
Synario
User Manual

090-0511-001

October 1993 090-0511-001

Data I/O has made every attempt to ensure that the information in this document is
accurate and complete. Data I/O assumes no liability for errors, or for any incidental,
consequential, indirect or special damages, including, without limitation, loss of use,
loss or alteration of data, delays, or lost profits or savings, arising from the use of this
document or the product which it accompanies.
No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose without written permission from
Data I/O.

Data I/O Corporation
10525 Willows Road N.E., P.O. Box 97046
Redmond, Washington 98073-9746 USA
(206) 881-6444

Acknowledgments:
Data I/O is a registered trademark and Synario, Project Navigator, Retargeting
Library, and ABEL-HDL are trademarks of Data I/O Corporation.

Data I/O Corporation acknowledges the trademarks of other organizations for their
respective products or services mentioned in this document.
© 1993 Data I/O Corporation
All rights reserved

Table of Contents

Preface
Customer Support . ix
Technical Assistance . ix

Sending a Fax . ix
Using the BBS . x

Bulletin Board Service . x
Warranty Information . x
End User Registration and Address Change xi
Where to Look for Information . xi
Conventions . xii

1. Welcome to Synario
What Is Synario? . 1-1

Freedom in Design Entry . 1-1
Freedom in Design Processing 1-1

Designing with Synario . 1-2
Design Entry . 1-2
Functional Simulation . 1-2
Optimization and Device Fitting 1-3
PLD Design Flow . 1-4
Timing Simulation . 1-5

What’s in Synario . 1-5
Projects and Sources . 1-5
Processes . 1-6
Customizing Processes . 1-7

Synario User Manual iii

Simulating Your Design . 1-8
Synario and Windows . 1-8
Flexible Design Entry . 1-9

Selecting a Device . 1-10
Synario File Structure . 1-11
Learning More About Synario . 1-12

Exploring Synario’s Documentation 1-12
Exploring Example Designs . 1-12

2. Building a Design
Introduction to Projects and Sources 2-1
Opening and Saving Projects . 2-2

Opening a Project . 2-2
Creating a New Project . 2-2
Saving a Project . 2-3

Creating Schematics and Behavioral Modules 2-3
Adding and Removing Source 2-4

Building a Hierarchical Project . 2-4
Understanding Hierarchy . 2-4
Building a Top-level Behavioral Module 2-6
Building a Top-level Schematic 2-6

Test Fixture Sources . 2-7
Building Other Project Sources . 2-7

3. Editing Your Design
Editing Behavioral Modules and Test Stimulus 3-1
Editing Schematics . 3-2
Editing Other Sources . 3-2
Converting JEDEC Files to ABEL-HDL 3-2

4. Processing Your Design
Running Processes . 4-1
Viewing Reports and Output Files 4-2

Table of Contents

iv Synario User Manual

Processing Steps . 4-3
Displaying Processes . 4-3
Device-independent Processes 4-3
Device-specific Processes . 4-3

Working with Processes . 4-4
The Process Window . 4-4
Changing How a Process Runs: Properties 4-5

Processing Problems . 4-6
Error Messages . 4-6
Debugging Problems . 4-6
Lost Clusters . 4-6

5. Design and Retargeting
Schematic Design Techniques . 5-1

VCC and GND Symbols . 5-1
Net Names and Symbol Instance Names 5-1
Create Bus and Net Names that are Unique 5-2
Place I/O Pins On Top Level Only 5-2

Other Design Considerations . 5-2
Don’t Rely On Case-sensitivity 5-2
Keep Projects Separate . 5-2
Use Text Documents . 5-2
Test Fixture Include file . 5-3

Designing for Device Independence 5-3
Horizontal and Vertical Retargeting 5-3

Device-independent Designs . 5-4
Device-independent ABEL-HDL Modules 5-4
Device-independent Schematics 5-6

6. Working with Devices
When You Need to Select a Device 6-1
Selecting a Device . 6-1

Automatic Process Updating . 6-2
What Happens When You Select a Device? 6-2

Table of Contents

Synario User Manual v

How Processes Change with a Device Change 6-2
How Properties Change with a Device Change 6-3
How Schematic Symbols Change with a Device Change . . . 6-3

Device Kits . 6-4
What Is a Device Kit? . 6-4
How Do You Use a Device Kit? 6-4
Accessing Device Kit Help Files 6-5

Appendixes

A. Strategies and Properties
Properties . A-2

Advanced Properties . A-2
Default Properties . A-2

Setting Properties . A-3
Strategies . A-4

Creating New Strategies . A-6
Changing the Default Strategy A-6
Deleting and Renaming Strategies A-7
Saving Strategies . A-7

B. Synario Configuration
Synario Project Navigator . B-1

Sizing the Sources and Processes Window B-1
Text Editor and Report Viewer . B-2
Schematic Editor, Symbol Editor, and Hierarchy Navigator B-2
Synario Project Navigator Configurable Menu B-3

C. The Synario INI Editor
Saving Changes . C-2
The BINARY.INI File . C-2
Custom INI Files . C-3

Using the Synario INI Editor . C-3

Table of Contents

vi Synario User Manual

Controls Menu . C-3
System Controls . C-3
Display Controls . C-4
Symbol Controls . C-6
Graphic Options . C-7
Sheet Layout . C-8
Sheet Sizes . C-9
Wave Controls . C-10
Global Nets . C-10
Colors . C-12
Wave Colors . C-14

Tools Menu . C-15
Symbol Tools . C-16
Schematic Tools . C-16
Navigator Tools . C-17
 Processes . C-17

Attributes Menu . C-17
Symbol, Pin, and Net Attributes C-17
Example Attributes . C-21
Global Attributes . C-26

Search Paths Menu . C-27
Project, Model, and Symbol Libraries C-27

Libraries and Directory Structures C-28
Program Directories . C-28
User Directories . C-29
Library Directories . C-29

Miscellaneous Control Options . C-32

D. PLD JEDEC Simulation
How Synario Simulates JEDEC Files D-1

The Simulator Model . D-1
JEDEC and .tmv Vectors . D-2
JEDEC Simulation Flow . D-2

Report and Trace Types and Break Points D-4

Table of Contents

Synario User Manual vii

Trace Type: Brief . D-5
Trace Type: Clock . D-5
Trace Type: Detailed . D-6
Report Type: None . D-7
Report Type: Tabular . D-8
Report Type: Pins . D-8
Report Type: Macro-cell . D-10
Report Type: Wave . D-12

Simulation and Designs with Buffered Outputs D-12
Simulation and Unspecified Inputs D-13
Simulation for Designs with Feedback D-13
Register Preloads in the Simulator D-17
Test Vectors and Simulation . D-17
Debugging State Machines . D-17
Multiple Test Vector Sections . D-18
Automatic Signal Selection . D-19
Don’t Cares in Simulation . D-20
Preset and Preload Registers . D-23

Special Preset Considerations D-23
TTL Preload . D-25
Supervoltage Preload . D-28
Preset/Reset Controlled by Product Term D-31
Preset/Reset Controlled by Pin D-32
Powerup States . D-32

Devices with Clock Inputs . D-33

Table of Contents

viii Synario User Manual

Preface
The Preface includes details about obtaining technical assistance and warranty
service. The Preface also explains the Bulletin Board Service, where to find
information, and typographic conventions used in the manuals.

Customer Support
For technical assistance and warranty service, contact your local distributor.
An updated list of Synario distributers is included in your Synario Design
Entry package.

Technical Assistance
You can contact your Synario distributer for technical assistance by calling,
sending a fax or electronic mail (e-mail). You can also access the Data I/O
Bulletin Board Service (BBS) for product information.

To help us give you quick and accurate assistance, please provide the
following information:

♦ Product version number
♦ Product serial number (if available)
♦ Detailed description of the problem you are experiencing
♦ Error messages (if any)
♦ Device manufacturer and part number (if device-related)

When you call, please be at your programmer or computer, have the product
manual nearby, and be ready to provide the information listed above.

Sending a Fax

Fax the information listed above with your name, phone number, and address
to your Synario distributer listed on the Synario Distributers sheet.

Synario User Manual ix

Using the BBS

To reach Data I/O via the BBS, include your name, phone number, e-mail
address, and the information listed above in a message, and send it to the BBS
as described in the following section.

Bulletin Board Service
From the Data I/O Bulletin Board Service (BBS) you can obtain a wide range of
information on Data I/O products, including current product descriptions,
new revision information, technical support information, application notes,
and other miscellaneous information.

Using the BBS, you can access device support information, request support for
a particular device, and leave messages for the BBS system operator or other
customers. The BBS also includes many downloadable DOS utilities.

Multiple lines are available, all supporting 1200/2400/9600/19200 baud, with
U.S. Robotics Dual/HST V.32bis/V.42bis modems. The modems are set to 8
data bits, 1 stop bit, and no parity. Online help files provide more information
about the BBS and its capabilities.

BBS numbers for all countries are as follows:

Country BBS Number

France +33-(0)13-9562699

Germany +49-(0)89-8585833

Norway +47-(0)66-780445

Sweden +46-(0)8-7391037

United Kingdom +44-(0)734-448862

United States +1-206-882-1976

+1-206-861-6959

Warranty Information
Data I/O Corporation warrants this product against defects in materials and
workmanship at the time of delivery and thereafter for a period of ninety (90)
days.

Preface

x Synario User Manual

The foregoing warranty and the manufacturers’ warranties, if any, are in lieu
of all other warranties, expressed, implied or arising under law, including, but
not limitied to, the implied warranties of merchantability and fitness for a
particular purpose.

Data I/O maintains customer service offices throughout the world, each
staffed with factory-trained technicians to provide prompt, quality service. For
warranty service, contact Data I/O Customer Support at the numbers listed at
the front of the Preface.

End User Registration and Address Change
If the end user for this product or your address has changed since you
registered the product, please notify your Synario distributer. This ensures that
you receive information about product enhancements. Be sure to include the
product serial number.

Where to Look for Information
If you want to learn about Look here

Installation Getting Started

Menu operation Online Help

Quick Start Synario Online Tutorial
Online Help (F1)

Design tutorials Getting Started

Device-specific
information

Device Kit manual
Device Kit Help

ABEL-HDL syntax Online Help
Synario ABEL-HDL Reference

Schematic commands Online Help
Synario Schematic Editor Reference

Simulation Synario Simulator User Manual

Complex PLD designs PLD Device Kit
Getting Started

FPGA designs FPGA device kit
Getting Started

Preface

Synario User Manual xi

Conventions
The conventions used in this manual are described below:

This symbol indicates that the information is available in Synario’s online help
system.

Keys and Key Combinations

An instruction for pressing two keys at once, such as ^Z (Control and Z), is
represented by two keys separated by a plus, such as Ctrl + Z

A key combination like Esc, Ctrl + T means press and release Esc, then press
Ctrl and T at the same time.

Variable Input

Variable input is italicized and should be replaced with the requested
information. For example, “enter copy filename.hex” means type "copy" just as
you see it and replace filename.hex with the name of your file.

Optional Input

Optional items of a command are shown in brackets.

[option1] [option2]…[optionn]

Items separated by a vertical bar (for example, OR|OR|…) are mutually
exclusive; that is, only one of the options listed can be specified.

Displayed Text

Text displayed on the screen appears in a typewriter-like typeface.

You will see this text displayed on the screen.

Menu Items, Processes and Properties

Menu items are entered with the menu name, a colon, and the menu selection.
For example, File: Exit means to select Exit from the File menu.

Processes and properties are entered as they appear on the screen.

Keywords

Keywords and filenames appear in quotations or bold text.

Preface

xii Synario User Manual

Chapter 1

Welcome to Synario
The Synario Universal FPGA Design System brings together several FPGA
design tools into a single Windows application. Synario streamlines the device
design process, freeing you to concentrate on the details of your design. This
chapter explains what Synario is and how you approach device design with
Synario.

If you’d like to start using Synario right away, Getting Started with Synario
gives you quick information on installing and starting Synario, along with
tutorials to get you started designing in Synario.

What Is Synario?

Freedom in Design Entry

Synario is a design entry system for FPGAs. Synario helps you create designs
that are

♦ Composed of either schematics or HDL modules, so you can use the best
features of both design entry methods.

♦ Hierarchical, so you can create designs from the bottom up or from the top
down.

♦ Device-independent, so you can easily retarget your designs using
Synario’s generic behavioral language and retargetable schematic symbols.

Freedom in Design Processing

Synario also gives you freedom in processing your design. You can

♦ Design with or without selecting a device, and change the device at any
time. Synario updates the processes to reflect the requirements of the new
device.

♦ Develop and reuse different strategies for processing designs.
♦ Simulate both the function and timing of your design.

Synario User Manual 1-1

♦ Simulate your design before choosing a device, and after implementing in
a specific device.

♦ Run any process, with Synario automatically running prerequisite
processing.

Designing with Synario
Synario consists of many parts, all of which are accessed through the Synario
Project Navigator. The Project Navigator helps you keep track of all of the
parts of your design, and keeps track of the processing steps necessary to
move the design from the conceptual stage through to implementation in an
actual device.

Design Entry

Synario supports two primary design entry methods; schematic and HDL. You
can enter your design using either of these entry methods, or mix schematic
and behavior entry in a single design. (Note: if your design is intended for a
PLD, rather than for an FPGA, you cannot use schematics to describe the
function of your design.)

In addition to the schematics and HDL portions of your design, Synario allows
you to enter and keep track of other files not directly associated with the logic
of your design. These files could include things like word processor
documents (for your project specification), simulation test fixtures, or graphic
state diagrams. These accessory files are kept for you in the Synario Project
Notebook. Virtually any type of file can be imported into Synario and kept in
the Project Notebook.

Functional Simulation

Functional simulation is a way to verify that your design functions as intended
before attempting to fit it into a device. The Synario Simulator is a full-featured
simulator that accepts Verilog test stimulus and can display the simulation
results in a variety of formats, including waveforms. For designs that include a
top-level schematic, Synario also allows you to view simulation results right
on the schematic, with actual circuit values displayed for each design input
and output. This feature is called cross-probing.

Welcome to Synario

1-2 Synario User Manual

Optimization and Device Fitting

Synario’s optional device kits allow you to target your design to a wide range
of programmable devices. The devices supported by Synario Device Kits range
from simple PAL and PROM devices to complex PLDs and FPGAs.

The optimization and fitting steps that Synario performs for you are
determined by the type of device that you choose for implementation. There
are two broad categories of devices, however, that can be described in terms of
design flows. These categories are FPGAs and PLDs.

Project Notebook

Device Selection

Test Stimulus

or

Create Design

A Top-level ABEL-HDL File or Schematic

A Lower-level ABEL-HDL File

Lower-level Schematics

Link, Compile, and Optimize Project

Review Report and Output
Files and Debug

Process Design

Generate Files for Device Kit

Place and Route or Fit Design

Program Device

Logic Synthesis

Program with Data I/O or other Programmer

Functional Simulation

Functional Simulation

Timing Simulation

Post-Route Simulation

1993-1

Place and Route

Figure 1-1
Synario Design Flow

Welcome to Synario

Synario User Manual 1-3

FPGA Design Flow

FPGA and PLD device architectures require different design processing. An
FPGA-type device differs from a PLD primarily in its need for a
place-and-route step. Place-and-route software is typically provided by the
FPGA vendors, so the processing steps performed in the Synario environment
include the use of tools that may not be integrated directly into the Synario
Project Navigator.

The FPGA design flow also differs from the PLD design flow in the types of
entry formats supported. Because FPGA device fitters (and place-and-route
software) operate on netlist format data, you can use both schematics and
behavioral (HDL) design entry formats. When you enter a design that consists
of a combination of schematics and HDL components, Synario converts all of
the input forms to a netlist representation before the design is moved to the
device-fitting phase. For most FPGA type devices, the individual project
sources (the schematics and HDL files) are combined (merged) during device
fitting.

PLD Design Flow

The design flow for PLDs varies depending on the type of PLD chosen. For
most types of PLDs, the design flow includes compilation of ABEL-HDL
sources into the OPEN-ABEL format, and a linking step for designs that are
composed of multiple source files. Some differences from FPGA design are
that schematic sources are not supported for PLDs, and that multiple source
files are combined (by linking) prior to the device-fitting process.

The PLD design flow also includes the capability for another form of
simulation that is specific to PLDs: test vectors. Test vectors are commonly
used to test the function of a PLD after it has been programmed, and the
Synario JEDEC simulator can be used to simulate the program-and-test
process. JEDEC simulation is supported in Synario for any device that is
programmed using a JEDEC format programmer download file. The only PLD
devices that are not currently support for JEDEC simulation are PROM devices
(which do not use the JEDEC file format) and some of the larger complex
PLDs. Refer to your PLD device kit documentation for complete information.

See Also

Appendix D, "PLD JEDEC Simulation"

Welcome to Synario

1-4 Synario User Manual

Timing Simulation

After your design is successfully implemented in a programmable device, you
can verify the timing performance of the resulting circuit. Timing simulation
allows you to verify that your design will operate correctly at the speeds that
you will be using in your target system.

To accurately simulate your design with timing, Synario builds a timing model
of the programmed device using timing data. Once you have this simulation
model, you can use the Synario Simulator to check the operation of the design
and for timing-related circuit problems.

What’s in Synario

Projects and Sources

Synario organizes a design by collecting all of the files into the project
notebook. The Project Notebook lists the schematics and behavioral sources
that create the logic of your design, testing files, and the device specification.
The Project Notebook can also include any other design documents you want
to keep with the design, such as design specifications, meeting notes or other
supplementary files. Synario calls the notebook, documentation, and design
pieces the sources of the project.

Each project is stored in its own directory to simplify archiving.

Figure 1-2
Sources in Project Window

Welcome to Synario

Synario User Manual 1-5

Processes

A Synario project may comprise many pieces, each of which needs to be
handled in a different way. You might have schematics that must be drawn
with a schematic capture program, tested, and then translated into netlists or
other formats. You might also have behavioral modules that need to be
compiled, optimized, tested, and translated into another format, and test
fixtures that are used without processing. How each piece of a Synario project
is processed is also dependent on the device selected.

All of the steps required to take your design from specification into a device
are called “processes” in Synario, and Synario remembers them all for you.
When you select a source or change the target device, Synario automatically
displays the steps to get the job done, freeing you to concentrate on your
design. All you have to do is double-click on a process to run it. Synario’s
Auto-make capability automatically runs any prerequisite processes before
running the process you select.

Figure 1-3
Processes for Current Source Window

Welcome to Synario

1-6 Synario User Manual

Customizing Processes

Although Synario processes are usually already optimized for the device and
source selected, there may be times when you want to change the way a source
is processed. You can do this by changing the options, called properties, of a
process in the Properties dialog box. You can save multiple sets of processing
properties, each into their own strategy. For more information on Strategies
and Properties, see Appendix A.

See Also

Specific processes and properties for each source and device are available in
Synario’s online help system.

Figure 1-4
Properties Dialog Box

Welcome to Synario

Synario User Manual 1-7

Simulating Your Design

The Synario Simulator is an option that provides functional simulation for all
designs, and timing simulation for devices that support simulation.
Simulation is a process for a test stimulus source.

Designs targeted to most types of PLDs use ABEL-HDL test vectors to simulate
the JEDEC programmer load file.

