions together at the common point where power connects to the circuit:
 - Digital Region
 - Analog Region
 - VCXO subregion
 - ACC, Line I/F, and IBIAS subregion
- Use larger feedthroughs ("vias") and tracks for connecting the power and ground planes to the power and ground pins of the ICs than for signal connections. Place the decoupling capacitors right at the feed-through power/ground plane ties, or on the tracks to the IC power/ground pins as close to the pins as possible.
- On the User Interface Connector, route digital signals to avoid proximity to the TIP, RING, and CT lines.
- Provide at least 100 μ F or more of bulk power supply decoupling at the point where power is connected to the Data Pump circuit.

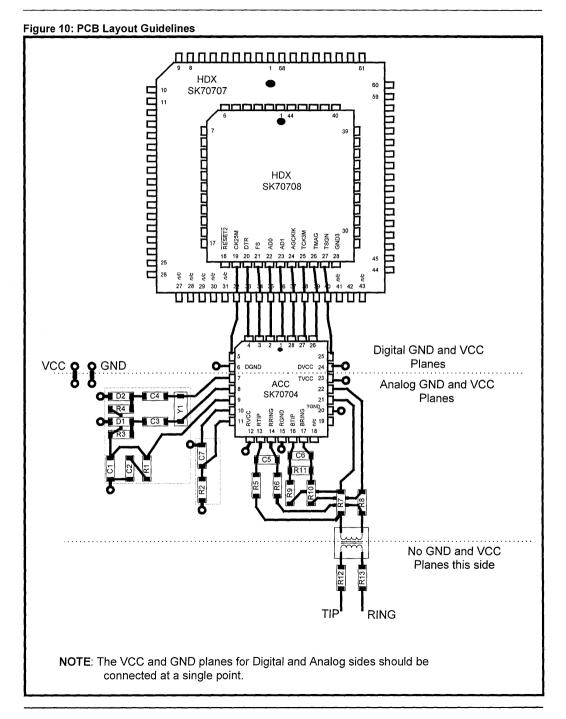
User Interface

The REFCLK and CK9M signals are sensitive to capacitive loading and rise time. Keep the rise time (from 10%-90%) for these signals less than 5 ns.

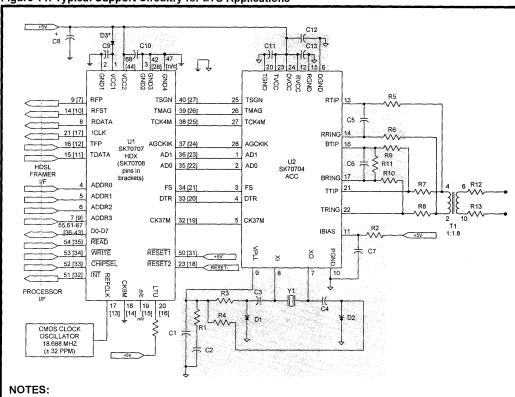
Digital Section

- Keep all digital traces separated from the analog region of the Data Pump layout.
- Provide high frequency decoupling capacitors (0.01 μ F ceramic or monolithic) around the HDX as shown in Figures 11 and 12. The capacitor on the HDX VCC1 pin (pin 1) should be on the IC side of the diode.
- It is possible to replace the NAND gate (shown in Figure 12) with an AND gate.

Analog Section


The analog section of the PCB consists of the following subsections:

1. ACC and power supply decoupling capacitors 2.Bias Current Generator


3. Voltage Controlled Crystal Oscillator

4.Line Interface Circuit

- Route digital signals AD0, AD1, FS, DTR, TSGN, TMAG, TCK4M, and AGCKIK on the solder side of the PCB, and route all analog signals on the component side as much as possible.
- · Route the following signal pairs as adjacent traces:
- TTIP/TRING
- BTIP/BRING
- RTIP/RRING
- but keep the pairs separated from each other as much as possible.
- To maximize high voltage isolation, do not run the analog ground plane under the transformer line side.

Diode D3 is optional.

The HDX and ACC should have independent ground planes connected at a single point near pin 5 of the ACC.

Table 19: Component	s for Suggested Circuitry	(See Figures 11 and 12)
Table for eempenen	e lei euggeeten eneung	(0001 1galob 11 alla 12)

Ref	Description	Ref	Description	Ref	Description	
C1, 9, 10	0.01 µF, ceramic, 10%	R1	10.0 kΩ, 1%	R12, 13	5.6 Ω, line feed fuse resistor (ALFR-2-5.6-1 IRC)	
C2	33 µF, electrolytic, 20% low	R2	35.7 kΩ, 1%			
	leakage ≤5 μA @ 25° C	R3, 4	20.0 kΩ, 1%	D1, 2	Varicap diode (Motorola MV209)	
C3, 4	1000 pF, ceramic, 20%	R5, 6	301 Ω, 1%	D3	Silicon rectifier diode (1N4001)	
C5, 6	470 pF, COG or mica, 10%	R7, 8 ¹	18.2 Ω, 1%	Y1	37.376 MHz crystal (Hy-Q International 81256/1)	
C7, 11-13	0.1 µF, ceramic, 10%	R9, 10	604 Ω, 1%			
C8	100 μF, electrolytic, 20%	R11	1.43 kΩ, 1%	T1	1:1.8 (Midcom 671-7671 or	
		R14	10.0 kΩ, 1%		Pulse Engineering PE-68650)	

Figure 11: Typical Support Circuitry for LTU Applications

E LEVEL ONE

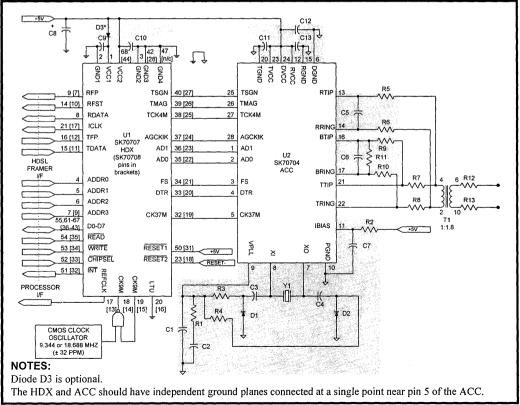

Measure	Value	Tolerance					
Turns Ratio (IC:Line)	1:1.8	±1%					
Secondary Inductance (Line Side)	2.05 mH	±6%					
Leakage Inductance	≤ 50 µH						
Interwinding Capacitance	≤ 60 pF						
THD	≤ -70 dB						
Longitudinal Balance	≥ 50 dB	5-292 kHz					
Return Loss	≥ 20 dB	40-200 kHz					
Isolation	2000 VRMS						
Primary DC Resistance	\leq 2.0 Ω						
Secondary DC Resistance	$\leq 4.0 \ \Omega$						
Operating Temperature	-40 to +85 °C						

Table 20: Transformer Specifications (Figures 11 and 12, Reference T1)

Table 21: Crystal Specifications (Figures 11 and 12, Reference Y1)

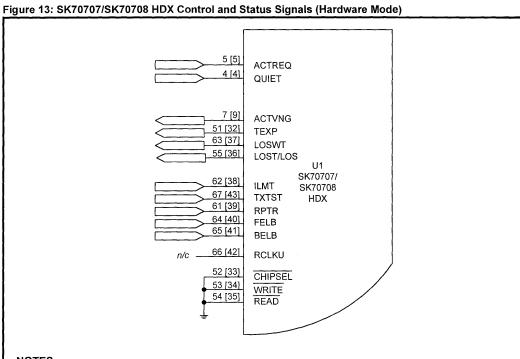

Measure	Value	Tolerance
Calibration Frequency	37.376 MHz @ CL = 20 pF	0 to +40 ppm
Mode	Fundamental, Parallel Resonance	
Pullability (CL = 24 pF ➡ 16 pF)	≥ +160 ppm	
Operating Temperature	-40 to +85 °C	
Temperature Drift	≤±30 ppm	
Aging Drift	≤ 5 ppm/year	
Series Resistance	≤ 15 Ω	
Drive Level	0.5 mW	
Holder	HC-49	

Figure 12: Typical Support Circuitry for NTU Applications

Application Information

- NOTES:
- 1. This figure illustrates the HDX control and status signals in Hardware Mode. All other HDX and ACC signals are connected as shown in Figures 11 and 12.
- 2. Pin numbers for SK70708 are shown in brackets []. Pin numbers outside brackets are for SK70707.

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 22 through 32 and Figures 14 through 20 represent the performance specifications of the Data Pump and are guaranteed by test, except where noted by design.

Table 22: ACC Absolute Maximum Ratings

Symbol	Min	Max	Units					
TVCC, RVCC, DVCC	-0.3	+6.0	V					
TVCC, RVCC, DVCC	- 0.3V	VCC + 0.3	V					
-	-	±25	mA					
TSTOR	-65	+150	°C					
CAUTION Operations at the limits shown may result in permanent damage to the Analog Core Chip. Normal operation at these limits is neither implied nor guaranteed								
	TVCC, RVCC, DVCC TVCC, RVCC, DVCC - TSTOR CAUTION rmanent damage to the Ar	TVCC, RVCC, DVCC -0.3 TVCC, RVCC, DVCC -0.3V - - TSTOR -65 CAUTION rmanent damage to the Analog Core Chip.	TVCC, RVCC, DVCC -0.3 +6.0 TVCC, RVCC, DVCC -0.3V VCC + 0.3 - - ±25 TSTOR -65 +150 CAUTION rmanent damage to the Analog Core Chip. Normal operation					

No supply input may have a maximum potential of more than ±0.3 V from any other supply input.
 TGND = 0V; RGND = 0V; DGND = 0V.
 TVCC = RVCC = DVCC = VCC.

Table 23: ACC Recommended Operating Conditions

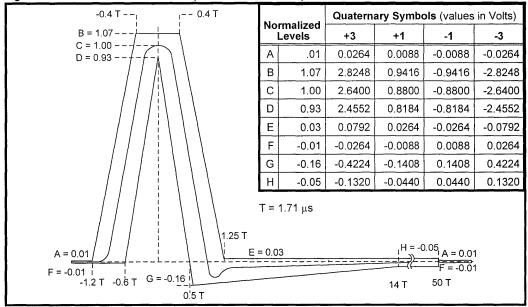
Parameter	Symbol	Min	Тур	Max	Units
DC supply	TVCC, DVCC, RVCC	4.75	5.0	5.25	V
Ambient operating temperature	ТА	-40	+25	+85	°C

Table 24: ACC DC Electrical Characteristics (Over Recommended Range)

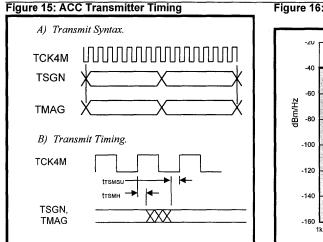
Parameter	Sym	Min	Typ ¹	Max	Unit	Test Conditions	
Supply current (full operation)	ICC		102	137	mA	83 Ω resistor across TTIP and TRING	
DVCC current		-	. 7	12	mA		
RVCC current		-	30	50	mA		
TVCC current		_	65	75	mA	Normal Mode 8+3, 8-3, 8+3,	
		-	38	48	mA	Off Mode	
Input Low voltage	Vil	-	-	0.5	v	IIL < 40 μA	
Input High voltage	Vih	4.5	-	-	v	IIH < 40 μA	
Output Low voltage	Vol	-	-	0.2	v	IOL < 40 μA	
1. Typical values are at 25° C and are for design aid only: not guaranteed and not subject to production testing.							

2. Applies to pins 3, 4, 25, 26 and 27.

Parameter	Sym	Min	Typ ¹	Max	Unit	Test Conditions
Output High voltage	Vон	4.5	-	-	V	Іон < 40 μА
Input leakage current ²	IIL	_		±50	μΑ	0 < VIN < VCC
Input capacitance (individual pins)	Cin	· _	12	_	pF	
Load capacitance (REFCLK output)	CLREF	-		20	pF	


Table 24: ACC DC Electrical Characteristics (Over Recommended Range) - continued

Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing.
 Applies to pins 3, 4, 25, 26 and 27.


Table 25: ACC Transmitter Electrical Parameters (Over Recommended Range)

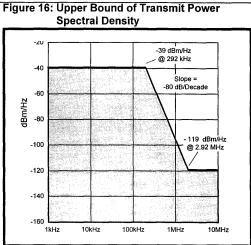

Parameters	Sym	Min	Тур	Max	Unit	Test Conditions
Isolated pulse height at TTIP,		+2.455	+2.640	+2.825	Vp	TDATA High, TFP Low (+3)
TRING		-2.825	-2.640	-2.455	Vp	TDATA Low, TFP Low (-3)
		+0.818	+0.880	+0.941	Vp	TDATA High, TFP High (+1)
		-0.941	-0.880	-0.818	Vp	TDATA Low, TFP High (-1)
Setup time (TSGN, TMAG)	ttsmsu	5	-	-	ns	
Hold time (TSGN, TMAG)	ttsmh	12	-	-	ns	

Figure 14: ACC Normalized Pulse Amplitude Transmit Template

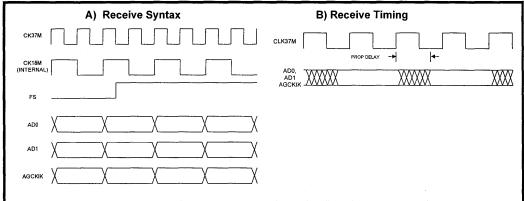


Table 26: ACC Receiver Electrical Parameters (Over Recommended Range)

Parameter	Sym	Min	Тур	Max	Unit	Test Conditions
Propagation delay (AD0, AD1)	tADD	-	-	25	ns	
Total harmonic distortion		-	-80	-	dB	V(RTIP, RRING) = 3 Vpp @ 50 kHz
RTIP, RRING, to BTIP, BRING gain ratio		-	1.0	1%	V/V	

Figure 17: ACC Receiver Syntax and Timing

Test Specifications

Table 27: HDX Absolute Maximum Ratings

Parameter	Symbol	Min	Мах	Units	
Supply voltage ¹ reference to ground ²	VCC2, VCC1	-0.3	+6.0	v	
Input voltage ² , any input pin	-	- 0.3	VCC2 + 0.3	v	
Continuous output current, any output pin	-	_	±25	mA	
Storage temperature	TSTOR	-65	+150	°C	

CAUTION

Operations at the limits shown may result in permanent damage to the HDSL Digital Transceiver (HDX). Normal operation at these limits is neither implied nor guaranteed

1. The maximum potential between VCC2 and VCC1 must never exceed ±1.2 V.

2. GND4 = GND3 = 0V; GND2 = 0V; GND1 = 0V.

Table 28: HDX Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units	
DC supply	VCC1 ¹	3.95	5.0	5.25	v	
	VCC2	4.75	5.0	+5.25	v	
	VCC2-VCC1	-0.25	_	+0.9	v	
Ambient operating temperature	ТА	-40	_	+85	°C	

1. To derive this supply, a 1N4001 (or equivalent) diode may be connected between VCC2 and VCC1 as shown in Figures 11 and 12. The diode should be selected to meet VCC1 minimum specifications.

Table 29: HDX DC Electrical Characteristics (Over Recommended Range)

Parameter	Sym	Min	Typ ¹	Мах	Unit	Test Conditions
Supply current (full operation)	ICC	-	125	175	mA	
Input Low voltage	Vil	-	-	0.5	v	IIL < 40 μA
Input High voltage	Vih	4.0	_	_	v	IIH < 40 μA
Output Low voltage	Vol	_	_	GND +0.3	v	IOL < 40 μA
Output High voltage	Vон	VCC2-0.5	-	-	v	Іон < 40 μА
Input leakage current ²	IIL			±50	μΑ	$0 < V_{IN} < V_{CC2}$
Tristate leakage current ³	Itol	_	-	±30	μΑ	0 < V < VCC2
Input capacitance (individual pins)	Cin	-	12	_	pF	
Load capacitance (REFCLK output)	Clref	I	_	15	pF	

1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

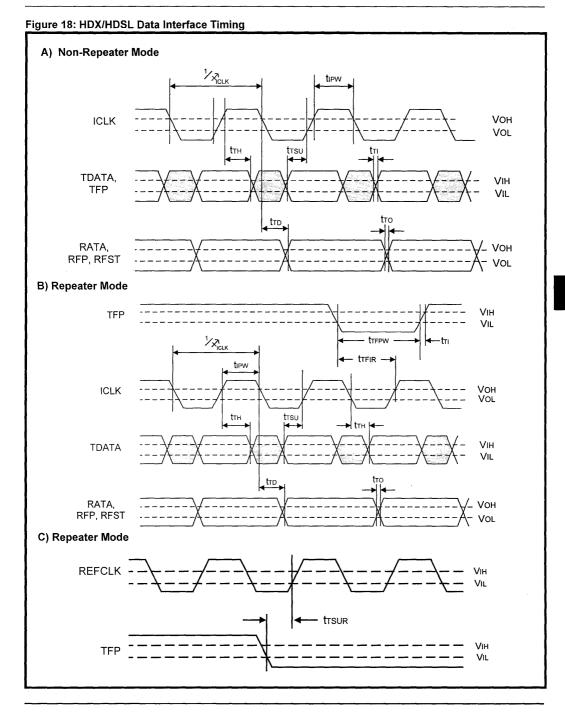
2. Applies to all pins that can be configured as inputs. Refer to Table 3 for a complete list of signals.

3. Applies to SK70707 pins 8, 9, 14, 19, 21, 49, 51, 55, and 61-67 or SK70708 pins 7, 8, 10, 15, 17, 30, 32, and 36-43 when tristated.

SK70704/SK70707 or SK70708 1168 kbps HDSL Data Pump Chip Set

Parameter	Symbol	Min	Typ ¹	Max	Unit
ICLK frequency	fICLK	-	1168	-	kHz
REFCLK frequency	fREFCLK	-	18.688	_	MHz
REFCLK frequency tolerance (LTU Mode)	tolRCLK	-32	0	+32	ppm
CK9M frequency tolerance (NTU Mode) ²	tolCK6M	-32	0	+32	ppm
ICLK pulse width high	tipw	_	428	_	ns
Transition time on any digital output ³	tто	-	5	10	ns
Transition time on any digital input	tTI	-	-	25	ns
TDATA, TFP setup time to ICLK rising edge	trsu	100	-	-	ns
TDATA, TFP hold time from ICLK rising edge	tтн	100	-	-	ns
RDATA, RFP, RFST delay from ICLK falling edge	ttd	0	-	150	ns
TFP pulse width ⁴	t tfpw	828	856	884	ns
TFP falling edge to ICLK rising edge ⁴	ttfir	300	-	400	ns
TFP setup time to REFCLK rising edge ⁴	ttsur	25	-	-	ns

Table 30: HDX/HDSL Data Interface Timing (See Figure 18)


Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
 CK9M must meet this tolerance about an absolute frequency of 9.344000 MHz or 18.688000 MHz in NTU mode.

3. Measured with 15 pF load.

4. These parameters apply only to an LTU mode Data Pump programmed for repeater applications as shown in Figure 18.

Test Specifications

SK70704/SK70707 or SK70708 1168 kbps HDSL Data Pump Chip Set

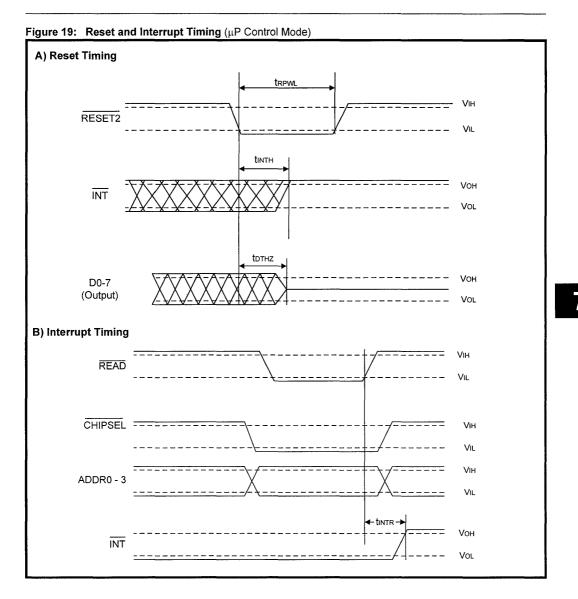
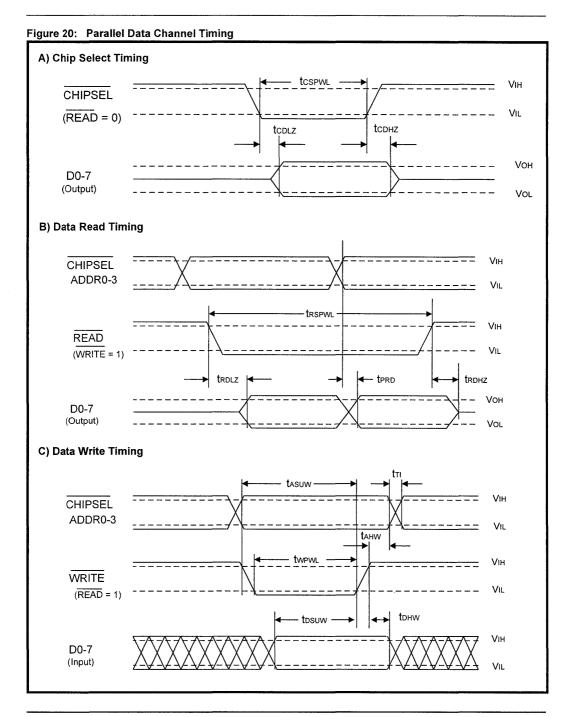

Parameter	Symbol	Min	Тур	Max	Unit
RESET2 pulse width Low	tRPWL	0.1		1,000	μs
RESET2 to \overline{INT} clear (10 k Ω resistor from \overline{INT} to VCC2)	tINTH	_	-	300	ns
RESET2 to data tristate on D0-7	tDTHZ	_	_	100	ns
CHIPSEL pulse width Low	tCSPWL	200	_	_	ns
CHIPSEL Low to data active on D0-7	tCDLZ	_	_	80	ns
CHIPSEL High to data tristate on D0-7	tCDHZ	_	-	80	ns
READ pulse width Low	tRSPWL	100	-	_	ns
READ Low to data active	tRDLZ	-	-	80	ns
READ High to data tristate	tRDHZ	_	-	80	ns
Address to valid data ²	tPRD	-	-	80	ns
Address setup to WRITE rising edge ²	tASUW	20	-	-	ns
Address hold from WRITE rising edge ²	tAHW	10		_	ns
WRITE pulse width Low	tWPWL	100	-	-	ns
Data setup to WRITE rising edge	tDSUW	20	_	-	ns
Data hold from WRITE rising edge	tDHW	10	_		ns
READ High to INT clear when reading register RD0	tINTR	_	_	400	ns

Table 31: HDX/Microprocessor Interface Timing Specifications¹ (See Figures 19 and 20)


Table 32: General System and Hardware Mode Timing

	Parameter	Min	Тур ¹	Max	Unit
Throughput delay	TDATA to TTIP/TRING		6.85	12.5	μs
	RTINP/RRING to RDATA	-	36.0	72	μs
Hardware mode	"ACTREQ" input transitional pulse width (High or Low)	5	-		μs
	"QUIET" transitional pulse width (High-to-Low)	5	-	-	μs

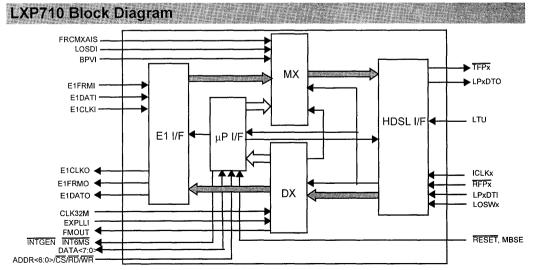
SK70704/SK70707 or SK70708 1168 kbps HDSL Data Pump Chip Set

DATA SHEET—PRELIMINARY INFORMATION

LXP710 HDSL Framer/Mapper for 1168 kbps Applications

General Description

The LXP710 is a complete HDSL framer/mapper that multiplexes and demultiplexes a framed or unframed 2.048 Mbps E1 data stream onto two 1168 kbps HDSL lines. The LXP710 also supports point-to-point and point-to-multipoint fractional E1 applications with 1, 2 or 3 HDSL lines.


The LXP710 interfaces directly with the Level One SK70704/SK70707 1168 kbps HDSL data pump and industry standard E1 Framers or Line Interface ICs. The framer/mapper is controlled and monitored by an external processor using an 8-bit Intel or Motorola compatible parallel interface. The framer/mapper provides both programmable and 6ms interrupts synchronized to the HDSL frame rate.

The LXP710 provides fully programmable mapping between the E1 and HDSL interfaces on one or more loops. The LXP710 provides support for system performance monitoring with internal CRC, FEBE and BPV error counters and the capability to inject these errors.

The framer/mapper automatically controls the synchronization between the HDSL loop timing and the E1 payload timing using a digital PLL for E1 timing recovery and a transmitter stuffing control circuit.

Features

- Compliant with ETSI ETR-152 requirements
- Interfaces with 1, 2 or 3 Level One HDSL Data Pumps and industry standard E1 Framers or Line Interface ICs
- 8-bit, Intel or Motorola compatible parallel processor interface with programmable and 6ms interrupts
- E1 to HDSL Loop Multiplexing/Demultiplexing
 - · Programmable timeslot mapping
 - · Accepts framed or unframed E1 data
 - IDLE Code Insertion provides channel blocking in mux and demux directions
 - · DS0 Channel Grouping
 - · Loopbacks toward E1 and HDSL interfaces
 - Diagnostics/Performance Monitoring
 - QRSS Pattern Generation and Detection
 - CRC, BPV and FEBE counters and error generators
- User definable 10 kbps overhead channel
- HDSL Overhead Management
- DPLL for E1 Timing Recovery
- HDSL Transmit Stuffing Control

LXP710 HDSL Framer/Mapper for 1168 kbps Applications

DATA SHEET SK70720/SK70721 Multi-Rate DSL Data Pump Chip Set

General Description

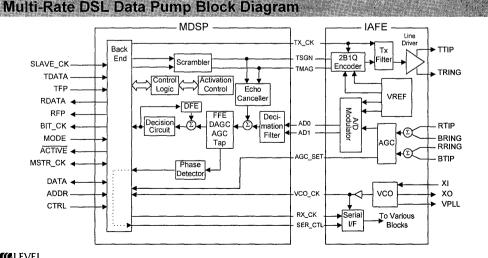
The Multi-Rate DSL Data Pump is a complete, variablerate transceiver that provides full duplex communication on two wires using echo-canceller-with-hybrid and 2B1Q line coding technology. It provides symmetrical line rates from 272 to 784 kbps. Performance specifications are defined at the 272, 400, 528 and 784 kbps data rates which provide a payload of 4, 6, 8 or 12 64 kbps channels with a 16 kbps overhead channel. The MDSL Data Pump also supports applications where the payload is unchannellized.

The MDSL Data Pump chip set consists of two devices:

- SK70720 MDSL Digital Signal Processor (MDSP)
- SK70721 Integrated Analog Front-End (IAFE)

The IAFE is a fully integrated CMOS analog front-end IC which includes transmitter line drivers, filters, and 2B1Q encoding functions along with the receiver hybrid, AGC, A/D converter modulator and VCXO functions. The MDSP incorporates all digital signal processing required for A/D conversion, echo-cancellation, data scrambling and adaptive equalization as well as transceiver activation state machine control.

Applications


- High speed residential Internet access
- · Extended Range fractional T1/E1 transport
- 4, 6, 8 or 12-channel digital pair-gain
- · Wireless base station to switch access
- · WAN access for LAN routers

Features

- Fully integrated, 2-chip transceiver for interfacing to twisted-pair lines at 272 to 784 kbps
- Integrated line drivers, filters and hybrid circuits reduce the number of external components required
- Self-contained activation/start-up control eliminates an external microprocessor in many applications
- · Parallel interface for processor control or monitoring
- · Programmable for either link master or slave operation
- Single +5V supply
- Typical power dissipation less than 500 mW—good for applications with remote power feeding
- Supports transparent repeater applications without an external processor or glue-logic
- Supports processor directed rate selection driven by receive signal level and noise margin
- Continuously adaptive echo canceller and equalizers maintain excellent transmission performance with changing noise and line characteristics
- Typical noise-free transmission range: <u>784 kbps</u>

17.0 kft (5.2 km) on #24 AWG (0.5 mm) cable 12.8 kft (3.9 km) on #26 AWG (0.4 mm) cable <u>272 kbps</u>

22 kft (6.7 km) on #24 AWG (0.5 mm) cable 16 kft (4.9 km) on #26 AWG (0.4 mm) cable

AUGUST 1997 Revision 1.0

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

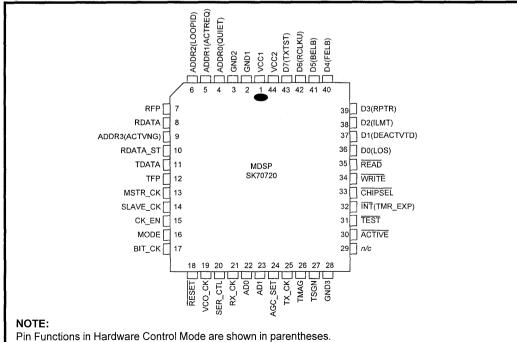
The IAFE is packaged in a 28-pin PLCC. Figure 1 shows the IAFE pin locations. Table 1 lists signal descriptions for each pin, except pins 18 and 19, which are not connected.

The MDSP device is packaged in a 44-pin PLCC. Figure 2 shows MDSP pin designations. Table 2 lists signal descriptions for each pin.

5 ð TMAG SER X ð VCO_CK 25 TSGN DGND 24 DVCC xo 23 TVCC IAFE хIГ 22 TRING 8 SK70721 VPLL TTIP 21 9 20 TGND PGND 10 19 📘 n/c IBIAS 11 12 13 14 15 16 17 18 RRING RGND RTIP BTIP BRING RVCC n/c

Table 1: SK70721 IAFE Pin Assignments/Signal Descriptions

Group	Pin#	Symbol	I/O ¹	Description
Line	13	RTIP	AI	Receive Tip and Ring. Receiver differential inputs.
	14	RRING	AI	
	16	BTIP	AI	Receive Balance Tip and Ring. Receiver hybrid balance inputs.
	. 17	BRING	AI	
	21	TTIP	AO	Transmit Tip and Ring. Line driver outputs.
	22	TRING	AO	
PLL	7	ХО	AO	Crystal Oscillator Input and Output. Connect a pullable crystal whose
	8	XI	AI	frequency is 32 times the bit rate between these two pins. Refer to the Applications Section for crystal specifications.
	9	VPLL	AO	PLL Control Voltage. Control signal for the VCXO.
Power	10	PGND	S	PLL Ground. 0 V.
 	12	RVCC	S	Receive Power supply. +5 V (± 5%).
	23	TVCC	S	Transmit Power supply. +5 V (± 5%).
ļ	24	DVCC	S	Digital Power Supply. +5 V (± 5%).
	6	DGND	S	DVCC Ground. 0 V.
	15	RGND	S	RVCC Ground. 0 V.
	20	TGND	S	TVCC Ground. 0 V.
1. I/O columr AI/O = An	n entries: I alog Input/	DI = Digital Input; Output; S = Suppl	DO = Digit y.	al Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output;



Pin Assignments and Signal Descriptions

Group	Pin#	Symbol	I/O ¹	Description
Clock	3	RX_CK	DI	Receive Baud Rate Clock Input.
and Control	4	SER_CTL	DI	Serial Control Input.
	5	VCO_CK	DO	MDSL Reference Clock Output. Used as the receive timing reference for the MDSP.
	27	ТХ_СК	DI	Transmit Symbol Clock Input.
Data	28	AGC_SET	DO	AGC Adjust Output.
Input and	1	AD1	DO	A-to-D Converter Data Line 1.
Output	2	AD0	DO	A-to-D Converter Data Line 0.
	25	TSGN	DI	Transmit Quat Sign Input.
	26	TMAG	DI	Transmit Quat Magnitude.
Analog Input	11	IBIAS	AI	Input Bias. This input sets internal bias currents.
		DI = Digital Input; Output; S = Suppl		al Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output;

Table 1: SK70721 IAFE Pin Assignments/Signal Descriptions - continued

Figure 2: SK70720 MDSP Pin Assignments

7

Group	Pin#	Symbol	I/O ⁴	Description
Power	1	VCC1	S	Logic Power Supply. (Refer to Table 27)
	44	VCC2	S	I/O Power Supply. +5 V (± 5%).
	2	GND1	S	Ground 1. 0 V.
-	3	GND2	S	Ground 2. 0 V.
	28	GND3	S	Ground 3. 0 V.
Misc	29	n/c	-	No internal connection.
	31	TEST	DI ¹	Test. Reserved for factory testing. Tie High for normal operation.
	18	RESET	DI	Reset. Pulse Low to initialize internal circuits.
User Port	10	RDATA_ST	DO	Receive Data Strobe. RDATA_ST goes High for 18 consecutive BIT_CK periods to indicate four stuffing bits (b4703 - 4706) and 14 frame bits (b1-14) on RDATA.
	16	MODE	DI	Mode Select. When MODE is High, the Data Pump operates in Master mode so that it is the link timing source and initiates activation. When MODE is Low, the Data Pump operates in Slave mode. Tied to internal pull-up device. <i>The MDSP must be reset after the MODE is changed.</i>
	17	BIT_CK	DO	Bit Rate Clock. This clock transfers data into and out of the MDSL data interface at the bit rate. MSTR_CK is the source of BIT_CK in Master Mode. VCO_CK is the source of BIT_CK in Slave Mode.
	30	ACTIVE	DO	Link Active Indicator. ACTIVE goes Low upon the receipt of two con- secutive frame sync words. ACTIVE goes High when the frame sync word is not detected in six consecutive frames.
	8	RDATA	DO	MDSL Receive Data Output. When $\overline{\text{ACTIVE}}$ is Low, the receive data including frame sync and stuff bits are output on RDATA. RDATA is High when $\overline{\text{ACTIVE}}$ is High.
	7	RFP	DO	Receive Frame Pulse. Low for one BIT_CK cycle during the last bit of the current MDSL receive frame on RDATA, either b4702 or b4706. RFP is valid when ACTIVE is Low.
	11	TDATA	DI ¹	MDSL Transmit Data Stream. When ACTIVE is Low, the Data Pump samples data on TDATA except during frame sync and stuff bits.
	12	TFP	DI ¹	Transmit Frame Pulse. TFP should be Low for one BIT_CK cycle the during last bit of the current MDSL frame on TDATA. <i>If TFP is pulled Low and is Low again three BIT_CK cycles later, RDATA, RFP, RDATA_ST, BIT_CK, CK_EN, and ACTIVE will tri-state until the device is reset.</i> Tied to an internal pull-up device.

Table 2: SK70720 MDSP Pin Assignments/Signal Descriptions

This input is a Schmidt Triggered circuit and includes an internal pull-up device.
 The period is 2351 or 2353 baud times.
 This input is a Schmidt Triggered circuit and includes an internal pull-down device.
 I/O column entries: DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output; AI/O = Analog Input/Output; S = Supply.

Pin Assignments and Signal Descriptions

Group	Pin#	Symbol	I/O ⁴	Description
Hardware Interface	4	QUIET	DI ³	Quiet Mode Enable. Set High to force the MDSP into the Deactivated State. Set Low to enable activation requests (see ACTREQ).
(Hardware Control Mode)	5	ACTREQ	DI ³	Activation Request (Master mode) (no function in Slave mode). Tie this pin Low in Slave mode. When QUIET is Low, a rising edge on this pin initiates activation. The signal is ignored after activation (see QUIET).
	6	LOOPID	DI ³ /O	Loop Number Input (Master mode) or Loop Number Indicator (Slave mode). This indicator is transmitted from the link Master to the slave and can be used for loop identification in systems that multiplex data onto multiple MDSL lines. In Slave mode LOOPID is valid only when ACTIVE is Low.
	9	ACTVNG	DO	Activating State Indication. ACTVNG goes High when the MDSP is in the Activating State.
	32	TMR_EXP	DO	Timer Expiration Indicator. TMR_EXP goes High to indicate the expiration of the activation timer.
	33	CHIPSEL	DI ³	Chip Select Assert these three pins Low to activate Hardware Control
	34	WRITE	DI ³	Write Pulse Mode. When any of them is High, the MDSP reverts immediately to Software Control Mode.
	35	READ	DI ³	Read Pulse
	36	LOS (Master)	DO	Loss of Signal Indicator. In Master mode, LOS goes High when the Data Pump enters the Inactive State. When the Data Pump reaches the Deacti- vated State from Active-1 or Active-2, it starts the Loss of Signal (LOS) timer after Slave transmission stops. When the LOS timer expires, the Data Pump goes to the Inactive State. When the Data Pump transitions from the Activating State directly to the Deactivated State, it may imme- diately enter the Inactive State without waiting for Slave transmission to cease. (See Figure 9.)
		LOS (Slave)	DO	Loss of Signal Indicator. In Slave mode, LOS goes High immediately when loss of signal energy is detected and the data pump enters the Inac- tive State. (See Figure 10.)
	37	DEACTVTD	DO	Deactivation Indicator. DEACTVTD goes High when the Deactivation timer expires and the data pump goes from the Pending Deactivation state to the Deactivated state.
	38	ILMT	DI ¹	Insertion Loss Measurement Test. Set High to transmit a framed & scrambled, "all 1s", 2B1Q pulse sequence. Pulse sequence will have a valid sync word. In the Slave configuration, when the ILMT mode is selected, the Data Pump may begin activation.
	39	RPTR	DI1	Repeater Mode Enable. When in Master mode, setting RPTR High con- figures the data pump to derive timing from the MSTR_CK output of an adjacent device for transparent repeater applications. The BIT_CK output phase is aligned to the TFP input pulse width. RPTR is ignored in Slave mode.

Table 2: SK70720 MDSP Pin Assignments/Signal Descriptions - continued

This input is a Schmidt Triggered circuit and includes an internal pull-up device.
 The period is 2351 or 2353 haud times.
 This input is a Schmidt Triggered circuit and includes an internal pull-down device.
 I/O column entries: DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output; AI/O = Analog Input/Output; S = Supply.

Group	Pin#	Symbol	I/O ⁴	Description
Hardware Interface (Hardware Control	40	FELB	DI1	Front-End Loopback (Master only). In the Inactive State, set High to cause the IAFE to loopback. The returned signal activates the MDSP which receives its own transmitted data. The chip set ignores incoming data from the Slave during loopback.
Mode) -cont'd	41	BELB	DI ¹	Back-End Loopback. In the Active-1 or Active-2 states, setting BELB High forces an internal, transparent loopback with RDATA connected to TDATA and RFP connected to TFP.
	42	RCLKU	DO	Receive Baud Rate Clock. Aligned with BIT_CK in Slave mode, phase synchronous with receive pulse stream, However, during Activating State, the clocks may not be aligned. In the Master mode RCLKU has a constant, arbitrary, phase relationship with BIT_CK in Active State.
	43	TXTST	DI1	Transmit Test. Set high to enable isolated transmit pulse generation. TDATA controls the sign and TFP controls the magnitude of the transmit- ted quat pulses according to the 2B1Q encoding rules. In the Slave con- figuration, when the TXTST mode is selected, the Data Pump may begin activation.
Processor	36	D0	DI ¹ /O	
Interface	37	D1	DI ¹ /O	
(Software	38	D2	DI ¹ /O	
Control	39	D3	DI ¹ /O	
Mode)	40	D4	DI ¹ /O	
	41	D5	DI ¹ /O	
	42	D6	DI ¹ /O	Data bit 6
	43	D7	DI ¹ /O	Data bit 7
	4	ADDR0	DI ³	Address bit 0. Four-bit address, selects read or write register.
	5	ADDR1	DI ³	Address bit 1
	6	ADDR2	DI ³	Address bit 2
	9	ADDR3	DI ³	Address bit 3
	32	ĪNT	DO	Interrupt Output. Open drain output. Requires an external 10 k Ω pull up resistor. Goes Low on interrupt.
	33	CHIPSEL	DI ³	Chip Select. Pull Low to read or write to registers.
	34	WRITE	DI ³	Write Pulse. Pull Low to write to registers.
	35	READ	DI ³	Read Pulse. Pull Low to read from registers.

Table 2: SK70720 MDSP Pin Assignments/Signal Descriptions - continued

This input is a Schmidt Triggered circuit and includes an internal pull-up device.
 The period is 2351 or 2353 baud times.
 This input is a Schmidt Triggered circuit and includes an internal pull-down device.
 I/O column entries: DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output; AI/O = Analog Input/Output; S = Supply.

Pin Assignments and Signal Descriptions

Group	Pin#	Symbol	I/O ⁴	Description
Clock and Control	14	SLAVE_CK	DI ³	Slave Mode Reference Clock. Mandatory in Slave mode. Tie High or Low in Master Mode. Clock input requires \pm 32 ppm accuracy.
	15	CK_EN	DO	Slave Mode Reference Clock Enable. Active High enable for the SLAVE_CK clock. In slave mode, this pin goes Low to indicate the PLL is tracking the input signal from the master. Not used in master mode.
	13	MSTR_CK	DI ¹ DO	16x MDSL Reference Clock. In Master Mode, this clock generates transmit and receive timing and must have ± 32 ppm accuracy. In Slave Mode, this output is derived by dividing VCO_CK by two so that it may drive the MSTR_CK input of another data pump configured for Master mode as a repeater (with RPTR High).
	19	VCO_CK	DI	32x Receive Clock Input.
	20	SER_CTL	DO	Serial Control Output.
	21	RX_CK	DO	Receive Baud Rate Clock. Derived from VCO_CK.
	22	AD0	DI	Analog to Digital Converter Data Line 0.
	23	AD1	DI	Analog to Digital Converter Data Line 1.
	24	AGC_SET	DI	AGC Adjust Input.
	25	TX_CK	DO	Transmit Symbol Clock Output.
	26	TMAG	DO	Transmit Quat Magnitude Bit.
	27	TSGN	DO	Transmit Quat Sign Bit.

Table 2: SK70720 MDSP Pin Assignments/Signal Descriptions - continued

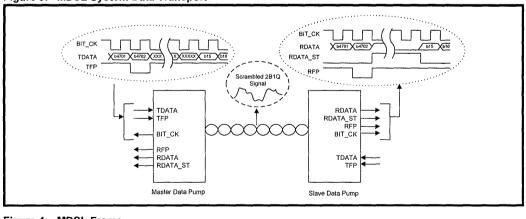
This input is a Schmidt Triggered circuit and includes an internal pull-up device.
 The period is 2351 or 2353 baud times.
 This input is a Schmidt Triggered circuit and includes an internal pull-down device.
 I/O column entries: DI = Digital Input; DO = Digital Output; DI/O = Digital Input/Output; AI = Analog Input; AO = Analog Output; AI/O = Analog Input/Output; S = Supply.

FUNCTIONAL DESCRIPTION

The MDSL Data Pump (MDP) provides synchronous, full duplex transmission on a single pair of wires using 2B1Q line coding and echo cancellation. The Data Pump supports symmetrical line rates from 272 to 784 kbps and provides complete start up and operation without an external processor. The MDP may be used to transport framed or unframed data which is synchronous, asynchronous, or near-synchronous to the clock rate of the data pump. This section provides an overview of how the MPD data interface functions to support these applications. For a detailed explanation on the how to configure the MPD for a specific application refer to the section entitled "MDSL Data Interface".

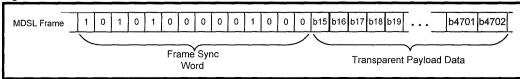
Figure 3 illustrates data transport using the MDSL system. Data is clocked into a transmitter, sent over the line, and clocked out of the receiver of the far-end transceiver. Data is transmitted simultaneously in both directions.

Framing


The MDP embeds a 14-bit frame synchronization word (FSW) in the data stream that divides the data into 4702-bit MDSL frames as shown in Figure 4. The framing signal serves three purposes:

- 1. It allows automatic activation and deactivation based on receiver frame sync word detection.
- It allows the average data rate in each direction of transmission to be adjusted while maintaining a constant line rate.
- 3. It provides an MDSL frame position indicator that may be used in unframed time-division-multiplexed systems to relate time slots in the MDSL frame to those in an application frame. (See Note below)

NOTE


The MDP frame sync word format and frame length are fully compatible with those defined for 784 kbps HDSL applications in the ETSI ETR-152 and Committee T1 TR-28 technical reports. However, the MPD is fully transparent to all data except the frame sync word, so it does not impose the other framing functions defined for HDSL.

Each frame contains 4688 payload data bits, and there are no restrictions on the data patterns which can be transmitted in the payload data. The application synchronizes data to the MDP framing by generating a pulse on the transmit frame pulse input, TFP. The transmitter sends the FSW in the first 14 bits following the rising edge of TFP. Application data is not transmitted or buffered during the transmission of the FSW.

Figure 3: MDSL System Data Transport

Figure 4: MDSL Frame

7-91

The MDP receiver detects the incoming FSW and provides a blanking signal (RDATA_ST) at its output to indicate that payload data is not present during the FSW. The RDATA_ST signal can also be used to gate the receiver clock signal (BIT_CK) so that clock transitions are present only when payload data is available. The resulting gapped clock is similar to that found in many other data transport systems.

The MDP has two modes of operation: Fixed Data Rate and Variable Data Rate.

Fixed Data Rate Mode

In Fixed Data Rate Mode, the MDP transports one data bit for each cycle of the bit clock (BIT_CK) except during the 14-bit FSW at the start of each frame. Data may be either synchronous (one data bit per available clock cycle) or asynchronous (data sent only when available). In both cases, the transmitter samples the transmit data signal (TDATA) on the rising edge of BIT_CK and reproduces that signal at the output of the receiver (RDATA) so that it is valid on the rising edge of the receiver BIT_CK. An external frame counter is required to provide a transmit frame pulse every 4702 BIT_CK cycles to synchronize the Data Pump frame position to the gapped data.

In applications where the data is formatted into logical frames or packets there is no requirement for a fixed mapping between the application frames and MDSL frames since the data contains the framing information required to give it meaning. Unless the application frame size divides evenly into the MDSL frame size, it is best to embed application framing information with the data rather than to create a fixed mapping between specific time slots in the MDSL and application frames. With unframed, time-division multiplexed data defined relative to an application frame pulse it is necessary to establish a fixed mapping between application frame and MDSL frame boundaries. Table 3 shows the payload data rate and frame length for some common values of line rates.

Table 3: Data Rate and Frame Length	Examples
-------------------------------------	----------

Line Rate (kbps)	Payload Data Rate (kbps)	Frame Length (ms)
272	271.190	17.287
400	398.809	11.755
528	526.428	8.905
784	781.666	5.997

Variable Data Rate Mode

Some applications require that data be transported at a rate which is externally controlled and varies a small amount from a nominal payload data rate. The MDP has a variable rate operating mode which allows the application to modify the payload data rate without changing the line rate so that each of the payload bits contains a valid data bit. To operate in this mode, the MDP uses a mechanism known as stuffing. By properly choosing the line rate of the MDSL system and using the stuffing mechanism, the application can transmit data at slightly different rates in both directions simultaneously while still using a common, fixed MDSL line rate.

When stuffing is employed, the application inserts an additional four bits not carrying payload data in the data stream between the end of the 4688 payload bits and the beginning of the next FSW as shown in Figure 5. This is accomplished by delaying the TFP pulse by four BIT_CK periods from its normal position. The MDP receiver detects this four bit change in the location of the FSW and adjusts its payload data strobe indicator (RDATA_ST) to indicate that the four additional bits do not contain payload data and should be suppressed along with the FSW which follows them. This mode of operation is frequently used in the transport of T1 signals where the upstream data rate is not identical to the downstream data rate.

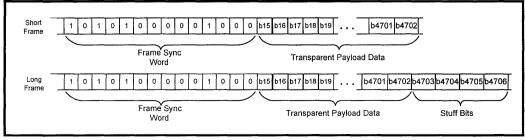


Table 4 provides the minimum and maximum data rates and frame times for several line rates. Although the MDP can only transport data at either of these two instantaneous rates, it can support any average data rate between them by adjusting the ratio of frames with stuffing to those without stuffing. When 50% stuffing is used the MDP will transport data at the nominal rate shown below. If necessary, a PLL tracking the receive frame pulse output (RFP) can be used to create a continuous (i.e., not gapped) clock whose frequency follows the average receive data rate.

Component Description

The following paragraphs describe the chip set components individually with reference to internal functions and the interfaces between Data Pump components.

Integrated Analog Front End (IAFE)

The IAFE incorporates the following analog functions:

- · the transmit driver
- · transmit and receive filters
- Phase-Locked Loop (PLL)
- hybrid circuitry analog-to-digital converter.

The IAFE provides the complete analog front end for the MDSL Data Pump. It includes transmit pulse shaping, line driver, receive A/D modulator, and the VCO portion of the receiver PLL function. Transmit and receive controls are implemented through the serial port. The IAFE line interface uses a single twisted pair line for both transmit and receive. Table 5 lists the IAFE pin descriptions. Refer to Test Specifications for IAFE electrical and timing specifications.

IAFE Transmitter

The IAFE performs the pulse shaping and driving functions. The IAFE transmitter generates a 4-level output of $1/(8*f(TX_CK))$ defined by TMAG and TSGN. Table 5 lists 2B1Q pulse coding parameters. Refer to Test Specifications for frequency and voltage templates.

IAFE Receiver

The IAFE receiver is a sophisticated sigma-delta con-

verter. It sums the differential signal at RTIP/RRING minus the signal at BTIP/BRING. The first A/D signal comes out of AD0 at the rate of 64 times the 2B1Q symbol rate. The second stage of the A/D samples the noise of the first and generates the AD1 bit stream at the rate of 64 times the symbol rate.

Receiver gain is controlled by the MDSP via the AGC2-0 bits in the SER_CTL serial control stream. The AGC_SET output from the IAFE is normally Low. It goes High when the signal level in the sigma delta A/D is approaching its clipping level, signaling the MDSP to lower the gain.

The VCO is part of a phase-locked loop (PLL) locked to the receive data. The VCO frequency is varied by pulling an external crystal with varactor diodes that are biased by the VPLL output. The VPLL output is, in turn, controlled by the serial port PLL bits.

MDSL Digital Signal Processor (MDSP)

The MDSP incorporates the following digital functions:

- · bit-rate transmit and receive signal-processing
- adaptive Echo-Cancelling (EC)
- adaptive decision feedback-equalization (DFE) using the receive quat stream and the internal error signal
- · fixed and adaptive digital-filtering functions
- activation/start-up control and the microprocessor interface

The MDSP also provides the digital data interface. A simple, parallel 8-bit microprocessor interface on the MDSP allows high-speed access to control, status and filter coefficient words. Table 6 lists the MDSP pin descriptions. Refer to Test Specifications for MDSP electrical and timing specifications.

The microprocessor interface on the MDSP provides bit flags for signal presence, synchronization, activation completion. Single-byte words representing receive signal level and the noise margin of the transceiver are also available on the microprocessor interface. One control bit allows the user to start the Data Pump activation sequence. The MDSP controls the complete activation/start-up sequence.

Table 4: Minimum and Maximum Data Rate/Frame Time Examples

Line Rate (kbps)	Frame Length (ms) 4702 bit Frame	Frame Length (ms) 4706 bit Frame	Min. Payload Data Rate (kbps)	Nominal Rate (kbps) (50% stuffing)	Max. Payload Data Rate (kbps)
272	17.287	17.301	270.960	271.075	271.190
400	11.755	11.765	398.470	397.453	398.809
528	8.905	8.913	525.980	524.637	526.428
784	5.997	6.003	781.001	779.007	781.666

the IAFE at a rate of f(VCO_CK)/2. Refer to the Test Specifications section for serial port timing relationships and electrical parameters.

Line Interface

The Data Pump line interface consists of three differential pairs. The transmit outputs TTIP and TRING, receive inputs RTIP and RRING, and the balance inputs BTIP and BRING, all connect through a common transformer to a single twisted-pair line (see Figures 13 and 14). The transmit outputs require resistors in series with the transformer. A passive prefilter is required for the receive inputs. The balance inputs feed the transmit signals back to the Data Pump providing passive echo cancellation. Protection circuitry should be inserted between all Data Pump line interface pins and the transformer. Refer to the Applications section for typical schematics.

 Table 6:
 MDSP/IAFE Serial Port Word Bit Definitions (See Figure 6)

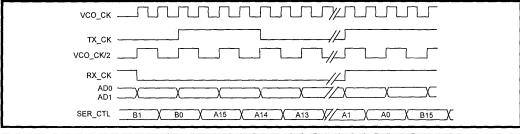
Definitions (See Figure 6)						
Bit	Word A (on SER_CTL)	Word B (on SER_CTL)				
15	INIT	COR4				
14	n/a	COR3				
13	n/a	COR2				
12	TXOFF	COR1				
11	TXDIS	COR0				
10	TXTST	VCO2				
9	AGC2	VCO1				
8	AGC1	VCO0				
7	AGC0	PLL7				
6	FELB	PLL6				
5	n/a	PLL5				
4	PTR4	PLL4				
3	PTR3	PLL3				
2	PTR2	PLL2				
1	PTR1	PLL1				
0	PTR0	PLLO				

Table 5: IAFE Transmit Control

TSGN	TMAG	Output Symbol (quat)
1	0	+3
1	1	+1
0	1	-1
0	0	-3

MDSP/IAFE Interface

The IAFE provides the receiver recovered clock, VCO_CK, to the MDSP. The serial control stream framing signal RX_CK is sampled inside the IAFE with the VCO_CK rising edge. The serial control stream, SER_CTL, is sampled inside the IAFE by the rising edge of an internally-generated clock at $f(VCO_CK)/2$. This IAFE internal clock has the same phase relationship with a similar clock inside the MDSP, as established by the RX_CK signal. In the MDSP, the half-rate clock VCO_CK/2 and RX_CK transition on the rising edge of VCO_CK, and SER_CTL transitions coincide with the falling edge of VCO_CK/2. The output MSTR_CK in Slave Mode is equal to VCO_CK/2.


The A/D converter outputs, AD0 and AD1, are clocked out of the IAFE with VCO_CK, having transitions coincidental with the rising edge of VCO_CK/2. The MDSP samples AD0 and AD1 with the falling edge of its internal VCO_CK/2.

Transmit data, represented by TSGN and TMAG, is clocked from the MDSP using the falling edge of TX_CK, the transmit clock. The IAFE uses the rising edge of TX_CK to sample TSGN and TMAG. TSGN and TMAG change state at the baud rate, or every 8 cycles of TX_CK. Figure 6 shows relative timing for the MDSP/IAFE interface.

MDSP/IAFE Serial Port

The MDSP continually writes to the IAFE serial port. This serial stream consists of two 16-bit words as shown in Table 6. The data flows from the MDSP to

MDSL Data Interface

The "Functional Description" section of this data sheet presents an overview of data transport in an MDSL system. This section provides detailed information on the operation of the data interface and how it is configured to support variable data rate and fixed data rate applications.

Clock Distribution

Figure 7 shows an MDSL link between a master and slave transceiver. This figure illustrates the clock/timing architecture of the data pump in both modes. Link activation is initiated by the master mode device which also operates as the MDSL timing source. The slave mode device responds to an activation request and is "loop-timed" (i.e., it recovers the MDSL clock from the master and uses this clock to transmit upstream).

In the master mode, the data pump derives its line transmit clock and data interface BIT_CK by dividing the clock supplied at the MSTR_CK input by 16. MSTR_CK also provides a ± 32 ppm accurate local training reference for the receiver clock recovery VCXO before activation. When active, the master data pump uses this VCXO in a PLL for data recovery from the line, but an internal FIFO is provided so that the receive data can be clocked out using the BIT_CK divided down from the MSTR_CK.

In the slave mode after activation, the data pump derives its line transmit clock and data interface BIT_CK from the

receiver PLL. In this mode, the clock supplied at the SLAVE_CK input is only used to train the VCXO frequency within ± 32 ppm before activation. To minimize switching noise, the SLAVE_CK can be turned off when CK_EN is Low.

To select the clock and crystal frequencies required for a specific application, the required line rate must first be calculated from the specified payload data rate. This process is outlined below for fixed data rate and variable data rate configurations.

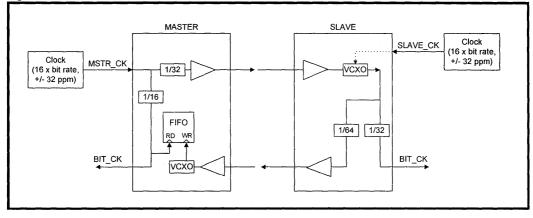
Fixed Data Rate Operation

For fixed data rate operation, the line rate is calculated from the payload data rate as follows:

line_rate = data_rate (4702/4688).

The time required to transmit a complete frame is:

frame_time = 4702 / line_rate.


The Master transceiver requires a clock whose frequency is:

MSTR_CK = 16 (line_rate).

The slave transceiver requires a clock whose frequency is: $SLAVE_CK = 16$ (line_rate).

Both transceivers require a VCXO crystal whose frequency is:

fxtal = 32 (line_rate).

Figure 7: MDSL Clock Distribution In Master and Slave Modes

Functional Description

Variable Data Rate Operation

For variable data rate operation, the line rate is calculated from the payload data rate as shown below:

line_rate = average_data_rate (4704/4688)

At this line rate the data pump will transport data at the specified average data rate when 50% stuffing is used, however it will always operate at one of the instantaneous data rates given by the following two equations. By adjusting the number of BIT_CK cycles between TFP pulses an external controller may adjust the frame length to control the average data rate between the minimum and maximum instantaneous rates:

max_data_rate = line_rate (4688/4702), and min_data_rate = line_rate (4688/4706).

The time required to transmit a complete frame is:

frame_time (min) = 4702 / line_rate, or frame_time (max) = 4706 / line_rate.

The Master transceiver requires a clock whose frequency is:

MSTR_CK = 16 (line_rate).

The slave transceiver requires a clock whose frequency is:

SLAVE_CK = 16 (line_rate).

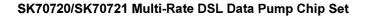
Both transceivers require a VCXO crystal whose frequency is:

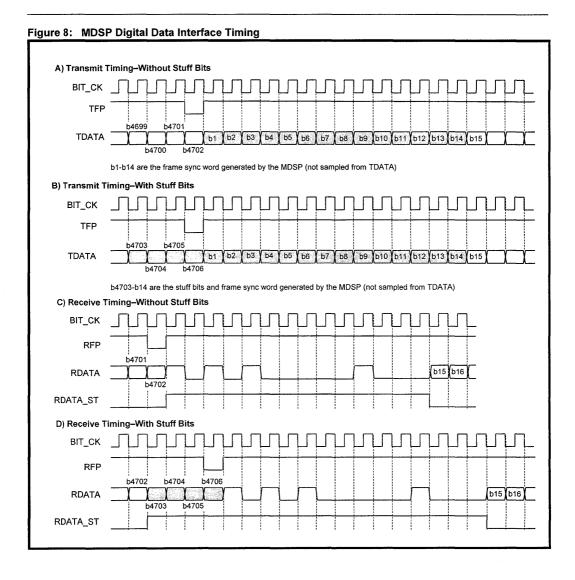
fxtal = 32 (line rate).

Data Interface Timing

The MDSL data interface provides for the transfer of binary data to and from the transceiver using the 272 to 784 kHz clock, BIT_CK, generated by data pump. Figure 8 shows the timing for the data interface. In the receive direction, the binary data output on RDATA contains the 14-bit frame sync word (b1-b14), the transparent payload data (b15-b4702) and optional stuff bits (b4703-b4706). During the activation process, RDATA is held High until ACTIVE goes Low to indicate link activation has been completed and recovered data is available. The data strobe signal RDATA ST is High during the frame sync word and stuff bits and Low during payload data. RDATA ST can be used to create a gapped receive payload data clock by suppressing BIT_CK cycles when RDATA_ST is High. RFP is the receive frame sync output that goes Low during the first bit of every MDSL frame. In variable data rate applications the original data timing can be recovered from RFP using a synthesizer PLL.

In the transmit direction, payload data is sampled from TDATA during bits b15-b4702 of each frame. Frame sync


word bits (b1-b14) are internally generated in the MDSP and not sampled from TDATA, so any data supplied during b1-b14 is ignored. During the activation process, transmit data is internally generated by the MDSP and TDATA is not sampled until ACTIVE goes Low to indicate link activation has been completed. For fixed data rate applications an external counter is used to generate a one BIT CK cycle long Low pulse for the TFP input. This frame sync pulse establishes the start of an MDSL frame and is needed to establish a gap in the payload data during the time the data pump internally generates the frame sync word. In variable rate applications stuffing control logic adjusts the time between TFP pulses to match the average data rate transmitted by the data pump to the rate at which it is supplied by the external source. In both cases, the TFP signal should be valid prior to an activation request for the Master Data Pump. A valid TFP signal should be generated after powerup, before or immediately after LOS goes Low for the Slave Data Pump. During initialization and anytime thereafter TFP must not be held low for more than 2 BIT CK cycles or the data interface output signals will be disabled. Also, if the TFP signal is inactive (always High or unconnected) when activation starts, then the Data Pump may activate but will inject stuff bits in the TDATA stream in every other frame and sync bits in every frame. Since the Data Pump will not be synchronized to the data source these internally generated bits will overwrite payload data. If the phase of TFP jumps the Data Pump will immediately reset the transmit frame alignment, typically causing loss of alignment at the other end.


Loopbacks

The data pump provides data loopbacks toward the line and toward the digital interface. Front End Loopback (FELB) is the loopback toward the digital interface inside the IAFE and is available only in Master mode. FELB is initiated by bringing the FELB and ACTREQ signals High in hardware mode, or by setting the FELB and ACTREQ bits to 1 in the processor control mode. In FELB the data pump receiver activates with its own transmit data and ignores a signal at the IAFE receiver analog line interface. Data is transmitted on the line during FELB.

Back End Loopback (BELB) is a data loopback toward the analog line interface inside the MDSP. BELB is available in both Master and Slave modes after activation is complete. BELB is initiated by bringing the BELB signal High in hardware mode, or by setting the BELB bit to 1 in the processor control mode. In BELB the data pump receive data and frame pulse signals are supplied to the transmitter which ignores the TDATA and TFP inputs. Receive Data is output on RDATA during BELB.

Microprocessor Interface (MDSP)

Three primary control pins, CHIPSEL (Chip Select), READ and WRITE, select the Software Mode which also uses an interrupt output pin to report status changes. Four additional pins are used for the parallel bus addressing and eight pins for data I/O. Refer to Test Specifications for microprocessor interface timing in Software Mode.

Control Pins

Chip Select: The Chip Select ($\overline{\text{CHIPSEL}}$) pin requires an active Low signal to enable Data Pump read or write transfers over the data bus. To enable Hardware Mode hold this pin Low, along with $\overline{\text{READ}}$ and $\overline{\text{WRITE}}$.

Data Read: The Data Read pin (READ) requires an active Low pulse to enable a read transfer on the data bus. When READ is pulled Low, the Data Pump data bus lines go from tristate to active and output the data from the register addressed by ADDR0-ADDR3. To avoid reading data during register updates, reads should be synchronized to the falling edge of RX_CK. Alternatively, each read should be repeated until the same data is read twice within one baud time.

Data Write: The Data Write pin (WRITE) requires an active Low pulse to enable a write transfer on the data bus. Data transfer is triggered by the rising edge of the WRITE pulse. To ensure data is written to the register addressed by ADDR0-ADDR3, valid data must be present on the MDSP data bus lines before WRITE goes High.

Interrupt: The Interrupt pin (INT) is an open drain output requiring an external pull-up resistor. The INT output is pulled active Low when an internal interrupt condition occurs. INT is latched and held until Main Status Register RD0 is read. An internal interruption results from a Lowto-High transition in any of four status indicators: ACTIVE, ACTIVE, DEACTVTD or TMR_EXP. Any transition on LOS will also generate an interrupt. If an interrupt mask bit in register WR2 is set, any transition of the corresponding status bit will not trigger the INT output.

Register Access

Write

To write to an MDSP register, proceed as follows:

- 1. Drive CHIPSEL Low.
- 2.Drive an address (0000, 0010, or 0011) onto ADDR0-ADDR3.

- 3.Observe address setup time.
- 4.Set 8-bit input data word on D0-D7.
- 5.Pull WRITE Low, observing minimum pulse width.
- 6.Pull WRITE High, observing hold time for data and address lines.

Read

Procedures for reading the MDSP registers vary according to which register is being read. Accessing registers RD0, RD1, RD2, RD5 and RD6 is relatively simple. Reading registers RD3 and RD4 is more complex. Unless parallel port reads are synchronized with the falling edge of RX_CK, all read operations should be repeated until the same data is read twice within one baud time.

To read register RD0, RD1, RD2, RD5 or RD6 proceed as follows:

- 1. Drive CHIPSEL Low.
- 2. Drive the desired address onto ADDR0-ADDR3.

3.Pull READ Low, observing minimum pulse width. 4.Pull READ High to complete the read cycle.

Registers RD3 and RD4 hold the coefficient values from the DFE, EC, FFE and AGC as shown in Table 10. Register RD3 holds the lower byte value and register RD4 holds the upper byte value. To reconstruct the complete 16-bit word, concatenate the least significant and most significant bytes.

To read registers RD3 and RD4 proceed as follows:

- 1. Select the desired coefficient by writing the appropriate code from Table 10 to register WR3.
- 2.Enable the Coefficient Read Register by writing a 1 to bit b0 (CRD1) in register WR2.
- 3.Perform standard register read procedure listed in steps 1 through 6 above to read the lower byte from RD3 and the upper byte from RD4.
- 4.Concatenate the RD3 and RD4 to obtain the complete 16-bit word.

Registers

Three write registers and seven read registers are available to the user. Table 7 lists these registers and the following paragraphs describe them in more detail.

Some of the registers contain *reserved* bits. Software must deal correctly with reserved fields. For reads, software

must use appropriate masks to extract the defined bits and not rely on reserved bits being any particular value. In some cases, software must program reserved bit positions to a particular value. This value is defined in the individual bit descriptions.

After asserting the RESET signal, the Data Pump initializes its registers to the default value.

ADDR	R Write Registers				Read Registers				
A3-A0	WR#	Name	Table	RD#	Name	Table			
0000	WR0	Main Control	8	RD0	Main Status	11			
0001		reserved	n/a	RD1	Receiver Gain Word	12			
0010	WR2	Interrupt Mask	9	RD2	Noise Margin	13			
0011	WR3	Read Coefficient Select	10	RD3	D3 Coefficient Read Register (lower byte)				
0100		reserved		RD4	Coefficient Read Register (upper byte)	14			
0101		reserved		RD5	Activation Status	15			
0110		reserved		RD6 Receiver AGC and FFE Step Gain		16			
0111-1001		reserved			reserved				

Table 7: Register Summary

WR0-Main Control Register

Address: A < 3:0 > = 0000Default 00h

Attributes: Write Only

Control Register bits serve the same purpose in Software Mode as the like-named individual pins in Hardware Mode. Table 8 lists bit assignments for the WR0 register.

Table 8: Main Control Register WR0

Bit	Description
7	Transmit Test Pattern Enable (TXTST). Set TXTST to 1 to enable isolated transmit pulse generation. One symbol is output every 4702 or 4706 BIT_CK cycles. TDATA controls the sign and TFP controls the magnitude of the transmitted symbols according to the 2B1Q encoding rules. In the Slave mode when the TXTST mode is selected, the Data Pump may begin activation.
6	Back-End Loop Back (BELB). In the Active State, set BELB to 1 to enable an internal, transparent loopback of the MDSP RDATA to TDATA and RFP to TFP.
5	Front End Loop Back (FELB). In the Master mode with the Data Pump in the Inactive State, set FELB to 1 to enable an IAFE front-end loopback. The Data Pump will begin activation and transmission on the line, but will ignore any signal from the Slave instead synchronizing to its own transmit signal.
4	Repeater Mode (RPTR). The RPTR bit is set to 1 and the MODE pin is pulled High to program the Data Pump for operation on the side of the MDSL repeater driving a remote slave. RPTR is set to 0 and the Master pin is tied Low to program the Data Pump for operation on the side of the repeater driven by the Master.
3	Loop Number (LOOPID). In two loop MDSL applications, LOOPID is set at the Master end of the loop to select the frame sync word format to encode the loop number.
2	Insertion Loss Measurement Test (ILMT). Set ILMT to 1 to enable transmission of a scrambled all ones insertion loss measurement test pattern. In the Slave configuration when the ILMT mode is selected, the Data Pump may begin activation.
1	Quiet Mode (QUIET). Set QUIET to 1 to force the Data Pump into the Deactivated State with the transmitter silent. Setting QUIET to 0 will not cause the Data Pump to reactivate. In the Slave mode, the Data Pump will not respond to a signal from the Master when QUIET is set to 1, but may activate after QUIET is set to 0 even if the Master transmission has already ceased.
0	Activation Request (ACTREQ). In the Master mode when the Data Pump is in the Inactive State and Quiet is set to 0, setting the ACTREQ bit to 1 will initiate an activation sequence. Because ACTREQ is a level- rather than an edge-triggered signal, it should be reset to 0 again within approximately 25 seconds to prevent the immediate start of another activation cycle if the current activation attempt fails. If an activation attempt fails, the processor should allow the Data Pump to remain in the Inactive State where the transmitter is silent for the Activation Timer duration (see Table 17) before generating another activation request. This delay will allow the Slave to return to the Inactive State. It is possible to shorten this quiet period following a failed activation by implementing additional algorithms described in the section entitled "Activation State Machines."

WR2---Interrupt Mask Register

Address:A<3:0> = 0010Default:00hAttributes:Write OnlyTable 9 shows the various interrupt masks provided in register WR2.

Table 9: Interrupt Mask Register WR2

Bit	Description
7:6	Reserved. Must be set to 0.
5	LOSMSK. 1=Masked. 0=Not Masked. Interrupt mask for the LOS condition
4	DEACTMSK. 1=Masked. 0=Not Masked. Interrupt mask for the DEACTVTD condition
3	ACTBMSK. 1=Masked. 0=Not Masked. Interrupt mask for the ACTIVE condition
2	ACTMSK. 1=Masked. 0=Not Masked. Interrupt mask for the TMR_EXP condition and the ACTIVE condition
1	Reserved. Must be set to 0.
0	Enable coefficient read register (CRD1). 1=Enable. 0=Disable. Used in conjunction with WR3 for reading coefficient values.

WR3—Read Coefficient Select Register

Address:A < 3:0> = 0011Default:00hAttributes:Write OnlyTable 10 lists the bit maps used to select the coefficient read from the MDSP.

Table 10: Read Coefficient Select Register WR3

Hex Value	Selected Registers	Description
00-07	DFE1-DFE8	DFE coefficients
08-0F	EC1-EC8	Echo Cancellation
10-15	FFE1-FFE6	FFE coefficients 1-6
16-19	reserved	
1A	AGC Tap	AGC Tap
1B-FF	reserved	

RD0—Main Status Register

Address: A < 3:0 > = 0000

Default: xxh (x=undefined)

Attributes: Read Only

Status Register bits serve the same purpose in Software Mode as the like-named individual pins in Hardware mode. Table 11 lists the bit assignments in this register.

Table 11: Main Status Register RD0

Bit	Active Description
7	 Timer Expiry (TMR_EXP). Set to 1 to indicate Activation timer expiration. Causes interrupt on changing from 0 to 1; masked by ACTMSK = 1. Latched event; reset on read, with persistence while in the Active State.
6	TIP/RING polarity reversed (INVERT). 0 = polarity reversal. Valid only in Active-1 or Active-2 states.
5	Change Of Frame Alignment (COFA). Indicates that re-acquisition of frame sync is in a different position with respect to the last frame position. Does not cause interrupt. Latched event; reset on read
4	Loss Of Signal (Slave). 1 = loss of line signal energy detected and entry into the Inactive state.
	 Loss of Signal (Master). 1 = loss of signal for 1 second on entering Inactive State. Causes interrupt on transitions from 0 to 1 or 1 to 0 that are masked by LOSMSK = 1. LOS/LOS is not a latched event.
3	Loop Number Control (LOOPID). 0 = loop 1; 1 = loop 2. Valid only in Active States, 0 in all others
2	 Deactivation Indicator (DEACTVTD). 1 = expiration of the Deactivation timer and the transition from the Pending Deactivation state to the Deactivated state. Causes interrupt on changing from 0 to 1; masked when DEACTMSK = 1. Latched event; reset on read; with persistence while in the Deactivated State.
1	 Link Active Indicator, (ACTIVE), active Low. 1 = entry into the Pending Deactivation state. Causes interrupt on changing from 0 to 1; masked by ACTBMSK = 1. Latched event; reset on read; with persistence while in the Pending Deactivation State.
0	 Link Active Indicator, (ACTIVE), active High. 1 = Completion of layer 1 activation and entry into the Active-1 state. Causes interrupt on changing from 0 to 1; masked by ACTMSK = 1. Latched event; reset on read with persistence if still in the Active State.

RD1—Receiver Gain Word Register

Address: A < 3:0 > = 0001Default: xxh (x=undefined)

Default: xxh (x=undefin Attributes: Read Only

The 8 hit word in this register i

The 8-bit word in this register is the eight most significant bits of the main FFE AGC tap, which, along with the AGC and DAGC values (RD6), represent the receiver gain required to compensate for line loss, and to normalize the receive 2B1Q pulses to a fixed threshold. Bit b7 (sign bit, always 0) is the MSB with bit b0 the LSB. The AGC tap value is determined as follows:

AGC Tap
$$= \sum_{i=0}^{6} b_i^* 2^{i-6}$$

Table 12: Receiver Gain Word Register

Bit	Description
7:0	FFE AGC Tap Value (eight most significant bits).

RD2—Noise Margin Register

Address:A < 3:0 > = 0010Default:xxh (x=undefined)Attributes:Read Only

The noise margin of the received signal is an input to the MDSL framer's Activation State Machine. The noise margin must reach a threshold level before the MDSL framer can transition to the fully Active State. The MDSP provides a calculated, logarithmic noise margin value used by the MDSL framer. This eight-bit word, stored in register RD2, is available every baud, although updated only every 64 baud. Table 13 shows the noise margin coding. To calculate the SNR, use this equation:

SNR =Noise Margin + 21.5 dB

Error propagation in the DFE and de-scrambler may introduce some fractional errors in this formula, however, the relationship between the SNR and the noise margin remains valid as long as the noise follows a Gaussian distribution.

Since the average period of the calculation is very short (64 bauds), the recommended procedure for evaluating transmission quality is to average at least 1000 samples.

Table 13: Noise Margin Register RD2 (Noise Margin Coding)

(Noise Margin Coding) MSB LSB Noise								
7	6	5	4	3	2	1 0		Noise Margin ¹
0	0	1	1	0	1	0	1	+26.5
0	0	1	0	1	1		 1	+20.3 +23.5
0	0	1	0	1	0	1		
				1			1	+21.5
0	0	1	0		0	0	1	+20.5
0	0	1	0	0	1	1	1	+19.5
0	0	1	0	0	1	0	1	+18.5
0	0	1	0	0	1	0	0	+18.0
0	0	1	0	0 .	0	1	0	+17.0
0	0	1	0	0	0	0	0	+16.0
0	0	0	1	1	1	1	0	+15.0
0	0	0	1	1	1	0	0	+14.0
0	0	0	1	1	0	1	0	+13.0
0	0	0	1	1	0	0	0	+12.0
0	0	0	1	0	1	1	0	+11.0
0	0	0	1	0	1	0	0	+10.0
0	0	0	1	0	0	1	0	+9.0
0	0	0	1	0	0	0	0	+8.0
0	0	0	0	1	1	1	0	+7.0
0	0	0	0	1	1	0	0	+6.0
0	0	0	0	1	0	1	0	+5.0
0	0	0	0	1	0	0	0	+4.0
0	0	0	0	0	1	1	0	+3.0
0	0	0	0	0	1	0	0	+2.0
0	0	0	0	0	0	1	0	+1.0
0	0	0	0	0	0	0	0	0.0
1	1	1	1	1	1	1	0	-1.0
1	1	1	1	1	1	0	0	-2.0
1	1	1	1	1	0	1	0	-3.0
1	1	1	1	1	0	0	0	-4.0
1	-1	1	1	0	1	1	0	-5.0
1	1	1	1	0	1	0	0	-6.0
1 Accuracy of noise margin is ±1 dB.								

RD3 (LSB), RD4 (MSB)—Coefficient Read Register

Address: RD3 (A<3:0>=0011)

RD4 (A < 3:0 > = 0100)

Default: xxh (x=undefined)

Attributes: Read Only

Coefficient Read Word (read from the MDSP) comes from the location configured in the Read Coefficient Select Register (WR3, Address A<3:0> = 0011). The MDSP updates this word on the rising edge of the receive clock, RX_CK. Read register RD3 is the lower byte, and RD4 is the upper byte.

Table 14: Coefficient Read Register

Bit	Description			
7:0	Coefficient Word Value. RD3 contains the lower byte; RD4 the upper byte.			

RD5—Activation Status Register

Address: A < 3:0 > = 0101

Default: xxh (x=undefined)

Attributes: Read Only

The ACT bits indicate the current state of the MDSP transceiver during the Activating State as listed in Table 15. (For any state other than the Activating State, the ACT bits will be "0000".)

Table 15: Activation Status Register RD5

ACT Bits 3:0	State in Master Mode	State in Slave Mode
0000	Inactive	Inactive
0001	Pre-AGC	Wait
0010	Pre-EC	AAGC
0011	SIGDET	EC
0100	AAGC	PLL1
0101	EC	PLL2
0110	PLL	4LVLDET
0111	4LVLDET	FRMDET
1000	FRMDET	-

RD6—Receive Step Gain Register

Address: A<3:0> = 0110

Default: xxh (x=undefined)

Attributes: Read Only

This 8-bit register represents AGC and FFE gain coefficients (GAGC and GFFE, respectively). Bit assignments are listed in Table 16. The approximate line loss (LL) can be determined using these values in the following equation:

 $LL = 20\log_{10} (GFFE * AGC tap) + GAGC + 28 dB$

GFFE corresponds to DAGC in the MDSP and GAGC is from the IAFE. Bits ST0-ST2 indicate the Data Pump activation states as shown in Figures 9 and 10 and Table 18.

Table 16:	Receiver AGC and	FFE Step G	ain Register RD6
-----------	-------------------------	------------	------------------

Bit	Description				
7	ST2. Data Pump Activation State-bit 2				
6	ST1. Data Pump Activation State-bit 1				
5:4	GFFE1, GFFE0. Digital Gain Word-bit 1 and Digital Gain Word-bit 0.				
	Bits <5:4>GFFE Value $\begin{array}{cccccccccccccccccccccccccccccccccccc$				
3	ST0. Data Pump Activation State-bit 0				
2:0	GAGC2-GAGC0. Analog Gain Word-bit 2,1 and 0.				
	Bits <2:0>GAGC Value (dB) 000 -12 001 -10 010 -8 011 -6 100 -4 101 -2 110 0 111 +2				

Functional Description

Activation

Timer

Activation Timer¹

The MDSL Data Pump integrates all logic required to manage link activation and deactivation. Figure 9 illustrates the Activation State Machine for the Master mode. Figure 10 illustrates the Slave mode state machine. In software mode, the ST*n* bits in Read Register 6 (ADDR 0110) show the current status of the state machine.

Master Mode Activation Sequence

When the Master Data Pump is powered up and reset is applied, the chip set is in the Inactive State as shown at the top of Figure 9. Starting at the Inactive State, the device progresses in a clockwise direction through the Activating, Active-1, Active-2, Pending Deactivation and Deactivated States. In the hardware mode when the Data Pump is in the Inactive State and the QUIET pin is Low, a Low-to-High transition on the ACTREQ pin initiates activation of the link (See Table 17). In the software mode when the Data Pump is in the Inactive State and the QUIET bit is set to 0, setting the ACTREQ bit to 1 initiates activation of the link. Because the ACTREQ control bit is level sensing, to generate a single request, ACTREQ should be set to 1 and then reset to 0 again before the Activation Timer period elapses.

272 kbps

86.5

During the Activating State, the echo canceller, equalizers and timing recovery circuits are all adapting during the simultaneous transmission and reception of the framed, scrambled-ones data transmitted first as a two-level code (S0) and then as a four-level code (S1). If the receive frame sync word is not detected in two consecutive frames before the activation timer expires the device moves to the Deactivated State and ceases transmission. After reaching the Deactivated state this way, it will then immediately transition to the Inactive State (setting LOS regardless of whether Slave transmission ended). The next activation request should not be generated for one activation timer period to allow the Slave to timeout, detect LOS and move from the Deactivated to the Inactive State. Microprocessorbased systems may reduce this time by resetting the Slave data pump from the Activating State when no Master signal is present.

Successful detection of the sync word drives the State machine to the Active-1 State. This is indicated by a 0-to-1 transition of the ACTIVE bit or High to Low transition of the ACTIVE pin. If the Master Data Pump remains locked to the sync word until the activation timer expires, the device transitions to the Active-2 (fully active) State. If sync is lost, as indicated by a 0-to-1 transition on the ACTIVE pin, the Master Data Pump transitions to the Pending Deactivation State.

Description

Master Mode: Starts with an activation request. Restarts when a signal is detected from the Slave. Slave Mode: Starts when a signal is detected from the

					Master.
Deactivation Timer ^{2, 3}	6.0	4.0	3.0	2.0	Starts due to Loss of Sync Word for 6 consecutive frames, triggering the Pending Deactivation state.
LOS Timer ⁴	3.0	2.0	1.5	1.0	Master Mode: Starts in Deactivated state once the Slave is quiet. Slave Mode: not used.
Delay required before next activation request	86.5	59.0	44.5	30.0	The amount of time the Master must be in the Inactive state before another activation request can be made after the Data Pump deactivates directly from the Acti-

784 kbps

30.0

Mactor

vating State.

Table 17: State Machine Timer Durations (See Figures 9 and 10)

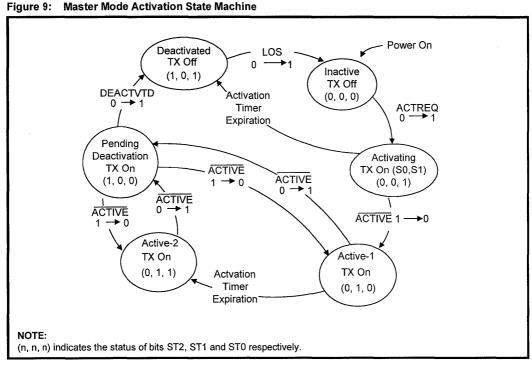
400 kbps

59.0

Nominal Timer Duration (seconds)

528 kbps

44.5


1. If time elapses and data pump has not moved to Active-1 state, the data pump enters the Deactivated State.

2. Pending Deactivation can be reached from either Active-1 or Active-2 states, if loss of sync word occurs for 6 frames.

3. If sync word detection does not occur before time elapses, the data pump deactivates.

4. When the data pump fails to activate in the Activating state, there is no waiting period in the Deactivated state; the data pump immediately goes Inactive.

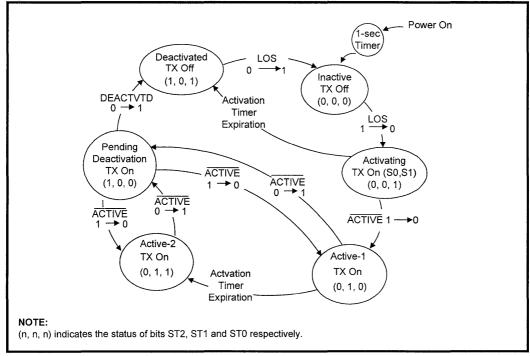
In Pending Deactivation, the Master Data Pump progresses to the Deactivated and Inactive States with the expiration of the respective timers. If the sync word is detected before the Pending Deactivation timer expires, the Master Data Pump returns to either Active-1 or Active-2. (The Master Data Pump returns to which ever state it occupied before transitioning to Pending Deactivation.)

The Master Data Pump will exit the Active-2 State in one of two ways. A Low-to-High transition on the QUIET pin (Hardware Mode) or the QUIET bit (Software Mode), forces the Master Data Pump directly to the Deactivated State. The only other means of exiting the Active State is through a loss of receive sync word. ACTIVE goes Low when six consecutive frames occur without a sync word match sending the Master Data Pump into the Pending Deactivation State.

The Master Data Pump remains in the Pending Deactivation State for a maximum of two seconds. If a sync word is detected within the time limit, the Master Data Pump reenters the Active State. If not, DEACTVTD goes High and the chip set goes to the Deactivated State. When the Deactivated State is reached from Pending Deactivation, the Master Data Pump returns to the Inactive State and declares LOS when it detects no signal from the Slave for one second. The Data Pump waits in the Inactive State before another activation attempt (See Table 17).

Slave Mode Activation Sequence

Figures 10 and 11 represent the Slave Data Pump Activation State Machine and the Slave MDSL Framer State Machine. The activation state machines for Slave and Master devices are similar. Both Data Pump machines start at the Inactive State and progress clockwise through the Activating, Active-1, Active-2, Pending Deactivation, and Deactivated States. One difference between them is in the initial condition required to exit from the Inactive State. The Master Data Pump responds to the Activation Request (ACTREQ) signal. The Slave device responds only to the presence of signal energy on the link. Thus, only an active Master device can bring up the link. Once the Master begins transmitting, the Slave device will automatically activate and attempt synchronization.


The other difference between the Data Pump state machines is the impetus for the change from the Deactivated to the Inactive State. In the Master Data Pump, expiration of a one-second loss of signal timer (after far end signal energy ceases) will cause the transition. In the Slave the transition occurs immediately on Loss of Signal (LOS).

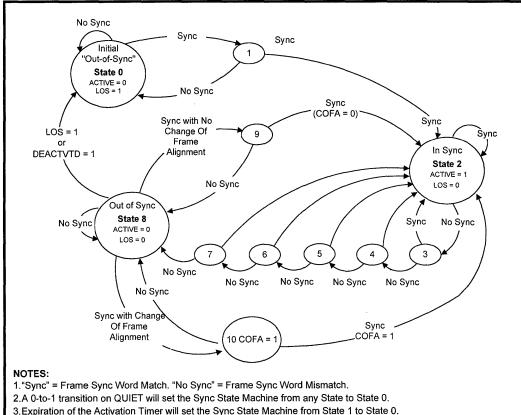
ST2	ST1	ST0	Data Pump State
0	0	0	Inactive
0	0	1	Activating – Activa- tion timer running
0	1	0	Active – Activation timer running (Active- 1) ¹
0	1	1	Active – Activation timer expired (Active- 2) ¹
1	0	0	Pending Deactivation ¹
1	0	1	Deactivated
1	1	0	unused
1	1	1	unused

Table 18: Data Pump Activation States

 The data pump samples the TDATA input for all transmit data except the 14 sync bits at the start of each frame during states 010, 011 and 100.

Figure 10: Slave Mode Activation State Machine

Synchronization State Machine


Figure 11 shows the MDSL Synchronization State Machine incorporated in the MDSP. It applies to both Master and Slave devices. Table 19 lists the correspondence between the Synchronization states and Activation states. The Sync state machine is clocked by the receive signal framing. Starting at the initial Out-of-Sync condition (State 0), the device progresses in a clockwise direction through State 1 until Sync is declared in State 2. Two consecutive frame sync word matches are required to achieve synchronization.

Once the In-Sync condition is declared, six consecutive frame sync mismatches will cause the device to transition through States 3 through 7 and declare an Out-of-Sync condition in State 8. From State 8, the device will return either to State 2 or to State 0. If the Pending Deactivation timer expires without re-establishing frame sync or if the receive signal energy is no longer detected, the device returns directly to State 0.

If frame sync is re-established, the device will return to the In-Sync condition (State 2) through State 9 if two consecutive frames are received without any change of frame alignment (COFA = 0). If a change of frame alignment does occur (COFA = 1), two consecutive matches are required to transition through State 10 back to State 2.

Table 19: Act	tivation and	Synchronization	States
---------------	--------------	-----------------	--------

Activation State	Synchronization States
Inactive	State 0
Activating	State 1
Active	States 2, 3, 4, 5, 6, and 7
Pending Deactivation	States 8, 9, and 10

Figure 11: MDSL Synchronization State Machine

APPLICATION INFORMATION

PCB Layout

The following are general considerations for PCB layout using the MDSL Data Pump chip set:

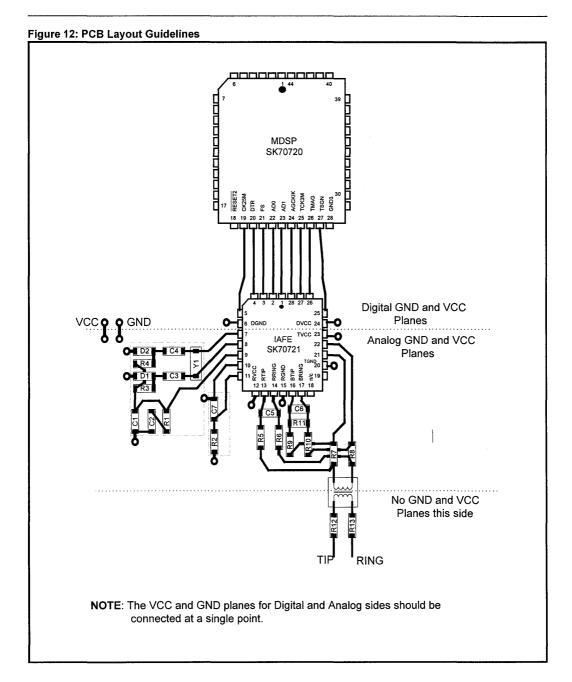
- Refer to Figures 12, 13 and 14, and Table 20.
- Use a four-layer or more PCB layout, with embedded power and ground planes. Bring the digital power and ground planes down to include pins 1-6 and 24-28 of the IAFE.
- Break up the power and ground planes into the following regions. Tie these regions together at the common point where power connects to the circuit:
 - •Digital Region
 - Analog Region
 - VCXO subregion
 - •IAFE, Line I/F, and IBIAS subregion
- Use larger feedthroughs ("vias") and tracks for connecting the power and ground planes to the power and ground pins of the ICs than for signal connections. Place the decoupling capacitors right at the feedthrough power/ground plane ties, or on the tracks to the IC power/ground pins as close to the pins as possible.
- On the User Interface Connector, route digital signals to avoid proximity to the TIP, RING, and CT lines.
- Provide at least 100 µF or more of bulk power supply decoupling at the point where power is connected to the Data Pump circuit.

Digital Section

- Keep all digital traces separated from the analog region of the Data Pump layout.
- Provide high frequency decoupling capacitors $(0.01 \ \mu F$ ceramic or monolithic) around the MDSP as shown in Figures 13 and 14. The capacitor on the MDSP VCC1 pin (pin 1) should be on the IC side of the diode.
- It is possible to replace the NAND gate (shown in Figure 13) with an AND gate.

Analog Section

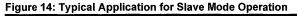
The analog section of the PCB consists of the following subsections:

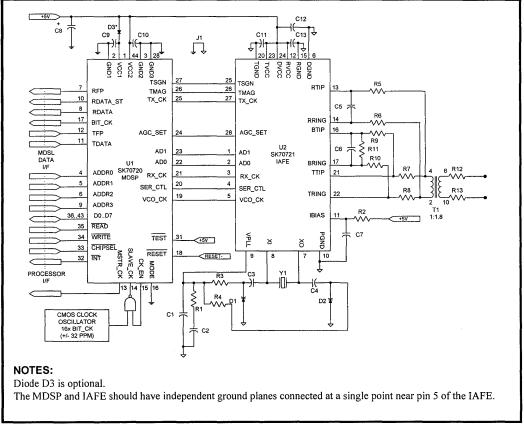

- 1. IAFE and power supply decoupling capacitors
- 2. Bias Current Generator
- 3. Voltage Controlled Crystal Oscillator
- 4. Line Interface Circuit
- Route digital signals AD0, AD1, RX_CK, SER_CTL, TSGN, TMAG, TX_CK, and AGC_SET on the solder side of the PCB, and route all analog signals on the component side as much as possible.
- · Route the following signal pairs as adjacent traces:
 - •TTIP/TRING •BTIP/BRING •RTIP/RRING

but keep the pairs separated from each other as much as possible.

- Do not run the analog ground plane under the transformer line side to maximize high voltage isolation.
- The IAFE should be placed such that pin 1 is near pin 23 of the MDSP and pins 12-18 are near the edge of the PCB, with the line transformer and connector.

Figure 13: Typical Application for Master Mode Operation (Microprocessor Interface Mode)


Table 20: Components for Suggested Circuitry (See Figures 13 and 14)


Ref	Description	Ref	Description	Ref	Description
C1, 9, 10	0.01 µF, ceramic, 10%	R1	5.11 kΩ, 1%	R12, 13	5.6 Ω , line feed fuse resistor
C2	100 µF, electrolytic, 20%	R2	35.7 kΩ, 1%		(ALFR-2-5.6-1 IRC)
	low leakage ≤5 μA @ 25° C	R3, 4	20.0 kΩ, 1%	D1, 2	Varicap diode (Motorola MV209)
C3, 4	1000 pF, ceramic, 20%	R5.6	499 Ω, 1%	D3	Silicon rectifier diode (1N4001)

SK70720/SK70721 Multi-Rate DSL Data Pump Chip Set

Ref	Description	Ref	Description	Ref	Description
C5, 6	470 pF, COG or mica, 10%	R7, 8 ¹	18.2 Ω, 1%	Y1	Pullable Crystal
C7, 11-13	0.1 μF, ceramic, 10%	R9, 10	806 Ω, 1%		784 kbps: 25.088 MHz (pn:80546/1) 528 kbps: 16.896 MHz (pn:81522/1) 400 kbps: 12.800 MHz (pn:80546/5) 272 kbps: 8.704 MHz (pn:81523/1) (Hy-Q International)
C8	100 μF, electrolytic, 20%	R11	2.49 kΩ, 1%	Tl	1:1.8 Transformer ≥ 400 kbps: Midcom 671-7376 or Pulse Engineering PE-68614 < 400 kbps: Midcom 50109

Table 20:	Components for	Suggested	Circuitry	(See Figures	13 and 14)	- continued
	oomponents for	ouggeoteu	onoundy	(Occ i iguica		continucu

Measure	Value	Tolerance
Turns Ratio (IC:Line)	1:1.8	±1%
Line Side $\geq 400 \text{ kbps}$ Inductance $< 400 \text{ kbps}$	2.8 mH 11.7 mH	±10%
Leakage Inductance	≤ 50 μH	
Interwinding Capacitance	≤ 70 pF	
THD	≤ -70 dB	
Longitudinal Balance	≥ 50 dB	5-196 kHz
Return Loss	≥ 20 dB	40-200 kHz
Isolation	1500 VRMS	
Primary DC Resistance	≤ 3.2 Ω	
Secondary DC Resistance	$\leq 6.0 \ \Omega$	
Operating Temperature	-40 to +85° C	

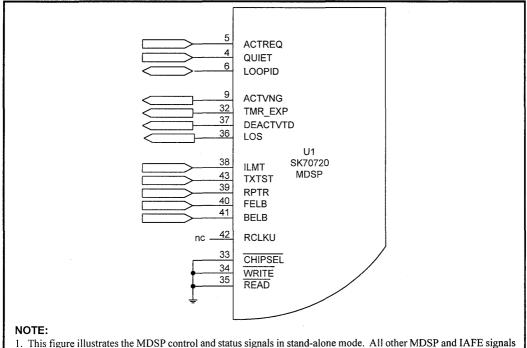

Table 21: Transformer Specifications (Figures 13 and 14, Reference T1)

 Table 22: Crystal Specifications

 (Figures 13 and 14, Reference Y1)

()				
Measure	Value	Offset		
Frequency @CL = 20 pF	8.704 to 25.088 MHz	-0, +40 ppm		
Mode	Fundamental, Parallel Resonance			
Pullability (CL = 24 pF ⇔ 16 pF)	≥ +160 ppm			
Operating Temperature	-40 to +85 ° C			
Temperature Drift	$\leq \pm 30 \text{ ppm}$			
Aging Drift	≤ 5 ppm/year			
Series Resistance	$\leq 15 \Omega$			
Drive Level	0.5 mW			

Figure 15: MDSP Control and Status Signals (Stand-alone Mode)

are connected as shown in Figures 13 and 14.

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 23 through 33 and Figures 16 through 23 represent the performance specifications of the Data Pump and are guaranteed by test, except where noted by design.

Table 23: IAFE Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units	
Supply voltage ¹ (reference to ground ²)	TVCC, RVCC, DVCC	-0.3	+6.0	v	
Input voltage ^{2, 3} , any input pin	TVCC, RVCC, DVCC	- 0.3V	VCC + 0.3	v	
Continuous output current, any output pin	-	-	±25	mA	
Storage temperature	TSTOR	-65	+150	° C	

CAUTION

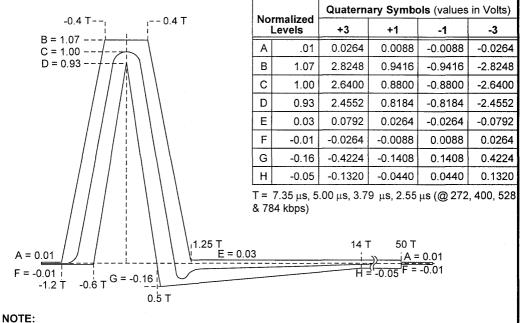
Operations at the limits shown may result in permanent damage to the Integrated Analog Front End. Normal operation at these limits is neither implied nor guaranteed

No supply input may have a maximum potential of more than ±0.3 V from any other supply input.
 TGND = 0V; RGND = 0V; DGND = 0V.
 TVCC = RVCC = DVCC = VCC.

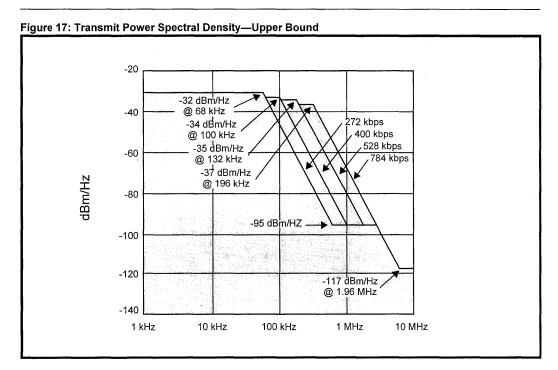
Table 24: IAFE Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units
DC supply	TVCC, DVCC, RVCC	4.75	5.0	5.25	V
Ambient operating temperature	ТА	-40	+25	+85	°C

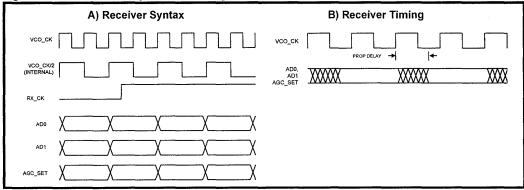
Table 25: IAFE DC Electrical Characteristics (Over Recommended Range)

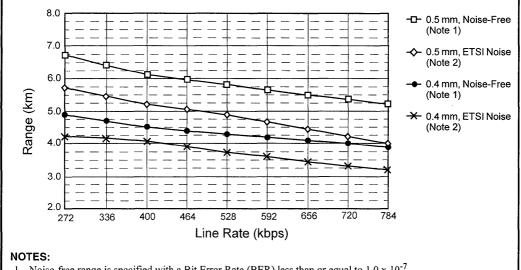

Parameter	Sym	Min	Тур ¹	Max	Unit	Test Conditions
Supply current (full operation)	ICC	-	80	120	mA	83 Ω resistor across TTIP and TRING
Input low voltage	VIL	-	-	0.5	v	IIL < 40 μA
Input high voltage	VIH	4.5	-	-	V	IIH < 40 μA
Output low voltage	Vol	-	-	0.2	v	IOL < 40 μA
Output high voltage	Vон	4.5	-	-	v	IOH < 40 μA
Input leakage current ²	IIL	-	-	±50	μΑ	0 < VIN < VCC
Input capacitance (individual pins)	Cin	-	12	-	pF	
Load capacitance (MSTR_CK out- put)	CLREF	-	-	20	pF	
1. Typical values are at 25° C and are for desig 2. Applies to pins 3, 4, 25, 26 and 27.	gn aid only; n	ot guaran	teed and n	ot subject	to produc	ction testing.

	+2.455	+2.640	+2.825	Vp	TDATA High, TFP Low (+3)
	-2.825	-2.640	-2.455	Vp	TDATA Low, TFP Low (-3)
	+0.818	+0.880	+0.941	Vp	TDATA High, TFP High (+1)
	-0.941	-0.880	-0.818	Vp	TDATA Low, TFP High (-1)
1SU	5	-	-	ns	
мн	12	_	-	ns	
	- - MSU MH	- +0.818 0.941 MSU 5	- +0.818 +0.880 0.941 -0.880 MSU 5 -	- +0.818 +0.880 +0.941 0.941 -0.880 -0.818 MSU 5	- +0.818 +0.880 +0.941 Vp 0.941 -0.880 -0.818 Vp 4SU 5 ns


Table 26: IAFE Transmitter Electrical Parameters (Over Recommended Range)

1. Pulse amplitude measured across a 135 W resistor on the line side of the transformer using the application circuit shown in Figure 13 and Table 21.


SK70720/SK70721 Multi-Rate DSL Data Pump Chip Set



Parameter	Sym	Min	Тур	Мах	Unit	Test Conditions
Propagation delay (AD0, AD1)	tADD	-	-	25	ns	
Total harmonic distortion	-	-	-80	-	dB	V(RTIP, RRING) = 3 Vpp @ 50 kHz
RTIP, RRING, to BTIP, BRING gain ratio	_	-	1.0	1%	V/V	

Figure 18: IAFE Receiver Syntax and Timing

Figure 19: Typical Performance vs. Line Rate and Cable Gauge (Metric)

1. Noise-free range is specified with a Bit Error Rate (BER) less than or equal to 1.0×10^{-7} .

2. The range with ETSI shaped noise corresponds to a 0 dB margin with a BER less than or equal to 1.0×10^{-7} . The power spectral density for ETSI standard noise is defined in ETSI ETR-152 section 6.3.3.1.

SK70720/SK70721 Multi-Rate DSL Data Pump Chip Set

Figure 20: Typical Performance vs. Line Rate and Cable Gauge (English)

NOTES:

- 1. Noise-free range is specified with a Bit Error Rate (BER) less than or equal to 1.0×10^{-7} .
- 2. There are no generally accepted noise models for MDSL systems. Performance simulations using ANSI Near End Cross Talk (NEXT) noise models indicate worst case performance degradation should be less than 2 kft (0.6 km) from the noise-free performance.
- 3. The range with ETSI shaped noise corresponds to a 0 dB margin with a BER less than or equal to 1.0×10^{-7} . The power spectral density for ETSI standard noise is defined in ETSI ETR-152 section 6.3.3.1.

Table 28: MDSP Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units
Supply voltage ¹ (reference to ground ²)	VCC2, VCC1	-0.3	+6.0	v
Input voltage ² , any input pin	_	- 0.3	VCC2 + 0.3	v
Continuous output current, any output pin	-		±25	mA
Storage temperature	TSTOR	-65	+150	° C
	CAUTION			

Operations at the limits shown may result in permanent damage to the MDSL Digital Transceiver (MDSP). Normal operation at these limits is neither implied nor guaranteed

The maximum potential between VCC2 and VCC1 must never exceed ±1.2 V.
 GND3 = 0V; GND2 = 0V; GND1 = 0V.

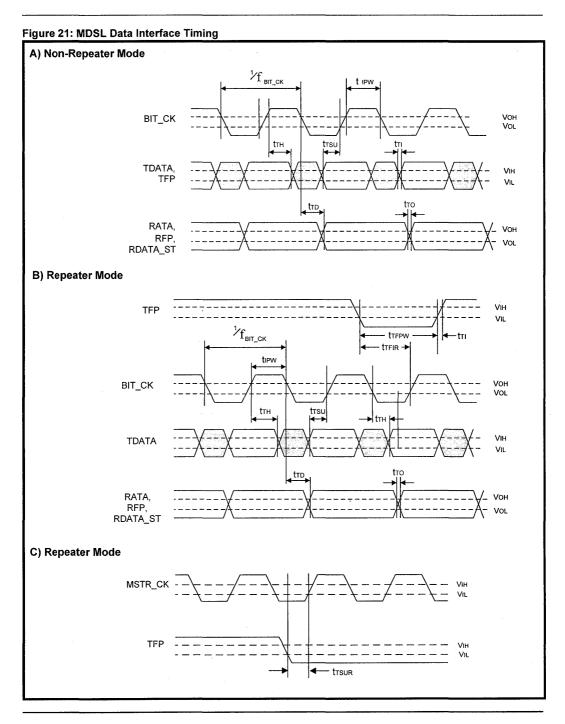
Table 29: MDSP Recommended Operating Conditions

Parameter DC supply ¹		Symbol	Min	Тур	Max	Units
		VCC1 ²	3.95	5.0	5.25	V
		VCC2	4.75	5.0	5.25	v
		VCC2-VCC1	-0.25	-	+0.9	v
Ambient operat- ing temperature	SK70720PE	Та	-40		+85	°C

Parameter	Sym	Min	Typ ¹	Max	Unit	Test Conditions
Supply current272 kbps 400 kbps 528 kbps 784 kbps	ICC		35 48 62 100	45 60 80 135	mA	
Input low voltage	Vil	_	-	0.5	v	IIL < 40 μA
Input high voltage	Vih	4.0	_	_	v	IIH < 40 μA
Output low voltage	Vol	-	-	GND +0.3	v	Iol < 40 μA
Output high voltage	Vон	VCC2-0.5	-		v	Іон < 40 μА
Input leakage current ²	IIL		-	±50	μA	$0 < VIN < VCC_2$
Tristate leakage current ³	ITOL	_	-	±30	μA	$0 < V < VCC_2$
Input capacitance (individual pins)	Cin	_	12		pF	
Load capacitance (MSTR_CK out- put)	Clref	-		15	pF	

Table 30: MDSP DC Electrical Characteristics (Over Recommended Range)

Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing.
 Applies to pins 4, 5, 11, 12, 14, 16, 18, 19, 22, 23, 24, 29, 31, 33, 34 and 35. Applies to pins 5, 6, 9, 13, and 36-43, when configured as inputs.
 Applies to pins 7, 8, 10, 15, 17, 30, 32 and 36-43, when tristated.


Table 31: MDSL Data Interface Timing Specifications (See Figure 21)

Parameter	Symbol	Min	Typ ¹	Мах	Unit
BIT_CK frequency	fBIT_CLK	272	Arm	784	kHz
MSTR_CK frequency	frefclk	4.352	-	12.544	MHz
MSTR_CK frequency tolerance (Master Mode)	tolRCLK	-32	0	+32	ppm
SLAVE_CK frequency tolerance (Slave Mode) ²	tolslave_ck	-32	0	+32	ppm
BIT_CK pulse width high 272 kbps 400 kbps 528 kbps 784 kbps	tIPW		1.840 1.250 0.950 0.638		μs
Transition time on any digital output ³	tto	_	5	10	ns
Transition time on any digital input	tTI	-	_	25	ns
TDATA, TFP setup time to BIT_CK rising edge	tTSU	100		_	ns
TDATA, TFP hold time from BIT_CK rising edge	tтн	100	-	-	ns
RDATA, RFP, RDATA_ST delay from BIT_CK falling edge	tTD	0	_	150	ns

Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing. SLAVE_CK must meet this tolerance about a frequency of 16 times the BIT_CK frequency in slave mode. Measured with 15 pF load. 1.

2. 3

SK70720/SK70721 Multi-Rate DSL Data Pump Chip Set

Parameter	Symbol	Min	Тур	Max	Unit
RESET pulse width Low	tRPWL	0.1	-	5	s
$\overline{\text{RESET}}$ to $\overline{\text{INT}}$ clear (10 k Ω resistor from $\overline{\text{INT}}$ to VCC2)	tINTH	_	-	300	ns
RESET to data tristate on D0-7	tDTHZ	-	_	100	ns
CHIPSEL pulse width Low	tCSPWL	200	-	-	ns
CHIPSEL Low to data active on D0-7	tCDLZ	-	-	80	ns
CHIPSEL High to data tristate on D0-7	tCDHZ	-	-	80	ns
READ pulse width Low	tRSPWL	100	_	-	ns
READ Low to data active	tRDLZ	-	-	80	ns
READ High to data tristate	trdhz	-	-	80	ns
Address to Valid Data	tPRD		_	80	ns
Address setup to WRITE rising edge	tASUW	20		-	ns
Address hold from WRITE rising edge	tAHW	10	_	-	ns
WRITE pulse width Low	tWPWL	100	-	_	ns
Data setup to WRITE rising edge	tDSUW	20		-	ns
Data hold from WRITE rising edge	tDHW	10	_	_	ns
READ High to INT clear when reading register RD0	tINTR	_	_	400	ns
 Timing for all outputs assumes a <u>maximum</u> load of 30 pF. "Address" refers to input signals CHIPSEL, A0, A1, A2, and A3. "Da 	ta" refers to I/O	signals D0, D	I, D2, D3, D4, I	D5, D6, and D7.	

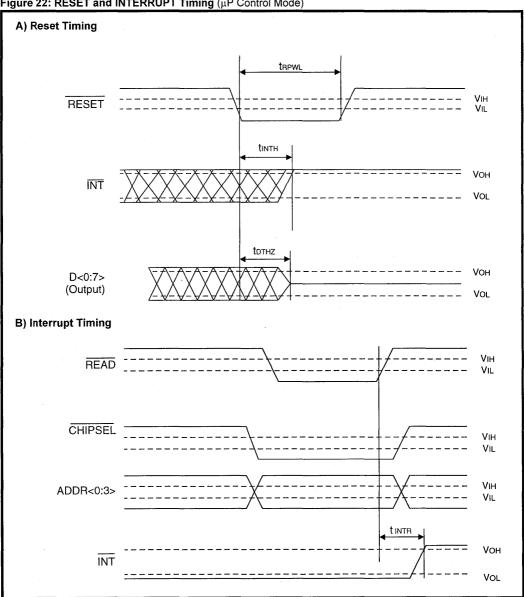

Table 32: MDSP/Microprocessor Interface Timing Specifications (See Figures 18 & 19)

Table 33:	General	System	and	Hardware	Mode	Timing
-----------	---------	--------	-----	----------	------	--------

	Parameter	Min	Typ ¹	Max	Unit
Throughput delay	TDATA to TTIP/TRING	· · · · · · ·			
•. •	272 kbps	-	29.4	36.8	
	400 kbps	_	20.0	25.0	μs
	528 kbps	-	15.2	18.9	
	784 kbps	-	10.2	12.5	
	RTINP/RRING to RDATA				
	272 kbps	_	154	206	
	400 kbps	_	105	140	μs
	528 kbps		79.6	106	
	784 kbps	—	53.6	72	
Hardware Mode	"ACTREQ" input transitional pulse width (High or Low)	5	-	_	μs
	"QUIET" transitional pulse width (High-to-Low)	5	-	-	μs

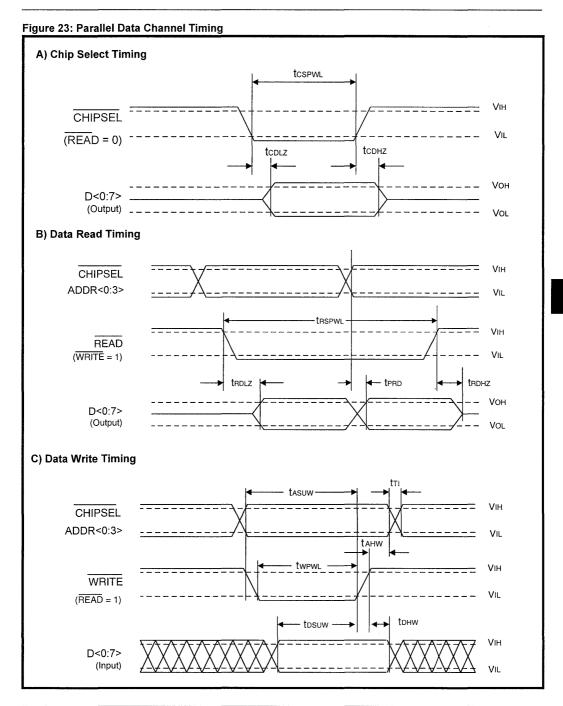


Figure 22: RESET and INTERRUPT Timing (µP Control Mode)

SK70720/SK70721 Multi-Rate DSL Data Pump Chip Set

NOTES

PDH Multiplexers

1997 Communications Data Book

DATA SHEET SXT6234

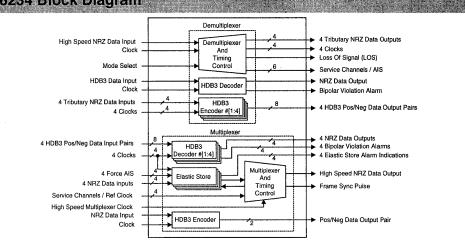
E-Rate Multiplexer

General Description

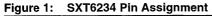
The SXT6234 E-Rate Multiplexer is a single-chip solution for multiplexing four tributary channels into a single high speed data stream and for demultiplexing a high speed data stream back to four tributary channels. All of the necessary circuitry is integrated into the SXT6234 E-Rate Multiplexer; there is no need for an external framing device.

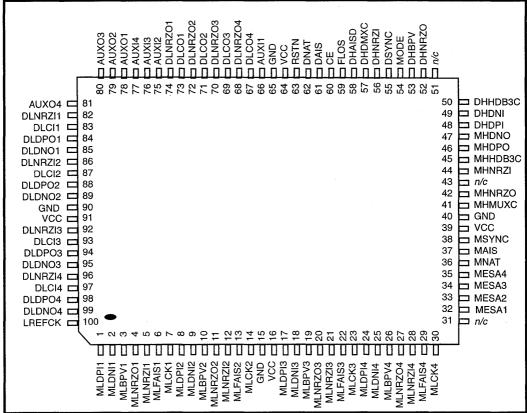
The SXT6234 E-Rate Multiplexer conforms to both the (ITU) G.742 and (ITU) G.751 multiplexing formats defined by the International Telecommunications Union (ITU; formerly known as CCITT): G.742 recommendation for multiplexing four E1 channels into an E2 frame; and the G.751 recommendation for multiplexing four E2 channels into an E3 frame.

The SXT6234 E-Rate Multiplexer also encodes and decodes HDB3 zero suppression line coding used on E1, E2, and E3 signals. The coder and decoder input/output pins are externally accessible, allowing either HDB3 or NRZ (non-return-to-zero) I/O to the multiplexer. The SXT6234 E-Rate Multiplexer can also serve as a five channel HDB3 coder and decoder.


Applications

- E1/E2 Multiplexer (2/8 Mbit/s)
- E2/E3 Multiplexer (8/34 Mbit/s)
- E1/E3 Multiplexer (2/34 Mbit/s)
- · Digital Loop Carrier (DLC) Terminal
- Add / Drop Multiplexers (ADM)
- · 4 to 1 Non-Standard Multiplexer


SXT6234 Block Diagram


Features

- Performs four-E1 to one-E2, or four-E2 to one-E3 multiplexing. Five ICs will implement a sixteen-E1 to one-E3 Multiplexer.
- Fully compliant with the G.742 and G.751 ITU recommendations. Fully compliant with G.703 when used with LXT305/332 Line Interface.
- A robust frame-acquisition and frame-holding algorithm minimizes frame slippage, acquires and holds frame below 10⁻² bit error rate.
- Four auxiliary low speed data or flag channels are available via the Stuffing Bits on each tributary channel.
- Access to the Alarm bit and the National bit. These can be used as recommended by ITU or for proprietary use.
- Five independent HDB3 CODECs allow Multiplexer I/O in either HDB3 or NRZ formats. The SXT6234 can also function as a stand alone five-channel HDB3 transcoder.

Table 1: Input Signals

Pin #	Sym	Description
1	MLDPII	HDB3 Decoder #1 Positive Data Input. HDB3 Decoder #1 positive rail input clocked on the positive transitions of the clock signal MLCK1.
2	MLDNII	HDB3 Decoder #1 Negative Data Input. HDB3 Decoder #1 negative rail input clocked on the positive transitions of the clock signal MLCK1.
8	MLDPI2	HDB3 Decoder #2 Positive Data Input. HDB3 Decoder #2 positive rail input clocked on the positive transitions of the clock signal MLCK2.
9	MLDNI2	HDB3 Decoder #2 Negative Data Input. HDB3 Decoder #2 negative rail input clocked on the positive transitions of the clock signal MLCK2.
17	MLDPI3	HDB3 Decoder #3 Positive Data Input. HDB3 Decoder #3 positive rail input clocked on the positive transitions of the clock signal MLCK3.
18	MLDNI3	HDB3 Decoder #3 Negative Data Input. HDB3 Decoder #3 negative rail input clocked on the positive transitions of the clock signal MLCK3.

Table 1: Input Signals-contin	inued
-------------------------------	-------

Pin #	Sym	Description
24	MLDPI4	HDB3 Decoder #4 Positive Data Input. HDB3 Decoder #4 positive rail input clocked on the positive transitions of the clock signal MLCK4.
25	MLDNI4	HDB3 Decoder #4 Negative Data Input. HDB3 Decoder #4 negative rail input clocked on the positive transitions of the clock signal MLCK4.
7	MLCKI	Multiplexer Tributary #1 Clock Input. Clock input for Multiplexer side tributary channel #1. This clock is used by both the associated HDB3 decoder and the Multiplexer. For standard rate applications, this clock must have a frequency of ± 50 ppm for 2048 kbit/s operation and ± 30 ppm for the 8448 kbit/s operation as per ITU G.703.
14	MLCK2	Multiplexer Tributary #2 Clock Input. Idem as MLCK1 with tributary #2 in.
23	MLCK3	Multiplexer Tributary #3 Clock Input. Idem as MLCK1 with tributary #3 in.
30	MLCK4	Multiplexer Tributary #4 Clock Input. Idem as MLCK1 with tributary #4 in.
5	MLNRZI1	Multiplexer Tributary #1 NRZ Data Input. Multiplexer tributary NRZ input clocked on the falling edge of the clock signal MLCK1.
12	MLNRZI2	Multiplexer Tributary #4 NRZ Data Input. Multiplexer tributary NRZ input clocked on the falling edge of the clock signal MLCK2.
21	MLNRZI3	Multiplexer Tributary #3 NRZ Data Input. Multiplexer tributary NRZ input clocked on the falling edge of the clock signal MLCK3.
28	MLNRZI4	Multiplexer Tributary #4 NRZ Data Input. Multiplexer tributary NRZ input clocked on the falling edge of the clock signal MLCK4.
6	MLFAIS1	Force AIS on Multiplexer Tributary #1. Active high signal to force AIS (all 1's) data and LREFCK clock on Multiplexer tributary #1.
13	MLFAIS2	Force AIS on Multiplexer Tributary #2. Active high signal to force AIS (all 1's) data and LREFCK clock on Multiplexer tributary #2.
22	MLFAIS3	Force AIS on Multiplexer Tributary #3. Active high signal to force AIS (all 1's) data and LREFCK clock on Multiplexer tributary #3.
29	MLFAIS4	Force AIS on Multiplexer Tributary #4. Active high signal to force AIS (all 1's) data and LREFCK clock on Multiplexer tributary #4.
66	AUXII	Auxiliary Flag/Data #1 Input. The signal on this pin is clocked into the frame at the stuffing bit location (J1) when justification is such that tributary data is NOT placed at this location. A high on alarm signal MESA1 indicates this condition during the current frame.
75	AUXI2	Auxiliary Flag/Data #2 Input. See AUXI1 Description. MESA2 is relevant indication signal.
76	AUXI3	Auxiliary Flag/Data #3 Input. See AUXI1 Description. MESA3 is relevant indication signal.
77	AUXI4	Auxiliary Flag/Data #4 Input. See AUXI1 Description. MESA4 is relevant indication signal.
36	MNAT	National Bit Input. National Bit input that is placed in the 12th bit of the frame as per ITU G.742, G.751 specifications.
37	MAIS	AIS/Error Bit Input. AIS Bit input that is placed in the 11th bit of the frame, as per ITU G.742, G.751 specifications.

SXT6234 E-Rate Multiplexer

Table 1: Input Signals-continu

Pin #	Sym	Description
41	MHMUXC	High speed Multiplexer Clock Input. Clock input for Multiplexer functions and NRZ high speed data output. For standard rate applications, this clock must have a frequency of ±30 ppm for the 8448 kbit/s operation and ±20 ppm for the 34368 kbit/s operation as per ITU G.703.
44	MHNRZI	HDB3 Encoder #5 NRZ Input. HDB3 Encoder #5 (High speed) NRZ input clocked on the rising edge of MHHDB3C.
45	MHHDB3C	HDB3 Encoder #5 Clock Input. When used in conjunction with the Multiplexer, this pin should be tied to the high speed Multiplexer Clock, MHMUXC, P41.
48	DHDPI	HDB3 Decoder #5 Positive Data Input. HDB3 Decoder #5 (High Speed) positive rail input clocked on the rising edge of DHHDB3C.
49	DHDNI	HDB3 Decoder #5 Negative Data Input. HDB3 Decoder #5 (High Speed) positive rail input clocked on the rising edge of DHHDB3C.
50	DHHDB3C	HDB3 Decoder #5 Clock Input. When used in conjunction with the Demultiplexer, this pin should be tied to the high speed Demultiplexer Clock, DHMUXC, P57.
56	DHNRZI	Demultiplexer NRZ Data Input. Demultiplexer NRZ input clocked on rising edge of DHD-MXC.
57	DHDMXC	High speed Demultiplexer Clock Input. Clock input for Demultiplexer functions and NRZ high speed data in. For standard rate applications, this clock must have a frequency of ± 30 ppm for the 8448 kbit/s operation and ± 20 ppm for the 34368 kbit/s operation as per ITU G.703.
82	DLNRZII	HDB3 Encoder #1 NRZ Data Input. HDB3 Encoder #1 NRZ input clocked on rising edge of DLCI1.
86	DLNRZI2	HDB3 Encoder #2 NRZ Data Input. HDB3 Encoder #2 NRZ input clocked on rising edge of DLCI2.
92	DLNRZI3	HDB3 Encoder #3 NRZ Data Input. HDB3 Encoder #3 NRZ input clocked on rising edge of DLCI3.
96	DLNRZI4	HDB3 Encoder #4 NRZ Data Input. HDB3 Encoder #4 NRZ input clocked on rising edge of DLCI4.
83	DLCI1	HDB3 Encoder #1 Clock Input. Clock input for HDB3 Encoder #1.
87	DLCI2	HDB3 Encoder #2 Clock Input. Clock input for HDB3 Encoder #2.
93	DLCI3	HDB3 Encoder #3 Clock Input. Clock input for HDB3 Encoder #3.
97	DLCI4	HDB3 Encoder #4 Clock Input. Clock input for HDB3 Encoder #4.
54	MODE	E12/E23 Mode Select. Mode selection for multiplexer/demultiplexer operation. A low signal selects 4E1/E2 multiplexing. A high signal selects 4E2/E3 multiplexing.
100	LREFCK	Tributary Reference Clock. This clock is used as a reference for the Force AIS functions (See Pin 6 Description). For standard rate applications, this clock must have a frequency of ± 50 ppm for the 2048 kbit/s operation and ± 30 ppm for the 8448 kbit/s operation as per ITU G.703.
60	CE	Chip Enable. A high signal forces all outputs into tri-state; used for PCB Testing. This signal should be low for normal operation.
63	RSTN	Reset. An active low reset pin. Must be pulsed low on power up to initialize all internal circuits after V_{cc} and clocks are stable.

Pin #	Sym	Description
15, 40 65, 90	GND	Ground. Ground Reference.
16, 39 64, 91	V _{cc}	Voltage. 5-volt supply voltage.

Table 1: Input Signals-continued

Table 2: Output Signals

Sym	Pin #	Description
MLNRZ01	4	HDB3 Decoder #1 NRZ Output. HDB3 Decoder #1 NRZ output clocked on the rising edge of MLCK1.
MLNRZO2	11	HDB3 Decoder #2 NRZ Output. HDB3 Decoder #2 NRZ output clocked on the rising edge of MLCK2.
MLNRZO3	20	HDB3 Decoder #3 NRZ Output. HDB3 Decoder #3 NRZ output clocked on the rising edge of MLCK3.
MLNRZO4	27	HDB3 Decoder #4 NRZ Output. HDB3 Decoder #4 NRZ output clocked on the rising edge of MLCK4.
MLBPV1	3	HDB3 Decoder #1 Bipolar Violation Alarm. This open collector output pulses every time a bipolar violation occurs in the decoding process.
MLBPV2	10	HDB3 Decoder #2 Bipolar Violation Alarm. This open collector output pulses every time a bipolar violation occurs in the decoding process.
MLBPV3	19	HDB3 Decoder #3 Bipolar Violation Alarm. This open collector output pulses every time a bipolar violation occurs in the decoding process.
MLBPV4	26	HDB3 Decoder #4 Bipolar Violation Alarm. This open collector output pulses every time a bipolar violation occurs in the decoding process.
MESA1	32	Multiplexer Tributary #1 Elastic Store Alarm Indication. Multiplexer justification status for tributary #1. A high indicates bit stuffing on the current frame. A low indicates an information bit. When externally filtered, this signal can be used to indicate elastic store failure or incorrect tributary frequency.
MESA2	33	Multiplexer Tributary #2 Elastic Store Alarm Indication. Idem as MESA1 with tributary channel 2.
MESA3	34	Multiplexer Tributary #3 Elastic Store Alarm Indication. Idem as MESA1 with tributary channel 3.
MESA4	35	Multiplexer Tributary #4 Elastic Store Alarm Indication. Idem as MESA1 with tributary channel 4.
MHNRZO	42	High speed Multiplexer NRZ Output. Multiplexer NRZ data clocked out on the rising edge of MHMUXC.
MHDPO	46	HDB3 Encoder #5 Positive Data Output. HDB3 Encoder #5 Positive rail clocked out on the rising edge of MHHDB3C.
MHDNO	47	HDB3 Encoder #5 Negative Data Output. HDB3 Encoder #5 Negative rail clocked out on the rising edge of MHHDB3C.
DLNRZ01	74	Demux Tributary #1 NRZ Output. This signal is clocked out on the rising edge of DHD-MXC and transitions are coincident with the falling edge of DLCO1.

SXT6234 E-Rate Multiplexer

Table 2: Output Signals-continued

Sym	Pin #	Description
DLNRZO2	72	Demux Tributary #2 NRZ Output. This signal is clocked out on the rising edge of DHD-MXC and transitions are coincident with the falling edge of DLCO2.
DLNRZO3	70	Demux Tributary #3 NRZ Output. This signal is clocked out on the rising edge of DHD-MXC and transitions are coincident with the falling edge of DLCO3.
DLNRZO4	68	Demux Tributary #4 NRZ Output. This signal is clocked out on the rising edge of DHD-MXC and transitions are coincident with the falling edge of DLCO4.
DLCOI	73	Demux Tributary #1 Clock Output. Demultiplexer side recovered clock of tributary #1. This clock has a duty cycle of 75% and is gapped at points in the frame where tributary data is not present (i.e., frame word). The maximum gap is 3 clocks at the frame word location. The frequency will match that of the far end multiplexer tributary input. This signal is clocked out on the rising edge of DHDMXC.
DLCO2	71	Demux Tributary #2 Clock Output. Demultiplexer side recovered clock of tributary #2. See DLCO1 description.
DLCO3	69	Demux Tributary #3 Clock Output. Demultiplexer side recovered clock of tributary #3. See DLCO1 description.
DLCO4	67	Demux Tributary #4 Clock Output. Demultiplexer side recovered clock of tributary #4. See DLCO1 description.
DLDPO1	84	HDB3 Encoder #1 Output +. HDB3 Encoder #1 positive rail output clocked out on the rising edge of DLCI1.
DLDN01	85	HDB3 Encoder #1 Output HDB3 Encoder #1 negative rail output clocked out on the rising edge of DLCI1.
DLDPO2	88	HDB3 Encoder #2 Output +. HDB3 Encoder #2 positive rail output clocked out on the ris- ing edge of DLCI2.
DLDNO2	89	HDB3 Encoder #2 Output HDB3 Encoder #2 negative rail output clocked out on the rising edge of DLCI2.
DLDPO3	94	HDB3 Encoder #3 Output +. HDB3 Encoder #3 positive rail output clocked out on the rising edge of DLCI3.
DLDNO3	95	HDB3 Encoder #3 Output HDB3 Encoder #3 negative rail output clocked out on the rising edge of DLCI3.
DLDPO4	98	HDB3 Encoder #4 Output +. HDB3 Encoder #4 positive rail output clocked out on the rising edge of DLCI4.
DLDNO4	99	HDB3 Encoder #4 Output HDB3 Encoder #4 negative rail output clocked out on the rising edge of DLCI4.
DHNRZO	52	HDB3 Decoder #5 NRZ Data Output. HDB3 Decoder #5 NRZ data clocked out on the rising edge of DHHDB3C.
DHBPV	53	HDB3 Decoder #5 Bipolar Violation Alarm. This active high signal pulses every time a bipolar violation occurs in the decoding process.
AUXO1	78	Auxiliary Flag/Data #1 Output. Auxiliary Data #1 output that contains data value input on AUXII. See AUXII Description.
AUXO2	79	Auxiliary Flag/Data #2 Output. Auxiliary Data #2 output that contains data value input on AUXI2. See AUXI1 Description.

Sym	Pin #	Description
AUXO3	80	Auxiliary Flag/Data #3 Output. Auxiliary Data #3 output that contains data value input on AUXI3. See AUXI1 Description.
AUXO4	81	Auxiliary Flag/Data #4 Output. Auxiliary Data #4 output that contains data value input on AUXI4. See AUXI1 Description.
DNAT	62	National Bit Output. Updated every frame based on the contents of the 12th bit in the frame as per ITU G.742, G.751
DHAISD	58	Demultiplexer Input AIS Detect. Active high alarm occurs when an all 1's condition (AIS) is detected at the DHNRZI input. This alarm will not occur if the input is a framed signal (i.e. all tributaries are AIS on multiplexer side).
FLOS	59	Demultiplexer Loss of Frame Alarm. Active high Frame Loss Alarm that occurs when the Demux has not detected the Frame word.
MSYNC	38	Multiplexer Frame Sync Pulse. Pulse of one high speed clock cycle synchronous with the last bit of the frame (just before the frame word of the next frame).
DSYNC	55	Dmx Frame Sync Pulse. Pulse of one high speed clock cycle synchronous with the first bit of the frame word of the high speed incoming signal.
DAIS	61	AIS Error Bit Output. Updated every frame based on the contents of the 11th bit in the frame as per ITU G.742 and G.751.
NC	31, 43 51	Not Connected. These pins must be left unconnected.

Table 2: Output Signals-continued

FUNCTIONAL DESCRIPTION

NOTE

This Functional Description is for design aid only

The SXT6234 E-Rate Multiplexer consists of a multiplexer block, a demultiplexer block, five HDB3 decoders, and five HDB3 encoders. If the HDB3 codecs are used, the signal flow would be as follows:

Multiplexer: Four tributaries of data feed HDB3 decoders one through four. The NRZ outputs of the decoders are connected to the multiplexer tributary inputs. Within the multiplexer, the justification or stuffing for each tributary is determined; the frame word is added; and the high speed NRZ data sent out. The multiplexer output is connected to HDB3 encoder five where it is encoded and sent out as Positive Data Output (MHDPO) and Negative Data Output (MHDNO).

Demultiplexer: High speed encoded data feeds the HDB3 decoder five and is output as NRZ data. The decoder output is connected to the demultiplexer input where it enters both the frame search circuitry and the demultiplexing circuitry. Once the frame is detected, the NRZ data is demultiplexed into the four tributaries and the justification is removed. Tributary data is then sent out in NRZ format. These tributary outputs, both Clock Output (DLCOx) and NRZ Output (DLNRZOx), are connected to HDB3 encoders one through four, encoded, and output as Positive Data (MHDPO) and Negative Data (MHDNO).

FRAME FORMAT

The multiplexer and demultiplexer share the Mode Select (MODE) control pin. When MODE is low, the multiplexer conforms to the ITU G.742 format for four-E1 to E2 (Figure 3). An E2 frame is 848 bits long, with 205 data bits and one justification bit for each E1 tributary. When MODE is high, the multiplexer conforms to the ITU G.751 format for four-E2 to E3 (Figure 4). This E3 frame is 1536 bits long, with 377 data bits and one justification bit for each E2 tributary.

In both E2 and E3 formats, there are two flag bits per frame: the AIS bit and the National bit. The four justification bits may also be used as additional flag bits.

HDB3 CODECS

Five HDB3 codecs are included within the SXT6234 to allow easy integration with a wide range of line interface circuits. There are four low speed codecs for the tributary streams and one high speed codec to process the high speed output data. All five codecs are identical and all I/O pins are externally accessible for each device. All codecs can be operated at the maximum operating speed if the chip is used as a stand alone HDB3 transcoder. Note that the "low speed" decoders share a clock with the multiplexer tributary clocks.

Each HDB3 decoder is provided with Positive Data, Negative Data, and clock; they decode the data into a single NRZ bit stream. The HDB3 encoders are provided with NRZ data and clock; they produce the Positive Data and Negative Data bit streams.

HDB3 DECODER ALARMS

A Bipolar Violation Alarm (MLBPVx, DHBPV) associated with each HDB3 decoder indicate detection of a coding violation error within the data. Coding violations include Bipolar Violations, a string of more than four zeros in a row, or encoding violations. The active high alarm is one clock cycle in duration.

MULTIPLEXER

The multiplexer formats four low speed NRZ tributaries into a single high speed bit stream (Figure 2). Tributary data rates are synchronized via internal elastic store memories using a positive justification process as specified in the ITU recommendations.

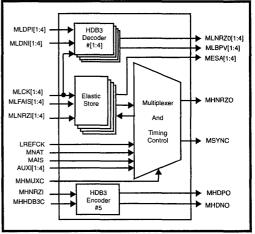
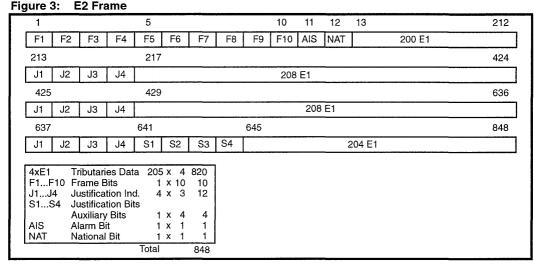
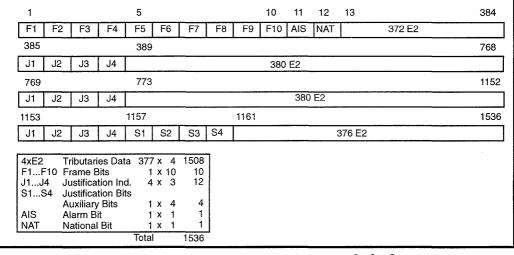


Figure 2: Multiplexer Side Block Diagram

Data enters a first-in/first-out (FIFO) elastic store block. The FIFO receives the data along with the tributary clock and a pointer generated from the timing control. The output of the elastic store block is clocked by the tributary enable




pulses from the timing control, and the data is finally processed by the multiplexer. Processing normally places the output data bit into the high speed bit stream during the tributary enable. An once-per-frame exception occurs during justification. During this event the location of the pointer in the FIFO is determined and a decision made for justification. If the elastic store is less than half full, a justification bit (used for the auxiliary flag channels) is placed in the bit stream and the MESAx pin is set high. When the elastic store becomes over half full, a tributary bit is clocked out from the FIFO, placed in the bit stream, and the MESAx pin set low. There are three justification indicators spread throughout the frame to show the status of the justification bit to the demultiplexer. Finally, the National and AIS bits are added at the beginning of each frame, and the bit stream is clocked out on MHNRZO.

The multiplexer timing control receives a high speed clock and generates the frame structure and timing control according to the bit length of each frame. This is 848 bits for an E2 frame, and 1536 bits for an E3 frame. MODE provides for either E2 or E3 selection.

In case of tributary transmission failure or the loss of a signal, tributary data can be forced to an all 1's state. For each tributary this function is controlled at the MLFAISx pin.

Figure 4: E3 Frame

Flag Bits

Two flag bits, defined as the National Bit (MNAT) and AIS/Error Bit (MAIS) are transmitted with each frame. At the appropriate time the bit values of the MNAT and MAIS inputs are inserted into the frame. There are also four auxiliary flag channels available (AUXLx) that use the justification bit. These flags are placed in the frame approximately 40% of the time, depending on the ratio of the tributary clock to the multiplexer clock. A high on MESAx indicates that the AUXLx flag will be inserted into the current frame.