See Also

If you have the Synario Simulator, see the Synario Simulator User Manual for
information on how to simulate your design.

For simulation support information, see your device kit documentation.

Synario and Windows
Synario is a Windows program and uses standard Windows operations. If you
are familiar with how a Windows application works, you already know a lot
about how Synario works. Some of the ways you can use your Windows
experience in Synario are described below:

Drag and Drop from the File Manager

You can drag and drop any file from the Windows’ File Manager into a
Synario project as a project source. Any source that Synario does not recognize
as part of a device design is stored under the Project Notebook as a document.
This function is equivalent to choosing Import from the Source menu in the
Synario Project Navigator.

Double-click Sources to Edit

The files in a Synario project are shown in the Sources in Project window. The
Sources window displays the Notebook name, device selected, and the other
sources of the project. Double-click on the device selection to select a new
device. Double-click on any source to run the appropriate program with the
specified file loaded — the same way you can in the File Manager.

Note Synario sets up associations for .syn, .abl, .tf, and .sch during installation. You
may need to set up file extension associations for other files. For instructions, see your
Windows documentation.

Note You may also need to enable Use File Associations from the Options:
Environment dialog box.

Welcome to Synario

1-8 Synario User Manual

Double-click Processes to Run Them

The steps to process the source highlighted in the Sources window are shown
in the Processes for Current Source window. Double-click on a process in the
Processes window to run that process. Synario automatically runs any
prerequisite processes to complete the process you select.

Double-click on Reports to View Them

The reports generated by Synario processes are also listed in the Process
window. You can double-click to view them, or select them are click the View
button.

Double-click in the File Manager to Start Synario

Double-click on a Synario project file (*.syn) in the File Manager to start
Synario with that project loaded.

Press F1 for Help

Synario comes with an extensive online help system. Press F1 to access
context-sensitive help.

Flexible Design Entry
To take advantage of Synario’s ability to change devices, enter your design so
that it does not require a particular device; this type of design is called
device-independent. Synario’s Schematic Editor and HDL language both have
device-independent features:

Design Type Device-independent Features

Schematic Use the Synario Retargeting Library to enter your
schematics. These symbols are supported by all FPGAs
and are mapped to the device-specific symbols before
place-and-route. (Note: PLDs do not support schematic
entry.) See the Synario Schematic Editor Reference for more
information.

HDL Use ABEL-HDL’s device-independent language features.
See the Synario ABEL-HDL Reference for more information.

Welcome to Synario

Synario User Manual 1-9

Selecting a Device

When you do want to select a device, Synario allows you to become
increasingly more specific about the device you want to use. You will need to
select (target) a device to do device-specific design processing, such as logic
synthesis and place-and-route.

Device-specific functions are provided through device kits. You should have
received one or more device kits with your Synario package. Synario device
kits are available for FPGAs, such as LCAs and MAX devices. There are also
device kits for PLDs and complex PLDs.

Figure 1-5
Selecting a Device

Welcome to Synario

1-10 Synario User Manual

Synario File Structure
The files installed by Synario Design Entry are shown below.

Synario Base — contains executables,
batch files and help files.

Synario Configuration — contains .ini,
license and device kit files.

Examples — contains tutorial examples,
retargeting examples, and examples for
each device kit installed.

Device Kits — contains symbol libraries
and simulation models for installed
device kits. This directory is for the LCA
2000 Device Kit.

ABEL-HDL Libraries — contains
ABEL-HDL Compiler libraries and device
files.

Readme — contains last-minute release
files for Synario Design Entry.

Retargeting Library — contains
Retargeting models and libraries.

Figure 1-6
Synario File Structure

Welcome to Synario

Synario User Manual 1-11

Learning More About Synario

Exploring Synario’s Documentation

The following table shows where to find things in Synario documentation.
Most information is also available in Synario’s online help system.

To Learn About See

Design Entry Topics

Device-independent
designs

Chapter 5, “Design and Retargeting”

Synario ABEL-HDL Reference

Synario Schematic Editor Reference

Retargeting Library Synario Schematic Editor Reference

Design Building Topics

Creating, importing and
editing sources

Chapter 3, “Building Your Design.”

Design Processing Topics

Selecting a Device Chapter 6, “Working with Devices”

Processing your design Chapter 4, “Processing Your Design”

Strategies and properties Appendix A, “Strategies and Properties”

Exploring Example Designs

Synario comes with many example designs (called projects) that get you
started creating your own designs. When you install a device kit, the
installation program adds examples for the supported device.

To load an example design:

Select Open Example from the Synario Project Navigator File menu.

OR Double-click the filename.syn file in the Windows File Manager.

Welcome to Synario

1-12 Synario User Manual

Chapter 2

Building a Design
This chapter introduces projects and sources, and gives instructions on how to
build a design with them. For examples of building designs with Synario
projects, see your Getting Started guide.

Introduction to Projects and Sources
In Synario, a design that will be targeted to a device is referred to as a project.
A project contains sources that

♦ Identify the project and list included sources
♦ Define the design’s logic
♦ Define the target device
♦ Provide test stimulus to test the design

Projects are built from the following types of sources. The type of source is
indicated by the icon to the left of the source name in the Source Window.

Source Icon Example

Project notebook hiermult.syn

Device family lca.fdk

Behavioral logic description hierabel.abl

Structural logic description hierschm.sch

Test Fixtures hierstim.tf

Undefined source (n/a)

Synario User Manual 2-1

See Also

Projects

“Opening and Saving Projects”
“Adding Source”
“Adding Non-Synario Project Files”

Opening and Saving Projects

Opening a Project

To open an existing Synario project, select Open from the Synario File menu.
Each Synario project is stored in its own directory. Example projects are
installed in subdirectories under the Synario EXAMPLES directory.

OR Double-click on a Synario project file, filename.syn in the Windows File
Manager.

OR Drag a Synario project file, filename.syn into Synario.

Creating a New Project

To create a new Synario project:

1. Select New from the File menu

2. Select a directory for the project, or select the Create Directory button and
enter a name for a new directory. All of the files in your project will be
stored in this directory.

3. Enter a filename for the project file.

4. Double-click on the project notebook icon in the Source window, and
enter a title for the project. The project title can be as long as you like;
however, only the first 20 will show. The title can contain spaces and any
other keyboard character except tabs and returns. The title is stored in the
project file and is included in project output and report files created during
processing.

Hint To rename the project, double-click the project icon in the Source window.

Building a Design

2-2 Synario User Manual

Saving a Project

To save a project,

5. Select Save or Save As from the File menu. If you select Save As, Synario
asks for a filename to save the project to.

OR Click on the Save button in the toolbar.

What is Saved

Saving a project saves a project file (.syn extension) with the following
information:

♦ The title of the project.
♦ The sources in the project
♦ The strategy associated with each source

Synario also tells the schematic and text editors to save when you save a
project.

When you select Save As to save a project to another directory, Synario copies
all of the project files to that directory.

Creating Schematics and Behavioral Modules
The design description (logic) for a project is contained within two types of
source:

♦ Schematics
♦ Behavioral modules (for example, ABEL-HDL source)

One source file in a project is the top-level source for the design. The top-level
source defines the inputs and outputs that will be mapped into the device, and
references the logic descriptions contained in other, lower-level source. The
referencing of another source is called “instantiation.” Lower-level source can
also instantiate source to build as many levels of logic as necessary to describe
your design.

Note If you build a project with a single source, that source is automatically the
top-level source.

See Also

“Building a Hierarchical Project”
" Selecting a Device"

Building a Design

Synario User Manual 2-3

Adding and Removing Source

To add source to a project:

Select New from the Source menu, or click on the New button underneath the
Sources in Project window.

OR Select Import from the Source menu.

OR Drag and drop a file from the Windows File Manager.

The new source is entered into the Source window in alphabetical order for
each level of hierarchy following the project notebook and device entries.

To remove source from a project:

1. Select (highlight) the source in the Source window.

2. Select Remove from the Source window.

Note Removing a source from a project does not delete the underlying file.

Building a Hierarchical Project

Understanding Hierarchy

Hierarchical FPGA and PLD design consists of a top-level source that contains
functional blocks linked to create the overall design. The functional blocks
referenced in the top-level source are placeholders for lower-level logic
descriptions, which may in turn contain functional blocks that reference even
lower-level logic descriptions. The referencing of a logic description is called
“instantiation.”

Both top-level and lower-level source can be either schematics or behavioral
modules (in ABEL-HDL).

Note A source can be referenced (“instantiated”) more than once. Also, a source can
be both a lower-level and top-level source. For example, "compare" in Figure 2-1 could
instantiate another file.

Building a Design

2-4 Synario User Manual

Figure 2-1 shows what a hierarchical design looks like in the Synario Sources
in Project list.

Untitled The Project Notebook, which keeps track of all of
the files that make up your project.

Virtual Device The Device selected for the project (in this case, no
device has been selected).

time.tf A test fixture used to simulate the design
implemented into the device.

top The top-level source for the project, which
instantiates the lower-level (indented) sources. In
this case, it is a schematic.

func.tf A test fixture used to simulate the function of the
design, without a device.

compare, counter, prep2 Lower-level ABEL-HDL modules and schematic.

Note You cannot instantiate a top-level source from a source instantiated below that
source. For example, you can’t instantiate top from the compare source.

Figure 2-1
The Sources in Project Window

Building a Design

Synario User Manual 2-5

Building a Top-level Behavioral Module

A top-level behavioral module in ABEL-HDL uses the Interface and
Functional_block keywords to instantiate lower-level files. The Interface
keyword is also used in lower-level files to provide linking information to the
upper-level module.

The ABEL-HDL file pwmdac.abl demonstrates the use of the Functional_block
and Interface keywords in a top-level file. The file counter.abl demonstrates
the use of the Interface keyword in a lower-level file.

These keywords are described completely in the Synario ABEL-HDL Reference.

See Also

“Interface (upper-level),” “Interface (lower-level),” and “Functional_block” in
the Synario ABEL-HDL Reference

Building a Top-level Schematic

A top-level schematic (unless your design contains only one logic source) uses
symbols to instantiate lower-level files. Select Add: New Symbol from the
Schematic Editor menus to create a functional block symbol for a lower-level
file.

If you are in a lower-level schematic, you can choose "This Block" in the "New
Symbol" dialog box to automatically create a functional block symbol for the
current schematic.

The Block Name is the name of the lower-level file, which can be another
schematic or a behavioral module.

Schematic top.sch is a top-level schematic.
See Also

Synario Schematic Editor Reference

Building a Design

2-6 Synario User Manual

Test Fixture Sources
If you create or import a test fixture file, Synario prompts you whether to
associate the test fixture with the device source or HDL/Schematic source.

The project shown in Figure 2-1 includes two test fixtures (.tf extension). One
associated with the device (time.tf) and one associated with the top-level
source (func.tf).

You can double-click on a test fixture to edit it in the Text Editor.

Building Other Project Sources
You might have sources other than schematic and ABEL-HDL modules. These
sources might include simulation test fixtures, documentation files, or other
files related to Windows applications.

In most cases, you can drag and drop these files into your Synario project as
needed. Any sources that are not part of the design logic description or
simulation test fixtures are displayed under the Project Notebook.

Building a Design

Synario User Manual 2-7

Building a Design

2-8 Synario User Manual

Chapter 3

Editing Your Design
This chapter briefly explains the editors that come with Synario to help you
start editing the sources that make up your logic design. More detailed
information is provided in online help and the following manuals:

To Edit Look Here

Behavioral Modules Synario ABEL-HDL Reference

Schematics Synario Schematic Editor Reference

Test Stimulus Synario Simulator User Manual (if you have this
option)

You can edit any of the sources that make up your project by double-clicking
on them (if you have file associations set up in the Windows File Manager and
have enabled "Use File Associations" in "Options: Environment."

In the editor for a source, you can press F1 or use the Help menus to access
editor-specific help.

Editing Behavioral Modules and Test Stimulus
The Synario Text Editor provides several macros and templates to help you
enter and edit behavioral modules written in ABEL-HDL, and test stimulus.
You can edit an ABEL-HDL or test fixture source by double-clicking on it, or
by selecting it in the source list and choosing Source: Open.

You can also use any ASCII editor to edit behavioral modules and test
stimulus. You then import them into your Synario project using
drag-and-drop from the Windows File Manager or using Source: Import.

See Also

"Menus” for information on Synario Text Editor menus and using templates.
Synario ABEL-HDL Language Reference for information on ABEL-HDL
Synario Simulator User Manual

Synario User Manual 3-1

Editing Schematics
Use the Synario Schematic Editor to edit schematic source. You can open the
Schematic Editor on a schematic by double-clicking on the schematic name in
the source list, or by selecting the source and choosing Source: Open.

See Also

The Synario Schematic Editor Reference for information on creating schematics
and on the Retargeting Library.

Your device kit documentation for device-specific symbol libraries and generic
symbol to device symbol mapping charts.

Editing Other Sources
Other sources can be edited by double-clicking if you associate their file
extensions with appropriate editing applications in the Windows File
Manager. See your application documentation for editing information.

Note You can associate text files with the Synario Text Editor by choosing File:
Associate from the Windows File Manager. See your Windows documentation for
more information on file association in the File Manager.

Converting JEDEC Files to ABEL-HDL
If you have JEDEC files that you want to convert to ABEL-HDL files to use in a
Synario project, you can use jed2ahdl in the Synario DOS window. You can
bring up the Synario DOS window by pressing Ctrl+Alt+D.

The options for jed2ahdl are listed below:

jed2ahdl infile -o outfile -report mapfile

Editing Your Design

3-2 Synario User Manual

Chapter 4

Processing Your Design
This chapter explains how to process a project, including

♦ Running Processes
♦ Viewing Reports and Output Files
♦ Understanding Processing Steps
♦ Summary of Processes for Sources and Projects

See Also

Online help for Processes and Properties
Online tutorial

Chapter 2, “Building a Design”
Chapter 3, “Working with Sources”
Device kit documentation
Synario Simulator User Manual

Running Processes
You can run a process with one of the following procedures:

Use the Start or View Buttons:

1. Select the source you want to process. (To process the entire project,
highlight the device.)

2. Select the process you want.

3. Click on the Start button to run the process; click on the View button to
run the process and view the resulting file (for report and viewable output
files).

OR Double-click on a Process:

4. Select the source you want to process. (To process the entire project,
highlight the device.)

Synario User Manual 4-1

5. Double-click the end process you want. Synario automatically updates
any intermediate steps necessary to complete the required process.

OR Use the Process Menu

1. Select the source you want to process. (To process the entire project,
highlight the device.)

2. Select the process you want.

3. From the Process Menu (keyboard shortcut is Ctrl+P), select Start to run
the process, or View to run the process and view the resulting file (for
report and viewable output files). You can also select Force to run a
process again that has already completed successfully.

See Also

“What Happens When You Select a Device?” in Chapter 6

Viewing Reports and Output Files
To view a report or output file:

1. Highlight the desired file.

2. Click on the View button or choose View from the Process menu.

3. When the process completes successfully, the File Viewer displays the file.

Processing Your Design

4-2 Synario User Manual

Processing Steps

Displaying Processes

Processes are associated with sources, so the processes displayed are only
those processes for the highlighted source. Table 4-1 shows which source
some common processes are associated with.

Type of Process Source to Highlight

Compiling Behavioral

Simulation Test Fixtures

Waveform Viewer Schematic

Device-independent Processes

♦ Schematic processing and translation
♦ Behavioral processing and translation
♦ Hierarchy linking
♦ Design optimization
♦ Functional simulation — Functional Simulation can be done both before

and after the design is routed into a device. See the Synario Simulator User
Manual for more information.

Device-specific Processes

Device-specific processes change depending on the device selected.

♦ Synthesis — For some devices, logic synthesis might be performed. See
your device kit documentation for details.

♦ Place and Route — Most device kits automatically assign pins and produce
the appropriate output files for programming the device. See your device
kit documentation for details.

♦ Functional and Timing Simulation — Because synthesis and
place-and-route functions can significantly change your design, you might
want to simulate it both before and after the design is routed. See the
Synario Simulator User Manual for details.

Note The Synario Simulator is an optional package.

Table 4-1
Source Associations for Processes

Processing Your Design

Synario User Manual 4-3

Note For most PLDs, you can do JEDEC simulation. See your PLD device kit, and
Appendix D for more information.

Working with Processes
This section contains the following topics:

♦ The Process Window
♦ Changing How Processes Run — Properties

The Process Window

Each step required to process a project and its source is referred to as a
Process. The processes available for the project and each type of source are
different and vary based on the device selected. When you select (highlight)
the project name or one of the sources in the Source Window, the processes
available are displayed in the Process Window.

Types of Processes

The types of Processes available are shown below.

Icon Process Type

Run batch program

Run Windows program

Create Report File and View it

Create Viewable Output File

Create Non-viewable Output File

Processing Your Design

4-4 Synario User Manual

To see the status of a Process:

Look to the left of the process type icon for the process status icons:

Icon Means process completed...

(No icon) (Not started)

Successfully, without errors or warnings

With warnings (subsequent processes can continue)

With fatal errors (processing halts completely)

Changing How a Process Runs: Properties

You can change the way a process runs by changing the options, called
properties of the process.

To change the properties for a process:

1. Select (highlight) the process in the Process window.

2. Click on the Properties button. The Synario Property Editor displays the
available properties for the selected process.

3. Double-click on a property to edit it. Changes take effect immediately and
are saved to the current strategy.

To change properties for a different process or source:

Without closing the Property Editor, select the desired source and process.
The Property Editor automatically updates the properties.

See Also

Appendix A, “Strategies and Properties” for more information.

Processing Your Design

Synario User Manual 4-5

Processing Problems

Error Messages

Error messages are available from online help by selecting Messages from the
Problem Solving category on the help map. Device Kit error messages are
available in the help file shipped with the device kit.

Debugging Problems

If you are having problems with Synario programs running under syndos, you
can debug them by running a DOS window with the syndos.pif file. To access
this window, press Ctrl+Alt+D. This gives you a DOS window with the same
environment. Type exit to quit.

Lost Clusters

If you are having unexplained failures, run

chkdsk /f

to remove lost clusters from your hard drive.

Processing Your Design

4-6 Synario User Manual

Chapter 5

Design and Retargeting
This chapter covers project design techniques and designing for device
independence. This information on conventions for designing with Synario
will help you produce designs that are

♦ Easier to debug
♦ Retargetable to other device families
♦ Compatible with Synario designs created by other Synario users

Schematic Design Techniques

VCC and GND Symbols

The Synario Schematic Editor does not have VCC or GND symbols. Instead,
you create connections to ground and VCC by naming the net "VCC" or
"GND." Nets with those names are tied to the corresponding global signal. By
creating a vertical net with the name "VCC" attached at the top, the VCC bar
symbol appears. Likewise, by creating a vertical net with the name "GND"
attached at the bottom, the ground symbol appears.

Net Names and Symbol Instance Names

During simulation, you may want to probe the design for certain nets or
symbols. To improve post-synthesis debugging, you should name all of your
intermediate nets with unique names, rather than having Synario provide
automatic net names (which can be cryptic and difficult to sort out).

Synario User Manual 5-1

Create Bus and Net Names that are Unique

Bus names and net names, if identical, will "short out" in Verilog simulation
because of the way Verilog breaks out bus signals. For example:

DATA[7:0]

and

DATA

will cross-connect during simulation, and cause strange and unpredictable
errors. Avoid using buses and nets names which are identical.

Place I/O Pins On Top Level Only

I/O symbols, and thus pin assignments, should be kept in the top level source
only. This makes designs much easier to simulate and understand later, as all
of the device I/O can be found in one place, the top level source.

Other Design Considerations

Don’t Rely On Case-sensitivity

Names should not rely on case to provide uniqueness. For example, don’t use
"FRED" and "fred" in the same design. Some tools in the Synario environment
are inherently case-sensitive, though many are not case-sensitive. Duplicate
names with different cases may internally "short" together during some
back-end process, resulting in an invalid programming file, and/or incorrect
simulation results. Some processes also modify the case of signals and names.

Keep Projects Separate

Keep projects separate in their own directories to make them easier to archive,
easier to move, and easier for other engineers to work on.

Use Text Documents

Place design notes in separate text files associated with your project rather
than documenting directly in the schematics and ABEL-HDL modules to make
the logic easier to follow.

Design and Retargeting

5-2 Synario User Manual

Test Fixture Include file

Use a Verilog ‘ include statement to include the automatically-generated test
fixture declarations (.tfi) in your test fixture (.tf) files to minimize re-working
the test fixture files.

Designing for Device Independence
This section describes how to create device-independent designs that can be
easily retargeted to different devices. Designing for device-independence has
many advantages. Device-independent designs mean you can:

♦ Take advantage of new devices as they become available with minimal
maintenance.

♦ Learn one behavioral language and one symbol library for all devices,
instead of learning a new one for each device you use.

♦ Try a design in several architectures to determine the ones in which your
design fits best or runs fastest.

♦ Not be committed to the architecture you start your design with.
♦ Re-use your Synario designs in whole or in part.
♦ Draw your schematic without committing to a device.
♦ Perform functional simulation before device-specific features are specified.

Horizontal and Vertical Retargeting

There are two types of device retargeting: "horizontal" and "vertical."

Horizontal retargeting Mapping a design created for one device into a
similar device.

Vertical retargeting Mapping several smaller designs targeted for
small devices, linked together into a larger device.

Design and Retargeting

Synario User Manual 5-3

Device-independent Designs

Device-independent ABEL-HDL Modules

Most of the ABEL-HDL language is device independent (for example,
equations, truth tables, state machine descriptions, and test vectors). However,
the ABEL-HDL compiler needs some information about how signals function
in logic descriptions.

Information needed Provided in ABEL-HDL with

Signal specifications Istype attributes in the signal declarations and dot
extensions on signals in the logic description

Special functions Property Statements

Most common signal functions can still be described independent of a device
with the pin-to-pin signal declarations. Some special features available in only
certain classes of devices require device-specific (“detailed”) signal
declarations.

Conditional Symbols

Some devices also have special functions that can be accessed through
conditionally-compiled syntax. Each device kit has one or more special
compile-time symbols that can be used to create conditionally-compiled
designs. The table below shows a sample of the conditional symbols for
various device kits. Refer to your device kit for more information on the
conditional symbols supported.

Device Kit Conditional Symbols

LCA2000 _LCA2000_, _LCA_

LCA3000 _LCA3000_, _LCA_

LCA4000 _LCA4000_, _LCA_

PLDs _PLD_

MAX5000 _MAXPLUS2_, _MAX5000_

MAX7000 _MAXPLUS2_, _MAX7000_

MACH2 _MACH2_, _MACH_

MACH4 _MACH4_, _MACH_

Design and Retargeting

5-4 Synario User Manual

An example of how to use conditional symbols in your ABEL-HDL source file
is shown below:

@IFDEF _LCA_
{
 <LCA macros>
}

@IFDEF _PLD_
{
 <PLD macros>
}

Pin-to-Pin Signal Specifications

Using ABEL-HDL’s pin-to-pin syntax allows you to create logic descriptions
that can be retargeted to different devices. Use the retargeting syntax
whenever you have a choice to allow the module to be retargeted with little or
no modification.

Detailed Signal Specifications

Detailed signal specification provide you with access to unique features found
only in certain device families.

Note You can combine pin-to-pin and detailed signal declarations. In most cases, the
ABEL-HDL compiler can reconcile the requirements of both types. In some cases,
however, the circuit function may be ambiguous and the compiler displays an error
message.

Syntax descriptions indicate whether the syntax is pin-to-pin or detailed.
See Also

“Pin-to-pin Vs. Detailed Module Descriptions” in the Synario ABEL-HDL
Language Reference

Your device kit for device-specific ABEL-HDL property statements and dot
extension restrictions

Design and Retargeting

Synario User Manual 5-5

Device-independent Schematics

Synario Retargeting Library

Synario’s Retargeting Library gives you device-independent flexibility for
your schematics. If you use device-specific symbols in a schematic, you may
have to redraw the schematic if you later retarget your design to a different
device.

Device Kit Symbol Libraries

The symbol libraries that come with each device kit are device-specific. If you
plan to stay in one device family, these libraries are all you need. However,
since device kit symbols are tied tightly to the device they describe, retargeting
a project with a device-specific schematic may require re-drawing the
schematic using the new target device’s symbol library. For this reason, we
recommend the Synario Retargeting Library if you plan to use more than one
type of device.

See Also

“Device-independent ABEL-HDL Modules”

Your device kit for device symbol libraries and Synario Retargeting Library
mapping

Design and Retargeting

5-6 Synario User Manual

Chapter 6

Working with Devices
There are many ways you can make it easier to take an existing design and
change the device it maps into. These issues are discussed in the “Designing
for Device Independence” section in Chapter 5.

When You Need to Select a Device
With Synario, you do not have to select a device to begin processing a design.
You do need to select a device before you place and route your design or
perform timing simulation (if you have the Synario Simulator).

You can, of course, specify a device at earlier stages in the design process.

Selecting a Device
To choose any device, you must have a Synario Device Kit and the device
support for the device installed.

You select the device for your project in the Choose Device dialog box. You
access it by double-clicking on the Device icon in the Sources window, or by
selecting the Device icon and choosing Open from the Source menu.

Device Kit Lists the titles of the device kits currently licensed for this
Synario installation. You pick a device kit from this list,
and the Device box below is updated with the devices
supported by that kit.

Device Lists the supported device names licensed by the device
kit. You can pick a device from this list, or enter a device
name. If you enter a name, it must match a device in the
listing (case doesn’t have to match).

Synario User Manual 6-1

Note If the current project has sources that are not supported by the selected device,
you will get an error dialog box. Either select a different device or remove the
unsupported sources from the project. (For example, standard PLDs do not support
schematics, so selecting a P22V10 for a project that includes a schematic will cause this
to happen.)

If your device change involves changing the underlying design environment
(which is done automatically), Synario asks you to confirm the change.

Automatic Process Updating

You do not have to remember how to process your designs for different
devices: when you specify or change the device for your design, Synario
re-configures the processing steps automatically to reflect the processes
required for the selected device.

What Happens When You Select a Device?
Changing the device to a device in a different device kits directly affects the
Synario design environment. Some of these effects are immediately visible,
while others are more subtle, but very important.

The following are affected when changing device kits:

Device The device specified in the Source window
changes.

Processes The processes displayed in the Processes for
Current Source window for all sources changes.

Properties The properties available for each Process change.

Schematic symbols The available symbol libraries change.

More detailed information about what is changed is given in the following
sections.

How Processes Change with a Device Change

When you change to a device in a different device kit, the processing for the
project changes. These changes are reflected in the following changes:

♦ The available processes change, especially device-specific process steps
and netlists.

Working with Devices

6-2 Synario User Manual

♦ The status of some processes that remain may return to “not processed”
(that is, the green checks are removed and the process must be re-run for
the new device).

♦ The properties available for processes.

How Properties Change with a Device Change

When you change to a device in a different device kit, the properties available
for each Process change in the following ways:

♦ Properties are preserved for processes that did not change from the
previous device kit, (like the ABEL-HDL process “Compile Logic”).

♦ Properties for new processes, and new properties for existing processes
have default values assigned.

♦ For processes that are not available with the new device, the properties are
no longer used or visible, but the settings are saved (if you switch back to
the previous device kit, these properties will be the same).

How Schematic Symbols Change with a Device Change

When you change to a device in a different device kit, the schematic symbols
that are available change. Each device kit supports the Synario Retargeting
Library and the symbol library for the devices in the kit. This means that after
changing kits, Add: Symbol in the schematic editor lists the available symbols
for the device kit.

CAUTION

♦ You need to close and re-open the Schematic Editor and Hierarchy
Navigator for the symbol availability changes to take effect.

♦ Schematics drawn with symbols from only the Synario Retargeting Library
work without modification.

♦ Schematics drawn with symbols from a device-specific symbol library that
is no longer available will be missing those symbols (you will get “Missing
Symbol File” messages).

Note If you use the Synario Retargeting Library to draw all of your schematics,
you’ll rarely have to redo a schematic when you select a different device.

Replacing Missing Symbols in a Retargeted Schematic

To modify a schematic that is missing symbols after you’ve changed the device
kit being used, do one of the following:

Working with Devices

Synario User Manual 6-3

♦ Edit the schematic and select a different symbol from the new device kit
library or the Synario Retargeting Library.

OR ♦ Create a new symbol and possibly an underlying schematic to support the
new device kit.

For example:

Assume your original schematic was targeted to the MAX/FLEX device kit,
and you used a symbol from the MAX/FLEX library. You then switch to the
LCA3000 device kit, and this symbol is not supported. You get an error
message “Missing symbol file name.sym” when you try to edit the schematic.

You can create a local symbol called name.sym, then draw a schematic called
name.sch using symbols from the LCA3000 symbol library or the Synario
Retargeting Library to provide the functionality of the MAX/FLEX symbol.

Device Kits

What Is a Device Kit?

A device kit contains all of the tools you need to create designs for that device
or family of devices. So if you purchase the LCA device kit, you receive tools
and documentation to help you create designs for LCAs. Device kits can
contain all or some of the following items, depending on the processing
requirements for the devices supported:

♦ Device Synthesis applications
♦ Place-and-route applications
♦ Functional and Timing Simulation models (for simulation with the

optional Synario Simulator)
♦ Device-specific Synario project examples
♦ Device-specific design help files
♦ Device-specific symbol libraries
♦ Device optimization and pin assignment software

How Do You Use a Device Kit?

To use your device kit, follow the steps below:

1. Install the device kit software.

2. In your Synario project, double-click on the device icon and choose a
device supported by the device kit.

Working with Devices

6-4 Synario User Manual

The installation installs device kit files that Synario uses to update the
processes available to you.

Accessing Device Kit Help Files

You can access the separate help file installed with your device kit using one of
the procedures below:

Choose the device kit help file from the Synario Project Navigator Help menu.

OR In Synario’s main help file, click on the Device Kit button.

Working with Devices

Synario User Manual 6-5

Working with Devices

6-6 Synario User Manual

Appendix A

Strategies and Properties
Many processes have options, called properties, that tell Synario how you
want the process carried out. You can modifiy these properties in the
Properties dialog box.

To use the Properties dialog box, select a process in the Process list that you
want to modify. If the process has properties, the Properties... button below
the Process list will be active. Click on this button to open the Properties
dialog box and edit the properties for the currently selected process.

The title of the Properties dialog box window displays the name of the
currently selected Strategy (Normal) and the type of source selected (Design).
If you modify the properties shown above, you are modifying the properties in
the Normal style, for Standard PLDs, for the currently-selected Design-level
process.

Properties

Property entry box

Entry OK/Cancel

Quick Help
window

Value list

Figure A-1
Properties Dialog Box

Synario User Manual A-1

Properties
There are three basic property types: True/False, Text, and List .

True/False True/False properties have "T/F" in the second column of the Properties
dialog box. To change the value of a True/False property:

Double-click on the property.

OR Select the property and then press the value-list drop-down button to select
True of False.

OR Press T or F when a True/False property is selected.

You can undo a change by pressing the Undo button.

Text Text properties take text strings defined by that property. To modify text
properties

1. Select the text property in the property list. The current value of the text
property (if any) is displayed in the property entry box (see Figure 1-4).

2. In the edit region, type in the text value for the property.

3. Click on the check (OK) button next to the edit region to accept the change.
Click on the X (Cancel) button to cancel changes.

List List properties allow you to select one value from a list of possible choices. To
cycle through all the possible values:

1. Select the List property.

2. Click on the value-list drop-down button and select one of the values.

OR Double-click on the List property. Each double-click causes the List property
to change to the next possible value in the list.

Advanced Properties

Some properties in the Properties dialog box are advanced. Be sure to review
the online help for these properties before changing them.

Default Properties

You can reset properties to the defaults for your device kit by clicking the
Defaults button.

Strategies and Properties

A-2 Synario User Manual

Setting Properties
To set properties:

1. Select a source (for example, select the device to change project properties,
or select a logic source (schematic or ABEL-HDL module) to change source
properties).

2. Select a process from the Process window.

3. Click on the Properties button, or choose Properties from the Process
menu. The Properties dialog box displays the standard and device-specific
properties for that process.

4. Click on the Advanced button for more properties.

5. Click on a property to select it.

6. Double-click on an option to toggle between choices. Click once to select
an option and type in a new value, then select the green check to accept
the change, or the red X to undo.

If you change your mind, click on the Undo button.

7. To change the properties for another process, click on the desired source
and/or process in the Synario main window. (You may need to move the
Properties dialog box.)

The properties for the selected process are immediately displayed in the
Properties dialog box window.

Strategies and Properties

Synario User Manual A-3

Strategies
Strategies are advanced features of Synario that allow you to set up different
processing options for different parts of a project. For example, you can use
strategies to use one set of synthesis options for part of your project, and
another set for the rest.

A strategy contains all of the property settings required to process the sources
(such as an ABEL-HDL module) in the Sources in Project list, and a strategy
can be assigned to one or more of the following types of source in a project:

Design

Schematics

ABEL-HDL modules

You can create multiple strategies and associate them with different sources in
your design, allowing you to use different property settings for each source in
your project.

When you associate a project source with a strategy, the source extracts its
property settings from the strategy. For example, if you associate an
ABEL-HDL source with a strategy named “Speed,” the ABEL-HDL module
uses the ABEL-HDL process property settings in the strategy “Speed,” and
ignores the property settings for the strategy “Normal.”

A Strategy is a collection of all the properties for all the processes. For
example, you could set up a "Normal" strategy that has all of the ABEL-HDL
Compile Logic and Reduce Logic properties set to optimize a module, and
create a "No Optimize" strategy that has the Compile Logic and Reduce Logic
properties set to not optimize the logic in a module (perhaps for timing
purposes). You would then associate the "No Optimize" strategy with the
sources that you do not wish to be optimized. Figure A-2 shows a graphical
representation of a strategy.

Strategies and Properties

A-4 Synario User Manual

Figure A-2
Synario Strategies

Strategies and Properties

Synario User Manual A-5

Creating New Strategies

A project initially contains only the “Normal” strategy. You can create
additional strategies and assign them to the different sources in your design.
To create additional strategies, select Strategy from the Source menu to bring
up the Define Strategies dialog box.

To create a new Strategy,

1. Click on the New button.

2. Type in a name for the new strategy.

3. Select an existing strategy to copy the new strategy’s properties from (or
select System Defaults to get the default properties).

4. Click on OK (or press Enter).

Changing the Default Strategy

The “Normal” Strategy is automatically created when you start a new project
in Synario. Normal is the default strategy and is assigned to all sources when
they are added or imported into a project.

You can change the default strategy for a project to one of the strategies you
have created.

Figure A-3
Define Strategies Dialog Box

Strategies and Properties

A-6 Synario User Manual

To set a new default strategy:

1. Select the Strategy from the Source menu to bring up the Define Strategies
dialog box.

2. Select the strategy that you want to be the new default from the Strategy
list box

3. Click on the Use As Default button.

The strategy you selected will now be assigned to all new and imported
sources in your project.

Deleting and Renaming Strategies

To delete or rename a strategy:

1. Select Strategy from the Source menu to bring up the Define Strategies
dialog box.

2. Select a strategy.

3. Click on the Delete or Rename... button.

4. If you are renaming the strategy, enter a new name and click on the OK
button.

Note If you delete the Default strategy, the strategy at the top of the strategy list
becomes the new Default Strategy. See “Changing the Default Strategy” if you want
to change it.

Saving Strategies

Strategies are automatically saved when you save your project.

Strategies and Properties

Synario User Manual A-7

Strategies and Properties

A-8 Synario User Manual

Appendix B

Synario Configuration
You can change the Synario environment by changing settings in different
configuration files. You access the configuration files through the Options
menu in the program or through the Project Navigator Options menu.

Tool How to modify Configuration File(s)

Synario Project Navigator
(synario.exe)

Options: Environment/Fonts WINDIR\synario.ini

Synario Text Editor
(synedit.exe)

Options menu WINDIR\synedit.ini

Synario Text Viewer
(synview.exe)

Options: Environment/Fonts WINDIR\synview.ini

Schematic Tools (synario.exe) Options: Schematic from
synario.exe

\synario\config*.ini

Synario Project Navigator
You can set many environment variables in the Synario Project Navigator by
choosing the Options menu, then Enviroment. The online help for the
Environment dialog box discusses these options and the choices you have for
changing them.

Sizing the Sources and Processes Window

You can change the size of the Sources in Project and Processes for Current
Source windows, by setting it manually in synario.ini (which should be
installed in your Windows directory).

Synario User Manual B-1

To enlarge or shrink the Sources window:

Add the following line to synario.ini in the section [Data I/O Synario]

SplitBar= ##

where ## is the number of characters wide that you would like the Source
window. The default is SplitBar=27.

You must restart synario.exe for it to recognize the new value.

Text Editor and Report Viewer
You can select your preferences for the file modes, screen font, and customized
key mappings from the Options menu in these programs. The online help
discusses these options and the choices you have for changing them.

Schematic Editor, Symbol Editor, and Hierarchy
Navigator

The Synario Schematic tools use special configuration files, one for each Device
Kit that you have installed. You can change the settings in these files with the
Synario INI Editor, including setting system colors and adding custom menus.
All of these configuration files have an .ini extension and are installed in the
Synario configuration directory (c:\synario\config is the default installation
directory).

To run the INI Editor with the currently-selected device kit INI file loaded:

Select Options: Schematic in the Synario Project Navigator.

CAUTION Changes you make to one INI file are not reflected in the other INI files. If
you want the changes in all of the INI files, you must load the INI file for each device
kit in turn and make the changes. For example, if you have a LCA4000 part selected
and select Options:Schematic, the INI Editor opens with the file LCA4000.INI loaded.
If you changed the Border Color for schematics in the LCA4000.INI file, that change
would be seen only when you had a LCA4000 part selected. When you change to a
different device kit, the INI file being used by the Schematic tools changes.

See Also

Online help in the Synario INI Editor
Appendix C, "The Synario INI Editor"

Synario Configuration

B-2 Synario User Manual

Synario Project Navigator Configurable Menu
You can add a menu to the Synario Project Navigator to access other Windows
programs. This user-configurable menu is controlled by an INI-format file
named synmenu.cfg installed in the synario\config directory. If synmenu.cfg
is not found, only the standard Project Navigator menus are displayed.