Multiplexer Alarms

An indicator bit (MESAx) for each tributary monitors the status of the elastic store memory. This pin provides the justification status of the tributary. Under normal conditions this pin toggles at the frame rate with a 40% duty cycle. Large variation of the duty cycle indicates the tributary clock frequency is out of specification. Loss of clock would cause MESA to assume a rail value.

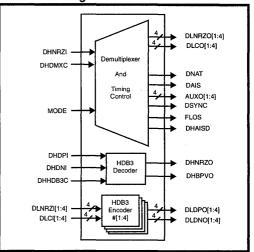
For use as a frequency alarm this signal should be filtered by a single-pole RC filter far below the frame frequency, and connected to a pair of voltage comparators. The unfiltered alarm signal can be used to clock the auxiliary data channel inputs.

DEMULTIPLEXER

Data entering the demultiplexer is sent to both the demultiplexing block and the framer. The framer, using a Sieve algorithm, examines the incoming data to find the framing word. A frame is declared found when three passes show the frame word has been found at the same location within the frame. The timing module is then synchronized to the incoming data frame and the Frame Loss Alarm turns off.

Valid tributary data can be extracted after the frame is found. For each tributary, three justification indicator bits are stored. A majority-rule determination decides whether the justification bit is sent as tributary data (with clock) or as an auxiliary bit (with no clock).

The DNAT and DAIS flag bits are updated for each frame and sent to their dedicated pins. The auxiliary flag bits AUXOx are updated when they are available on the frame.


Demultiplexer Alarms

The demultiplexer has two active-high alarms: Frame Loss (FLOS), and Demultiplexer Input AIS Detect (DHAISD).

• FLOS is active at power-up and clears after three consecutive frames are detected. During normal operation FLOS becomes active after missing four consecutive frames.

• DHAISD activates after 768 consecutive 1's pass through the high speed NRZ data stream. DHAISD will occasionally glitch if four tributaries are all 1's and the justification of all four channels is identical. This glitch is filtered with a single-pole RC filter.

Figure 5: Demultiplexer Side Block Diagram

GLOSSARY

- AIS Alarm Indication Signal.
- AMI Alternate Mark Inversion.
- CCITT Consultative Committee for International Telegraph and Telephone (now called the International Telecommunications Union - ITU).
- CODEC COder/DECoder; An assembly comprising an encoder and a decoder within the same unit.
- HDB3 High Density Bipolar code of order 3, extension of AMI.
- E1 The primary European digital rate of 2.048 MHz, or thirty-two 64 KB channels.
- E2 The secondary European rate, four E1 channels at 8.448 MHz.
- E3 The tertiary European rate, four E2 channels at 34.368 MHz.
- FIFO First-in/First-Out Memory.
- ITU International Telecommunications Union.
- NRZ Non-Return to Zero.
- PCB Printed Circuit Board.
- RZ Return to Zero.

APPLICATION INFORMATION

NOTE

This application information is for design aid only.

E1/E3 MULTIPLEXER BLOCK DIAGRAM

Figure 6 is a block diagram of the E1/E3 Multiplexer.

E1 Line Interface

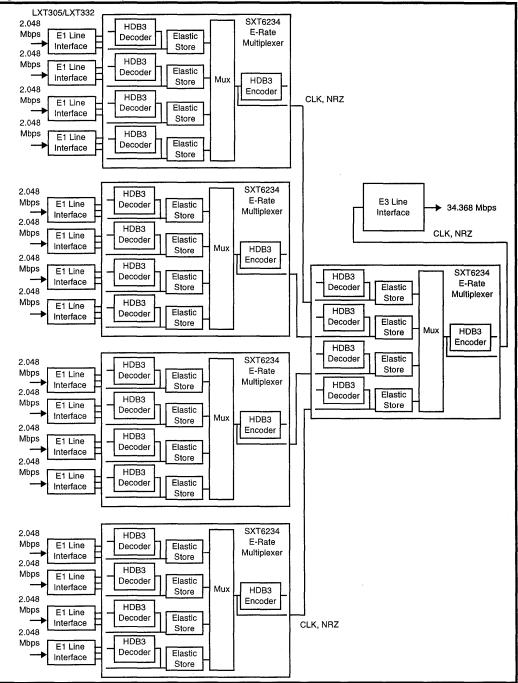
- Receive clocks from the pulse data.
- Pass either HDB3 encoded signals to the E-Rate Multiplexer as clock and RZ data or as NRZ data¹. (Both positive and negative RZ data.)

SXT6234, E1/E2 Stage

• The SXT6234 may interface with either HDB3 or non-HDB3 coded signals. Data from an LIU that does not perform HDB3 decoding must be connected to the HDB3 inputs on the SXT6234. These are the clock (MLCKx) and decoder data input signals (both positive - MLDPx and negative - MLDNx). When receiving data from an LIU which does perform HDB3 decoding, the NRZ data is connected to the MLNRZx input and the clock connects to the MLCKx in on the SXT6234

- The four tributaries are interleaved into a single, intermediary E2 rate data stream. An on-board crystal oscillator drives the data output frequency from the mux at the E2 rate of 8.448 MHz. A bit stuffing algorithm implemented in the SXT6234 ensures tributary rate integrity at the output. The SXT6234 contains elastic store buffers to manage bit-stuffing process.
- The NRZ data is sent to a tributary of the E-Rate Multiplexer, stage E2/E3.

SXT6234, E3 Stage


- The multiplexer portion of the SXT6234 interleaves four asynchronous E2 rate NRZ data streams into a single E3 data stream. Depending on the configuration, either an on-board crystal oscillator or an external reference clock drives the data output frequency from the mux at the rate of 34.368 Mbps. The bit stuffing algorithm implemented in the SXT6234 ensures tributary rate integrity at the output.
- If the LIU provides HDB3 encoding, then the NRZ data and clock are passed to the E3 line interface.
- If the LIU does not provide HDB3 encoding, then encoding is done by the SXT6234 and data is output as positive and negative data. An activity monitor provides tributary fail notification when necessary.

See Application Note 9501 for additional information.

^{1.} If the HDB3 decoder is on the line interface unit (LIU).

TEST SPECIFICATIONS

NOTE

Minimum and maximum values in Tables 3 through 9 and Figures 7 through 11 represent the performance specifications of the SXT6234 E-Rate Multiplexer and are guaranteed by test except, where noted, by design. Typical values are not subject to production testing.

The SXT6234 E-Rate Multiplexer, fabricated with 1.2-micron CMOS technology, is currently available in a 100-pin plastic quad flat pack package (EIAJ standard 100PQFP). All device I/O comply with 5V CMOS standards. A list of input and output signals is provided with this data sheet. There are 46 input signals and 43 output signals. In addition, there are four V_{CC} power pins and four Ground power pins.

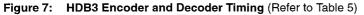
A Chip Enable is provided to facilitate board level, in-circuit testing during the PCB manufacturing process. The SXT6234 E-Rate Multiplexer is fully tested before shipment.

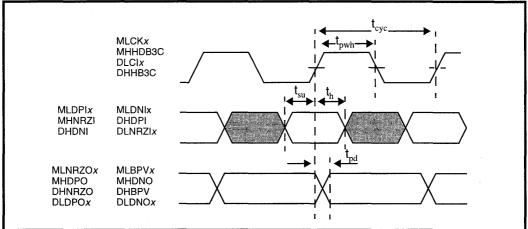
Table 3: Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units		
DC supply voltage	Vcc	-0.3	7.0	V		
Input voltage on any pin	VIN	0	Vcc+ 0.3	V		
Input current	Iin		10	μΑ		
Ambient operating temperature	Там	0	+70	°C		
Storage temperature	TSTOR	-55	+150	°C		
CAUTION Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Ex- posure to absolute maximum rating conditions for extended periods may affect device reliability.						

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
High level input voltage	Vih	70			% of Vcc	
Low level input voltage	Vil			30	% of Vcc	
High level output voltage	Vон	2.4	4.5		V	ІОН = 4 mA VDD = 4.75 V
Low level output voltage	Vон		0.2	0.4	V	IOH = 4 mA VDD = 4.75 V
Input leakage current	In			10	μΑ	VDD = 5.25 V
Three state leakage current	IHZ	-10	1	10	μA	VDD = 5.25 V
Power dissipation 4E1/E2 mode 4E2/E3 mode	PD		100 500	-	mW mW	VDD = 5.25 V VDD = 5.25 V
Static current	Idd		1	20	μΑ	VDD = 5.25 V

Table 4:DC Characteristics (TA=0 to 70 °C, VCC=±5%, GND=0 V)

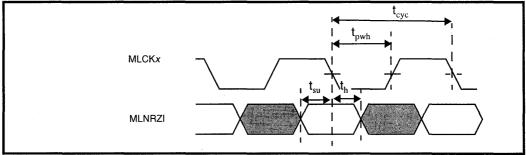




AC TIMING SPECIFICATIONS

NOTE

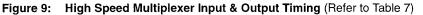
Unless otherwise specified, all timing specifications are referenced at ambient condition as $T_{Ambient} = 0^{\circ}$ to 70°C, VCC = ±5%, GND = 0V.

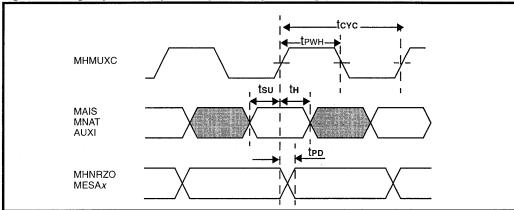


HDB3 Encoder and Decoder (Refer to Figure 7) Table 5:

Parameter	Symbol	Min	Тур	Max	Unit
Clock duty cycle	tPWH	40		75	%
Data to clock setup time	tSU	5			ns
Data to clock hold time	tH	6			ns
Clock to data propagation time (50pF capacitive load)	tPD		15	25	ns

Figure 8: Multiplexer Tributary Input Timing (Refer to Table 6)




SAN FRANCISCO TELECOM, INC. LEVEL ONE COMMUNICATIONS COMPANY

Parameter	Symbol	Min	Тур	Max	Unit
Clock duty cycle	tрwн	40		60	%
Data to clock setup time (falling edge)	tsu	5			ns
Data to clock hold time (falling edge)	tн	5			ns

Table 6: Multiplexer Tributary Input (Refer to Figure 8)

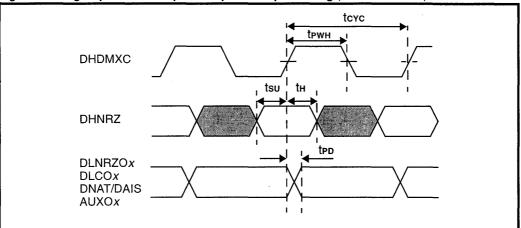


Table 7:	High Speed	Multiplexer	Input & Output	(Refer to Figure 9)
----------	------------	-------------	----------------	---------------------

Parameter	Symbol	Min	Туре	Мах	Unit
Clock duty cycle	tрwн	40		60	%
Data to clock setup time	tsu	5			ns
Data to clock hold time	tH	6			ns
Clock to data propagation time	tpd		20	30	ns

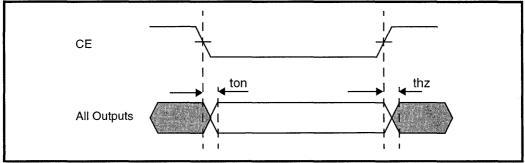


Figure 10: High Speed Demultiplexer Input & Output Timing (Refer to Table 8)

Table 8: High Speed Demultiplexer Input & Output (Refer to Figure 10)

Parameter	Symbol	Min	Туре	Мах	Unit
Clock duty cycle	tрwн	45		75	%
Data to clock setup time	tsu	8			ns
Data to clock hold time	tн	5			ns
Clock to data propagation time	tpd		20	30	ns

Figure 11: Chip Enable Timing (Refer to Table 9)

Table 9: Chip Enable (Refer to Figure 11)

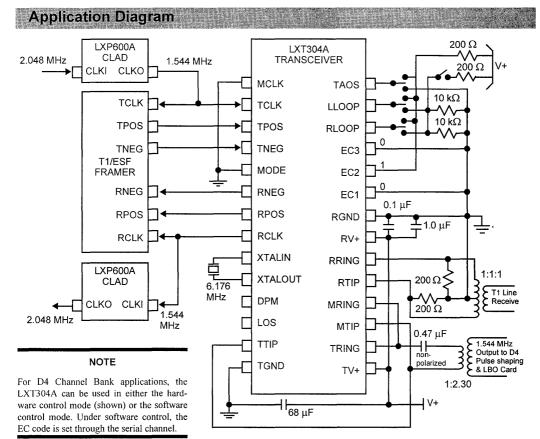
Parameter	Symbol	Min	Туре	Мах	Unit
CE to outputs enabled	ton		20	30	ns
CE to outputs high impedance	tрwн		20	30	ns

Telecom Application Notes

APPLICATION NOTE 21

LXT304A Transceiver D4 Channel Bank Applications

General Description


Existing D4 Channel Bank architectures frequently employ: (1) a plug-in card for T1 pulse generation (6.0 V peak); and (2) a separate card for pulse shaping and Line Build-Out (LBO). The LXT304A integrates the functions of both cards on a single chip producing a DSX-1 compatible, 3.0 V peak output pulse with a standard transformer. In new designs, the LXT304A can replace two cards with one. However, the LXT304A is also compatible with existing dual-card architectures. With an appropriate output transformer, the LXT304A can produce full 6.0 V peak amplitude pulses suitable for D4 Channel Bank applications with separate pulse shaping/LBO cards.

Line Interface Circuitry

To achieve the 6.0 V peak output, the FCC Part 68-010 Equalizer Code setting is used (EC = 010). With the standard 1:1.15 transformer, this code produces a 3.0 V peak pulse. However, doubling the transformer turns ratio to 1:2.30 produces the desired 6.0 V peak pulse.

The Application Diagram shows a D4 Channel Bank application circuit using the correct Equalizer Code setting and transformer. Transformer specifications are listed in Table 1.

MCLEVEL

Parameter	Value
Turns Ratio	1:2.3 (±2%)
Primary Inductance	1.2 mH min
Leakage Inductance	0.5 μH max
Interwinding Capacitance	25 pF max
Series Resistance	1.0 Ω PRI

Table 1: Transformer Specifications

Vendors supplying suitable transformers include Pulse Engineering, Bel Fuse, Midcom and Schott.

Application circuit functionality was confirmed using a Pulse Engineering PE65558 transformer.

APRIL 1996 Revision 0.0

LXT300 and LXT310 Interchangeability Adapting Short-Haul T1 Boards to Long-Haul Applications

General Description

While the LXT300 is designed for short-haul (up to 200 m) T1/E1 applications and the LXT310 is designed for longhaul (up to 2 km) T1 applications, these transceivers are quite similar in function. There are only minor differences in line interfaces and pin configurations. Therefore, T1 equipment designed for short-haul applications (using the LXT300) can easily be adapted to provide long-haul capability (using the LXT310) as an option. This application note describes the steps necessary to adapt a single design so that it can be used for both long-haul and short-haul applications.

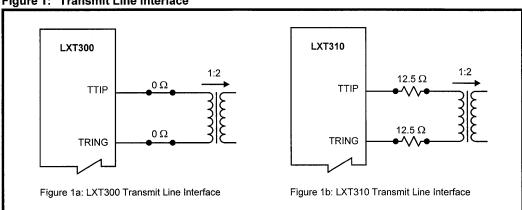
Functional Differences

- In the hardware Mode, thee Equalizer inputs on the LXT300 are replaced by two LBO inputs and an NLOOP output on the LXT310. These pins are identical in the Software Mode, but the bit register is defined differently.
- The LXT300 uses two inputs and an output for the Driver Performance Monitor (DPM) function. On the LXT310, these pins are replaced by inputs for Jitter Attenuation Select (JASEL) and Equalizer Gain Limitation (EGL), and an output for Line Attenuation (LATN).
- The LXT300 uses a 1:2 transformer for both the Tx and Rx line interfaces. The LXT310 uses a 1:2 transformer with two 12.5 Ω series resistors for the Tx line interface; it uses a 1:1 transformer for the Rx line interface.

Circuit Modifications

To adapt an LXT300 board to accommodate the LXT310, modify the circuit as follows:

- 1. Cut the DPM output trace from LXT300 pin 11, and tie the LXT310 JASEL input to VCC.
- Cut the MTIP and MRING inputs to LXT300 pins 17 and 18. Reconfigure the LXT310 input at pin 17 to allow EGL switching, or simply tie pin 17 to ground. Connect the LXT310 output from pin 18 to a LATN decoding circuit.
- Cut the EC1 input to LXT300 pin 23, and connect the LXT310 output from this pin to NLOOP monitoring circuitry.


Line Interface Modifications

On the transmit side, both the LXT300 and LXT310 use a 1:2 transformer. The LXT300 transformer connects directly to the chip as shown in Figure 1a. The LXT310 requires two 12.5 Ω serial resistors in line with the transformer, as shown in Figure 1b.

On the receive side, the LXT300 uses a 1:2 transformer with 400 Ω termination, as shown in Figure 2a. The LXT310 uses a 1:1 transformer with 100 Ω termination, as shown in Figure 2b.

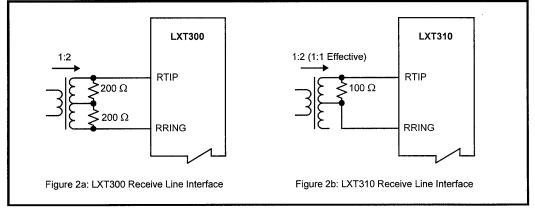

(A 1:2 CT transformer can be used for both devices. For LXT310 boards, connect only one of the secondary windings, an effective 1:1 ratio.)

Figure 1: Transmit Line Interface

Figure 2: Receive Line Interface

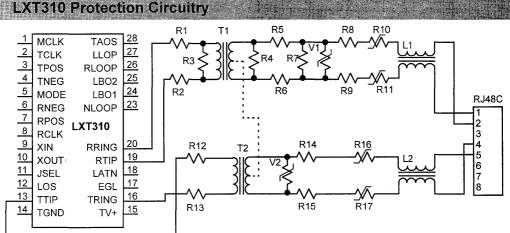
LXT310 Line Protection Circuitry Application Guidelines

General Description

This application note provides guidelines for line protection circuitry required in network channel termination equipment (NCTE) Channel Service Units (CSU) and WAN network interfaces, typical LXT310 applications. NCTE is installed at the customer premises end of T1 lines. As these lines run between the customer facilities and the central office, they are subject to over voltage/current stresses from lightning strikes, power crosses, and other noise impairments. Protection circuitry is required to protect the line from injected impairments and the termination equipment (CSU, MUX, PBX, etc.) from overload stresses.

NOTE: protection requirements are specified in FCC Part 68 (lightning hazards), UL 1459 (AC hazards), Bellcore TR-TSY-000007 and AT&T Pub 62411. These documents differentiate between longitudinal stress (differential between tip/ring and ground) and metallic stress (differential between tip and ring). Longitudinal stresses are more common and include impulsive noise events such as lightning induced surges. Metallic stresses are less likely and are usually caused by power crosses during maintenance activity.

Since T1 acceptance testing does not meet formal FCC and safety requirements, the final board design should undergo this FCC testing at an approved lab.


Protective Circuitry

The figure below shows a typical LXT310 line interface.

- Resistors R1, 2, 3, 12, 13 (in the transmit and receive lines) values are selected to match the line impedance. They also provide some current limitation
- Positive Temperature Co-efficient Resistors (PTCs) (R10, 11, 16, 17) permit ihealingî after an over-voltage event
- 5.6 Ω resistors and PTCs matched to T1 Line requirements using receive resistor pad and 2:1 transformers
- Line transformers T1 and T2 breakdown ratings should be a minimum of 1.5 kV
- Varistors must have sufficient stand-off voltage to allow normal operation (approximately 4 volts), with low off-state capacitance (< 50 pF)
- Final values for RF chokes, L1, 2, will vary with board design
- Interconnect the line side center taps of the line transformers if sealing currents are present
- No power or ground planes should be located on the circuit board in the area T1 Line connector back to the transformers

Suggested component values are listed in Table 1.

9

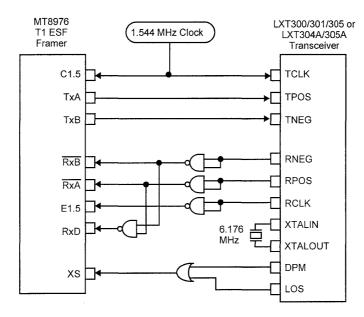
LXT310 Line Protection Circuitry

	mponent values
Ref #	Description
R1,2	100 Ω
R3	402 Ω, 1%
R4	301 Ω, 1%
R5, 6	22 Ω, 2W
R7	232 Ω
R8, 9	5.6 Ω, 1W
R10, 11 R16, 17	8.5 Ω , 600 V, positive temperature co-efficient resistor – typical: Raychem 21214B
R12, 13	6.8 Ω, 1/2 W
R14, 15	5.6 Ω, 1 W
V1, 2	Stand-off voltage 4~4.5 V, off-state capacitance < 50 pF – typical: EDAL Industries B529-2
T1, 2	Line transformer, 1:2 turns ratio – typical: Pulse Engineering PE65351
L1, 2	RF Choke, value varies by board design, approximately 33 μ H – typical: BH Electronics 500-1164

Table 1: Component Values

Table 2: Suppliers

Company	Telephone Number
Raychem, Inc.	(800) 272-2436 ext 6900
Pulse Engineering	(619) 674-8130
EDAL Industries	(203) 467-2591
BH Electronics	(612) 894-9590

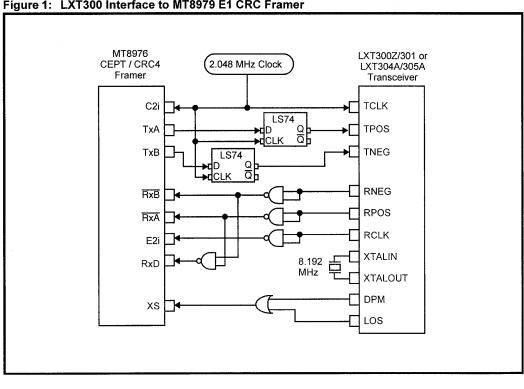

LXT30x Transceiver/Framer Interface

Application Guidelines for Use with Mitel MT8976 and MT8979 Framers

General Description

This application note provides guidelines for interfacing the Level One LXT300 series (LXT300Z, 301Z, 304A and 305A) transceivers with Mitel framers in both T1 and E1 applications. Only minimal circuitry is required to implement the interface. For T1 (1.544 Mbps) applications, the transmit data pins may be connected directly between the two chips as shown below. A single 4-gate NAND package provides the signal inversion required on the receive side. Receive-side signal inversion is also required for E1/CEPT (2.048 Mbps) applications. A similar setup using NAND gates in an E1 application is shown in Figure 1. Additional circuitry is also required to synchronize the transmit data stream in E1 applications. This synchronization is easily implemented with a pair of D-flip-flops, clocked by the common 2.048 MHz transmit clock.

LXT30x Interface to MT8976 T1 ESF Framer



APRIL 1996 Revision 0.0

LXT30x Transceiver / Framer

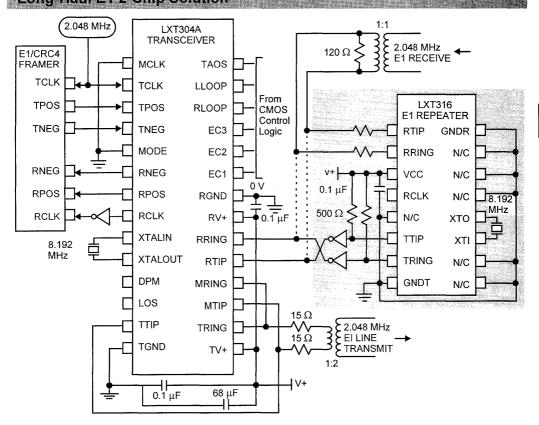
Figure 1: LXT300 Interface to MT8979 E1 CRC Framer

APPLICATION NOTE 31A

APRIL 1996 Revision 0.0

LXT318 Long-Haul E1 Transceiver Solution

Migration from Dual-Chip (LXT304A/LXT316) to Single-Chip (LXT318) Implementation

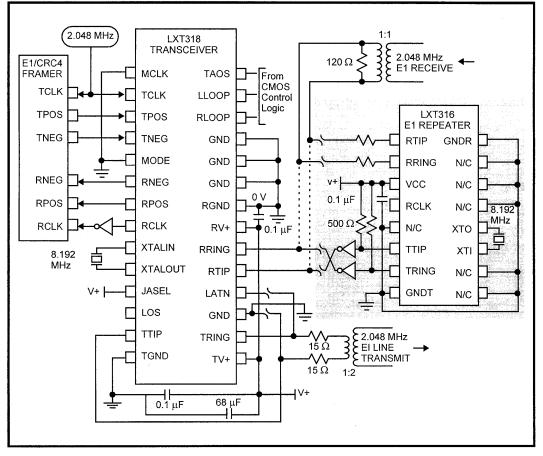

Introduction

This application note provides manufacturers of long-haul E1 (2.048 Mbps) transmission equipment with a smooth transition from Level One's LXT304A/316 dual-chip long-haul E1 solution to an advanced single-chip implementation, the LXT318.

There are only minor differences in the line interfaces for single- and dual-chip solutions. Therefore, E1 equipment designed around the dual-chip solution (using the LXT304A and LXT316) can easily be adapted to take advantage of the fully integrated LXT318.

This application note describes the steps necessary to modify a dual-chip design for use with the LXT318. Both solutions use the same transformers. The modification involves removing the repeater and associated circuitry (shown in the shadowed area of the figure below).

Long-Haul E1 2-Chip Solution


LXT318 Long-Haul E1 Transceiver Solution

Functional Differences

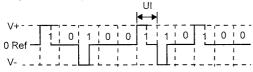
- In Hardware Mode, the LXT304A uses three Equalizer Control inputs (EC1, EC2 and EC3), and two transmit driver monitor inputs (MTIP and MRING). These functions are not provided on the LXT318. On the LXT318, pins 17, 23, 24 and 25 must be tied to ground. LXT318 pin 18 is now the coded line attenuation (LATN) output.
- On the LXT318, pin 11 is used as an input for Jitter Attenuation Select (JASEL). It should be tied to VCC or ground, as desired.

Circuit Modifications

- 1. To modify a 2-chip long-haul PCB for use with the LXT318, cut the EC1, 2 and 3 inputs to LXT304A (pins 23, 24 and 25). Tie these three pins to ground.
- Cut the MTIP and MRING inputs to LXT304A pins 17 and 18. Tie pin 17 to ground. Tie pin 18 to an LATN decoding circuit or let it float.
- 3. Cut the DPM output trace from LXT304A pin 11, and tie the LXT318 JASEL input to VCC (for receive jitter attenuation) or to ground (for transmit jitter attenuation).
- 4. Remove all the circuitry shown in the shadowed area of Figure 1 and connect the receive transformer to pins 19 and 20 of the LXT318.

Figure 1: Long-Haul E1 1-Chip Solution (LXT318)

T1 Jitter Performance Measurement AT&T Pub 62411 Certification


General Description

This application note provides a brief definition of jitter and then summarizes jitter performance requirements and measurement techniques specified for T1 (1.544 Mbps) Customer Premises Equipment (CPE).

Requirements for T1 systems are specified by AT&T Publication 62411, December 1990 - Accunet T1.5 Service Description and Interface Specification. (Similar requirements for E1 systems are specified by CCITT G.823 - The Control of Jitter and Wander within Digital Networks.)

Understanding Jitter

T1 signals are composed of square-wave pulses as shown below. A "1" is represented by a positive or negative pulse (the pulses alternate in polarity). A "0" is represented by the absence of a pulse. To enhance timing and data recovery, the duration of a "1" pulse is constrained to 1|2 of the bit rate period. Deviations in time between when the pulse transitions occur and when the decoding circuits expect them to occur are referred to as jitter. Very low-frequency deviations (< 10 Hz) are referred to as wander. These deviations are equivalent to unintentional phase modulation. Any pulse that is phase-shifted by more than 50% will be sampled incorrectly.

Jitter is measured in Unit Intervals (UIs). A UI is equal to the bit rate period. A UI is, therefore, the reciprocal of the frequency. For T1 service, a UI equals 648 ns, while the "1" pulse duration is 324 ns. Jitter amplitude is measured in UI pp (peak-to-peak). Jitter specifications have both an amplitude component and a frequency component; that is, for a given jitter parameter, performance will be specified at a particular amplitude (in UI pp) within a particular frequency band.

Types of Jitter

APRIL 1996 Revision 0.0

There are three parameters of jitter performance which are specified and measured:

- 1. Input Jitter Tolerance (Jitter Accommodation)
- 2. Output Jitter Generation (Intrinsic Jitter)
- 3. Jitter Transfer (Jitter Attenuation)

Input Jitter Tolerance. Input jitter tolerance is defined as a system's ability to recover input data correctly in the presence of jitter. This value indicates how much input jitter a system or device can handle before bit errors occur. Individual devices should have as high a tolerance value as possible because the system's jitter tolerance is limited to the tolerance of its most restrictive element. Input jitter tolerance is also referred to as jitter accommodation.

Output Jitter Generation. Output jitter is defined as the amount of jitter generated in the system output when zero jitter is present in the input. Essentially, it is a measure of how "noisy" the system is. Individual system elements should have as low a value as possible because output jitter is additive. Each device in a system adds its own intrinsically generated jitter to the system total, hence the term "jitter budget." Output jitter is also referred to as intrinsic jitter or additive jitter.

Jitter Transfer. Jitter transfer, frequently referred to as jitter attenuation (JA), is defined as the percentage of input jitter which is present in the system output, expressed in dBs. While a certain amount of jitter attenuation is desirable, excessive jitter attenuation can cause problems with frame slippage and synchronization. Therefore, jitter attenuation specifications define an acceptable range of values for a given jitter frequency. (Jitter attenuation circuits typically use an elastic store as a buffer between input and output. Buffer size is directly related to throughput delay. Oversize buffers intended to maximize jitter attenuation may cause equipment to fail requirements for maximum throughput delay.)

AT&T PUB 62411 Compliance Testing

Jitter performance is strongly related to the transmitted bit pattern. AT&T Publication 62411 defines a standard quasi-random test signal (QRTS) used for jitter testing at 1.544 Mbps. The QRTS bit pattern is designed to simulate typical transmission patterns. Jitter performance testing should be conducted in a noise-free environment to eliminate, as far as possible, the effect of other factors on the performance of the device under test.

Input Jitter Tolerance Testing

The input jitter tolerance of a DTE is characterized by determining the level of jitter required to induce bit errors in a 60-second interval. At frequencies up to 10 kHz, one bit error is allowed. At higher frequencies, up to 5 errored bits are allowed in a 60-second period. (Synchronizers, which provide a system master clock, are held to a tighter spec. They are characterized by determining the level of jitter required to induce a loss of synchronization.) Jitter tolerance is tested at a number of spot frequencies to ensure full characterization across the spectrum. Figure 1A shows the jitter tolerance template for DTE. Figure 1B shows the

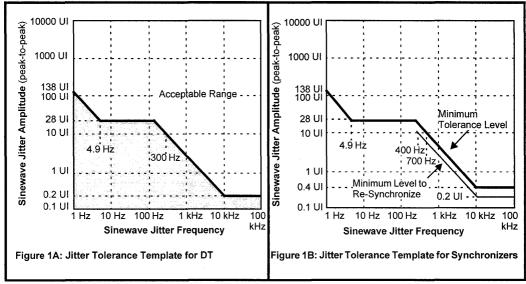


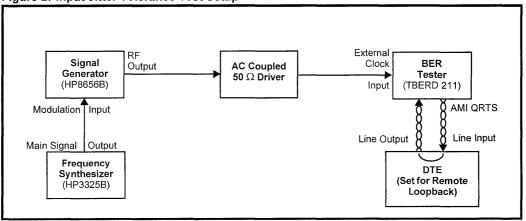
Figure 1: Input Jitter Tolerance Specified by AT&T Publication 62411

Jitter Tolerance Test Procedures

- 5. Connect the test equipment as shown in Figure 2.
- 6. Configure the device under test for remote loopback.
- 7. With its modulation input turned off, configure the RF signal generator for an appropriate output level to drive the external clock input of the BER, through an AC-coupled driver as shown in Figure 2. Test this jitter-free external clocking of the BER with the unit under test.
- Enable the External FM Modulation mode of operation on the HP8656B.
- Set the Frequency Synthesizer to the first jitter frequency to be tested. Set the amplitude of this sine wave frequency such that the high/low input LEDs on the HP8656B are off (approximately 2.1 V pp).
- 10a. DTE Testing. While observing the transmission tester for bit error indications, adjust the modulation index on the signal generator to the level required to produce the minimum error level. (For example, if the synthesizer is set for a jitter frequency of 10 Hz, adjust

the modulation index as required to produce no more than one bit error in any 60-second period.)

- 10b. Synchronizer Testing. While observing the transmission tester for clock slips (loss of sync), adjust the modulation index on the signal generator to the level required to produce the loss of sync. Then, reduce the modulation index to the level required to achieve resynchronization. Record both values.
- 11. Determine the jitter tolerance using the formula:


UIpp =
$$\Delta f / \pi$$
 fm

where fm = Jitter Frequency (synthesizer modulation frequency), and

where $\Delta f = FM$ Modulation Index (as set on the signal generator).

for example,

38 kHz/π • 10 Hz = 1209 UIpp @ 10 Hz
12. Repeat steps 5 through 7 for additional frequencies to be tested and plot the results as shown in Figure 3.

9

T1 Jitter Performance Measurement

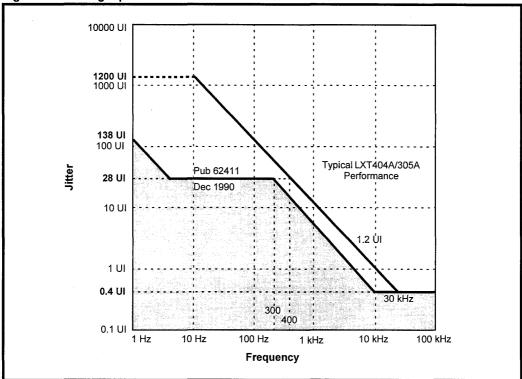
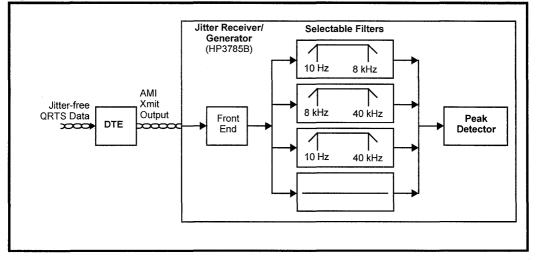



Figure 3: Charting Input Jitter Tolerance Test Results

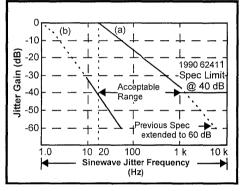
Figure 4: Output Jitter Generation Test Setup

Output Jitter Generation Testing

The intrinsic jitter generated by a DTE is characterized by configuring the device for remote loopback and then monitoring the line output when no jitter is present in the line input. AT&T Publication 62411 lists maximum output jitter values for three separate frequency bands, as well as a fourth value for the unlimited broadband output. Output jitter may be measured with a variety of instruments including peak detectors, true RMS voltmeters and spectrum analyzers. Figure 4 shows a typical test setup. Table 1 lists the maximum generated jitter allowed in each frequency band, as well as sample test measurements.

Output Jitter Generation Test Procedures

- Connect a frequency synthesizer, signal generator and telecom tester to produce a jitter-free QRTS output. Figure 2 may be used as a reference.
- Select the filters in the HP3785B as shown in Figure 4 and monitor the first frequency band.
- 3. Measure and record the output jitter peak values.
- 4. Repeat steps 2 and 3 for each remaining band.

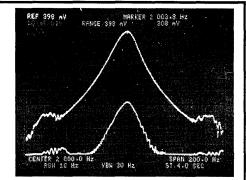

Table 1: Output Jitter Generation Specification

Frequency Band	62411 Specified Maximum	Typical 304A Performance
10 Hz - 8 kHz	0.02 UI (0.8 mV rms)	0.002 UI
10 Hz - 40 kHz	0.025 UI (1.25 mV rms)	0.016 UI
8 kHz - 40 kHz	0.025 UI (1 mV rms)	0.014 UI
No Bandlimiting	0.05 UI (2 mV rms)	0.025 UI

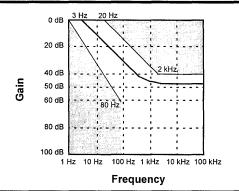
Jitter Attenuation Testing

Jitter attenuation is defined as the percentage of input jitter which is present in the system output, expressed in dBs. While a certain amount of jitter attenuation is desirable, excessive jitter attenuation can cause problems with frame slippage and synchronization. Therefore, jitter attenuation specifications define an acceptable range of values for a given jitter frequency as shown in Figure 5. (Jitter attenuation circuits typically use an elastic store as a buffer between input and output. Buffer size is directly related to throughput delay. Oversize buffers may cause equipment to fail requirements for maximum throughput delay.) Jitter attenuation is also referred to as jitter transfer.

Figure 5: Jitter Transfer Template




9


Jitter Attenuation Test Procedures

- 1. Connect the test equipment as shown in Figure 8.
- 2. Set the frequency synthesizer to produce a square wave reference clock at 1.544 MHz.
- Set the jitter generator as follows:
 a. Frequency: lowest frequency to be tested
 b. Amplitude: 75% of the level shown in Figure 1 (use appropriate DTE or Synchronizer template.)
- 4. Set the spectrum analyzer as follows:
 - a. Center Frequency: same as 3a.
 - b. Frequency Span: 200 Hz 500 Hz.
- 5. Set the reference level (Ulinp) on the spectrum analyzer by temporarily connecting the BERT transmit output directly into the data input of the jitter receiver/generator.
- 6. Re-connect the test equipment as shown in Figure 8 and set the synthesizer to the first jitter frequency to be tested.
- 7. Observe the spectrum analyzer (Figure 6) and record the difference between the reference level, Ulinp, and the DTE line output level, Ulout.
- 8. Repeat steps 3 through 7 for each frequency to be tested and plot the results as shown in Figure 7.

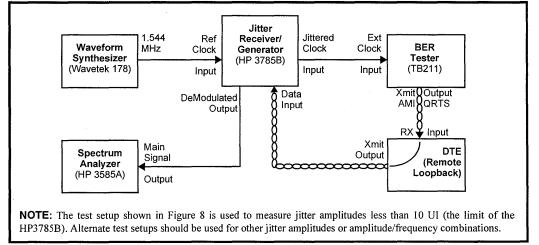

Figure 6: Spectrum Analyzer Display

Figure 8: Jitter Attenuation Test Setup

APRIL 1996 Revision 0.0

LXT30x and LXT318 Interchangeability

Adapting Short-Haul T1/E1 Boards to Long-Haul Applications

General Description

While the LXT300, 304A and 305A are designed for shorthaul T1/E1 applications (up to 14 dB) and the LXT318 is designed for long-haul E1 applications (up to 43 dB), these transceivers are quite similar in function. There are only minor differences in line interfaces and pin configurations. Therefore, E1 equipment designed for short-haul applications (using LXT30x series transceivers) can easily be adapted to provide long-haul capability (using the LXT318). This application note describes the steps necessary to adapt a short-haul design so that it can be used for both long-haul and short-haul applications. (The LXT318 can support both E1 long-haul and E1 short-haul applications.)

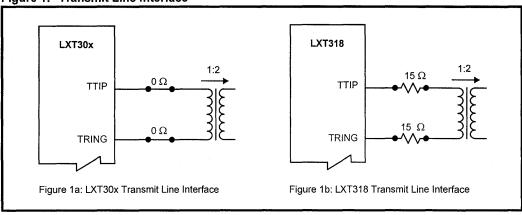
Functional Differences

- The LXT30x uses three Equalizer inputs in the Hardware Mode. These pins are not used by the 318 and should be tied to ground. These pins are identical in the Software mode, but the bit register is defined differently.
- The LXT30x uses two inputs and an output for the Driver Performance Monitor (DPM) function. On the LXT318, these pins are replaced by an input for Jitter Attenuation Select (JASEL) and an output for Line Attenuation (LATN).
- The LXT30x uses a 1:2 transformer for both the Tx and Rx line interfaces. The LXT318 uses a 1:2 transformer with two 15 Ω series resistors for the Tx line interface, and a 1:1 transformer for the Rx line interface.

Circuit Modifications

To adapt an LXT30x board to accommodate the LXT318, modify the circuit as follows:

- 1. Cut the DPM output trace from LXT30x pin 11 and tie the LXT318 pin 11 (JASEL) to VCC (to select receive jitter attenuation), or to GND (to select transmit jitter attenuation).
- Cut the MTIP and MRING inputs to LXT30x pins 17 and 18. Connect the LXT318 input at pin 17 to ground. Connect the LXT318 output from pin 18 to a LATN decoding circuit.
- For Hardware Mode, cut the EC inputs to LXT30x (pins 23, 24 and 25), and connect these LXT318 pins to ground.


Line Interface Modifications

On the transmit side, both the LXT30x and LXT318 use a 1:2 transformer. The LXT30x transformer connects directly to the chip as shown in Figure 1a. The LXT318 requires two 15 Ω series resistors in line with the transformer, as shown in Figure 1b.

On the receive side, the LXT30x uses a 1:2 transformer with 480 Ω termination, as shown in Figure 2a. The LXT318 uses a 1:1 transformer with 120 Ω termination for TWP applications, as shown in Figure 2b.

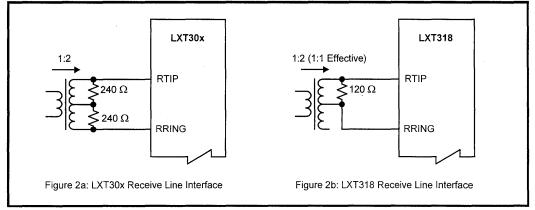
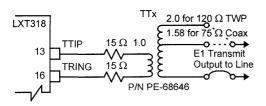

(A 1:2 CT transformer can be used for both devices. For LXT318 boards, connect only one of the secondary windings, an effective 1:1 ratio.)

Figure 1: Transmit Line Interface

Figure 2: Receive Line Interface

LXT318 Long-Haul E1 Transceiver Line Interface Design Guide


General Description

This application note describes a standard line interface for the LXT318 transceiver in a long-haul E1 environment. The interface uses two Pulse Engineering transformers designed specifically for this transceiver.

The design is simple and robust and will reduce in-house engineering and testing time.

Refer to the current LXT318 data sheet for complete information on the LXT318 transceiver.

Transmit Line Interface

Transmit Line Interface

The transmit line interface uses the following parts:

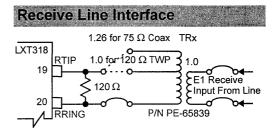
- 1. Pulse Engineering transformer, P/N PE68646 1:1.58:2 (one per transceiver)
- 2. 15 Ω resistors (two per transceiver)

Connect them to the Transmit Tip and Ring inputs (pins 13 and 16) of the transceiver as shown above.

Twisted-Pair Cable (120 Ω)

For a twisted-pair cable, use the full 1:2 step-up ratio provided at the end tap. This gives the required 120 Ω impedance.

$$Z = \Omega x (\text{step-up ratio})^2 = (15 \Omega + 15 \Omega) x 2^2 = 120 \Omega$$


Coaxial Cable (75 Ω)

For a coaxial cable, connect the circuit at the transformer center tap. The 1:1.58 step-up ratio gives a value within 0.2% of the 75 Ω impedance required.

Z = Ω x (step-up ratio)² = (15 Ω + 15 Ω) x
$$1.58^2$$
 = 74.89 Ω

Line Interface Features

- Provides correct impedance match for both 75 Ω coaxial and 120 Ω twisted-pair cables
- Meets 3 kV isolation requirement of many PTT ministries
- · Standard interface requires one-time design
- Laboratory engineered and proven design requires minimal in-house testing
- Readily available parts make building fast and easy

Receive Line Interface

he receive line interface uses the following parts:

- 1. Pulse Engineering transformer, P/N PE65839 -1:1:1.26 (one per transceiver)
- 2. 120 Ω resistors (one per transceiver)

Connect them to the Receive Tip and Ring inputs (pins 19 and 20) of the transceiver as shown above.

Twisted-Pair Cable (120 Ω)

For a twisted-pair cable, use the 1:1 step-down ratio provided at the center tap. This gives the required 120 Ω impedance

$$Z = \frac{\Omega}{(\text{set-down ratio})^2} = \frac{120 \Omega}{(1)^2} = 120 \Omega$$

Coaxial Cable (75 Ω)

For a coaxial cable, connect the circuit at the transformer center tap. The 1:1.26 step-down ratio gives a value within 1% of the 75 Ω impedance required.

$$Z = \frac{\Omega}{(\text{set-down ratio})^2} = \frac{120 \Omega}{(1.26)^2} = 75.59 \Omega$$

APRIL 1996 Revision 0.0

NOTES

APRIL 1996

Revision 0.0

LXT332 Dual Channel T1/E1 Transceiver Solution

Migration from Dual-Chip (Siemens PEB 2236) to Single-Chip (LXT332) Implementation

General Description

This application note provides manufacturers of multichannel T1/E1 transmission equipment with a smooth upgrade from two Siemens PEB 2236 single-channel devices to an advanced implementation using a single LXT332 Dual Line Interface Unit (DLIU) integrated dualchannel device. This application note discusses Hardware Mode only.

There are some differences between the two devices in the back end and line interfaces. However, existing PEB 2236 designs can easily be adapted to take advantage of the fully integrated dual-channel LXT332 DLIU.

Advantages

- Meets or exceeds industry specifications including ANSI T1.403, ITU G.703 and AT&T Pub 62411
- Simplifies board design
- Crystal-less Jitter Attenuation
- Saves real estate
- Reduces inventory costs
- Improved jitter tolerance performance
- Improved return loss on both transmit and receive lines
- · Reads switch settings dynamically in Hardware Mode
- No complicated reset conditions
- Transparent to ternary codes
- Single transformer turns ratio for both T1 and E1 applications
- · Lower per-channel power consumption
- · Additional features with Host Mode Serial I/O

Upgrade Issues

Upgrading from the PEB 2236 to the LXT332 DLIU requires minor framer interface modifications and some simple changes to the control circuitry. Specifically, the conversion requires removing the inverters on the data and control lines. In addition, the LXT332 DLIU includes internal jitter attenuation; any existing JA circuitry may not be necessary. The following paragraphs describe other differences between the two devices.

Tristate Output

The Tristate control forces all output pins to a high-impedance state. This is an especially valuable feature in applications such as in-circuit testing. The Siemens transceiver offers no similar operation.

AIS Generation

The LXT332 generates an AIS Alarm Signal when either TAOS0 or TAOS1 = 1. The PEB 2236 provides no comparable feature.

Reset Condition

On initial power up, the transceiver clears all internal registers, and does not require any external components or software control to establish a reset. The PEB 2236 requires one of three complex reset procedures.

Operating Temperatures

The LXT332 operates in the temperature range of 40 to 85 °C, exceeding the PEB 2236 operating range of 0 to 70 °C.

Return Loss

LXT332 device return loss for both the transmitter (if the design includes a capacitor) and receiver will exceed 20 dB. The Siemens device meets only minimum return loss specifications.

Line Length/Pulse Shape Control

Both the LXT332 and the PEB 2236 use 3-input codes to determine pulse shapes for various line lengths. Tables 1 and 3 show the two coding schemes.

Loopback Control

Both the LXT332 and the PEB 2236 provide RL and LL as shown in Tables 2 and 4. The LXT332 has an additional dual loopback capability.

Loss of Signal (Receive Line)

Both the LXT332 and the PEB 2236 provide Loss of Signal (LOS) outputs on the receive side. The internal detection circuitry which determines when an LOS condition exists is functionally different. The LXT332 provides both digital and analog LOS detection.

Transmit Driver Monitor

The LXT332 provides a single Driver Fail Monitor for both channels. The DFM output reports short conditions. The PEB 2236 does not include such a feature for the transmit circuit.

LS2	LS1	LS0	Line Length PIC/PULP Cable
0	0	1	0 ~ 50 m-24 awg
0	1	0	20 ~ 80 m–24 awg
0	1	1	60 ~ 130 m–24 awg
1	0	0	110 ~ 200 m–24 awg
1	0	1	140 ~ 230 m–24 awg
1	1	0	210 ~ 290 m–24 awg
1	1	1	270 ~ 320 m-24 awg
0	0	0	CEPT

Table 1: PEB 2236 Line Length Codes

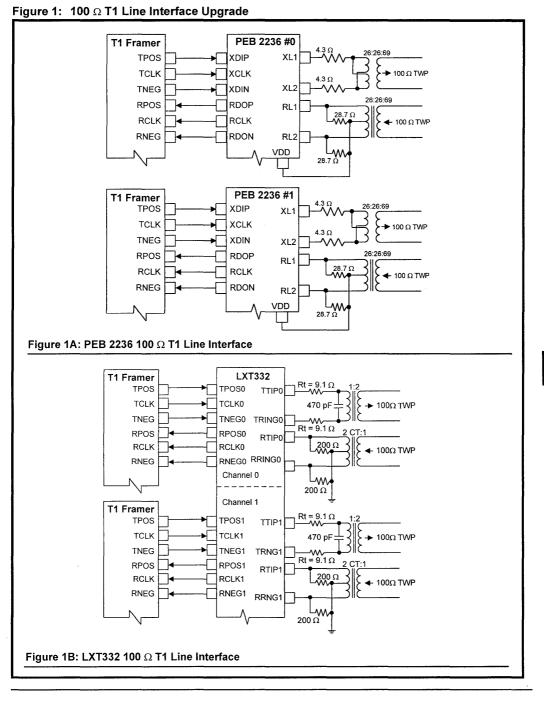
Table 2: PEB 2236 Loopback Codes

Mode	LOOPA	LOOPB
RLOOP	1	0
LLOOP	0	1

Line Interface Modifications

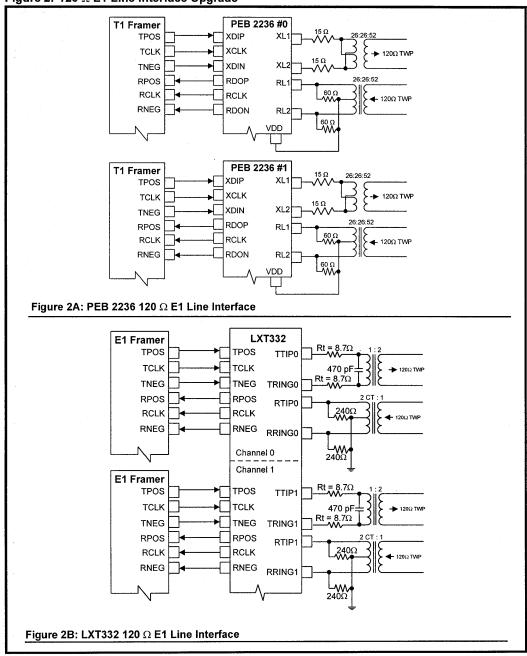
The line interface must be modified when upgrading from the PEB 2236 to the LXT332. The T1 line interfaces are shown in Figure 1. The E1 line interfaces for 120 Ω twisted-pair are shown in Figure 2. The E1 line interfaces for 75 Ω coax are shown in Figure 3.

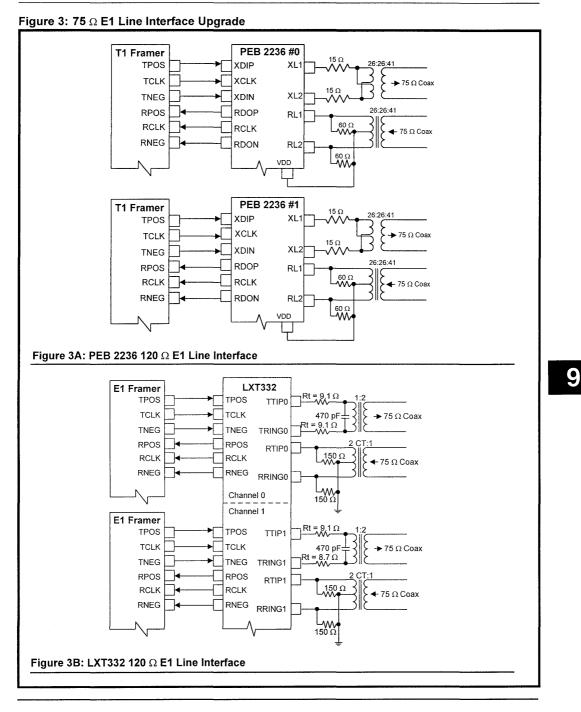
The applications illustrated here do not optimize return loss values. Instead they simplify design requirements. To design an application with the best possible return loss, see the LXT332 Dual Line Interface Unit Data Sheet for optimized Rt and transformer values.


Table 3: LXT332 Line Length Codes

LEN 2	LEN 1	LEN 0	Line Length	Cable Loss
0	1	1	0~41 m-22 awg	0.6 dB
1	0	0	41 ~ 81 m–22 awg	1.2 dB
1	0	1	81 ~ 122 m–22 awg	1.8 dB
I	1	0	122 ~ 162 m–22 awg	2.4 dB
1	1	1	162~198 m-22 awg	3.0 dB
0	0	0	75 Ω ITU	
0	0	1	120 Ω G.703	
0	1	0	FCC Part 68, Option A	

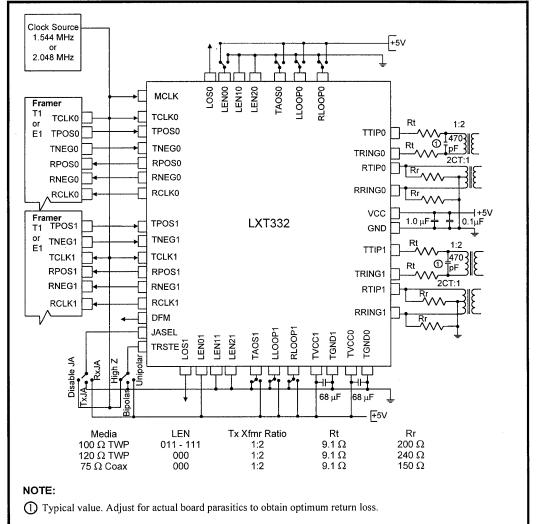
Table 4: LXT332 Loopback Codes


Mode	RLOOP	LLOOP	TAOS
RLOOP	1	0	n/a
LLOOP	0	1	n/a
DLOOP	1	1	1
TAOS	0	n/a	1
RESET	1	1	0


9

LXT332 Dual Channel T1/E1 Transceiver Solution

Figure 2: 120 Ω E1 Line Interface Upgrade


LXT332 Dual Channel T1/E1 Transceiver Solution

Typical LXT332 Application

A switchable interface board design is possible using the LXT332 device. Figure 4 shows a simplified application design for either T1 or E1 equipment which only requires changing the MCLK and Line Length inputs, and selecting appropriate resistors for Rt and Rr.

This application does not optimize return loss values. See the LXT332 Dual Line Interface Unit Data Sheet for Rt and transformer specifications for other possible components.

APRIL 1996

Revision 0.0

LXT332 Dual Channel T1/E1 Transceiver Solution

Migration from Dual-Chip (AT&T T7290) to Single-Chip (LXT332) Implementation

General Description

This application note provides manufacturers of multichannel T1/E1 transmission equipment with a smooth upgrade from a pair of AT&T T7290 single-channel devices to an advanced implementation using a single LXT332 integrated dual-channel device. This app note discusses Hardware Mode only. (No Host Mode is available in the T7290.)

There are some differences between the two devices in the back end and line interfaces. However, existing T7290 designs can easily be adapted to take advantage of the fully integrated dual channel LXT332.

Advantages

- Simplifies board design
- Single transformer turns ratio for both T1 and E1 applications
- Saves real estate
- · Improves jitter performance
- · No external crystal required
- Reduces inventory costs
- · Additional features with Host Mode Serial I/O

Framer and Control Interface

No framer interface changes are required to upgrade from the T7290 to the LXT332. However, minor modifications to the control circuitry are required. There are also minor differences in the LOS and Transmit Driver monitor outputs.

Jitter Attenuation Select

The LXT332 JA circuitry is controlled by the JASEL and MCLK inputs. This function is implemented through the Mode 1 and Mode 2 pins on the T7290. Refer to Tables 1A and 1B for details.

Tristate Output

The Tristate control inputs on the two devices function similarly, but with inverted polarity. The T7290 TRI input is an active low; the LXT332 TRSTE input is an active high. To provide compatibility with existing designs, an inverter must be added to the existing TRI input.

Line Length/Pulse Shape Control

Both the LXT332 and the T7290 use 3-input codes to determine pulse shapes for various line lengths. The two coding schemes are shown in Tables 2A and 2B.

Loopback Control

Both the LXT332 and the T7290 provide various diagnostic loopbacks. The control codes for executing the various loopbacks are slightly different as shown in Tables 3A and 3B.

Loss of Signal

Both the LXT332 and the T7290 provide Loss of Signal (LOS) outputs. The internal detection circuitry which determines when an LOS condition exists is functionally different.

Transmit Driver Monitor

Both the LXT332 and the T7290 provide Driver Monitor detectors. The LXT332 DFM output reports short conditions. The T7290 TSC output differentiates between shorts to power supply, shorts to ground and shorts together.

Elastic Store Overflow

The T7290 provides an output to report ES overflow conditions. The LXT332 does not report overflow conditions.

JA Placement	Mode 1	Mode 2
Bypass	0	0
Transmit Path	0	1 .
Receive Path	1	0
Test Mode*	1	1

Table 1A: AT&T JA Codes

Table 1B:LXT332 JA Codes

JA Placement	JASEL			
Bypass	MCLK*			
Transmit Path	0			
Receive Path	1			
* JA is bypassed when JASEL is tied to MCLK.				

Table 2A:AT&T T7290 Line Length Codes

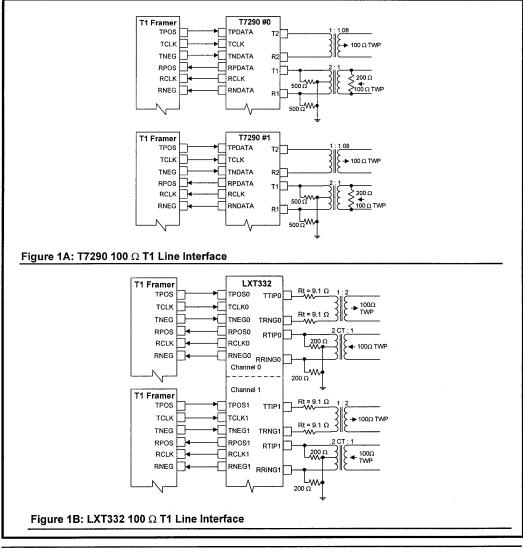
EC 3	EC 2	EC 1	Line Length	Cable Loss
1	0	0	0 - 131 ft ABAM	0.6 dB
0	1	0	131 - 262 ft ABAM	1.2 dB
1	1	0	262 - 393 ft ABAM	1.8 dB
0	0	1	393 - 524 ft ABAM	2.4 dB
1	0	1	524 - 655 ft ABAM	3.0 dB
0	1	1	75Ω ΙΤΌ	
1	1	1	120 Ω G.703	
0	0	0	FCC Part 68, Option A	

Table 3A:AT&T Loopback Codes

Mode	LOOPA	LOOPB	TBS
RLOOP	1	0	N/A
LLOOP	0	1	1 or 0
TBS	N/A	N/A	1
Full Local Loop	1	1	1 or 0

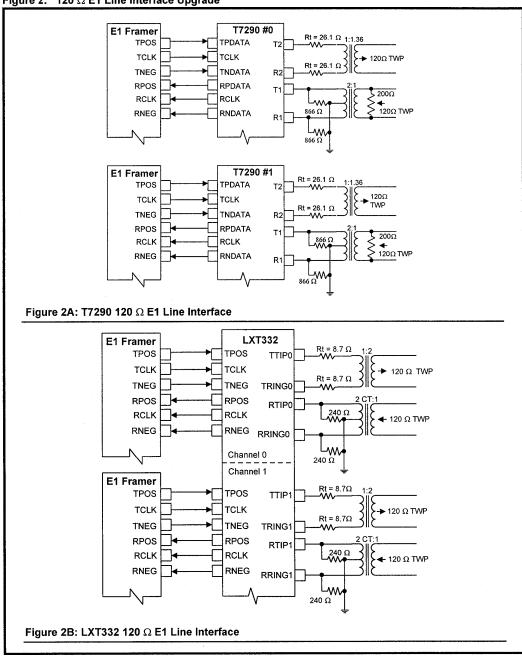
Table 2B:LXT332 Line Length Codes

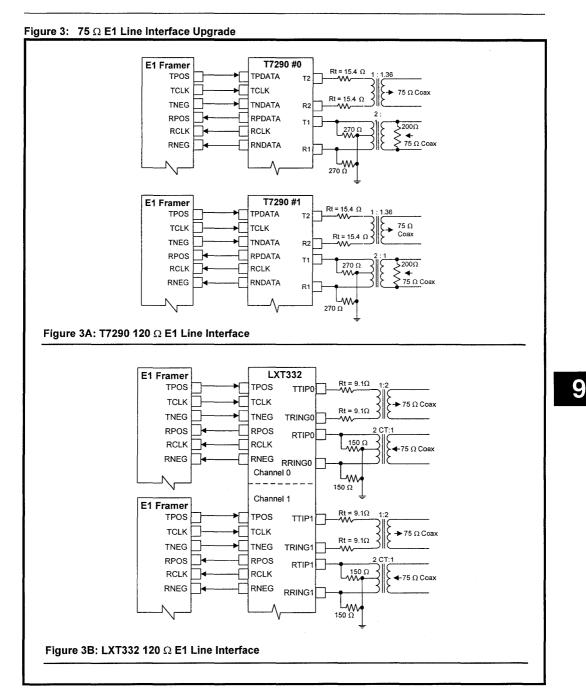
LEN 2	LEN 1	LEN 0	Line Length	Cable Loss
0	1	1	0 - 133 ft ABAM	0.6 dB
1	0	0	133 - 266 ft ABAM	1.2 dB
1	0	1	266 - 399 ft ABAM	1.8 dB
1	1	0	399 - 533 ft ABAM	2.4 dB
1	1	1	533 - 655 ft ABAM	3.0 dB
0	0	0	75Ω ITU	
0	0	1	120 Ω G.703	
0	1	.0	FCC Part 68, Option A	


Table 3B:LXT332 Loopback Codes

Mode	RLOOP	LLOOP	TAOS
RLOOP	.1	0	N/A
LLOOP	0	1	N/A
DLOOP	1	1	1
TAOS	0	N/A.	1
RESET	1	1	0

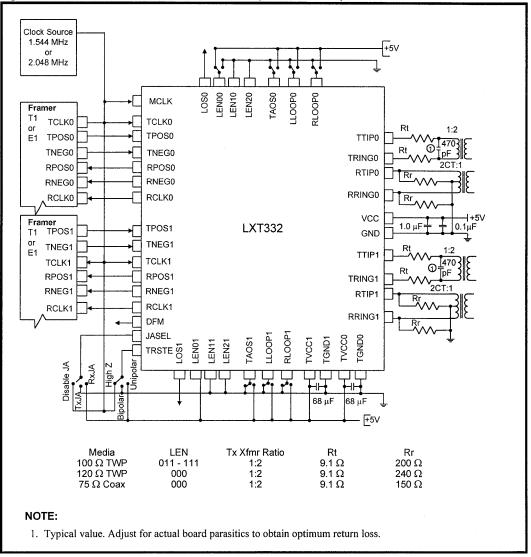
Line Interface Modifications


The line interface must be modified when upgrading from the PEB 2236 to the LXT332. The T1 line interfaces are shown in Figures 1A and 1B. The E1 line interfaces for 120 Ω twisted-pair are shown in Figures 2A and 2B. The E1 line interfaces for 75 Ω coax are shown in Figures 3A and 3B.


9

LXT332 Dual Channel T1/E1 Transceiver Solution

Figure 2: 120 Ω E1 Line Interface Upgrade



LXT332 Dual Channel T1/E1 Transceiver Solution

Using the LXT332, it is possible to design a switchable interface board. Figure 4 shows a simplified application which can be used for either T1 or E1 equipment by chang-

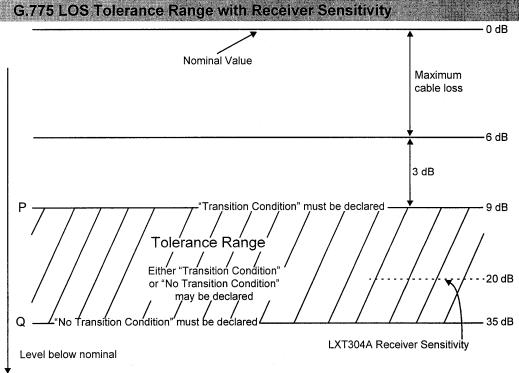
ing the MCLK and Line Length inputs, and selecting appropriate resistors for Rt and Rr.

Level One Short-Haul Devices Application Guidelines

General Description

This application note documents the compliance of Level One Communications line of short-haul transceivers to ITU Recommendation G.775 for detecting and clearance of a loss of signal (LOS) condition. For purposes of illustration, data presented here are from the LXT304A transceiver. The logic circuitry related to LOS in the LXT304A is identical to that of all Level One short-haul transceivers.

To clarify the implementation of LOS detection and clearance, this application note explains ITU Recommendation G.775. The recommendation gives the criteria for the detection and clearance of both LOS and AIS defects at the intra-station interfaces conforming to recommendation G.703.


Recommendation G.775

Section 4.2 of ITU G.775 dated September 1993 states:

A LOS defect at 2048 kbit/s interface is detected when the incoming signal has "no transitions", i.e., when the signal level is less than or equal to a signal level of Q dB below nominal, for N consecutive pulse intervals, where $10 \le N \le 255$.

The LOS defect is cleared when the incoming signal has "transitions", i.e., when the signal level is greater than or equal to a signal level of P dB below nominal, for N consecutive pulse intervals, where $10 \le N \le 255$.

Refer to the figure on this page. The signal level P is (maximum cable loss +3 dB) dB below the nominal signal level. For a 2.048 Mbps transmission, P = 9 dB. The signal level Q is greater than the maximum expected cross talk level (Q = 35 dB).

APRIL 1996 Revision 0.0

Declaring the Los Condition

Recommendation G.775 sets parameters for both signal levels and consecutive pulse period conditions. With reference to declaring the LOS Condition, it states, when the signal level without transition is less than or equal to Q dB below nominal, for N consecutive pulse intervals, where $10 \le N \le 255$, a LOS must be declared.î

This means if the signal level is below P yet still within the tolerance range, either LOS or clear from LOS is acceptable. However, the transceiver must declare LOS if the signal level falls below Q dB.

Level One transceivers use a digital-and-analog detection scheme to comply with the recommendation. If the signal level falls below 20 dB, the LXT304A¹ begins to count consecutive bit times and declares LOS after approximately 175 (160 to 190) consecutive zeros. This is in compliance with the recommendation. Refer to Table 1. Since the recommendation requires the receiver to have a minimum sensitivity of 9 dB, the 20 dB sensitivity provided by the Level One devices falls within the tolerance range.

Clearing the LOS Condition

In discussing clearing the LOS Condition, the recommendation says,

The LOS defect is cleared when the incoming signal has transitions, i.e., when the signal level is greater than or equal to a signal level of P dB below nominal, for N consecutive pulse intervals, where $10 \le N \le 255$.

The receiver must clear the LOS Condition above P dB if the pulse density falls within the window of N consecutive pulse intervals, where $10 \le N \le 255$.

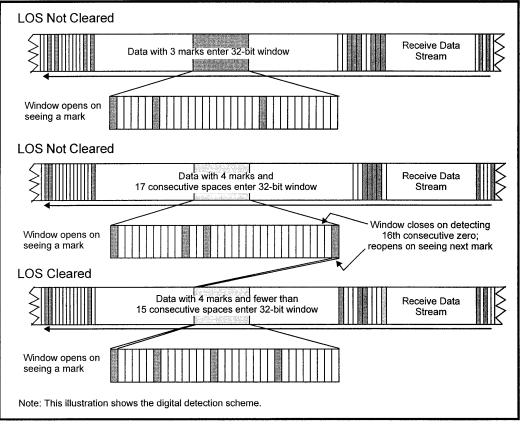
Level One transceivers meet these criteria by clearing LOS with a three step process: The signal level must first exceed the 20 dB signal level. Then a 32-bit repeating window checks for 12.5% ones density (to meet this parameter, there must be at least 4 ones out of the 32 bits in the window), and finally, there must be no more than 15 consecutive zeros. Figures 1 and 2 show this in graphic form.

Table 1: G.775 Requirements and Level One Implementation of LOS Detection

Condition	G.775 Recommendation	Level One Implementation
Detect LOS	Signal with no transitions ¹ less than or equal to signal level of Q below nominal for N consecutive intervals where $10 \le N \le 255$.	Signal level below 20 dB and no consecutive tran- sitions for 160 to 190 pulse intervals.
Clear LOS	Signal has transitions 1 and level greater than or equal to P dB below nominal for N consecutive pulse intervals where $10 \le N \le 255$.	Signal level above 20 dB with bit density greater than 12.5% for 32 bit positions, but with fewer than 15 consecutive zeros.

Figure 1: G.775 Recommendation and Level One Transceiver Implementation to Clear LOS Condition

0	10	32	2	255	
			Minimum number of pulse intervals (=10) to clear LOS condition G.775) Pulse intervals (=32) required by LXT304A to clear LOS condition Internal logic also stipulates that 12.5% of bits (=4) be marks. with no more than 15 consecutive zeros after meeting signal level requirements		
			Maximum number of pulse intervals (=255) to clear LOS condition		


This document uses the LXT304A as an example. The LXT305, LXT305A and LXT332 transceivers meet the standard using the same LOS circuit design.

The window in these transceivers closes every time the 32 bits fail to include four marks. The window also closes any time the detector circuitry senses 16 consecutive zeros. It will only reopen when the circuitry detects a mark even if that mark was part of a window closed because of 16 consecutive zeros. This opening mark starts a new search for a pattern that will allow clearing the LOS condition. See Figure 2.

If the signal in the 32-bit sliding window meets the constraints described in this note, the transceiver will clear the LOS condition. This design is in compliance with ITU G.775 since the window of 32 bits fits within the N consecutive bits defined by $10 \le N \le 255$.

Level One Short-Haul Devices

MAY 1996

APPLICATION NOTE 42 Crystal-less T1 Long-Haul Solutions

LXT310/360 Universal Line Interface Unit Design Guide

Introduction

This note describes applications for the crystal-less LXT360 transceiver in newer generation network access equipment. Use this application note as a guide when upgrading designs using the LXT360. Before designing a circuit using this new device, refer to the data sheets for both devices for complete information.

The LXT360 provides several advanced features. While the LXT360 provides for both T1 (1.544 Mbps) and E1 (2.044 Mbps) operation, this application note focuses only on hardware-controlled, T1 designs. Additional application notes detail migration paths for T1 and E1 design using other LXT360 features.

Identifying Major LXT360 Design Improvements

Jitter Attenuation Circuitry

- The LXT310 device requires a pullable 6.176 MHz crystal to provide selectable jitter attenuation. The jitter attenuation circuitry may be in either the transmit or the receive path, depending on the application.
- The LXT360 requires only the MCLK signal to provide the same selectable jitter attenuation functions since it uses digital JA circuitry. It needs no crystal or high-frequency external clock for jitter attenuation.

External Clock Requirements

- The MCLK input signal in the LXT310 is optional. If used, the clock must have an accuracy of ±100 ppm.
- The MCLK input signal in the LXT360 is mandatory. The clock must be a stand alone reference with an accuracy of ±32 ppm or better at 1.544 MHz for T1 applications.

Applications

- The LXT310 is a long-haul T1 transceiver only.
- The LXT360 operates as either a short- or long-haul transceiver in T1 or E1 applications.

Available Line Coding Schemes

- The LXT310 allows B8ZS encoding in either Unipolar or Bipolar mode.
- The LXT360 transceiver offers B8ZS line encoding only in the Unipolar Mode.

Reset Operation

- Reset on the LXT310 occurs when both LLOOP and RLOOP inputs are pulled High while TAOS is pulled Low for at least 200 ns.
- Reset on the LXT360 occurs when LLOOP, RLOOP and TAOS are pulled High simultaneously for at least 200 ns.

Output Control

- The LXT310 provides a high-impedance state option for the TTIP/TRING outputs only when TCLK is grounded.
- The LXT360 provides high-impedance state limited to the TTIP/TRING outputs when TCLK is pulled High. An additional high-impedance state option is available for all output pins when TRSTE is pulled High.

Line Attenuation Indication

- The LXT310 provides Line Attenuation Indication (LATN) in both Hardware and Host Modes.
- The LXT360 provides LATN in Software Mode only.

NLOOP Detection

- For the LXT310 transceiver, holding RLOOP, LLOOP and TAOS High simultaneously for 200 ns and then pulling all three Low enables the NLOOP detection function. Alternatively, tying RCLK to RLOOP also enables NLOOP. Resetting the device disables NLOOP detection.
- In the LXT360 setting the RLOOP input to 2.5 V ±0.2 V ("Midrange") enables NLOOP detection. Setting RLOOP Low or High disables NLOOP detection.

Loss of Signal Detection and LOS Clear Criteria

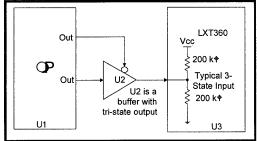
- The LXT310 device declares a Loss Of Signal (LOS) condition when it detects 175 consecutive spaces. It clears the LOS condition when the receiver detects 12.5% mark density (*i.e.*, 4 marks within a 32-bit period) with no more than 15 consecutive 0s.
- The LXT360 transceiver also declares the LOS condition when it detects 175 consecutive spaces. It clears the LOS condition when the receiver detects 12.5% mark density (determined by 16 marks in a sliding 128-bit period) with fewer than 100 consecutive 0s.

DIAGNOSTIC FUNCTIONS

The LXT360 provides several diagnostic features not provided on the LXT310 transceiver. These are Dual Loopback function, Error Insertion and Detection, AIS Condition Monitoring and Elastic Store Pointer Monitoring. The LXT360 data sheet has details on these functions.

In addition, the LXT360 provides both a Quasi-Random Signal Source and a Detector for diagnostic procedures.

Three-State Input Pins


The LXT310 uses two-state (High and Low) configuration inputs but some LXT360 control inputs recognize three states. Typical values for these states are:

High		VIN > 3.5 V.
Midrange	_	2.3 V \leq VIN \leq 2.7 V (or floating).
Low		VIN < 1.5 V.

The control for three-state inputs may be a standard tristate buffer. Figure 1 shows a typical driver circuit for these inputs. Setting the output buffer to its high-impedance state places the three-state input into its Midrange state.

Application designers must take into account the current drawn by the internal resistors (part of each three-state input) before choosing a buffer to drive these inputs to their High or Low states.

Figure 1: Typical Circuit for LXT360 Three-State Inputs

Line Interface Considerations

To improve transmit return loss, add a capacitor (CTX) to the transmit side as shown in Figures 2 through 4. This capacitor is typically 470 pF, but may vary depending on the resistor and transformer values, the board layout and the parasitics of the protection diodes.

Table 1 shows the combinations of transformers, resistors and capacitors needed for the transmit side as shown is these applications. Table 2 lists transformers that met Level One Communications specifications when tested with the LXT360 device.

Table 1: Transmit Return Loss (1.544 Mbit/s–Long- or Short-Haul)

				-
EC4-1	Xfrmr/ Rt	Xmission Line	Стх (pF)	Return Loss
Refer to	1:2/	100 Ω	0	16 dB
the LXT360	9.1 W	Twisted Pair	470	17 dB
Data Sheet	1:1.15 ¹ /	100 Ω	0	2 dB
Sheet	0.0 W	Twisted Pair	470	2 dB
1. A 1:1.15 transmit transformer keeps the total transceiver				

power dissipation at a low level, a $0.47 \,\mu\text{F}$ DC blocking capacitor must be placed on TTIP or TRING.

Table 2:	Recommended Transformers
	for LXT360/LXT361

Tx/ Rx	Turns Ratio	Part Number	Manufacturer
Tx	1:1.15	PE-65388	Pulse Engineering
		PE-65770	
	1:2	PE-65351	
		PE-65771	
		0553-5006-IC	Bell-Fuse
		66Z-1308	Fil-Mag
		671-5832	Midcom
		67127370	Schott Corp
		67130850	
		TD61-1205G	HALO
		TD67-1205G	(combination Tx/ Rx set)
Rx	1:1	FE 8006-155	Fil-Mag
	-	671-5792	Midcom
		PE-64936	Pulse Engineering
		PE-65778	
		67130840	Schott Corp
		67109510	
		TD61-1205G	HALO
		TD67-1205G	(combination Tx/ Rx set)

Bipolar Mode with AMI Line Coding (without Zero Suppression)

Most pins on LXT360 have the same names and functions as those on the LXT310, although some differ. This section describes the modifications needed to change from the LXT310 to the LXT360 in Hardware Control Mode. The LXT360 pins not included in this discussion have the same connections and signal level requirements as those on the LXT310. Table 3 is a summary of the pins whose functions change when moving from LXT310 to LXT360.

The 6.176 MHz crystal required by the LXT310 must be deleted when migrating to the LXT360. The functions on pins 17, 18, and 23 on the LXT310 change pin locations on the LXT360 transceiver. **Pay particular attention to the new locations for these signals**. Figure 2 shows the connection differences between the two transceivers for this configuration.

Pin 1: The LXT360 requires an independent, external clock called MCLK. The MCLK input signal must have a nominal rate of 1.544 MHz and an accuracy of \pm 32 ppm or better. The LXT310 uses the same nominal frequency, but requires no better accuracy than \pm 100 ppm.

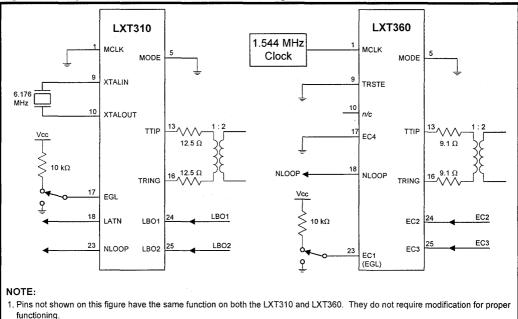
Pin 5: In the LXT310, pin 5 is called MODE. This pin can be pulled High or Low, or it can be tied to the RCLK pin. The RCLK signal at the MODE pin enables the B8ZS encoders and decoders.

In the LXT360, the MODE pin is a three-state input pin: High, Low or Midrange. Setting the pin to Midrange enables the B8ZS encoders and decoders in LXT360 for T1 applications (and also forces the transceiver into unipolar operation). **Pin 9:** In LXT360, pin 9 is called TRSTE. It is a threestate input. With TRSTE pulled High all LXT360 device output pins go into a high-impedance state. In conjunction with MODE (pin 5), this pin also sets the operational mode of the transceiver.

To enable T1, Long-Haul, Bipolar, Hardware Control Mode, the TRSTE pin must be pulled Low. See the data sheet for a complete description of the operating modes.

Pin 10: This pin is the XTALOUT input on the LXT310. Leave this pin not connected on the LXT360.

Pin 17: Move the LXT310 signal (EGL) to pin 23 on the LXT360. In the LXT60, pin 17 is EC4 and must be pulled Low to enable T1, Long-Haul operation.

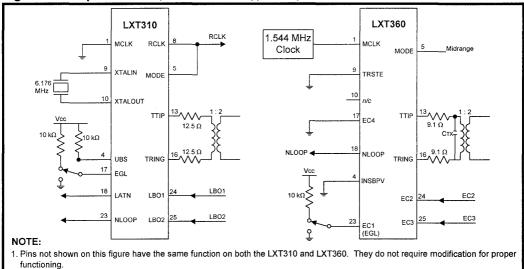

Pin 18: The LXT310 pin 18 signal (NLOOP) appears on pin 23 of the LXT360.

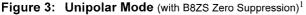
The LATN signal, which is on pin 18 of the LXT310, is not available in the Hardware Mode on the LXT360. However, a binary encoded equivalent to LATN is provided in the LXT360 Software Mode.

Pin 23: The EGL signal, which appears on pin 17 of the LXT310 appears on the LXT360 pin 23 (EC1).

The NLOOP signal, which appears on pin 23 of the LXT310, is available on pin 18 of the LXT360.

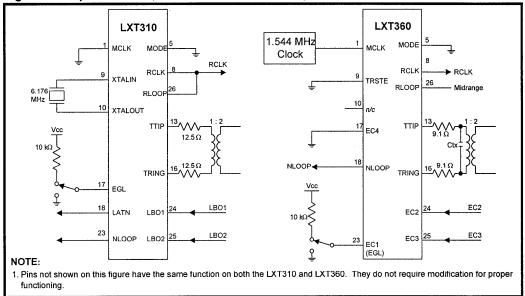
Pins 24 and 25: These pins retain their functions from the LXT310, but the names of the signals change. In the LXT310, pin 24 is LBO1 and pin 25 is LBO2. The LXT360 uses the names EC2 (pin 24) and EC3 (pin 25). The functions and connection remain the same. See the LXT360 Data Sheet for details.

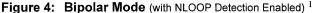

Table 3: Bipolar Mode using AMI Line Coding (without Zero Suppression)


		LXT310		LXT360	
Pin#	Name	Function/State	Name	Function/ State	Comments
1	MCLK ¹	1.544 MHz/GND	MCLK	1.544 MHz	Mandatory in LXT360 applications
5	MODE	Low	MODE	Low	MODE and TRSTE set operation mode
9	XTALIN	6.176 MHz Crystal	TRSTE	Low	Crystal not used in LXT360
10	XTA- LOUT	6.176 MHz Crystal		n/c	No function assigned to this pin.
17	EGL	Input	EC4	Input-Low	EC4 = Low for T1 long-haul operation.
18	LATN	Output	NLOOP	Output	LATN not supported on LXT360 in Hard-
23	NLOOP	Output	EC1	Set to select the Xmit line build-	ware Control Mode. NLOOP changes loca- tion.
24	LBO1	Set to select the	EC2	outs, including	Refer to Table 12 in LXT360 Data Sheet.
25	LBO2	Xmit line build outs.	EC3	EC4, pin 17.	

Using B8ZS Encoding/Decoding

The LXT310 supports B8ZS encoding/decoding in both Unipolar and Bipolar Modes. The LXT360 configures itself in Unipolar mode (*i.e.*, TPOS becomes TDATA and TNEG becomes INSBPV) when B8ZS is enabled. To enable B8ZS encoders and decoders, set the MODE pin to Midrange. Other connections are the same as for AMI line coding. Figure 3 shows the changes needed in connections for LXT310 and LXT360. See Table 4 for a summary of the modifications needed to adapt an LXT310 application to the LXT360.


	Table 4:	Unipolar Mode	(B8ZS Zero Suppression Enabled)
--	----------	---------------	---------------------------------


		LXT310		LXT360			
Pin #	Name	Function/State	Name	Function/State	Comments		
1	MCLK ¹	1.544 MHz/GND	MCLK	1.544 MHz	Mandatory in LXT360 applications		
5	MODE	Tie to RCLK	MODE	Midrange ²	MODE and TRSTE set operation mode		
4	UBS	High	INSBPV	Low	Refer to Data Sheet		
9	XTALIN	8.152 MHz Crystal	TRSTE	Low	Crystal not used in LXT360		
10	XTALOUT	8.152 MHz Crystal		n/c			
17	EGL	Input	EC4	Input-Low	EC4 = Low for T1 long-haul operation.		
18	LATN	Output	NLOOP	Output	LATN not supported on LXT360 in Hardware		
23	NLOOP	Output	EC1	Set to select the	Control Mode. NLOOP changes location.		
24	LBO1	Set to select the	EC2	Xmit Line Build Outs and receiver	Refer to Table 12 in LXT360 Data Sheet.		
25	LBO2	Xmit Line Build Outs.	EC3	range.			
		T310 applications. If MCL the pin unconnected or tie		ed to the LXT310, pin 1 mu	ist be grounded.		

Enabling NLOOP Detection

Tying the RCLK output to the RLOOP input enables Network Loop detection (NLOOP) on the LXT310 transceiver. NLOOP detection is also enabled by holding RLOOP, LLOOP and TAOS all High simultaneously for 200 ns and then bringing them Low. To enable NLOOP detection on the LXT360 transceiver, tie the RLOOP input pin to Midrange as in Figure 4.

APPLICATION NOTE 44

APRIL 1996 Revision 0.0

Jitter Performance Requirements for E1 Leased Lines ETSI TBR-12 & TBR-13 Conformance Testing

Introduction

This application note summarizes the new jitter performance requirements and appropriate conformance testing procedures for E1 (2.048 MHz) terminal equipment designed to attach to harmonized leased lines throughout the European Economic Community (EEC).

Directive 91/263/EEC implements a harmonized market for telecommunications equipment throughout the EEC by establishing unified procedures for testing, certification, marking and quality assurance. This allows vendors and service providers to market and use the same equipment in the public networks of all EEC member states. The Open Network Provision (ONP) directive 92/44/EEC mandates member states to provide leased lines having harmonized technical characteristics to facilitate inter-network operability across the EEC.

The European Telecommunications Standards Institute (ETSI) drafts two types of standards that define these harmonized requirements. The first, for which compliance is voluntary, is the European Telecommunications Standard (ETS). An ETS completely describes all details of the specified interface or equipment. The second standard, for which compliance is mandatory, is the Technical Basis for Regulation (TBR). A TBR defines the minimum necessary technical requirements for the interface or equipment and allows for no national deviations. The TBR technical requirements to form a Common Technical Regulation, or CTR.

In Europe there are two categories of 2048 kbps leased-line service: unstructured and structured. ETS 300-248 fully describes the unstructured service interface and TBR-12 (December 1993) defines the necessary technical requirements. Unstructured service provides a usable bit rate of 2048 kbps with no network-provided timing or framing support.

Structured service provides a usable bit rate of 1984 kbps with network framing support. ETS 300-420 fully describes this interface. The current draft of TBR-13 (June 1994) defines the necessary technical requirements.

(By the end of 1995, CTR-13 should include the provisions of TBR-13.) Compliance with TBR-13 also insures compliance with TBR-12.

Maximum Output Jitter Specifications

TBR-12 and TBR-13 (draft) include a common Output Jitter section (5.2.1.4). For terminal equipment, this section defines a maximum output jitter of 0.11 UIpp in the band from 40 Hz to 100 kHz.

The output jitter limit applies to equipment in configurations where output timing is derived locally as well as configurations where output timing is derived from one or more leased lines. For such iloop-timedî applications these requirements also imply minimum jitter transfer requirements because they apply when the maximum allowed input jitter is present at all line inputs. These requirements also apply with a data rate offset of up to ± 50 ppm from 2.048 MHz.

Figure 1 shows the input jitter amplitude and the maximum output jitter amplitude over frequency when measured across a 40 Hz - 100 kHz bandwidth. These specifications require loop-timed equipment to provide a significant amount of jitter attenuation at 20 Hz because the standards specify that conformance testing be done using a 40 Hz, first-order high pass filter which still allows the measurement of a significant portion of the 1.5 UIpp input jitter applied at 20 Hz.

At 20 Hz the terminal equipment must provide approximately 15 dB of jitter attenuation to insure that 1.5 UIpp is attenuated to 0.11 UIpp when measured using the firstorder 40 Hz, high-pass filter providing approximately 7 dB of attenuation at 20 Hz. This will be the case as long as the equipment does not transfer significant components of the 20 Hz the input jitter to higher frequencies. Designs which do not have linear jitter transfer at 20 Hz with an input amplitude of 1.5 UIpp may shift jitter to higher frequencies inside the filter passband and thus fail to comply at this frequency.

CONFORMANCE TESTING

Terminal equipment is tested in configurations where it does and does not derive timing from an input (if it has the capability to do so). One way to configure a single line system for loop timing is to enable the line interface line-side (i.e., remote) loopback function.

Table 1 lists useful equipment for TBR-12 and TBR-13 characterization and conformance testing. Figure 2 illustrates the recommended test configuration using this equipment.

The HP3785A measures output jitter with an external 40 Hz RC high-pass filter and the 100 kHz internal low-pass filter. The high-pass filter consists of a 4 μ F capacitor connected between the DEMOD output and the MEA-SURE input on the back of the HP3785A. The external 4 μ F capacitor and the internal 1 k Ω input termination resistor in the MEASURE input combine to form the filter.

NOTE

Prior to testing, use the HP3785A to calibrate the filter by adjusting the capacitor to achieve a 40 Hz, -3 dB corner frequency.

Figure 1: Input and Maximum Output Jitter

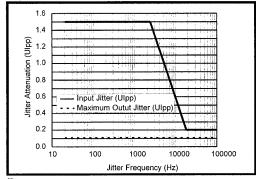


 Table 1: Recommended Equipment for Jitter

 Conformance Testing

MODEL #	DESCRIPTION			
Wavetek 145	Function Generator			
HP3400A	RMS Voltmeter			
HP3785A	Jitter Generator/Receiver			
TTC Fireberd 6000A	E1 Pattern Generator			
TTC 41800	2.048M interface module			
Stanford Research	Synthesized Function			
DS345	Generator			

The filter should be calibrated with a network analyzer with high impedance inputs to prevent loading or with an audio oscillator and RMS voltmeter (as shown in Figure 3). Figure 4 illustrates the transfer function of a properly calibrated high pass filter implemented with a 4 μ F capacitor in series with the MEASURE input of the HP3785A.

Configure the HP3785A jitter generator to generate a jittered clock using the clock input from the external clock synthesizer (e.g., the Stanford Research DS345). In addition, set the switch on the back of the HP3785A to enable the MEASURE input. Connect the jittered clock from the HP3785A so it clocks the Fireberd 6000A pattern generator which generates the HDB3 encoded, framed, 215 -1 PRBS input signal for the equipment under test.

The tested output port connects directly to the HP3785A jitter receiver input. Read the output jitter directly from the HP3785A front panel meter using the 1 UIpp input range. The reading will be from 40 Hz to 100 kHz. Test each output port on the equipment at several input jitter points along the curve in Figure 1. Adjust the data rate offset at each frequency and to obtain the largest measured output jitter. At all frequencies and data rate offsets, the output jitter amplitude must be less than 0.11 UIpp.

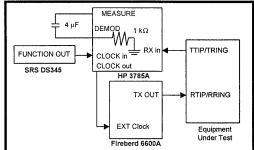
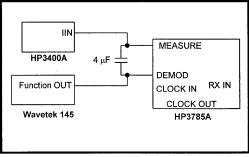
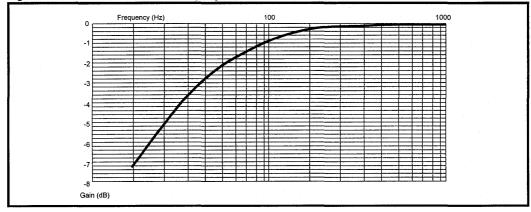



Figure 3: Filter Calibration


TYPICAL PERFORMANCE OF LEVEL ONE LINE INTERFACE ICS

The Level One LXT300Z, LXT304A, LXT305A and LXT318 transceivers provide the jitter attenuation needed to satisfy the TBR-12 and -13 requirements. These devices begin jitter attenuation at approximately 3 Hz insuring adequate margin against the TBR-12 and TBR-13 output jitter limit with 1.5 UIpp input at 20 Hz. Table 2 and Figure 5 present the data measured using the procedure outlined above with the LXT304A. The LXT304A meets the TBR-12 and TBR-13 requirements throughout the required frequency range. These data are also typical of the performance of the LXT300Z, LXT305A and LXT318.

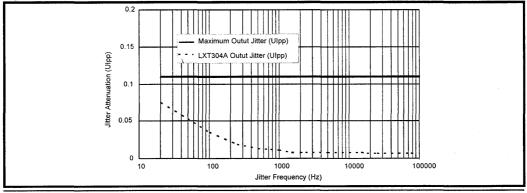

Jitter Freq.	Measured Output	Jitter Freq.	Measured Output
(Hz)	(UIpp)	(Hz)	(UIpp)
20	0.075	2400	0.008
50	0.053	5000	0.008
100	0.035	10000	0.008
250	0.019	15000	0.008
500	0.013	18000	0.007
750	0.012	25000	0.007
1000	0.011	50000	0.007
1500	0.008	75000	0.007
2000	0.008	100000	0.007

Table 2: LXT304A Measured Performance

NOTES

APPLICATION NOTE 46 MAY 1996 LXT300/300Z/304A/305A Integrated Short-Haul Transceivers Crystal Layout Guidelines

General Description

Level One transceivers are designed for robust operation. Good PCB design practices also contribute to overall application reliability. This application note reminds design engineers of PCB layout considerations that will make LXT300, LXT300Z, LXT304A and LXT305A transceiver applications even more effective.

The PCB designs should lay out the crystal input to any of these transceivers to minimize coupling of other digital and analog signals into XTALOUT and XTALIN. See the figure below. These inputs (pins 9 and 10 for all products included in this note) are high impedance nodes which can pick up interference from adjacent PCB traces and other components on the board. Adhering to these considerations will help ensure proper operation. Before beginning a PCB design for any of the LXT300series family transceivers, consider the following points:

- Use a crystal that meets the recommended crystal specifications (see the appropriate Data Sheet)
- Minimize the trace lengths between the transceiver and the 6.176 or 8.192 MHz crystal (typically less than 0.25 in or 6 mm)
- Shield these connections and the area around the crystal with ground planes
- Keep other high speed system clocks away from crystal leads and traces
- Locate all magnetic components well away from the crystal, its leads and traces
- Keep all high energy signals away from crystal leads and traces connected to pins 9 and 10

Crystal Layout for LXT300-Family Transceivers Ground Plane Shielding 6.176 or 8.192 MHz Crystal (\circ) 10 less than 0.25 in (6 mm) **XTALOUT XTALIN** pin 10 pin 9 LXT300/300Z/304A/305A HUF TTIP TPOS to XMIT lines TNEG TRING TCI K to/from LXT300/300Z Digital 304A/305A Backend Logic RPOS RTIP RNEG from RCV RCI K lines

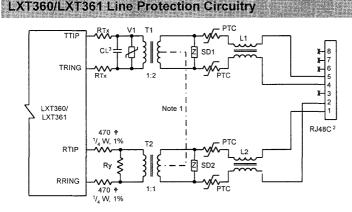
RRING

NOTES

APPLICATION NOTE 47 LXT360/361 Line Protection Circuitry

General Description

This application note provides guidelines for line protection circuitry required in typical LXT360/361 applications such as Network Channel Termination Equipment (NCTE), Channel Service Units (CSUs) and Wide Area Network (WAN) interfaces. NCTE is installed at the customer premises end of the T1 or E1 lines. As these lines run between the customer facilities and the central office, they are subject to overvoltage/overcurrent stresses from lightning strikes, power crosses and other noise impairments. Protection circuitry is required to protect the line from injected impairments and to protect the terminal equipment (CSU, NTU, mux, PBX, etc.) from overload stresses.


Protection requirements for T1 equipment are specified in FCC Part 68 (lightning hazards), UL 1459 (AC hazards), Bell Core TR-TSY-000007 and AT&T Pub 62411. These documents differentiate between longitudinal stress (differential tip/ring and ground) and metallic stress (differential between tip and ring). Longitudinal stresses are more common and include impulsive noise events such as lightning induced surges. Metallic stresses are less likely and are usually caused by power crosses during maintenance activity.

Similar protection circuitry is suggested for E1 applications of the LXT360/361. The network described in this application note targets compliance with ETS 300 046-3 and ITU K17-K20.

To ensure compliance with all applicable requirements, the final design should undergo appropriate testing at an approved lab.

Protective Circuitry Discussion

- No power or ground planes should be located on the circuit board in the area near the T1/E1 Line connector and back to the transformers.
- Select resistors RTx to match the line impedance. Their values impact the amplitude of the transmitted signal and the transmit return loss.
- Positive Temperature Coefficient Resistors (PTCs) permit healing after an overvoltage event. Their pretrip resistance is specified at between 4 and 7 Ω .
- The PTCs will slightly reduce the amplitude of the transmitted signal. When using a 1:2 transformer, carefully selecting the series resistors (see Table 1) may negate this effect.
- The breakdown voltage of the line transformers (T1 and T2) must be at least 1.5 kV. (E1 designs may require a breakdown voltage of 3.0 kV.)
- Some harmful signal voltage from the interface lines will cross the T1/E1 transformer to the IC side; the recommended varistor (V1) with sufficient stand off voltage will provide additional protection to the LIU.
- Sidactors SD1 and SD2 provide the primary protection against bidirectional transient voltages on the transmit and receive sides.
- The final board design determines the values for the RF chokes (L1 and L2).
- Join the line side center taps of the Transmit and receive line transformers only for applications requiring a DC path for sealing currents (*i.e.*, some T1 CSU applications).
- The RJ48C configuration shown is recommended for T1 CSU applications.

NOTES

- Interconnection of transformers T1 and T2 is optional to support current in the E1/T1 loop.
- Connections at RJ48C jack are for T1 CSU applications only. For E1 applications, refer to ITU standards.
- 3. Assign a space for Capacitor CL. CL can be installed to improve the Tx return loss if needed.

Table 1: Component Selection Guide-LXT360/LXT361 (E1/T1, Long-Haul/Short-Haul Applications)

	Ptyl [0]					EC4-1 ³		
Application	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4	3	2	1		
T1 Long-Haul 100 Ω twisted-pair lines (with line protection)	9.1	100	1:2	1:1	0	x	x	x
T1 Short-Haul 100 Ω twisted-pair lines (without line protection)	9.1	100	1:2	1:1	1	0 1	1 x	1 x
E1 Short-Haul 75 Ω coax lines (without line protection)	9.1	75	1:2	1:1	1	0	0	0
E1 Short-Haul 120 Ω twisted-pair lines (without line protection)	9.1	120	1:2	1:1	1	0	0	0
E1 Long-Haul 120 Ω twisted-pair/ 75 Ω coax (with line protection)	9.1	120/75	1:2	1:1	1	0	1	0
E1 Long-Haul 120 Ω twisted-pair lines (with line protection)	15	120	1:2	1:1	1	0	0	1
E1 Long-Haul 75 Ω coax lines (with line protection)	15	75	1:1.53	1:1	1	0	0	1

I. The protection circuit reduces the amplitude of the transmitted signal. Use a lower value for RTx to restore the amplitude to its nominal value. The lower value compensates for resistance of the protection resistors on the line side (PTC 4 Ω to 7 Ω used in this example).

2. The transmit and receive transformers must have a center tap (1:2 CT, 1:1 CT) to support simplex current in the E1/T1 loop if required.

3. "x" in the EC4-1 columns indicates "don't care". Refer to LXT360/361 Data Sheet for full description of transmit equalizer codes.

Table 2: Common Components for LXT360/LXT361 Applications

Ref #	Description	Typical Part (Manufacturer)		
SD1, SD2	Sidactor–Instantaneous clamping voltage 65 - 80 V TO-92 packaging	PO720EA70 (TECCOR Elec	tronics)	
РТС	Positive Temperature Coefficient Resistors – 4 - 7 Ω , 600 V	TR600-160-RA (Raychem)	-B-0.5130	
LFR	Line Feed Resistor–Thermal, fused, 5.6 Ω	LFR-2-5.6-1 (IRC)		
V1	MSV Varistor–Stand-off voltage 3.7 V, Off-state capacitance \leq 470pF	MSV701A (Microsemi)	B529-2 (EDAL Industries)	
CL	Ceramic capacitor-0-470 pF, radial leaded, 50 V	any manufactur	er (e.g., KEMET, AVX)	
L1, L2	RF Choke–Varies based on board design typically 33 mH	500-1164 (BH Electronic:	s)	

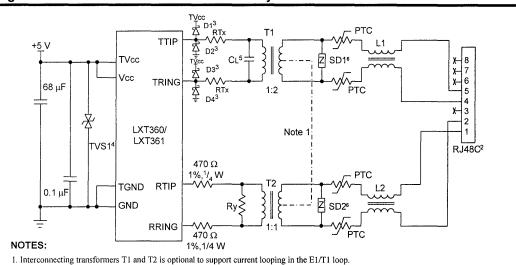


Figure 1: Enhanced Line Protection Circuitry

2. Connections at RJ48C jack are for T1 CSU applications only. For E1 applications, refer to ITU standards.

3. Schottky diode 11DQ04 (International Rectifier) is a typical component for D1-4.

4. TVS1 is a 5 V bidirectional TVS. Semtech SMCJ5.0AC (surface mount part) is typical.

5. Value of Capacitor CL may vary between 0 and 470 pF to improve the transmit return loss. Test to determine the optimum value of CL for each design

6. Sidactors SD1 and SD2 can be replaced with low a capacitance TVS array. Semtech Corporation manufactures a suitable 1500 watt surface mount, low capacitance TVS array (part number LC01-6).

Figure 1 shows an enhanced version of the protection circuit for the LXT360/361 shown on the first page of this data sheet. Please notice that the circuit requires additional components, including Schottky diodes D1-4 and a 5 V bidirectional TVS (TVS1). The enhanced circuit provides better protection from metallic stresses and from surges coupled to VCC. However, these advantages come at the price of increased component count, PCB space, and a higher unit cost.

PTCs have the advantage of recovering from a stress condition once the condition disappears. Many similar designs use a Line Feed Resistor (LFR) like the LFR-2-5.6.1 from IRC, Inc. An LFR is a combination precision resistor (5.6 Ω , 1%) and a thermal fuse. The primary benefit of the LFR is its stable resistance over temperature variances. However, it opens permanently and must be replaced. The affected line must be switched to a redundant circuit until the primary circuit is restored.

Company	Contact Information	Company	Contact Information
BH Electronics	12219 Wood Lake Drive Burnsville, MN 55337 (612) 894-9590 / Fax: (612) 894-9380	Raychem Corp	300 Constitution Drive Menlo Park, CA 94025-1164 (800) 227-2040 / Fax: (800) 227-4866
EDAL Industries	4 Short Beach Road East Haven, CT 06512 (203) 467-2591 / Fax: (203) 469-5928	SEMTECH Corp	652 Mitchell Road Newburg Park, CA 91320 (805) 498-2111 / Fax: (805) 498-3804
IRC, Inc	P.O. Box 1860 Boone, NC 28607 (704) 264-8861 / Fax: (704) 262-1972	TECCOR Electronics	1801 Hurd Drive Irving, TX 75038 (214) 580-1515 / Fax: (214) 550-1309
Microsemi Corp	8700 E. Thomas Road Scottsdale AZ 85251 (602) 941-6300 / Fax: (602) 947-1503		

Table 3: Manufacturers Mentioned in this Note

NOTES

MAY 1996

APPLICATION NOTE 48 SCR Latch-up Model

Preventing Latch-up in Level One Transceivers

General Description

The purpose of this application note is to familiarize designers in the use of Level One CMOS transceivers. Level One devices are designed to meet, but not to exceed the absolute maximum specifications for Silicon Controlled Rectifier latch-up. SCR latch-up in CMOS devices is a condition that can cause maximum specifications to be exceeded. This application note provides the necessary design considerations to avoid SCR latch-up.

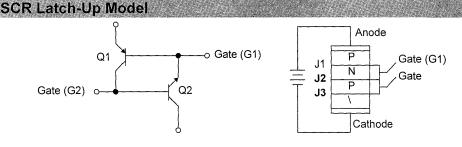
Application Overview

Once triggered, an SCR latch-up condition turns on a parasitic SCR internal to CMOS circuits that creates a low resistance path from VCC to ground. The resulting internal high currents can damage the devices.

Modeled as a cross coupled transistor, the SCR has two basic trigger mechanisms; one forces current into its gate and the other places a large voltage between anode and cathode. When forward biasing a diode, current injected into the base of Q2 turns this transistor on and the collector current (beta times its base current) flows into the base of Q1. This causes Q1 to be amplified by beta and fed back into the base of Q2, where the current is again amplified. If the beta of both transistors is greater than 1, the current gain continues until the transistors saturate and the SCR is triggered. Once the regenerative condition occurs, a large anode current flows. The SCR remains on after the gate current is removed, if enough anode current flows to sustain latch-up.

In the case of large voltages on its anode and cathode, a trigger condition can occur even if no current is applied to the gate. In the forward blocking state a small leakage current is present but will not trigger the SCR. If the voltage is increased to allow a significant leakage current, then a

Following these design guidelines will:

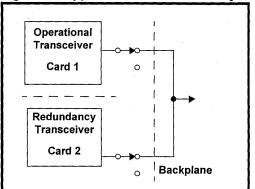

- · Avoid exceeding maximum transceiver ratings
- · Simplify application maintenance
- · Reduce SCR latch-up related downtime in systems
- · Improve System reliability

SCR could trigger. The beta of the NPN and PNP must be greater than one for the latch condition to occur.

There are a number of scenarios that can cause a SCR trigger to occur at inputs and outputs (latch condition) including insertion and removal of a circuit card from a powered system. To be effectively controlled (either when integrated or at the system level) designers must have a clear understanding of the causes of SCR latch-up.

Design Guidelines

- 2. If the circuit card design includes "hot-swapping" capability, insure that power reaches the devices (transceivers, PALs, etc.) before applying any voltages to the input or output pins (*i.e.*, power and ground pins make contact before input and output pins).
- 3. With multiple power supplies feed the same device, arrange the pins so the supplies connect in ascending order. Thus, if a circuit card requires +5 V, +12 V, and -12 V, the +5 V pins should connect first, the +12 V pins next and finally the -12 V pins. In any event, before any voltage pins make contact, the ground should connect first to insure that the positive supplies do not pull the negative supplies or visa versa.



SCR Latch-up Model

- 3. When devices drive other devices on separate boards be aware that large amounts of local decoupling can cause power supply ramps to be slower on some boards than others.
- Insure that the voltages to the input/output pins do not exceed the supply voltage. Clamping circuits are needed to reduce the input voltage.
- Insure that the input current does not exceed the absolute maximum rating of 100 mA. If this is expected, current limiting is necessary to prevent the SCR latching condition.
- 6. Never allow the output driver to drive another output driver in applications of redundancy (Figure 1). This can be accomplished only if a break before make connection of the two drivers is observed. These drivers are high current drivers, capable of exceeding the triggering currents necessary for a SCR latch condition.

Figure 1: Applications of Redundancy

MAY 1996

APPLICATION NOTE 50 Crystal-less E1 Long-Haul Solutions

LXT318/360 Universal Line Interface Unit Design Guide

Introduction

This note describes applications for the crystal-less LXT360 transceiver in newer generation network access equipment. Use this application note as a guide when upgrading designs using the LXT360. Before designing a circuit using this new device, refer to the data sheets for both devices for complete information.

The LXT360 provides several advanced features. While the LXT360 provides for both T1 (1.544 Mbps) and E1 (2.044 Mbps) operation, this application note focuses only on hardware-controlled, E1 designs. Additional application notes detail migration paths for T1 and E1 design using other LXT360 features.

Identifying Major LXT360 Design Improvements

Jitter Attenuation Circuitry

- The LXT318 device requires a pullable 8.192 MHz crystal to provide selectable jitter attenuation. The jitter attenuation circuitry may be in either the transmit or the receive path, depending on the application.
- The LXT360 requires only the MCLK signal to provide the same selectable jitter attenuation functions since it uses digital JA circuitry. It needs no crystal or high-frequency external clock for jitter attenuation.

External Clock Requirements

- The MCLK input signal in the LXT318 is optional. If used, the clock must have an accuracy of ±100 ppm.
- The MCLK input signal in the LXT360 is mandatory. The clock must be a stand alone reference with an accuracy of ±32 ppm or better at 2.048 MHz for E1 applications.

Applications

- The LXT318 is a long-haul E1 transceiver only.
- The LXT360 operates as either a short- or long-haul transceiver in E1 or T1 applications.

Available Line Coding Schemes

- The LXT318 allows HDB3 encoding in either Unipolar or Bipolar mode.
- The LXT360 transceiver offers HDB3 line encoding only in the Unipolar Mode.

Reset Operation

- Reset on the LXT318 occurs when both LLOOP and RLOOP inputs are pulled High while TAOS is pulled Low for at least 200 ns.
- Reset on the LXT360 occurs when LLOOP, RLOOP and TAOS are pulled High simultaneously for at least 200 ns.

Output Control

- The LXT318 provides a high-impedance state option for the TTIP/TRING outputs only when TCLK is grounded.
- The LXT360 provides high-impedance state limited to the TTIP/TRING outputs when TCLK is pulled High. An additional high-impedance state option is available for all output pins when TRSTE is pulled High.

Line Attenuation Indication

- The LXT318 provides Line Attenuation Indication (LATN) in both Hardware and Host Modes.
- The LXT360 provides LATN in Software Mode only. NLOOP Detection

- For the LXT318 transceiver, holding RLOOP, LLOOP and TAOS High simultaneously for 200 ns and then pulling all three Low enables the NLOOP detection function. Alternatively, tying RCLK to RLOOP also enables NLOOP. Resetting the device disables NLOOP detection.
- In the LXT360 setting the RLOOP input to 2.5 V ±0.2 V ("Midrange") enables NLOOP detection. Setting RLOOP Low or High disables NLOOP detection.

Loss of Signal Detection and LOS Clear Criteria

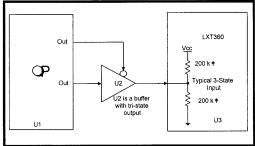
- The LXT318 device declares a Loss Of Signal (LOS) condition when it detects 175 consecutive spaces. It clears the LOS condition when the receiver detects 12.5% mark density (*i.e.*, 4 marks within a 32-bit period) with no more than 15 consecutive 0s.
- The LXT360 transceiver declares the LOS condition when it detects 32 consecutive spaces. It clears the LOS condition when the receiver detects 12.5% mark density (*i.e.*, 4 marks within a 32-bit period) with no more than 15 consecutive 0s.

DIAGNOSTIC FUNCTIONS

The LXT360 provides several diagnostic features not provided on the LXT318 transceiver. These are Dual Loopback function, Error Insertion and Detection, AIS Condition Monitoring and Elastic Store Pointer Monitoring. Refer to the LXT360 data sheet for details on these functions.

In addition, the LXT360 provides both a Quasi-Random Signal Source and a Detector for diagnostic procedures.

Three-State Input Pins


The LXT318 uses two-state (High and Low) configuration inputs but some LXT360 control inputs recognize three states. Typical values for these states are:

High–VIN > 3.5 V. Midrange–2.3 V \leq VIN \leq 2.7 V (or floating). Low–VIN \leq 1.5 V.

The control for three-state inputs may be a standard tristate buffer. Figure 1 shows a typical driver circuit for these inputs. Setting the output buffer to its high-impedance state places the three-state input into its Midrange state.

Application designers must take into account the current drawn by the internal resistors (part of each three-state input) before choosing a buffer to drive these inputs to their High or Low states.

Figure 1: Typical Circuit for LXT360 Three-State Inputs

Line Interface Considerations

To improve transmit return loss, add a capacitor (CTX) to the transmit side as shown in Figures 2 through 4. This capacitor is typically 470 pF, but may vary depending on the resistor and transformer values, the board layout and the parasitics of the protection diodes. Tables 1 through 3 show the combinations of transformers, resistors and capacitors needed for the transmit side as shown in these applications. Table 4 lists transformers that meet Level One Communications specifications when tested with the LXT360 device.

EC4-1	Xfrmr/ Rt	Xmission Line	С⊤х (рF)	Return Loss (dB)
1000	1:2/	75 Ω Coax	0	14
	9.1 W		470	16
		120 Ω Twisted Pair	470	13
	1:2.3/	120 Ω Twisted	0	13
	9.1 W	Pair	470	16

Table 1:	Transmit	Return	Loss	(2.048	Mbit/s
Short-Ha	ul 12 dB)				

 Table 2: Transmit Return Loss (2.048 Mbit/s–

 Long-Haul 43 dB) High Return Loss Configuration

EC4-1	Xfrmr/ Rt	Xmission Line	Стх (pF)	Return Loss (dB)
1001	1:2/	120 Ω Twisted	0	19
	15 W	Pair	470	28
	1:1.53/	75 Ω Coax	0	18
	15 W		470	28

Table 3: Transmit Return Loss (2.048 Mbit/s–Long-Haul 43 dB)

EC4-1	Xfrmr/ Rt	Xmission Line	C⊤x (pF)	Return Loss (dB)
1010	1:2/	120 Ω Twisted	0	12
	9.1 W	Pair	470	13
		75 Ω Coax	0	16
			470	18

Transmit Side			Receive Side		
Transformer Turns Ratio	Manufacturer	Part Number	Transformer Turns Ratio	Manufacturer	Part Number
1:2	Fil-Mag	FE 66Z1308	1:1	Fil-Mag	FE 80006-155
	HALO	TD 61-1205G]	HALO	TD 61-1205G
		TD 67-1205G			TD 67-1205G
	Midcom	671-5832]	Midcom	671-5792
	Pulse Engineering	PE-65351		Pulse Engineering	PE-64936
		PE-65771			PE-65778
	Schott Corp	67127370		Schott Corp	67109150
		67130850			67130840
1:1.53	Pulse Engineering	PE 68663		•	

Table 4: Recommended Transformers for LXT360

Bipolar Mode with AMI Line Coding (without Zero Suppression)

Most pins on LXT360 have the same names and functions as those on the LXT318, although some differ. This section describes the modifications needed to change from the LXT318 to the LXT360 in Hardware Control Mode. The LXT360 pins not included in this discussion have the same connections and signal level requirements as those on the LXT318. Table 5 is a summary of the pins whose functions change when moving from LXT318 to LXT360.

The 8.192 MHz crystal required by the LXT318 must be deleted when migrating to the LXT360. The functions on pins 17, 18, and 23 on the LXT318 change pin locations on the LXT360 transceiver. **Pay particular attention to the new locations for these signals**. Figure 2 shows the connection differences between the two transceivers for this configuration.

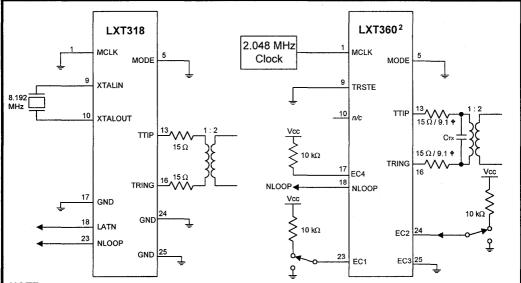
Pin 1: The LXT360 requires an independent, external clock called MCLK. The MCLK input signal must have a nominal rate of 2.048 MHz and an accuracy of \pm 32 ppm or better. The LXT318 uses the same nominal frequency, but requires no better accuracy than \pm 100 ppm.

Pin 5: In the LXT318, pin 5 is called MODE. This pin can be pulled High or Low, or it can be tied to the RCLK pin. The RCLK signal at the MODE pin enables the HDB3 encoders and decoders.

In the LXT360, the MODE pin is a three-state input pin: High, Low or Midrange. Setting the pin to Midrange enables the HDB3 encoders and decoders in LXT360 for E1 applications (and also forces the transceiver into unipolar operation). **Pin 9:** In LXT360, pin 9 is called TRSTE. It is a threestate input. With TRSTE pulled High all LXT360 device output pins go into a high-impedance state. In conjunction with MODE (pin 5), this pin also sets the operational mode of the transceiver.

To enable E1, Long-Haul (43 dB), Bipolar, Hardware Control Mode, the TRSTE pin must be pulled Low. See the data sheet for a complete description of the operating modes.

Pin 10: This pin is the XTALOUT input on the LXT318. Leave this pin not connected on the LXT360.


Pin 17: Pin 17 is grounded in LXT318 applications. In the LXT360, pull pin 17 (EC4) High to enable E1 long-haul operation.

Pin 18: The LXT318 pin 18 signal (NLOOP) appears on pin 23 of the LXT360.

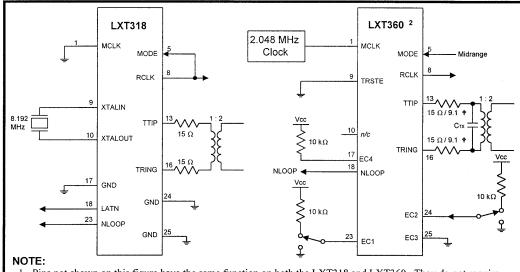
The LATN signal, which is on pin 18 of the LXT318, is not available in the Hardware Mode on the LXT360. However, a binary encoded equivalent to LATN is provided in the LXT360 Software Mode.

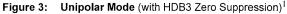
Pin 23: The NLOOP signal, which appears on pin 23 of the LXT318, is available on pin 18 of the LXT360.

Pins 24 and 25: In the LXT318, pins 24 and 25 are both grounded. The LXT360 uses these pins and gives them the names EC2 (pin 24) and EC3 (pin 25). EC4-1 control the equalizers on the LXT360. See the LXT360 Data Sheet for details.

Figure 2: Bipolar Mode Using AMI Line Coding (without Zero Suppression)¹

NOTE:


1. Pins not shown on this figure have the same function on both the LXT318 and LXT360. They do not require modification for proper functioning.


Table 5: Bipolar Mode using AMI Line Coding (without Zero Suppression)

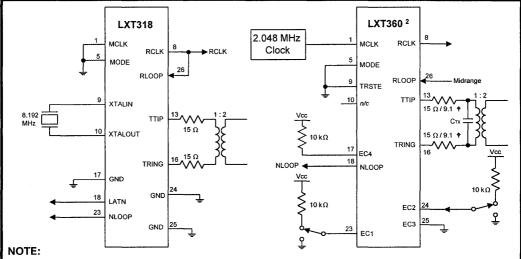
D:#	L	LXT318 LXT360		Commonto		
Pin#	Name	Function/State	Name	Function/State	Comments	
1	MCLK ¹	2.048 MHz/GND	MCLK	2.048 MHz	Mandatory in LXT360 applications	
5	MODE	Low	MODE	Low	MODE and TRSTE set operation mode	
9	XTALIN	8.192 MHz Crystal	TRSTE	Low	Crystal not used in LXT360	
10	XTALOUT	8.192 MHz Crystal		n/c	No function assigned to this pin.	
17	GND	_	EC4	Input-High	EC4 = High for E1 operation.	
18						
23	NLOOP	Output	EC1	Input	ware Control Mode. NLOOP changes loca- tion.	
24	GND	Low	EC2	Input	Refer to Table 12 in LXT360 Data Sheet.	
25	GND	Low	EC3	Input/Low		
¹ MCLK is optional in LXT318 applications. With the LXT318, if MCLK is not supplied, pin 1 must be grounded.						

Using HDB3 Encoding/Decoding

The LXT318 supports HDB3 encoding/decoding in both Unipolar and Bipolar Modes. The LXT360 configures itself in Unipolar mode (*i.e.*, TPOS becomes TDATA and TNEG becomes INSBPV) when HDB3 is enabled. To enable HDB3 encoders and decoders, set the MODE pin to Midrange. Other connections are the same as for AMI line coding. Figure 3 shows the changes needed in connections for LXT318 and LXT360. See Table 6 for a summary of the modifications needed to adapt an LXT318 application to the LXT360.

 Pins not shown on this figure have the same function on both the LXT318 and LXT360. They do not require modification for proper functioning.

T I I A					~		
lable 6:	Unipolar	Mode with	HDB3	Zero	Supp	ression	Enabled


Pin#		_XT318	LXT360		Commente	
Pin#	Name	Function/State	Name	Function/State	Comments	
1	MCLK ¹	2.048 MHz/GND	MCLK	2.048 MHz	Mandatory in LXT360 applications	
5	MODE	Tie to RCLK	MODE	Midrange ²	MODE and TRSTE set operation mode	
9	XTALIN	8.192 MHz Crystal	TRSTE	Low	Crystal not used in LXT360	
10	XTALOUT	8.192 MHz Crystal		n/c		
17	GND	-	EC4	Input–High	EC4 = High for E1 operation	
18	LATN Output NLOOP Output LATN not supported on LXT360 in Hard-					
23	NLOOP	Output	EC1	Input	ware Control Mode. NLOOP changes location.	
24	GND	Low	EC2	Input	Refer to Table 12 in LXT360 Data Sheet.	
25	GND	Low	EC3	Input/Low		
	¹ MCLK is optional in LXT318 applications. With the LXT318, if MCLK is not supplied, pin 1 must be grounded. 7. "Midrange" means leave the pin unconnected or tie it to 2.5 V.					

Enabling NLOOP Detection

Tying the RLOOP and MODE inputs to the RCLK output enables Network Loop detection (NLOOP) on the LXT318 transceiver. NLOOP is also enabled by holding LLOOP, RLOOP, and TAOS all High simultaneously for 200 ns and pulling them Low. To enable NLOOP on the LXT360 transceiver, tie the RLOOP input pin to Midrange as in Figure 4. This function is available only in Bipolar Mode.

1. Pins not shown on this figure have the same function on both the LXT318 and LXT360. They do not require modification for proper functioning.

Migration from CS61574A/CS61575 to LXT350 T1/E1 Short-Haul Transceiver

Introduction

This application note provides guidelines for converting an existing design that utilizes the CS61574A/CS61575 to the Level One LXT350. The LXT350 is a new generation crystal-less T1/E1 LIU. Although it does require some minor schematic/PCB changes, migration from CS61574A/75 to LXT350 is straightforward. Our focus in this note is on three major operational modes of the CS61574A/75:

- · Hardware Mode
- · Extended Hardware Mode
- · Software (Host) Mode

The advantages of the LXT350 over the CS61574A/75 are:

- The LXT350 does not require a pullable quartz crystal to perform jitter attenuation
- Cost, component and board space savings with the LXT350 are significant in high density T1 or E1 systems (2 or more T1/E1 lines per system)
- The master clock (MCLK) can be supplied to all LIUs from one common clock source, compared to the CS61574A/75's requirement of one crystal per LIU
- Jitter attenuation is selectable between the transmit and receive path
- The low frequency of MCLK (1.544 MHz for T1 and 2.048 for E1) helps to keep electromagnetic emissions at a lower level
- · Superior transmit return loss with external resistors
- External resistors on TTIP and TRING provide a first order protection from environmental hazards, such as AC power-cross, electrostatic discharge, lightning and other surges
- On-chip QRSS pattern generation/detection and analog loopback available
- Driver short circuit current is limited to 50 mA per OFTEL/BABT recommendations
- In Host Mode of operation, the LXT350 supports two different criteria for loss of signal (LOS/E1)

- Level One's LXT350 requires only one type of transformer for both T1 and E1 applications (at 1:2 turn ratio) and facilitates dual mode T1/E1 designs
- Tristate output drivers support protection switching applications
- A design based on the LXT350 can easily be upgraded to the Universal T1/E1 Long-Haul/Short-Haul LIU LXT360
- Software selectable T1 or E1 operation mode without component changes
- Available in standard 28-pin DIP and PLCC, as well as 44-pin PQFP package

Jitter Attenuation Circuitry

The CS61574A/75 requires a 6.176 MHz (T1)/8.192 MHz (E1) pullable crystal to perform jitter attenuation. In some applications, the CS61574A/75 also needs an ACLKI signal at 1.544 MHz/2.048 MHz. The LXT350 only requires a MCLK clock signal. MCLK is 1.544 MHz \pm 32 ppm for T1 applications and 2.048 MHz \pm 32 ppm for E1 operation. The digital jitter attenuator has a corner frequency of 3 Hz and low latency time.

Hardware Operation Modes

Figures associated with each mode of operation show which pins of the CS61574A/75 transceiver require modifications. Pins not shown do not require changes when migrating from CS61574A/75 devices to the LXT350. It is recommended to have data sheets available for the LXT350 and the CS61574A/75 when working with this application note.

^{*} Pin numbers specified apply to 28-pin DIP and PLCC packages only **ELEVEL**

Migration from CS61574A/CS61575 to LXT350 T1/E1 Short-Haul Transceiver

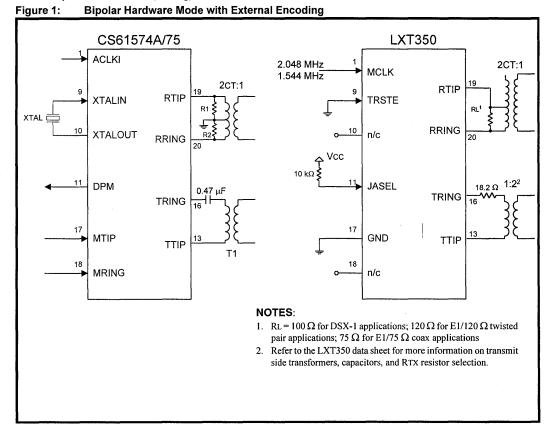
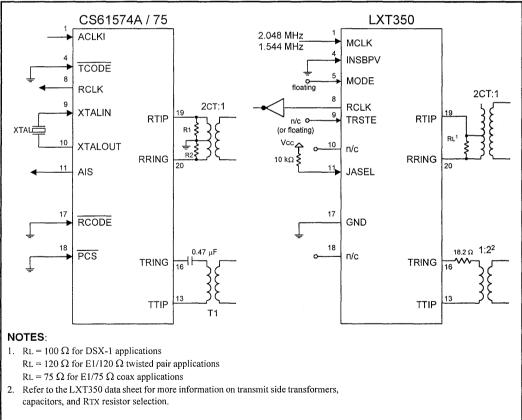

Hardware Mode with External Encoding and Jitter Attenuation

Figure 1 shows all the pins/signals of the CS61574A/75 which need to be modified when migrating to the LXT350 from CS61574A/75 in Hardware Mode with external line coding. Pins/signals not shown are identical for both devices. The LXT350 does not support DPM and MTIP/ MRING features in Hardware Mode.

The following changes/steps are needed for the conversion:

- Supply 1.544 or 2.048 MHz clock with ±32 ppm stability to pin 1 (MCLK)
- Remove the crystal (XTAL)
- Pull pin 9 LOW*
- · leave pin 10 not connected(floating) *

- Pull pin 11 HIGH (to place JA in receive path on LXT350) *
- Ground pin 17 *
- · Leave pin 18 not connected or floating *
- Modify physical interface to the line as shown in Figure 1
 - · Replace 0.47µF capacitor with a series resistor
 - Change Tx/Rx transformers and termination resistors as shown on Figure 1
- If the CS61574A/75 does not use JA, leave pin 11 on LXT350 floating (or not connected) *


Extended Hardware Mode with B8ZS/HDB3 Encoder/Decoder and Jitter Attenuation

The CS61574A/75 must be used in Extended Hardware mode for applications which require B8ZS (T1) or HDB3 (E1) encoding/decoding. The LXT350 mode that corresponds to Extended Hardware Mode of CS61574A/75 is Hardware Unipolar Mode.

Figure 2 shows how to migrate from CS61574A/75 in Extended Hardware Mode with B8ZS/HDB3 encoder/ decoder enabled to LXT350 and JA in the receive path. Please notice that pin 11 (AIS) on CS61574A becomes JASEL on LXT350. Pins/signals not shown are identical for both devices.

The following changes/steps are needed for the conversion:

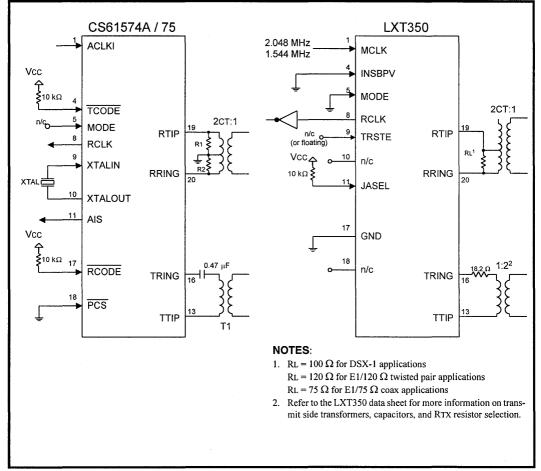
- Supply 1.544 (T1) or 2.048 (E1) MHz clock with ±32 ppm stability to pin 1 (MCLK)
- · Ground permanently (or pull LOW) pins 4 and 17*
- Receive clock (RCLK) signal on the LXT350 must be inverted to comply with the phase of CS61574A/75's RCLK. Add an inverter.
- · Leave pins 9,10,18 of the LXT350 not connected*
- Pull pin 11 High (to place JA in the receive path on LXT350) *
- Modify physical interface to the line (TX and RX) as shown on Figure 2
 - Replace the 0.47 μ F capacitor with a series resistor
 - Change Tx/Rx transformers and termination resistors as shown on Figure 2

Figure 2: Extended Hardware Mode With B8ZS/HDB3 Encoder/Decoder And JA

Extended Hardware Mode with Internal AMI Encoding/Decoding

Like the LXT350, the CS61574A/75 can be configured to operate in Extended H/W Mode with internal AMI encoder/decoder turned on. However, there are some slight differences in configuring the two devices. For the Crystal device to operate in this mode, input $\overline{\text{TCODE}}$ and input $\overline{\text{RCODE}}$ must be pulled High.

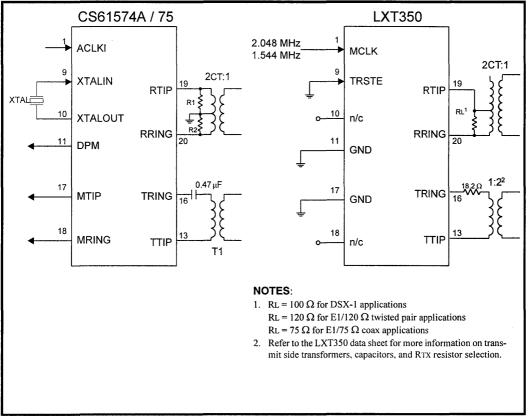
Figure 3 shows the pin-to-pin modifications necessary to migrate from CS61574A/75 to LXT350 in Extended H/W mode with AMI encoding/decoding. Pins/signals not shown are identical for both devices.


The following changes/steps are required for the conversion:

• Supply 1.544 MHz ± 32 ppm (T1) or 2.048 ± 32

ppm (E1) clock signal to pin 1.*

- Ground or pull Low pins 4, 5, 17*
- Invert signal on pin 8 (RCLK)*
- · Remove the crystal (XTAL)
- · Leave pins 9, 10, 18 not connected*
- Pull pin 11 High to place jitter attenuator in the receive path*
- Modify physical interface to the transmit and receive lines as shown in Figure 3
- Replace the 0.47 μ F capacitor with a series resistor
- Change Transmit/Receive transformers and line matching resistors as shown in Figure 3


HOST (SOFTWARE) MODE

The LXT350 offers many unique features in Host Mode which are not available on CS61574A/75. Refer to the LXT350 Data Sheet for a complete description of all available features.

Migration from CS61574A/75 to LXT350 in software mode requires very few changes. The designer has to be aware of differences in register sets for CS61574A/75 and LXT350. Code changes are required when migrating from CS61574A/75 to LXT350. Figure 4 presents the required modifications. Pins/signals not shown are identical on both devices.

The following changes are needed for the conversion:

- Supply 1.544 (T1) or 2.048 (E1) MHz clock with ±32 ppm stability to pin 1 (MCLK)
- · Remove the crystal (XTAL)
- Ground (or pull LOW pins 9, 11, 17) *
- · Leave pins 10 and 18 not connected or floating *
- Modify the physical interface to the transmit and receive line as shown on Figure 4
- · Replace the 0.47 µF capacitor with a series resistor
- Change Tx/Rx transformers and termination resistors as shown in Figure 4

Figure 4: Host Mode Migration

MORE INFORMATION

For more detailed descriptions of the LXT350's operational modes and test specifications, consult the LXT350 data sheet. Level One literature can be obtained through your area Level One sales representative, or by contacting any of our corporate offices listed on the back of this application note.

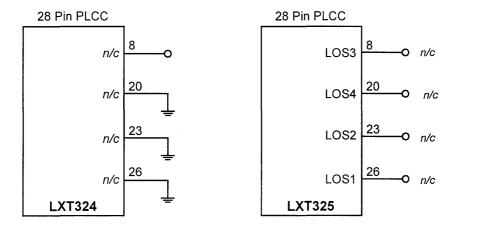
APPLICATION NOTE 54

AUGUST 1996 Version 0.0

Migration from LXT324 to LXT325 Design Guidelines

Board Design Overview

This Application Note explains how to upgrade an existing LXT324-based design to accommodate the LXT325 Quad Receiver. Although both the LXT324 and LXT325 are Quad T1/E1 receivers, PC board modifications are required for proper implementation of the LXT325. By using either the 28-pin DIP or PLCC package, you will have drop-in compatability at the chip level. The two devices are functionally similar. The only difference is in the availability of a Loss of Signal feature in the LXT325. The LXT325 has four LOS outputs—one for each receive channel.


The LXT324 Data Sheet recommends that pins 20, 23 and 26 be grounded (using the 28-pin PLCC package). These pins are LOS outputs on the LXT325 and are not grounded. The table below shows the pin changes for both the 28-pin DIP and 28-pin PLCC packages.

No other changes are required in the device upgrade. The LXT325 will give the same or better performance than its predecessor, with minimal effort in making the transition.

Table 1: Changes to Pin Configuration–LXT324 to LXT325

LXT324/325 Pin #		I XT204 Demoined	VT205 Demoined Dia		
28-pin DIP	28-pin PLCC	LXT324 Required Pin Status	LXT325 Required Pin Status	Comments	
7	8	Not Connected (n/c)	Not Connected (LOS3)	No PC board change	
19	20	Ground (GND)	Not Connected (LOS4)	PC board change	
22	23	Ground (GND)	Not Connected (LOS2)	PC board change	
25	26	Ground (GND)	Not Connected (LOS1)	PC board change	

Figure 1: Comparison of LXT324 and LXT325 Pin Configuration

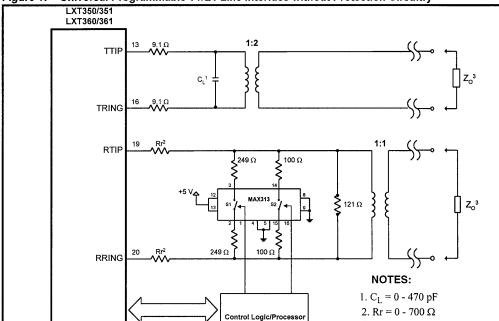
NOTE: Leave all LOS outputs (LOS1, LOS2, LOS3, LOS4) not connected when replacing the LXT324 with the LXT325 Receiver.

NOTES

APPLICATION NOTE 55 Universal 120/100/75 Ohm Transceiver Termination for the LXT35x/36x

Introduction

Termination Solutions

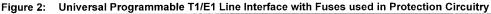

This application note describes an example of a universal transceiver termination for T1/E1 designs which implement Level One LXT350/51 and LXT360/361 transceivers.

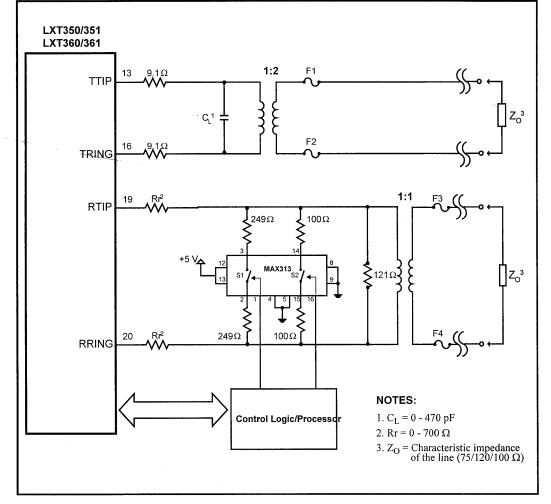
For each mode of operation (T1/E1), termination requirements differ. T1 designs require 100 Ω termination. At E1 rates, either 120 Ω or 75 Ω termination can be utilized. Programmable T1/E1 receiver termination helps to take full advantage of the universality of Level One LIUs.

Changes to the receive side of the LIU should be done in a way that they do not impair the performance of the LIU. Receiver range (sensitivity) and noise immunity should not be affected. Additionally, it is important that the added circuitry does not impact the compliance to industry standards for receive return loss. The best way to accomplish such requirements is to employ terminating resistors that are as close as possible to the characteristic impedance of the line (T1: 100 Ω ; E1: 120/75 Ω).