The name of the menu is determined by the section name (in square brackets)
and each menu item is defined by the members of the section.

The basic format for defining the menu is:

[menu_name]

item_text =program,valid_extension,command_line,message_bar_text
item_text = . . .

Note If you add an ampersand (&) in the text of the Menu Name or Item Text, the
character following the ampersand is underlined, and the menu (or menu item) is
available through the keyboard shortcuts (Alt+letter).

The Message Bar Text should follow the format used by the fixed Synario
menus.

Menu Name
menu_name

The Menu Name is the text that is displayed on the menu bar of the Synario
Project Navigator between the Options and Windows menus. For example,
if you enter

[&Tool]

a menu named "Tool" is inserted, accessed by Alt+T (underlined letter).

Menu Item
item_text

The Menu Item is the text for each menu item under the menu. Spaces are
allowed.

Use & before a letter to allow keyboard access to the menu items (remember to
give them unique letters).

Use a minus sign (-) at the beginning of the item_text line to place a separator
line before that menu item.

Synario Configuration

Synario User Manual B-3

For example, if you enter

-C&AD=program,valid_extension,command_line,message_bar_text

a menu item named CAD is inserted below a separator line, accessed with A
(underlined letter).

Program
program

The Program is the name of the program that is run when the menu item is
selected. It may contain a complete path specification if the program is not in
your PATH environment variable search string (in your autoexec.bat file).

To use the Synario path:

Use the escape sequence $S to substitute the path of the Synario executable.

For example, if synario.exe is running in c:\synario, the program name
$S\syndos.exe is translated to c:\synario\syndos.exe.

Extensions
valid_extension

This field specifies which file extensions are supported by the program, and
enables the menu when a source with a supported extension is selected

CAUTION DO NOT USE a period to specify the extensions.

For reference, the Synario source extensions are shown below:

Source Extension

Project Notebook SYN

Device SYN

HDL Source ABL

Schematic SCH

Test Fixture TF

All Files *

Synario Configuration

B-4 Synario User Manual

You can selectively enable the menu item for documents (which appear under
the Project Notebook) based on their extension. For example, if your project
contains both Word documents (.DOC) and Xilinx memory files (.MEM), a
menu item with a valid_extension of DOC is enabled only for Word documents
and not Xilinx memory files.

CAUTION The valid_extension field differs from the configurable menus in the
Schematic Editor, which expect *. in front of the extension and a blank field
instead of a single * for the All Files options.

Command Line Options
command_line

The Command Line field specifies filenames and switches that are passed to
and run with the program name. The command line can use escape sequences
to customize the switches based on the filename extension of the selected
source. The substitution escape sequences are as follows, and the examples are
based on a selected source with the full path of C:\SYNARIO\TEST\TAZ.ABL:

Sequence Meaning Example Result

$$ Escape for a single $ $
$B Base name TAZ
$D Drive and directory C:\SYNARIO\TEST

$E Extension only, including
period (.) .ABL

$F Base name plus extension TAZ.ABL
$N Complete name C:\SYNARIO\TEST\TAZ.ABL

$R Drive + directory + base
name C:\SYNARIO\TEST\TAZ

$Z Ignored (required for blank argument field)

Note The $Z parameter is required if the program has no arguments.

Note that the following escape sequences are equivalent:

$F is equivalent to BE
$R is equivalent to $D\$B
$N is equivalent to $D\$B$E

Synario Configuration

Synario User Manual B-5

Message Bar Text
message_bar_text

The Message Bar Text field is an optional field for text to be displayed in the
message bar when the user selects the menu item. If no text is specified, a
default message of "User-defined menu item" appears on the message bar. The
message text for the menu (for example, Tools) is always "User-defined menu"
and cannot be changed.

Note The Synario Schematic Editor configurable menus do not support the Message
Bar Text field.

Examples Following is an example of a menu configuration file.

[&Tools]
&Schematic To ASCII=ascout.exe,sch,$F,Translate the schematic
to ASCII format
&View Simulation Results=e:\foo\dir\waves.exe,tf,-nav $F,View
the simulation waveforms
-&Play Minesweeper=winmine.exe,*,$Z,Hope the boss doesn’t catch
you

These lines would produce a Tool menu similar to that shown in Figure B-1.

Figure B-1
User-defined Tool Menu

Synario Configuration

B-6 Synario User Manual

Appendix C

The Synario INI Editor
Synario’s Schematic Editor, Symbol Editor, Hierarchy Navigator, and
Waveform Viewer use an initialization file to control their appearance and
operation, and to set the default values for many parameters (including pin,
symbol, and net attributes).

There is a separate initialization file for each targeted device type. For
example, if you select an LCA 3000 device as your target, Synario
automatically uses the LCA3000.INI file. If you’re using generic (retargetable)
symbols and haven’t yet selected a target device, Synario loads the
RETARGET.INI file.

These initialization files are stored in the CONFIG subdirectory, directly
beneath the main Synario directory (C:\SYNARIO, usually).

The INI Editor lets you view and alter the values of the parameters in the INI
files. These parameters give you control over the following (and other)
functions and parameters:

♦ Attributes
♦ Color assignments
♦ Display parameters (such as Show Border and Show Pin Dots)
♦ Default symbol type for the Symbol Editor
♦ Default text editor
♦ Global net names
♦ IC or PCB development mode
♦ Library search paths
♦ Printer configuration
♦ Schematic sheet size and layout parameters
♦ Tools and Processes menu entries

Synario User Manual C-1

CAUTION When editing an INI file, remember that there is a separate
initialization file for each target-device family. For example, the LCA2000,
LCA3000, and LCA4000 families each have their own INI file. If you work with
more than one device family, you must edit the INI file for each family.
Changes made in one INI file are not automatically applied to the other files.

You can also use the INI Editor to customize the INI file for each family. For
example, you might select different background colors to serve as a visual
reminder of which family you’re working with. Each INI file can also have a
different set of Global attributes.

Saving Changes

After changing anything, use the Save command from the File menu to update
the loaded INI file. If you decide to discard your changes, use the Exit
command and select No (“Don’t Save Changes”) to quit without saving.

The BINARY.INI File

The Editors and Hierarchy Navigator often have to refer to the contents of the
INI file. INI files are ASCII text files, and reading and interpreting an ASCII
file takes much more time than directly loading the values.

Therefore, each time you save an INI file (or change your target device), the
INI Editor automatically creates a binary version of the INI file (BINARY.INI)
in the directory specified in your DOS TEMP environment variable. If you
haven’t defined a TEMP variable, the binary file is stored on your hard disk’s
root directory (usually C:\).

When Synario starts running, it looks for BINARY.INI in the TEMP directory
(or, if there is no TEMP environment variable, in C:\). If it cannot find
BINARY.INI, it automatically recreates the file.

When you alter an INI file and save the changes, the INI Editor asks if you
want this file to be the INI file for the current project. If you are editing the
current project’s INI file, choose Yes. The INI Editor will update BINARY.INI.
If it is not the current project’s INI file, choose No.

The Synario INI Editor

C-2 Synario User Manual

Custom INI Files

You can use the Save As command from the File menu to save the INI file
under any other name, to create customized INI files. However, since there is
already a unique INI file for each target device, you would probably want to
customize the existing INI files, rather than creating a new INI file with a
different name.

Using the Synario INI Editor
In addition to the File menu, the INI Editor’s menu bar displays the following:

♦ Controls
♦ Tools
♦ Attributes
♦ Search Paths

The settings and controls for each menu are explained in the following sections.

Controls Menu
System Controls

The system controls affect the general behavior of both Editors and the
Hierarchy Navigator.

Application Mode

This parameter configures Synario for IC design or PCB design, or both. The
default setting is IC.

IC Only Provides instance-name support for ASICs.

PCB Only Provides support for pin numbers and reference
designators for board packaging.

BOTH IC & PCB Provides support for instance names, pin numbers, and
reference designators.

The Synario INI Editor

Synario User Manual C-3

Bus Parentheses

The Bus Parentheses list box lets you select the delimiting character for indices
on ordered bits. They can be enclosed in brackets, parentheses, curly braces, or
angle brackets, as shown below. The default is brackets.

A[2], A[1], A[0]

A(2), A(1), A(0)

A{2}, A{1}, A{0}

A<2>, A<1>, A<0>

First Character Must Be Alphabetic

The first character of a net name or instance is usually a letter. (Numbers are
usually suffixes to identify a specific instance or net.) If this check box is
unmarked, the first character can be a number. This is the default setting.

Simulator

Configures Synario for a particular simulation environment. This parameter is
set correctly for Synario, as shipped. Do not change it unless you have a
specific reason for doing so (such as using a different simulator).

A major feature of the simulation environment is providing hardware
description language (HDL) templates in the Symbol Editor and Hierarchy
Navigator. This facilitates writing behavioral models for the simulators. It is
also used in the Dynamic Waveform Interface.

Text Editor

Specifies the editor Synario uses to display text. The default is the Synario File
Editor. If you want to use a different editor, enter its name here. If the alternate
editor’s directory does not appear in the DOS PATH statement, give the fully
qualified pathname.

Display Controls

The Display Controls dialog box contains a group of 12 check boxes for the
following display features. Checking a box displays or enables the
corresponding feature. The first 8 items can be overridden (for the current
session only) with the Display Options command from the Options menu in
the Schematic or Symbol Editors.

The Synario INI Editor

C-4 Synario User Manual

Show Border

Turns on and off screen and plotter display of the schematic and symbol
borders.

Show Pin Dots

Turns on and off the screen and plotter display of pin dots (unconnected pins).
When off, it reduces repaint time and clutter in a crowded drawing.

Show Pin Numbers

Turns on and off the screen and plotter display of pin numbers. When off, it
reduces repaint time and clutter in a crowded drawing.

Show Symbol Text

Turns on and off the screen and plotter display of fixed text inside symbols.
When off, it reduces repaint time and clutter in a crowded drawing.

Show Symbol Attributes

Turns on and off the screen and plotter display of symbol attributes. When off,
it reduces repaint time and clutter in a crowded drawing.

Show Solder Dots

Turns on and off the screen and plotter display of solder dots.

Show Off Page Connects

On multiple-sheet schematics, you can show references to other sheets at nets
that connect across more than one sheet. The display is enabled on wire
segments with their names at the end of the wire.

Show Open Ends

Wires not terminating on a net name flag, symbol pin, or another wire are
considered schematic errors. This parameter controls whether they are
highlighted on the screen and plotter.

Allow Rotated Pin Numbers

The numbers on the pins of a symbol are normally displayed as horizontal
text. Optionally, the top and bottom pin numbers can be displayed as vertical
text.

The Synario INI Editor

Synario User Manual C-5

Allow Rotated Net Names

Controls whether net names at the ends of vertical wires are displayed
vertically or horizontally.

Show Net Numbers

This parameter turns on and off the screen and plotter display of node
numbers. It is useful for reducing the clutter on a crowded drawing. This
parameter affects only the Hierarchy Navigator display.

Every node in the circuit has a node number assigned in the Synario database.
These node numbers are used internally and can also be used by simulators
like SPICE, which require numbers rather than names.

Show Simulation Values

Turns the screen and plotter display of simulation values on the schematic on
and off. This feature is needed only when you view the results of a simulation.

Symbol Controls

These control two defaults in the Symbol Editor.

Default Symbol Type

Default Symbol Type is the type assigned to a newly created symbol. You can
choose from Block, Cell, Component, Gate, Graphic, Pin, or No Default. These
types are described in the list below. You can override the default type by
selecting a different type using the Symbol Editor’s Change Type command.

If this parameter is set to No Default, the Symbol Editor prompts you for the
symbol type when you start a new drawing. Refer to the Synario Schematic
Editor Reference for details about the different symbol types.

Block Represents hierarchy

Cell Primitive in IC design

Component Primitive in PCB designs representing complete packaged
device

Gate Primitive in PCB designs representing a fraction of
complete device (for example, one of four NAND gates in
a 7400)

Graphic Used for non-electrical information, such as tables and
notes

The Synario INI Editor

C-6 Synario User Manual

Master Used for title blocks and other non-electrical information
positioned in a specific corner of the drawing

Pin Represents physical pins on an edge connector or PCB

The Master type is not available as a default, only by prompting or from the
Change Type command. It is assumed Master is the least-used symbol and
users would create Master symbols only occasionally.

Default Pin Name Offset

Default Pin Name Offset controls the distance between a pin’s name label and
the pin itself. It is measured in quarter-grid units. The default is nine units. The
value can range between 0 and 31.

Graphic Options

This dialog box sets the defaults for the Graphic Options dialog box in the
Schematic and Symbol Editors. Any of these can be overridden in the Editor
for the current working session.

Text Justification Horizontal text can be left-justified, right-justified, or
centered. This parameter applies to both fixed graphic text
and text in attribute windows. Any change in this setting
affects text that is added after the change, not existing text.

Text Size There are three text sizes for drawing fixed graphic text
and symbol attribute windows. The choices are Small,
Medium, and Large, which correspond to 5, 7, and 9 fine
(quarter) grids in height. The default is Small. Any change
in this setting affects text that is added after the change,
not existing text.

Vertical Text Text is normally drawn horizontally. When the Vertical
Text box is checked, text is placed vertically by default.

Grid Spacing Grid Spacing controls the placement of graphic objects, not
symbols or wires (which must always fall on the Primary
grid). You can set the default increment to the Primary
grid spacing, or to one-half or one-quarter that value.
Smaller values allow more precise placement.

Show Grid Enables the Primary grid display. The grid appears as an
array of dots, with one dot at each grid intersection. Every
tenth grid point is larger. As you “zoom out” and the
grids get closer together, some grid dots may not be
displayed.

The Synario INI Editor

Synario User Manual C-7

Full Cursor Selects the normal cursor (a small plus sign) or the
full-screen cursor. Using the full-screen cursor makes it
easier to align objects.

Wide Lines When Wide Lines is checked, all graphic elements (not
symbols or wires) are drawn with double-thick lines.
These heavy lines have the same weight as schematic
buses. Any change in this setting affects graphics that are
drawn after the change, not existing graphics.

Sheet Layout

The Sheet Layout dialog box sets defaults for the border and the primary grid.

Zones

The border is divided into horizontal and vertical zones (sections) to simplify
locating a specific item. For example, a flip-flop might be in the B7 zone, or an
I/O marker in D3.

By default, the horizontal zones are numbered, the vertical lettered. When the
“Draw Numbers on Vertical Axis” box is checked, the horizontal zones are
lettered, the vertical numbered.

When the “Horizontal Zones Increase toward the Right” and “Vertical Zones
Increase toward the Top” boxes are checked, the lowest numbers (or letters)
are at the left and bottom. When these boxes are cleared, the lowest numbers
(or letters) are at the top and right.

The Number of Zones edit boxes set the number of border divisions. The
acceptable range of values is two to nine divisions.

Grid

The Grid Size and Grid Units settings are self-explanatory. Inches or
centimeters at a 0.1 increment are the most-common choices. 0.1 inch is the
default.

A symbol does not have an absolute size; it is scaled in grid units. Therefore,
selecting a smaller grid may let you place more symbols on a schematic with a
specific size. On the other hand, a larger grid will produce larger symbols
when the schematic is printed.

The Synario INI Editor

C-8 Synario User Manual

Automatically Add Master Symbols

Master symbols are used for reference items that appear on every schematic,
such as the project name, a title bar, or the company logo. If you want a Master
symbol to be added to each schematic, type its file name in the Automatically
Add Master Symbols edit box.

The symbol is automatically placed in the same corner of the schematic as its
origin. For example, if the symbol’s origin is at its lower-left corner, the symbol
will be placed at the lower-left corner of the schematic.

To specify more than one Master symbol, separate the Master symbol
filenames with spaces. (If they have the same origin, they will overlap.) As
with other symbols, do not specify the path. The Editor will explore the Symbol
Libraries search-path list for the first symbol file with a matching name. If this
is not the Master symbol you want, select the desired symbol from the Add
Symbol list box.

Sheet Sizes

The Sheet Sizes dialog box sets the permitted drawing sizes. The default sheet
size is the size specified at the top of the list box. The sheet size for a particular
drawing can be changed with the Sheet Setup command in the Schematic
Editor. Typical sheet sizes are:

English (inches) Metric (mm)

A = 11 8.5 A4 = 297 210

B = 17 11 A2 = 594 420

C = 22 17 A3 = 420 297

D = 34 22 A1 = 841 594

E = 44 34 A0 = 1189 841

The width is the first number. Since schematics are usually wider than they are
high, the width is usually greater than the height. Height and width are
measured in the Grid Units specified in the Sheet Layout dialog box (inches,
centimeters, or millimeters). The maximum supported dimension is 8000 Grid
Units.

To add a new size, click on the Add button. A new entry with the designation
New and a length and width of zero is added to the list. Press TAB to select the
edit boxes (or click on them), then change the Sheet Size, Width, and Height to
the values you want.

The Synario INI Editor

Synario User Manual C-9

To change the size of an existing sheet, click on the list-box line with its
description. The values are copied to the edit boxes, where you can alter them.

To delete a sheet, click on its description. Then click on Delete.

The Move Up and Move Down buttons rearrange the listing. The Move Up
button swaps the highlighted sheet with the sheet above it. The Move Down
button swaps the highlighted sheet with the sheet below it.

Note The sheet-size names are arbitrary and have no relation to either European
paper sizes or American drafting paper sizes. You can use any letter, number, or name
you want.

Wave Controls

This dialog box controls the overall appearance of the Waveform Viewer.
Colors are set in the Wave Colors dialog box.

Padding Around Text The padding above and below text in the
waveform name area. This adjusts the space
available for the waveform display. Padding is in
units of one-quarter the text height.

Gap Between Waveforms The space between waveforms. It’s in units of
one-quarter the text height.

Characters in Name Field The number of characters visible in the waveform
name area.

Reverse Bits in Bus If Yes, the least-significant bit (LSB) of buses is
displayed to the left whenever the bus value is
displayed as a number. If No, the bus value is
displayed with the same bit order as a binary
number (the LSB to the right).

Bus Radix The radix, or base, used to display buses. The
choices are Binary, Octal, Decimal, and
Hexadecimal.

Global Nets

Global nets are net names that have predefined symbols associated with them.
When one of these global names is assigned to a net (GND, for example), the
corresponding symbol is attached to the net in your schematic.

Global signals can be accessed across all hierarchy levels and across all sheets
and schematics in a design. For this reason, names assigned as global net
names cannot be used as “local” net names.

The Synario INI Editor

C-10 Synario User Manual

The available symbols are shown in Figure C-1. A symbol cannot be used until
a name has been assigned to it. (Three of the symbols are already named and
can be used immediately.) Click on the edit box next to the symbol and type in
the name you want. You can change or remove a name the same way.

There are three types of global net symbols.

Labeled Symbols The symbols in columns 2 and 4 of Figure C-1 are labeled
symbols. The name you assign to one of these symbols is
attached to the symbol to label it, replacing the “T” or
“TTT.”

You can assign more than one name to these symbols.
Multiple names are separated with a space (not a comma).

Unlabeled
Symbols

The symbols in columns 1 and 3 of Figure C-1 are
unlabeled symbols. The name you assign is not shown on
the symbol. The symbol is the only visible indication of
the net name. Use the Query command to view the name.

You can assign only one name to an unlabeled symbol.
This limitation is to prevent confusion, since there is no
visible indication of the assigned name.