Figure 1 presents programmable resistive termination for both T1 and E1 designs, when deploying Level One Universal LIUs. Programmability is accomplished with a Maxim analog switch and control logic. In this case, the Max313, a quad single-pole/single-throw (SPST) analog switch, is used. The Max313 is normally open (NO) and features a low on-resistance (10 Ω maximum, 6.5 Ω typical). It offers low power consumption, low leakage over temperature, and low cost. A quad switch is recommended for designs with multiple T1/E1 ports per card. Single and dual analog switches are also available.

All shown resistors are standard values and 1% tolerance. The receive transformer has a 1:1 ratio, as recommended in the LXT360 data sheet. Table 1 shows how to select/program required termination resistance with switches S1 and S2. Resistors Rr are recommended to be between 0 and 700 Ω .

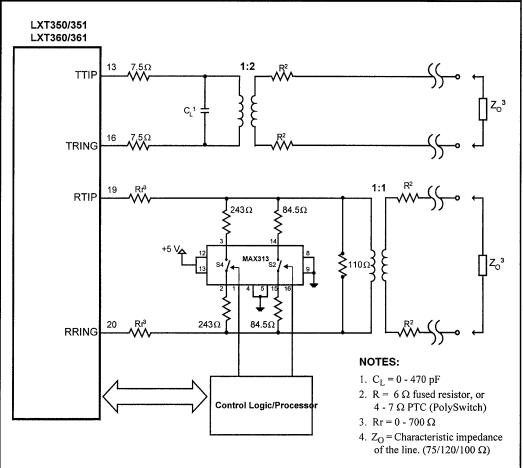

3. Z_0 = Characteristic impedance of the line (75/120/100 Ω)


PROTECTION CIRCUITRY

For the purpose of clarity, Figure 1 shows the basic configuration without power cross and lightning protection. However, most long-haul applications require protection circuitry. Figures 2 and 3 show how to design T1/E1 programmable L1U when protection circuitry is required. The design in Figure 2 utilizes fuses F1-F4, while Figure 3 employs PTCs or fused resistors. Fuses and resistors/PTCs are current-limiting components. A more extensive discussion on lightning and power-cross protection circuitry can be found in Application Note 47: *LXT360 Line Protection Circuitry*. When fuses are used in the protection circuit, all resistors should be the same as in Figure 1. Fuses have very low resistance (near 0 Ω), and have no impact on the transmitted signal amplitude or receiver input impedance.

Table 1: Impedance Options by Switch Setting	Table 1:	Impedance	Options by	Switch Setting
--	----------	-----------	------------	----------------

S1	S2	Impedance
Off	Off	120 Ω
Off	On	75 Ω
On	Off	100 Ω
On	On	Do Not Use



If the line card is protected by PTCs or fused resistors, the effect on line resistors must be taken into account. This includes reduction in the amplitude of the transmitted signal and changes to the input impedance on the receive side. To compensate, change the values of the resistors on both the transmit and receive side. Figure 3 shows a design with 6 Ω resistors or equivalent PTCs (PolySwitch). Notice that TTIP and TRING have changed from 9.1 Ω to 7.5 Ω . Also termination on the receive side is adjusted to compensate for protection resistors (R=6 Ω).

BOARD DESIGN RECOMMENDA-TION

It is prudent to keep signal paths between the transceiver and edge connector as short and symmetrical as possible. For best results, place the switching component very close to the LIU.

Figure 3: Universal Programmable T1/E1 Line Interface with Resistive Components used in Protection Circuitry

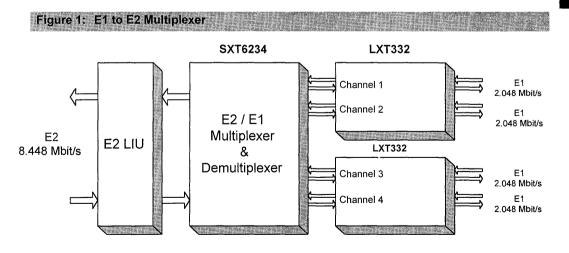
NOTES

APPLICATION NOTE 56

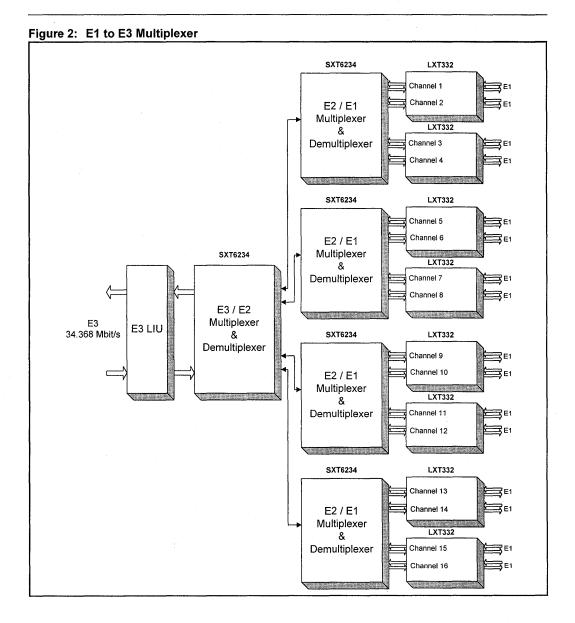
Designing an ITU G.742 Compliant PDH Multiplexer with the LXT332 Dual Transceiver

Introduction

This Application Note summarizes jitter performance requirements at the E1 line interface for digital multiplexing equipment as specified in ITU G.742. Appropriate conformance testing procedures using the SXT6234 PDH multiplexer device are explained. Typical performance results using the LXT332 E1 dual line interface are presented, showing that the combination of this transceiver with the SXT6234 provides a highly integrated solution when designing PDH multiplexing equipment with G.742 compliance requirements.

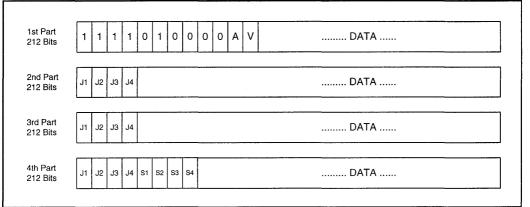

Recommendation G.742

APRIL 1997


The ITU-T recommendation G.742 specifies "second order digital multiplex equipment operating at 8448 Kbit/s and using positive justification". In other words, G.742 specifies the multiplexing of four E1 2.048 Mbps data streams into a single E2 8.448 Mbps signal using a positive justification mechanism. This kind of system can be easily implemented using the configuration shown in Figure 1.

The LXT332 dual E1 line interface provides a high level of integration and a digital crystal-less jitter attenuator. The SXT6234 provides a single chip solution for multiplexing the four E1 signals into one E2 8.448 Mbps aggregate signal. In addition, by using the configuration illustrated in Figure 2, an E1 to E3 multiplexer can also be easily implemented.

For the E1 tributary output ports, recommendation G.742 specifies that "the peak to peak jitter at a tributary output in the absence of input jitter should not exceed 0.25 UI when measured in the frequency range up to 100 KHz". The lower frequency limit should be as low as possible taking into account the limitations of measuring equipment.



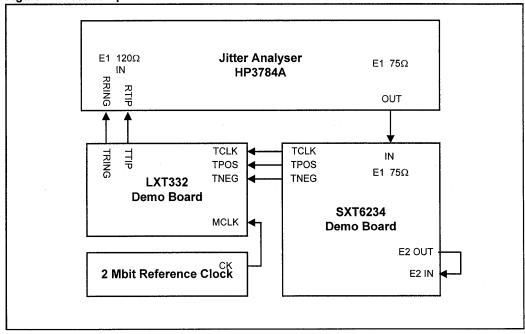
Designing an ITU G.742 Compliant PDH Multiplexer with the LXT332 Dual Transceiver

In the absence of jitter at the aggregate (E2) port, the two main sources of jitter that should be attenuated by the LXT332 jitter attenuator are the Multiplexing Jitter and the Stuffing Jitter. Both jitter sources result from extracting an E1 tributary out of the E2 frame. Figure 3 represents an E2 frame as described in G.742.

Multiplexing Jitter is due to clock gaps in the E1 transmission clock. These gaps occur as a result of discarding fixed control bits out of the E2 frame. This process translates into fixed 3-bit wide gaps from discarding the frame alignment word plus control bits (A,V) and 1-bit wide gaps from discarding the justification control bits (J1 to J4). These gaps occur at a fixed 8 KHz rate and have a fixed amplitude. The jitter component they originate is easily handled by the LXT332 jitter attenuator. Stuffing Jitter is a consequence of the positive justification mechanism used to build the E2 frame. This mechanism is necessary to adapt the tributary E1 clock rate to the aggregate E2 clock rate. Normally, the Sn bits (Stuff bits) in the E2 frame carry information pertaining to one of the tributaries. When a justification is needed to compensate for the asynchronous clock rates, the Sn bits do not carry information. At the demultiplexer end, the Jn bits (Justification control bits) indicate to the demultiplexer whether the Sn bits carry information. If the Sn bit does not carry information, the E1 transmission clock will be gapped at the Sn position. This process is known as destuffing. The jitter originated by this mechanism is stuffing jitter.

The LXT332 has been refined for operation in gapped clock jitter environments and meets G.742 jitter requirements. *

Figure 3: E2 Frame Structure


*Older LXT332 two-micron devices do not meet this specification. Please call your area Level One representative for more information about the availability of newer parts.

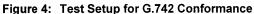

CONFORMANCE TESTING

Figure 4 illustrates the recommended configuration for G.742 conformance testing. The SXT6234 Evaluation Board is used in conjunction with the LXT332 Evaluation Board in order to perform the jitter measurements. The SDB6234 board is set to E1/E2 multiplexing (E1LLBA=ON). The E2 output is looped back to the E2 input, so that the incoming E1 data stream is multiplexed into an E2 signal and is demultiplexed back into E1 again. The SXT6234 board uses the LXT305A as the E1 line interface. The TCLK, TPOS and TNEG inputs to the LXT305A reproduce the effects of stuffing and destuffing that occurred within this multiplexing/demultiplexing process in the form of TCLK gaps. These three transmit signals are extracted from the SDB6234 board and delivered to the LXT332. The LXT332 demo board must be set with the jitter attenuator placed in the transmit direction and the equalizer control inputs set to 120 Ω E1 (LEN[2,1,0] = 001).

The conformance test will ensure that the output jitter of the LXT332 on the E1 transmit line is smaller than 0.25 UI in the frequency range up to 100 KHz. Configure the HP3784A jitter generator/analyzer to transmit a 75 Ω E1, HDB3 encoded, 2¹⁵ -1 pseudo-random pattern. The jitter analyzer on the HP3784A should be set to 120 Ω E1 and the jitter measurement filter to 100 KHz low pass (LP). For improved accuracy, the jitter measurements should be taken using the smaller measurement scale of 1 UI max. Provide an external free-running 2.048 MHz clock to be used as MCLK for the LXT332.

The stuffing jitter presented at TCLK is dependent on the E1 clock rate being fed to the SXT6234 demo board. Therefore, the LXT332 jitter attenuation performance should be tested with different E1 transmit clock rates coming from the HP3784 generator. Recommendation G.703 specifies that the E1 bit rate should be within \pm 50 ppm. The bit rate can be adjusted using the transmit clock offset feature on the HP3784A.

TYPICAL PERFORMANCE OF THE LXT332

Figure 5 presents the typical LXT332 jitter performance measured in the frequency band up to 100 KHz using the procedure described above. Data was taken using transmission clock offsets over the ± 90 ppm range. This extended range gives some margin to account for the MCLK allowable variation relative to the nominal 2.048 MHz frequency (±50 ppm).

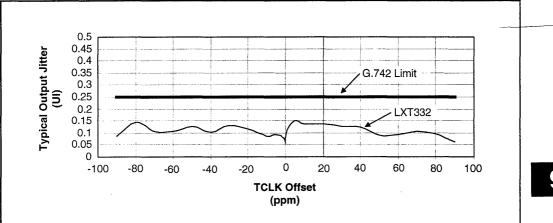


Figure 5: Typical LXT332 Performance

Designing an ITU G.742 Compliant PDH Multiplexer with the LXT332 Dual Transceiver

NOTES

TBR12/13 Compliant Design Solutions for LXT360

Introduction

This application note shows how to design an E1 Line Interface which complies with Common Technical Regulations 12 and 13 (CTR12/13) jitter transfer requirements. The LXT304A is implemented as a standalone jitter attenuator in this design.

The European Telecommunications Standards Institute (ETSI) drafted two types of standards that define harmonized requirements. The first, for which compliance is voluntary, is the European Telecommunications Standard (ETS). The ETS completely describes all details of the specified interface or equipment. The Technical Basis for Regulation (TBR) requirements are combined with regulatory provisions to form a Common Technical Regulation, or CTR.

In Europe there are two categories of 2.048 Mbps leased line service: unstructured and structured. Unstructured service provides a usable bit rate of 2048 kbps with no network-provided timing or framing support. TBR-12 defines the necessary technical requirements for unstructured service.

Structured service provides a usable bit rate of 1984 kbps with network framing support. TBR-13 defines the technical requirements for structured leased line service.

Maximum Output Jitter **Specifications**

TBR-12 and TBR-13 include a common Output Jitter section (5.2.1.4). For terminal equipment, this section defines a maximum output jitter of 0.11 UIpp for frequencies from 20 Hz to 100 kHz when measured with a bandpass filter (40 Hz -100 kHz). The input jitter is limited to 1.5 UIpp. The output jitter limit applies to equipment in configurations where output timing is derived locally as well as configurations where output timing is derived from one or more leased lines. These requirements also apply with a data rate offset of up to \pm 50 ppm from 2.048 MHz.

Design Considerations

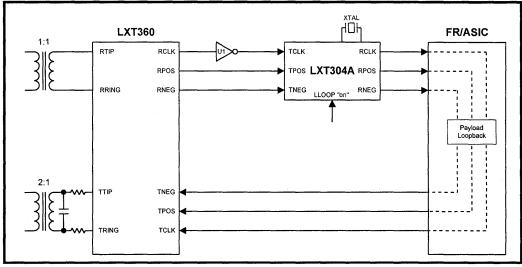
Not all the equipment designed for the E1 market has to meet TBR12/13. The designer must check with the product specification to determine if such performance is needed. Many designs rely on external VCXO-based PLL circuits added to the transceiver to make the jitter performance TBR12/13 compliant.

This application note shows how to design a TBR-12/13 compliant E1 interface using LXT360 as the line interface and LXT304A as a jitter attenuator. The LXT304A is a cost effective, single chip jitter attenuator for TBR12/13 applications. It provides more than 50% cost savings, as well as board space savings, compared to VCXO based solutions. The LXT304A incorporates an on-chip crystal oscillator, using an external pullable quartz crystal. A specification for the crystal is provided in Table 1 on page 83. The LXT304A may be placed at the receive side between the LIU and Framer/ASIC to improve jitter transfer performance.

Figures 1 and 2 show a TBR12/13 compliant solution with the LXT360, using LXT304A as a jitter attenuator. The LXT360 is shown in Hardware Bipolar Mode with JA set in the receive path. The LXT360 can also be configured in Host Bipolar or Unipolar Mode. The TBR12/13 jitter requirements must be met in normal end-to-end operation and in remote loopback (RLOOP) operation. Most framers also support payload loopback. This loopback may be utilized in place of RLOOP. Figure 1 shows how to design for payload loopback using the LXT360 and a standalone jitter attenuator.

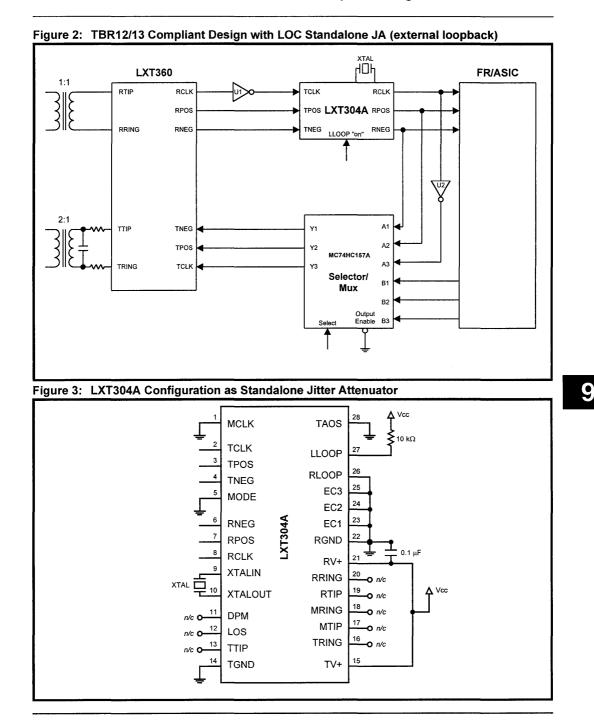
In cases where the framer does not support payload loopback, the solution shown in Figure 2 should be implemented. The 74HC157A Mux/Selector selects the transmit data either from the framer (normal operation) or from the receive path of the LIU (RLOOP mode), after it has passed the LXT304A jitter attenuator. Inverters U1 and U2 are needed to comply with the phase requirements between clock and data signals.

Refer to the LXT360 data sheet for detailed clock/data timing specifications. The U1 inverter may not be needed when the LXT360/61 is used in Host Mode. In Software Mode the LXT360/61 can use the rising or falling edge of RCLK to validate the RPOS/RNEG data. The inverter is


TBR12/13 Compliant Design Solutions for LXT360

required when the data is valid on the rising edge of RCLK (this operation applies to Hardware Mode or Host Mode when register CR3.PCLKE=0).

Figure 3 on page 81 shows the appropriate pin configuration for the LXT304A transceiver when used as a jitter attenuator for TBR12/13 compliant designs. Notice that the device is hard-wired for Hardware Mode of operation, with LLOOP turned on. All I/O pins marked as "n/c" are irrelevant for this application and should be left unconnected on the PC board. Refer to the LXT304A data sheet for a full device specification.


For best performance, an 8.192 MHz crystal should be placed as close as possible to pins 9 and 10 of the LXT304A. Table 1 on page 83 shows specific crystal requirements.

According to TBR12/13, input jitter varies with frequency, while maximum output jitter is constant at 0.11 UIpp. Figure 4 on page 82 illustrates the TBR12/13 specification. Figure 5 shows the worst case combined jitter attenuation performance of LXT360 and LXT304A. This solution provides very good margins within TBR12/13 requirements.

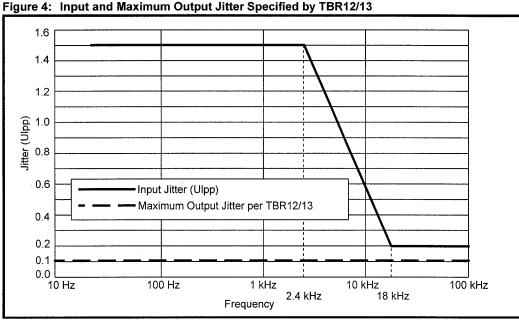
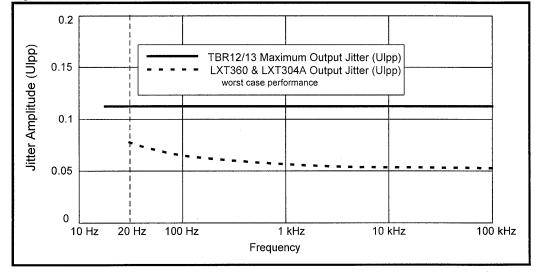


Figure 1: TBR12/13 Compliant Design with LOC Standalone JA (with payload loopback)



TBR12/13 Compliant Design Solutions for LXT360

Table 1: LXT304A Crystal Specifications

Parameter	Specification			
Frequency	8.192 MHz			
Frequency Stability	±20 ppm @ 25 °C			
	±25 ppm @ -40 to +85 °C			
	(ref 25 °C reading)			
Pullability (Pull range may be slightly asymmetrical)	CL = 19 pF to 37 pF, crystal should pull -95 ppm to -115 ppm from nominal frequency			
(run range may be singhtly asymmetrical)	CL = 19 pF to 11.6 pF, crystal should pull +95 ppm to +130 ppm from nom- inal frequency			
Effective series resistance	30 Ω maximum			
Crystal cut	AT			
Resonance	Parallel			
Drive level	2.0 mW maximum			
Mode of operation	Fundamental			
Crystal holder	HC49 (R3W), Co = 7 pF maximum			
	CM = 17 fF typical			
RECOMMENDATION: CXT8192	crystal manufactured by CTS Corporation, Tel: (815)786-8411			

NOTES

APRIL 1996

APPLICATION NOTE 9501 SXT6234 E-Rate Multiplexer

For 16-E1/E3 Multiplexer/Demultiplexer

Introduction

The SXT6234 E-Rate Multiplexer offers a simple and economic approach to building E1/E2, E2/E3 and E1/E3 multiplexers and demultiplexers. This application note provides the system designer with a 16E1/E3 multiplexer/ demultiplexer design example.

A brief overview of fundamental E1/E3 protocol is included to establish a common reference with readers. For additional information, refer to the ITU-T General Aspect of Digital Transmission Systems, Recommendations G.700-G.772. Related documentation includes the SXT6234 Data Sheet and the SDB6234 E1/E3 Demo Board User Guide.

E Standards

The International Telecommunication Union - Telecommunication Standardization Sector (ITU-T) standardized the E1, E2, and E3 specifications. The ITU-T was formerly known as the Consultive Committee for International Telephone and Telegraph (CCITT).

E Standard European Hierarchy

To accommodate higher transmission speeds, carriers developed the hierarchy levels shown in Table 1.

Table 1: E Standard Hierarchy

Level Number	System	Number of Voice Circuits	Bit rate Mbps
1	E1	30	2.048
2	E2	120	8.448
3	E3	480	34.368
4	E4	1920	139.264

E1 Standard

The El standard was designed to support transmission of thirty digitized voice channels. Analog-Digital conversion of each channel is based on the Nyquist sampling theory. This theory says that to digitize an analog signal so that it contains sufficient information to allow an accurate analog reconstruction, the signal must be sampled at a frequency that is at least twice the channel bandwidth. Sampling 8,000 per second is the industry-accepted rate. This rate allows the accurate reproduction of a voice-grade 4-kHz bandwidth channel.

The 8 kHz sampling produces a series of narrow pulses with a 125 microseconds (μ sec) period. The magnitude or height of each analog sample is digitally encoded as an 8 bit binary value. Furthermore, the sampling pulse has a duration of less than 4 μ sec during the 125 μ sec period. Consequently, it is possible to interleave sampled pulses from other signals within the 125 μ sec period. The E1 standard interleaves thirty-two channels; Thirty channels transmit digitized analog signals, and the remaining two channels send signaling and synchronization information. As shown in Table 2, each channel is assigned a specific time-slot.

Table 2: E1 Frame

Time slot Type of information				
0	Synchronization			
1-15	Speech			
16	Signaling			
17-32	Speech			
 Frame length = 256 bits Frame duration = 125 μsec The 32 time slots constitute a frame. Each slot is 8 bits. Consequently one frame is: 				

4. 8 bits x 32 time slots = 256 bits/frame

5. Since 8000 frames are transmitted each second, the bit rate is: 256 bits /frame x 8000 frames/second = 2.048 Mbps.

E2 Standard

The second level is the E2 standard. The E2 standard multiplexes four E1 channels into a single 8.448 Mbps channel (4 X 2.048 Mbps = 8.448 Mbps). Two recommendations, defined in ITU-T G.742 and G.745, exist for this multiplexing. The G.742 for the SXT6234 is shown in Table 3. The G.742 uses positive justification and is intended for digital paths between countries.

Bit Number	Bit Number by Set	Type of Information
1-10	1-10	Frame alignment
11	11	Alarm indication signal to the remote multiplex equipment
12	12	Bit reserved for national use
13-212	13-212	Bits from tributaries
213-216	1-4	Justification control bits Cj1
217-424	5-212	Bits from tributaries
425-428	1-4	Justification control bits Cj2
429-636	5-212	Bits from tributaries
637-640	1-4	Justification control bits Cj3
641-644	5-8	Bits from tributaries available for justification
645-848	9-212	Bits from tributaries available for negative justification

Table 3: E2 Frame Bit Assignments

E3 Standard

The third level is the E3 standard. The nominal bit-rate of 34.368 Mbps is the result of the multiplexing of four 8.448 Mbps E2 channels.

Bit Number	Bit Number by Set	Type of Information
1-10	1-10	Frame alignment
11	11	Alarm indication to remote digital multiplex equipment
12	12	Bit reserved for national use
13-384	13-384	Bits from tributaries
385-388	1-4	Justification service bits Cj1
389-768	5-384	Bits from tributaries
769-772	1-4	Justification service bits Cj2
773-1152	5 -384	Bits from tributaries
1153-1156	1-4	Justification service bits Cj3
1157-1160	5-8	Bits from tributaries avail- able for justification
1161-1536	9-384	Bits from tributaries

Table 5: E3 Frame Bit Assignments

Table	6:	E2	Frame	Bit	Usage
-------	----	----	-------	-----	-------

Maximum justification rate per

Standard

Table 4: E2 Frame

Bit rate Frame length

Frame duration

tributaries

Bits per tributaries

# of bits	10	1	1	200	4	208	4	208	4	4	204
Usage	Frame	AIS	NAT	E1	Jus	E1	Jus	E1	Jus	Aux	E1

G 742 8.448 Kbits/s

848 bits

205 bits

10 Kbit/s

100.39 µsec

Table 7: E3 Frame Bit Usage

# of bits	10	1	1	372	4	380	4	380	4	4	376
Usage	Frame	AIS	NAT	E2	Jus	E2	Jus	E2	Jus	Aux	E2

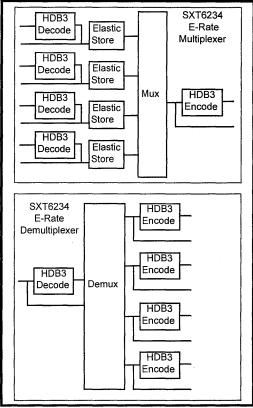
Multiplexing Method

The multiplexing method uses cyclic bit interleaving in the tributary numbering order. This conforms with the positive justification recommendation of ITU-T G.742 and G.751.

Standard	G.751
Bit rate	34 368 kbit/s
Frame length	1536 bits
Frame duration	44.7 µsec
Bits per tributaries	378 bits
Maximum justification rate per tributary	22.375 kbit/s

Justification

Justification is the process of changing the data rate of a digital signal from its inherent rate to a different rate without loss of information. Positive justification is a method by which the data rate used to convey a signal has a higher bitrate than the original signal. Positive justification is normally achieved by assigning some time-slots per frame to handle the additional information that may result from justification. If signal justification is unnecessary, these timeslots may contain regular channel information or they might remain empty. The justification digits or justification is defined by the Cjn bits (see E2 and E3 frame tables). Three bits are used to show the type of justification; the fourth bit is the stuffing bit.


The E-Rate Multiplexer

The SXT6234 is a single-chip solution for multiplexing four tributaries into one high speed bit stream and the demultiplexing of the high speed bit stream back into four tributaries. All required circuitry has been integrated into the SXT6234; there is no need for an external framer.

The SXT6234, fabricated with 1.2-micron CMOS technology, is packaged in a 100-pin PQFP package. This device consists of the multiplexer block, the demultiplexer block, four HDB3 Encoder/Decoders for each tributary, and one HDB3 Encoder/Decoder for the high speed stream.

• The SXT6234 supports two multiplexing formats: One multiplexes four E1 channels into one E2 channel. The other format multiplexes four E2 channels into one E3 channel. Both are fully compliant with ITU-T recommendations, G.742 and G.751 respectively.

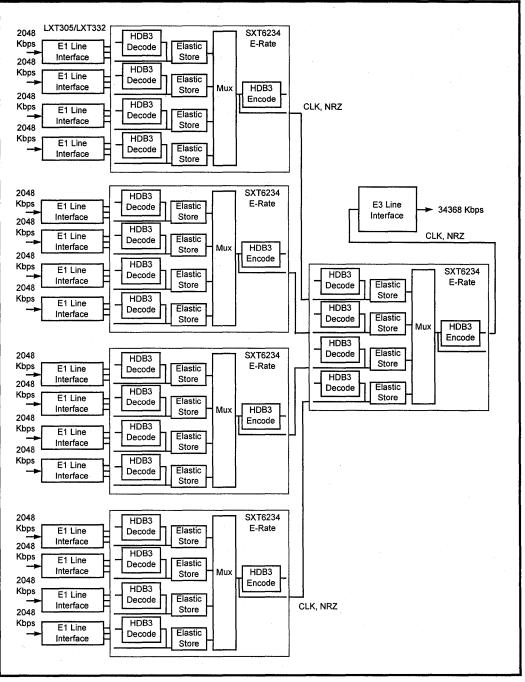
- All CODEC I/O pins are externally accessible, allowing either HDB3 or NRZ I/O to the multiplexer and demultiplexer. Alternatively, the SXT6234 can be used as a 5-channel HDB3 CODEC.
- Access is provided to the Alarm Indication Signal (AIS) and the National Bit.
- Four auxiliary low speed data or flag channels are available via the stuffing bits on each tributary channel.

Figure 1: SXT6234 E-Rate Multiplexer

E1/E3 Multiplexer Block Diagram

The block diagram of the E1/E3 Multiplexer is shown in Figure 2.

E1 LINE INTERFACE

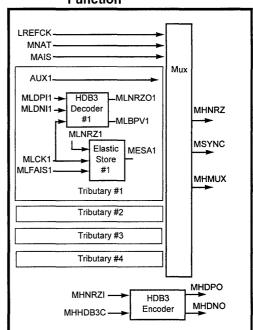

- · Receive clocks from the pulse data.
- Accepts either HDB3 encoded signals (clocks along with positive and negative RZ data), or NRZ data (clock and data). This depends on whether the Line Interface Unit (LIU) performs HDB3 coding.

SAN FRANCISCO TELECOM, INC. A LEVEL ONE COMMUNICATIONS COMPANY

Figure 2: E1/E3 Multiplexer

SXT6234, E1/E2 STAGE

- If the tributary LIU does not perform HDB3 decoding, then the signals are routed to the SXT6234 onboard HDB3 decoder. The inputs are the clock and the decoder data input signals (both positive and negative). The onboard HDB3 decoder then outputs NRZ data and clock to the Elastic Store of the multiplexer portion of the SXT6234.
- If the LIU provides HDB3 decoding, then the NRZ data and clock are sent directly to the elastic store of the multiplexer portion of the SXT6234 via the external pin.
- Each four-tributary group is interleaved into a single, intermediary E2 data stream. An onboard crystal oscillator drives the data from the multiplexer at the E2 rate of 8.448 MHz. A bit stuffing algorithm implemented in the SXT6234 ensures tributary rate integrity at the output. The SXT6234 contains elastic store buffers to manage the bit-stuffing process.
- The NRZ data is sent to a tributary of the E-Rate Multiplexer, stage E2/E3.


SXT6234, E3 STAGE

- If the tributary LIU does not provide HDB3 encoding, then encoding is performed in the SXT6234; positive and negative data output is provided. An activity monitor provides tributary fail notification when necessary.
- If the LIU provides HDB3 encoding, the NRZ data and clock are passed to the multiplexer input.
- The multiplexer portion of the SXT6234 interleaves the four asynchronous E2 rate NRZ data streams into a single E3 data stream. Depending on the user configuration, either an onboard crystal oscillator or an external reference clock drives the data output frequency from the multiplexer at the rate of 34.368 Mbps. The bit stuffing algorithm implemented in the SXT6234 ensures tributary rate integrity at the output.

E Multiplexer Block Diagram

The block diagram in Figure 3 shows the I/O used on the SXT6234 to accomplish the multiplexing function. Only I/O for tributary #1 has been referenced. I/O for tributaries #2, #3, and #4 are omitted for clarity, but they are the same as tributary #1.

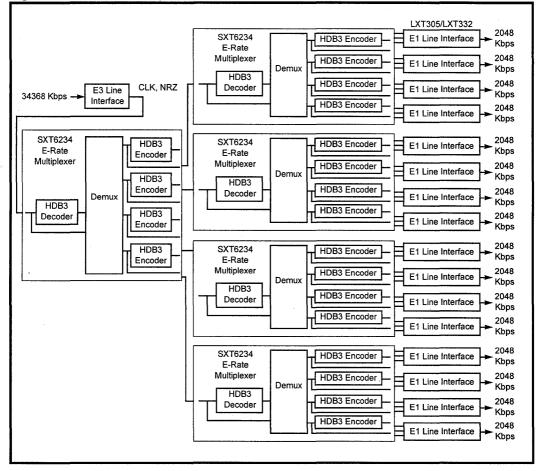
Figure 3: SXT6234 Multiplexing Function

E1/E3 Demultiplexer Block Diagram

The block diagram of the E1/E3 demultiplexer is shown in Figure 4.

E3 LINE INTERFACE

- · Receive clocks from the pulse data.
- If the LIU does not provide HDB3 decoding, then the LIU passes HDB3 encoded signals to the SXT6234. These signals consist of the clock and (positive and negative) RZ data.
- If the LIU does provide HDB3 decoding, then the LIU passes the NRZ data and clock to the SXT6234.



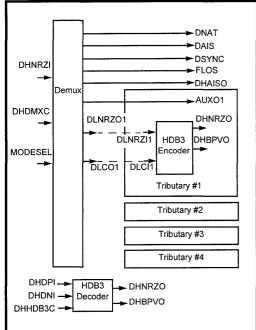
SXT6234, E3/E2 STAGE

- If the LIU does not do HDB3 decoding then the signals are routed to the SXT6234 onboard HDB3 decoder. The inputs are the clock and the decoder data input signals (both positive and negative). The onboard HDB3 decoder then outputs NRZ data and clock to the Elastic Store of the multiplexer portion of the SXT6234.
- If the LIU provides HDB3 decoding, NRZ data and clock are received by the demultiplexer portion of the SXT6234.
- The Four E2 rate data streams are recovered from the E3 NRZ data and are sent from the SXT6234 as four tributaries.

SXT6234, E2/E1 STAGE

- The demultiplexer portion of the SXT6234 recovers four E1 data streams from the E2 intermediary stream.
- If the LIU does not provide HDB3 encoding, the streams are HDB3 encoded and sent out as positive and negative voltages to the E1 line interface. (LXT305 or LXT332)
- If the LIU provides HDB3 encoding the stream is sent out as NRZ data to the E1 line interface.

Figure 4: E1/E3 Demultiplexer



E Demultiplexer Block Diagram

Figure 5 shows the I/O used on the SXT6234 to perform the demultiplexing function. Only I/O for tributary #1 has been referenced. I/O for tributaries #2, #3, and #4 are omitted for clarity, but they are the same as tributary #1.

Figure 5: SXT6234 Demultiplexing Function

Alarms

The multiplexer and demultiplexer sides contain the following alarm provisions:

- · Input Loss Alarms at all receive line interfaces.
- Output Fail Alarms at all transmit line interfaces.
- Frame Loss Alarm line.

With ME for multiplexer and DE for demultiplexer: i = 1 to 16 for E1 $\,$

i = 1 to 4 for E2

Alarm equations are:ME1FAISi=MELOSiDE1FAISi=DE2AISDj + DE2FLOSj + DE3LOS+DE3FLOS + DE3AISDME2FAISj=ME2LOSjDE2FAISj=DE3LOS + DE3FLOS + DE3AISDME3AIS=DE3LOS +(DE3FLOS&~DE3LOS) + DEAISD

Auxiliary Channels

Within the E2 and E3 standards, there are four extra bits used for justification (bits 641-644 in the E2 frame, and bits 1157-1160 in the E3 frame). These bits may be used as four auxiliary channels that would provide an E2 rate of 10 KHz, or an E3 rate of 22 KHz.

Two examples how these may be used are:

- · Voice Channel Maintenance.
- Data Counter implemented with a parity circuit that would count data bits during one frame of the incoming stream.

National and AIS Bits

The bits are accessible for compliance with the ITU-T recommendation. However, these two bits can also be used as auxiliary channel at the rate of 10 KHz for E2 or 22 KHz E3.

Microcontroller

E1/E3 multiplexer design can be improved by using a microcontroller to control the alarms and other settings. An 8 bit microcontroller, such as an Intel 87C51 is sufficient. The microcontroller could monitor alarms, provide an alarm history, update a control panel and even sound an audible alert if necessary. This microcontroller could monitor switches for loop-back instructions, test and update the National Bit, and check the configuration jumpers for E1/E2 or E2/E3 functions.

SAN FRANCISCO TELECOM, INC. A LEVEL ONE COMMUNICATIONS COMPANY

	Mux Input
LFRECK	Reference clock for tributary data is used as reference for the AIS functions.
MNAT	National Bit Input.
MAIS	AIS bit input.
MHMUXC	High speed multiplexer clock input.
	Tributary #1 Input
AUXI	Auxiliary data input #1. The signal on this pin is clocked into the frame at the stuffing bit location (J1) when justification is such that tributary data is not placed at this location. A high on alarm signal MESA1 indicates this condition during the current frame.
MLDPII	Positive data input. Clocked on the positive transition of the clock MCKL1.
MLDNI1	Negative data input. Clocked on the positive transition of the clock MCKL1.
MCKLI	Clock input for tributary channel 1.
MLFAIS1	Force AIS on tributary 1. Active high signal forces AIS (all 1) data and LREFCK clock.
	Tributary #1 Output
MLNRZO1	HDB3 decoder #1 NRZ output clocked on the rising edge of MCKL1.
MLNRZ1	Multiplexer tributary NRZ input clocked on the falling edge of the clock signal MLCK1.
MLBPV1	HDB3 decoder #1 bipolar violation alarm. This open collector output pulses when a bipolar violation occurs in the decoding process.
MESA1	Multiplexer justification status for tributary #1. A high indicates bit stuffing on the cur- rent frame. A low indicates an information bit. When externally filtered, this can be used to indicate elastic store failure or incorrect tributary frequency.
	Mux Output
MHRZO	Multiplexer NRZ output data is clocked out on the rising edge of MHMUXC.
MSYNC	Multiplexer frame synchronization pulse is one high speed clock cycle synchronous with the last bit of the frame.
	HDB3 Decoder
MHNRZI	HDB3 encoder #5 NRZ input clocked on the rising edge of MHHDB3C.
MHHDB3C	HDB3 encoder #5 clock input. When used in conjunction with the multiplexer, this pin should be tied to the multiplexer clock (MHMUXC).
MHDPO	HDB3 encoder #5 positive data output. Positive rail clocked out on the rising edge of MHHDB3C.
MHDNO	HDB3 encoder #5 negative data output. Negative rail clocked out on the rising edge of MHHDB3C.

Table 9: Multiplexer Pin Description

Table 10:Demultiplexer Pin	Description
	Demultiplexer Inpu

	Demultiplexer Input					
DHNRZI	NRZ input clocked on the rising edge of DHDMXC.					
DHDMXC	Clock input.					
MODESEL	Mode selection for multiplexer / demultiplexer operation. A low selects 4E1/E2 multiplexing. A high selects 4E2/E3 multiplexing.					
	HDB3 Decoder					
DHDPI	HDB3 decoder #5 positive rail input clocked on the rising edge of DHHDB3C.					
DHDNI	HDB3 decoder #5 negative rail input clocked on the rising edge of DHHB3C.					
DHHDB3C	Clock input for HDB3 decoder # 5. When used in conjunction with the demultiplexer this pin should be tied to the demultiplexer clock DHMUXC.					
DHNRZO	HDB3 decoder #5 NRZ data clocked out on the rising edge of DHHDB3C.					
DHBPVO	HDB3 decoder #5 bipolar violation alarm. This active high signal pulses when a bipolar violation occurs in the decoding process.					
	HDB3 Encoder					
DLNZO1	Tributary #1 NRZ output. This signal is clocked out on the rising edge of DHDMXC and transitions are coincident with the falling edge of DLCO1.					
DLCO1	Demultiplexer side recovered clock of tributary #1. This clock has a duty cycle of 75% and is gapped at points in the frame where tributary data is not present. The maximum gap is 3 clocks at the frame word will match that of the far end multiplexer tributary input. This signal is clocked out on the rising edge of DHDMXC.					
DLNRZI1	HDB3 encoder #1 NRZ input clocked on the rising edge of DLCI1.					
DLCI1	Clock input for HDB3 encoder #1.					
	Multiplexer Output					
DNAT	National Bit output.					
DAIS	AIS bit output.					
DSYNC	Pulse of one high speed clock cycle synchronous with the last bit of the frame.					
FLOS	Loss of frame alarm. Active high frame loss alarm that occurs when the demux has not detected the frame word.					
DHAIS	Input AIS detect. Active high alarm occur when an all 1's condition (AIS) is detected at the DHNRZI input. This alarm does not trip if the input is a frame signal (i.e., all tributaries are AIS on the multiplexer side).					
	Auxiliary #1 Output					
AUX01	Auxiliary flag data #1 output that contains data value input on AUX1.					
DLDPO1	HDB3 encoder #1 positive rail output clocked out on the rising edge of DLCI1.					
DLDN01	HDB3 encoder #1 negative output clocked out on the rising edge of DLCI1.					

NOTES

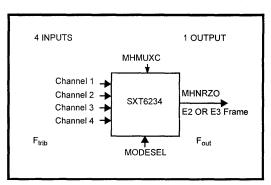
APPLICATION NOTE 9601

DECEMBER 1996 REVISION 1.0

SXT6234 E-Rate Multiplexer

For Multiplexing/Demultiplexing any 4 data channels

Introduction


Multiplexing Method

The SXT6234 E-Rate Multiplexer offers a simple and economic approach to building E1/E2, E2/E3 and E1/E3 multiplexers and demultiplexers compliant with the International Telecommunication Union - Telecommunication Standardization Sector (ITU-T). See Application Note 9501. However by changing the high speed reference clock the SXT6234 could be used in non-standard application to multiplex/demultiplex any four digital channels provided they all have the same data speed. The data speed could range from 256 kbps to 9 Mbps and give an output four time faster ranging from 1 Mbps to 36 Mbps.

This application note provides the system designer with a design example on how to multiplex and demultiplex four data channels with an input speed referred herein as F $_{trib}$.

The SXT6234 utilizes the E frames structure to transport data. Therefore two tables for E2 and E3 frames are included to establish a common reference with readers. Related documentation includes the SXT6234 data sheet and Application Note AN 9501.

The multiplexing method uses cyclic bit interleaving in the tributary numbering order. This conforms with the positive justification recommendation of ITU-T G.742 and G.751.

# of Bits	10	1	1	200	4	208	4	208	4	4	204
Usage	Frame	AIS	NAT	Data (Table 3)	Cj	Data (Table 3)	Cj	Data (Table 3)	Cj	Ji	Data (Table 3)

Table 2: E3 Frame Bit Usage

# of Bits	10	1	1	372	4	380	4	380	4	4	376
Usage	Frame	AIS	NAT	Data (Table 3)	Cj	Data (Table 3)	Cj	Data (Table 3)	Cj	Ji	Data (Table 3)

Table 3: Data: interleaved bit channels

# of Bits	1	1	1	1	1	1	1	1
Usage	Channel 1	Channel 2	Channel 3	Channel 4	Channel 1	Channel 2	Channel 3	Channel 4
	bit 1	bit 1	bit 1	bit 1	bit 2	bit 2	bit 2	bit 2

MULTIPLEXING 4 CHANNELS

Mode selection

The SXT6234 supports two modes: E12 or E23. The pin to select the mode is MODESEL. Modesel is low for E12 mode. Modesel is high for E23 mode. See E12 and E23 mode choice paragraph for more information

Clock

MCKLx (x=1 to 4) is the clock input for tributary channel #x. MHMUXC is the multiplexer high speed clock input and defines the NRZ high speed output data rate.

Clock Rate

The data rate of all the tributaries is defined as F_{trib} MHMUXC =(8,448/2,048) * F_{trib} in E12 mode or (34,368/ 8,448) * F_{trib} in E23 mode. The value of F_{trib} could be from 256 Kbits/s to 9 Mbps MCKLx = F_{trib}

Data rate tolerance

By using the stuffing bits, the data rate between the 4 channels F_{trib} could be slightly different. The tolerance is +/- 50 ppm in E12 Mode and +/- 30 ppm in E23 Mode.

Data

MLNRZ1: is the data input for tributary one. The data are NRZ coded and do not need to go throught the HDB3 decoder. This data could be any NRZ data stream and do not need to conform to a E1 or E2 frame format.

Output Stream

The output will be NRZ data conforming to either the E2 or E3 frame format. The E2 frame (see table 3) contains 205 bits of tributary channel #x over 848 bits. The E3 frame (see table 4) contains 378 bits of tributary channel # x one over 1,536 bit. Bits from the tributaries will be interleaved in tributaries order 1,2,3,4.

DEMULTIPLEXING

Use the same clock speed as MHMUXC on DHDMXC. The SXT6234 can demux the output stream and data output from the tributary channel #1 are available on DLNZ01. Remark: it is best to mux and demux with the SXT6234 on both sides. The SXT6234 expects a E2 or a E3 frame at the demux input and won't work with any type of data stream at the demux input.

E12 AND E13 MODE CHOICE

The main differences between the two modes in a non-standard environment are minimal:

- frame length

E12: 848 bits E13: 1536 bits

- total overhead

E12 28/848 = 3.5% E23 28/1536 = 1.8%

-overhead channel data rate

 $E12 = F_{out} / 848$ $E13 = F_{out} / 1536$

JUSTIFICATION: CJ BITS

Justification is the process of changing the data rate of a digital signal from its inherent rate to a different rate without loss of information. Positive justification is a method by which the data rate used to convey a signal which has a higher bit-rate capacity than the original signal. Positive justification is normally achieved by assigning time-slots per frame to handle the additional information that may result from justification. If signal justification is unnecessary, these time-slots may contain regular channel information or they might remain empty. The justification service digits indicate if these time-slots contain information digits or justifying digits. The justification control signal in E standard is defined by the Cj bits (see E2 and E3 frame tables). Three bits are used to show the type of justification a majority decision used to recover the justification.

JUSTIFICATION: JI BITS

Within the E2 and E3 standards, there are four extra bits used for justification (bits 641-644 in the E2 frame, and bits 1157-1160 in the E3 frame). If not used for justification, these bits may be used as four auxiliary channels with an approximate speed of $0.4*F_{out}$ /848 kHz for E2 mode or $0.4*F_{out}$ /1536 kHz for E3 mode

- Voice Channel Maintenance.
- Data Counter implemented with a parity circuit that would count data bits during one frame of the incoming stream.

NATIONAL AND AIS BITS

The bits are accessible for compliance with the ITU-T recommendation. However, these two bits can also be used as auxiliary channel at the rate of F_{out} /848 kHz for E2 mode or F_{out} /1536 kHz for E3 mode

MICROCONTROLLER

E1/E3 multiplexer design can be improved by using a microcontroller to control the alarms and other settings. An 8 bit microcontroller, such as an Intel 87C51 is sufficient. The microcontroller could monitor alarms, provide an alarm history, update a control panel and even sound an audible alert if necessary. This microcontroller could monitor switches for loop-back instructions, test and update the National Bit, and check the configuration jumpers for E1/ E2 or E2/E3 functions.

APPLICATION EXAMPLES

T-Rate multiplexer

Multiplexing 4 T1 (F_{trib} = 1,544 bits/s) or multiplexing 4 T2 (F_{trib} = 6,176 bits/s)

Warning the output of the multiplexer is not a T2 or T3 frame. The T1 or T2 bits are multiplexed in the E2 or E3 frame. This a non-standard compliant application for propiratory systems.

For multiplexing 4 T1:X= 1,544

- MHMUXC_{E12} = 6,369 kHz
 - AIS = 7.54 kHz
 - NAT = 7.54 kHz
- MHMUXC_{E23}= 6,281 kHz
 - AIS = 4 kHz
 - NAT = 4 kHz

MPEG multiplexer

Broadcast quality video television signals, encoded MPEG 1 or 2, have bit rates ranging from 1.5 Mbps to 9 Mbps. The SXT6234 could be used to mulitplex four MPEG encoded video signals into one high-speed signal for transmission.

DSL multiplexer

With rate ranging from 384 Kbps to 6 Mbps at the end user location, the SXT6234 could be use to design a multiplexer at the distribution point. Twenty SXT6234 could be used to multiplex 64 DSL channels at 384 Kbps.

Double rate E1/T1 single board multiplexer

In the case of a point to point and point to multipoint application, it is possible to design one single board which will do either 4E1 or 4T1 operation by adjusting the clock speed. Same thing for 8E1 or 8T1.

NOTES

JULY 1997 Revision 0.0

Transformer Specifications

for Level One Transceiver Applications

Transformer Specifications

Txcvr Part Number	Frequency (kHz)	Turns Ratio (±2%)	Primary Inductance (μΗ - Min)	Leakage Inductance (µH - Max)	Interwinding Capacitance (pF - Max)	Primary Resistance (Ω - Max)	Dielectric Breakdown (Vrms - Min)
LXT300Z LXT301Z Rx & Tx	1544/2048	1:2 CT	600 Pri	0.75 Pri	50	1.0 Pri 1.0 Sec	500
LXT304A LXT305A LXT307 Rx	1544/2048	1:2 CT	600 Pri	0.75 Pri	50	1.0 Pri	500
LXT304A LXT305A Tx	1544/2048	1:1.15 1:2 CT 1:1 1:1.126	600 Pri	0.75 Pri	50	1.0 Pri 1.0 Sec	500
LXT331 LXT332 Tx & Rx	1544/2048	1:2 CT 1:1.15 1:2.3	1200 Pri	0.5 Pri	25	1.0 Pri	1000
LXT334 LXT335 Tx & Rx	1544/2048	1:2 1:1.36 1:1.26	1200 Pri	0.4 Pri	30	1.0 Pri	1000
LXT310 LXT318 LXT350/351 LXT360/361 Rx	1544/2048	1:1 CT	600 Pri	0.75 Pri	50	1.0 Pri 1.0 Sec	1500
LXT310 LXT318 LXT350/351 LXT360/361 Tx	1544/2048	1:2 CT	600 Pri	0.75 Pri	50	1.0 Pri 1.0 Sec	1500
LXT325 Rx only	1544/2048	1:2:2	600 Pri	0.75 Pri	50	1.0 Pri 1.0 Sec	500
LXT312/15 LXT313/16 Rx	1544/2048	1:1 CT	1000 Pri	1.0 Pri	25	1.0 Pri 1.0 Sec	1000
LXT312/15 LXT313/16 Tx	1544/2048	1:1 CT :3 CT	1000 Pri	1.0 Pri	25	1.0 Pri 1.0 Sec	1000
LXT400 LXT441 Rx & Tx	1544/2048	1:1	700 Pri	22-43 Pri	350	1.0 Pri 1.0 Sec (± 1 Ω)	1000

Transformer Specifications for Level One Transceiver Applications

Transceiver	Application	Part Number	Manufacturer
LXT300Z/301Z	Tx	PE-64931, PE-64951	Pulse
LXT304A/305A		67112060, 67115100	Schott Corporation
		0553-5006-IC	Bell Fuse
		671-5832	Midcom
		6500-07-011	Nova Magnetics
		FE 8006-55, 8006-85	Fil-Mag
		16Z5946	Vitec
LXT310	Tx	0553-5006-IC	Bell Fuse
LXT318	(1:2)	66Z1308	Fil-Mag
LXT350/351		671-5832	Midcom
LXT360/361		65351, 65771	Pulse
		67127370, 67120850	Schott Corporation
		TD61-1205D, TG27-1205N1 (combination Tx/Rx)	HALO Electronics
		16Z5946	Vitec
LXT310	Rx	FE 8006-155	Fil-Mag
LXT318	(1:1)	671-5792	Midcom
LXT350/351		64936, 65778	Pulse
LXT360/361		67130840, 67109510	Schott Corporation
		TD61-1205D, TG27-1205N1 (combination Tx/Rx)	HALO Electronics
		16Z5934	Vitec
LXT312/315	Tx	12535	Schott Corporation
		FE 8006-175	Fil-Mag
LXT312/315	Rx	10951	Schott Corporation
		FE 8006-155	Fil-Mag
LXT332	Tx Rx	PE-65351, PE-68841	Pulse
	(1:2) (1:2 CT)	16Z5946	Vitec
		TG29-1205NX	HALO Electronics
		ST5174T	Valor
	(1:2 CT) (1:2 CT)	ST5086	Valor
		T1006, PE68841	Pulse
		TD15-1205A	HALO Electronics
	(1CT:2CT) (1CT:2CT)	ST5028	Valor
		PE65761	Pulse
	(1:2.3)	T1017	Pulse

Table 4:	Transformer	Manufacturers

Transformer Specifications for Level One Transceiver Applications

Transceiver	Application	Part Number	Manufacturer
LXT331	Rx	671-7816	Midcom
	(1:1)	ST5085	Valor
		PE65764	Pulse
LXT334	Tx	671-6599, 671-7815	Midcom
LXT335	(1:1.26, 1:1.36, 1:2)	ST5170T, ST5078, ST5143, ST5174T	Valor
		T1010	Pulse
LXT334	Rx	ST5085	Valor
LXT335	(1:1)		

Table 4: Transformer Manufacturers - continued

Transformer Specifications for Level One Transceiver Applications

NOTES

JULY 1997 Revision 0.0

Quartz Crystals

for Level One T1/E1 Transceivers

General Information

The Level One LXT300Z, LXT304A, LXT305A, LXT310 and LXT318 transceivers require quartz crystals as companion devices. For the convenience of our customers, Level One buys crystals in volume from a qualified vendor stocks them and resells them at reasonable prices, in conjunction with Level One transceivers.

The LXC6176 is used in T1 applications, and the LXC8192 is used in E1 applications. Specifications for the LXC6176 and LXC8192 crystals are listed below.

Level One has evaluated and qualified several vendors for the benefit and convenience of our customers. We believe customers prefer to have multiple approved sources. Quartz crystals qualified for use with Level One transceivers are listed on the next page. We suggest that customers establish relations with one or more of these approved crystal suppliers and buy direct.

Crystal Specifications

Parameter	T1 Applications	E1 Applications
Frequency	6.176 MHz	8.192 MHz
Frequency stability	±20 ppm @ 25 °C ±25 ppm from -40 °C to 85 °C (Ref 25 °C reading)	±20 ppm @ 25 °C ±25 ppm from -40 °C to 85 °C (Ref 25 °C reading)
Pullability	$CL = 11 \text{ pF} - 18.7 \text{ pF}, +\Delta F = 175-195 \text{ ppm}$ $CL = 18.7 \text{ pF} - 34 \text{ pF}, -\Delta F = 17-195 \text{ ppm}$	CL = 19 pF - 11.6 pF, $+\Delta F = 95-130$ ppm CL = 18.7 pF - 37 pF, $-\Delta F = 95-115$ ppm
Effective series resistance	40 Ω maximum	30 Ω maximum
Crystal cut	AT	AT
Resonance	Parallel	Parallel
Maximum drive level	2.0 mW	2.0 mW
Mode of operation	Fundamental	Fundamental
Crystal holder	HC49 (R3W), Co = 7 pF maximum CM = 17 fF typical	HC49 (R3W), Co = 7 pF maximum CM = 17 fF typical

Table 5:	Qualified	Quartz	Crystals
----------	-----------	--------	----------

Manufacturer	Part Number	Frequency
M-Tron	MP-1 3808-010, MP-1 4144-002	6.176 MHz
Monitor Products	MSC-1311-01B-6.176	6.176 MHz
Monitor Products	MSC-1311-01B-8.192	8.192 MHz
CTS Knights	6176-180	6.176 MHz
CTS Knights ¹	8192-100	8.192 MHz
Valpey Fisher	VF49A16FN1-6.176	6.176 MHz
Valpey Fisher	VF49A16FN1-8,192	8.192 MHz
US Crystal	U18-18-6176SP	6.176 MHz
US Crystal	U18-18-8192SP	8.192 MHz
1. CTS Knights #8192-100 offers	s superior jitter attenuation to meet the CTR-12/13 jitte	r requirements for E1 applications.

Telecom Product Evaluation Boards

10

For information regarding pricing and availability of Telecom Product Evaluation Boards, please contact your local Level One sales representative.

USER GUIDE

APRIL 1996

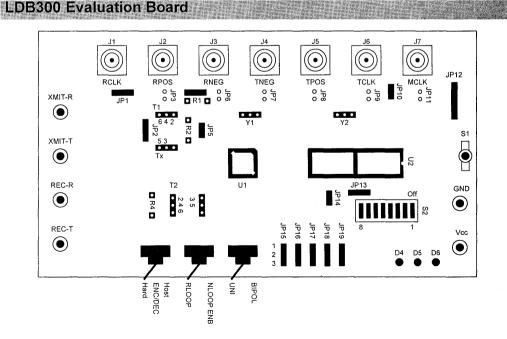
LDB300

Evaluation Board for T1/E1 Transceivers

General Description

The LDB300 Evaluation Board is a versatile evaluation tool for Level One Communications short-haul and long-haul T1/E1 transceivers. The Evaluation Board works with any of the following:

Short-Haul Transceivers	Long-Haul Transceivers
LXT300Z/LXT301Z	LXT310(T1)
LXT304A/LXT305A	LXT318(E1)


This data sheet describes using the Evaluation Board with the LXT300 transceiver in both T1 (North American) and E1 (European) environments. We have also included information to set it up with the other short-haul transceivers.

A later section has similar information describing applications in a long-haul environment using both the LXT310 and LXT318 transceivers.

To use this document, have the current data sheet for the chosen transceiver to insure having the correct information available.

Features

- Board design permits fast set-up, ease of use and clear visibility of application settings
- On board sockets accept either 6.176 or 8.192 MHz crystal for jitter attenuation
- · Flexible design for numerous termination schemes
- · On-board switches for Hardware Mode operation
- Ribbon-cable, serial-interface connector for Host Mode operation
- · Banana jacks for quick TP and power connections
- BNC connectors allow tracing signals with oscilloscope
- · LEDs indicate LOS, BPV and DPM conditions
- · Design supports either short- or long-haul transceiver
- On-board sockets for both DIP and PLCC package

CELEVEL ONE.

LDB300 Evaluation Board for Quad E1 Application

MAY 1996

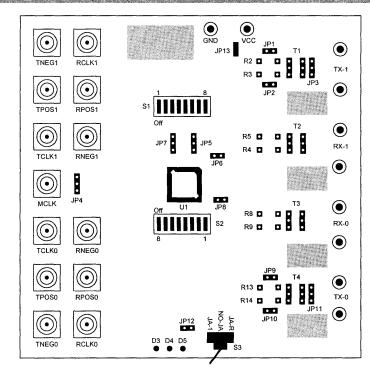
USER GUIDE

Evaluation Board for T1/E1 Applications

General Description

The LDB332 Evaluation Board is a versatile evaluation tool for engineers involved in designing T1/E1 short-haul applications. It uses an LXT332 Dual Line Interface Unit (DLIU) and incorporates all supporting circuitry for either T1 or E1 applications using the DLIU.

The Evaluation Board provides banana jacks for the line interface and BNC connectors for the framer interface. A bit error rate tester (bert) or framer/mux may be used to provide the external signal needed for evaluation.


This document describes typical Evaluation Board setup procedures for both T1 (North American) and E1 (International) environments.

Before using the Evaluation Board, review the current LXT332 DLIU data sheet for complete information about this transceiver. An Evaluation Board schematic is also available.

Features

- Board design permits quick setup, ease of use and clear visibility of application settings
 - Local DLIU testing
 - Complete system evaluation
 - Individual circuit isolation
- · Exploits crystal-less jitter attenuation of DLIU
- Jitter attenuation switchable into either transmit or receive data path
- Two twisted-pair line interfaces and all related digital signals available for analysis and testing
- · Banana jacks for twisted-pair line interface
- · BNC connectors for clock and framer interface
- · LEDs indicators for DFM and LOS
- Design supports both E1 and T1 evaluation
- · Switches emulate stand-alone Hardware Mode

LDB300 Evaluation Board

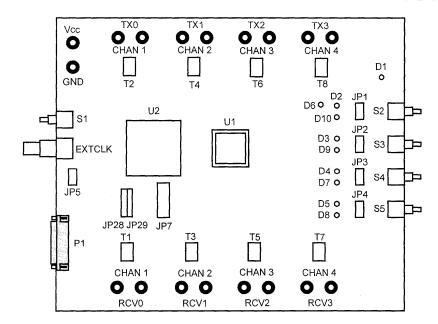
10

LDB300 Evaluation Board for Quad E1 Application

USER GUIDE LXD334 Evaluation Board for Quad E1 Applications

General Description

The LDB334 Evaluation Board is a versatile tool for engineers designing E1 short haul applications. To evaluate the LXT334 Quad E1 Transceiver (64-pin QFP), the specific evaluation board part number is LXD334-64.


This board is designed to operate in two modes: Software Control Mode and Hardware Mode. In Software Control Mode, most device and individual channel control signals are controlled through a PC based configuration and monitoring program. In Hardware Mode, the device and channel controls are set using shorting blocks and toggle switches.

On-board LED indicators identify test conditions and transmission errors in both modes. The board provides banana jacks for power and for line interfaces. 10-pin connectors are provided for each framer interface. Either a framer/mux or a bit error rate tester (BERT) may provide the external signals for evaluation. Toggle switches control settings for bipolar or unipolar operation, and selection of on-board MCLK frequency. A 50 Ω terminated BNC connector provides the option to use an externally generated MCLK.

Features

- · Banana jacks for power and line interfaces
- · 10-pin connectors for clock and framer interfaces
- LED indicators for DFM, LOS, BPV and DCB Mode indication
- On-board oscillator and clock adapter for 1.544/2.048 MHz clock generation
- · ZIF QFP socket for easy swapping of LXT334
- Switches and shorting blocks for Hardware Mode operation
- PC parallel port compatible interface and software for ease of use
- Quick setup and clear visibility of application settings
 Local LIU testing
 - Complete system evaluation
 - Individual circuit isolation
- Socketed transformer and termination components for easy experimentation

LXD334 Evaluation Board

ELEVEL ONE.

10

JUNE 1997

Revision 0.0

LXD334 Evaluation Board for Quad E1 Application

USER GUIDE

AUGUST 1996 Revision 1.0

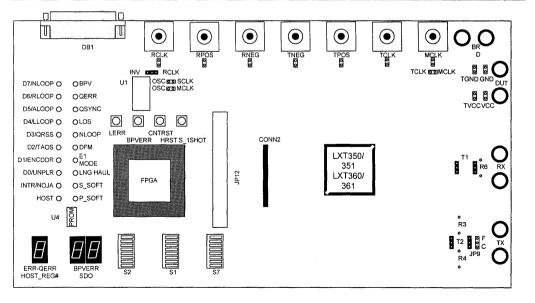
LDB350/360 Evaluation Board

for T1/E1 Short- and Long-Haul Applications

General Description

The LDB350/360 Evaluation Board (Eval Board) is a versatile tool for engineers involved in designing T1/E1 short- or long-haul applications. It uses an LXT350, LXT351, LXT360 or LXT361 Line Interface Unit (LIU) and incorporates all supporting circuitry for either T1 or E1 applications. The LXT360/361 is the universal long-haul and short-haul transceiver. The LXT350/351 is the dedicated short-haul counterpart.

The LDB350/360 provides connector jacks for the line interface and BNC connectors for the framer interface. A bit error rate tester (BERT) or framer/mux may be used to provide the external signals needed for evaluation.


This document describes typical Eval Board setup procedures for both T1 and E1 environments.

Before using the Eval Board, review the latest LXT350/ 351 or LXT360/361 LIU data sheet for the most current information about these transceivers.

Features

- Quick setup, ease of use and clear visibility of application settings for:
 - Local LIU testing
 - Complete system evaluation
 - Individual circuit isolation
- Exercises crystal-less jitter attenuation of LIU
- Jitter attenuation switchable into either transmit or receive data path
- Twisted-pair line interface and all related digital signals available for analysis and testing
- · Connector jacks for twisted-pair line interface
- · BNC connectors for clock and framer interface
- · LED indicators for major features
- · Design supports both E1 and T1 evaluation
- Switches emulate stand-alone Hardware Mode and Software Mode with Serial Interface to the Host (for the LXT350 and LXT360)
- The LXT351 and LXT361 are controlled exclusively via an 8-bit parallel interface to the Host

LDB350/360 Evaluation Board

APRIL 1996

USER GUIDE

LDB70206

HDSL Evaluation Kit for 784 kbps Applications

General Description

The HDSL Evaluation Kit is a versatile tool for design engineers working with 784 kbps HDSL communications applications. The Development Kit for the Data Pump incorporates all the supporting circuitry needed for end-toend testing of one HDSL line without external hardware or software. The Development Kit also supports connections to an external HDSL framer/mux and microprocessor to facilitate the development of a complete 2- or 3-loop HDSL system.

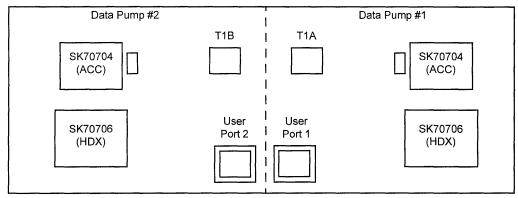
The Evaluation Kit includes two printed circuit boards that connect to each other through two PGA sockets:

- · The HDSL Data Pump Development Board includes the power, signal, and digital data interfaces
- · The HDSL Board contains the Data Pump and its supporting circuitry

The Evaluation Kit uses either of the two Data Pump control options:

- · Hardware Control Mode (set up with DIP switches)
- · Host Control Mode (set up through an external microprocessor)

Standard cable connectors and pin headers permit connection to signal analyzers, bit error rate testers (BERT), line emulators, and other instrumentation.


The Evaluation Kit design includes an RS422 interface for customized setups and RS449 interfaces for BERT connections.

Features

- · Includes two complete Data Pumps and all supporting circuitry
- · Facilitates system-wide design and evaluation
- RS449 connectors for BERT attachments
- RS422 connections for customized testing
- · RJ45 connectors for twisted pair connections
- · Hardware Mode operation uses DIP switches to control Data Pumps
- Host Mode operation using an external processor
- · Basic error rate testing using all ones data requires only received clock and received data signals.
- Link Active indicator LEDs

· Independent reset switches for each loop

HDSL Data Pump Board

APRIL 1996

USER GUIDE

LDB70207

HDSL Evaluation Kit for 1168 kbps Applications

General Description

The HDSL Evaluation Kit is a versatile tool for design engineers working with 1168 kbps HDSL communications applications. The Evaluation Kit for the Data Pump incorporates all the supporting circuitry needed for end-to-end testing of one HDSL line without external hardware or software. The Evaluation Kit also supports connections to an external HDSL framer/mux and microprocessor to facilitate the development of a complete 2-loop HDSL system.

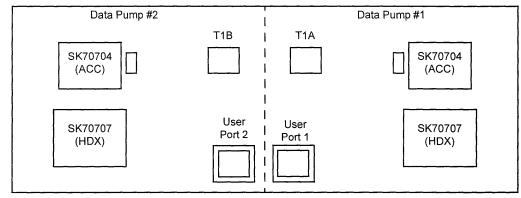
The Evaluation Kit includes two printed circuit boards that connect to each other through two PGA sockets:

- The HDSL Data Pump Development Board includes the power, signal, and digital data interfaces
- The HDSL Board contains the Data Pump and its supporting circuitry

The Evaluation Kit uses either of the two Data Pump control options:

- Hardware Control Mode (set up with DIP switches)
- Host Control Mode (set up through an external microprocessor)

Standard cable connectors and pin headers permit connection to signal analyzers, bit error rate testers (BERT), line emulators, and other instrumentation.


The Evaluation Kit design includes an RS422 interface for customized setups and RS449 interfaces for BERT connections.

Features

- Includes two complete Data Pumps and all supporting circuitry
- · Facilitates system-wide design and evaluation
- · RS449 connectors for BERT attachments
- · RS422 connections for customized testing
- RJ45 connectors for twisted pair connections
- Hardware Mode operation uses DIP switches to control Data Pumps
- · Host Mode operation using an external processor
- Basic error rate testing using all ones data requires only received clock and received data signals
- Link Active indicator LEDs

- 10
- Independent reset switches for each loop

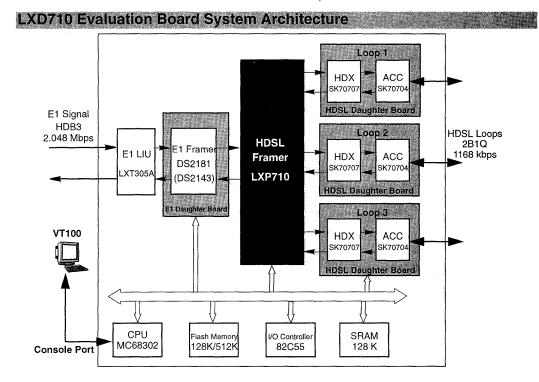
HDSL Data Pump Board

ISER GUIDE LXD710 Evaluation Board for HDSL Framer/Mapper General Description Features

The LXD710 Evaluation Board provides a development latform to aid in bringing an HDSL product to market in he shortest time. An entire Level One HDSL chip set can asily be evaluated with this board, which supports the 5K70704 Analog Core Chip (ACC), the SK70707 1168 bps HDSL Digital Transceiver Chip (HDX), and the _XP710 ETSI HDSL Framer/Mapper (HFMA).

Advance Information JULY 1997

User Interface


- · Display Demo Board Configuration
- · Start Up Procedure
- · Data Pump Control and Status
- HDSL Framer Control and Status
- E1 Framer and LIU Access Utility
- Test Utility and Loopback
- · Diagnostic Program for System and HDSL Framer

Performance Monitoring

- · Remote E1 BPV indicate bit counter
- HDSL CRC check error counter
- HDSL FEBE indicate bit counter

Testability

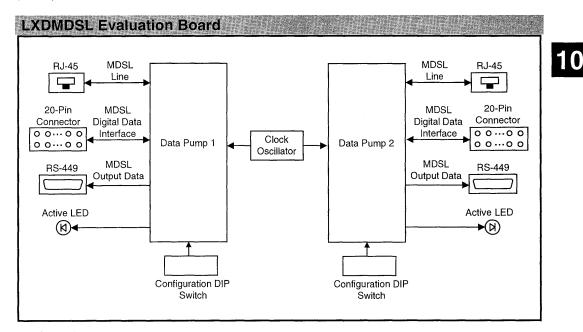
- E1 LIU Loopback (Remote/Local)
- E1 Interface Loopback (Remote/Local)
- HDSL Interface Loopback (Local)
- HDSL Front-End Loopback
- HDSL Back-End Loopback
- QRSS test pattern generation and detection for each loop

10

USER GUIDE

Multi-Rate DSL Transceiver Evaluation Board

General Description


The MDSL Transceiver Evaluation Board is a versatile tool for evaluating the performance of the Level One Multi-Rate Digital Subscriber Line (MDSL) transceiver chip set for line rates between 272 and 784 kbps. The Evaluation Board includes two transceivers and all components required to activate an MDSL link without external hardware or software.

The evaluation board is composed of two printed circuit boards which mate with PGA connectors. The motherboard provides the clock oscillator, power supply and signal connectors, and is used for all line rates. The data pump daughtercard contains both transceiver chip sets and is configured and tested for one of the 272, 400, 528 or 784 kbps line rates. Each daughtercard is supplied with the correct clock oscillator which installs on the motherboard.

The Evaluation Board allows bit-error rate measurement with fixed data patterns to facilitate transmission reach and noise margin testing using a twisted pair-line or loop emulator. The Evaluation Board also supports the chip set test modes used for transmit pulse template, output power and power spectral density measurements.

Features

- · Includes two transceivers for end-to-end testing
- Digital data interface connector facilitates system prototype development
- RS-449 Output Data Interface allows fixed data pattern bit-error rate measurements with a communication analyzer
- · RJ45 connectors for twisted-pair line connections
- Stand-alone operation using DIP switches to control:
 - · link activation & deactivation
 - · master/slave mode selection
 - data loopbacks
 - · transmitter test modes

LXDMDSL Multi-Rate DSL Data Pump Evaluation Board

User Guide

SDB6208

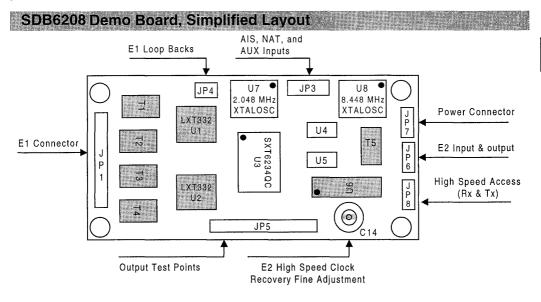
JULY 1997 Revision 0.0

E12 Demonstration/Evaluation Board For The SXT6234

General Description

The SDB-6208 E12 Demonstration/Evaluation Board is a versatile, full featured evaluation tool designed specifically for engineering evaluation of the SXT6234 E-Rate Multiplexer. This tool uses one SXT6234 circuit and includes all supporting circuitry for E1 and E2 multiplexer/demultiplexer applications.

The Demo Board provides a keyed connector for power and ground. Pin connectors (JP1- JP6) are provided for input and output signals. JP1 is for E1 I/O and JP6 is for E2 I/O.


JP4 is for Local Loop Back and Remote Loop Back select. JP3 sets various functions and JP5 provides a convenient way to monitor signals.

JP8 provides direct access to NRZ data clock at the output of the Mux as well as direct input to the Demultiplexer, to allow testing in proprietary scheme.

Before using the Demo Board, review the current SXT6234 data sheet for the most current information about this product.

Features

- Board design permits quick set-up, ease of use and clear visibility of application settings.
- Complete system evaluation including Line Interface Units.
- Test points for both NRZ data and Sync.
- Keyed connector for Vcc and ground.
- · LED indicators for power.
- LED indicators for signal loss.
- · Pin connectors for input and output signals.
- Jumper, for Loop Back.
- Fourteen-pin connector for monitoring the National, AIS, and Aux flag bits, and

SDB6208 E12 Demonstration/Evaluation Board For The SXT6234

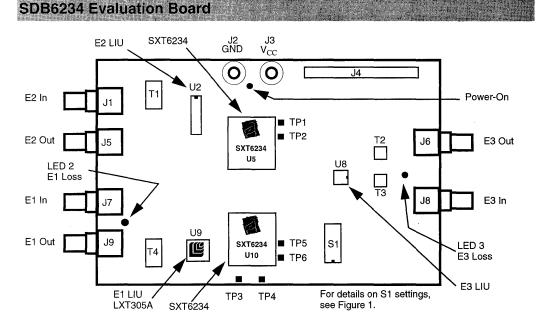
MAY 1996

USER GUIDE SDB6234

Evaluation Board for the SXT6234

General Description

The SDB6234 Evaluation Board is a versatile, full featured evaluation tool designed specifically for engineering evaluation of the SXT6234 E-Rate Multiplexer. This tool uses two SXT6234 circuits and includes all supporting circuitry for E1, E2, and E3 multiplexer/demultiplexer applications.


The Evaluation Board provides banana jacks for power (J3) and ground (J2). BNC connectors are provided for input and output signals. DIP switch S1 selects various functions and connector J4 provides a convenient way to monitor signals.

This document describes configurations for both E1-to-E2 and E1-to-E3 multiplexing with setup details for each. Note that each SXT6234 E-Rate multiplexer chip on the board is configured to use only one of the four tributary inputs.

Before using the Evaluation Board, review the current SXT6234 data sheet for the most current information about this product.

Features

- · Board design permits quick set-up, ease of use and clear visibility of application settings
- · Complete system evaluation including Line Interface Units
- · Test points for both NRZ data and Sync
- · Banana jacks for V_{CC} and ground
- · LED indicators for power
- · LED indicators for signal loss
- · BNC connectors for input and output signals
- · DIP switch for easy configuration set-up
- · Eighteen-pin connector for monitoring the National, AIS, and Aux flag bits, and alarms
- · Design supports:
 - E1 to E2 multiplexing/demultiplexing
 - E1 to E3 multiplexing/demultiplexing

10-19

SAN FRANCISCO TELECOM, INC.

Ethernet Phy Products

11

DATA SHEET

LXT901A/907A

Universal Ethernet Transceiver

General Description

The LXT901A and LXT907A Universal Ethernet Transceivers are new-generation LXT901 and LXT907 replacements with improved noise immunity and output filtering. The feature set of the LXT901A/907A has been streamlined, removing Remote Signaling capabilities. The LXT901A and LXT907A provide all the active circuitry to interface most standard 802.3 controllers to either the 10BASE-T media or Attachment Unit Interface (AUI).

The LXT901A and LXT907A are identical except for the function of one pin. The LXT901A with selectable termination impedance (STP) allows the use of either shielded or unshielded twisted-pair cable. The LXT907A offers a Signal Quality Error disable (DSQE) function.

LXT901A and LXT907A functions include Manchester encoding/decoding, receiver squelch and transmit pulse shaping, jabber, link testing and reversed polarity detection/correction.

Applications

- · 10BASE-T hub and switching products
- Computer/workstation 10BASE-T LAN adapter boards

Features

JUNE 1997 Revision 1.0

Functional Features

- Integrated Filters Simplify FCC Compliance
- Integrated Manchester Encoder/Decoder
- 10BASE-T Transceiver
- AUI Transceiver
- Full-Duplex Capable (20 Mbps)

Convenience Features

- Automatic/Manual AUI/RJ45 Selection
- Automatic Polarity Correction
- DSQE Disable function (LXT907A)
- Programmable Impedance Driver (LXT901A)
- · Power Down Mode and four loopback modes
- · Available in 64-pin LQFP and 44-pin PLCC packages

Diagnostic Features

- Four LED Drivers
- AUI/RJ45 Loopback

LXT901A/907A Block Diagram MDO AUTOSEL MODE SELECT LOGIC MD1 PAUI **Controller Compatibility** TWISTED PAIR STP Port Select Select: PLS Only LBK (LXT901A only) Loopback ы Link test ► TPOPB
► TPOPA PLS / MAU ULSE SHAPE AND FILTER TPONA TPONE TOLK RC WATCHDOG COLLISION/ сткі XTAL OSC TIMER POLARITY CLKO MANCHESTER CORRECT TPIN TEN ENCODER тхр DROP CABLE INTERFACE ECL . DOF DON SQUELCH / LINK DETECT CD 1 LEDL LPBK RXD IF DIF MANCHESTER RCLK ICER DECODER DIN CIP COLLISION

PLB

COLLISION LOGIC

DSOE NTH JAB

(LXT907A only)

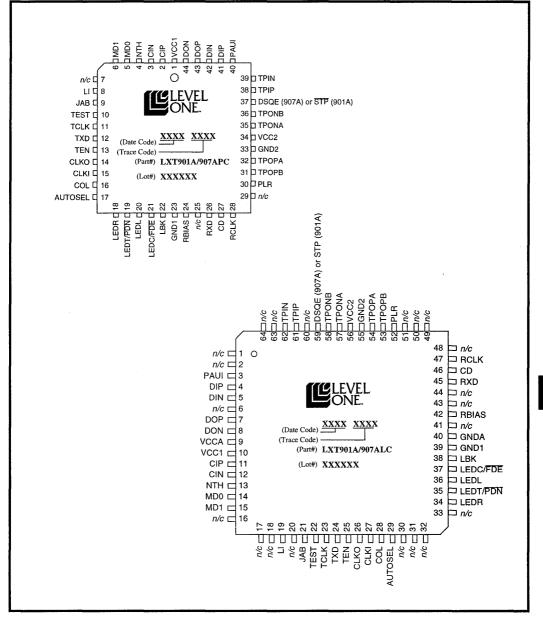
LEDC/FDE

COL

LEDR LEDT/PDN

CIN

LXT901A/907A Universal Ethernet Transceiver


TABLE OF CONTENTS

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS	
FUNCTIONAL DESCRIPTION	
Controller Compatibility Modes 11-7	
Transmit Function	
Jabber Control Function 11-8	
SQE Function	
Receive Function	
Polarity Reverse Function 11-9	
Collision Detection Function 11-10	
Loopback Function	
Link Integrity Test Function 11-11	
Link Pulse Transmission	
APPLICATION INFORMATION	
Impedance Matching	
Crystal and Magnetics Information 11-13	
Auto Port Select with External Loopback Control	
Full - Duplex Support	
Dual Network Support - 10BASE-T and Token Ring 11-17	
Manual Port Select & Link Test Function 11-18	
Three Media Application 11-20	
AUI Encoder/Decoder Only 11-21	
Shielded Twisted-Pair Only 11-22	
TEST SPECIFICATIONS	
Absolute Maximum Values 11-23	
Recommended Operating Conditions 11-23	
I/O Electrical Characteristics 11-24	
AUI Electrical Characteristics 11-24	
Twisted-Pair Electrical Characteristics 11-25	
Switching Characteristics 11-25	
RCLK/Start-of-Frame Timing 11-26	
RCLK/End-of-Frame Timing 11-26	
Transmit Timing 11-27	
Collision, COL/CI Output and Loopback Timing 11-27	
Mode 1 Timing Diagrams 11-28	
Mode 2 Timing Diagrams 11-30	
Mode 3 Timing Diagrams	
Mode 4 Timing Diagrams 11-36	

.

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Figure 1: LXT901A/907A Pin Assignments

LXT901A/907A Universal Ethernet Transceiver

Pin #		Symbol	1/0 ¹	Description	
PLCC	LQFP	Symbol	10.	Description	
1 34	10 56	VCC1 VCC2	-	Power Supply 1 and 2. Power supply inputs of +5 volts.	
2 3	11 12	CIP CIN	I I	AUI Collision Pair. Differential input to the AUI transceiver CI circuit. The nput is collision signaling or SQE.	
4	13	NTH	I	Normal Threshold. Selects normal or reduced threshold. When NTH is High, the normal TP squelch threshold is in effect. When NTH is Low, the normal TP squelch threshold is reduced by 4.5 dB.	
5 6	14 15	MD0 MD1	I	Mode Select 0 (MD0) and Mode Select 1 (MD1). Mode select pins determine the controller compatibility mode in accordance with Table 2.	
8	19	LI	I	Link Test Enable. Controls Link Integrity Test; enabled when LI = High, disabled when LI = Low	
9	21	JAB	0	Jabber Indicator. Output goes High to indicate Jabber state.	
10	22	TEST	I	Test. For Level One internal use only. It is recommended to tie this pin High externally.	
11	23	TCLK	0	Transmit Clock. A 10 MHz clock output. This clock signal should be directly connected to the transmit clock input of the controller.	
12	24	TXD	I	ransmit Data. Input signal containing NRZ data to be transmitted on the etwork. Connect TXD directly to the transmit data output of the controller.	
13	25	TEN	I	ransmit Enable. Enables data transmission and starts the watchdog timer. ynchronous to TCLK (see Test Specifications for details).	
14 15	26 27	CLKO CLKI	O I	Crystal Oscillator. A 20 MHz crystal must be connected across these pins or a 20 MHz clock applied at CLKI with CLKO left open.	
16	28	COL	0	Collision Detect. Output which drives the collision detect input of the controller.	
17	29	AUTOSEL	I	Automatic Port Select. When High, automatic port selection is enabled (the 901A/907A defaults to the AUI port only if TP link integrity = Fail). When Low, manual port selection is enabled (the PAUI pin determines the active port).	
18	34	LEDR	OD	Receive LED. Open drain driver for the receive indicator LED. Output is pulled Low during receive.	
19	35	LEDT/ PDN	OD	Transmit LED (LEDT)/Power Down (PDN). Open drain driver for the transmit indicator. Output is pulled Low during transmit. If externally pulled Low, the LXT901A/907A goes to power down state.	
20	36	LEDL	OD	Link LED. Open drain driver for link integrity indicator. Output is pulled Low during link test pass.	
				If externally tied Low, internal circuitry is forced to "Link Pass" state and the 901A/907A will transmit link test pulses continuously.	

Table 1: LXT901A/907A Signal Descriptions

LXT901A/907A Pin Assignments and Signal Descriptions

Pin #		Owner	1/0 ¹	Description	
PLCC	LQFP	Symbol I/O ¹		Description	
21	37	LEDC/ FDE	OD	 Collision LED (LEDC)/Full Duplex Enable (FDE). Open drain driver for the collision indicator pulls Low during collision. LED "On" (i.e., Low output) time is extended by approximately 100 ms. If externally tied Low, enables full duplex operation by disabling the internal TP loopback and collision detection circuits in anticipation of external TP loopback or full duplex operation. If this pin is not used, tie high or directly to Vcc. 	
22	38	LBK	Ι	Loopback. Enables internal loopback mode. Refer to Functional Description for details.	
23 33	39 40	GND1 GND2		Ground Returns 1 and 2. Grounds	
24	42	RBIAS	Ι	Bias Control. A 12.4 k Ω 1% resistor to ground at this pin controls operating circuit bias.	
26	45	RXD	0	Receive Data. Output signal. Connect directly to the receive data input of the controller.	
27	46	CD	0	Carrier Detect. An output to notify the controller of activity on the network.	
28	47	RCLK	0	Receive Clock. A recovered 10 MHz clock which is synchronous to the received data. Connect to the controller receive clock input.	
30	52	PLR	0	Polarity Reverse. Output goes High to indicate reversed polarity at the TP input.	
31 36 32 35	53 58 54 57	TPOPB TPONB TPOPA TPONA	0 0 0 0	Twisted-Pair Transmit Pairs A & B. Two differential driver pair outputs (A and B) to the twisted-pair cable. The outputs are pre-equalized. Each pair must be shorted together and tied to the transformer through a 24.9 Ω 1% series resistor to match impedance of 100 Ω Refer to Figure 15 in the Applications Section for information on 150 Ω configurations.	
37	59	STP	Ι	STP Select (LXT901A only). When STP is Low, 150 Ω termination for shielded TP is selected. When STP is High, 100 Ω termination for unshielded TP is selected. LXT907A is designed for 100 Ω UTP termination (not selectable).	
		DSQE	I	Disable SQE (LXT907A only). When DSQE is High, the SQE function is disabled. When DSQE is Low, the SQE function is enabled. SQE must be disabled for normal operation in Hub/Switch applications.	
1 1/0 0	olumn Codine	I = Input O= Ou	tout OD -	LXT901A operates with SQE enabled (not selectable).	

Table 1: LXT901A/907A Signal Descriptions - continued

11

LXT901A/907A Universal Ethernet Transceiver

Pin #		Ormakal		Description	
PLCC	LQEP	Symbol I/O ¹			
38 39	61 62	TPIP TPIN	I I	Wisted-Pair Receive Pair. A differential input pair from the TP cable. Receive filter is integrated on-chip. No external filters are required.	
40	3	PAUI	I	Port/AUI Select. In Manual Port Select mode (AUTOSEL Low), PAUI selects the active port. When PAUI is High, the AUI port is selected. When PAUI is Low, the TP port is selected. In Auto Port Select mode, PAUI must be tied to ground.	
41 42	4 5	DIP DIN	I I	AUI Receive Pair. Differential input pair from the AUI transceiver DI cir- cuit. The input is Manchester encoded.	
43 44	7 8	DOP DON	0	AUI Transmit Pair. A differential output driver pair for the AUI trans- ceiver cable. The output is Manchester encoded.	
7, 25, 29	1, 2, 6, 16, 17, 18, 20, 30, 31, 32, 33, 41, 43, 44, 48, 49, 50, 51, 60, 63, 64	N/C	_	No Connect (Internally tied to ground).	
1. 1/0 C					

Table 1: LXT901A/907A Signal Descriptions - continued

FUNCTIONAL DESCRIPTION

The LXT901A/907A Universal Ethernet Interface Transceivers perform the physical layer signaling (PLS) and Media Attachment Unit (MAU) functions as defined by the IEEE 802.3 specification. They function as a PLS-Only device (for use with 10BASE-2 or 10BASE-5 coaxial cable networks) or as an Integrated PLS/MAU (for use with 10BASE-T twisted-pair networks). In addition to standard 10 Mbps operation, they also support full-duplex 20 Mbps operation.

The LXT901A/907A interfaces a back-end controller to either an AUI drop cable or a twisted-pair (TP) cable. The controller interface includes transmit and receive clock and NRZ data channels, as well as mode control logic and signaling. The AUI interface comprises three circuits: Data Output (DO), Data Input (DI) and Collision (CI). The twisted-pair interface comprises two circuits: Twisted-Pair Input (TPI) and Twisted-Pair Output (TPO). In addition to the three basic interfaces, the LXT901A/907A contains an internal crystal oscillator and four LED drivers for visual status reporting.

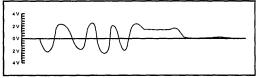
Functions are defined from the back-end controller side of the interface. The Transmit function refers to data transmitted by the back-end to the AUI cable (PLS-Only mode) or to the twisted-pair network (Integrated PLS/MAU mode). The Receive function refers to data received by the backend from the AUI cable (PLS-Only) or from the twistedpair network (Integrated PLS/MAU mode). In the integrated PLS/MAU mode, the LXT901A/907A performs all required MAU functions defined by the IEEE 802.3 10BASE–T specification such as collision detection, link integrity testing, signal quality error messaging, jabber control and loopback. In the PLS-Only mode, the LXT901A/907A receives incoming signals from the AUI DI circuit with \pm 18 ns of jitter and drives the AUI DO circuit.

Controller Compatibility Modes

The LXT901A/907A are compatible with most industry standard controllers including devices produced by Motorola, AMD, Intel, Fujitsu, National Semiconductor, Seeq and Texas Instruments. Four different control signal timing and polarity schemes (Modes 1 through 4) are required to achieve this compatibility. Mode select pins (MD0 and MD1) determine Controller compatibility modes as listed in Table 2. Refer to Test Specifications for a complete set of timing diagrams for each mode.

Controller Mode	Setting		
Controller mode	MD1	MDO	
Mode 1 For Motorola 68EN360, MPC860, Advanced Micro Devices AM7990 or compatible controllers	Low	Low	
Mode 2 For Intel 82596 or compatible controllers ¹	Low	High	
Mode 3 For Fujitsu MB86950, MB86960 or compatible controllers (Seeq 8005) ²	High	Low	
Mode 4 For National Semiconductor 8390 or compatible controllers (TI TMS380C26)	High	High	
 Refer to Level One Application Note 51 when Controllers. SEEQ controllers require inverters on CLKI COL. 			

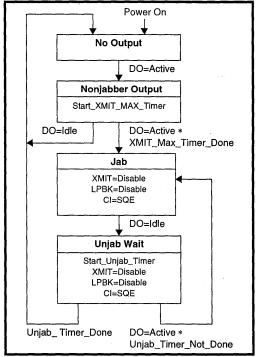
Table 2: Controller Compatibility Modes


11

LXT901A/907A Universal Ethernet Transceiver

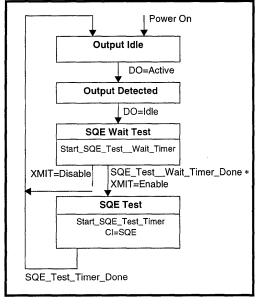
Transmit Function

The LXT901A/907A receives NRZ data from the controller at the TXD input, as shown in the block diagram on the first page of this Data Sheet, and passes it through a Manchester encoder. The encoded data is then transferred to either the AUI cable (the DO circuit) or the twisted-pair network (the TPO circuit). The advanced integrated pulse shaping and filtering network produces the output signal on TPON and TPOP as shown in Figure 2. The TPO output is pre-distorted and prefiltered to meet the 10BASE-T jitter template. An internal continuous resistor-capacitor filter is used to remove any high-frequency clocking noise from the pulse shaping circuitry. Integrated filters simplify the design work required for FCC compliant EMI performance. During idle periods, the LXT901A/907A transmits link integrity test pulses on the TPO circuit (if LI is enabled and integrated PLS/ MAU mode is selected). External resistors control the termination impedance for the LXT907A. External resistors and the STP Pin control termination impedance on the LXT901A.


Figure 2: TPO Output Waveform

Jabber Control Function

Figure 3 is a state diagram of the LXT901A/907A Jabber control function. The on-chip watchdog timer prevents the DTE from locking into a continuous transmit mode. When a transmission exceeds the time limit, the watchdog timer disables the transmit and loopback functions, and activates the JAB pin. Once the LXT901A/907A is in the jabber state, the TXD circuit must remain idle for a period of 250 to 750ms before it will exit the jabber state.


SQE Function

In the integrated PLS/MAU mode, the LXT901A/907A supports the signal quality error (SQE) function as shown in Figure 4, although the SQE function can be disabled on the LXT907A. After every successful transmission on the 10BASE-T network, when SQE is enabled, the LXT901A/907A transmits the SQE signal for $10BT \pm 5BT$ over the internal CI circuit which is indicated on the COL pin of the device. When using the AUI of the LXT901A/907A, the SQE function is determined by the external MAU attached.

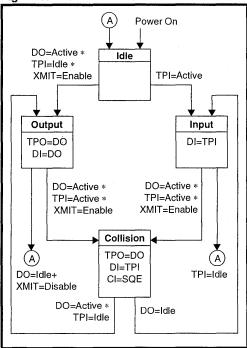
SQE Disable Function (LXT907A only)

SQE must be disabled for normal operation in hub and switch applications. The LXT907A is configured with an SQE Disable function. The SQE function is disabled when DSQE is set High, and enabled when DSQE is Low.

Figure 4: SQE Function

Receive Function

The LXT901A/907A receive function acquires timing and data from the twisted-pair network (the TPI circuit) or from the AUI (the DI circuit). Valid received signals are passed through the on-chip filters and Manchester decoder, then output as decoded NRZ data and receive timing on the RXD and RCLK pins, respectively.


An internal RC filter and an intelligent squelch function discriminate noise from link test pulses and valid data streams. The receive function is activated only by valid data streams above the squelch level and with proper timing. If the differential signal at the TPI or the DI circuit inputs falls below 75% of the threshold level (unsquelched) for 8 bit times (typical), the LXT901A/907A receive function enters the idle state. If the polarity of the TPI circuit is reversed, LXT901A/907A detects the polarity reverse and reports it via the PLR output. The LXT901A/907A automatically corrects reversed polarity.

Polarity Reverse Function

The LXT901A/907A polarity reverse function uses both link pulses and end-of-frame data to determine the polarity of the received signal. A reversed polarity condition is detected when eight opposite receive link pulses are detected without receipt of a link pulse of the expected polarity. Reversed polarity is also detected if four frames are received with a reversed start-of-idle. Whenever a correct polarity frame or a correct link pulse is received, these two counters are reset to zero. If the LXT901A/907A enters the link fail state and no valid data or link pulses are received within 96 to 128 ms, the polarity is reset to the default non-flipped condition. If Link Integrity Testing is disabled, polarity detection is based only on received data. Polarity correction is always enabled.

Collision Detection Function

The collision detection function operates on the twistedpair side of the interface. For standard (half-duplex) 10BASE-T operation, a collision is defined as the simultaneous presence of valid signals on both the TPI circuit and the TPO circuit. The LXT901A/907A reports collisions to the back-end via the COL pin. If the TPI circuit becomes active while there is activity on the TPO circuit, the TPI data is passed to the back-end over the RXD circuit, disabling normal loopback. Figure 5 is a state diagram of the LXT901A/907A collision detection function. Refer to Test Specifications for collision detection and COL/CI output timing. (NOTE: For full-duplex operation on the TP or AUI port, the collision detection circuitry must be disabled by setting FDE Low.)

Figure 5: Collision Detection Function

Loopback Functions

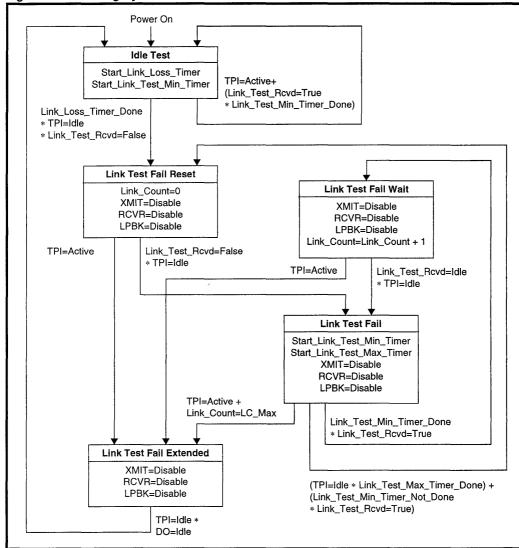
Standard TP Loopback

The LXT901A/907A provides the standard loopback function defined by the 10BASE-T specification for the twisted-pair port. The loopback function operates in conjunction with the transmit function. Data transmitted by the back-end is internally looped back within the LXT901A/907A from the TXD pin through the Manchester encoder/decoder to the RXD pin and returned to the back-end. This standard loopback function is disabled when a data collision occurs, clearing the RXD circuit for the TPI data. Standard loopback is also disabled during link fail and jabber states. The LXT901A/907A also provides three additional loopback functions.

Forced TP Loopback

"Forced" TP loopback is controlled by the LBK pin. When the TP port is selected and LBK is High, TP loopback is "forced", overriding collisions on the TP circuit. When LBK is Low, normal loopback is in effect.

AUI Loopback

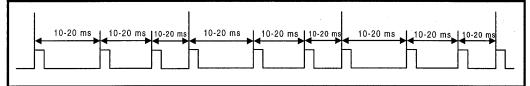

AUI loopback is also controlled by the LBK pin. When the AUI port is selected and LBK is High, data transmitted by the back-end is internally looped back from the TXD pin through the Manchester encoder/decoder to the RXD pin. When LBK is Low, no AUI loopback occurs.

External Loopback

An external loopback mode, useful for system-level testing, is controlled by the LEDC/FDE pin. When LEDC/FDE is tied Low, the LXT901A/907A disables the collision detection and internal loopback circuits, to allow external loopback. External loopback mode can be set on either TP or AUI ports.

Link Integrity Test Function

Figure 6 is a state diagram of the LXT901A/907A Link Integrity test function. The link integrity test is used to determine the status of the receive side twisted-pair cable. Link integrity testing is enabled when the LI pin is tied High. When enabled, the receiver recognizes link integrity pulses which are transmitted in the absence of receive traffic. If no serial data stream or link integrity pulses are detected within 50 - 150 ms, the chip enters a link fail state and disables the transmit and normal loopback functions. The LXT901A/907A ignores any link integrity pulse with interval less than 2 - 7 ms. The LXT901A/907A will remain in the link fail state until it detects either a serial data packet or two or more link integrity pulses.



LXT901A/907A Universal Ethernet Transceiver

Link pulse Transmission

When not transmitting data, the LXT901A/907A transmits 802.3-compliant standard link pulses. Figure 7 shows the link integrity pulse timing.

Figure 7: Transmitted Link Integrity Pulse Timing

APPLICATION INFORMATION

Twisted-Pair Impedance Matching

Resistors must be installed on each input and output pair to match impedance of the network media being used. The LXT907A is configured with 100 Ω termination for Unshielded Twisted-Pair (UTP). In this case, the positive and negative sides of both output pairs are shorted together (TPOPA/TPOPB and TPONA/TPONB) and tied to the transformer through a 24.9 Ω 1% series resistor.

The LXT901A is designed with an $\overline{\text{STP}}$ Select pin that allows the device to match both 100Ω and 150Ω media. A dual resistor combination can be configured to accommodate either line termination as shown in Figure 15. When 100Ω termination is selected, both A and B pairs are driven in parallel. When 150Ω termination is selected, the B pair is tri-stated and only the A pair is driven.

Crystal Information

Designers should test and validate crystals before committing to a specific component. Based on limited evaluation, Table 3 lists some suitable crystals.

Table 3: Suitable Crystals

Manufacturer	Part Number
MTRON	MP-1 MP-2

Magnetics Information

The LXT901A and LXT907A require a 1:1 ratio for the receive transformer and a $1:\sqrt{2}$ ratio for the transmit transformer on the twisted-pair interface. The AUI Interface requires a 1:1 ratio for both the transmit and receive transformers. Table 4 lists some suitable magnetics.

Table 4: Suitable Magnetics

	Manufacturer	Part Number
Twisted-Pair	Fil-Mag	23Z128
		23Z128SM
	Valor	PT4069
		ST7011
	Belfuse	A553-0716
		S553-0716
	HALO	TD42-2006Q
		TG42-1406N1
AUI	Fil-Mag	23Z90
		23Z90SM
	Valor	LT6032
		ST7032
	HALO	TD01-0756K
		TG01-0756N

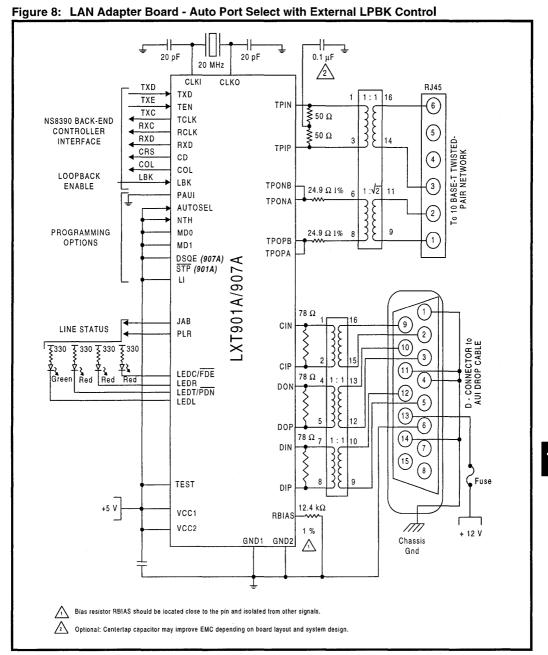
Typical Applications

Figures 8 through 15 show typical LXT901A/907A applications.

Auto Port Select with External Loopback Control

Figure 8 is a typical LXT901A/907A application. The diagram is arranged to group similar pins together; it does not represent the actual LXT901A/907A pinout. The controller interface pins (transmit data, clock and enable; receive data and clock; and the collision detect, carrier detect and loopback control pins) are shown at the top left.

Programmable option pins are grouped center left. The PAUI pin is tied Low and all other option pins are tied High. This setup selects the following options:

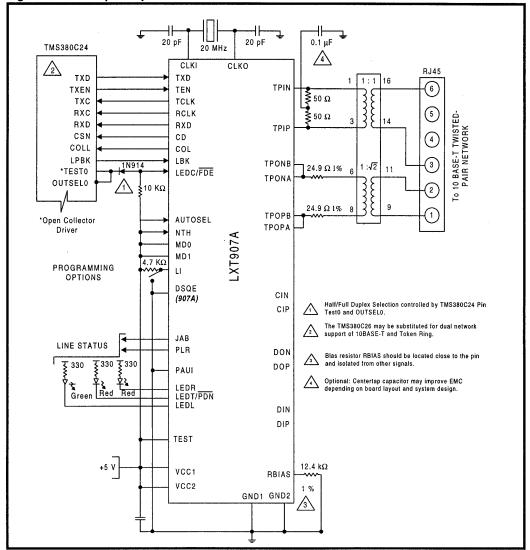

- Automatic Port Selection (PAUI Low and AUTOSEL High)
- Normal Receive Threshold (NTH High)
- Mode 4, compatible with National NS8390 controllers (MD0 High, MD1 High)
- SQE Disabled (DSQE High for LXT907A only)
- UTP is selected (STP High for LXT901A only)
- Link Testing Enabled (LI High)

Status outputs are grouped at lower left. Local status outputs drive LED indicators.

Power and ground pins are shown at the bottom of the diagram. A single power supply is used for both VCC1 and VCC2 with a decoupling capacitor installed between the power and ground busses.

The TP and AUI interfaces are shown at upper and lower right, respectively. Impedance matching resistors for 100Ω UTP are installed in each I/O pair and no external filters are required.

LXT901A/907A Application Information


CCCPI FVF1

LXT901A/907A Universal Ethernet Transceiver

Full Duplex Support

Figure 9 shows the LXT907A with a Texas Instruments 380C24 CommProcessor. The 380C24 is compatible with Mode 4 (MD0 and MD1 both High). When used with the

380C24, or other full duplex-capable controller, the LXT907A supports full-duplex Ethernet, effectively doubling the available bandwidth of the network. In this application the SQE function is enabled (DSQE tied Low), and the AUI port is not used.

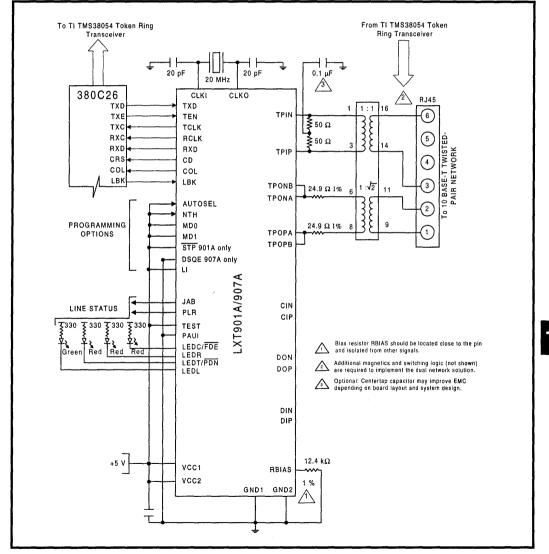
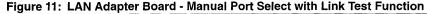
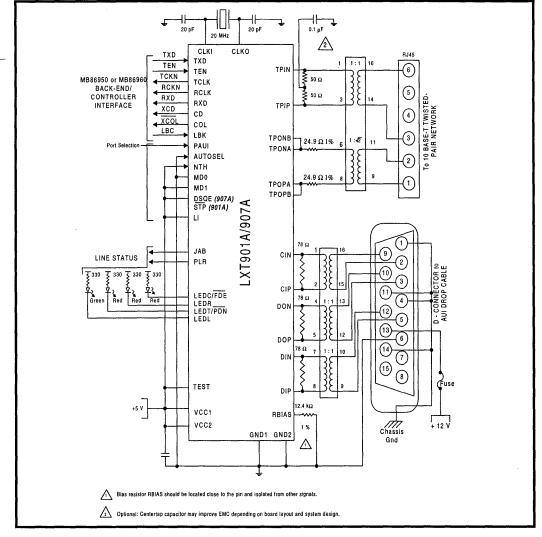
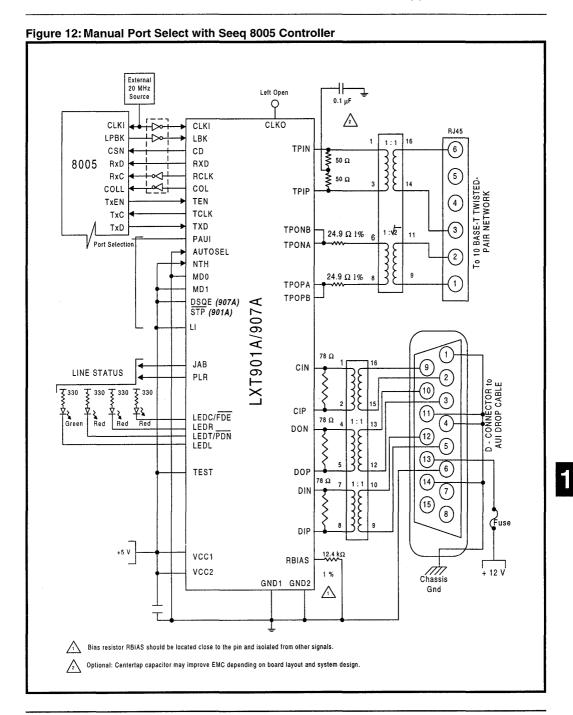


Figure 9: Full-Duplex Operation

Dual Network Support - 10Base-T and Token Ring

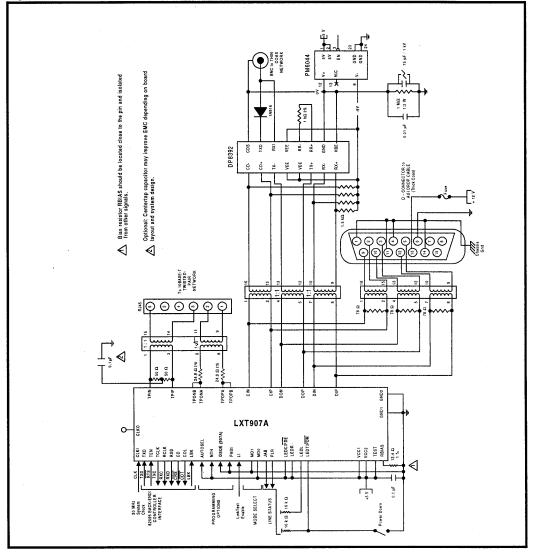

Figure 10 shows the LXT901A/907A with a Texas Instruments 380C26 CommProcessor. The 380C26 is compatible with Mode 4 (MD0 and MD1 both High). When used with the 380C26, both the LXT901A/907A and a TMS38054 Token Ring transceiver can be tied to a single RJ45 allowing dual network support from a single connector. The LXT901A/907A AUI port is not used. The DSQE pin on the LXT907A is tied Low and the STP pin on the LXT901A is tied High.





Manual Port Select with Link Test Function

With MD0 tied Low and MD1 tied High, the LXT901A/ 907A logic and framing are set to Mode 3 (compatible with Fujitsu MB86950 and MB86960, and Seeq 8005 controllers). Figure 11 shows the setup for Fujitsu controllers. Figure 12 shows the four inverters required to interface with the Seeq 8005 controller. As in Figure 8 both these Mode 3 applications show the LI pin tied High, enabling Link Testing; and the $\overline{\text{STP}}$ (901A only) and NTH pins are both tied High, selecting the standard receiver threshold and 100 Ω termination for unshielded TP cable. However, in these applications AUTOSEL is tied Low, allowing external port selection through the PAUI pin.



LXT901A/907A Application Information

Three Media Application

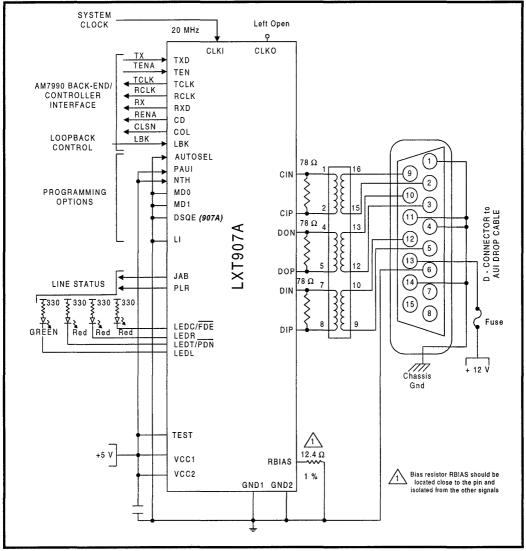
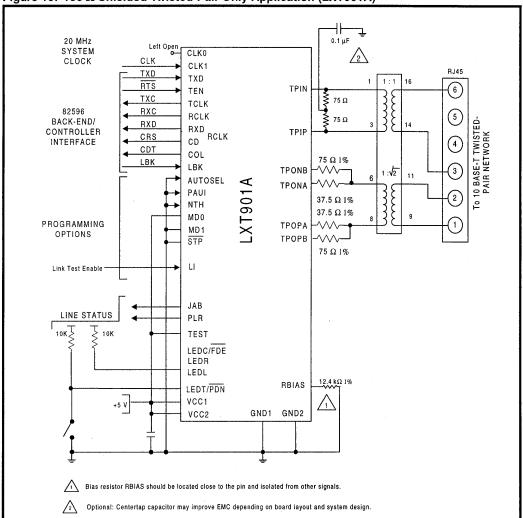

Figure 13 shows the LXT907A in Mode 2 (compatible with Intel 82596 controllers) with additional media options for the AUI port. Two transformers are used to couple the AUI port to either a D-connector or a BNC connector. A DP8392 coax transceiver with PM6044 power supply are required to drive the thin coax network through the BNC.

Figure 13: Three Media Application

AUI Encoder/Decoder Only


In this application (see Figure 14) the DTE is connected to a coaxial network through the AUI. AUTOSEL is tied Low and PAUI is tied High to manually select the AUI port. The twisted-pair port is not used. With MD1 and MD0 both Low, the logic and framing are set to Mode 1 (compatible with AMD AM7990 controllers). The LI pin is tied Low, disabling the link test function. The DSQE pin is also Low, enabling the SQE function on the LXT907A. The LBK input controls loopback. A 20 MHz system clock is supplied at CLK1 with CLK0 left open.

150 Ω Shielded Twisted-pair only (LXT901A only)

Figure 15 shows the LXT901A in a typical twisted-pair only application. The DTE is connected to a 10BASE-T network through the twisted-pair RJ45 connector. Note that the AUI port is not used. With MD0 tied High and MD1 Low, the LXT901A logic and framing are set to Mode 2 (compatible with Intel 82596 controllers). A 20 MHz system clock input at CLK1 is used in place of the crystal oscillator. (CLK0 is left open). The L1 pin externally controls the link test function. The \overline{STP} and NTH pins are both tied Low, selecting the reduced receiver threshold and 150 Ω termination for shielded TP cable. The switch at LEDT/PDN manually controls the power down mode.

Figure 15: 150 Ω Shielded Twisted-Pair Only Application (LXT901A)

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 5 through 14 and Figures 16 through 41 represent the performance specifications of the LXT901A/907A and are guaranteed by test, except where noted by design.

Table 5: Absolute Maximum Values

Parameter	Symbol	Min	Max	Units
Supply voltage	Vcc	-0.3	6	v
Ambient operating temperature	TA	0	70	• <u>°</u> C
Storage temperature	Tstg	-65	+150	°C
Exceeding these values may cause per implied. Exposure to maximum ra				

Table 6: Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units
Recommended supply voltage ¹	Vcc	4.75	5.0	5.25	v
Recommended operating temperature	Тор	0		70	°C

Para	meter	Sym	Min	Typ ¹	Max	Units	Test Conditions
Input Low voltage ²		VIL	-	_	0.8	v	
Input High voltage ²		Vih	2.0	-	-	V	
Output Low voltage	;	Vol	-	-	0.4	v	IOL = 1.6 mA
		Vol	-		10	%Vcc	IOL < 10 µA
Output Low voltage (Open drain LED driver)		Voll	-	-	0.7	%Vcc	IOLL = 10 mA
Dutput High voltage		Voh	2.4	-		V	Іон = 40 µА
		Voh	90	_	-	%Vcc	Іон < 10 µА
Output rise time	CMOS	_	-	7	12	ns	CLOAD = 20 pF
TCLK & RCLK	TTL		-	7	8	ns	
Output fall time	CMOS		-	7	12	ns	CLOAD= 20 pF
TCLK & RCLK	TTL	-	-	7	8	ns	
CLKI rise time (ext	ernally driven)	_	-	-	10	ns	
CLKI duty cycle (e:	xternally driven)	_		·	40/60	%	
Supply current	Normal Mode	Icc	-	65	85	mA	Idle Mode
		ICC		95	120	mA	Transmitting on TP
		Icc	-	95	120	mA	Transmitting on AU
	Power Down Mode	ICC	-	0.03	2	mA	

Table 7: I/O Electrical Characteristics (Over Recommended Range)

2. Limited functional tests are performed at these input levels. The majority of functional tests are performed at levels of 0V and 3V.

Table 8: AUI Electrical Characteristics (Over Recommended Range)

Parameter	Symbol	Min	Typ ¹	Max	Units	Test Conditions
Input Low current	IIL	-	-	-700	μA	
Input High current	Іін	-	-	500	μA	
Differential output voltage	Vod	±550	-	±1200	mV	
Differential squelch threshold	VDS	150	250	350	mV	5 MHz square wave input

Parameter		Symbol	Min	Typ ¹	Max	Units	Test Conditions
Transmit output impedar	ice	Ζουτ	-	5	-	Ω	
Transmit timing jitter ad	lition ²	-	-	±3.3	±10	ns	0 line length for internal MAU
Transmit timing jitter ad MAU and PLS sections ²	ansmit timing jitter added by the AU and PLS sections ^{2, 3}		-	±3.3	±5.5	ns	After line model speci- fied by IEEE 802.3 for 10BASE-T internal MAU
Receive input impedance	;	Zin	-	20	-	kΩ	Between TPIP/TPIN, CIP/CIN & DIP/DIN
Differential squelch Threshold	Normal threshold; NTH = 1	VDS	300	400	585	mV	5 MHz square wave input
	Reduced threshold; NTH = 0	VDS	180	250	345	mV	5 MHz square wave input

Table 9: TP Electrical Characteristics (Over Recommended Range)

Table 10: Switching Characteristics (Ov	ver Recommended Range)
---	------------------------

	Parameter	Symbol	Minimum	Typical ¹	Maximum	Units
Jabber Timing	Maximum transmit time	-	20	-	150	ms
	Unjab time	-	250	-	750	ms
Link Integrity	Time link loss receive	_	50	_	150	ms
Timing	Link min receive	_	2	_	7	ms
	Link max receive	-	50		150	ms
	Link transmit period	_	8	10	24	ms

11

Parame	ter	Symbol	Minimum	Typical ¹	Maximum	Units
Decoder acquisition time	AUI	tDATA		900	1100	ns
	ТР	tDATA	-	1200	1500	ns
CD turn-on delay	AUI	tCD	-	25	200	ns
	ТР	tCD	-	425	550	ns
Receive data setup from	Mode 1	tRDS	60	70	-	ns
RCLK	Modes 2, 3 and 4	tRDS	30	45	-	ns
Receive data hold from	Mode 1	tRDH	10	20	-	ns
RCLK	Modes 2, 3 and 4	tRDH	30	45	-	ns
RCLK shut off delay from (LXT907A only; Mode 3)		tsws		±100		ns

Table 11: RCLK/Start-of-Frame Timing (Over Recommended Range)

Table 12: RCLK/End-of-Frame Timing (Over Recommended Range)

Parameter	Туре	Sym	Mode 1	Mode 2	Mode 3	Mode 4	Units
RCLK after CD off	Min	tRC	5	1	27	5	BT
Rcv data throughput delay	Max	tRD	400	375	375	375	ns
CD turn off delay ²	Max	tCDOFF	500	475	475	475	ns
Receive block out after TEN off	Typ ¹	tIFG	5	50	-	-	BT
RCLK switching delay after CD off (LXT907A only; Mode 3)	Тур	tSWE	-	-	120(±80)	-	ns

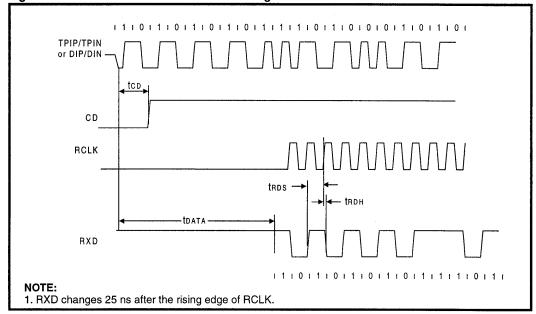
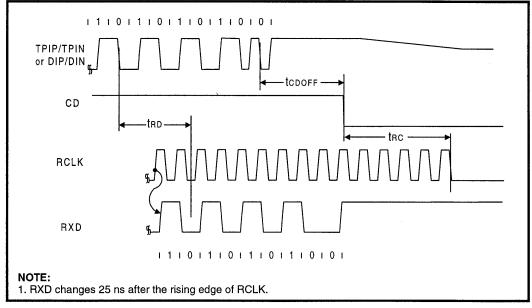
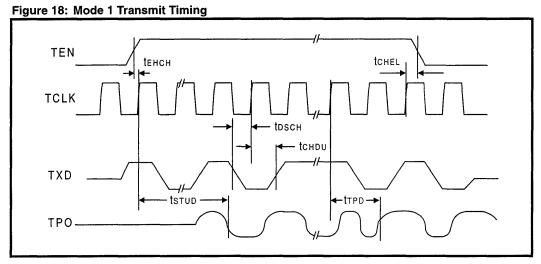
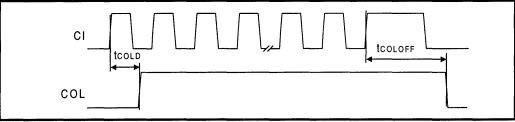

Parameter	Symbol	Minimum	Typical ¹	Maximum	Units
TEN setup from TCLK	tEHCH	22	-		ns
TXD setup from TCLK	tDSCH	22	-		ns
TEN hold after TCLK	tCHEL	5	-	_	ns
TXD hold after TCLK	tCHDU	5	-	-	ns
Transmit start-up delay - AUI	tSTUD	_	220	450	ns
Transmit start-up delay - TP	tSTUD	_	430	450	ns
Transmit through-put delay - AUI	tTPD	_		300	ns
Transmit through-put delay - TP	tTPD		300	350	ns

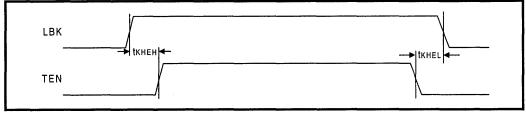
Table 13: Transmit Timing (Over Recommended Range)

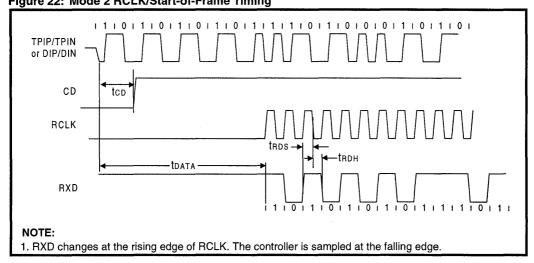

Table 14: Collision, COL/CI Output and Loopback Timing (Over Recommended Range)

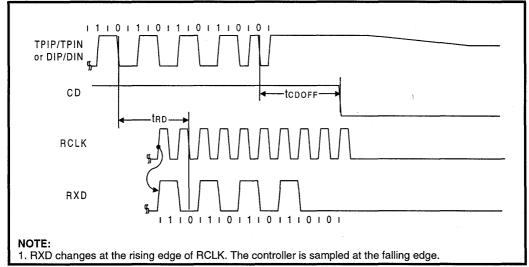
Parameter	Symbol	Minimum	Typical ¹	Maximum	Units
COL turn-on delay	tCOLD	-	40	500	ns
COL turn-off delay	tCOLOFF	_	420	500	ns
COL (SQE) Delay after TEN off	tSQED	0.65	1.2	1.6	μs
COL (SQE) Pulse Duration	tSQEP	500	1000	1500	ns
LBK setup from TEN	tkheh	10	25	-	ns
LBK hold after TEN	tKHEL	10	0	_	ns


Timing Diagrams for Mode 1 (MD1 = Low, MD0 = Low) Figures 16 through 21 Figure 16: Mode 1 RCLK/Start-of-Frame Timing

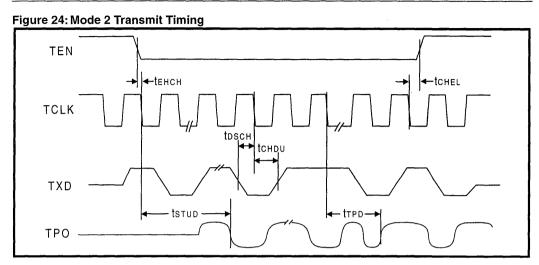


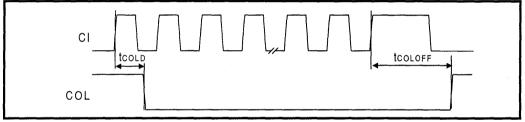

Figure 19: Mode 1 Collision Detect Timing

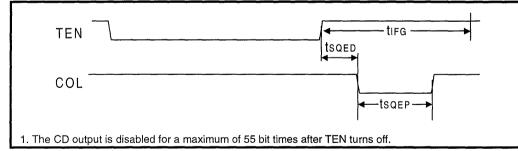

Figure 20: Mode 1 COL/CI Output Timing


Figure 21: Mode 1 Loopback Timing

Timing Diagrams for Mode 2 (MD1=Low, MD0=High) Figures 22 through 27 Figure 22: Mode 2 RCLK/Start-of-Frame Timing






LXT901A/907A Test Specifications

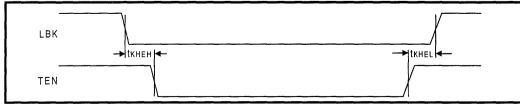

Figure 25: Mode 2 Collision Detect Timing

Figure 26: Mode 2 COL/CI Output Timing

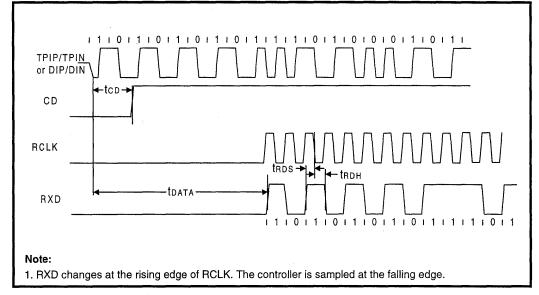
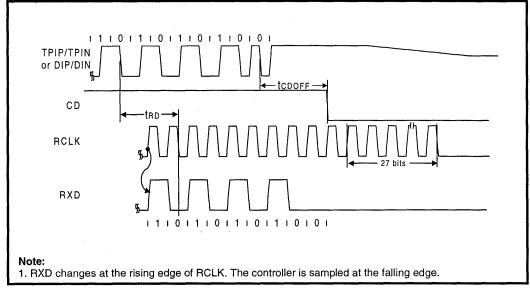
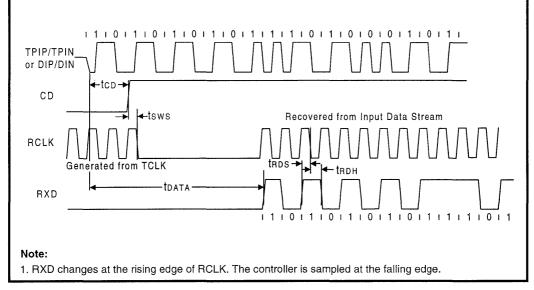
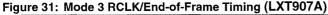


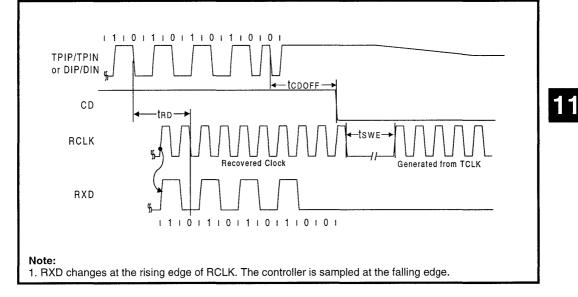
Figure 27: Mode 2 Loopback Timing

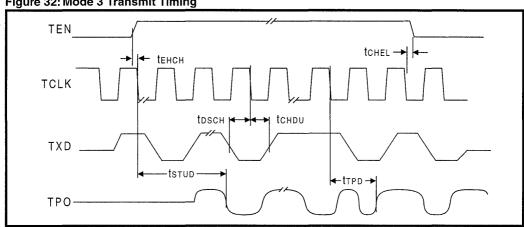


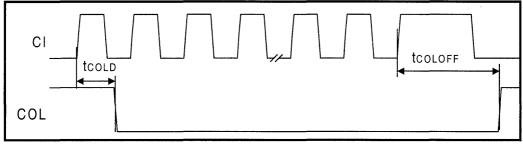
Timing Diagrams for Mode 3 (MD1 = High, MD0 = Low) Figures 28 through 35 Figure 28: Mode 3 RCLK/Start-of-Frame Timing (LXT901A)











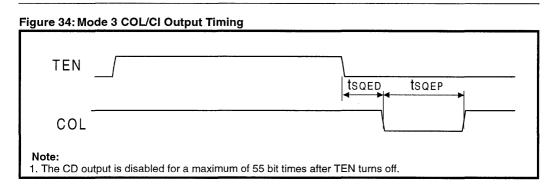
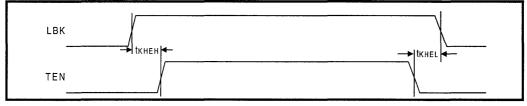
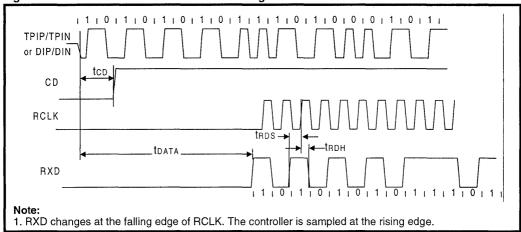
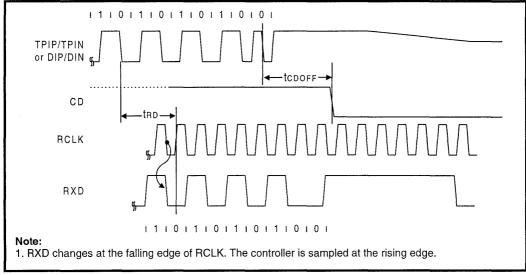
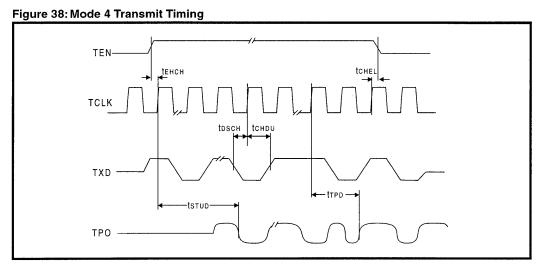

Figure 32: Mode 3 Transmit Timing

Figure 33: Mode 3 Collision Detect Timing




LXT901A/907A Test Specifications


Figure 35: Mode 3 Loopback Timing



Timing Diagrams for Mode 4 (MD1 = High, MD0 = High) Figures 36 through 41 Figure 36: Mode 4 RCLK/Start-of-Frame Timing

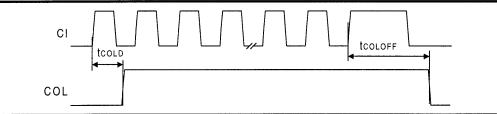
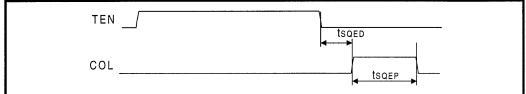


Figure 37: Mode 4 RCLK/End-of-Frame Timing



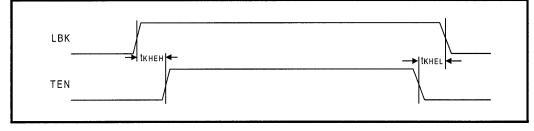

Figure 39: Mode 4 Collision Detect Timing

Figure 40: Mode 4 COL/CI Output Timing

Figure 41: Mode 4 Loopback Timing

11

NOTES

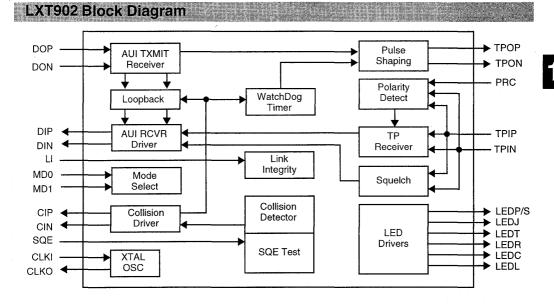
DATA SHEET

APRIL 1997 Revision 2.1

Ethernet Twisted-Pair Media Attachment Unit

General Description

The LXT902 twisted-pair Media Attachment Unit (TP-MAU) is designed to allow Ethernet connections to use the existing twisted-pair wiring plant through an Ethernet Attachment Unit Interface (AUI). The LXT902 provides the electrical interface between the AUI and the twisted-pair wire.

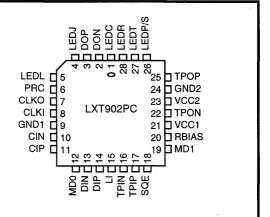

LXT902 functions include level-shifted data pass-through from one transmission media to another, collision detection, Signal Quality Error (SQE) testing and automatic correction of polarity reversal on the twisted-pair input. It also includes LED drivers for transmit, receive, jabber, collision, reversed polarity detect and link functions. The LXT902 is an advanced CMOS device and requires only a single 5-volt power supply.

Applications

- · Computer/workstation interface boards
- · LAN repeater
- External 10BASE-T transceiver (MAU)

Features

- Meets or exceeds IEEE 802.3 standards for AUI and 10BASE-T interface
- · Direct interface to AUI and RJ45 connectors
- Automatic AUI/RJ45 selection
- · Internal pre-distortion generation
- · Internal common mode voltage generation
- · Jabber function
- · Selectable link test, SQE test disable
- Twisted-pair receive polarity reverse detection and selectable polarity correction
- LED driver for transmit, receive, jabber, collision, link and reversed polarity indicators or for flashing status indicator
- · Single 5 V supply, CMOS technology
- · Available in 28-pin DIP or PLCC



PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Figure 1: LXT902 Pin Assignments

DON 1 28 LEDC DOP 2 27 LEDR LEDJ 3 26 LEDT LEDL 4 25 LEDP/S PRC 5 23 GND2 CLK0 6 23 GND2 CLK1 7 8 22 VCC2 GND1 8 9 21 TPON CIN 9 20 VCC1 CIP 10 19 RBIAS MD0 11 18 MD1 DIN 12 17 SQE DIP 13 16 TPIP LI 14 15 TPIN
--

Table 1: LXT902 Signal Descriptions

DIP	PLCC	Symbol	1/0	Description
1	2	DON	I	Data Out Negative and Data Out Positive. Differential input pair from
2	3	DOP	I	the AUI transceiver DO circuit.
3	4	LEDJ	I/O	Jabber LED Driver. Active Low, open drain driver for the Jabber indicator LED. Output goes active when watchdog timer begins jab, and stays active until end of the unjab wait period (491 - 525 ms). When tied to ground, causes LEDP/S to act as a multi-function blinking status indicator.
4	5	LEDL	0	Link LED Driver. Active Low, open drain driver for the Link indicator LED. Output is active except during Link Fail or when Link Integrity Test is disabled.
5	6	PRC	I/O	Polarity Reverse Correction. The LXT902 automatically corrects reversed polarity at TPI when PRC is tied High. In Test mode, this pin is a 10 MHz output.
6	7	CLKO	0	Crystal Oscillator. The LXT902 requires either a 20 MHz crystal
7	8	CLKI	I	(or ceramic resonator) connected across these pins, or a 20 MHz external clock applied at CLKI with CLKO left unconnected.
8	9	GND1	-	Ground 1. Ground
9	10	CIN	0	Collision Negative and Collision Positive. Differential driver output pair
10	11	CIP	0	tied to the collision presence pair of the Ethernet transceiver AUI cable. The collision presence signal is a 10 MHz square wave. This output is activated when a collision is detected on the network, during self-test by the SQE sequence, or after the watchdog timer has expired to indicate the transmit wire pair has been disabled.

LXT902 Pin Assignments And Signal Descriptions

DIP	PLCC	Symbol	1/0	Description
11	12	MD0	Ι	Mode Select 0. Selects operating modes in conjunction with MD1. See Table 2 for mode select options.
12	13	DIN	0	Data In Negative and Data In Positive. Differential driver pair connected
13	14	DIP	0	to the AUI transceiver DI circuit.
14	15	LI	I	Link Integrity Test Enable. Link integrity testing is enabled when this pin is tied High. With link test enabled, the LXT902 sends the link integrity signal in the absence of transmit traffic. It also recognizes received link test pulses, indicating the receive wire pair is present in the absence of transmit traffic.
15	16	TPIN	I	Twisted-Pair Receive Inputs. Differential receive inputs from the twisted-
16	17	TPIP	I	pair input filter.
17	18	SQE	I/O	Signal Quality Error Test Enable. SQE is enabled when this pin is tied High. When enabled, the LXT902 sends the signal quality error test sequence to the CI of the AUI cable after every successful transmission to the media. In Test mode, SQE becomes a 20 MHz output.
18	19	MD1	I	Mode Select 1. Selects operating modes in conjunction with MD0. (See Table 2.) MD1 clock input between 2.0 and 2.5 MHz enables Test mode.
19	20	RBIAS	-	Resistor Bias Control. Bias control pin for the operating circuit. Bias set from external resistor to ground. External resistor value = $12.4 \text{ k}\Omega (\pm 1\%)$.
20	21	VCC1	I	Power Supply 1. +5 V power supply.
21	22	TPON	0	Twisted-Pair Transmit Outputs. Transmit drivers to the twisted-pair
24	25	TPOP	0	output filter. The output is Manchester encoded and pre-distorted to meet the 10BASE-T template.
22	23	VCC2	I	Power Supply 2. +5 V power supply.
23	24	GND2		Ground 2. Ground.
25	26	LEDP/S	0	Polarity/Status LED Driver. Active Low, open drain LED driver. In normal mode, LEDP/S is active when reversed polarity is detected. If LEDJ is tied to ground, LEDP/S indicates multiple status conditions as shown in Figure 11: On solid = Normal, 1 Blink = Link Down, 2 Blinks = Jabber, 5 Blinks = Polarity Reversed.
26	27	LEDT	0	Transmit LED Driver. Active Low, open drain driver for the Transmit indicator LED. Output is active during transmit.
27	28	LEDR	0	Receive LED Driver. Active Low, open drain driver for the Receive indicator LED. Output is active during receive.
28	1	LEDC	0	Collision LED Driver. Active Low, open drain driver for the Collision indicator LED. Output is active when a collision occurs.

Table 1: LXT902 Signal Descriptions - continued

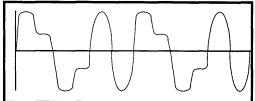
11

FUNCTIONAL DESCRIPTION

Introduction

The LXT902 Media Attachment Unit (MAU) interfaces the Attachment Unit Interface (AUI) to the unshielded twisted-pair cables, transferring data in both directions between the two. The AUI side of the interface comprises three circuits: Data Output (DO), Data Input (DI) and Control Interface (CI). The twisted-pair network side of the interface comprises two circuits: Twisted-Pair Input (TPI) and Twisted-Pair Output (TPO). In addition to these five basic circuits, the LXT902 also contains: crystal oscillator circuitry, separate power and ground pins for analog and digital circuits, mode selection logic (see Table 2) and six LED drivers for status indications.

Table 2: Mode Select Options


MD1	MDO	Mode
Low	Low	10BASE-T compliant MAU
Low	High	Reduced squelch level
High	Low	Half current AUI driver
High	High	DO, DI & CI ports disabled
High	Clock	Test Mode, Jabber on
Low	Clock	Test mode, Jabber disabled

Functions are defined from the AUI side of the interface. The LXT902 Transmit function refers to data transmitted by the Data Terminal Equipment (DTE) through the AUI and MAU to the twisted-pair network. The LXT902 Receive function refers to data received by the DTE through the MAU and AUI from the twisted-pair network. In addition to basic transmit and receive functions, the LXT902 performs all required functions defined by the IEEE 802.3 10BASE-T MAU specification such as collision detection, link integrity testing, Signal Quality Error (SQE), jabber control and loopback.

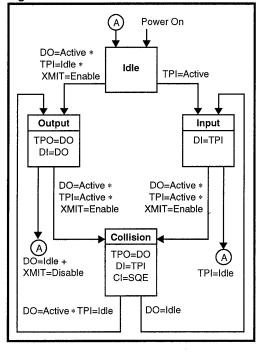
Transmit Function

The LXT902 transfers Manchester encoded data from the AUI port of the DTE (the DO circuit) to the twisted-pair network (the TPO circuit). The output signal on TPON and TPOP is pre-distorted to meet the 10 BASE-T jitter template, and filtered to meet FCC requirements. The output

waveform (after the transmit filter) is shown in Figure 2. If the differential inputs at the DO circuit fall below 75% of the threshold level for 8 bit times (typical), the LXT902 transmit function will enter the idle state. During idle periods, the LXT902 transmits link integrity test pulses on the TPO circuit.

Figure 2: LXT902 TPO Output Waveform

Receive Function


The LXT902 receive function transfers serial data from the twisted-pair network (the TPI circuit) to the DTE (over the DI circuit of the AUI). An internal squelch function discriminates noise from link test pulses and valid data streams. Only valid data streams activate the receive function. If the differential inputs at the TPI circuit fall below 75% of the threshold level (unsquelched) for 8 bit times (typical), the LXT902 receive function will enter the idle state. The TPI threshold can be reduced by approximately 3 dB to allow for longer loops in low-noise environments. The reduced threshold is selected when MD1 = Low and MD0 = High.

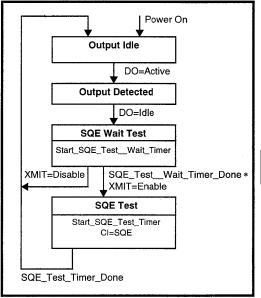
Polarity Reverse Function

The LXT902 polarity reverse function uses both link pulses and end-of-frame data to determine polarity of the received signal. A reversed polarity condition is detected when eight opposite receive link pulses are detected without receipt of a link pulse with the expected polarity. Reversed polarity is also detected if four frames are received with a reversed start-of-idle. Whenever polarity is reversed, these two counters are reset to zero. If the LXT902 enters the link fail state, and no data or link pulses are received within 96 to 128 ms, the polarity is reset to the default non-flipped condition. If Link Integrity is disabled, polarity detection is based only on received data pulses.

Collision Detection Function

The collision detection function operates on the twistedpair side of the interface. A collision is defined as the simultaneous presence of valid signals on both the TPI circuit and the TPO circuit. The LXT902 reports collisions to the AUI by sending a 10 MHz signal over the CI circuit. The collision report signal is output no more than 9 bit times (BT) after the chip detects a collision. If the TPI circuit becomes active while there is activity on the TPO circuit, the TPI data is passed to the DTE over the DI circuit, disabling the loopback. Figure 3 is a state diagram of the LXT902 collision detection function (refer to IEEE 802.3 10BASE-T specification).

Figure 3: Collision Detection Function

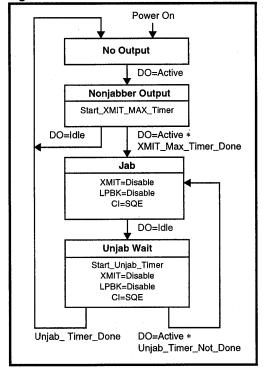

Loopback Function

The LXT902 loopback function operates in conjunction with the transmit function. Data transmitted by the DTE is internally looped back within the LXT902 from the DO pins to the DI pins and returned to the DTE. The loopback function is disabled when a data collision occurs, clearing the DI circuit for the TPI data. Loopback is also disabled during link fail and jabber states.

SQE Test Function

Figure 4 is a state diagram of the SQE Test function. The SQE test function is enabled when the SQE pin is tied High. When enabled, the SQE test sequence is transmitted to the controller after every successful transmission on the 10BASE-T network. When a successful transmission is completed, the LXT902 transmits the SQE signal to the AUI over the CI circuit for 10 BT \pm 5 BT. The SQE function can be disabled for hub applications by tying the SQE pin to ground.

Figure 4: SQE Function



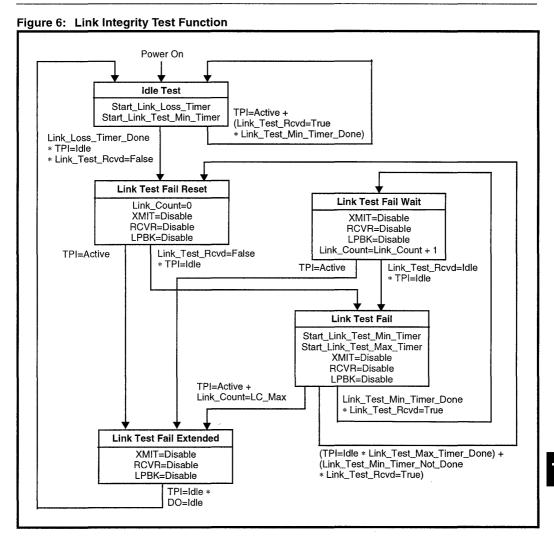
11

Jabber Control Function

Figure 5 is a state diagram of the LXT902 Jabber control function. The LXT902 on-chip watchdog timer prevents the DTE from locking into a continuous transmit mode. When a transmission exceeds the time limit, the Watchdog timer disables the transmit and loopback functions, and sends the SQE signal to the DTE over the CI circuit. Once the LXT902 is in the jabber state, the DO circuit must remain idle for a period of 491 to 525 ms before it will exit the jabber state.

Figure 5: Jabber Control Function

Link Integrity Test Function


Figure 6 is a state diagram of the LXT902 Link Integrity Test Function. The Link Integrity Test is used to determine the status of the receive side twisted-pair cable. The link integrity test is enabled when the LI pin is tied High. When enabled, the receiver recognizes link integrity pulses which are transmitted in the absence of receive traffic. If no serial data stream or link integrity pulses are detected within 50 -150 ms, the chip enters a link fail state and disables the transmit and loopback functions. The LXT902 ignores any link integrity pulse with interval less than 2 - 7 ms. The LXT902 will remain in the link fail state until it detects either a serial data packet or two or more link integrity pulses.

Test Mode

The LXT902 Test mode is selected when a 2 - 2.5 MHz clock is input on the MD0 mode select pin. Test mode sets the internal counter chains to run at 1024 times their normal speed. The maximum transmit time, unjab time, Link Integrity timing and LED timing are reduced by a factor of 1024. During test operation, 10 MHz and 20 MHz signals are output on the PRC and SQE pins, respectively. When Test mode is selected, the SQE function cannot be disabled. In Test mode the PRC function can be disabled by the LI pin. Jabber can be disabled by setting MD1 Low.

LXT902 Functional Description

APPLICATION INFORMATION

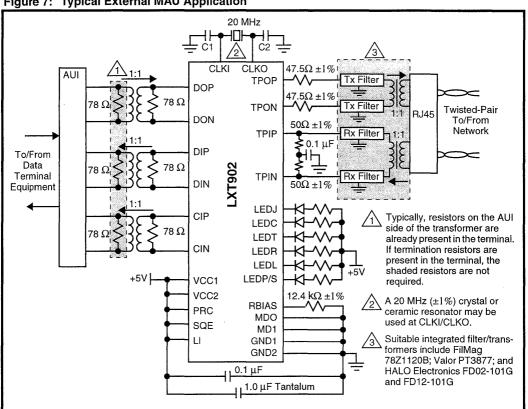
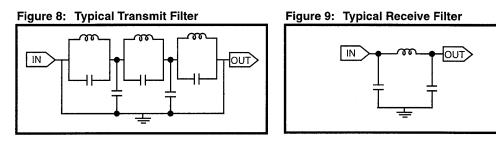

External MAU

Figure 7 shows the LXT902 in a typical external MAU application, interfacing between an AUI and the RJ45 connectors of the twisted-pair network. A 20 MHz crystal (or ceramic resonator) connected across CLKI and CLKO provides the required clock signal. Transmit and receive filters are required in the TPO and TPI circuits. Details of the transmit and receive filters are shown in Figures 8 and 9, respectively. (Differential filters are also recommended.)

Internal MAU


Figure 10 shows an internal MAU application which takes advantage of the LXT902's unique AUI/10BASE-T switching feature to select either the D-connector (AUI) or the RJ45 connector (10BASE-T). No termination resistors are used on the LXT902 side of the AUI interface to prevent impedance mismatch with the drop cable. The half current drive mode is used to maintain the same voltage levels in the absence of termination resistors. This application uses capacitive coupling instead of transformer coupling. MD1 is tied High so MD0 functions as the mode control switch.

When MD0 is Low, the half current drive mode is selected. When MD0 is High, the LXT902 is effectively removed from the circuit. The 902 AUI ports (DO, DI and CI) are disabled isolating the LXT902 from the AUI. The LXT902 DI and CI ports go to a high impedance state and the DO port is ignored. To implement an auto-select function, LEDL can be tied to MD0. This activates the 902/AUI interface when the TP link is active (data or link integrity pulses) and disables it when the link is inactive.

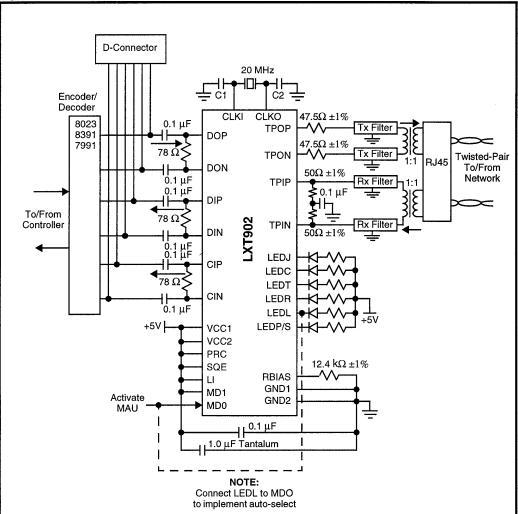


Figure 7: Typical External MAU Application

LXT902 Application Information

11

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 3 through 9 and Figure 11 represent the performance specifications of the LXT902 and are guaranteed by test, except where noted by design.

Table 3: Absolute Maximum Values

Symbol	Min	Max	Units
Vcc	-0.3	6	v
ТА	0	70	°C
TSTG	-65	+150	°C
	ТА	TA 0 TSTG -65	TA 0 70 TSTG -65 +150

Table 4: Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Recommended supply voltage ^{1, 2}	Vcc	4.75	5.0	5.25	v	_
Recommended operating temperature	Тор	0		70	°C	-

Table 5: I/O Electrical Characteristics (Over Recommended Range)

Parameter	Sym	Min	Тур	Max	Units	Test Conditions
Input Low voltage ²	VIL	-	_	0.8	V	-
Input High voltage ²	VIH	2.0	-		V	-
Output Low voltage (Open drain LED driver)	Voll	-		0.7	v	IOLL = 10 mA
Supply Current	ICC	-	60	70	mA	Line Idle
(Vcc1=Vcc2=5.25 V)			125	140	mA	Line Active, transmitting all ones
Input Leakage Current ³	ILL		±1	±10	μA	Input between VCC and GND
Three state leakage current (high Z)	ITS	-	±1	±10	μĄ	Output between VCC and GND
 Typical values are at 25 °C and are for desig MD0, MD1, SQE, PRC, and LI pins. MD0 0 Not including TPIN, TPIP, DOP, or DON. 					testing;	

LXT902 Test Specifications

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Input Low current	IIL	-	-	-700	μA	
Input High current	Іін	-	-	500	μA	
Differential output voltage	Vod	±550		±1200	mV	_
Differential squelch threshold	VDS	-	220	-	mV	
Receive input impedance	Rz	-	20	-	kΩ	Between DOP and DON

Table 6: AUI Electrical Characteristics (Over Recommended Range)

Table 7: Transmit Characteristics (Over Recommended Range)

Parameter	Sym	Minimum	Typical	Maximum	Units	Test Conditions
Transmit output impedance	Zout	_	5	_	Ω	-
Transmit timing jitter addition ²	-	-		±8	ns	After Tx filter, 0 line length
Transmit timing jitter addition ²		_	_	±3.5	ns	After Tx filter and line model specified by IEEE 802.3 for 10BASE-T

Table 8: Receive Characteristics (Over Recommended Range)

Parameter	Sym	Minimum	Typical	Maximum	Units	Test Conditions
Receive input impedance	Zin	_	.20	_	kΩ	Between TPIP/TPIN
Differential squelch threshold	VDS	_	420	_	mV	· _
Reduced squelch threshold	VDSR	_	300	-	mV	-
Receive timing jitter addition ²	_	-	-	1.5	ns	_

LXT902 Ethernet Twisted-Pair Media Attachment Unit

	Parameter	Min	Тур	Max	Units
Jabber Timing	Maximum transmit time ²	98.5	-	131	ms
	Unjab time ²	491	-	525	ms
	Time from Jabber to CS0 on CIP/CIN ³	0	-	900	ns
Link Integrity Timing	Time link loss ²	65		66	ms
	Time between Link Integrity Pulses ²	9	-	11	ms
	Interval for valid receive Link Integrity Pulses ²	4.1		65	ms
Collision Timing	Simultaneous TPI/TPO to CSO state on CIN/CIP	0	-	900	ns
	DO loopback to TPI on DI ³	300	-	900	ns
	CS0 state delay after TPI/DO idle	-	-	900	ns
	CS0 High pulse width	40	-	60	ns
	CS0 Low pulse width	40	-	60	ns
	CS0 frequency	_	10	-	MHz
SQE Timing	SQE signal duration	500	-	1500	ns
	Delay after last positive transition of DO	0.6	-	1.6	μs
LED Timing	LEDC, LEDT, LEDR on time ²	100	-	-	ms
	LEDP/S on time ² (See Figure 11)	-	164	-	ms
	LEDP/S period ² (See Figure 11)		328	-	ms
General	Receive start-up delay	0	-	500	ns
	Transmit start-up delay	0	· -	200	ns
	Loopback start-up delay	0	-	500	ns

Table 9: Switching Characteristics (Over Recommended Range)

Link Fail Link Fail Link Fail Link Fail Link Fail Link Fail Jabber Jaber Ja

Figure 11: LEDP/S Status Indication Timing

al link failure and apparent link failure due to polarity reversal.

LXT902 Ethernet Twisted-Pair Media Attachment Unit

NOTES

DATA SHEET

APRIL 1997 Revision 1.2

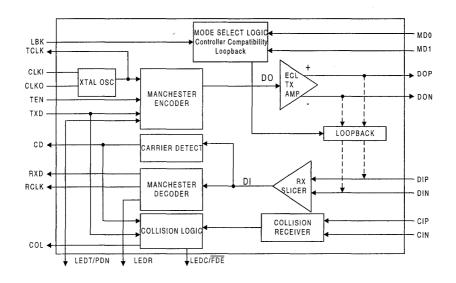
Ethernet Interface Adapter with EnDec and AUI

General Description

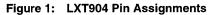
The LXT904 Ethernet Interface Adapter is designed for IEEE 802.3 applications. It provides all the active circuitry to adapt most standard 802.3 controllers to the Attachment Unit Interface (AUI). The LXT904 is a pincompatible replacement for the LXT901 in applications that do not require a twisted-pair port. In addition to standard 10 Mbps Ethernet, the LXT904 also supports full-duplex operation at 20 Mbps.

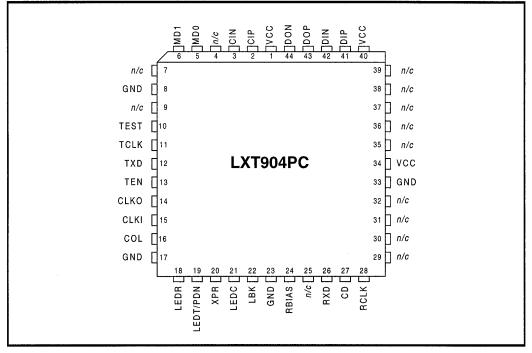
LXT904 functions include Manchester encoding/decoding and AUI driving/receiving. The LXT904 can also be used to drive the AUI drop cable.

The LXT 904 is fabricated using an advanced CMOS process and requires only a single 5-volt power supply.


Features

- · Integrated Manchester Encoder/Decoder
- · AUI Transceiver
- · Supports Standard and Full-Duplex Ethernet
- · Power Down Mode
- · AUI Loopback mode for better testing
- · Three LED Drivers
- · Available in 44-pin PLCC package


Applications


- Bridges, routers and Ethernet-to-WAN access equipment
- · Computer/workstation LAN adapter boards

LXT904 Block Diagram

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Table 1: LXT904 Pin Descriptions

Pin #	Sym	I/O	Description
1	VCC	I	Power Input. + 5 volt power supply input.
2	CIP	I	AUI Collision Pair. Differential input pair connected to the AUI transceiver CI circuit.
3	CIN	Ι	The input is collision signaling or SQE.
4	n/c	-	No connection. This pin must be left floating.
5	MD0	Ι	Mode Select 0; Mode Select 1. Mode select pins determine controller compatibility
6	MD1	Ι	mode in accordance with Table 2.
7	n/c	-	No connection. This pin must be left floating.
8	GND	-	Ground. Ground return.
9	n/c	-	No connection. This pin must be left floating.
10	TEST	Ι	Test. This pin must be tied High.
11	TCLK	0	Transmit Clock. A 10 MHz clock output. This clock signal should be directly connected to the transmit clock input of the controller.

LXT904 Pin Assignments and Signal Descriptions

Table 1.	LX1904	Pin Des	scriptions – continued
Pin #	Sym	I/O	Description
12	TXD	I	Transmit Data. Input signal containing NRZ data to be transmitted on the network. TXD is connected directly to the transmit data output of the controller.
13	TEN	Ι	Transmit Enable. Enables data transmission and starts the watchdog timer. Synchronous to TCLK (see Figures 5, 11, 17 and 23 for details).
14	CLKO	0	Crystal Oscillator. A 20 MHz crystal must be connected across these pins, or a 20 MHz
15	CLKI	Ι	clock applied at CLKI with CLKO left open.
16	COL	0	Collision Detect. Output which drives the collision detect input of the controller.
17	GND	-	Ground. Ground return.
18	LEDR	0	Receive LED. Open drain driver for the receive indicator LED. Output is pulled Low during receive.
19	LEDT/	0	Transmit LED/Power Down. Open drain driver for the transmit indicator. Output is
	PDN	I	pulled Low during transmit. If externally tied Low, the LXT904 goes to power down state.
20	XPR	-	External Pull Up. Requires an external pull-up resister.
21	LEDC	0	Collision LED. Open drain driver for the collision indicator pulls Low during collision.
22	LBK	Ι	Loopback. Enables internal loopback mode. See Figure 8 (Mode 1), Figure 14 (Mode 2), Figure 20 (Mode 3) and Figure 26 (Mode 4) for details.
23	GND	-	Ground. Ground Return.
24	RBIAS	I	Bias Control. A 12.4 k Ω 1% resistor to ground at this pin controls operating circuit bias.
25	n/c	-	No connection. This pin must be left floating.
26	RXD	0	Receive Data. Output signal connected directly to the receive data input of the controller.
27	CD	0	Carrier Detect. An output to notify the controller of activity on the network.
28	RCLK	0	Receive Clock. A recovered 10 MHz clock which is synchronous to the received data and connected to the controller receive clock input.
29	n/c	-	No connection. These pins must be left floating.
30	n/c	-	
31	n/c	-	
32	n/c		
33	GND	-	Ground. Ground Return.
34	VCC	I	Power Input. + 5 volt power supply input.
35	n/c	-	No connection. These pins must be left floating.
36	n/c	-	
37 38	n/c n/c	_	
39	n/c	_	
40	VCC	I	Power Input. + 5 volt power supply input.
41	DIP	I	AUI Receive Pair. Differential input pair from the AUI transceiver DI circuit. The input
42	DIN	Î	is Manchester encoded.
43	DOP	0	AUI Transmit Pair. A differential output driver pair for the AUI transceiver cable. The
44	DON	0	output is Manchester encoded.

Table 1: LXT904 Pin Descriptions - continued

11

FUNCTIONAL DESCRIPTION

The LXT904 Ethernet Interface Transceiver performs the physical layer signaling (PLS) functions as defined by the IEEE 802.3 specification. It functions as a PLS-Only device for use with 10BASE-5 or 10BASE-2 coaxial cable networks. In addition to standard 10 Mbps operation, the LXT904 also supports full-duplex 20 Mbps operation.

Refer to the block diagram on the first page of this data sheet. The LXT904 interfaces a back end controller to an AUI drop cable. The controller interface includes transmit and receive clock and NRZ data channels, as well as mode control logic and signaling. The AUI interface comprises three circuits: Data Output (DO), Data Input (DI) and Collision (CI). In addition to these basic interfaces, the LXT904 contains an internal crystal oscillator and three LED drivers for visual status reporting.

Functions are defined from the back end controller side of the interface. The LXT904 Transmit function refers to data transmitted by the back end to the AUI cable. The LXT904 receive function refers to data received by the back end from the AUI cable. The LXT904 receives incoming signals from the AUI DI circuit with ± 18 ns of jitter and drives the AUI DO circuit. The CI pins are monitored for collision status.

Transmit Function

The LXT904 receives NRZ data from the controller at the TXD input, and passes it through a Manchester encoder. The encoded data is then transferred to the AUI cable (the DO circuit).

Receive Function

The LXT904 receive function acquires timing and data from the AUI (the DI circuit). Valid received signals are passed through the on-chip decoder and then output as decoded NRZ data and receive timing on the RXD and RCLK pins, respectively.

The receive function is activated only by valid data streams above the squelch level with proper timing. If the differential signal at the DI circuit inputs falls below 75% of the threshold level (unsquelched) for 8 bit times (typical), the LXT904 receive function enters the idle state.

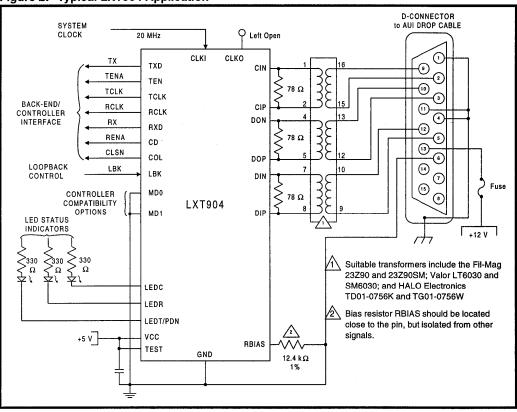
Loopback Function

Loopback is controlled by the LBK pin. When LBK is High, data transmitted by the back-end is internally looped back from the TXD pin through the Manchester encoder/ decoder to the RXD pin. When LBK is Low, no AUI loopback occurs.

Controller Compatibility Modes

The LXT904 is compatible with most industry standard controllers including devices produced by Motorola, Advanced Micro Devices (AMD), Intel, Fujitsu, National Semiconductor, Seeq and Texas Instruments. Four different control signal timing and polarity schemes (Modes 1 through 4) are required to achieve this compatibility. Mode select pins (MD0 and MD1) determine the controller compatibility mode as listed in Table 2.

A complete set of timing diagrams and specifications for each mode is provided in the Test Specifications section.


Table 2: Controller Compatibility Modes

Controller Mode	Sett	ngs	
	MD1	MDO	
Mode 1-For Motorola 68EN360, Advanced Micro Devices AM7990 or compatible controllers	Low	Low	
Mode 2-For Intel 82596 or compatible controllers	Low	High	
Mode 3-For Fujitsu MB86950 or MB86960, Seeq 8005 or compatible controllers ¹	High	Low	
Mode 4-For National Semiconductor 8390, Texas Instruments TMS380C26 or compatible controllers	High	High	
1. Seeq Controllers require inverters on CLKI, LBK, RCLK, and COL.	1		

APPLICATION INFORMATION

Figure 2 is a typical LXT904 application. The diagram is arranged to group similar pins together; it does not represent the actual LXT904 pinout. The controller interface pins (transmit data, clock and enable; receive data and clock; and the collision detect, carrier detect and loopback control pins) are shown at the top left.

With MD1 and MD0 both Low, the LXT904 logic and framing are set to Mode I (compatible with AMD AM7990 controllers). The LBK input controls loopback. A 20 MHz system clock is supplied at CLKI with CLKO left open.

Figure 2: Typical LXT904 Application

11

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 3 through 11 and Figures 3 through 26 represent the performance specifications of the LXT904 and are guaranteed by test, except where noted by design.

Table 3: Absolute Maximum Ratings

Supply Voltage VCC Operating Temperature TOP Storage Temperature TST	-0.3	-	6 70	V
	0		70	
Storage Temperature Ter			70	°C
Storage Temperature 151	-65	-	150	°C
	CAUTION			

Table 4: Operating Conditions (Voltage with respect to ground unless otherwise specified.)

Parameter	Symbol	Min	Typ1	Max	Units	Test Conditions
Recommended supply voltage	Vcc	4.75	5.0	5.25	v	
Recommended operating temperature	Тор	0	-	70	°C	

Pai	rameter	Symbol	Min	Typ1	Max	Units	Test Conditions
Input Low Voltage ²		Vil	-	-	0.8	V	
Input High Voltage	, ²	Vih	2.0		-	v	
Output Low Voltage		Vol	-	-	0.4	V	IOL= 1.6 mA
		Vol	-	-	10	%V _{CC}	Iol< 10μA
Output Low Voltage		VOLL	-	-	0.7	v	IOLL= 10mA
(Open drain LED Driver)							
Output High Volta	ge	Voh	2.4	-	-	V	Іон= 40µА
		Vон	90		-	%V _{CC}	Iol < 10μA
Supply current	Normal mode	Icc	-	65	85	mA	Idle mode
		ICC	-	70	90	mA	Transmitting on AUI
	Power Down mode	ICC	-	0.75	2	mA	

Table 5: Electrical Characteristics (Over Recommended Range)

Table 6: Clock Timing (Over Recommended Range)

Parameter		Sym	Min	Min	Min	Min	Typ ¹	Max	Units	Test Conditions
Output Rise Time	CMOS	-	-	3	12	ns	CLOAD = 20 pF			
TCLK & RCLK	TTL	-	-	2	8	ns				
Output Fall Time	CMOS	-	-	3	12	ns	CLOAD= 20 pF			
TCLK & RCLK	TTL	-	-	2	8	ns				
CLKI rise time (exte	ernally driven)	-	-	-	10	ns	The first of the second of the			
CLKI duty cycle (ex	ternally driven)	-	-	50/50	40/60	%				

LXT904 Ethernet Interface Adapter with EnDec and AUI

Parameter	Symbol	Min	Typ ¹	Max	Units	Test Conditions
Input Low Current	Iil	-	-	-700	mA	
Input High Current	Ĭн	-		500	mA	· · · · · · · · · · · · · · · · · · ·
Differential Output Voltage	Vod	±150		±1200	mV	
Differential Squelch Threshold	VDS	150	220	350	mV	5 MHz square wave input

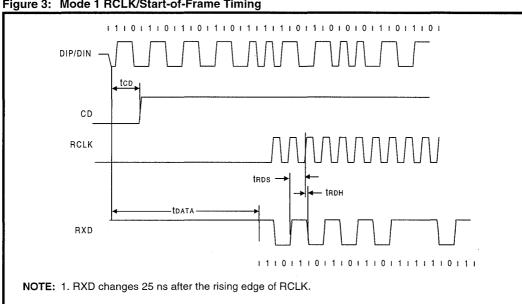
Table 7: AUI Electrical Characteristics (Over Recommended Range)

Table 8: RCLK/Start-of-Frame Timing

Parameter		Symbol	Minimum	Typical ¹	Maximum	Units	
Decoder acquisitio	n time	tDATA	-	900	1100	ns	
CD turn-on delay		tCD	-	50	200	ns	
Receive data	Mode 1	tRDS	60	70	-	ns	
setup from RCLK	Modes 2, 3 and 4	tRDS	30	45	-	ns	
Receive data	Mode 1	tRDH	10	20	-	ns	
hold from RCLK	Modes 2, 3 and 4	tRDH	30	45	-	ns	

Table 9: RCLK/End-of-Frame Timing

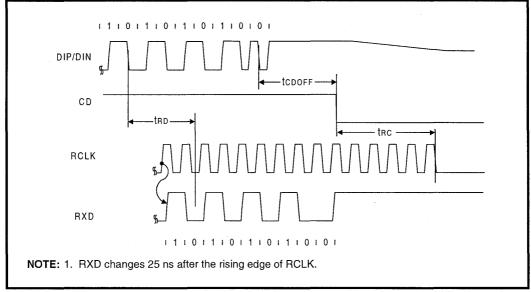
Parameter	Туре	Sym	Mode 1	Mode 2	Mode 3	Mode 4	Units
RCLK after CD off	Minimum	tRC	5	1	27	5	bit times
Rx data throughput delay	Maximum	tRD	400	375	375	375	ns
CD turn off delay ²	Maximum	tCDOFF	500	475	475	475	ns
Receive block out after TEN off	Typical ¹	tIFG	5	50	-	· -	bit times

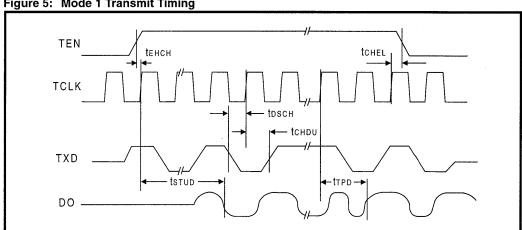

Table 10: Transmit Timing

Parameter	Symbol	Minimum	Typical ¹	Maximum	Units
TEN Setup from TCLK	tEHCH	22	-	-	ns
TXD Setup from TCLK	tDSCH	22	-	-	ns
TEN Hold after TCLK	tCHEL	5	-	-	ns
TXD Hold after TCLK	tCHDU	5	-	-	ns
Transmit Start-up Delay - AUI	tSTUD	-	200	450	ns
Transmit Through-put Delay - AUI	tTPD	-	-	300	ns

Table 11: Collision and Loopback Timing

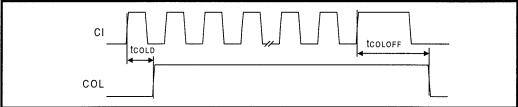
Parameter	Symbol	Minimum	Typical ¹	Maximum	Units
COL turn on delay	tCOLD	-	-	500	ns
COL turn off delay	tCOLOFF	-	-	500	ns
COL (SQE) Delay after TEN off	tSQED	0.65	-	1.6	μs
COL (SQE) Pulse Duration	tSQEP	500	-	1500	ns
LBK setup from TEN	tKHEH	10	25	-	ns
LBK hold after TEN	tKHEL	10	0	-	ns


LXT904 Ethernet Interface Adapter with EnDec and AUI



Timing Diagrams for Mode 1 (MD1 = Low, MD0 = Low)

Figure 3: Mode 1 RCLK/Start-of-Frame Timing



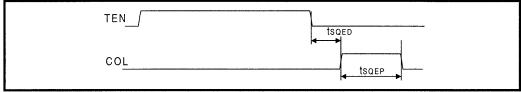


Figure 5: Mode 1 Transmit Timing

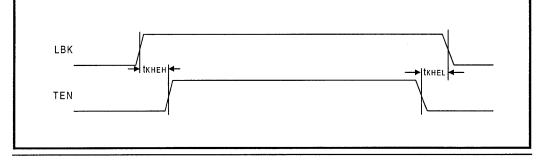
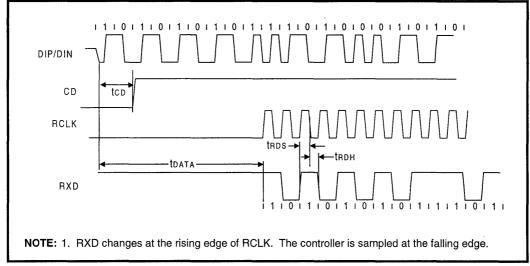
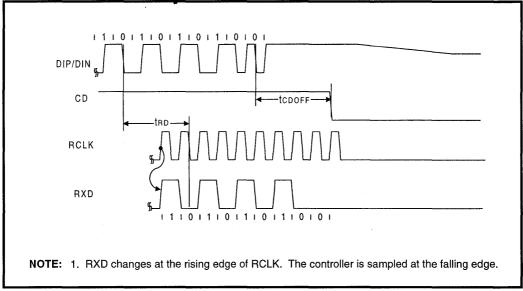

Figure 6: Mode 1 Collision Detect Timing

Figure 7: Mode 1 COL/CI Output Timing


Figure 8: Mode 1 Loopback Timing


LXT904 Ethernet Interface Adapter with EnDec and AUI

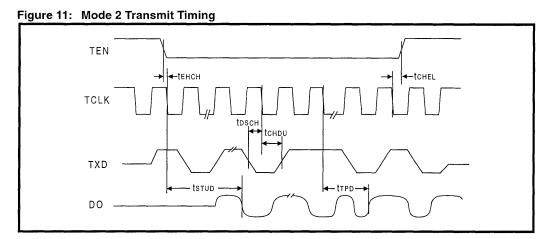

Timing Diagrams for Mode 2 (MD1 = Low, MD0 = High)

Figure 9: Mode 2 RCLK/Start-of-Frame Timing

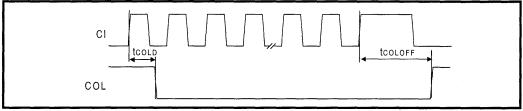
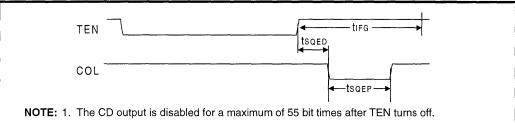


Figure 10: Mode 2 RCLK/End-of-Frame Timing



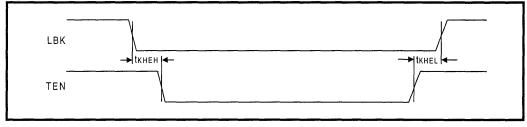
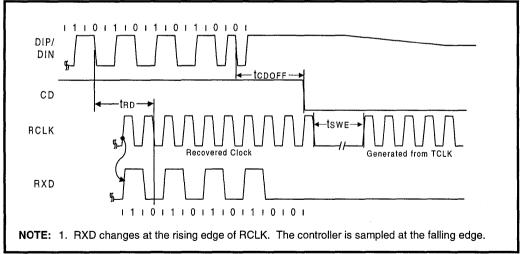
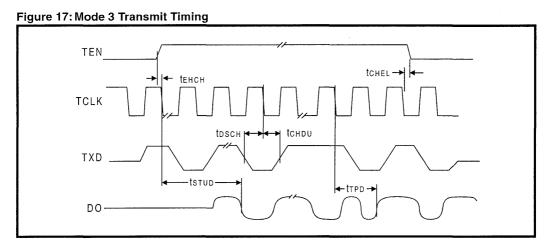

Figure 12: Mode 2 Collision Detect Timing

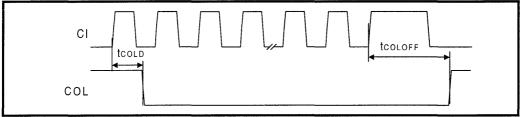
Figure 13: Mode 2 COL/CI Output Timing

Figure 14: Mode 2 Loopback Timing


LXT904 Ethernet Interface Adapter with EnDec and AUI


1110111011101110111 1 1 T 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 ı. DIP/DIN -tco-> CD
 Recovered from Input Data Stream RCLK Generated from TCLK tens – trdh **TDATA** RXD 11101110111011101 11011 1 NOTE: 1. RXD changes at the rising edge of RCLK. The controller is sampled at the falling edge.

Timing Diagrams for Mode 3 (MD1 = High, MDO = Low)


Figure 15: Mode 3 RCLK/Start-of-Frame Timing

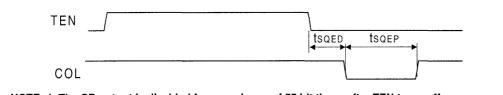


Figure 18: Mode 3 Collision Detect Timing

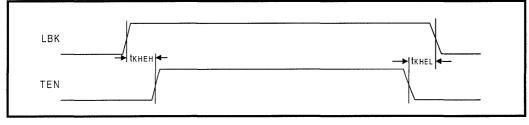
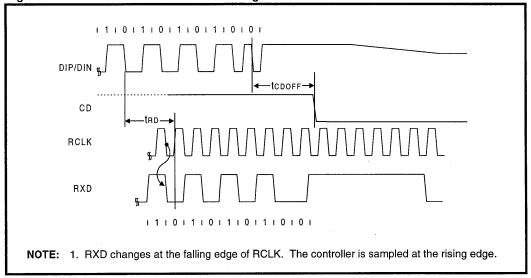


Figure 19: Mode 3 COL/CI Output Timing

NOTE: 1. The CD output is disabled for a maximum of 55 bit times after TEN turns off.

Figure 20: Mode 3 Loopback Timing

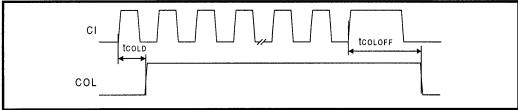


LXT904 Ethernet Interface Adapter with EnDec and AUI

Figure 21: Mode 4 RCLK/Start of Frame Timing 1110111011101110111 0 1 0 1 0 1 0 1 1 | 0 | 1 | 1 1 1 1 1 1 DIP/DIN tcp СD RCLK trds trdh **t**DATA RXD 11011011011011011111111011 NOTE: 1. RXD changes at the falling edge of RCLK. The controller is sampled at the rising edge.

Timing Diagrams for Mode 4 (MD1 = High, MD0 = High)

Figure 22: Mode 4 RCLK/End of Frame Timing



ELEVEL

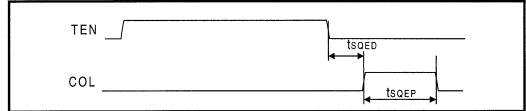


Figure 23: Mode 4 Transmit Timing

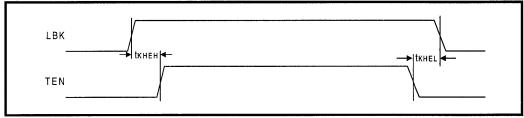

Figure 24: Mode 4 Collision Detect Timing

Figure 25: Mode 4 COL/CI Output Timing

Figure 26: Mode 4 Loopback Timing

LXT904 Ethernet Interface Adapter with EnDec and AUI

NOTES

DATA SHEET

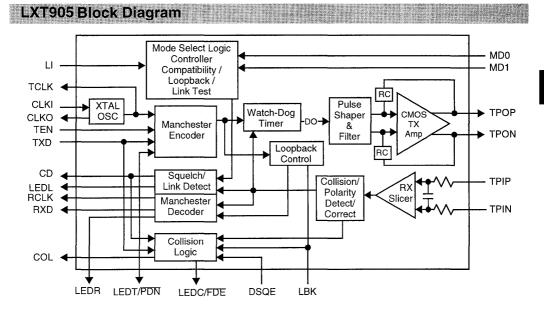
APRIL 1997 Revision 2.0

LXT905

Universal Ethernet Interface Adapter

General Description

The LXT905 Universal Ethernet Interface Adapter is designed for IEEE 802.3 physical layer applications. It provides, in a single CMOS device, all the active circuitry for interfacing most standard 802.3 controllers to 10BASE-T media.


LXT905 functions include Manchester encoding/decoding, receiver squelch and transmit pulse shaping, jabber, link integrity testing and reversed polarity detection/correction. The LXT905 drives the 10BASE-T twisted-pair cable with only a simple isolation transformer. Integrated filters simplify the design work required for FCC compliant EMI performance.

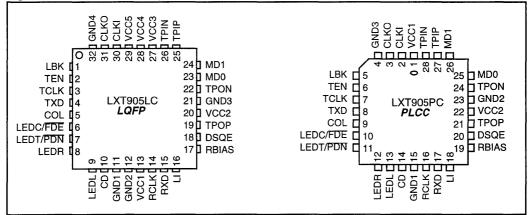
The LXT905 is fabricated with an advanced process and requires only a single 5 or 3.3 volt power supply.

- Applications
- · Hub/Switched Dedicated LANs for 10BASE-T
- · Desktop 10BASE-T LAN adapter boards
- · Laptop and Portable applications

Features

- Transparent 3.3 V or 5 V operation
- · Integrated filters Simplifies FCC compliance
- · Integrated Manchester encoder/decoder
- · 10BASE-T compliant transceiver
- · Automatic polarity correction
- Available in 28-pin PLCC and 32-pin LQFP packages
- SQE enable/disable
- · Four LED drivers
- · Full duplex capability
- · Power-down mode with tristate

LXT905 Universal Ethernet Interface Adapter


TABLE OF CONTENTS

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS
FUNCTIONAL DESCRIPTION
Introduction
Controller Compatibility Modes
Transmit Function
Jabber Control Function
SQE Function
Receive Function 11-77
Polarity Reverse Function 11-77
Collision Detection Function
Loopback Function 11-78
Link Integrity Test Function 11-78
APPLICATION INFORMATION
Introduction 11-80
Magnetic Information 11-80
Typical 10BASE-T Application 11-81
Dual Network Support - 10BASE-T and Token Ring
Simple 10BASE-T Connection 11-83
TEST SPECIFICATIONS
Absolute Maximum Ratings 11-84
Recommended Operating Conditions 11-84
I/O Electrical Characteristics 11-84
TP Electrical Characteristics 11-85
Switching Characteristics 11-86
RCLK/Start-of-Frame Timing 11-86
RCLK/End-of-Frame Timing 11-86
Transmit Timing 11-87
Miscellaneous Timing 11-87
Mode 1 Timing Diagrams 11-88
Mode 2 Timing Diagrams 11-90
Mode 3 Timing Diagrams 11-92
Mode 4 Timing Diagrams 11-94

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Figure 1: LXT905 Pin Assignments

Table 1: LXT905 Signal Descriptions

LQFP Pin #	PLCC Pin #	Symbol	I/O	Description
13	1	VCC1		Power Inputs 1 thru 5. Power supply inputs of +5 volts or +3.3 volts.
20	22	VCC2	-	
27		VCC3	- 1	
28	-	VCC4	-	
29	-	VCC5	-	
30	2	CLKI	I	Crystal Oscillator. A 20 MHz crystal must be connected across these
31	3	CLKO	0	pins, or a 20 MHz clock applied at CLKI with CLKO left open.
11	15	GND1	_	Ground.
12	23	GND2	-	
21	4	GND3	-	
32	-	GND4	-	
1	5	LBK	I	Loopback. When High, forces internal loopback. Disables collision and the transmission of both data and link pulses. Pulled Low internally.
2	6	TEN	I	Transmit Enable. Enables data transmission and starts the watchdog timer. Synchronous to TCLK. Pulled Low internally.
3	7	TCLK	0	Transmit Clock. A 10 MHz clock output. This clock signal should be directly connected to the transmit clock input of the controller.
4	8	TXD	I	Transmit Data. Input signal containing NRZ data to be transmitted on the network. TXD should be connected directly to the transmit data output of the controller. Pulled Low internally.
5	9	COL	0	Collision Signal. Output that drives the collision detect input of the controller.

11

	1998 C. 128		1. 1. at 1. at	
LQFP Pin #	PLCC Pin #	Symbol	1/0	Description
6	10	LEDC/ FDE	O I	LED Collision or Full Duplex Enable. LEDC is an open drain driver for the collision indicator pulls Low during collision. LED "on" (<i>i.e.</i> , Low output) time is extended by approximately 100 ms. FDE enables full duplex mode (external loopback) if tied Low externally. Pulled high internally.
7	11	LEDT/ PDN	O I	LED Transmit or Power Down. LEDT is an open drain driver for the transmit indicator. LED "on" (<i>i.e.</i> , Low output) time is extended by approximately 100 ms. Output is pulled Low during transmit. If externally tied Low, the LXT905 goes to power down state (PDN). In Power-down Mode, all logic inputs and outputs are tristated.
8	12	LEDR	0	LED Receive. Open drain driver for the receive indicator LED. LED "on" (<i>i.e.</i> , Low output) time is extended by approximately 100 ms. Output is pulled Low during receive. Pulled High internally.
9	13	LEDL	0	LED Link. Open drain driver for link integrity indicator. Output is pulled Low during link test pass. Pulled High internally.
10	14	CD	0	Carrier Detect. An output for notifying the controller that activity exists on the network.
14	16	RCLK	0	Receive Clock. A recovered 10 MHz clock which is synchronous to the received data and connected to the controller receive clock input.
15	17	RXD	0	Receive Data. Output signal connected directly to the receive data input of the controller.
16	18	LI	I	Link Enable. Controls link integrity test; enabled when LI is High, disabled when LI is Low.
17	19	RBIAS	I	Bias Circuitry. A 7.5 k Ω 1% resistor to ground at this pin controls operating circuit bias.
18	20	DSQE	Ι	SQE Disable. When DSQE is High, the SQE function is disabled. When DSQE is Low, the SQE function is enabled. SQE should be dis- abled for normal operation in Hub/Switch/Repeater applications. Pulled Low internally.
19	21	TPOP	0	Twisted Pair Outputs. Differential outputs to the twisted-pair cable. The
22	24	TPON	0	outputs are pre-equalized.
23	25	MDO	I	Mode Select 0 and 1. Mode select pins determine controller compatibility
24	26	MDI	I	mode in accordance with Table 2. Pulled Low internally.
25	27	TPIP	I	Twisted-Pair Inputs. A differential input pair from the twisted-pair cable.
26	28	TPIN	I	Receive filter is integrated on-chip. No external filters are required.

Table 1: LXT905 Signal Descriptions - continued

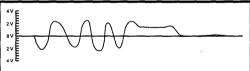
FUNCTIONAL DESCRIPTION

Introduction

The LXT905 Universal Ethernet Interface Transceiver performs the physical layer signaling (PLS) and Media Attachment Unit (MAU) functions as defined by the IEEE 802.3 specification. It functions as an integrated PLS/ MAU for use with 10BASE-T twisted-pair networks.

The LXT905 interfaces a back end controller to a twistedpair (TP) cable. The controller interface includes transmit and receive clock and NRZ data channels, as well as mode control logic and signaling. The twisted-pair interface comprises two circuits: Twisted-Pair Input (TPI) and Twisted-Pair Output (TPO). In addition to the two basic interfaces, the LXT905 contains an internal crystal oscillator and four LED drivers for visual status reporting.

Functions are defined from the back end controller side of the interface. The LXT905 Transmit function refers to data transmitted by the back end to the twisted-pair network. The LXT905 Receive function refers to data received by the back end from the twisted-pair network. The LXT905 performs all required functions defined by the IEEE 802.3 10BASE-T MAU specification such as collision detection, link integrity testing, signal quality error messaging, jabber control and loopback.

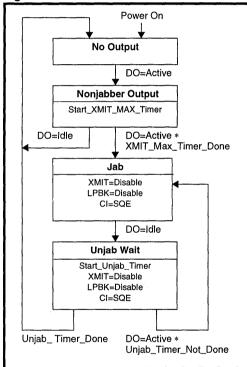

Controller Compatibility Modes

The LXT905 is compatible with most industry standard controllers including devices produced by Advanced Micro Devices (AMD), Intel, Fujitsu, National Semiconductor, Seeq, Motorola and Texas Instruments. Four different control signal timing and polarity schemes (Modes 1 through 4) are required to achieve this compatibility. Mode select pins MD0 and MD1 determine controller compatibility modes as listed in Table 2. Refer to the Test Specifications section for timing diagrams and parameters.

Transmit Function

The LXT905 receives NRZ data from the controller at the TXD input as shown in the block diagram, and passes it through a Manchester encoder. The encoded data is then transferred to the twisted-pair network (the TPO circuit). The advanced integrated pulse shaping and filtering network produces the output signal on TPON and TPOP, shown in Figure . The TPO output is pre-distorted and pre-filtered to meet the 10BASE-T jitter template. An internal continuous resistor-capacitor filter is used to remove any high-frequency clocking noise from the pulse shaping circuitry. Integrated filters simplify the design work required for FCC compliant EMI performance. During idle periods, the LXT905 transmits link integrity test pulses on the TPO circuit (if LI is enabled and LBK is disabled).

Figure 2: LXT905 TPO Output Waveform


Table 2: Controller Compatibility Mode Options

Controller Mode	MD1	MDO
Mode 1 - For Advanced Micro Devices AM7990 or compatible controllers	Low	Low
Mode 2 - For Intel 82596 or compatible controllers ¹	High	Low
Mode 3 - For Fujitsu MB86950, MB86960 or compatible controllers (Seeq 8005) ²	Low	High
Mode 4 - For National Semiconductor 8390 or compatible controllers (TI TMS380C26)	High	High
 Refer to Level One Application Note 51 when designing with Intel controllers. SEEQ controllers require inverters on CLKI, LBK, RCLK and COL. 		

LXT905 Universal Ethernet Interface Adapter

Jabber Control Function

Figure 3 is a state diagram of the LXT905 jabber control function. The LXT905 on-chip watchdog timer prevents the DTE from locking into a continuous transmit mode. When a transmission exceeds the time limit, the watchdog timer disables the transmit and loopback functions and activates the COL pin. Once the LXT905 is in the jabber state, the TXD circuit must remain idle for a period of 0.25 to 0.75 seconds before it will exit the jabber state.

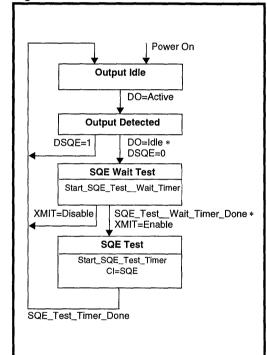


Figure 3: Jabber Control Function

SQE Function

The LXT905 supports the signal quality error (SQE) function as shown in Figure 4. After every successful transmission on the 10BASE-T network, the LXT905 transmits the SQE signal for 10 bit times (BT) \pm 5BT on the COL pin of the device.

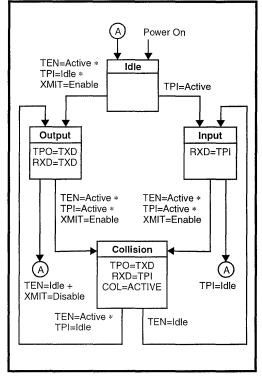
The SQE can be disabled for repeater/switch applications. When DSQE is set High, the SQE function is disabled. When DSQE is Low, the SQE function is enabled.

Figure 4: SQE Function

Receive Function

The LXT905 receive function acquires timing and data from the twisted-pair network (the TPI circuit). Valid received signals are passed through the on-chip filters and Manchester decoder then output as decoded NRZ data and receive timing on the RXD and RCLK pins, respectively.

An internal RC filter and an intelligent squelch function discriminate noise from link test pulses and valid data streams. The receive function is activated only by valid data streams above the squelch level with proper timing.


If the differential signal at the TPI circuit inputs falls below 85% of the threshold level (unsquelched) for 8 bit times (typical), the LXT905 receive function enters the idle state. The LXT905 automatically corrects reversed polarity on the TPI circuit.

Polarity Reverse Function

The LXT905 polarity reverse function uses both link pulses and end-of-frame data to determine polarity of the received signal. If Link Integrity testing is disabled, polarity detection is based only on received data. A reversed polarity condition is detected when eight consecutive opposite receive link pulses are detected without receipt of a link pulse of the expected polarity. Reversed polarity is also detected if four consecutive frames are received with a reversed start-of-idle. Whenever a correct polarity frame or a correct link pulse is received, these two counters are reset to zero. If the LXT905 enters the link fail state and no valid data or link pulses are received within 96 to 128 ms, the polarity is reset to the default non-flipped condition. Polarity correction is always enabled.

Collision Detection Function

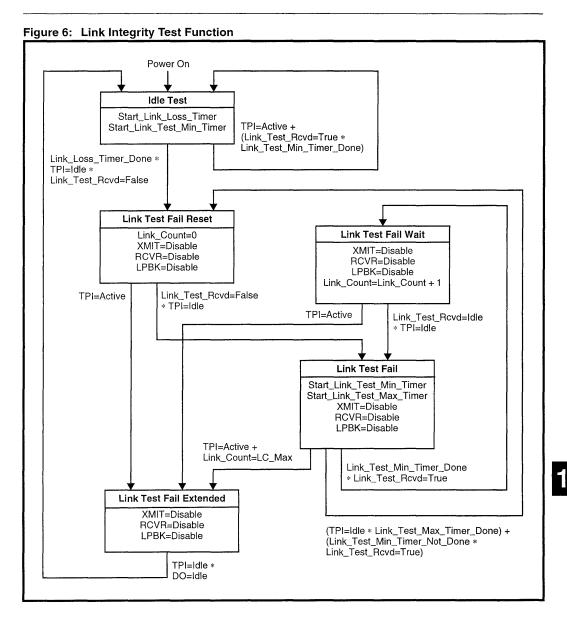
A collision is defined as the simultaneous presence of valid signals on both the TPI circuit and the TPO circuit. The LXT905 reports collisions to the back-end via the COL pin. If the TPI circuit becomes active while there is activity on the TPO circuit, the TPI data is passed to the back-end over the RXD circuit, disabling normal loopback. Figure 5 is a state diagram of the LXT905 collision detection function.

Figure 5: Collision Detection Function

Loopback Function

The LXT905 provides the normal loopback function specified by the 10BASE-T standard for the twisted-pair port, as well as a forced loopback function. The loopback function operates in conjunction with the transmit function. Data transmitted by the back-end is internally looped back within the LXT905 from the TXD pin through the Manchester encoder/decoder to the RXD pin and returned to the back-end. This "normal" loopback function is disabled when a data collision occurs, clearing the RXD circuit for the TPI data. Normal loopback is also disabled during link fail, jabber, and full duplex states. Loopback is always enabled during the forced loopback state.

The LXT905 provides an additional loopback function. External loopback mode, useful for system-level testing, is controlled by the LEDC/FDE pin. With both LEDC/FDE and LBK Low, the LXT905 device:


- · disables internal loopback circuits
- disables SQE
- · disables Collision Detection
- · enables Full Duplex Mode

This allows external loopback testing.

Link Integrity Test Function

Figure 6 is a state diagram of the LXT905 Link Integrity test function. The link integrity test is used to determine the status of the receive side twisted-pair cable. Link integrity testing is enabled when pin 18 (LI) is tied High. When enabled, the receiver recognizes link integrity pulses which are transmitted in the absence of receive traffic. If no serial data stream or link integrity pulses are detected within 50~150 ms, the chip enters a link fail state and disables the transmit and normal loopback functions. The LXT905 ignores any link integrity pulse with interval less than 2~7 ms. The LXT905 will remain in the Link Fail State until it detects either a serial data packet or two or more link integrity pulses.

LXT905 Functional Description

APPLICATION INFORMATION

Introduction

Figures 7 through 9 show typical LXT905 applications. These diagrams group similar pins; they do not portray the actual chip pinout. The controller interface pins; Transmit Data (TXD), Transmit Clock (TCLK) Transmit Enable (TEN), Receive Data (RXD), Receive Clock (RCLK), Collision Signal (COL) and Carrier Detect (CD) pins are at the upper left.

Power and ground pins are at the bottom of each diagram. VCC1 and VCC2 use a single power supply with decoupling capacitors installed between the power and ground busses. VCC may be powered by a 5V or 3.3V supply.

Twisted-Pair Interface

The Twisted-Pair interface (TPOP/N and TPIP/N) is at the upper right. The I/O pairs have impedance matching resistors for 100Ω UTP but no external filters are required.

RBIAS Pin

The RBIAS pin sets the levels for the LXT905 output drivers. The LXT905 requires a 7.5k Ω , 1% resistor directly connected between the RBIAS pin and ground. This resistor should be located as close to the device as possible. Keep the traces as short as possible and isolated from all other high speed signals.

Crystal Information

Based on limited evaluation, Table 3 lists some of the suitable crystals. Designers should test and validate all crystals before committing to a specific component.

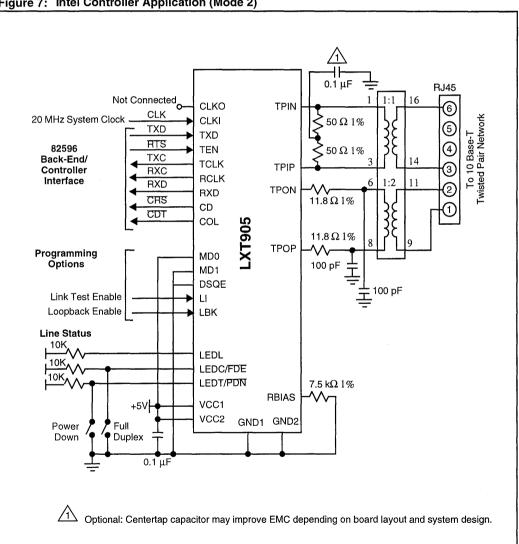
Table 3: Suitable Crystals

	MP-2
MTRON	MP-1
Manufacturer	Part Number

Magnetic Information

The LXT905 requires a 1:1 turns ratio for the receive transformer and a 1:2 turns ratio for the transmit transformer. Table 4 lists transformers suitable for the applications described in this data sheet. Designers are advised to test and validate all magnetics before committing to a specific component.

Table 4: Suitable Magnetics

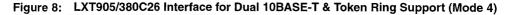

Manufacturer	Part Number						
	Surface Mount	Thru-hole					
Valor	ST4160	_					
	ST4202	_					
	ST4167	-					
HALO	TG74-1406N1	TG74-1406Q					
	TG75-1406N	TG74-1406K					
Fil-Mag	23Z441SM	23Z441					

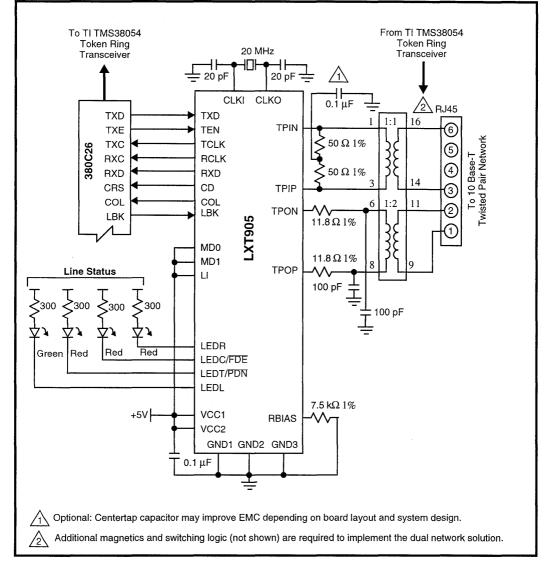
LXT905 Application Information

Typical 10BASE-T Application

Figure 7 is a typical LXT905 application. The DTE is connected to a 10BASE-T network through the twistedpair RJ45 connector. With MD0 tied high and MD1 grounded, the LXT905 logic and framing are set to Mode 2 (compatible with Intel 82596 controllers*). Connect 20 MHz system clock input at CLKI. (Leave CLKO open.) The LI pin externally controls the link test function.

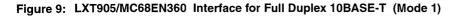
*Refer to Level One Application Note 51 when designing with Intel controllers.

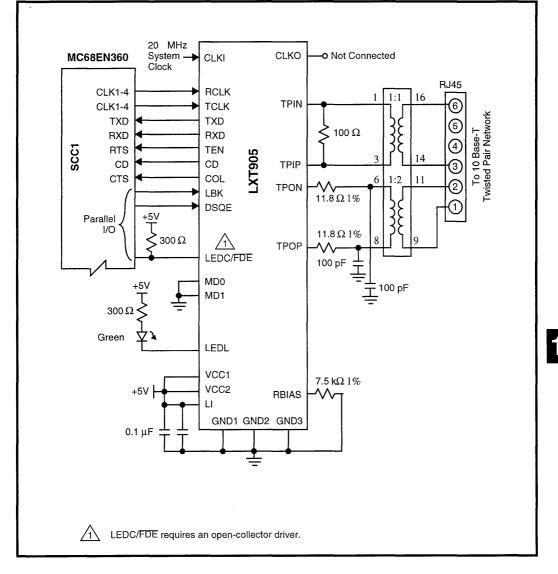



Figure 7: Intel Controller Application (Mode 2)

Dual Network Support -10BASE-T and Token Ring

Figure 8 shows the LXT905 with a Texas Instruments 380C26 CommProcessor. The 380C26 is compatible with


Mode 4 (MD0 and MD1 both high). When used with the 380C26, both the LXT905 and a TMS38054 Token Ring transceiver can be tied to a single RJ45 allowing dual network support from a single connector.



Simple 10BASE-T Connection

Figure 9 shows a simple 10BASE-T application using an LXT905 transceiver and a Motorola MC68EN360. The MC68EN360 is compatible with Mode 1 (MD0 and MD1 both low).

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 5 through 13 and Figures 10 through 25 represent the performance specifications of the LXT905 and are guaranteed by test, except where noted by design.

Table 5: Absolute Maximum Values

Parameter	Symbol	Min	Мах	Units
Supply voltage	Vcc	-0.3	+6	V
Ambient operating temperature	Тор	0	+70	°C
Storage temperature	Тѕт	-65	+150	°C
Exceeding these values may cause permanent Exposure to maximum rating conditions for exte	STATISTICS AND AND A STATISTICS AND		이는 것 그 다섯 명이 있는 것 같아? 것 같아? 것이다.	s is not implied.

Table 6: Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Recommended supply voltage ¹	Vcc	3.135	5.0	5.25	v	
Recommended operating temperature	Тор	0	-	70	°C	

Table 7: I/O Electrical Characteristics (Over Recommended Range)

Parameter	Sym	Min	Typ ¹	Max	Units	Test Conditions
Input low voltage ²	VIL	-	_	0.8	V	
Input high voltage ²	VIH	2.0	-	-	v	
Output low voltage	Vol	-	-	0.4	V	IOL = 1.6 mA
	Vol	-	-	10	%Vcc	IOL < 10 μA
Output low voltage (Open drain LED driver)	Voll		_	0.7	%Vcc	IOLL = 10 mA
Output high voltage	Voh	2.4	-	-	v	Іон = 40 μА
	VOH	90		_	%Vcc	Іон < 10 µА

LXT905 Test Specifications

Para	Sym	Min	Typ1	Max	Units	Test Conditions	
Output rise time CMOS			_	3	15	ns	CLOAD = 20 pF
TCLK & RCLK	TTL	-	_	2	15	ns	
Output fall time	CMOS	-	-	3	15	ns	CLOAD= 20 pF
TCLK & RCLK	TTL	_	-	2	15	ns	
CLKI rise time (externally driven)		_	-	-	10	ns	
CLKI duty cycle (externally driven)	-	-	50/50	40/60	%	
Supply current	Normal	ICC	-	40	80	mA	Idle Mode
	Mode	ICC		70	100	mA	Transmitting on TP
	Power Down Mode	ICC	_	0.01	1	μA	

Table 7: I/O Electrical Characteristics (Over Recommended Range) - continued

Table 8: TP Electrical Characteristics	s (Over Recommended Range)
--	----------------------------

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Transmit output impedance	Zout	_	5		Ω	
Transmit timing jitter addition ²	-	-	±6.4	±10	ns	0 line length for internal MAU
Transmit timing jitter added by the MAU and PLS sections ^{2, 3}	_		±3.5	±5.5	ns	After line model specified by IEEE 802.3 for 10BASE-T inter- nal MAU
Receive input impedance	Zin		24	-	kΩ	Between TPIP/TPIN
Differential squelch threshold	VDS	300	420	585	mV	5 MHz square wave input

Table 9: Switching Characteristics (Over Recommended Range)

	Parameter	Symbol	Minimum	Typical	Maximum	Units
Jabber Timing	Maximum transmit time		20	_	150	ms
	Unjab time	_	250		750	ms
Link Integrity	Time link loss receive	-	50	-	150	ms
Timing	Link min receive		2	_	7	ms
	Link max receive	-	50		150	ms
	Link transmit period	-	8	10	24	ms

11

Parameter Decoder acquisition time CD turn-on delay		Symbol tDATA tCD	Min	Typ ¹ 1300 400	Max 1500 550	Units ns ns
			-			
	Modes 2, 3 and 4	tRDS	30	45	_	ns
Receive data hold from RCLK	Mode 1	tRDH	10	20		ns
	Modes 2, 3 and 4	tRDH	30	45	_	ns
RCLK shut off delay from CD assert (Mode 3)		tsws		±100		ns

Table 10: RCLK/Start-of-Frame Timing (Over Recommended Range)

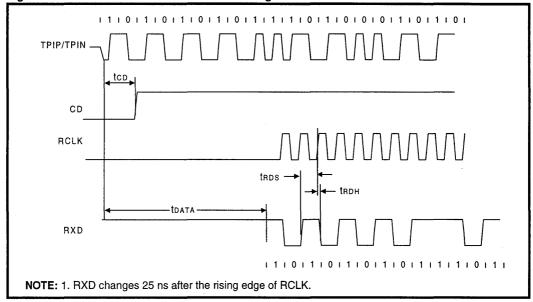
Table 11: RCLK/End-of-Frame Timing (Over Recommended Range)

Parameter	Туре	Sym	Mode 1	Mode 2	Mode 3	Mode 4	Units
RCLK after CD off	Min	tRC	5	1	-	5	bit times
Rcv data through-put delay	Max	tRD	400	375	375	375	ns
CD turn-off delay ²	Max	tCDOFF	500	475	475	475	ns
Receive block out after TEN off 3	Typical ¹	tIFG	5	50		_	bit times
RCLK switching delay after CD off	Typical ¹	tswe		_	120 (±80)		ns

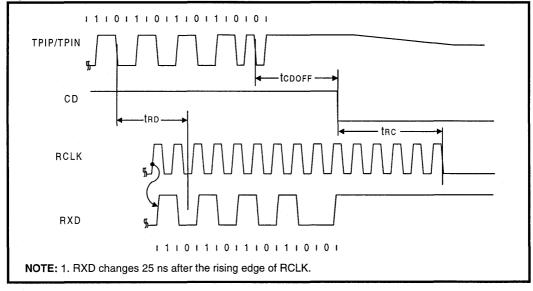
Operating and a concerning the end of the second sec

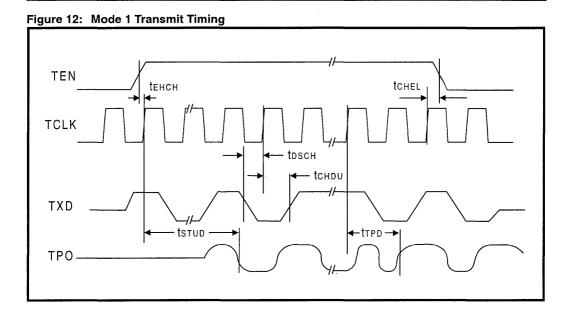
Parameter	Symbol	Minimum	Typical ¹	Maximum	Units
TEN setup from TCLK	tehch	22	_	-	ns
TXD setup from TCLK	tDSCH	22	-	-	ns
TEN hold after TCLK	tCHEL	5	-	-	ns
TXD hold after TCLK	tCHDU	5		-	ns
Transmit start-up delay	tSTUD	_	350	450	ns
Transmit through-put delay	tTPD	_	338	350	ns

Table 12: Transmit Timing (Over Recommended Range)


 Table 13:
 Miscellaneous Timing (Over Recommended Range)

Parameter	Symbol	Minimum	Typical ¹	Maximum	Units
COL (SQE) Delay after TEN off ²	tSQED	0.65	_	1.6	μs
COL (SQE) Pulse Duration ²	tSQEP	500		1500	ns
Power Down recovery time	tPDR	_	25	_	ms


11


LXT905 Universal Ethernet Interface Adapter

Timing Diagrams for Mode 1 (MD1 = Low, MD0 = Low) Figures 10 through 13 Figure 10: Mode 1 RCLK/Start-of-Frame Timing

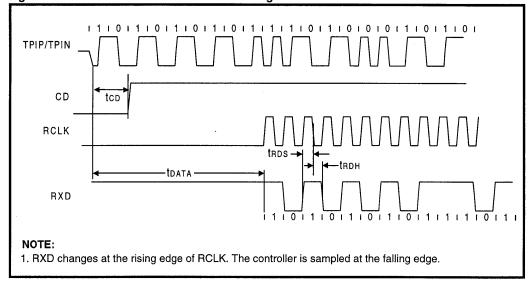
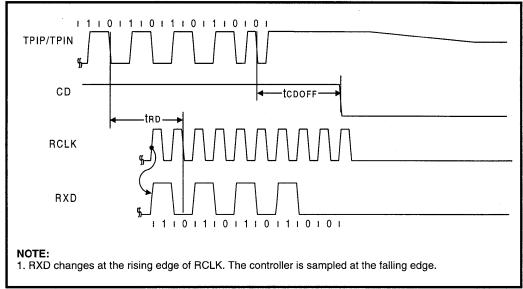
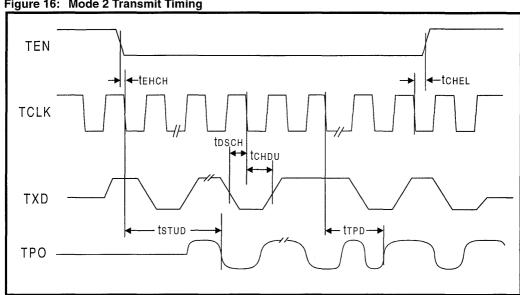


Figure 13: Mode 1 COL Output Timing


11


LXT905 Universal Ethernet Interface Adapter

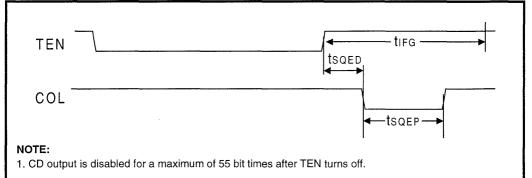
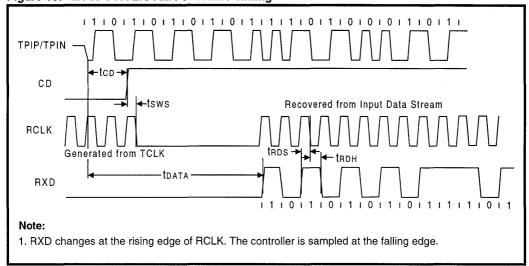
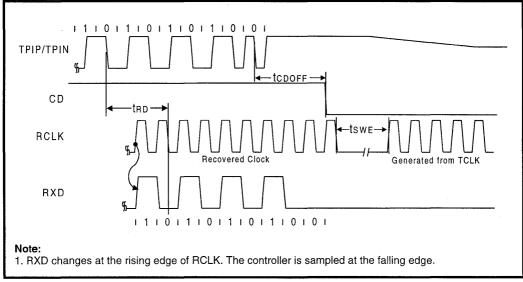
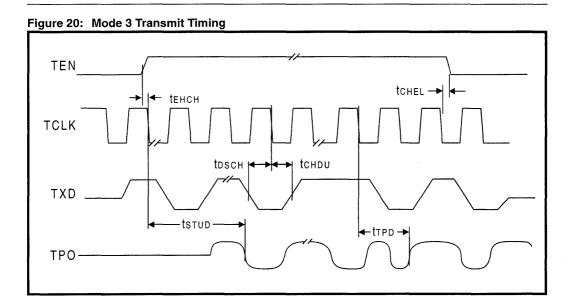


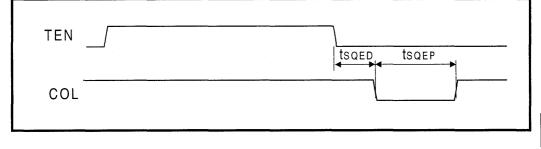
Figure 16: Mode 2 Transmit Timing

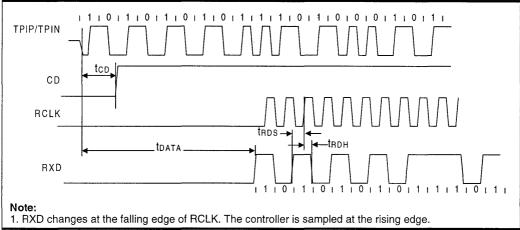

Figure 17: Mode 2 COL Output Timing

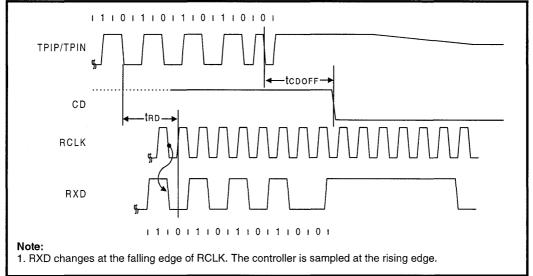


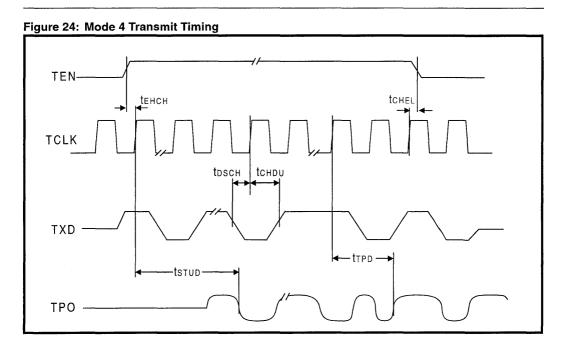

LXT905 Universal Ethernet Interface Adapter

Timing Diagrams for Mode 3 (MD1 = High, MD0 = Low) Figures 18 through 21 Figure 18: Mode 3 RCLK/Start-of-Frame Timing






Figure 21: Mode 3 COL Output Timing



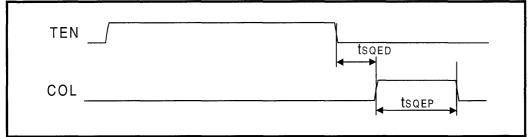

Figure 23: Mode 4 RCLK/End-of-Frame Timing

Figure 25: Mode 4 COL Output Timing

LXT905 Universal Ethernet Interface Adapter

NOTES

DATA SHEET

MAY 1997 Revision 2.1

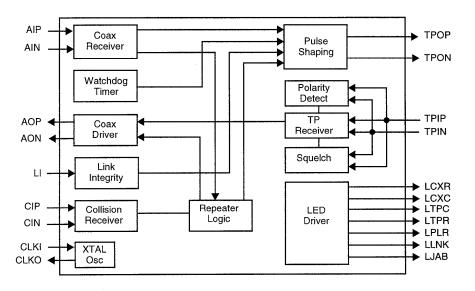
LXT906

Ethernet Twisted-Pair / Coax Adapter

General Description

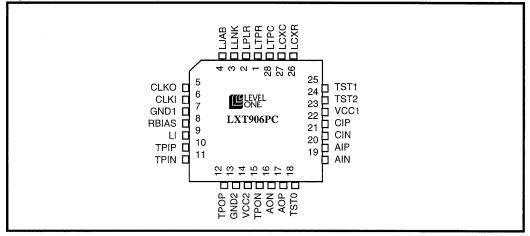
The LXT906 Twisted-Pair/Coax Adapter is designed to allow a cost effective Ethernet implementation in a mixed media environment. Combined with a coax transceiver such as the DP8392, the LXT906 offers a complete adapter solution.

LXT906 functions include level-shifted data pass-through from one transmission media to another, collision detection and propagation, and automatic correction of polarity reversal on the twisted pair input. It also includes LED drivers for jabber, coax receive and collision, twisted pair receive and collision, reversed polarity detect and link indication functions.


The LXT906 is an advanced CMOS device and requires only a single 5 volt power supply.

- Applications
- 10BASE-T to Coax (10BASE5 or 10BASE2) converter

Features


- Direct interface to Coax transceiver and to RJ45 connector
- · Collision detection and propagation
- · Internal pre-distortion generation
- · Internal common mode voltage generation
- · Selectable link test
- Twisted-Pair receive polarity reverse detection and correction
- LED drivers for TP and coax receive; TP and coax collision; jabber, link active and reversed polarity indicators
- Single 5 V supply, CMOS technology
- · Available in 28-pin PLCC

LXT906 Block Diagram

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Figure 1: LXT906 Pin Assignments

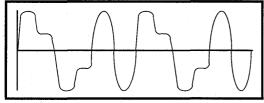
Table 1: LXT906 Signal Descriptions

Pin #	Sym	1/0	Description
1	LTPR	0	Twisted-Pair Receive LED Driver. Open drain driver for the TP Receive indicator LED. Output pulls Low whenever TP receiver is active.
2	LPLR	0	Twisted-Pair Reverse Polarity LED Driver. Open drain driver for the TP Reversed Polar- ity indicator LED. Output pulls Low whenever reversed polarity is detected.
3	LLNK	0	Twisted-Pair Link LED Driver. Open drain driver for the TP Link indicator LED. Output goes High whenever link is active.
4	LJAB	0	Jabber LED Driver. Open drain driver for the Jabber indicator LED. Output pulls Low whenever LXT906 is in a jabber condition.
5	CLKO	0	Crystal Oscillator. The LXT906 requires either a 20 MHz crystal (or ceramic resonator)
6	CLKI	Ι	connected across these pins, or a 20 MHz external clock applied at CLKI with CLKO left unconnected.
7	GND1	-	Ground 1. Ground
8	RBIAS	I	Resistor Bias Control. Bias control pin for the operating circuit. Bias set from external resistor to ground. External resistor value = $12.4 \text{ k}\Omega (\pm 1\%)$.
9	LI	I	Link Integrity. Enables Link Integrity testing when tied High.
10	TPIP	I	Twisted-Pair Receive Inputs. Differential receive inputs from the twisted-pair input filter.
11	TPIN	I	
12	TPON	0	Twisted-Pair Transmit Outputs. Transmit drivers to the twisted-pair output filter. Output
15	TPOP	0	data is Manchester encoded and pre-distorted to meet the 10BASE-T template.
13	GND2	_	Ground 2. Ground.
14	VCC2	-	Power Supply 2. +5 V power supply.

LXT906 Pin Assignments And Signal Descriptions

Pin #	Sym	1/0	Description
16	AON	0	AUI Out Negative and AUI Out Positive. Differential driver output pair connected to the
17	AOP	0	Coax AUI.
18	TST0	-	Test Pin 0. Test pin for factory use. This pin must be left unconnected.
19	AIN	I	AUI In Negative and AUI In Positive. Data input pair from the Coax AUI.
20	AIP	I	
21	CIN	Ι	Collision Input Negative and Collision Input Positive. Differential input pair tied to the
22	CIP	I	collision presence pair of the Ethernet Coax transceiver.
23	VCC1	-	Power Supply 1. +5 V power supply.
24	TST2	-	Test Pin 2 and Test Pin 1. Test pins reserved for factory use. These pins must be left
25	TST1	-	unconnected.
26	LCXR	0	Coax (AUI) Receive LED Driver. Open drain driver for the Coax Receive indicator LED. Pulls Low whenever coax receiver is active.
27	LCXC	0	Coax Collision LED Driver. Open drain driver for the Coax Collision indicator LED. Pulls Low whenever a collision is detected on the coax circuit.
28	LTPC	0	TP Collision LED Driver. Open drain driver for the TP Collision indicator LED. Pulls Low whenever a collision is detected on the TP lines.

Table 1: LXT906 Signal Descriptions - continued


FUNCTIONAL DESCRIPTION

The LXT906 interfaces the coaxial transceiver (AUI) to the unshielded twisted-pair cables, allowing data transfer in both directions. The AUI side of the interface is comprised of three circuits: Data Input (AIP and AIN to the coax receiver), Data Output (AOP and AON from the coax driver), and Collision Interface (CIP and CIN to the collision receiver). The twisted-pair (TP) network side of the interface is comprised of two circuits: TP Output (TPOP and TPON from the pulse shaper) and TP Input (TPIP and TPIN to the TP receiver). In addition to these five basic circuits, the LXT906 contains crystal oscillator circuitry, various logic controls and seven LED drivers for status indications.

Coax to TP Function

The LXT906 receives data from the coax transceiver (via AIP and AIN) and re-transmits it to the twisted-pair (TP) network on the TP Output circuit. The TP Output signal (on TPON and TPOP) is pre-distorted to meet the 10BASE-T jitter template. The output waveform (after the transmit filter) is shown in Figure 2. If the differential inputs (AIP and AIN) fall below 75% of the threshold level for 8 bit times (typical), the LXT906 TP transmit function will enter the idle state. During idle periods, the LXT906 transmits link integrity test pulses on TPOP and TPON.

Figure 2: LXT906 TPO Output Waveform.

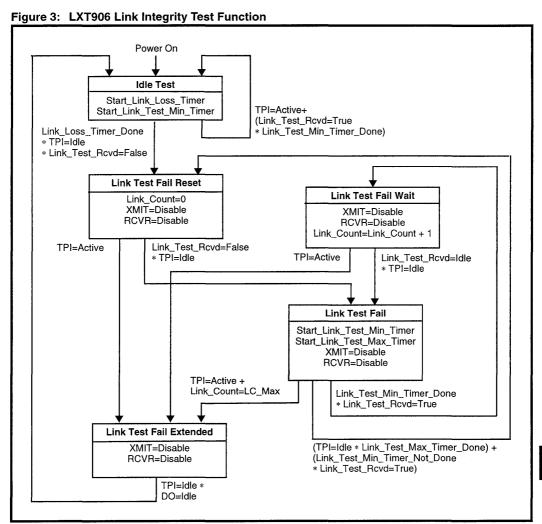
TP to Coax Function

The LXT906 receives data from the twisted-pair (TP) network on the TP Input circuit and re-transmits it to the coax transceiver on the AO circuit. An internal squelch function discriminates noise from link test pulses and valid data streams. Only valid data streams activate the TP receive function. If the differential inputs at the TP Input circuit fall below 75% of the threshold level (unsquelched) for 8 bit times (typical), the LXT906 TP receive function will enter the idle state. The Coax-to-TP data path is disabled when the TP-to-Coax path is active. The Coax-to-TP path is enabled 9 bit times after the end of TP-to-Coax transmission.

Polarity Reverse Function

The LXT906 polarity reverse function uses both link pulses and end-of-frame data to determine the polarity of the received signal. A reversed polarity condition is detected when eight link pulses of the opposite (unexpected) polarity are received without receipt of a link pulse with the expected polarity. Reversed polarity is also detected if four frames are received with a reversed start-of-idle. If the LXT906 enters the link fail state and no data or link pulses are received within 96 to 128 ms, the polarity is reset to the default (non-flipped) condition. Note that if the Link Integrity function is disabled, polarity detection is based only upon received data pulses. The LXT906 automatically corrects for reversed polarity.

Jabber Function


A Jabber condition is detected when the LXT906 has transmitted continuously for longer that 5 ms on TPOP/TPON or AOP/AON. If this occurs, the repeater state machine and output data transmission are disabled, and the Jabber LED signal (LJAB) goes Low. Transmission is re-enabled when no activity has been detected on TPIP/TPIN or AIP/ AIN for 6.4 μ s.

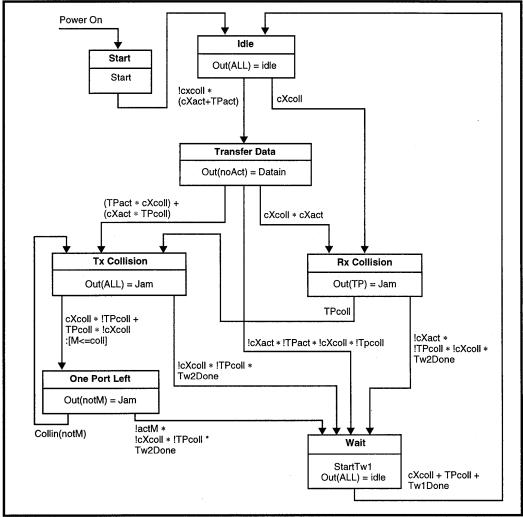
Link Integrity Test Function

Figure 3 is a state diagram of the LXT906 Link Integrity Test Function. The Link Integrity Test is used to determine the status of the twisted-pair cable. Link integrity testing is enabled when the LI pin is tied High. When enabled, the receiver recognizes link integrity pulses which are transmitted in the absence of receive traffic. If no serial data stream or link integrity pulses are detected within 50 - 150 ms, the chip enters a link-fail state and disables the transmit function and the repeater state machine. The LXT906 ignores any link integrity pulse with an interval of less than $2 \cdot 7$ ms. The LXT906 will remain in the link fail state until it detects either a serial data packet or two or more link integrity pulses.

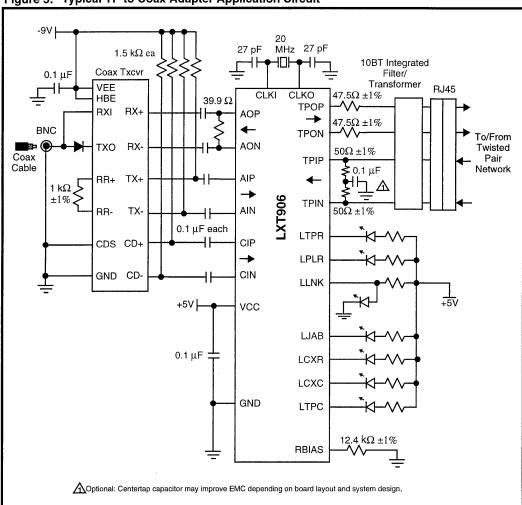
Collision Propagation Function

A TP collision is defined as the simultaneous presence of valid signals on both the TP Input circuit and the TP Output circuit. A Coax collision is detected when a valid collision signal is present at CIP/CIN. If a collision is detected, the appropriate collision LED (TP or coax) is activated and a Jam frame is transmitted as described in Figure 4. The Jam length is always a minimum of 96 bits: 64 bits of alternating 1's and 0's, followed by an all 1's pattern.

LXT906 Ethernet Twisted-Pair / Coax Adapter


LXT906 State Diagram

The state diagram, shown in Figure 4, describes the operation of the LXT906. It is similar to a repeater state diagram, however the LXT906 does not provide re-timing, preamble regeneration or fragment extension. The LXT906 avoids fragment generation by using a minimum Jam size of 96 bits. Since the TP side does not have receive collision detection, it is not considered in this implementation.


State Diagram Variables

- cXcoll = Coax collision active
- TPcoll = TP collision active
- cXact = Coax data active
- TPact = TP data active
- Tw1 = 9 bit times
- Tw2 = 3 bit times
- Jam = Minimum 96 bit times

APPLICATION INFORMATION

Figure 5: Typical TP to Coax Adapter Application Circuit

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Table 2 through 8 represent the performance specifications of the LXT906 and are guaranteed by test except, where noted, by design.

Table 2: Absolute Maximum Values

Parameter	Symbol	Min	Max	Units
Supply voltage	Vcc	-0.3	6	v
Ambient operating temperature	ТА	0	70	°C
Storage temperature	TSTG	-65	+150	°C
Exceeding these values may cause perman implied. Exposure to maximum rating condi				

Table 3: Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Recommended supply voltage	Vcc	4.75	5.0	5.25	V	
Recommended operating temperature	TOP	0	_	70	°C	

Table 4: I/O Electrical Characteristics (Over Recommended Range)

Parameter	Sym	Min	Typ ¹	Max	Units	Test Conditions
Input Low voltage	VIL	-	-	0.8	V	_
Input High voltage	VIH	2.0	-	-	v	-
Output Low voltage (Open drain LED driver)	Voll	-		0.7	. V	IOLL = 10 mA
Supply Current	Icc	_	60	80	mA	Line Idle
(Vcc1=Vcc2=5.25 V)		_	125	150	mA	Line Active, transmitting all ones
Input Leakage Current ²	ILL	-	±1	50	μA	Input between Vcc and GND

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Input Low current	IIL	-	-	-700	μA	-
Input High current	Іін	-		500	μA	
Differential output voltage	Vod	±550	-	±1200	mV	
Differential squelch threshold	VDS	-	220	-	mV	-
Receive input impedance	Rz	-	20	-	kΩ	Between AIP and AIN, and between CIP and CIN.

Table 5: AUI Electrical Characteristics (Over Recommended Range)

Table 6: Switching Characteristics (Over Recommended Range)

	Parameter	Min	Тур	Max	Units
Jam Timing	Transmit time	96	-	-	bit
Link Integrity	Time link loss ²	65	-	66	ms
Timing	Time between Link Integrity Pulses ²	9	-	11	ms
	Interval for valid receive Link Integrity Pulses ²	3.9	-	65	ms
Collision Timing	End of collision to end of jam		_	1200	ns
Jabber Timing	Maximum transmit time	-	-	5.1	ms
	Unjab time	_	6.4	-	μs
LED Timing	LED on time	100	-	-	ms
General Timing	Transmit recovery time	-	-	12	bit
	Carrier recovery time	_	-	3	bit
	TP receive to AUI transmit	0	-	500	ns
	AUI receive to TP transmit	. 0	-	200	ns

LXT906 Ethernet Twisted-Pair / Coax Adapter

Parameter	Sym	Minimum	Typical	Maximum	Units	Test Conditions
Transmit output impedance	Zout	-	5	-	Ω	_
Transmit timing jitter addition ²	-			±8	ns	After Tx filter, 0 line length

Table 7: Twisted-Pair Transmit Characteristics (Over Recommended Range)

Table 8: Twisted-Pair Receive Characteristics (Over Recommended Range)

Parameter	Sym	Minimum	Typical	Maximum	Units	Test Conditions
Receive input impedance	Zin	_	20	-	kΩ	Between TPIP/TPIN
Differential squelch threshold	VDS	_	420	_	mV	_
Receive timing jitter addition ²	_	-		1.5	ns	-

DATA SHEET LXT908

Universal Ethernet Interface Adapter

General Description

The LXT908 Universal Ethernet Interface Adapter is designed for IEEE 802.3 physical layer applications. It provides all the active circuitry to interface most standard 802.3 controllers to either the 10BASE-T media or Attachment Unit Interface (AUI). In addition to standard 10 Mbps Ethernet, the LXT908 also supports full-duplex operation at 20 Mbps.

LXT908 functions include Manchester encoding/decoding, receiver squelch and transmit pulse shaping, jabber, link testing and reversed polarity detection/correction. The LXT908 can be used to drive either the AUI drop cable or the 10BASE-T twisted-pair cable with only a simple isolation transformer. Integrated filters simplify the design work required for FCC compliant EMI performance.

The LXT908 is fabricated with an advanced CMOS process and requires only a single 3.3 or 5 volt power supply.

Applications

- 10BASE-T Hub and Switching products
- · Computer/workstation 10BASE-TLAN adapter boards

MANCHESTER

DECODER

COLLISION LOGIC

DSOE NTH

LEDC/FDE

Functional Features

- · Improved Filters Simplifies FCC Compliance
- · Integrated Manchester Encoder/Decoder
- 10BASE-T compliant Transceiver
- AUI Transceiver
- · Supports Standard and Full-Duplex Ethernet

Convenience Features

- Automatic/Manual AUI/RJ45 Selection
- Automatic Polarity Correction
- SQE Disable/Enable function
- · Power Down Mode with tristated outputs
- Four loopback modes
- Single 3.3V or 5V operation
- Available in 44-pin PLCC package

RX SLICER

COLLISION

Diagnostic Features

- · Four LED Drivers
- AUI/RJ45 Loopback

LXT908 Block Diagram - MD0 - MD1 - MD2 AUTOSEL MODE SELECT LOGIC Controller PAU Compatibility TWISTED PAIR LBK Port Select / Select: RC PLS Only Loopback / Ш Link test or PLS / MAU TPOPE TPOPA ULSE SHAPER AND FILTER TCLK WATCHDOG CLK COLLISION/ XTAL POLARITY DETECT CORRECT TPIP OSC MANCHESTER ENCODER CLKO TPIN TEN тхр DROP CABLE INTE FACE CD SQUELCH / LINK DETECT DOF LEDL DON LPBK ı RXD

JAB PLR

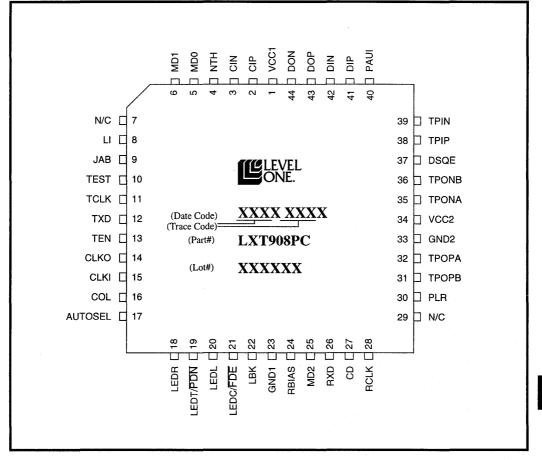
RCLK

COL

DIP

DIN

CIP


CIN

eatures

TABLE OF CONTENTS	
PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS	11-109
FUNCTIONAL DESCRIPTION	11-112
Introduction	
Controller Compatibility Modes	11-112
Transmit Function	
Jabber Control Function	11-113
Receive Function	11-113
SQE Function	11-113
Polarity Reverse Function	11-114
Loopback Function	11-114
Collision Detection Function	11-114
Link Integrity Test Function	11-115
APPLICATION INFORMATION	
External Components	
Layout Requirements	11-116
Auto Port Select with External Loopback Control	11-116
Full - Duplex Support	11-118
Dual Network Support - 10BASE-T and Token Ring	11-119
Manual Port Select & Link Test Function	11-120
Three Media Application	11-122
AUI Encoder/Decoder Only	11-123
TEST SPECIFICATIONS	
Absolute Maximum Values	
Recommended Operating Conditions	11-124
I/O Electrical Characteristics	
AUI Electrical Characteristics	11-125
Twisted-Pair Electrical Characteristics	11-125
Switching Characteristics	11-126
RCLK/Start-of-Frame Timing	11-126
RCLK/End-of-Frame Timing	11-126
Transmit Timing	11-127
Collision, COL/CI Output and Loopback Timing	
Mode 1 Timing Diagrams	11-128
Mode 2 Timing Diagrams	
Mode 3 Timing Diagrams	
Mode 4 Timing Diagrams	11-134
Mode 5 Timing Diagrams	11-136

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Pin #	Symbol	1/0	Description
1	VCC1	-	Power 1 and 2. Connect to positive power supply terminal (+3.3VDC or +5 VDC).
34	VCC2	-	
2	CIP	I	AUI Collision Pair. Differential input pair connected to the AUI transceiver CI cir-
3	CIN	I	cuit. The input is collision signaling or SQE.
4	NTH	I	Normal Threshold. When NTH is High, the normal TP squelch threshold is in effect. When NTH is Low, the normal TP squelch threshold is reduced by 4.5 dB.
5	MD0	Ι	Mode Select 0 (MD0), Mode Select 1 (MD1) and Mode Select 2 (MD2). Mode
6	MD1	I	select pins determine the controller compatibility mode as specified in Table 2.
25	MD2	Ι	
7	N/C	-	No Connect. This pin must be tied to ground or device damage may occur.
8	LI	I	Link Test Enable. Controls Link Integrity Test; enabled when High, disabled when Low.
9	JAB	0	Jabber Indicator. Output goes High to indicate Jabber state.
10	TEST	Ι	Test. This pin must be tied High.
11	TCLK	0	Transmit Clock. A 10 MHz clock output. This clock signal should be directly connected to the transmit clock input of the controller. TCLK goes to high impedance (tri-state) when LEDT/PDN is pulled Low externally.
12	TXD	I	Transmit Data. Input signal containing NRZ data to be transmitted on the network. TXD is connected directly to the transmit data output of the controller.
13	TEN	I	Transmit Enable. Enables data transmission and starts the watchdog timer. Synchronous to TCLK (see Test Specifications for details).
14	CLKO	0	Crystal Oscillator. A 20 MHz crystal must be connected across these pins, or a 20
15	CLKI	I	MHz clock applied at CLKI with CLKO left open.
16	COL	0	Collision Detect. Output which drives the collision detect input of the controller. COL goes to high impedance (tri-state) when LEDT/PDN is pulled Low externally.
17	AUTOSEL	I	Automatic Port Select. When High, automatic port selection is enabled (the LXT908 defaults to the AUI port only if TP link integrity = Fail). When Low, manual port selection is enabled (the PAUI pin determines the active port).
18	LEDR	0	Receive LED. Open drain driver for the receive indicator LED. Output is pulled Low during receive, except when data is being looped back to DIN/DIP from a remote transceiver (external MAU). LED "On" time (i.e., Low output) is extended by approximately 100 ms.
19	LEDT/ PDN	O I	Transmit LED (LEDT)/Power Down (PDN). Open drain driver for the transmit indicator LED. Output is pulled Low during transmit. LED "On" time (i.e., Low output) is extended by approximately 100 ms. If externally tied Low, the LXT908 goes to power down state. In power down state, TCLK, COL, RXD, CD and RCLK (pins 11, 16, 26, 27 and 28, respectively) are tri-stated.
20	LEDL	O I	Link LED. Open drain driver for link integrity indicator LED. Output is pulled Low during link test pass. If externally tied Low, internal circuitry is forced to "Link Pass" state and the LXT908 will continue to transmit link test pulses.

Table 1: LXT908 Signal Descriptions

LXT908 Pin Assignments and Signal Descriptions

Pin #	Symbol	1/0	Description
21	LEDC/ FDE	O I	Collision LED (LEDC)/Full Duplex Enable (FDE). Open drain driver for the collision indicator LED pulls Low during collision. LED "On" time (i.e., Low output) is extended by approximately 100 ms. If externally tied Low, the LXT908 disables the internal TP loopback and collision detection circuits to allow full duplex operation or external TP loopback.
22	LBK	I	Loopback. Enables internal loopback mode. Refer to Functional Description and Test Specifications for details.
23	GND1	-	Ground Returns 1 and 2. Connect to negative power supply terminal (ground).
33	GND2	-	
24	RBIAS	I	Bias Control. A 12.4 k Ω 1% resistor to ground at this pin controls operating circuit bias.
26	RXD	0	Receive Data. Output signal connected directly to the receive data input of the con- troller. RXD goes to high impedance (tri-state) when LEDT/PDN is pulled Low externally.
27	CD	0	Carrier Detect. An output to notify the controller of activity on the network. CD goes to high impedance (tri-state) when LEDT/PDN is pulled Low externally.
28	RCLK	0	Receive Clock. A recovered 10 MHz clock which is synchronous to the received data and connected to the controller receive clock input. RCLK goes to high impedance (tri-state) when LEDT/PDN is pulled Low externally.
29	N/C	-	No Connect. This pin must be tied to ground or device damage may occur.
30	PLR	0	Polarity Reverse. Output goes High to indicate reversed polarity at the TP input.
32	TPOPA	0	Twisted-Pair Transmit Pairs A & B. Two differential driver pair outputs (A and B)
31	TPOPB	0	to the twisted-pair cable. The outputs are pre-equalized. Each pair must be shorted
35	TPONA	0	together with an 11.5 Ω 1% resistor to match an impedance of 100 Ω
36	TPONB	0	
37	DSQE	I	Disable SQE. When DSQE is High, the SQE function is disabled. When DSQE is Low, the SQE function is enabled. SQE must be disabled for normal operation in Hub/Switch applications.
38	TPIP	I	Twisted-Pair Receive Pair. A differential input pair from the TP cable. Receive filter
39	TPIN	I	is integrated on-chip. No external filters are required.
40	PAUI	I	Port/AUI Select. In Manual Port Select mode (AUTOSEL Low), PAUI selects the active port. When PAUI is High, the AUI port is selected. When PAUI is Low, the TP port is selected. In Auto Port Select mode, PAUI must be tied to ground.
41	DIP	I	AUI Receive Pair. Differential input pair from the AUI transceiver DI circuit. The
42	DIN	I	input is Manchester encoded.
43	DOP	0	AUI Transmit Pair. A differential output driver pair for the AUI transceiver cable.
44	DON	0	The output is Manchester encoded.

Table 1: LXT908 Signal Descriptions - continued

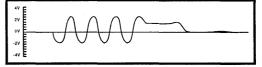
FUNCTIONAL DESCRIPTION

Introduction

The LXT908 Universal Ethernet Interface Transceiver performs the physical layer signaling (PLS) and Media Attachment Unit (MAU) functions as defined by the IEEE 802.3 specification. It functions as an AUI (PLS-Only device) for use with 10BASE-2 or 10BASE-5 coaxial cable networks, or as an Integrated PLS/MAU for use with 10BASE-T twisted-pair networks. In addition to standard 10 Mbps operation, the LXT908 also supports full-duplex 20 Mbps operation.

The LXT908 interfaces a back end controller to either an AUI drop cable or a twisted-pair (TP) cable. The controller interface includes transmit and receive clock and NRZ data channels, as well as mode control logic and signaling. The AUI interface comprises three circuits: Data Output (DO), Data Input (DI) and Collision (CI). The twisted-pair interface comprises two circuits: Twisted-Pair Input (TPI) and Twisted-Pair Output (TPO). In addition to the three basic interfaces, the LXT908 contains an internal crystal oscillator and four LED drivers for visual status reporting.

Functions are defined from the back end controller side of the interface. The LXT908 Transmit function refers to data transmitted by the back end to the AUI cable (PLS-Only mode) or to the twisted-pair network (Integrated PLS/ MAU mode). The LXT908 Receive function refers to data received by the back end from the AUI cable (PLS-Only) or from the twisted-pair network (Integrated PLS/MAU mode). In the integrated PLS/MAU mode, the LXT908 performs all required MAU functions defined by the IEEE 802.3 10BASE–T specification such as collision detection, link integrity testing, signal quality error messaging, jabber control and loopback. In the PLS-Only mode, the LXT908 receives incoming signals from the AUI DI circuit with ± 18ns of jitter and drives the AUI DO circuit.

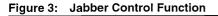

Controller Compatibility Modes

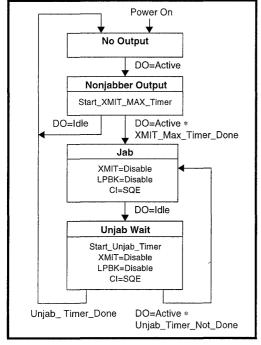
The LXT908 is compatible with most industry standard controllers including devices produced by Advanced Micro Devices (AMD), Motorola, Intel, Fujitsu, National Semiconductor, Seeq and Texas Instruments, as well as custom controllers. Five different control signal timing and polarity schemes (Modes 1 through 5) are required to achieve this compatibility. Mode select pins (MD2:0) determine Controller compatibility modes as listed in Table 2. Refer to Test Specifications for a complete set of timing diagrams for each mode.

Transmit Function

The LXT908 receives NRZ data from the controller at the TXD input as shown in the block diagram on the first page of this Data Sheet, and passes it through a Manchester encoder. The encoded data is then transferred to either the AUI cable (the DO circuit) or the twisted-pair network (the TPO circuit). The advanced integrated pulse shaping and filtering network produces the output signal on TPON and TPOP, shown in Figure 2. The TPO output is pre-distorted and pre-filtered to meet the 10BASE-T jitter template. An internal continuous resistor-capacitor filter is used to remove any high-frequency clocking noise from the pulse shaping circuitry. Integrated filters simplify the design work required for FCC-compliant EMI performance. During idle periods, the LXT908 transmits link integrity test pulses on the TPO circuit (if LI is enabled and integrated PLS/ MAU mode is selected). External resistors control the termination impedance.

Figure 2: LXT908 TPO Output Waveform


Table 2: Controller Co	patibility Mode Options
------------------------	-------------------------

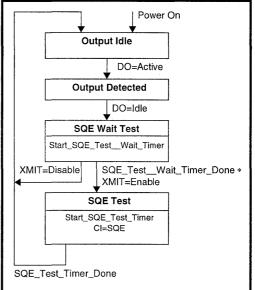

Controller Mode	MD2	MD1	MDO
Mode 1 - For AMD AM7990, Motorola 68EN360, MPC860 or compatible controllers	Low	Low	Low
Mode 2 - For Intel 82596 or compatible controllers	Low	Low	High
Mode 3 - For Fujitsu MB86950, MB86960 or compatible controllers (Seeq 8005) ¹	Low	High	Low
Mode 4 - For National Semiconductor 8390 or compatible controllers (TI TMS380C26)	Low	High	High
Mode 5 - For custom controllers (Mode 3 with TCLK, RCLK and COL inverted)	High	High	Low

LXT908 Functional Description

Jabber Control Function

Figure 3 is a state diagram of the LXT908 Jabber control function. The LXT908 on-chip watchdog timer prevents the DTE from locking into a continuous transmit mode. When a transmission exceeds the time limit, the watchdog timer disables the transmit and loopback functions, and activates the JAB pin. Once the LXT908 is in the jabber state, the TXD circuit must remain idle for a period of 0.25 to 0.75 seconds before it will exit the jabber state.

Receive Function


The LXT908 receive function acquires timing and data from the twisted-pair network (the TPI circuit) or from the AUI (the DI circuit). Valid received signals are passed through the on-chip filters and Manchester decoder then output as decoded NRZ data and recovered clock on the RXD and RCLK pins, respectively.

An internal RC filter and an intelligent squelch function discriminate noise from link test pulses and valid data streams. The receive function is activated only by valid data streams above the squelch level and with proper timing. If the differential signal at the TPI or the DI circuit inputs falls below 75% of the threshold level (unsquelched) for 8 bit times (typical), the LXT908 receive function enters the idle state. If the polarity of the TPI circuit is reversed, LXT908 detects the polarity reverse and reports it via the PLR output. The LXT908 automatically corrects reversed polarity.

SQE Function

In the integrated PLS/MAU mode, the LXT908 supports the signal quality error (SQE) function as shown in Figure 4, although the SQE function can be disabled. After every successful transmission on the 10BASE-T network when SQE is enabled, the LXT908 transmits the SQE signal for 10BT \pm 5BT over the internal CI circuit which is indicated on the COL pin of the device. SQE must be disabled for normal operation in hub and switch applications. In twisted-pair applications, the SQE function is disabled when DSQE is set High, and enabled when DSQE is Low. When using the 10BASE-2 port of the LXT908, the SQE function is determined by the external MAU attached.

Figure 4: SQE Function

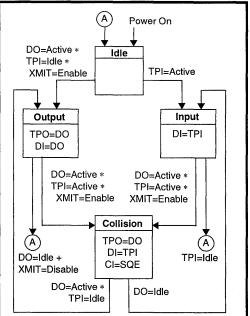
Polarity Reverse Function

The LXT908 polarity reverse function uses both link pulses and end-of-frame data to determine polarity of the received signal. A reversed polarity condition is detected when eight opposite receive link pulses are detected without receipt of a link pulse of the expected polarity. Reversed polarity is also detected if four frames are received with a reversed start-of-idle. Whenever a correct polarity frame or a correct link pulse is received, these two counters are reset to zero. If the LXT908 enters the link fail state and no valid data or link pulses are received within 96 to 128 ms, the polarity is reset to the default non-flipped condition. (If Link Integrity Testing is disabled, polarity detection is based only on received data.). Polarity correction is always enabled.

Loopback Function

The LXT908 provides the normal loopback function specified by the 10BASE-T standard for the twisted-pair port. The loopback function operates in conjunction with the transmit function. Data transmitted by the back-end is internally looped back within the LXT908 from the TXD pin through the Manchester encoder/decoder to the RXD pin and returned to the back-end. This "normal" loopback function is disabled when a data collision occurs, clearing the RXD circuit for the TPI data. Normal loopback is also disabled during link fail and jabber states.

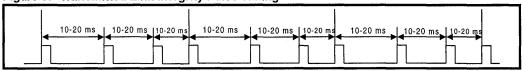
The LXT908 also provides three additional loopback functions. An external loopback mode, useful for system-level testing, is controlled by pin 21 (LEDC). When LEDC is tied Low, the LXT908 disables the collision detection and internal loopback circuits, to allow external loopback or full-duplex operation.


"Normal" TP loopback is controlled by pin 22 (LBK). When the TP port is selected and LBK is High, TP loopback is "forced", overriding collisions on the TP circuit. When LBK is Low, normal loopback is in effect.

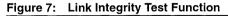
AUI loopback is also controlled by the LBK pin. When the AUI port is selected and LBK is High, data transmitted by the back-end is internally looped back from the TXD pin through the Manchester encoder/decoder to the RXD pin. When LBK is Low, no AUI loopback occurs.

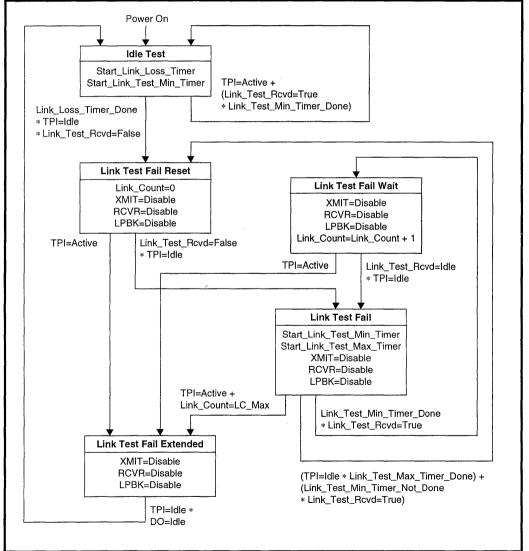
Collision Detection Function

The collision detection function operates on the twisted pair side of the interface. For standard (half-duplex) 10BASE-T operation, a collision is defined as the simultaneous presence of valid signals on both the TPI circuit and the TPO circuit. The LXT908 reports collisions to the back-end via the COL pin. If the TPI circuit becomes active while there is activity on the TPO circuit, the TPI data is passed to the back-end over the RXD circuit, disabling normal loopback. Figure 5 is a state diagram of the LXT908 collision detection function. Refer to Test Specifications for collision detection and COL/CI output timing (NOTE: For full-duplex operation, the collision detection circuitry must be disabled.)



Link Pulse Transmission


The LXT908 transmits standard link pulses which meet the 10BASE-T specifications. Figure 6 shows the link integrity pulse timing.



Link Integrity Test Function

Figure 7 is a state diagram of the LXT908 Link Integrity test function. The link integrity test is used to determine the status of the receive side twisted-pair cable. Link integrity testing is enabled when pin 8 (LI) is tied High. When enabled, the receiver recognizes link integrity pulses which are transmitted in the absence of receive traffic. If no serial data stream or link integrity pulses are detected within 50 - 150ms, the chip enters a link fail state and disables the transmit and normal loopback functions. The LXT908 ignores any link integrity pulse with interval less than 2 - 7ms. The LXT908 will remain in the link fail state until it detects either a serial data packet or two or more link integrity pulses.

APPLICATION INFORMATION

Figures 8 through 14 show some typical LXT908 applications.

External Components

Crystal Information

Suitable crystals are available from various manufacturers. Table 3 lists some suitable crystals based on limited evaluation. Designers should test and validate all crystals before using them in production.

Table 3: Suitable Crystals

Manufacturer	Part Number
MTRON	MP-1
	MP-2

Magnetic Information

The LXT908 requires a 1:1 ratio for the receive transformer and a 1:2 ratio for the transmit transformer. Table 4 lists transformers suitable for the applications described in this data sheet. Designers should test and validate all magnetics before committing to a specific component.

Table 4: Suitable Magnetics

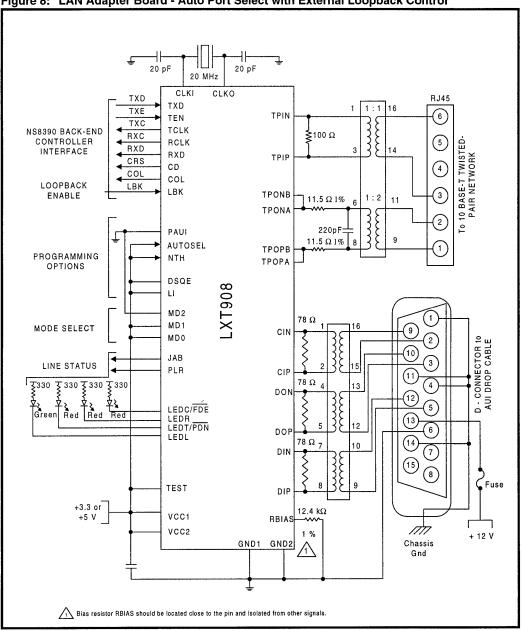
	Part Number						
Manufacturer	Twisted-Pair	AŬI					
Belfuse	S553-5999-52	S553-1006-AE					
	\$553-5999-86	-					
Fil-Mag	23Z118	23Z90					
	23Z118SM	23Z90SM					
Halo	TD74-1406Q	TD01-0756K					
	TG74-1406N1	TG01-0756N					
Valor	PT4152	LT6032					
	ST4152	ST7032					

Layout Requirements

Auto Port Select with External Loopback Control

Figure 8 is a typical LXT908 application. The diagram is arranged to group similar pins together; it does not represent the actual LXT908 pin-out. The controller interface pins (transmit data, clock and enable; receive data and clock; and the collision detect, carrier detect and loopback control pins) are shown at the top left.

Programmable option pins are grouped center left. The PAUI pin is tied Low and all other option pins are tied High. This set-up selects the following options:


- Automatic Port Selection (PAUI Low and AUTOSEL High)
- Normal Receive Threshold (NTH High)
- Mode 4, compatible with National NS8390 controllers (MD2:0 = Low, High, High)
- SQE Disabled (DSQE High)
- Link Testing Enabled (LI High)

Status outputs are grouped at lower left. Line status outputs drive LED indicators and the Jabber and Polarity status indicators are available as required.

Power and ground pins are shown at the bottom of the diagram. A single power supply is used for both VCC1 and VCC2 with a decoupling capacitor installed between the power and ground busses.

The TP and AUI interfaces are shown at upper and lower right, respectively. Impedance matching resistors for 100 UTP are installed in each I/O pair but no external filters are required.

Figure 8: LAN Adapter Board - Auto Port Select with External Loopback Control

ELEVEL ONE.

Full Duplex Support

Figure 9 shows the LXT908 with a Texas Instruments 380C24 CommProcessor. The 380C24 is compatible with Mode 4 (MD2:0 = Low, High, High). When used with the

380C24 or other full duplex-capable controller, the LXT908 supports full-duplex Ethernet, effectively doubling the available bandwidth of the network. In this application the SQE function is enabled (DSQE tied Low), and the LXT908 AUI port is not used.

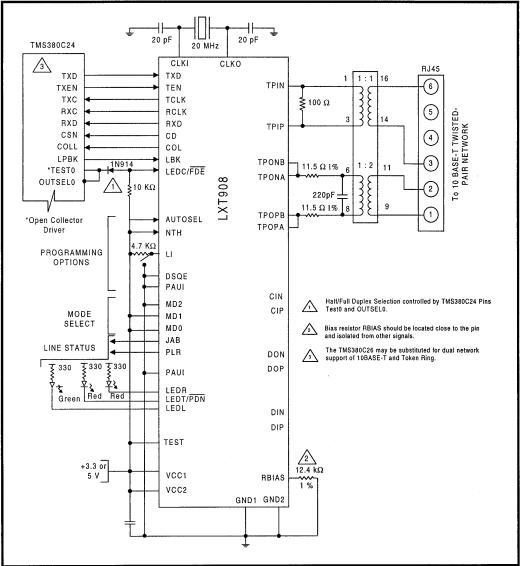
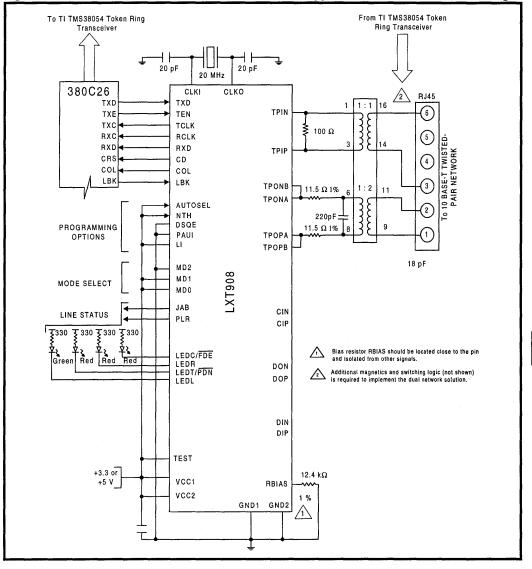


Figure 9: Full-Duplex Operation

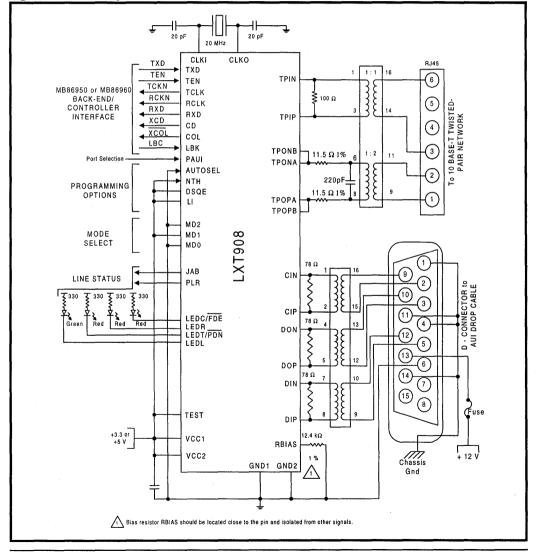


Dual Network Support-10Base T and Token Ring

Figure 10 shows the LXT908 with a Texas Instruments 380C26 CommProcessor. The 380C26 is compatible with Mode 4 (MD2:0 = Low, High, High). When used with the

380C26, both the LXT908 and a TMS38054 Token Ring transceiver can be tied to a single RJ45 allowing dual network support from a single connector. The LXT908 AUI port is not used.

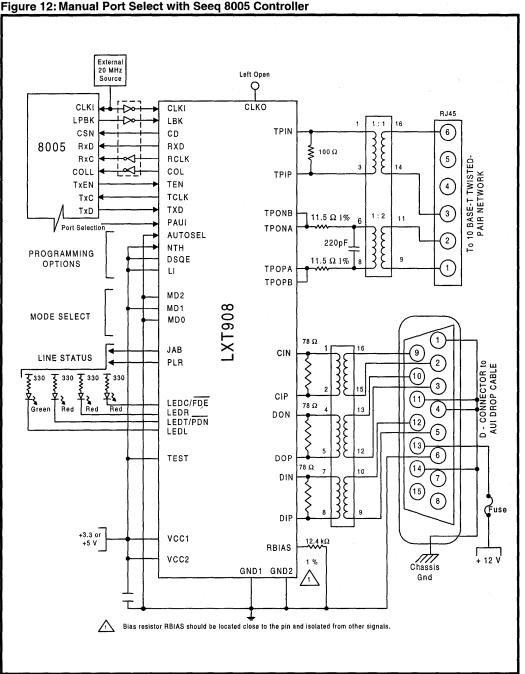
Figure 10: LXT908/380C26 Interface for Dual Network Support of 10BASE-T and Token Ring

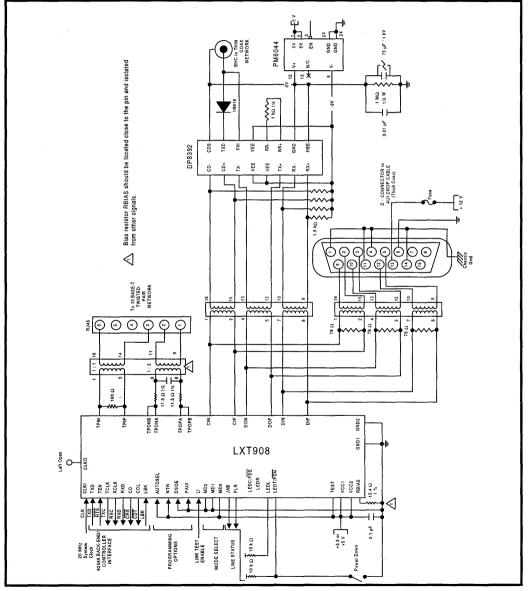


Manual Port Select & Link Test Function

With MD2:0 = Low, High, Low, the LXT908 logic and framing are set to Mode 3 (compatible with Fujitsu MB86950 and MB86960, and Seeq 8005 controllers). Figure 11 shows the setup for Fujitsu controllers. Figure 12 shows the four inverters required to interface with the Seeq

8005 controller. As in Figure 8, both these Mode 3 applications show the LI pin tied High, enabling Link Testing; and the NTH and DSQE pins are both tied High, selecting the standard receiver threshold and disabling SQE. However, in these applications AUTOSEL is tied Low, allowing external port selection through the PAUI pin.

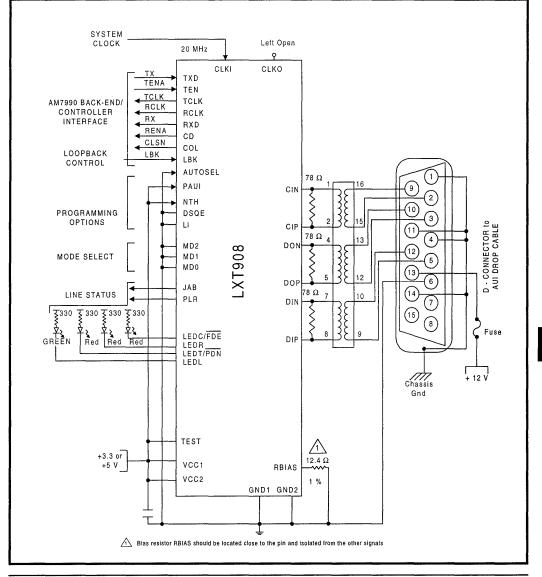



Figure 12: Manual Port Select with Seeq 8005 Controller

ELEVEL

Three Media Application

Figure 13 shows the LXT908 in Mode 2 (compatible with Intel 82596 controllers) with additional media options for the AUI port. Two transformers are used to couple the AUI port to either a D-connector or a BNC connector. (A DP8392 coax transceiver with PM6044 power supply are required to drive the thin coax network through the BNC.)



AUI Encoder/Decoder Only

In the application shown in Figure 14, the DTE is connected to a coaxial network through the AUI. AUTOSEL is tied Low and PAUI is tied High, manually selecting the AUI port. The twisted-pair port is not used. With MD2:0 all tied Low, the LXT908 logic and framing are set to Mode l (compatible with AMD and Motorola controllers). The LI pin is tied Low, disabling the link test function. The DSQE pin is also Low, enabling the SQE function. The LBK input controls loopback. A 20 MHz system clock is supplied at CLKI with CLKO left open.

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 5 through 14 and Figures 15 through 44 represent the performance specifications of the LXT908 and are guaranteed by test, except where noted by design.

Table 5: Absolute Maximum Values

Parameter	Symbol	Min	Max	Units
Supply voltage	Vcc	-0.3	6	V
Ambient operating temperature	Та	0	70	ംറ
Storage temperature	TSTG	-65	+150	°C
Exceeding these values may cause permar	CAUTION			in and incetted

Table 6: Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Recommended supply voltage ¹	Vcc	3.135	5.0	5.25	v	
Recommended operating temperature	Тор	0	-	70	°C	

Table 7: I/O Electrical Characteristics (Over Recommended Range)

Param	eter	Sym	Min	Typ ¹	Мах	Units	Test Conditions
Input Low voltage ²		VIL	-	-	0.8	v	
Input High voltage ²	High voltage ²		2.0	_		V	
Output Low voltage		Vol	-	-	0.4	V	IOL = 1.6 mA
		VOL	-		10	%Vcc	Iol < 10 µA
Output Low voltage (Open drain LED driver)		Voll	-	-	0.7	v	IOLL = 10 mA
Output High voltage		Voh	2.4	-	-	V	Іон = 40 μА
		Voh	90	-	-	%Vcc	Іон < 10 µА
Output rise time	CMOS	_	-	3	12	ns	CLOAD = 20 pF
TCLK & RCLK	TTL			2	8	ns	
Output fall time	CMOS	-	-	3	12	ns	CLOAD= 20 pF
TCLK & RCLK	TTL	_		2	8	ns	

LXT908 Test Specifications

Pal	Sym	Min	Typ1	Max	Units	Test Conditions	
CLKI rise time (externally driven) CLKI duty cycle (externally driven)		-		_	10	ns	
		-			40/60	%	
Supply current		Icc		65	85	mA	Idle Mode
	Normal Mode	ICC		95	120	mA	Transmitting on TP
		ICC		90	120	mA	Transmitting on AUI
	Power Down Mode	ICC	_	0.75	2	mA	

Table 7: I/O Electrical Characteristics (Over Recommended Range) - continued

Table 0. Adi Electridal difatacieridado (over neconimendea nang	Table 8:	AUI Electrical	Characteristics	(Over Recommended Range
---	----------	----------------	-----------------	-------------------------

Parameter	Symbol	Min	Typ ¹	Max	Units	Test Conditions
Input Low current	IIL	-	_	-700	μA	
Input High current	Іін	-	-	500	μA	
Differential output voltage	Vod	±550	-	±1200	mV	
Differential squelch threshold	VDS	150	260	350	mV	5 MHz square wave input

Table 9: Twisted-Pair Electrical Characteristics (Over Recommended Range)

Parameter		Symbol	Min	Typ1	Max	Units	Test Conditions
Transmit output impedance		Zout		5	-	Ω	
Transmit timing jitter addition ²			-	±6.4	±10	ns	0 line length for internal MAU
Transmit timing jitter added by the MAU and PLS sections ^{2, 3}		_		±3.5	±5.5	ns	After line model specified by IEEE 802.3 for 10BASE-T internal MAU
Receive input impedance		Zin	-	20	-	kΩ	Between TPIP/TPIN, CIP/ CIN & DIP/DIN
Differential Squelch Threshold	Normal Threshold NTH = High	VDS	300	395	585	mV	5 MHz square wave input
	Reduced Threshold NTH = Low	VDS	180	250	345	mV	5 MHz square wave input

1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. Parameter is guaranteed by design; not subject to production testing.

3. IEEE 802.3 specifies maximum jitter additions at 1.5 ns for the AUI cable, 0.5 ns from the encoder, and 3.5 ns from the MAU.

	Parameter	Symbol	Minimum	Typical ¹	Maximum	Units
Jabber Timing	Maximum transmit time		20	_	150	ms
	Unjab time	-	250		750	ms
Link Integrity	Time link loss receive	-	50	_	150	ms
Timing	Link min receive		2	_	7	ms
	Link max receive	-	50		150	ms
	Link transmit period	-	8	10/20	24	ms

Table 10: Switching Characteristics (Over Recommended Range)

Table 11: RCLK/Start-of-Frame Timing (Over Recommended Range)

Parameter		Symbol	Minimum	Typical ¹	Maximum	Units	
Decoder acquisition time	AUI	tDATA	_	900	1100	ns	
	TP	tDATA	-	1200	1500	ns	
CD turn-on delay	AUI	tCD	-	25	200	ns	
	ТР	tCD	-	420	550	ns	
Receive data setup from RCLK	Mode 1	tRDS	60	70	-	ns	
	Modes 2 through 5	tRDS	30	45		ns	
Receive data hold from RCLK	Mode 1	tRDH	10	20	-	ns	
	Modes 2 through 5	tRDH	30	45	-	ns	
RCLK shut off delay from and Mode 5)	CD assert (Mode 3	tsws	-	±100	-	ns	

Table 12: RCLK/End-of-Frame Timing (Over Recommended Range)

Parameter	Туре	Sym	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5	Units
RCLK after CD off	Min	tRC	5	1	_	5	_	BT
RXD throughput delay	Max	tRD	400	375	375	375	375	ns
CD turn off delay ²	Max	tCDOFF	500	475	475	475	475	ns
Receive block out after TEN off	Typ ¹	tIFG	5	50	-	-	-	BT
RCLK switching delay after CD off (Mode 3 and 5)	Typ ¹	tSWE	-	-	120(±80)	-	120(±80)	ns
.	ign aid only	y; not guarar			aduction testing		120(±80)	

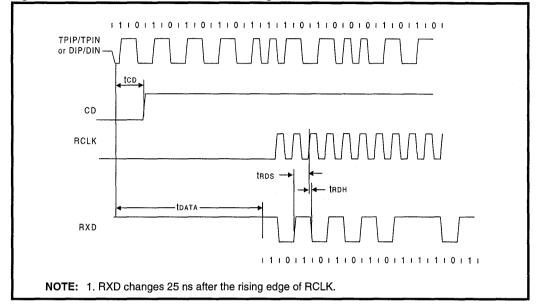
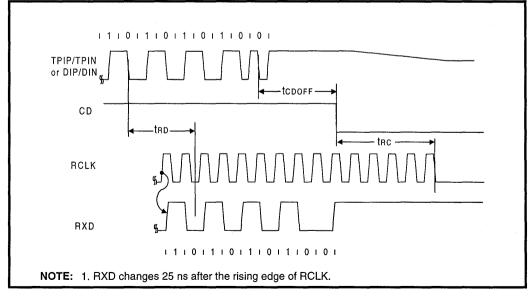
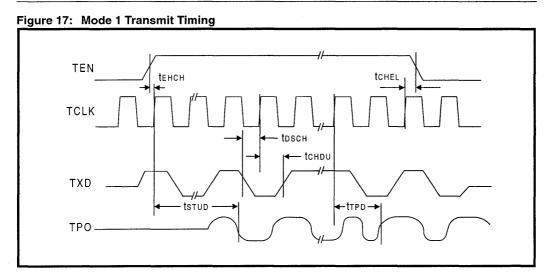
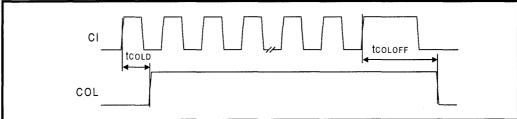

Parameter	Symbol	Minimum	Typical ¹	Maximum	Units
TEN setup from TCLK	tEHCH	22			ns
TXD setup from TCLK	tDSCH	22	_	-	ns
TEN hold after TCLK	tCHEL	5	_	-	ns
TXD hold after TCLK	tCHDU	5	-	-	ns
Transmit start-up delay - AUI	tSTUD	-	220	450	ns
Transmit start-up delay - TP	tSTUD	_	430	450	ns
Transmit through-put delay - AUI	tTPD			300	ns
Transmit through-put delay - TP	tTPD	_	305	350	ns

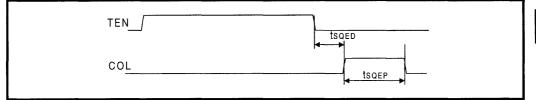
Table 13: Transmit Timing (Over Recommended Range)


Table 14: Collision, COL/CI Output and Loopback Timing (Over Recommended Range)


Parameter	Symbol	Minimum	Typical ¹	Maximum	Units	
COL turn-on delay	tCOLD	_	40	500	ns	
COL turn-off delay	tCOLOFF	_	420	500	ns	
COL (SQE) Delay after TEN off	tSQED	0.65	1.2	1.6	μs	
COL (SQE) Pulse Duration	tSQEP	500	1000	1500	ns	
LBK setup from TEN	tKHEH	10	25	_	ns	
LBK hold after TEN	tKHEL	10	0	-	ns	

Timing Diagrams for Mode 1 (MD2, 1, 0 = Low, Low, Low) Figures 15 through 20 Figure 15: Mode 1 RCLK/Start-of-Frame Timing





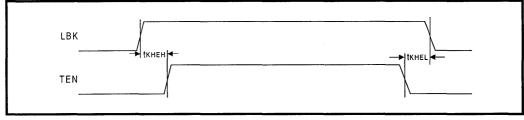

Figure 18: Mode 1 Collision Detect Timing

Figure 19: Mode 1 COL/SQE Output Timing/CI Output Timing

Timing Diagrams for Mode 2 (MD2, 1, 0 = Low, Low, High) Figures 21 through 26 Figure 21: Mode 2 RCLK/Start-of-Frame Timing

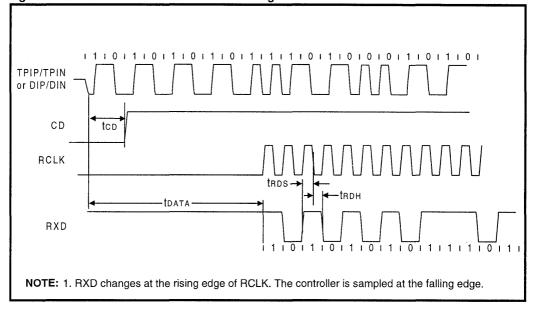
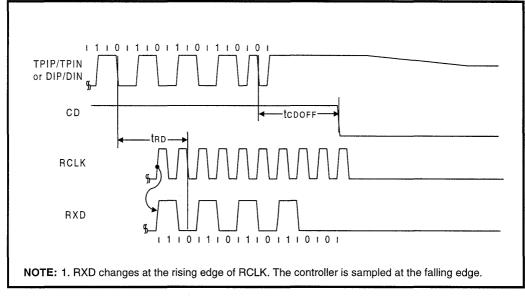
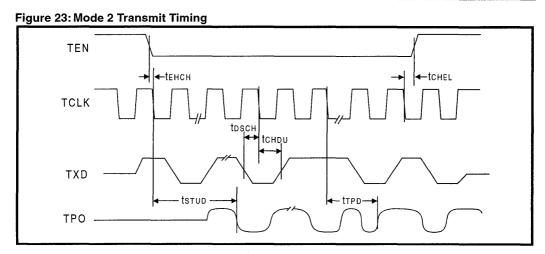
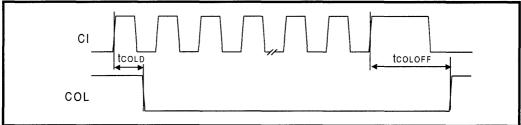





Figure 22: Mode 2 RCLK/End-of-Frame Timing

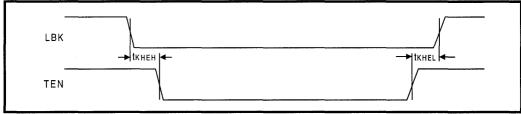

Figure 24: Mode 2 Collision Detect Timing

Figure 25: Mode 2 COL/SQE Output Timing

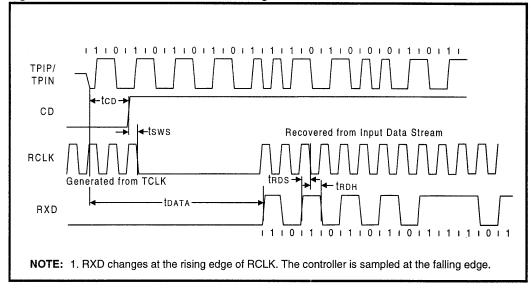
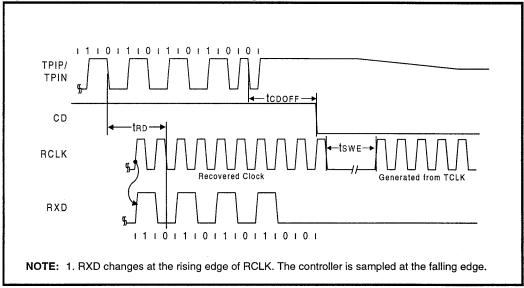
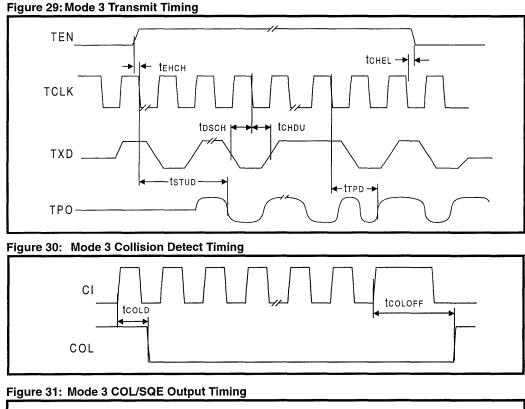


Figure 26: Mode 2 Loopback Timing



LXT908 Universal Ethernet Interface Adapter


Timing Diagrams for Mode 3 (MD2, 1, 0 = Low, High, Low) Figures 27 through 32 Figure 27: Mode 3 RCLK/Start-of-Frame Timing

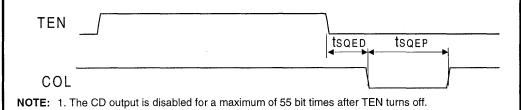
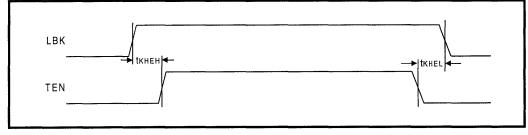


Figure 28: Mode 3 RCLK/End-of-Frame Timing



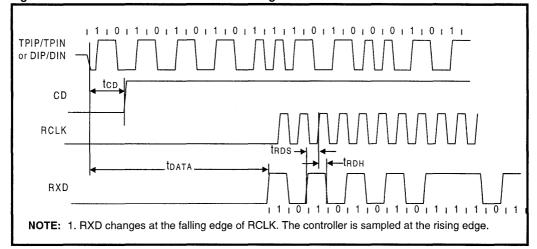
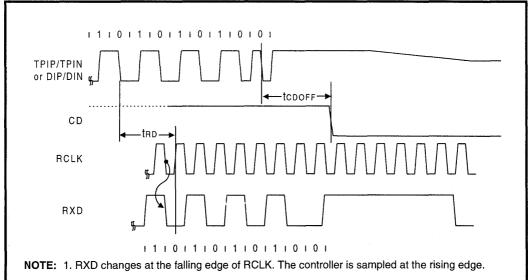


Figure 32: Mode 3 Loopback Timing



LXT908 Universal Ethernet Interface Adapter

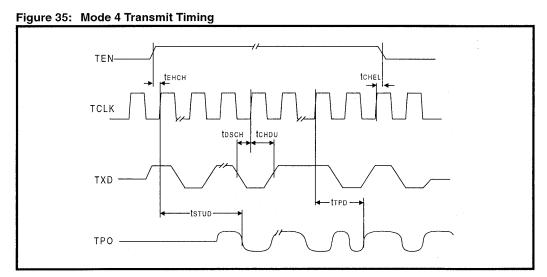
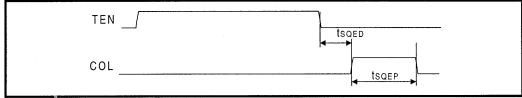

Timing Diagrams for Mode 4 (MD2, 1, 0 = Low, High, High) Figures 33 through 38 Figure 33: Mode 4 RCLK/Start-of-Frame Timing

Figure 34: Mode 4 RCLK/End-of-Frame Timing



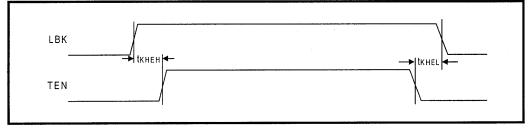

Figure 36: Mode 4 Collision Detect Timing

Figure 37: Mode 4 COL/SQE Output Timing

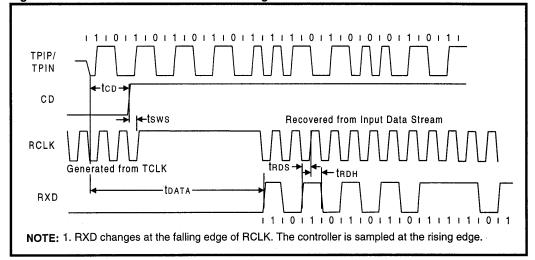
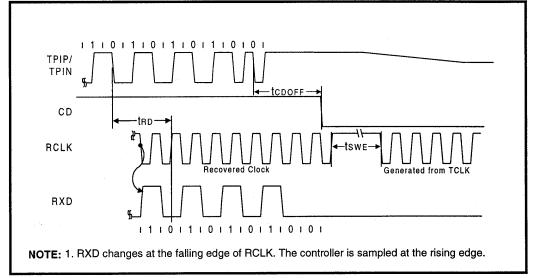
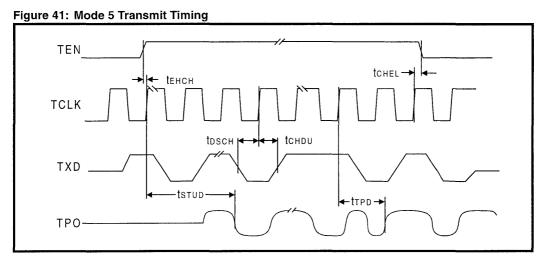


Figure 38: Mode 4 Loopback Timing




LXT908 Universal Ethernet Interface Adapter

Timing Diagrams for Mode 5 (MD2, 1, 0 = High, High, Low) Figures 39 through 44 Figure 39: Mode 5 RCLK/Start-of-Frame Timing

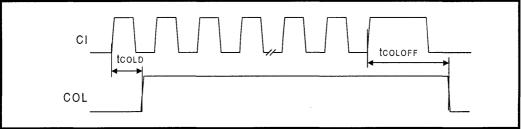
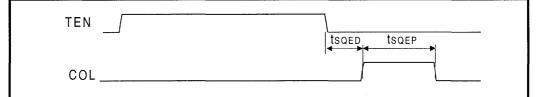


Figure 40: Mode 5 RCLK/End-of-Frame Timing



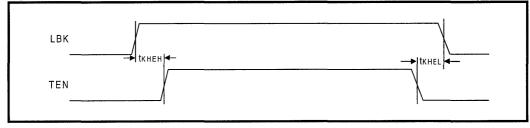

Figure 42: Mode 5 Collision Detect Timing

Figure 43: Mode 5 COL/SQE Output Timing

Figure 44: Mode 5 Loopback Timing

NOTES

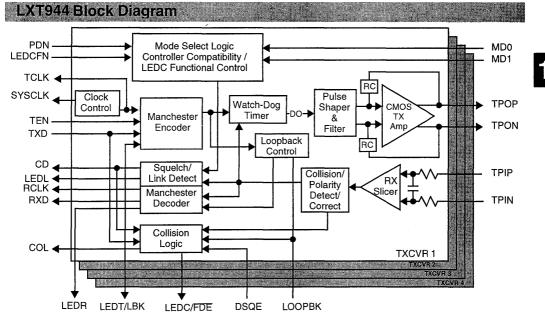
DATA SHEET

LXT944

Quad Ethernet Interface Adapter

General Description

The LXT944 is the first quad 10BASE-T transceiver device with integrated filters. The LXT944 Quad Ethernet Adapter is designed for IEEE 802.3 physical layer applications. This single CMOS device includes all of the active circuitry for interfacing most standard 802.3 controllers to 10BASE-T media.