No Symbol You can assign a name to the box with “TTT” at the top of
the second column. This name is global. The name is
attached to the net, but other than the box surrounding it,
there is no symbol.

Figure C-1
Global Signals Dialog Box

The Synario INI Editor

Synario User Manual C-11

Unnamed symbols can have only one name associated with each symbol.
Named symbols and the No Symbol icon can have multiple names. Multiple
names are separated by spaces.

Note Global ground symbols are drawn only at the bottom of vertical wires, while
global supply symbols are drawn only at the top of vertical wires. If the wire is not
vertical, the global symbol is not drawn and its name is displayed inside a box.

Colors

The Colors dialog box assigns colors to various Symbol and Schematic Editor
display functions. There are 18 combo boxes, one for each Editor display
function that can have a unique color.

To change a color, click on the arrow in the combo box, then click on the
desired color in the color-bar display that appears. The display functions are
listed below.

Background The background color of the Editor window

Highlight Highlighted nets

Phantom Highlight group-editing functions

Pins Symbol pin dots (unconnected pins)

Graphics Lines, boxes, circles, arcs, text

Figure C-2
Colors Dialog Box

The Synario INI Editor

C-12 Synario User Manual

Border Sheet border

Verify Indicates connection to net

Symbols Symbol body

Nets Wires and net names

OpenEnds Dot on hanging wire or isolated net name

Buses Buses and bus names

HighlightBus Highlighted buses

HighlightSymbol Highlighted symbols

SimVal Text showing simulation value on schematic

SimVal0 Small square on schematic indicating logic low at probed
node

SimVal1 Small square on schematic indicating logic high at probed
node

SimValX Small square on schematic indicating unknown state at
probed node

SimValZ Small square on schematic indicating high impedance at
probed node

Note Don’t assign the Background color to any other display function. That function
will then be invisible against a background with the same color.

The Synario INI Editor

Synario User Manual C-13

Wave Colors

The Wave Colors dialog box assigns colors to various Waveform Viewer
display functions. There are nine combo boxes, one for each Waveform Viewer
display function that can have a unique color.

To change a color, click on the arrow in the combo box, then click on the
desired color in the color-bar display that appears. The display functions are
listed below.

Background The background color of the Waveform Viewer window

WaveName Display of waveform names

BusWaveform Display of bus waveforms

HighlightWave Color of selected (highlighted) waveform

SignalWave Display of single-bit signals

UnknownWave Buses or signals displayed with unknown value

HighZWave Display of high-impedance signals

ResistiveWave Display of resistive signals

SupplyWave Display of low-impedance (direct from Vdd) signals

Note Don’t assign the Background color to any other display function. That function
will then be invisible against a background with the same color.

Figure C-3
Wave Colors Dialog Box

The Synario INI Editor

C-14 Synario User Manual

Tools Menu
You can run other programs from within the Schematic Editor, the Symbol
Editor, and the Hierarchy Navigator. These new programs are listed in the
Tools menu of the Editors and the Navigator, and in the Navigator’s Processes
menu. (If no programs are assigned, the Tools and Process menus are not
displayed.)

There are three dialog boxes for adding programs to the Tools menus, and a
fourth dialog box for adding programs to the Process menu in the Hierarchy
Navigator. The only distinction between Tools and Processes in the Hierarchy
Navigator is that the Processes menu is intended for programs that create
netlists. You can ignore this distinction if you wish.

All four dialog boxes are identical and work the same way. The Hierarchy
Navigator Process Menu dialog box is shown in Figure C-4.

Figure C-4
Hierarchy Navigator Process Menu Dialog Box

The Synario INI Editor

Synario User Manual C-15

♦ The Menu Label is the text string that appears in the menu to identify the
added tool or process. You click on this menu item to run the new
program.

♦ The Application is the filename of the program. (You can also specify DOS
batch (.BAT) files.) If the program is not in the working directory or one of
the directories in the DOS PATH statement, enter the fully qualified path
name.

♦ The Flags are any command-line switches or options needed.

You can fill in these edit boxes by hand, or you can use the Add button to
browse the programs on your hard disk. The Add button displays the generic
Open File dialog box, labeled Choose Application. Find the application you
wish to add, then double-click on it. (Or highlight it and click on OK.) The
Menu Label and Application edit boxes are automatically filled in.

When you use the Add button, the path is not included in the Application edit
box. If the correct path is not part of the DOS PATH statement, you must add
the full path to the application’s name. You must also fill in any needed
command-line flags or switches.

The list box below the edit box displays the tools or processes in the same
order they will appear in the menu. The Move Up and Move Down buttons
rearrange the listing. The Move Up button swaps the highlighted application
with the tool above it. The Move Down button swaps the highlighted
application with the application below it. Delete an application by highlighting
it then clicking the Delete button.

Symbol Tools

Any utilities, netlisters, or other processes that do not require the Navigator to
operate (such as the Notepad and archiving tools) can be added to the Tools
menu of the Symbol Editor. The Verilog and VHDL netlisters are the only tools
shipped with Synario that currently work in the Symbol Tools menu.

Schematic Tools

Any utilities, netlisters, or other processes that don’t require the Navigator to
operate can be added to the Tools menu of the Schematic Editor. The Verilog
and VHDL netlisters are the only tools shipped with Synario that currently
work in the Schematic Tools menu.

The Synario INI Editor

C-16 Synario User Manual

Navigator Tools

This dialog box adds entries to the Tools menu of the Hierarchy Navigator.
These entries spawn tasks for the Waveform Viewer and the Design Analysis
Tools (DAT). You can write your own interface programs and add them to the
Tools menu.

 Processes

This dialog box adds entries to the Processes menu of the Hierarchy Navigator.
These entries spawn tasks for netlisting or simulation. Synario supports
several netlisters that are accessed through this menu. In addition, you can
write your own interface programs and call them from the Processes menu.

Note The distinction between the types of programs added to the Navigator’s Tools
and Processes is arbitrary, and designed only to make it easier to find a specific tool.
You can place your own entries in either menu.

Attributes Menu
Attributes are created with the INI Editor.

Symbol, Pin, and Net Attributes

There are separate dialog boxes for editing symbol, pin, and net attributes. All
have a list box showing the current attribute definitions, and an edit box at the
top where an attribute name can be added, deleted, or altered.

The Symbol and Pin dialog boxes include four radio buttons to select the
attribute modifier. The Symbol dialog box also has a second edit box for
entering an attribute window number. The Symbol dialog box is therefore
shown in Figure C-5, because it includes all the features of the Attributes
dialog boxes.

Attribute Data Fields

Each attribute has three or four data fields, but you don’t always have to enter
a value in every field.

First Field

The first field is the attribute number. The attribute is represented in the
attribute database by this number, and Synario uses this number to access it.

The Synario INI Editor

Synario User Manual C-17

Unused attribute numbers are shown with four dashes in the name field. New
attributes can be added to these empty fields. Attributes 00 through 99 are
pre-defined and should not be changed (even those with blank name fields).
You can define attributes 100 through 199 in any way you like.

Second Field

The second field is the attribute modifier. The modifier controls where and
how attribute values can be entered or altered. The default is a blank (no entry).

Figure C-5
Symbol Attributes Dialog Box

The Synario INI Editor

C-18 Synario User Manual

The modifiers are described below.

Attribute
Modifiers Description

<blank> “Override in Schematic” If an attribute has been assigned
a value in the Symbol Editor, the value can be changed in
the Schematic Editor and the Hierarchy Navigator. If it
was not assigned a value in the Symbol Editor, it cannot be
assigned a value in the Schematic Editor or the Hierarchy
Navigator.

This field can be modified for pin and symbol attributes,
but not net attributes.

– “Fixed” The attribute value can be modified only in the
Symbol Editor; it cannot be overridden in the Schematic
Editor or Hierarchy Navigator.

+ “Assign in Schematic” The attribute value can be assigned
or modified in the Symbol Editor, Schematic Editor, or the
Hierarchy Navigator. If you change the value in more
than one place, values changed in the Schematic Editor
override those changed in the Symbol Editor and values
changed in the Hierarchy Navigator override all others.

* “Derived” Specifies a derived attribute you can modify in
the Symbol Editor, and override in the Schematic Editor or
the Hierarchy Navigator.

There is a fifth modifier, the exclamation point (!), which does not appear as
one of the modifier radio buttons in the Attribute Editor dialog boxes.

! "System" The attribute value can be edited only with
special Synario commands such as Instance Name. Most
system attributes are for the internal use of the Editors
and Hierarchy Navigator. (A few of them—such as
Instance Name—can be viewed and modified by the user.)
You cannot assign the System modifier to an attribute.

Third Field

The third field is optional and specifies the attribute window. The attribute’s
value is displayed on or near the symbol in this window. Attribute windows
are used only with symbol attributes. (Attribute windows are described in the
Synario Schematic Editor Reference).

The Synario INI Editor

Synario User Manual C-19

Fourth Field

The last field is the attribute name. You can enter your own names for the
user-defined attributes (100–199). You can change the names of the system
attributes (00–99) if you wish, because the association between an attribute and
its value is made with the attribute’s number, not its name.

Modifying Attributes

Use the following procedure to add or modify a symbol attribute. The
procedure is nearly the same for pin and net attributes; skip the steps that
don’t apply to the selected attribute.

1. Click on the attribute you want to modify. You can select any line in the
list box, even if the attribute number is the only field filled.

2. The attribute’s name appears in the Attribute Name edit box. Type the
new or changed attribute name.

3. Click on the appropriate radio button to assign the desired attribute
modifier. “Override In Schematic” is the default modifier. If this modifier
is selected, the modifier field is left blank in the list box. (This feature does
not apply to net attributes.)

4. If you want the attribute displayed, enter a number in the Attribute
Window edit box. Window numbers range from 00 to 99, and have no
relation to the attribute numbers 00 through 99. (The attribute window
feature does not apply to pin or net attributes.)

If two (or more) attributes use the same attribute window, the
lowest-numbered attribute that has a value is displayed.

The Synario INI Editor

C-20 Synario User Manual

Example Attributes

Tables C-1, C-2, and C-3 show example attribute definitions for net, pin, and
symbol attributes. Attribute modifiers, numbers, and windows are shown
where appropriate.

The Synario Schematic Editor Reference has a more detailed discussion about
using attributes and creating new ones.

Att
Number Att Mod Attribute Name Description

0 ! NetName Net name
3 Cap Capacitance
5 Length
8 Width
10 VeriType Verilog Net Type
30 VHDLNetType VHDL Net Type
31 VHDLBusType VHDL Bus Type

Att
Number Att Mod Attribute Name Description

0 – PinName pin name
1 – Polarity In, Out, BiDir
2 Fanin Dimensionless number for IC loads
3 FanOut Dimensionless number for IC drive

4 – PinNumber
Used in PCBs for Gate or Component
pin numbers; represents physical pin
connection

5 WireOr Tristate, Opencollector, or Yes

6 – PinGroup Used in PCB design; indicates can
swap pins

Table C-1
Standard Net Attributes

Table C-2
Standard Pin Attributes

The Synario INI Editor

Synario User Manual C-21

Att
Number Att Mod Attribute Name Description

7 LoadLow Current load in low state (µA)
8 DriveLow Current drive in low state (µA)
9 OpenOK OK to be unconnected pin
10 – SilosName Identifies pins in models

11 SilosLoad Numeric load factor for load
calculation

14 – VeriName Alternate pin name or order for pins
15 LoadHigh Current load in high state (µA)
16 DriveHigh Current drive in high state (µA)
18 – TimilName Alternate pin name or order for pins
20 LoadCap Capacitive load (pF)
21 DriveCap Capacitive drive (pF)
22 + KCL Drive factor for simulation models

23 + Pin2Pin Pin-to-pin delay for simulation
models

24 + DelayBack Back-annotated delay for simulation
models

25 + ChkPulseW Check for pulse width violation on
this pin

26 + ChkHold Check for hold time violation on this
pin

27 + ChkSetup Check for setup time violation on this
pin

30 VHDLPinType Port type if scalar port in VHDL

31 VHDLBusPinTypePort type if vector port in VHDL

32 VHDLDefValue Default value for Port
33 VHDLNetConv Type conversion function for port
34 VHDLBusConv Type conversion function for port

35 VHDLPinUse Used for port type of BUFFER in
VHDL

36 SpiceOrder Integer that forces order of subcircuit
pins

40 HiLoPinName Alternate pin name used for HiLo
simulations

The Synario INI Editor

C-22 Synario User Manual

Att
Number Att Mod Attribute Name Description

50 XSimPinName Pin name used for X-Sim primitives
51 PinNegation Apply negation to this pin
90 – BusPin_A First set of pins attached to bus pin
91 – BusPin_B Second set of pins attached to bus pin
92 – BusPin_C Third set of pins attached to bus pin
93 – BusPin_D Fourth set of pins attached to bus pin
94 – BusPin_E Fifth set of pins attached to bus pin
95 – BusPin_F Sixth set of pins attached to bus pin
96 – BusPin_G Seventh set of pins attached to bus pin
97 – BusPin_H Eighth set of pins attached to bus pin

The Synario INI Editor

Synario User Manual C-23

Att
Number Att Mod

Attribute
Window Attribute Name Description

0 ! 0 InstName Instance Name
1 ! 1 Type Symbol Name

2 ! 2 RefDes Reference designator for
PCBs

3 3 Value General value parameter
4 PartNum PCB part number
5 PartShape Footprint of PCB part

6 CompName
Specifies
DeMorgan-equivalent gates
with same name

8 Prefix SPICE element prefix (Q, M,
R …)

9 TreeStop Used to split large designs

10 – SilosModel Primitive model name for
SILOS

11 SilosTimes Delay specifier for SILOS
primitives

15 – TegasModel Tegas model parameter
17 – XSimModel X-Sim primitive model name

18 + BodyDelay Body delay parameter for
simulation

20 – VeriModel Primitive or model name for
Verilog

21 VeriTimes Delay specification for
Verilog

22 VeriStrnth Strength specification for
Verilog

25 – TimilModel Primitive or Model name for
Timemill

26 TimilExtra Extra parameter for Timemill
34 Impedance SPICE parameter
35 Width SPICE transistor width

Table C-3
Standard Symbol Attributes

The Synario INI Editor

C-24 Synario User Manual

Att
Number Att Mod

Attribute
Window Attribute Name Description

36 Length SPICE transistor length

37 Multi Multiplication factor for
SPICE

38 SpiceModel Model card for SPICE
39 SpiceLine Model parameters for SPICE

40 SpiceLine2 Additional SPICE model
parameters

41 * AreaS Area of source for SPICE
42 * AreaD Area of drain for SPICE
43 * PeriS Perimeter of source for SPICE
44 * PeriD Perimeter of drain for SPICE

45 NRS Squares of source diffusion,
SPICE

46 NRD Squares of drain diffusion,
SPICE

47 DefSub Substrate node

60 – GND *Power connection attribute
for PCBs; typ GND

61 – VDD *Power connection attribute
for PCBs; typ VDD

62 – VCC *Power connection attribute
for PCBs; typ VCC

63 – PCBGlobal3 *Power connection attribute
for PCBs

64 – PCBGlobal4 *Power connection attribute
for PCBs

65 – PCBGlobal5 *Power connection attribute
for PCBs

66 – PCBGlobal6 *Power connection attribute
for PCBs

67 – PCBGlobal7 *Power connection attribute
for PCBs

68 – PCBGlobal8 *Power connection attribute
for PCBs

69 – PCBGlobal9 *Power connection attribute
for PCBs

The Synario INI Editor

Synario User Manual C-25

Att
Number Att Mod

Attribute
Window Attribute Name Description

70 – HiloModel Specifies model for HILO
primitives

71 HiloTimes Specifies HILO delay times

72 HiloStrength Specifies HILO driving
strength

73 HiloParam
74 HiloParamValue
75 HiloDelayScale
76 HiloVisibility
78 VHDLConfig
79 VHDLUseLib
80 VHDLModel
81 VHDL1 User-definable for VHDL
82 VHDL2 User-definable for VHDL
83 VHDL3 User-definable for VHDL
84 VHDL4 User-definable for VHDL
85 VHDL5 User-definable for VHDL
86 VHDL6 User-definable for VHDL
87 VHDL7 User-definable for VHDL
88 VHDL8 User-definable for VHDL
89 VHDL9 User-definable for VHDL
99 EllaType

Global Attributes

The Global Constants dialog box defines the global attributes in schematics.
There are 20 global attributes, all of which are user defined. They can be used
to define anything, but are most commonly used for attributes that apply to all
schematics, such as supply voltage (Vdd) or design-rule dimensions.

1. Click on the desired global attribute number from the list box.

2. Type the name of the global attribute in the Attribute Name edit field.

3. Type the value of the global attribute in the Attribute Value edit field.

Global attributes can be modified in the Hierarchy Navigator with the Edit
Constants command. Any changes are discarded when you exit the Navigator.

The Synario INI Editor

C-26 Synario User Manual

Search Paths Menu
Project, Model, and Symbol Libraries

These dialog boxes let you modify the search paths for Projects, Models, and
Symbols. The directories are searched in the order they appear in the list.

When you highlight a name, it appears in the Path edit box where it can be
modified. The INI files supplied with Synario prefix all paths with the %Root
environment variable. (This variable is the path of the main Synario
directory—C:\SYNARIO, usually.)

You do not have to use the %Root variable in any paths you add. You can
enter a fully-qualified path. Or, since Synario has access to all DOS
environment variables, you can add your own environment variables to
AUTOEXEC.BAT and include them in the path.

Enabling and Disabling Paths

A plus sign (+) next to a path means it is enabled and will be searched. A
minus sign (–) means the path is disabled and will not be searched. To enable
or disable a path, click on its name to highlight it. Then click the Enable check
box to mark or clear it.

Figure C-6
Global Attribute Editor

The Synario INI Editor

Synario User Manual C-27

Adding and Deleting Paths

To add a search path, click the Add Path button. The generic Open File dialog
box appears (though it will be labeled Select Project Library, Select Symbol
Library, or Select Model Library). Use the controls to select the directory you
want. Click on the name of a file in that library, then click OK. (Or just
double-click the name.) The directory containing this file is added at the
bottom of the list.

The Delete button removes the path that is currently highlighted. The Move
Up button swaps the highlighted path with the path below it; Move Down
swaps the highlighted path with the path above it.

CAUTION These search variables are properly configured when Synario is
installed. Don’t modify the paths or their order unless you have a specific
reason for doing so (such as adding new directories with your own symbols).

Libraries and Directory Structures
Libraries are collections of symbols, models, or hierarchical design blocks that
can be accessed by the schematics of any design. Libraries are stored in
directories other than project directories. A common directory for circuit
elements simplifies design organization and makes it easier to ensure that all
symbols and models are updated properly.

Program Directories

All software and related files used by Synario are located in a master directory
called SYNARIO. (You can, however, select a different directory during
installation.)

The Synario INI Editor

C-28 Synario User Manual

The files and directories in the master Synario directory are:

SYNARIO Main directory; contains the Synario executable and help
files. You can choose a different name during installation.

\CONFIG Holds the device-specific INI files, configuration (.CFG)
files, and licensing files.

\EXAMPLES Contains Synario sample designs.

\LCA4000, \LIB5,
\MAXPLUS, etc.