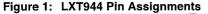

The LXT944 includes four Manchester encoders/decoders, receiver squelch and transmit pulse shaping, jabber, link integrity testing and reversed polarity detection and correction per port. The LXT944 drives four independent 10BASE-T twisted-pair cables with only isolation transformers. Integrated filters simplify the design work required for FCC compliant EMI performance.

Applications

- · Hub/switched Dedicated LANs for 10BASE-T
- Multi-port 10BASE-T Server products

Features

- Quad Independent 10BASE-T compliant transceivers with Integrated filters
- Quad Integrated Manchester encoder/decoder
- · Power-down mode with tri-stated outputs
- · Automatic Polarity Detection & Correction
- Global SQE enable/disable
- · Four LED drivers per port
- · Full duplex capability per port
- External Loopback with port disable
- · Available in 100-pin Plastic Quad Flat Pack



JUNE 1997 Revision 2.1

TABLE OF CONTENTS

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS11-141
FUNCTIONAL DESCRIPTION11-145
Introduction 11-145
Controller Compatibility Modes 11-145
Transmit Function
Jabber Control Function 11-146
SQE Function
Receive Function 11-146
Collision Detection Function 11-147
Polarity Reverse Function 11-147
Loopback Function 11-147
Full Duplex Operation 11-147
LED Driver Functions 11-147
Link Integrity Test Function 11-148
APPLICATION INFORMATION11-149
Magnetics Information 11-149
Layout Requirements 11-149
The Twisted-Pair Interface 11-149
The RBIAS Pin 11-149
Simple Receive/Transmit on Each Port Application
Receive Quad and Transmit Quad Application
Single, 40-Pin Octal Transformer Application 11-152
TEST SPECIFICATIONS11-153
Absolute Maximum Ratings 11-153
Recommended Operating Conditions 11-153
I/O Electrical Characteristics 11-154
Twisted-Pair Electrical Characteristics 11-154
Switching Characteristics 11-154
RCLK/Start-of-Frame Timing 11-154
RCLK/End-of-Frame Timing 11-155
Transmit Timing 11-155
Miscellaneous Timing 11-155
Mode 1 Timing Diagrams 11-156
Mode 2 Timing Diagrams 11-158
Mode 3 Timing Diagrams 11-160
Mode 4 Timing Diagrams 11-162

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

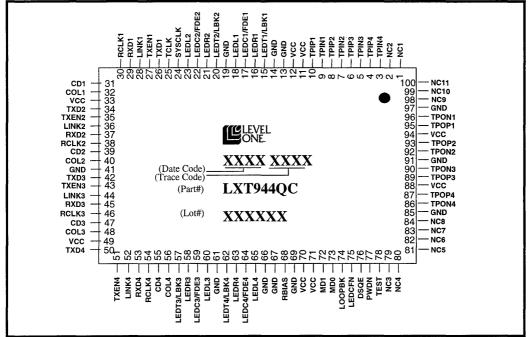


Table 1: Twisted-Pair Interface Signal Descriptions

Pin	Symbol	1/0	Description
10	TPIP1	I	Twisted Pair Data Inputs, Positive & Negative (ports 1-4). These pins are the
9	TPIN1	Ι	positive (TPIP) and negative (TPIN), twisted-pair data input pins for ports 1 - 4,
8	TPIP2	Ι	respectively.
7	TPIN2	Ι	
6	TPIP3	Ι	
5	TPIN3	I	
4	TPIP4	Ι	
3	TPIN4	Ι	
95	TPOP1	0	Twisted Pair Data Outputs, Positive & Negative (ports 1-4). These pins are the
96	TPON1	0	positive (TPOP) and negative (TPON), twisted-pair data output pins for ports 1 - 4,
93	TPOP2	0	respectively. The outputs are pre-equalized; no external filters are required.
92	TPON2	0	
89	TPOP3	0	
90 .	TPON3	0	
87	TPOP4	0	
86	TPON4	0	

Pin	Symbol	I/O	Description
27	TXENI	I	Transmit Enable (ports 1-4). These pins enable data transmission from the respec-
35	TXEN2	I	tive controller and start the watch dog timers. The signals are synchronous to TCLK.
43	TXEN3	Ι	Pulled Low internally.
51	TXEN4	Ι	
26	TXD1	I	Transmit Data (ports 1-4). These pins are input signals containing NRZ data to be
34	TXD2	I	transmitted on the network. The TXD pins should be tied directly to the data output
42	TXD3	Ι	of the respective controller. Pulled Low internally.
50	TXD4	Ι	
25	TCLK	0	Transmit Clock. 10 MHz clock output. This clock signal should be directly con-
	(global)		nected to the transmit clock input of each controller.
29	RXD1	0	Receive Data (ports 1-4). These are the output signals and should be connected
37	RXD2	0	directly to the data input of the respective controller.
45	RXD3	0	
53	RXD4	0	
30	RCLK1	0	Receive Clock (ports 1-4). These pins provide recovered 10MHz clocks which are
38	RCLK2	0	synchronous to the receive data from the respective port. These pins should be con-
46	RCLK3	0	nected to the receive clock input of the respective controller.
54	RCLK4	0	
31	CD1	0	Carrier Detect (ports 1-4). Outputs for notifying the controller that activity exists
39	CD2	0	on the respective network.
47	CD3	0	
55	CD4	0	
32	COLI	0	Collision Detect (ports 1-4). Outputs for driving the respective collision detect
40	COL2	0	inputs of the controller. COL1 - COL4 also carry signal quality error (SQE) signals.
48	COL3	0	
56	COL4	0	

Table 2: MAC Interface Signal Descriptions

Table 3: Control Signal Descriptions

Pin	Symbol	1/0	Description
73 72	MD0 MD1 (global)	I	Mode Select 0 (MD0), Mode Select 1 (MD1). These pins determine the controller compatibility mode as specified in Table 7. Default is mode 3.
74	LOOPBK (global)	I	Global Loopback. When Low, all ports are forced to internal loopback, disabling collision and the transmission of both data and link pulses. When High, the loopback function is controlled on a per port basis using LEDT1 - 4/LBK1 - 4.
76	DSQE (global)	I	SQE Disable. When this pin is pulled High, the SQE function is disabled. When this pin is driven Low or floated, the SQE function is enabled. This pin controls the SQE function for all four TP ports.
77	PWDN (global)	I	Power Down. When driven High the LXT944 enters power down state with all outputs tri-stated. When Low the LXT944 is in operational mode.

LXT944 Pin Assignments and Signal Descriptions

Pin	Symbol	I/O	Description
28	LINK1	0	Link Status (ports 1-4). These four signals indicate link status for each port:
36	LINK2	0	Low = link test pass.
44	LINK3	0	High = link test fail.
52	LINK4	0	The link status is valid for both half and full duplex modes.
75	LEDCFN	Ι	LEDC Function Select. When driven Low or floated, the LEDC1-4/FDE1-4 pins are
	(global)		bidirectional. When driven High the LEDC1-4/FDE1-4 pins are TTL inputs only.
17	LEDC1/FDE1	I/O	Collision LED drivers (ports 1-4). Open drain drivers for the collision indicators.
22	LEDC2/FDE2	I/O	The output is pulled Low and the pulse is extended for 100ms to indicate collision.
59	LEDC3/FDE3	I/O	
64	LEDC4/FDE4	I/O	Full Duplex Enable (ports 1–4). If Externally tied Low, the respective port is forced
			into Full Duplex Mode.
1			These pins are internally pulled up.
15	LEDT1/LBK1	I/O	Transmit LED drivers (ports 1-4). Open drain drivers for the transmit indicators. The
20	LEDT2/LBK2	I/O	output is pulled Low and the pulse is extended for 100 ms to indicate transmit activity.
57	LEDT3/LBK3	I/O	
62	LEDT4/LBK4	I/O	Loopback (ports 1-4). If Externally tied Low, the respective port is forced to Inter-
			nal Loopback, disabling collision detection and the transmission of both data and
			link pulses. See LOOPBK pin 74.
			These pins are internally pulled up.
16	LEDR1	0	Receive LED drivers (ports 1-4). Open drain drivers for the receive indicators. The
21	LEDR2	0	output is pulled Low and the pulse is extended for 100 ms to indicate receive activity.
58	LEDR3	0	
63	LEDR4	0	
18	LEDL1	0	Link LED drivers (ports 1-4). These tri-level LED drivers indicate Link status for
23	LEDL2	0	each port. The outputs are pulled Low to indicate half duplex link pass state. The
60	LEDL3	0	outputs are driven High to indicate full duplex link pass state. When in link fail state
65	LEDL4	0	the driver is tri-stated.

Table 4: Status Indication Signal Descriptions

Na I			
78	TEST	I	Test. Factory use only. This pin must be tied to ground.
24	SYSCLK	I	System Clock. A 20 MHz clock input is required at this pin.
1	NC1		No Connects. These pins must be left unconnected.
2	NC2		
79	NC3	-	
80	NC4	-	
81	NC5	-	
82	NC6	-	
83	NC7	-	
84	NC8	-	
98	NC9	-	
99	NC10	_	
100	NC11		

Table 5: Miscellaneous Signal Descriptions

Table 6: Power and Ground Signal Descriptions

Pin	Symbol	I/O	Description
11	VCC	_	Power Input. These pins are to be connected to the power supply (+5 volts)
12			
33			
49			
70			
71			
88			
94			
13	GND		Ground. These pins are to be connected to the ground plane.
14			
19			
41			
61			
66			
67			
69			
85			
91			
97			
68	RBIAS	I	Bias. Bias current for internal circuitry. This pin should be connected to ground through an external 7.5 k Ω 1% resistor.

•

FUNCTIONAL DESCRIPTION

Introduction

The LXT944 Quad Ethernet Transceiver performs the physical layer signaling (PLS) and Media Attachment Unit (MAU) functions as defined by the IEEE 802.3 specification. It functions as an integrated PLS/MAU for use with four 10BASE-T twisted-pair networks.

The LXT944 interfaces between the Media Access Controller (four singles or one Quad MAC) and four twisted-pair (TP) cables. The MAC interface includes transmit and receive clock and NRZ data channels, as well as mode control logic and signaling. The twisted-pair interfaces include Twisted-Pair Input (TPI \pm) and Twisted-Pair Output (TPO \pm) pairs. In addition to the two basic interfaces, the LXT944 has a 20 MHz system clock input; a single 10 MHz TCLK output to all four controllers; LED drivers for Collision, Receive, Transmit, and Link Status of each port; independent or global internal loopback; full duplex operation on a per port basis; and four TTL link status outputs.

LXT944 functions are defined from the back end controller side of the interface. The LXT944 Transmit function refers to data transmitted by the back end controllers to the twistedpair network. The LXT944 receive function refers to the data received by the back end controllers from the twisted-pair networks. The LXT944 performs all required MAU functions defined by the IEEE 802.3 10BASE-T specification such as collision detection, link integrity testing, signal quality error messaging, jabber control and loopback.

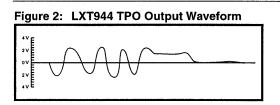
Controller Compatibility Modes

The LXT944 is compatible with most industry standard controllers including devices produced by Advanced Micro

Devices (AMD), Fujitsu, Intel, Motorola, National Semiconductor, Seeq and Texas Instruments.

NOTE

Refer to Level One Application Note 51 when designing with Intel controllers. Note that Seeq controllers require inverters on the following signals: SYSCLK, LBK1-4, RCLK1-4 and COL1-4.


Four different control signal timing and polarity schemes (modes 1 through 4) are required to achieve this compatibility. The Mode select pins (MD1 & MD0) determine the controller compatibility mode as listed in Table 7. Controller compatibility mode is selected globally. Each of the four independent controller inputs (one per port) is configured to operate in the same mode. The user must select a single controller operating mode for all four ports. Refer to the Test Specification section for the timing parameters.

Transmit Function

The LXT944 receives NRZ data from the controller at the TXD input (as shown in the block diagram on the first page of the data sheet) and passes it through a Manchester encoder. The encoder data is then transferred to the twisted-pair network (the four TPO circuits). The advanced integrated pulse shaping and filtering network produces the output signal on TPONx and TPOPx, shown in Figure 2. The TPO output is pre-distorted and pre-filtered to meet the 10BASE-T jitter template. An internal, continuous, resistor-capacitor filter removes high frequency clocking noise from the pulse shaping circuitry. Integrated filters simplify the design work required for FCC compliant EMI performance. During idle periods the LXT944 transmits link integrity test pulses on the TPOx circuits (if the Loopback function is disabled).

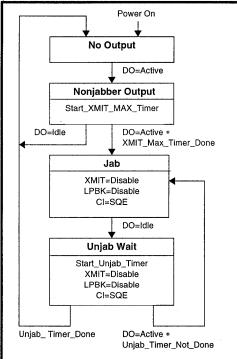
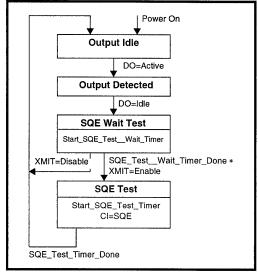

Ethernet Controllers Supported	Mode	MD1	MDO
Advanced Micro Devices AM7990, Motorola 68EN360, MPC860 and compatible controllers	Mode 1	Low	Low
Intel 82596 and compatible controllers ¹	Mode 2	Low	High
Fujitsu MB86950, MB86960, Seeq 8005, and compatible controllers ²	Mode 3	High	Low
National Semiconductor 8390, Texas Instruments TMS380C26, and compatible con- trollers	Mode 4	High	High
 Refer to Level One Application Note 51 when designing with Intel controllers, Seeq controllers require inverters on CLKI, LBK, RCLK and COL, 			

Table 7: Controller Compatibility Modes

Jabber Control Function

Figure 3 is a state diagram of the LXT944 jabber control function per port. The LXT944 on-chip watchdog timer prevents the DTE from locking into a continuous transmit mode. When a transmission exceeds the time limit, the watchdog timer disables the transmit and loopback functions and activates the COLx pins. Once the LXT944 is in jabber state, the TXD circuit must remain idle for a period of 0.25 to 0.75 seconds before it will exit the jabber state.

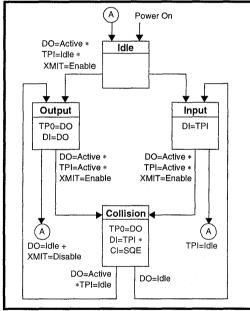

Figure 3: LXT944 Jabber Control Function

SQE Function

The LXT944 supports the Signal Quality Error (SQE) function as shown in Figure 4. After every successful transmission on the 10BASE-T network, the LXT944 transmits the SQE signal for 10 bit times (BT) ± 5 BT on the COLx pins of the device.

The SQE function can be disabled for repeater or switch applications. When the DSQE pin = High, the SQE function is disabled. When DSQE = Low, the SQE function is enabled. The pin has an internal pull down enabling the SQE function when unconnected.

Receive Function


The LXT944 receive function acquires timing and data from the twisted-pair network (the TPLx circuits). Valid receive signals are passed through the on-chip filters and Manchester decoder then output as decoded NRZ data receive timing on the RXD RCLK pins, respectively.

An internal RC filter and an intelligent squelch function discriminates noise from link test pulses and valid data streams. The receive function is activated only by valid data streams above the squelch level and with proper timing. If the differential signals at the TPLx circuit inputs fall below 85% of the threshold level (unsquelched) for 8 bit times (typical), the LXT944 receive function enters the idle state. The LXT944 automatically corrects reversed polarity on the TPLx circuits.

Collision Detection Function

A collision is defined as the simultaneous presence of valid signals on both the TPLx circuits and the TPOix circuits. The LXT944 reports collisions to the back-end via the COLx pins. If the TPLx circuits become active while there is activity on the TPOx circuits, the TPLx data is passed to the back-end over the RXD circuit, disabling normal loopback. Figure 5 is a state diagram of the LXT944 collision detection function per port.

Figure 5: LXT944 Collision Detection State Machine

Polarity Reverse Function

The LXT944 supports auto polarity detection and correction. The polarity reverse function uses both the link pulses and the end-of-frame data to determine polarity of the received signal. A reversed polarity condition is detected when eight consecutive opposite receive link pulses are detected without receipt of a link pulse of the expected polarity. Reversed polarity is also detected if four consecutive frames are received with a reversed start-of-idle. Whenever a corrected polarity frame is received, these two counters are reset to zero. If the LXT944 enters the link fail state and no valid data or link pulses are received within 96 to 128 ms, the polarity is reset to the default non-flipped condition. (If Link Integrity testing is disabled, polarity detection is based only on receive data.) Polarity correction is always enabled.

Loopback Function

The LXT944 provides the normal loopback function specified by the 10BASE-T standard for the twisted-pair port, as well as a forced loopback function. The loopback function operates in conjunction with the transmit function. Data transmitted by the back-end is internally looped back within the LXT944 from the TXDx pins through the Manchester encoder/decoder to the RXD1-4 pins and returned to the back-end. This "normal" loopback function is disabled when a data collision occurs, clearing the RXDx circuits for the TPLx data. Normal loopback is also disabled during link fail, jabber, and full duplex states. Loopback is always enabled during the forced loopback state.

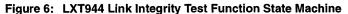
The LXT944 provides an additional loopback function. **External loopback mode**, useful for system-level testing, is controlled by the LEDCx/FDEx pins. With both LEDCx/FDEx, and LEDTx/LBKx, or the global Loopback pins Low, the LXT944 device:

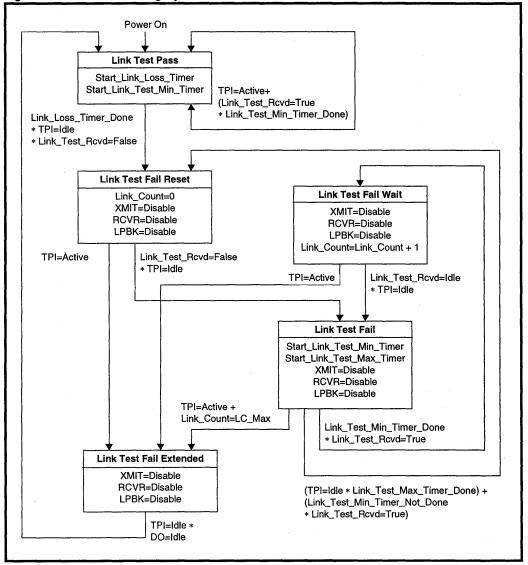
- disables internal loopback circuits
- disables SQE
- · disables the collision detection circuitry
- · enables full duplex mode

This allows for external loopback testing. This can be controlled on a per port basis using the individual port controls or globally by using the "Loopback" pin.

Full Duplex Operation

Full duplex operation is enabled by driving the LEDCx/ FDEx pins with an open collector driver. The LEDCFN pin when enabled will disable the collision LED driver and allow the LEDCx/FDEx pin to be driven by a TTL driver to enable or disable the full duplex operation of the TP ports.


LED Driver Functions


The LXT944 supports individual LED drivers for each port. Per-port LED drivers include link (both half & full duplex), receive, transmit, and collision. The signal pulse widths on all activity outputs (receive, transmit, and collision) are a minimum of a 100 ms to increase visual recognition of the LED status.

The LINKx signals are TTL level outputs indicating link pass state for both half and full duplex operation. The signal is active Low and can be read as a status bit or be used to activate port link LEDs.

Link Integrity Test Function

Figure 6 is a state diagram of the LXT944 Link Integrity Test function. The link integrity test is used to determine the status of the receive side twisted-pair cable. Link integrity testing is always enabled unless the loopback function is enabled (LBK or Loopback = High). When enabled, the receiver recognizes link integrity pulses which are transmitted in the absence of receive traffic. If no serial data stream or link integrity pulses are detected within 50-150 ms, the device enters a link fail state and disables the transmit and normal loopback functions. The LXT944 ignores any link integrity pulse with an interval less than 2-7 ms. The LXT944 will remain in the Link Fail state until it detects either a serial data packet or two or more link integrity pulses.

APPLICATION INFORMATION

The following diagrams group similar pins; they do not portray the actual chip pinout. The controller interface pins (transmit, data, clock, and enable; receive data and clock; and the collision detect and carrier detect pins) are at the upper left.

The VCC and GND pins are at the bottom of each diagram. All VCC pins use a single power supply with decoupling capacitors installed between the VCC and GND pins and their respective planes.

Magnetics Information

The LXT944 requires a 1:1 ratio for the receive transformers and a $1:\sqrt{2}$ ratio for the transmit transformers. The LXT944 uses the same magnetics which are currently used on the LXT914 Quad Repeater. Various front end design options are available: a simple per port Rx/Tx pair configuration (see Figure 7), the receive quad and the transmit quad (see Figure 8), and the new single 40 pin octal transformer configuration (see Figure 9).

Transformers for these designs are available from various manufacturers (see Table 8) is a list of available Quad and Single port transformers with manufacturers and their part numbers. Before committing to a specific component, designers should test and validate all specifications of the magnetics used in all applications.

Mfgr.	Quad Tx	Quad Rx	Tx/Rx Pairs
Bell Fuse	S553-5999-02	S553-5999-03	
Fil-Mag	23Z339	23Z338	
HALO	TD54-1006L1 TG54-1006N2	TD01-1006L1 TG01-1006N2	TD42-2006Q TD43-2006K TG42-1406N1 TG43-1406N
(Octal)			TG44-S010NX
Kappa	TP4003P	TP497P101	
Nan- opulse	5976	5977	
PCA	EPE6009	EPE6010	
VALOR	PT4116	PT4117	PT4069N1 PT4068N1 ST7011S2 ST7010S2

Table 8:	Magnetics	Manufacturers
Tuble 0.	magnetico	manaotarcio

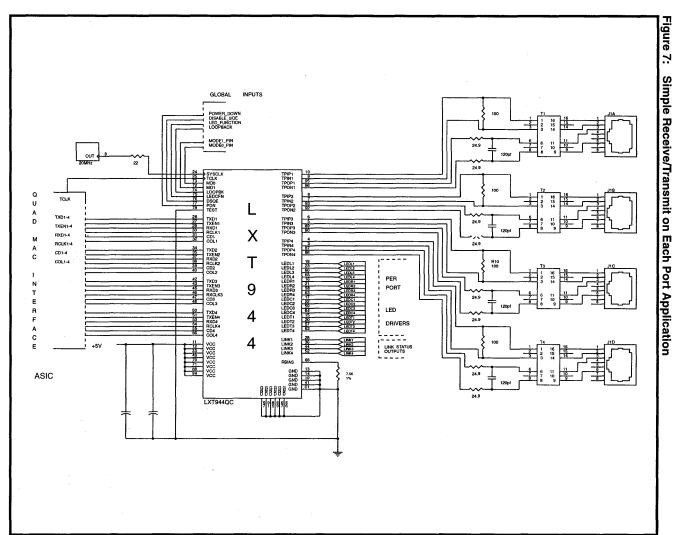
Layout Requirements

The Twisted-Pair Interface

The four, twisted-pair output circuits are identical. Each TPDOP/TDPON signal has a 24.9 Ω , 1%, series resistor and a 120 pF capacitor differentially across the positive and negative outputs. These signals go directly to a 1: $\sqrt{2}$ transformer creating the necessary 100 Ω termination for the cable. The TPDIP/TPDIN signals have a 100 Ω resistor across the positive and negative input signals to terminate the 100 Ω signal received from the line. To calculate the impedance on the output line interface, use:

$$(24.9 \ \Omega + 24.9 \ \Omega) * \sqrt{2}^2 \approx 100 \ \Omega.$$

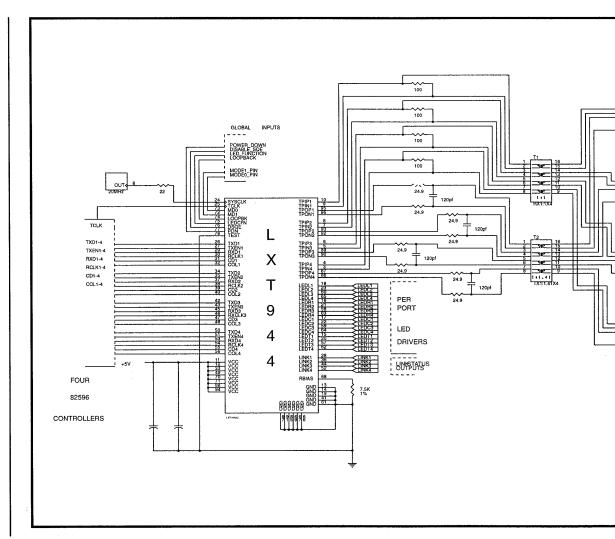
The layout of the twisted-pair ports is critical in complex designs. Run the signals directly from the device to the discrete termination components (located close to the transformers).


The transformer isolation voltage should be rated at 2 kV to protect the circuitry from static voltages across the connectors and cables. The signals running from the transformers to the connector should run in close pairs directly to the connector. Be careful not to cross the transmit and receive pairs. One way to avoid a problem is to run the receive pairs on the component side and the transmit pairs on the solder side. Careful planning during the schematic and layout stages can avoid these problems.

The PCB layout should have no ground or power planes between the transformers and the connectors. The data signals should be the only traces in this area. Place the chassis ground for the connectors near the edge of the PCB, away from the signals, connecting the connector shield with the chassis.

The RBIAS Pin

The RBIAS signal sets the levels for the output drivers of the LXT944. Any emissions or common mode noise entering the device here could be measured on the twisted-pair output signals.


The LXT944 requires a 7.5 k Ω , 1% resistor directly connected between pin 68 and ground. These traces should be as short as possible. The ground signals from pins 67 & 69 should come directly off of the device to enclose the resistor and pin forming a shielded area between the RBIAS connection and the switching signals on the PCB.

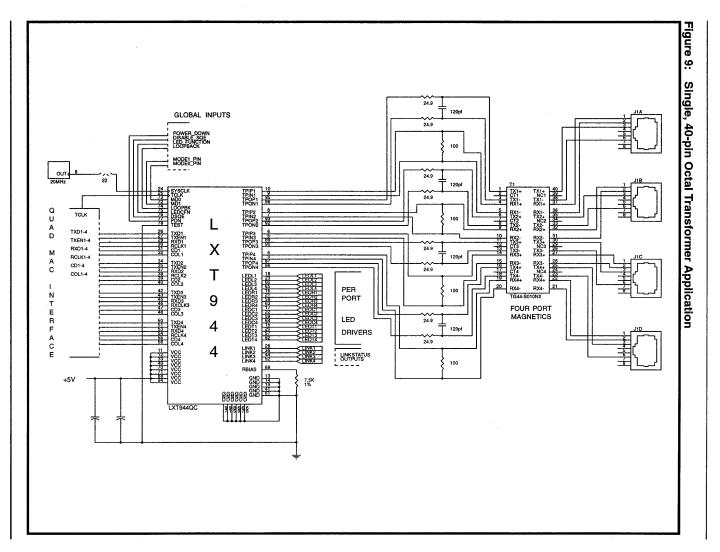
11-150

MAGI EVEI

LXT944 Application Information

Figure

œ


Receive Quad and

Transmit Quad Application

5

11-151

11-152

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 9 through 17 and Figures 10 through 25 represent the performance specifications of the LXT944 and are guaranteed by test, except where noted by design

Table 9: Absolute Maximum Values

Parameter	Symbol	Min	Max	Units
Supply Voltage	Vcc	-0.3	6	v
Operating Temperature	Тор	0	70	°C
Storage Temperature	Тѕт	-65	+150	°C
Exceeding these values may cause perman implied. Exposure to maximum rating condit				

Table 10: Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Recommended Supply Voltage ¹	Vcc	4.75	5.0	5.25	v	
Recommended Operating Temperature	Тор	0	-	70	°C	

Table 11:	I/O Electrical	Characteristics	(Over Recommended Ra	ange)
-----------	----------------	-----------------	----------------------	-------

	0.8 - 0.4 10 1.0 - -	V V V %Vcc %Vcc V %Vcc	IOL = 1.6 mA IOL < 10 μA IOLL = 5 mA IOH = 40 μA IOH < 10 μA
	10	V %Vcc %Vcc V	Iol < 10 μA Ioll = 5 mA Ioh = 40 μA
	10	%Vcc %Vcc V	Iol < 10 μA Ioll = 5 mA Ioh = 40 μA
		%Vcc V	$IOLL = 5 mA$ $IOH = 40 \mu A$
	1.0 - -	V	Іон = 40 µА
-	-		
_	-	%Vcc	Іон < 10 µА
1 -	-	V V	IOHL = -5 mA
-	2	mA	Vol = .4 V
3	15	ns	CLOAD = 20 pF
2	15	ns	
3	15	ns	CLOAD= 20 pF
2	15	ns	
	3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 15 ns

Parar	neter	Sym	Min	Typ ¹	Max	Units	Test Conditions
CLKI rise time (e)	(ternally driven)	-	-	-	10	ns	
CLKI duty cycle (externally driven)	-		50/50	40/60	%	
Supply Current	Normal Mode	ICC	0 .	140	200	mA	Idle
	Normal Mode	ICC	0	180	220	mA	Transmitting on TH
	Power Down Mode	ICC	-	0.1	100	μA	

Table 11: I/O Electrical Characteristics (Over Recommended Range) - continued

Table 12: Twisted-Pair Electrical Characteristics (Over Recommended Range)

Parameter	Symbol	Min	Typ1	Max	Units	Test Conditions
Transmit output impedance	Zout	-	2		Ω	
Transmit timing jitter addition ²		_	±6.4	±10	ns	0 line length for internal MAU
Transmit timing jitter added by the MAU and PLS sections ^{2, 3}	-		±3.5	±5.5	ns	After line model specified by IEEE 802.3 for 10BASE-T inter- nal MAU
Receive input impedance	Zin	-	24	-	kΩ	Between TPIP/TPIN
Differential Squelch Threshold	VDS	300	420	585	mV	5 MHz square wave input

Table 13: Switching Characteristics (Over Recommended Range)

	Parameter	Sym	Min	Typ ¹	Мах	Units
Jabber Timing	Maximum Transmit Timing	-	20	-	150	ms
	Unjab Timing	-	250	-	750	ms
Link Integrity	Time Link Loss Receive	-	50	-	150	ms
Timing	Link Min Receive	-	2	-	7	ms
	Link Max Receive	-	50	-	150	ms
	Link Transmit Period	-	8	10	24	ms

Table 14: RCLK/Start-of-Frame Timing (Over Recommended Range)

Decoder acquisition time	tDATA	-	900	1100	ns
CD turn-on delay	tCD	-	50	200	ns

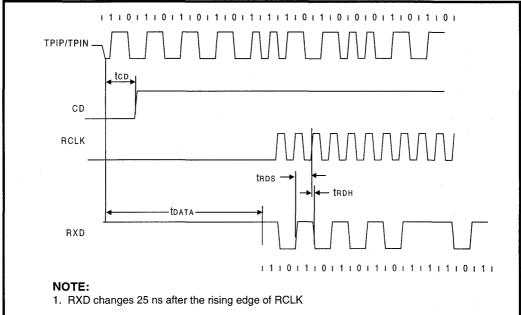
LXT944 Test Specifications

Par	rameter	Sym.	Min	Тур1	Max	Units
Receive data setup	Mode 1	tRDS	60	70	-	ns
from RCLK	Modes 2, 3 and 4	tRDS	30	45	-	ns
Receive data hold	Mode 1	tRDH	10	20	-	ns
from RCLK	Modes 2, 3 and 4	tRDH	30	45	-	ns
RCLK shut off delay	from CD assert (Mode 3)	tsws	-	±100	-	ns

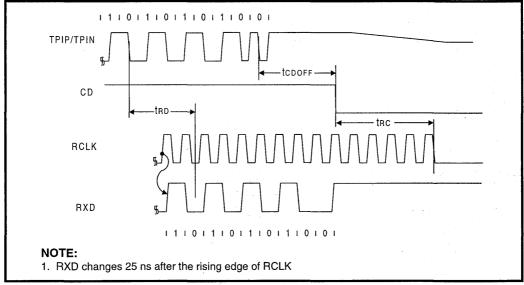
Table 14: RCLK/Start-of-Frame Timing (Over Recommended Range) - continued

Table 15: RCLK/End-of-Frame Timing (Over Recommended Range)

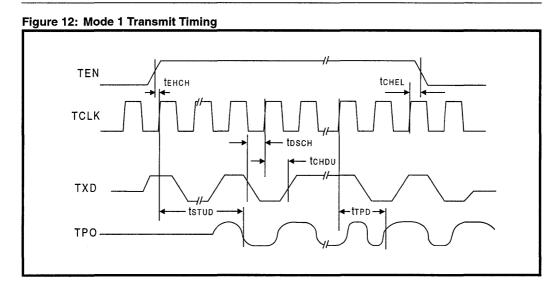
Parameter	Туре	Sym	Mode 1	Mode 2	Mode 3	Mode 4	Units
RCLK after CD off	Minimum	tRC	5	1	27	5	bit times
Rx data throughput delay	Maximum	tRD	400	375	375	375	ns
CD turn off delay ¹	Maximum	tCDOFF	500	475	475	475	ns
Receive block out after TEN off ²	Typical ³	tIFG	5	50	-	-	bit times
RCLK switching delay after CD off	Typical ³	tSWE	-	-	120 (±80)	-	bit times

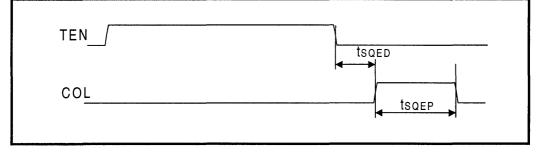

Table 16: Transmit Timing (Over Recommended Range)

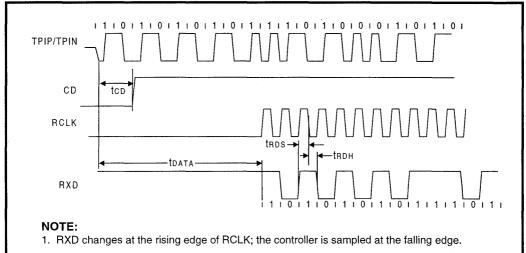
Parameter	Symbol	Minimum	Typical ¹	Maximum	Units
TEN Setup from TCLK	tEHCH	22	-	-	ns
TXD Setup from TCLK	tDSCH	22	-	-	ns
TEN Hold after TCLK	tCHEL	5	-	-	ns
TXD Hold after TCLK	tCHDU	5			ns
Transmit Start-up Delay	tSTUD	-	350	450	ns
Transmit Through-put Delay	tTPD	-	338	350	ns

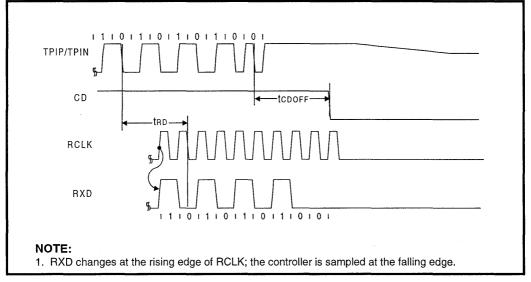

Table 17: Miscellaneous Timing (Over Recommended Range)

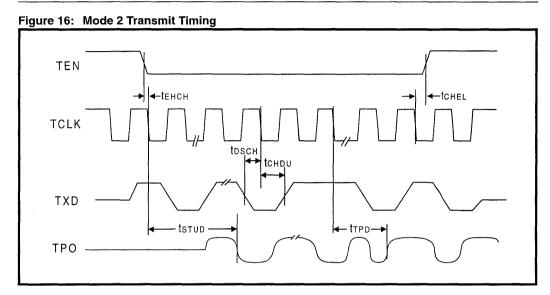
Parameter	Symbol	Minimum	Typical ¹	Maximum	Units
COL (SQE) Delay after TEN off	tSQED	0.65	-	1.6	μs
COL (SQE) Pulse Duration	tSQEP	500	-	1500	ns
Power Down recovery time	tPDR	_	TBD	-	ms

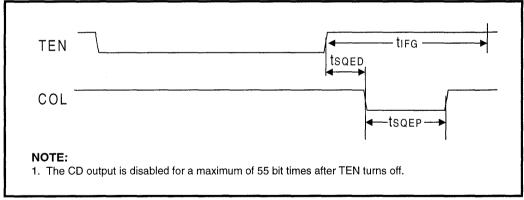


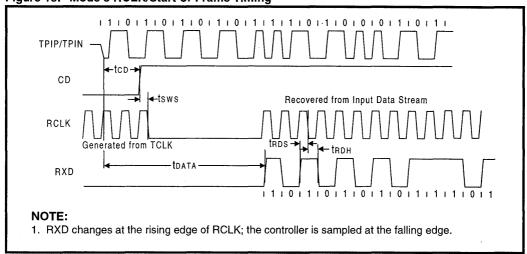


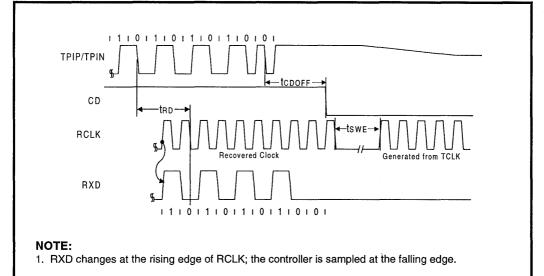


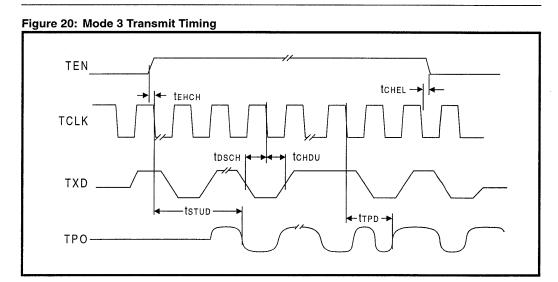

Figure 13: Mode 1 COL Output Timing








Figure 17: Mode 2 COL Output Timing



Timing Diagrams for Mode 3 (MD1=High, MD0=Low) Figures 18 through 21 Figure 18: Mode 3 RCLK/Start-of-Frame Timing

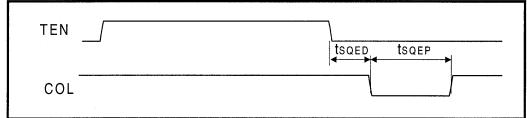
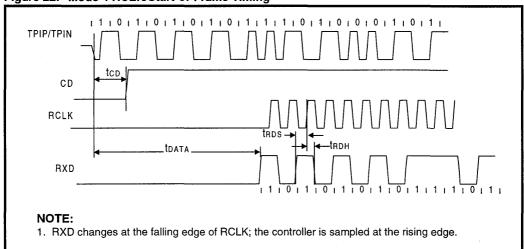
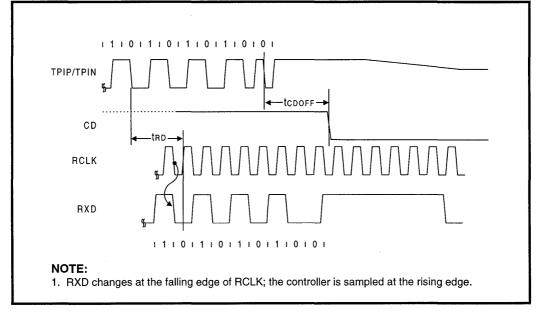


Figure 19: Mode 3 RCLK/End-of-Frame Timing




Figure 21: Mode 3 COL Output Timing

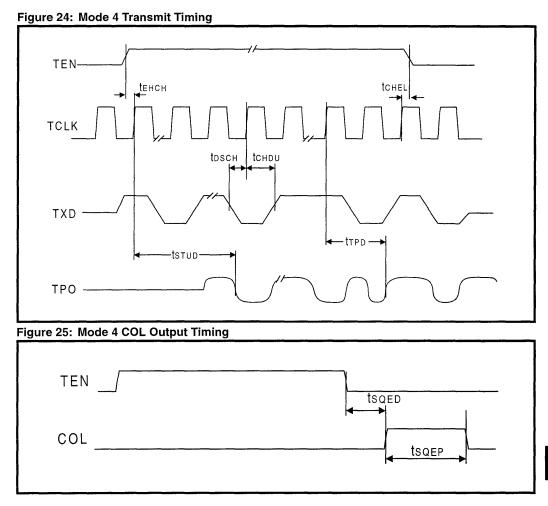


Figure 23: Mode 4 RCLK/End-of-Frame Timing

11

NOTES

DATA SHEET

MAY 1997 Revision 1.1

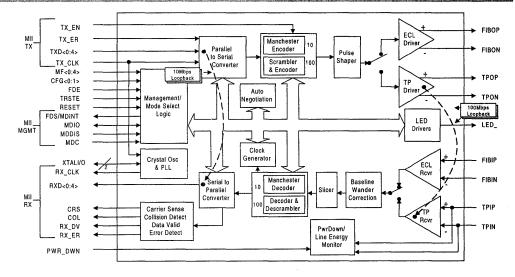
LXT970 Fast Ethernet Transceiver

General Description

The LXT970 Fast Ethernet Transceiver supports IEEE 802.3 compliant Ethernet applications at both 10 and 100Mbps operation. It provides the active circuitry to interface 802.3 media independent interface (MII) compliant controllers to 10BASE-T and/or 100BASE-TX media. The LXT970 also provides an ECL-type interface for use with 100BASE-FX fiber networks.

The LXT970 supports full duplex operation at 10 and 100 Mbps. Its operating condition can be set using auto-negotiation, parallel detection or manual control. The encoder can be bypassed for symbol mode applications.

The LXT970 is fabricated with an advanced CMOS process and requires only a single 5 volt power supply. The MII may be operated independently with either a 5 volt supply or a 3.3 volt supply.


Applications

- Combination 10BASE-T/100BASE-TX Network Interface Cards (NICs)
- 10/100 Switches, 10/100 Repeaters
- 100BASE-FX Network Interface Cards (NICs)

Features

- IEEE 802.3 Compliant:
 - 10BASE-T and 100BASE-TX using a single RJ45 connection
 - Supports both auto-negotiation via Fast Link Pulse (FLP) exchange and parallel detection for legacy 10BASE-T and 100BASE-TX systems
 - MII interface with extended register capability
- · Baseline wander correction
- 100BASE-FX fiber optic capable
- Standard CSMA/CD or full duplex operation at 10 or 100 Mbps
- Configurable through MII serial port or via external control pins
- · Configurable for DTE, repeater or switch applications
- CMOS process with single 5 volt supply operation with provision for interface to 3.3 V MII bus
- Integrated transmit and receive filtering for 10BASE-T and 100BASE-TX
- Integrated LED drivers
- Integrated supply monitor and line disconnect during low supply fault

LXT970 Block Diagram

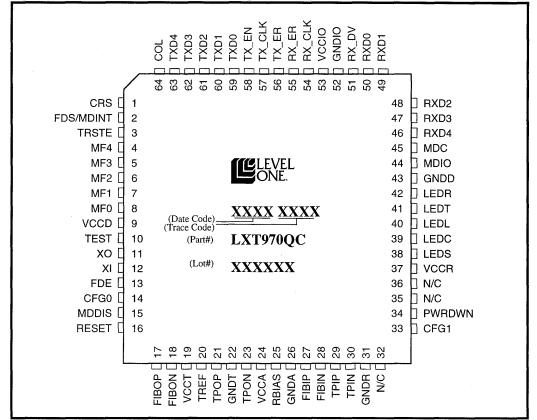


TABLE OF CONTENTS

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS	11-168
FUNCTIONAL DESCRIPTION	11-176
Introduction	11-176
Network Media/Protocol Support	11-177
10/100 Mbps Twisted Pair Interface	11-177
100 Mbps Fiber Interface	11-177
MII Interface	11-177
MII Data Interface	11-177
MII Management Interface (MDIO)	11-178
Hardware Control Interface	11-179
Operating Configurations Tables	11-179
Initialization	11-181
Link Configuration	11-181
Auto-Negotiation	11-182
100 Mbps Operation	11-183
4B/5B Coding Table	11-184
5B Symbol Mode	11-185
Scrambler Bypass	11-185
Link Failure Criteria and Override	11-185
Baseline Wander Correction	11-185
Errors and Collisions	11-186
10 Mbps Operation	11-187
Operating Requirements	11-188
Power Requirements	11-188
Clock Requirements	11-188
APPLICATION INFORMATION	11-189
Magnetics/Crystal Information	11-189
Layout Requirements	11-190
Twisted-Pair Interface	11-190
The RBIAS Pin	11-190
Power Supply Decoupling	11-190
Typical Application	11-191

TEST SPECIFICATIONS	
Absolute Maximum Ratings11-193	
Recommended Operating Conditions 11-193	
Digital I/O Characteristics	
Clock Characteristics 11-195	
Link Integrity Timing Characteristics 11-195	
100BASE-TX Transceiver Characteristics11-196	
100BASE-FX Transceiver Characteristics 11-196	
10BASE-T Transceiver Characteristics 11-197	
100BASE-TX Receive Timing 4B Mode 11-198	
100BASE-TX Transmit Timing 4B Mode11-199	
100BASE-TX Receive Timing 5B Mode11-200	
100BASE-TX Transmit Timing 5B Mode11-201	
100BASE-FX Receive Timing 4B Mode11-202	
100BASE-FX Transmit Timing 4B Mode 11-203	
10BASE-T Receive Timing11-204	
10BASE-T Transmit Timing 11-205	
10BASE-T SQE (Heartbeat) TIming11-206	
Auto Negotiation and Fast Link Pulse TIming 11-207	
MDIO and MII Timing 11-208	
Miscellaneous Timing 11-209	
REGISTER DEFINITIONS	
Control Register (Address 0) 11-211	
Status Register (Address 1) 11-212	
PHY Identification Register (Address 2) 11-213	
PHY Identification Register (Address 3)11-213	
Auto Negotiation Advertisement Register (Address 4) 11-214	
Auto Negotiation Link Partner Ability Register (Address 5)	
Auto Negotiation Expansion (Address 6)11-216	
Mirror Register (Address 16) 11-216	
Interrupt Enable Register (Address 17) 11-216	
Interrupt Status Register (Address 18) 11-217	
Configuration Register (Address 19) 11-218	
Chip Status Register (Address 20) 11-219	

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Figure 1: LXT970 Pin Assignments and Signal Descriptions

Table	1:1	XT970	Power	Supply	Signal	Descriptions
Tuble			1 0 1 0 1	Ouppiy	orgnus	Descriptions

Pin#	Pin Name	1/0	Pin Description
19 22	VCCT GNDT	-	Transmitter Supply (+5V) and Ground.
37 31	VCCR GNDR	-	Receiver Supply (+5V) and Ground.
24 26	VCCA GNDA	-	Analog Supply (+5V) and Ground.
9 43	VCCD GNDD	-	Digital Supply (+5V) and Ground.
53 52	VCCIO GNDIO	-	MII Supply (+3.3V or +5V) and Ground.

Pin#	Pin Name	1/0 ¹	Pin Description				
	MII Data Interface Pins						
63 62 61 60 59	TXD4 TXD3 TXD2 TXD1 TXD0	I	Transmit Data . The MAC drives data to the LXT970 using these inputs. TXD4 is monitored only in Symbol (5B) Mode. These signals must be synchronized to the TX_CLK.				
58	TX_EN	Ι	Transmit Enable . The MAC asserts this signal when it drives valid data on the TXD inputs. This signal must be synchronized to the TX_CLK.				
57	TX_CLK	I/O	Transmit Clock . 25 MHz for 100 Mbps operation, 2.5 MHz for 10 Mbps operation. Refer to the Clock Requirements discussion in the Functional Description section.				
56	TX_ER	Ι	Transmit Coding Error . The Media Access Controller (MAC) asserts this input when an error has occurred in the transmit data stream. When the LXT970 is oper- ating at 100Mbps, the LXT970 responds by sending "Invalid Code Symbols" on the line.				
46 47 48 49 50	RXD4 RXD3 RXD2 RXD1 RXD0	0	Receive Data. The LXT970 drives received data on these outputs, synchronous to RX_CLK. RXD4 is driven only in Symbol (5B) Mode.				
51	RX_DV	0	Receive Data Valid. The LXT970 asserts this signal when it drives valid data on RXD. This output is synchronous to RX_CLK.				
55	RX_ER	0	Receive Error . The LXT970 asserts this output when it receives invalid symbols from the network. This signal is synchronous to RX_CLK.				
54	RX_CLK	0	Receive Clock . 25 MHz for 100 Mbps operation, 2.5 MHz for 10 Mbps operation. Refer to the Clock Requirements discussion in the Functional Description section.				
64	COL	0	Collision Detected . The LXT970 asserts this output when a collision is detected. This output remains High for the duration of the collision. This signal is asynchronous and is inactive during full duplex operation.				
1	CRS	0	Carrier Sense . During half-duplex operation (bit $0.8 = 0$) ² , the LXT970 asserts this output when either transmit or receive medium is non-idle. During full-duplex operation (bit $0.8 = 1$) or repeater operation (bit $19.13 = 1$), CRS is asserted only when the receive medium is non-idle.				
3	TRSTE	I	Tristate . In DTE Mode (19.13 = 0), when TRSTE input is High, the LXT970 isolates itself from the MII Data Interface, and controls the MDIO register bit 0.10 (Isolate bit). When MDDIS is High, TRSTE provides continuous control over bit 0.10. When MDDIS is Low, TRSTE sets initial (default) values only and reverts control back to the MDIO interface. In Repeater Mode (19.13 = 1), when TRSTE input is High, the LXT970 tri-states the reserve of the MU (PXDC/ $(O_{2} = PX)$, PX, EP, PX, CLK)				
2. The LX		3 MDIO	the receive outputs of the MII (RXD<4:0>, RX_DV, RX_ER, RX_CLK). put, OD = Open Drain register set. Specific bits in the registers are referenced using an "X Y" notation, where X is the register 0-15).				

Table 2: LXT970 MII Signal Descriptions

Pin#	Pin Name	I/O ¹	Pin Description
		1000	MII Control Interface Pins
15	MDDIS	I	Management Disable. When MDDIS is High, the MDIO is restricted to Read Onl and the MF<4:0>, CFG<1:0> and FDE pins provide continual control of their respective bits. When MDDIS is Low at power up or Reset, the MF<4:0>, CFG<1:0> and FDE pins control only the initial or "default" values of their respect tive register bits. After the power-up/reset cycle is complete, bit control reverts to the MDIO serial channel.
45	MDC	I	Management Data Clock. Clock for the MDIO serial data channel. Maximum froquency is 2.5 MHz.
44	MDIO	I/O	Management Data Input/Output. Bidirectional serial data channel for PHY/STA communication.
2	FDS/MDINT	OD	 Full Duplex Status. When bit 17.1 = 0 (default), this pin indicates full duplex status. (High = Full Duplex, Low = Half Duplex) This pin can drive a high efficiency LED. (See Table 22 for detail specifications). Management Data Interrupt. When bit 17.1 = 1, an active Low output on this pin indicates status change. Interrupt is cleared by sequentially reading Register 1, then Register 18.

Table 2: LXT970 MII Signal Descriptions - continued

Table 3: LXT970 Fiber Interface Signal Descriptions

-ECL driver pair compat-
ECL receive pair compat-

Table 4: LXT970 Twisted Pair Interface Signal Descriptions

Pin#	Pin Name	1/0	Pin Description
21 23	TPOP TPON	AO	Twisted Pair Output, Positive and Negative . Differential driver pair produces 802.3-compliant pulses for either 100BASE-TX or 10BASE-T transmission.
20	TREF	AO	Transmit Reference. The to center tap of output transformer.
29 30	TPIP TPIN	AI	Twisted Pair Input, Positive and Negative . Differential input pair for either 100BASE-TX or 10BASE-T reception.
1. J/O Co	olumn Coding: I = In	put, O = C	butput, A = Analog

Table 5: LXT970 LED Indicator Signal Descriptions

Pin#	Pin Name	1/0	Pin Description
38	LEDS	0	Speed LED. Active Low output indicates 100 Mbps operation is selected.
42	LEDR	0	Receive LED. Active Low output indicates that receiver is active.
41	LEDT	0	Transmit LED. Active Low output indicates transmitter is active.
40	LEDL	0	Link LED. Active Low output; During 100 Mbps operation, indicates scrambler lock and receipt of valid Idle codes. During 10 Mbps operation, indicates Link Valid status.
39	LEDC	0	Collision LED. In default mode, active Low output indicates collision. However, LEDC is programmable and may be set for other indications. For programming options, see Configuration Register 19 in Table 53.

Table 6: LXT970 Miscellaneous Signal Descriptions

Pin Name	I/O	Pin Description
TEST	I	Test. Must be tied Low.
XI XO	I O	Crystal Input and Output . A 25 MHz crystal oscillator circuit can be connected across XI and XO. A clock can also be used at XI. Refer to Functional Description for detailed clock requirements.
RBIAS	AI	Bias Control. Controls operating circuit bias via an external 22 k Ω , 1% resistor to ground.
RESET	Ι	Reset . This active Low input is OR'ed with the control register Reset bit (0.15). The LXT970 reset cycle is extended 205ns (nominal) after Reset is de-asserted.
PWRDWN	I	Power Down . When High, forces LXT970 into power down mode. This pin is OR'ed with the Power Down bit (0.11). Refer to Table 43 for more information.
N/C	-	No Connection. Leave open.
	TEST XI XO RBIAS RESET PWRDWN	TEST I XI I XO O RBIAS AI RESET I PWRDWN I

1

LXT970 Fast Ethernet Transceiver

Pin#	Pin Name	1/0	Pin Description
	MF0 - MF4	I	Multi-Function (MF). Each pin has two independent settings that are established by 4-level supply voltages. The first setting (ADD), determines the PHY address on the MDIO bus and the second setting (FUNC), determines configuration of the LXT970.
			The MF inputs directly affect particular bits in the MDIO register set. The effect is mediated by the MDDIS pin. When MDDIS is High, these inputs continually affect the MDIO registers. When MDDIS is Low, they determine initial (default) values only.
			Table 21 shows the 4-level supply voltages (voltage levels referred to as VMF1, VMF2, VMF3 and VMF4) that establish the settings per pin. An external voltage divider, as shown in the Layout Requirement section, is required to establish mid-level (VMF2 and VMF3) settings. VMF1 and VMF4 (default) settings, can be established with the LXT970 standard power supply and do not require a voltage divider. Tables 8 and 9 show the selected MF pin function and address with respect to the applied input voltage level. The descriptions below detail the configuration of each of these pins.
8	MF0	Ι	Enables Auto-Negotiation (A/N) and directly affects MDIO register bit 0.12. When input value = VMF1 or VMF4, A/N is disabled and $0.12 = 0$. When input value = VMF2 or VMF3, A/N is enabled and $0.12 = 1$.
7	MF1	I	Selects Repeater Mode and directly affects MDIO register bit 19.13. When input value = VMF1 or VMF4, DTE Mode is enabled and 19.13 = 0. When input value = VMF2 or VMF3, Repeater Mode is enabled and 19.13 = 1.
6	MF2	Ι	In TX mode, selects 4B Nibble (normal) or 5B Symbol Mode and directly affects MDIO register bit 19.4. When input value = VMF1 or VMF4, 4B Nibble Mode is selected and 19.4 = 0. When input value = VMF2 or VMF3, 5B Symbol Mode is selected and 19.4 = 1.
5	MF3	Ι	In TX mode, enables or bypasses Scrambler operation and directly affects MDIO register bit 19.3. When input value = VMF1 or VMF4, Scrambler is enabled and 19.3 = 0. When input value = VMF2 or VMF3, Scrambler is bypassed and 19.3 = 1. In FX mode, the LXT970 <i>automatically</i> bypasses the Scrambler. <i>Selecting</i> Scrambler bypass in FX mode will cause the LXT970 to also bypass the 4B/5B encoder and enable Symbol mode MII operation.
4	MF4	I	When A/N is enabled, MF4 determines operating speed advertisement capabilities in combination with CFG1. See Table 9 for details. When A/N is disabled, this input selects either TX or FX interface. When FX interface
			is selected, the LXT970 will automatically disable the scrambler. For correct FX opera- tion, 100Mbps operation must also be selected. When input value = VMF1 or VMF4, TX is enabled and $19.2 = 0$. When input value = VMF2 or VMF3, FX is enabled and $19.2 = 1$.
1. 1/0	Column Coding: I	= Input	

Table 7: LXT970 Hardware Control Interface Signal Descriptions

Table 7: LXT970 Hardware Control Interface Signal Descriptions - continued

Pin#	Pin Name	I/O	Pin Description
13	FDE	I	Full Duplex Enable. When A/N is enabled, FDE determines full duplex advertisement capability in combi- nation with MF4 and CFG1. See Table 9 for details.
			When A/N is disabled, FDE directly affects full duplex operation and determines the value of bit 0.8 (Duplex Mode). When FDE is High, F/D is enabled and $0.8 = 1$. When FDE is Low, F/D is disabled and $0.8 = 0$.
14	CFG0	I	Configuration Control 0 . When A/N is enabled, Low to High transition on CFG0 causes auto-negotiate to re-start and 0.9 = 1.
			When A/N is disabled, this input selects operating speed and directly affects bit 0.13. When CFG0 is High, 100Mbps is selected and $0.13 = 1$. When CFG0 is Low, 10Mbps is selected and $0.13 = 0$.
33	CFG1	Ι	Configuration Control 1 . When A/N is enabled , CFG1 determines operating speed advertisement capabilities in combination with MF4. See Table 9 for details.
			When A/N is disabled, CFG1 enables 10Mbps link test function and directly affects bit 19.8.
			When CFG1 is High, 10Mbps link test is disabled and $19.8 = 1$. When CFG1 is Low, 10Mbps link test is enabled and $19.8 = 0$.

Pin	Address	Input Voltage Levels ²							
F #1	Function	VMF1	VMF2	V мғ3	VMF4				
MF0	Address Bit 0	1	1	0	0				
	Auto-Negotiation Sets the initial value of bit 0.12	Disabled $(0.12 = 0)$	Enabled $(0.12 = 1)$	Enabled (0.12 = 1)	Disabled $(0.12 = 0)$				
MF1	Address Bit 1	1	1	0	0				
	Repeater / DTE Mode Sets the initial value of bit 19.13	DTE (19.13 = 0)	Repeater (19.13 = 1)	Repeater (19.13 = 1)	DTE (19.13 = 0)				
MF2	Address Bit 2	1	1	0	0				
	Nibble (4B) / Symbol (5B) Mode Sets the initial value of bit 19.4	Nibble (4B) (19.4 = 0)	Symbol (5B) (19.4 = 1)	Symbol (5B) (19.4 = 1)	Nibble (4B) (19.4 = 0)				
MF3	Address Bit 3	1	I	0	0				
	Scrambler Operation Sets the initial value of bit 19.3	Enabled (19.3 = 0)	Bypassed (19.3 = 1)	Bypassed (19.3 = 1)	Enabled $(19.3 = 0)$				
MF4	Address Bit 4	1	1	0	0				
	If Auto-Negotiate Enabled via MF0, MF4 works in combination with CFG1 to control operating speed and duplex advertisement capabilities via bits 4.5 through 4.8. See Table 9 for details.								
	If Auto-Negotiate Disabled via MF0 Then TX/FX Mode Sets the initial value of bit 19.2	100TX (19.2 = 0)	100FX (19.2 = 1)	100FX (19.2 = 1)	100TX (19.2 = 0)				

Table 8: MF Pin Function Descriptions^{1, 3}

MF4 Input Voltage Levels ²	CFG1	FDE	MDIO Registers ¹	Function
		lf A	uto-Negotiate Enabled via N	NF0
Vmf1, Vmf4	Low	_	Sets 4.5, 4.6, 4.7 and 4.8 = 1	Advertise all capabilities Ignore FDE
Vmf1, Vmf4	High	High	Sets 4.5 = 1 Sets 4.7 and 4.8 = 0 Sets 4.6 = 1	Advertise 10 Mbps only FD Advertised
		Low	Sets $4.5 = 1$ Sets 4.7 and $4.8 = 0$ Sets $4.6 = 0$	Advertise 10 Mbps only FD Not Advertised
Vmf2, Vmf3	Low	High	Sets 4.7 = 1 Sets 4.5 and 4.6 = 0 Sets 4.8 = 1	Advertise 100 Mbps only FD Advertised
		Low	Sets 4.7 = 1 Sets 4.5 and 4.6 = 0 Sets 4.8 = 0	Advertise 100 Mbps only FD Not Advertised
Vmf2, Vmf3	High	High	Sets 4.5 and $4.7 = 1$ Sets 4.6 and $4.8 = 1$	Advertise 10/100 Mbps FD Advertised
		Low	Sets 4.5 and $4.7 = 1$ Sets 4.6 and $4.8 = 0$	Advertise 10/100 Mbps FD Not Advertised

Table 9: LXT970 Operating Speed/Full Duplex Advertisement Settings

FUNCTIONAL DESCRIPTION

Introduction

The LXT970 Fast Ethernet Transceiver is a physical layer (PHY) device that supports 10 Mbps and 100 Mbps Ethernet networks. It provides all the functions necessary to build an IEEE 802.3 compliant solution. The LXT970 can directly drive a twisted-pair cable for up to 100 meters. The LXT970 also provides a pseudo-ECL interface for driving a 100BASE-FX fiber connection.

On power-up, the LXT970 can use auto-negotiation with parallel detection to automatically determine line operating conditions. If the PHY device on the other side of the link supports auto-negotiation, the LXT970 will auto-negotiate with it using Fast Link Pulse (FLP) Bursts. If the PHY partner does not support auto-negotiation, the LXT970 will automatically detect the presence of either link pulses (10 Mbps PHY) or Idle symbols (100 Mbps PHY) and set its operating speed accordingly. When the line speed selection is made via the parallel detection method, the duplex mode will be set to half. The user may later select full duplex operation by subsequent writes to the appropriate MDIO register. Line operation can also be set using the Hardware Control Interface. The LXT970 interfaces to a 10/100 MAC through the MII interface. The LXT970 performs all functions of the Physical Coding Sublayer (PCS) and Physical Media Attachment (PMA) sublayer as defined in the IEEE 802.3 100BASE-X specification. It also performs all functions of the Physical Media Dependent (PMD) sublayer for 100BASE-TX connections. The MII speed is automatically set once line operating conditions have been determined.

The LXT970 supports NIC, repeater and switch applications. It provides half- and full-duplex operation at 100Mbps and 10Mbps. See Figure 2 for a typical Network Interface Card (NIC).

NOTE

The LXT970 supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an "X.Y" notation, where X is the register address (0-31) and Y is the bit number (0:15).

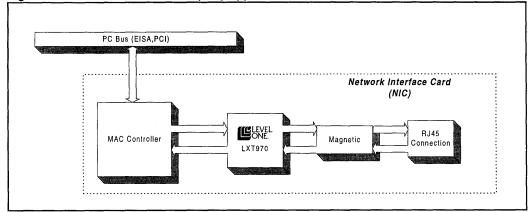


Figure 2: Network Interface Card (NIC) Application

Network Media / Protocol Support

The LXT970 supports both 10BASE-T and 100BASE-TX Ethernet over twisted-pair, or 100 Mbps Ethernet over fiber media (100BASE-FX). A standard Media Independent Interface (MII) is used for communication with the Media Access Controller (MAC).

10/100 Mbps Twisted Pair Interface

The twisted-pair interface consists of two differential pairs: the Twisted-Pair Input (TPIP/N) for receiving data, and the Twisted-Pair Output (TPOP/N) for transmitting data. This interface is used for both 10Mbps and 100Mbps operation. Auto-negotiation/parallel detection or manual control can be used to determine operation of the twisted-pair interface.

When operating at 100Mbps, MLT3 symbols are continuously transmitted and received. When not transmitting data, the LXT970 generates "IDLE" symbols.

During 10Mbps operation, Manchester encoded data is exchanged. During idle periods, the line is left in an idle voltage state.

In 100Mbps mode, the LXT970 is capable of driving a 100BASE-TX connection over 100 Ω , Category 5, Unshielded Twisted Pair (UTP). A 10BASE-T connection can be supported using 100 Ω , Category 3 or Category 5, UTP.

A transformer with 1:1 windings for transmit and receive, load resistors and bypass capacitors are all that is needed to complete this interface. The Transmit Reference (TREF) pin is used to supply +5V to the output transformer center tap. Using Level One's patented waveshaping technology, the transmitter pre-distorts the outgoing signal to reduce the need for external filters for EMI compliance.

When the twisted-pair interface is selected the FIBOP/N drivers are disabled. All data presented on the FIBIP/N input pins is ignored. In applications where the fiber interface is not used, the fiber I/O pins (FIBIP/N and FIBOP/N) may be left unconnected.

100 Mbps Fiber Interface

The LXT970 provides a pseudo-ECL interface that complies with the ANSI X3.166 specification. This interface is suitable for driving a fiber-optic coupler. This interface consists of four signals: FIBIP/N are the input pair and FIBOP/N are the output pair. The Fiber Port cannot be enabled via auto-negotiation, it must be enabled via the Hardware Control Interface or MDIO registers. When the fiber interface is selected, the TPOP/N drivers are disabled and the TREF pin is tri-stated. All data presented on the TPIP/N input pins is ignored. In applications where the twisted pair interface is not used, the twisted pair I/O pins (TPIP/N, TPOP/N and TREF) may be left unconnected.

MII Interface

The MII Interface is specified in IEEE 802.3. For this discussion, the MII is divided into two blocks; the MII Data Interface and the MII Management Interface.

MII Data Interface

This interface is used to pass data between the LXT970 and a Media Access Controller (MAC). The MII operates at either 2.5 MHz or 25 MHz, depending on the network link speed.

Ten signals are used to pass received data to the MAC: RXD<4:0>, RX_CLK, RX_DV, RX_ER, COL and CRS. Eight signals are used to transmit data from the MAC: TXD<4:0>, TX_CLK, TX_EN, and TX_ER.

Nibble (4B) vs. Symbol (5B) Mode

In nibble mode (19.4 = 0), 4-bit nibbles are passed across the MII data interface. RXD4 is set Low and TXD4 is ignored.

In symbol mode (19.4 = 1), 5-bit symbols are passed across the MII data interface. RXD4 and TXD4 are active.

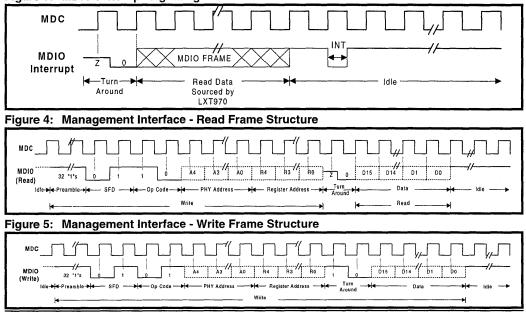
DTE vs. Repeater Mode

In DTE mode (19.13 = 0), the LXT970 asserts RX_DV, RXD, RX_CLK and RX_ER as soon as it receives a packet from the network. In repeater mode (19.13 = 1), when TRSTE input is High, these output signals are tri-stated. This allows multiple LXT970's to share a single MII Interface and an external arbiter to determine which LXT970 should drive the MII Data Interface.

Loopback Operation

Loopback is determined by the operational state of the device and by bits 0.14 and 19.11. Bit 0.14 controls MII loopback test at both 10 and 100Mbps. Bit 19.11 controls normal twisted-pair loopback during 10Mbps, half-duplex operation. CRS is generated when the LXT970 is receiving data during all modes of operation.

• Full Duplex - During full duplex mode loopback and collision detection are always disabled. CRS is not generated on transmission.


- Repeater Mode (bit 19.13 = 1) During repeater mode, loopback is disabled. CRS is not generated on transmit and collision detection is enabled.
- Half-Duplex/DTE Mode (10Mbps) If 19.11 = 0 (default), data is looped back. If 19.11 = 1, data is not looped back. In both cases CRS is generated on transmit and collision detection is enabled.
- Half-Duplex/DTE Mode (100Mbps) Data is not looped back. CRS is generated on transmit and collision detection is enabled.
- Loopback Test Register bit 0.14 controls the MII loopback function. This capability is provided for diagnostics. Setting bit 0.14 = 1, causes the LXT970 to disconnect from the media interface and any data transmitted will be looped back to the receiver. No data will be sent or received from the media when this mode is enabled. When this diagnostic loopback is enabled, bit 0.7 can be used to test the operation of the COL pin.

MII Management Interface

The LXT970 supports the IEEE 802.3 MII Management Interface also known as the Management Data Input/Output (MDIO) Interface. This interface allows upper-layer devices to monitor and control the state of the LXT970. MDIO interface consists of a physical connection, a specific protocol which runs across the connection, and an internal set of addressable registers. The physical interface consists of a data line (MDIO) and clock line (MDC), a control line (MDDIS) and an optional interrupt line (MDINT). The LXT970 can signal an interrupt using the MDIO signal as shown in Figure 3. The user can also assign a separate pin for this function. If Bit 17.1 = 1, pin 2 (FDS/MDINT) will be used as an MDINT pin.

Operation of this interface is controlled by the MDDIS input pin. When MDDIS is High, the MDIO operates as a read-only interface. When MDDIS is Low, read and write are enabled. The timing for the MDIO Interface is shown in Table 40. Read and write operations are shown in Figures 4 and 5. The protocol allows one controller to communicate with multiple LXT970 devices; each LXT970 is assigned an address between 0 and 31.

The LXT970 supports twelve 16-bit MDIO registers. Registers 0-7 are required and their functions are specified by the IEEE 802.3 specification. Additional registers are included for expanded functionality. The MDIO Register set for the LXT970 is described in Tables 43 through 54. Specific bits in the registers are referenced using an "X.Y" notation, where X is the register number (0-31) and Y is the bit number (0-15).

Figure 3: MDIO Interrupt Signaling

Hardware Control Interface

The Hardware Control Interface consists of MF<4:0>, CFG <1:0> and FDE input pins. This interface is used to configure operating characteristics of the LXT970 and to determine the MDIO Address. When MDDIS is Low, the Hardware Control Interface provides initial values for the MDIO registers, and then passes control to the MDIO Interface.

When MDDIS is High, the Hardware Control Interface provides continuous control over the LXT970. Individual chip addressing allows multiple LXT970 devices to share the MII in either mode. Tables 10, 11 and 12 show how to set-up the desired operating configurations using the Hardware Control Interface.

Table 10: Configuring the LXT970 via Hardware Control

Desired Configuration	Pin Name	Input Value	MDIO Registers
Auto-Negotiation Enabled ¹	MF0	VMF2, VMF3	0.12 = 1
Auto-Negotiation Disabled ²	MF0	VMF1, VMF4	0.12 = 0
Normal Operation (PHY Mode, Nibble Mode, Scrambler Enabled)	MF1 MF2 MF3	Vmf1, Vmf4	$ \begin{array}{r} 19.13 = 0 \\ 19.4 = 0 \\ 19.3 = 0 \end{array} $
Repeater Mode	MF1	VMF2, VMF3	19.13 = 1
Symbol Mode	MF2	VMF2, VMF3	19.4 = 1
Scrambler Bypass Mode	MF3	VMF2, VMF3	19.3 = 1

Table 11: LXT970 Operating Configurations / Auto-Negotiation Enabled

Desired Configuration ^{1,2}		MDIO Registers					
	MF4	CFG1	FDE	4.5	4.6	4.7	4.8
Advertise All	VMF1, VMF4	Low	Ignore	1	1	1	1
Advertise 100 HD	VMF2, VMF3	Low	Low	0	0	1	0
Advertise 100 HD/FD	VMF2, VMF3	Low	High	0	0	1	1
Advertise 10 HD	VMF1, VMF4	High	Low	1	0	0	0
Advertise 10 HD/FD	VMF1, VMF4	High	High	1	1	0	0
Advertise 10/100 HD	VMF2, VMF3	High	Low	1	0	1	0

Desired Configuration ^{1,2}	Pin Name	Input Value	MDIO Registers
Force 100FX Operation	MF4	VMF2, VMF3	19.2 = 1
Force 100TX Operation	MF4	VMF1, VMF4	19.2 = 0
	CFG0	High	0.13 = 1
Force 10T Operation	MF4	Vmf1, Vmf4	19.2 = 0
	CFG0	Low	0.13 = 0
Force Full Duplex Operation	FDE	High	0.8 = 1
Disable 10T Link Test	CFG1	High	19.8 = 1
Enable 10T Link Test	CFG1	Low	19.8 = 0

Table 12: LXT970 Operating Configurations / Auto-Negotiation Disabled

Initialization

At power-up or reset, the LXT970 performs the initialization as shown in Figure 6. When pin 15 (MDDIS) is High, the LXT970 enters Manual Control Mode. When MDDIS is Low, MDIO Control Mode is enabled. Mode control selection is provided via the MDDIS pin as shown in Table 13.

MDIO Control Mode

In the MDIO Control mode, the LXT970 uses the Hardware Control Interface to set up initial (default) values of the MDIO registers. Once initial values are set, bit control reverts to the MDIO interface.

Manual Control Mode

In the Manual Control Mode, LXT970 disables direct write operations to the MDIO registers on the MDIO interface. The Hardware Control Interface is continuously monitored and the MDIO registers are updated accordingly.

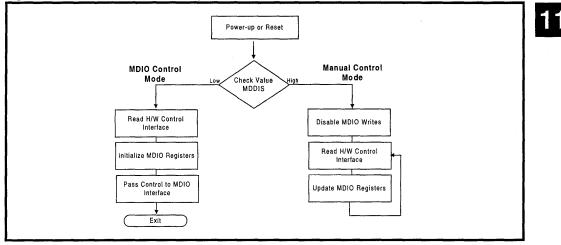
MDDIS Pin 15	RESET Pin 16	PWRDWN Pin 34	Mode
Low	High	Low	MDIO Control
High	High	Low	Manual Control
-	Low	Low	Reset
-	-	High	Power Down

Table 13: Mode Control Settings

Link Configuration

When the LXT970 is first powered on, reset, or encounters a link failure state, it must determine the line speed and operating conditions to use for the network link.

The LXT970 first checks the MDIO registers (initialized via the Hardware Control Interface or software) for operating instructions. Using these mechanisms, the user can command the LXT970 to do one of the following:


- Force 100FX (Fiber)
- · Force twisted-pair link operation to:

100TX, Full Duplex 100TX, Half Duplex 10BASE-T, Full Duplex 10BASE-T, Half Duplex

· Allow auto-negotiation/parallel-detection.

In the first two cases, the LXT970 immediately begins operating the network interface as commanded. In the third case, the LXT970 begins the auto-negotiation/parallel-detection operation.

Figure 6: LXT970 Initialization Sequence

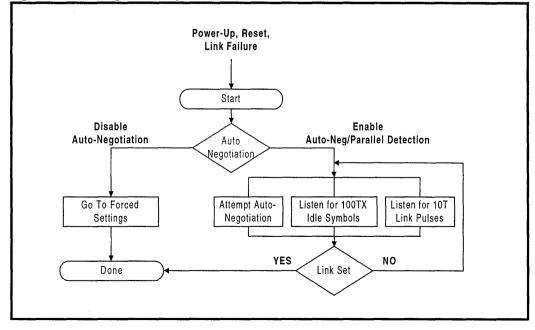
Auto-Negotiation

At power-up or reset, with auto-negotiation enabled, the LXT970 attempts to establish link operating conditions with its partner by sending FLP (Fast Link Pulse) bursts. By exchanging FLP bursts, the LXT970 and its link partner communicate their capabilities to each other. Each side finds the highest common capabilities that both sides can support and then begins operating in that mode.

Parallel Detection

In parallel with auto-negotiation, the LXT970 also checks for 10 Mbps Normal Link Pulses (NLP) or 100 Mbps Idle symbols. If either is detected, the device automatically configures to match the detected operating speed in half duplex mode. This ability allows the LXT970 to communicate with devices that do not support auto-negotiation.

Controlling Auto-Negotiation


When auto-negotiation is controlled by software, the following steps are recommended:

- After power-up, power down, or reset, the power down recovery time, as specified in Table 41, must be exhausted before proceeding.
- Set MDIO Register 4 advertisement capabilities before enabling auto-negotiation by setting MDIO bit 0.12 = 1

Monitoring Auto-Negotiation

When auto-negotiation is being monitored, the following apply:

- Bit 20.13 is set to 1 once the link is established
- Bits 20.12 and 20.11 can be used to determine the link operating conditions (speed and duplex)
- Operation can be forced by disabling auto-negotiation (bit 0.12 = 0) and setting bits 0.13, 0.8 and 19.2

Figure 7: Auto-Negotiation Operation

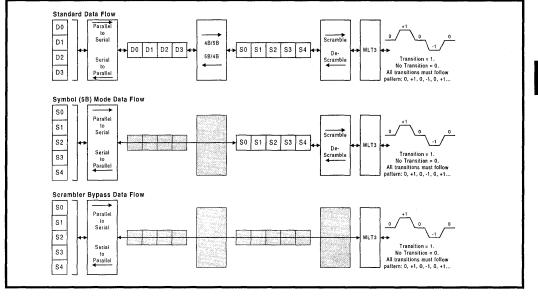
LXT970 Functional Description

100 Mbps Operation

The MAC transmits data to the LXT970 over the MII. In 100BASE-TX mode, the LXT970 encodes and scrambles the data, then transmits it using MLT-3 signalling. The LXT970 descrambles and decodes MLT-3 data received from the network. In 100BASE-FX mode, the LXT970 transmits and receives data as NRZI signals.


When the MAC is not actively transmitting data, the LXT970 sends out Idle symbols on the line.

As shown in Figure 8, the MAC starts each transmission with a preamble pattern. When TX_EN is asserted, the LXT970 transmits a J/K symbol to the network (Start of Stream Delimiter or SSD). It then encodes and transmits


the rest of the packet, including the balance of the preamble, the SFD (Start of Frame Delimiter), packet data, and CRC. Once the packet ends, the LXT970 transmits the T/ R symbol (End of Stream Delimiter or ESD) and then returns to transmitting Idle symbols.

Normally, 4-bit wide nibble data is transmitted across the MII interface and RXD4/TXD4 are ignored. The encoder translates the 4-bit nibbles into 5-bit symbols which are sent over the 100BASE-X connection. In Symbol Mode, a fifth bit is provided (RXD4/TXD4) to allow a 5-bit symbol to be sent across the MII interface.

Figure 9 shows the data conversion flow from nibbles to symbols. Table 14 shows 4B/5B symbol coding. Note that some symbols are invalid.

Figure 9: 100BASE-TX Data Flow

Table 14: 4B/5B Coding

Code Type	4B Code 3 2 1 0	Name	5 B Symbol 4 3 2 1 0	Interpretation
	0000	0	11110	Data 0
	0001	1	01001	Data 1
	0010	2	10100	Data 2
	0011	3	10101	Data 3
	0100	4	01010	Data 4
	0101	5	01011	Data 5
	0110	6	01110	Data 6
DATA	0111	7	01111	Data 7
	1000	8	10010	Data 8
	1001	9	10011	Data 9
	1010	А	10110	Data A
	1011	В	10111	Data B
	1100	С	11010	Data C
	1101	D	11011	Data D
	1110	Е	11100	Data E
	1111	F	11101	Data F
IDLE	undefined	I 1	11111	Idle. Used as inter-stream fill code
	0101	J ²	11000	Start-of-Stream Delimiter (SSD), part 1 of 2
CONTROL	0101	K ²	10001	Start-of-Stream Delimiter (SSD), part 2 of 2
	undefined	T ³	01101	End-of-Stream Delimiter (SSD), part 1 of 2
	undefined	R ³	00111	End-of-Stream Delimiter (SSD), part 2 of 2
	undefined	H ⁴	00100	Transmit Error. Used to force signaling errors
	undefined	Invalid	00000	Invalid
	undefined	Invalid	00001	Invalid
	undefined	Invalid	00010	Invalid
INVALID	undefined	Invalid	00011	Invalid
	undefined	Invalid	00101	Invalid
	undefined	Invalid	00110	Invalid
	undefined	Invalid	01000	Invalid
	undefined	Invalid	01100	Invalid
	undefined	Invalid	10000	Invalid
		Invalid	11001	Invalid

4. An /H/ (Error) code-group is used to signal an error condition.

5B Symbol Mode

In Symbol Mode, raw 5-bit symbol data is passed directly across the MII interface and the encoder is bypassed. Symbol Mode is selected by setting bit 19.4 = 1 or by setting input pin MF2 = VMF2 or VMF3.

This mode reduces device latency for use in repeater applications. See Table 31 and 32 for timing parameters.

Scrambler Seeding

Once the transmit data (or Idle symbols) are properly encoded, they are scrambled to further reduce EMI and to spread the power spectrum using an 11-bit scrambler seed. Ten seed bits are determined by MF<4:0> inputs and LED outputs, and one bit is randomly determined.

Scrambler Bypass

The scrambler/descrambler can be bypassed by either setting bit 19.3 = 1 or setting input pin MF3 to VMF2/VMF3. The scrambler is automatically bypassed when the fiber port is enabled. Symbol Mode (5B) must also be enabled for the LXT970 to work properly while in Scrambler Bypass Mode. Scrambler Bypass is provided for diagnostic and test support.

Link Failure

Link failure is declared when an excessive number (250 out of 1000) of invalid symbols are received. The LXT970 reports link failure via the MII status bits (1.2, 18.15 and 20.13) and interrupt functions. If auto-negotiation is enabled, link failure causes the LXT970 to re-negotiate.

Link Failure Override

The LXT970 will normally transmit 100Mbps data packets only if it detects the link is up, and transmits only Idle symbols or FLP bursts if the link is not up. Setting bit 19.14 =1 overrides this function, allowing the LXT970 to transmit data packets even when the link is down. This feature is provided as a diagnostic tool. Note that auto-negotiation must be disabled to transmit data packets in the absence of link. If auto-negotiation is enabled, the LXT970 will automatically begin transmitting FLP bursts if the link goes down.

Baseline Wander Correction

The LXT970 provides a baseline wander correction function which makes the device robust under all network operating conditions. The MLT3 coding scheme used in 100BASE-TX is by definition "unbalanced". This means that the DC average value of the signal voltage can "wander" significantly over short time intervals (tenths of seconds). This wander can cause receiver errors, particularly at long line lengths (100 meters). The exact characteristics of the wander are completely data dependent. "Killer Packets" have been created that exhibit worst case baseline wander characteristics. The LXT970 baseline wander correction characteristics allow the LXT970 to recover errorfree data, even at long line lengths.

FX Operation

To enable 100BASE-FX operation, auto-negotiation must be disabled and FX selected.

- To disable auto-negotiation, set 0.12 = 0, or set MF0 = VMF1 or VMF4.
- To select FX, set 19.2 = 1, or set MF4 = VMF2 or VMF3.

In FX mode, the following conditions apply:

- CFG0 / 0.13 still controls speed and must be set to 1 for 100 Mbps operation.
- · Scrambler is automatically disabled.
- 5-bit symbol mode may be selected by setting 19.4 = 1, or setting MF2 = VMF2 or VMF3.
- Duplex operation is controlled by pin FDE or by bit 0.8.

Data Errors

Figure 10 shows normal reception. When the LXT970 receives invalid symbols from the line, it asserts RX_ER, as shown in Figure 11.

Collision Indication

Figure 12 shows normal transmission. The LXT970 detects a collision if transmit and receive are active at the same time. As shown in Figure 13, upon detection of a collision, the COL output is asserted and remains asserted for the duration of the collision.

Figure 10: 100B	ASE-TX Reception with No Errors
RX_CLK	
RX_DV	*
RXD<3:0>	preamble XSFD XSFD X DA X DA X DA X DA X CRC X CRC X CRC X CRC
RX_ER	<u>h</u>
Figure 11: 100B	ASE-TX Reception with Invalid Symbol
RX_CLK	
RX_DV	\
RXD<3:0>	preämble XSFD XSFD X DA X DA X DA X X X DA X DA X DA X D
RX_ER	
Figure 12: 100B/	ASE-TX Transmission with No Errors
тх_сік 🗌	
TX_EN -	
TXD<3:0>	
COL	
1. In half-duple	ix mode, CRS asserts when receive or transmit are active. In full-duplex mode, CRS asserts during receive only,
Figure 13: 100B/	ASE-TX Transmission with Collision
TX_CLK	
TX_EN	
TXD<3:0>	(PXRXEXÄXMXBXLXEX JÄMX JÄMX JÄMX JÄMX
CRS	
COL	W
1. in half-duplex mode,	CRS asserts when receive or transmit is active. In full-duplex mode, CRS asserts during receive only.

10 Mbps Operation

The LXT970 will operate as a standard 10 Mbps transceiver. Data transmitted by the MAC as 4-bit nibbles is serialized, Manchester-encoded, and transmitted on the TPOP/N outputs. Received data is decoded, de-serialized into 4-bit nibbles and passed to the MAC across the MII. The LXT970 supports all the standard 10Mbps functions.

Link Test

In 10 Mbps mode, the LXT970 always transmits link pulses. If the Link Test Function is enabled, it monitors the connection for link pulses. Once it detects 2 to 7 link pulses, data transmission will be enabled and will remain enabled as long as the link pulses or data transmission continues. If the link pulses stop, the data transmission will be disabled.

If the Link Test function is disabled, the LXT970 will transmit to the connection regardless of detected link pulses. The Link Test function can be disabled by setting Bit 19.8 = 1 or by setting MF0 to disable auto-negotiation and setting CFG1 input High.

SQE (Heartbeat)

By default, the SQE (heartbeat) function is disabled on the LXT970. To enable this function, set bit 19.10 = 1. When this function is enabled, the LXT970 will assert its COL output for 5-15 BT after each packet. See Figure 24 for SQE timing parameters.

Jabber

If the MAC begins a transmission that exceeds the jabber timer, the LXT970 disables the transmit and loopback functions and enables the COL pin. The LXT970 automatically exits jabber mode after 250-750ms. This function can be disabled by setting Bit 19.9 = 1. See Figure 25 for Jabber timing parameters.

Polarity Correction

The LXT970 automatically detects and corrects for the condition where the receive signal (TPIP/N) is inverted. Reversed polarity is detected if 8 inverted link pulses, or 4 inverted end-of-frame markers, are received consecutively. If link pulses or data are not received for 96-128 ms, the polarity state is reset to a non-inverted state.

Link Failure

Link failure occurs if Link Test is enabled and link pulses stop being received. If this condition occurs, the LXT970 returns to the auto-negotiation phase if auto-negotiation is enabled.

Operating Requirements Power Requirements

The LXT970 requires four +5V supply inputs (VCCA, VCCD, VCCR and VCCT). These inputs may be supplied from a single source although decoupling is required to each respective ground. As a matter of good practice, these supplies should be as clean as possible. Typical filtering and decoupling are shown in the Application Information section, Figure 15. An additional supply is required for the MII (VCCIO). The MII supply may be either +5V or +3.3V. Power for the MII should be supplied from the same power source used for the controller on the other side of the MII interface.

Low Voltage Fault Detect

The LXT970 has a low voltage fault detection function that prevents transmission of invalid symbols when VCC goes below normal operating levels. This function disables the transmit outputs when a low voltage fault on VCC occurs. If this condition happens, the LXT970 sets 20.2 = 1. Operation is automatically restored when VCC returns to normal. Table 24 indicates voltage levels used to detect and clear the low voltage fault condition.

Power Down Mode

The LXT970 goes into Power Down Mode when PWRDWN is asserted. In this mode, all functions are disabled except the MDIO. The power supply current is significantly reduced. Refer to Table 19 for power down specifications. This mode can be used for energy-efficient applications or for redundant applications where there are two devices and one is left as a stand-by. When the LXT970 is returned to normal operation, configuration settings of the MDIO registers are maintained.

Clock Requirements

The LXT970 requires a constant clock that must be enabled at all times. Depending on the mode of operation, the clock may be supplied at the crystal oscillator pins (XI, XO), or at the Transmit Clock pin (TX_CLK). There are two clock modes, master clock mode and slave clock mode. See Table 23 for input clock requirements.

Master Clock Mode

The Master Clock mode is recommended in most Network Interface Cards (NICs) and switch applications. In the Master Clock mode the LXT970 is the master clock source for data transmission, and requires a 25 MHz reference signal at XI. In master clock mode, TX_CLK is an output and the LXT970 automatically sets the speed of TX_CLK to match line conditions. If the line is operating at 100Mbps, TX_CLK will be set to 25MHz. If the line is operating at 10Mpbs, TX_CLK will be set to 2.5MHz.

External Crystal

An external 25 MHz crystal connected across XI and XO is recommended to supply the LXT970 internal clock reference. A crystal is typically used in NIC applications.

External Clock

An external 25 MHz clock source, rather than a crystal, is frequently used in switch applications. When a clock is supplied to XI, XO is left open.

TX Clock Advance Mode

When operating in Master Clock mode under MDIO Control, the user can advance the transmit clock relative to TXD<4:0> and TX_ER. This option can be used to compensate for propagation delays in applications with long MII cables. When TX_CLK Advance is selected, the LXT970 clocks TXD data in on the falling edge of TX_CLK, instead of the rising edge. This mode provides an increase in timing margins of TXD, relative to TX_CLK. TX_CLK Advance is enabled when bit 19.5 = 1.

Slave Clock Mode

The Slave Clock mode is typically used for repeater applications, where the LXT970 is not the master clock source for data transmissions.

In slave clock mode, the application circuit must drive TX_CLK in accordance with the line conditions. A frequency of 25MHz will support a line rate of 100Mbps only. A clock frequency of 2.5MHz will only support a line rate of 10Mbps. Either speed can be used during auto-negotiation. In Slave Clock mode XI is connected to ground and XO is left open.

APPLICATION INFORMATION

Magnetics Information

The LXT970 requires a 1:1 ratio for both the receive and the transmit transformers. Refer to Table 16 for transformer requirements. Transformers meeting these requirements are available from various manufacturers. Designers should test and validate all magnetics before using them in production.

Crystal Information

Refer to Table 17 for crystal requirements. Crystals are available from various manufacturers. Designers should test and validate all crystals before committing to a specific component.

Component Manufacturers.

Table 16: Magnetics Requirements

Based on limited evaluations, Table 15 provides a list of suitable components and manufacturers.

Component	Manufacturer	Part Number		
Magnetics	Halo	TG22-3506ND		
		TD22-3506G1		
		TG22-S010ND		
		TG22-S012ND		
	Nanopulse	NPI 6120-30		
		NPI 6120-37		
		NPI 6170-30		
		NPI 6181-37		
	Pulse	PE-68517		
		PE-68515		
	Valor	ST6114		
		ST6118		
Crystals	CTS	CTX093		
	Epson America	SE2539CT		

Table 15: Component Manufacturers

Parameter	Min	Nom	Max	Units	Test Condition
Turns Ratio	-	1:1	-	-	
Insertion Loss	0.0	-	0.6	dB	
Primary Inductance	350		-	μH	
Transformer Isolation	_	2	-	kV	
Differential to common mode rejection	40		-	dB	.1 to 60 MHz
	35		-	dB	60 to 100 MHz
Return Loss	17	-	-	dB	.1 to 60 MHz
	15	-	-	dB	60 to 100 MHz
Rise Time	2.0		3.5	ns	10% to 90%

Table 17: Crystal Requirements

Parameter	Min	Nom	Max	Units	Test Condition
Frequency	-	25.0	_	MHz	
Frequency Stability	-		±100	ppm	-40 - 85°C

Layout Requirements

The Twisted Pair Interface

The layout of the twisted-pair ports is critical in complex high-speed designs. Careful planning during the schematic and layout stages of the design will minimize these problems.

General Twisted-Pair Interface Layout Considerations

- The transformer isolation voltage should be rated at 2kV to protect the circuitry from static voltages across the connectors and cables.
- Place the transformer as close as possible to the connector.
- The traces running from the transformer to the connector should run in close pairs directly to the connector.
- Be careful not to cross the transmit and receive pairs.
- · Vias should be avoided as much as possible.

Ground Plane Layout Considerations

Ground plane layout depends on the availability and quality of chassis ground. If a solid chassis ground is not available, there should be no power or ground planes in the area between the LXT970, the transformers and the connectors. High frequency noise on these planes causes interference on the data signals and induces EMI emissions. The data signals should be the only traces in this area, except for the termination of unused pairs or LEDs.

If a solid and quiet chassis ground is available that is well-decoupled from the active power and ground planes, it can be routed under the twisted pair signal traces to reduce EMI emissions. Position chassis ground at the edge of the board, encircling the PCB. Separate chassis ground from the digital and analog ground planes with an isolating moat and connect them through inductors. Keep chassis ground away from all active signals. If required, the RJ45 connector and any unused pins can be tied to chassis ground through a resistor divider network and a 2kV bypass capacitor.

The RBIAS Pin

The RBIAS pin sets the levels for the LXT970 output drivers. Any emissions or common mode noise entering the device here could be measured on the twisted pair output signals.

The LXT970 requires a $22k\Omega$, 1% resistor directly connected between the RBIAS pin and ground. This resistor should be as close to the device as possible and the traces should be as short as possible. Keep all high speed signals away from the RBIAS pin. The ground traces from adjacent pin GNDA should come directly off of the device to enclose the resistor and pin forming a shielded area between the RBIAS connection and the switching signals on the PCB.

Power Supply Decoupling

Ferrite Beads

Ferrite beads are recommended for decoupling the analog and digital supplies. The ferrite bead used should have an impedance of at least 100Ω at 100MHz. A suitable bead is the Panasonic surface mount bead, part number EXCCL4532U, or equivalent. For all applications,

- GNDT should be connected directly to GNDA.
- VCCT and VCCA should be connected and isolated from VCCD by a ferrite bead.
- For long line length performance (>120 meters), beads may be installed between VCCT and VCCR and between GNDT and GNDR. These beads are not required for applications <120 meters.
- Depending on the application, a ferrite bead may be required between GNDT/GNDA and GNDD. See explanation below.

For applications where the digital ground plane is noisy, a ferrite bead between GNDT/GNDA and GNDD may be required to prevent noise interference. If the digital ground plane is quiet, this ground bead may not be required.

Bypass Caps

Bypass caps are required between each supply and its associated ground return (VCCA/GNDA, VCCR/GNDR, VCCT/GNDT, VCCD/GNDD and VCCIO/GNDIO). The recommended cap is 0.1μ F or $.01\mu$ F, as required by the design layout.

 10μ F tantalum caps are recommended between VCCA and GNDA and between VCCD and GNDD on both sides of the ferrite beads.

For long line applications, when ferrite beads are used between the transmit and receive supplies and grounds, a tantalum cap is required on the device side of the ferrite bead between GNDR and VCCR.

If a crystal is used, it should be bypassed to GNDD.

The Fiber Interface

In fiber-only applications, reference the fiber ports to the analog power and ground planes (VCCA, GNDA, VCCT, GNDT, VCCR, GNDR). In a combination fiber and twisted-pair application, reference the fiber ports to the digital power and ground planes (VCCD, GNDD). In applications where the fiber interface is not used, the fiber I/O pins (FIBIP/N and FIBOP/N) may be left unconnected

Typical Application


Figure 15 is a typical application of the LXT970. The diagram groups similar pins; it does not portray the actual chip pinout. The Media Independent Interface pins are at the upper left. Hardware Control Interface pins are center left. The line interface pins for twisted-pair and fiber are shown on the top and bottom right respectively.

The VCCD and VCCIO pins are at the bottom of the diagram. VCCT, VCCR and VCCA are at the center right. All VCC pins (except VCCIO) use a single power supply. VCCIO may be powered by a 3.3V supply, and may be separately connected.

Voltage Divider For MF Inputs

The LXT970 requires an external voltage divider to provide optional (VMF2 and VMF3) multi-level inputs to the Multi-Function (MF) pins. These voltage levels are designated as VMF1 - VMF4. Figure 14 shows a voltage divider with three $1k\Omega$ resistors configured in series between VCC and Ground.

Figure 14: Voltage Divider

LXT970 Fast Ethernet Transceiver

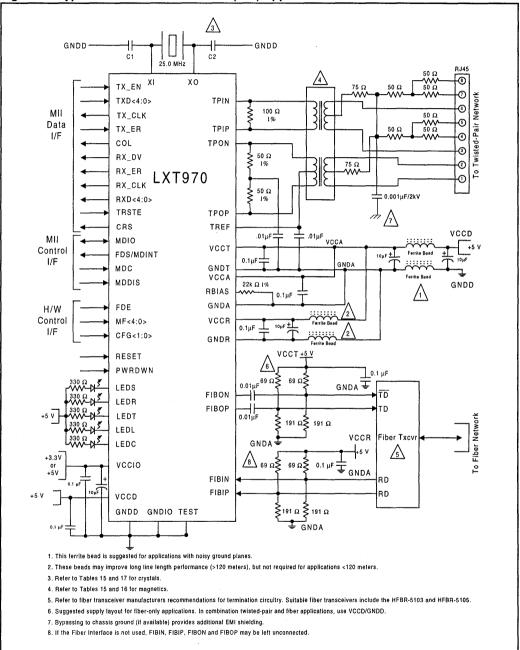


Figure 15: Typical Network Interface Card (NIC) Application

TEST SPECIFICATIONS

Note

Minimum and maximum values in Tables 18 through 41 and Figures 16 through 30 represent the performance specifications of the LXT970 and are guaranteed by test except, where noted, by design.

Table 18: Absolute Maximum Ratings

Parameter	Sym	Min	Max	Units
Supply Voltage	Vcc	-0.3	6	v
Operating Temperature	Тор	-15	+85	°C
Storage Temperature	Тят	-65	+150	°C
	CAUTION lese values may cau ration under these conditions for exten	se permanent dan conditions is not in	mplied.	bility.

Table 19: Operating Conditions

Paran	neter	Sym	Min	Typ ¹	Max	Units	Test Conditions
Recommended Supply	Except MII Supply	Vcc	4.75	5.0	5.25	v	
Voltage ²	MII Supply	Vccio	3.125	-	5.25	v	
Recommended Operatin	ng Temperature	Тор	0	-	70	°C	
VCC Current	100BASE-TX	ICC	-	170		mA	
(+5V Only)	100BASE-FX	ICC	-	80	-	mA	
	10BASE-T	Icc	-	185	-	mA	
	Power Down Mode	ICC	-	9	-	mA	
	Auto-Negotiation	ICC	-	240	270	mA	

11

Parameter	Symbol	Min	Typ ²	Max	Units	Test Conditions
Input Low voltage ³	VIL		-	0.8	v	
Input High voltage ³	VIH	2.0	_	-	v	1
Input Current	II	-10	-	10	μA	0.0 < VI < VCC
Output Low voltage	Vol	_	-	0.4	v	IOL = 4 mA
Output High voltage	Voh	2.4		_	v	IOH = -4 mA

Table 20: Digital I/O Characteristics¹ - (Over Recommended Range)

Table 21: Digital I/O Characteristics - MultiFunction Pins MF<4:0> (Over Recommended Range)

Parameter	Symbol	Min	Typ ¹	Max	Units	Test Conditions
Input Voltage Level 1	VMF1	Vcc - 0.5	-	_	v	
Input Voltage Level 2	VMF2	(Vcc/2) + 0.5	-	Vcc - 1.2	v	
Input Voltage Level 3	VMF3	1.2	-	Vcc/2 - 0.5	v	
Input Voltage Level 4	VMF4	_	-	0.5	v	

Table 22: Digital I/O Characteristics - MI	Pins (Over Recommended Range)
--	-------------------------------

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Input Low voltage	VIL	-	-	.8	V	
Input High voltage	Vih	2.0	-	-	V	
Input Current	Iı	-10	-	10	μΑ	0.0 < VI < VCC
Output Low voltage	Vol			0.4	V	IOL = 4 mA
Output High voltage	Voh	2.2	-	-	V	IOH = -4 mA, VCCIO = 3.3 VCCIO
	Voh	2.4	-	· _	v	IOH = -4 mA, VCCIO = 5.0 VCCIO
Driver Output Resistance	Ro ¹	6.0	-	25.0	Ω	VCCIO = 3.3V
(Line driver output enabled)	Ro ¹	6.0	-	25.0	Ω	VCCIO = 5.0V

Sym	Min	Typ ¹	Max	Units	Test Conditions
ster Clock	Mode - Ex	cternal XI C	Clock Input		
VIL	-	-	1.0	V	
VIH	3.2	-	-	v	
Δf		_	± 100	ppm	Clock frequency is 25 MHz or 2.5 MHz
TDC	40	_	60	%	
Cin	-	3.0	-	pF	
we Clock	Mode - Ex	ternal TX_	CLK Input		
VIL	_	-	.8	V	
VIH	2.0	-	-	v	
Δf	-	-	± 100	ppm	Clock frequency is 25 MHz or 2.5 MHz
TDC	35	-	65	%	
	ter Clock VIL VIH Δf TDC CIN VE Clock VIL VIL VIH Δf	VIL - VIL - VIH 3.2 Δf - TDC 40 CIN - ve Clock Mode - Ex VIL - VIL - VIL - Δf - Δf - CIN - VIL - VIL - VIH 2.0 Δf -	VIL - - VIL - - VIH 3.2 - Δf - - TDC 40 - CIN - 3.0 VIL VIL - VIL - - Δf - - Δf - -	VIL - - 1.0 VIL - - 1.0 VIH 3.2 - - Δf - - ± 100 TDC 40 - 60 CIN - 3.0 - ve Clock Mode - External TX_CLK Input NIL - .8 VIH 2.0 - - .8 VIH 2.0 - - .4 Δf - - .8 .2	VIL - - 1.0 V VIL - - 1.0 V VH 3.2 - - V Δf - - ± 100 ppm TDC 40 - 60 % CIN - 3.0 - pF ve Clock Mode - External TX_CLK Input VIL - - .8 V VIH 2.0 - - V

Table 23: Required Clock Characteristics

Table 24: Low Voltage Fault Detect Characteristics

Parameter	Sym	Min	Typ ¹	Max	Units	Test Conditions
Detect Fault Threshold	VLT	3.4	-	4.0	v	
Clear Fault Threshold	VLH	4.1	-	4.7	V	_

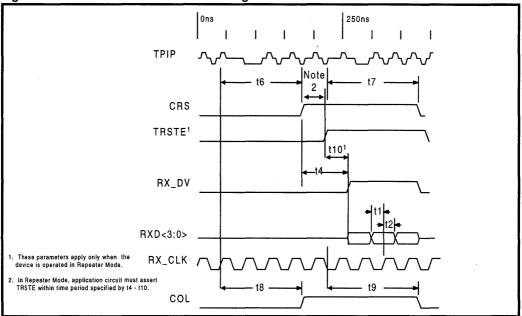
Table 25: 10BASE-T Link Integrity Timing Characteristics (Over Recommended Range)

Parameter	Sym	Min	Typ ¹	Max	Units	Test Conditions
Time Link Loss Receive	TLL	50	64	150	ms	-
Link Pulse	TLP	2	4	7	Link Pulses	_
Link Min Receive Timer	TLR MIN	2	4	7	ms	-
Link Max Receive Timer	TLR MAX	50	64	150	ms	
Link Transmit Period	TLT	8	10	24	ms	-
Link Pulse Width	TLPW	_	100	-	ns	_

Parameter	Sym	Min	Typ1	Max	Units	Test Conditions
Peak differential output voltage	VOP	0.95	-	1.05	v	Note 2
Signal amplitude symmetry	Vss	98	-	102	%	Note 2
Signal rise/fall time	TRF	3.0	-	5.0	ns	Note 2
Rise/fall time symmetry	TRFS	-	-	0.5	ns	Note 2
Duty cycle distortion	DCD	-	-	± 0.5	ns	Offset from 16ns pulse width at 50% of pulse peak
Overshoot/Undershoot	Vos	_	_	5	%	-

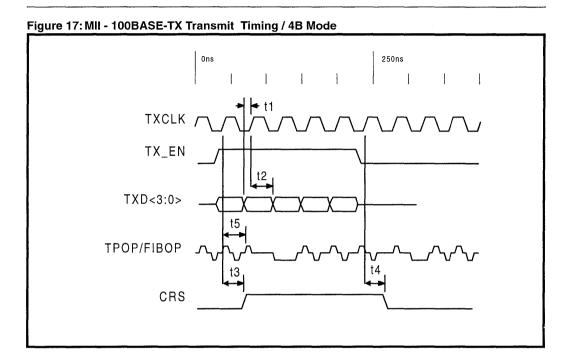
Table 26: 100BASE-TX Transceiver Characteristics (Over Recommended Range)

Table 27: 100BASE-FX Transceiver Characteristics (Over Recommended Range)


Sym	Min	Typ ¹	Мах	Units	Test Conditions
	Transm	itter			
VOP	0.6	-	1.0	v	-
TRF	_		1.6	ns	10 <> 90% 2.0 pF load
-		-	1.3	ns	-
	Recei	ver			
VIP	0.55	-	1.5	V	-
VCMIR	2.25	-	VCC - 0.5	V	-
	VOP TRF -	Transm Vop 0.6 TRF - - - Receit Vip Vip 0.55	Transmitter Vop 0.6 - TRF - - - - - VIP 0.55 -	Transmitter VOP 0.6 - 1.0 TRF - - 1.6 - - - 1.3 Receiver VIP 0.55 - 1.5 VCMIR 2.25 - VCC -	Vop 0.6 - 1.0 V TRF - - 1.6 ns - - - 1.3 ns Receiver VIP 0.55 - 1.5 V VCMIR 2.25 - VCC - V

Parameter	Sym	Min	Typ ¹	Max	Units	Test Conditions
		Tran	smitter			
Peak Differential Output Voltage	VOP	2.2	2.5	2.8	V	With specified transformer, line replaced by 100Ω (±1%) resistor
Transmit timing jitter added by the MAU and PLS sections ^{2,3}	-	0	2	11	ns	After line model specified by IEEE 802.3 for 10BASE-T MAU
		Rec	eiver			
Receive Input Impedance ²	Zin	-	3.6	-	kΩ	Between TPIP/TPIN
Differential Squelch Threshold	VDS	300	420	585	mV	5 MHz square wave input

Table 28: 10BASE-T Transceiver Characteristics (Over Recommended Range)



LXT970 Fast Ethernet Transceiver

Figure 16: MII - 100BASE-TX Receive Timing / 4B Mode

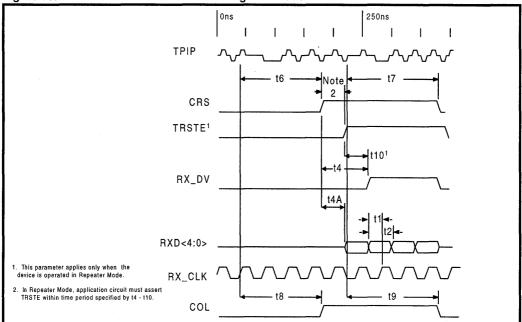

Parameter	Sym	Min	Typ ¹	Max	Units
RXD, RX_DV, RX_ER Setup to RX_CLK High	t1	10	-	_	ns
RXD, RX_DV, RX_ER Hold from RX_CLK High	t2	5	_		ns
CRS asserted to RXD<3:0>, RX_DV asserted	t4	-	8		BT
Receive start of "J" to CRS asserted	t6	0	15 - 19	20	BT
Receive start of "T" to CRS de-asserted	t7	13	23 - 27	28	BT
Receive start of "J" to COL asserted	t8	0	15 - 19	20	BT
Receive start of "T" to COL de-asserted	t9	13	23 - 27	28	BT
TRSTE asserted to RX_DV, RXD<3:0> driven ²	t10	-	20	_	ns

Table 30: MII - 100BASE-TX Transmit Timing Parameters / 4B Mode (Over Recommended Range)

Parameter	Sym	Min	Typ ¹	Max	Units
TXD<3:0>, TX_EN, TX_ER Setup to TX_CLK High	t1	10	-	-	ns
TXD<3:0>, TX_EN, TX_ER Hold from TX_CLK High	t2	5	-	-	ns
TX_EN sampled to CRS asserted	t3		3	4	BT
TX_EN sampled to CRS de-asserted	t4	-	4	16	BT
TX_EN sampled to TPO out (Tx latency)	t5	6	10	14	BT

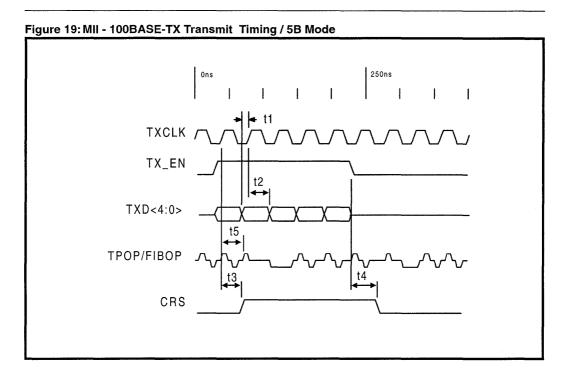

LXT970 Fast Ethernet Transceiver

Figure 18: MII - 100BASE-TX Receive Timing / 5B Mode

Toble 04. MIL	100DACE TV DA		avamatava / CD	Mada (O	
	100BASE-TX Red	ceive i iming Pa	arameters / 5B	Wode (Over Reco	mmended Range)

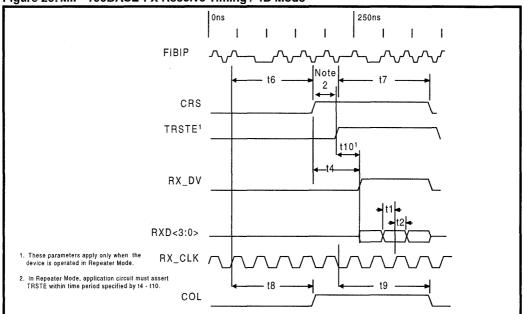
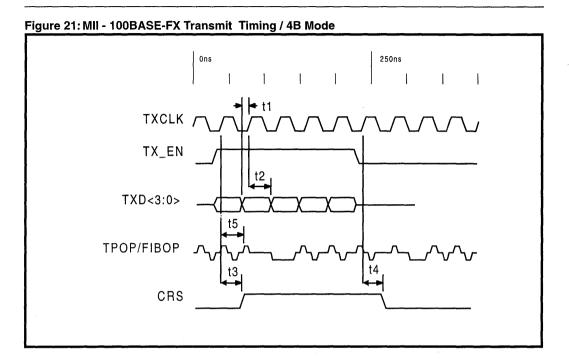
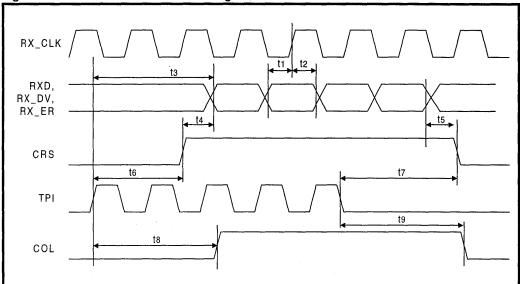

Parameter	Sym	Min	Typ1	Max	Units
RXD, RX_DV, RX_ER Setup to RX_CLK High	t1	10	-	_	ns
RXD, RX_DV, RX_ER Hold from RX_CLK High	t2	5		_	ns
CRS asserted to RX_DV asserted	t4	_	8	_	BT
CRS asserted to RXD<4:0> asserted	t4A		4	-	BT
Receive start of "J" to CRS asserted	t6	0	15 - 19	20	BT
Receive start of "T" to CRS de-asserted	t7	13	23 - 27	28.	BT
Receive start of "J" to COL asserted	t8	0	15 - 19	20	BT
Receive start of "T" to COL de-asserted	t9	13	23 - 27	28	BT
TRSTE asserted to RX_DV, RXD<4:0> driven ²	t10	-	20	_	ns

Table 32: MII - 100BASE-TX Transmit Timing Para	meters / 5B Mode (Over Recommended Range)
---	---


Parameter	Sym	Min	Typ ¹	Max	Units
TXD, TX_EN, TX_ER Setup to TX_CLK High	t1	10		-	ns
TXD, TX_EN, TX_ER Hold from TX_CLK High	t2	5		_	ns
TX_EN sampled to CRS asserted	t3	-	3	4	BT
TX_EN sampled to CRS de-asserted	t4	-	4	16	BT
TX_EN sampled to TPO out (Tx latency)	t5	4	6	9	BT

LXT970 Fast Ethernet Transceiver

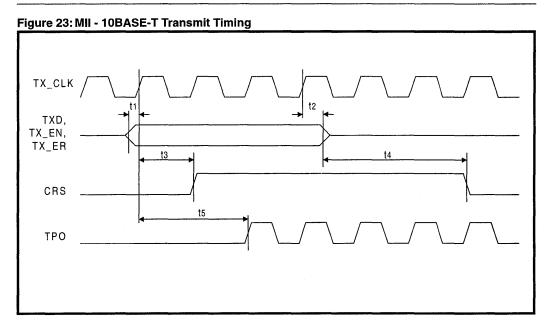

Figure 20: MII - 100BASE-FX Receive Timing / 4B Mode

Parameter	Sym	Min	Typ ¹	Max	Units
RXD, RX_DV, RX_ER Setup to RX_CLK High	tl	10	-		ns
RXD, RX_DV, RX_ER Hold from RX_CLK High	t2	5	-	_	ns
CRS asserted to RXD<3:0>, RX_DV asserted	t4	_	8	_	BT
Receive start of "J" to CRS asserted	t6	0	13 - 17	20	BT
Receive start of "T" to CRS de-asserted	t7	13	21 - 25	26	BT
Receive start of "J" to COL asserted	t8	0	13 - 17	20	BT
Receive start of "T" to COL de-asserted	t9	13	21 - 25	26	BT
TRSTE asserted to RX_DV, RXD<3:0> driven ²	t10	_	20		ns

Table 34: MII - 100BASE-FX Transmit Timing P	Parameters / 4B Mode (Over Recommended Range)
--	---

Parameter	Sym	Min	Typ1	Max	Units
TXD<3:0>, TX_EN, TX_ER Setup to TX_CLK High	t1	10	-	-	ns
TXD<3:0>, TX_EN, TX_ER Hold from TX_CLK High	t2	5	-	-	ns
TX_EN sampled to CRS asserted	t3	_	3	4	BT
TX_EN sampled to CRS de-asserted	t4	-	4	16	BT
TX_EN sampled to TPO out (Tx latency)	t5	6	11	14	BT

Figure 22: MII - 10BASE-T Receive Timing


Table 35: MII -	10BASE-T Receive	Timing Parameters	(Over Recommended Range)
-----------------	------------------	-------------------	--------------------------

Parameter	Sym	Min	Typ ¹	Мах	Units
RXD, RX_DV, RX_ER Setup to RX_CLK High	tľ	10	-	-	ns
RXD, RX_DV, RX_ER Hold from RX_CLK High	t2	10	-		ns
TPI in to RXD out (Rx latency)	t3	-	-	73 ³	BT ²
CRS asserted to RXD, RX_DV, RX_ER asserted	t4	0	-	69 ³	BT
RXD, RX_DV, RX_ER de-asserted to CRS de-asserted	t5	· 0	2.5 - 5.5	6	BT
TPI in to CRS asserted	t6	0	4	5	BT
TPI quiet to CRS de-asserted	t7	0	18	19	BT
TPI in to COL asserted	t8	0	4	5	BT
TPI quiet to COL de-asserted	t9	0	18	19	BT

 Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.
 IEEE 802.3 defines BT as "the duration of one bit as transferred to and from the MAC. The bit time is the reciprocal of the bit rate. For example, for 10BASE-T the bit time is 10⁻⁷ or 100 ns."

CRS is asserted. RXD/RX_DV are not driven during preamble and SFD (64 BT).

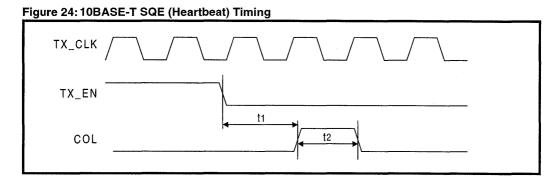

LXT970 Test Specifications

Table 36: MII - 10BASE-T Transmit Timing Parameters (Over Recommended Range)

Sym	Min	Typ1	Max	Units
t1	10	-	_	ns
t2	5		-	ns
t3		0	4	BT
t4		8		BT
t5		3 - 5	-	BT
	t1 t2 t3	t1 10 t2 5 t3 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

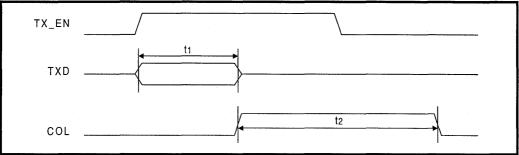

LXT970 Fast Ethernet Transceiver

Table 37: 10BASE-T SQE (Heartbeat) Timing Parameters (Over Recommended Range)

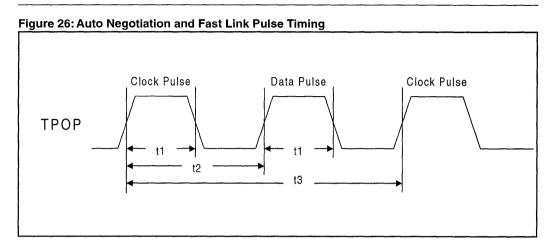

COL (SQE) Delay after TX_EN off	t1	0.65	1.0	1.6	us	
COL (SQE) Pulse duration	t2	.5	1.0	1.5	us	

Figure 25: 10BASE-T Jab and Unjab Timing

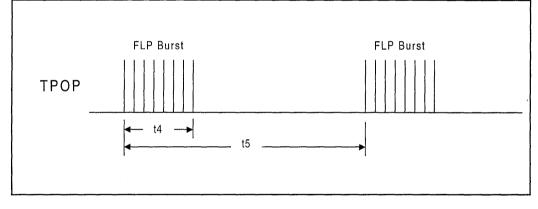
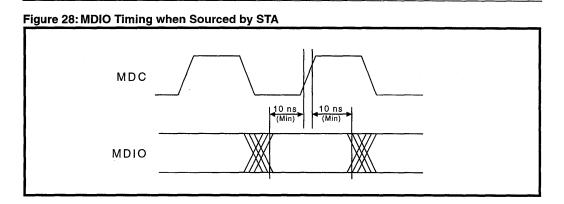
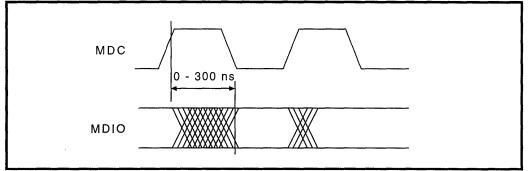


Table 38: 10BASE-T Jab and Unjab Timing Parameters (Over Recommended Range)

Parameter	Sym	Min	Typ ¹	Max	Units	Test Conditions
Maximum Transmit time	tl	. 20	96 - 128	150	ms	
Unjab time	t2	250	525	750	ms	


Figure 27: Fast Link Pulse Timing


Table 39: Auto Negotiation and Fast Link Pulse Timing Parameters (Over Recommended Range)

Parameter	Sym	Min	Typ ¹	Max	Units	Test Conditions
Clock/Data pulse width	t1	-	100	-	ns	
Clock pulse to Data pulse	t2	55.5	62.5	69.5	μs	
Clock pulse to Clock pulse	t3	111	125	139	μs	
FLP burst width	t4		2		ms	
FLP burst to FLP burst	t5	8	12	24	ms	
Clock/Data pulses per burst	-	17		33	ea	

LXT970 Fast Ethernet Transceiver

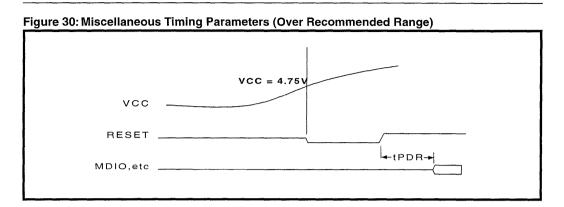


Figure 29: MDIO Timing when Sourced by PHY

Table 40: MDIO Timing Parameters (Over Recommended Range)

Parameter	Sym	Min	Typ1	Max	Units	Test Conditions
MDIO Setup before MDC	-	10		-	ns	When sourced by STA
MDIO Hold after MDC	-	10		-	ns	When sourced by STA
MDC to MDIO Output delay	-	0	10	300	ns	When sourced by PHY

Table 41: Miscellaneous Timing Parameters

Parameter	Sym	Min	Typ1	Max	Units	Test Conditions
Power Down recovery time	tPDR	_	50	_	ms	

11

REGISTER DEFINITIONS

The LXT970 register set includes a total of 12 16-bit registers. Refer to Table 42 for a complete register listing.

- Seven base registers (0 through 6) are defined in accordance with the "Reconciliation Sublayer and Media Independent Interface" and "Physical Layer Link Signalling for 10/100 Mbps Auto-Negotiation" sections of the IEEE 802.3 specification (Register 7, Next Page, is not supported).
- Five additional registers (16 through 20) are defined in accordance with the IEEE 802.3 specification for adding unique chip functions.

Address	Register Name	Bit Assignments
0	Control Register	Refer to Table 43
1	Status Register	Refer to Table 44
2	PHY Identification Register 1	Refer to Table 45
3	PHY Identification Register 2	Refer to Table 46
4	Auto-Negotiation Advertisement Register	Refer to Table 47
5	Auto-Negotiation Link Partner Ability Register	Refer to Table 48
6	Auto-Negotiation Expansion Register	Refer to Table 49
16	Mirror Register	Refer to Table 50
17 ·	Interrupt Enable Register	Refer to Table 51
18	Interrupt Status Register	Refer to Table 52
19	Configuration Register	Refer to Table 53
20	Chip Status Register	Refer to Table 54

Table 42: Register Set

Bit	Name	Description	Type 1	Default
0.15	Reset	I = Reset chip.0 = Enable normal operation.	R/W SC	0
0.14	Loopback	1 = Enable loopback mode. When Loopback is enabled, during 100Mbps operation, the LXT970 disconnects its transmitter and receiver from the network. Data sent by the controller passes through the chip and then gets looped back to the MII. During 10Mbps operation, data is looped directly back to the MII. 0 = Disable loopback mode.	R/W	0
0.13	Speed Selection	1 = 100 Mbps 0 = 10 Mbps	R/W	Note 2
0.12	Auto- Negotiation Enable	 1 = Enable auto-negotiate process (overrides speed select and duplex mode bits). 0 = Disable auto-negotiate process. 	R/W	Note 3
0.11	Power Down	1 = Enable power down. 0 = Enable normal operation.	R/W	Note 4
0.10	Isolate	1 = Electrically isolate LXT970 from MII. 0 = Normal operation.	R/W	Note 5
0.9	Restart Auto- Negotiation	1 = Restart auto-negotiation process. 0 = Normal operation.	R/W SC	Note 6
0.8	Duplex Mode	1 = Enable full duplex. 0 = Enable half duplex.	R/W	Note 7
0.7	Collision Test	 1 = Enable COL signal test. Bit 0.14 must be enabled to use this bit. This bit is used in conjunction with bit 0.14 to test the COL output. 0 = Disable COL signal test. 	R/W	0 Note 8
0.6:4	Transceiver Test Mode	Not Supported	RO	0
0.3	Master-Slave Enable	Not Supported	RO	0
0.2	Master-Slave Value	Not Supported	RO	0
0.1:0	Reserved	franciska originalista origin	R/W	0

Table 43: Control Register (Address 0)

2. If auto-negotiation is enabled, this bit is ignored, If auto-negotiation is disabled, the default value of bit 0.13 is determined by pin CFG0.

3. The default value of bit 0.12 is determined by pin MF0/AUTO-NEG.

4. The LXT970 will internally reset all registers to their default values upon exiting power down mode. A delay of 500 ns minimum is required from the time power down is cleared until any register can be written.

5. The default value of bit 0.10 is determined by pin TRSTE.

6. If auto-negotiation is enabled, the default value of bit 0.9 is determined by pin CFG0. If auto-negotiation is disabled, the default value of bit 0.9 = 0.

7. If auto-negotiation is enabled, this bit is ignored. If auto-negotiation is disabled, the default value of bit 0.8 is determined by pin FDE.