Contain device-specific symbols. Specific libraries depend
on which fitters are installed.

\RETARGET Contains retargeting symbols.

User Directories

Synario expects the source files for a particular design to be kept in a single
directory (that is, the project directory). Whenever you start a new project,
Synario prompts you for the name of that directory. The most common way to
organize designs is to create a separate directory for each one.

Library Directories

Libraries store building blocks that can be reused in different designs. A
library usually contains related items. For example, a symbol library might
consist of symbols for 7400-series TTL devices. Another library might contain
symbols for gate-array primitives.

Libraries are typically maintained by a system administrator, and the
individuals who use the libraries are not allowed to modify them. This
enforces consistency and prevents unauthorized changes.

The Synario INI Editor

Synario User Manual C-29

Synario interfaces with three different types of libraries:

♦ Project directories
♦ Symbol libraries
♦ Model libraries

You can specify different libraries of each type and can control which ones are
on the library search path. Please refer to the "Search Paths" section earlier in
this chapter.

Project Directories

In Synario, a project directory contains all the files needed for a complete
hierarchical design (except for primitive symbols). When an existing
(non-symbol) file is imported from another directory, a copy of that file is
placed in the project directory to guarantee its availability.

Model Libraries

Model libraries contain schematics that represent higher-level primitives, or
behavioral-description (HDL) files of such primitives, or both. If the model
library is included in the library search path, the Hierarchy Navigator will be
able to display a lower-level or more detailed view of the circuit.

For example, a schematic containing logic gates is drawn and simulated using
a gate-level simulator. A model library exists containing the transistor-level
schematics of all the logic gates. A netlist for a switch-level simulation is easily
obtained by adding the model library to the library search path and then
running the netlister.

Symbol Libraries

Symbol libraries contain the primitive symbols for IC and PCB designs.
Typical primitive symbols are PMOS and NMOS transistors, AND gates, NOR
gates, or a 74ALS193 counter chip. Symbols are used throughout the hierarchy
and at the primitive level in a design.

Library Searching

Synario searches for symbols in a fixed order. Synario uses the first symbol it
finds with the required name. For example, a symbol myname can exist in a
project directory and another version of myname can exist in a symbol library.
Because project directories are searched before symbol libraries, the version of
myname from the project directory is used.

The Synario INI Editor

C-30 Synario User Manual

The symbol search order is as follows:

1. The current project directory.

2. The project directories specified in the INI Editor’s Project Libraries dialog
box. Directories closest to the top of the list box are searched first.

3. The symbol libraries specified in the INI Editor’s Symbol Libraries dialog
box. Libraries closest to the top of the list box are searched first.

WARNING If you open a schematic and the symbol search paths are not set
correctly, the Schematic Editor may not be able to locate the correct symbols.
If this happens, you’ll see the wrong symbols, or blanks where the missing
symbols should be.

A schematic with missing symbols is opened with the name UNTITLED, rather
than its original name. If you accidentally save the file, the original version
won’t be destroyed.

Synario also searches for schematics in a fixed order. It uses the first schematic
it finds with the required name. The schematic search order is as follows:

1. The current project directory.

2. The project directories specified in the Synario INI Editor. Project
directories closest to the top of the list box in the Synario INI Editor are
searched first.

3. The model libraries specified in the Synario INI Editor. Model libraries
closest to the top of the list box in the Synario INI Editor are searched first.

The following is a typical symbol search path.

%Root\sym_libs\std
%Root\sym_libs\misc
%Root\sym_libs\ttl
%Root\sym_libs\ttl_ls
%Root\sym_libs\ttl_als
%Root\sym_libs\ttl_as

The Synario INI Editor

Synario User Manual C-31

Miscellaneous Control Options
The following parameters appear in the [Options] section of SYNARIO.INI,
but do not appear in any of the INI Editor’s dialog boxes. You can change
them manually with a text editor. The INI Editor will not modify or overwrite
your changes.

AttributeCaps If set =Yes, attribute values are forced to uppercase. If set
=No, attribute values retain the case in which you entered
them. The default setting is No.

NetNameCaps If set =Yes, net names are forced to uppercase. If set =No,
net names retain the case in which you entered them. The
default setting is No.

The Synario INI Editor

C-32 Synario User Manual

Appendix D

PLD JEDEC Simulation
This chapter describes how to simulate the JEDEC file for PLD designs,
including the MACH2 and Atmel devices. For other devices, and for
functional simulation of any design, see the Synario Simulator User Manual if
you have this option. This chapter includes the following topics:

Note Currently, the MACH4 devices do not support JEDEC simulation; however,
you can simulate the PLA file with the PLA simulator, which operates the same as
described for JEDEC simulation.

♦ How Synario simulates JEDEC files
♦ Report and trace types and break points
♦ Simulation and designs with buffered outputs
♦ Simulation and unspecified inputs
♦ Simulation and designs with feedback
♦ Register preloads in the simulator
♦ Test vectors and simulation
♦ Debugging state machines
♦ Multiple test vector sections
♦ Using macros and directives to create test vectors
♦ Don’t cares in simulation
♦ Preset, reset and preload registers
♦ Asynchronous circuits

How Synario Simulates JEDEC Files
The Simulator Model

Using the JEDEC and device files, the JEDEC simulator builds a model of the
design that includes macrocells, sum-terms, and product terms. In the
Simulate JEDEC File properties, select the Report Type Macro-cell to display
the model.

Synario User Manual D-1

JEDEC and .tmv Vectors

JEDEC vectors include only test conditions for pins; the .tmv file vectors allow
testing of internal nodes. Also, the vectors in the .tmv file can have different
values for input than for output. For example, the .tmv file allows you to
apply a 0 to a bidirectional pin that is an input before the clock and test for an
H after the clock. A JEDEC vector could only have the H. Enable the Use .tmv
File Test Vectors property to use the .tmv file for simulation in place of the
JEDEC vectors.

JEDEC Vector Conversion

Internally, the JEDEC simulator uses the same test_vector format as the PLA
file vectors, so it converts the JEDEC vectors to PLA format. When reading
JEDEC test vectors, the simulator copies the H, L and Z into the output vector,
and all test conditions into the input vector. It also makes the following
conversions:

H Converted to 1.
L Converted to 0.
.Z. Converted to 1 or the user-specified value.
.X. Converted to 0 or the user-specified value.
.C. Expanded to three vectors with .C. taking on the values 0, 1,

and then 0. Use a Trace Type of Clock to observe the
clock conversions.

.U. Expanded to two vectors taking on the values 0 and then 1.
Use a Trace Type of Clock to observe the clock
conversions.

.K. Expanded to three vectors with .K. taking on the values 1, 0,
and then 1. Use a Trace Type of Clock to observe the
clock conversions.

.D. Expanded to two vectors taking on the values 1 and then 0. Use
a Trace Type of Clock to observe the clock conversions.

JEDEC Simulation Flow

Figure D-1 shows a flow diagram of JEDEC simulation during evaluation of
the inputs to the output. The JEDEC simulator applies the first test vector and
performs any setup of internal registers (within the PLD) that results from the
vector applied to the inputs. The simulator then calculates the product terms
that result from the test vector, the OR outputs that result from the product
terms, any macrocell outputs that result from the OR outputs, and then any
feedback functions. The results of the simulator calculations are written to the
.sim file.

PLD JEDEC Simulation

D-2 Synario User Manual

The outputs of devices with feedback may require several successive
evaluations until the outputs stabilize. After the feedback paths have been
calculated, the JEDEC simulator checks to see if any changes have occurred
with the device since the product terms were last calculated. If changes have
occurred due to feedback functions, the calculations are again repeated. This
iterative process continues until no changes are detected, or until 20 iterations
have taken place. If 20 iterations take place and there are still changes, the
design is determined to be unstable and an error is reported. More detailed
information on simulating devices with feedback, and other advanced uses of
the simulation program are presented in later in this appendix.

Get vector

Set up internal
registers

Calculate
product terms

Calculate
OR outputs

Calculate
macro cells

Calculate
feedback functions

Any change
in product

terms?
20 iterations

yet?

Trace detail or
clock output

NoYes

No

Yes

Trace brief
output

Report error
(level 0)

Figure D-1
Simulation Processing Flow Diagram

PLD JEDEC Simulation

Synario User Manual D-3

Report and Trace Types and Break Points
Report and trace types and break points allow you to control the amount of
information that JEDEC simulation provides. JEDEC simulation can provide
simple error messages (indicating that the actual outputs differ from the
outputs you predicted in your test vectors), or detailed information about the
states of internal registers and product terms of a device during simulation. If
you simulate a design with Report Type set to None, you can determine
whether any errors exist. If there are errors, then you can use the more
detailed Report and Trace types to increase the amount of information
provided until you have enough information to solve the problem. Examples
of the output produced by the different Report and Trace types are given
below.

With small designs, you can rerun JEDEC simulation with different Report and
Trace types to obtain the information you need. With a larger or more
complex design with many test vectors, however, reports may contain so
much information that you have difficulty finding information on the error.
With break points, you can target the error and limit the amount of
information produced.

For example, you run a simulation and detect an error in the twentieth test
vector out of 50 vectors. You want to see more information to determine the
cause of the error, so you can rerun JEDEC simulation with a more detailed
Trace Type for only vector 20 using breakpoints.

1. Simulate designs at Report Type: None to determine the existence of errors.

2. Once an error is found, increase the Trace and Report Types until you
have enough information to correct the error.

3. Use break points to limit simulation results.

Each of the Report and Trace Type properties are discussed below.

PLD JEDEC Simulation

D-4 Synario User Manual

Trace Type: Brief

Figure D-2 shows a brief trace simulation with a Tabular report output for the
same source file that produced Figure D-6. Brief trace is the default.

Simulate SYNARIO 1.00 Date Tue Aug 14 10:56:35 1993
Fuse file: ’regfb.jed’ Vector file: ’regfb.tmv’ Part: ’PLA’
Operation of the simulator on devices with feedback
 I
 C N
 l O I D D D F F
 k E T 1 2 3 1 2

V0001 C 0 0 1 1 1 H L
V0002 C 0 0 0 0 1 H L
V0003 C 0 1 1 1 1 L H
V0004 0 0 0 0 0 1 L L
4 out of 4 vectors passed.

Trace Type: Clock

Trace Type: Clock provides information similar to that of Brief, except that the
Clock output displays the device inputs and outputs for each clock pulse.
Figure D-3 shows that the output is expanded over that shown in Figure D-2 to
show each clock pulse of the simulate operation.

Simulate SYNARIO 1.00 Date Tue Aug 14 10:58:41 1993
Fuse file: ’regfb.jed’ Vector file: ’regfb.tmv’ Part: ’PLA’
Operation of the simulator on devices with feedback
 I
 C N
 l O I D D D F F
 k E T 1 2 3 1 2

V0001 0 0 0 1 1 1 H L
 1 0 0 1 1 1 H L
 0 0 0 1 1 1 H L
 ...edited...
V0004 0 0 0 0 0 1 L L
4 out of 4 vectors passed.

Figure D-2
Brief Trace Simulation Output

Figure D-3
Clock Trace Simulation Output

PLD JEDEC Simulation

Synario User Manual D-5

Trace Type: Detailed

Trace Type: Detailed provides information similar to that described for Clock,
except that the Detailed output shows the device inputs and outputs for each
iteration of the simulator. Figure D-4 shows the Detailed output for the same
source file used to generate Figure D-2.

The output is expanded over that shown in Figure D-3 to show each iteration
of the simulate operation that takes place to stabilize the device output. In this
case, Vector 3 takes an extra iteration of the high clock pulse to stabilize.

Simulate SYNARIO 1.00 Date Tue Aug 14 10:59:21 1993

Fuse file: ’regfb.jed’ Vector file: ’regfb.tmv’ Part: ’PLA’
Operation of the simulator on devices with feedback
 Data I/O Corp. 31 July 1993

 I
 C N
 l O I D D D F F
 k E T 1 2 3 1 2

V0001 0 0 0 1 1 1 Z Z
 0 0 0 1 1 1 H L
 1 0 0 1 1 1 H L
 0 0 0 1 1 1 H L
V0002 0 0 0 0 0 1 H L
 1 0 0 0 0 1 H L
 0 0 0 0 0 1 H L
V0003 0 0 1 1 1 1 H L
 1 0 1 1 1 1 L L
 1 0 1 1 1 1 L H
 0 0 1 1 1 1 L H
V0004 0 0 0 0 0 1 L L
4 out of 4 vectors passed.

Figure D-4
Detailed Table Format Simulation Output

PLD JEDEC Simulation

D-6 Synario User Manual

Report Type: None

Figure D-6 shows the output of JEDEC simulation created during processing of
regfb.abl (Figure D-5) with the Report Type set to None.

module regfb
 title ’Operation of the simulator on devices with feedback
 Data I/O Corp. 31 July 1993’

 FB2 device ’P16R4’;

 Clk,OE pin 1,11;
 INIT,D1,D2,D3 pin 2,3,4,5,;
 F1,F2 pin 14,13;

 F1 istype ’reg_D,invert’;

equations
 F1.D = D1 & INIT;
 F2 = D2 & F1.Q;

 F2.OE = D3;
 F1.C = Clk;
 F1.OE = !OE;

test_vectors ([Clk,OE,INIT,D1,D2,D3] -> [F1, F2])
 [.C., 0, 0 , 1, 1, 1] -> [1 , 0];
 [.C., 0, 0 , 0, 0, 1] -> [1 , 0];
 [.C., 0, 1 , 1, 1, 1] -> [0 , 1];
 [0 , 0, 0 , 0, 0, 1] -> [0 , 0];
end regfb

Simulate SYNARIO 1.00 Date Tue Aug 14 10:54:16 1993

Fuse file: ’regfb.jed’ Vector file: ’regfb.tmv’ Part: ’PLA’
Operation of the simulator on devices with feedback
 Data I/O Corp. 31 July 1993

4 out of 4 vectors passed.

Figure D-5
Regfb.abl Source File

Figure D-6
No Report Simulation Output

PLD JEDEC Simulation

Synario User Manual D-7

In Figure D-7, one of the test vectors was changed to produce an error, and
simulation was run through JEDEC simulation at Report Type: None (only
errors are shown). When an error occurs, the simulation output lists the
number of the vector that failed, the name and number of the failed output,
and the nature of the failure.

Simulate SYNARIO 1.00 Date Mon Aug 6 14:48:31 1993

Fuse file: ’fb2.jed’ Vector file: ’fb2.jed’ Part: ’P16R4’

SYNARIO 1.00 Data I/O Corp. JEDEC file for: P16R4 V8.0
Created on: Mon Aug 6 14:45:51 1993

Operation of the simulator on devices with feedback
 DATA I/O Corp. 31 July 1993

Vector 4
F2 13, ’L’ found ’H’ expected

3 out of 4 vectors passed.

Report Type: Tabular

Report Type: Tabular is the default format. Tabular gives a table with signal
levels represented by H, L, and Z for logic high, logic low, and
high-impedance state.

Figures D-2, D-3, and D-4 earlier in this appendix show the Tabular output for
all Trace Types.

Report Type: Pins

The Pins output shows the actual signal outputs and the test vectors used to
perform the simulation. The actual output associated with each test vector is
shown on one line followed by the input portion of the test vector, Vector In,
on the next line. The output portion of the test vector; that is, the expected
output of the device appears on the Vector Out line below the actual output.
Figure D-8 shows an example of a Pins report.

Figure D-7
No Report Simulation Output Showing Error

PLD JEDEC Simulation

D-8 Synario User Manual

Simulate SYNARIO 1.00X Date Wed Aug 29 10:21:15 1993
Fuse file: ’fb2.jed’ Vector file: ’regfb.tmv’ Part: ’P16R4’
SYNARIO 1.00X Data I/O Corp. JEDEC file for: P16R4 V8.0

Created on: Wed Aug 29 10:21:07 1993
Operation of the simulator on devices with feedback

Vector 1
Vector In [C0111.....0.............]

Device In [001110000000011110001111]
Device Out [...........ZLHHHHZZ.....]

...edited...

Vector 4
Vector In [00001.....0.............]

Device In [000010000000001110000111]
Device Out [...........ZLLHHHZZ.....]

4 out of 4 vectors passed.

Figure D-8
Pins Report Simulation Output

PLD JEDEC Simulation

Synario User Manual D-9

Report Type: Macro-cell

Macro-cell reports provide the same information as Tabular, plus internal
device information such as OR-gate outputs, register outputs, and the final
outputs. Figure D-9 shows one portion of a macro listing with pointers to its
various parts and a portion of the corresponding logic diagram. Only a
portion of the macro simulation output is shown since macro output files can
be quite large.

Simulate SYNARIO 1.00X Date Wed Aug 29 10:22:32 1993

Fuse file: ’fb2.jed’ Vector file: ’regfb.tmv’ Part: ’P16R4’

SYNARIO 1.00X Data I/O Corp. JEDEC file for: P16R4 V8.0
Created on: Wed Aug 29 10:21:07 1993

Operation of the simulator on devices with feedback
 Data I/O Corp. 31 July 1993

Vector 1
Vector In [C0111.....0.............]

Pin 11 [0]---------------------
 O
 F1 Pin 14 |\
 --| >O--- H Vec=H
 ---------- | |/
 | Q = L |--
PT 1280 [FFFFFFFF]---| OR = L |
Pin 1 [0]---| CK = L |

PT 1536 [T]---------------------
 |
 F2 Pin 13 |\
 --| >O--- L Vec=L
 ---------- | |/
 | |--
PT 1568 [TFFFFFF]---| OR = H |

Vector Out [............LH..........]
 ...

Figure D-9
Macro-cell Report Simulation Output

PLD JEDEC Simulation

D-10 Synario User Manual

Fuse and node numbers shown on the table are numbers assigned by Synario
to the fuses in the device and are shown in the Logic Diagrams provided with
the PLD Device Kit. The OR-gate and register outputs shown in the
simulation output are internal signals not available as pin outputs that can be
useful for debugging designs.

The Macro-cell report option produces large files if all pins and nodes are
traced for all vectors. To get a reasonably-sized file, use the Watch Signals and
Vector Range to Display properties to specify the pins or nodes for only the
desired vectors. If you do not specify which signals to watch, the first I/O pin
in the device is traced.

Table D-1 defines the notation used in the simulation macro output files to
identify product terms and nodes.

Notation Description

Current Nodes

OE Output enable
AR Asynchronous Reset
SR Synchronous Reset
AP Asynchronous Preset
SP Synchronous Preset
LD Register Load
CK Register Clock
OR Normal output OR gate ("D" "T")
IN1 First input to a Flip/Flop ("J" "S")
IN2 Second input to a Flip/Flop ("K" "R")
OR Node Types

PTnnnn One or more product term
LOW Always logic level 0
HIGH Always logic level 1
Pin nn Input from pin
Node nn Input or feedback from a internal node
Pin nn & nn The AND of two pins
Pin nn # nn The OR of two pins

Table D-1
Notation Used in Simulation Macro-cell Report Files

PLD JEDEC Simulation

Synario User Manual D-11

Notation Description

PROM nn Bit nn of a prom output

PRODUCT Term Display

Pin nn [1] Logic level 1 from a pin or node
Pin nn [0] Logic level 0 from a pin or node
nn & nn [0 & 1] Logic level 0 from a pin or node
PTnnnnn [TTFFTT] Multiple product terms
PTnnnnn [TT $ FT] XOR of two groups of product terms
PTnnnnn [TT # FT] OR of two groups of product terms
PTnnnnn [T-FF-T] Shared product terms (’-’ term not

connected)
PTnnnnn
[TTTTTFTFTTTFFFFTTF]
[TFFFFFFTTF]

Multiple line display of large OR

T = logic true; F = logic false

Report Type: Wave

Report Type: Wave provides a graphic representation of the inputs and/or
outputs of the device for each of the specified test vectors. The Vector Range
to Display property (break points) specifies the vectors to be used and the
Watch Signals property specifies which inputs and outputs appear in the
output file. Up to 14 pins can be specified (blank columns can be inserted by
entering 999, but they count as a pin in the output). If you do not specify
which signals to watch, JEDEC simulation automatically generates the signals
appearing at the first 14 output pins.

The JEDEC simulator watches only those signals specified in the test vectors.

Simulation and Designs with Buffered Outputs
When a design with 3-state buffered outputs is simulated with wave and/or
tabular reports, the states of the outputs are reported as H, L, 1, 0, Z, or X,
depending on the test vectors used, whether the pin is bidirectional, and
whether the output buffer is enabled.

PLD JEDEC Simulation

D-12 Synario User Manual

With a Tabular report, device pins that are output-only, or are bidirectional
and configured as outputs, the outputs are reported as follows (in order of
significance):

♦ If the buffer is enabled, the active state (H or L) of the output (that results
from the levels applied at the input pins by the input test vector) is
reported.

♦ If the buffer is not enabled, the same value (1, 0, Z, or X) applied to that
output by the input test vector is reported.

♦ If the output is not enabled and no 1 or 0 is applied to that output by the
input test vector, Z is reported.

Simulation and Unspecified Inputs
When the input test vector does not specify a logic level to be applied to a
particular input, or set of inputs, simulation uses the default value assigned by
the -x option. Using don’t cares (Xs) in the input test vector can cause the
input(s) to be unspecified. The JEDEC simulator does not propagate unknown
values.

Simulation for Designs with Feedback
Logic designs containing feedback present a unique simulation
problem,because the current output on one or more gates depends on the
outputs of other gates. Thus, determining the outputs of a design with
feedback is not a simple input-to-output determination. Propagation delays,
the number of gates in the feedback path, and, in synchronous feedback
circuits, clock inputs must be taken into account. When an input to the design
changes, the outputs may not stabilize immediately. Synchronous circuits
must be clocked before the outputs reflect changes in the inputs.

JEDEC simulation determines the final outputs of feedback circuits through
iteration, calculating, and monitoring the outputs until they stabilize or are
clocked out to give the final outputs. If outputs do not stabilize after 20
iterations, an error message is given. The iterations, final outputs, and the
states of the internal register are provided in the simulation output file
depending on the report and trace type you choose. Figure D-10 shows a
simple synchronous circuit with feedback. One clock pulse is required after
the inputs change to cause a corresponding change in the outputs. The source
file describing this circuit and the simulation output for a Tabular report are
shown in Figures D-5 through D-4.

PLD JEDEC Simulation

Synario User Manual D-13

The Tabular report shows the test vectors and the final outputs after the clock
pulse. A tabular report with clock trace shows the test vectors and the value of
the outputs before and after the clock. A macro-cell report results in a large
simulation output file. If you wish to examine the trace output for this circuit,
you can run JEDEC simulation on regfb.abl with macro-cell report and
examine the simulation results.

The second feedback example in Figure D-11 shows an asynchronous circuit
that requires more than one simulation iteration before the outputs stabilize.
Figure D-12 shows the source file describing the circuit and Figures D-13 and
D-14 show the simulation output for brief trace and detailed trace.

Brief trace shows the final outputs after they have stabilized, as well as the test
vectors. Detailed trace shows the output values at the different iterations as
the outputs stabilize, as well as the final outputs and the test vectors. Notice
that for the inputs provided in vector 2, three iterations are needed before the
outputs stabilize. Vector 1 requires only one iteration to provide stable
outputs. Macrocell report is not shown but can be generated by running
JEDEC simulation with "feedback.abl" shown in Figure D-12.

INIT

DI
Q

Q

D2

D

CLK

F1

OE

F2

D3

095-0699-001

Figure D-10
Synchronous Feedback Circuit

PLD JEDEC Simulation

D-14 Synario User Manual

module feedback
 title ’Operation of the simulator on devices with feedback’
 FB1 device ’P16HD8’;
 D1,D2,D3 pin 1,2,3;
 F1,F2,F3 pin 13,14,15;
equations
 F1 = D1;
 F2 = D2 & F1;
 F3 = D3 & F2;
test_vectors ([D1,D2,D3] -> [F1,F2,F3])
 [0, 0, 0] -> [0, 0, 0];
 [1, 1, 1] -> [1, 1, 1];
end feedback

DI

D2

F1

F2

D3
F3

095-0700-001

Figure D-11
Asynchronous Feedback Circuit

Figure D-12
Source File: Asynchronous Feedback Circuit

PLD JEDEC Simulation

Synario User Manual D-15

Simulate SYNARIO 1.00 Date Mon Aug 6 14:55:57 1993

Fuse file: ’feedback.jed’ Vector file: ’feedback.tmv’

Operation of the simulator on devices with feedback
 DATA I/O Corp. 24 Feb 1993

 D D D F F F
 1 2 3 1 2 3

V0001 0 0 0 L L L
V0002 1 1 1 H H H

2 out of 2 vectors passed.

Simulate SYNARIO 1.00 Date Mon Aug 6 14:57:01 1993
Fuse file: ’feedback.jed’ Vector file: ’feedback.tmv’

Operation of the simulator on devices with feedback
 DATA I/O Corp. 24 Feb 1993

 D D D F F F
 1 2 3 1 2 3

V0001 0 0 0 L L L
V0002 1 1 1 H L L
 1 1 1 H H L
 1 1 1 H H H
2 out of 2 vectors passed.

Figure D-13
Brief Trace Simulation Output: Asynchronous Feedback Circuit

Figure D-14
Detailed Trace Simulation Output: Asynchronous Feedback Circuit

PLD JEDEC Simulation

D-16 Synario User Manual

Register Preloads in the Simulator
When using a preload vector as the first test vector in the simulator, and the
device being used has asynchronous presets, you should include a "dummy"
vector before the preload vector (that is, all "don’t cares"). The dummy vector
prevents the possibility of the simulator initialization destroying the preload
data. Care should be taken when setting don’t cares to 1; when preloading
registers to the 1 state, be sure to define values for the resets of the preloaded
registers. If the resets are not defined, the registers will be reset after the
preload operation, and the preloaded data will be lost.

Test Vectors and Simulation
JEDEC simulation simulates the programmed device with user-supplied
design test vectors. The more comprehensive and detailed your test vectors
are, the more useful your simulation results will be.

With test vectors, you specify the required input pattern and expected outputs
at the device pins. JEDEC simulation will apply the inputs from the test
vectors to the simulated circuit and compare the simulated output with the
output specified in the test vectors. If there is any difference, an error is
indicated.

Note that the simulators cannot test a mode in your design if you do not write
a test vector to force that mode of operation. It is to your advantage to create
complete sets of test vectors that test all functions of your logic design, and to
use JEDEC simulation regularly as design changes are made.

Note The nodes shown on logic diagrams (shipped with the PLD Device Kit) are
outputs for writing equations; for example, the OR terms for the RS flip/flops in an
F167. These nodes cannot be used as direct flip/flop inputs for simulation test vectors.

Debugging State Machines
State machines can be difficult to debug once an error occurs because each
state depends on previous states and affects subsequent states. An error in the
description of one state transition can cause the state machine to follow a
different sequence from the test vectors. The loss of synchronization can cause
a cascade of errors that makes the original error hard to isolate.

PLD JEDEC Simulation

Synario User Manual D-17

To test and debug larger state machines:

♦ Add test vectors that periodically force the machine to known states to
reset the state machine and eliminate cascading of errors.

♦ Write small sets of test vectors that test individual functions of the state
machine, and gradually add them to the simulation.

Periodically forcing (with your test vectors) the state machine to a known state
and then letting the state transitions take place limits the cascading of errors to
a smaller number of states and makes it much easier to find initial errors.

Starting with a small set of test vectors that tests only part of the state
machine’s function also helps to isolate any errors. When operation of one
function has been verified, add a set of test vectors that test another function,
then add another, and so on, until you have tested the full function of the state
machine. Combining this technique of gradual simulation with the forcing
vectors discussed above makes errors easier to pinpoint and simplifies the
testing of large state machines.

Multiple Test Vector Sections
More than one set of test vectors can be used to simulate the function of a
device. This may be useful in the representation of the test in the source file.
In a similar manner, any time you have two or more distinct functions being
performed by the same device, you may want to describe the vectors in
separate sections for each function.

Take for example, the source file presented in Figure D-15 that describes AND
and NAND gates implemented on the same device as well as the test vectors
used to simulate the operation of that device. The test vectors are described in
two separate sections. The first test vectors section lists the test vectors that
simulate the operation of the AND portion of the design, and the second
section tests the NAND function. With the test vectors written as they are, in
two separate sections, the correspondence between test vectors and the
function being tested is readily apparent in the source file.

PLD JEDEC Simulation

D-18 Synario User Manual

module simple
 title ’Simple ABEL-HDL example Dan Poole Data I/O Corp’
 U7 device ’P14H4’;
 A1,A2,A3 pin 1,2,3;
 N1,N2,N3 pin 4,5,6;
 AND,NAND pin 14,15;
equations
 AND = A1 & A2 & A3;
 !NAND = N1 & N2 & N3;
test_vectors ’Test And Gate’
 ([A1,A2,A3] -> AND)
 [0, 0, 0] -> 0;
 [1, 0, 0] -> 0;
 [0, 1, 0] -> 0;
 [0, 0, 1] -> 0;
 [1, 1, 1] -> 1;
test_vectors ’Test Nand Gate’
 ([N1,N2,N3] -> NAND)
 [0, 0, 0] -> 1;
 [1, 0, 0] -> 1;
 [0, 1, 0] -> 1;
 [0, 0, 1] -> 1;
 [1, 1, 1] -> 0;
end simple

Automatic Signal Selection
The JEDEC simulator shows only signals used in test vectors for all report
formats (except for pins), unless you specify specific signals with the Watch
Signal property. (The Pins report type shows all inputs and outputs.) If you
run the module shown above (module simple), with the default tabular
format, the simulation results are given for only the signals used in the test
vectors (Figure D-16):

Figure D-15
Source File with Multiple Test Vector Sections

PLD JEDEC Simulation

Synario User Manual D-19

Simulate SYNARIO 1.00 Date Thu Aug 9 14:45:02 1993

Fuse file: ’simple.jed’ Vector file: ’simple.tmv’

Simple ABEL-HDL example

***** Test And Gate *****

 A
 A A A N
 1 2 3 D

V0001 0 0 0 L
V0002 1 0 0 L
V0003 0 1 0 L
V0004 0 0 1 L
V0005 1 1 1 H

***** Test Nand Gate *****

 N
 A
 N N N N
 1 2 3 D

V0006 0 0 0 H
V0007 1 0 0 H
V0008 0 1 0 H
V0009 0 0 1 H
V0010 1 1 1 L
10 out of 10 vectors passed.

Don’t Cares in Simulation
In ABEL-HDL, you can use the special constant .X. in a test vector to denote a
don’t-care input or output. The .X. tells the JEDEC simulator to choose a value
for the input designated by the .X. in the test vector(s), or to disregard an
output signal’s state. The default value used in the simulator for the don’t care
inputs is zero. However, you can use the Don’t Care (X) Value property of
Simulate JEDEC File to specify zero or one (0 or 1) for the don’t care value.

Figure D-16
Simulation Results Showing Automatic Signal Selection

PLD JEDEC Simulation

D-20 Synario User Manual

Input pins that are not specified in the test vectors are given the default don’t
care value zero (0) by the simulator unless the don’t care property is set to 1.
In this case, all unspecified pins will be assigned a value of 1 in the test vectors.

If you experience trouble with devices not working in a circuit or
programmer/tester, it may be helpful to recheck the don’t care assumptions.
There may be a combination of 1s and 0s in a test vector that needs to be
checked by the JEDEC simulator.

Note Logic programmers use JEDEC vectors to test the device. Occasionally vectors
that pass in JEDEC simulation will fail on the programmer. Data I/O logic
programmers such as the UniSite, 2900 or 3900 show on the operator’s terminal the
pin and vector that failed.

Also, the simulator checks the design with a single level for the don’t care
inputs, while the target circuit may place other levels on the input during
actual operation of the device. For complete simulation, you must run the
JEDEC simulation operation with the don’t cares set to 0, and then again with
them set to 1.

The simulators ignore output pins that are not specified in the test vectors and
will not indicate an error due to conflict between a specified value and the
value determined by the simulator. The .X. constant at an output pin tells the
simulators not to compare the outputs (the output produced by the design and
the output specified in the test vector) but still allow them to be displayed.
Figure D-17 shows how the .X. value can be assigned to the outputs prior to
the JEDEC simulation step of the language processor.

PLD JEDEC Simulation

Synario User Manual D-21

module findout
title ’The JEDEC simulator will find the output levels
Ngoc Nicholas Data I/O Corp 9 Aug 1993’

 F1 device ’P16L8’;
 A,B,Y1,Y2 pin 1,2,14,15;
 X = .X.;

equations
 !Y1 = A # B;
 !Y2 = A $ B;

test_vectors
 ([A,B] -> [Y1,Y2])
 [0,0] -> [X, X];
 [0,1] -> [X, X];
 [1,0] -> [X, X];
 [1,1] -> [X, X];
end

Using Pins, Wave and Tabular report types, you can observe the actual output
values determined by the simulator. In Figure D-18, the X entries (in the test
vectors) for pins 14 and 15 allow the simulator to display an H or L to indicate
the output value for the specified inputs.

Simulate SYNARIO 1.00X Date Tue Aug 28 15:07:54 1993

Fuse file: ’findout.jed’ Vector file: ’findout.tmv’

The JEDEC simulator will find the output levels
Ngoc Nicholas Data I/O Corp 9 Aug 1993

 Y Y
 A B 1 2

V0001 0 0 H H
V0002 0 1 L L
V0003 1 0 L L
V0004 1 1 L H
4 out of 4 vectors passed.

Figure D-17
Assignment of Don’t Care Value (.x.) to Design Outputs

Figure D-18
JEDEC Simulation Results with Outputs Specified as Don’t Care

PLD JEDEC Simulation

D-22 Synario User Manual

Preset and Preload Registers
Preset, reset, and preload are terms used to define a specific action and
resultant output of one or more registers contained in a programmable logic
device. Preset forces all register outputs to one, reset forces all register outputs
to zero, and preload forces all registers to specified states. Synchronous preset,
reset, and preload functions require a clock input. Asynchronous functions
require no clock input.

To verify the operation of these devices, appropriate test vectors must be
written and placed in the source file. These test vectors allow the JEDEC
simulation steps of the language processor to verify operation of the design by
performing the required operations of these registers.

Note For preload, the JEDEC Simulator assumes that devices have inversion between
the register outputs and the device outputs. When preloading devices that have
noninverting outputs or that have outputs programmable to noninverting, the data to
be preloaded must be complemented to obtain the desired preload condition.

Also note that it is not possible to preset, reset, and preload at the same time.
Preset and preload must not contend during preload with other inputs, preset,
or register functions.

Special Preset Considerations

Certain programmable logic devices, such as the F105 and F167, do not
respond to the first clock pulse following a preset condition (power-on or the
preset input). These devices allow normal clocking only after a high-to-low
transition of the clock input following the preset condition. Therefore,
simulation for these devices requires an additional test vector following the
preset condition to provide the high-to-low transition of the clock input.

To illustrate the preset considerations for these devices, a four-state counter
with clock and preset inputs is presented in Figure D-19, along with the test
vectors required to properly verify the design. The equation for the preset
condition is written using the dot extension for the two registers. This counter
is targeted for a circuit that provides a power-on preset condition; so the test
vectors must verify operation of the counter after power-on preset as well as
after the preset input has been active.

PLD JEDEC Simulation

Synario User Manual D-23

 module preset
 title ’2-bit counter to demonstrate power on preset Bob Hamilton Data I/O Corp’
 preset device ’F167’;
 Clk,Hold pin 1,2;
 PR pin 16; "Preset/Enable
 P1,P0 pin 15,14;
 Ck,X = .C.,.X.;
equations
 [P1,P0].PR = PR;
 [P1,P0].C = Clk;
 [P1.R,P0.S] = !P1 & !P0 & !Hold; " state 0
 [P1.S,P0.R] = !P1 & P0 & !Hold; " state 1
 [P1.S,P0.S] = P1 & !P0 & !Hold; " state 2
 [P1.R,P0.R] = P1 & P0 & !Hold; " state 3
test_vectors
 ([Clk,PR,Hold] -> [P1,P0])
 [1 , 1, 0] -> 3;
 [1 , 0, 0] -> 3; " Provides a High-to-Low on clock
 [0 , 0, 0] -> 3; " to enable clocking
 [Ck, 0, 0] -> 0;
 [Ck, 0, 0] -> 1;
 [Ck, 0, 0] -> 2; " Hold count
 [Ck, 0, 1] -> 2;
 [Ck, 0, 0] -> 3;
 [Ck, 0, 0] -> 0; " Roll over
 [Ck, 0, 0] -> 1;
 [1 , 1, 0] -> 3; " Preset high
 [1 , 0, 0] -> 3; " Preset low
 [Ck, 0, 0] -> 0;
 [Ck, 0, 0] -> 1;
" Notes edited...
end

Figure D-20 is a timing diagram that shows the action of the test vectors in
Figure D-19. As indicated in the timing diagram, the preset input overrides
the clock input and when held high, inhibits clocking of the counter.
Assuming that the device is powered up in the preset condition, the first test
vector pulls the clock input high while the second vector pulls it low to
provide the transition required for normal clocking.

The next six test vectors provide clock inputs to increment the counter through
all states and back to state one. As shown in the timing diagram, the 9th test
vector invokes the preset function, and the 10th test vector pulls the preset
input low and maintains the clock input high. The 10th test vector allows the
preset line to go low before the high-to-low transition of the clock. The preset
line must go low before the clock so that the high-to-low clock transition can
enable the clock pulse of the 11th test vector. The high-to-low transition that
follows the 10th test vector resumes normal clocking of the device.

Figure D-19
Test Vectors for Special Preset Conditions

PLD JEDEC Simulation

D-24 Synario User Manual

If the 2nd and 10th test vectors were not included in the source file, the clock
pulse of the 3rd and 11th vectors would be lost. That is, the high-to-low
transition of the clock pulses in these vectors would cause the resumption of
normal clocking, but would not increment the counter as required by the
design.