8. This bit is ignored unless loopback is enabled (0.14 = 1).

1.15 100BASE-T4 Not Supported 1.14 100BASE-X 1 = LXT970 able to perform full duplex 100BASE-Full Duplex 1.13 100BASE-X 1 = LXT970 able to perform half duplex 100BASE-Half Duplex 1.12 10 Mb/s 1 = LXT970 able to operate at 10 Mb/s in full duple 1.11 10 Mb/s 1 = LXT970 able to operate at 10 Mb/s in full duple 1.11 10 Mb/s 1 = LXT970 able to operate at 10 Mb/s in half duple 1.11 10 Mb/s 1 = LXT970 able to operate at 10 Mb/s in half duple 1.11 10 Mb/s 1 = LXT970 able to operate at 10 Mb/s in half duple 1.10 100BASE-T2 Not Supported Full Duplex 1 100BASE-T2 1.9 100BASE-T2 Not Supported Half Duplex 1 1 1.8 Reserved Ignore on read 1.7 Master-Slave Configuration Fault Not Supported 1.6 MF Preamble Suppression 0 = LXT970 will not accept management frames wi ble suppressed. 1.5 Auto- Negotiation Complete 1 = Auto-negotiation process complete. 1.4 Remote Fault to no remote fault condition detected. 1.3	Ţ	/pe ^{_1}	Default
Full Duplex1.13100BASE-X Half Duplex1 = LXT970 able to perform half duplex 100BASE- Half Duplex1.1210 Mb/s Full Duplex1 = LXT970 able to operate at 10 Mb/s in full duple Full Duplex1.1110 Mb/s1 = LXT970 able to operate at 10 Mb/s in half duple Half Duplex1.10100BASE-T2 Full DuplexNot Supported1.10100BASE-T2 Half DuplexNot Supported1.9100BASE-T2 Half DuplexNot Supported1.8Reserved Configuration FaultIgnore on read1.7Master-Slave Configuration FaultNot Supported1.6MF Preamble Suppression0 = LXT970 will not accept management frames wi ble suppressed.1.5Auto- Negotiation Complete1 = Auto-negotiation process not complete. 0 = Auto-negotiation process not complete.1.4Remote Fault to A Not remote fault condition detected. 0 = No remote fault condition detected.1.3Auto-Negotia- tion Ability1 = Link is up. 0 = Link is down.1.1Jabber Detect (10BASE-T Only)1 = Jabber condition detected.]	RO	0
1.13 100BASE-X 1 = LXT970 able to perform half duplex 100BASE-X Half Duplex 1 = LXT970 able to operate at 10 Mb/s in full duple 1.12 10 Mb/s 1 = LXT970 able to operate at 10 Mb/s in full duple Full Duplex 1 = LXT970 able to operate at 10 Mb/s in half duple 1.11 10 Mb/s 1 = LXT970 able to operate at 10 Mb/s in half duple Half Duplex 1 = LXT970 able to operate at 10 Mb/s in half duple 1.10 100BASE-T2 Not Supported Full Duplex 1 Not Supported 1.9 100BASE-T2 Not Supported Half Duplex Ignore on read 1 1.7 Master-Slave Configuration Fault Not Supported 1.6 MF Preamble 0 = LXT970 will not accept management frames wi ble suppressed. 1.5 Auto- 1 = Auto-negotiation process complete. 0 = Auto-negotiation process not complete. 0 = Auto-negotiation process not complete. 1.4 Remote Fault 1 = Remote fault condition detected. 1.3 Auto-Negotia- tion Ability 1 = LXT970 is able to perform auto-negotiation. 1.2 Link Status 1 = Link is down. 1.1 Jabber Detect 1 =	-X.	RO	1
Half Duplex1.1210 Mb/s1 = LXT970 able to operate at 10 Mb/s in full duple1.1110 Mb/s1 = LXT970 able to operate at 10 Mb/s in half duple1.1110 Mb/s1 = LXT970 able to operate at 10 Mb/s in half duple1.10100BASE-T2Not SupportedFull Duplex100BASE-T2Not Supported1.9100BASE-T2Not SupportedHalf Duplex1100BASE-T21.8ReservedIgnore on read1.7Master-Slave Configuration FaultNot Supported1.6MF Preamble Suppression0 = LXT970 will not accept management frames wi ble suppressed.1.5Auto- Negotiation Complete1 = Auto-negotiation process complete.1.4Remote Fault to Ability1 = Remote fault condition detected.1.3Auto-Negotia- tion Ability1 = LXT970 is able to perform auto-negotiation. to ability1.2Link Status () = Link is up. () = Link is down.1 = Labber condition detected.1.1Jabber Detect (10BASE-T () nly)1 = Labber condition detected.			
1.12 10 Mb/s 1 = LXT970 able to operate at 10 Mb/s in full duple 1.11 10 Mb/s 1 = LXT970 able to operate at 10 Mb/s in half duple 1.11 10 Mb/s 1 = LXT970 able to operate at 10 Mb/s in half duple 1.11 10 Mb/s 1 = LXT970 able to operate at 10 Mb/s in half duple 1.11 10 Mb/s 1 = LXT970 able to operate at 10 Mb/s in half duple 1.11 10 Mb/s 1 = LXT970 able to operate at 10 Mb/s in half duple 1.11 10 Mb/s 1 = LXT970 able to operate at 10 Mb/s in half duple 1.10 100BASE-T2 Not Supported Full Duplex 100BASE-T2 Not Supported 1.8 Reserved Ignore on read 1.7 Master-Slave Not Supported Configuration Fault Not Supported 1.6 MF Preamble 0 = LXT970 will not accept management frames with ble suppressed. 1.5 Auto- 1 = Auto-negotiation process complete. 0 = Auto-negotiation process not complete. 0 = Auto-negotiation process not complete. 1.4 Remote Fault 1 = Remote fault condition detected. 1.3 Auto-Negotia- to no remote fault condition detected. 1.4	-X	RO	1
Full Duplex Full Duplex 1.11 10 Mb/s 1 = LXT970 able to operate at 10 Mb/s in half duple Half Duplex Not Supported Full Duplex Not Supported Full Duplex Not Supported Half Duplex Ionobase-T2 Not Supported Full Duplex 1.9 100BASE-T2 Half Duplex Ignore on read 1.7 Master-Slave Configuration Fault Not Supported 1.6 MF Preamble Suppression 0 = LXT970 will not accept management frames will ble suppressed. 1.5 Auto- Negotiation Complete 0 = Auto-negotiation process complete. 1.4 Remote Fault 1 = Remote fault condition detected. 1.3 Auto-Negotia- tion Ability 1 = LXT970 is able to perform auto-negotiation. 1.2 Link Status 1 = Link is up. 0 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected.			
1.11 10 Mb/s 1 = LXT970 able to operate at 10 Mb/s in half duple 1.10 100BASE-T2 Not Supported Full Duplex 100BASE-T2 Not Supported 1.9 100BASE-T2 Not Supported Half Duplex 1 Ignore on read 1.7 Master-Slave Configuration Fault Not Supported 1.6 MF Preamble Suppression 0 = LXT970 will not accept management frames wi ble suppressed. 1.5 Auto- Negotiation Complete 1 = Auto-negotiation process complete. 1.4 Remote Fault 1 = Remote fault condition detected. 1.3 Auto-Negotia- tion Ability 1 = Link is up. 1.2 Link Status 1 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected.	ex mode	RO	1
Half Duplex 1.10 100BASE-T2 Not Supported Full Duplex Not Supported 1.9 100BASE-T2 Not Supported Half Duplex Ignore on read 1.8 Reserved Ignore on read 1.7 Master-Slave Configuration Fault Not Supported 1.6 MF Preamble Suppression 0 = LXT970 will not accept management frames wi ble suppressed. 1.5 Auto- Negotiation Complete 1 = Auto-negotiation process complete. 1.4 Remote Fault 1 = Remote fault condition detected. 1.3 Auto-Negotia- tion Ability 1 = Link is up. 0 = Link is down. 1.2 Link Status 1 = Link is up. 0 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected.			
1.10 100BASE-T2 Not Supported Full Duplex 100BASE-T2 Not Supported 1.9 100BASE-T2 Not Supported Half Duplex Ignore on read 1.7 Master-Slave Configuration Fault Not Supported 1.6 MF Preamble Suppression 0 = LXT970 will not accept management frames with ble suppressed. 1.5 Auto- Negotiation Complete 1 = Auto-negotiation process complete. 1.4 Remote Fault 1 = Remote fault condition detected. 1.3 Auto-Negotia- tion Ability 1 = Link is up. 0 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected.	lex mode	RO	1
Full Duplex Full Duplex 1.9 100BASE-T2 Half Duplex Not Supported 1.8 Reserved Ignore on read 1.7 Master-Slave Configuration Fault Not Supported 1.6 MF Preamble Suppression 0 = LXT970 will not accept management frames will ble suppressed. 1.5 Auto- Negotiation Complete 1 = Auto-negotiation process complete. 1.4 Remote Fault 1 = Remote fault condition detected. 1.3 Auto-Negotia- tion Ability 1 = LXT970 is able to perform auto-negotiation. 1.2 Link Status 1 = Link is up. 0 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected.			
1.9 100BASE-T2 Half Duplex Not Supported 1.8 Reserved Ignore on read 1.7 Master-Slave Configuration Fault Not Supported 1.6 MF Preamble Suppression 0 = LXT970 will not accept management frames wi ble suppressed. 1.5 Auto- Negotiation Complete 1 = Auto-negotiation process complete. 1.4 Remote Fault 1 = Remote fault condition detected. 1.3 Auto-Negotia- tion Ability 1 = LXT970 is able to perform auto-negotiation. 1.2 Link Status 1 = Link is up. 0 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected.		RO	0
Half Duplex Half Duplex 1.8 Reserved Ignore on read 1.7 Master-Slave Configuration Fault Not Supported 1.6 MF Preamble Suppression 0 = LXT970 will not accept management frames with ble suppressed. 1.5 Auto- Negotiation Complete 1 = Auto-negotiation process complete. 1.4 Remote Fault 1 = Remote fault condition detected. 1.3 Auto-Negotia- tion Ability 1 = LXT970 is able to perform auto-negotiation. 1.2 Link Status 1 = Link is up. 0 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected.			
1.8 Reserved Ignore on read 1.7 Master-Slave Configuration Fault Not Supported 1.6 MF Preamble Suppression 0 = LXT970 will not accept management frames with ble suppressed. 1.5 Auto- Negotiation Complete 1 = Auto-negotiation process complete. 1.4 Remote Fault 1 = Remote fault condition detected. 1.3 Auto-Negotia- tion Ability 1 = LXT970 is able to perform auto-negotiation. 1.2 Link Status 1 = Link is up. 0 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected.		RO	0
1.7 Master-Slave Configuration Fault Not Supported 1.6 MF Preamble Suppression 0 = LXT970 will not accept management frames will ble suppressed. 1.5 Auto- Negotiation Complete 1 = Auto-negotiation process complete. 1.4 Remote Fault 1 = Remote fault condition detected. 1.3 Auto-Negotia- tion Ability 1 = LXT970 is able to perform auto-negotiation. 1.2 Link Status 1 = Link is up. 0 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected.			
Configuration Fault 1.1 1.6 MF Preamble Suppression 0 = LXT970 will not accept management frames will ble suppressed. 1.5 Auto- Negotiation Complete 1 = Auto-negotiation process complete. 1.4 Remote Fault 1 = Remote fault condition detected. 1.3 Auto-Negotia- tion Ability 1 = LXT970 is able to perform auto-negotiation. 1.2 Link Status 1 = Link is up. 0 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected.		RO	0
Fault 1.6 MF Preamble Suppression 0 = LXT970 will not accept management frames will ble suppressed. 1.5 Auto- Negotiation Complete 1 = Auto-negotiation process complete. 1.4 Remote Fault 1 = Remote fault condition detected. 1.3 Auto-Negotia- tion Ability 1 = LIXT970 is able to perform auto-negotiation. 1.2 Link Status 1 = Link is up. 0 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected.		RO	0
1.6 MF Preamble Suppression 0 = LXT970 will not accept management frames will ble suppressed. 1.5 Auto- Negotiation Complete 1 = Auto-negotiation process complete. 1.4 Remote Fault 1 = Remote fault condition detected. 1.3 Auto-Negotia- tion Ability 1 = LXT970 is able to perform auto-negotiation. 1.2 Link Status 1 = Link is up. 0 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected.			
Suppression ble suppressed. 1.5 Auto- Negotiation Complete 1 = Auto-negotiation process complete. 1.4 Remote Fault 1 = Remote fault condition detected. 1.3 Auto-Negotia- tion Ability 1 = LXT970 is able to perform auto-negotiation. 1.2 Link Status 1 = Link is up. 0 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected.	ith pream-	RO	0
Negotiation Complete 0 = Auto-negotiation process not complete. 1.4 Remote Fault 1 = Remote fault condition detected. 1.3 Auto-Negotia- tion Ability 1 = LXT970 is able to perform auto-negotiation. 1.2 Link Status 1 = Link is up. 0 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected.	in proun		0
Complete 1 = Remote fault condition detected. 1.4 Remote Fault 1 = Remote fault condition detected. 1.3 Auto-Negotia- tion Ability 1 = LXT970 is able to perform auto-negotiation. 1.2 Link Status 1 = Link is up. 0 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected.		RO	0
1.4 Remote Fault 1 = Remote fault condition detected. 1.3 Auto-Negotia- tion Ability 1 = LXT970 is able to perform auto-negotiation. 1.2 Link Status 1 = Link is up. 0 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected.			
1.3 Auto-Negotia- tion Ability 1 = LXT970 is able to perform auto-negotiation. 1.2 Link Status 1 = Link is up. 0 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected.	R	O/LH	0
tion Ability 1 = Link is up. 1.2 Link Status 1 = Link is up. 0 = Link is down. 0 = Link is down. 1.1 Jabber Detect 1 = Jabber condition detected. (10BASE-T Only) 0 = No jabber condition detected.	ļ		
tion Ability 1.2 Link Status 1 = Link is up. 0 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected.		RO	1
0 = Link is down. 1.1 Jabber Detect (10BASE-T Only) 0 = No jabber condition detected.			
1.1 Jabber Detect (10BASE-T Only) 1 = Jabber condition detected. 0 = No jabber condition detected.	R	O/LL	0
(10BASE-T Only) 0 = No jabber condition detected.			
Only)	R	O/LH	0
1.0 Extended 1 = Extended register capabilities.			
		RO	1
Capability			

 Table 44: Status Register (Address 1)

LXT970 Register Definitions

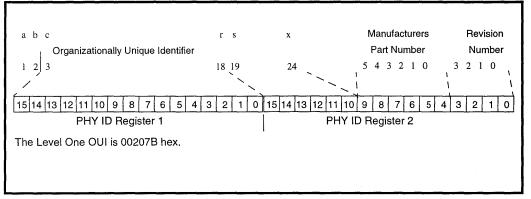

Bit	Name	Description	Type ¹	Default
2.15:0	PHY ID Number	The PHY identifier composed of bits 3 through 18 of the OUI.	RO	7810 hex
1. RO = Re	ad Only			

Table 45: PHY Identification Register 1 (Address 2)

Table 46: PHY Identification Register 2 (Address 3)

Bit	Name	Description	Type ¹	Default
3.15:10	PHY ID number	The PHY identifier composed of bits 19 through 24 of the OUI.	RO	000000 bin
3.9:4	Manufacturer's model number	6 bits containing manufacturer's part number.	RO	000000 bin
3.3:0	Manufacturer's revision number	4 bits containing manufacturer's revision number.	RO	0000 bin

Figure 31: PHY Identifier Bit Mapping

Bit	Name	Description	Type ¹	Default
4.15	Next Page	Not Supported	RO	0
4.14	Reserved		RO	0
4.13	Remote Fault	1 = Remote fault. 0 = No remote fault.	R/W	0
4.12:10	Reserved		R/W	0
4.9	0 = 100BASE-T4 capability is not available.		R/W	0
		(The LXT970 does not support 100BASE-T4 but allows this bit to be set to advertise in the Auto-Negotiation sequence for 100BASE-T4 operation. An external 100BASE-T4 transceiver could be switched in if this capability is desired.)		
4.8	100BASE-TX Full Duplex	1 = DTE is 100BASE-TX full duplex capable. 0 = DTE is not 100BASE-TX full duplex capable.	R/W	Note 2
4.7	100BASE-TX	1 = DTE is 100BASE-TX capable. 0 = DTE is not 100BASE-TX capable.	R/W	Note 3
4.6	10BASE-T	1 = DTE is 10BASE-T full duplex capable.	R/W	Note 4
	full duplex	0 = DTE is not 10BASE-T full duplex capable.		
4.5	10BASE-T	1 = DTE is 10BASE-T capable.	R/W	Note 5
		0 = DTE is not 10BASE-T capable.		
4.4:0	Selector Field,	<00001> = IEEE 802.3	R/W	00001
	S<4:0>	<00010> = IEEE 802.9 ISLAN-16T		
		<00000> = Reserved for future Auto-Negotiation development		
		<11111> = Reserved for future Auto-Negotiation development		
		Unspecified or reserved combinations should not be transmitted.		
RO = 2. The d 3. The d 4. The d	efault value of bit 4.7 efault value of bit 4.6	is determined by pin FDE ANDed with pin MF4/100BASE-TX/FX, / is determined by pin MF4/100BASE-TX/FX. o is determined by pin FDE AND 'ed with pin CFG1. / is determined by pin CFG1.		

Name	Description	Type ¹	Default
Next Page	 1 = Link Partner has ability to send multiple pages. 0 = Link Partner has no ability to send multiple pages. 	RO	N/A
Acknowledge	 1 = Link Partner has received Link Code Word from LXT970. 0 = Link Partner has not received Link Code Word from LXT970. 	RO	N/A
Remote Fault	1 = Remote fault. 0 = No remote fault.	RO	N/A
Reserved		RO	N/A
100BASE-T4	1 = Link Partner is 100BASE-T4 capable. 0 = Link Partner is not 100BASE-T4 capable.	RO	N/A
100BASE-TX full duplex	1 = Link Partner is 100BASE-TX full duplex capable. 0 = Link Partner is not 100BASE-TX full duplex capable.	RO	N/A
100BASE-TX	1 = Link Partner is 100BASE-TX capable. 0 = Link Partner is not 100BASE-TX capable.	RO	N/A
10BASE-T full duplex	1 = Link Partner is 10BASE-T full duplex capable. 0 = Link Partner is not 10BASE-T full duplex capable.	RO	N/A
10BASE-T	1 = Link Partner is 10BASE-T capable. 0 = Link Partner is not 10BASE-T capable.	RO	N/A
Selector Field S[4:0]	<pre><00001> = IEEE 802.3 <00010> = IEEE 802.9 ISLAN-16T <00000> = Reserved for future Auto-Negotiation development <11111> = Reserved for future Auto-Negotiation development Unspecified or reserved combinations shall not be transmitted.</pre>	RO	N/A
	Next Page Acknowledge Remote Fault Reserved 100BASE-T4 100BASE-TX full duplex 100BASE-TX full duplex 10BASE-T full duplex 10BASE-T Selector Field	Next Page1 = Link Partner has ability to send multiple pages. 0 = Link Partner has no ability to send multiple pages.Acknowledge1 = Link Partner has received Link Code Word from LXT970. 0 = Link Partner has not received Link Code Word from LXT970.Remote Fault1 = Remote fault. 0 = No remote fault.Reserved0 = Link Partner is 100BASE-T4 capable. 0 = Link Partner is not 100BASE-T4 capable. 0 = Link Partner is not 100BASE-T4 capable.100BASE-TX1 = Link Partner is 100BASE-TX full duplex capable. 0 = Link Partner is not 100BASE-TX full duplex capable.100BASE-TX1 = Link Partner is 100BASE-TX full duplex capable.100BASE-TX1 = Link Partner is not 100BASE-TX capable.100BASE-TX1 = Link Partner is not 100BASE-TX capable.100BASE-TX1 = Link Partner is not 100BASE-TX capable.10BASE-T1 = Link Partner is not 100BASE-T capable.10BASE-T1 = Link Partner is not 100BASE-T full duplex capable.10BASE-T1 = Link Partner is not 100BASE-T capable.10EASE-T1 = Link Partner is not 100BASE-T capable.10BASE-T1 = Link Partner is not 100BASE-T capable.10BASE-T2 = Link Partner is not 100BASE-T capable.10EASE-T1 = Link Partner is not 100BASE-T capable.10EASE-T2 = Link Partner is not 100BASE-T capable.10EASE-T2 = Link Partner is not 100BASE-T capable	Next PageI = Link Partner has ability to send multiple pages. 0 = Link Partner has no ability to send multiple pages.ROAcknowledgeI = Link Partner has received Link Code Word from LXT970. 0 = Link Partner has not received Link Code Word from LXT970.RORemote FaultI = Remote fault. 0 = No remote fault.ROReservedRO100BASE-T4I = Link Partner is 100BASE-T4 capable. 0 = Link Partner is not 100BASE-T4 capable.RO100BASE-T4I = Link Partner is 100BASE-T4 capable. 0 = Link Partner is not 100BASE-TX full duplex capable.RO100BASE-TXI = Link Partner is 100BASE-TX full duplex capable.RO100BASE-TXI = Link Partner is 100BASE-TX capable.RO100BASE-TXI = Link Partner is 100BASE-TX capable.RO100BASE-TXI = Link Partner is 100BASE-TX capable.RO100BASE-T4I = Link Partner is 100BASE-TX capable.RO100BASE-T4I = Link Partner is not 100BASE-TX capable.RO100BASE-T4I = Link Partner is not 100BASE-TX capable.RO100BASE-TI = Link Partner is not 100BASE-T capable.RO10BASE-TI = Link Partner is 100BASE-T capable.RO10BASE-TI = Link Partner is 100BASE-T capable.RO10BASE-TI = Link Partner is not 10BASE-T capable.RO10EASE-TI = Link Partner is not 10BASE-T capable.RO10BASE-T5I = Link Partner is not 10BASE-T capable.RO10BASE-T6I = Link Partner is not 10BASE-T capable.RO10EASE-TI = Link Partner is not 10BASE-T ca

Table 48: Auto Negotiation Link Partner Ability Register (Address 5)

Table 49: Auto Negotiation Expansion (Address 6)

Bit	Name	Description	Type ¹	Default
6.15:5	Reserved	Ignore.	RO	0
6.4	Parallel Detec- tion Fault	1 = Parallel detection fault has occurred.0 = Parallel detection fault has not occurred.	RO/ LH	0
6.3	Link Partner Next Page Able	 1 = Link partner is next page able. 0 = Link partner is not next page able. 	RO	0

Table 49: Auto	Negotiation	Expansion (Address 6) – continued
14010 101 /1410	nogodadon	man panoion (11441000	

Bit	Name	Description	Type ¹	Default
6.2	Next Page Able	Not Supported	RO	0
6.1	Page Received	1 = 3 identical and consecutive link code words have been received from link partner. 0 = 3 identical and consecutive link code words have not been received from link partner.	RO/ LH	0
6.0	Link Partner Auto Neg Able	1 = Link partner is auto-negotiation able. 0 = Link partner is not auto-negotiation able.	RO	0

Table 50: Mirror Register (Address 16, Hex 10)

Default
0

Table 51: Interrupt Enable Register (Address 17, Hex 11)

Bit	Name	Description	Type ¹	Default
17.15:2	Reserved	Write as 0; ignore on read.	R/W	N/A
17.1	INTEN	1 = Enable interrupts on pin 2. Must be enabled for bit 17.0 or 19.12 to be effective.	R/W	0
		0 = Enable Half/Full duplex indications on pin 2.		
17.0	TINT	1 = Forces MDINT Low and sets bit $18.15 = 1$. Also forces interrupt pulse on MDIO when bit $19.12 = 1$.	R/W	0
		0 = Normal operation.		
	-	This bit is ignored unless the interrupt function is enabled $(17.1 = 1)$.		

Bit	Name	Description	Type ¹	Default
18.15	MINT	 1 = Indicates MII interrupt pending. 0 = Indicates no MII interrupt pending. This bit is cleared by reading Register 1 followed by reading Register 18. 	RO	N/A
18.14	XTALOK	1 = Indicates that the LXT970 is fully powered up and the on-chip clocks are stable.	RO	0
		0 = Indicates that XTAL circuit is not stable.		
18.13:0	Reserved	Ignore	RO	0

Table 52: Interrupt Status Register (Address 18, Hex 12)

Table 53: Configuration Register (Address 19, Hex 13)

Bit	Name	Description	Type ¹	Default
19.15	Reserved	Write as 0; ignore on read.	R/W	N/A
19.14	Txmit Test (100BASE-TX)	1 = 100BASE-T transmit test enabled, LXT970 will transmit data regardless of link status. This function is the analog of the link test function (19.8) for 100BASE-TX. 0 = Normal operation.	R/W	0
19.13	Repeater Mode	1 = Enable Repeater Mode. 0 = Enable DTE Mode.	R/W	Note 2
19.12	MDIO_INT	 1 = Enable interrupt signaling on MDIO (if 17.1 = 1). 0 = Normal operation (MDIO Interrupt disabled). Bit is ignored unless the interrupt function is enabled (17.1 = 1). 	R/W	0
19.11	TP Loopback (10BASE-T)	1 = Disable 10BT TP Loopback. Data transmitted by the MAC will not loopback to the RXD and RX_DV pins. CRS is asserted during a transmission only in DTE mode and half-duplex operation. 0 = Enable 10BT TP Loopback	R/W	0
19.10	SQE (10BASE-T)	1 = Enable SQE. 0 = Disable SQE (Default).	R/W	0
19.9	Jabber (10BASE-T)	1 = Disable jabber. 0 = Normal operation (jabber enabled).	R/W	0
19.8	Link Test (10BASE-T)	1 = Disable 10BASE-T link integrity test. 0 = Normal operation (10BASE-T link integrity test enabled).	R/W	Note 3

4. The default value of bit 19.4 is determined by pin MF2/ENCODER Operation. 5. The default value of bit 19.3 is determined by pin MF3/SCRAMBLER Operation.

6. If auto-negotiation is disabled, default value of bit 19.2 is determined by pin MF4/100BASE-TX/FX. If auto-negotiation is enabled, default value of bit 19.2 = 0.

LXT970 Fast Ethernet Transceiver

Bit	Name	Description	Type ¹	Default
19.7:6	LEDC Programming bits	Determine condition indicated by LEDC. bit 7 bit 6 Description 0 0 LEDC indicates collision 0 1 LEDC is off 1 0 LEDC indicates activity. 1 1 LEDC is continuously on (for diagnostic use).	R/W	0,0
19.5	Advance TX Clock	1 = TX clock is advanced relative to TXD<4:0> and TX_ER by 1/2 TX_CLK cycle. 0 = Normal operation.	R/W	0
19.4	4B Nibble/ 5BSymbol (100BASE-X only)	 1 = 5-bit Symbol Mode (Bypass encoder/decoder); RXD<4:0> symbol data is not aligned. 0 = 4-bit Nibble Mode (Normal operation). 	R/W	Note 4
19.3	Scrambler (100BASE-X only)	 1 = Bypass transmit scrambler and receive descrambler. 0 = Normal operation (scrambler and descrambler enabled). In FX mode, the LXT970 <i>automatically</i> bypasses the Scrambler. Selecting Scrambler bypass in FX mode will cause the LXT970 to also bypass the 4B/5B encoder and enable Symbol mode MII operation. 	R/W	Note 5
19.2	100BASE-FX	1 = Enable 100BASE fiber interface. 0 = Enable 100BASE twisted pair interface.	R/W	Note 6
19.1	Reserved	Write as 0; Ignore on read.	R/W	0
19.0	Transmit Disconnect	1 = Disconnect TP transmitter from line. 0 = Normal operation.	R/W	0

Table 53: Configuration Register (Address 19, Hex 13) - continued

6. If auto-negotiation is disabled, default value of bit 19.2 is determined by pin MF4/100BASE-TX/FX. If auto-negotiation is enabled, default value of bit 19.2 = 0.

Table 54: Chip Status Register (Address 20, Hex 14)	Table 54:	Chip	Status	Register	(Address	20, Hex 14)
---	-----------	------	--------	----------	----------	-------------

a e a cui 111	Name	Description	Type ¹	Default
20.15:14	Reserved	Ignore.	RO	N/A
20.13	Link	 1 = Link is up. 0 = Link is down. Link bit 20.13 is a duplicate of bit 1.2, except that it is a dynamic indication, whereas bit 1.2 latches Low. 		0
20.12	Duplex Mode	1 = Full Duplex. 0 = Half Duplex.	RO	Note 2
20.11	Speed	1 = 100 Mbps operation. 0 = 10 Mbps operation.	RO	Note 2
20.10	Reserved	Ignore.	RO	N/A
	Auto-Negotiation Complete	 1 = Auto-negotiation process complete. 0 = Auto-negotiation process not complete. Auto-Negotiation Complete bit 20.9 is a duplicate of bit 1.5. 	RO/LH	0
20.8	Page Received	 1 = Three identical and consecutive link code words have been received. 0 = Three identical and consecutive link code words have not been received. Page Received bit 20.8 is a duplicate of bit 6.1 	RO/LH	0
20:7	Reserved	Write as 0; Ignore on read.	RO/LH	0
	Stream scrambler/ decoder lock (100BASE-TX only)	1 = Stream scrambler/decoder locked.0 = Stream scrambler/decoder not locked.	RO	0
20.5	Symbol Error	1 = Symbol error detected. 0 = No symbol error detected.	RO/LH	N/A
	MLT3 Encoding Error	1 = MLT3 encoding error detected. 0 = No MLT3 encoding error detected.	RO/LH	N/A
20.3	Reserved	Ignore.	RO	N/A
20.2	Low Voltage	1 = Low voltage fault on VCC has occurred. 0 = No fault.	RO/LH	N/A
20.1	Reserved	Ignore.	RO	N/A
	PLL Lock (100BASE-TX)	1 = 100BASE-TX/FX Receiver PLL is not locked. 0 = PLL is locked.	RO/LH	N/A

LXT970 Fast Ethernet Transceiver

NOTES

JULY 1997

ADVANCE INFORMATION

LXT974

Fast Ethernet 10/100 Quad Transceiver

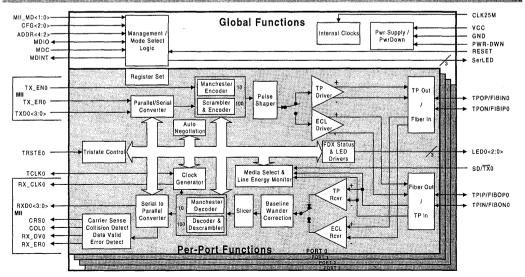
General Description

The LXT974 is a 4-port Fast Ethernet Transceiver which supports IEEE 802.3 physical layer applications at both 10 Mbps and 100 Mbps. It provides all the active circuitry to interface four 802.3 media independent interface (MII) compliant controllers to 10BASE-T and/or 100BASE-TX media. Each LXT974 PHY port also provides a PECL-type interface for 100BASE-FX fiber networks.

The LXT974 provides a complete multi-mode MII. In addition to the standard MII mode, LXT974 offers a Super MII mode which multiplexes a single MII to all 4 ports for switch applications, and a Shared MII for repeater applications. The LXT974 provides three separate LED drivers for each of the four PHY ports and a serial LED interface.

In addition to standard CSMA/CD Ethernet, the chip supports full duplex operation at 10 Mbps and 100 Mbps.

The LXT974 is fabricated with an advanced CMOS process and requires only a single 5 volt power supply.


Applications

- 10BASE-T, 10/100-TX, or 100BASE-FX Switches
- 10BASE-T, 10/100-TX, or 100BASE-FX Repeaters

Features

- Four independent IEEE 802.3-compliant 10BASE-T or 100BASE-TX ports in a single chip
- · 100BASE-FX fiber optic capable
- Standard CSMA/CD or full duplex operation at 10 or 100 Mbps
- Compliant with IEEE 802.3u auto-negotiation protocol and with legacy 10BASE-T and 100BASE-T systems without auto-negotiation capability
- On-chip transmit and receive filtering for 10BASE-T and 100BASE-TX
- · Baseline wander correction
- Configurable on-chip LED drivers as well as serial LED output
- Super MII Interface Mode for reducing customer ASIC pin requirements.
- Configurable through MII serial port or via external control pins
- CMOS process with single 5 volt supply operation
- · Available in 160-pin MQUAD

LXT974 Block Diagram

NOTES

Ethernet Hub and Repeater Products

12

1997 Communications Data Book

DATA SHEET

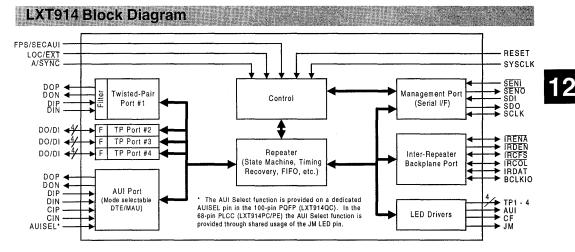
JUNE 1997 Revision 2.2

LXT914 Flexible Quad Ethernet Repeater

General Description

The LXT914 is an integrated multi-port repeater designed for mixed-media networks. It provides all the active circuitry required for the repeater function in a single CMOS device. It includes one Attachment Unit Interface (AUI) port and four 10BASE-T transceivers. The AUI port is mode selectable: DTE mode allows connection of an external transceiver (10BASE2, 10BASE5, 10BASE-T or FOIRL) or a drop cable. MAU mode creates a MAU output allowing direct connection to another DTE interface. The 10BASE-T transceivers are entirely self-contained with internal filters which simplify the design work required for FCC-compliant EMI performance.

An inter-repeater backplane interface allows 128 or more 10BASE-T ports to be cascaded together. In addition, a serial port provides information for network management.


The LXT914 requires only a single 5-volt power supply due to an advanced CMOS fabrication process.

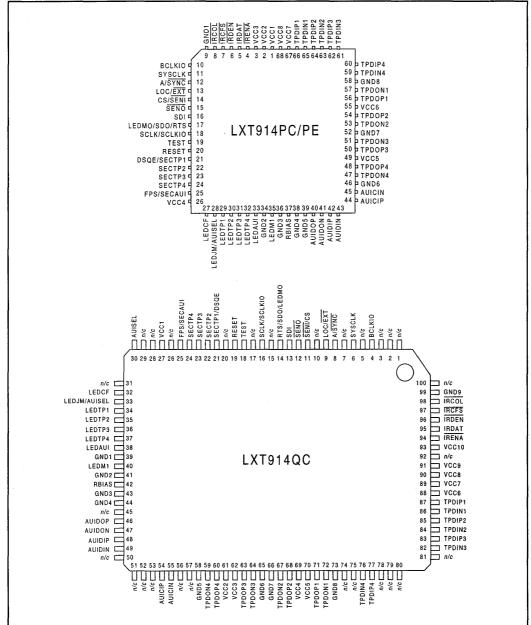
Applications

- · LAN Repeaters
- Integrated Repeaters
- · Switched Repeater Clusters

Features

- Four integrated 10BASE-T transceivers and one AUI transceiver on a single chip
- · Programmable DTE/MAU interface on AUI port
- Seven integrated LED drivers with four unique operational modes
- · On-chip transmit and receive filtering
- Automatic partitioning of faulty ports, enabled on an individual port basis
- · Automatic polarity detection and correction
- Programmable squelch level allows extended range in low-noise environments
- Synchronous or asynchronous inter-repeater backplane supports "hot swapping"
- Inter-repeater backplane allows cascaded repeaters, linking 128 or more 10BASE-T ports
- · Serial port for selecting programmable options
- 68-pin PLCC (Commercial or Extended temp range)
- 100-pin PQFP (Commercial temp range)

LXT914 Flexible Quad Ethernet Repeater


TABLE OF CONTENTS

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS	12-3
FUNCTIONAL DESCRIPTION	12-5
Introduction	
External Interfaces	
10BASE-T Ports	
AUI Port	
Serial Port	12-9
Inter-Repeater Backplane	12-9
Internal Repeater Circuitry	
Initialization	12-10
Local Management Mode Initialization	12-10
External Management Mode Initialization	12-14
10BASE-T Port Operation	
10BASE-T Reception	12-15
10BASE-T Transmission	12-15
10BASE-T Link Integrity Testing	12-15
AUI Port Operation	
AUI Reception	12-15
AUI Transmission	12-15
AUI Mode Selection (DTE/MAU)	12-16
Collision Handling	12-16
Security Mode	12-16
LED Display	12-16
APPLICATION INFORMATION	12-19
12-Port Hub Repeater Schematic	12-20
8-Port Print or File Server Schematic	12-24
	10.00
TEST SPECIFICATIONS	
Absolute Maximum Ratings	
Recommended Operating Conditions	
I/O Electrical Characteristics	
AUI Electrical Characteristics	
Twisted-Pair Electrical Characteristics	
IRB Electrical Characteristics	
Switching Characteristics	
Serial Port Timing	
Inter-Repeater Bus Timing	12-29

LXT914 PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Figure 1: LXT914 Pin Assignments

LXT914 Flexible Quad Ethernet Repeater

Pin #		Cumbal	1/0	Description
PLCC	PQFP	Symbol	1/0	Description
1	27	VCC1	—	Power Supply Inputs. These pins each require a +5 VDC power supply. The
2	61	VCC2	—	various pins may be supplied from a single power source, but special de-cou- pling requirements may apply. Each VCC input must be within ±0.3 V of every
3	62	VCC3		other VCC input.
26	69	VCC4	—	
49	70	VCC5	—	
55	88	VCC6		
67	89	VCC7		
68	90	VCC8	—	
_	91	VCC9		
—	93	VCC10		
9	39	GND1		Ground. These pins provide ground return paths for the various power supply
34	41	GND2		pins.
36	43	GND3	—	
38	44	GND4	—	
39	58	GND5	—	
46	65	GND6		
52	66	GND7		
58	73	GND8	—	
_	99	GND9	_	
37	42	RBIAS	—	Bias. This pin provides bias current for the internal circuitry. The 100 μ A bias current is provided through an external 12.4 k Ω resistor to ground.
10	4	BCLKIO	I/O	Backplane Clock. This 10 MHz clock synchronizes multiple repeaters on a common backplane. In the synchronous mode, BCLKIO must be supplied to all repeaters from a common external source. In the asynchronous mode, BCLKIO is supplied only when a repeater is outputting data to the bus. Each repeater outputs its internally recovered clock when it takes control of the bus. Other repeaters on the backplane then sync to BCLKIO for the duration of the transmission.
11	6	SYSCLK	Ι	System Clock. The required 20 MHz system clock is input at this pin. Clock must have a 40-60 duty cycle with < 10 ns rise time.

Table 1: LXT914 Power, Ground and Clock Signal Descriptions

LXT914 Pin Assignments and Signal Descriptions

PLCC	PQFP	Symbol	1/0	Description		
4	94	IRENA	I/O	Inter-Repeater Backplane Enable. This pin allows individual LXT914 repeaters to take control of the Inter-Repeater Backplane (IRB) data bus		
				(IRDAT). The IRENA bus must be pulled up locally by a 330 Ω resistor. ¹		
5	95	IRDAT	I/O	IRB Data. This pin is used to pass data between multiple repeaters on the IRB.		
				The IRDAT bus must be pulled up locally by a 330 Ω resistor. ¹		
6	96	IRDEN	0	IRB Driver Enable. The IRDEN pin is used to enable external bus drivers which may be required in synchronous systems with large backplanes. This is an active Low signal, maintained for the duration of the data transmission. IRDEN must be pulled up locally by a 330 Ω resistor.		
7	97	IRCFS	I/O	IRB Collision Flag Sense (IRCFS) and IRB Collision (IRCOL). These two pins		
8	98	IRCOL	I/O	are used for collision signalling between multiple LXT914 devices on the Inter- Repeater Backplane (IRB). Both the IRCFS bus and the IRCOL bus must be pulled up globally with 330 Ω resistors. (IRCFS requires a precision resistor [±1%].) ²		
used of 2. IRCES	 IRENA and IRDAT can be buffered between boards in multi-board configurations. Where buffering is used, a 330 Ω pull-up resistor can be used on each signal, on each board. Where no buffering is used, the total impedance should be no less than 330 Ω IRCFS and IRCOL cannot be buffered. In multi-board configurations, the total impedance on IRCOL should be no smaller. than 330 Ω IRCFS should be pulled up only once, by a single 330 Ω, 1% resistor. 					

Table 2: LXT914 Inter-Repeater Backplane Signal Descriptions

Table 3: LXT914 Mode Select and Control Signal Descriptions

PLCC	PQFP	Symbol	1/0	Description
12	8	A/SYNC	Ι	Backplane Sync Mode Select. This pin selects the backplane sync mode. When this pin is left floating an internal pull-up defaults to the Asynchronous mode (A/SYNC High). In the asynchronous mode 12 or more LXT914s can be connected on the backplane, and an external 10 MHz backplane clock source is not required. When the synchronous mode is selected (A/SYNC tied Low), 32 or more LXT914s can be connected to the backplane and an external 10 MHz backplane clock source is required.
13.	9	LOC/EXT	Ι	Management Mode Select. This pin selects the management mode. When this pin is left floating, an internal pull-up defaults to the Local management mode (LOC/EXT High). In the Local mode, setup parameters are downloaded from an EEPROM during initialization. Once initialized with the setup parameters, the repeater functions independently.
28	33	LEDJM/ AUISEL	I/O	LED Driver or DTE/MAU Select. At reset, this pin selects the mode of the AUI port. If left floating, an internal pull-down device forces the AUI port to DTE mode. If pulled High with an external resistor, the port changes to a MAU, in which case the functions of the LEDJM pin are disabled and the default LED mode (Refer to Table 7) is not available.
	30	AUISEL	Ι	DTE/MAU Select. This pin changes the mode of the AUI port independent of the condition at reset. This function is available only in the 100-pin PQFP package.
17 35	14 40	LEDM0 LEDM1	I/O I/O	LED Mode 0 & 1 Select. These two pins select one of four possible LED modes of operation. The Functional Description section describes the four modes.

PLCC	PQFP	Symbol	1/0	Description
14	11	SENI	I	Serial Enable Input. This active Low input is used to access the LXT914 serial interface. To write to the serial input (SDI), an External Management Device (EMD) must drive this pin from High to Low. The input must be asserted Low concurrent with the appearance of data on SDI and remain Low for the duration of the serial input transaction.
15	12	SENO	0	Serial Enable Output. This active Low output is used to access the serial interface of an EMD. When the LXT914 sends a data stream to the EMD through the serial port (SDO), this output transitions from High to Low and remains Low for the duration of the serial transmission.
16	13	SDI	I	Serial Data Input. This pin is the input for the EMD serial interface. Setup and operating parameters are supplied to the LXT914 in a serial data stream through this port when operating in the External Management Mode.
17	14	SDO	I/O	Serial Data Output. After each packet transmission or interrupt event, the LXT914 reports status information to the EMD in a serial data stream through this port.
18	16	SCLK	I	Serial Clock. This 10 MHz clock synchronizes the serial interface between the LXT914 and the EMD. Both devices must be supplied from the same clock source. In synchronous mode, SCLK and BCLK may be tied together.

Table 4: LXT914 Serial Port Signal Descriptions (External Management Mode)

Table 5: LXT914 Serial Port Signal Descriptions (Local Management Mode)

PLCC	PQFP	Symbol	1/0	Description
14	11	CS	0	Chip Select. The LXT914 is designed for use with an EEPROM or similar device which may be used to store setup parameters and serially download them to the LXT914 during initialization. In a single-device application or in the first device of a daisy chain application, this pin is an active High Chip Select output used to enable the EEPROM.
		<u>SENI</u>	I	Serial Enable Input. In subsequent devices of a daisy-chain configuration, a High-to-Low transition on this pin enables the serial input port (SDI). The input must be asserted concurrent with the appearance of data on SDI and remain Low for the duration of the serial input transaction.
15	12	SENO	0	Serial Enable Output. During initialization, the LXT914 accepts 48 bits of setup data through the SDI port. After the 48th bit, the LXT914 asserts this pin Low. When multiple LXT914 devices are connected in a daisy-chain, this output is tied to the SENI input of the next device in the chain. Thus each device in the chain is serially enabled by the previous device until all the devices have read in their 48 bits of setup data.
16	13	SDI	I	Setup Data Input. This pin is the serial input port for the setup parameters (48 bits). This pin should be tied Low if no EEPROM is present.
17	14	RTS	VО	Request To Send. In a single-device application or in the first device of a daisy chain application, this pin outputs a 9-bit, active High sequence. This pin must be tied to the EEPROM DI input to trigger the EEPROM to download its stored data. In subsequent devices this pin is not used.
18	16	SCLKIO	I/O	Serial Clock. A 1 MHz clock provided by the first LXT914 in the chain to all subsequent repeaters and the EEPROM. In the Local mode all repeaters have their SCLKIO pins tied together.

1

LXT914 Pin Assignments and Signal Descriptions

PLCC	PQFP	Symbol	1/0	Description
19	18	TEST	I	Test Mode Select. This pin must be tied Low for normal operation.
20	19	RESET	I	RESET. This pin resets the LXT914 circuitry when pulled High for ≥ 1 ms.
21	21	DSQE (Local)	I	DSQE. In Local Mode, this pin controls the SQE function. When High, the SQE function of the AUI port is disabled. When Low, SQE is enabled.
		SECTP1 (External)	Ι	Security Mode Select (TP Port 1). In External Mode, this pin enables the security mode for twisted-pair port 1. When pulled High, the LXT914 Jams the port. This pin must be tied Low if external security control is not required.
22 23 24	22 23 24	SECTP2 SECTP3 SECTP4 (External)	I I I	Security Mode Select (TP Ports 2-4). In External Mode, these pins enable the security mode for the respective twisted-pair ports (TP1 through TP4). When pulled High, the LXT914 jams the affected port. The SEC pins must be tied Low if external security control is not required.
25	25	FPS (Local)	I	First Position Select. In the Local mode this pin identifies the first device in a daisy chain configuration. When tied High (First position), the LXT914 controls the local EEPROM by providing clock and handshaking. When tied Low (Not First), the LXT914 will accept CLK and data in its turn from previous LXT914s in the data chain.
		SECAUI (External)	Ι	Security Mode Select (AUI Port). In the External mode this pin enables the security mode for the AUI port. When pulled High, the LXT914 jams the AUI port. The security feature is available only in External management mode.

Table 6: LXT914 Miscellaneous Control Signal Descriptions

Table 7: LXT914 LED Driver Signal Descriptions

PLCC	PQFP	Symbol	1/0	Description
27	32	LEDCF	0	Collision & FIFO Error LED Driver. This tri-state LED driver pin reports collisions and FIFO errors. It pulses Low to report collisions, and pulses High to report FIFO errors. When this pin is connected to the anode of one LED and to the cathode of a second LED, the LXT914 will simultaneously monitor and report both conditions independently.
28	33	LEDJM	0	Jabber/MJLP & Manchester Code Violation LED Driver. This tri-state LED driver pin reports jabber and code violations. It pulses Low to report MAU Jabber Lockup Protection (MJLP), and pulses High to report Manches- ter code violations. When this pin is connected to the anode of one LED and to the cathode of a second LED, the LXT914 will simultaneously monitor and report both conditions independently.
29	34	LEDTP1	0	Twisted-Pair Port LED Drivers. These tri-state LED drivers use an alternat-
30	35	LEDTP2	0	ing pulsed output to report TP port status. Each pin should be tied to a pair of
31	36	LEDTP3	0	LEDs (to the anode of one LED and the cathode of a second LED). When connected this way, each pin reports five separate conditions (receive, trans-
32	37	LEDTP4	0	mit, link integrity, reverse polarity and auto partition).
33	38	LEDAUI	0	AUI Port LED Driver. This tri-state LED driver uses an alternating pulsed output to report AUI port status. This pin should be tied to a pair of LEDs (to the anode of one LED and the cathode of a second LED). When connected this way, this pin reports five separate conditions (receive, transmit, receive jabber, receive collision and auto partition.

LXT914 Flexible Quad Ethernet Repeater

PLCC	PQFP	Symbol	1/0	Description
40	46	AUIDOP	0	AUI Data Outputs (Positive and Negative). These pins are the positive and
41	47	AUIDON	0	negative data outputs for the AUI Port. In MAU Mode these pins are connected to the DI pins of the DTE.
42	48	AUIDIP	Ι	AUI Data Input (Positive and Negative). These pins are the positive and neg-
43	49	AUIDIN	I	ative data inputs for the AUI Port. In MAU Mode, these pins are connected to the DO pins of the DTE.
44	54	AUICIP	I/O	AUI Collision (Positive and Negative). These pins are the positive and nega-
45	55	AUICIN	I/O	tive Collision inputs for the AUI Port in DTE Mode. In MAU Mode, these pins output a collision indication to the DTE.
56	71	TPDOP1	0	Twisted-Pair Data Outputs (Positive and Negative). These pins are the pos-
57	72	TPDONI	0	itive (TPDOP1-4) and negative (TPDON1-4) outputs to the network from the
54	68	TPDOP2	0	respective twisted-pair ports.
53	67	TPDON2	0	
50	63	TPDOP3	0	
51	64	TPDON3	0	
48	60	TPDOP4	0	
47	59	TPDON4	0	
66	87	TPDIP1	Ι	Twisted-Pair Data Inputs (Positive and Negative). These pins are the posi-
65	86	TPDIN1	Ι	tive (TPDIP1-4) and negative (TPDIN1-4) inputs from the network to the
64	85	TPDIP2	I	respective twisted-pair ports.
63	84	TPDIN2	Ι	
62	83	TPDIP3	I	
61	82	TPDIN3	I	
60	77	TPDIP4	Ι	
59	76	TPDIN4	I	

Table 8: LXT914 Repeater Port Signal Descriptions

FUNCTIONAL DESCRIPTION

Introduction

The LXT914 is an integrated hub repeater for 10BASE-T networks. The hub repeater is the central point for information transfer across the network. The LXT914 offers multiple operating modes to suit a broad range of applications ranging from simple 4-port stand-alone hubs or attachments for print and file servers, up to intelligent 128-port enterprise systems with microprocessor/gate array management.

The main functions of the LXT914 hub repeater are data recovery and re-transmission and collision propagation. Data packets received at the AUI or 10BASE-T ports are detected and recovered by the port receivers before being passed to the repeater core circuitry for re-timing and retransmission. Data packets received through the IRB port are essentially passed directly to the core for retransmission. After recovery of a valid data packet, the repeater broadcasts it to all enabled stations, except the originator station.

External Interfaces

The LXT914 includes four 10BASE-T ports with internal filters. The LXT914 also includes an Attachment Unit Interface (AUI) port, a serial port and an Inter-Repeater Backplane (IRB) port. The serial port allows an external device such as an EEPROM to download setup parameters to the repeater. In more complex designs the serial port can also be used to monitor repeater status. The IRB port enables multiple LXT914 devices to be cascaded, creating a large, multi-port repeater.

10BASE-T Ports

The four 10BASE-T transceiver ports are completely selfcontained. Since the transmitters and receivers include the required filtering, only simple, inexpensive transformers are required to complete the 10BASE-T interface. Each individual Twisted-Pair (TP) port is implemented in accordance with the IEEE 802.3 10BASE-T standard.

AUI Port

The AUI port mode is selectable (DTE mode or MAU mode). With DTE mode selected, the AUI port allows connection of an external transceiver (10BASE2, 10BASE5, 10BASE-T or FOIRL) or a drop cable. With MAU mode selected, the AUI port establishes a MAU output allowing direct connection to another DTE interface.

Serial Port

The serial port provides the management interface to the LXT914. Refer to Test Specifications for serial port timing. The serial port can be either unidirectional or bidirectional, depending on the management mode selected. In the Local management mode the serial port is unidirectional (input only), and is used only to download setup parameters during initialization. The Local mode is intended for use with a simple EEPROM, but the serial port may be tied Low if an EEPROM is not required.

In the External management mode, the serial port is bidirectional (input for setup parameters, output for status reports). The External mode is intended for use with an External Management Device (EMD) and a Media Access Controller (MAC). The EMD (typically a gate array) communicates with a microprocessor (e.g., Intel 8051) and can control up to three LXT914 repeaters. This simplifies design of a relatively standard 12-port repeater on a single printed circuit board.

Inter-Repeater Backplane

The Inter-Repeater Backplane (IRB) allows several LXT914s to function as a single repeater. Refer to Test Specifications for IRB timing. The IRB also allows several multi-repeater boards to be integrated in a standard rack and to function as a single unit. The IRB supports "hot swapping" for easy maintenance and troubleshooting. Each individual repeater distributes recovered and re-timed data to other repeaters on the IRB for broadcast on all ports simultaneously. This simultaneous rebroadcast allows the multi-repeater system to act as a single large repeater unit. The maximum number of repeaters on the IRB is limited by bus loading factors such as parasitic capacitance. The IRB can be operated synchronously or asynchronously.

Synchronous IRB Operation

In the synchronous mode, a common external source provides the 10 MHz backplane clock (BCLKIO) and the 20 MHz system clock (SYSCLK) to all repeaters. BCLKIO must be synchronous to SYSCLK and may be derived from SYSCLK using a divide-by-two circuit. In the synchronous mode 32 or more LXT914 repeaters may be connected on the IRB, providing 128 10BASE-T ports and 32 AUI ports.

12

LXT914 Flexible Quad Ethernet Repeater

Asynchronous IRB Operation

In the asynchronous mode an external BCLKIO source is not required. The repeaters run independently until one takes control of the IRB. The transmitting repeater then outputs its own 10 MHz clock onto the BCLKIO line. All other repeaters sync to that clock for the duration of the transmission. In the asynchronous mode 12 or more LXT914 devices may be connected to the IRB, providing 48 10BASE-T ports and 12 AUI ports.

NOTE

The maximum number of repeaters which may be linked on the backplane is limited by board design factors. The numbers listed above are engineering estimates only. Stronger drivers and reduced capacitive loading in PCB layout may allow an increased device count.

Internal Repeater Circuitry

The basic repeater circuitry is shared among all the ports within the LXT914. It consists of a global repeater state machine, several timers and counters and the timing recovery circuit. The timing recovery circuit includes a FIFO for re-timing and recovery of the clock which is used to clock the receive data out onto the IRB.

The shared functional blocks of the LXT914 are controlled by the global state machine (Figure 2). This diagram and all associated notations used are in strict accordance with section 9.6 of the IEEE 802.3 standard.

The LXT914 also implements the Partition State Diagram as defined by the IEEE 802.3 standard and shown in Figure 3. The value of CCLimit as implemented in the LXT914 is 64.

The CCLimit value sets the number of consecutive collisions that must occur before the port is subjected to automatic partitioning. Auto-partition/re-connection is also supported by the LXT914 with Tw5 conforming to the standard requirement of 450 to 560 bit times.

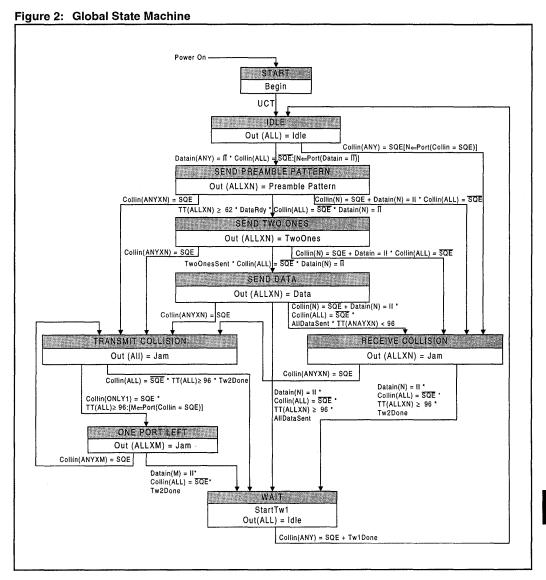
Initialization

The following description applies to the initial power-on reset and to any subsequent hardware reset. When a reset occurs (RESET pin pulled High for > 1 ms), the device senses the levels at the various control pins (see Table 3) to determine the correct operating modes for Management, LEDs, and the AUI port functions.

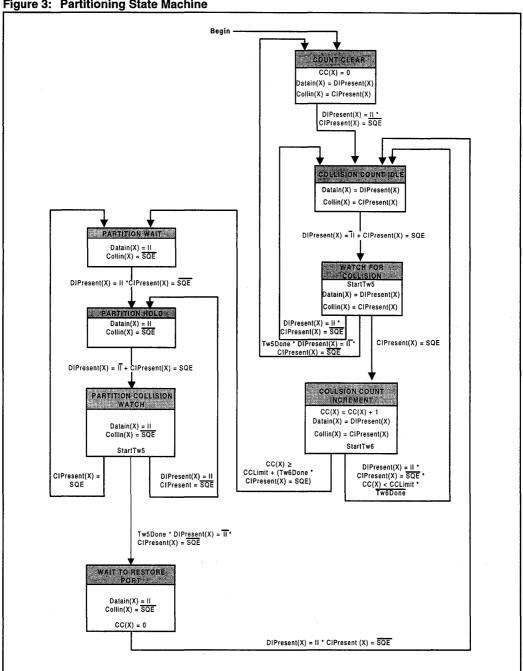
Local Management Mode Initialization

An internal pull-up causes the LXT914 to default to the Local management mode unless the LOC/EXT pin is tied Low. In the Local mode the serial port is a unidirectional interface used only to download setup parameters from an external device.

In a Locally managed multiple-repeater (daisy chain) configuration, the first repeater in the chain performs special functions. The First Position Select (FPS) pin is used to establish position (FPS High = First, FPS Low = Not First). After establishing the Hardware mode, each LXT914 monitors the FPS pin to determine its position.


If FPS is High (First Position), the repeater performs the following functions:

- Outputs a 1 MHz Serial Clock (SCLK). SCLK is derived from the 20 MHz SYSCLK input in ASYNC mode and from BCLKIO in SYNC mode; it is supplied to the SCLK inputs of all other repeaters on the bus and to the EEPROM.
- 2. Asserts Chip Select (CS) High to enable the EEPROM.
- 3. Outputs a serial 9-bit request-to-send (RTS) strobe. The programmable device responds to the RTS strobe with a serial data stream containing the setup parameters for all repeaters in the chain.
- 4. Clocks the first 48 serial data input (SDI) bits from the EEPROM into its setup register. Refer to Table 9 and Table 10 for Setup Register bit assignments.
- 5. Asserts Serial Enable Output (SENO) Low to enable the next repeater in line.


The second repeater has FPS tied Low and Serial Enable Input (SENI) connected to the Serial Enable Output (SENO) of the first repeater. When enabled by a Low on SENI, each repeater downloads its portion of the stream, then stops accepting data and asserts SENO Low. The SENO pin is linked to the SENI input of the next repeater. This enables the next repeater to clock in its 48-bit word and so on.

If FPS is Low (Not First Position), the repeater performs the following functions:

- 1. Syncs to the 1 MHz Serial Clock (SCLK) input. SCLK is supplied by the First Position repeater.
- 2. Responds to SENI Low by enabling the SDI port.
- 3. Clocks 48 bits from the EEPROM into its setup register through the SDI port.
- 4. Asserts SENO Low to enable the next repeater in line.

12

Figure 3: Partitioning State Machine

Register	D7	D6	D5	D4	D3	D2	D1	DO
SR(0)	DISLI3	DISLI2	DISLI1	DISAP4	DISAP3	DISAP2	DISAP1	DISAPA
SR(1)	DISTX2	DISTX1	DISTXA	DPRC4	DPRC3	DPRC2	DPRC1	DISLI4
SR(2)	ERSQ1	DISRX4	DISRX3	DISRX2	DISRX1	DISRXA	DISTX4	DISTX3
SR(3)	DFIFOE	DPFRM	DSQE	DMCV	ERXJAB	ERSQ4	ERSQ3	ERSQ2
SR(4)	RES							
SR(5)	RES							

Table 9: Setup Register Bit Assignments

Table 10: Setup Register Bit Definitions

Bit	Definition				
DISAPx	1 = Disable Auto-Partitioning on Port x				
DISLIx	= Disable Link Integrity on Port x (Twisted-pair ports only)				
DPRCx	1 = Disable Polarity Reverse detection and Correction on Port x (Twisted-pair ports only)				
DISTXx	= Disable Transmit on Port x				
DISRXx	1 = Disable Receive on Port x				
ERSQx	1 = Enable Reduced Squelch on Port x (Twisted-pair ports only)				
ERXJAB	1 = Enable Receive JAB (Long Packet) (Global)				
DMCV	1 = Disable entering Tx Collision state on reception of Manchester Code Violation				
DSQE	1 = Disable Signal Quality Error to provide heartbeat (AUI port only)				
DPFRM	1 = Disable End-of-Frame checking for polarity correction (Global)				
DFIFOE	1 = Disable entering Tx Collision state on FIFO over/underflow condition (Global)				
DMJLP	1 = Disable MJLP counter (Global)				
RES	Reserved. Must be set to 0.				

External Management Mode Initialization

The LXT914 operates in the External management mode when the LOC/EXT pin is tied Low. In the External mode, the serial port is a bidirectional interface between the LXT914 and an external management device (EMD). The serial port is used to download initial setup parameters to the repeater and to monitor status reports from the repeater. The LXT914 setup parameters can be changed at any time by the EMD. The initialization process for each repeater in a managed mode configuration is the same, regardless of its position; each repeater is connected directly to the EMD. Each LXT914 initializes as follows:

- 1. Syncs to the 10 MHz Serial Clock (SCLK) input. SCLK must be supplied from an external source.
- 2. Responds to SENI Low by enabling the SDI port.
- 3. Clocks 48 bits from the EMD into its setup register through the SDI port.
- 4. Once initialized, the LXT914 reports its status in a 48bit serial stream after every packet transmission or interrupt event. Refer to Table 11 and Table 12 for packet status register bit assignments and definitions.

Register	D7	D6	D5	D4	D3	D2	D1	D0
PSR(0)	COL2	COLI	COLA	RX4	RX3	RX2	RX1	RXA
PSR(1)	PR2	PR I	LLS4	LLS3	LLS2	LLSI	COL4	COL3
PSR(2)	SPA	AP4	AP3	AP2	AP1	APA	PR4	PR3
PSR(3)	LP3	LP2	LPI	LPA	SP4	SP3	SP2	SP1
PSR(4)	RXJABA	MJLP	LCOL4	LCOL3	LCOL2	LCOL1	LCOLA	LP4
PSR(5)	RES	RXCOL	MANCV	FIFOER	RXJAB4	RXJAB3	RXJAB2	RXJAB1

Table 11: Packet Status Register Bit Definitions

Table 12: Packet Status Register Bit Definitions

Bit ¹	Definition						
RXx	Received Packet on Twisted-Pair Port 1-4 or on AUI Port						
COLx	Transmit Collision of Twisted -Pair Port 1-4 or on AUI Port						
LLSCx	Link Loss State on Twisted-Pair Port 1-4 or on AUI Port						
PRx	Polarity reversed on Twisted-Pair Port 1-4 or on AUI Port						
APx	Auto-Partition circuit isolated Twisted-Pair Port 1-4 or the AUI Port						
SPx	Short Packet (less than 74 bits) on Twisted-Pair Port 1-4 or on AUI Port						
LPx	Long Packet (more than 1.3 ms) on Twisted-Pair Port 1-4 or on AUI Port						
LCOLx	Late Collision on Twisted-Pair Port 1-4 or on AUI Port						
MJLP	MAU Jabber Lockup Protection						
RXJABx	Receive Jabber Lockup Protection						
FIFOER	FIFO overflow/underflow						
MANCV	Manchester Code Violation						
RXCOL	Receive Collision on the AUI Port						
RES	Reserved. Not used						

MCLEVEL

10BASE-T Port Operation

10BASE-T Reception

Each LXT914 10BASE-T port receiver acquires data packets from its twisted-pair input (TPDIP/TPDIN). An internal RC filter and an intelligent squelch function discriminate noise from link test pulses and valid data streams. The receive function is activated only by valid data streams (above the squelch level and with proper timing). If the differential signal at the DI circuit inputs falls below 75% of the threshold level (unsquelched) for eight bit times (typical), the port receiver enters the idle state.

Programmable Internal Squelch Level

The 10BASE-T port receivers have two squelch levels: a normal level or default setting and a reduced level squelch (-4.5 dB) selected when the ERSQx is set in the Setup register. When used with Low noise media such as shielded twisted-pair cabling, the reduced squelch level allows longer loop lengths in the network.

Polarity Detection and Correction

The LXT914 10BASE-T ports detect and correct for reversed polarity by monitoring link pulses and endof-frame sequences. A reversed polarity condition is declared when the port receives sixteen or more incorrect link pulses consecutively, or four frames with reversed start-of-idle sequence. In these cases the receiver reverses the polarity of the signal and thereby corrects for this failure condition. If the port enters the link fail state and no valid data or link pulses are received within 96 to 128 ms, the polarity is reset to the default non-flipped condition. (If Link Integrity Testing is disabled, polarity detection is based only on received data.)

10BASE-T Transmission

Each LXT914 10BASE-T port receives NRZ data from the repeater core and passes it through a Manchester encoder. The encoded data is then transmitted to the twisted-pair network (the DO circuit). The advanced integrated pulse shaping and filtering network produces the pre-distorted and pre-filtered output signal to meet the 10BASE-T jitter template. An internal continuous resistor-capacitor filter is used to remove any high-frequency clocking noise from the pulse shaping circuitry. Integrated filters simplify the

design work required for FCC compliant EMI performance. During idle periods, the LXT914 10BASE-T ports transmit link integrity test pulses in accordance with the 802.3 10BASE-T standard.

Data packets transmitted by the LXT914 contain a minimum of 56 preamble bits before the start of frame delimiter (SFD). In the Asynchronous mode, preamble regeneration takes place on the transmit side. In the Synchronous mode, the preamble is regenerated on the receive side and distributed via the IRB. If the total packet is less than 96 bits including the preamble, the LXT914 extends the packet length to 96 bits by appending a Jam signal (1010...) at the end.

10BASE-T Link Integrity Testing

The LXT914 fully supports the 10BASE-T Link Integrity test function. The link integrity test determines the status of the receive side twisted-pair cable. Link integrity testing is enabled unless disabled via the DISLIx bit in the Setup register. When enabled, the receiver recognizes link integrity pulses transmitted in the absence of data traffic. With no data packets or link integrity pulses within 100 (\pm 50) ms, the port enters a link fail state and disables its transmitter. The port remains in the link fail state until it detects three or more data packets or link integrity pulses.

AUI Port Operation

AUI Reception

The LXT914 AUI port receiver acquires data packets from the network (AUIDIP/AUIDIN). Only valid data streams above the squelch level activate the receive function. If the differential signal at the DI circuit inputs falls below 75% of the threshold level (unsquelched) for 8 bit times (typical), the AUI receiver enters the idle state.

AUI Transmission

The LXT914 AUI port receives NRZ data from the repeater core, and passes it through a Manchester encoder. The encoded data then goes out on the network (AUIDOP/AUI-DON).

AUI Mode Selection (DTE/MAU)

The LXT914 allows the user to change the mode of the AUI from a DTE to a MAU interface. This option is available on both 68- and 100-pin versions except as follows:

- When using the LEDJM/AUISEL pin to select the AUI interface mode the following is true: After reset the state of the LEDJM/AUISEL pin is sensed for the correct mode. The LEDJM/AUISEL pin when floated or pulled Low will select the DTE interface and the LEDJM/AUISEL output is still available. When the LEDJM/AUISEL pin is pulled High the MAU interface is selected and the LEDJM/AUISEL function is unavailable.
- The 100-pin PQFP has an additional pin, AUISEL (pin 30). When using this pin to select the AUI interface mode the LEDJM/AUISEL pin is still a functional LED driver. The AUISEL pin is not latched after reset and is actively polled to determine which AUI interface mode is to be used. Refer to Table 13.

App #	AUISEL (PQFP only)	LEDJM/ AUISEL (both pkgs)	AUI Mode	Available LED Modes	
1	Low	Low	DTE	default, 0-3	
2	Low	High	MAU	1-3	
31	High	Low	MAU	default, 0-3	
4	High	High	MAU	1-3	
4 1. Ap		only when using	A		

Table 13: AUI Mode Selection (DTE/MAU)

Collision Handling

A collision occurs when two or more repeater ports receive simultaneously, or when the AUI CIP/CIN signal is active. The LXT914 fully complies with the IEEE 802.3 collision specifications, both in individual and multi-repeater applications. In multiple-repeater configurations, collision signaling on the IRB allows all repeaters to share collision parameters, acting as a single large repeater.

IRCOL is a digital open-drain pin. **IRCFS** is an analog/digital port. The **IRCOL** and **IRCFS** lines are pulled up globally (*i.e.*, each signal requires one pull-up resistor for all boards). If there are eight 3-repeater boards in the system, all eight boards share a single pull-up resistor for **IRCOL** and a single pull-up resistor for **IRCFS**. The global pull-up may be located on one of the boards, or on the backplane. The \overline{IRCFS} line requires a precision (± 1%) resistor.

The IRENA, IRDAT and IRDEN lines are each pulled up locally (one pull-up resistor per board) if external bus drivers are used. If no bus drivers are used then only one global pull-up per signal is used.

Security Mode

The LXT914 security mode is fully transparent to the user. In the External management mode, the security feature is available for all four TP ports and the AUI port. In the Local mode, security is available for the TP ports only (the SECAUI input is reassigned as FPS). The security inputs are normally held Low to disable the security feature. Any input can independently be pulled High to scramble the respective port for any given length of time. For applications which do not require security control, the SEC pins must be tied Low.

The security mode pins are real time response inputs. This allows the board designer to screen the destination address with an application specific device and (on match of the destination address) to assert the security input to jam the respective port for the given frame. This real time detection and jam assertion method provides the flexibility to implement customer specific solutions. The destination address decoding and security signal assertion functions can be integrated into the external management device.

LED Display

The LED display interface consists of seven integrated LED drivers, one for each of the five network ports and two for common functions. Each pin provides a three-state pulsed output (+5 V, high Z, and 0 V) which allows multiple conditions to be monitored and reported independently. Table 14 shows the LED Mode selected with each LEDM1 and LEDM0 combination. Figure 4 shows the LED Driver output conditions, and Tables 15 through 18 list the repeater states associated with each of the five conditions.

NOTE

If LED mode 0 is selected and the LEDJM/ AUISEL pin is High (which selects MAU Mode), the device defaults to LED Mode 1. LED Mode 0 is not available when LEDJM/AUISEL is pulled High.

LXT914 Functional Description

	LEDM1	LEDMO			
PLCC pin	35	17	LED Mode Selected		
PQFP pin	40	14			
	Low	Low	0 (default) ¹		
	Low	High	1		
	High	Low	2		
	High	High	3		

Table 15: Mode 0 (Default) LED Truth Table

LED Mode 0 (Default). This mode is selected when LEDM1 and LEDM0 are floating or pulled Low. Refer to Table 15. This mode is not available when using the LEDJM/AUISEL pin to select a MAU interface in the AUI port. In this case, the LED Mode defaults to Mode 1.

LED Mode 1. This mode is selected when LEDM1 is floating or pulled Low and LEDM0 is pulled High by a pull-up resistor. Refer to Table 16.

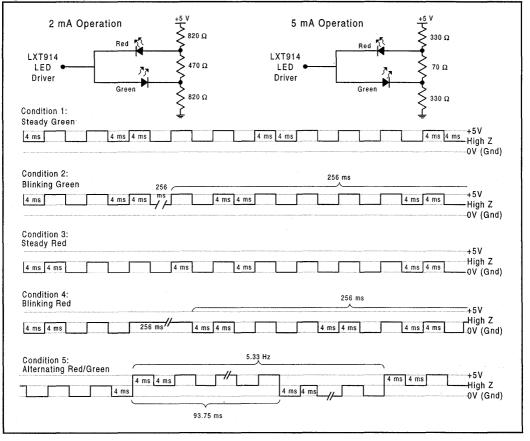
LED Mode 2. This mode is selected when LEDM1 is pulled High by a pull-up resistor and LEDM0 is floating or pulled Low. Refer to Table 17.

LED Mode 3. This mode is selected when LEDM1 is pulled High by a pull-up resistor and LEDM0 is also pulled High by a pull-up resistor. Refer to Table 18.

Condition	LEDTP 1-4	LEDAUI	LEDCF	LEDJM
1	Rx Link Pulse	N/A	FIFO Error	Manchester Code Violation
2	Tx Packet	Tx Packet	N/A	N/A
3	Reversed Polarity	N/A	Collision	MAU Jabber Lockup Protection (MJLP)
4	Rx Packet	Rx Packet	N/A	N/A
5	Partitioned Out	Partitioned Out	N/A	N/A

Table 16: Mode 1 LED Truth Table

Condition	LEDTP 1-4	LEDAUI	LEDCF	LEDJM
1	Rx Link Pulse	N/A	MAU Jabber Lockup Protection (MJLP)	N/A
2	N/A	N/A	N/A	N/A
3	N/A	N/A	Collision	N/A
4	Rx Packet	Rx Packet	N/A	N/A
5	N/A	N/A	N/A	N/A


Table 17: Mode 2 LED Truth Table

Condition	LEDTP 1-4	LEDAUI	LEDCF	LEDJM
1	Rx Link Pulse	N/A	MAU Jabber Lockup Protection (MJLP)	N/A
2	Partitioned Out	Partitioned Out	N/A	N/A
3	N/A	N/A	Collision	N/A
4	Rx Packet	Rx Packet	N/A	N/A
5	N/A	N/A	N/A	N/A

Condition	LEDTP 1-4	LEDAUI	LEDCF	LEDJM
1	Rx Link Pulse	N/A	MAU Jabber Lockup Protection (MJLP)	N/A
2	Rx Packet	Rx Packet	N/A	N/A
3	Partitioned Out	Partitioned Out	Collision	N/A
4	N/A	N/A	N/A	N/A
5	N/A	N/A	N/A	N/A

Table 18: Mode 3 LED Truth Table

Figure 4: Integrated LED Driver Indications

APPLICATION INFORMATION

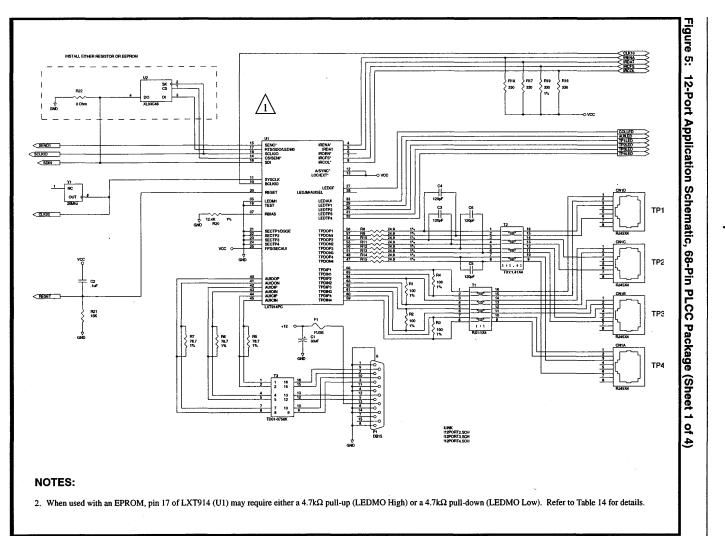
12-Port Hub Repeater

Figure 5 (Sheets 1 through 4) shows a simple 12-port hub repeater application with 3 LXT914s. This application also provides two additional AUI ports—one DB-15 connector and one coaxial port. The application shown uses the asynchronous backplane mode so no external backplane clock source is required.

Figure 5 (Sheet 1) shows the XL93C46 EEPROM which downloads the setup parameters for all the LXT914 devices at initialization. (This EEPROM could be replaced with a simple pull down resistor on the SDI pin. This will select the default conditions of the set up register.) A single 20 MHz crystal provides the SYSCLK for all three LXT914 chips. The LXT914 hub repeater on Sheet 1 provides the AUI DB-15 connector as well as four twisted-pair ports. Table 19 lists transformers suggested for use with the LXT914.

Figure 5 (Sheet 2) shows a second LXT914 hub repeater with four TP ports and a coaxial port. The MD-001 coax transceiver is used to implement the port. Sheet 3 shows the third LXT914 device with its four TP ports and indicator LEDs. The AUI port of the third LXT914 hub repeater is not used. Sheet 4 of the schematic shows the LEDs for the remaining LXT914 devices, along with the LED operation table.

8-Port Print or File Server


Figure 6 (Sheets 1 and 2) shows an eight-port repeater attachment for an existing single port AUI or 10BASE5 interface. This application can be added to a current design with an existing AUI or 10BASE5 interface. This circuit allows increased connectivity without the need for another external remote hub. The application shown is a 68-pin PLCC, an asynchronous backplane with both LXT914s in the first position.

In Figure 6 (Sheet 1) the LXT914 is set up with the LEDs in Mode 1 with one LED per port and a single collision LED. The twisted pair port LEDs display link integrity only. (Refer to Table 16.) LED Mode 1 is selected by pulling LEDM0 High with a 1 k Ω resistor on pin 17 and pulling LEDM1 Low with pin 35 attached to ground.

Figure 6 (Sheet 2) has the same configuration, mode of operation and LED Mode as used in Sheet 1. However, the AUI port has been configured as a MAU interface. This is selected when LEDJM/AUISEL on pin 28 is pulled up through a 1 k Ω resistor. This mode disables the LEDJM pin as an LED driver. (See Table 13.) The MAU interface now configured on the LXT914 allows the AUI port to attach to a DTE interface. This application increases connectivity to any existing single-port Ethernet design. This unique application allows the designer to integrate an external hub, eliminating the need for additional external equipment.

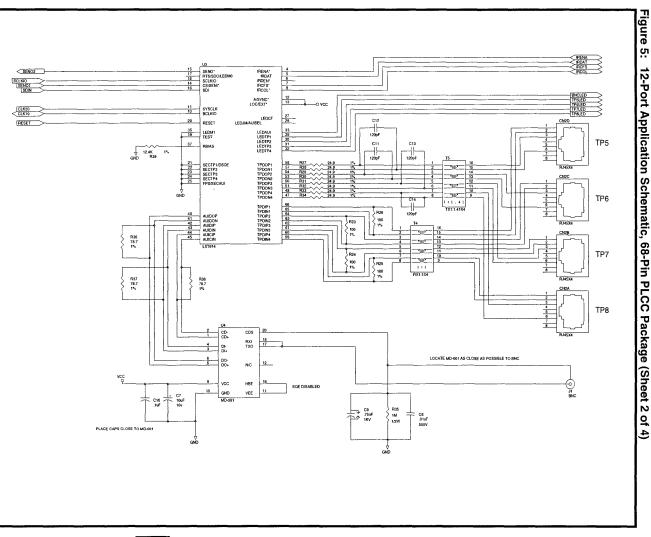
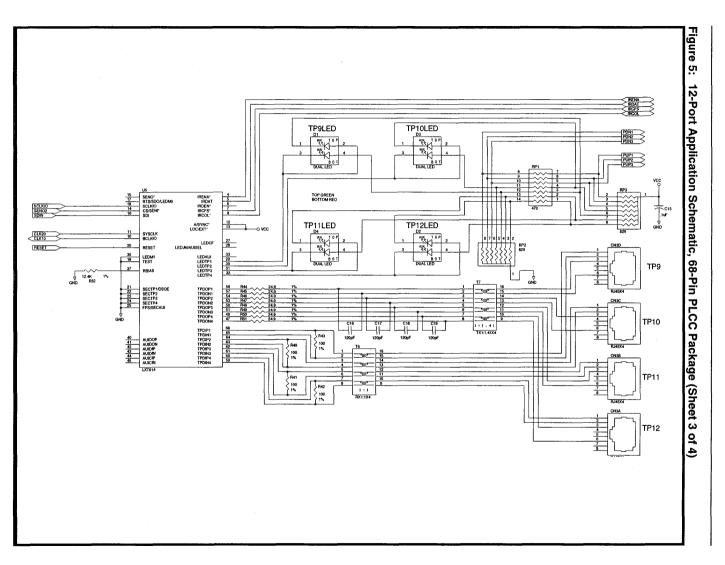

Manufacturer	Quad Transmit	Quad Receive	Tx/Rx Pairs
Bell Fuse	\$553-5999-02	\$553-5999-03	
Fil-Mag	23Z339	23Z338	
HALO	TD54-1006L1	TD01-1006L1	TD42-2006Q; TD43-2006K; TG42-1406N1
	TG54-1006N2	TG01-1006N2	TG43-1406N
(Octal)			TG44-S010NX
Kappa	TP4003P	TP497P101	
Nanopulse	5976	5977	
PCA	EPE6009	EPE6010	
Pulse Eng.	PE68810	PE68820	PE65745; PE65994; PE65746; PE65998
VALOR	PT4116	PT4117	PT4069N1; PT4068N1; ST7011S2; ST7010S2

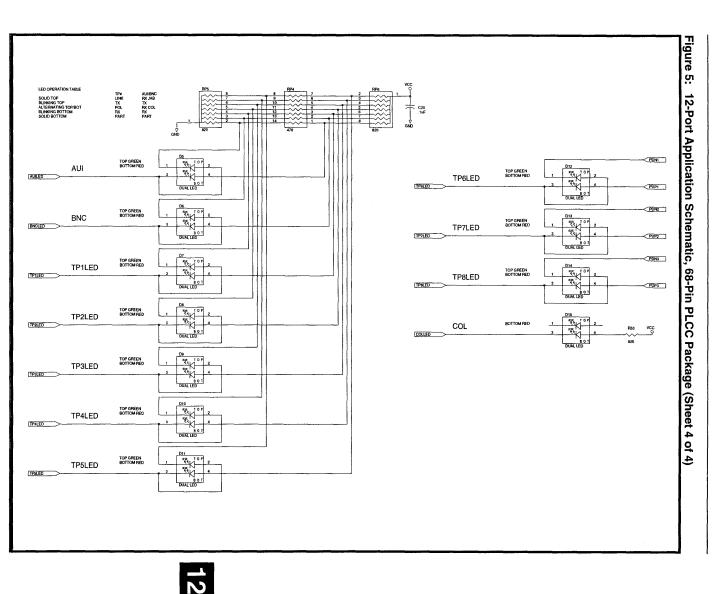
Table 19: Manufacturers Magnetics List


LXT914 Flexible Quad Ethernet Repeater

12-20

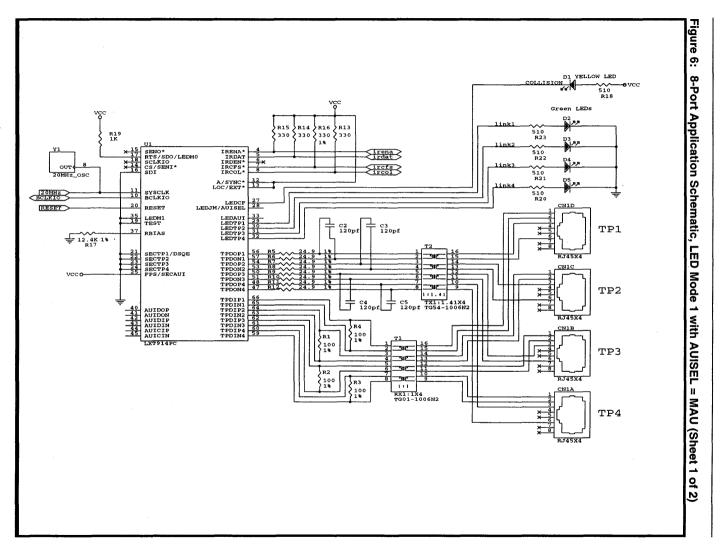
12-21

12



LXT914 Flexible Quad Ethernet Repeater

12-22


UNDI EVIEI

UNELEVEL

LXT914 Application Information

12-23

LXT914 Flexible Quad Ethernet Repeater

12-24

Green LEDs vcc D6 INK5 510 R42 vgc R23 1K D7 LINK6 510 R43 SENO* RTS/SDO/LEDM0 SCLKIO CS/SENI* SDI IRENA* IRDAT IRDEN* IRCFS* IRCOL* irena irdat vçc $\times \frac{18}{14} \times \frac{14}{16}$ -5× D8 (ircol LTNK7 \sim 510 R44 12 13 D9 A/SYNC* LOC/EXT* D10 1N4148 LINK8 510 R45 C1 .luF CLKIO SYSCLK BCLKIO 10 1K R41 LEDCF LEDJM/AUISEL 27 ᆠ ÷ C6 120pi C7 120pf CN2D RESET 20 RESET RESET 35 LEDAUI LEDTP1 LEDTP2 LEDTP3 LEDTP4 33 LEDM1 TEST R24 15K TP5 37 × RBIAS = 12.4K 1% R28 × 8 тэ TPDOP1 TPDON1 TPDOP2 TPDOP3 TPDOP3 TPDOP3 TPDOP4 TPDOP4 SECTP1/DSQE SECTP2 SECTP3 SECTP4 FPS/SECAUI 21 22 23 23 24 5 RJ45X4 3116 CN2C vcco-3112 11 -3116-TP6 1:1.41 TX1:1.41X4 TG54-1006NI TPDIP1 TPDIP2 TPDIP2 TPDIP3 TPDIP3 TPDIP3 TPDIP4 TPDIN4 R32 × 7 AUIDOP AUIDON AUIDIP AUIDIN AUICIP AUICIN \$100
1% R29 RJ45X4 \$100 1% CN2B 44 -55 R25 78.7 1% LXT914PC 3112 TP7 R30 318 <u>}</u> 312 R26 78.7 1% R31 1+1 RJ45X4 DIP RX1:1X4 TG01-1006N 100 CN2A $\frac{13}{12}$ 13 12 45 10 CIP 10 9 TP8 78 R27 78.7 1% × TG01-0756 × 7 RJ45X4

LXT914 Application Information

Figure 6:

8-Port Application

Schematic,

Ξ

Ü

Mode

with

AUISEL

H

MAU (Sheet 2

of 2)

12-25

12

TEST SPECIFICATIONS

NOTE

Minimum and maximum values in Tables 20 through 28, and Figures 7 and 8 represent the performance specifications of the LXT914 and are guaranteed by test except, where noted, by design.

Table 20: Absolute Maximum Ratings

Parameter. Supply voltage		Symbol	Min	Тур	Max	Units
		Vcc	-0.3	-	6	V
perating temperature	LXT914PC/QC	Тор	0	-	+70	°C
	LXT914PE	Тор	-40	-	+85	°C
Storage temperature		TST	-65	-	+150	°C
torage temperature Exceeding these values a implied. Exposure to ma	A STATE OF A DECEMBER OF A STATE OF A DECEMBER OF	CAUTION lamage. Func	tional opera		these conditi	ons is 1

Table 21: Recommended Operating Conditions

Parameter		Symbol	Min	Тур	Мах	Units
Recommended supply voltage		Vcc	4.75	5.0	5.25	V
Recommended operating temperature	LXT914PC/QC	Тор	0	-	+70	°C
	LXT914PE	Тор	-40	1	+85	°C

Table 22: I/O Electrical Characteristics¹ (over recommended range)

Parameter	Symbol	Min	Typ ²	Max	Units	Test Conditions
Supply current	ICC	_	-	180	mA	
Input Low voltage	VIL	-	-	0.8	v	
Input Low voltage (RESET)	VILRESET	-	-	0.8	v	Vcc = 5.25 V
Input High voltage	Vih	2.0	-	-	v	
Input High voltage (RESET)	VIHRESET	4.0	-	-	V	Vcc = 4.75 V
Output Low voltage	Vol	-	-	0.4	v	IOL = 1.6 mA
Output Low voltage	Vol		-	10	% V _{CC}	Iol < 10 μA
Output Low voltage (LED)	Voll	-	-	1.0	v	IOLL = 5 mA
Output High voltage	Voh	2.4	-	-	v	Іон = 40 μА
Output High voltage	Voh	90	-	_	% V _{CC}	Іон < 10 μА
Output High voltage (LED)	Vohl	4	-	-	v	IOHL = -5 mA
Input Low current	IIL	- .	-	2	mA	VOL = .4 V
Output rise / fall time	_	-	3	8	ns	CLOAD = 20 pF
RESET pulse width	PWRESET	1.0	-	· _	ms	Vcc = 4.75 V
RESET fall time	TFRESET		-	20.0	μs	VIHRESET to VILRESET

Not applicable to IKB signals. IKB electrical characteristics are specified in Table 25.
 Typical values are at 25° C and are for design aid only; they are not guaranteed and not subject to production testing.

Parameter	Symbol	Min	Typ1	Max	Units	Test Conditions
Input Low current	IIL	_	-	-700	μA	
Input High current	Іін	_	_	500	μA	
Differential output voltage	Vod	±550	-	±1200	mV	
Receive input impedance	Zin	-	20	_	kΩ	Between CIP/CIN & DIP/DIN
Differential squelch threshold	VDS	-	220	-	mV	

Table 23: AUI Electrical Characteristics (over recommended range)

Table 24: Twisted-Pair Electrical Characteristics (over recommended range)

Parameter	Symbol	Min	Typ ¹	Max	Units	Test Conditions
Transmit output impedance	Zout	-	5	-	Ω	
Peak differential output voltage	Vod	3.3	3.5	3.7	v	Load = 100Ω at TPOP and TPON
Transmit timing jitter addition	-	-	± 6.4	± 10	ns	0 line length
Transmit timing jitter added by the MAU and PLS sections ²	-	-	± 3.5	± 5.5	ns	After line model specified by IEEE 802.3 for 10BASE-T
Receive input impedance	Zin	-	20	-	kΩ	Between TPIP/TPIN
Differential squelch threshold (Normal threshold: $ERSQx = 0$)	VDS	300	420	565	mV	5 MHz square wave input
Differential squelch threshold (Reduced threshold: $ERSQx = 1$)	Vdsl	180	250	345	mV	5 MHz square wave input

Table 25: IRB Electrical Characteristics (over recommended range)

Parameter	Symbol	Min	Тур¹	Max	Units	Test Conditions
Output Low voltage	Vol		.3	.6	v	
Output rise or fall time	TF	-	4	12	ns	
Input Low voltage: IRENA, IRCOL & IRDAT	VILIRB	_	_	0.8	v	$RL = 330 \Omega$
Input High voltage: IRENA, IRCOL & IRDAT	Vihirb	3.0	_		V	$RL = 330 \Omega$
Input Low voltage: BCLKIO	VILBCLK	-	-	0.4	v	$RL = 330 \Omega$
Input High voltage: BCLKIO	VIHBCLK	4.0	-		v	$RL = 330 \Omega$

LXT914 Flexible Quad Ethernet Repeater

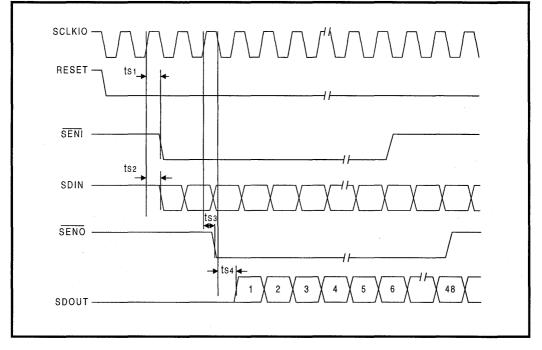
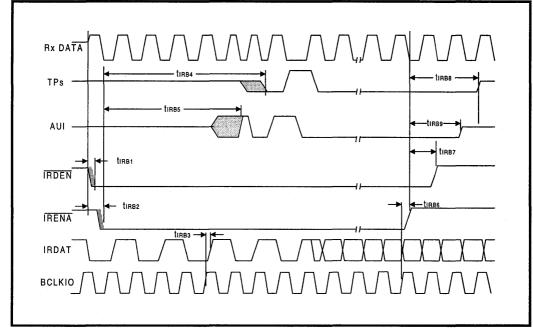

	Parameter	Min	Typ ¹	Мах	Units
Jabber Timing	Maximum transmit time	5.0		5.5	ms
	Unjab time	-	9.6		μs
Link Integrity Timing	Time link loss	_	60	-	ms
	Time between Link Integrity Pulses	10	-	20	ms
	Interval for valid receive Link Integrity Pulses	4.1		30	ms

Table 26: Switching Characteristics (over recommended range)

Table 27: Serial Port Timing - External Mode (over recommended range)

Parameter	Symbol	Minimum	Typical ¹	Maximum	Units
SCLKIO High to SENI Low (active)	tS1	0	_	50	ns
SCLKIO High to SDIN data valid	tS2	0	_	50	ns
SCLKIO High to SENO Low (active)	tS3	5	-	15	ns
SCLKIO Low to SDOUT data valid	tS4	5	_	15	ns


Figure 7: Serial Port Timing

Parameter	Symbol	Minimum	Typical	Maximum	Units
Start of Frame to IRDEN Low (active)	tIRB1	10		150	ns
Start of Frame to IRENA Low (active)	tIRB2	125		225	ns
BCLKIO to IRDAT valid (Synchronous mode)	tIRB3	5	-	30	ns
BCLKIO to IRDAT valid (Asynchronous mode)	tIRB3	-	50		ns
IRENA Low (active) to TP outputs active	tIRB4	525	-	600	ns
IRENA Low (active) to AUI output active	tIRB5	475	-	525	ns
End of Frame clock to IRENA High (inactive)	tIRB6	5	-	30	ns
IRENA High (inactive) to IRDEN High (inactive)	tIRB7	95	-	105	ns
IRENA High (inactive) to TP outputs inactive	tIRB8	575	-	600	ns
IRENA High (inactive) to AUI output inactive	tIRB9	425	-	450	ns

Table 28: Inter-Repeater Bus Timing (over recommended range)

Figure 8: Inter-Repeater Bus Timing

12

NOTES

APRIL 1997 Revision 2.0

DATA SHEET LXT915

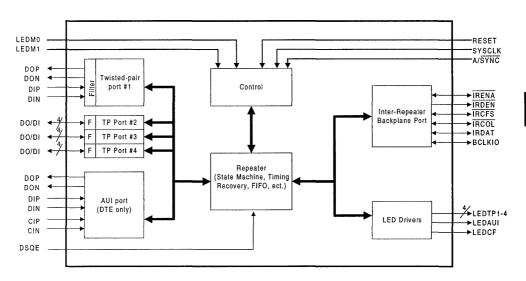
Simple Quad Ethernet Repeater

General Description

The LXT915 is an integrated multi-port repeater designed for mixed-media networks. It provides all the active circuitry required for the repeater function in a single CMOS device. It includes one Attachment Unit Interface (AUI) port and four 10BASE-T transceivers. The AUI port allows connection of an external transceiver (10BASE-2, 10BASE-5, 10BASE-T or FOIRL) or a drop cable. The 10BASE-T transceivers are entirely self-contained with internal filters which simplify the design work required for FCC-compliant EMI performance.

An Inter-Repeater Backplane (IRB) interface allows 128 or more 10BASE-T ports to be cascaded, creating a large single-segment multi-port repeater.

The LXT915 requires only a single 5-volt power supply due to its advanced CMOS fabrication process.

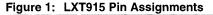

Features

- Four integrated 10BASE-T transceivers and one AUI transceiver on a single chip
- Six integrated LED drivers with four unique operational modes
- · On-chip transmit and receive filtering
- · Automatic polarity detection and correction
- Synchronous or asynchronous Inter-Repeater Backplane supports "hot swapping"
- Inter-repeater backplane allows cascaded repeaters, linking 128 or more 10BASE-T ports
- · Packaged in 64-pin PQFP

Applications

- · Remote or Stand-alone Unmanaged Hubs
- · Stackable Unmanaged Hubs

LXT915 Block Diagram



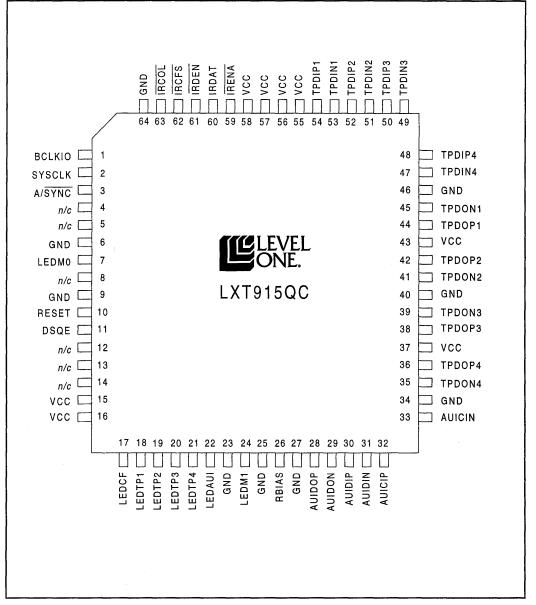

LXT915 Simple Quad Ethernet Repeater

TABLE OF CONTENTS

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS	3
TP Port Signal Descriptions 12-3	4
AUI Port Signal Descriptions 12-3	4
Control, Status and Miscellaneous Signal Descriptions	
Inter-Repeater Backplane (IRB) Signal Descriptions 12-3	5
Power Supply Signal Descriptions 12-3	
FUNCTIONAL DESCRIPTION 12-3	7
Introduction	7
External Interfaces 12-3	7
Inter-Repeater Backplane (IRB) 12-3	7
Internal Repeater Circuitry 12-3	
Initialization	
10BASE-T Port Operation	
AUI Port Operation	
LED Display 12-4	
APPLICATION INFORMATION 12-4	3
Layout Requirements	3
Unmanaged Hub Application 12-4	3
Typical Application Schematic	
Magnetics Requirements 12-4	
TEST SPECIFICATIONS	7
Absolute Maximum Ratings 12-4	7
Recommended Operating Conditions	
I/O Electrical Characteristics	.7
AUI Electrical Characteristics	8
TP Electrical Characteristics 12-4	9
IRB Electrical Characteristics	.9
Switching Characteristics	9
IRB Timing Characteristics 12-5	0

LXT915 PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Pin	Symbol	1/0	Description
44	TPDOP1	0	Twisted-Pair Data Outputs (Positive and Negative). These pins are the positive
45	TPDON1	0	(TPDOP1-4) and negative (TPDON1-4) outputs to the network from the respective
42	TPDOP2	0	twisted-pair ports.
41	TPDON2	0	
38	TPDOP3	0	
39	TPDON3	0	
36	TPDOP4	0	
35	TPDON4	0	
54	TPDIP1	Ι	Twisted-Pair Data Inputs (Positive and Negative). These pins are the positive
53	TPDIN1	I	(TPDIP1-4) and negative (TPDIN1-4) inputs from the network to the respective
52	TPDIP2	Ι	twisted-pair ports.
51	TPDIN2	I	
50	TPDIP3	I	
49	TPDIN3	Ι	
48	TPDIP4	I	
47	TPDIN4	I	· · ·

 Table 1: Twisted-Pair Port Signal Descriptions

Table 2: AUI Port Signal Descriptions

Pin	Symbol	1/0	Description
28 29	AUIDOP AUIDON	0	AUI Data Outputs (Positive and Negative). These pins are the positive and nega- tive data outputs from the AUI port.
30 31	AUIDIP	I	AUI Data Inputs (Positive and Negative). These pins are the positive and negative data inputs to the AUI port.
31 32 33	AUICIP	I	AUI Collision Inputs (Positive and Negative). These pins are the positive and neg- ative collision inputs to the AUI port.

Table 3: Control, Status and Miscellaneous Signal Descriptions

Pin	Symbol	1/0	Description
2	SYSCLK	I	System Clock . The required 20 MHz system clock is input at this pin. Clock must have a 40-60 duty cycle with <10 ns rise time.
10	RESET	I	Reset . This pin resets the LXT915 internal circuitry when pulled or driven High for ≥ 1 ms.
11	DSQE	I	Disable SQE. When High the SQE function is disabled.
7 24	LEDM0 LEDM1	I I	LED Mode Select 0 & 1. These two pins select one of four possible modes of LED operation. The Functional Description section describes the four modes and Table 6 lists the four settings.

Pin	Symbol	I/O	Description	
17	LEDCF	0	Collision & FIFO Error LED Driver. This tri-state LED driver pin reports colli- sions and FIFO errors. It pulses Low to report collisions, and pulses High to report FIFO errors. When this pin is connected to the anode of one LED and to the cathode of a second LED, the LXT915 will simultaneously monitor and report both condi- tions independently.	
18	LEDTP1	0	TP Port LED Drivers. These tri-state LED drivers use an alternating pulsed output	
19	LEDTP2	0	to report TP port status. Each pin should be tied to a pair of LEDs (to the anode of one LED and the cathode of a second LED). When connected this way, each pin	
20	LEDTP3	0	reports five separate conditions (receive, transmit, link integrity, reverse polarity and	
21	LEDTP4	0	auto partition).	
22	LEDAUI	0	AUI Port LED Driver. This tri-state LED driver uses an alternating pulsed output to report AUI port status. This pin should be tied to a pair of LEDs (to the anode of one LED and the cathode of a second LED). When connected this way, this pin reports five separate conditions (receive, transmit, receive jabber, receive collision and auto partition).	
4 5 8 12 13 14	NC		No Connects. Leave these pins unconnected (mandatory).	

Table 3: Control, Status and Miscellaneous Signal Descriptions - continued

Table 4: Inter-Repeater Backplane Signal Descriptions

Pin	Symbol	1/0	Description	
1	BCLKIO	I/O	Backplane Clock. This 10 MHz clock synchronizes multiple repeaters on a common backplane. In the synchronous mode, BCLKIO must be supplied to all repeate from a common external source. In the asynchronous mode, BCLKIO is supplied only when a repeater is outputting data to the bus. Each repeater outputs its internal recovered clock when it takes control of the bus. Other repeaters on the backplane then sync to BCLKIO for the duration of the transmission.	
3	A/SYNC	I	Backplane Synch Mode Select. This pin selects the backplane synch mode. When this pin is left floating an internal pull-up defaults to the Asynchronous mode (A/SYNC High). In the asynchronous mode 12 or more LXT915s can be connected on the backplane, and an external 10 MHz backplane clock source is not required. When the synchronous mode is selected (A/SYNC tied Low), 32 or more LXT915s can be connected to the backplane and an external 10 MHz backplane clock source is required.	
59	IRENA	I/O	Inter-Repeater Backplane Enable. This pin allows individual LXT915 repeaters to take control of the Inter-Repeater Backplane (IRB) data bus (IRDAT). The IRENA bus must be pulled up locally by a 330 Ω resistor. ¹	
used c 2. IRCFS	1. IRENA and IRDAT can be buffered between boards in multi-board configurations. Where buffering is used, a 330 Ω pull-up resistor can be used on each signal, on each board. Where no buffering is used, the total impedance should be no less than 330 Ω 2. IRCFS and IRCOL cannot be buffered. In multi-board configurations, the total impedance on IRCOL should be no smaller, than 330 W IRCFS should be pulled up only once, by a single 330 Ω 1% resistor.			

LXT915 Simple Quad Ethernet Repeater

Pin	Symbol	I/O	Description	
60	IRDAT	I/O	IRB Data. This pin is used to pass data between multiple repeaters on the IRB. The	
			IRDAT bus must be pulled up locally by a 330 Ω resistor. ¹	
61	IRDEN	0	RB Driver Enable. The IRDEN pin is used to enable external bus drivers which may be required in synchronous systems with large backplanes. This is an active low signal, maintained for the duration of the data transmission. IRDEN must be pulled up locally by a 330 Ω resistor.	
62	IRCFS	I/O	IRB Collision Flag Sense (IRCFS) and IRB Collision (IRCOL). These two pins	
63	IRCOL	I/O	are used for collision signalling between multiple LXT915 devices on the IRB. Both the IRCFS bus and the IRCOL bus must be pulled up globally with 330 Ω resistors. ¹ (IRCFS requires a precision resistor [±1%].) ²	
used o 2. IRCFS	n each signal, on eac and IRCOL cannot	h board. A be buffere	between boards in multi-board configurations. Where buffering is used, a 330 Ω pull-up resistor can be Where no buffering is used, the total impedance should be no less than 330 Ω . d. In multi-board configurations, the total impedance on IRCOL should be no smaller than 330 W. IRCFS ingle 330 Ω , 1% resistor.	

Table 4: Inter-Repeater Backplane Signal Descriptions - continued

Table 5: LXT915 Power Supply Signal Descriptions

Pin	Symbol	I/O	Description
15	VCC	_	Power Supply. These pins each require a +5 VDC power supply. These various pins may be
16 37			supplied from a single power source, but special de-coupling requirements may apply. Each
37 43			VCC pin must be within ± 0.3 V of every other VCC pin.
55			
56			
57			
58			
6	GND		Ground. These pins provide ground return paths for the various VCC power supply pins.
9			Connect these pins to external ground (mandatory).
23			
25			
27			
34 40			
40			
64			
26	RBIAS		Diag. This nin provides his suggest for internal signifier Connect this nin to around through
20	KDIAS		Bias . This pin provides bias current for internal circuitry. Connect this pin to ground through an external 12.4k 1% resistor.

FUNCTIONAL DESCRIPTION

Introduction

The LXT915 is an integrated hub repeater for 10BASE-T networks. The hub repeater is the central point for information transfer across the network. The LXT915 offers multiple operating modes to suit a broad range of applications from simple 4-, 8- or 16-port stand-alone models up to 128-port stackable hubs.

The main functions of the LXT915 hub repeater are data recovery and retransmission and collision propagation. Data packets received at the AUI or 10BASE-T ports are detected and recovered by the port receivers before being passed to the repeater core circuitry for retiming and retransmission. Data packets received through the IRB port are essentially passed directly to the core for retransmission. After recovery of a valid data packet, the repeater broadcasts it to all enabled stations, except the originator station.

External Interfaces

The LXT915 includes four 10BASE-T ports with internal filters. The LXT915 also includes an Attachment Unit Interface (AUI) port and an Inter-Repeater Backplane (IRB) port. The IRB port enables multiple LXT915 devices to be interconnected, creating a large, single-segment, multi-port repeater.

10BASE-T Ports

The four 10BASE-T transceiver ports are completely selfcontained. Since the transmitters and receivers include the required filtering, only simple, inexpensive transformers are required to complete the 10BASE-T interface. Each individual Twisted-Pair (TP) port is implemented in accordance with the IEEE 802.3 10BASE-T standard. Refer to Table 1 for TP Port signal descriptions.

AUI Port

The AUI port operates in standard DTE mode and allows connection of an external transceiver (10BASE-2, 10BASE-5, 10BASE-T or FOIRL) or a drop cable. Refer to Table 2 for AUI Port signal descriptions.

Inter-Repeater Backplane

The Inter-Repeater Backplane (IRB) allows several LXT915s to function as a single repeater. The IRB also allows several multi-repeater boards to be integrated in a standard rack and to function as a single unit. The IRB supports "hot swapping" for easy maintenance and trouble-shooting. Each individual repeater distributes recovered and retimed data to other repeaters on the IRB for broadcast on all ports simultaneously. This simultaneous rebroadcast allows the multi-repeater system to act as a single large repeater unit. The IRB by loading factors such as parasitic capacitance. The IRB can be operated synchronously or asynchronously. Refer to Table 3 for control signals and to Table 4 for IRB signal descriptions.

Synchronous IRB Operation

In the synchronous mode, a common external source provides the 10 MHz backplane clock (BCLKIO) and the 20 MHz system clock (SYSCLK) to all repeaters. (BCLKIO must be synchronous to SYSCLK and may be derived from SYSCLK using a divide-by-two circuit.) In the synchronous mode 32 or more LXT915 repeaters may be connected on the IRB, providing 128 10BASE-T ports and 32 AUI ports.

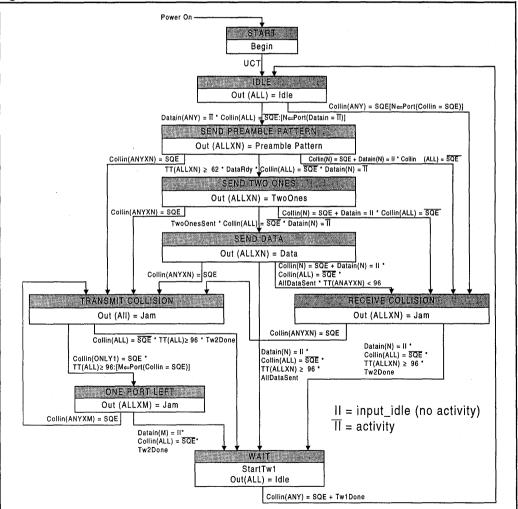
Asynchronous IRB Operation

In the asynchronous mode an external BCLKIO source is not required. The repeaters run independently until one takes control of the IRB. The transmitting repeater then outputs its own 10 MHz clock onto the BCLKIO line. All other repeaters sync to that clock for the duration of the transmission. In the asynchronous mode 12 or more LXT915 devices may be connected to the IRB, providing 48 10BASE-T ports and 12 AUI ports.

NOTE

The maximum number of repeaters which may be linked on the backplane is limited by board design factors. The numbers listed above are engineering estimates only. Stronger drivers and reduced capacitive loading in PCB layout may allow an increased device count.

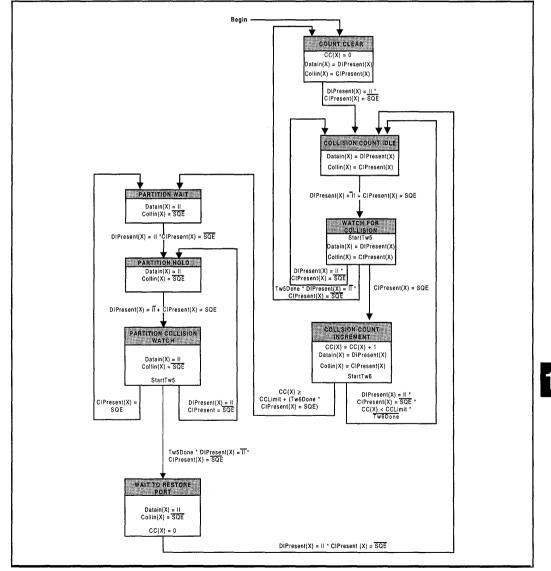
Internal Repeater Circuitry


The basic repeater circuitry is shared among all the ports within the LXT915. It consists of a global repeater state machine, several timers and counters and the timing recovery circuit. The timing recovery circuit includes a FIFO for retiming and recovery of the clock which is used to clock the receive data out onto the IRB.

The shared functional blocks of the LXT915 are controlled by the global state machine shown in Figure 2. This diagram and all associated notations used are in strict accordance with section 9.6 of the IEEE 802.3 standard.

Figure 2: Global State Machine

The LXT915 also implements the Partition State Diagram as defined by the IEEE 802.3 standard and shown in Figure 3. The value of CCLIMIT as implemented in the LXT915 is 64.


The CCLIMIT value sets the number of consecutive collisions that must occur before the port is subjected to automatic partitioning. Auto-partition/reconnection is also supported by the LXT915 with Tw5 conforming to the standard requirement of 450 to 560 bit times.

Initialization

The following description applies to the initial power-on reset and to any subsequent hardware reset. When a reset occurs (RESET pin pulled high for > 1 ms), the device senses the levels at the various control pins (see Tables 3 and 4) to determine the correct operating modes for the LEDs and the IRB.

10BASE-T Port Operation

10BASE-T Reception

Each LXT915 10BASE-T port receiver acquires data packets from its twisted-pair input (DIP/DIN). An internal RC filter and an intelligent squelch function discriminate noise from link test pulses and valid data streams. No external filters are required. The receive function is activated only by valid data streams (above the squelch level and with proper timing). If the differential signal at the DI circuit inputs falls below 75% of the threshold level (unsquelched) for eight bit times (typical), the port receiver enters the idle state.

Polarity Detection and Correction

The LXT915 10BASE-T ports detect and correct for reversed polarity by monitoring link pulses and end-offrame sequences. A reversed polarity condition is declared when the port receives sixteen or more incorrect link pulses consecutively, or four frames with reversed start-of-idle sequence. In these cases the receiver reverses the polarity of the signal and thereby corrects for this failure condition. If the port enters the link fail state and no valid data or link pulses are received within 96 to 128 ms, the polarity is reset to the default non-flipped condition. (If Link Integrity Testing is disabled, polarity detection is based only on received data.)

10BASE-T Link Integrity Testing

The LXT915 fully supports the 10BASE-T Link Integrity test function. The link integrity test determines the status of the receive side twisted-pair cable. The receiver recognizes link integrity pulses transmitted in the absence of data traffic. With no data packets or link integrity pulses within 100 (\pm 50) ms, the port enters a link fail state and disables its transmitter. The port remains in the link fail state until it detects three or more data packets or link integrity pulses.

10BASE-T Transmission

Each LXT915 10BASE-T port receives NRZ data from the repeater core and passes it through a Manchester encoder. The encoded data is then transmitted to the twisted-pair network (the DO circuit). The advanced integrated pulse shaping and filtering network produces the pre-distorted and pre-filtered output signal to meet the 10 Base-T jitter template. An internal continuous resistor-capacitor filter is used to remove any high-frequency clocking noise from the pulse shaping circuitry. Integrated filters simplify the design work required for FCC compliant EMI performance.

During idle periods, the LXT915 10BASE-T ports transmit link integrity test pulses in accordance with the 802.3 10BASE-T standard.

Data packets transmitted by the LXT915 contain a minimum of 56 preamble bits before the start of frame delimiter (SFD). In the Asynchronous mode, preamble regeneration takes place on the transmit side. In the Synchronous mode, the preamble is regenerated on the receive side and distributed via the IRB. If the total packet is less than 96 bits including the preamble, the LXT915 extends the packet length to 96 bits by appending a Jam signal (1010...) at the end.

AUI Port Operation

AUI Reception

The LXT915 AUI port receiver acquires data packets from the network (DIP/DIN). Only valid data streams above the squelch level activate the receive function. If the differential signal at the DI circuit inputs falls below 75% of the threshold level (unsquelched) for 8 bit times (typical), the AUI receiver enters the idle state.

AUI Transmission

The LXT915 AUI port receives NRZ data from the repeater core, and passes it through a Manchester encoder. The encoded data then goes out on the network (DOP/DON).

Collision Handling

A collision occurs when two or more repeater ports receive simultaneously, or when the AUI CIP/CIN signal is active. The LXT915 fully complies with the IEEE 802.3 collision specifications, both in individual and multi-repeater applications. In multiple-repeater configurations, collision signaling on the IRB allows all repeaters to share collision parameters, acting as a single large repeater.

IRCOL is a digital open-drain pin. **IRCFS** is an analog/digital port. The **IRCOL** and **IRCFS** lines are pulled up globally (i.e., each signal requires one pull-up resistor for all boards). If there are eight 3-repeater boards in the system, all eight boards share a single pull-up resistor for **IRCOL** and a single pull-up resistor for **IRCFS**. The global pull-up may be located on one of the boards, or on the backplane. The **IRCFS** line requires a precision (\pm 1%) resistor.

The IRENA, IRDAT and IRDEN lines are each pulled up locally (one pull-up resistor per board) if external bus drivers are used. If no bus drivers are used then only one global pull-up per signal is used.

LED Display

The LED display interface consists of seven integrated LED drivers, one for each of the five network ports and two for common functions. Each pin provides a three-state pulsed output (+5 V, high Z, and 0 V) which allows multiple conditions to be monitored and reported independently. Table 6 shows the LED Mode selected with each LEDM1 and LEDM0 combination. Figure 4 shows the LED Driver output conditions and Tables 7 through 10 list the repeater states associated with each of the five conditions.

LED Mode 0 (Default)

This mode is selected when LEDM1 and LEDM0 are floated or pulled low. Refer to Table 7.

LED Mode 1

This mode is selected when LEDM1 is tied, floated or pulled low and LEDM0 is pulled high by a pull-up resistor. Refer to Table 8.

Table 7: Mode 0 LED Truth Table (Default)

LED Mode 2

This mode is selected when LEDM1 is pulled high by a pull-up resistor and LEDM0 is floated or pulled low. Refer to Table 9.

LED Mode 3

This mode is selected when LEDM1 is pulled high by a pull-up resistor and LEDM0 is also pulled high by a pull-up resistor. Refer to Table 10.

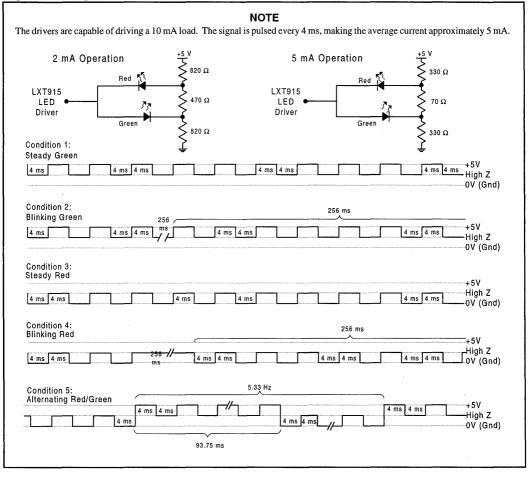
Table 6: LED Mode Selection

LEDM1 Pin 24	LEDM0 Pin 7	LED Mode Selected
0	0	0 (default)
0	1	1
1	0	2
1	1	3

Condition	LEDTP 1-4	LEDAUI	LEDCF
1	Rx Link Pulse	N/A	FIFO Error
2	Tx Packet	Tx Packet	N/A
3	Reversed Polarity	N/A	Collision
4	Rx Packet	Rx Packet	N/A
5	Partitioned Out	Partitioned Out	N/A

Table 8: Mode 1 LED Truth Table

Condition	LEDTP 1-4	LEDAUI	LEDCF
1	Rx Link Pulse	N/A	MAU Jabber Lockup Protection (MJLP)
2	N/A	N/A	N/A
3	N/A	N/A	Collision
4	Rx Packet	Rx Packet	N/A
5	N/A	N/A	N/A


Table 9: Mode 2 LED Truth Table

Condition	LEDTP 1-4	LEDAUI	LEDCF
1	Rx Link Pulse	N/A	MAU Jabber Lockup Protection (MJLP)
2	Partitioned Out	Partitioned Out	N/A
3	N/A	N/A	Collision
4	Rx Packet	Rx Packet	N/A
5	N/A	N/A	N/A

Condition	LEDTP 1-4	LEDAUI	LEDCF
1	Rx Link Pulse	N/A	MAU Jabber Lockup Protection (MJLP)
2	Rx Packet	Rx Packet	N/A
3	Partitioned Out	Partitioned Out	Collision
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Table 10: Mode 3 LED Truth Table

Figure 4: Integrated LED Driver Indications

APPLICATION INFORMATION

Layout Requirements

The Twisted Pair Interface

The four, twisted-pair output circuits are identical. Each TPDOP/TDPON signal has a 24.9 Ω , 1%, series resistor and a 120 pF capacitor differentially across the positive and negative outputs. These signals go directly to a $1:\sqrt{2}$ transformer creating the necessary 100 Ω termination for the cable. The TPDIP/TDPIN signals have a 100 Ω resistor across the positive and negative input signals to terminate the 100 Ω signal received from the line. To calculate the impedance on the output line interface, use:

$(24.9\;\Omega+24.9\;\Omega)\,\ast\sqrt{2}^2\approx 100\;\Omega.$

The layout of the twisted-pair ports is critical in complex designs. Run the signals directly from the device to the discrete termination components (located close to the transformers).

The signals running from the transformers to the connector should run in close pairs directly to the connector. Be careful not to cross the transmit and receive pairs. One way to avoid a problem is to run the receive pairs on the component side and the transmit pairs on the solder side. Careful planning during the schematic and layout stages can avoid these problems.

The PCB layout should have no ground or power planes from the transformers to the connectors. The data signals should be the only traces in this area. Place the chassis ground for the connectors near the edge of the PCB, away from the signals, connecting the connector shield with the chassis.

The RBIAS Pin

The RBIAS signal sets the levels for the output drivers of the LXT915. Any emissions or common mode noise entering the device here could be measured on the twisted pair output signals. The LXT915 requires a 12.4 k Ω , 1% resistor directly connected to RBIAS at pin 26. This connection should be as short as possible. The ground rails from pins 25 & 27 should come directly off of the device to enclose the resistor and pin forming a shielded area between the RBIAS connection and the switching signals on the PCB.

Unmanaged Hub Application

Figure 5 shows an eight-port unmanaged hub application. The application shows a pair of LXT915s connected using the Asynchronous IRB mode.

Figure 5 (Sheet 1) has the LXT915 set up with the LEDs in Mode 1 with one link LED per port and a single collision LED. In LED Mode 1, the twisted pair port LEDs display link integrity only (refer to Table 8). LED Mode 1 is selected by pulling LEDM0 High with a 1 k Ω resistor on pin 7 and pulling LEDM1 Low with pin 24 attached to ground.

Figure 5 (Sheet 2) shows the second LXT915 set up in the same LED Mode (Mode 1). The AC/DC plug and regulator circuits are commonly used in remote hub applications.

The VCC and GND pins are at the bottom of each diagram. All VCC pins use a single power supply with decoupling capacitors installed between the VCC and GND pins and their respective planes.

LXT915 Simple Quad Ethernet Repeater

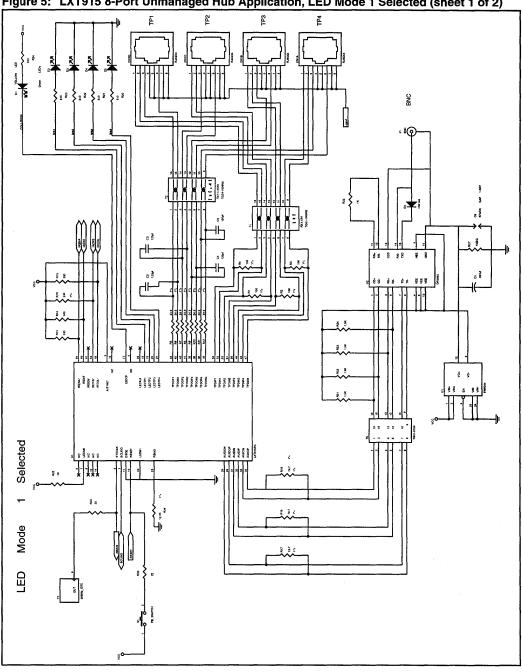
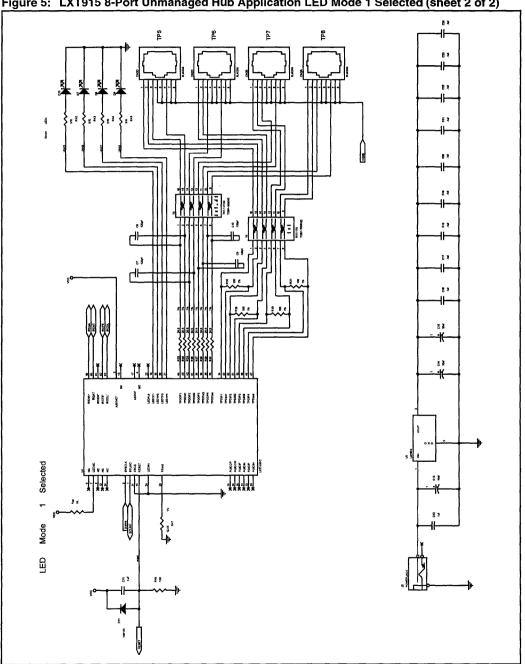



Figure 5: LXT915 8-Port Unmanaged Hub Application, LED Mode 1 Selected (sheet 1 of 2)

12

Magnetics Requirements

The Twisted Pair Interface

The LXT915 requires transformers with a 1:1 ratio for the receive pairs and $1:\sqrt{2}$ on the transmit pairs. The transformer isolation voltage should be rated at 2 KV to protect the circuitry from static voltages across the connectors and cables. Magnetics suitable for the LXT915 are currently available, and are used on the LXT914 Quad Repeater. Available magnetics include the following options:

- simple per-port Rx/Tx pair transformers
- receive quad transformers and transmit quad transformers
- single 40 pin octal transformers

Component Selection

Table 11 is a list of available Quad and Single port transformers with manufacturers and part numbers. This information was valid as of the printing date of this document. Before committing to a specific component, designers should contact the manufacturer for current product specifications, and should test and validate the magnetics for the specific application.

Manufacturer	Quad Transmit	Quad Receive	Quad Port Tx/Rx
BEL	\$553-5999-02	S553-5999-03	
HALO	TD54-1006L1 TG54-1006N2	TD01-1006L1 TG01-1006N2	TG44-S010NX TG45-S010NX TG46-S010NX
Nanopulse	5976	5977	
Карра	TP4003P	TP497P101	
PCA	EPE6009	EPE6010	
TDK	TLA-3T107	TLA-3T106	
VALOR	PT4116	PT4117	

Table 11: Manufacturers Magnetics List

LXT915 TEST SPECIFICATIONS

NOTE

Minimum and maximum values in Tables 12 through 19 and Figure 6 represents the performance specifications of the LXT915 and are guaranteed by test except, where noted, by design

Table 12: Absolute Maximum Ratings

Parameter Symbol Min Typ Max Units									
Supply voltage	Vcc	-0.3	-	6	v				
Operating temperature	Тор	0	_	+70	°C				
Storage temperature	Тѕт	-65	-	+150	°C				
	ceeding these values i tional operation unde	r these conditio	ons is not implied	d.	1. 1.				

Table 13: Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units
Recommended supply voltage	Vcc	4.75	5.0	5.25	V
Recommended operating temperature	Тор	0		70	°C

Table 14: I/O Electrical Characteristics¹ (over recommended range)

Parameter	Symbol	Min	Typ ²	Max	Units	Test Conditions
Supply current	ICC	-	-	180	mA	
Input Low voltage	Vil		-	0.8	V	
Input Low voltage (RESET)	V _{ILRESET}	_	-	0.8	V	V _{CC} = 5.25 V
Input High voltage	V _{IHRESET}	4.0	-	-	V	V _{CC} = 4.75 V
Input High voltage (RESET)	Vih	2.0	-		V	
Output Low voltage	Vol	-	-	0.4	V	IOL = 1.6 mA
Output Low voltage	Vol	_	-	10	% V _{CC}	Iol < 10 μA
Output Low voltage (LED)	Voll		-	1.0	V	IOLL = 5 mA
Output High voltage	Voh	2.4	_	-	V	Іон = 40 μА

12

Parameter	Symbol	Min	Typ ²	Max	Units	Test Conditions
Output High voltage	Voh	90	-	-	% V _{CC}	Іон < 10 μА
Output High voltage (LED)	VOHL	4	-	-	v	IOHL = -5 mA
Input Low current	IIL	_	_	2	mA	Vol = .4 V
Output rise / fall time	_	_	3	8	ns	CLOAD = 20 pF
RESET pulse width	PWRESET	1.0	-	-	ms	V _{CC} = 4.75 V
RESET fall time	TFRESET			20.0	μs	VIHRESET to VILRESET

Table 14: I/O Electrical Characteristics¹ (over recommended range) – continued

Table 15: AUI Electrical Characteristics (over recommended range)

Parameter	Symbol	Min	Typ1	Max	Units	Test Conditions
Input Low current	IIL	-	-	-700	μA	
Input High current	Іін	-	-	500	μA	
Differential output voltage	Vod	±550	-	±1200	mV	
Receive input impedance	Zin	-	20	-	kΩ	Between CIP/CIN & DIP/DIN
Differential squelch threshold	VDS		220	_	mV	

 Table 16: TP Electrical Characteristics (over recommended range)

Parameter	Symbol	Min	Typ ¹	Max	Units	Test Conditions
Transmit output impedance	Zout	-	5		Ω	
Peak differential output voltage	Vod	3.3	3.5	3.7	v	Load = 100Ω at TPOP and TPON
Transmit timing jitter addition	-	_	± 6.4	± 10	ns	0 line length
Transmit timing jitter added by the MAU and PLS sections ²		-	± 3.5	± 5.5	ns	After line model specified by IEEE 802.3 for 10BASE-T
Receive input impedance	Zin	-	20		kΩ	Between TPIP/TPIN
Differential squelch threshold	VDS	300	420	565	mV	5 MHz square wave input

Parameter	Sym	Min.	Typ ¹	Мах	Units	Test Conditions
Output Low voltage	VOL	-	0.3	0.6	v	
Output rise or fall time	TRF		4	12	ns	
Input Low voltage: IRENA, IRCOL & IRDAT	Vilirb	-	-	0.8	v	$RL = 330\Omega$
Input High voltage: IRENA, IRCOL & IRDAT	VIHIRB	3.0	-	-	v	$RL = 330\Omega$
Input Low voltage: BCLKIO	VILBCLK	-	-	0.4	v	$RL = 330\Omega$
Input High voltage: BCLKIO	VIHBCLK	4.0		-	v	$RL = 330\Omega$

Table 17: IRB Electrical Characteristics (over recommended range)

Table 18: Switching Characteristics (over recommended range)

Jabber Timing	Maximum transmit time	5.0	_	5.5	ms
	Unjab time	-	9.6		μs
Link Integrity Timing	Time link loss	-	60	-	ms
	Time between Link Integrity Pulses	10	_	20	ms
	Interval for valid receive Link Integrity Pulses	4.1	-	30	ms

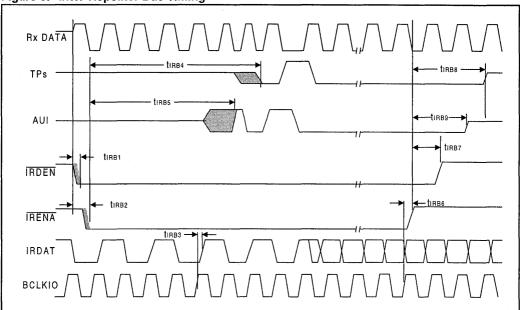


Figure 6: Inter-Repeater Bus Timing

	Table	19: Inter	-Repeater	Bus	Timing	(over recommended range)
--	-------	-----------	-----------	-----	--------	--------------------------

Parameter	Symbol	Min	Typical	Max.	Units
Start of Frame to IRDEN Low (active)	tIRB 1	10	-	150	ns
Start of Frame to IRENA Low (active)	tIRB2	125	_	225	ns
BCLKIO to IRDAT valid (Synchronous mode)	tIRB3	5	-	30	ns
BCLKIO to IRDAT valid (Asynchronous mode)	tIRB3	-	50	_	ns
IRENA Low (active) to TP outputs active	tIRB4	525	-	600	ns
IRENA Low (active) to AUI output active	tIRB5	475	_	525	ns
End of Frame clock to IRENA High (inactive)	tIRB6	5	-	30	ns
IRENA High (inactive) to IRDEN High (inactive)	tIRB7	95	-	105	ns
IRENA High (inactive) to TP outputs inactive	tIRB8	575		600	ns
IRENA High (inactive) to AUI output inactive	tIRB9	425	-	450	ns

DATA SHEET Preliminary Information LXT917/916 Multi-Port Hub Repeaters December, 1996 for Managed 10BASE-T Applications December, 1996

General Description

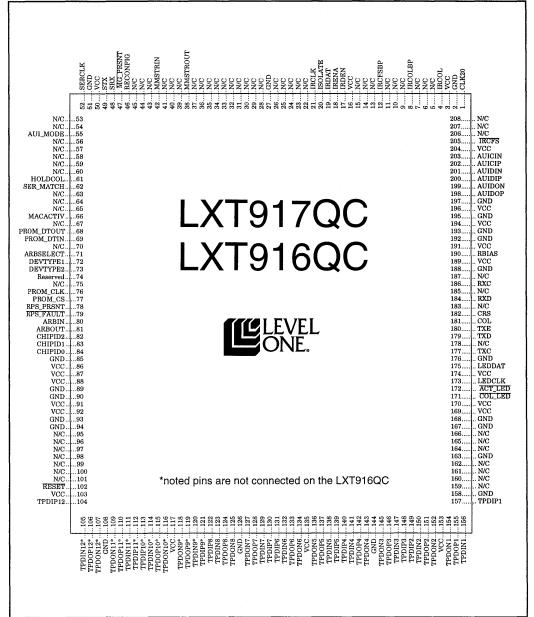
The LXT917 is a fully manageable, 12-port Ethernet repeater. Using mixed-signal technology, this single IC provides direct support for RMON and for the Repeater MIB using on-chip 32-bit counters. A high-speed serial management interface provides complete control over all device operations as well as access to the counters. An inter-repeater backplane allows multiple devices to be cascaded into a single logical repeater. This backplane has been specifically designed to aid in the development of systems with multiple modules, for stackable- and modular-hub applications.

The LXT917 provides twelve 10BASE-T ports, a reversible 10BASE-5 port (AUI), and a 7-pin MAC Interface. All 10BASE-T ports are outfitted with integrated filters. The reversible AUI port can function either as a DTE or as a MAU.

The LXT916 is an eight-port version of the LXT917 with all the same functionality.

Features

Targeted for manageable 10 Mbit repeater and router/hub applications, and remote access systems


- Eight or twelve 10BASE-T ports with Integrated Filters
- · Hardware assist for RMON and the Repeater MIB
- · Reversible AUI port
- · Cascadable digital backplane
- 7-pin MAC interface supports bridging and advanced management applications
- · High-speed serial management interface
- · Two address-tracking registers per port
- · Source Address matching function
- 208-pin PQFP
- 0-70°C Temperature Range

LXT917 Block Diagram IRB MAC I FDs Serial Management LED Backplane MAC Serial Controller Logic I/F Status&Control Interface Registers SNMP&BMON Management Address Tracking **MIB Counters** Repeater State Machine XCVR AUI/ 2 з 5 6 7 8 9 10 11 12 4 RAUI Filter (917) (917) (917) (917)

12

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Figure 1: LXT917QC and LXT916QC Pin Assignments

Pin	Symbol	Туре	Description
155, 154 151, 152 146, 145 142, 143 137, 136 133, 134 128, 127 124, 125	TPDOP1, TPDON1 TPDOP2, TPDON2 TPDOP3, TPDON3 TPDOP4, TPDON4 TPDOP5, TPDON5 TPDOP6, TPDON6 TPDOP7, TPDON7 TPDOP8, TPDON8	Analog Output	Twisted-Pair Data Outputs - Ports 1 through 8. These pins are the positive and negative outputs from the respective twisted-pair port line drivers.
157, 156 149, 150 148, 147 140, 141 139, 138 131, 132 130, 129 122, 123	TPDIP1, TPDIN1 TPDIP2, TPDIN2 TPDIP3, TPDIN3 TPDIP4, TPDIN4 TPDIP5, TPDIN5 TPDIP6, TPDIN6 TPDIP7, TPDIN7 TPDIP8, TPDIN8	Analog Input	Twisted-Pair Data Inputs - Ports 1 through 8. These pins are the positive and negative inputs to the respective twisted-pair ports.
119, 118 115, 116 110, 109 106, 107	TPDOP9, TPDON9 TPDOP1, TPDON10 TPDOP11, TPDON11 TPDOP12, TPDON12	Analog Output	Twisted-Pair Data Outputs - Ports 9 through 12. These pins are the positive and negative outputs from the respective twisted-pair port line drivers. On the 916, ports 9 through 12 should be left unconnected.
121, 120 113, 114 112, 111 104, 105	TPDIP9, TPDIN9 TPDIP10, TPDIN10 TPDIP11, TPDIN11 TPDIP12, TPDIN12	Analog Input	Twisted-Pair Data Inputs - Ports 9 through 12. These pins are the positive and negative inputs to the respective twisted-pair ports. On the LXT916, ports 9 through 12 should be left unconnected.

Table 1: Twisted-Pair Port Signal Descriptions

Table 2: AUI Port Signal Descriptions

Pin	Symbol	Туре	Description
55	AUI_MODE	TTL Input PD	AUI Mode Select. Low = Normal Mode (DTE). High = Reverse Mode (MAU)
198 199	AUIDOP AUIDON	Analog Output	AUI Data Outputs. Positive and negative data outputs for the AUI port. In normal (DTE) mode, connect to pins 3 and 10 of the AUI D-connector. In reverse (MAU) mode, connect to pins 5 and 12 of the AUI D-connector.
200 201	AUIDIP AUIDIN	Analog Input	AUI Data Inputs. Positive and negative data inputs for the AUI port. In normal (DTE) mode, connect to pins 5 and 12 of the AUI D-connector. In reverse (MAU) mode, connect to pins 3 and 10 of the AUI D-connector.
202 203	AUICIP AUICIN	Tri-State, Analog, I/O	AUI Collision Inputs. In normal (DTE) mode these pins are the positive and negative collision inputs for the AUI port. In reverse (MAU) mode these pins are outputs.
1. PD =	= Input contains pul	l-down.	

Pin	Symbol	Туре	Description
17	IRDEN	Open-Drain Output	IRB Driver Enable. This output provides directional control for an external bi-directional transceiver ('245) used to buffer the IRBs in multi-module applications. It must be pulled up by 330 Ω resistors. When there are multiple devices on one module, tie all IRDEN outputs together. If IRDEN is tied directly to the DIR pin on a '245, attach the on-board IRDAT, IRCLK and IRENA signals to the "B" side of the '245, and connect the off-board signals to the "A" side of the '245.
18	IRENA	CMOS I/O Open Drain	Inter-Repeater Backplane Enable. This active low output indicates carrier presence on the IRB. When the IRB is idle, a 330 Ω pull-up resistor pulls the IRENA output High. When there are multiple devices, tie all IRENA outputs together. This signal may be buffered between modules.
19	IRDAT	CMOS I/O Open Drain	IRB Data. This bidirectional signal carries data on the IRB. Data is driven and sampled on the rising edge of IRCLK. This signal must be pulled up by a 330 Ω resistor. Between modules, this signal can be buffered.
20	ISOLATE	Output	Isolate Enable. This output allows one LXT917/916 per module the ability to enable or disable an external bidirectional transceiver ('245). Attach the output to the Enable input of the '245. The output is driven High (disable) to isolate the IRB.
21	IRCLK	CMOS I/O TriState Schmitt Trigger #2	IRB Clock. This bi-directional, non-continuous, 10 MHz clock is recovered from received network traffic. During idle periods, this output is high-impedanced. Schmitt triggering is used to increase noise immunity, therefore full rail-to-rail signals are required. Between modules, buffering may be used on this signal.
4	IRCOL	CMOS I/O Open Drain	IRB Collision. This output is driven low to indicate that a collision has occurred. When there is no collision, a 330 Ω pull-up resistor (required) on the output pulls it High. This signal is intended only to be used between devices on the same module; it may not be buffered.
8	IRCOLBP	CMOS I/O Open Drain NC	IRB Collision-BackPlane. This active Low output has the same function as IRCOL, but is used between modules. Attach this signal only from the device with ChipID = 0 to the backplane or connector, without buffering. The output must be pulled up by one 330Ω resistor per system.
205	IRCFS	Analog, I/O	IRB Collision Force Sense. This three-state analog output indicates that a transmit collision has occurred when it is driven Low. It must be pulled up with a 680 Ω , 1% resistor. This signal is intended only to be used between devices on the same module; it may not be buffered.
12	IRCFSBP	Analog I/O, N/C	IRB Collision Force Sense-BackPlane. This output has exactly the same function as IRCFS, but is used between modules. Attach this signal only from the device with ChipID = 0 to the backplane or connector, without buffering . This output must be pulled up by one 330 Ω , 1% resistor per system.

Table 3:	Inter-Repeater	Backplane	Signal	Descriptions

PU = Input contains pull-up.
 PD = Input contains pull-down.
 NC = No Clamp. Pad will not clamp input in the absence of power.

4. Even if the IRB is not used, required pull-up resistors must be installed as listed above.

Pin	Symbol	Туре	Description
61	HOLDCOL	TTL Tri-state I/O, PD	Hold Collision. This active High signal is driven by the device with ChipID = 0 to extend a non-local transmit collision to other devices on the same module. The HOLDCOL signals from different modules should NOT be attached together.
42	MMSTRIN	TTL Input, NC	Management Master In. The MMSTR daisy chain ensures that collisions will be counted correctly in multi-module applications. Attach the MMSTRIN input of each device to the MMSTROUT output of the previous device. Ground MMSTRIN of the first or only device.
38	MMSTROUT	Output, NC	Management Master Out . MMSTR daisy chain output. In hot-swap applications, a 1 k Ω - 3 k Ω resistor can be used as a by-pass between MMSTRIN and MMSTROUT.
66	MACACTIV	TTL Input, PD	MAC Active. This active High input allows external Ethernet controllers to directly drive the Inter Repeater Backplane. When the controller asserts MACACTIV, the LXT917 drives the IRCOL, IRCOLBP, IRCFS and IRCFSBP signals on behalf of the controller. If any of these inputs are unused, tie them to ground.

Table 3: Inter-Repeater Backplane Signal Descriptions- continued

PU = Input contains pull-up.
 PD = Input contains pull-down.
 NC = No Clamp. Pad will not clamp input in the absence of power.
 Even if the IRB is not used, required pull-up resistors must be installed as listed above.

Pin	Symbol	Туре	Description
177	TXC	Output	Transmit Clock. This 10 MHz continuous output is derived from the 20 MHz input clock.
179	TXD	TTL Input, PD	Transmit Data. External controllers use this input to transmit data to the LXT917. The device samples TXD on the rising edge of TXC, when TXE is High.
180	TXE	TTL Input, PD	Transmit Enable External controllers drive this input High to indicate that data is being transmitted on the TXD pin. Tie this input Low if it is unused.
181	COL	Output	Collision . The LXT917 drives this signal High to indicate that a collision has occurred.
182	CRS	Output	Carrier Sense. The LXT917 drives this signal High to indicate that valid data is present on RXD.
184	RXD	Output	Receive Data. The LXT917 transmits received data to the controller on this output. Data is driven on the falling edge of RXC.
186	RXC	Output	Receive Clock. This is a non-continuous 10 MHz clock that the LXT917 recovers from the network when traffic is actively being received.
1. PD =	Input contains	pull-down.	

Table 4: MAC Interface Signal Descriptions

LXT917/916 Multi-Port Hub Repeaters

Pin	Symbol	Туре	Description
46	RECONFIG	TTL Input, NC	Reconfigure . This input controls the driving of the clock signal on the high- speed serial management interface (SERCLK). When this input is High, the LXT917 drives SERCLK with a 625 kHz output. When this input is Low, SER- CLK is an input to the LXT917. In addition, a Low-to-High transition on RECONFIG causes the LXT917 to drive 13 continuous 0's on the serial manage- ment bus, causing a re-arbitration to occur.
47	MG_PRSNT	TTL Input NC	Manager Present. This signal is sensed at power up. If it is High, it indicates that no local manager is present, and the 917 enables all ports and sets all LEDs to operate in "hardware mode". If it is Low, indicating that a manager is present, the 917 disables all ports, pending control of network manager.
48	SRX	TTL Input	Serial Receive. Receive data input for high-speed serial management interface. Must be tied to STX externally. SRX is sampled on the rising edge of SERCLK.
49	STX	Open Drain Output	Serial Transmit. Transmit data output for high-speed serial management inter- face. Must be tied to SRX externally. Data transmitted on STX is compared with data received on SRX. In the event of a mismatch, STX is put in the high imped- ance state. STX is driven on the falling edge of SERCLK.
52	SERCLK	Tri-State TTL Output	Serial Clock. Clock for serial management interface. Depending on RECON- FIG, this pin is either a 625 kHz output or a 0 to 1 MHz input.
1. NC :	= No Clamp. Pad wi	ll not clamp input	in the absence of power.

Table 5: Serial Management Interface Signal Descriptions

Table 6: LED Signal Descriptions

Pin	Symbol	Туре	Description
171	COL_LED	Open-Drain Output, PU	Collision LED Driver. This output provides up to 10 mA of sink current.
172	ACT_LED	Open-Drain Output, PU	Activity LED Driver. This output provides up to 10 mA of sink current.
173	LED_CLK	Output	LED Clock. Clock for LED serial data output.
175	LED_DAT	Output	LED Data. Serial data output for LED data.
1. PU =	= Pad contains pull-	·up.	

Table 7: PROM Interface Signal Descriptions

Pin	Symbol	Туре	Description
76	PROM_CLK	TTL Input, Tri-State Output	PROM Clock. 1 MHz clock for reading PROM data.
77	PROM_CS	Tri-State Output, PD	PROM Chip Select.
68	PROM_OUT	Tri-State Output, PD	PROM Data Output.
69	PROM_IN	TTL Input	PROM Data Input. If a PROM is not used, this input can be tied Low or High.

Pin	Symbol	Туре	Description
3, 16, 50, 86-88, 91-92, 103, 117, 135, 153, 169-170, 174, 189, 191, 194, 196, 204	VCC	Power	Power Supply Inputs. Each of these pins must be connected to a common +5 VDC power supply. A de-coupling capacitor to digital ground should be supplied for every one of these pins.
2, 27 51, 85 89-90 93-94 108 126, 144 158, 163 167-168, 176, 188 192-193 195, 197	GND	Power	Ground. Connect each of these pins to digital ground. Note: the LXT917 does NOT require separate digital and analog grounds.
190	RBIAS	Analog	RBias . Connect this pin to ground through a 22 k Ω , 1% resistor. Note: Do NOT route any other signals near or around this resistor.
78	RPS_PRSNT	TTL Input	Redundant Power Supply . Active High input indicates presence of redundant power supply. The state of this input and the RPS_FAULT input is reflected in the RPS LED bit in the serial LED output (refer to Tables 10 and 11). The Low if not used.
79	RPS_FAULT	TTL Input	Redundant Power Supply Fault . Active Low input indicates redundant power supply fault. Tie High if not used.

Table 8: Power Supply and Indication Signal Description	Table 8:	Power Suppl	v and Indication	Signal	Descriptions
---	----------	-------------	------------------	--------	--------------

Table 9: Miscellaneous Signal Descriptions

Pin	Symbol	Туре	Description	
1	CLK20	CMOS Input, Schmitt Trigger #1	20 MHz System Clock. Drive with CMOS levels.	
62	SER_MATCH	Output	Hub ID Match. Active High. The device with ChipID = 0 asserts this signal whenever it detects a message on the serial bus which matches the local Hub ID.	
71	ARBSELECT	TTL Input, PU	Arbitration Select. If this pin is pulled Low, Arbitration Mecha- nism #1 is disabled, only Arbitration Mechanism #2 will be avail- able. If this pin is pulled High, both mechanisms will be enabled. If Arbitration Mechanism #1 is enabled, the device with ChipID = 0 will transmit an "Arbitration Request" message every 2-3 ms on the serial management interface until a Hub ID is assigned.	

PU = Input contains pull-up.
 PD = Input contains pull-down.
 NC = No Clamp. Pad will not clamp input in the absence of power.

2

LXT917/916 Multi-Port Hub Repeaters

Pin	Symbol	Туре	Description
72 73	DEVTYPE1 DEVTYPE2	TTL Input, PD TTL Input, PU	Device Type 1 and 2. Used to identify product type. Set DEVTYPE(2:1) = 00 for the LXT916. Set DEVTYPE(2:1) = 01 for the LXT917.
80	ARBIN	Tri-State Input, PD, NC	Arbitration In/Out. Daisy chain hub ID arbitration mechanism #2. If used, tie ARBIN to ARBOUT of the previous device, and to
81	ARBOUT	Output, NC	ground of the first/only device. If unused, tie ARBIN High.
82 83 84	CHIPID2 CHIPID1 CHIPID0	TTL Input	Chip ID. These pins assign unique ChipIDs to as many as eigh devices on a single module. One device on each module must b assigned ChipID=0.
102	RESET	CMOS Input, Schmitt Trigger #1, PU, NC	Reset . This active Low input causes internal circuits and state machines to reset, but does not affect counters or address tracking registers. On power-up, devices should not be brought out of reset until the power supply has stabilized and reached 4.5 volts. When there are multiple devices, it is recommended that all be supplied by a common reset that is driven by an 'LS14 or similar device.
74	RESERVED	-	Reserved . Reserved for future application development. Leave this pin unconnected.
5-7 9-11 13-15 22-26 28-37 39-41 43-45 53-54 56-60 63-65 67 70 75 95-101 159-162 164-166 178 183 185 187	No Connect		No Connects. Leave these pins unconnected.

Table 9: Miscellaneous Signal Descriptions-continued

<u>LXT917/916 Multi-Port Hub Repeaters</u>

FUNCTIONAL DESCRIPTION

INTRODUCTION

The LXT917 is ideally suited for managed 10 Megabit Ethernet repeater solutions. This device furnishes a complete 12-port repeater with built-in support for RMON and the Repeater MIB. The LXT917 supplies 10BASE-T Ethernet ports with integrated filters, a reversible AUI port, and a 7-pin MAC Interface. In addition, the device furnishes an Inter Repeater Backplane (IRB) and a serial management interface, both of which support multiple devices for cascaded repeater applications. The LXT916 is identical to the LXT917 except that it provides 8 10BASE-T ports, not 12. Unless specifically noted, all references to the LXT917 also apply to the LXT916.

10BASE-T Ports

The LXT917 provides 10BASE-T ports with integrated filters. Level One's patented filter technology helps facilitate low-cost systems which meet EMI requirements. Refer to Table 1 for 10BASE-T port pin assignments and signal descriptions.

AUI Port

The LXT917 provides a reversible AUI interface that can function either as a DTE or as a MAU. When this interface functions as a MAU, it supports remote-office and embedded-hub applications (such as file servers) by allowing integration of the LXT917 to existing PHY interfaces. The mode of operation is selected externally through the AUI_MODE pin. Refer to Table 2 for AUI port pin assignments and signal descriptions.

Inter-Repeater Backplane

The LXT917 easily accommodates stackable and modular hub architectures through the Inter-Repeater Backplane, which allows multiple devices to function as one logical repeater. For example, typical LXT917 stack designs accomodate as many as 192 10BASE-T ports. Refer to Table 3 for IRB pin assignments and signal descriptions.

7-pin MAC Interface

The LXT917 provides a 7-pin MAC Interface, which can be interfaced to an Ethernet controller. Refer to Table 4 for MAC I/F pin assignments and signal descriptions.

Serial Management Interface

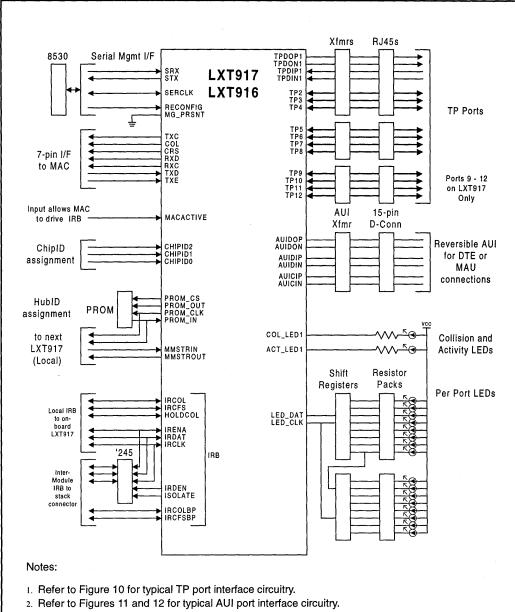
Multiple devices can easily be managed through the highspeed serial management interface. This synchronous interface operates at rates up to 1 Mbps, and uses an HDLC-like zero-bit insertion protocol. This interface provides access to the RMON and Repeater MIB variables as well as complete control over all device functions and visibility of all status registers. Refer to Table 5 for serial management bus pin assignments and signal descriptions.

Management Support

The LXT917 supports RMON and the Repeater MIB using on-chip 32-bit counters. Counters are provided for each port, including the MAC port, and for the interface as a whole. Interface counters include all of the RMON Statistics group and Repeater MIB Total Octets and Transmit Collisions. Per-port counters include:

Readable Frames	Readable Octets	FCS Errors
Alignment Errors	FramesTooLong	ShortEvents
Runts	Collisions	LateEvents
VeryLongEvents	DataRateMismatch	AutoPartitions
Broadcast	Multicast	SA Changes

Source Address Management Functions


The LXT917 provides Source Address Management functions for all ports. Each port has two source-address tracking registers. The rptrAddrTrackNewLastSrcAddress register is always free-running and contains the source address of the last valid packet received from the port. The Authorized Address Register operates in three states: freerun, lock-on-next or lock. This register can track source addresses or lock on an address that has been assigned by the network manager or that it has previously tracked. Once this register is locked, subsequent Source Address changes on a port cause the device to set the corresponding bits in the SA Change Detection Register and the Interrupt Status Register.

The LXT917 also provides a Source Address Tracking Function. Supplied with a 48-bit Ethernet Source Address, this function identifies all ports that sourced that Source Address.

LED Interface

The serial LED interface (data and clock) supplies link and partition status for each of the TP ports, status for the AUI port, and miscellaneous functions. The device directly provides activity and collision LEDs. Refer to Table 6 for LED Interface pin assignments and signal descriptions.

- 3. Refer to Figure 13 for typical IRB circuitry.
- 4. Refer to Figure 14 for typical Serial Management Interface circuitry.
- 5. Refer to Figure 16 for typical PROM circuitry.
- 6. Refer to Figure 17 for typical LED circuitry.

REQUIREMENTS

Power

The LXT917 requires a single +5V power supply, and a single ground reference. Separate analog and digital grounds are NOT required. Refer to Table 8 for power and ground pin assignments.

Clock

The LXT917 requires a continuous 20 MHz clock input, driven with CMOS levels.

RBIAS

The LXT917 requires a 1% 22 $k\Omega$ resistor connecting its RBIAS input to ground.

Reset

At power up, the reset input must be held low until VCC reaches at least 4.5V. An 'LS14 or equivalent should be used to drive reset if there are multiple 917 devices.

PROM

The LXT917 requires an external, auto-incrementing PROM, which is used to supply a 48-bit ID at power-up. If the PROM is not available, the PROM data input signal must be tied either high or low. Multiple devices on the same module can share a single common PROM. Refer to Table 7 for PROM interface pin assignments and signal descriptions.

Chip ID

Each LXT917 on a module requires a unique 3-bit Chip ID value asserted on these pins in order for the serial management bus to function correctly. Exactly one and only one LXT917 on each module must be assigned ChipID = 0.

MMSTRIN/MMSTROUT

In multiple device applications, the Management Master daisy chain (MMSTRIN/MMSTROUT) ensures that collisions are correctly counted . Connect the MMSTRIN input to the MMSTROUT output of the previous device, even across module boundaries. Ground the MMSTRIN input of the first/only device in the system. In hot-swap applications, resistive bypassing can be used, with a value between 1 and 3 k Ω .

REPEATER OPERATION

LXT917 repeater operation is controlled by the state machine shown in Figure 3. When the LXT917 detects activity at any input, it begins generating preamble to all other outputs. Once 62 bits of preamble have been transmitted, and a start-of-frame delimiter (SFD) has been received, the device begins repeating the received packet to all outputs. An internal fifo provides buffering. Operation continues until the receiver goes idle, or until the jabber timer is exceeded.

If activity is detected simultaneously at two or more inputs, the LXT917 enters the transmit collision state. The device sends a jam signal to all ports on the repeater for 96 bit times. A jam signal continues to be sent to all ports as long as two or more inputs are active. If activity simultaneously ceases at all inputs, the device returns to the idle state. If activity continues at only one input, the device enters the one-port-left state. In that state, the LXT917 continues to transmit a jam signal to all ports *except* to the one that has the active input. Once this activity ceases, the repeater returns to the idle state.

If the AUI port is functioning as the DTE, and an external MAU activates the CI inputs while the port is active, the device enters the receive collision state. The LXT917 sends a jam signal to all ports (except the AUI port) for at least 96 bit times and until all activity ceases.

In multiple-device configurations, all devices participate in data exchange and the various collision states via the Inter Repeater Backplane.

Exception Conditions

Fragment Extension

Any received activity shorter than 96 bits (also known as a fragment) will be extended so that it is at least 96 bits long. On the Inter Repeater Backplane, a fragment extension will look like a receive collision, however it will not be counted as a collision.

Packets with no SFD

are.

Packets with no start-of-frame delimiter will be repeated to all ports as a long preamble pattern with no SFD. These packets will be counted as "fragments" by the management counters, no matter how long they

Packets with too early SFD

Any packet with less than 40 bits of preamble will cause the internal fifo to overflow, causing invalid packets to be transmitted to all ports. If the EFI-FOERR bit in the Master Configuration register is set when this occurs, a transmit collision will be generated.

Manchester Code Violations

If the EMCV bit in the Master Configuration register is set, an input packet with Manchester Code Violations will be treated as a transmit collision. If this bit is clear (default), incoming packets with this type of error will simply be repeated to all ports. Note that a packet that does not have a proper end-of-frame marker (2 bit times high with no transitions) will also be flagged as having a Manchester Code Violation.

Figure 3: LXT917 Repeater State Machine

Power On-START Begin UCT IDLE Out (ALL) = Idle Collin(ANY) = SQE[N=Port(Collin = SQE)] Datain(ANY) = 11 * Collin(ALL) = SQE:[N=Port(Datain = 1)] SEND PREAMBLE PATTERN Out (ALLXN) = Preamble Pattern Collin(ANYXN) = SQE Collin(N) = SQE + Datain(N) = II * Collin (ALL) = SQE TT(ALLXN) ≥ 62 * DataRdy Collin(ALL) = SQE * Datain(N) = II SEND TWO ONES Out (ALLXN) = TwoOnes Collin(ANYXN) = SQE Collin(N) = SQE + Datain = II * Collin(ALL) = SQE TwoOnesSent * Collin(ALL) = SQE * Datain(N) = II SEND DATA Out (ALLXN) = Data Collin(N) = SQE + Datain(N) = II Collin(ANYXN) SQE Collin(ALL) = SQE * AllDataSent * TT(ANAYXN) < 96 TRANSMIT COLLISION RECEIVE COLLISION Out (All) = Jam Out (ALLXN) = Jam Collin(ANYXN) = SQE Collin(ALL) = SQE * TT(ALL≥ 96 * Tw2Done Datain(N) = II * Datain(N) = II * Collin(ALL) = SQE * Collin(ALL) = SQE * TT(ALLXN) ≥ 96 * Collin(ONLY1) = SQE * TT(ALLXN) ≥ 96 * TT(ALL)≥ 96:[M←Port(Collin = SQE)] Tw2Done AllDataSent ONE PORT LEFT Out (ALLXM) = Jam II = input_idle (no activity) Collin(ANYXM) = SQE $\overline{11}$ = activity Datain(M) = II* Collin(ALL) = SQE* Tw2Done WAIT StartTw1 Out(ALL) = Idle Collin(ANY) = SQE + Tw1Done

Data Rate Mismatches

bad data.

Severe data rate mismatches will cause the internal fifo

to underflow or overflow. Depending on the state of

the EFIFOERR bit, these conditions can be treated

either as transmit collision, or simply passed along as

LEVEL ONE.

Port Functions

Jabber (all ports)

If any input port is active for more than 5 ms, the device will automatically terminate all transmit activity for at least 96 bit times. This will give waiting ports an opportunity to access the network. A port that is continuously babbling will constantly collide with other ports, and will eventually be isolated by the autopartitioning function.

Auto-partitioning (all ports)

Any port that causes 32 consecutive collisions will be partitioned as shown in Figure 4. A port will also be partitioned if it continues to be active for more than 100 us after a collision has occurred. Once a port is partitioned, data received from that port is not repeated, until the port is re-connected. There are two re-connection algorithms. The normal algorithm allows a port to be reconnected if a packet can be successfully transmitted or received from the port. The alternative algorithm allows re-connection only if a packet can be successfully transmitted to the port. For re-connection to occur, at least 512 bit times of nonidle, non-collision activity must occur. Once this happens, the port is re-connected after the activity stops. The activity that causes the re-connection is not repeated.

Link Integrity Function (10BASE-T ports only)

The device supports the Link Integrity function, which is used to determine if a 10BASE-T connection is working. The function can be enabled on a port-byport basis. When enabled, the device looks for Link Integrity Pulses from each of the 10BASE-T ports. When these pulses are received from a port, it is put into the "Link Up" state, enabling transmissions to the port, and vice versa. If the Link Integrity function is disabled, the port is forced into the Link Up state. The device generates Link Pulses to all ports, regardless of the Link State of any port or whether the Link Function is enabled or disabled.

Polarity Detection and Correction (10BASE-T ports only)

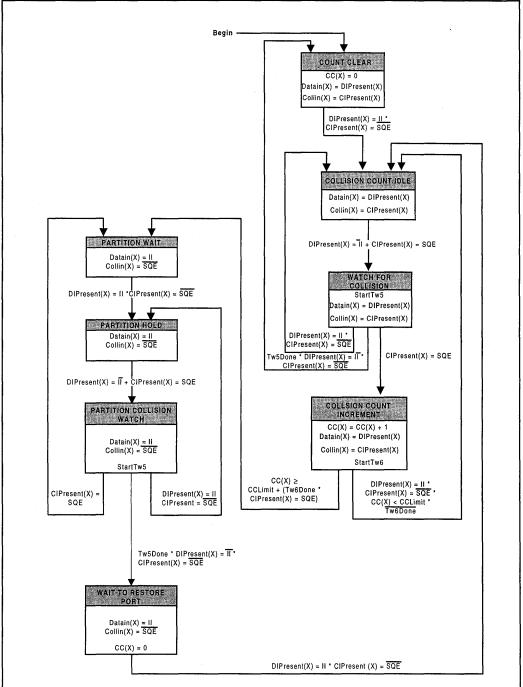
The device can detect reversed polarity on any 10BASE-T port and internally correct for it. This function can also be disabled on a port-by-port basis.

SQE Mask (AUI Port only)

Ethernet MAU devices (also known as transceivers) typically generate an SQE signal (also called heartbeat) on the CI inputs after each data transmission to the MAU. This function is normally supposed to be disabled when a MAU is attached to a repeater, but often times this is overlooked. The result can be a collision at the end of each packet transmitted. An SQE Mask function is provided to overcome this problem. When the Mask is set, SQE heartbeat signals from external MAU's will not be passed on as collisions.

Reverse AUI Mode

In the reverse mode, the AUI interface operates as a MAU rather than as a DTE. This allows it to directly interface to an LXT901/904/907. In this mode, the following apply:


- ¹ The CI pins function as outputs.
- The MaskSQE function determines whether or not the device generates SQE/heartbeat after each successful transmission to the device.
- ¹ The AUIDI pins continue to function as inputs, and the AUIDO pins continue to function as outputs. If these signals are being brought out to an external connector, they must be physically swapped from their normal positions (Refer to Figures 11 and 12.)
- ¹ The device will loopback data presented at the AUIDI inputs to the AUIDO outputs.

Reduced Squelch (10BASE-T ports only)

The squelch threshold on the 10BASE-T receivers can be lowered. This allows the device to detect weaker than normal signals, and can be used to support cables longer than 100m. It also makes the device more sensitive to cross-talk and other noise, and must be used with great care.

LED FUNCTIONS

The LXT917 provides a serial LED output and two global LEDs. Two programmable blink rates are provided. Refer to Table 49 for details.

Serial LEDs

The LXT917 provides a serial LED interface which should be attached to an external shift register. This interface pro-

vides status LEDs for the 10BASE-T and AUI ports. It also provides a global fault LED, a redundant power supply (RPS) LED and a user definable LED. Refer to Figure 17 in the Application section, and to Tables 10 and 11 below for details on the serial LED interface.

Activity and Collision LEDs (global)

These outputs can directly drive LEDs to indicate activity and collision status.

Table 10: LED-DAT Serial Port Bit Assignments

15 ¹	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RPS	GF	UD	AUI	TP12	TP 11	TP10	TP9	TP8	TP7	TP6	TP5	TP4	ТРЗ	TP2	TP1
1. Bit	15 is shif	ted out fir	rst.						L		L				

Table 11: Serial LED Operational Modes

Bit	Name	SW Control		H/W Control			
			On	Slow	Off		
15	RPS	N/A	Present, No Fault	Present & Fault	Any other state		
14	Global Fault	On, Off or Slow Blink via Global LED Control Register,	N/A	Any Port Partitioned or RPS Fault	Any other state		
13	User Definable	Address 181	N/A				
12	AUI Port LEDs	On, Off or Fast Blink, via	Enabled, Link	Partitioned	Any other state		
11:0	TP Port LEDs	LED Control Register, Address 176	Up, Not Parti- tioned				

IRB OPERATION

The Inter Repeater Backplane (IRB) allows multiple devices to operate as a single logical repeater, exchanging data collision status information. The IRB uses a combination of digital and analog signals as shown in Figure 5.

Data Handling

Three signals - IRENA, IRDAT and IRCLK - are used to transmit data. All of them can be buffered between modules. A fourth signal - IRDEN - provides directional control of this buffer. IRDAT, IRENA and IRDEN need to be pulled high by 330 Ω resistors. During a collision, the LXT917 releases all four signals to prevent bus contention.

Collision Handling

Four signals - IRCOL, IRCOLBP, IRCFS and IRCFSBP handle collisions. IRCFS and IRCOL should be connected between all the devices on any module. IRCFSBP and IRCOLBP should be connected between modules, to the devices that have ChipID = 0.

Collision States

There are three repeater collision states:

- Receive Collision This occurs when an external transceiver detects a collision. On the LXT917, this can only happen on the AUI port.
- Transmit Collision This occurs when two or more inputs become active at the same time.
- One Port Left This is a special state that can occur after a Transmit Collision, when only one port remains active. This state prevents dead-locks in multiple-repeater configurations.

Collision Indications

IRCOL and **IRCOLBP** go low to indicate any collision (receive, transmit or one-port-left). **IRCFS** and **IRCFSBP** are three-state signals which are used to detect when a transmit collision occurs. The three states are:

- ¹ Idle (+5V). Indicates that no ports are active.
- ¹ Single drive (+2.8 volts). Indicates that exactly one port is active (normal data transmission, receive collision, or one-port-left).
- Multiple-drive (0 volts). Indicates that two or more ports are active (transmit collision).

IRCFSBP indicates the number of active drivers across all the ports in a repeater stack. **IRCFS** indicates the number of active drivers on the local board, and the first 96-bits of a non-local transmit collision (defined as a collision between a local port and a nonlocal port, or between two non-local ports). The state of **IRCFS** is fed forward to **IRCFSBP** by the device with ChipID = 0. To prevent dead-locks, **IRCFSBP** is NOT fed back to **IRCFS**. During non-local transmit collisions, the signal HOLDCOL is used to hold the local devices in the transmit collision state. Table 12 summarizes the use of these signals.

Collision Hold (HOLDCOL)

The LXT917 can produce a HOLDCOL signal to prevent dead-locks between IRCFS and IRCFSBP. The device with ChipID = 0 drives HOLDCOL high to indicate that a transmit collision is in progress, and that local devices should remain in the transmit collision state.

MAC IRB Access

The MACACTIV pin allows an external MAC or other digital ASIC to interface directly to the LXT917 IRB. When the MACACTIV pin is asserted, the LXT917 will drive the IRCFS and IRCFSBP signals on behalf of the external device, allowing it to participate in the transmit collision detection function of IRCFS and IRCFSBP.

IRB Isolation

The ISOLATE output is provided to control the enable pins of external bidirectional transceivers. In multi-module applications, it can be used to isolate one module from the rest of the system. Only one device can control this signal. The output state of this pin is controlled by the Isolate bit in the Master Configuration Register.

MMSTRIN / MMSTROUT

This daisy chain is provided for correct gathering of statistics in multiple-device configurations. In multiple-module applications, this daisy chain must be maintained across modules. In stand-alone applications, or for the first device in a chain, the MMSTRIN input must be pulled Low in order for the management counters to work correctly.

Condition	IRCOLBP	IRCOL	IRCFSBP	IRCFS
Idle	High	High	High	High
Local Data	High	High	Mid	Mid
Non-Local Data	High	High	Mid	High
Local RxCol or OPL ¹	Low	Low	Mid	Mid
Non-local RxCol/OPL ¹	Low	Low	Mid	High
Local TxCol or first 96 bits of non-local TxCol ²	Low	Low	Low	Low
Non-local TxCol after 96 bits ²	Low	Low	Low	Mid or High

Table 12: IRCOL and IRCFS Condition Indications

 Receive Collision (RxCol) and One Port Left (OPL) conditions have identical bus characteristics and can be differentiated only by timing. Fragment extensions are generally treated as receive collisions.

2. Manchester code violations and fifo overruns are generally treated as transmit collisions.

Digital IRB Signals Hub Module 1 Analog IRB Signals MMSTR MMSTR MMSTR MMSTR OUT / IN OUT / IN IN 917 ChipID = 0 ουт 917 ChipID = n '245 917 ChipID = 1 ISOLATE HOLDCOL IRDEN MMSTR OUT MMSTR IN Digital IRB Signals 7777 Hub Module 2 IRB Signals Analo MMSTR MMSTR MMSTR OUT / IN OUT / IN OUT 917 ChipID = 0 917 ChipID = 1 '245 917 ChipID = n LISOLATE HOLDCOL IRDEN MMSTR OUT MMSTR IN Digital IRB Signals Hub Module n Analog IRB Signals Ø MMSTR MMSTR MMSTR OUT / IN OUT / IN OUT ▶ 917 ChipID = 0 '245 917 ChipID = 1 917 ChipiD = n ISOLATE HOLDCOL IRDEN MMSTR OUT / IN Digital IRB signals include IRDAT, IRENA and IRCLK. Local Analog IRB signals include IRCOL and IRCFS. Inter-Module Analog IRB signals include IRCOLBP and IRCFSBP.

Figure 5: IRB Block Diagram

12

SERIAL MANAGEMENT I/F

The serial management interface provides access to Repeater MIB variables, RMON Statistics attributes and status and control information. A network manager can access the interface through a simple serial communications controller. The interface is designed to be used in a multi-drop configuration, allowing multiple LXT917 devices to be managed from one common line.

The interface consists of a data input line (SRX), data output line (STX) and a clock (SERCLK), and can operate up to 1 Mbps. The interface operates on a simple command response model, with the network manager as the master and the LXT917 devices as slaves. Figure 6 is a simplified view of typical serial management interface architecture.

Figure 6: Typical Serial I/F Architecture

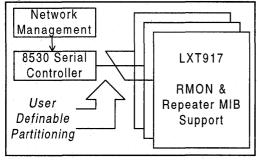
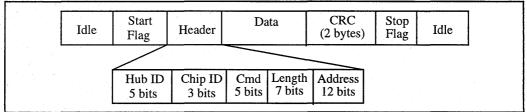


Figure 7: Serial Management Frame Format

Serial Clock

SERCLK is a bidirectional pin; direction control is provided by the RECONFIG input. If RECONFIG is High, the LXT917 will drive SERCLK at 625 kHz. If RECON-FIG is Low, SERCLK is an input, between 0 and 1 MHz. There is no lower bound to how slow the interface can operate. The clock can be stopped after each operation, as long as an idle (ten 1's in a row) is transmitted first.


Serial Data I/O

The serial data pins, SRX and STX, should be tied together. The SRX input is compared with the STX output. If a mismatch occurs, STX goes to a high impedance. STX is driven on the falling edge of SERCLK. SRX is sampled on the rising edge.

Management Format

Normally the network manager directs read and write operations to a specific LXT917 device using a two-part address consisting of HubID and ChipID. The interface allows up to 127 32-bit registers to be read at one time. Up to two registers can be written at a time.

The interface uses a simple frame format, which is shown in Figure 7. All frames begin and end with a flag of consisting of "01111110". All fields are transmitted LSB first. Zero-bit stuffing is required if more than five 1's in a row appear in the header, data or CRC fields. In addition, all operations directed to the device must be followed by an idle (ten 1's in a row), and the first operation must be preceded with an idle.

Table 13: Serial Management Frame Message Fields

Message	Description							
Start or Stop Flag	"01111110". Protocol requires zero insertion after any five consecutive "1's" in the data stream.							
Hub ID Identifies module or sub-system. Assigned by one of two arbitration mechanisms at power-up.								
Chip ID	Identifies one of eight modules on a system. Assigned by 3 external pins on each device.							
Command	Identifies the particular operation being performed (see Table 14)							
Length	Specifies number of registers to be transferred (1 to 127). Maximum is 2 per write, 127 per read							
Address	Specifies address of register or register block to be transferred.							

Command Value Name		Usage	Normally Sent By	Description
18 (Hex)	Write	Normal Ops	Network Mgr	Used to write up to 2 registers (8 bytes) at a time.
04 (Hex)	Read	Normal Ops	Network Mgr	Used to read up to 127 registers at a time.
08 (Hex)	RequestID	Arbitration	LXT917	Requests Hub ID. Repeated periodically.
00 (Hex)	ConfigChg	Arbitration	LXT917	Notifies system of configuration change (hot swap). Requests new arbitration phase.
10 (Hex)	Re-arbitrate	Arbitration	Network Mgr	Re-starts arbitration
14 (Hex)	Assign HubID	Arbitration Mech. 2	Network Mgr	Assigns Hub ID to device with ARBIN=0 and ARBOUT = 1 (top of chain)
OC (Hex)	Set Arbout to 1	Arbitration Mech. 2	Network Mgr	Commands specific device to set ARBOUT to 1.
IC (Hex)	Set Arbout to 0	Arbitration Mech. 2	Network Mgr	Commands specific device to set ARBOUT to 0
02 (Hex)	DevID	Config	Network Mgr	Generic command for reading device type (no register address needed).

Table 14: Serial Management Instruction Set

Table 15: Typical Serial Management Packets

		rial Managem	al Management Packet				
Message	Hub ID	Chip ID	Command	Length	Address	Data	
Write	User Defined	User Defined	18 (Hex)	01 or 02	User Defined	User Defined	
Read Request	User Defined	User Defined	04 (Hex)	01 to 7F Hex	User Defined	Null	
Read Response	00000	000	04 (Hex)	Echo	Echo	Data Values	
Assign Hub ID (Arb Method 1)	11111	111	18 (Hex)	02	188 Hex	Formatted per Table 51	
Assign Hub ID (Arb Method 2)	11111	111	14 (Hex)	01	0	Hub ID (LSB) and 27 0's	
Set Arbout to 1	User Defined	User Defined	0C (Hex)	00	0	Null	
Set Arbout to 0	User Defined	User Defined	IC (Hex)	00	0	Null	
Arb Request	00000	000	08 (Hex)	02	190	PROM ID	
Re-Arbitrate	11111	111	10 (Hex)	00	0	Null	
Request Device ID	User Defined	User Defined	02 (Hex)	01	0	Null	
Device ID Response	00000	000	02 (Hex)	01	185	Formatted per Table 50	
Config Change	13 0's						

Address Arbitration

Each device has a two part address, consisting of a HubID and a ChipID. The ChipID is assigned the input pins CHIPID<2:0>. The HubID is assigned through one of two arbitration mechanisms.

Arbitration Mechanism #1 - EPROM method

This method requires that a PROM be located on each module, and that the ARBSELECT pin (71) not be pulled Low. At power-up, the device with ChipID = 0reads a 48-bit ID from the PROM. All other devices on the module listen in and also record this ID. The device with ChipID = 0 then transmits "Arbitration Request Messages" on the Serial Management Interface every 2-3 milliseconds. The request messages from two modules may collide; if this happens a resolution scheme ensures that only one message will win (see Figure 8). The network manager responds to each request with a message that includes the 48-bit ID and the HubID. All devices hear this message, but only those that match the 48-bit ID receive the HubID as their own. Once the HubID is assigned, the device with ChipID=0 stops sending request messages. It is possible for response messages to be lost due to collisions with request messages.

Arbitration Mechanism #2 - Chain method

In this method, all of the devices are daisy-chained using the ARBIN and ARBOUT pins. This scenario is shown in Figure 9. The ARBIN input of the first device is directly connected to an output of the network manager. At power-up all the devices drive their ARBOUT outputs High while the network manager drives the ARBIN input to the first device Low. The manager transmits a special "Assign Hub ID" message which is recognized only by the device with ARBIN = Low and ARBOUT = High. The network manager then sends a command addressed to this device which commands it to set its ARBOUT pin Low. This cycle repeats until all devices have been assigned a HubID.

Figure 8: Arbitration Mechanism #1 -Collision Resolution

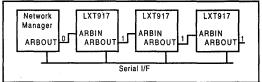
Clk	տուտուտու								
Data		Pkt 1-Succeeds							
Data		Pkt 2-Ceases							
Data		Pkt 3-Ceases							

Address Re-arbitration

There are two mechanisms for address re-arbitration following a configuration change, such as a hot-swap of a module:

- Device power up At power-up, the LXT917 normally sends out a "Configuration Change" message (all 0's) on the bus, which causes re-arbitration.
- The network manager can direct or re-start arbitration at any time by sending the "Re-arbitrate" command.

Source Address Utility Functions


Source Address Tracking Function

Each port has two source address tracking registers. The rptrAddrTrackNewLastSrcAddress register for each port continuously tracks the source addresses of packets emanating from that port. The Authorized Address Register operates in three modes: it can free run, lock, or lock on the next packet. In any mode, it can always be updated by net-work management.

Source Address Matching Function

The LXT917 has a Source Address Matching Function to discover which port or ports sourced packets with a particular Source Address. The input to the function is an Ethernet Address; the output is a register which identifies any ports that sourced packets with that Source Address.

Figure 9: Arbitration Mechanism #2

APPLICATION INFORMATION

MAGNETICS INFORMATION

The LXT917 requires a 1:1 ratio for the TP receive transformers and a 1:1.41 ratio for the TP transmit transformers. Table 16 lists suitable transformers by manufacturer and part number. This information was valid as of the printing date of this document. Before committing to a specific component, designers should contact the manufacturer for current product specifications, and should test and validate the magnetics for the specific application to verify that system requirements are met.

LAYOUT REQUIREMENTS

The Twisted Pair Interface

The layout of the twisted-pair port is critical in complex designs. Run the traces directly from the LXT917 to the discrete termination components (located close to the transformers).

The transformer isolation voltage should be rated at 2 kV to protect the circuitry from static voltages across the connectors and cables. The traces running from the transformers to the connector should run in close pairs directly to the connector. Be careful not to cross the transmit and receive pairs. One way to avoid this problem is to run the receive

pairs on the component side and the transmit pairs on the solder side. Careful planning during the schematic and layout stages can avoid these problems.

The PCB layout should have no ground or power planes between the transformers and the connectors. The data signals should be the only traces in this area. Place the chassis ground for the connectors near the edge of the PCB, away from the signals, connecting the connector shield with the chassis.

The RBIAS Pin

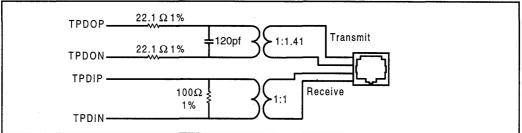
The RBIAS signal sets the levels for the output drivers. Any emissions or common mode noise entering the device here could be measured on the twisted pair output signals.

The LXT917 requires a 22 k Ω , 1% resistor directly connected between the RBIAS pin and ground. These traces should be as short as possible. The ground traces from adjacent GND pins should come directly off of the device to enclose the resistor and pin forming a shielded area between the RBIAS connection and other signals on the PCB.

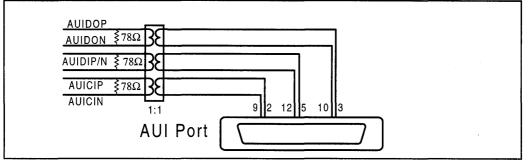
TYPICAL APPLICATION CIRCUITRY

Figures 10 through 17 show typical LXT917 application circuitry. Table 17 summarizes signal operation of the three AUI signal pairs in the two modes (normal and reversed).

Manufacturer	Quad Transmit	Quad Receive	Quad Tx/Rx (Octal)	
BEL	\$553-5999-02	\$553-5999-03		
HALO	TD54-1006L1 TG54-1006N2	TD01-1006L1 TG01-1006N2	TG44-S010NX TG45-S010NX TG46-S010NX	
Nanopulse	5976	5977		
Kappa	TP4003P	TP497P101		
РСА	EPE6009	EPE6010		
TDK	TLA-3T107	TLA-3T106		
VALOR	PT4116	PT4117		


Table 16: Suggested Magnetics List¹

1. Before committing to a specific component, designers should contact the manufacturer for current product specifications, and should test and validate the magnetics for the specific application to verify that system requirements are met.



LXT917/916 Multi-Port Hub Repeaters

Figure 10: Typical 10BASE-T Port Interface

Figure 11: Normal AUI Circuit

Figure 12: Reversed AUI Circuit

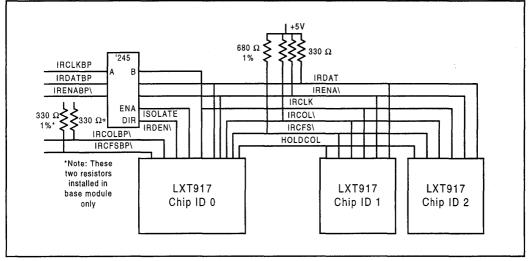
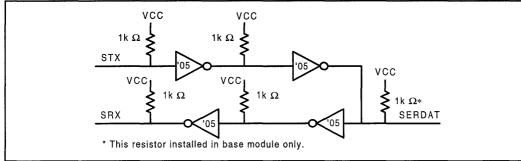


Table 17: AUI Signals - Direction and Pin-Out


LXT	917	AUI Connector Pin #			
Signal	Pin #	Normal	Reversed		
DOP	198	3	5		
DON	199	10	12		
DIP	200	5	3		
DIN	201	12	10		
CIP	202	2	2		
CIN	203	9	9		

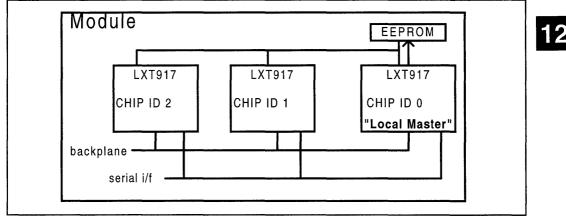
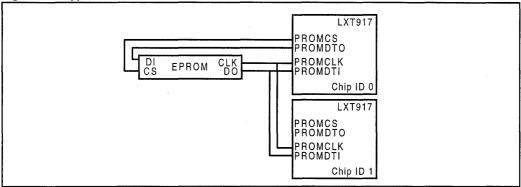
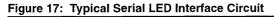
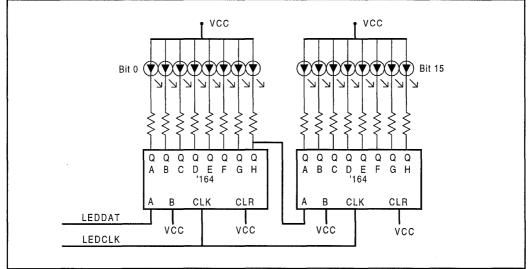


Figure 14: Typical Serial Management Interface Connections




Figure 15: Typical Chip ID Architecture


LEVEL ONE

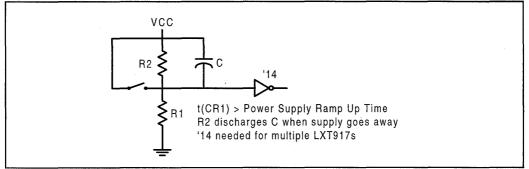


Figure 18: Typical Reset Circuit

TEST SPECIFICATIONS

Note

Minimum and maximum values in Tables 18 through 28 and Figures 19 through 23 represent the performance specifications of the LXT917/916 and are guaranteed by test except, where noted, by design.

Table 18: Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units
Supply voltage	Vcc	-0.3	6	v
Operating temperature	Тор	0	70	°C
Storage temperature	TST	-65	+150	°C
Exceeding these Functional operatic Exposure to maximum rating cond		litions is not imp	lied.	ity.

Table 19: Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions		
Recommended supply voltage ¹	Vcc	4.75	5.0	5.25	v			
Recommended operating temperature	Тор	0	-	70	°C			
VCC current	ICC	-	400	_	mA			
1. Voltages with respect to ground unless otherwise specified.								

Table 20: I/O Electrical Characteristics (Over Recommended Range)

Parameter	Sym -	Min	Typ ¹	Мах	Units	Test Conditions
Input Low voltage	VIL	-		0.8	v	TTL inputs
		-	_	2.0	v	CMOS inputs ²
		_		1.0	v	Schmitt Trigger #1
		-	-	1.0	v	Schmitt Trigger #2
Input High voltage	Vih	2.0		-	v	TTL inputs
		Vcc-2.0	_	-	v	CMOS inputs ²
		Vcc-1.0		-	v	Schmitt Trigger #1
		Vcc-2.0	-	-	v	Schmitt Trigger #2
Hysteresis voltage	-	1.0	-	-	v	Schmitt Trigger #1
		0.5		-	v	Schmitt Trigger #2

1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

2. Does not apply to IRB pins. Refer to Table 23 for IRB I/O characteristics.

LXT917/916 Multi-Port Hub Repeaters

Parameter	Sym	Min	Typ ¹	Max	Units	Test Conditions	
Output Low voltage	Vol	-	_	0.4	v	IOL = 1.6 mA	
Output Low voltage (LED)	Voll	-	_	1.0	v	IOLL = 10 mA	
Output High voltage	Voh	2.4	-	-	v	Іон = 40 μА	
Input Low current	IIL	-100	_	_	μΑ		
Input High current	Іін	-	-	100	μA		
Output rise / fall time	_	_	3	10	ns	CLOAD = 15 pF	

Table 20: I/O Electrical Characteristics (Over Recommended Range) – continued

Pypen values are at 2.5° c and are for design are only, not guaranteed and
 Does not apply to IRB pins. Refer to Table 23 for IRB I/O characteristics.

Table 21: 10BASE-T Electrical Characteristics (Over Recommended Range)

Symbol	Min	Typ1	Max	Units	Test Conditions						
Transmitter											
Transmit output impedance ZOUT – 2 – Ω											
Vod	2.2	2.5	2.8	v	Load = 100Ω at TPOP/TPON						
-	-	±2	±10	ns	0 line length for internal MAU						
-	-	±l	±5.5	ns	After line model specified by IEEE 802.3 for 10BASE-T internal MAU						
		Recei	ver								
Zin	20	36	_	kΩ	Between TPIP/TPIN						
Vdsn	300	420	585	mV	5 MHz square wave input						
VDSR	150	250	350	mV	5 MHz square wave input						
	Zout Vod – – Zin Vdsn	ZOUT - VOD 2.2 - - - - ZIN 20 VDSN 300	Zout - 2 Vod 2.2 2.5 - - ±2 - - ±1 Recei ZIN 20 36 VDSN 300 420	ZOUT - 2 VOD 2.2 2.5 2.8 - - ±2 ±10 - - ±1 ±5.5 Receiver ZIN 20 36 - VDSN 300 420 585	ZOUT - 2 - Ω VOD 2.2 2.5 2.8 V - - ±2 ±10 ns - - ±1 ±5.5 ns ZIN 20 36 - kΩ VDSN 300 420 585 mV						

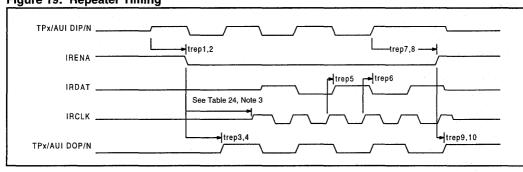
Table 22: AUI Electrical Characteristics (Over Recommended Range)

Parameter	Symbol	Min	Тур ¹	Max	Units	Test Conditions			
Differential output voltage	Vod	±550	_	±1200	mV				
Receive input impedance	Zin	20 .	36	-	kΩ	Between CIP/CIN & DIP/DIN			
Differential squelch threshold	VDS	150	250	350	mV				

Parameter	Symbol	Min	Тур ¹	Max	Units	Test Conditions
Output Low voltage	Vol		.3	.7	v	$RL = 330 \Omega$
Output rise or fall time	Tf	_	4	10	ns	CL = 15 pF
Input High voltage	VIH	Vcc - 2.0	-	-	v	CMOS inputs
Input Low voltage	VIL	-	1	2.0	v	CMOS inputs
IRCFS current		2.6	3.3	4.0	mA	$RL = 680 \Omega$
IRCFSBP current		5.4	6.7	8.3	mA	$RL = 330 \Omega$

Table 23:	IRB EI	lectrical (Characteristics	(Over Recommended Range)
-----------	--------	-------------	-----------------	--------------------------

1. Typical values are at 25° C and are for design aid only; they are not guaranteed and not subject to production testing.


Table 24: Repeater Timing Characteristics¹ (Over Recommended Range)

Parameter	Symbol	Min	Typ ²	Max	Units	Test Conditions
AUI DIN active to IRENA Low	trep 1	_	2	3	BT ⁴	
TP DIN to IRENA Low	trep2	-	5	7	BT	
IRENA Low to AUI DOP active	trep3	-	3	4	BT	
IRENA Low to TP DOP active	trep4	-	4	5	BT	
IRCLK rising edge to IRDAT rising edge.	trep5	25	-,	55	ns	330 Ω pullup, 150 pF load on IRDAT. 1k Ω pullup, 150 pF load on IRCLK.
IRCLK rising edge to IRDAT falling edge.	trep6	5	-	25	ns	All measurements at 2.5V.
AUI DIN idle to IRENA High	trep7	-	-	8	BT	
TP DIN idle to IRENA High	trep8	-	-	11	BT	
IRENA High to AUI DOP idle	trep9	-	_	5	BT	
IRENA High to TP DOP idle	trep10	-	- ⁻	5	BT	

This table contains propagation delays from the TP and AUI ports to the IRB, and from the IRB to the AUI and TP ports, for normal repeater operation (start of packet, end of packet). All values in this table are output timings.
 Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

3. There is a delay of approximately 13 to 16 bit times between the assertion of IRENA and the assertion of IRCLK and IRDAT. This delay does not affect repeater operation because downstream devices begin generating preamble as soon as IRENA is asserted.

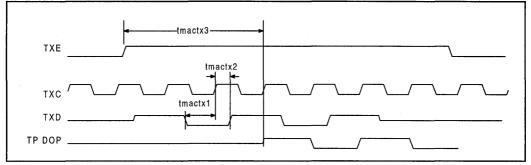
4. BT = Bit Times (100 ns).

Figure 19: Repeater Timing

LXT917/916 Multi-Port Hub Repeaters

Parameter	Symbol	Min	Typ ²	Max	Units	Test Conditions
TXD to TXC setup time	tmactx l	20	-		ns	TXD valid to TXC rising edge ³
TXC to TXD hold time	tmactx2	5	-	-	ns	TXC rising edge to TXD change ³
TXE to TP DOP prop delay	tmactx3	-	6	7	BT	TXE High to TPDOP active ⁴

Table 25: MAC I/F Transmit Timing Characteristics ¹ (Over Recommended Range)


y times toi

2. Typical values are at 25° C and are for design aid only; they are not guaranteed and not subject to production testing.

3. Input.

4. Output.

Figure 20: MAC I/F Transmit Timing

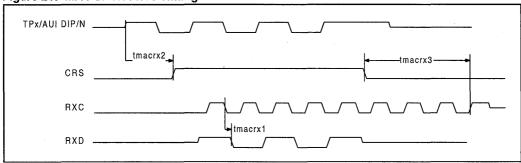


Table 26: MAC I/F Receive Timing Characteristics ¹ (Over Recommended Range)

Parameter	Symbol	Min	Typ ²	Мах	Units	Test Conditions
RXC to RXD prop delay	tmacrx1	-	-	10	ns	Falling edge of RXC to RXD valid
TP/AUI to CRS delay	tmacrx2	-	9	10	BT	TP/AUI DIP active to CRS High
Number of extra receive clocks	tmacrx3	-	5	-	ea	RXC rising edges after CRS Low

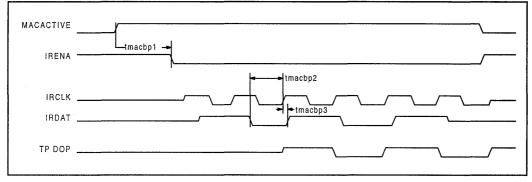
1. This table contains propagation delay times for the 7-pin MAC interface outputs.

2. Typical values are at 25° C and are for design aid only; they are not guaranteed and not subject to production testing.

Figure 21: MAC I/F Receive Timing

LXT917/916 Multi-Port Hub Repeaters

Parameter	Symbol	Min	Тур ¹	Max	Units	Test Conditions		
MACACTIV to IRENA assertion delay ³	tmacbp1	-	100	-	ns	MACACTIV High to IRENA Low ²		
IRDAT to IRCLK setup time	tmacbp2	21	-	-	ns	IRDAT valid to IRCLK rising edge ²		
IRDAT to IRCLK hold time	tmacbp3	0	_	-	ns	IRCLK rising edge to IRDAT change ²		


Table 27: MACACTIVE Delays - MAC/IRB Interface Characteristics (Over Recommended Range)

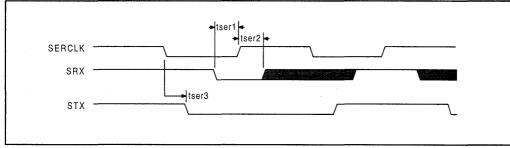
1. Typical values are at 25° C and are for design aid only; they are not guaranteed and not subject to production testing.

2. Input.

3. External devices should allow at least one 10 MHz clock cycle (10 ns) between assertion of MACACTIV and IRENA.

Figure 22: MACACTIVE Timing (MAC to IRB Interface)

Table 28: Serial Management Interface Timing Characteristics (Over Recommended Range)


Parameter	Symbol	Symbol Min Typ ¹ Max Units Test Condit		Test Conditions						
Data to Clock setup tser1 100		100	-	-	ns	SRX valid to SERCLK rising edge ²				
Clock to Data Hold Time	tser2	100	-	-	ns	SERCLK rising edge to SRX change ²				
Data Propagation Delay	tser3		_	100	ns	SERCLK falling edge to STX valid ³				

1. Typical values are at 25° C and are for design aid only; they are not guaranteed and not subject to production testing.

2. Input.

3. Output.

Figure 23: Serial Management Interface Timing

REGISTER DEFINITIONS

The LXT917 register set is composed of multiple 32-bit registers of the following types:

- Configuration Registers
- Control and Status Registers
- Ethernet Address Registers
- Counters

Table 29 lists the register base memory locations. Refer to Tables 30 through 54 for specific addresses and bit assignments.

Base Address	Register Type	Notes
181	Configuration	11 Registers
170	Control and Status	9 Control Registers, 7 Status Registers
156	Ethernet Address	3 Search Registers
13C		Authorized Port Address, 2 per port (TP and AUI)
120		Port Address Tracking, 2 per port (TP, AUI and MAC)
118	Counters	MAC I/F Counters, 8 Registers
100		Reserved
0F0		Reserved
0E0		Reserved
0D0		Interface Counters, 18 Registers
0C0		AUI Port Counters, 15 Registers
0B0		TP Port 12 Counters, LXT917 Only, 15 Registers.
0A0		TP Port 11 Counters, LXT917 Only, 15 Registers.
090		TP Port 10 Counters, LXT917 Only, 15 Registers.
080		TP Port 9 Counters, LXT917 Only, 15 Registers.
070		TP Port 8 Counters, 15 Registers.
060		TP Port 7 Counters, 15 Registers.
050		TP Port 6 Counters, 15 Registers.
040]	TP Port 5 Counters, 15 Registers.
030]	TP Port 4 Counters, 15 Registers.
020		TP Port 3 Counters, 15 Registers.
010		TP Port 2 Counters, 15 Registers.
000		TP Port 1 Counters, 15 Registers.

Table 29: Memory Map

COUNTER REGISTERS

As shown in Table 30, all counters are 32-bit, read-only, "little-Endian" registers, with undetermined values at power-up. The "Zero Counters" bit in the Master Configuration Register allows all counters to be "zeroed".

			egiotei		osigim			····					
31	30	29	28	27	26	25 : 7	6	5	4	3	2	1	0
D31	D30	D29	D28	D27	D26	D25:D7	D6	D5	D4	D3	D2	D1	D0

Table 30: Counter Registers Bit Assignments

Port Counter Registers

Table 31 contains descriptions of the per-port counters for the TP ports and the AUI port. These descriptions are intended to be illustrative. For the exact definitions of these counters, refer to the Repeater MIB, RFC 1516. All counters count packets, octets or events that were received at each port. In the descriptions, the length of a packet never includes preamble or framing bits (start-of-frame, end-of-frame, dribble bits, etc.), but an "event" does include these items..

Name	Address	Description ¹	
rptrMonitorPortReadableFrames	000	Counts valid-length (64 to 1518 bytes), valid-CRC, collision-free packets. Depending on the state of the CountMode bit in the Master Configuration Register, this counter will count either all packets (CountMode=0) or only Unicast Packets (CountMode=1) Minimum roll-over time = 80 hours	
rptrMonitorPortReadableOctets	001	Counts the number of octets in the packets counted by the rptr- MonitorPortReadableFrames counter, not including preamble and framing bits. Minimum roll-over time = 58 minutes.	
rptrMonitorPortFrameCheckSequence	002	Counts valid length, collision-free packets that had FCS errors, but were correctly framed (had an integral number of octets). Minimum roll-over time = 80 hours.	
rptrMonitorPortAlignmentErrors	003	Counts valid length, collision-free packets that had FCS errors and were incorrectly framed (had a non-integral number of octets). Minimum roll-over time = 80 hours.	
rptrMonitorPortFramesTooLong	004	Counts packets that had a length greater than 1518 octets. Minimum roll-over time = 61 days.	
rptrMonitorPortShortEvents	005	Counts events that lasted for 82 bit times or less. Minimum roll-over time = 16 hours.	
rptrMonitorPortRunts	006	Counts events longer than 82 bit times, but shorter than 512 bit times. Minimum roll-over time = 16 hours.	
rptrMonitorPortCollisions	007	Counts the number of collisions that occurred, not including late collisions. Minimum roll-over time = 16 hours.	
rptrMonitorPortLateEvents	008	Counts the number of times collision was detected more than 512 bit times after the start of carrier. Minimum roll-over time = 81 hours.	

Table 31: Port Counter Registers

1. All Port Counters are Read Only.

Name	Address	Description ¹
rptrMonitorPortVeryLongEvents	009	Counts the number of times any activity continued for more than 4 to 7.5 ms. Minimum roll-over time = 198 days.
rptrMonitorPortDataRateMismatches	00A	Counts the number of times the incoming data rate mismatched the local clock source enough to cause a fifo underflow or over- flow.
rptrMonitorPortAutoPartitions	00B	Counts the number of times this port has been partitioned by the Auto-partition algorithm.
rptrTrackSourceAddrChanges	00C	Counts the number of times the source address has changed. Minimum roll-over time of 81 hours.
rptrMonitorPortBroadcastPkts	00D	Counts the number of good broadcast packets received by this port.
rptrMonitorPortMulticastPkts	00E	Counts the number of good multicast packets received by this port.

Table 31: Port Counter Registers – continued

Interface Counter Registers

1

Table 32 contains descriptions of the interface counters, which are intended to be illustrative. For the exact definition of these counters, refer to the RMON MIB, RFC 1757. All counters count events, octets or packets that were received from the interface. Packet length never includes preamble or framing bits (start-of-frame, end-of-frame, dribble bits, etc.).

	Table 32:	Interface	Counter	Registers
--	-----------	-----------	---------	-----------

Name	Address	Description ²	
etherStatsOctets	0D0	The number of data octets including those in bad packets and octets in FCS fields, but does not include preamble or other framing bits.	
etherStatsPkts	0D1	The number of packets received from the network, including errored packets.	
etherStatsBroadcastPkts	0D2	The number of good broadcast packets received.	
etherStatsMulticastPkts	0D3	The number of good multicast packets received.	
etherStatsCRCAlignErrors	0D4	The number of valid-length packets (64 to 1518 bytes inclusive) that had a bad Frame Check Sequence (FCS).	
etherStatsUndersizePkts	0D5	The number of well-formed packets that were smaller than 64 octets.	
etherStatsOversizePkts	0D6	The number of well-formed packets that were longer than 1518 octets.	
etherStatsFragments	0D7	The number of ill-formed packets less than 64 octets. Note: Any event without a start-of-frame delimiter (0-octet packet) will be counted as a fragment, no matter how long it is.	
etherStatsJabbers	0D8	The number of ill-formed packets longer than 1518 octets. An ill-formed packet is one with an FCS error.	
etherStatsCollisions	0D9	The best estimate of the total number of collisions on this interface.	
etherStatsPkts64Octets	0DA	The number of packets (good and bad) that were 64 octets long.	

LEVEL ONE.

Name	Address	Description ²
etherStatsPkts65to127Octets	0DB	The number of packets (good and bad) between 65 and 127 octets long.
etherStatsPkts128to255Octets	0DC	The number of packets (good and bad) between 128 and 255 octets long
etherStatsPkts256to511Octets	0DD	The number of packets (good and bad) between 256 and 511 octets long.
etherStatsPkts512to1023Octets	0DE	The number of packets (good and bad) between 512 and 1023 octets long.
etherStatsPkts1024to1518Octets	0DF	The number of packets (good and bad) between 1024 and 1518 octets long.
rptrMonitorTotalOctets	110	The total number of octets received.
rptrMonitorTransmitCollisions	114	The total number of transmit collisions that occurred.

Table 32: Interface Counter Registers- continued

Port Counters for the 7-pin MAC Interface

Port Counters for the 7-pin MAC Interface are described in Table 33. These counters are a subset of the port counters for the other ports. Refer to Table 30 for bit assignments.

Name	Type ¹	Addr	Description
MAC I/F-ReadableFrames	R	118	Valid-length (64 to 1518 bytes), valid-CRC, non-collision frames. Depending on the state of the CountMode bit in the Master Configura- tion Register, this counter counts either all valid packets (Count- Mode=0) or Unicast packets only (CountMode=1). Minimum roll-over time = 80 hours.
MAC I/F-ReadableOctets	R	119	Octets contained in MAC I/F-ReadableFrames. Minimum roll-over time = 58 minutes.
MAC I/F-Runts	R	11A	Number of packets and events shorter than 512 bit times. Minimum roll-over time = 16 hours.
MAC I/F-Collisions	R	11B	Number of collisions that were detected on this interface. Minimum roll-over time = 16 hours.
MAC I/F-FCS/FAE	R	11C	Valid length (64-1518 bytes), non-collision packets with FCS errors. Minimum roll-over time = 80 hours.
MAC I/F-Broadcast	R	11D	Number of good broadcast packets received from this port.
MAC I/F-Multicast	R	11E	Number of good multicast packets received from this port.
MAC I/F-SAchanges	R	11F	Number of times the source address has changed. Minimum roll-over time = 81 hours.
I. R = Read Only.			

Table 33: MAC Interface Registers

ETHERNET ADDRESS REGISTERS

All Ethernet Address Registers consist of two 32-bit registers that together contain a 48-bit Ethernet address. Refer to Table 34 for register bit assignments.

Table 34:	Ethernet Address	Register Bit	Assignments

Upper Address	Bits 15:0 contain bits 47:32 of the Ethernet Address.
Lower Address	Bits 31:0 contain bits 31:0 of the Ethernet Address.

Port Address Tracking Registers

The Port Address Tracking Register set is described in Table 35. These registers continuously monitor the Source Addresses of packets emanating from the corresponding ports. Refer to Table 34 for bit assignments.

Table 35:	Port Address	Tracking	Registers

Name	Type ¹	Addr	Description
rptrAddrTrackNewLastSrcAddress-Tp Port 1	R/W	120, 121	
rptrAddrTrackNewLastSrcAddress-TP Port 2	R/W	122, 123	
rptrAddrTrackNewLastSrcAddress-TP Port 3	R/W	124, 125	
rptrAddrTrackNewLastSrcAddress-TP Port 4	R/W	126, 127	
rptrAddrTrackNewLastSrcAddress-TP Port 5	R/W	128, 129	
rptrAddrTrackNewLastSrcAddress-TP Port 6	R/W	12A, 12B	
rptrAddrTrackNewLastSrcAddress-TP Port 7	R/W	12C, 12D	
rptrAddrTrackNewLastSrcAddress-TP Port 8	R/W	12E, 12F	
rptrAddrTrackNewLastSrcAddress-TP Port 9	R/W	130, 131	LXT917 Only
rptrAddrTrackNewLastSrcAddress-TP Port 10	R/W	132, 133	LXT917 Only
rptrAddrTrackNewLastSrcAddress-TP Port 11	R/W	134, 135	LXT917 Only
rptrAddrTrackNewLastSrcAddress-TP Port 12	R/W	136, 137	LXT917 Only
rptrAddrTrackNewLastSrcAddress-AUI Port	R/W	138, 139	
rptrAddrTrackNewLastSrcAddress-MAC Port	R/W	13A, 13B	
1. R/W = Read / Write			

Authorized Port Address Registers

The Authorized Port Address Register set is described in Table 36. The operation of these registers is determined by the Authorization Control Register. Refer to Table 34 for bit assignments.

Name	Type ¹	Addr	Description
Authorized Address Register - TP Port 1	R/W	13C, 13D	
Authorized Address Register - TP Port 2	R/W	13E, 13F	
Authorized Address Register - TP Port 3	R/W	140, 141	
Authorized Address Register - TP Port 4	R/W	142, 143	
Authorized Address Register - TP Port 5	R/W	144, 145	
Authorized Address Register - TP Port 6	R/W	146, 147	
Authorized Address Register - TP Port 7	R/W	148, 149	
Authorized Address Register - TP Port 8	R/W	14A, 14B	
Authorized Address Register - TP Port 9	R/W	14C, 14D	LXT917 Only
Authorized Address Register - TP Port 10	R/W	14E, 14F	LXT917 Only
Authorized Address Register - TP Port 11	R/W	150, 151	LXT917 Only
Authorized Address Register - TP Port 12	R/W	152, 153	LXT917 Only
Authorized Address Register - AUI Port	R/W	154, 155	
I. R/W = Read / Write		<u> </u>	

Table 36: Authorized Port Address Registers

Search Registers

The Search Register set is described in Table 37.

Table 37: Search Registers

Name	Type ¹	Addr	Description
Search Address Register	R/W	156,157	This register-pair specifies an Ethernet Source Address to match. Refer to Table 34 for bit assignments
Search Result Register	R	160	This register indicates which ports sent packets with source addresses that matched the register pair described in the row above. Refer to Table 38 for bit assignments (Bit 13 not used). This register clears when read.

R/W = Read / Write.
 R = Read Only.

CONTROL AND STATUS REGISTERS

The Control and Status Register set includes general port control and status registers which conform to the bit assignments shown in Table 38, and additional control and status registers with alternate bit assignments shown in Tables 40 through 45.

31:14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rsvd	МАС	AUI	TP12	TP11	TP10	TP9	TP8	TP7	TP6	TP5	TP4	трз	TP2	TP1
Rsvd MAC AUI TP12 TP11 TP10 TP9 TP8 TP7 TP6 TP5 TP4 TP3 TP2 TP 1. Bits 13:12 not used in all registers. Refer to individual register descriptions. 2. Bits 11:8 not used in the LXT916. 3. Second Sec														

Table 38: Port Control and Status Register Bit Assignments

General Port Control Registers

The General Port Control Register set is described in Table 39. Refer to Table 38 for Port Control Register bit assignments. Bits 12 and 13 are not used in all cases (refer to specific register descriptions).

Table 39: Port Control Registers

Name	Type ¹	Addr	Description
Enable Register	R/W	171	Writing a 1 to any bit enables the transmitter and receiver on the corresponding port, writing a 0 disables them. Changing a port's status while the network is active may cause packet fragments to be generated. If the MG_PRSNT pin is Low, this register will initialize to all 0's (all ports disabled). If the MG_PRSNT pin is High, this register will initialize to all 1's (all ports enabled).
Reserved	-	172	
Reserved	-	173	
Alternate Partition Register	R/W	174	Writing a 1 to any bit enables the alternate partition algorithm (re-connect on transmit only) for the corresponding port, a 0 the normal algorithm (re-connect on transmit or receive). (Bits 31:13 not used)
Link Control Register	R/W	178	Writing a 1 to any bit enables the Link Partition Algorithm for the corresponding Twisted Pair port, writing a 0 disables it. When this function is disabled, the port automatically goes to Link Pass state and continues to transmit link pulses. (Bits 31:12 not used; Power-up state is all 1's)
Polarity Control Register	R/W	179	Writing a 1 to any bit disables polarity correction for the corre- sponding Twisted Pair port. (Bits 31:12 not used)
Squelch Control Register	R/W	17A	Writing a 1 to any bit enables the receiver for the correspond- ing port to use reduced squelch levels for longer-distance cables; writing a 0 enables normal squelch levels to be used. (Bits 31:12 not used)

1. R/W = Read/Write.

Interrupt Status Register

The Interrupt Status Register is described in Table 41. Refer to Table 40 for bit assignments.

Table 40: Interrupt Status Register Bit Assignments

Reserved	Jabber	Source Address Change - TP Port	Source Address Change - AUI Port
Bits 31:3	Bit 2	Bit 1	Bit 0

Table 41: Interrupt Status Register

Name	Type ¹	Addr	Notes
Interrupt Status Register	R	17B	Indicates one of three interrupt conditions. Clears when read. Power-up state is all 0s.
I. R = Read Only			

Port Status Registers

The Port Status Register set is described in Table 42. Refer to Table 38 for bit assignments.

Table 42: Port Status Registers

Name	Type ¹	Addr	Notes
AUI Status Register	R	17C	Reports SQE (heartbeat) and Loopback status of AUI port. Refer to Table 44 for details.
Link Status Register	R	17D	A "1" in any bit position indicates the corresponding port is in the "Link Up" state. (Bits 31:12 not used)
Partition Status Register	R	17E	A "1" in any bit position indicates the corresponding port has been partitioned. (Bits 31:13 not used.)
Polarity Status Register	R	17F	A "1" in any bit position indicates that the polarity for the corresponding port has been reversed (Bits 31:12 not used.)
SA Change Detection Register	R	180	A "1" in any bit position indicates that the Source Address has changed on the corresponding port. (Bits 31:13 not used.)

12

LXT917/916 Multi-Port Hub Repeaters

AUI Control and Status Registers

The AUI Control and Status Register set is described in Table 44. Refer to Table 43 for bit assignments.

Register	Bits 31:2	Bit 1	Bit 0
AUI Control	Reserved	Reserved	SQE Mask
AUI Status	Reserved	Loopback	SQE (Heartbeat) Status

Table 43: AUI Control and Status Register Bit Assignments

Table 44:	AUI Control	and Status	Registers

Name	Type ¹	Addr	Description
AUI Control Register	R/W	177	This bit controls masking or generation of the AUI "heartbeat", defined as brief activity on the AUI CI pair generated by the MAU shortly after successful comple- tion of a transmission. The power-up state of this register is "0". When the AUI is functioning as a DTE - If this bit is 1 the device will not react to heartbeat, other than to update the AUI status register. If this bit is 0, the device will react to heartbeat by going into a full receive collision. When the AUI is functioning as a MAU - If this bit is 1, the device will not gener- ate heartbeat; if it is 0, the device will generate heartbeat.
AUI Status Register	R	17C	This register reports SQE and Loopback status of AUI port when the LXT917 is operating as the DTE, and has no function when the operating as the MAU). SQE Heartbeat Status - This bit indicates the presence or absence of a heartbeat signal from an external MAU (1 = present, 0 = absent). This function operates regardless of the state of the SQE Mask bit in the AUI Control Register. Loopback - This bit indicates whether or not data loopback was detected from an external MAU (1 = present, 0 = absent.)

R = Read Only.

Authorization and LED Control Registers

The Authorization and LED Control Registers are described in Table 46. Refer to Table 45 for bit assignments.

31:26 2	25:24	23:22	21:20	19:18	17:16	15:14	13:12	11:10	9:8	7:6	5:4	3:2	1:0
Reserved	AUI	TP12	TP11	TP10	TP9	TP8	TP7	TP6	TP5	TP4	TP3	TP2	TP1

Table 45: Authorization and LED Control Register Bit Assignments¹

Table 46: Authorization and LED Control Registers

Name	Addr	Description ¹
Authorization Control Register	175	 Determines the operational mode of the Authorized Address Register for each port. 00 = Free-Run. The Authorized Address Register continuously re-learns its contents from the source addresses of incoming packets (Power-up default). 01 = Next Lock. The Authorized Address Register learns the source address of the next valid packet and locks. Once it locks, the corresponding bits in this register automatically change to '10'. 10 = Lock. The Authorized Address Register does not change with traffic flow. In this mode, it can only be updated under network management control. 11 = Reserved.
LED Control Register	176	Controls operation of the serial LED bits associated with each port. The power-up state of this register is all 1's if an external manager is detected, and defaults to "hardware control" otherwise. 00 = LED off 01 = LED fast blink 10 = hardware control 11 = LED on
1. The Authorization	Control Re	gister and the LED Control Register are both Read/Write.

CONFIGURATION REGISTERS

Configuration Registers are listed in Table 47. Bit assignments for the Configuration Registers are shown in Table 48 through 53. The Master Configuration Register is defined in Table 54.

Name	Type ¹	Addr	Notes
Global LED Control Register	R/W	181	Refer to Table 48 for bit assignments. This register controls the operating modes of the Global Fault LED and User Defined LED as follows: Global Fault LED, Bit Encoding: 00 Off 01 Hardware Control 10 Slow Blink 11 On Steady User Defined LED, Bit Encoding: 00 Off 11 On Steady User Defined LED, Bit Encoding: 00 Off 01 Fast Blink 10 Reserved 11 On Steady
LED Timer Register	R/W	182	Refer to Table 49 for bit assignments. Bits 8-15 of this register set the fast blink frequency of the LEDs. Bits 0-7 set the slow blink frequency. The same formula is used in each case, with a maximum of 128 Hz and a minimum of 0.5 Hz (for example, fast blink = $32 (0.4 \text{ s})$; slow blink = CC (1.6 s)).
Master Configuration Register	R/W	183	Refer to Table 53 for bit assignments. At power-up, all bits in this register default to 0.
Reserved	R	184	
Device ID Register	R	185	This register follows the IEEE 1149.1 specification; refer to Table 50 for bit assignments. The upper 4 bits identify the device revision level. The next 16 bits store the Part ID Number in hexadecimal, which is '0396'. The lower 12 bits contain a JEDEC Manufacturer ID, which for Level One is hexadecimal 'FE'.
Repeater Reset Register	W	186	Writing any data value to this register causes all functional logic to reset, but does not affect the state of counters, configuration registers or status registers.
Software Reset Register	w	187	Writing any data value to this register is identical to a hard- ware reset. Everything is reset except counters and addresses.
HUB ID Register (1 and 2)	W	188, 189	Refer to Table 51 for bit assignments. Writing a valid 48-bit ID (one that matches the EPROM ID) to this register causes the device to change its Hub ID to the contents of the EPROM ID register listed below. This register cannot be read.
EPROM ID Register (1 and 2)	R	190, 191	These two registers contain the 48-bit ID read in from EPROM at power-up. Refer to Table 52 for bit assignments.

Table 47: Configuration Registers

1. R = Read Only.

W = Write Only.R/W = Read/Write.

31:4	3	2	1	0
Reserved	Global Fault LED		User Def	ined LED

Table 48: Global LED Control Register Bit Assignments

Table 49: LED Timing Control Register Bit Assignments

31:16	15:8	7:0
Reserved	Fast Blink Frequency	Slow Blink Frequency
1. Period = 7.8125 ms x (Register Value	c + 1)	
2. Frequency = $\frac{1}{7.8125 \text{ ms } x \text{ (Register})}$	r Value + 1)	

Table 50: Device ID Register Bit Assignments

31:28	27:12	11:8	7:1	0
Version	Part ID	Jedec Continuation Characters	JEDEC ID	Chip ID
XXXX	0000 0011 1001 0101 (LXT917) 0000 0011 1001 0100 (LXT916)		111 1110	0

Table 51: Hub ID Register Bit Assignments

Upper Address	31:21 - All 0s	20:16 - Hub ID	15:0 - Must match bits 15:0 of upper EPROM ID Register
Lower Address		31:0 - Must ma	tch bits 31:0 of lower EPROM ID Register

Table 52: EPROM ID Register Bit Assignments

Upper Address	31:16 - All 0s	15:0 - Bits 15:0 of Address read from EPROM	
Lower Address		31:0 - Bits 47:16 of Address read from EPROM	

LXT917/916 Multi-Port Hub Repeaters

31:11	10	9	8:6	5	4	3	2	1	0
Reserved	Arbin	Zero Counters	Reserved	Isolate	CountMode	Reserved	EFIFOERR	EMCV	Reserved

Table 53: Master Configuration Register Bit Assignments

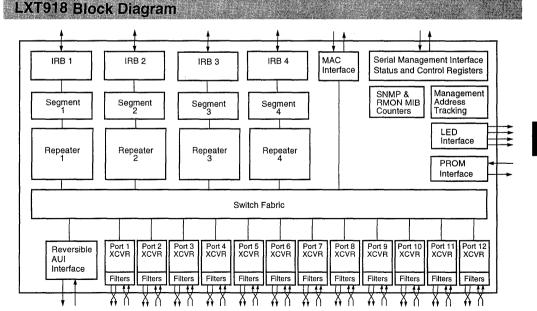
Table 54: Master Configuration Register Bit Definitions

Bit	Name	Type ¹	Description	Default
31:11	Reserved	-	Write as 0, ignore on read.	N/A
10	Arbin	R	This bit shows the value present at the ARBIN input pin.	0
9	Zero Counters	R/W	Setting this bit to "1" will cause all counters to be zeroed. Upon comple- tion of this operation, the device will reset this bit to "0".	0
8:6	Reserved	-	Write as 0, ignore on read.	N/A
	Isolate	R/W	This bit controls the Isolate output. Setting the bit to "1" causes the Isolate output pin to be asserted High.	0
4	CountMode	R/W	This bit affects the operation of the portReadableFrames and MACRead- ableFrames counters. Setting this bit to 0 will cause these counters to count all readable frames; setting this bit to 1 will cause these counters to count only readable unicast frames.	0
3	Reserved	-	Write as 0, ignore on read.	N/A
2	EFIFOERR	R/W	This bit determines whether the device will enter the Transmit Collision State if its internal fifo overflows or underflows (data-rate mismatch). 0 = no, 1 = yes.	0
1	EMCV	R/W	This bit determines whether the device will enter the Transmit Collision State upon reception of a Manchester Code Violation; $0 = no$, $1 = yes$.	0
0	Reserved	-	Write as 0, ignore on read.	N/A

DATA SHEET LXT918 Multi-Segment Hub Repeater

General Description

The LXT918 provides four complete 10 Megabit Ethernet repeaters in one mixed-signal IC. An internal switch matrix allows any of the external ports - including a 7-pin MAC interface - to be switched to any repeater segment at will. Each segment has its own independent Inter-Repeater Backplane which allows multiple segments to be cascaded in stackable and modular hub applications.


The LXT918 provides per-segment and per-port support for the Repeater MIB and for RMON. All variables are implemented as 32-bit counters for maximum roll-over time. A high-speed serial management interface provides software access to the internal switch, RMON and Repeater MIB counters, and to port status and control features.

A unique feature of the LXT918 architecture is that when a port is switched to a new segment, its counters follow it. In addition the LXT918 has a SoftReconnect feature, which switches ports without corrupting network traffic.

Features

Advanced features enable new dimensions in Next Generation Repeater applications:

- · Four independent 10 Mbit Ethernet Repeaters
- Twelve 10BASE-T ports with Integrated Filters
- Hardware assist for RMON and the Repeater MIB
- · Reversible AUI port
- · Four mixed-signal backplanes for cascading
- · 7-pin "roaming" MAC interface for probe access
- · High-speed serial management interface
- · Two address-tracking registers per port
- · Source Address matching function
- 0-70°C Temperature Range
- 208-pin PQFP

MAY 1997 Revision 1.1

LXT918 Multi-Segment Hub Repeater

TABLE OF CONTENTS

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS	12-96
FUNCTIONAL DESCRIPTION	12-104
Introduction	12-104
10BASE-T Ports	12-104
AUI Port	
Inter-Repeater Backplane	12-104
7-pin MAC Interface	12-104
Serial Management Interface	12-104
Management Support	
Source Address Management Functions	12-104
LED Interface	
Requirements	12-107
Power	12-107
Clock Signal	12-107
RBIAS Pin	
Reset Signal	12-107
External PROM	12-107
Chip Identification	
Management Master I/O Link	
Repeater Operation	
Exception Conditions	12-107
Port Functions	12-109
Jabber (all ports)	
Auto-partitioning	
Link Integrity Function	
Polarity Detection and Correction (10BASE-T ports only)	
SQE Mask (AUI port only)	
Reverse AUI Mode	
Reduced Squelch (10BASE-T ports only)	
LED Functions	
Serial LEDs	
Activity and Collision LEDs (global)	
IRB Operation	
Data Handling	
Collision Handling	
MAC IRB Access	12-112
IRB Isolation	
MMSTRIN / MMSTROUT	
Serial Management Interface	
Serial Clock	
Serial Data I/O	
Management Format	12-114

LXT918 Table of Contents

AUI Configuration Register12-115	5
Address Arbitration12-116	
Address Re-arbitration12-116	
Source Utility Functions	;
Source Address Tracking Function12-116	5
Source Address Matching Function12-116	į
APPLICATION INFORMATION12-117	,
Magnetics Information12-117	,
Layout Requirements12-117	•
Twisted-Pair Interface12-117	
RBIAS Pin	•
Typical Application Circuitry12-117	•
TEST SPECIFICATIONS	
Absolute Maximum Ratings12-121	
Operating Conditions12-121	
I/O Electrical Characteristics12-121	
10BASE-T Electrical Characteristics12-122	
AUI Electrical Characteristics12-122	-
IRB Electrical Characteristics12-123	
Repeater Timing Characteristics12-123	
MAC Interface Transmit Timing Characteristics	•
MAC Interface Receive Timing Characteristics	•
MACACTIVE Delays - MAC/IRB Interface Characteristics	į
Serial Management Interface Timing Characteristics	i
REGISTER DEFINITIONS 12-126	i
Introduction	i
Counter Registers12-127	
Port Counter Registers12-127	,
Interface Counter Registers12-128	5
Port Counters for the 7-pin MAC Interface	,
Ethernet Address Registers12-130)
Port Address Tracking Registers12-130	,
Authorized Port Address Registers	
Search Registers	
Control and Status Registers12-132	2
General Port Control Registers12-132	
Interrupt Status Register	
Port Status Registers12-133	
AUI Control and Status Registers	
Port Switch, Authorization and LED Control Registers	
Configuration Registers12-136	

LXT918 Multi-Segment Hub Repeater

PIN ASSIGNMENTS AND SIGNAL DESCRIPTIONS

Figure 1: LXT918QC Pin Assignments

	CONFIG_CLK AUTCONFIG_CLK AUTCONFIG CONFIG_ENA. HOLDCOLL HOLDCOLL HOLDCOLL PROM_DTOTIN MACACTIVA MACACTIVA MACACTIVA MACACTIVA MACACTIVA MACACTIVA MACACTIVA MACACTIVA MACACTIVA MACACTIVA MACACTIVA MACACTIVA Reserved Rese	
TPDIN12105	53 55 55 55 55 55 55 55 55 55 55 55 55 5	52SERCLK
TPDOP12106		51
TPDON12107 GND108		50VCC 49STX
TPDON11109		48
TPDOP11110 TPDIN11111		47
TPDIP11112 TPDIP10113		45MMSTRIN4 44MMSTRIN3
TPDIN10114		43 MMSTRIN2
TPDOP10115 TPDON10116		42MMSTRIN1 41MMSTROUT4
VCC117		40 MMSTROUT3
TPDON9118 TPDOP9119		38
TPDIN9120 TPDIP9121		37IRCLK4 36ISOLATE4
TPDIP8		35 IRDAT4
TPDIN8123 TPDOP8124		34 IRENA4 33 IRDEN4
TPDON8125 GND126		32 IRCLK3 31 ISOLATE3
TPDON7127	Y X	30 IRDAT3
TPDOP7 128 TPDIN7 129	_XT918QC	29 IRENA3 28 IRDEN3
TPDIP7 130 TPDIP6 131		27 GND 26 IRCLK2
TPDIN6132	ø	25 ISOLATE2
TPDOP6133 TPDON6134	Q	24 IRDAT2 23 IRENA2
VCC135 TPDON5136	Ω	22 IRDEN2 21 IRCLK1
TPDOP5137		20 ISOLATE1
TPDIN5138 TPDIP5139		19 IRDAT1 18 IRENAI
TPDIP4140		17 IRDENI
TPDIN4141 TPDOP4142		16 VCC 15 IRCFSBP4
TPDON4143 GND144		14 IRCFSBP3 13 IRCFSBP2
TPDON3145		12 IRCFSBPI
TPDOP3146 TPDIN3147		11 IRCOLBP4 10 IRCOLBP3
TPDIP3148 TPDIP2149		9 IRCOLBP2 8 IRCOLBP1
TPDIN2150	·	7
TPDOP2151 TPDON2152		6 IRCOL3 5 IRCOL2
VCC153 TPDON1154		4 IRCOL1 3 VCC
TPDOP1155	208	2
TPDIN1156		1 CLK20
	HIGERS4 HIG	

12-96

EUEVEL

LXT918 Pin Assignments and Signal Descriptions

Table 1: 1	Table 1: Twisted-Pair Port Signal Descriptions						
Pin	Symbol	Туре	Description				
155	TPDOP1	Analog Output	Twisted-Pair Data Outputs - Ports 1 through 12. These pins				
154	TPDON1	Port 1	are the positive (TPDOPx) and negative (TPDONx) differential				
151	TPDOP2	Analog Output	output pairs from the respective LXT918 twisted-pair port line				
152	TPDON2	Port 2	drivers.				
146	TPDOP3	Analog Output					
145	TPDON3	Port 3					
142	TPDOP4	Analog Output					
143	TPDON4	Port 4					
137	TPDOP5	Analog Output					
136	TPDON5	Port 5					
133	TPDOP6	Analog Output					
134	TPDON6	Port 6					
128	TPDOP7	Analog Output					
127	TPDON7	Port 7					
124	TPDOP8	Analog Output					
125	TPDON8	Port 8					
119	TPDOP9	Analog Output					
118	TPDON9	Port 9					
115	TPDOP10	Analog Output					
116	TPDON10	Port 10					
110	TPDOP11	Analog Output					
109	TPDON11	Port 11					
106	TPDOP12	Analog Output					
107	TPDON12	Port 12					
157	TPDIP1	Analog Input	Twisted-Pair Data Inputs - Ports 1 through 12. These pins are the positive (TPDIP <i>x</i>) and negative (TPDIN <i>x</i>) differential input				
156	TPDIN1	Port 1					
149	TPDIP2	Analog Input	pairs to the respective LXT918 twisted-pair ports.				
150	TPDIN2	Port 2					
148	TPDIP3	Analog Input					
147	TPDIN3	Port 3					
140	TPDIP4	Analog Input					
141	TPDIN4	Port 4					
139	TPDIP5	Analog Input					
138	TPDIN5	Port 5					
131	TPDIP6	Analog Input					
132	TPDIN6	Port 6					
130	TPDIP7	Analog Input					
129	TPDIN7	Port 7					
122	TPDIP8	Analog Input					
123	TPDIN8	Port 8					
121	TPDIP9	Analog Input					
120	TPDIN9	Port 9					
113	TPDIP10	Analog Input					
114	TPDIN10	Port 10					
112	TPDIP11	Analog Input					
111	TPDIN11	Port 11					
104	TPDIP12	Analog Input					
105	TPDIN12	Port 12					

12

LXT918 Multi-Segment Hub Repeater

Pin	Symbol	Туре	Description
55	AUICONFIG	TTL Input PD	 AUI Configuration Data In. Up to 16 bits of AUI Configuration Register data is shifted in via this pin (LSB to MSB). Bits 15:1 are user defined. Bit 0 sets the AUI port operating mode as follows: 0 = Normal (DTE) mode; 1 = Reversed (MAU) mode.
56	CONFIG_ENA	TTL Output	AUI Configuration Register Read Enable. An active Low pulse is output on this pin at the beginning of each AUI Configuration Register read cycle. This signal is provided to control an external shift register.
53	CONFIG_CLK	TTL Output	AUI Configuration Register Clock. The LXT918 drives sixteen 100ns clock pulses on this pin each time the AUI Configuration Register is read. This signal is used to clock in configuration data (up to 16 bits) from an external shift register.
198 199	AUIDOP AUIDON	Analog Output	AUI Data Outputs. Positive and negative data outputs from the AUI port. In normal (DTE) mode, connect to pins 3 and 10 of the AUI D-connector. In reverse (MAU) mode, connect to pins 5 and 12 of the AUI D-connector.
200 201	AUIDIP AUIDIN	Analog Input	AUI Data Inputs. Positive and negative data inputs to the AUI port. In normal (DTE) mode, connect to pins 5 and 12 of the AUI D-connector. In reverse (MAU) mode, connect to pins 3 and 10 of the AUI D-connector.
202 203	AUICIP AUICIN	Tri-State, Analog, I/O	AUI Collision Inputs. In normal (DTE) mode these pins are the positive and negative collision inputs for the AUI port. In reverse (MAU) mode these pins are outputs.
I. PE) = Input contains pull-	-down.	

Table 2: AUI Port Signal Descriptions

Table 3: Inter-Repeater Backplane Signal Descriptions

Pin	Symbol	Туре	Description
17 22 28 33	IRDENT IRDEN2 IRDEN3 IRDEN4	Open-Drain Output	IRB Driver Enables - Segments 1 through 4. These outputs allow multiple devices to share a common set of external bi-directional transceivers ('245s) for driving the IRB's off-board. Each IRB must have its own transceiver. When a device assumes control of an IRB, it drives the corresponding IRDENx output Low. When an IRB is idle, a 330 Ω pull-up resistor (required) pulls the corresponding IRDENx output High. Attach each out-
18 23 29 34	IRENAI IRENA2 IRENA3 IRENA4	CMOS I/O Open Drain	put to the direction control of the corresponding transceiver. Inter-Repeater Backplane Enables - Segments 1 through 4. These active Low outputs indicate carrier presence on the corresponding IRB's. When an IRB is idle, a 330 Ω pull-up resistor pulls the corresponding IRENAx output High. These signals may be buffered between modules.
19 24 30 35	IRDAT1 IRDAT2 IRDAT3 IRDAT4	CMOS I/O Open Drain	IRB Data - Segments 1 through 4. These bidirectional signals carry data on the corresponding IRB's. Data is driven and sampled on the rising edge of the corresponding IRCLK. Each of these signals must be pulled up by a 330 Ω resistor. Between modules, these signals can be buffered.

1. PU = Input contains pull-up.

PD = Input contains pull-down.
 NC = No Clamp. Pad will not clamp input in the absence of power.
 Even if the IRB is not used, required pull-up resistors must be installed as listed above.

LXT918 Pin Assignments and Signal Descriptions

Pin	Symbol	Туре	Description
20 25 31 36	ISOLATE1 ISOLATE2 ISOLATE3 ISOLATE4	Output	Isolate Enables - Segments 1 through 4. These outputs allow one device per module the ability to isolate the IRB's from the outside world. Attach each output to the Enable input of the corresponding transceiver. The output is driven High (disable) when the corresponding IRB should be isolated, and Low (enable), when it should not be isolated.
21 26 32 37	IRCLK1 IRCLK2 IRCLK3 IRCLK4	CMOS I/O TriState, PU Schmitt Trigger #2	IRB Clocks - Segments 1 through 4. These bi-directional, non-continuous, 10 MHz clocks are recovered from received network traffic. During idle periods, these outputs are high-impedanced. Schmitt triggering is used to increase noise immunity, therefore full rail-to-rail signals are required. Between modules, buffering may be used on these signals.
4 5 6 7	IRCOLI IRCOL2 IRCOL3 IRCOL4	CMOS I/O Open Drain	IRB Collision - Segments 1 through 4. Each of these outputs is driven Low to indicate that a collision has occurred on the corresponding segment. When there is no collision, a 330 Ω pull-up resistor (required) on each output pulls it High. These signals are intended only to be used between devices on the same module; they may not be buffered.
8 9 10 11	IRCOLBP1 IRCOLBP2 IRCOLBP3 IRCOLBP4	CMOS I/O Open Drain NC	IRB Collision-BackPlane - Segments 1 through 4. These active Low outputs have the same function as IRCOL, but are used between modules. Attach these signals only from the device with ChipID = 0 to the backplane or connector, without buffering. Each output must be pulled up by one 330Ω resistor per system.
205 206 207 208	IRCFS1 IRCFS2 IRCFS3 IRCFS4	Analog, I/O	IRB Collision Force Sense - Segments 1 through 4. Each of these three- state analog outputs indicates that a transmit collision has occurred on its corresponding segment when it is driven Low. Each must be pulled up with a 680 Ω 1% resistor. These signals are intended only to be used between devices on the same module; they may not be buffered.
12 13 14 15	IRCFSBP1 IRCFSBP2 IRCFSBP3 IRCFSBP4	Analog I/O, N/C	IRB Collision Force Sense-BackPlane - Segments 1 through 4. These outputs have exactly the same function as IRCFS, but are used between modules. Attach these signals only from the device with ChipID = 0 to the backplane or connector, without buffering. Each output must be pulled up by one 330 Ω , 1% resistor per system.
61 60 59 58	HOLDCOL1 HOLDCOL2 HOLDCOL3 HOLDCOL4	TTL Tri-state I/O, PD	Hold Collision - Segments 1 through 4. Each of these active High signals is driven by the device with ChipID = 0 to extend a non-local transmit collision to other devices on the same module. The HOLDCOLx signals from different modules should NOT be attached together.

Table 3: Inter-Repeater Backplane Signal Descriptions - continued

PU = Input contains pull-up.
 PD = Input contains pull-down.

3. NC = No Clamp. Pad will not clamp input in the absence of power.

4. Even if the IRB is not used, required pull-up resistors must be installed as listed above.

12

LXT918 Multi-Segment Hub Repeater

Pin	Symbol	Туре	Description			
42 43 44 45	MMSTRIN1 MMSTRIN2 MMSTRIN3 MMSTRIN4	TTL Input, NC	Management Master In - Segments 1 through 4. The MMSTR daisy chain ensures that collisions will be counted correctly in multi-module applications. Attach the MMSTRIN input of each device to the MMSTROUT output of the previous device. Ground MMSTRIN of the first or only device.			
38 39 40 41	MMSTROUT1 MMSTROUT2 MMSTROUT3 MMSTROUT4	Output, NC	Management Master Out - Segments 1 through 4 . MMSTR daisy chain output. In hot-swap applications, a 1 k Ω - 3 k Ω resistor can be used as a bypass between MMSTRIN and MMSTROUT.			
66 65 64 63	MACACTIV1 MACACTIV2 MACACTIV3 MACACTIV4	TTL Input, PD	MAC Active - Segments 1 through 4. These active High inputs allow external Ethernet controllers to directly drive the Inter Repeater Back- planes. When the controller asserts MACACTIV <i>x</i> , the LXT918 drives the IRCOL <i>x</i> , IRCOLBP <i>x</i> , IRCFS <i>x</i> and IRCFSBP <i>x</i> signals on behalf of the con- troller. If any of these inputs are unused, tie them to ground.			
2. PD 3. NO	 PU = Input contains pull-up. PD = Input contains pull-down. NC = No Clamp. Pad will not clamp input in the absence of power. Even if the IRB is not used, required pull-up resistors must be installed as listed above. 					

Table 3: Inter-Repeater Backplane Signal Descriptions - continued

Pin	Symbol	Туре	Description
177	TXC	Output	Transmit Clock. This 10 MHz continuous output is derived from the 20 MHz input clock.
179	TXD	TTL Input, PD	Transmit Data. External controllers use this input to transmit data to the LXT918. The device samples TXD on the rising edge of TXC, when TXE is High.
180	TXE	TTL Input, PD	Transmit Enable External controllers drive this input High to indicate that data is being transmitted on the TXD pin. Tie this input Low if it is unused.
181	COL	Output	Collision . The LXT918 drives this signal High to indicate that a collision has occurred.
182	CRS	Output	Carrier Sense. The LXT918 drives this signal High to indicate that valid data is present on RXD.
184	RXD	Output	Receive Data. The LXT918 transmits received data to the controller on this output. Data is driven on the falling edge of RXC.
186	RXC	Output	Receive Clock. This is a non-continuous 10 MHz clock that the LXT918 recovers from the network when traffic is actively being received.
1. PD	= Input contain	s pull-down.	

Table 4: MAC Interface Signal Descriptions

Pin	Symbol	Туре	Description
.46	RECONFIG	TTL Input, NC	Reconfigure. This input controls the driving of the clock signal on the high- speed serial management interface (SERCLK). When this input is High, the LXT918 drives SERCLK with a 625 kHz output. When this input is Low, SER- CLK is an input to the LXT918. In addition, a Low-to-High transition on RECONFIG causes the LXT918 to drive 13 continuous 0's on the serial manage- ment bus, causing a re-arbitration to occur.
47	MG_PRSNT	TTL Input, NC	Manager Present . This signal is sensed at power up. If it is High, it indicates that no local manager is present, and the 918 enables all ports and sets all LEDs to operate in "hardware mode". If it is Low, indicating that a manager is present, the 918 disables all ports, pending control of network manager.
48	SRX	TTL Input	Serial Receive. Receive data input for high-speed serial management interface. Must be tied to STX externally. SRX is sampled on the rising edge of SERCLK.
49	STX	Open Drain Output	Serial Transmit. Transmit data output for high-speed serial management inter- face. Must be tied to SRX externally. Data transmitted on STX is compared with data received on SRX. In the event of a mismatch, STX is put in the high imped- ance state. STX is driven on the falling edge of SERCLK.
52	SERCLK	Tri-State TTL Output	Serial Clock. Clock for serial management interface. Depending on RECON- FIG, this pin is either a 625 kHz output or a 0 to 1 MHz input.

Table 5: Serial Management Interface Signal Descriptions

Table 6: LED Signal Descriptions

1. NC = No Clamp. Pad will not clamp input in the absence of power.

Pin	Symbol	Туре	Description
171 165 161 159	COL_LEDI COL_LED2 COL_LED3 COL_LED4	Open-Drain Output, PU	Collision LED Driver - Segments 1 through 4. These outputs provide up to 10 mA of sink current.
172 166 162 160	ACT_LEDI ACT_LED2 ACT_LED3 ACT_LED4	Open-Drain Output, PU	Activity LED Driver - Segments 1 through 4. These outputs provide up to 5 mA of sink current.
173	LED_CLK	Output	LED Clock. Clock for LED serial data output.
175	LED DAT	Output	LED Data. Serial data output for LED data.

12

Pin	Symbol	Туре	Description
76	PROM_CLK	TTL Input, Tri-State Output	PROM Clock. 1 MHz clock for reading PROM data.
77	PROM_CS	Tri-State Output, PD	PROM Chip Select.
68	PROM_OUT	Tri-State Output, PD	PROM Data Output.
69	PROM_IN	TTL Input	PROM Data Input. If a PROM is not used, this input can be tied Low or High.

Table 7: PROM Interface Signal Descriptions

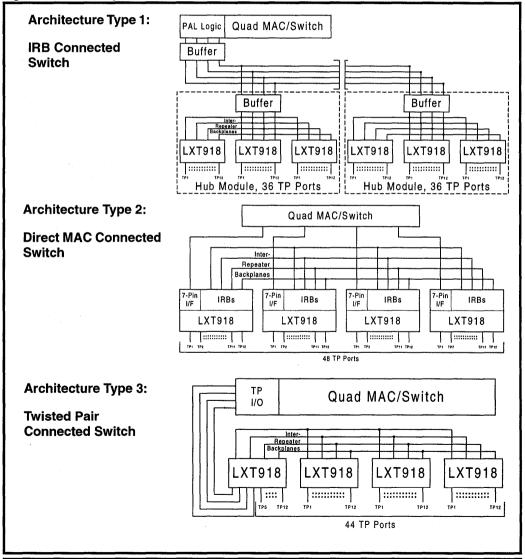
Table 8: Power Supply and Indication Signal Descriptions

Pin	Symbol	Туре	Description
3, 16, 50,	VCC	Power	Power Supply Inputs. Each of these pins must be connected to a
86, 87, 88,			common +5 VDC power supply. A de-coupling capacitor to digital ground should be supplied for every one of these pins.
91, 92, 103,			ground should be supplied for every one of these plus.
117, 135, 153,			
169, 170, 174,			
189, 191, 194,			
196, 204			
2, 27, 51,	GND	Power	Ground. Connect each of these pins to digital ground.
85, 89, 90			Note: the LXT918 does NOT require separate digital and analog grounds.
93, 94, 108			grounds.
126, 144, 158,			
163, 167, 168,			
176, 188, 192,			
193, 195, 197			
190	RBIAS	Analog	RBias . Connect this pin to ground through a 22 k Ω , 1% resistor. Note: Do NOT route any other signals near or around this resistor.
78	RPS_PRSNT	TTL	Redundant Power Supply. Active High input indicates presence of
		Input	redundant power supply. The state of this input and the <u>RPS_FAULT</u> input is reflected in the RPS LED bit in the serial LED output (refer to
			Tables 10 and 11). The Low if not used.
79	RPS_FAULT	TTL	Redundant Power Supply Fault. Active Low input indicates redun-
		Input	dant power supply fault. Tie High if not used.

- Pin	Symbol	Туре	Description			
1	CLK20	CMOS Input, Schmitt Trigger #1	20 MHz System Clock. Drive with CMOS levels.			
62	SER_MATCH	Output	Hub ID Match. Active High. The device with $ChipID = 0$ asserts this signal whenever it detects a message on the serial bus which matches the local Hub ID.			
71	ARBSELECT	TTL Input, PU	Arbitration Select. If this pin is pulled Low, Arbitration Mechanism #1 is disabled, only Arbitration Mechanism #2 wi be available. If this pin is pulled High, both mechanisms will be enabled. If Arbitration Mechanism #1 is enabled, the devic with ChipID = 0 will transmit an "Arbitration Request" mes- sage every 2-3 ms on the serial management interface until a Hub ID is assigned.			
80	ARBIN	Tri-State Input, PD, NC	Arbitration In/Out . Daisy chain hub ID arbitration mechanism #2. If used, tie ARBIN to ARBOUT of the previous			
81	ARBOUT	Output, NC	device, and to ground of the first/only device. If unused, ti ARBIN High.			
82 83 84	CHIPID2 CHIPID1 CHIPID0	TTL Input	Chip ID. These pins assign unique ChipIDs to as many as eight devices on a single module. One device on each module must be assigned ChipID=0.			
102	RESET	CMOS Input, Schmitt Trigger #1, PU, NC	Reset. This active Low input causes internal circuits and stat machines to reset, but does not affect counters or address tracking registers. On power-up, devices should not be brought ou of reset until the power supply has stabilized and reached 4.5 volts. When there are multiple devices, it is recommended tha all be supplied by a common reset that is driven by an 'LS14 o similar device.			
72, 73, 74	RESERVED	-	Reserved . Reserved for future application development. Leave these pins unconnected.			
53, 54, 56, 57, 67, 70, 75, 95, 96, 97, 98, 99, 100, 101, 164, 178, 183, 185, 187	NO CONNECT	-	No Connects. Leave these pins unconnected.			

Table 9: Miscellaneous Signal Descriptions

NC = No Clamp. Pad will not clamp input in the absence of power


FUNCTIONAL DESCRIPTION

Introduction

With its unique port-switching architecture, the LXT918 revolutionizes the design of networking products by facilitating hybrid repeater/switch architectures. A mixture of

Figure 2: LXT918 Hybrid Architecture

the traditional repeater and the state-of-the-art switch, the hybrid repeater/switch architecture provides a cost optimized solution that allows network bandwidth to be allocated as needed under the control of the end-user. The key to this approach is to tie switched 10 Megabit outputs to the 14 LXT918 ports (12 TP + AUI + 7-Pin MAC Interface). This can be done in several different architectures depending on application needs as shown in Figure 2.

LXT918 Functional Description

The switching matrix of the LXT918 allows the dedicated bandwidth of the switch outputs to be shared among a set of users, which can be changed at will. The additional cascading capability provided by the Inter Repeater Backplanes allows the set of users sharing the bandwidth to grow arbitrarily larger. A more detailed LXT918 application block diagram is shown in Figure 3.

The switching capabilities of the LXT918 also create support for static VLANs (Virtual LANs), where users can easily be re-configured to support moves, adds and changes to the network topology. The switchable MAC interface provides the opportunity for a built-in "roaming" network monitoring or bridging function.

10BASE-T Ports

The LXT918 provides 10BASE-T ports with integrated filters. Level One's patented filter technology helps facilitate low-cost systems which meet EMI requirements. Refer to Table 1 for 10BASE-T port pin assignments and signal descriptions.

AUI Port

The LXT918 provides a reversible AUI interface that can function either as a DTE or as a MAU. When this interface functions as a MAU, it supports remote-office and embedded-hub applications (such as file servers) by allowing integration of the LXT918 to existing PHY interfaces. The mode of operation is determined by bit 0 of the AUI Configuration Register. Refer to Table 2 for AUI port pin assignments and signal descriptions.

Inter-Repeater Backplane

The LXT918 easily accommodates stackable and modular hub architectures through the Inter-Repeater Backplane, which allows multiple devices to function as one logical repeater. For example, typical LXT918 stack designs accommodate as many as 192 10BASE-T ports. Refer to Table 3 for IRB pin assignments and signal descriptions.

7-pin MAC Interface

The LXT918 provides a 7-pin MAC Interface, which can be interfaced to an Ethernet controller or a switch ASIC. Refer to Table 4 for MAC Interface pin assignments and signal descriptions.

Serial Management Interface

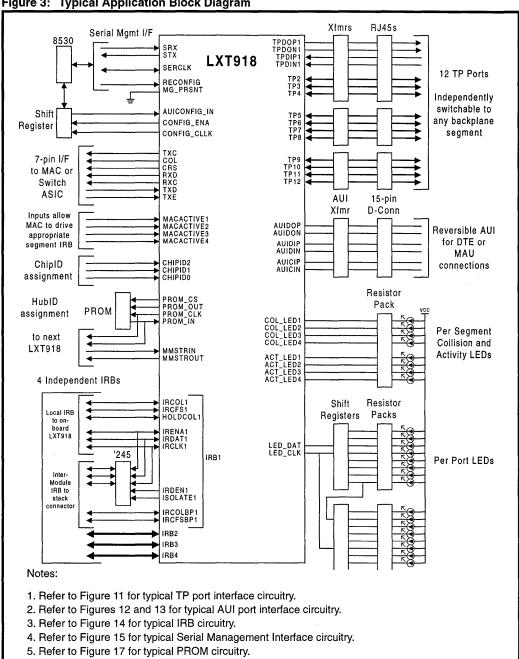
Multiple devices can easily be managed through the highspeed serial management interface. This synchronous interface operates at rates up to 1 Mbps, and uses an HDLC-like zero-bit insertion protocol. This interface provides access to the Port Switching functions, RMON and Repeater MIB variables as well as complete control over all device functions and visibility of all status registers. Refer to Table 5 for Serial Management Interface pin assignments and signal descriptions.

Management Support

The LXT918 supports RMON and the Repeater MIB using on-chip 32-bit counters. Counters are provided for each port, including the MAC Interface port, and for each segment. Interface counters include all of the RMON Statistics group and Repeater MIB Total Octets and Transmit Collisions. Per-port counters include:

Readable Frames	Readable Octets	FCS Errors
Alignment Errors	FramesTooLong	ShortEvents
Runts	Collisions	LateEvents
VeryLongEvents	DataRateMismatch	AutoPartitions
Broadcast	Multicast	SA Changes

Source Address Management Functions


The LXT918 provides Source Address Management functions for all ports. Each port has two source address tracking registers. The rptrAddrTrackNewLastSrcAddress register is always free-running and contains the source address of the last valid packet received from the port. The Authorized Address Register operates in three states: freerun, lock-on-next or lock. This register can track source addresses or lock on an address that has been assigned by the network manager or that it has previously tracked. Once this register is locked, subsequent Source Address changes on a port cause the device to set the corresponding bits in the SA Change Detection Register and the Interrupt Status Register.

The LXT918 also provides a Source Address Tracking Function for each segment. Supplied with a 48-bit Ethernet Source Address, this function identifies all ports on a particular segment that sourced that Source Address.

LED Interface

The serial LED interface (data and clock) supplies link and partition status for each of the TP ports, status for the AUI port, and miscellaneous functions. The device directly provides activity and collision LEDs for each segment. Refer to Table 6 for LED Interface pin assignments and signal descriptions.

Requirements

Power

The LXT918 requires a single +5V power supply, and a single ground reference. Separate analog and digital grounds are NOT required. Refer to Table 8 for power and ground pin assignments.

Clock

The LXT918 requires a continuous 20 MHz clock input, driven with CMOS levels.

RBIAS Input

The LXT918 requires a 1%, 22 $k\Omega$ resistor connecting its RBIAS input to ground.

Reset Signal

At power up, the $\overrightarrow{\text{RESET}}$ input must be held Low until VCC reaches at least 4.5V. An 'LS14 or equivalent should be used to drive $\overrightarrow{\text{RESET}}$ if there are multiple 918 devices.

External PROM

The LXT918 requires an external, auto-incrementing PROM, which is used to supply a 48-bit ID at power-up. If the PROM is not available, the PROM data input signal must be tied either High or Low. Multiple devices on the same module can share a single common PROM. Refer to Table 7 for PROM interface pin assignments and signal descriptions.

Chip Identification

Each LXT918 on a module requires a unique 3-bit Chip ID value asserted on these pins in order for the serial management bus to function correctly. One LXT918 on each module must be assigned ChipID = 0.

Management Master I/O Link

In multiple device applications, the Management Master daisy chain (MMSTRIN/MMSTROUT) ensures that collisions are counted correctly. Connect the MMSTRIN input to the MMSTROUT output of the previous device, even across module boundaries. Ground the MMSTRIN input of the first or only device in the system. In hot-swap applications, resistive bypassing can be used, with a value between 1k and 3 k Ω .

Repeater Operation

LXT918 repeater operation is controlled by the state machine shown in Figure 4. When the LXT918 detects activity at any input, it begins generating preamble to all other outputs on the same segment. Once 62 bits of preamble have been transmitted, and a start-of-frame delimiter (SFD) has been received, the device begins repeating the received packet to all outputs on that segment. An internal FIFO provides buffering. Operation continues until the receiver goes idle, or until the jabber timer is exceeded.

If activity is detected simultaneously at two or more inputs on the same segment, that segment enters the transmit collision state. The device sends a jam signal to all ports on that segment for 96 bit times. A jam signal continues to be sent to all ports as long as two or more inputs on that segment are active. If activity simultaneously ceases at all inputs, the segment returns to the idle state. If activity continues at only one input, the segment enters the one-portleft state. In that state, the device continues to transmit a jam signal to all ports on that segment *except* to the one that has the active input. Once this activity ceases, the segment returns to the idle state.

If the AUI port is functioning as the DTE, and an external MAU activates the CI inputs while the port is active, the segment to which the AUI port is attached enters the receive collision state. The device sends a jam signal to all ports on the segment except for the AUI port for at least 96 bit times and until all activity ceases.

In multiple-device configurations, all devices participate in data exchange and the various collision states via the Inter Repeater Backplane.

Exception Conditions

Fragment Extension

Any received activity shorter than 96 bits (also known as a fragment) will be extended so that it is at least 96 bits long. On the Inter Repeater Backplane, a fragment extension will look like a receive collision, however it will not be counted as a collision.

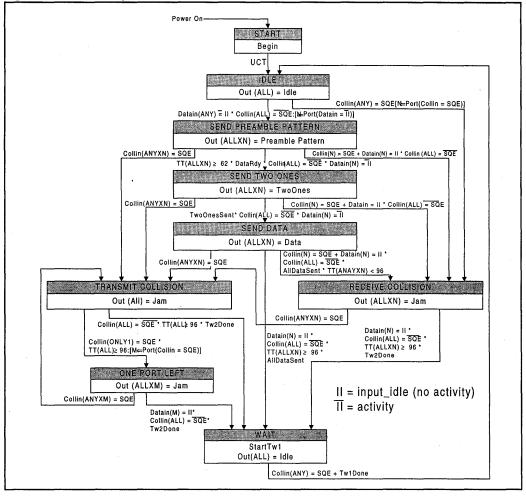
Packets with No SFD

Packets with no start-of-frame delimiter will be repeated to all ports as long preamble patterns with no SFD. These packets will be counted as "fragments" by the management counters, no matter how long they are.

Packets with Too Early SFD

Any packet with less than 40 bits of preamble will cause the internal FIFO to overflow, causing invalid packets to be transmitted to all ports.

If the EFIFOERR bit in the Master Configuration register is set when this occurs, a transmit collision will be generated.


Manchester Code Violations

If the EMCV bit in the Master Configuration register is set, an input packet with Manchester Code Violations will be treated as a transmit collision. If this bit is clear (default), incoming packets with this type of error will simply be repeated to all ports. Note that a packet that does not have a proper end-of-frame marker (2 bit times High with no transitions) will also be flagged as having a Manchester Code Violation.

Data Rate Mismatches

Severe data rate mismatches will cause the internal FIFO to underflow or overflow. Depending on the state of the EFIFOERR bit, these conditions can be treated either as transmit collisions, or simply passed along as bad data.

Port Functions

Jabber (all ports)

If any input port is active for more than 5 ms, the device will automatically terminate all transmit activity for at least 96 bit times. This will give waiting ports an opportunity to access the network. A port that is continuously babbling will constantly collide with other ports, and will eventually be isolated by the auto-partitioning function.

Auto-partitioning (all ports)

Any port that causes 32 consecutive collisions will be *partitioned* as shown in Figure 5. A port will also be partitioned if it continues to be active for more than 100 μ s after a collision has occurred. Once a port is partitioned, data received from that port is not repeated, until the port is *reconnected*. There are two re-connection algorithms. The normal algorithm allows a port to be reconnected if a packet can be successfully transmitted or received from the port. The alternative algorithm allows re-connection only if a packet can be successfully transmitted to the port. For re-connection to occur, at least 512 bit times of non-idle, non-collision activity must occur. Once this happens, the port is re-connected after the activity stops. The activity that causes the re-connection is *not* repeated.

Link Integrity Function (10BASE-T ports only)

The device supports the Link Integrity function, which is used to determine if a 10BASE-T connection is working. The function can be enabled on a port-by-port basis. When enabled, the device looks for Link Integrity Pulses from each of the 10BASE-T ports. When these pulses are received from a port, it is put into the "Link Up" state, enabling transmissions to the port, and vice versa. If the Link Integrity function is disabled, the port is forced into the Link Up state. The device generates Link Pulses to all ports, regardless of the Link State of any port or whether the Link Function is enabled or disabled.

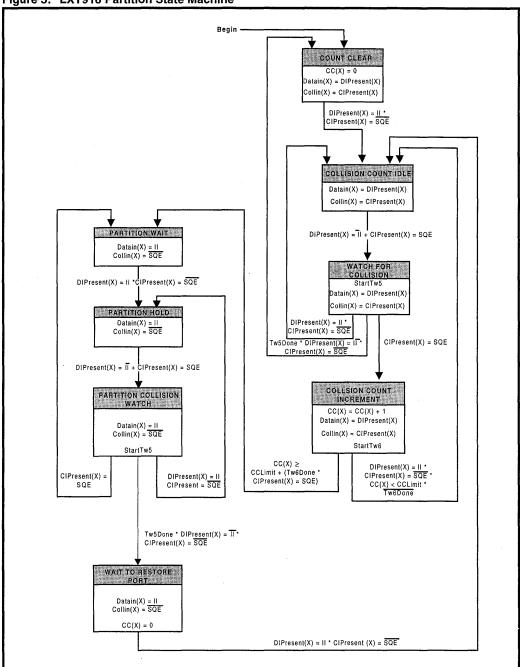
Polarity Detection and Correction (10BASE-T ports only)

The device can detect reversed polarity on any 10BASE-T port and internally correct for it. This function can also be disabled on a port-by-port basis.

SQE Mask (AUI Port only)

Ethernet MAU devices (also known as transceivers) typically generate an SQE signal (also called heartbeat) on the CI inputs after each data transmission to the MAU. This function is normally supposed to be disabled when a MAU is attached to a repeater, but often times this is overlooked. The result can be a collision at the end of each packet transmitted. An SQE Mask function is provided to overcome this problem. When the Mask is set, SQE heartbeat signals from external MAU's will not be passed on as collisions.

Reverse AUI Mode


In the reverse mode, the AUI interface operates as a MAU rather than as a DTE. This allows it to directly interface to an LXT901/904/907. In this mode, the following apply:

- The CI pins function as outputs.
- The MaskSQE function determines whether or not the device generates SQE/heartbeat after each successful transmission to the device.
- The AUIDI pins continue to function as inputs, and the AUIDO pins continue to function as outputs. If these signals are being brought out to an external connector, they must be physically swapped from their normal positions (Refer to Figures 12 and 13.)
- The device will loopback data presented at the AUIDI inputs to the AUIDO outputs.

Reduced Squelch (10BASE-T ports only)

The squelch threshold on the 10BASE-T receivers can be lowered. This allows the device to detect weaker than normal signals, and can be used to support cables longer than 100m. It also makes the device more sensitive to cross-talk and other noise, and must be used with great care.

LXT918 Multi-Segment Hub Repeater

LED Functions

The LXT918 provides a serial LED output and two global LEDs. Two programmable blink rates are provided. Refer to Table 49 for details.

Serial LEDs

The LXT918 provides a serial LED interface which should be attached to an external shift register. This interface provides status LEDs for the 10BASE-T and AUI ports. It also provides a global fault LED, a redundant power supply (RPS) LED and a user definable LED. Refer to Figure 18 in the Application section, and to Tables 10 and 11 below for details on the serial LED interface.

Table 10: LED-DAT Serial Port Bit Assignments

15 ¹	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RPS	GF	UD	AUI	TP12	TP11	TP10	TP9	TP8	TP7	TP6	TP5	TP4	TP3	TP2	TP1
1. Bit	15 is shift	ed out fir	st.												

Table 11: Serial LED Operational Modes

Bit	Name	Software Control	Hardware Control				
			On	Slow	Off		
15	RPS	N/A	Present, No Fault	Present & Fault	Any other state		
14	Global Fault	On, Off or Slow Blink via Global LED Control Register,	N/A	Any Port Partitioned or RPS Fault	Any other state		
13	User Definable	Address 181	N/A				
12	AUI Port LEDs	On, Off or Fast Blink, via	Enabled, Link	Partitioned	Any other state		
11:0	TP Port LEDs	LED Control Register, Address 176	Up, Not Parti- tioned				

Activity and Collision LEDs (global)

These outputs can directly drive LEDs to indicate activity and collision status.

IRB Operation

The Inter Repeater Backplane (IRB) allows multiple devices to operate as a single logical repeater, exchanging data collision status information. Each segment on the LXT918 has its own complete, independent IRB. Each backplane uses a combination of digital and analog signals as shown in Figure 6. In the following discussion 'x' is used to indicate the segment number

Data Handling

Three signals - IRENAx, IRDATx and IRCLKx - are used to transmit data. All of them can be buffered between modules. A fourth signal - IRDENx - provides directional control of this buffer. IRDATx, IRENAx and IRDENx need to be pulled High by 330 Ω resistors. During a collision, the LXT918 releases all four signals to prevent bus contention.

Collision Handling

Four signals - IRCOLx, IRCOLBPx, IRCFSx and IRCFSBPx - handle collisions. IRCFSx and IRCOLx should be connected between all the devices on any module. IRCFSBPx and IRCOLBPx should be connected between modules, to the devices that have ChipID = 0.

Collision States

There are three repeater collision states:

- Receive Collision This occurs when an external transceiver detects a collision. On the LXT918, this can only happen on the AUI port.
- Transmit Collision This occurs when two or more inputs become active at the same time.
- One Port Left This is a special state that can occur after a Transmit Collision, when only one port remains active. This state prevents deadlocks in multiple-repeater configurations.

Collision Indications

IRCOLx and **IRCOLBP**x go Low to indicate any collision (receive, transmit or one-port-left). **IRCFS**x and **IRCFSB**px are three-state signals which are used to detect when a transmit collision occurs. The three states are:

- Idle: High (+5V) Indicates that no ports are active.
- Single drive: Mid (+2.8V) Indicates that exactly one port is active (normal data transmission, receive collision, or one-port-left).
- Multiple-drive: Low (0V). Indicates that two or more ports are active (transmit collision).

IRCFSBP*x* indicates the number of active drivers across all the ports in a repeater stack. **IRCFS***x* indicates the number of active drivers on the local board, and the first 96-bits of a non-local transmit collision (defined as a collision between a local port and a nonlocal port, or between two non-local ports). The state of **IRCFS***x* is fed forward to **IRCFSB***Px* by the device with ChipID = 0. To prevent dead-locks, **IRCFSB***Px* is NOT fed back to **IRCFS***x*. During non-local transmit collisions, the signal HOLDCOL*x* is used to hold the local devices in the transmit collision state. Table 12 summarizes the use of these signals.

Collision Hold (HOLDCOL)

Each segment can produce a HOLDCOL signal to prevent dead-locks between \overline{IRCFS} and $\overline{IRCFSBP}$. The device with ChipID = 0 drives HOLDCOL High to indicate that a transmit collision is in progress, and that local devices should remain in the transmit collision state.

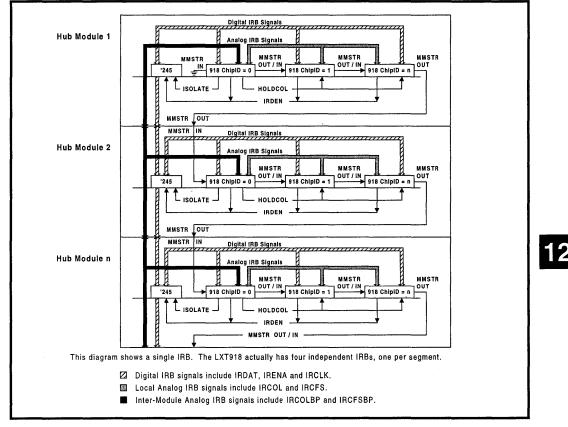
MAC IRB Access

The MACACTIV1:4 pins allow external MACs or other digital ASICs to interface directly to the IRB via any of the LXT918 segments. When a segment's MACACTIV pin is asserted, the LXT918 will drive the associated IRCFS and IRCFSBP signals on behalf of the external device, allowing it to participate in the transmit collision detection function of IRCFS and IRCFSBP.

IRB Isolation

The ISOLATE1:4 outputs are provided to control the enable pins of external bidirectional transceivers. In multimodule applications, they can be used to isolate one module from the rest of the system. Only one device can control these signals. The output states of these pins are controlled by the Isolate bits in the Master Configuration Register.

MMSTRIN / MMSTROUT

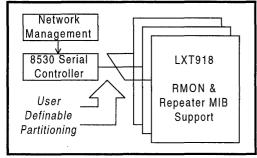

This daisy chain is provided for correct gathering of statistics in multiple-device configurations. In multiple-module applications, this daisy chain must be maintained across modules. In stand-alone applications, or for the first device in a chain, the MMSTRIN input must be pulled Low in order for the management counters to work correctly.

LXT918 Functional Description

Table 12: IRCOL and IRCFS Condition Indications

Condition	IRCOLBP	IRCOL	IRCFSBP ³	IRCFS ³
Idle	High	High	High	High
Local Data	High	High	Mid	Mid
Non-Local Data	High	High	Mid	High
Local RxCol or OPL ¹	Low	Low	Mid	Mid
Non-local RxCol/OPL ¹	Low	Low	Mid	High
Local TxCol or first 96 bits of non-local TxCol ²	Low	Low	Low	Low
Non-local TxCol after 96 bits ²	Low	Low	Low	Mid or High
 Receive Collision (RxCol) and One Port Left (OPL) conditi Fragment extensions are generally treated as receive collisis Manchester code violations and FIFO overruns are generall Signal employs 3-state logic: High = 5V; Mid = 2.8V; Low 	ons. y treated as transmit c		Id can be differentiated	

Figure 6: IRB Block Diagram



Serial Management Interface

The serial management interface provides access to Repeater MIB variables, RMON Statistics attributes and status and control information. A network manager can access the interface through a simple serial communications controller. The interface is designed to be used in a multi-drop configuration, allowing multiple LXT918 devices to be managed from one common line.

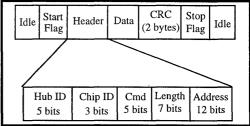
The interface consists of a data input line (SRX), data output line (STX) and a clock (SERCLK), and can operate up to 1 Mbps. The interface operates on a simple command response model, with the network manager as the master and the LXT918 devices as slaves. Figure 7 is a simplified view of typical serial management interface architecture.

Figure 7: Typical Serial I/F Architecture

Serial Clock

SERCLK is a bidirectional pin; direction control is provided by the RECONFIG input. If RECONFIG is High, the LXT918 will drive SERCLK at 625 kHz. If RECON-FIG is Low, SERCLK is an input, between 0 and 1 MHz. There is no lower bound to how slow the interface can operate. The clock can be stopped after each operation, as long as an idle (ten 1's in a row) is transmitted first.

Serial Data I/O


The serial data pins, SRX and STX, should be tied together. The SRX input is compared with the STX output. If a mismatch occurs, STX goes to a high impedance. STX is driven on the falling edge of SERCLK; SRX is sampled on the rising edge.

Management Format

Normally the network manager directs read and write operations to a specific LXT918 device using a two-part address consisting of HubID and ChipID. The interface allows up to 127 32-bit registers to be read at one time. Up to two registers can be written at a time.

The interface uses a simple frame format, which is shown in Figure 8. All frames begin and end with a flag of consisting of "01111110". All fields are transmitted LSB first. Zero-bit stuffing is required if more than five 1's in a row appear in the header, data or CRC fields. In addition, all operations directed to the device must be followed by an idle (ten 1's in a row), and the first operation must be preceded with an idle.

Figure 8: Serial Management Frame Format

Table 13:	Serial N	lanagement	Frame	Messag	e Fields
-----------	----------	------------	-------	--------	----------

Message	Description
Start or Stop Flag	"01111110". Protocol requires zero insertion after any five consecutive "1's" in the data stream.
Hub ID	Identifies module or sub-system. Assigned by one of two arbitration mechanisms at power-up.
Chip ID	Identifies one of eight modules on a system. Assigned by 3 external pins on each device.
Command	Identifies the particular operation being performed (see Table 14)
Length	Specifies number of registers to be transferred (1 to 127). Maximum is 2 per write, 127 per read.
Address	Specifies address of register or register block to be transferred.

LXT918 Functional Description

Command Value	Name	Usage	Normally Sent By	Description			
18 (Hex)	Write	Normal Ops	Network Mgr	Used to write up to 2 registers (8 bytes) at a time.			
04 (Hex)	Read	Normal Ops	Network Mgr	Used to read up to 127 registers at a time.			
08 (Hex)	RequestID	Arbitration	LXT918	Requests Hub ID. Repeated periodically.			
00 (Hex)	ConfigChg	Arbitration	LXT918	Notifies system of configuration change (hot swap). Requests new arbitration phase.			
10 (Hex)	Re-arbitrate	Arbitration	Network Mgr	Re-starts arbitration			
14 (Hex)	Assign HubID	Arbitration Mech. 2	Network Mgr	Assigns Hub ID to device with ARBIN=0 and ARBOUT = 1 (top of chain)			
0C (Hex)	Set ARBOUT to 1	Arbitration Mech. 2	Network Mgr	Commands specific device to set ARBOUT to 1.			
IC (Hex)	Set ARBOUT to 0	Arbitration Mech. 2	Network Mgr	Commands specific device to set ARBOUT to 0			
02 (Hex)	DevID	Config	Network Mgr	Generic command for reading device type (no register address needed).			

Table 14: Serial Management Instruction Set

Table 15: Typical Serial Management Packets

	Contents of Fields in Serial Management Packet							
Message	Hub ID	Chip ID	Command	Length	Address	Data		
Write	User Defined	User Defined	18 (Hex)	01 or 02	User Defined	User Defined		
Read Request	User Defined	User Defined	04 (Hex)	01 to 7F Hex	User Defined	Null		
Read Response	00000	000	04 (Hex)	Echo	Echo	Data Values		
Assign Hub ID (Arb Method 1)	11111	111	18 (Hex)	02	188 Hex	Formatted per Table 51		
Assign Hub ID (Arb Method 2)	11111	111	14 (Hex)	01	0	Hub ID (LSB) and 27 0's		
Set ARBOUT To 1	User Defined	User Defined	0C (Hex)	00	0	Null		
Arb Request	00000	000	08 (Hex)	02	190	PROM ID		
Re-Arbitrate	11111	111	10 (Hex)	00	0	Null		
Request Device ID	User Defined	User Defined	02 (Hex)	01	0	Null		
Device ID Response	00000	000	02 (Hex)	01	185	Formatted per Table 50		
Config Change		•	thirte	een 0's				

AUI Configuration Register

The AUI Configuration Register (Address 184) operates differently from the rest of the Serial Management Interface. This 16-bit register is loaded from an external shift register which can be implemented using a pair of LS'165 devices. Three dedicated pins: AUICONFIG_IN, CONFIG_CLK and CONFIG_ENA are used to load the register (refer to Table 2 for pin

assignments and signal descriptions). Bits 15:1 may be used to hold up to 15 bits of user-defined board or system configuration data.

Bit 0 (LSB) sets the AUI port operating mode as follows:

- 0 = Normal (DTE) mode
- 1 = Reversed (MAU) mode

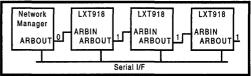
Two events cause shift register data to be loaded into the AUI Configuration Register: reset/power-up and a management read of Register 184. To load new data into the register, two reads are required. The first read reflects the initial content and causes the register to shift in data from AUICONFIG_IN. The new data will be reflected in the second read.

Address Arbitration

Each device has a two part address, consisting of a HubID and a ChipID. The ChipID is assigned the input pins CHIPID<2:0>. The HubID is assigned through one of two arbitration mechanisms.

Arbitration Mechanism #1: EPROM Method

This method requires that a PROM be located on each module, and that the ARBSELECT pin (71) not be pulled Low. At power-up, the device with ChipID = 0reads a 48-bit ID from the PROM. All other devices on the module listen in and also record this ID. The device with ChipID = 0 then transmits "Arbitration Request Messages" on the Serial Management Interface every 2-3 milliseconds. The request messages from two modules may collide; if this happens a resolution scheme ensures that only one message will win (see Figure 9). The network manager responds to each request with a message that includes the 48-bit ID and the HubID. All devices hear this message, but only those that match the 48-bit ID receive the HubID as their own. Once the HubID is assigned, the device with ChipID=0 stops sending request messages. It is possible for response messages to be lost due to collisions with request messages.


Figure 9: Arbitration Mechanism #1 : Collision Resolution

Clk				
Data		Pkt 1-Succeeds		
Data		Pkt 2-Ceases		
Data	- 11	Pkt 3-Ceases		

Arbitration Mechanism #2: Chain Method

In this method, all of the devices are daisy-chained using the ARBIN and ARBOUT pins as shown in Figure 10. The ARBIN input of the first device is directly connected to an output of the network manager. At power-up all the devices drive their ARBOUT outputs High while the network manager drives the ARBIN input to the first device Low. The manager transmits a special "Assign Hub ID" message which is recognized only by the device with ARBIN = Low and ARBOUT = High. The network manager then sends a command addressed to this device which commands it to set its ARBOUT pin Low. This cycle repeats until all devices have been assigned a HubID.

Figure 10: Arbitration Mechanism #2: ARBIN/OUT Chain Links

Address Re-arbitration

There are two mechanisms for address re-arbitration following a configuration change, such as a module hot-swap:

- Device power up At power-up, the LXT918 normally sends out a "Configuration Change" message (all 0's) on the bus, which causes re-arbitration.
- The network manager can direct or re-start arbitration at any time by sending the "Re-arbitrate" command.

Source Address Utilities

Source Address Tracking Function

Each port has two source address tracking registers. The rptrAddrTrackNewLastSrcAddress register for each port continuously tracks the source addresses of packets emanating from that port. The Authorized Address Register operates in three modes: it can free run, lock, or lock on the next packet. In any mode, it can always be updated by network management.

Source Address Matching Function

Each segment has a Source Address Matching Function to discover which port or ports sourced packets with a particular Source Address. The input to the function is an Ethernet Address; the output is a register which identifies any ports that sourced packets with that Source Address.

LXT918 Application Information

APPLICATION INFORMATION

Magnetics Information

The LXT918 requires a 1:1 ratio for the TP receive transformers and a 1:1.41 ratio for the TP transmit transformers. Table 16 lists suitable transformers by manufacturer and part number. This information was valid as of the printing date of this document. Before committing to a specific component, designers should contact the manufacturer for current product specifications, and should test and validate the magnetics for the specific application to verify that system requirements are met.

Layout Requirements

The Twisted Pair Interface

The layout of the twisted-pair port is critical in complex designs. Run the traces directly from the LXT918 to the discrete termination components (located close to the transformers).

The transformer isolation voltage should be rated at 2 kV to protect the circuitry from static voltages across the connectors and cables. The traces running from the transformers to the connector should run in close pairs directly to the connector. Be careful not to cross the transmit and receive pairs. One way to avoid this problem is to run the receive

pairs on the component side and the transmit pairs on the solder side. Careful planning during the schematic and layout stages can avoid these problems.

The PCB layout should have no ground or power planes between the transformers and the connectors. The data signals should be the only traces in this area. Place the chassis ground for the connectors near the edge of the PCB, away from the signals, connecting the connector shield with the chassis.

The RBIAS Pin

The RBIAS signal sets the levels for the output drivers. Any emissions or common mode noise entering the device here could be measured on the twisted pair output signals.

The LXT918 requires a 22 k Ω , 1% resistor directly connected between the RBIAS pin and ground. These traces should be as short as possible. The ground traces from adjacent GND pins should come directly off of the device to enclose the resistor and pin forming a shielded area between the RBIAS connection and other signals on the PCB.

Typical Application Circuitry

Figures 11 through 19 show typical LXT918 application circuitry. Table 17 summarizes signal operation of the three AUI signal pairs in the two modes (normal and reversed).