TTL Preload

Certain programmable logic devices, such as the F159 FPLS (field
programmable logic sequencer) allow internal registers to be forced
(preloaded) to a known state by means of the TTL preload function. Figure
D-21 shows a typical FPLS layout. To preload the output register in such a
device, four conditions must be present:

♦ The output is placed in the high-impedance state
♦ The desired register state is placed on the output pin
♦ The load control term is activated
♦ A clock pulse is applied to the clock input

VCC

1 2 3 4 5 6 7 8 9 10 11 12

P1

VECTOR

P0

PRESET

CLOCK

CLOCKING
ENABLED

CLOCKING
ENABLED

Preset overrides clock, and when held high, clocking is inhibited and the registers are high.
Normal clocking resumes with the first clock pulse following a high-to-low clock transition after preset goes low.

095-0748-001

Figure D-20
Timing Diagram Showing Test Vector Action

PLD JEDEC Simulation

Synario User Manual D-25

The fifth test vector in Figure D-22 shows how each of the above conditions are
met. In the fifth test vector

♦ OE (Ena) pin is held at 1
♦ The output (F0) is pulled low by inserting a 0 in the input side of the test

vector
♦ A 1 is applied to the LOAD input, which activates the load control term

(LA)
♦ A clock pulse is provided by the C (.C.) applied to the clock input

O.E.

F

CKK

J Q
RP

(n)

P R L D
(CONTROL TERMS)(LOGIC TERMS)

095-0751-001

Figure D-21
Internal Register of the F159

PLD JEDEC Simulation

D-26 Synario User Manual

module TTLload
 title ’TTL load example
Dave Kohlmeier Data I/O Corp 9 Aug 1993’

 TTL59 device ’F159’;

 C,L,H,X,Z = .C.,0,1,.X.,.Z.;

 Clk,J_IN,K_IN,LOAD,Ena,F0 pin 1,2,3,4,11,12;

 F0 istype ’reg_JK,invert’;

equations
 F0.OE = !Ena;
 F0.J = J_IN;
 F0.K = K_IN;
 F0.L = LOAD;
 F0.C = Clk;

test_vectors
 ([Clk,Ena,J_IN,K_IN,LOAD,F0] -> F0)
 [C , L , 1 , 0 , 0 , X] -> 0 ; "Set
 [C , L , 0 , 1 , 0 , X] -> 1 ; "Reset
 [C , L , 1 , 1 , 0 , X] -> 0 ; "Toggle
 [C , L , 1 , 1 , 0 , X] -> 1 ; "Toggle
 [C , H , 0 , 0 , 1 , 0] -> X ; "Load
 [0 , L , 0 , 0 , 0 , X] -> 0 ; "Test
 [C , L , 1 , 1 , 0 , X] -> 1 ; "Toggle
end

The sixth test vector tests to make sure the register was loaded with the 0
applied to the output by the fifth test vector. The sixth test vector enables the
output (Ena at 0) and allows the output to be tested (F0 = X on the input side
and 0 on the output side of the vector) while holding the clock input at 0.

Figure D-22
Invoking the TTL Preload Function

PLD JEDEC Simulation

Synario User Manual D-27

Supervoltage Preload

Supervoltage preload allows the setting of registers within certain devices,
such as the P16R4, to the logic levels placed on their registered outputs.
Supervoltage preload is accomplished by means of the .P. test condition (.P.
special constant) that is used to "jam load" registers within the logic device to
the desired state. When the .P. test condition is applied to the clock pin, the
logic level applied to the register output is loaded into the register. Devices
with separate banks of registers require that the P test condition be applied to
each clock pin. Also during preload, certain device pins, such as the output
enable pin, may have to be in a defined state.

To verify the preload operation, use a separate test vector to test the outputs.
This vector must follow the vectors that perform the preload operation.

Supervoltage preload can be used to test state machine designs that could
assume one or more illegal states, or designs that contain branch conditions.
An illegal state for a state machine is a state that the design does not allow, but
the device is capable of assuming under certain conditions (such as powerup
or noise). A typical decade counter having states 0 through 9 and four
registers, could possibly assume six additional (and illegal) states (10 through
15). The decade counter should be designed so that when an illegal state is
reached, the next clock pulse returns the counter to the 0 state. During
simulation it is necessary to not only test the counter for normal
up/down/clear operation (performed by the test vectors) but also to insure
that it will clock to state S0 from any illegal state.

To test that a decade counter will clock to state 0 from any illegal state, it is
necessary to do two things:

1. Define all illegal states to be tested.

2. Create test vectors that verify the return to state 0 from any illegal state.

To test the illegal states for a decade counter, it is necessary to define the illegal
states (that is, 10 through 15). Figure D-23 shows that the following additional
entries are included to define the six illegal states:

S10= ^b0101;
S11= ^b0100;
S12= ^b0011;
S13= ^b0010;
S14= ^b0001;
S15= ^b0000;

PLD JEDEC Simulation

D-28 Synario User Manual

To verify that the design will recover from each of the illegal states,
appropriate test vectors are included. This group of test vectors preloads the
device to each possible illegal state and then verifies that the device clocks to
state S0. The test vectors preload the counter by means of the .P. special
constant applied to the clock pin and a logic high applied to the output enable
(OE) pin. The test vector that follows the preload test vector verifies the result
of the preload operation, while the following test vector verifies the clocking of
the counter from the illegal state to state S0.

 module CNT10P
 title ’decimal counter
Note: preload the data on pins into the registers, Denny Siu Data I/O Corp’

 cnt10p device ’P16R4’;

 Clk,Clr,OE pin 1,2,11;
 Q3,Q2,Q1,Q0 pin 14,15,16,17 istype ’reg_D,invert’;

 Ck,X,Z,P = .C. , .X., .Z., .P.;

" Counter States
 S0 = ^b1111; S4 = ^b1011; S8 = ^b0111; S12= ^b0011;
 S1 = ^b1110; S5 = ^b1010; S9 = ^b0110; S13= ^b0010;
 S2 = ^b1101; S6 = ^b1001; S10= ^b0101; S14= ^b0001;
 S3 = ^b1100; S7 = ^b1000; S11= ^b0100; S15= ^b0000;

equations
 [Q3,Q2,Q1,Q0].c = Clk;
 [Q3,Q2,Q1,Q0].oe = !OE;

state_diagram [Q3,Q2,Q1,Q0]
 State S0: IF !Clr THEN S1 ELSE S0;
 State S1: IF !Clr THEN S2 ELSE S0;
 State S2: IF !Clr THEN S3 ELSE S0;
 State S3: IF !Clr THEN S4 ELSE S0;
 State S4: IF !Clr THEN S5 ELSE S0;
 State S5: IF !Clr THEN S6 ELSE S0;
 State S6: IF !Clr THEN S7 ELSE S0;
 State S7: IF !Clr THEN S8 ELSE S0;
 State S8: IF !Clr THEN S9 ELSE S0;
 State S9: GOTO S0;

"Ensure return from illegal state
 State S10: GOTO S0;
 State S11: GOTO S0;
 State S12: GOTO S0;
 State S13: GOTO S0;
 State S14: GOTO S0;
 State S15: GOTO S0;

Figure D-23
Defining Illegal States and Test Vectors for Illegal States

PLD JEDEC Simulation

Synario User Manual D-29

@page
test_vectors ’Test Counter’
 ([Clk ,OE, Clr] -> [Q3,Q2,Q1,Q0])
 [Ck , 0, 1] -> S0;
 [Ck , 0, 0] -> S1;
 [Ck , 0, 0] -> S2;
 [Ck , 0, 0] -> S3;
 [Ck , 0, 0] -> S4;
 [Ck , 0, 0] -> S5;
 [Ck , 1, 0] -> Z ;
 [Ck , 0, 0] -> S7;
 [0 , 0, 0] -> S7;
 [Ck , 0, 0] -> S8;
 [Ck , 0, 0] -> S9;
 [Ck , 0, 0] -> S0;
 [Ck , 0, 0] -> S1;
 [Ck , 0, 0] -> S2;
 [Ck , 0, 1] -> S0;

test_vectors ’preload to illegal states’
 ([Clk ,OE, Clr,[Q3,Q2,Q1,Q0]] -> [Q3,Q2,Q1,Q0])
 [P , 1, 0 , S10] -> X ;
 [0 , 0, 0 , X] -> S10;
 [Ck , 0, 0 , X] -> S0 ;
 [P , 1, 0 , S11] -> X ;
 [0 , 0, 0 , X] -> S11;
 [Ck , 0, 0 , X] -> S0 ;
 [P , 1, 0 , S12] -> X ;
 [0 , 0, 0 , X] -> S12;
 [Ck , 0, 0 , X] -> S0 ;
 [P , 1, 0 , S13] -> X ;
 [0 , 0, 0 , X] -> S13;
 [Ck , 0, 0 , X] -> S0 ;
 [P , 1, 0 , S14] -> X ;
 [0 , 0, 0 , X] -> S14;
 [Ck , 0, 0 , X] -> S0 ;
 [P , 1, 0 , S15] -> X ;
 [0 , 0, 0 , X] -> S15;
 [Ck , 0, 0 , X] -> S0 ;
end

An example of a state machine that contains branch conditions is given in the
blackjack machine in the Synario ABEL-HDL Reference. If it was not possible to
preload the state machine to each branch condition, it would be necessary to
repeat the test vectors down to the Test22 state for each branch of the Test22
state. The test vectors in Figure D-24 show how this state machine can be
preloaded to test these three branches of the design.

PLD JEDEC Simulation

D-30 Synario User Manual

 test_vectors ’ Test 3 way branch at Test22’
([Ena,Clk,LT22,Ace,Qstate] -> [Ace,Qstate])
 [1 ,.P., X 1 ,Test22] -> [X, X];
 [0 , O , 1 X , X] -> [H,Test22];"Verify preload
 [0 , C , 1 X , X] -> [H,ShowStand];
 [1 ,.P., X 0 ,Test22] -> [X, X];
 [0 , O , 0 X , X] -> [L,Test22];
 [0 , C , 0 X , X] -> [L,ShowStand];
 [1 ,.P., X 1 ,Test22] -> [X, X];
 [0 , C , 0 X , X] -> [H,Sub_10];

Preset/Reset Controlled by Product Term

In programmable logic devices such as the P22V10, preset and reset functions
are controlled by product terms. An example of controlling the preset and
reset functions is given in Figure D-25.

module reset22a
title ’Demonstrates Asynchronous Reset and Synchronous Preset’
 reset22a device ’P22V10’;
 Clk,I1,I2,R,S,T Pin 1,2,3,4,5,6;
 Q1,Q2 Pin 14,15 istype ’buffer’;
 Ck,Z,H,L = .C., .Z., 1, 0;
 Input = [I2,I1];
 Output = [Q2,Q1];
equations
 Output := Input; "Registered buffer
 Output.AR = R & !T;
 Output.SP = S & !T;
 Output.Clk = Clk;
test_vectors
 ([Clk,Input,R,S,T] -> Output)
 [Ck, 0 ,0,0,0] -> 0;
 [Ck, 1 ,0,0,0] -> 1;
 [Ck, 2 ,0,0,1] -> 2;
 [0 , 3 ,0,0,1] -> 2; "Hold
 [Ck, 3 ,0,0,1] -> 3;
 [0 , 3 ,1,0,1] -> 3; "Reset = R & !T
 [0 , 3 ,1,0,0] -> 0; "Async Reset
 [0 , 0 ,0,1,0] -> 0; "Preset requires clock
 [Ck, 0 ,0,1,0] -> 3; "Sync Preset
end

Figure D-24
Using Test Vectors to Preload a State Machine

Figure D-25
Controlling Reset/Preset by Product Term

PLD JEDEC Simulation

Synario User Manual D-31

Note In devices like the P22V10, there is a common reset for all registers. While a
reset equation for one output will reset all of the registers in the P22V10, you should
write individual reset equations to ensure architecture-independence.

Note For devices that have programmable polarity at the output of the registers,
preset and reset functions may complement the output pins.

In the P22V10, the reset is asynchronous while preset is synchronous (to the
clock input). The test vectors in Figure D-25 verify the reset and preset
functions. The first three vectors verify the loading of input data. (Note that
the third vector pulls the T input high; this is in preparation for T to be pulled
low later in the simulation.) The fourth vector verifies operation of the clock
input by changing the input data without providing a clock input. The sixth
vector verifies that the R input without a low T input will not provide the
asynchronous reset.

The seventh vector verifies operation of the asynchronous reset by pulling the
T input low. The next vector verifies that a high S input and low T input do
not preset the device without the clock input. The final vector verifies the
synchronous preset by providing the clock pulse and testing the output for
both output pins at logic high (decimal 3).

Preset/Reset Controlled by Pin

Some devices have a direct Preset or Preload coming from a pin. Be sure to
include this in the test vectors or simulation errors may occur.

Powerup States

Some devices power up with registers set to 1, some set to 0 and some set to an
unknown value. For example, some TI devices power up with registers set
and outputs low while some AMD devices power up with registers clear and
outputs high. The first test vectors should always place the device in a known
state. For example:

test_vectors
([clk,clear,input]->[output])
 [0 , 0 , 0]->[.X.]; "Power up to don’t care
test
 [0 , 1 , 0]->[0]; "Clear the f/f and put
output to known value
 [0 , 0 , 0]->[0]; "Relax clear signal and
test for steady state
 [.C., 0 , 0]->[0]; "Begin clocking

PLD JEDEC Simulation

D-32 Synario User Manual

Devices with Clock Inputs
Since devices with registered outputs must be clocked before the outputs
reflect any change in inputs, a clock pulse must be specified as one of the test
vector inputs. A clock input is indicated by a .C. in the test vector for a
low-high-low pulse, and a .K. for a high-low-high pulse. The clock input
causes JEDEC simulation to evaluate the inputs to the outputs prior to the first
clock pulse transition (low-to-high or high-to-low depending on the polarity of
the clock signal). The evaluation consists of the iterative steps described in
"Simulation Program Operation." The inputs to outputs are then evaluated
with the clock input at its active state, and then again with the clock input at its
inactive state.

When running JEDEC simulation with Trace Type of Clock or Detailed,
simulation data will be written for all three evaluations. That is, internal test
vectors are generated to evaluate the design before the first clock transition,
after the first clock transition, and after the second clock transition, thus
effectively expanding the number of test vectors. An example of JEDEC
simulation output for a device with a clock input is shown in Figure D-3 under
"Trace Type: Clock" earlier in this appendix. The clock input is represented by
the .C. on the Vector In line. On the four subsequent Device In lines, the .C.
input goes from 0 to 1 and back to 0 to provide one complete clock pulse.

PLD JEDEC Simulation

Synario User Manual D-33

PLD JEDEC Simulation

D-34 Synario User Manual

	Master Table of Contents
	Synario User Manual
	Table of Contents
	Preface
	Customer Support
	Technical Assistance
	Sending a Fax
	Using the BBS

	Bulletin Board Service
	Warranty Information
	End User Registration and Address Change
	Where to Look for Information
	Conventions

	Chapter 1: Welcome to Synario
	What Is Synario?
	Freedom in Design Entry
	Freedom in Design Processing

	Designing with Synario
	Design Entry
	Functional Simulation
	Optimization and Device Fitting
	Timing Simulation

	What’s in Synario
	Projects and Sources
	Processes
	Customizing Processes
	Simulating Your Design

	Synario and Windows
	Flexible Design Entry
	Selecting a Device

	Synario File Structure
	Learning More About Synario
	Exploring Synario’s Documentation
	Exploring Example Designs

	Chapter 2: Building a Design
	Introduction to Projects and Sources
	Opening and Saving Projects
	Opening a Project
	Creating a New Project
	Saving a Project

	Creating Schematics and Behavioral Modules
	Adding and Removing Source

	Building a Hierarchical Project
	Understanding Hierarchy
	Building a Top-level Behavioral Module
	Building a Top-level Schematic

	Test Fixture Sources
	Building Other Project Sources

	Chapter 3: Editing Your Design
	Editing Behavioral Modules and Test Stimulus
	Editing Schematics
	Editing Other Sources
	Converting JEDEC Files to ABEL-HDL

	Chapter 4: Processing Your Design
	Running Processes
	Viewing Reports and Output Files
	Processing Steps
	Displaying Processes
	Device-independent Processes
	Device-specific Processes

	Working with Processes
	The Process Window
	Changing How a Process Runs: Properties

	Processing Problems
	Error Messages
	Debugging Problems
	Lost Clusters

	Chapter 5: Design and Retargeting
	Schematic Design Techniques
	VCC and GND Symbols
	Net Names and Symbol Instance Names
	Create Bus and Net Names that are Unique
	Place I/O Pins On Top Level Only

	Other Design Considerations
	Don’t Rely On Case-sensitivity
	Keep Projects Separate
	Use Text Documents
	Test Fixture Include file

	Designing for Device Independence
	Horizontal and Vertical Retargeting

	Device-independent Designs
	Device-independent ABEL-HDL Modules
	Device-independent Schematics

	Chapter 6: Working with Devices
	When You Need to Select a Device
	Selecting a Device
	Automatic Process Updating

	What Happens When You Select a Device?
	How Processes Change with a Device Change
	How Properties Change with a Device Change
	How Schematic Symbols Change with a Device Change

	Device Kits
	What Is a Device Kit?
	How Do You Use a Device Kit?
	Accessing Device Kit Help Files

	Appendix A: Strategies and Properties
	Properties
	Advanced Properties
	Default Properties

	Setting Properties
	Strategies
	Creating New Strategies
	Changing the Default Strategy
	Deleting and Renaming Strategies
	Saving Strategies

	Appendix B: Synario Configuration
	Synario Project Navigator
	Sizing the Sources and Processes Window

	Text Editor and Report Viewer
	Schematic Editor, Symbol Editor, and Hierarchy Navigator
	Synario Project Navigator Configurable Menu
	Menu Name
	Menu Item
	Program
	Extensions
	Command Line Options
	Message Bar Text
	Examples

	Appendix C: The Synario INI Editor
	Saving Changes
	The BINARY.INI File
	Custom INI Files
	Using the Synario INI Editor
	Controls Menu
	System Controls
	Display Controls
	Symbol Controls
	Graphic Options
	Sheet Layout
	Sheet Sizes
	Wave Controls
	Global Nets
	Colors
	Wave Colors

	Tools Menu
	Symbol Tools
	Schematic Tools
	Navigator Tools
	Processes

	Attributes Menu
	Symbol, Pin, and Net Attributes
	Example Attributes
	Global Attributes

	Search Paths Menu
	Project, Model, and Symbol Libraries

	Libraries and Directory Structures
	Program Directories
	User Directories
	Library Directories

	Miscellaneous Control Options

	Appendix D: PLD JEDEC Simulation
	How Synario Simulates JEDEC Files
	The Simulator Model
	JEDEC and .tmv Vectors
	JEDEC Simulation Flow

	Report and Trace Types and Break Points
	Trace Type: Brief
	Trace Type: Clock
	Trace Type: Detailed
	Report Type: None
	Report Type: Tabular
	Report Type: Pins
	Report Type: Macro-cell
	Report Type: Wave

	Simulation and Designs with Buffered Outputs
	Simulation and Unspecified Inputs
	Simulation for Designs with Feedback
	Register Preloads in the Simulator
	Test Vectors and Simulation
	Debugging State Machines
	Multiple Test Vector Sections
	Automatic Signal Selection
	Don’t Cares in Simulation
	Preset and Preload Registers
	Special Preset Considerations
	TTL Preload
	Supervoltage Preload
	Preset/Reset Controlled by Product Term
	Preset/Reset Controlled by Pin
	Powerup States

	Devices with Clock Inputs