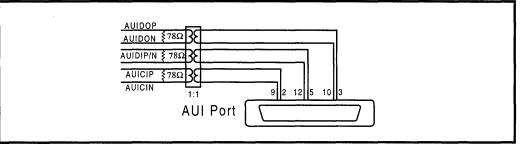

Manufacturer	Quad Transmit	Quad Receive	Quad Tx/Rx (Octal)
BEL	S553-5999-02	S553-5999-03	
HALO	TD54-1006L1 TG54-1006N2	TD01-1006L1 TG01-1006N2	TG44-S010NX TG45-S010NX TG46-S010NX
Nanopulse	5976	5977	
Карра	TP4003P	TP497P101	
PCA	EPE6009	EPE6010	
TDK	TLA-3T107	TLA-3T106	
VALOR	PT4116	PT4117	······································

Table 16: Suggested Magnetics List¹

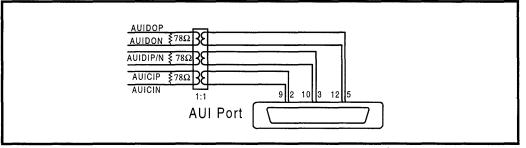

LXT918 Multi-Segment Hub Repeater

Figure 11: Typical 10BASE-T Port Interface

Figure 12: Normal AUI Circuit

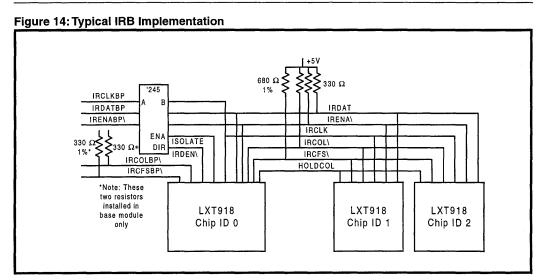


Figure 13: Reversed AUI Circuit

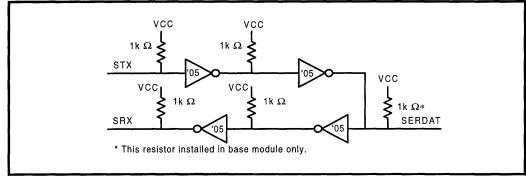


Table 17: AUI Signals - Direction and Pin-Out

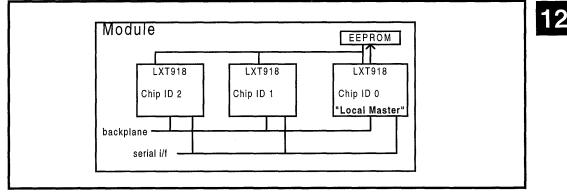

LXT918 AUI Connector Pin #					
Signal	Pin #	Normal	Reversed		
DOP	198	3	5		
DON	199	10	12		
DIP	200	5	3		
DIN	201	12	10		
CIP	202	2	2		
CIN	203	9	9		

Figure 15: Typical Serial Management Interface Connections

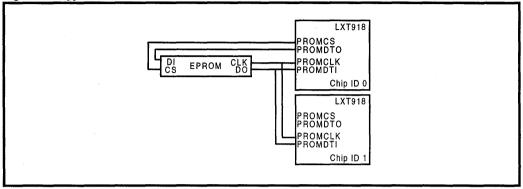
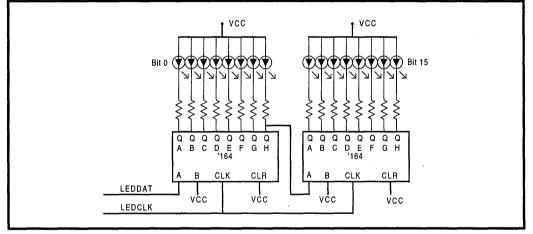


Figure 16: Typical Chip ID Architecture



LXT918 Multi-Segment Hub Repeater

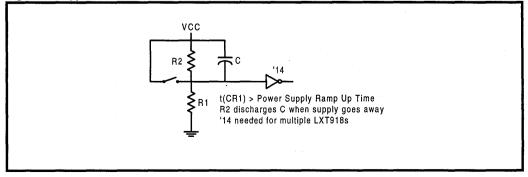

Figure 17: Typical EPROM Circuit

Figure 18: Typical Serial LED Interface Circuit

Figure 19: Typical RESET Circuit

TEST SPECIFICATIONS

NOTE

The minimum and maximum values in Tables 18 through 28 and Figures 20 through 24 represent the performance specifications of the LXT918 and are guaranteed by test, except where noted by design

Table 18: Absolute Maximum Ratings

Vcc	-0.3	6	v
Тор	0	70	°C
Тѕт	-65	+150	°C
	Тор	TOP 0 TST -65	Top 0 70 Tst -65 +150

Table 19: Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Recommended supply voltage ¹	Vcc	4.75	5.0	5.25	v	
Recommended operating temperature	Тор	0		70	°C	· · · · · · · · · · · · · · · · · · ·
VCC current	ICC	_	400	-	mA	

Table 20: I/O Electrical Characteristics (Over Recommended Range)

Parameter	Sym	Min	Typ ¹	Мах	Units	Test Conditions
Input Low voltage	VIL	-	_	0.8	V	TTL inputs
		-	-	2.0	v	CMOS inputs ²
		-	_	1.0	v	Schmitt Trigger #1
		-	-	1.0	v	Schmitt Trigger #2
Input High voltage	Vih	2.0	-		v	TTL inputs
		Vcc-2.0	-	+	v	CMOS inputs ²
		Vcc-1.0	-	1	v	Schmitt Trigger #1
		Vcc-2.0	-	-	v	Schmitt Trigger #2
Hysteresis voltage	-	1.0	-	_	v	Schmitt Trigger #1
		0.5	-	-	V	Schmitt Trigger #2

LXT918 Multi-Segment Hub Repeater

Parameter	Sym	Min	Typ ¹	Max	Units	Test Conditions
Output Low voltage	Vol	-	-	0.4	v	IOL = 1.6 mA
Output Low voltage (LED)	Voll	-	-	1.0	V	IOLL = 10 mA
Output High voltage	Voh	2.4	-	_	v	Іон = 40 μА
Input Low current	IIL	-100	-		μΑ	
Input High current	Іін	-	-	100	μΑ	· · · · · · · · · · · · · · · · · · ·
Output rise / fall time	-	_	3	10	ns	CLOAD = 15 pF

Table 20: I/O Electrical Characteristics (Over Recommended Range) – continued

Table 21:	10BASE-T	Electrical	Characteristics	(Over Recommended Range)
-----------	----------	------------	-----------------	--------------------------

	Parameter	Symbol	Min	Typ ¹	Max	Units	Test Conditions
Transmitter	Transmit output impedance	Zout	-	2	-	Ω	
	Peak differential output voltage	Vod	2.2	2.5	2.8	V	Load = 100Ω at TPOP/ TPON
	Transmit timing jitter addition	-	-	±2	±10	ns	0 line length for internal MAU
	Transmit timing jitter added by the MAU and PLS sections	-	-	±1	±5.5	ns	After line model speci- fied by IEEE 802.3 for 10BASE-T internal MAU
Receiver	Receive input impedance	Zin	20	36	-	kΩ	Between TPIP/TPIN
	Differential squelch threshold - Normal	Vdsn	300	420	585	mV	5 MHz square wave input
	Differential squelch threshold - Reduced	Vdsr	150	250	350	mV	5 MHz square wave input

Table 22: AUI Electrical Characteristics (Over Recommended Range)

Parameter	Symbol	Min	Typ ¹	Max	Units	Test Conditions
Differential output voltage	Vod	±550	-	±1200	mV	
Receive input impedance	Zin	20	36	-	kΩ	Between CIP/CIN & DIP/DIN
Differential squelch threshold	VDS	150	250	350	mV	· · · · · · · · · · · · · · · · · · ·

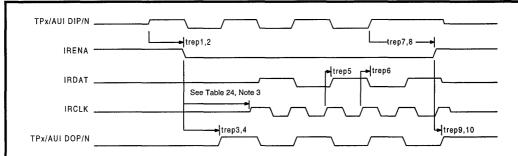
LXT918 Test Specifications

Parameter	Symbol	Min	Typ1	Max	Units	Test Conditions
Output Low voltage	Vol	-	.3	.7	V	$RL = 330 \Omega$
Output rise or fall time	TF	-	4	10	ns	CL = 15 pF
Input High voltage	VIH	Vcc - 2.0		_	V	CMOS inputs
Input Low voltage	VIL	-	-	2.0	v	CMOS inputs
IRCFS current		2.6	3.3	4.0	mA	$RL = 680 \Omega$
IRCFSBP current		5.4	6.7	8.3	mA	$RL = 330 \Omega$

Table 23: IRB Electrical Characteristics (Over Recommended Range)

Table 24: Repeater Timing Characteristics¹ (Over Recommended Range)

Parameter	Symbol	Min	Typ ²	Max	Units	Test Conditions
AUI DIN active to IRENA Low	trep1	-	2	3	BT ⁴	
TP DIN to IRENA Low	trep2		5	7	BT	
IRENA Low to AUI DOP active	trep3	-	3	4	BT	
IRENA Low to TP DOP active	trep4	-	4	5	BT	
IRCLK rising edge to IRDAT rising edge.	trep5	25	-	55	ns	330 Ω pullup, 150 pF load on IRDAT. 1k Ω pullup, 150 pF load on IRCLK.
IRCLK rising edge to IRDAT falling edge.	trep6	5	-	25	ns	All measurements at 2.5V.
AUI DIN idle to IRENA High	trep7		-	8	BT	
TP DIN idle to IRENA High	trep8	_	-	11	BT	
IRENA High to AUI DOP idle	trep9	-	-	5	BT	
IRENA High to TP DOP idle	trep10	-	-	5	BT	

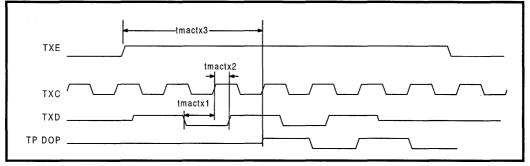

 This table contains propagation delays from the TP and AUI ports to the IRB, and from the IRB to the AUI and TP ports, for normal repeater op eration (start of packet, end of packet). All values in this table are output timings.

2. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing.

There is a delay of approximately 13 to 16 bit times between the assertion of IRENA and the assertion of IRCLK and IRDAT. This delay does
not affect repeater operation because downstream devices begin generating preamble as soon as IRENA is asserted.

4. BT = Bit Times (100 ns):

Figure 20: Repeater Timing



LXT918 Multi-Segment Hub Repeater

Parameter	Symbol	Min	Typ ²	Max	Units	Test Conditions
TXD to TXC setup time	tmactx 1	20	-	_	ns	TXD valid to TXC rising edge ³
TXC to TXD hold time	tmactx2	5		-	ns	TXC rising edge to TXD change ³
TXE to TP DOP prop delay	tmactx3	-	6	7	BT	TXE High to TPDOP active ⁴

Table 25: MAC Interface Transmit Timing Characteristics ¹ (Over Recommended Range)

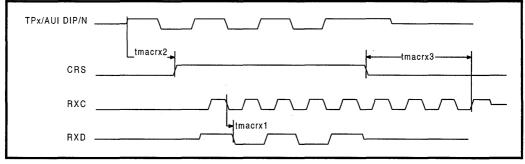
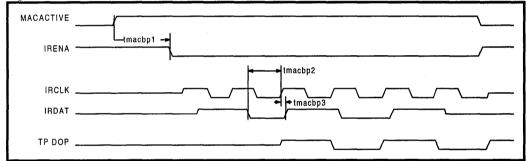

Figure 21: MAC Interface Transmit Timing

Table 26: MAC Interface Receive Timing Characteristics ¹ (Over Recommended Range)

Parameter	Symbol	Min	Typ ²	Max	Units	Test Conditions
RXC to RXD prop delay	tmacrx l	-	_	10	ns	Falling edge of RXC to RXD valid
TP/AUI to CRS delay	tmacrx2		9	10	BT	TP/AUI DIP active to CRS High
Number of extra receive clocks	tmacrx3	_	5		ea	RXC rising edges after CRS Low

Figure 22: MAC Interface Receive Timing



LXT918 Test Specifications

Table 27: MACACTIVE Delays - MAC/IRB Interface Characteristics (Over Recommended Range)

Parameter	Symbol	Min	Typ ¹	Max	Units	Test Conditions
MACACTIV to IRENA assertion delay ³	tmacbp1	-	100	-	ns	MACACTIV High to IRENA Low ²
IRDAT to IRCLK setup time	tmacbp2	21	-	-	ns	IRDAT valid to IRCLK rising edge ²
IRDAT to IRCLK hold time	tmacbp3	0	_	-	ns	IRCLK rising edge to IRDAT change ²

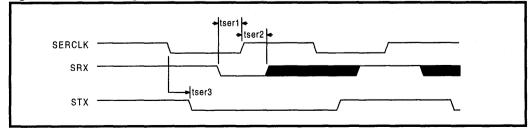

Figure 23: MACACTIVE Timing (MAC to IRB Interface)

Table 28: Serial Management Interface Timing Characteristics (Over Recommended Range)

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Data to Clock setup	tser1	100	-	-	ns	SRX valid to SERCLK rising edge ²
Clock to Data Hold Time	tser2	100	-	-	ns	SERCLK rising edge to SRX change ²
Data Propagation Delay	tser3	_	_	100	ns	SERCLK falling edge to STX valid ³

Figure 24: Serial Management Interface Timing

REGISTER DEFINITIONS

Introduction

The LXT918 register set is composed of multiple 32-bit registers (and a single 16-bit register) of the following types:

- Configuration Registers
- · Control and Status Registers
- Ethernet Address Registers
- Counters

Table 29 lists the register base memory locations. Refer to Tables 30 through 54 for specific addresses and bit assignments. *Note that all register addresses are specified in hexadecimal*

Base Address	Register Type	Notes
184	AUI Configuration	1 Register. This is the only 16-bit register in the LXT918. The AUI Configuration Register is loaded from an external shift register and may be read via the Serial Management Port.
181	Configuration	11 Registers
170	Control and Status	9 Control Registers, 7 Status Registers
156	Ethernet Address	12 Search Registers
13C		Authorized Port Address, 2 per port (TP and AUI)
120		Port Address Tracking, 2 per port (TP, AUI and MAC)
118	Counters	MAC Interface Counters, 8 Registers
100		Segment 4 Interface Counters, 18 Registers
0F0		Segment 3 Interface Counters, 18 Registers
0E0		Segment 2 Interface Counters, 18 Registers
0D0		Segment 1 Interface Counters, 18 Registers
0C0		AUI Port Counters, 15 Registers
0B0		TP Port 12 Counters, 15 Registers.
0A0		TP Port 11 Counters, 15 Registers.
090		TP Port 10 Counters, 15 Registers.
080		TP Port 9 Counters, 15 Registers.
070		TP Port 8 Counters, 15 Registers.
060		TP Port 7 Counters, 15 Registers.
050		TP Port 6 Counters, 15 Registers.
040		TP Port 5 Counters, 15 Registers.
030		TP Port 4 Counters, 15 Registers.
020		TP Port 3 Counters, 15 Registers.
010		TP Port 2 Counters, 15 Registers.
000		TP Port 1 Counters, 15 Registers.

Table 29: Memory Map

Counter Registers

As shown in Table 30, all counters are 32-bit, read-only, "little-Endian" registers, with undetermined values at power-up. The "Zero Counters" bit in the Master Configuration Register allows all counters to be "zeroed".

Table 30: Counter Registers Bit Assignments

31	30	29	28	27	26	25 : 7	6	5	4	3	2	1	0
D31	D30	D29	D28	D27	D26	D25:D7	D6	D5	D4	D3	D2	D1	D0

Port Counter Registers

Table 31 contains descriptions of the per-port counters for the TP ports and the AUI port. These descriptions are intended to be illustrative. For the exact definitions of these counters, refer to the Repeater MIB, RFC 1516. To obtain the address of a particular register for a particular port, add the offset value for the register (from Table 31) to the base address for that port (from Table 29).

Table 31: Port Counter Registers

Name	Offset	Description
rptrMonitorPortReadableFrames	0	Counts valid-length (64 to 1518 bytes), valid-CRC, collision-free packets. Depending on the state of the CountMode bit in the Master Configuration Register, this counter will count either all packets (CountMode=0) or only Unicast Packets (CountMode=1)
		Minimum roll-over time = 80 hours
rptrMonitorPortReadableOctets	1	Counts the number of octets in the packets counted by the rptrMonitor- PortReadableFrames counter, not including preamble and framing bits. Minimum roll-over time = 58 minutes.
rptrMonitorPortFrameCheckSe- quence	2	Counts valid length, collision-free packets that had FCS errors, but were correctly framed (had an integral number of octets).
	1	Minimum roll-over time = 80 hours.
rptrMonitorPortAlignmentErrors	3	Counts valid length, collision-free packets that had FCS errors and were incorrectly framed (had a non-integral number of octets).
		Minimum roll-over time = 80 hours.
rptrMonitorPortFramesTooLong	4	Counts packets that had a length greater than 1518 octets.
		Minimum roll-over time = 61 days.
rptrMonitorPortShortEvents	5	Counts events that lasted for 82 bit times or less.
		Minimum roll-over time = 16 hours.
rptrMonitorPortRunts	6	Counts events longer than 82 bit times, but shorter than 512 bit times. Minimum roll-over time = 16 hours.
rptrMonitorPortCollisions	7	Counts the number of collisions that occurred, not including late collisions. Minimum roll-over time = 16 hours.
rptrMonitorPortLateEvents	8	Counts the number of times collision was detected more than 512 bit times after the start of carrier. Minimum roll-over time = 81 hours.

12

Name	Offset	Description ¹
rptrMonitorPortVeryLongEvents	9	Counts the number of times any activity continued for more than 4 to 7.5 ms. Minimum roll-over time = 198 days.
rptrMonitorPortDataRateMis- matches	A	Counts the number of times the incoming data rate mismatched the local clock source enough to cause a FIFO underflow or overflow.
rptrMonitorPortAutoPartitions	В	Counts the number of times this port has been partitioned by the Auto- partition algorithm.
rptrTrackSourceAddrChanges	С	Counts the number of times the source address has changed. Minimum roll-over time of 81 hours.
rptrMonitorPortBroadcastPkts	D	Counts the number of good broadcast packets received by this port.
rptrMonitorPortMulticastPkts	Е	Counts the number of good multicast packets received by this port.

Table 31: Port Counter Registers - continued

Interface Counter Registers

Table 32 contains descriptions of the segment counters, which are intended to be illustrative. For the exact definition of these counters, refer to the RMON MIB, RFC 1757. To arrive at the address of a particular register for a particular segment, add the offset for that register (shown below) to the base address for the segment (refer to Table 29), except for repeater-MonitorTotalOctets and repeaterMonitorTotalCollisions.

Name	Offset ¹	Description ²
etherStatsOctets	0	The number of data octets including those in bad packets and octets in FCS fields, but does not include preamble or other framing bits.
etherStatsPkts	1	The number of packets received from the network, including errored packets.
etherStatsBroadcastPkts	2	The number of good broadcast packets received.
etherStatsMulticastPkts	3	The number of good multicast packets received.
etherStatsCRCAlignErrors	4	The number of valid-length packets (64 to 1518 bytes inclusive) that had a bad Frame Check Sequence (FCS).
etherStatsUndersizePkts	5	The number of well-formed packets that were smaller than 64 octets.
etherStatsOversizePkts	6	The number of well-formed packets that were longer than 1518 octets.
etherStatsFragments	7	The number of ill-formed packets less than 64 octets. Note: Any event without a start-of-frame delimiter (0-octet packet) will be counted as a fragment, no matter how long it is.
etherStatsJabbers	8	The number of ill-formed packets longer than 1518 octets. An ill-formed packet is one with an FCS error.
etherStatsCollisions	9	The best estimate of the total number of collisions on this interface.
etherStatsPkts64Octets	A	The number of packets (good and bad) that were 64 octets long.
etherStatsPkts65to127Octets	В	The number of packets (good and bad) between 65 and 127 octets long.

Table 32: Interface Counter Registers

Name	Offset ¹	Description ²
etherStatsPkts128to255Octets	C	The number of packets (good and bad) between 128 and 255 octets long
etherStatsPkts256to511Octets	D	The number of packets (good and bad) between 256 and 511 octets long
etherStatsPkts512to1023Octets	Е	The number of packets (good and bad) between 512 and 1023 octets long.
etherStatsPkts1024to1518Octets	F	The number of packets (good and bad) between 1024 and 1518 octets long.
rptrMonitorTotalOctets	110 (Seg 1) 111 (Seg 2) 112 (Seg 3) 113 (Seg 4)	These per-segment counters record the total number of octets received on each interface.
rptrMonitorTransmitCollisions	114 (Seg 1) 115 (Seg 2) 116 (Seg 3) 117 (Seg 4)	These per-segment counters record the total number of transmit colli- sions that occurred each interface.

Table 32: Interface Counter Registers - continued

Port Counters for the 7-pin MAC Interface

Port Counters for the 7-pin MAC Interface are described in Table 33. These counters are a subset of the port counters for the other ports. Refer to Table 30 for bit assignments.

Table 33: MAC Interface Registers

Name	Type ¹	Addr	Description
MAC Interface-Readable- Frames	R	118	Valid-length (64 to 1518 bytes), valid-CRC, non-collision frames. Depending on the state of the CountMode bit in the Master Configura- tion Register, this counter counts either all valid packets (Count- Mode=0) or Unicast packets only (CountMode=1). Minimum roll-over time = 80 hours.
MAC Interface-Readable- Octets	R	119	Octets contained in MAC Interface-ReadableFrames. Minimum roll-over time = 58 minutes.
MAC Interface-Runts	R	11A	Number of packets and events shorter than 512 bit times. Minimum roll-over time = 16 hours.
MAC Interface-Collisions	R	11 B	Number of collisions that were detected on this interface. Minimum roll-over time = 16 hours.
MAC Interface-FCS/FAE	R	11C	Valid length (64-1518 bytes), non-collision packets with FCS errors. Minimum roll-over time = 80 hours.
MAC Interface-Broadcast	R	11D	Number of good broadcast packets received from this port.
MAC Interface-Multicast	R	11E	Number of good multicast packets received from this port.
MAC Interface-SAchanges	R	11F	Number of times the source address has changed. Minimum roll-over time = 81 hours.
1. $R = Read Only$.			

LXT918 Multi-Segment Hub Repeater

Ethernet Address Registers

All Ethernet Address Registers consist of two 32-bit registers that together contain a 48-bit Ethernet address. Refer to Table 34 for register bit assignments.

Table 34: Ethernet Address Register Bit Assignments

Upper Address	Bits 15:0 contain bits 47:32 of the Ethernet Address.
Lower Address	Bits 31:0 contain bits 31:0 of the Ethernet Address.

Port Address Tracking Registers

The Port Address Tracking Register set is described in Table 35. These registers continuously monitor the Source Addresses of packets emanating from the corresponding ports. Refer to Table 34 for bit assignments.

Table 35: Port Address Tracking Registers

Name	Type ¹	Addr	Description
rptrAddrTrackNewLastSrcAddress-TP Port 1	R/W	120, 121	
rptrAddrTrackNewLastSrcAddress-TP Port 2	R/W	122, 123	
rptrAddrTrackNewLastSrcAddress-TP Port 3	R/W	124, 125	
rptrAddrTrackNewLastSrcAddress-TP Port 4	R/W	126, 127	
rptrAddrTrackNewLastSrcAddress-TP Port 5	R/W	128, 129	
rptrAddrTrackNewLastSrcAddress-TP Port 6	R/W	12A, 12B	
rptrAddrTrackNewLastSrcAddress-TP Port 7	R/W	12C, 12D	
rptrAddrTrackNewLastSrcAddress-TP Port 8	R/W	12E, 12F	
rptrAddrTrackNewLastSrcAddress-TP Port 9	R/W	130, 131	
rptrAddrTrackNewLastSrcAddress-TP Port 10	R/W	132, 133	
rptrAddrTrackNewLastSrcAddress-TP Port 11	R/W	134, 135	
rptrAddrTrackNewLastSrcAddress-TP Port 12	R/W	136, 137	
rptrAddrTrackNewLastSrcAddress-AUI Port	R/W	138, 139	
rptrAddrTrackNewLastSrcAddress-MAC Port	R/W	13A, 13B	
1. R/W = Read / Write			

Authorized Port Address Registers

The Authorized Port Address Register set is described in Table 36. The operation of these registers is determined by the Authorization Control Register. Refer to Table 34 for bit assignments.

Table 36: Authorized Port Address Registers

Type ¹	Addr	Description
R/W	13C, 13D	
R/W	13E, 13F	
R/W	140, 141	
R/W	142, 143	
R/W	144, 145	
R/W	146, 147	······································
R/W	148, 149	
R/W	14A, 14B	
R/W	14C, 14D	
R/W	14E, 14F	
R/W	150, 151	
R/W	152, 153	
R/W	154, 155	
	R/W R/W	R/W 13C, 13D R/W 13E, 13F R/W 140, 141 R/W 142, 143 R/W 142, 143 R/W 144, 145 R/W 144, 145 R/W 146, 147 R/W 144, 14B R/W 14C, 14D R/W 14E, 14F R/W 150, 151 R/W 152, 153

Search Registers

The Search Register set is described in Table 37.

Table 37: Search Registers

Name	Type ¹	Addr	Description		
Search Address Register - Segment 1	R/W	156,157	Each register-pair specifies an Ethernet Source Address		
Search Address Register - Segment 2	R/W	158,159	to match on the corresponding segment. Refer to Table		
Search Address Register - Segment 3	R/W	15A,15B	34 for bit assignments		
Search Address Register - Segment 4	R/W	15C,15D			
Search Result Register - Segment 1	R	160	Each register indicates which ports on a particular seg		
Search Result Register - Segment 2	R	161	ment sent packets with source addresses that matched the		
Search Result Register - Segment 3	R	162	register pair described in the row above. Refer to Table 38 for bit assignments (bit 13 not used). These registers		
Search Result Register - Segment 4	R	163	clear when read.		

Control and Status Registers

The Control and Status Register set includes general port control and status registers which conform to the bit assignments shown in Table 38, and additional control and status registers with alternate bit assignments shown in Tables 40 through 45.

Table 38: Port Control and Status Register Bit Assignments

Dend	13	ATIT	TD10	TD11	77010	TPQ	TDO	TP7	TP6	TDE	TP4	TD2	77702	TTD1
Rsvd	MAC	AUI	IPIZ	1911	1910	199	TP8		1P0	1P5	1P4	1P3	1P2	111

General Port Control Registers

The General Port Control Register set is described in Table 39. Refer to Table 38 for Port Control Register bit assignments. Bits 12 and 13 are not used in all cases (refer to specific register descriptions).

Table 39: Port Control Registers

Name	Type ¹	Addr	Description
Enable Register	R/W	171	Writing a 1 to any bit enables the transmitter and receiver on the corresponding port, writing a 0 disables them. Changing a port's status while the network is active may cause packet fragments to be generated.
			If the MG_PRSNT pin is Low, this register will initialize to all 0's (all ports disabled). If the MG_PRSNT pin is High, this register will initialize to all 1's (all ports enabled).
Reserved	-	172	
Reserved	-	173	
Alternate Partition Register	R/W	174	Writing a 1 to any bit enables the alternate partition algorithm (re-connect on transmit only) for the corresponding port, a 0 the normal algorithm (re-connect on transmit or receive).
		:	(Bits 31:13 not used)
Link Control Register	R/W	178	Writing a 1 to any bit enables the Link Partition Algorithm for the corresponding Twisted Pair port, writing a 0 disables it. When this function is disabled, the port automatically goes to Link Pass state and continues to transmit link pulses.
			(Bits 31:12 not used; Power-up state is all 1's)
Polarity Control Register	R/W	179	Writing a 1 to any bit disables polarity correction for the corre- sponding Twisted Pair port.
			(Bits 31:12 not used)
Squelch Control Register	R/W	17A	Writing a 1 to any bit enables the receiver for the correspond- ing port to use reduced squelch levels for longer-distance cables; writing a 0 enables normal squelch levels to be used.
			(Bits 31:12 not used)
1. R/W = Read/Write.			

Interrupt Status Register

The Interrupt Status Register is described in Table 41. Refer to Table 40 for bit assignments.

Table 40: Interrupt Status Register Bit Assignments

and the second	0.000 M		
Bits 31:3	Bit 2	Bit 1	Bit 0

Table 41: Interrupt Status Register

a the state of the second
hen read.

Port Status Registers

The Port Status Register set is described in Table 42. Refer to Table 38 for bit assignments.

Table 42: Port Status Registers

Type ¹	Addr	Notes
R	17C	Reports SQE (heartbeat) and Loopback status of AUI port. Refer to Table 44 for details.
R	17D	A "1" in any bit position indicates the corresponding port is in the "Link Up" state. (Bits 31:12 not used)
R	17E	A "1" in any bit position indicates the corresponding port has been partitioned.
		(Bits 31:13 not used.)
R	17F	A "1" in any bit position indicates that the polarity for the corresponding port has been reversed
		(Bits 31:12 not used.)
R	180	A "1" in any bit position indicates that the Source Address has changed on the corresponding port.
		(Bits 31:13 not used.)
	R R R R	R 17C R 17D R 17E R 17E R 17F

12

AUI Control and Status Registers

The AUI Control and Status Register set is described in Table 44. Refer to Table 43 for bit assignments.

Register	Bits 31:2	Bit 1	Bit 0
AUI Control	Reserved	Reserved	SQE Mask
AUI Status	Reserved	Loopback	SQE (Heartbeat) Status

Table 43: AUI Control and Status Register Bit Assignments

Table 44: AUI Control and Status Registers

Name	Type ¹	Addr	Description
AUI Control Register	R/W	177	This bit controls masking or generation of the AUI "heartbeat", defined as brief activity on the AUI CI pair generated by the MAU shortly after successful completion of a transmission. The power-up state of this register is "0".
i.			When the AUI is functioning as a DTE - If this bit is 1 the device will not react to heartbeat, other than to update the AUI status register. If this bit is 0, the device will react to heartbeat by going into a full receive collision.
			When the AUI is functioning as a MAU - If this bit is 1, the device will not generate heartbeat; if it is 0, the device will generate heartbeat.
AUI Status Register	R	17C	This register reports SQE and Loopback status of AUI port when the LXT918 is operating as the DTE, and has no function when the operating as the MAU).
			SQE Heartbeat Status - This bit indicates the presence or absence of a heartbeat signal from an external MAU (1 = present, 0 = absent). This function operates regardless of the state of the SQE Mask bit in the AUI Control Register.
			Loopback - This bit indicates whether or not data loopback was detected from an external MAU $(1 = \text{present}, 0 = \text{absent}.)$
1. R/W = Read/ R = Read On			

Port Switch, Authorization and LED Control Registers

The Port Switch, Authorization and LED Control Registers are described in Table 46. Refer to Table 45 for bit assignments.

Table 45: Port Switch, Authorization and LED Control Register Bit Assignments¹

31:28						17:16					1.0		3:2	
Rs'vd	MAC	AUI	TP12	TP11	TP10	TP9	TP8	TP7	TP6	TP5	TP4	TP3	TP2	TP1

Table 46: Port Switch, Authorization and LED Control Registers

Name	Addr	Description
Port Switch Control Register	170	This register controls the mapping of ports to segments. Each port is assigned two bits in this register, as shown in Table 45. For each set of bits, the mapping is as follows: 00 = Segment 1
		01 = Segment 2 10 = Segment 3 11 = Segment 4
Authorization	175	Determines the operational mode of the Authorized Address Register for each port.
Control Register		00 = Free-Run. The Authorized Address Register continuously re-learns its contents from the source addresses of incoming packets (Power-up default).
		01 = Next Lock. The Authorized Address Register learns the source address of the next valid packet and locks. Once it locks, the corresponding bits in this register automatically change to '10'.
		10 = Lock. The Authorized Address Register does not change with traffic flow. In this mode, it can only be updated under network management control.
		11 = Reserved.
LED Control	176	Controls operation of the serial LED bits associated with each port. The power-up state of
Register		this register is all 1's if an external manager is detected, and defaults to "hardware control" otherwise.
		00 = LED off 01 = LED fast blink 10 = hardware control 11 = LED on

Configuration Registers

Configuration Registers are listed in Table 47. Bit assignments for the Configuration Registers are shown in Table 48 through 53. The Master Configuration Register is defined in Table 54.

Name	Type ¹	Addr	Ir Notes		
Global LED Control Register	R/W	181	Refer to Table 48 for bit assignm operating modes of the Global Fa Bit Encodingas follows:	nents. This register controls the ault LED and User Defined LED.	
			Global Fault LED 00 = Off 01 = Hardware Control 10 = Slow Blink 11 = On Steady	User Defined LED 00 = Off 01 = Fast Blink 10 = Reserved 11 = On Steady	
LED Timer Register	R/W	182	Refer to Table 49 for bit assignments. Bits 8-15 of this regist the fast blink frequency of the LEDs. Bits 0-7 set the slow b frequency. The same formula is used in each case, with a ma mum of 128 Hz and a minimum of 0.5 Hz (for example, fast = 32 (0.4 s); slow blink = CC (1.6 s)).		
Master Configuration Register	R/W	183	Refer to Tables 53 and 54 for bit assignments and definitions. power-up, all bits in this register default to 0.		
AUI Configuration Register	R/W ²	184	Bit 0 sets the AUI port mode (0 = Normal, 1 = Reversed). Bits 15:1 may contain user-defined configuration data.		
Device ID Register	R	185	This register follows the IEEE 1149.1 specification; refer to Tak 50 for bit assignments. The upper 4 bits identify the device rev sion level. The next 16 bits store the Part ID Number in hexad imal, which is '0396'. The lower 12 bits contain a JEDEC Manufacturer ID, which for Level One is hexadecimal 'FE'.		
Repeater Reset Register	W	186		ister causes all functional logic to e of counters, configuration regis-	
Software Reset Register	W	187	Writing any data value to this reareset. Everything is reset except		
HUB ID Register (1 and 2)	W	188, 189	Refer to Table 51 for bit assignm (one that matches the EPROM II device to change its Hub ID to th ister listed below. This register of	D) to this register causes the econtents of the EPROM ID reg-	
EPROM ID Register (1 and 2)	R	190, 191	These two registers contain the 4 power-up. Refer to Table 52 for	8-bit ID read in from EPROM at bit assignments.	

Table	47·	Config	uration	Registers
Table	-1 / .	QUIIIN	ulation	ILEGISLEIS

R/W = Read/Write.

Writes to Register 184 are accomplished via the AUICONFIG_IN pin, not via the STX pin. Reads to Register 184 are standard, except that 2 reads are required to ensure new data is shifted into the register after a change.

LXT918 Register Definitions

Table 48: Global LED Control Register Bit Assignments

31:4	Clobal Fault J ED	User Defined I ED
Reserved	Global Fault LED	User Defined LED

Table 49: LED Timing Control Register Bit Assignments

31:16	15:8	7:0
Reserved	Fast Blink Frequency	Slow Blink Frequency
1. Period = 7.8125 ms x (Register Valu	ie + 1)	
2. Frequency = 1		
7.8125 ms x (Regist	er Value + 1)	

Table 50: Device ID Register Bit Assignments

31:28	27:12	11:8	7:1-	0
Version	Part ID	Jedec Continuation Characters	JEDEC ID	Chip ID
XXXX	0000 0011 1001 0110	0000	111 1110	0

Table 51: Hub ID Register Bit Assignments

Upper Address	31:21 - All 0s	20:16 - Hub ID	15:0 - Must match bits 15:0 of upper EPROM ID Register	
Lower Address	31:0 - Must match bits 31:0 of lower EPROM ID Register			

Table 52: EPROM ID Register Bit Assignments

Upper Address	31:16 - All 0s	15:0 - Bits 15:0 of Address read from EPROM]
Lower Address		31:0 - Bits 47:16 of Address read from EPROM	12

31:11	10	9	8:5	4	3	2	1	0
Reserved	Arbin	Zero Counters	Isolate 4:1	CountMode	Soft Reconnect	EFIFOERR	EMCV	Reserved

Table 53: Master Configuration Register Bit Assignments

Table 54: Master Configuration Register Bit Definitions

Bit	Name	Type ¹	Description	
31:11	Reserved	-	Write as 0, ignore on read.	N/A
10	Arbin	R	This bit shows the value present at the ARBIN input pin.	0
9	Zero Counters	R/W	Setting this bit to "1" will cause all counters to be zeroed. Upon comple- tion of this operation, the device will reset this bit to "0".	0
8:5	Isolate4:1	R/W	Each of these bits controls the corresponding Isolate output. Setting any bit to "1" causes the corresponding Isolate output pin to be asserted High.	0
4	CountMode	R/W	his bit affects the operation of the portReadableFrames and MACRead- bleFrames counters. Setting this bit to 0 will cause these counters to count Il readable frames; setting this bit to 1 will cause these counters to count nly readable unicast frames.	
3	Soft Reconnect	R/W	etting this bit to 1 enables the Soft Reconnect feature of the device. When his feature is enabled, when a port switch is initiated (by writing to the Port witch Register), the device waits until traffic is idle before removing the ort from the old segment, or adding it to the new segment.	
2	EFIFOERR	R/W	This bit determines whether the device will enter the Transmit Collision State if its internal FIFO overflows or underflows (data-rate mismatch). 0 = no, 1 = yes.	
1	EMCV	R/W	This bit determines whether the device will enter the Transmit Collision State upon reception of a Manchester Code Violation; $0 = n_0$, $1 = yes$.	
0	Reserved	-	Write as 0, ignore on read.	N/A

LAN Application Notes

13

1997 Communications Data Book

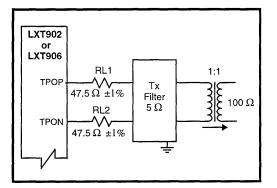
APPLICATION NOTE 23

MAY, 1996 Revision 1.0

LXT902 and 906

Impedance Matching for Shielded and Unshielded Twisted-Pair Lines

General Description


The LXT902 Media Attachment Unit (MAU) and LXT906 Twisted-Pair/Coax (TP-CX) Adapter both require impedance matching with the network media. This application note provides a short explanation of the impedance matching networks required for shielded and unshielded twistedpair lines. This information applies to both the LXT902 and the LXT906

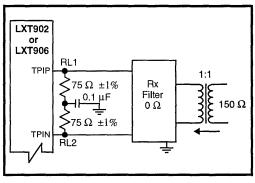
Transmit Line Matching

On the transmit side, the LXT902 and LXT906 use resistors in line with the output as shown in the figure below. To provide an optimum match, the total impedance of the resistors and the filter should equal the line impedance:

 $\mathbf{RL1} + \mathbf{RL2} + \mathbf{ZF} = \mathbf{ZL}.$

Transmit Line Interface

Receive Line Matching


On the receive side the LXT902 and LXT906 use a pair of resistors across the input with the center node tied to ground through a capacitor as shown in the figure below. To provide an optimum impedance match, use the same formula as used for the transmit side:

RL1 + RL2 + ZF = ZL.

Typical Examples

For example, when the network media is 100 Ω UTP and the filter impedance is 5 Ω , each resistor value should be 47.5 Ω . When the network media is 150 Ω STP and the filter impedance is 0 Ω , each resistor value should be 75 Ω . This simple formula provides optimum impedance matching for both the transmit and receive line interfaces.

Receive Line Interface

13

LXT902 and 906 - Impedance Matching for Shielded and Unshielded Twisted-Pair

NOTES

APPLICATION NOTE 35

APRIL, 1997 Revision 1.1

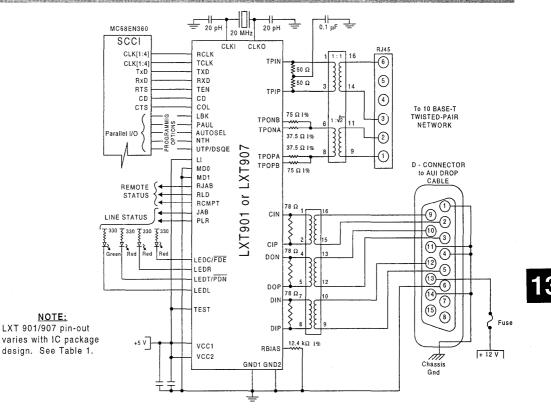
Design Guide for LXT901/907 Ethernet Interface

Connection to Motorola MC68EN360 Controller

General Description

This application note describes a method for connecting the LXT901 or LXT907 Ethernet Interface Adapter to the Motorola MC68EN360 Quad Integrated Communications Controller (QUICC) with Ethernet capability. The QUICC/ LXT901 combination makes designing routers, bridges, print servers and other, similar products simple and fast.

The LXT901 and LXT907 devices have advanced features that make design and fabrication faster and cheaper than typical competitors' products. These two devices meet all of the Motorola QUICC design requirements with minimal external circuitry needed to use the MC68EN360 features. Either of these devices gives the lowest cost, highest performance possible with the Motorola QUICC.


LXT901/LXT907 Device Features

- Glueless interface to the MC68EN360 QUICC controller in 10 Mbps Ethernet/IEEE 802.3 LAN with either twisted- pair connection or AUI transceiver
- · Integrated filters make design faster, fabrication cheaper
- Integrated LED drivers for operation monitoring
- Supports full duplex operation
- Automatic port selection makes choosing between the twisted-pair and AUI options seamless

Applications

This application note addresses the Ethernet LAN side of the circuit only. To connect to a T1 or E1 network, use a Level One LXT301/305 family or an LXT310 or LXT318 transceiver.

Typical LXT901/LXT907 Device and MC68EN360 QUICC Connection

13-3

LXT90x / QUICC Interface

The LXT901 device is available in either a 44-pin PLCC format or a 64-pin TQFP package. The LXT907 device is available in the 44-pin PLCC form. The two PLCC packages are pin compatible except for pin 37. This pin is UTP (unshielded/shielded twisted-pair select) on the LXT901 and DSQE (Disable SQE) on the LXT907 device.

The following pins on the LXT901 or LXT907 device connect to the MC68EN360 SCC1 signals as shown.

LXT90)1/LXT90	Motorola QUICC	
PLCC Pin	TQFP Pin	Signal	MC68EN360 SCC1 Signal
28	47	RCLK	CLK1-41
11	23	TCLK	CLK1-41
12	24	TXD	TXD
26	45	RXD	RXD
13	25	TEN	RTS ²
27	46	CD	CD ²
16	28	COL	CTS ²
22	38	LBK	
40	3	PAUI	Connect these bits to
17	29	AUTOSEL	the Parallel I/O bus
4	13	NTH	on the QUICC ³ and program as needed.
37 (901)	59	UTP	
37 (907)	n/a	DSQE	

Table 1: Pin Connections

1. The design must provide separate clocks for TCLK and RCLK. Any of the clocks on the QUICC will do.

2. These signals are active high in this application.

3. Please check the Motorola specification for the connections needed for the desired result.

Setting QUICC Parameters

Refer to the Motorola MC68360 Quad Integrated Communications Controller User's Manual for settings required to make the QUICC function. Be aware of the following:

Only SCC1 has Ethernet communications capability. Use SCC1 for the LAN connection, and use another SCC (or a parallel) port for the other side of the connection.

Bypass both the Digital Phase-Locked Loop (DPLL) and Manchester Encoding/Decoding function for Ethernet operation.

The TCI (Time Clock Invert) bit must be High to allow the QUICC to clock the data out to the LXT901 or LXT907 device on the rising edge of the clock pulse. This improves data setup time at the 10 Mbps speed used by Ethernet. TCI is bit 28 of the General SCC Mode Register (GSMR).

The MODE bits (0~3) must be set to 1, 1, 0, 0 respectively. The Transparent Receiver (TRX) and Transparent Transmitter bits (TTX), bits 43 and 44, must both be 0 (normal operation) or 1 (transparent operation). Do not mix TRX and TTX values. The 0 setting is recommended; in transparent mode, the QUICC does not manipulate protocols in the data stream.

The Transmit FIFO Length (TFL) bit should be 0. TFL is bit 38 in the GSMR. The Receive FIFO Width (RFW) bit, bit 37, should also be 0.

GSMR bits 19 and 20 are the Transmit Preamble Pattern (TPP) bits. For Ethernet operation, set them to 0, 1 to transmit a repeating 10 pattern as a preamble.

Figure 1 shows a typical set up for a full duplex 10BASE-T LAN connection, using the LXT907 device. This application requires only the TP transformer, two 18 pF capacitors, two 330 Ω resistors, two 24.9 Ω 1% resistors, one 12.4 k Ω 1% resistor, and a green LED. The 20 MHz clock signal is common in all 10BASE-T applications, so no crystal is required. All QUICC parameters remain the same.

This completes the Ethernet/IEEE 802.3 LAN side of the circuit setup. There are other steps in designing a working circuit that go beyond the scope of this application note.

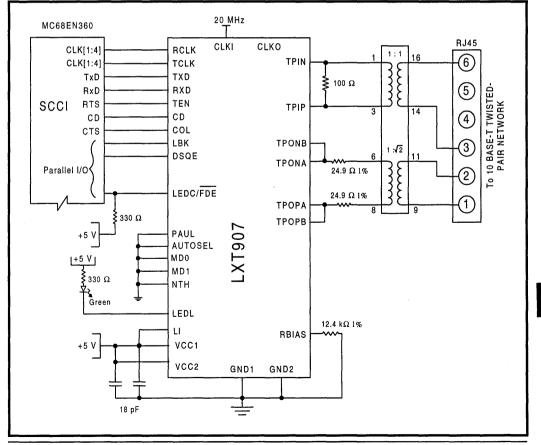
Layout Guidelines

Fabricate the circuit as shown in the diagram on page 1. Take care to isolate the bias circuit at RBIAS and locate the resistor close to the pin. If this resistor is not positioned properly it may act as an antenna and cause erratic performance. Keep it away from other components or signal traces, and do not run any signals under the resistor. Be sure to use a bypass capacitor at each Vcc pin.

External Components

The application on page 1 requires two DIP transformer packages for isolation and impedance matching on the AUI or twisted-pair transmit and receive lines. Recommended transformers are listed in Table 2.

Design Guide for LXT901/907 and Motorola MC68EN360 Controllers


The application on page 1 also requires a 20 MHz clock and several resistors, diodes and capacitors. That example uses the following parts:

- 20 MHz crystal (one each, or external 20 MHz clock)
- 300 Ω, 1% resistor (four each)
- 50 Ω , 1% resistor (two each)
- 75 Ω, 1% resistor (two each)
- 78 Ω, 1% resistor (three each)
- 37.5 Ω, 1% resistor (two each)
- 12.4 kΩ, 1% resistor (one each)
- + 0.1 μ F capacitor (three each)
- 20 pF capacitor (two each, required with Xtal only)
- 18 pF capacitor (one each)
- · Red LED (three each, optional)
- Green LED (one each, optional)

Table 2: Transformer Manufacturers

Mfgr	Part Number	TP/AUI
Bel Fuse	S553-0716/A553-0716	TP
	A553-0756/S553-0756	AUI
Fil-Mag	23Z128/23Z128	TP
	23Z90/23Z90SM	AUI
HALO	TD42-2006Q	TP
Electronics	TG42-2006WH1	
	TD01-0756K	AUI
	TG01-0756W	
Valor	PT4069/SM4069	TP
	LT6030/SM6030	AUI

Figure 1: Typical Full Duplex 10BASE-T Connection

III CLEVEL

13

Design Guide for LXT901/907 and Motorola MC68EN360 Controllers

APPLICATION NOTE 45

JULY, 1997 Revision 1.1

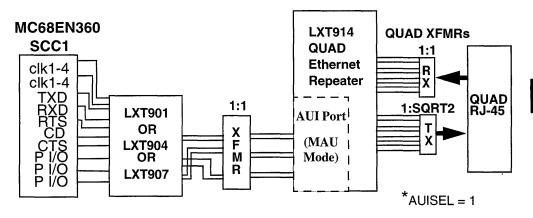
Design Guide for LXT914 Quad Ethernet Repeater with the LXT901/904/907 and Motorola MC68EN360

General Description

This application note describes a method for integrating the LXT914 Quad Ethernet Repeater into existing and new architectures using the MC68EN360 (QUICC) device. It also includes the design notes for the MC68EN360 and the LXT901/7 found in Application Note 35 for new users of Level One devices who also use the QUICC interface. The LXT914 has a new advanced feature set which allows integration of the repeater function with existing QUICC/ LXT901/7 designs.

The QUICC/LXT90X/LXT914 device combination demonstrates Level One's commitment to supplying highly integrated solutions to meet our customers' ever increasing requirements for advanced new products.

LXT914 Advanced Feature Set


- Three new LED operating modes
- Selectable AUI interface (DTE/MAU)
- Four integrated 10BASE-T transceivers
- · Integrated transmit and receive filters
- · Seven integrated LED drivers
- Synchronous or Asynchronous inter-repeater backplane operation
- Inter-repeater backplane supports glueless cascading of repeater devices for maximum port count
- · Serial port interface for initial port configuration
- · Packaged in both 68-pin PLCC and 100-pin PQFP

Application Overview

The LXT914 Flexible Quad Ethernet Repeater can be used to increase the connectivity of your current and future designs, including Routers, Bridges, Print Servers, etc. Any single port Ethernet design can be upgraded to a multi-port repeated network simply and easily using the LXT914 device with the new advanced feature set. The LXT914 AUISEL pin allows the designer to select the MAU interface mode of operation. The MAU mode allows for the connection of the DTE interface of the LXT901/4/7 with the MAU interface of the LXT914. This application will increase the connectivity of the product from one port to 4, 8, or 12 TP ports. The LXT914 advanced feature set also allows for growth from LED managed to a fully managed solution.

The LXT914's advanced feature set includes three new LED modes and the selectable AUI interface (DTE/MAU).

LXT914 Integrated Ethernet Repeater Block Diagram

DESIGN REQUIREMENTS

LXT90X - QUICC Compatibility

The LXT901, LXT904 and LXT907 devices are each available in a 44-pin PLCC package. There are functional differences between the three devices, but each product has all of the features required for compatibility with the QUICC in this application. The LXT907, for example, uses pin 37 for the DSQE function, allowing the designer to make SQE a programmable option in the design. The LXT901 uses pin 37 for UTP/STP media selection. These device-specific options apply to the use of the TP port which is unused in this application. The LXT904 device has only the single AUI port—the only port required for this application. Refer to the Level One data sheet for the specific device to fit your individual requirements.

LXT90X - LXT914 Connections

The LXT901/4/7 device should be set up in a fixed mode of operation. This fixed mode of operation reduces the number of required programmable pins. The mode selected for operation with the LXT914 is: Autoselect disabled, LI disabled, and PAUI set (for AUI only operation).

The actual connection between the LXT901/4/7 and the LXT914 is shown in Figures 1 and 2, which detail the two interface options: capacitive coupling and isolation transformers, respectively. Capacitive coupling is used for likebiased devices. Some devices will require transformers. The AUI circuitry has voltage biasing on all lines and requires isolation when transmitting between devices. Either option also requires the 78.7 Ω termination resistors on both sides of the transformer or the capacitive coupling as shown in Figures 1 and 2.

NOTE

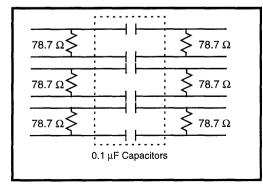
Some existing designs may require reprogramming. The programmable pins should be set as follows: AUTOSEL = Low: Auto Port Select disabled LI = Low: Link Integrity Test disabled PAUI = High: AUI Port selected MD0 = Low: Controller Mode 1 selected MD1 = Low: Controller Mode 1 selected The following pins on the LXT901/4/7 connect to MC68EN360 SCC1 signals.

Table 1:	Connections	to QUICC SC	C1

LXT90X Pin #	LXT90X Signal Name	Motorola QUICC MC68EN360 SCC1 Signal
28	RCLK	CLK1-4 ¹
11	TCLK	CLK1-4 ¹
12	TXD	TXD
26	RXD	RXD
13	TEN	RTS
27	CD	CD
16	COL	CTS
22	LBK	PI/O1 ²
4	NTH	PI/O2 ²
37	UTP(901)	PI/O3 ²
37	DSQE(907) PI/O3 ²	

1. The design must provide separate clocks for TCLK & RCLK. Any of the clocks on the QUICC will do.

 Please refer to the Motorola specification for the correct connections and desired results. These pins should be programmable output pins for use with TTL inputs. Check the pin's state at reset and power up for compatibility with Level One devices.

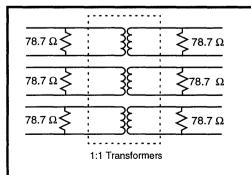


Setting QUICC Parameters

Refer to the Motorola MC68EN360 Quad Integrated Communications Controller User's Manual for settings required to operate the QUICC properly. Here are some points to be aware of when setting up the QUICC's internal registers:

- Use SCC1 for the LAN connection, and use another SCC or a parallel port for another remote connection. (Only the SCC1 has Ethernet communications capability.)
- Bypass both the Digital Phase -Locked Loop (DPLL) and Manchester Encoding/Decoding functions for Ethernet operations (This is integrated into the LXT901/4/7).
- Set the TCI (Time Clock Invert) bit high to allow the QUICC to clock the data out to the LXT901 or LXT907 device on the rising edge of the clock pulse. This improves data setup time at the 10 Mbps speed used by Ethernet. TCI is bit 28 of the General SCC Mode Register (GSMR).
- Set the MODE bits (0-3) must to 1, 1, 0, 0. Set both the Transparent Receiver (TRX) and Transparent Transmitter (TTX), bits 43 & 44, to 0 for Normal Operation, or a 1 for Transparent Operation. Do not mix the two signals, set them for the same mode. We recommend the 0 setting: In this mode the QUICC does not manipulate the protocols in the data stream.
- Set the Transmit FIFO Length (TFL) bit & the Receive FIFO Width (RFW) bits to 0.
- Set the bits to 0, 1 (Ethernet operation) for a repeating (1,0,1,0,...) pattern as a preamble. GSMR bits 19-20 are Transmit Preamble Pattern (TPP) bits.

Figure 1: AUI Capacitive Coupling Interface



LXT914 Configuration

The following is a complete list of the settings as shown in Figure 3. Some of these settings are optional. Select the settings which will be best for your product.

- LOC/EXT: Set this bit High (1) for Local Management. (Use External Management to meet the requirement for managed TP port statistics, SNMP protocol or RMON operation with a EMD device.)
- A/SYNC: Select Asynchronous mode High (1) to eliminate the need for an external clock source. The Asynchronous and Synchronous modes of operation determine the relationship between the System Clock and the IRB Clock. The IRB clock is internally generated in Asynchronous mode only.
- AUISEL/LEDJM: Pull this pin High (1) for this application. (This pin can be an external LED driver or used as an input to select MAU mode for the AUI port.)
- LEDM1/0: Set these pins for one of four possible LED modes. The available modes are shown in Table 2. In the MAU configuration, Mode 0 and the LEDJM driver are not available with the PLCC package.
- DSQE: Set the disable SQE pin High (1) to disable the SQE function or Low (0) to enable the SQE function.
- FPS: Set the first position pin High (1).
- SDI: Tie this pin Low for the default settings of the internal setup register used here. (Use an external EEPROM to customize the port settings. Refer to the LXT914 data sheet for further information.)
- SCLKIO, SENO, SENI: Leave the remaining serial management pins floating.
- TEST: Tie this pin Low (0).

Figure 2: Isolation Transformer Interface

Design Guide for LXT914 Quad Ethernet Repeater

Table 2: LED Modes Available in the LXT914					
Condition (LEDM0, 1)	LEDTP 1- 4	LEDAUI	LEDCF		
	MODE 1	(0, 1)			
l Steady High	Rx Link Pulse	n/a	MJLP		
2 Blink High	n/a	n/a	n/a		
3 Steady Low	n/a	n/a	Collision		
4 Blink Low	Rx Packet	Rx Packet	n/a		
	MODE 2	(1, 0)			
l Steady High	Rx Link Pulse	n/a	MJLP		
2 Blink High	Partition Out	Partition Out	n/a		
3 Steady Low	n/a	n/a	Collision		
4 Blink Low	Rx Packet	Rx Packet	n/a		
	MODE 3	(1, 1)			
l Steady . High	Rx Link Pulse	n/a	MJLP		
2 Blink High	Rx Packet	Rx Packet	n/a		
3 Steady Low	Partition Out	Partition Out	Collision		
4 Blink Low	n/a	n/a	n/a		

Table 2: LED Modes Available in the LXT914

Inter-Repeater Bus (IRB)

The IRB connects multiple LXT914 devices on a single repeated segment. Each repeater device distributes recovered and retimed data to other repeaters on the IRB simultaneously. This simultaneous rebroadcast allows the multiple devices to act as a single large repeated segment.

- IRENA, IRDAT, IRCOL, IRCFS: These four signals must each be pulled up through a single 330 Ω 1% resistor.
- **IRDEN**: This signal controls the transceivers for synchronous mode of operation. The synchronous mode is required for a fully managed solution.

#	Qty	Description
1	6	.1 µF caps AC Coupling only
2	4	120 pF capacitors
3	8	24.9 Ω 1% resistor
4	4	100 Ω resistors
5	4	330 Ω resistors
6	2	12.4 kΩ resistors
7	4	1 kΩ resistors
8	. 1	1:1 XFMR, No AC coupling
9	1	1:1 Rx XFMR (quad)
10	1	1:1.41 Tx XFMR (quad)
11	1	20 MHz Oscillator (or 20 MHz system clock)
12	-	LEDs, user defined

Table 3: Four TP Port BOM (see Figure 3)

LAYOUT REQUIREMENTS

The Twisted-Pair Interface

The four twisted-pair output circuits are identical. Each TPDOP/TPDON output pair has a 24.9 Ω, 1% resistor in series at each output pin and a 120 pF capacitor across the output lines. These signals go directly to a $1:\sqrt{2}$ transformer creating the necessary 100Ω termination for the cable. The TPDIP/TPDIN signals have a 100 Ω resistor across the differential pairs to terminate the 100 Ω signal from the line. To calculate the impedance on the output line interface, use the formula:

 $(24.9 \ \Omega + 24.9 \ \Omega) * \sqrt{2^2} \approx 100 \ \Omega.$

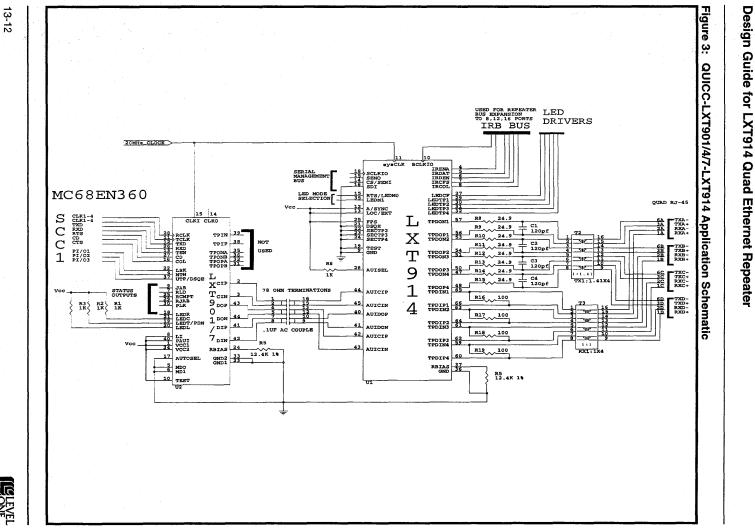
Table 4 lists available quad and single port transformers with manufacturers and their part numbers. This information was valid as of the printing date of this document. Before committing to a specific component, designers should review the specifications for any device to be used in the design.

The layout of the twisted-pair ports is critical in complex designs. Run the differential pairs directly from the device to the discrete termination components (located close to the transformers).

The transformer isolation voltage rating should be 2 kV to protect the circuitry from static voltages across the connec-

Manufacturer	Quad Transmit	Quad Receive	Tx/Rx Pairs
Bell Fuse	\$553-5999-02	\$553-5999-03	
Fil-Mag	23Z338	23Z339	
HALO	TD54-1006L1 TG54-1006N2	TD01-1006L1 TG01-1006N2	TD42-2006Q TD43-2006K TG42-1406N1 TG43-1406N
(Octal)			TG44-S010NX
Kappa	TP4003P	TP497P101	
Nanopulse	5976	5977	
PCA	EPE6009	EPE6010	
VALOR	PT4116	PT4117	PT4069N1 PT4068N1 ST7011S2

tors and cables. The signals running from the transformers to the connector should run in close pairs directly to the connector. Be careful not to cross the transmit and receive pairs. One way to avoid a problem is to run the receive pairs on the component side and the transmit pairs on the solder side.


The PCB layout should have no ground or power planes from the transformers to the connectors. The receive and transmit signals should be the only traces in this area. Place the chassis ground for the connectors near the edge of the PCB, away from the signals, connecting the connector shield within the wide etch of the chassis ground.

RBIAS Pins

The RBIAS resistor for the LXT901/4/7 devices should be placed as close to the pin as possible with no vias between the device and the resistor (SMT). The other side should share the via with GND1 (pin 23). There should be no other signals running through or under this area. The RBIAS signal sets the levels for the output drivers of the device. Emissions or common mode noise entering the device here will be seen on the output signals.

Lay out the LXT914 device with a 12.4 k Ω , 1% resistor directly connected to pin 37. The ground signals from pins 36 & 38 should come directly off of the device to surround the resistor and pin forming a partition between the RBIAS resistor and the other signals on the PCB.

ST7010S2

APPLICATION NOTE 51

MAC Interface Design Guide

Interfacing Level One Ethernet Transceivers to Intel Controllers

General Description

This application note describes operation of the Intel 82596 LAN coprocessor with Level One Ethernet transceivers for IEEE 802.3 10BASE-T and AUI connections. The 82596 can be used with a variety of Level One devices including the LXT901, LXT904, LXT905, LXT907 and LXT944. The 82596 performs the Medium Access Control (MAC) functions, while the Level One transceivers perform the Physical (PHY) layer functions of Manchester encoding/ decoding, receiver squelch and transmit pulse shaping, jabber, link integrity testing, reversed polarity detection and correction, and AUI driving and receiving. This note details the transceiver-to-controller interface. It also describes the Carrier Sense mode settings required for compatibility between Level One LXT905 and LXT944 transceivers and the Intel 82596 LAN controller.

Features

- Integrated filters No external filters required
- Integrated Manchester encoders/decoders
- 10BASE-T compliant transceivers
- AUI transceivers
- Automatic /Manual AUI/RJ45 Selection
- Automatic polarity correction
- SQE enable/disable
- Integrated LED drivers
- Full duplex capability

Consult individual product data sheets for specific product feature sets.

Application Overview

CSMA/CD or Full-Duplex Ethernet

The above listed Level One transceivers are capable of full duplex operation. This makes them an excellent choice for use with the Intel 82596. The 82596 has two link management algorithms. One of these is Carrier Sense Multiple Access with Collision Detection (CSMA/CD) for compliance with the IEEE 802.3 standard. In CSMA/CD operation, the presence of activity on the serial link delays any data transmission until the link is clear. Collisions can be detected internally or externally to the 82596. With external collision detection, the 82596 is notified of collisions by the COL output of the Level One transceiver.

In addition to CSMA/CD, the 82596 is capable of fullduplex communication. In full-duplex operation, the 82596 uses the RTS output to enable data transmission through the TEN input of a Level One transceiver. In order for Level One transceivers to operate in full duplex mode, the transceiver collision detect circuits must be disabled. Collision detection disable is performed through the LEDC pin on the transceiver. In half-duplex operation (for CSMA/CD), the LEDC pin is an output for driving a collision indicator LED. Externally tying the LEDC pin low disables internal twisted-pair loopback and collision detect, enabling fullduplex communication.

Full-duplex operation effectively doubles the bandwidth of an Ethernet connection, without any change in the physical media.

APRIL, 1996 Revision 1.0

TRANSCEIVER TO CONTROLLER INTERFACE

Level One transceivers use an 8-pin interface to connect with LAN controllers. Table 1 describes the connections between Level One transceivers and the 82596. Note that the CD output from the transceiver is not used with the 82596 controller.

Transceiver Pin Name	I/O	Signal Name	Signal Description	82596 Pin Name
TXD	I	Transmit Data	Input signal containing NRZ data to be transmitted on the net- work. TXD is connected directly to the transmit data output of the controller.	
TEN	Ι	Transmit Enable	Enables data transmission and starts the watchdog timer. Syn- chronous to TCLK.	RTS
TCLK	0	Transmit Clock	10 MHz clock output. This clock signal should be directly con- nected to the transmit clock input of the controller.	TXC
RCLK	0	Receive Clock	Recovered 10 MHz clock which is synchronous to the received data and connected directly to the receive clock input of the controller.	
RXD	0	Receive Data	Output signal connected directly to the receive data input of the controller.	RXD
CD	0	Carrier Detect	Output to notify the controller of activity on the network. Do not connect when using an Intel 82596 with either an LXT905 or LXT944.	CRS
COL	0	Collision Detect	Output which drives the collision detect input of the controller.	CDT
LBK	I	Loopback	Enables internal loopback mode. ¹	LPBK

Table 1: Transceiver Pin Description and 82596 Connections

Carrier Sense Mode Settings

The Intel 82596 LAN controller offers two modes for the carrier sense function: Internal and External. Mode compatibility is listed in Table 2. The LXT901, LXT904 and LXT907 can be used with either mode. The LXT905 and LXT944 can be used with the Internal Mode only.

In the Internal Carrier Sense mode the external carrier sense on the $82596 \overline{CRS}$ pin is ignored. Instead, the presence of the receive clock is interpreted as Carrier Sense active. Therefore, the Carrier Detect output from the transceiver is not required and should not be connected to the controller. To set the 82596 controller to the Internal Carrier Sense mode, use the configure command to set the 82596 configuration parameter CARRIER SENSE SOURCE (Byte 9, Bit 3) to 1. In the External Carrier Sense mode the controller looks at the Carrier Detect signal from the transceiver. In the LXT905 and LXT944, the delay between the end of frame and the de-assertion of Carrier Detect can cause the 82596 to mis-read several bits. Selecting the Internal Carrier Sense mode eliminates this condition.

Table 2: Carrier Sense Mode Compatibility

Transceiver	Internal	External	
LXT901	Yes	Yes	
LXT904	Yes	Yes	
LXT905	Yes	No	
LXT907	Yes	Yes	
LXT944	Yes	No	

APPLICATION UPDATE AN-60

LXT905 MAC Interface Update

APRIL 1997 Revision 1.0

End-of-Frame Timing Issues

Introduction

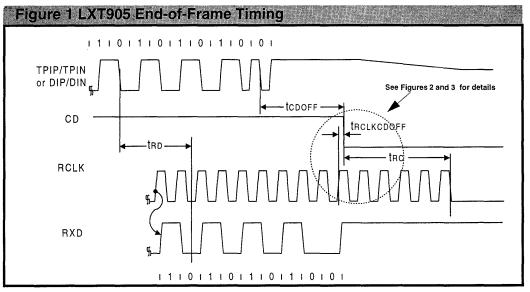
Level One has determined that LXT905 Revision C1 compatibility with certain Medium Access Controller (MAC) chips is affected by End-of-Frame timing variations. This compatibility issue can result in excessive CRC errors at End-of-Frame. This Application Update provides solutions to the End-of-Frame compatibility issue.

Background

One of the events associated with receipt of an End-of-Frame is CD (Carrier Detect) de-assertion. The timing of this event (CD de-assertion) varies, relative to RCLK.

Some MAC devices check CD at the end of every byte (every 8 bits). In this case, variation of the CD de-assertion timing does not impact MAC operation. However, other MAC devices check CD at every bit. In this case, variation of the CD de-assertion timing can cause the MAC to miss the last bit of the CRC, resulting in a CRC error.

If you have been using the LXT905 without problems, it is likely that your MAC is not sensitive to this issue. At present, only controllers from Motorola and Intel are known to be susceptible to the CD de-assertion timing variation.

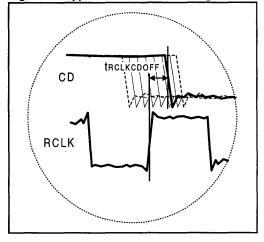

End-of-Frame Timing

CD turn-off delay (tCDOFF) is a timing parameter associated with receipt of an End-of-Frame. As shown in Figure 1 below, CD turn-off delay is the time between the falling edge in the middle of the last Manchester encoded signal (always a zero) and the transition edge of the CD line. (The CD transition may be falling or rising, depending on the controller mode.)

The "C1" revision of the LXT905 (in production since January, 1996) has significant variation in the length of tCDOFF. The delay time is consistently below the specified maximum, but the position of the CD transition varies widely, and is dependent on the incoming data stream pattern that precedes the end of frame.

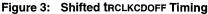
Data Sheet Reference Note:

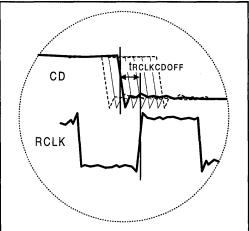
The LXT905 data sheet shows tCDOFF timing for each controller mode in Figures 11, 15, 19, and 23. Table 9 of the data sheet gives maximum values of tCDOFF for each of the 4 operating modes. Note that there is a maximum value specified for this parameter, but no minimum.


13

The Critical Relationship

A related parameter, not specified in the data sheet, is the time between the rising edge of the RCLK pulse associated with the last bit (zero) of the End-of-Frame sequence and the transition edge of CD as it is de-asserted. Figure 1 shows the End-of-Frame timing relationships and identifies this parameter as tRCLKCDOFF. This hold time between RLCK and CD off, tRCLKCDOFF, has a typical value of 27 ns.


Figure 2 shows a close-up detail of this parameter. Variation in CD de-assertion is indicated by the dashed lines on the falling edge. As CD de-assertion is shifted left, tRCLKCDOFF is correspondingly reduced and may become negative.



When tRCLKCDOFF goes negative, the RLCK edge which normally precedes CD de-assertion now comes after CD de-assertion. This condition (Figure 3) presents compatibility problems with certain MAC chips from Intel and Motorola.

Note that the variation in the timing of CD depends primarily on the data preceding the end-of-frame sequence, but is consistent across devices. If you have been using the LXT905 without problems, it is likely that your MAC is not sensitive to this issue. At present, only controllers from Motorola and Intel are known to be susceptible to the CD de-assertion timing variation.

The Solution for Intel MACs

Use the MAC's Internal Carrier Sense mode.

The Intel 82596 LAN controller offers two modes for the carrier sense function: Internal and External. Selecting the Internal Carrier Sense mode eliminates the incompatibility. To set the MAC to Internal Carrier Sense mode, set Carrier Sense Source (Byte 9, bit 3) = 1.

In this mode the external carrier sense on the 82596 "CRS" pin is ignored. Instead, the presence of the receive clock is interpreted as Carrier Sense active. Therefore, the output from the LXT905 Carrier Detect pin is not required and should not be connected to the controller. Refer to Level One Application Note AN51 for details.

The Solution for Motorola MACs

Use the LXT905's Controller Compatibility Mode 4.

To provide compatibility with the Motorola MAC, the tRCLKCDOFF characteristic has been changed on a new "C2" revision of the LXT905. Table 1 summarizes the differences between the C1 and C2 revisions with respect to this issue.

Data Sheet Reference Note:

The Motorola MC68EN360 controller requires a minimum of 10 ns for tRCLKCDOFF. This is specified in Table 10.26 on page 10-77 of the MC68360 User's Manual, MC68360UM/AD Rev. 1, parameter number 125, "RENA Active Delay (from RCLK1 rising edge of the last data bit)". Note that CD on the LXT905 data sheet corresponds to RENA on the Motorola data sheet (also referred to as "NOT CD1" in some Motorola documentation).

Table 1: tRCLKCDOFF Timing in LXT905 for Mode 1 and Mode 4

		trick	CDOFF	
Mode	Minimum	Typical	Maximum	Units
1	-10	27	30	ns
4	40	77	80	ns

LXT905 MAC Interface Update End-of-Frame Timing Issues

NOTES

JUNE 1997

Transformer Manufacturers

for Level One Networking Product Applications

Transformer Manufacturers

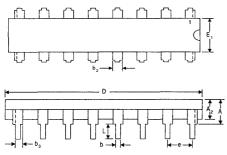
Table 1: Twisted-Pair	⁻ Transformer	Manufacturers
-----------------------	--------------------------	---------------

Product	Port & Ratio	Manufacturer	Transformer Part Numbers
LXT901/901A	Rx = 1:1	Bell Fuse	S553-0716, A553-0716
LXT907/907A	$Tx = 1:\sqrt{2}$	Fil-Mag	23Z128, 23Z128SM
		HALO	TD42-2006Q, TG42-1406N1
		Valor	PT4069, ST7011
LXT902	Rx = 1:1	Fil-Mag	78Z1122B-01, 78Z1122D-01
LXT906	Tx = 1:1	Valor	РТ3877
		HALO	FD02-101G, FD12-101G, FD22-101G
LXT905	Rx = 1:1	Fil-Mag	23Z441, 23Z441SM, 23Z118, 23Z118SM
LXT908	Tx = 1:2	HALO	TD75-1406N, TG74-1406N1
		Valor	ST4160, ST4202, ST4167, ST4152, PT4152
LXT970	Rx = 1:1 Tx = 1:1	HALO	TG22-3506ND, TD22-3506G1, TG22-S010ND, TG22-S012ND
	1 1.1	Nanopulse	NPI 6120-30, NPI 6120-37, NPI 6170-30, NPI 6181-37
		Pulse	PE-68517, PE-68515
		Valor	ST6114, ST6118
LXT914	Quad Txfmr	Bel Fuse	A553-5999-01, S553-5999-02
LXT915	$Tx = 1:\sqrt{2}$	Fil-Mag	23Z339, 23Z339SM
LXT916		HALO	TD54-1006L1, TG54-1006N2
LXT917		Карра	TP4003P
LXT918		Nanopulse	5976
LXT944		PCA	6038, EPE6009
		Valor	PT4116
	Quad Txfmr	Bel Fuse	A553-5999-00, 8553-5999-03
	Rx = 1:1	Fil-Mag	23Z338, 23Z338SM
		HALO	TD01-1006L1, TG01-1006N2
		Nanopulse	5977
		PCA	6037, EPE6010
		TDK	TLA-3T106
		Valor	PT4117

Product	Ratio	Manufacturer	Transformer Part Numbers
LXT901/901A	AUI	Bel Fuse	S553-1006-AE
LXT902	$\mathbf{R}\mathbf{x} = 1:1$	Fil-Mag	23Z90, 23Z90SM
LXT904	Tx = 1:1	HALO Electronics	TD01-0756K, TG01-0756N
LXT906		Valor	LT6032, ST7032
LXT907/907A			
LXT908			
LXT914			
LXT915			
LXT916			
LXT917			
LXT918			

 Table 2: AUI Transformer Manufacturers

Package Information and Order Information



This section contains a summary of the Package Specifications for Level One Products.

In case of a conflict, the latest issue of the JEDEC publication #95 shall take precedence over these drawings.

Package Outlines and Ordering Information

Plastic Dual In-Line Package (8-pin, 14-pin, 16-pin, 24-pin, 28-pin, 40-pin DIP)

Dual In-Line Packages (dimension D in lower tables)

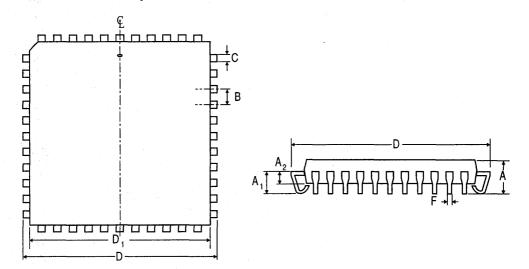
	300 mil DIP					600 n	nil DIP	
	Inc	hes	Millin	neters	Inc	hes	Millin	neters
Dim	Min	Мах	Min	Max	Min	Max	Min	Max
A	_	0.210	_	5.334	_	0.250	-	6.350
A2	0.115	0.195	2.921	4.953	0.125	0.195	3.175	4.953
b	0.014	0.022	0.356	0.559	0.014	0.022	0.356	0.559
b2	0.045	0.070	1.143	1.778	0.030	0.070	0.762	1.778
b3 ¹	0.030	0.045	0.762	1.143	_	_	-	-
Е	0.300	0.325	7.620	8.255	0.600	0.625	15.240	15.875
Eı	0.240	0.280	6.096	7.112	0.485	0.580	12.319	14.732
е	0.100 BSC ²	(Nominal)	2.540 BSC ²	² (Nominal)	0.100 BSC ²	(Nominal)	2.540 BSC ²	² (Nominal)
eA	0.300 BSC ²	(Nominal)	7.620 BSC ²	(Nominal)	0.600 BSC ²	(Nominal)	15.240 BSC	² (Nominal)
eB		0.430	-	10.922	-	0.700	· _	17.780
L	0.115	0.150	2.921	3.810	0.115	0.200	2.921	5.080

Length of 300 mil Packages

Package Dim Type D		8-pin DIP		14-pin DIP		16-pin DIP		24-pin DIP	
		Min	Max	Min	Max	Min	Max	Min	Max
Full Lead	Inch	-	-	0.735	0.775	0.780	0.800	1.230	1.280
	mm	-	_	18.669	19.685	19.812	20.320	31.242	32.512
1/2 Lead	Inch	0.355	0.400	_		0.735	0.775	1.160	1.195
	mm	9.017	10.160		-	18.669	19.685	29.464	30.353

Length of 600 mil Packages

Dim	28-pi	n DIP	40-pin DIP		
D	Min	Min Max		Max	
Inch	1.380	1.565	1.980	2.095	
mm	35.052	39.751	50.292	53.213	


NOTES:

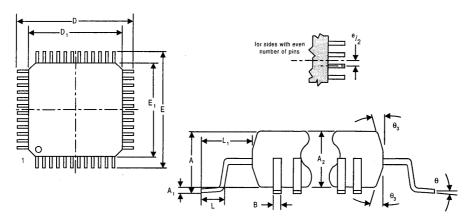
1. b3 is for 1/2 lead only

2. BSC — Basic Spacing between Centers

14

Package Outlines and Ordering Information

Plastic Leaded Chip Carrier (28-pin PLCC; 44-pin PLCC; 68-pin PLCC)

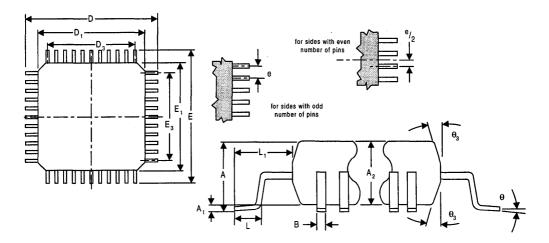

Plastic Leaded Chip Carriers

	Inc	hes	Millin	neters
Dim	Min	Max	Min	Max
Α	0.165	0.180	4.191	4.572
A1	0.090	0.120	2.286	3.048
A2	0.062	0.083	1.575	2.108
В	0.050		1.270	-
С	0.026	0.032	0.660	0.813
D	See tab	le below	See tab	le below
Dı	See table below		See tab	le below
F	0.013	0.021	0.330	0.533

Outside Package Size (Dimensions D and D1)

	1	28-pin PLCC				44-pin PLCC				68-pi	n PLCC	
	In	ch	Millir	neter	In	ch	Millir	neter	ln	ch	Millir	neter
Dim	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
D	0.485	0.495	12.319	12.573	0.685	0.695	17.399	17.653	0.985	0.995	25.019	25.273
D ₁	0.450	0.456	11.430	11.582	0.650	0.656	16.510	16.662	0.950	0.958	24.130	24.333

Quad Flat Pack (32-pin LQFP)


32-Pin Quad Flat Pack (LQFP)

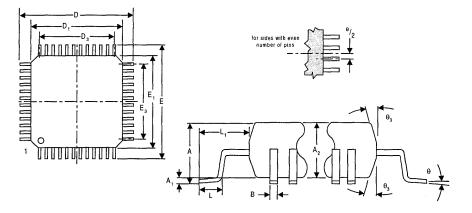
	I	Villimeter	S			
Dim	Min Typ. Max					
Α		-	1.60			
A ₁	0.05	0.10	0.15			
A ₂	1.35	1.40	1.45			
В	0.30	0.37	0.45			
D		9.00 bsc				
D ₁		7.00 BSC				
E		9.00 BSC				
Eí		7.00 BSC				
e		0.80 bsc				
L	0.45	0.60	0.75			
L	1.00 REF					
θ3	11° – 13°					
θ	0 °		7 °			

NOTE:

1. BSC — Basic Spacing between Centers

14

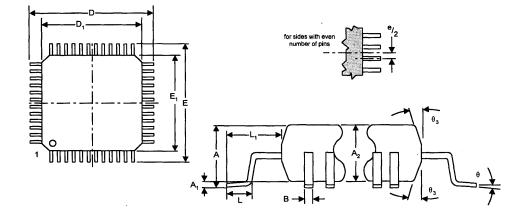
Plastic Quad Flat Pack (44-pin QFP)


44-Pin Plastic Quad Flat Packs

	Inc	hes	Millim	neters	
Dim	Min	Max	Min	Мах	
Α	-	0.096	-	2.45	
A ₁	0.010	-	0.25	-	
A ₂	0.077	0.083	1.95	2.10	
В	0.012	0.018	0.30	0.45	
D	0.510	0.530	12.95	13.45	
D ₁	0.390	0.398	9.90	10.10	
D ₃	0.315 bsc ¹	(Nominal)	8.00 BSC ¹	8.00 BSC ¹ (Nominal)	
Е	0.510	0.530	12.95	13.45	
E ₁	0.390	0.398	9.90	10.10	
E ₃	0.315 BSC ¹	(Nominal)	8.00 BSC ¹	(Nominal)	
e	0.031 bsc ¹	(Nominal)	0.80 bsc ¹	(Nominal)	
L	0.029	0.041	0.73	1.03	
L	0.063 REF	(Nominal)	1.60 REF	(Nominal)	
θ3	5°	16°	5°	16°	
θ	0°	7°	0°	7°	
NOTE					

NOTE:

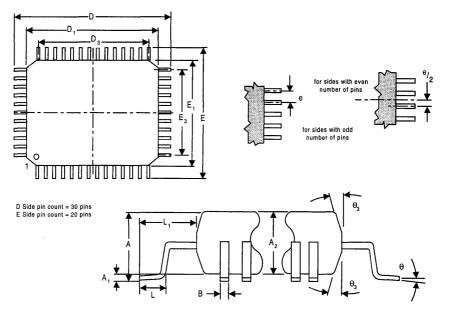
1. BSC - Basic Spacing between Centers


Quad Flat Pack (64-pin QFP)

64-Pin Quad Flat Pack (QFP)

	Inc	hes	Millin	neters	
Dim	Min	Max	Min	Max	
Α		0.130	-	3.30	
A ₁	0.000	0.010	0.00	0.25	
A ₂	0.100	0.120	2.55	3.05	
b	0.012	0.018	0.30	0.45	
D	0.695	0.715	17.65	18.15	
D ₁	0.549	0.553	13.95	14.05	
D ₃	0.472	2 REF	12.00 REF		
Е	0.695	0.715	17.65	18.15	
E ₁	0.549	0.553	13.95	14.05	
E ₃	0.472	2 REF	12.00) ref	
e	0.031	BSC	0.80	BSC	
L	0.029	0.041	0.73	1.03	
L	0.077	7 REF	1.95	REF	
θ3	5 °	16 °	5 °	16 °	
θ	0 °	7 °	0 °	7 °	
NOT	Έ:				

1. BSC --- Basic Spacing between Centers

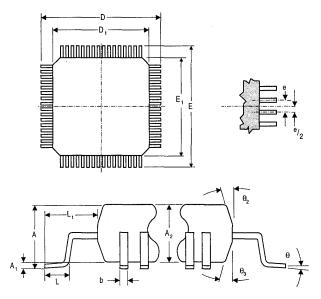

Thin Quad Flat Pack (64-pin LQFP)

64-pin	Thin	Quad	Flat	Pack	(LQFP)
--------	------	------	------	------	--------

	Inches		Millin	neters	
Dim	Min	Max	Min	Max	
Α		.063	-	1.60	
A ₁	.002	.006	0.05	0.15	
A ₂	.053	.057	1.35	1.45	
b	.007	.011	0.17	0.27	
D	0.472 BSC ¹ 12.00		BSC ¹		
D ₁	0.394 BSC ¹		10.00 BSC ¹		
Е	0.472	2 BSC ¹	12.00) BSC ¹	
E ₁	0.394 BSC ¹		10.00) BSC ¹	
е	0.020 BSC ¹		0.50	BSC ¹	
L	0.018	0.030	0.45	0.75	
L ₁	0.039 REF		1.00) REF	
θ3	11°	13°	11° 13°		
θ	<u>0</u> °	7°	0°	7°	
NOTE:					

1. BSC — Basic Spacing between Centers

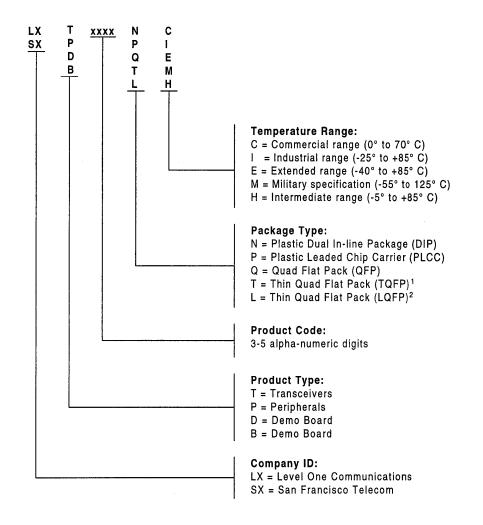
Plastic Quad Flat Pack (100-pin PQFP)



	Inches		Millin	neters
Dim	Min	Max	Min	Мах
A	-	0.134	-	3.40
A ₁	0.010		0.25	-
A ₂	0.100	0.120	2.55	3.05
В	0.009	0.015	0.22	0.38
D	0.931	0.951	23.65	24.15
D	0.783	0.791	19.90	20.10
D ₃	0.74	2 ref	18.85 REF	
Е	0.695	0.715	17.65	18.15
E ₁	0.547	0.555	13.90	14.10
E ₃	0.486 REF		12.3	5 ref
e	0.02	6 bsc	0.65	i BSC
L	0.026	0.037	0.65	0.95
L ₁	0.077 REF		1.95	REF
θ3	5°	16°	5°	16°
θ	0°	7°	0°	7°

100-Pin Plastic Quad Flat Packs (PQFP)

4


Plastic Quad Flat Pack (208-pin PQFP)

208-Pin Plastic Quad Flat Packs (PQFP)

	Millimeters			
Dim	Min	Max		
Α	-	4.10		
A1	0.25	-		
A2	3.20	3.60		
b	0.17	0.27		
D	30.60 BASIC			
D ₁	28.00	BASIC		
Е	30.60 BASIC			
E ₁	28.00	BASIC		
e	.50 H	BASIC		
L	0.50	0.75		
L	1.30) REF		
·θ	0° 7°			
θ_2	5° 16°			
θ3	5°	16°		

ORDERING INFORMATION

Notes:

- 1. TQFP has a 1 mm body thickness.
- 2. LQFP has a 1.4 mm body thickness.

NOTES

Name	Title:	
Company		
Address		
City; State; Zip		·····
Phone	Fax	

Number/Title	Product / Description	Pages	Pub. Date	Quantity
Data Sheets — Sho	rt Haul T1/E1 Transceivers			
LXT300Z/301Z	Advanced Single Transceiver with Receive JA	24	4/96	
LXT304A	Low Power Single Transceiver with Receive JA	20	4/96	
.XT305A	Low Power Single Transceiver with Transmit JA	20	4/96	
LXT307	Low Power E1 Integrated Short Haul Transceiver	24	4/96	
LXT325	Quad Receiver with LOS Output	12	4/96	
LXT332	Dual Transceiver with Crystal-less JA	36	4/97	
LXT331	Dual T1/E1 Line Interface Unit	20	7/97	
LXT334	Quad Short Haul Transceiver w/Clock Recovery	28	5/97	
LXT335	Quad Short Haul PCM Analog Interface	20	6/97	
LXT350/351	Integrated T1/E1 Transceiver with Crystal-less JA	48	7/96	
LXT360/361	Integrated T1/E1 Long Haul/Short Haul Xcvr	52	8/96	
Data Sheets — T1/I	E1 Long Haul Transceivers			- English and the
LXT310	Single T1 Transceiver with Selectable JA	20	4/96	
LXT317	DECT Twisted Pair LIU Transceiver	20	4/96	
LXT318	Single E1 Transceiver with Selectable JA	24	4/96	
LXT360/361	Integrated T1/E1 Long Haul/Short Haul Xcvr	52	8/96	
Data Sheets – Digit	al Subscriber Line (DSL) Products		· · · · · · · · · · · · · · · · · · ·	a ha ha ha h
SK70704/70706	784 kbps HDSL Data Pump Chip Set	40	9/96	
SK70704/70707	1168 kbps HDSL Data Pump Chip Set	40	9/96	
SK70720/70721	Multi-Rate DSL Data Pump Chip Set	44	1/97	
Data Sheets — T1/I	E1 Long Haul/Short Haul Transceivers			
LXT360/361	Integrated T1/E1 Long Haul/Short Haul Xcvr	52	8/96	1.1.1.1.1.1.1
Data Sheets — T1/I	E1 Repeaters			
LXT312/315	Low Power T1 PCM Repeaters	12	4/96	
LXT313/316	Low Power E1 PCM Repeaters	12	4/96	
Data Sheets — T1/I	E1 Clock Adapters			e car
LXP600A/2/4	1.544 - 2.048 - 4.096 MHz Adapter	12	4/96	Τ
LXP610	Multi-Rate Selectable Adapter	16	4/96	

Final Field States and States and

Literature Request Form

August 4, 1997

Name	Title:	
Company		
Address		
City; State; Zip		
Phone	Fax	

Number/Title	Product / Description	Pages	Pub. Date	Quantity
Data Sheets — Wid	le Area Network Products		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
LXT400	Switched 56 / DDS 4-Wire Transceiver	20	4/96	
LXT441	Switched 56 / DDS Integrated DSU / CSU	36	1/97	
Data Sheets — Ethe	ernet PHY Products			
LXT901A/907A	Universal 10BASE-T Ethernet Interface	.32	4/96	
LXT902	10BASE-T Ethernet Media Attachment Unit	16	4/96	
LXT904	10BASE-T Ethernet Media Attachment Unit	20	4/96	
LXT905	10BASE-T Transceiver	28	4/97	
	Application Update - MAC Interface	4	4/97	
LXT906	Ethernet Twisted-pair to Coax Adapter	12	4/96	
LXT908	3.3v Universal 10-BASE-T Ethernet Adapter	36	5/97	
LXT944	Quad 10BASE-T Transceiver	28	4/97	
LXT970	Fast Ethernet Transceiver	60	5/97	·
Data Sheeets - Ehte	ernet Repeaters		· · · · · · · · ·	
LXT914	Flexible Quad Hub Repeater	32	4/96	
LXT915	Simple Quad Hub Repeater	24	4/97	
LXT916/917	10BASE-T Repeaters for advanced management	44	12/96	
LXT918	Multi-Segment Hub Repeater	48	5/97	
Data Sheeets — Sa	n Francisco Telecom Products			
SXT6234	E-Rate Multiplexer	20	4/96	
Application Notes				
AN21	LXT304A - D4 Channel Bank Applications	4	4/96	
AN23	LXT902/906 - Line Impedance Matching	2	5/96	
AN25	LXT30x/310 - Long-Haul/Short-Haul Commonality	4	4/96	
AN26a	LXT310 - Circuit Protection	4	4/96	
AN29	LXT3xx - Mitel Framer Interface Applications	4	4/96	
AN31a	LXT318 - Migration to Single-chip Long Haul E1 Aps	4	4/96	1
AN32	LXT3xx - T1 Jitter Measurement	8	4/96	
AN34	LXT30x/318 - Migration from Short to Long-Haul E1	4	4/96	

Fax or Mail Literature Requests to: Phone: 916/854-1155 Fax: 916/854-1192 web site: http://www.level1.com

August 4, 1997

Name	Title:	
Company		
Address		
City; State; Zip		
Phone	Fax	· · · · · · · · · · · · · · · · · · ·

lumber/Title	Product / Description	Pages	Pub. Date	Quantity
pplication Notes ((continued)			·
.N35	LXT901/907 - 68EN360 Controller Applications	4	4/96	
.N36	LXT318 - Long-Haul E1 Line Interface Design	2	4/96	
N38	LXT332 - Migration from Siemens PEB2236	8	4/96	
N39	LXT332 - Migration from AT&T 7290	8	4/96	
N41	Short-Haul Devices - Compliance w/ITU G.775 LOS	4	4/96	
N42	LXT360/310 - Crystal-less T1 Long haul Solutions	8	4/96	
N44	E1 Devices - Compliance w/ETSI TBR-12/13	4	4/96	
N45	LXT914 - 68EN360 Controller Applications	8	4/96	
N46	LXT300/300Z/304A/305A - Crystal Layout Guide	2	4/96	
N47	LXT360/361 - Line Protection Circuitry Guide	4	4/96	
N48	SCR Latch-up - Prevent Latch-up in Transceivers	4	4/96	
N50	LXT318/360- Crystal-less T1 Long haul Solutions	8	4/96	
N51	LXT901/904/905/907/944 - MAC Interface Design Guide for Ethernet Transceivers to Intel Controllers	4	4/96	
N52	Migration from CS61574A/CS61575 to LXT350 Guide	8	8/96	
N54	Migration from LXT324 to LXT325 Design Guide	2	8/96	
N55	Universal 120/100/75 Ohm Transceiver Termination for the LXT35x/36x	4	8/96	· ·
N56	LXT332 - Designing an ITU G.742 Compliant PDH Multi- plexer	7	4/97	
N57	LXT360 - TBR12/13 Compliant Design Solutions	7	4/97	
N9501	SXT6234 -16 E1/E3 Mux/Demux Applications	12	4/96	
N9601	SXT6234 -4 data channels E-Rate Multiplexer	4	12/96	
N60	LXT905 Application Update	4	4/97	

Fax or Mail Literature Requests to: Phone: 916/854-1155 Fax: 916/854-1192 web site: http://www.level1.com

Literature Request Form August 4, 1997

Name	Title:	
Company		
Address		
City; State; Zip		
Phone	Fax	

Number/Title	Product / Description	Pages	Pub. Date	Quantity
Design Notes			A	
DN3	LXT332 Reference Guide	7	4/97	
T1/E1 Demo Board	Evaluation Kit User Guides			
LDB300	For all single channel LXT3xx family transceivers	12	5/96	
LDB332	For LXT332 Dual Line Interface	12	5/96	
LDB350/360	For LXT350/360 - Demonstration/Evaluation Kit	24	9/96	
LDB70206	HDSL Evaluation Kit for 784 kbps Applications	13	4/96	
LDB70207	HDSL Evaluation Kit for 1168 kbps Applications	13	4/96	
LXDMDSL	MDSL Evaluation Kit for Multi-Rate Applications	20	5/97	
LXD334	Evaluation Board for Quad E1 Applications	20	6/97	
SDB6234	For SXT6234 E-Rate Multiplexer	16	5/96	
Quality and Reliabili	ity			
Reliability	Periodic report covers all Level One products	64	4/97	
Qualification	Individual reports - Order by product/package type	various	various	
General Information	3			
Fact Sheet	Corporate Backgrounder	4	4/96	
Sales Locations	Level One Sales, Distributor and Corporate offices	4	4/96	
Product Reference	Short Form Catalogue of Level One Products	52	4/97	
1996 Data Book	Complete Product Listing	800	7/96	
1996 Data Book CD-ROM	Complete Product Listing on CD for Windows 3.1/95, Macintosh, Sun, HP, Silicon Graphics		9/96	

= Indicates new product Fax or Mail Literature Requests to: Phone: 916/854-1155 Fax: 916/854-1192 web site: http://www.level1.com

Sales Offices

1997 Communications Data Book

Corporate Headquarters

9750 Goethe Road Sacramento, California 95827 Telephone: (916) 855-5000 Fax: (916) 854-1102 Internet-Homepage: www.level1.com

North American Offices

Western Area Headquarters

3375 Scott Blvd., Suite 338 Santa Clara, California 95054 Telephone: (408) 496-1950 Fax: (408) 496-1955

South Central Regional Office

2340 E. Trinity Mills Road, Ste. 306 Carrollton, Texas 75006 Telephone: (972) 418-2956 Fax: (972) 418-2985

South Western Regional Office

28203 Cabot Road, Suite 300 Laguna Niguel, California 92677 Telephone: (714) 365-5655 Fax: (714) 365-5653

Worldwide Business Development Office

115 Route 46, Suite F1000 Mountain Lakes, New Jersey 07846 Telephone: (201) 316-6088 Fax: (201) 316-8173

North Central Regional Office

One Pierce Place, Suite 500E Itasca, Illinois 60143 Telephone: (630) 250-6044 Fax: (630) 250-6045 Eastern Area Headquarters & Northeastern Regional Office 234 Littleton Road, Unit 1A Westford, MA 01886 Telephone: (978) 692-1193

Southeastern Regional Office

Fax: (978) 692-1244

3191 Coral Way, Suite 601 Miami, Florida 33145 Telephone: (305) 444-2966 Fax: (305) 444-4650

San Francisco Telecom

201 Mission Street San Francisco, CA 94105 Telephone: (415) 896-2534 Fax: (415) 536-2101

Level One New Jersey Design Center 1116 Campus Drive West

Morganville, New Jersey 07751 Telephone: (908) 972-0707 Fax: (908) 972-3232

International Offices

European Headquarters

Les Bureaux de Sevres 2 rue Troyon 92316 Sevres Cedex France Telephone: +33 1 41 14 8315 Fax: +33 1 45 34 3787

Northern Europe Regional Office

Torshamnsgatan 35 164 40 Kista/Stockholm, Sweden Telephone: +46 8 750 39 80 Fax: +46 8 750 39 82

Central Europe Regional Office

AUGUST 1997

Forum House, Stirling Road Chichester, West Sussex PO19 2EN United Kingdom Telephone: +44 1243 538822 Fax: +44 1243 773144

Southern Europe Regional Office

Les Bureaux de Sevres 2 rue Troyon 92316 Sevres Cedex France Telephone: +33 1 41 14 8315 Fax: +33 1 45 34 3787

Asia / Pacific Area Headquarters 101 Thomson Road

United Square #08-01 Singapore 307591 Telephone: +65 353-6722 Fax: +65 353-6711

Northern Asia / Pacific

Regional Office Nishi-Shinjuku Mizuma Building 8F 3-3-13, Nishi-Shinjuku, Shinjuku-Ku Tokyo, 160 Japan Telephone: +81 3 3347-8630 Fax: +81 48 855-0470

Central Asia/Pacific Regional Office 6F, No. 126 Min-Chu W. Road Taipei, Taiwan Telephone: +886 2 586 8727 Fax: +886 2 586 0746

Latin / South America

9750 Goethe Road Sacramento, California USA 95827 Telephone: (916) 854-4326 Fax: (916) 854-1109 Internet-Homepage: www.level1.com

Distributors (USA)

Alabama

Sager Electronics 7525 Memorial Parkway South, Ste. E Huntsville, AL 35802 Telephone: (800) 724-3780 Fax: (800) 268-8001

Wyle Electronics 7800 Governers Drive West Tower Bldg., 2nd Floor Huntsville, AL 35806 Telephone: (205) 830-1119 Fax: (205) 830-1520

Marshall Industries 3313 Memorial Parkway South Huntsville, AL 35801 Telephone: (205) 881-9235 Fax: (205) 881-1490 Email: dthomas@marshall.com

Arizona

Wyle Electronics 4602 East University, #100 Phoenix, AZ 85034 Telephone: (602) 804-7000 Fax: (602) 804-0390

Marshall Industries 9831 S. 51st Street, Suite C107-109 Phoenix, AZ 85044 Telephone: (602) 496-0290 Fax: (602) 893-9029 Email: mdaniels@marshall.com

Sager Electronics 9630 North 25th Ave., Ste. 118 Phoenix, AZ 85021 Telephone: (800) 724-3780 Fax: (800) 268-8001 Email: sagerinfo@sager.com

California

Sager Electronics 2355 Main Street, Suite 240 Irvine, CA 92614 Telephone: (800) 724-3780 Direct Tel: (714) 475-1280 Fax: (714) 475-1290 Email: sagerinfo@sager.com Sager Electronics 6540 Lusk Blvd., Suite C139 San Diego, CA 92121 Telephone: (800) 724-3780 Fax: (619) 646-0486 Email: sagerinfo@sager.com

Sager Electronics 226 Airport Parkway, Suite 595 San Jose, CA 95110 Telephone: (800) 724-3780 Direct Tel: (408) 487-0510 Fax: (408) 487-0520 Email: sagerinfo@sager.com

Wyle Electronics 29A Technology Drive Irvine, CA 92718 Telephone: (714) 789-9953 Fax: (714) 789-9960

Wyle Electronics 26010 Mureau Road, #150 Calabasas, CA 91302 Telephone: (818) 880-9000 Fax: (818) 880-5510

Wyle Electronics 2951 Sunrise Blvd., #175 Rancho Cordova, CA 5742 Telephone: (916) 638-5282 Fax: (916) 638-1491

Wyle Electronics 6165 Greenwich Drive, #110 San Diego, CA 92122 Telephone: (619) 558-6600 Fax: (619) 558-2210

Wyle Electronics 3000 Bowers Avenue Santa Clara, CA 95051 Telephone: (408) 727-2500 Fax: (408) 727-5896

Marshall Industries 336 Los Coches Street Milpitas, CA 95035 Telephone: (408) 942-4600 Fax: (408) 262-1224 Email: lgammage@marshall.com Marshall Industries One Morgan Irvine, CA 92718 Telephone: (714) 458-5301 Fax: (714) 581-5255 Email: jmccabe@marshall.com

Marshall Industries 558 St. Charles Drive, Suite 200 Thousand Oaks, CA 91360-3903 Telephone: (805) 370-5100 Fax: (805) 370-1988 tteaters@marshall.com

Marshall Industries 2941 Sunrise Blvd., Suite 130 Rancho Cordova, CA 95742 Telephone: (916) 635-9700 Fax: (916) 635-6044 Email: crobinso@marshall.com

Marshall Industries 5961 Kearny Villa Road San Diego, CA 92123 Telephone: (619) 627-4140 Fax: (619) 627-4163 Mexico Info: (619) 627-4151 Email: tkilgore@marshall.com

Colorado

Sager Electronics 1300 South Potomac Street, Ste. 104 Aurora, CO 80012 Telephone: (800) 724-3780 Direct Tel: (303) 695-8833 Fax: (303) 695-9183 Email: sagerinfo@sager.com

Wyle Electronics 451 East 124th Street Thorton, CO 80241 Telephone: (303) 457-9953 Fax: (303) 457-4831

Marshall Industries 12351 North Grant Thornton, CO 80241 Telephone: (303) 451-8383 Fax: (303) 457-2899 Email: jherman@marshall.com

Distributors (USA) cont.

Connecticut

Sager Electronics 900 Northrop Road, Suite G Wallingford, CT 06492 Telephone: (800) 724-3780 Direct Tel: (203) 265-4600 Fax: (203) 265-6865 Email: sagerinfo@sager.com

Wyle Electronics 1062 Barnes Rd, #300 Wallingford, CT 06492 Telephone: (203) 269-8077 Fax: (203) 269-7507

Marshall Industries 20 Sterling Drive Barnes Industrial Park North Wallingford, CT 06492-0220 Telephone: (203) 265-3822 Fax: (203) 284-9285 Email: Imelilli@marshall.com

Florida

Sager Electronics 7699 Commerce Center Drive Orlando, FL 32819 Telephone: (800) 724-3780 Direct Tel: (407) 354-1130 Fax: (407) 354-1137 Email: sagerinfo@sager.com

Wyle Electronics 700 W. Hillsboro Blvd. Bldg. 1, #101 Deerfield Beach, FL 33441 Telephone: (954) 420-0500 Fax: (954) 428-2134

Wyle Electronics 1000 112th Circle N., #800 St. Petersburg, FL 33716 Telephone: (813) 576-3004 Fax: (813) 579-8720

Marshall Industries 2700 W. Cypress Creek Rd., #D 114 Ft. Lauderdale, FL 33309 Telephone: (954) 977-4880 Fax: (954) 977-4887 Email: tclark@marshall.com Marshall Industries 380 S. Northlake Blvd., Suite 1024 Altamonte Springs, FL 32701 Telephone: (407) 767-8585 Fax: (407) 767-8676 Email: jdepierr@marshall.com

Marshall Industries 2840 Scherer Drive, Suite 410 St. Petersburg, FL 33716 Telephone: (813) 573-1399 Fax: (813) 573-0069 Email: jdepierr@marshalll.com

Georgia

Sager Electronics 3000 Northwoods Parkway #170 Norcross, GA 30071 Telephone: (800) 724-3780 Fax: (800) 268-8001 Email: sagerinfo@sager.com

Wyle Electronics 6025 The Corners Parkway #111 Norcross, GA 30092 Telephone: (770) 441-9045 Fax: (770) 441-9086

Marshall Industries 4500 River Green Pkwy., Suite 100 Duluth, GA 30096 Telephone: (770) 814-9393 Fax: (770) 814-9619 Email: jmcnees@marshall.com

Illinois

Sager Electronics 1105 Remington Road Schaumburg, IL 60173 Telephone: (800) 724-3780 Direct Tel: (847) 882-9790 Fax: (847) 882-9776 Email: sagerinfo@sager.com

Wyle Electronics 2055Army Trail Rd, #140 Addison, IL 60101 Telephone: (630) 620-0969 Fax: (630) 620-1610

Marshall Industries 50 East Commerce Drive, Unit 1 Schaumburg, IL 60173 Telephone: (847) 490-0155 Fax: (847) 490-0569 Email: gbidus@marshall.com

Indiana

Sager Electronics Telephone: (800) 724-3780

Marshall Industries 5933 Lakeside Blvd. Indianapolis, IN 46278 Telephone: (317) 338-909 Fax (317) 338-9073 Email: mfaucett@marshall.com

Kansas

Sager Electronics 10540 Marty, Suite 200 Overland Park, KS 66212 Telephone: (800) 724-3780 Fax: (800) 268-8001 Email: sagerinfo@sager.com

Marshall Industries 10413 W. 84th Terrace Pine Ridge Business Park Lenexa, KS 66214 Telephone: (913) 492-3121 Fax: (913) 492-6205 Email: rrausin@marshall.com

Kentucky

Sager Electronics Telephone: (800) 724-3780

Maine

Sager Electronics Telephone: (800) 724-3780

Maryland

Sager Electronics 9221 Rumsey Road, Suite 1 Columbia, MD 21045 Telephone: (800) 724-3780 Direct Tel: (410) 995-4900 Fax: (410) 381-9380 Email: sagerinfo@sager.com

Wyle Electronics 7180 Columbia Gateway Dr. #100 Columbia, MD 21046 Telephone : (410) 312-4844 Fax: (410) 312-4953

Marshall Industries 9130 B Guilford Road Columbia, MD 21046 Telephone: (410)-880-3030 Fax: (410) 880-3202 Email: mgreaney@marshall.com

Distributors (USA) cont.

Massachusetts

Sager Electronics 60 Research Road Hingham, MA 02043 Telephone: (800) 724-3780 Direct Tel: (617) 749-6700 Fax: (617) 749-3842 Email: sagerinfo@sager.com

Sager Electronics 100 Burtt Road, Suite 100 Andover, MA 01810 Telephone: (800) 724-3780 Direct Tel: (508) 475-5885 Fax: (508) 475-4568 Email: sagerinfo@sager.com

Wyle Electronics 5 Oak Park Dr. Bedford, MA 01730 Telephone (617) 271-993 Fax: (617) 275-3809

Marshall Industries 33 Upton Drive Wilmington, MA 01887 Telephone: (508) 658-0810 Fax: (508) 657-5931 Fax: (508) 694-1609 Email: gsmith@marshall.com

Michigan

Marshall Industries 31067 Schoolcraft Livonia, MI 48150 Telephone: (313) 525-5850 Fax: (313) 525-5855 Email: rkelly@marshall.com

Minnesota

Sager Electronics 10925 Valley View Rd., Suite 202 Eden Prairie, MN 55344 Telephone: (800) 724-3780 Direct Tel: (612) 941-2299 Fax: (612) 941-7799 Email: sagerinfo@sager.com Wyle Electronics 1325 East 79th Street, #1 Bloomington, MN 55425 Telephone: (612) 853-2280 Fax: (612) 853-2298

Marshall Industries

14800 28th Ave. North, Suite 175 Plymouth, MN 55447 Telephone: (612) 559-2211 Fax: (612) 559-8321 Email: rnelson@marshall.com

Missouri

Sager Electronics 1001 Craig Road, Suite 330 St. Louis, MO 63146 Telephone: (800) 724-3780 Fax: (800) 268-8001 Email: sagerinfo@sager.com

Nebraska

Sager Electronics Telephone: (800) 724-3780

Nevada

Marshall Industries 4 Sunset Way, Bldg. C Henderson, NV 89014 Telephone: (702) 436-1800 Fax: (800) 950-5679 Fax: (702) 436-1860 Email: jschlich@marshall.com

New Hampshire

Sager Electronics Telephone: (800) 724-3780

New Jersey

Wyle Electronics 20 Chapin Road, #1013 Pine Brook, NJ 07058 Telephone: (201) 882-8358 Fax: (201) 882-9109

Wyle Electronics 815 East Gate Drive Mount Laurel, NJ 08054 Telephone: (609) 439-9110 Fax: (609) 439-9020 Marshall Industries 101 Fairfield Road Fairfield, NJ 07006 Telephone: (201) 882-0320 Fax: (201) 882-0095 Email: mnolan@marshall.com

New York

Sager Electronics 150 Motor Parkway, Ste. 100 Hauppauge, NY 11788 Telephone: (800) 724-3780 Direct Tel: (516) 348-1300 Fax: (516) 348-1006 Email: sagerinfo@sager.com

Sager Electronics 1200-C Scottsville Road, Suite 105 Rochester, NY 14624 Telephone: (800) 724-3780 Direct Tel: (716) 436-3120 Fax: (716) 436-3138 Email: sagerinfo@sager.com

Wyle Electronics 330 Motor Parkway, #108 Hauppauge, NY 11788 Telephone: (516) 231-7850 Fax: (516) 231-8079

Wyle Electronics 395 Summit Point Drive, #1 Henrietta, NY 14467 Telephone: (716) 334-5970 Fax: (716) 334-6607

Marshall Industries 3505 Veterans Memorial Hwy., #L Ronkonkoma, NY 11779 Telephone: (516) 737-9300 Fax: (516) 737-9580 Email: tteaters@marshall.com

Marshall Industries 100 Marshall Drive Endicott, NY 13760 Telephone: (607) 785-2345 Fax: (607) 785-5546 Email: jnania@marshall.com

Marshall Industries 1250 Scottsville Rd. Rochester NY 14624 Telephone: (716) 235-7620 Fax: (716) 235-0052 Email: jnania@marshall.com

Distributors (USA) cont.

North Carolina

Sager Electronics 3200 Atlantic Ave., Suite 101 Raleigh, NC 27604-1640 Telephone: (800) 724-3780 Direct Tel: (919) 850-9550 Fax: (919) 850-9559 Email: sagerinfo@sager.com

Wyle Electronics 2200 Gateway Center Blvd., #208 Morrisville, NC 27560 Telephone: (919) 469-1502 Fax: (919) 469-0424

Marshall Industries 5224 Greens Dairy Road Raleigh, NC 27604 Telephone: (919) 878-9882 Fax: (919) 872-2431 Email: tclark@marshall.com

Ohio

Sager Electronics 3601 Green Road, Suite 103 Beachwood, OH 44122 Telephone: (800) 724-3780 Direct Tel: (216) 831-4738 Fax: (216) 831-5583 Email: sagerinfo@sager.com

Sager Electronics 7494 Webster Street Dayton, OH 45414 Telephone: (800) 724-3780 Direct Tel: (937) 898-5555 Fax: (937) 898-4455 Email: sagerinfo@sager.com

Wyle Electronics 30600 Aurora Rd, Bldg. B #180 Solon, OH 44139 Telephone: (216) 248-9996 Fax: (216) 248-5490

Wyle Electronics 3494 Newmark Drive Miamisburg, OH 45342 Telephone: (937) 436-9953 Fax: (937) 436-1780 Marshall Industries 30700 Bainbridge Road, Unit A Solon, OH 44139 Telephone: (216) 248-1788 Fax: (216) 248-2312 Email: bwohl@marshall.com

Marshall Industries 3520 Park Center Drive Dayton, OH 45414 Telephone: (937) 705-0600 Fax: (937) 898-9363 Email: fcoy@marshall.com Email: pgillesp@marshall.com

Oregon

Wyle Electronics 10300 S.W. Nimbus Ave., Bldg. P, B Portland, OR 97223 Telephone: (503) 598-9953 Fax: (503) 684-6620

Marshall Industries 9705 S.W. Gemini Drive Beaverton, OR 97008 Telephone: (503) 644-5050 Fax: (503) 646-8256 Email: jcarabba@marshall.com

Pennsylvania (Eastern)

Sager Electronics 2270 Cabot Boulevard West, #2 Langhorne, PA 19047 Telephone: (800) 724-3780 Direct Tel: (215) 750-7778 Fax: (215) 750-8327 Email: sagerinfo@sager.com

Pennsylvania (Western)

Sager Electronics 1000 Gamma Dr., RIDC Plaza Suite 517 Pittsburgh, PA 15238 Telephone: (800) 724-3780 Direct Tel: (412) 968-0601 Fax: (412) 968-0801 Email: sagerinfo@sager.com

Marshall Industries 158 Gaither Drive, Suite 100 Mt. Laurel, NJ 08054 Telephone: (609) 234-9100 Fax: (609) 778-1819 Email: mnolan@marshall.com Rhode Island Sager Electronics Telephone: (800) 724-3780

Texas

Sager Electronics 1122 Commerce Drive Richardson, TX 75081 Telephone: (800) 724-3780 Direct Tel: (972) 783-1133 Fax: (972) 783-4240 Email: sagerinfo@sager.com

Sager Electronics 15915 Katy Freeway, Suite 400 Houston, TX 77094 Telephone: (800) 724-3780 Fax: (800) 268-8001 Email: sagerinfo@sager.com

Sager Electronics 11782 Jollyville Road, Suite 107 Austin, TX 78759 Telephone: (800) 724-3780 Fax: (800) 268-8001 Email: sagerinfo@sager.com

Wyle Electronics 9208 Waterford Centre Blvd. #150 Austin, TX 78758 Telephone: (512) 833-9953 Fax: (512) 873-0674

Wyle Electronics 1810 N. Greenville Ave. Richardson, TX 75081 Telephone: (972) 235-9953 Fax: (972) 644-5064

Wyle Electronics 2901 Wilcrest, Suite 120 Houston, TX 77042 Telephone: (713) 784-9953 Fax: (713) 953-9953

Marshall Industries 8504 Cross Park Drive Austin, TX 78754 Telephone: (512) 837-1991 Fax: (512) 832-9810 Email: aharriso@marshall.com

Distributors (USA) cont;

Marshall Industries 1551 N.Glenville Drive Richardson, TX 75081 Telephone: (972) 705-0600 Fax: (972)705-0675 Email: kbowers@marshall.com

Marshall Industries 10681 Haddington Drive, #160 Houston, TX 77043 Telephone: (713) 467-1666 Fax: (713) 467-9805 Email: dsharp@marshall.com

Utah

Wyle Electronics 170 West Election Drive, #100 Draper, UT 84020 Telephone: (801) 523-2335 Telephone: (800) 414-4144 Fax: (801) 523-8557

Wyle Electronics 1325 West 2200 South, Suite E West Valley City, UT 84119 Telephone: (801) 974-9953 Fax: (801) 972-2524

Marshall Industries 2355 South 1070 W., Suite D Salt Lake City, UT 84119 Telephone: (801) 973-2288 Fax: (801) 973-2296 Email: jherman@marshall.com

Vermont

Sager Electronics Telephone: (800) 724-3780

Washington

Sager Electronics 1611-116th Ave. N.E., Suite 216 Bellevue, WA 98004 Telephone: (800) 724-3780 Fax: (800) 268-8001 Email: sagerinfo@sager.com

Wyle Electronics 15385 N.E. 90th Street Redmond, WA 98052 Telephone: (206) 881-1150 Fax: (206) 881-1567

Marshall Industries 11715 N. Creek Pkwy. South, Ste.112 Bothell, WA 98011 Telephone: (425) 486-5747 Fax: (425) 486-6964 Email: vkiteley@marshall.com

Wisconsin

Sager Electronics 1025 West Glen Oaks Lane, Ste. 104A Mequon, WI 53092 Telephone: (800) 724-3780 Fax: (800) 268-8001

Email: sagerinfo@sager.com Wyle Electronics 150 North Patrick, Bldg. 7, #150 Brookfield, WI 53045 Telephone: (414) 879-0434 Fax: (414) 879-0474

Marshall Industries Crossroads Corporate Center 1 20900 Swenson Drive, Suite 150 Waukesha, WI 53186 Telephone: (414) 797-8400 Fax: (414) 797-8270 Email: mmcguire@marshall.com

Distributors (Canada)

Sager Electronics 6305 Northam Drive, Unit 9 Mississauga, Ontario L4V 1W9 Telephone: (800) 724-3780 Direct Tel: (905) 677-6124 Fax: (905) 677-6127

Marshall Industries 6815 8th Street NE, #152 Calgary Alberta, T2E 7H7 Telephone: (403) 274-3717 Fax: (403) 274-9157 Email: raarhus@marshall.com

Marshall Industries 148 Brunswick Blvd. Point Claire, Quebec H9R 5P9 Telephone: (514) 694-8142 Fax: (514) 694-6989 Email: dlafranc@marshall.com

Marshall Industries 6285 Northam Drive, Suite 112 Mississauga, Ontario L4V 1X5 Telephone: (905) 612-1771 Fax: (905) 612-1988 Email: tfletche@marshall.com

Marshall Industries 4170 Still Creek Dr., Suite 200 Burnaby, BC V5C 6C6 Telephone: (604) 294--6506 Fax: (604) 294-6520 Email: jherman@marshall.com

Sales Representatives (USA)

Alabama

M Squared, Inc. 4950 Corporate Drive, Suite 105B Huntsville, Alabama 35805 Telephone: (205) 830-0498 Fax: (205) 837-7049

Arizona

Oasis Sales, Inc. 301 E. Bethany Home Rd., #A135 Phoenix, Arizona 85012 Telephone: (602) 277-2714 Fax: (602) 263-9352

Arkansas

Mil-Rep Associates, Inc. Telephone: (972) 644-6731 Fax: (972)644-8161

California

First Rep 143 Triunfo Canyon Rd., #222 Westlake Village, California 91361 Telephone: (805) 373-0887 Fax: (805) 495-1317

California

Mission Technologies, Inc. 16466 Bernardo Center Drive Bldg. B, Suite 188 San Diego, CA 92128 Telephone: (619) 674-6191 Fax: (619) 674-6196

California

Trinity Technologies, Inc. 1261 Oakmead Parkway Sunnyvale, California 94086 Telephone: (408) 733-9000 Fax: (408) 733-9970

Colorado

Thorson Rocky Mountain, Inc. 7108 South Alton Way, Building D Englewood, Colorado 80112 Telephone: (303) 773-6300 Fax: (303) 773-6302

Connecticut

NRG Limited 63 Duka Avenue Fairfield, Connecticut 06430 Telephone: (203) 384-1112 Fax: (203) 335-2127

Delaware

S-J Mid-Atlantic, Inc. Telephone: (609) 866-1234 Fax: (609) 866-8627

District of Columbia

Third Wave Solutions, Inc. Telephone: (410) 290-5990 Fax: (410) 381-5846

Florida

EIR, Inc. 1057 Maitland Center Commons Maitland, Florida 32751 Telephone: (407) 660-9600 Fax: (407) 660-9091 Email: eir.com

Georgia

M Squared, Inc. 3000 Northwoods Pkwy, Suite 110 Norcross, Georgia 30071 Telephone: (770) 447-6124 Fax: (770) 447-0422

Idaho

Thorson Rocky Mountain, Inc. 1937 E.Cypress Point Drive Eagle, Idaho 83616 Telephone: (208) 939-4345 Fax: (208) 939-4107

Illinois

Beta Technology Sales, Inc. 1009 Hawthorn Drive Itasca, Illinois 60143 Telephone: (630) 250-9586 Fax: (630) 250-9592 (Northern Illinois)

Illinois

QDC Industries Telephone: (913) 894-1386 Fax: (913) 894-0726 (Southern Illinois)

Indiana

Carlson Electronic Sales Assoc., Inc. 11405 North Pennsylvania, Suite 109 Carmel, Indiana 46032 Telephone: (317) 575-4888 Fax: (317) 575-4885

Iowa

QDC Industries 9601 W. 103rd Terrace Overland Park, Kansas 66212 Telephone: (913) 894-1386 Fax: (913) 894-0726

Kansas

QDC Industries 9601 W. 103rd Terrace Overland Park, Kansas 66212 Telephone: (913) 894-1386 Fax: (913) 894-0726 (Northern Kansas)

Kansas

QDC Industries 216 Koob Lane Andover, Kansas 67002 Telephone: (316) 733-9756 Fax: (316) 733-8105 (Southern Kansas)

Kentucky

Carlson Electronic Sales Assoc., Inc. Telephone: (317) 575-4888 Fax: (317) 575-4885

Louisiana

Mil-Rep Associates, Inc. Telephone: (972) 644-6731 Fax: (972) 644-8161 (Northern Louisiana)

Louisiana

Mil-Rep Associates, Inc. Telephone: (281) 444-2557 Fax: (281) 444-2751 (Southern Louisiana)

Maine

New Tech Solutions, Inc. Telephone: (617) 229-8888 Fax: (617) 229-1614

Maryland

Third Wave Solutions, Inc. 8335H Guilford Road Columbia, Maryland 21046 Telephone: (410) 290-5990 Fax: (410) 381-5846

Sales Representatives (USA) cont.

Massachusetts

New Tech Solutions, Inc.

1 Van de Graaff Drive, 4th Floor Burlington, Massachusetts 01803 Telephone: (617) 229-8888 Fax: (617) 229-1614

Michigan

Greiner Associates, Inc. 15324 East Jefferson Avenue Grosse Pointe Park, Michigan 48230 Telephone: (313) 499-0188 Fax: (313) 499-0665

Minnesota

Russell and Associates 8030 Cedar Ave. South, Suite 114 Minneapolis, Minnesota 55425 Telephone: (612) 854-1166 Fax: (612) 854-6799

Mississippi

M Squared, Inc. 4950 Corporate Drive, Suite 105B Huntsville, Alabama 35805 Telephone: (205) 830-0498 Fax: (205) 837-7049

Missouri

QDC Industries 9601 W. 103rd Terrace Overland Park, Kansas 66212 Telephone: (913) 894-1386 Fax: (913) 894-0726 (Northern Missouri)

Missouri

QDC Industries 216 Koob Lane Andover, Kansas 67002 Telephone: (316) 733-9756 Fax: (316) 733-8105 (Southern Missouri)

Nebraska

QDC Industries 9601 W. 103rd Terrace Overland Park, Kansas 66212 Telephone: (913) 894-1386 Fax: (913) 894-0726

Nevada

Trinity Technologies, Inc. Telephone: (408) 733-9000 Fax: (408) 733-9970

Nevada

Oasis Sales, Inc. Telephone: (602) 277-2714 Fax: (602) 263-9352 (Las Vegas)

New Hampshire

New Tech Solutions, Inc. Telephone: (617) 229-8888 Fax: (617) 229-1614

New Mexico

Oasis Sales, Inc. Telephone: (602) 277-2714 Fax: (602) 263-9352

New Jersey

S-J Mid-Atlantic, Inc. 131-D Gaither Drive Mount Laurel, New Jersey 08054 Telephone: (609) 866-1234 Fax: (609) 866-8627 (Southern New Jersey)

New Jersey

Parallax Telephone: (516) 351-1000 Fax: (516) 351-1606 (Northern New Jersey)

New York

Parallax 734 Walt Whitman Road Melville, New York 11747 Telephone: (516) 351-1000 Fax: (516) 351-1606

New York

S-J Upstate New York 7353 Victor-Pittsford Road Victor, New York 14564 Telephone: (716) 924-1720 Fax: (716) 924-1728

New York

S-J Upstate New York 179 Pierce Hill Road Vestal, New York 13850 Telephone: (607) 785-1185 Fax: (607) 785-5099

North Carolina

M Squared, Inc. 7701 Six Forks Road, Suite 120 Raleigh, North Carolina 27615 Telephone: (919) 848-4300 Fax: (919) 848-1125 Email: m2i.com

North Dakota

Russell and Associates Telephone: (612) 854-1166 Fax: (612) 854-6799

Ohio

Great Lakes Group 33610 Solon Road, Suite 5 Solon, Ohio 44139 Telephone: (216) 349-2700 Fax: (216) 349-2701

Ohio

Great Lakes Group 2038 Heritage Point Drive. Kettering, Ohio 45409 Telephone: (513) 298-7322 Fax: (513) 298-7323

Ohio

Great Lakes Group 7760 Olentangy River Rd., Suite 119 Columbus, Ohio 43235 Telephone: (614) 885-6700 Fax: (614) 885-6701

Oklahoma

Mil-Rep Associates, Inc. Telephone: (972) 644-6731 Fax: (972) 644-8161

Oregon

Trinity Technologies, Inc. 6443 SW Beaverton-Hillsdale Hwy Suite 320 Portland, Oregon 97221-1164 Telephone: (503) 291-1333 Fax: (503) 291-2529 Telephone: (888) 291-1333 Toll-free in WA

Pennsylvania

SJ Mid-Atlantic, Inc. Telephone: (609) 866-1234 Fax: (609) 866-8627 (Eastern Pennsylvania)

Sales Representatives (USA)

Pennsylvania

Great Lakes Group 33610 Solon Road, Suite 5 Solon, Ohio 44139 Telephone: (216) 349-2700 Fax: (216) 349-2701 (Western Pennsylvania)

Puerto Rico

EIR, Inc. Telephone: (407) 660-9600 Fax: (407) 660-9091

Rhode Island

New Tech Solutions, Inc. Telephone: (617) 229-8888 Fax: (617) 229-1614

South Carolina

M Squared, Inc. 7701 Six Forks Road, Suite 120 Raleigh, North Carolina 27615 Telephone: (919) 848-4300 Fax: (919) 848-1125 Email: m2i.com

South Dakota

Russell and Associates Telephone: (612) 854-1166 Fax: (612) 854-6799

Tennessee

M Squared 3000 Northwoods Pkwy, Suite 110 Norcross, Georgia 30071 Telephone: (770) 447-6124 Fax: (770) 447-0422 (Eastern Tennessee)

Tennessee

M Squared 4950 Corporate Drive, Suite 105B Huntsville, Alabama 35805 Telephone: (205) 830-0498 Fax: (205) 837-7049 (Western Tennessee)

Texas

Mil-Rep Associates, Inc. 1755 N. Collins, #215 Richardson, Texas 75080 Telephone: (972) 644-6731 Fax: (972) 644-8161

Texas

Mil-Rep Associates, Inc. 13810 Champion Forest Dr. Suite 145 Houston, Texas 77069 Telephone: (281) 444-2557 Fax: (281) 444-2751

Texas

Mil-Rep Associates, Inc. 9009 Mountain Ridge Drive Suite 230 Austin, Texas 78759 Telephone: (512) 346-6331 Fax: (512) 346-1975

Texas

Oasis Sales, Inc. Telephone: (602) 277-2714 Fax: (602) 263-9352 (El Paso)

Utah

Thorson Rocky Mountain, Inc. 5505 So. 900 E., Suite 140 Salt Lake City, Utah 84117 Telephone: (801) 264-9665 Fax: (801) 264-9881

Vermont

New Tech Solutions, Inc. Telephone: (617) 229-8888 Fax: (617) 229-1614

Virginia

Third Wave Solutions, Inc. Telephone: (410) 290-5990 Fax: (410) 381-5846

West Virginia

Great Lakes Group Telephone: (614) 885-6700 Fax: (614) 885-6701 (Western West Virginia)

West Virginia

Third Wave Solutions, Inc. Telephone: (410) 290-5990 Fax: (410) 381-5846 (Eastern West Virginia)

Washington

Trinity Technologies, Inc. Telephone: (206) 440-3059 Fax: (206) 364-6739

Level One Sales Locations

Wisconsin

Beta Technology Sales, Inc. 150 N. Sunnyslope Road, Suite 365 Brookfield, Wisconsin 53005 Telephone: (414) 797-7977 Fax: (414) 797-8051 (Eastern Wisconsin)

Wisconsin

Russell and Associates 8030 Cedar Ave. South, Suite 114 Minneapolis, Minnesota 55425 Telephone: (612) 854-1166 Fax: (612) 854-6799 (Western Wisconsin)

Wyoming

Thorson Rocky Mountain, Inc. Telephone: (303) 773-6300 Fax: (303) 773-6302

Sales Representatives (Canada)

Alberta

Electro Source Inc. 2635 37th Avenue NE, Suite 245 Calgary, Alberta T1Y 5Z6 Telephone: (403) 735-6230 Fax: (403) 735-0599

British Columbia

Electro Source Inc. 6875 Royal Oak Avenue Burnaby, British Columbia V5J 4J3 Telephone: (604) 435-2533 Fax: (604) 435-2538

Ontario

Electro Source Inc. 230 Galaxy Boulevard Rexdale, Ontario M9W 5R8 Telephone: (416) 675-4490 Fax: (416) 675-6871

Ontario

Electro Source Inc. 300 March Road, Suite 203 Kanata, Ontario K2K 2E2 Telephone: (613) 592-3214 Fax: (613) 592-4256

Quebec

Electro Source Inc. 6600 Trans-Canada Hwy, #420 Pointe Claire, Quebec H9R 4S2 Telephone: (514) 630-7486 Fax: (514) 630-7421

Europe

Austria

- Stocking Representative TRANSOHM G.m.b.H Kolbegasse 68 P.O. Box 69 A-1239 Vienna Telephone: 01 61066 0 Intl. Telephone: +43 1 61066 0 Fax: 01 61066 10 Intl. Fax: +43 1 6106610 Email: 100532.716@compuserve.com also: Czech, Hungary, Slovinia, Slovakia, Croatia

Benelux

- Stocking Representative D & D Electronics VIIe Olympiadelaan 93 2020 Antwerpen Telephone: +32 3 827 79 34 Fax: +32 3 828 72 54 Email: dad@glo.be

Denmark

- Stocking Representative C-88 AS Kokkedal Industripark 101 Kokkedal, DK-2980 Telephone: +45 70 10 48 88 Fax: +45 70 10 48 89 Email: c88@c88.dk Internet-Homepage: www.c88.dk

Finland / Baltics

- Stocking Representative Bexab Finland OY Asemakuja 2 A Fin-02770, Espoo Telephone: +358 9 752 76630 Fax: +358 9 752 76655 Email: acte@acte.fi

France

- Stocking Representative MISIL Technologies 2, Rue de la Couture, Silic 301 Rungis Cedex, 94588 Telephone: +33 1 - 45 60 0021 Fax: +33 1 - 45 60 0186 Email: semicon@misil.com

Germany

- Stocking Representative Scantec GmbH Behringstrasse 10 D-82152 Planegg/Munchen Telephone: +49 89-89 91 43-0 Fax: +49 89-857 65 74 Internet-Homepage: www.scantec.de Email: info@scantec.de

Germany

- Sales Representative Scantec GmbH Armbruststrasse 26 73230 Kirchheim/Teck Telephone: +49 7021-97 93 21 Fax: +49 7021-97 92 62 Internet-Homepage: www.scantec.de Email: info@scantec.de

Germany

- Sales Representative Scantec GmbH Fliedersteig 28 D-90607 Ruckersdorf / Nurnberg Telephone: +49 911-9578037 Fax: +49 911-9578039 Internet-Homepage: www.scantec.de Email: info@scantec.de

Germany

- Sales Representative Scantec GmbH D-71394 Kernen / Stuttgart Rommelesweg 28 Telephone: +49 7151-947940 Fax: +49 7151-947941 Internet-Homepage: www.scantec.de Email: info@scantec.de

Germany

- Sales Representative Topas Electronic GmbH Fliegerstrasse 1 D-30179 Hannover Telephone: +49 511-968 64-0 Fax: +49 511-968 64-64

Germany

- Sales Representative Topas Electronic GmbH Max Weber-Strasse 16 D-25456 Quickborn/Hamburg Telephone: +49 4106-773391 Fax: +49 4106-773393

Greece

- Sales Representative ATEX Electronics S.A. Elia Eliou 31 Athens 117 43 Telephone: +30 1 9022003 Fax: +30 1 9017024 Email: atex@caritato.ath.forthnet.gr

Israel

- Stocking Representative Seg Tec 3 Hametsuda St., Industrial Park P.O. Box 11468, Azur 58001 Telephone: +972 3-556-7458 Fax: +972 3-556-9490 Email: segtec@netvision.net.il

Italy

- Stocking Representative ESCO ITALIANA S.p.A. Viale F.lli Casiraghi, 355 20099 Sesto San Giovanni (MI) Telephone: +39 2 2627011 Fax: +39 2 2409255 Email: intesco@ibm.net

Norway

Northern Europe Regional Office Torshamnsgatan 35 164 40 Kista/Stockholm, Sweden Telephone: +46 8 750 39 80 Fax: +46 8 750 39 82

Poland

- Sales Representative Amber Group, Inc. Ul. Ratuszowa 03-450 Warszawa Telephone: +48 22 619-8900 Fax: +48 22 189 546 Email: AmberGrp@aol.com

- Distributor

Amber Group, Inc. 70 Birmingham Parkway Boston, Massachusetts 02135 Telephone: (617) 787-9290 Fax (617) 254-4262

Europe cont.

Russia / Belarus / Ukraine

- Sales Representative BelElectronComplect Co., Ltd. 27, Bagriany Sidestreet 220137 Minsk, Belarus Telephone: (+375) 17 2436971 Fax: (+375) 17 2427608 Email: admin@bec.minsk.by

Spain

- Stocking Representative AQL electronica, s.a. General Palancia, 26 28045 Madrid Telephone: +34 1 467 75 12 Fax: +34 1 530 29 34 Email: aqlelectronica@jet.es

Sweden

- Stocking Representative EGEVO Elektronik AB Box 8100 Fagerstagatan 4 S-163 08 Spanga Telephone: +46 8 795 9650 Fax: +46 8 795 7883 Email: egevo@egevo.se Internet-Homepage: www.egevo.se

Switzerland

- Stocking Representative Eurodis Electronic AG Bahnstrasse 58/60 CH-8105 Regensdorf Telephone: +41 1 843 31 11 Fax: +41 1 843 34 75

United Kingdom

- Sales Representative Cedar Technologies Unit One Old Barns Rycote Lane Farm Milton Common Oxfordshire OX9 2NZ Telephone: +44 1844 278378 Fax: +44 1844 278378

United Kingdom

- Sales Representative Cedar Technologies Unit 32, Enterprise House Springkerse Business Park Stirling, Scotland FK7 7UF Telephone: +44 1786 446220 Fax: +44 1786 446223

United Kingdom

- Distributor Manhattan Skyline Ltd. Manhattan House, Unit 1 The Switchback, Gardner Road Maidenhead, Berkshire SL6 7RJ Telephone: +44 1628 778686 Fax: +44 1628 782812

Asia / Pacific

Australia

- Sales Representative ACD Unit 2, 17-19 Melrich Rd. Bayswater, Victoria 3153 Telephone: +61 3 9762 7644 Fax: +61 3 9762 5446

Australia

- Stocking Representative ACD 124 Forest Road Hurtsville, NSW 2200 Telephone: +61 29 585 5030 Fax: +61 29 580 1095

India

- Representative SES Computers & Technologies, PVT LTD 605A, Ansal Chamber - II 6, Bhikaji Cama Place New Dehli, 110066 Telephone: +91 11 616 5933 Fax: +91 11 688 8664

India

- Representative SES Computers & Technologies, PVT LTD G-3, Cunningham Apartments No.5, Edward Road Bangalore - 560 052 Telephone: +91 80 2254490 Fax: +91 80 2254491

India

- Representative SES Computers & Technologies, PVT LTD Arvind Chambers, 194 Andheri Kurla Road Andheri (E), Bombay 400069 Telephone: +91 22-8380055, 8341584 Fax: +91 22-8380266

India

- Representative SES Computers & Technologies, PVT LTD 95C Siddemsetty Complex, Park Lane S D Road Secunderabad 500 003 Telephone: +91 40-812378, 847838 Fax: +91 40-815321

Japan

- Representative & Distributor Macnica Utsunomiya Ekimae Bldg., 4-2-10 Odori, Utsunomiya City, 320 Telephone: +81 286-27-5231 Fax: +81 286-27-5274

Japan

 Representative & Distributor Macnica
 Shin-Osaka Kimura Daiichi Bldg.
 5-11-8 Nishi-Nakashima, Yodogawa-Ku, Osaka City, 532
 Telephone: +81 6-300-0810
 Fax: +81 6-300-0848

Japan

- Representative & Distributor Macnica Ikko 2nd Shinsakae Bldg. 1-14-13 Aoi, Higashi-Ku Nagoya City, 461 Telephone: +81 52-933-4541 Fax: +81 52-933-4542

Japan

- Representative & Distributor Macnica Hakusan High-Tech Park 1-22-2 Hakusan, Midori-Ku Yokohama City, 226 Telephone: +81 45-939-6140 Fax: +81 45-939-6141

Korea

Representative
Uniquest Corporation
Suite 401 Doo Jin Bldg.
158 Samsung-Dong
Kangnam-Ku, Seoul
Telephone: +82 2 562 8805
Fax: +82 2 562 6646

Asia / Pacific cont.

Malaysia

 Representative & Distributor Achieva Components SDN BHD 46A, Jalan SS2/61 47300 Petaling Jaya Selangor Darul Ehsan Telephone: +60 3 7737411 Fax: +60 3 7737409 Email: philip@achieva.po.my

New Zealand

- Sales Representative ACD 2 Heath Street Wainuiomata, Wellington Telephone: +64 4 564 4902 Fax: +64 4 564 4998

New Zealand

- Sales Representative ACD Unit 7, 110 Mays Road Penrose, Auckland Telephone: +64 9 636 5984 Fax: +64 9 636 5985

New Zealand

- Sales Representative ACD Worester Chambers, 69 Worester St. Christchurch Telephone: +64 3 379 3889 Fax: +64 3 379 3072

Peoples Republic of China

- Distributor Sunny Comm, Inc. 395 West El Camino Real - 2nd Floor Sunnyvale, CA 94087 Telephone: (408) 739-7968 Fax: (408) 739-7782

Peoples Republic of China

- Sales Representative Sunny Comm, Inc. 105 Nan Chang Jie, Xi Cheng Qiu Beijing, 100031, China P.R. Telephone: +10 66058362 Fax: +10 66033678

Peoples Republic of China

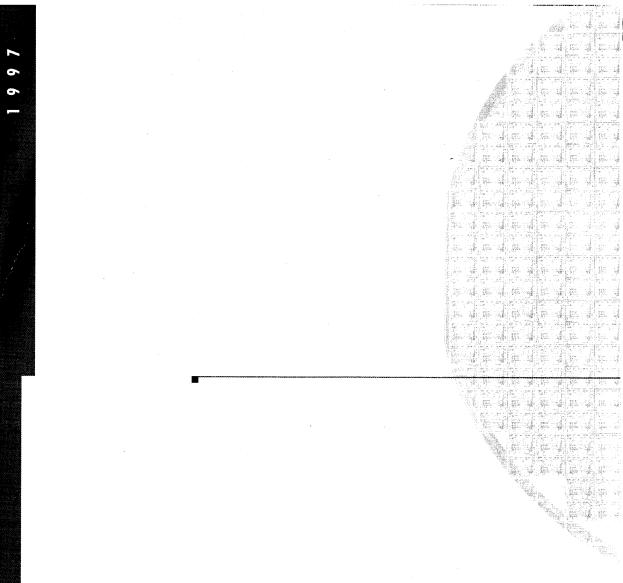
- Sales Representative Shanghai Meihua IMI Ltd. 8 Jian Guo Zhong Rd. #212 Shanghai 200025, China P.R. Telephone: +21 64677825 Fax: +21 64677826 Singapore

Representative & Distributor
 Achieva Components Pte. Ltd.
 35 Kallang Pudding Road
 Tong Lee Building Block A, #09-05
 Singapore 349314
 Telephone: +65 747 0171
 Fax: +65 747 6880

Taiwan

- Representative Jeritronics, Ltd. Floor 7F, No. 267, Sec. 3 Cheng-Teh Road, Taipei Telephone: +886 2-5851636 Fax: +886 2-5864736

South America


Brazil

- Distributor Etek Electronics Corporation 6353 West Rogers Circle, Suite 3 Boca Raton, Florida 33487 Telephone: (561) 997-6277 Fax: (561) 997-5467

Brazil

- Representative Hitech El. Ind. Com. Ltda. Rua Branco de Moraes, 489 04718-010 SP-Sao Paulo Telephone: +55 11 882 4000 Fax: +55 11 882 4100

Level One Communications, Inc.

9750 Goethe Road, Sacramento, CA 95827 Phone: (916) 855-5000 Fax: (916) 854-1101 Web: www.level1.com